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ABSTRACT 
 

DEVELOPMENT OF SPECIFIC AND POTENT α-HELICAL INHIBITORS AND 

PROBES OF CYSTEINE PROTEASES 

Nataline Meinhardt 

Doron Greenbaum, Ph.D. 

Cysteine proteases are of great scientific and pharmaceutical interest due to their diverse 

roles in cellular processes and diseases. However, it has been difficult to design inhibitors 

for use in determining their individual roles due to the conserved active site. 

Interestingly, each protease has an endogenous inhibitor that forms an α-helix at the 

prime side of the active site. We developed a new method for stabilizing α-helices using 

natural amino acids that allowed us to make small peptides into α-helical inhibitors. We 

were then able to use structure based design to turn these α-helices into specific 

inhibitors and probes for use in understanding the proteases’ roles in various diseases and 

cell processes. The use of α-helices has further implications as a new method of creating 

investigative tools for understanding proteases.  
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CHAPTER 1: Introduction  
	  

1.1 Introduction to Cysteine Proteases 
Cysteine proteases are enzymes that cleave peptide bonds using a catalytic dyad 

consisting of cysteine and histidine.1 The cysteine/histidine pair forms a thiolate-

imidazolium ion pair in which the thiolate ion nucleophilically attacks the carbonyl 

carbon in the peptide bond.2 This nucleophilic attack results in a thioester which is 

subsequently hydrolyzed There are multiple cysteine protease families. We are most 

interested in the papain superfamily, which is the largest of the cysteine protease families 

identified to date.3 The papain superfamily is named after the protease papain which was 

first isolated from the papaya. We are specifically interested in calpain-1 and cathepsins 

L, S, and K due to the presence of α-helices from the endogenous inhibitor or prodomain 

at each respective protease active site. 

 

Figure 1.1. Model of substrate association nomenclature.4,5 

Specificity of proteases usually relies on recognition of the amino acids around 

the scissile bond generally the three amino acids amino- or carboxyterminal to the scissile 
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bond.6 Substrate amino acids are denoted by the letter P and enzyme substrate binding 

pockets are designated S; both are numbered according to their relative position to the 

scissile bond.4,6 This numbering has both prime (P’ or S’) and unprimed (P or S) 

denotations where the unprimed side is N-terminal to the scissile bond, while the prime 

side is C-terminal to the scissile bond (Figure 1.1).4 One of the main points of interest is 

the S1’ site which is a well defined pocket that can bind hydrophobic ring systems for π-

π stacking against a tryptophan.1 

1.2 Cysteine Protease Regulation and Cellular Location 
Proteases are regulated through a number of different mechanisms and located in 

a number of different cell types and various subcellular compartments within the cell. 

Calpain is regulated by both spatial, through relocation to the cell membrane, and 

temporal controls, through calcium flux and the endogenous, proteinaceous inhibitor 

calpastatin. Calpain-1 is a cytoplasmic protein generally found in all cells where it plays a 

role in proteolytic cleavage of the cytoskeleton.7 Other calpains are found in specific 

cells, such as calpain-3 which is primarily located in skeletal muscle.8 

Cathepsins are regulated by changes in pH and by the endogenous prodomain, 

which is cleaved upon activation but can still function as an inhibitor.9 Cathepsins are 

synthesized as an inactive proenzyme that is converted to active enzyme through 

autoproteolytic cleavage.10 Procathepsin is processed at low pH, hence cysteine 

cathepsins are normally found in acidic cellular compartments, i.e. in lysosome and 

endosomes.10,11 Cathepsin L is generally found in all cells while cathepsin K is found in 

osteocytes, and cathepsin S is almost exclusively found in antigen-presenting cells, B 

lymphocytes, and dendritic cells.3,11-13 
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Cysteine cathepsins are suggested to function in lysosomal protein degradation 

where they cleave a wide assortment of substrates.6,10 However, data increasingly 

supports the idea that cathepsins also function in extralysosomal activity such as at the 

plasma membrane or in the extracellular milieu.6 One such example of a cathepsin with 

extralysosomal activity is cathepsin K which is found in the bone resorption pit. The 

resorption pit has a low pH and this has led to the proposal that processing of the 

proenzyme may actually occur in this location.11 Due to their wide variety of locations 

cysteine proteases are involved in a number of diseases and cell functions 

1.3 Cysteine Protease Cellular Function and Role in Disease 
Cysteine proteases play critically important roles in cellular functions and disease. 

Cathepsin L functions to break down proteins in the lysosome and is involved in 

epidermal and cardiac homeostasis, prohormone processing, and autophagy.6 Cathepsin S 

is found primarily in the lysosome in antigen-presenting cells where it is involved the 

processing of the invariant chain, the chaperone molecule, of the MHC II complex.12-14 

Cathepsin K is excreted to the bone resorption pit where it plays a role in bone 

remodeling by breaking down collagen fibers in osteoclast mediated bone resorption.11 

Calpains are found in the cytoplasm and are known to breakdown cystoskeletal proteins, 

especially spectrin. As such they are suggested to play a role in cell migration and 

apoptosis.7 

Due to their roles within the cell, misregulation of cysteine proteases, either gain 

or loss of function, has been associated with numerous diseases.15 Cathepsin S has been 

suggested to be involved in rheumatoid arthritis, multiple sclerosis, asthma, and 

psoriasis.13 Cathepsin S also has elastase activity and subsequently has been implicated in 
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the pathogenesis of cardiovascular diseases like atherosclerosis and abdominal aortic 

aneurysm.13 Increased production of cathepsin S is also related to tumor progression and 

angiogenesis of cancer and consequently, an adverse outcome.16 Cathepsin L contributes 

to cancer cell proliferation, tumor growth, and resistance to therapy.6,17 Excessive 

cathepsin K activity associated with degradation of collagen fibers leads to osteoporosis 

and osteoarthritis.18 Calpains contribute to secondary degeneration after acute cellular 

stress such as myocardial ischemia, cerebral ischemia, or traumatic brain injury.19,20 

Hyperactivation of calpain is also correlated with amyloid diseases such as Huntington’s 

disease, Parkinson’s disease, and Alzheimer’s disease.21-23 

1.4 Prior Inhibitors of Cysteine Proteases 
Due to their role in disease there has been much interest in designing inhibitors of 

cysteine proteases. Most inhibitors are substrate mimetics that competitively block the 

active site of the protease by blocking substrate turnover.24 Often the inhibitors contain a 

peptide sequence with an additional reactive electrophilic moiety or ‘warhead’.17 This 

warhead covalently binds the catalytic cysteine either reversibly or irreversibly depending 

on the reactive group.17,24  

There are a number of different warheads used for cysteine protease inhibitors. 

Some early inhibitors used an epoxysuccinate, diazomethyl ketone, or fluoromethyl 

ketone to covalently and irreversibly react with the active site cysteine.5,16,25 The 

irreversibility and high potency of these inhibitors led to many off-target effects and 

possible metabolic consequences.16,24 Thus, efforts have shifted to develop reversible 

inhibitors. A few examples of the reversible warheads have been α-ketoamides16, 

nitriles26, and azepanones27,28.  
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There has been investigation into the variation of the warhead moiety, however 

these inhibitors have primarily focused on binding to pockets on the unprime side of the 

enzyme. Many of the issues associated with inhibitor development have been due to the 

inability to achieve selectivity due to the similarity of these unprimed side P1-P3 binding 

pockets of papain family cysteine protease active sites.5 Inhibitors design has even been 

extended as far as the P4 pocket in an effort to increase selectivity among the 

family.5,16,24,27,28 

In addition to synthesized inhibitors, cysteine proteases also have endogenous 

inhibitors. As mentioned earlier, the cathepsins are synthesized containing a proregion 

that acts as an endogenous inhibitor (Figure 1.2). In vitro studies have shown that the 

isolated propeptides retain their inhibitory activity and act as competitive tight binding 

inhibitors of the mature enzymes.29 The propeptides demonstrate some selectivity but not 

absolute specificity.9 Calpain, on the other hand, is not synthesized as a zymogen but 

relies on calcium binding for activation. However, calpain does have an endogenous 

proteinaceous inhibitor called calpastatin (Figure 1.2). In contrast to the cathepsin 

prodomains, calpastatin is absolutely specific for calpain. Interestingly, a trait all of these 

endogenous inhibitors share is a unique α-helix that sits at the active site blocking 

substrate binding.3,11,29,30 This α-helical structure and prime side binding present a unique 

avenue for cysteine protease inhibitor development. 
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Figure 1.2. Structures of zymogen cathepsins and calpastatin bound calpain. Zymogen forms of the 
cathepsins have a prodomain that functions as an endogenous inhibitor while calpain has an 
endogenous inhibitor called calpastatin. All of these endogenous, proteinaceous inhibitors have an α-
helix, denoted in green, that sits at the prime side of the active site, depicted in orange. (Cathepsin 
K:1BY8, Cathepsin L:1CS8, Cathepsin S:2C0Y, Calpain: 3BOW).3,11,29-31 

	  

1.5 α-Helix Stabilization Strategies 
The α-helices in the endogenous cysteine inhibitors present an interesting avenue 

for protease inhibitor development. Previously, α-helices have been synthesized as 

peptide mimetics of larger proteins, however when a small segment is excised from the 

parent protein it tends to lose its secondary structure. This loss of secondary structure 

results in reduced efficacy, permeability, and proteolytic stability.32 Thus, to increase the 

Cathepsin K Cathepsin L

Cathepsin S Calpain



	   7	  

activity of these inhibitors, various techniques have been used to stabilize the α-helices 

prior to binding to the enzyme. 

A number of different methods have been utilized for α-helix stabilization; one of 

the most widely utilized is the ring closing olefin metathesis.  This method was first 

suggested by Blackwell et al., and it effectively introduces non-native carbon-carbon 

bond constraints.33 However, this initial work of Blackwell et al. did not show an 

enhancement of α-helical stability but rather the creation of a 310 helix.33 The Verdine 

laboratory improved upon this technique by using unnatural amino acids with R or S 

stereochemistry, i.e. Si,i+4S, Ri,i+4R, Ri,i+4S, Ri,i+7S, etc., and alkyl tethers of varying length 

(Figure 1.3).32,34 They found that α-helical stabilization increased as the ring size of the 

macrocyclic cross-link is increased.34 They subsequently named this technique 

hydrocarbon ‘stapling’.32,34  

A similar method for α-helix stabilization is the hydrogen bond surrogate 

developed by the Arora group.  Hydrogen bond surrogates use the ring closing metathesis 

to create alkyl linkages that mimic the length and location of the hydrogen bond.35-38 Due 

to the close mimicking of the hydrogen bond location this alkyl linker is on the ‘inside’ of 

the helix and does not block or remove solvent-exposed molecular recognition groups 

(Figure 1.3). The hydrocarbon stapling, by comparison, is on the ‘outside’ of the helix 

and uses the R-groups from two amino acids (Figure 1.3). A variation of the hydrogen 

bond surrogate contains a thioether instead of a double bond.39 The reaction conditions 

for this linkage are milder than ring closing metathesis, and the activity of the resulting 

α-helices are not affected.39 A downside of the hydrogen bond surrogate is that it uses the 
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amino terminus of the peptide in the linkage preventing the addition of a warhead at the 

N-terminus. 

Another side chain stapling method using mild linking conditions is the oxime 

linker developed by Haney et al. (Figure 1.3).40,41 The usefulness of this method is that 

not only can the peptide be linked in aqueous conditions but the linking strategy is 

reversible in water allowing for a dynamic mixture of linked and unlinked peptides.41 A 

negative aspect of this reversibility though is the unlinked moiety leaves itself open to 

proteolytic cleavage. 

 

Figure 1.3. Side chain and backbone linkages stabilize α-helices. Both the hydrocarbon stapling and 
oxime bridge create tethers using amino acid side chains while the hydrogen bond surrogate creates a 
bond mimicking the backbone hydrogen bond.31 

 

While the hydrocarbon stapling, hydrogen bond surrogate, and oxime linker 

methods have been used with good success, each method requires the incorporation of 

unnatural amino acids. A technique that doesn’t involve unnatural amino acids or harsh 

conditions involves the use of cysteine residues that nucleophilically attack halogenated 

Hydrocarbon Stapling Hydrogen Bond Surrogate Thioether Hydrogen Bond 
Surrogate

Oxime Bridge
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aromatics. Timmerman et al. first used this method to stabilize single, double, and triple 

loops rather than α-helices (Figure 1.4).42 Muppidi et al. adapted the technique to 

stabilize α-helices using a biphenyl motif to link two cysteines in an i, i+7 conformation, 

opposed to the i, i+4 conformation used in the other linking strategies (Figure 1.4).43 

 

Figure 1.4. Aromatic linkers stabilize loops and α-helices via thioether bonds. These linkers have 
been used to stabilize multiple loops as well as α-helices.31 

 

These different techniques of α-helical stabilization have been used to develop 

inhibitors, however these molecules have primarily been inhibitors of protein-protein 

interactions.44 These α-helical inhibitors include the stabilized BH3 domain of the Bcl-2 

family of proteins to inhibit Mcl-1 as a possible anti-cancer agent45, a stabilized α-helix 

from the NR coactivator peptide 2 to inhibit estrogen receptor α (ERα) for development 

of potential therapeutics for breast and endometrial cancer and osteoporosis46, stabilized 

Biphenyl Crosslinkage Triple Loop Stabilization
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α-helical p53 peptide to inhibit Mdm2 as a cancer therapy35,47, and a stabilized Jun-based 

inhibitor that binds to cFos as a step toward developing small molecule drugs for cancer 

and inflammatory diseases.48 These stabilized α-helices have been demonstrated to be 

specific and potent inhibitors of their respective protein-protein interactions.  

Some of the endogenous inhibitors and prodomains of cysteine proteases also 

have α-helices that bind to the respective protease. Based on the success of the α-helical 

inhibitors of protein-protein interactions and the presence of α-helical secondary 

structures in the prodomains of the cathepsins and the endogenous inhibitor of calpain-1, 

it can be postulated that a stabilized α-helix based may also be a good protease inhibitor.
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CHAPTER 2: Development of	  α-Helical Calpain Probes by Mimicking 
a Natural Protein-Protein Interaction	  
 

2.1 Introduction 
The primary goal of this work was to design and synthesize α-helical inhibitors as 

well as activity-based probes of human calpain, a calcium-regulated cysteine protease 

involved in a myriad of normal and pathological biological processes.49-60 Although there 

has been considerable interest in the design of α-helical peptides for the study of protein-

protein/receptor-ligand interactions and drug design, to our knowledge, there has been no 

work to date investigating α-helices as protease inhibitors. 

 

Figure 2.1. X-ray crystal structure of the calpain 2-calpastain complex (PDB ID: 3BOW). Key 
residues on the inhibitor, calpastatin, (purple) and calpain-2 (black) are labeled. 

 

The text of this chapter has been published. Reprinted with permission from Jo et al. Development of	  α-Helical Calpain 
Probes by Mimicking a Natural Protein-Protein Interaction. J Am Chem Soc, 2012. 134(42). Copyright 2014 American 
Chemical Society. 
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Inhibitor design for this class of enzyme has historically focused on the use of 

peptidomimetics that fit into the active site cleft in a substrate-like manner and utilize 

covalent, reversible or irreversible reactive groups to react with the active site cysteine.61-

68 The problems with this approach are twofold: 1) the papain superfamily has a highly 

conserved active site cleft, which complicates identification of peptidomimetic side 

chains that differentially bind to individual enzymes, and 2) small peptides do not bind 

well to calpains.   

To overcome this problem we took inspiration from the recent co-crystal structure 

of calpain with its endogenous protein inhibitor, calpastatin and from calpain inhibitors 

containing constrained scaffolds or macrocycles.30,69-72 Calpastatin is unstructured in 

solution; however, upon binding to active calpain it drapes across the entire protein and 

undergoes structural rearrangements to form three α-helices that contact three different 

domains of the enzyme. One of these α-helices binds adjacent to the prime side of the 

active site cleft (Figure 2.1), forming a number of energetically favorable interactions 

between apolar sidechains that become buried upon complex formation. We therefore 

hypothesized that this α-helical motif would provide increased specificity via its unique 

binding mode since the helix avoids the highly conserved region of the active site while 

still inhibiting substrate access to the active site cleft. 

This two-turn α-helix represents a ten-residue peptide. Previous work indicated 

that small peptides were poor inhibitors of calpains.7,73 We corroborated this idea by 

determining that the minimal calpastatin fragment peptide that formed the two-turn α-

helix (IPPKYRELLA) did not inhibit calpain (Ki >100 µM). We reasoned that the 

entropic cost of forming an α-helix from a random coil limited the ability of small 
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peptides to inhibit the enzyme; thus we decided to design a stabilized version of this 

peptide to minimize unfavorable conformational entropy.  

Several strategies have previously been developed for α-helix stabilization 

involving main- or side-chain modifications including: disulfide bond formation,74-76 

hydrogen bond surrogates,77,78 ring closing metathesis,33,79-81 cysteine alkylation using α-

haloacetamide derivatives82 or biaryl halides,43 lactam ring formation,83-89 hydrazone 

linkage,90 oxime linkage,91 metal chelation,92,93 and “click” chemistry.94,95 Of the 

different methods used to stabilize these structures, the inclusion of a semi-rigid cross-

linker96-104 has been particularly successful, and is explored herein.  

 

Figure 2.2  Conformational restriction via crosslinking (left).  Kinetic “selection of the fittest” 
reaction. Hypothetical rate constants are denoted by k1, k2, and k3 (right). 

 

2.2 Results and Discussion 
2.2.1 Design of template-constrained cyclic peptides stabilizing an α-helix conformation. 

Peptides are intrinsically flexible chains, which rapidly interconvert among a 

large ensemble of conformations, including canonical secondary structures (α-helices, 
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reversed turns, β-hairpins, etc.). Generally, only one of these conformations is required to 

bind a given receptor/enzyme, and very large changes in affinity (>104) can be realized 

by simply restricting the structure to a single conformational state.  

We were particularly interested in conformational restriction via cysteine 

alkylation105-108 for its chemical stability, selectivity, cost effectiveness, and ease of 

introduction via standard mutagenesis into recombinantly expressed peptides or proteins 

or by solid-phase peptide synthesis. Importantly, a number of structurally diverse thiol 

reactive crosslinkers are also commercially available. Thus, we envisioned that the 

bioactive conformation of a given peptide could be stabilized by identification of the 

optimal cysteine crosslinker from screening a library of crosslinkers on a peptide with 

two cysteines anchored in appropriate positions. We refer to α-helical peptides stabilized 

in this manner as template-constrained peptides.  

Figure 2.2 (left) shows the fundamental concept of template-constrained cyclic 

peptides, in this case accomplished via sidechain-to-sidechain cyclizations. To do this, a 

pair of cysteine residues is installed at appropriate positions in order to stabilize a local 

conformation. Here, we placed the cysteine residues at i, i+4 positions, because this 

spacing brings two thioether residues into proximity when in the α-helix. In a series of 

parallel reactions we react the peptide with an indexed array of different crosslinking 

agents. Bis-alkylators with sufficient reactivity to alkylate thiols will cleanly form cyclic 

peptides, if the macrocycle can be formed in a low-energy conformation that matches one 

of the low-energy conformations of the peptide. For example, a meta-xylyl group, which 

matches the inter-thiol distance of the cysteine sidechains when in an α-helical 

conformation, should stabilize this helical structure. By contrast, the much longer 
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distance of the 4,4’-biphenylmethyl group would not be consistent with the α-helical 

conformation, and would instead favor formation of a more extended conformation. 

Thus, depending on the template, it should be possible to stabilize any one of a number of 

conformations. 

