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Cryptophane Biosensors for Targeting Human Carbonic Anhydrase 

 Cryptophanes represent an exciting class of xenon-encapsulating molecules that 

can be exploited as probes for nuclear magnetic resonance imaging. A series of carbonic 

anhydrase-targeting, xenon-binding cryptophane biosensors were designed and 

synthesized. Isothermal titration calorimery and surface plasmon resonance 

measurements confirmed nanomolar affinity between human carbonic anhydrase II and 

the cryptophane biosensors. A 1.70 Å resolution crystal structure of a cryptophane-

derivatized benezenesulfonamide human carbonic anhydrase II complex was determined, 

and shows how an encapsulated xenon atom can be directed to a specific biological 

target. Furthermore, this work illustrates the utility and promise of developing xenon 

biosensors to diagnose human diseases characterized by the upregulation of specific 

carbonic anhydrase biomarkers, specifically human carbonic anhydrase IX and XII.     

Structural Studies of epi-Isozizaene Synthase from Streptomyces coelicolor 
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The X-ray crystal structure of recombinant epi-isozizaene synthase (EIZS), a 

sesquiterpene cyclase from Streptomyces coelicolor A3(2), has been determined at 1.60 

Å resolution. Specifically, the structure of wild-type EIZS is that of its closed 

conformation in complex with three Mg2+ ions, inorganic pyrophosphate (PPi), and the 

benzyltriethylammonium cation (BTAC). Additionally, the structure of D99N EIZS has 

been determined in an open, ligand-free conformation at 1.90 Å resolution. Comparison 

of these two structures provides the first view of conformational changes required for 

substrate binding and catalysis in a bacterial terpenoid cyclase, and enables a comparison 

of substrate recognition amongst terpenoid synthases from different domains of life. 

Mutagenesis of aromatic residues in the enzyme active site alters the cyclization template 

and results in the production of alternative sesquiterpene products. The structure and 

activity of several active site mutants have been explored. The 1.64 Å resolution crystal 

structure of F198A EIZS in a complex with three Mg2+ ions, PPi, and BTAC reveals an 

alternative binding orientation of BTAC, whereas the crystal structures of L72V, A236G 

and V329A EIZS reveal an unchanged BTAC binding orientation. Alternative binding 

orientations of a carbocation intermediate could lead to the formation of alternative 

products.  
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Part I: Cryptophane Biosensors for Targeting Human Carbonic Anhydrase 

 

Chapter 1: Introduction 

1.1 Carbonic Anhydrase: A Model System 

Carbonic anhydrases (CAs) are ubiquitous zinc-metalloenzymes that catalyze the 

hydration of carbon dioxide to form bicarbonate (Equation 1). Four distinct, unrelated CA 

CO2 + H2O ⇔ HCO3
- + H+     (1) 

gene families have been identified and characterized as follows; α-CAs found in 

vertebrates, bacteria, algae, and the cytoplasm of green plants, the β-CAs found in 

bacteria, algae, and chloroplasts of mono- and dicotyledons, γ-CAs found in archaea and 

some bacteria, and finally, the δ-CAs found in some marine diatoms (Supuran, 2008). 

There are 16 α-CA isozymes in mammals, with various sub-cellular localization 

including the cytosol, membrane-bound, mitochondrial, transmembrane, and secreted 

(Table 1.1) (Supuran, 2007). Not only are these enzymes important for pH homeostasis, 

they are also involved in a number of other biosynthetic pathways including 

gluconeogeneis, ureagenesis and lipogenesis. As such, CAs have been implicated in 

cellular proliferation, spermatozoan motility, and aqueous humor production, and are 

therefore targets to treat many diseases (Ekstedt, 2004; Pastorekova, 2006; Mincione, 

2008).  

 

 The X-ray crystal structures of several human CA isozymes have been solved to-

date, including CA I, II, III, IV, VI, VIII, IX, XII and XIII (Table 1.1). The molecular 

structures of human CAs are highly conserved. The structure is characterized by a central 
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anti-parallel β-sheet, and the active site contains a catalytically essential Zn2+ ion, 

coordinated by three histidine residues (Figure 1.1). The active site is located at the 

bottom of a roughly conical, 15 Å-deep cleft, which is predominantly hydrophobic one 

one side and predominately hydrophilic on the other (Liljas, 1972). 