We use a kinetic “selection of the fittest” method, to screen for only those linkers 

that help select stable, low-energy conformations over more strained conformations. The 

kinetic scheme for cyclization requires two steps (Figure 2.2, right): The first step 

involves the second-order alkylation of the dithiol-peptide, which depends on the 

concentration of both the alkylating agent and the peptide (rate 1 = 

k1[peptide(SH)2][alkylator]). The rate of this reaction depends on the chemical nature of 

the alkylator, but to the first approximation is largely independent of the peptide 

structure, which is largely in a random coil in the linear form. Once mono-alkylated, the 

second-order process of reacting with a second equivalent of the alkylating agent (rate 2 

= k2[peptide(SH)1][alkylator]) will compete with the desired first-order cyclization process 

(rate 3 = k3[peptide(SH)1]). (Solvolysis reactions of the mono-alkylated product also 

compete with cyclization.) The cyclization reaction depends on the ability of the peptide 

to reach a stable, strain-free conformation as it enters the transition state for cyclization, 

which we presume is geometrically similar to the product for large macrocyclic rings 

such as those formed here. Thus, the ratio of bis-alkylated to mono-alkylated compound 

provides a quantitative measure of the ease of cyclization that is dependent on the 

conformation of the cyclic form of the peptide. Bis-alkylation is dependent on the 

concentration of the peptide while cyclization is independent of this parameter, therefore 

it is possible to select for the most efficient crosslinkers by simply running the reaction at 
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a fixed peptide concentration with increasing concentrations of bis-alkylators and 

examining the product distribution by mass spectrometry.   

In summary, the current method of template-constrained thioether cyclization 

involves several steps: 1) Screening for cross-linking agents with appropriate reactivity 

and ability to form cyclic products under favorable conditions with nearly equimolar 

amounts of peptide and bis-alkylator. 2) Examining bis-alkylator “hits” with increased 

stringency, using higher molar concentrations of alkylators in large excess of the peptide. 

This step should provide template-constrained peptides with relatively strain-free 

conformations. 3) Testing the template-constrained peptides to determine which have 

been stabilized in the appropriate conformation. This can easily be accomplished by 

circular dichroism (CD) spectroscopy for an α-helix. 4) Finally, determining the impact 

of stabilizing the helix on the ability of the peptide to bind to a protein known to 

recognize the sequence in a helical conformation. 

To explore template-constrained cyclization to stabilize α-helices in aqueous 

solution, we used the model peptide 1 (sequence: Ac-YGGEAAREACARECAARE-

CONH2) which was similar to the FK-4 peptide previously described (Table S2.1 

Supporting Information).109 The model peptide exhibited a low to moderate level of 

helicity without any stabilization.  
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Scheme 2.1. Helix stabilization via screening of 24 crosslinkers. 

 

We screened twenty-four crosslinkers for cys-thioether macrocyclizations. The 

crosslinkers included alkyl bromides c1-c6, c12, and c13, alkyl iodides c7-c11, benzyl 

bromides c14-c20, allyl bromide c21, maleimides c22 and c23 and an electrophilic 

difluoro-benzene c24 (Scheme 2.1). The initial screening reaction was performed in a 96-

well plate format to identify crosslinkers that react with cysteine thiols under mild 

conditions (bicarbonate buffer, pH = 7.5 to 8.0) at room temperature. The crude reaction 

mixture was analyzed by MALDI-TOF mass spectrometry to identify any crosslinker that 

was a “hit”. Additional HPLC profiling can characterize product distribution. 

Product distribution was analyzed using MALDI-TOF and revealed that cysteine 

alkylation did not occur when simple alkyl halides c1-c12 were used; only intramolecular 

disulfide bond formation due to oxidation was observed to occur.110 Even when the 

leaving group was changed from bromide to the more reactive iodide c7-c11 alkylation 

reactions failed under these aqueous conditions. The crosslinking reaction with 1,4-

dibromo 2,3-butanedione c13 produced a complex mixture of products. Crosslinking 

reactions with the maleimide crosslinkers c22-c23 also resulted in a mixture of epimeric 
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products that were further complicated by hydrolysis of the imide (Figure S2.1 

Supporting Information). Reactions using 1,5-difluoro-2,4-dinitrobenzene c24 resulted in 

a similar complex mixture of products. For the biaryl derivatives c17, c18, predominantly 

unreacted peptide was detected (MALDI-TOF and HPLC) accompanied by traces of the 

desired, cyclized product (Figures S2.1 and S2.2 Supporting Information).  

The cleanest macrocyclization resulted from the reaction111,112 with 

benzylic/allylic halides c14-c16 and c19-c21, which provided the major peak of the 

cyclization product as seen by MALDI-TOF and HPLC trace analysis (Figures S2.1 and 

S2.2 Supporting Information). We then tested the crosslinker “hits” c14-c16 and c19-c21 

under the conditions designed to increase the rate of bis-alkylation over cyclization (by 

increasing the concentrations of alkylating agent and peptide in solution). HPLC analysis 

of the “selection of the fittest” showed that the 1,3-bis(bromomethyl) benzene (α,α’-

dibromo-m-xylene) crosslinker c15 and 2,6-bis(bromomethyl)pyridine crosslinker c20 

gave the cleanest formation of the desired macrocycle (Figure S2.3 Supporting 

Information). By contrast, crosslinking with allyl crosslinker c21 produced multiple 

peaks. It is interesting that the m-xylene crosslinker c15 was most successful crosslinker 

out of the three α,α’-dibromoxylenes c14-c16, considering that all the three alkylating 

agents have relatively different reactivity profiles (ortho>meta>para).106  
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Figure 2.3. CD spectra of the model peptide and the crosslinked peptides in phosphate buffer [50mM, 
pH=7.0, 25 oC]. 

 

We next evaluated the CD spectra of these selected template constrained cyclic 

peptides to determine the effect of the template on their coil-helix equilibria (Figure 2.3). 

The determination of secondary structure was complicated somewhat by the fact that the 

spectra are generally interpreted using the intensity of θ222, which requires knowledge of 

the concentration113, generally by measuring the absorbance of an N-terminal Tyr 

residue.  Some of our linkers contain aromatic groups that could absorb at 278 nm and 

complicate concentration determination.  Therefore, we use dry weight to estimate the 

concentration, which results up to a 25% error in concentration determination (assessed 

by comparing gravimetric versus spectrophotometric determination of peptides 

containing Tyr chromophores and lacking other groups). Because θ222 is not accurately 

measured, we therefore interpret the data largely based on the shape of the spectra, 

particularly the ratio of the peak shape and relative intensities of the two exciton-coupled 
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π-π’ bands at 190 nm and 208 nm relative to that of the n-π’ band near 222 nm.114 The 

three xylene-based crosslinkers c14-c16 all showed an increase of the helicity in the CD 

spectroscopy analysis. Notably, the m-xylene based crosslinker c15 showed the most 

increase in helicity followed by o-xylene c14 and finally p-xylene c16.   

Interestingly, the CD spectrum of the crosslinked peptides by crosslinkers c17 and 

c21 showed some structural differences from those seen using the xylene crosslinkers. As 

expected, the 4,4’-biphenyl (c17) crosslinked peptide showed little helicity, likely due to 

destabilization of the α-helix and stabilization of an extended conformation of the peptide 

because the end-to-end length of the biphenyl template is much longer than the typical α-

helix pitch. Likewise, peptide crosslinked with the butenyl derivative c21 showed a CD 

spectrum with a deep minimum near 200 nm, similar to that of the random coil (Figure 

2.3). It would be interesting to test whether this peptide, after the reduction of the double 

bond, could stabilize a 310 helix as shown in the Grubbs’s work33. This crosslinker could 

be an alternative to ring closing metathesis (RCM) stapling and subsequent double bond 

reduction strategy. 

Heterocyclic templates were also capable of stabilizing the α-helix. 2,3-

quinoxaline c19 and 2,6-pyridine c20 crosslinked peptides showed CD spectra similar to 

those of the o-xylene c14 and m-xylene c15 crosslinked peptides (Figure 2.3). 
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Figure 2.4. NMR of m-xylyl c15-constrained cyclic peptide (left). NOE sequential walk of backbone 
amide region of NOESY (250 ms) for the peptide. The cross peaks are labeled as NH(i)/NH(i + 1)  
3JNH-HA coupling as function of residue (right). The small 3JNH-HA(<6Hz) and strong sequential NH-
NH NOEs denote helix formation in the peptide. 

 

NMR spectroscopy experiments demonstrate that the cyclic template restraint 

strongly stabilized the helical conformation within the macrocyclic ring, and that the 

helix extended towards the C-terminus of the peptide (Figure 2.4). Typical stepwise 

NH(i)/NH(i + 1) NOE connections were observed from the first residue to the last 

residue, which are indicative of a helical conformation. Closer inspection showed that the 

cross-peak intensity became stronger after the residue 6, suggesting that the crosslinked 

region in the helix was more organized than frayed region of the N-terminus, which 

included two glycines. Furthermore, 3JNH-HA coupling was evaluated by the INFIT 

(inverse Fourier transformation of in-phase multiplets) procedure.115 The J coupling 

constant is a good indicator of secondary structure. It is generally averaged to ~7 Hz if 

the residue is in a random coil or in equilibrium between different structures. It is less 

than 6 Hz if it is in α-helical structure and is larger than 8 Hz if the secondary structure is 

a β-sheet. Our J coupling constant was mostly below 6 Hz suggesting an α-helical 

structure. In addition, the chemical shift index of α-H strongly demonstrated helix 

formation even in the fraying N-terminus. Secondary chemical shifts which were 
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calculated by subtracting the experimental values from the intrinsic values and clearly 

showed the effect of the crosslinker. The most dramatic changes were observed on 

Cys10, Ala11, Arg12 and Cys14, influenced in part by the anisotropy effect from the 

benzene ring in the crosslinker (Figure S2.4 Supporting Information). 

 

2.2.2 Application of i, i+4 m-xylene crosslinker-based stabilization for calpain inhibitor 
design. 

Turning back to calpain inhibitor design we chose to use the calpastatin fragment 

IPPKYRELLA (previously shown to be inactive against calpain) as the backbone since 

this sequence, in the context of full-length calpastatin, forms a two-turn helix in the prime 

side of the active site of calpain-1 as shown in figure 1. Three different sets of double 

cysteine mutants, 3a-c, along with their m-xylene crosslinked partners, 3a-c, were 

synthesized (Figure 2.5, Table S2.3 Supporting Information). Cysteine locations were 

chosen by both visual inspection and virtual alanine scanning mutagenesis (Table S2.2 

Supporting Information) so as not to disturb key interactions at the protein-helix 

interface, which includes Pro51 (inhibitor) ring stacking against Trp288 (calpain) and 

Tyr54 (inhibitor) H-bonding to His169 (calpain) as shown in Figure 1.  

 

Figure 2.5. Sequence of double cysteine mutants (3a, 3b, and 3c) and their crosslinked counterparts 
(3a, 3b, and 3c) (left). A helical wheel representation to indicate the crosslinked regions (right).116 
┌┐denotes the m-xylyl c15 crosslinking between the cysteines. 
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Next, the difference in structural changes as a result of cysteine crosslinking was 

examined via CD spectroscopy (Figure 2.6).113,117 The helical content of the 

uncrosslinked peptides was low in the absence of added trifluoroethanol (TFE), so the 

experiments were conducted in the presence of 40% TFE.118 CD analysis revealed a clear 

trend whereby all unlinked peptides showed little secondary structure, while the 

crosslinked peptides demonstrated varying degrees of α-helicity. Peptide 3c showed the 

greatest helicity after crosslinking, followed by 3b, while 3a showed negligible helicity 

after crosslinking. The lack of increased helicity for 3a may be due to the fact that it lacks 

the proline that is frequently found as an helix initiator of an α-helix.119 A possible salt 

bridge between the glutamic acid and lysine may also be enhancing helical content in 

3c.120-122 Thus, we believe that the primary sequence of the peptide as well as the 

crosslinker can influence the final helical content of the product peptide.  
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Figure 2.6. CD spectra of uncrosslinked peptides 3a-c (top) and crosslinked peptides 3a-c (bottom), 
[~125 µM peptide, 50 mM Tris (pH 7.5), 40% TFE]. Crosslinked peptide 3c demonstrates the 
greatest helical content. (See Figures S2.5 and S2.6 in Supporting Information for CD analysis 
without 40% TFE.)  

 

The inhibitors, both crosslinked and uncrosslinked, were tested for their ability to 

inhibit calpain-1 (Table 2.1, Figure S2.7 and S2.9 Supporting Information). No 

appreciable inhibition (Ki >100 µM) of calpain-1 was observed for the uncrosslinked 

peptides 3a-c. These results corroborate previous reports stating that the minimum length 

of a standard calpastatin derived peptide needed to achieve reasonable calpain inhibition 

is 27 amino acids long.123 However, the crosslinked peptide, 3c, which is only 10 amino 

acids long, showed good inhibition of calpain-1 in the low micromolar range (Table 2.1, 

Figure S2.9 Supporting Information). Furthermore, a trend relating higher helical content 

(Figure 2.6) positively correlated with better inhibition of calpain-1 (Table 2.1). This 

trend is likely directly related to helical content stabilized by the crosslinker c15, 
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although it is also possible that the crosslinker itself could contribute to enzyme 

recognition of the inhibitor. 

Peptide 3a 3b 3c 3a 3b 3c 

Calpain-1 
(µM) 

>100 >100 >100 >100 95.6 ± 25.5 10.2± 2.9 

Table 2.1 Ki against calpain-1. 124 The calpain assay was done as described in Materials and Methods. 

 

Kinetic studies were then performed to understand the mechanism of 3c inhibition 

of calpain-1; standard Michaelis-Menten and Lineweaver-Burke analysis showed that 3c 

behaved as a competitive inhibitor (Figure 2.7, Figure S2.10 and Table S2.4 Supporting 

Information). These results are consistent with the idea that 3c binds to the α-helix 

binding site in the primed side of the active site of calpain and physically blocks substrate 

binding, and subsequently proteolysis, as predicted from the initial co-crystal data (Figure 

2.1). 

 

Figure 2.7. Lineweaver-Burke analysis shows that calpain inhibitor 3c to be a competitive inhibitor. 
Lineweaver-Burke plot was constructed from standard Michaelis-Menten kinetics. 

 

There has been considerable difficulty in achieving good selectivity within the 

papain superfamily of enzymes as these enzymes contain highly conserved active 
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sites.30,125 To determine whether the helical inhibitor 3c was specific for calpain we tested 

it against a set of canonical papain family cysteine proteases including: papain, cathepsin 

B and cathepsin L (Table 2.2, Figure S2.11 Supporting Information). Significantly, no 

inhibition (Ki> 100 µM) was observed using the crosslinked peptide 3c against papain or 

cathepsin B. The inhibitor was about four fold more potent against calpain over cathepsin 

L (Ki=39.9 ± 1.09 µM). These results indicate that this α-helical motif may represent a 

uniquely selective binding element for inhibition of calpains and further validates our 

structure-based approach. Furthermore, structure activity relationship studies of these 

helical inhibitors may result in a more potent and specific inhibitors of calpain and also 

shed some light on to how the calpastatin helix interacts with human calpains.   

 

 

Table 2.2. The Ki of crosslinked inhibitor 3c against other papain family proteases.  

 

The crosslinking reaction was performed with the crosslinker c15 and the three 

peptides in aqueous buffer system. However, in instances where there are multiple 

cysteines, we believe that solid-phase cysteine crosslinking could be useful for selective 

crosslinking. To this end, we tested the on-resin crosslinking the peptide 3c. Fmoc-

Cys(Mmt)-OH was used instead of Fmoc-Cys(Trt)-OH and selective deprotection of 

specific cysteine side chains was achieved by 1% TFA/DCM treatment while the peptide 

was still resin bound.126,127 (See the Materials and Methods). The same kinetic results 

were achieved with on resin crosslinked inhibitor. 

Enzyme Calpain-1 Papain Cathepsin B Cathepsin L 
3c (µM) 10.2 ± 2.9 >100 >100 39.2 ± 1.1 
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Based on our initial success with a stabilized, α-helical-based inhibitor of calpain 

we next endeavored to develop an activity-based probe (ABP) specific for calpains. 

ABPs are complementary chemical tools to traditional genomic and proteomic 

techniques; ABPs are used for identification of enzymatic targets and to evaluate 

dynamics of enzyme activity regardless of levels of expression.128-133 This is important 

because in many cases translation and transcription do not correlate with enzyme 

activity134; this is especially true for calpains as their proteolytic activity is finely 

regulated post-translationally by intracellular calcium levels. Basic ABP design includes 

a mechanism based inhibitor, a specificity element, and a tag (Figure 2.8, top). In this 

case, the crosslinked peptide 3c was used for the specificity element and the succinyl 

epoxide functions as the warhead group that reacts with the cysteine thiol. This warhead 

has been established to react in a mechanism dependent manner only with active papain 

family proteases135. Three dipeptide linkers (NM-01, 02, and 03) of different lengths and 

rigidities were chosen via visual inspection in PyMOL31 based on the crystallographic 

structure of calpastatin-bound calpain 2 (PDB code 3BOW).30 Lastly, we chose to use 

either biotin or fluorescein isothiocyanate (FITC) as a tag. 
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Figure 2.8. Design of a calpain specific ABP (top). ABPs contain a mechanism based inhibitor, 
specificity element, and tag. Only the chemical structures ABPs containing a biotin tag are shown 
here. ┌┐denotes the m-xylyl c15 crosslinking between the cysteines. ABP binding to calpain-1 
(bottom). The linker length and rigidity between the crosslinked peptide and succinyl epoxide was 
evaluated via reaction with calpain-1 in vitro. A five-carbon backbone, flexible linker appears 
optimal. Loading control lanes beneath the panel show Western blot analysis using anti-calpain-1. 

 

We used three different amino acid sequences as linkers: alanine-alanine, β-

alanine-alanine, and alanine-β-homoproline, (NM-01, NM-02, and NM-03, respectively) 

(Table S2.5 Supporting Information). NM-01 is the shortest linker by one carbon but has 

similar flexibility as NM-02. NM-02 and NM-03 should cover a similar distance between 

the helix and succinyl epoxide, however the β-homoproline provides more rigidity than 

the β-alanine.  

To evaluate the best linker, we initially tested biotinylated versions of either NM-

01, -02, or -03 on purified, activated calpain-1 at two concentrations, 1 and 10 µM, and 

on unactivated calpain at 10 µM (Figure 2.8, bottom). Each ABP was added to purified 

calpain (pH 7.0), followed by the addition of calcium to activate the enzyme. The probe 

was allowed to react for 20 min. at room temperature. No calcium addition was used as a 
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control to demonstrate that labeling only occurred with active calpain, and DCG-04, a 

pan-papain family cysteine protease ABP135, was used as a positive control as it is known 

to label calpains. Samples were analyzed by SDS PAGE electrophoresis; proteins were 

transferred to PVDF membrane and analyzed by western blot for biotin using 

streptavidin-HRP. Our results show that two ABPs, NM-02 and NM-03, labeled calpain 

in an activity dependent manner, which indicated that an extra carbon in the amino acid 

backbone of the linker was necessary for the epoxide to react with the active site cysteine 

(Figure 2.8). The intensity of the bands in the blot suggested that the use of the linker β-

alanine-alanine resulted in the most potent probe (NM-02) (Figure 2.8, bottom). The ABP 

with the alanine-β-homoproline linker (NM-03) also bound to calpain but the rigidity in 

the linker induced by the pyrrolidine ring in homoproline may have contributed to less 

labeling. These results further support our hypothesis that the helix is binding at the 

active site as measurements of the probe visualized in PyMOL31 show that a β-alanine-

alanine linker would position the epoxide at the correct distance from the active site 

cysteine. 

The presence of the succinyl epoxide warhead could reduce the specificity of the 

inhibitor due to its reactivity against most papain family active site cysteines. However, 

based on the previous kinetic studies, we reasoned that if the crosslinked peptide bound 

to the enzyme followed by a covalent reaction between the warhead and the active site 

cysteine, the ABPs had a high probability of being specific for calpain despite the 

addition of this reactive warhead. To investigate the specificity of NM-02, we tested a 

FITC tagged NM-02 against calpain-1 and calpain-2, and a panel of papain family 

proteases including papain, cathepsin B, and cathepsin L (Figure 2.9). FITC-NM-02 was 
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added in increasing concentrations to either papain, cathepsin B, or cathepsin L and 

allowed to react for 20 min. at room temperature. Labeled enzymes were analyzed by 

SDS-PAGE and were visualized using a flatbed fluorescent scanner (Typhoon). We 

found that even at 10 µM, NM-02 did not bind to any of the other papain family cysteine 

proteases, which was in good agreement with the Ki (Table 2.2) determined in the 

binding studies of the crosslinked peptide 3c. This further suggests that NM-02 is specific 

for calpain at concentrations that would be appropriate for protease labeling experiments. 

 

Figure 2.9. FITC-NM-02 as a calpain specific ABP. We tested FITC- NM-02 (probe) in vitro against 
purified calpain-1, calpain-2, papain, cathepsin B, and cathepsin L. Only active calpain-1 and -2 are 
labeled and both are increasingly labeled with increased amounts of probe. Papain, Cathepsin B, and 
Cathepsin L are not labeled by NM-02. Loading control lanes beneath each panel show colloidal blue 
staining or silver staining of the respective gel. 

 

2.3 Conclusions 
In summary, we have demonstrated a simple screening of inexpensive, 

commercially available crosslinkers on an i, i+4 double cysteine mutant peptide to 

identify the best crosslinker to stabilize an α-helix. We identified five crosslinkers that 

increase α-helical character. Out of these five crosslinkers, dibromo-m-xylene, c15, 



	  

	   31	  

reacted in a simple, one-pot reaction, both in solution and on solid-phase, with the 

cysteine side chain and best increased the helicity of the peptide.  

We have also applied this helix stabilization method to mimic a protein-protein 

interaction between a protease and its endogenous protein inhibitor to create, to our 

knowledge, the first active site directed, α-helical inhibitor of a protease. Importantly, we 

demonstrate that this inhibitor is shows good potency and high specificity for calpains 

over other highly similar cysteine proteases.  

Lastly, we show that we can use the α-helical inhibitor as a scaffold to create an 

activity-based probe for examination of calpain activity. We determined that a β-amino 

acid is needed in the linker to bridge the gap between the helix and the active site 

cysteine. Furthermore it appeared that the ABP, NM-02, retained specificity for calpains 

over closely related cathepsin proteases. Given this specificity, we hope that these 

inhibitors and probes will allow for future studies of calpain function in multiple 

biological systems. We believe that the methodology used to stabilize this α-helical 

inhibitor will be another useful technique for α-helix stabilization for use in multiple 

biological applications. 

 

2.4 Materials and Methods 
2.4.1 Crosslinker Screen:  

To each well of a black round-bottomed 96-well plate (polypropylene) 90 µL of 

the stock solution, a peptide solution (0.114 mM) in NH4HCO3 buffer (12mL, 50 mM, 

pH=8.0), treated with TCEP (1M solution in the same NH4HCO3 buffer, 1.1 eq.) at room 

temperature (rt) for 1 h was added. Then 10 µL of the freshly prepared alkylating agent 
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solution (1.5 mM in anhydrous DMF, 1.5 eq.) was applied to the well at rt and stirred for 

2 h under protection from light. MALDI spectra were taken to monitor reaction progress 

and more alkylating agent was added if needed. The reaction was quenched by addition 

of 5% HCl which resulted in acidic conditions (pH=3-4). If necessary, 100 µL of ether 

was added to dissolve the excess reagent and organic byproducts into the organic layer. 

The ether layer could be removed by pipetting. MALDI spectra were taken from the 

sample in the remaining aqueous solution mixture. (Performed by H. Jo.) 

2.4.2 “Selection of the fitness” Screen:  
Screens were performed in 1.5 mL microcentrifuge tubes. 1 mL of the stock 

peptide solution (1mM) in NH4HCO3 buffer (50mM, pH=8.0) was pre-treated with TCEP 

as described above and incubated for 1 h.  Then, 100 µL of the concentrated alkylating 

agent solution (250mM or saturated solution in anhydrous DMF) was added and shaken 

for 2 h under protection from light. The reaction was quenched by the addition of 5% 

HCl which resulted in acidic conditions (pH=3-4) and purified by Reverse Phase HPLC. 

(Performed by H. Jo.) 

2.4.3 Crosslinking with the unpurified peptide:  
The lyophilized crude peptide solution (app. 3-5mg/mL) in NH4HCO3 buffer  

(100mM, pH=8.0) was treated with TCEP (1.5 eq.) and stirred for 1 h. The alkylating 

agent in DMF (app. 3eq) was added to the solution and shaken for the 2 h. The reaction 

was quenched by adjusting the pH of the mixture to slightly acidic conditions through the 

addition of 0.5 N HCl or TFA. The crude mixture was either purified by HPLC or 

lyophilized for the next step. 
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2.4.4 Preparation of crosslinked peptides 3c from model peptide 3c by solid-phase peptide 
crosslinking:  

The uncrosslinked peptide 3c was similarly prepared on the CLEARTM Rink 

Amide MBHA resin using the standard Fmoc peptide synthesis protocol (See Supporting 

Information). Fmoc-Cys(Mmt)-OH was used for cysteine for ease of deprotection. After 

the final coupling and cooling down to room temperature, the resin was washed with 

NMP(x3) and DMF(x3) followed by DCM(x3). The resin was then treated with 1% TFA 

solution in DCM for 10 min then washed with dichloromethane. This process was 

repeated until the solution lost its yellow color, which indicated the complete removal of 

Mmt protecting group. Then, the resin was washed with hexane and dried. After re-

swelling in DMF, a solution of α,α’-dibromo-m-xylene (2 eq.) in DMF and DIPEA (4 

eq) was added. Alternatively, the resin was re-swollen in NH4HCO3 buffer (pH=8.0, 100 

mM) for 1 h, a solution of α,α’-dibromo-m-xylene (5 eq.) in a minimal volume of DMF 

was added. The solution was stirred for 3 h at room temperature. The solvent was then 

removed and the resin was washed thoroughly with DMF. The Fmoc group on N-

terminus was removed by treatment with 20% piperidine in DMF and acetylated by Ac2O 

and DIPEA. The cleavage/deprotection was done using TFA/thioanisole/EDT/anisole 

(90/5/3/2). The crude mixture was purified by reverse phase HPLC. 

2.4.5 CD spectroscopy:  
Peptide solutions were prepared at ~50 µM in 50 mM phosphate buffer (pH 7.0) 

without TFE. The molar concentration of the peptide determined was by the weight (after 

lyophilization of the HPLC fractions) with consideration for molecular weight increase 

due to the presence of TFA salt for basic residues (Lys, Arg) as well as hydration 

(average 10%). Concentrations of the uncrosslinked peptides were determined by 
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absorbance of Tyr residue at 280 nm with an extinction coefficient of 1280 M-1 cm-1.136 

Circular dichroism studies were conducted at 25˚C on a JASCO J-810 spectropolarimeter 

equipped with a Peltier temperature control unit.  

2.4.6 NMR spectroscopy:  
The peptide sample was prepared with peptide concentrations of 2 mM in 0.6 mL 

of 9:1 v/v water/D2O mixture in 50 mM sodium phosphate, pH 5.5. All spectra were 

recorded at 10 oC on a Bruker Avance III 500 MHz spectrometer equipped with a 

cryogenic probe. All 2D homonuclear spectra were recorded with standard pulse 

sequences.137 Spectra were processed and analyzed using the programs nmrPipe138 and 

XEASY,139 respectively. (See Supporting Information.) (Performed by Y. Wu.) 

2.4.7 Protease Activity Assays:  
Peptides were evaluated for ability to bind and subsequently inhibit the cysteine 

proteases using standard proteolytic fluorescence activity assays. Inhibition was assayed 

using a standard donor-quencher strategy using a previously published peptide 

substrates.62,140,141  

Enzyme concentration for Calpain-1 was 25 nM. Enzyme concentration for 

papain was 25 nM. Enzyme concentrations for cathepsin B and cathepsin L was 3 nM.  

Calpain and papain buffer contained 10 mM dithiothreitol (DTT), 100 mM KCl, 2 mM 

EGTA, 50 mM Tris-HCl (pH 7.5), and 0.015% Brij-35. Substrate concentration for 

calpain and papain was 0.25 µM H-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-

OH (Km calculation in Supporting Information, Figures S2.8 and S2.10).62,140,141 

Cathepsin buffer contained 10 mM DTT, 500 mM sodium acetate (pH 5.5), and 4 mM 

EGTA.62,140,141 Substrate concentration for the cathepsins was 0.25 µM Z-FR-Amc. 

Calpain was activated by the injection of CaCl2 to a final concentration of 5 mM. Papain 
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and cathepsin assays were activated by the addition of the substrate via a multichannel 

pipette. Varying concentrations of inhibitor, 1-100 µM, were used for each assay. All 

assays were done at a total well volume of 100 µL in 96-well plate, and each well 

contained a separate inhibitor concentration. Fluorescence was read in a Berthold Tri-Star 

fluorimeter. The excitation wavelength was 380 nm and the emission wavelength was 

500 nm for H-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH. The excitation 

wavelength 351 nm and emission wavelength was 430 nm for Z-FR-Amc. 

2.4.8 Kinetic analysis of Calpain-1 by 3c:  
To identify inhibition type we used standard Michaelis-Menten treatment. Initial 

velocities (obtained from the linear segment of the progress curves) were plotted against 

substrate concentration.142 Due to the linearity of the first segment of the progress curve 

we believe that autoproteolysis during the first 500 seconds was not substantial enough to 

prevent the use of simple Michaelis-Menten kinetics, i.e. loss of enzyme did not change 

the velocity enough to cause it to deviate from linearity and incorporation of this 

additional complex would severely complicate the kinetics. Velocities were determined 

in RFU/sec then converted to µM/sec using the conversion factor 1386 RFU/µM. The 

conversion factor was obtained by the total hydrolysis of the substrate H-Glu(Edans)-Pro-

Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH in a known concentration by papain. To avoid 

weighting errors we used the values of Km
app and Vmax

app determined directly from the 

non-linear least-squares best fits of the untransformed data and put these values into the 

reciprocal equation: 

€ 

1
v

= ( Km

Vmax
×
1
[S]
) +

1
Vmax

.142 
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We then plotted the resulting reciprocal velocities against the respective 

reciprocal substrate concentrations. 

2.4.9 Determination of IC50 against Enzymes:  
IC50 curves were generated identifying the initial rate of the enzyme at each 

inhibitor concentration from the respective progress curves. The conversion factor (1386 

RFU/µM) was obtained by the total hydrolysis of the substrate H-E(Edans)-PLFAER-

K(Dabcyl)-OH in a known concentration by papain. Initial velocities were converted 

from RFU/sec to µM/sec. Fractional activity was calculated by dividing the initial 

velocity at each inhibitor concentration by the initial velocity of the uninhibited enzyme. 

Data obtained up to 500 seconds was used for the initial rate calculation. The initial rate 

was then plotted against the log of the inhibitor concentration, and IC50 was calculated by 

GraphPad Prism.  

2.4.10 Activity Based Probe Linker Experiments:  
Experimental conditions included 10 mM dithiothreitol (DTT), 1.5 µg calpain, 

100 mM KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), 0.015% Brij-35, and either 1 µM 

or 10 µM of biotinylated probe (DCG-04, NM-01, NM-02, NM-03). Calpain was 

activated by the addition of calcium (3.33 µM of 50 mM CaCl2) to a final concentration 

of 8.3 mM in tubes containing either 1 µM or 10 µM ABP. For the negative control, 

water, instead of CaCl2, was added to the calpain solution containing 10 µM probe. 

Probes were allowed to bind to the calpain for 20 minutes at room temperature. The 

reaction was stopped by the addition of 10 µL NuPage® LDS Running Buffer (Life 

Technologies, Grand Island, NY). 10 µL of each labeled enzyme was loaded on a 10% 

Bis-Tris NuPAGE® gel (Life Technologies, Grand Island, NY) and separated via gel 

electrophoresis for 1.5 h, 140 V. The bands were then transferred to a PVDF membrane 
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at 30 V for 70 min. The membrane was blocked and blotted using the Vectastain® Elite® 

ABC kit (Vector Laboratories, Burlingame, CA). Kodak film was exposed to the 

membrane and developed. 

2.4.11 ABP Labeling Experiments:  
Buffer conditions for calpain and papain experiments were 10 µM dithioreitol 

(DTT), 100 mM KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), and 0.015% Brij-35. 1.5 

µg calpain-1 or 6 µg calpain-2 (calpain-2 was not as active) was used. (For labeling 

experiments greater concentrations of enzyme were used for ease of visualization of the 

enzyme on stained gels.) Buffer conditions for cathepsin experiments were 10 µM DTT, 

500 mM sodium acetate (pH 5.5), and 4 mM EGTA. 1.5 µg of each cathepsin was 

labeled.62,140,141 Probes were allowed to bind for 20 min. at room temperature. Labeled 

enzymes were separated via gel electrophoresis on 10% (calpain, papain) or 12% 

(cathepsins) Bis-Tris NuPAGE® gels for 1 hr, 140 V. A Typhoon Fluorescent Imager was 

used for FITC visualization of the probe bound enzyme. Following fluorescent scanning 

the gels were colloidal blue stained (calpain-1 and calpain-2) or silver stained (papain, 

cathepsin B, and cathepsin L) to demonstrate that the same amount of enzyme had been 

used in all lanes. (See Supporting Information).  
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CHAPTER 3: Development of Potent and Specific Inhibitors and 
Quench Activity Based Probes for Calpain-1 
 

3.1 Introduction 
Calpain-1 is a cysteine protease involved in a number of cell processes such as 

cell migration and apoptosis and diseases states such as amyloid diseases and secondary 

cell death after acute cellular stress.19-23 There has been substantial interest in designing 

inhibitors and probes of calpain-1 in order to investigate the role it plays in these 

diseases. However, a large hurdle to overcome in the development of these investigative 

tools is the conserved active site of the papain family cysteine proteases. Endogenous 

inhibitors and substrates can be good starting points for the development of specific 

inhibitors. Calpain has an absolutely specific endogenous inhibitor called calpastatin and 

a commercially available fairly specific substrate.30,69,140,143 Either one or both of these 

molecules can be starting points for the development of new calpain inhibitors and probes 

to investigate the role calpain plays in both cellular function and disease. 

We have previously developed a small ten amino acid two-turn α-helical potent 

and specific inhibitor for calpain based on the endogenous inhibitor calpastatin. We 

further were able to add an epoxysuccinic warhead to the inhibitor to create a specific 

activity based probe. However, there are still improvements to be made to create a more 

potent and specific inhibitor and probe.  

3.2 Results and Discussion 
3.2.1 Alanine Scanning Mutagenesis to Identify Residues Important for Enzyme Binding 

To improve upon the ten amino acid inhibitor, alanine scanning was performed to 

identify important residues for binding to the enzyme and to identify where mutations in 
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the ten amino acid peptide could be introduced (Table S3.1 Supporting Information). 

Alanine scanning mutagenesis involves mutating each amino acid in the peptide to 

alanine to identify how each amino acid affects the potency and specificity of the 

inhibitor.  

 Inhibitor Calpain-1 (µM) 
3c IPPKYCELLC 10.2 ± 2.9 
3d APPKYCELLC 65.6 ± 20.5 
3e IAPKYCELLC 13.7 ± 4.4 
3f IPAKYCELLC 27.4 ± 5.6 
3g IPPAYCELLC 17.7 ± 5.6 
3h IPPKACELLC >100 
3i IPPKYCALLC 28.9 ± 9.1 
3j IPPKYCEALC 30.9 ± 9.2 
3k IPPKYCELAC 25.2 ± 7.9 

Table 3.1 Alanine Scanning Mutagenesis. Ki for each alanine mutant against calpain-1. 

 

Alanine scanning mutagenesis identified isoleucine and tyrosine as the most 

important residues for inhibitor binding to calpain due to the substantial loss of potency 

in each of these mutants (Figure S3.1, Table S3.2 Supporting Information). This result 

correlates the findings in a β−Alanine scanning study done by Betts et al., which 

identified this isoleucine to be important for inhibition in the 27 amino acid calpastatin 

derivative.123,144 The aliphatic chain of the isoleucine projects into the prime side cleft to 

form a hydrophobic interaction with Ala101 and Leu102.30 Further mutational studies 

reinforce the hypothesis that the branched aliphatic side chain is necessary for retaining 

potency as a IleLeu mutation has no effect upon calpain inhibition or specificity, while 

a mutation to a similar sized branched polar side chain, IleGln, did reduce the potency 

(Figure S3.2, Tables S3.3 and S3.4 Supporting Information).  



	  

	   40	  

Tyrosine appears to be fitting into a cleft lined with E164 and H169 suggesting 

that it might be forming electrostatic interactions with either glutamate or histidine or π-π 

stacking interactions with the H169. A mutation of tyrosine to Ala(4,4’-biphenyl) 

resulted in no change in Ki while a benzyl tyrosine mutation caused an increase in Ki 

suggesting that ring stacking may play a larger role in potency than electrostatics (Figure 

S3.2, Table S3.3 and S3.4 Supporting Information). It must be acknowledged, though, 

that these results are not conclusive as both mutant side chains are substantially larger 

than the tyrosine side chain, and subsequently steric hindrance could also play a role. 

These groups were introduced because it was thought that they might fit into the large 

cleft where the tyrosine resides and create more interactions between the inhibitor and 

enzyme.  

Alanine mutations of the N-terminal proline, P1, and lysine, 3e and 3g 

respectively, have no effect on inhibitor potency suggesting that these are key locations 

for potential mutations. The P1 residue stacks against Trp288.30 Mutating this proline to 

an aromatic residue could increase the π-π interactions with tryptophan thereby 

increasing the binding affinity. Interestingly, P1 is also important for specificity. The 

alanine mutant 3e resulted in a substantial decrease in specificity, especially against 

cathepsin L (Table S3.2 Supporting Information). The proline was mutated to 

pentafluorophenylalanine, pfF, 4a, which decreased the Ki by half while retaining the 

same specificity for calpain over cathepsin L and improving specificity against cathepsin 

S (Table 3.2, Figure S3.3 and Table S3.5 Supporting Information).  

The lysine residue of inhibitor 3c sits between calpain residues Glu164 and 

Gln290. Increasing electrostatic interactions in this region may be accomplished by 
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mutating the lysine to a more positive residue such as arginine. The guanidinium group 

on the arginine may also enable multiple hydrogen bonds to these surrounding residues. 

This LysArg mutation, 4b, results in a decrease in Ki to 5 µM (Table 3.2). Similarly to 

the pentafluorophenylalanine mutation the LysArg mutation also resulted in an 

increase in specificity against cathepsin L and S (Table 3.2, Figure S3.3 and Table S3.5 

Supporting Information).  

Interestingly, when these two mutations are combined, 4c, the potency of the 

inhibitor is lost (Table 3.2, Figure S3.3 and Table S3.5 Supporting Information). This loss 

of potency could suggest that one or both of the mutations change the orientation of the 

α-helical inhibitor in the prime side of the active site creating clashes between the 

inhibitor and enzyme. 

All other alanine mutations resulted in 3-fold loss of potency of the inhibitor. This 

loss of potency could be due to a loss of α-helicity, reduction of binding interactions, or a 

change in binding orientation because of the change in the amino acid side chain.  

 Inhibitor Calpain-1 (µM) Cathepsin L (µM) Cathepsin S (µM) 
4a IpfFPKYCELLC 5.1 ± 1.9 22.2 ± 1.1 >100 
4b IPPRYCELLC 5.3 ± 2.0 37.9 ± 1.1 35.9 ± 1.1 
4c IpfFPRYCELLC 37.1 ± 11.6 NT NT 

pfF=pentafluorophenylalanine; NT=Not Tested 

Table 3.2 Mutant calpain-1 inhibitors. Ki for each mutant inhibitor for calpain-1. Each single mutant had 
improved potency against calpain-1, however the double mutant had reduced potency against calpain-1. 

3.2.2 Increasing Potency Through Increasing Peptide Length 
Peptide 3c was modeled after a two-turn α-helix that binds at the calpain active 

site in the endogenous calpain inhibitor calpastatin. Previous studies demonstrated that 

the shortest, effective, non-stabilized inhibitor was 27 amino acids. The Anagli group 

demonstrated that truncating the inhibitor from the N-terminus resulted in a sequential 
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decrease in inhibition.123 The shortest, non-stabilized fragment tested was 19 amino acids 

long and had an IC50 of 1.8 ± 0.016 µM. From this information, it was hypothesized that 

lengthening the inhibitors would also result in an increase in inhibition, while the 

stabilization of the α-helix would still allow the inhibitor to be substantially shorter than 

the previous calpastatin fragments.  

To evaluate this hypothesis, inhibitors of varying lengths were synthesized. 

During the development of the calpain probe, a linker of alanine and β-alanine was added 

between the α-helical inhibitor and the epoxysuccinic acid warhead. This linker 

lengthened the peptide to a 12 amino acid peptide, 5a, however these additional amino 

acids did not increase the potency of the inhibitor (Table 3.3, Figure S3.4 and Table S3.6 

Supporting Information). This lack of increased potency may be due to the absence of 

side chains that interact with the enzyme. Therefore, the calpastatin amino acid sequence 

was used to extend the inhibitor. The first lengthened inhibitor, 5b, was 13 amino acids 

and had a Ki of 5.3 ± 1.9 µM (Table 3.3, Figure S3.4 and Table S3.6 Supporting 

Information). Further analysis of the unstabilized 13-mer supports the idea that additional 

enzyme contacts help overcome the free energy needed for binding, however, 13 amino 

acids is not long enough to get good inhibitory activity (Tables S3.7 and Table S3.6 

Supporting Information). Extending the inhibitor to 17 amino acids, 5c, creates an 

inhibitor slightly shorter than the shortest non-stabilized inhibitor tested by Betts et. al.123 

This inhibitor extends past the active site into the unprimed side of the enzyme where 

leucine interacts with the P2 pocket.30,69 It includes the loop over the active site and 

resulted in an inhibitor with a Ki of 3.6 ± 1.7 µM (Table 3.3, Figure S3.4 and Table S3.6 

Supporting Information).  
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Finally, 5d was synthesized where the glycine was mutated to phenylalanine 

resulting in a removal of the loop over the active site and subsequent increase in the 

number of N-terminal interactions. This inhibitor results in a Ki of 1.2 ± 1.3 µM which is 

very similar to the IC50 from the unstabilized 19-mer (Table 3.3, Figure S3.4 and Table 

S3.6).123 These results imply that stabilizing the α-helix does improve inhibitor potency.  

 Inhibitor Calpain (µM) Cathepsin L (µM) Cathepsin S (µM) 
5a βAAIPPKYCELLC 10.7 ± 3.5 42.0 ± 1.3 38.4 ± 1.1 

5b EVTIPPKYCELLC 5.3 ± 1.9 69.6 ± 1.5 31.3 ± 1.2 
5c LGKREVTIPPKYCELLC 3.6 ± 1.7 >100 31.5 ± 1.1 
5d LFKREVTIPPKYCELLC 1.3 ± 1.3 10.7 ± 1.1 41.5 ± 4.5 
Table 3.3 Calpain-1 inhibitors of increasing peptide length. The Ki of each calpain-1 inhibitor of 
increasing length. The potency of the inhibitors tends to increase with longer peptides, however the 
presence of side chains seems to influence the potency.  

 

Lengthening the stabilized peptide into the unprimed region does have an effect 

upon potency, however simple length addition does not implicitly increase potency, 

sequence also seems to have an effect upon Ki. 

3.2.3 Developing Quench Probes 
Previously, an activity based probe or ABP was created by adding a fluorophore 

tag, amino acid linker, and electrophilic warhead to the stabilized α-helical inhibitor. This 

ABP binds only active enzyme and was fairly specific for calpain. However, the 

attachment of a fluorophore tag means that there will always be substantial background 

fluorescence, which could interfere with visual identification of proteases.145-147 One way 

to overcome the background fluorescence is through the use of a quench probe. A quench 

probe contains a donor fluorophore and a quencher, which absorbs fluorescence in the 

same wavelength range that the donor emits. Upon binding to the enzyme this quencher 

is removed and the enzyme can then be visualized by the fluorophore.145-147 
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Our proposed method for removing the quencher from the probe post enzyme 

binding was to attach a cleavable sequence to the N-terminus of the α-helical inhibitor. 

The results of the lengthening studies suggest that the inhibitor can be extended at the N-

terminus with little detriment to potency, and in some cases may actually increase 

potency. Previously, no cleavage product could be isolated from peptide 5d after 

cleavage assays suggesting that simply laying across the enzyme active site is not 

sufficient for proteolysis by calpain. The addition of the substrate sequence rather than 

the calpastatin inhibitor sequence ensured that the quencher is actually cleaved from the 

inhibitor.  

The initial substrate sequence chosen was Pro-Leu-Phe-Ala-Ala-Arg because this 

sequence has been determined to be a preferred calpain-1 substrate sequence.143 The 

scissile bond is found between the phenylalanine and alanine. This substrate sequence 

was added to the N-terminus of the α-helical inhibitor for a final amino acid sequence of 

Pro-Leu-Phe-Ala-Ala-Arg-Ile-Pro-Pro-Lys-Tyr-Cys-Glu-Leu-Leu-Cys-Lys (6a). The 

lysine was added at the C-terminus for future fluorophore addition similar to the ABP 

developed previously. Initial analysis of this substrate/inhibitor found that it was also cut 

between the phenylalanine and alanine demonstrating that this was a potentially good 

sequence for the quench probe.  

Studies found that the addition of a charged residue at the C-terminus negatively 

affected enzyme binding, thus the location of the fluorophore had to be moved closer to 

the N-terminus (Figure S3.5, Tables S3.58 and S3.9 Supporting Information). We used 

Edans and Dabcyl as the donor and quencher respectively. This is the same 

donor/quencher pair found in the commercially available substrate (sequence: NH2-
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Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH; Dabcyl is attached to a lysine 

and Edans is attached to a glutamate.) In both peptides the quencher is at the N-terminus. 

We synthesized two peptides with donor fluorophores at different positions. In one 

quench probe the donor was situated between the substrate sequence and inhibitor 

sequence, Lys(Dabcyl)-Pro-Leu-Phe-Ala-Ala-Arg-Glu(Edans), 6c. In the other quench 

probe, the donor was within the substrate sequence, Lys(Dabcyl)-Pro-Leu-Phe-Ala-

Glu(Edans)-Arg, 6d (Figure S3.10 Supporting Information). Pymol modeling suggests 

that this residue side chain may face the solvent rather than the enzyme making this 

location amenable for donor fluorophore attachment (Figure S3.6 Supporting 

Information).31   

 

 

Figure 3.1. Proteolytic cleavage of the quench probe. (left) The quench probe with the donor situated 
in the middle of the substrate sequence. (right) The quench probe with the donor situated between 
the substrate sequence and inhibitor sequence. 

	  

Results from proteolytic cleavage assays show that the quench probe with the 

donor in the middle of the substrate undergoes greater proteolytic cleavage than the probe 

with the donor between the substrate and inhibitor as evidenced by the larger increase in 

fluorescence (Figure 3.1). Although, post assay HPLC analysis indicates that both probes 
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are cleaved between the phenylalanine and alanine. The discrepancy in the proteolysis of 

the substrate portions of the probes is likely due to differences in where the scissile bond 

fits across the active site in relation to the α-helix fitting into the prime side cleft. The 

extra amino acid between the substrate sequence and α-helix may cause the scissile bond 

to not fit properly at the active site cysteine residue. The preferred sequence, K(Dabcyl)-

Pro-Leu-Phe-Ala-Glu(Edans)-Arg, is also desirable as the Pro-Leu-Phe-Ala-Ala-Arg 

substrate sequence is also cleaved by cathepsin L. 

Finally, we used the calpain mutations previously identified to create a more 

potent inhibitor post proteolytic cleavage. We synthesized quench probe peptides with the 

preferred substrate sequence, Lys(Dabcyl)-Pro-Leu-Phe-Ala-Glu(Edans)-Arg, and three 

different inhibitor sequences, the 3c inhibitor sequence (6d), the 

Propentafluorophenylalanine mutation (6e), and the LysArg mutation (6f). We then 

tested all quench probe peptides and the commercially available substrate in a proteolytic 

cleavage assay (Figure 3.2, Table S3.10 Supporting Information).  
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Figure 3.2. Quench probe and commercial substrate cleavage by calpain-1, cathepsin L, and 
cathepsin B. 

 

We found that both quench probes 6d and 6e have similar fluorescence increases 

while quench probe 6f has about half the fluorescence increase (Figure 3.2). This lack of 

fluorescence increase is likely due to an impurity in the purified product where there 

appeared to be a moiety with a double linker attachment that could not be separated from 

the single linker peptide. This impurity decreases the cleavable concentration. 
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Furthermore, it could be interacting with the enzyme. Satisfyingly, though, none of the 

quench probes are cleaved by cathepsin L or cathepsin B. 

For inhibition analysis the quench probes were synthesized without the 

donor/quencher fluorophores and tested against calpain-1, cathepsin L, and cathepsin B. 

Peptide 6g, Pro-Leu-Phe-Ala-Glu-Arg-Ile-Pro-Pro-Lys-Tyr-Cys-Glu-Leu-Leu-Cys, and 

peptide 6h, Pro-Leu-Phe-Ala-Glu-Arg-Ile-pfF-Pro-Lys-Tyr-Cys-Glu-Leu-Leu-Cys, had 

the same potency as their respective original inhibitors (Table 3.4, Figure S3.7 and Table 

S3.10 Supporting Information). Peptide 6h is also extremely specific for calpain-1 over 

both cathepsin L and cathepsin B. Peptide 6i, Pro-Leu-Phe-Ala-Glu-Arg-Ile-Pro-Pro-Arg-

Tyr-Cys-Glu-Leu-Leu-Cys, had a decrease in potency (Table 3.4, Figure S3.7 and Table 

S3.10 Supporting Information). Similar to the double mutant, 4c, the decrease in potency 

could be associated with a change in orientation of the helix due to the arginine mutation 

that further changes how the substrate sits across the active site. 

 Inhibitor Calpain Cathepsin L Cathepsin B 
6a PLFAERIPPKYCELLC 11.4 ± 3.7 6.4 ± 1.3 65.2 ± 1.3 
6b PLFAERIpfFPKYCELLC 5.6 ± 2.1  48.6 ± 1.2 64.7 ± 1.4 
6c PLFAERIPPRYCELLC 16.9 ± 5.5 17.0 ± 1.2 >100 

pfF=pentafluorophenylalanine 

Table 3.4 Quench Probes as Inhibitors. The Ki for each quench probe (without fluorophores) against 
canonical cysteine proteases. 

	  

3.3 Conclusion 
Alanine scanning mutagenesis identified two residues that are important for 

inhibitor binding to calpain-1 and two residues that could be mutated to enhance potency. 

Structure based design allowed us to propose mutations to increase potency, peptides 4a 

and 4b. Each of the proposed mutations resulted in an increase in potency. Further 
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analysis into lengthening the inhibitor demonstrated that additions to the N-terminus can 

increase potency. Finally, each aspect culminated in the development of a potent quench 

probe, 6h, that is only cleaved by calpain-1 and specifically inhibits calpain-1, not 

cathepsin L or cathepsin B.  

3.4 Materials and Methods 
3.4.1 Crosslinking with the unpurified peptide:  

The lyophilized crude peptide was dissolved in DMF (conc~1-5 mM) with 2% 

triethylamine. The alkylating agent, α,α’-dibromo-m-xylene (1.5 eq.), was added to the 

solution and shaken for the 2 h. The crude mixture was purified via HPLC. 

3.4.2 Protease Activity Assays:  
Peptides were evaluated for ability to inhibit cysteine proteases using standard 

proteolytic fluorescence activity assays. Inhibition was assayed using a standard donor-

quencher strategy with previously published peptide substrates.62,140,141  

Enzyme concentration for Calpain-1 was 25 nM. Enzyme concentration for 

cathepsin B and L was 3 nM, and cathepsin S was 5 nM. Calpain buffer contained 10 

mM dithiothreitol (DTT), 100 mM KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), and 

0.015% Brij-35. Substrate concentration for calpain-1 was 0.5 µM NH2-Glu(Edans)-Pro-

Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH.62,140,141 Final substrate concentration for the 

cathepsins was 0.5 µM Z-FR-Amc. Cathepsin L buffer contained 10 mM DTT, 500 mM 

sodium acetate (pH 5.5), and 4 mM EGTA.62,140,141 Cathepsin B buffer contained 10 mM 

DTT, 100 mM sodium acetate (pH 5.5), 0.01% Triton X-100, and 4 mM EGTA. 

Cathepsin S buffer contains 10 mM DTT, 100 mM potassium phosphate (pH 6.5), and 4 

mM EGTA. Calpain was activated by the injection of CaCl2 to a final concentration of 5 

mM. Cathepsin assays were activated by the injection of the substrate to a final 
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concentration of 0.5 µM. Varying concentrations of inhibitor, 1-100 µM, were used for 

each assay. All assays were done at a total well volume of 100 µL in 96-well plate, and 

each well contained a separate inhibitor concentration. Fluorescence was read in a 

Berthold Tri-Star fluorimeter. The excitation wavelength was 380 nm and the emission 

wavelength was 500 nm for NH2-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-

OH. The excitation wavelength 351 nm and emission wavelength was 430 nm for Z-FR-

Amc. 

3.4.3 Protease Cleavage Assays:  
Protease cleavage assays were performed under the same buffer conditions per 

enzyme as the protease activity assays. Calpain concentration was 150 nM. Cathepsin B 

and L concentrations were 54 nM. Quench probe and substrate concentrations were 5 

µM. Calpain was activated via CaCl2 injection to a final concentration of 5 mM. Quench 

probe was added to active cathepsins just before fluorescence readings were taken. 
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CHAPTER 4: Development of Non-covalent, α-Helical Inhibitors of 
Cathepsins L, S, and K by Mimicking a Natural Protein-Protein 
Interaction 
 

4.1 Introduction: 
 

The human genome expresses 11 cathepsins that belong to the papain cysteine 

protease family (clan CA, family C1).125 Cathepsins are involved in normal cellular 

processes such as endosomal/lysosomal protein turnover125, bone remodeling, 

immunity29, apoptosis, and prohormone processing and in various disease states including 

viral invasion148,149, tumor growth, cancer tumor invasion16,150,151, angiogenesis16,151, 

rheumatoid arthritis14, and osteoporosis18,152. 

Due to their involvement in various diseases, cathepsins have become attractive 

targets for drug development. Previous efforts to develop specific inhibitors of cathepsins 

have been focused on small molecules, both covalent-irreversible26 and covalent-

reversible16,153, most of which bind to the unprimed side of the active site. One of the 

greatest issues with these inhibitors is the difficulty in the development of specificity to 

differentiate amongst the various closely related cysteine cathepsins. This is mainly due 

to the high conservation in the unprimed binding pockets of the papain superfamily active 

site.125,154,155 Additionally, most of the inhibitors developed to date covalently modify the 

cysteine residue via an electrophilic warhead group, which in turn also reduces the 

potential for specificity. Herein we set out to develop a set of specific, non-covalent 

inhibitors that utilize an α-helix-based scaffold for inhibition of three canonical members 

of the cathepsin L subfamily: cathepsin L, S, and K. 



	  

	   52	  

 

4.2 Results and Discussion: 
Cathepsins are composed of three domains: a signal peptide, prodomain, also 

known as the propeptide, and the catalytic domain.3,11,29,156 We were interested in 

utilizing the prodomain as a scaffold since it acts as potent, reversible inhibitor of its 

cognate enzyme.9,157,158 Each prodomain contains three α-helices wherein one α-helix 

occupies a binding site within the prime side of the active site along with a beta strand 

that further occludes substrate entry (Figure 4.1). The entire prodomain, including this α-

helix, binds to the active site cleft in the reverse direction of a normal peptide substrate to 

eliminate proteolytic cleavage. Every α-helix has a unique sequence that creates specific 

interactions with its respective enzyme, suggesting that these α-helices could be used to 

create specific inhibitors. Additionally, creating inhibitors that bind to the prime side of 

the protease active site opens up new avenues to explore for therapeutic development. 

Previously, an α-helical inhibitor for the cysteine protease calpain was developed 

using a structure-based design approach.159 This inhibitor was modeled after an α-helix in 

calpastatin, the endogenous proteinaceous inhibitor of calpain that binds across several 

domains within calpain, but makes one specific α-helical interaction within the prime 

side of the calpain active site. We hypothesized that we could similarly develop α-helix 

derived specific and potent inhibitors based on the prodomains of cathepsins that inhibit 

the enzymes via non-covalent binding to the prime side of the protease active site. 
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Figure 4.1: A-C) Zymogen crystal structures with the α-helix prodomain highlighted in the prime 
side of three different Cathepsins.31 A) Cathepsin L; sequence:  SEEFRQVMNGF; pdb: 1CS83,156. B) 
Cathepsin S; sequence: TSEEVMNSLMSS; pdb: 2C0Y29. C) Cathepsin K; sequence: 
SEEVVQKMTGL; pdb: 1BY811. Colored areas on the enzyme depict areas for enhancing peptide-
enzyme interactions. Orange designates active site, blue designates hydrophobic surfaces, pockets, 
and amino acids, and the dotted line designates helix linker. D) Schematic of α-helix stabilization via 
attachment of dibromo-m-xylene linker to cysteine side chain.31,159 

 
Each cathepsin L, S, and K zymogen crystal structure was examined to identify 

the prime-side prodomain α-helix of interest (Figure 4.1, A-C). The α-helices from these 

prodomains were synthesized (7a, 8a, and 9a) using standard solid-phase peptide 

synthesis and analyzed for inhibitory activity and secondary structure (Tables 4.1-4.3; 

Figures S4.1-4.3, S4.10, and S4.23 Supporting Information). Peptides 7a, 8a, and 9a 

showed no inhibition of their cognate enzymes and were primarily random coil in 

solution,7,73,159 presumably due to the inability of these short peptides to overcome the 

free energy barrier needed to form an α-helix. To address this issue, these short peptides 

were conformationally restricted to enhance α-helicity, using a protocol previously 

developed by the Greenbaum laboratory (Figure 4.1).159 This stabilization technique 

involves reacting the side chains of two cysteine residues in i, i+4 positions with a 

A. B. C.

D.

Cathepsin L: SEEFRQVMNGF Cathepsin S: TSEEVMSLMSS Cathepsin K: SEEVVQKMTGL
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dibromo-m-xylene linker. A series of paired cysteines to be used for stabilization were 

introduced into the peptide scaffold at positions that, from visual inspection of the 

zymogen crystal structure, would appear not to disrupt key protein-helix interactions. 

Several stabilized peptides were synthesized and screened for inhibition of cathepsin 

activity using a standard fluorescence-based protease activity assay (Tables 4.1-4.3, 

Figures S4.3-S4.35 Supporting Information). The development of a potent and selective 

inhibitor lead for each target cathepsin is discussed in detail below.  

 

4.2.1 Design of an α-helical Cathepsin L Inhibitor  
Starting with the native sequence of the cathepsin L prodomain α-helix (7a), 

peptides 7b and 7c were mutated with two cysteines spaced i, i+4 within the parent 

sequence. These two cysteines were then crosslinked using a dibromo-m-xylene linker. 

cathepsin L was inhibited by 7b and 7c with a Ki of 84.7 µM and 29.4 µM, respectively 

(Table 4.1, Figures S4.3-S4.5 Supporting Information). Peptide 7b displayed weak 

inhibition, possibly due to a steric clash between the linker and the enzyme. In the case of 

7c, the linker seems to be completely solvent exposed and unlikely to interact with the 

enzyme, resulting in better inhibition. These results indicate that the location of the linker 

can influence not only the helicity of the peptide, but also the inhibitory properties of the 

peptides. 
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Inhibitor 

Cathepsin K 
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

Calpain-1  
(µM) 

7a SEEFRQVMNGF NT 133.1 ± 1.4 NT NT 
7b SECFRQCMNGF NT 83.1 ± 1.2 NT NT 
7c SCEFRCVMNGF NI 29.4 ± 1.1 92.3 ± 1.2 NI 
7d SCEnRCVMNGF 102.2 ± 1.4 6.1 ± 1.0 20.2 ± 1.1 NI  
7e SCEbRCVMNGF NI 3.4 ± 1.0 43.1 ± 2.0 100.7 ± 31.3 
7f SCEFRCVMNGn 64.3 ± 12.5 6.7 ± 1.0 48.1 ± 1.2 NI 
7g SCEbRCVMNGn 32.0 ± 1.2 0.3 ± 1.2 27.4 ± 1.4 19.8 ± 6.3 

Linked cysteines are bolded and underlined, mutated residues are italicized; NT=Not Tested; NI= Not Inhibited; n= Ala(2-
naphthyl); b= Ala(4,4’-biphenyl) 

Table 4.1: Cathepsin L inhibitor potency and selectivity.  

 
Following optimization of the linker placement (7c), a structure-based approach 

was used to improve the potency and selectivity of the peptides. The prime side of the 

cathepsin L active site, where the relevant prodomain α-helix primarily binds, has one 

hydrophobic area: a shallow but wider surface near the canonical S3’ binding site (Figure 

4.1A).3 The unprimed side of the cathepsin L active site also has a hydrophobic area: a 

narrow cleft proximal to the active cysteine around the S2 binding site.3,158 The 

hydrophobic residues Leu69, Ala135, and Ala214 line the narrow cleft, while the shallow 

wider surface is comprised of Phe145, Phe143, Leu144, and Trp189. Based on the 

zymogen crystal structure the first Phe4 (relative to the N-terminus) in 7c would be 

predicted to occupy the narrow cleft, while Phe11 in 7c most likely is involved in π-π 

interactions with Trp189 and only partially occupies the hydrophobic surface. Hence, 

replacement of these residues with non-natural amino acid residues with a larger 

hydrophobic side chain might create a stronger hydrophobic interaction and in turn 

greater affinity of the inhibitor for the enzyme.  
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With this in mind, peptides 7d and 7e were synthesized, replacing Phe4 with 

Ala(2-naphthyl) and Ala(4,4’-biphenyl), respectively. As anticipated, both substitutions 

demonstrated increased inhibition of cathepsin L: the Ala(2-naphthyl) mutation resulted 

in a Ki~6 µM while the Ala(4,4’-biphenyl) mutation resulted in a Ki~3 µM (Table 4.1, 

Figures S4.6 and S4.7 Supporting Information). Interestingly, the biphenyl mutation 

resulted in a more specific inhibitor than the Ala(2-naphthyl) mutation. It can be 

postulated that the biphenyl offers an extended hydrophobic surface as well as some 

flexibility due to possible rotation between the two phenyl rings avoiding unfavorable 

steric clashes. Phe11 was mutated to Ala(2-naphthyl), 7f. For the C-terminal 

modification, Ala(4,4’-biphenyl) was not considered because it would extend the peptide 

too far into the unprimed side possibly reducing specificity. This C-terminal Ala(2-

naphthyl) mutation resulted in a Ki~6.7 µM (Table 4.1, Figure S4.8 Supporting 

Information). Combining the mutations from 7e and 7f resulted in an additive effect with 

the double mutant peptide 7g showing a Ki against cathepsin L of ~300 nM that was at 

least 66 times more specific for cathepsin L over other enzymes (Table 4.1, Figure S4.9 

Supporting Information). These results demonstrate that the prime side interactions are 

sufficiently different to allow us to create potent and highly specific cathepsin L 

inhibitors. 

 

4.2.2 Design of an α-helical Cathepsin S Inhibitor 
The cathepsin S inhibitor was designed similarly to the cathepsin L inhibitor. The 

putative α-helix scaffold 8a was mutated to incorporate paired cysteines and then 

stabilized159; 8b was stabilized closer to the N-terminus and 8c was stabilized closer to 
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the C-terminus. Only inhibitor 8c increased inhibition (Table 4.2, Figures S4.10-S4.12 

Supporting Information). One hypothesis for the lack of potency of 8b is that the m-

xylene linker that stabilizes the α-helix creates a steric clash between the peptide and the 

enzyme (Figure 4.1B). 

 Inhibitor Cathepsin K 
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

Calpain-1 
(µM) 

8a TSEEVMSLMSS NT NT 101.6 ± 1.5 NT 
8b TCEEVCSLMSS NT NT 184.6 ± 1.1 NT 
8c TSEEVCSLMCS NI 16.7 ± 2.6 52.1 ± 1.1 33.4 ± 10.3 
8d WSEEVCSLMCS NI 76.0 ± 1.2 51.0 ± 1.2 108.4 ± 1.2 
8e TWEEVCSLMCS 67.5 ± 1.2 93.9 ± 1.3 29.7 ± 1.1 NI 
8f TSEWVCSLMCS NI 57.1 ± 1.2 33.1 ± 1.1 NI 
8g TSEEWCSLMCS NI >100 80.4 ± 1.2 NI 
8h TWEWVCSLMCS 65.7 ± 1.5 33.8 ± 1.2 14.3 ± 1.1 88.4 ± 1.1 
8i TnEnVCSLMCS 62.9 ± 1.2 2.4 ± 1.3 12.9 ± 1.1 97.3 ± 1.4 
8j WWEWVCSLMCS 19.5 ± 1.2 16.1 ± 1.4 6.7 ± 1.1 85.5 ± 1.3 
8k WWEWWCSLMCS 37.9 ± 1.4 28.1 ± 1.1 1.1 ± 1.1 66.7 ± 1.2 
8l FFEFFCSLMCS NT NT 13.1 ± 1.1 NT 
8m WWEWbCSLMCS NT NT 9.7 ± 1.0 NT 

Linked cysteines are bolded and underlined, mutated residues are italicized. NT=Not Tested; NI=Not Inhibited; 
n=Ala(2-naphthyl); b=Ala(4,4’-biphenyl) 

Table 4.2: Cathepsin S inhibitor potency and selectivity data.  

 
Stabilized peptide 8c inhibited cathepsin S with a modest Ki of ~54 µM (Table 

4.2). Interestingly, 8c was much more potent for cathepsin L over cathepsin S, but did not 

inhibit cathepsin K (Table 4.2). The cathepsin L activity could be attributed to the 

similarity in charge and polarity of the amino acid residues at the N-terminus of the 

stabilized parent peptides of cathepsin L and cathepsin S. Intriguingly, the area of the 

enzyme in proximity to the polar N-terminus of the α-helix (8a) is a large hydrophobic 

surface lined by residues Tyr117, Phe245, Trp285, and Phe289. Phe245 and Trp285 also 

comprise part of the S1’ subsite where the parent peptide Met binds.29 Therefore, 
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introducing hydrophobic residues into the N-terminus of the cathepsin S inhibitor would 

not only increase binding but also may increase specificity for cathepsin S over cathepsin 

L and cathepsin K since both these enzymes have a much smaller and more localized 

hydrophobic surface. Four of the five N-terminal residues were thus mutated to 

tryptophan beginning with single mutants (Table 4.2, Figures S4.13-S4.16 Supporting 

Information). The tryptophans in the first and second positions are likely binding to novel 

prime side sites.29 The tryptophan residues at the fourth and fifth positions are most likely 

partially binding to the residues lining the S1’ subsite as well as the novel hydrophobic 

surface. The single mutant studies demonstrated that changing any one of the N-terminal 

residues to tryptophan generally increased the peptides’ affinity for cathepsin S (Table 

4.2). The glutamate was not mutated because this residue appears to be involved in 

hydrogen bonding interactions with the enzyme via bridging water molecules.  

Based on these findings, double, triple, or quadruple tryptophan mutants were 

synthesized using the hypothesis that adding multiple hydrophobic amino acid residues 

might increase the potency of the inhibitor, due to this presence of the much larger 

hydrophobic surface near the active site of cathepsin S. Two double mutants were 

synthesized, a double tryptophan mutant, 8h, and a double Ala(2-naphthyl) mutant, 8i. 

The tryptophan is largely hydrophobic, but it also has the ability to hydrogen bond 

directly or through water molecules using the indole ring. Both double mutants showed 

the same potency profile, suggesting that the hydrophobic interactions are the primary 

mode of binding at the N-terminus (Table 4.2, Figure S4.17 and S4.18 Supporting 

Information). The specificity profile for the two mutants was different though, with 8h 

being more selective for cathepsin S than 8i (Table 4.2). The tryptophan double mutant 
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8h, showed a Ki~14µM, and the specificity profile remained the same as 8c (Table 4.2). 

The triple mutant 8j further enhanced the inhibitory activity (Ki~7µM) (Table 4.2, Figure 

S4.19 Supporting Information). Finally, the quadruple mutant 8k inhibited cathepsin S 

with a Ki~1.23µM and was 30-60-fold more selective for cathepsin S over other enzymes 

(Table 4.2, Figure S.4.20 Supporting Information). A quadruple phenylalanine mutant, 8l, 

further emphasized the role of the hydrophobic interactions as phenylalanine has a 

smaller surface area, and subsequently creates weaker hydrophobic interactions thereby 

resulting in a less potent inhibitor (Table 4.2, Figure S4.21 Supporting Information).  

 

4.2.3 Design of an α-helical Cathepsin K Inhibitor  
Like cathepsin L and S, the unstabilized, native α-helix derived from the 

prodomain of cathepsin K demonstrated no inhibition of cathepsin K. After visual 

inspection of the zymogen structure, only one location seemed appropriate for side chain 

stabilization, peptide 9b (Figure 4.1C). Unfortunately this inhibitor was not as potent as 

the other stabilized parent α-helical inhibitors (Table 4.3, Figures S4.23 and S4.24 

Supporting Information).  
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 Peptide Cathepsin K 
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

Calpain-1 
(µM) 

9a SEEVVQKMTGL NI NT NT NT 
9b SCEVVCKMTGL 196.9 ± 1.6 NI 255.3 ± 1.6 NI 
9c SCESVCKMTGL 3.8 ± 1.1 116.9 ± 2.7  10.8 ± 1.0 217.6 ± 1.8 
9d SCEHVCKMTGL 15.7 ± 1.1 NT NT NT 
9e SCENVCKMTGL 78.8 ± 1.3 NT NT NT 
9f SCELVCKMTGL 19.0 ± 1.1 NT NT NT 
9g SCEVVCKPTGL 4.4 + 1.1 48.0 ± 1.20 58.3 ± 1.2 147.9 ± 1.5 
9h SCEVVCKMWGL 2.9 ± 1.0 16.8 ± 1.2 50.0 ± 1.0 37.1 ± 11.6 
9i SCEVVCKMFGL 10.2 ± 1.2 NT NT NT 
9j SCEVVCKMTGP 4.9 ± 1.1 53.9 ± 1.2 27.8 ± 1.5 NI 
9k SCESVCKMTGP 20.3 ± 1.2 NT NT NT 
9l SCEVVCKPTGP 39.8 ± 1.1 NT NT NT 
9m SCESVCKPWGP 16.0 ± 1.1 143.0 ± 1.4 375.0 ± 1.8 102.3 ± 1.6 

Linked cysteines are bolded and underlined, mutated residues are italicized; NT=Not Tested; NI=Not inhibited  

Table 4.3: Cathepsin K inhibitor potency and selectivity data. 

 

To optimize electrostatic interactions with Gln242 on the enzyme surface, the Val 

was mutated to Ser, 9c, His, 9d, Asp, 9e, or Leu, 9f (Table 4.3 Figures S4.25-4.28 

Supporting Information). Peptide 9c (Ki~3.8 ± 1.1 µM) was by far the most potent 

peptide out of the mutants suggesting that perhaps there was a hydrogen bond forming at 

that location (Table 4.3).  

In the zymogen crystal structure, the cathepsin K α-helix is terminated at the 

Met75 in the P2’ position followed by a curve around the active site (Figure 4.3). 

Subsequently, the C-terminus (the last four amino acids) of peptide 9g is unstructured in 

solution. It was hypothesized that replacing Met with Pro, a constrained amino acid, 

would provide some structure to the C-terminus to reduce binding energy as well as 

terminate the α-helix and enhance the curve around the active site. Inhibitor 9g resulted 



	  

	   61	  

in an inhibitor with a Ki value of 4.4 µM, suggesting that Pro works as a constraint (Table 

4.3, Figure S4.29 Supporting Information).  

Other single mutations were a Thr to Trp mutation, 9h, and Thr to Phe mutation, 

9i. Peptides 9h and 9i were designed to fit the respective tryptophan or phenylalanine into 

the S1’ subsite.11 The tryptophan could still form electrostatic interactions with Gln260 

while also giving the possibility of forming a π-π interaction with the catalytic histidine. 

The phenylalanine could possibly only form π-π interaction with histidine. Peptide 9h 

had a Ki~2.9 compared to 9i which had a Ki~10.2 µM suggesting that π-π interactions as 

well as hydrogen bonding interactions are important (Table 4.3, Figures S4.30 and S4.31 

Supporting Information). 

It has been suggested that Pro is an optimal amino acid to bind to the S2 pocket of 

cathepsin K.11,160 Thus we synthesized an inhibitor with a Leu to Pro mutation at the C-

terminus, 9j. The proline in the P2 position should be specific to cathepsin K, as it has 

been suggested that cathepsins S and L do not tolerate proline well at this position.161 

Inhibitor 9j inhibited cathepsin K at a Ki~4 µM (Table 4.3, Figure S4.32 Supporting 

Information).   

Double mutants 9k and 9l and quadruple mutant 9m were synthesized to explore 

the effects of combining the single mutations. Unlike the inhibitors of the other enzymes 

the multiple mutants reduced the effectiveness of the inhibitor (Table 4.3, Figures S4.33-

S4.35 Supporting Information). These results could stem from each single mutation 

slightly adjusting how the inhibitor fits into the prime side of the active site thereby 

changing the effect of the other mutation. 
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Each single mutant had a substantial inhibitory effect on cathepsin K. Peptide 9h 

was the most potent inhibitor, while 9g was almost as potent but about 10 fold more 

specific for cathepsin K over the all other enzymes. Thus, we were again able to create 

potent and specific leads for inhibitor development using rational structure-based design. 

 

4.2.4 Peptide Characterization and Kinetics 
After testing the inhibitory activity of the inhibitors, the peptides’ helical 

character and the mode of inhibition were determined. First, circular dichroism analysis 

(CD) was used to characterize α-helicity. As expected, the parent peptides 7a, 8a, and 9a 

showed some helical character but were primarily random coil as evidenced by a 

minimum closer to 200 nm rather than at 208 and 222 nm.117 CD analysis of the linked 

peptides 7c, 8c, and 9b showed an increased helical character upon stabilization (Figures 

S4.1 and S4.2 Supporting Information) as a decrease in the minimum at 222 nm and a 

shift in minimum to 208 nm from 200 nm. Thus the more helical the peptide, the more 

potent inhibitor, which supports the theory that the free energy needed for secondary 

structure formation is a substantial barrier to inhibitory activity of small, unstabilized 

peptides. Beyond the increase of helical character, it was clear that hydrophobic and π-

π stacking interactions could further optimize inhibitor potency and specificity. Finally, 

standard Michaelis-Menten kinetics confirmed that all inhibitors acted in a competitive 

manner (Figure S4.36, Tables S4.2-S4.4 Supporting Information). 
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4.3 Conclusion: 
We have used a structure-guided approach to develop competitive, non-covalent, 

α-helical inhibitors for cathepsins L, S, and K by mimicking their prodomain active site 

α-helices. We were able to generate inhibitor leads for each class of enzymes with good 

selectivity and moderate potency using only a small set of compounds. This proof-of-

concept study provides the basis for the future optimization of more potent and specific 

inhibitors of cathepsins. 

 

4.4 Materials and Methods: 
4.4.1 Crosslinking with the unpurified peptide:  

The lyophilized crude peptide was dissolved in DMF with 2% triethylamine.  The 

alkylating agent (app. 3 eq) was added to the solution and shaken for the 2 h.  The crude 

mixture was purified by HPLC. 

4.4.2 Protease Activity Assays:  
Peptides were evaluated for ability to bind and subsequently inhibit the cysteine 

proteases using standard proteolytic fluorescence activity assays. Inhibition was assayed 

using a standard donor quencher strategy using a previously published peptide 

substrates62,140,141.  
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CHAPTER 5: Future Directions 
 

Structure-based design has allowed us to create potent and specific inhibitors for 

papain family cysteine proteases. We have further used our knowledge of structure, 

endogenous inhibitor binding, and substrate specificity to increase the potency and 

specificity of each inhibitor. These inhibitors have thus become the basis for activity 

based probe and quench activity based probe development.  

5.1 Incorporation of Cell Penetrating Peptides to Increase Cell Permeability 
One of the issues faced during the development of these α-helical inhibitors and 

probes is the lack of cell penetrability. Cell permeability can be improved through the 

addition of cell penetrating peptides or CPPs. Cell penetrating peptides are generally 

derivatives of proteins that translocate cargo through the cellular membrane.162,163 The 

parent proteins are often found in viruses or antimicrobial peptides.162,163 CPPs can be 

amphipathic or polypositive. Amphipathic CPPs are generally α-helical with a positively 

charged face and a hydrophobic face. Polypositive CPPs are usually unstructured 

peptides with multiple arginines and/or lysines.162,163 Cell penetrating peptides have been 

suggested to enter the cell via either endocytsosis, the method of entry of many of the 

virus derived CPPs, or via direct permeation, the suggested method of entry for 

polyarginine CPPs and amphipathic CPPs.164  

CPPs have been successfully added to a calpastatin derivative, a 27 amino acid 

calpain inhibitor, to enhance cell permeability. One such CPP is penetratin.62 Penetratin is 

a 7 or 16 amino acid derivative of the antennapedia homeodomain from Drosophila.62,165 

Penetrating was attached to the calpastatin derivative via a disulfide bond. The calpastatin 
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based inhibitor was then able to translocate through the cell membrane, localize to the 

cytoplasm, resulting in the inhibition of calpain-1.62 

To increase cell penetration by the quench probes we propose the addition of 9-

arginines, the 7 amino acid penetratin, or the CPP low molecular weight protamine or 

LMWP (a 14 amino acid derivative of protamine, a protein that binds DNA).162,166 These 

peptides were chosen for their presumed ability to transport cargo to the cytoplasm rather 

than the lysosome or nucleus. For polyarginine CPPs it has been suggested that there is a 

threshold above which direct permeation is the predominate mode of entry as opposed to 

endocytsosis.164 Amphipathic CPPs were avoided because they tend to have α-helical 

secondary structures and an additional α-helix may disrupt binding of the inhibitor to the 

enzyme.  

For calpain inhibitors and probes the cell penetrating peptides would be added to 

the N-terminus of the quench probe In the crystal structure the portion of the calpastatin 

that binds to calpain domain-3 appears to mostly form backbone interactions with the 

enzyme rather than side chain interactions.30,69 Furthermore, this portion of calpastatin 

also does not have many conserved residues (among the four calpastatin domains) 

making the sequence amenable to amino acid changes.30,69 Furthermore, Betts et al. 

demonstrated that changing these residues to β-alanine did not affect the potency of the 

27-mer calpastatin suggesting again that this region can be easily mutated with few 

adverse effects on potency.123 

The cell penetrating ability of the probes can be tested in both a canonical HeLa 

cell line as well as a mouse embryo fibroblast (mEF) line that has both a wild type (WT) 

and calpain small subunit (CAPNS1-/-) constitutive knockout lines. The CAPNS1-/- line 
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allows for an additional negative control regarding the inhibitors/probes binding to active 

calpains. Enzymes can be manually activated using calcium ionophore. These cell studies 

will give us an idea as to how useful the inhibitors/probes will be in actual disease 

models. 

5.2 Development of Cathepsin Probes 
The small peptidic α-helical inhibitor of calpain was turned into an activity based 

probe through the addition of a warhead or substrate sequence and a tag, a fluorophore or 

biotin. The small α-helical prodomain based inhibitors developed for each individual 

cathepsin can also be models for activity based probe development. Similarly to 

calpastatin, these inhibitors will only bind to active enzymes because the prodomain in 

the inactive enzyme would sterically prevent the inhibitor/probe from binding to the 

enzyme.  

The cathepsin inhibitor sits in the reverse direction of the substrate meaning that 

the C-terminus faces the unprimed side of the enzyme while the N-terminus faces the 

prime side. Based on the crystal structure models the N-terminus of these inhibitors is 

solvent exposed and not interacting with the enzyme. Thus the tag can be added via a 

peptide bond to the N-terminus of the inhibitor. Adding the tag to the N-terminus 

eliminates the necessity of having an alloc protected lysine or the cost of buying an 

amino acid with a biotin or fluorophore already attached. The development of these 

probes would help isolate the individual protease is involved in each respective disease.  
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5.3 α-helical Inhibitors for Other Classes of Proteases 
We have primarily focused on designing α-helical inhibitors and probes for 

cysteine proteases, however we believe this inhibitory motif can be expanded to include 

other classes of proteases. 

Thrombin is an enzyme involved in the clotting of blood, subsequently it is of 

great pharmaceutical interest as specific inhibitors of thrombin could be good 

anticoagulants.167 When the insect the mosquito takes a blood meal it injects an enzyme 

called anophelin into the site of the blood draw to prevent clotting.168 Interestingly, based 

on the crystal structure, it appears that anophelin binds to thrombin in the same way 

calpastatin binds to calpain. Anophelin is unstructured in solution and has a slow tight 

binding mechanism in which the inhibitor binds to the enzyme in the same N to C 

orientation as the substrate.168 Anophelin also forms an α-helix at the active site just like 

calpain.168,169 

 

Figure 5.1: Active site α-helices of the calpain bound calpastatin (left) and the thrombin bound 
anophelin (right). Insets show the enzymes in their entirety. (Calpain: 3BOW; Thrombin: 
4E06).30,31,168  
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Rather than appearing as a classical two-turn α-helix like in calpastatin, it appears 

that anophelin has a single α-helical turn followed by a β-turn. However, it is possible 

that either the single α-helical turn or the β-turn could be stabilized by the linker. 

Furthermore, from the information gathered during the calpain inhibitor stabilization 

studies it appears that a single proline near the stabilization site can result in a stable loop 

which could be a useful mutation in this inhibitor to stabilize the β-turn.   

Development of inhibitors such as this could be quite useful as a scaffold for the 

development of new anticlotting therapeutics. 

5.4 Concerns 
Stabilized α-helices as inhibitors have previously successful as inhibitors of 

protein-protein interactions.44 The advantage of these α-helical peptide inhibitors has 

been their increased specificity and potency due to the large number of inhibitor-protein 

contacts and the ability to interact with a large surface area. Furthermore, the stabilization 

of these peptides has reduced the entropic penalty of binding to the enzyme and in many 

cases also increased the cell permeability and proteolytic stability. Thus the inhibitors and 

probes that we have developed have the potential to begin a completely new class of tools 

for investigation into protease role in cell processes and disease. 

The use of stabilized α-helices as protease inhibitors does have some drawbacks, 

though. We are targeting proteases, so we are deliberately sending the peptides to areas of 

high protease activity thereby increasing the potential for degradation. Furthermore, the 

protease inhibitors we have designed are stabilized in an i, i+4 conformation leaving the 

unstabilized portion of the inhibitor open to proteolysis. With these weaknesses in mind, 

cytoplasmic or extracellular proteases such as calpain-1 are probably the best targets for 
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the α-helical peptidic inhibitors as proteases in these locations are generally tightly 

regulated which reduces the likelihood of proteolysis. However, the work we have done 

on the cathepsin inhibitors is not in waste as we can use the knowledge we gained to 

synthesize non-peptidic inhibitors that exploit the same enzymatic binding sites as the α-

helical inhibitors. 

Another concern with the α-helical protease inhibitors was the lack of cell 

permeability of these peptides. This problem can be addressed through the use of other 

stabilization methods, like those discussed in the introduction (Chapter 1.5) which have 

been shown to possibly increase cell permeability, or through the use of cell penetrating 

peptides (Chapter 5.1).170  

Finally, α-helical protease inhibitors and probes are likely most useful in the 

laboratory setting for the investigation of the role these cysteine proteases play in cell 

processes and disease models. However, the knowledge gained through the development 

and use of these probes may be helpful for creating small molecule inhibitors or 

therapeutics in the future.  
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APPENDIX  
	  

Abbreviations 
	  

ABP  activity based probe 

β  Ala(4,4’-biphenyl) 

βA  β-alanine 

βP  β-proline 

CAPNS1-/- calpain-1 small subunit knockout 

CD  circular dichroism 

CPP  cell penetrating peptide 

DCM  dichloromethane 

DIPEA  diisopropylethylamine 

DMF  α,α’-dimethylformamide 

DMSO  dimethyl sulfoxide 

DTT  dithiothreitol 

EDT  1,2-ethanedithiol 

EGTA  ethylene glycol tetraacetic acid 

ESI  electrospray ionization 

FITC  fluorescein isothiocyanate 

HBTU O-(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 
hexafluorophosphate 

HCl  hydrochloric acid 

HCTU O-(1H-6-chlorobenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 
hexafluorophosphate 

HPLC  high pressure liquid chromatography 
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HRP  horseradish peroxidase 

IC50  concentration at which 50% of the enzyme is inhibited 

INFIT  inverse Fourier transformation of in-phase multiplets 

Ki  inhibition constant 

Km  Michaelis constant 

MALDI-TOF matrix-assisted laser desorption/ionization-time of flight 

mEF  mouse embryo fibroblast 

Mmt  methoxytrityl 

MS  mass spectrometer 

N  Ala(2-naphthyl) 

NMP  N-methylpyrrolidone 

NMR  nuclear magnetic resonance 

PDB  protein database 

pfF  pentafluorophenylalanine 

PVDF  polyvinyl difluoride 

RCM  ring closing metathesis 

RFU  relative fluorescence units 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TCEP  tris(2-carboxyethyl)phosphine 

TFA  trifluoroacetic acid 

TFE  trifluoroethanol 

TIPS  triisopropylsilane 

Trt  trityl 

WT  wild type 
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Chapter 2 Supporting Information 
	  

General Information  

Amino acids were purchased from Advanced ChemTech(Louisville, KY) or 

Chem-Impex (Wood Dale, IL). Biotinylated lysine was purchased from Anaspec 

(Freemont, CA). All crosslinkers and the enzyme papain were purchased from Sigma-

Aldrich® (St. Louis, MO). Chemicals were purchased from Fisher Scientific (Pittsburgh, 

PA). Calpain-1 and cathepsin B were purchased from BioVision (Milpitas, CA). 

Cathepsin L was purchased from EMD Millipore (Billerica, MA). Substrates were 

purchased from Peptides International (Louisville, KY). Single fritted reservoirs for 

peptide synthesis were purchase from Biotage (Redwood City, CA). Film for imaging 

blots was purchased from Kodak (Rochester, NY). Bis-Tris NuPAGE® gels and a 

Novex® Colloidal Blue Staining Kit were purchased from Life Technologies (Grand 

Island, NY). A Vectastain® Elite® ABC kit for biotin blotting was purchased from Vector 

Laboratories (Burlingame, CA). A Bio-Rad Silver Stain Plus Kit was purchased from 

Bio-Rad (Hercules, CA). Peptides were synthesized on an Argonaut QuestTM 210 

(Argonaut Technologies, Inc. now owned by Biotage, Redwood City, CA) or on a 

Symphony automated peptide synthesizer (Protein Technologies, Inc., Tuscon, AZ). 

Peptides were purified on an Agilent 1100 Series LC/MS or an Agilent 1200 Series 

LC/MS  (Agilent Technologies, Inc., Santa Clara, CA) Hewlett Packard ChemStation 

software using a Vydac® C8 column (Grace, Deerfield) or a Zorbax XDB-C18 column 

(Agilent Technologies, Inc., Santa Clara, CA). Matrix assisted laser desorption/ionization 

time of flight (MALDI-TOF) mass spectra were obtained using a Bruker Ultraflex III 
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mass spectrometer (Billerica, MA). Electrospray ionization (ESI) mass spectra were 

obtained with a QTRAP® 3200 (AB SCIEX, Framingham, MA). Circular dichroism (CD) 

spectra were obtained with a JASCO J-810 spectropolarimeter (JASCO, Inc., Easton, 

MD) equipped with a Peltier temperature control unit. NMR spectra were obtained using 

a Bruker Avance III 500 MHz spectrometer equipped with a cryogenic probe (Billerica, 

MA). UV-Vis absorbance spectra were obtained using a NanoDrop 1000 

spectrophotometer (Thermo Scientific, Wilmington, DE). Fluorescence spectra were 

collected with a Berthold Tri-Star multimode microplate reader (Berthold Technologies, 

GmbH & Co. KG, Bad Wildbad, Germany). Gels were visualized with a Typhoon 

Fluorescent Imager (GE Healthcare Biosciences, Pittsburgh, PA). Graphing was 

performed using GraphPad Prism (GraphPad Software, La Jolla, CA). 



	  

	   74	  

Synthetic procedure 

General peptide synthesis: All peptides were synthesized at 0.1 or 0.2 mmol 

scales using Chemmatrix Rinkamide Resin (substitution: 0.52 mmol/g) or CLEARTM 

Amide resin (substitution: 0.46 mmol/g). Fmoc-protected amino acids (5-fold excess) 

were activated with 0.95 equivalents (relative to the amino acid) of HBTU in the 

presence of 10 equivalents of diisopropyethanolamine (DIPEA). Amino acids were 

coupled for 5 min at 65 oC in DMF (Quest synthesis) or 25 min at room temperature in 

DMF (Symphony synthesis). Fmoc deprotection was performed using 20% 4-methyl 

piperidine in DMF for 5 min at 65 oC (Quest Synthesis) or 2.5 min (x 2) at room 

temperature (Symphony Synthesis).   Side chain deprotection and the simultaneous 

cleavage from the resin were carried out using a mixture of 

TFA/thioanisole/ethanedithiol/anisole (90:5:3:2, v/v) at room temperature, for 2.5 hours. 

The crude peptide was precipitated using cold diethyl ether and purified via reverse-phase 

chromatography with a C8 preparative column using buffer A (0.1% TFA in Millipore 

water) and buffer B’ (0.1% TFA in 60% iso-propanol/30% acetonitrile /10% Millipore 

water). Initial HPLC conditions were 5% B’/95% A. Initial conditions were run for 5 

min, followed by an increase of solution B’ to 100% at 25 min (5%/min.) at a flow rate of 

5 ml/min unless otherwise indicated. The mass of all peptides was verified by MALDI-

TOF or ESI-MS and purity (greater than 95%) was checked by analytical HPLC.  
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 Sequence Calcd 

m/z 

Obsvd 

m/z 

HPLC-
Gradient 

Retention 
Time 
(min) 

Model 
Peptide 

Ac-YGGEAAREACARECAARE-
NH2

171 
1954.4 1954.1 0-100% 13.3 

(C4 Vydac column over a gradient 0% to 100% of acetonitrile in water (0.1% TFA) over 40 minutes) 

Table S2.1. Calculated and observed model peptide masses. 
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Crosslinker Screening Procedure   

Preparation of stock solution: A peptide solution (0.114 mM) in NH4HCO3 

buffer (12mL, 50 mM, pH=8.0) was treated with TCEP (1M solution in the same 

NH4HCO3 buffer, 1.1 eq.) at room temperature for 1 h.42,105,172 The concentration of the 

peptide solution was measured by A280= 1280 M-1cm-1 or by a weight based method 

(molecular weight was adjusted by adding one TFA salt per basic residue and by adding 

10% (of the calculated molecular weight) to account for hydration after lyophilization). 

Crosslinking procedure in 96-well plate: 90 µL of the stock solution was added 

to each well of a black round-bottomed 96-well plate (polypropylene). 10 µL of the 

freshly prepared alkylating agent solution (1.5 mM in anhydrous DMF, 1.5 eq.) was 

added to each well at room temperature and stirred for 2 h while protected from light. 

MALDI analysis was done to see the reaction progress and more alkylating agent was 

added if needed. Addition of 5% HCl to each well neutralized and subsequently quenched 

the reaction. 100 µL of diethyl ether was added to the organic layer to remove excess 

alkylating agent. The ether layer was removed by pipetting and MALDI-TOF spectra 

were taken of the sample in the remaining aqueous solution mixture.  
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High concentration of Reactants (for “selection of the fittest” reaction)  

Preparation of stock solution: A peptide solution (1.2 mM) in Tris-HCl buffer 

(100 mM, pH=8.0) was treated with TCEP (1M solution in the Tris-HCl buffer, 1.1 eq.) 

at room temperature for 1 h. The concentration of the peptide solution was measured by 

A280= 1280 M-1cm-1 or by a weight based method (molecular weight was adjusted by 

adding one TFA salt per basic residue and by adding 10% (of the calculated molecular 

weight) to account for hydration after lyophilization). 

Crosslinking procedure in 1.5 mL centrifuge tube: This procedure is slightly 

modified from the procedure in Materials and Methods. 450 µL of the stock solution of 

peptide was added to a 1.5 mL polypropylene microcentrifuge tube. 50 µL of the freshly 

prepared alkylating agent solution (225 mM in anhydrous DMSO, app. 20 eq.) was added 

to each well at room temperature and the turbid mixture was shaken for 2 h under 

protection from light. The reaction was quenched by neutralization through the addition 

of 0.6 N HCl (10 µL) into each well. Each tube was centrifuged to remove the insoluble 

material and the supernatant was either purified by HPLC analysis or lyophilized. 
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* 1919.84 appeared to be elimination of thiol from the cysteine. 

Figure S2.1. MALDI spectra of low concentration linker with the model peptide. 
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Without Crosslinker 

 
 

Reaction with crosslinker c14 
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Reaction with crosslinker c15 

 
 

Reaction with crosslinker c16 
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Reaction with crosslinker c17 

 
 

Reaction with crosslinker c18 
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Reaction with crosslinker c19 

 

 

Reaction with crosslinker c20 
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Reaction with crosslinker c21 

 

 

Reaction with crosslinker c22 
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Reaction with crosslinker c23 

 
 

Reaction with crosslinker c24 

 

Figure S2.2 Crude HPLC profile  (Low Concentration Reaction with the model peptide). 
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* denotes the major monocyclization product 

Figure S2.3. Crude HPLC profile – “selection of the fittest” reaction 
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NMR spectroscopy 

The peptide sample was prepared using peptide concentrations of 2 mM in 0.6 mL 

of a 9:1 v/v water/D2O mixture in 50mM sodium phosphate, pH 5.5. All spectra were 

recorded at 10 oC on a Bruker Avance III 500 MHz spectrometer equipped with a 

cryogenic probe. 

All 2D homonuclear spectra were recorded with standard pulse sequences173. 2D 

NOESY experiments were carried out with mixing times of 150 ms and 250 ms, 

respectively, 5483 Hz on both t1 and t2 dimensions with t1,max = 93 ms and t2,max = 183 ms, 

32 scans. 2D TOCSY experiments were carried out with a mixing time of 75 ms, 5000 

Hz on both t1 and t2 dimensions with t1,max = 93 ms and t2,max = 205 ms. 2D DQF-COSY 

experiments were carried out with 5000 Hz on both t1 and t2 dimensions with t1,max = 120 

ms and t2,max = 205 ms. The 1H carrier frequency was always set to the water peak and 

chemical shifts were referenced with respect to the residual water peak at 4.90 ppm. 

Spectra were processed and analyzed using the programs nmrPipe174 and 

XEASY175, respectively. Time domain data were multiplied by sine square bell window 

functions shifted by 60o and zero-filled once.  

Using DQF-COSY, TOCSY, and NOESY sequence specific assignments were 

obtained following standard procedures173.  
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A. 

 

B. 

 

 Figure S2.4. Characterization of helix formation in the peptide by NMR spectroscopy. A) Secondary 
chemical shifts of α-H as a function of residue. B) Chemical shift index (CSI) output as a function of 
residue. Both strongly demonstrate helix formation even in the fraying terminus. 

α-H chemical shifts have a strong relationship to protein secondary structures176. 

Secondary chemical shifts are calculated by subtracting the experimental values from the 

intrinsic values. Secondary chemical shifts indicate that all 18 residues show helix 

formation in the peptide. Output from Chemical Shift Index (CSI) 176,177 clearly shows 

that 83% (15 out of 18) residues form helical structures. Two of the three non-helical 

residues are terminal residues.  The third non-helical residue is the helix breaker glycine.
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Alanine Scanning Mutagenesis  

To identify the hot spot residues that are important to the protein-peptide 

interaction, the molecular modeling software package Rosetta178 was used to calculate the 

binding free energy changes upon alanine mutation of each residue. The hot spots are 

defined as the residues that have changes in the binding free energy more than 1 kcal/mol 

when mutating to alanine (∆∆G value).179 Modeling was begun with the 3BOW.pdb 

crystal structure. The target sequence was threaded into the backbone, namely 

E622K(204), H625E(207) and D628A(210), and then the whole peptide was repacked as 

the starting structure. Alanine scanning was performed for each residue sequentially and 

the ∆∆G value was calculated as show in table S2.2. 

Residue Chain ID Mutation ∆∆G (kcal/mol) 

207 C EA -0.1 

206 C RA 0.0 

210 C AA 0.0 

211 C NA 0.1 

201 C IA 0.3 

204 C KA 0.4 

203 C PA 0.5 

202 C PA 1.1 

205 C YA 1.5 

209 C LA 1.7 

208 C LA 1.9 
Table S2.2. Alanine Scanning Mutagenesis, 
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Synthesis of calpain inhibitors 

Calpain inhibitors were synthesized via solid phase peptide synthesis in the same 

manner as the model peptide. Helical calpain inhibitors were stabilized using the α,α’-

dibromo-m-xylene crosslinker c15 and the “low concentration” linking protocol. 

Peptide No. Sequence Calcd 
(m/z) 

Obsvd 
(m/z) 

HPLC-
Gradient 

Retention 
Time 
(min) 

Parent Ac-IPPKYRELLA-NH2 1240.5 1240.5 0-100% 6.91 

3a Ac-IPCKYRCLLA-NH2 1220.6 1220.5 0-100% 6.85 

3b Ac-IPPCYRECLA-NH2 1205.5 1205.3 0-100% 7.60 

3c Ac-IPPKYCELLC-NH2 1219.6 1219.4 0-100% 8.30 

3a Ac-IPCKYRCLLA-NH2 1322.6 1322.6 0-100% 7.99 

3b Ac-IPPCYRECLA-NH2 1307.5 1307.5 0-100% 8.60 

3c Ac-IPPKYCELLC-NH2 1321.6 1321.5 0-100% 9.83 

Table S2.3. Uncrosslinked and crosslinked calpastatin fragment peptides. 3a-c are all m-xylyl crosslinked. 
Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile 
in water (0.1% HCOOH) over 20 minutes. 
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CD Spectra of Calpain Inhibitors without TFE 

Peptide solutions were prepared at ~100 µM in 50 mM Tris-HCl (pH 7.5) without 

TFE. Concentrations were determined by measuring tyrosine absorbance at 276 nm with 

an extinction coefficient of 1400 M-1 cm-1. Scans were conducted from 260 nm to 200 

nm.113,117,180 Measurements were conducted at 20°C in 1 nm step mode with a response 

time of 4 seconds in a 1 mm path length quartz cuvette. 

	  

Figure S2.5. CD spectrum of uncrosslinked peptide 3a-c in Tris buffer (50mM, pH=7.5). 
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Figure S2.6. CD spectrum of crosslinked peptide 3a-c in Tris buffer (50mM, pH=7.5). 
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Protease Activity Assays 

All peptides were evaluated for ability to bind and subsequently inhibit the 

cysteine protease calpain using standard proteolytic fluorescence activity assays. 

Inhibition was assayed using a standard donor-quencher strategy using a previously 

published calpain peptide substrate.62,140,141  

Calpain Assay: Enzyme concentration for calpain-1 was 25 nM. The buffer 

contained 10 mM dithiothreitol (DTT), 100 mM KCl, 2 mM EGTA, 50 mM Tris-HCl 

(pH 7.5), and 0.015% Brij-35. Substrate concentration was 0.25 µM H-Glu(Edans)-Pro-

Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH.62,140,141 Varying concentrations of inhibitor, 0, 

0.5, 1, 2, 5, 7, 10, 15, 25, 50, and 100 µM, were used for each assay. Positive controls 

contained no inhibitor and negative controls contained no calcium. Enzyme, buffer, 

substrate, and inhibitor (or DMSO in controls) were combined. Calpain was activated by 

the injection of CaCl2 to a final concentration of 5 mM. All assays were done in triplicate 

at a total well volume of 100 µL in 96-well plate, and each well contained a separate 

inhibitor concentration. Fluorescence readings were taken every 13 seconds for one hour 

in a fluorescent plate reader. Excitation wavelength was 380 nm and the emission 

wavelength was 500 nm. 

Papain Assay: Enzyme concentration for papain was 25 nM. The buffer 

contained 10 mM dithiothreitol (DTT), 100 mM KCl, 2 mM DGTA, 50 mM Tris-HCl 

(pH 7.5), 0.015% Brij-35. Substrate concentration was 10 µM H-Glu(Edans)-Pro-Leu-

Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH.62,140,141 Varying concentrations of inhibitor, 0, 0.5, 1, 

2, 5, 7, 10, 15, 25, 50, and 100 µM, were used for each assay. Buffer, papain, and 
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inhibitor were all combined first. The assay was initiated by the addition of substrate via 

a multichannel pipette. All assays were done at a total well volume of 100 µL in 96-well 

plate, and each well contained a separate inhibitor concentration. Fluorescence readings 

were taken every 13 seconds for one hour in fluorescent plate reader. The excitation 

wavelength was 380 nm and the emission wavelength was 500 nm. 

Cathepsin Assay: Enzyme concentration for cathepsin B and cathepsin L was 3 

nM.  The buffer contained 10 mM DTT, 500 mM sodium acetate (pH 5.5), and 4 mM 

EGTA, and 0.015% Brij-35.62,140,141 Substrate concentration for both enzymes was 0.25 

µM Z-FR-Amc. 0, 0.5, 1, 2, 5, 7, 10, 15, 25, 50, and 100 µM, were used for each assay. 

Buffer, enzyme, and inhibitor were combined. Cathepsin assays were activated by the 

addition of substrate via a multichannel pipette. All assays were done at a total well 

volume of 100 µL in 96-well plate, and each well contained a separate inhibitor 

concentration. Fluorescence readings were taken every 13 seconds for one hour in 

fluorescent plate reader. The excitation wavelength was 351 nm and emission wavelength 

was 430 nm.  
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Figure S2.7. Representative calpain activity assay progress curve. Progress curves were truncated at 
~500 seconds. After 500 seconds the progress curve loses linearity due autoproteolysis of the enzyme. 
181 Data collected after curvature began was not used in any calculations. 
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Km Determination for calpain substrate 

We calculated the Km for the NH2-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-

Lys(Dabcyl)-OH substrate when cleaved by calpain using standard Michaelis-Menten 

kinetics.142 We identified the initial velocity of calpain at substrate concentrations, 1, 3, 5, 

10, 20, and 30 µM. Velocities were determined in RFU/sec then converted to µM/sec 

using the conversion factor 1386 RFU/µM. The conversion factor was obtained by the 

total hydrolysis of the substrate NH2-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-

Lys(Dabcyl)-OH in a known concentration by papain. We then plotted velocity vs. 

substrate concentration and used GraphPad Prism program Michaelis-Menten (under 

kinetics) to determine the Km. At high concentrations, >10 µM, of substrate the inner 

filter effect, whereby free quencher absorbed the fluorescence emission of the cleaved 

fluorophore, became evident. To take this quenching into consideration, the velocity at 

each substrate concentration was multiplied by the corresponding correction factor: 

Corr%=fEDANS (at each substrate concentration)/fEDANS (in the absence of substrate).182  

 
Figure S2.8. Michaelis-Menten curve for determining Km of calpain substrate. 
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Figure S2.9. IC50 Curves for enzyme assays. Ki was calculated from IC50 using the equation: 

.124,142 The inhibitor was tested against purified human calpain-1. The Km used for the 
calpain Ki determination was 4.66 µM.  
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Kinetic analysis of Calpain-1 by 3c 

To identify inhibition type we used standard Michaelis-Menten treatment. Initial 

velocities were calculated from the linear segment of the progress curves then plotted 

against their substrate concentration.142 Due to the linearity of the first segment of the 

progress curve we believe that autoproteolysis during the first 500 seconds was not 

substantial enough to prevent the use of simple Michaelis-Menten kinetics, i.e. loss of 

enzyme did not change the velocity enough to cause it to deviate from linearity and 

incorporation of this additional complex would severely complicate the kinetics. 

Velocities were determined in RFU/sec then converted to µM/sec using the conversion 

factor 1386 RFU/µM. The conversion factor was obtained by the total hydrolysis of the 

substrate NH2-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(Dabcyl)-OH in a known 

concentration by papain. 

	  

Figure S2.10. Michaelis-Menten plot of initial velocities at different substrate and inhibitor 
concentrations.  
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 [3c]  (µM) Vmax

app  (µM/sec) Km
app 

0 0.0029 ± 0.0003 4.66 ± 1.08 

1 0.0029 ± 0.0002 6.47 ± 0.95 

3 0.0029 ± 0.0003 7.40 ± 1.63 

5 0.0028 ± 0.0003 8.11 ± 1.96 

10 0.0030 ± 0.0004 11.35 ± 3.76 

Table S2.4. Vmax
app and Km

app values obtained from the above Michaelis-Menten plot.  

 

Vmax
app is the same at all inhibitor concentrations while Km

app increases with 

increasing inhibitor concentration. These results are indicative of competitive inhibition. 

To avoid weighting errors we used the values of Km
app and Vmax

app determined directly 

from the non-linear least-squares best fits of the untransformed data and put these values 

into the reciprocal equation: 

€ 

1
v

= ( Km

Vmax
×
1
[S]
) +

1
Vmax

.142 

We then plotted the resulting reciprocal velocities against the respective 

reciprocal substrate concentrations. 
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Figure S11. IC50 Curves for enzyme assays using inhibitor 3c. Ki was calculated from IC50 using the 

equation: 

€ 

Ki =
IC50

1+
[S]
Km

.124,142,183  

 

 



	  

	   102	  

 
Calpain Activity Based Probe Synthesis 

All probes were synthesized by standard solid phase synthesis techniques using 

single fritted reservoir on Rink Amide resin (0.59 mmol/g substitution). Activation of 

Fmoc-amino acids (5-fold excess) was achieved with O-(1H-6-chlorobenzotriazol-1-yl)-

N,N,N′,N′-tetramethyluronium hexafluorophosphate (HCTU) in the presence of DIPEA. 

The reaction solvent contains 100% N,N-dimethylforamide (DMF) (HPLC grade, 

Fisher). The epoxysuccinic acid was synthesized according to a procedure reported in the 

literature.184 The epoxysuccinic acid was added using the same coupling procedure as the 

amino acids.  

Biotin tag addition was done using biotinylated lysine in the peptide synthesis 

process. Fluorescein isothiocyantate (FITC) tag was added post cleavage to the crude 

peptides. FITC addition was performed post-cleavage by adding 1 eq. fluorescein 

isothiocyanate and 10 eq. DIPEA to the peptide dissolved in DMF and stirred under 

argon for 1 hr. For FITC labeled probe an allyloxycarbonyl (alloc) protected lysine was 

used for the non-tagged lysine. The alloc was removed using 1 eq. tetrakis(triphenyl 

phosphine)palladium(0) with 10 eq. 5,5-dimethyl-1,3-cyclohexane dione stirred for 2 hr.  

Deprotection of side chains and cleavage of peptides from amide resin: Side 

chain deprotection and simultaneous cleavage from the resin were carried out using a 

mixture of trifluoroacetic acid (TFA)/triisopropylsilane (TIPS)/water (90:5:5, v/v) at 

room temperature, for 3 hours. Crude peptide was obtained by ether precipitation and 

purified by reverse-phase chromatography. The mass of all peptides was verified by ESI-

MS.  
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 Sequence Calcd  

(m/z) 
Obsvd 
(m/z) 

HPLC- 
Gradient 

Retention 
Time (min) 

NM-01-
biotin 

Epoxide-
AAIPPKYCELLCK-
biotin 

1890.29 1890.1 0-100% 9.864 

NM-02-
biotin 

Epoxide-
βAAIPPKYCELLCK-
biotin 

1890.29 1890.1 0-100% 10.085 

NM-03-
biotin 

Epoxide-
AβPIPPKYCELLCK-
biotin 

1928.92 1928.2 0-100% 10.137 

NM-02-
FITC 

Epoxide-
βAAIPPKYCELLCK-
FITC 

2033.84 

1016.92 
(M/2) 

1016.5 
(M/2) 

0-100% 8.655 

Table S2.5. Calculated and Observed Masses for Calpain Activity Based Probes. 
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Enzyme Labeling Experiments 

For enzyme labeling experiments a greater concentration of enzyme was used 

than for the kinetic experiments for visualization of the enzyme of gel stains. 

Calpain Probe Linker Experiments 

Experimental conditions included 10 mM dithiothreitol (DTT), 1.5 µg Calpain, 

100 mM KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), 0.015% Brij-35, and either 1 µM 

or 10 µM of biotinylated probe (DCG-04 (positive control), NM-01, NM-02, NM-

03).62,140,141 Calpain was activated by the addition of calcium (3.33 µM of 50 mM CaCl2) 

to a final concentration of 8.3 mM. The negative control contained water instead of 

CaCl2, in a calpain solution with 10 µM probe. Probes were allowed to bind to the 

calpain for 20 minutes at room temperature. The reaction was stopped by the addition of 

10 µL NuPage® LDS Running Buffer. 10 µL of each labeling experiment was loaded on 

a 10% Bis-Tris NuPAGE® gel for 1.5 hrs, 140 V. The bands were then transferred to a 

PVDF membrane at 30 V for 70 min. The membrane was blocked with casein and blotted 

for biotin. Film was exposed for 1 hr. and developed.   

 



	  

	   105	  

 
Calpain Labeling experiments 

Experimental conditions were 10 µM dithioreitol (DTT), 1.5 µg Calpain-1 or 6 

µM Calpain-2 (the calpain-2 was not as active), 100 mM KCl, 2 mM EGTA, 50 mM 

Tris-HCl (pH 7.5), 0.015% Brij-35, and 1, 2.5, 5, 10, or 20 µM of FITC-labeled NM-02, 

or 2 µM DCG-04.62,140,141 Calpain was activated by the addition of calcium (3.33 µM of 

50 mM CaCl2) to a final concentration of 8.3 mM. The negative control was unactivated 

calpain tube containing 10 µM probe where water was added instead of calcium. Probes 

were allowed to bind to the calpain for 20 minutes at room temperature. The reaction was 

stopped by the addition of 10 µL NuPage® LDS Running Buffer. 10 µL of each 

condition was loaded on a 10% Bis-Tris NuPAGE® gel for 1.5 hrs at 140 V. The gel was 

visualized on a Typhoon Fluorescent Imager. Following scanning the gel was stained 

with a Novex® Colloidal Blue Staining Kit. 

Papain Labeling experiments 

Experimental conditions were 10 µM dithioreitol (DTT), 1.5 µg Papain, 100 mM 

KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), 0.015% Brij-35, and 1, 2.5, 5, or 10 µM of 

FITC-labeled NM-02, or 2 mM DCG-04.62,140,141 Probes were allowed to bind to the 

papain for 20 minutes at room temperature. The reaction was stopped by the addition of 

10 µL NuPage® LDS Running Buffer. 10 µL of each condition was loaded on a 10% 

Bis-Tris NuPAGE® gel for 1.5 hrs at 140 V. The gel was evaluated on a Typhoon 

Fluorescent Imager. Following scanning the gel was stained to verify loading with a Bio-

Rad Silver Stain Plus Kit. 



	  

	   106	  

 
Cathepsin Labeling experiments 

Experimental conditions were 10 µM dithioreitol (DTT), 1.5 µg Cathepsin B or 

Cathepsin L, 500 mM sodium acetate, 4 mM EGTA, (pH 5.5), and 1, 2.5, 5, or 10 µM of 

FITC-labeled NM-02, or 2 mM DCG-04.62,140,141 Probes were allowed to bind to the 

enzymes for 20 minutes at room temperature. The reaction was stopped by the addition of 

10 µL NuPage® LDS Running Buffer. 10 µL of each condition was loaded on a 12% 

Bis-Tris NuPAGE® gel for 1.5 hrs., 140 V. The gel was evaluated on a Typhoon 

Fluorescent Imager. Following scanning the gel was stained to verify loading with a Bio-

Rad Silver Stain Plus Kit. 
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Chapter 3 Supporting Information 
 

Alanine Scanning Mutagenesis 

Alanine scanning is a technique in which each respective residue in a peptide is 

sequentially mutated to alanine to identify how important that residue is for inhibition. 

Peptide  
No. 

Sequence Calcd  
m/z 

Obsvd  
m/z 

HPLC-
Gradient 

Retention 
Time (min) 

3c IPPKYCELLC 1320.6 1321.6 1-100% 9.67 
3d APPKYCELLC 1278.6 1279.6 1-100% 8.20 
3e IAPKYCELLC 1294.6 1296.5 1-100% 9.25 
3f IPAKYCELLC 1293.6 1294.2 1-100% 6.13 
3g IPPAYCELLC 1263.5 1264.5 1-100% 12.48 
3h IPPKACELLC 1228.6 1229.4 1-100% 9.07 
3i IPPKYCALLC 1262.6 1263.4 1-100% 8.83 
3j IPPKYCEALC 1278.6 1279.4 1-100% 8.98 
3k IPPKYCELAC 1278.6 1279.3 1-100% 8.89 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.) Cysteines that are bold and underlined are linked residues.  

Table S3.1. Calculated and observed masses of crosslinked inhibitors with alanine mutations. 

 

 Inhibitor 
Calpain-1 

(µM) 
Cathepsin L 

(µM) 
Cathepsin S 

(µM) 
3c IPPKYCELLC 10.2 ± 2.9 39.9 ± 1.1 50.2 ± 1.2 
3d APPKYCELLC 65.6 ± 20.5 12.5 ± 1.2 26.1 ± 1.3 
3e IAPKYCELLC 13.7 ± 4.4 0.6 ± 1.4 13.1 ± 1.11 
3f IPAKYCELLC 27.4 ± 8.6 NT NT 
3g IPPAYCELLC 17.7 ± 5.6 24.6 ± 1.2 20.7 ± 1.2 
3h IPPKACELLC >100 8.1 ± 1.2 16.8 ± 1.1 
3i IPPKYCALLC 28.9 ± 9.1 12.5 ± 1.1 15.6 ± 1.6 
3j IPPKYCEALC 30.9 ± 9.2 21.4 ± 1.2 13.9 ± 1.0 
3k IPPKYCELAC 25.2 ± 7.9 19.7 ± 1.1 15.2 ± 1.1 

Cysteines that are bold and underlined are linked residues.  

Table S3.2. Ki determination of alanine mutated crosslinked inhibitors against cysteine proteases.  
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Figure S3.1. IC50 curves of alanine mutants against cysteine proteases.   
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Calpain Inhibitor Mutants 

Isoleucine and tyrosine were mutated to other polar, nonpolar, and extended side 

chain amino acids to investigate the role the specific side chain played in inhibition. 

Peptide No. Sequence Calcd 
m/z 

Obsvd 
m/z 

HPLC-
Gradient 

Retention 
Time (min) 

3m LPPKYCELLC 1320.6 1321.5 1-100% 8.92 
3n QPPKYCELLC 1335.6 1336.6 1-100% 8.66 
3o IPPKbCELLC 1381.5 1382.5 1-100% 11.57 
3p IPPKbzlYCELLC 1410.5 1411.6 1-100% 11.98 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.). Cysteines that are bold and underlined are linked residues. b=Ala(4,4’-biphenyl); 
bzlY=O-benzyl tyrosine 

Table S3.3. Calculated and observed masses of calpain-1 inhibitor mutants. 

 

  Inhibitor 
Calpain-1  
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

3m LPPKYCELLC 10.96 ± 3.6 38.1 ± 1.2 46.3 ± 1.2 
3n QPPKYCELLC 35.02 ± 10.4 NT NT 
3o IPPKbCELLC 9.65 ± 3.2 1.9 ± 1.1 1.4 ± 1.1 
3p IPPKbzlYCELLC 21.26 ± 6.7 16.7 ± 1.3 3.3 ± 1.2 

Cysteines that are bold and underlined are linked residues.  b=Ala(4,4’-biphenyl); bzlY=O-benzyl tyrosine 

Table S3.4. Ki of calpain-1 mutant inhibitors. Isoleucine was mutated to various polar and nonpolar 
residues. Tyrosine was mutated to various resides to determine if extending the side chain would enhance 
calpain binding.  
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Figure S3.2. IC50 curves of calpain-1 inhibitors with isoleucine mutated to various polar and 
nonpolar residues. 
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Single and Double Mutants Determined by Alanine Scanning Mutagenesis and 

Structure Based Design 

Alanine scanning mutagenesis identified two residues in the ten amino acid 

calpain-1 inhibitor that were not essential for inhibition, and subsequently were amenable 

to mutation. Structure based design was then used to pick amino acids that would 

enhance proposed binding interactions. Each individual single mutant resulted in 

increased inhibition, however the double mutant had reduced inhibition. 

Peptide No. Sequence Calcd 
m/z 

Obsvd 
m/z 

HPLC-
Gradient 

Retention 
Time (min) 

4a IpfFPKYCELLC 1410.6 1411.8 1-100% 13.10 
4b IPPRYCELLC 1348.6 1349.6 1-100% 9.50 
4c IpfFPRYCELLC 1488.6 1489.4 1-100% 10.77 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.). Cysteines that are bold and underlined are linked residues. b=Ala(4,4’-biphenyl); 
bzlY=O-benzyl tyrosine 

Table S3.5. Calculated and observed masses for single and double mutant calpain-1 inhibitors. 
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Figure S3.3. IC50 curves of single and double mutants of the mutable residues of the calpain-1 inhibitor. 
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Lengthened Peptide Inhibitors 

Calpain-1 inhibitors were extended using the activity based probe sequence and 

the endogenous calpastatin sequence to investigate how additional amino acids affected 

inhibitory activity. 

Peptide No. Sequence Calcd  
m/z 

Obsvd 
m/z 

HPLC-
Gradient 

Retention 
Time  
(min) 

5a βAAIPPKYCELLC 1462.7 1463.7 1-100% 9.02 

5b EVTIPPKYCELLC 1649.8 1650.7 1-100% 8.07 
5c LGKREVTIPPKYCELLC 2104.1 

1052.1 
(M/2) 

1053.5 1-100% 7.88 

5d LFKREVTIPPKYCELLC 2192.1 
1096.1 
(M/2) 

1097.6 1-100% 8.51 

5e EVTIPPKYCELLC 1547.8 1548.3 1-100% 9.38 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.). Cysteines that are bold and underlined are linked residues. 

Table S3.6. Calculated and observed masses for calpain-1 inhibitors of increasing length. 

	  

  Inhibitor 
Calpain-1 
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

5e EVTIPPKYCELLC 80.4 ± 25.0 NT NT 

Cysteines that are bold and underlined are linked residues.  NT=not tested 

Table S3.7. Ki of the unstabilized 13 amino acid calpain-1 inhibitor. 
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Figure S3.4.IC50 curves of lengthened calpain-1 inhibitors. 
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Quench Probe Development 

For the development of the quenched activity based probe numerous peptides 

were synthesized to address possible locations for the donor and quencher and identify 

the potency of inhibitors without the fluorophores. 

Peptide 
No. 

Sequence Calcd 
m/z 

Obsvd 
m/z 

HPLC-
Gradient 

Retention 
Time 
(min) 

6a PLFAARIPPKYCELLCK 2103.1 
1051.6.0 
(M/2) 

1052.6 1-100% 16.51 

6b IPPKYCELLCR 1476.7 1477.4 1-100% 8.50 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.). Cysteines that are bold and underlined are linked residues.  

Table S3.8. Calculated and observed masses for calpain-1 inhibitors with positive amino acid at C-
terminus. 

	  

  Inhibitor 
Calpain-1 
(µM) 

Cathepsin L 
(µM) 

Cathepsin S 
(µM) 

6a PLFAARIPPKYCELLCK 16.3 ± 5.2 5.2 ± 1.2 NT 
6b IPPKYCELLCR 47.6 ± 14.9 NT NT 

NT=not tested 

Table S3.9. Ki of calpain-1 inhibitor and probe that have a charged residue at the C-terminus for either 
fluorophore addition or cell permeability enhancement. 
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Figure S3.5. IC50 curves for calpain-1 inhibitors with C-terminal positively charged amino acids.  
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Peptide 
No. 

Sequence Calcd 
m/z 

Obsvd 
m/z 

HPLC 
Gradient 

Retention 
Time 
(min) 

6c K(Dabcyl)PLFAARE(Edans)IPPKYCELLC 2730.7 
1365.4 
(M/2) 

1366.5 1-100% 13.00 

6d K(Dabcyl)PLFAE(Edans)RIPPKYCELLC 2659.7 
1329.9 
(M/2) 

1331.0 1-100% 13.56 

6e K(Dabcyl)PLFAE(Edans)RIpfFPYCELLC 2699.7 
1349.8 
(M/2) 

1349.9 1-100% 14.42 

6f K(Dabcyl)PLFAE(Edans)RIPPRYCELLC 2687.7 
1343.8 
(M/2) 

1344.9 1-100% 13.57 

6g PLFAERIPPKYCELLC 2031.99 
1015.99 
(M/2) 

1017.2 1-100% 10.84 

6h PLFAERIpfFPKYCELLC 2072.0 
1036.0 
(M/2) 

1036.6 1-100% 11.37 

6i PLFAERIPPRYCELLC 2061.3 
1030.7 
(M/2) 

1031.7 1-100% 10.47 

(Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over a gradient of acetonitrile in water 
(0.1% HCOOH over 20 minutes.). Cysteines that are bold and underlined are linked residues.  

Table S3.10. Observed and calculated masses of quench probes and their respective inhibitors without the 
fluorophores.  
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Figure S3.6. Model of stabilized α-helical quench probe with the substrate sequence Pro-Leu-Phe-
Ala-Glu-Arg. The glutamate (circled in black) appears to be facing the solution making it a good 
candidate for fluorophore attachment.31 
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Figure S3.6. IC50 curves for quench probe inhibitors without fluorophores. 
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Chapter 4 Supporting Information 
	  

General Information 

Amino acids were purchased from Advanced ChemTech (Louisville, KY) or 

Chem-Impex (Wood Dale, IL). Chemicals were purchased from Fisher Scientific 

(Pittsburgh, PA). Calpain-1 was purchased from BioVision (Milpitas, CA). Cathepsin L 

was purchased from EMD Millipore (Billerica, MA). Cathepsin K and cathepsin S were 

purchased from Enzo Life Sciences (Farmingdale, NY). Substrate Z-FR-Amc was 

purchased from Peptides International (Louisville, KY), and substrate Z-VVR-Amc was 

purchase from Enzo Life Sciences (Farmingdale, NY). Single fritted reservoirs for 

peptide synthesis were purchase from Biotage (Redwood City, CA).  

Peptides were purified on an Agilent 1100 Series LC/MS or an Agilent 1200 

Series LC/MS (Agilent Technologies, Inc., Santa Clara, CA) Hewlett Packard 

ChemStation software using a Zorbax XDB-C18 column (Agilent Technologies, Inc., 

Santa Clara, CA). Matrix assisted laser desorption/ionization time of flight (MALDI-

TOF) mass spectra were obtained using a Bruker Ultraflex III mass spectrometer 

(Billerica, MA).  

Circular dichroism (CD) spectra were obtained with an AVIV spectropolarimeter 

(AVIV biomedical, Inc., Lakewood, MD) equipped with a temperature control unit. UV-

Vis absorbance spectra were obtained using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific, Wilmington, DE). Fluorescence spectra were collected with a 

Berthold Tri-Star multimode microplate reader (Berthold Technologies, GmbH & Co. 
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KG, Bad Wildbad, Germany). Graphing was performed using GraphPad Prism 

(GraphPad Software, La Jolla, CA). 

 

General peptide synthesis 

All peptides were synthesized at a scale of 0.1 mmol using Rink amide Resin 

(Chemimpex) (substitution: 0.52 mmol/g). Fmoc-protected amino acids (5-fold excess) 

were activated with 0.95 equivalents (relative to the amino acid) of HCTU in the 

presence of 5 equivalents of diisopropyethanolamine (DIPEA). Amino acids were 

coupled for 1 hr at room temperature. Fmoc deprotection was performed using 20% 4-

methyl piperidine in DMF for 30 min at room temperature. Side chain deprotection and 

the simultaneous cleavage from the resin were carried out using a mixture of 

TFA/triisopropylsilane (TIPS)/water (95:2.5:2.5, v/v) at room temperature, for 2.5 hours. 

The crude peptide was precipitated using cold diethyl ether. The ether was evaporated 

and then the crude peptide was dissolved in 50% water/50% acetonitrile and lyophilized. 

  

Crosslinker Addition 

The lyophilized crude peptide was dissolved in DMF and to it 1.5 eq. of 

alkylating agent, α,α’-dibromo-m-xylene was added. To the resulting solution 1.5 eq of 

triethylamine was added to initiate the reaction. The reaction mixture was allowed to 

react for 1 h under constant shaking.42,105,159,172 Reaction was monitored for completion 

by HPLC. 
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Purification of Peptides 

The linked peptide was purified via reverse-phase chromatography with a C18 

semi-preparative column using buffer A (0.1% TFA in 95% Millipore water/5% 

acetonitrile) and buffer B (0.1% TFA in 100% acetonitrile). Initial HPLC conditions were 

100% A. Initial conditions were run for 5 min, followed by an increase of solution B to 

100% at 30 min (4%/min.) at a flow rate of 4.18 ml/min. The mass of all peptides was 

verified by ESI-MS and purity (greater than 95%) was checked by analytical HPLC (0 to 

100% solution B over 20 min. at 1 mL/min.). 

 
Peptide 
No. 

Sequence Calcd 
m/z 

Obsvd 
m/z 
M+1 

HPLC 
Gradient 
(analytical) 

Retention Time 
(min) 

1a SEEFRQVMNGF 1383.6 1384.5 0-100% 8.90 
1b SECFRQCMNGF 1463.5 1464.1 0-100% 8.95 
1c SCEFRCVMNGF 1434.5 1435.7 0-100% 10.21 
1d SCEnRCVMNGF 1484.6 1485.5 0-100% 10.27 
1e SCEbRCVMNGF 1510.6 1511.4 0-100% 10.66 
1f SCEFRCVMNGn 1484.6 1485.5 0-100% 10.20 
1g SCEbRCVMNGn 1560.6 1561.4 0-100% 10.55 
2a TSEEVMSLMSS 1240.4 1241.3 0-100% 7.80 
2b TCEEVCSLMSS 1330.5 1331.6 0-100% 7.41 
2c TSEEVCSLMCS 1330.5 1331.4 0-100% 9.53 
2d WSEEVCSLMCS 1415.5 1416.3 0-100% 11.13 
2e TWEEVCSLMCS 1429.5 1430.5 0-100% 9.75 
2f TSEWVCSLMCS 1387.5 1488.2 0-100% 10.97 
2g TSEEWCSLMCS 1417.5 1418.2 0-100% 9.92 
2h TWEWVCSLMCS 1486.6 1487.4 0-100% 14.38 
2i TnEnVCSLMCS 1508.6 1509.3 0-100% 17.01 
2j WWEWVCSLMCS 1571.6 1572.3 0-100% 15.18 
2k WWEWWCSLMCS 1658.6 1659.7 0-100% 14.92 
2l FFEFFCSLMCS 1502.6 1503.5 0-100% 10.36 
2m WWEWbCSLMCS 1695.7 1696.5 0-100% 13.66 
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3a SEEVVQKMTGL 1261.6 1262.5 0-100% 7.42 
3b SCEVVCKMTGL 1311.6 1312.5 0-100% 9.04 
3c SCESVCKMTGL 1299.4 1300.3 0-100% 8.06 
3d SCEHVCKMTGL 1349.5 1350.5 0-100% 7.47 
3e SCENVCKMTGL 1326.5 1327.2 0-100% 7.80 
3f SCELVCKMTGL 1325.6 1326.5 0-100% 9.58 
3g SCEVVCKPTGL 1277.6 1278.3 0-100% 7.73 
3h SCEVVCKMWGL 1396.6 1397.4 0-100% 10.24 
3i SCEVVCKMFGL 1357.6 1358.3 0-100% 20.99 
3j SCEVVCKMTGP 1295.5 1296.4 0-100% 7.89 
3k SCESVCKMTGP 1283.5 1284.3 0-100% 7.28 
3l SCEVVCKPTGP 1261.5 1262.2 0-100% 8.42 
3m SCESVCKPWGP 1334.5 1335.5 0-100% 7.88 
Table S4.1: Calculated and observed inhibitor masses of parent peptides and prodomain fragment 
peptides. Prodomain fragment peptides 1b-1g, 2b-2m, and 3b-3m are all crosslinked with α ,α’-m-
dibromoxylyl crosslinker. Peptides were run on an Agilent LC-MS with an Eclipse XDB-C18 column over 
a gradient of acetonitrile in water (0.1% HCOOH) over 20 min. n=Ala(2-naphthyl); b=Ala(4,4’-biphenyl) 
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Circular Dichroism Spectra of Inhibitors  

We analyzed the unstabilized parent peptide and stabilized inhibitor peptides via 

circular dichroism (CD) data for in buffer without 40% trifluoroethanol (TFE).117,180 CD 

traces demonstrate that the unstabilized peptides are primarily random coil with an 

increase in helicity, to varying degrees, upon stabilization. In buffer the peptide 1g 

appears to be a loop in solution but likely helix formation occurs upon binding to the 

enzyme. Peptide 3g is mostly random coil in buffer likely due to the double proline, helix 

breaker, addition. 

Peptide solutions were prepared at ~50 µM in 100 mM potassium phosphate 

buffer (cathepsin L and K: pH=5.5, cathepsin S: pH=6.5). Concentrations were 

determined either by measuring aromatic absorbance at 280 nm or 254 nm or by mass. 

Scans were conducted from 260 nm to 200 nm.117,180,185 Measurements were conducted at 

25 ˚C in 1 nm step mode with a response time of 5 seconds in a 1 mm path length 

cuvette. 

 

Figure S4.1: A-C) Circular dichroism spectra of parent unstructured peptides and stabilized inhibitors of 
Cathepsin L (A), Cathepsin S (B), and Cathepsin K (C) in buffer with 40% TFE (100 mM potassium 
phosphate buffer, Cathepsin L and K: pH 5.5, Cathepsin S: pH=6.5).  
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Figure S4.2: Circular dichroism data of parent unstructured peptides and stabilized inhibitors of 
Cathepsin L (A), Cathepsin S (B), Cathepsin K (C) in buffer without TFE (100 mM potassium phosphate 
buffer, cathepsin L and K: pH=5.5, cathepsin S: pH=6.5).  
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Protease Activity Assays 

All peptides were evaluated for ability to inhibit the cysteine protease calpain 

using standard proteolytic fluorescence activity assays. Inhibition was assayed using a 

standard donor/quencher strategy with standard peptide substrates. 

Enzyme concentration for cathepsin L was 4 nM. Enzyme concentrations for 

cathepsins S and K are 5 nM. Enzyme concentration for Calpain-1 was 25 nM. Cathepsin 

K and L buffer contained 10 mM DTT, 200 mM sodium acetate (pH 5.5), 2 mM EGTA, 

and 0.01% Triton X-100 or 10 mM DTT, 500 mM sodium acetate (pH 5.5), and 4 mM 

EGTA.62,140,141,186,187 Cathepsin S buffer contained 10 mM DTT, 100 mM potassium 

phosphate, and 4 mM EGTA. Calpain buffer contained 10 mM dithiothreitol (DTT), 100 

mM KCl, 2 mM EGTA, 50 mM Tris-HCl (pH 7.5), and 0.015% Brij-35. Substrate 

concentration for calpain was 0.5 µM NH2-Glu(Edans)-Pro-Leu-Phe-Ala-Glu-Arg-

Lys(Dabcyl)-OH (Ex=380 nm, Em=500 nm).62,140,141 Substrate concentration for the 

cathepsins K and L was 0.5 µM Z-FR-Amc and for cathepsin S was 0.5 µM Z-VVR-Amc 

(Ex=351 nm, Em=430 nm).186-188 Inhibitor concentrations of 0, 0.5, 1, 2, 5, 7, 10, 15, 25, 

50, and 100 µM, in triplicate, were used for each assay. Buffer, enzyme, and inhibitor 

were combined. Cathepsin assays were activated by the injection of substrate. Calpain 

assays were activated by the injection of CaCl2 to a final concentration of 5 mM. All 

assays were done at a total well volume of 100 µL in 96-well plate, and each well 

contained a separate inhibitor concentration. Fluorescence was read in a Fluorescence 

readings were taken every 13 seconds for one hour by a Berthold Tri-Star plate reader.  
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Velocities were determined by taking only the linear portion of the curve into 

account (roughly 200-400 sec.). IC50 was determined by plotting the fractional activity 

vs. the log [I]. Fractional activity was calculated by dividing the velocity of the inhibited 

enzyme by the velocity of the uninhibited enzyme and multiplying by 100 to obtain a 

percentage. The initial rate was then plotted against the log of the inhibitor concentration, 

and IC50 was calculated by GraphPad Prism. Ki was calculated from the IC50 using the 

equation .142 Inhibitors were tested against purified enzyme. Bolded and 

underlined residues denote where the linker, α,α’-dibromo-m-xylene is attached. 
! 

K
i

=
IC

50

1+
[S]

K
m
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Cathepsin L Inhibitor Assays 

  

Figure S4.3: IC50 curve for SEEFRQVMNGF, 7a. 

 

Figure S4.4: IC50 curve for SECFRQCMNGF, 7b. 

   

  

Figure S4.5: IC50 curve for SCEFRCVMNGF, 7c. 
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Figure S4.6: IC50 curves for SCEnRCVMNGF, 7d. 

  

  

Figure S4.7: IC50 curves for SCEbRCVMNGF, 7e. 
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Figure S4.8: IC50 curves for SCEFRCVMNGn, 7f. 

  

  

Figure S4.9: IC50 curves for SCEbRCVMNGn, 7g. 
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Cathepsin S Inhibitor Assays 

   

Figure S4.10: IC50 curve for TSEEVMSLMSS, 8a. 

 

Figure S4.11: IC50 curve for TCEEVCSLMSS, 8b. 

  

  

Figure S4.12: IC50 curve for TSEEVCSLMCS, 2c. 
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Figure S4.13: IC50 curves for WSEEVCSLMCS, 8d. 

  

  

Figure S4.14: IC50 curves for TWEEVCSLMCS, 8e.  
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Figure S4.15: IC50 curves for TSEWVCSLMCS, 8f. 

  

  

Figure S4.16: IC50 curves for TSEEWCSLMCS, 8g. 
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Figure S4.17: IC50 curves for TWEWVCSLMCS, 8h. 

  

Figure S4.18: IC50 curves for TnEnVCSLMCS, 8i. 
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Figure S4.19: IC50 curves for WWEWVCSLMCS, 8j. 

  

   

Figure S4.20: IC50 curves for WWEWWCSLMCS, 8k.  
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Figure S4.21: IC50 curves for FFEFFCSLMCS, 8l. 

 

Figure S4.22: IC50 curves for WWEWbCSLMCS, 8m. 
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Cathepsin K Inhibitor Assays 

 

Figure S4.23: IC50 curve for SEEVVQKMTGL, 9a. 

  

  

Figure S4.24: IC50 curves for SCEVVCKMTGL, 9b. 
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Figure S4.25: IC50 curves for SCESVCKMTGL, 9c. 

 

Figure S4.26: IC50 curves for SCEHVCKMTGL, 9d. 

 

Figure S4.27: IC50 curves for SCENVCKMTGL, 9e. 
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Figure S4.28: IC50 curves for SCELVCKMTGL, 9f. 

  

  

Figure S4.29: IC50 curves for SCEVVCKPTGL, 9g. 
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Figure S4.30: IC50 curves for SCEVVCKMWGL, 9h. 

 

Figure S4.31: IC50 curves for SCEVVCKMFGL, 9i. 
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Figure S4.32: IC50 curves for SCEVVCKMTGP, 9j. 

 

Figure S4.33: IC50 curves for SCESVCKMTGP, 9k. 

 

Figure S4.34: IC50 curves for SCEVVCKPTGP, 9l. 

SCEVVCKMTGP/Cathepsin K

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity

SCEVVCKMTGP/Cathepsin L

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity

SCEVVCKMTGP/Cathepsin S

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity

SCEVVCKMTGP/Calpain

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity

SCESVCKMTGP/Cathepsin K

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity

SCEVVCKPTGP/Cathepsin K

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

50

100

150

log [I]

%
 A

c
tiv

ity



	  

	   146	  

  

  

Figure S4.35: IC50 curves for SCESVCKPWGP, 9m. 
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Michaelis-Menten Kinetics  

To identify inhibition type we used standard Michaelis-Menten treatment. Initial 

velocities were calculated from the linear segment of the progress curves then plotted 

against their substrate concentration (~200-400 s).142 Units were initially measured in 

RFU/sec then converted to µM/sec using the conversion factor 17567.8 RFU/µM for Z-

FR-Amc and 5999.04 RFU/µM for Z-VVR-Amc. The conversion factor was obtained by 

the total hydrolysis of the substrate in a known concentration by papain.  We then plotted 

velocity vs. substrate concentration and used GraphPadPrism program Michaelis-Menten 

(under kinetics) to determine the Km
app and Vmax

app. 

 
[7g] (µM) Vmax

app (µM/sec) Km
app 

0 0.002034 ± 0.0001 1.605 
0.025 0.002058 ± 0.0001 2.022 
0.05 0.002128 ± 0.0001 2.375 
Table S4.2: Cathepsin L inhibitor 7g Michaelis-Menten results. 

[8k] (µM)	   Vmax
app (µM/sec)	   Km

app	  
0	   0.06344 ± 0.0106	   29.96	  
0.5	   0.07103 ± 0.0348	   46.05	  
1	   0.07114 ± 0.0137	   50.16	  
Table S4.3: Cathepsin S inhibitor 8k Michaelis-Menten results. 

[9g] (µM)	   Vmax
app (µM/sec)	   Km

app	  
0	   0.006156 ± 0.0015	   50.21	  
0.5	   0.006261 ± 0.0012	   53.65	  
1	   0.006800± 0.0021	   65.30	  
Table S4.4: Cathepsin K inhibitor 9g Michaelis-Menten results. 

Vmax
app is the same at all inhibitor concentrations while Km

app increases with 

increasing inhibitor concentration. These results are indicative of competitive inhibition. 

To avoid weighting errors we used the values of Km
app and Vmax

app determined directly 
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from the non-linear least-squares best fits of the untransformed data and put these values 

into the reciprocal equation:  

  142 

We then plotted the resulting reciprocal velocities against the respective 

reciprocal substrate concentrations creating a Lineweaver-Burk plot to further identify 

mode of inhibition. All lines intersected at the x-axis indicating competitive kinetics. 

 
Lineweaver-Burk Plots 

 
Figure S4.36: Lineweaver-Burke plots demonstrating that the α-helical inhibitors are all competitive 
inhibitors suggesting that it is likely they are binding at the active site.  

! 

1
v

= ( Km

Vmax
"
1
[S]
) +

1
Vmax

A. B. C.
Cathepsin L

-1 1 2

-1000

1000

2000

3000
0 M 1g
0.01 M 1g
0.05 M 1g

1/[S] ( M-1)

V
el

oc
ity

 (
M

/s
ec

)

Cathepsin S

-1 1 2

-500

500

1000

1500
0 M 2j
0.5 uM 2j
1 uM 2j

1/[S] ( M-1)

V
el

oc
ity

 (
M

/s
ec

)

Cathepsin K

-1 1 2

-5000

5000

10000

15000
0 uM 3d
0.5 uM 3d
1 uM 3d

1/[S] ( M-1)

V
el

oc
ity

 (
M

/s
ec

)

7g
7g
7g 8j

8j
8j 9g

9g
9g



	  

	   149	  

 

α-Helical Inhibitors Modeled in Enzyme Active Sites 

Using the zymogen crystal structures, the mutated, stabilized, α-helical inhibitors 

were modeled into the enzyme active site using Pymol as a visualization of their mode of 

inhibition.31 

 
Figure S4.37: Models of a stabilized, α-helical inhibitor in the active site of its respective enzyme. (A) 
Cathepsin L, 7g, (B) Cathepsin S, 8k, (C) Cathepsin K, 9g.31  
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