 

 Kinetic experiments have helped to elucidate the catalytic mechanism of the 

enzyme (Figure 1.2). A zinc-bound water molecule makes a hydrogen bond to the 

hydroxyl moiety of T199. The pKa of the zinc-bound water is lowered to 7, and therefore 

can lose a proton and become a zinc-bound hydroxide. The hydroxide, a strong 

nucleophile, is well oriented to attack a CO2 molecule bound in a nearby hydrophobic 

pocket (Figure 1.1), forming a zinc-bound bicarbonate. Next, the bicarbonate is displaced 

by a water molecule and diffuses into bulk solution. The active form of the enzyme is 

reformed by loss of proton from the new zinc-bound water via proton transfer to bulk 

solvent, assisted by H64. 

 

 The most effective CA inhibitors designed to date contain an aryl-sulfonamide 

moiety; the sulfonamide moiety coordinates to the Zn2+ ion as a sulfonamidate ion, and 

the aryl moiety binds in the hydrophobic cleft and acts as a scaffold from which the 

inhibitor can be tailored to target a specific isozyme (Krishnamurthy, 2008). Hundreds of 

CA inhibitors have been designed and tested as potential drugs for the treatment of a 

variety of diseases including glaucoma (CA II and CA XII), cancer (CA IX and CA XII), 

obesity (CA VA, CA VB), seizures (CA II, CA VII, CA XII, CA XIV), and bacterial 

infections (various CAs from pathogenic organisms) (Supuran, 2007).  
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  Table 1.1. Catalytic steady-state constants1 and protein data bank reference codes 

for human carbonic anhydrase isozymes. 

Isozyme kcat (s
-1)+ kcat/KM (M -1 s-1) PDB code Reference 

CA I 2.0 x 105 5.0 x 107 2CAB (Kannan, 1984) 
CA II 1.4 x 106 1.5 x 108 1CA2 (Eriksson, 

1988a) 
CA III 1.0 x 104 3.0 x 105 1Z97 (Duda, 2005) 
CA IV 1.1 x 106 5.1 x 107 3FW3 To be published. 

PDB released 
12/01/2009 

CA VA 2.9 x 105 2.9 x 107 - - 
CA VB 9.5 x 105 9.8 x 107 - - 
CA VI 3.4 x 105 4.9 x 107 3FE4 To be published. 

PDB released 
12/16/2008 

CA VII 9.5 x 105 8.3 x 107 - - 
CA VIII 
(CARP)2 

- - 2W2J (Di Fiore, 2009) 

CA IX 3.8 x 105 5.5 x 107 3IAI (Alterio, 2009) 
CA X - - - - 
CA XI - - - - 
CA XII 4.2 x 105 3.5 x 107 1JCZ (Whittington, 

2001) 
CA XIII 1.5 x 105 1.1 x 107 3D0N (Di Fiore, 2009) 
CA XIV 3.1 x 105 3.9 x 107 1RJ52 (Whittington, 

2004)3 
murine CA 

XV 
4.7 x 105 3.3 x 107 - - 

1Kinetic parameters were taken from a recent review by C. T. Supuran (Supuran, 2008). 
2CARP is a carbonic anhydrase-related protein. 
3Crystal structure of murine carbonic anhydrase XIV 
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Figure 1.1. A cartoon representation of the crystal structure of human CA II, 

solved at 1.1 Å resolution (PDB 3D92) (Domsic, 2008) in complex with the substrate, 

CO2. The catalytic Zn2+ ion is represented as a sphere (grey) coordinated by residues 

H94, H96 and H119, and is coordinated to water (red sphere), which makes a hydrogen 

bond to the side chain of T199. Carbon dioxide is bound in a hydrophobic pocket in the 

active site formed by V121, V143, and L198. A proton shuttle which transports a proton 

from the zinc-bound water molecule to bulk solvent is proposed to include H64, which is 

observed in two discrete conformations in the crystal structure.  
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Figure 1.2. Catalytic mechanism of carbonic anhydrase. A schematic representation of 

the catalytic mechanism of the hydration of CO2 by α-CAs. Carbon dioxide is bound in a 

hydrophobic pocket formed by V121, V143 and L198. Coordination to the zinc cation 

lowers the pKa of the bound water molecule from 15.7 to ~7, by stabilizing its conjugate 

base, hydroxide. Furthermore, the positively charged zinc stabilizes the negatively-

charged transition state leading to bicarbonate formation.  
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 Of the 12 catalytically active mammalian CAs, CA II is the most thoroughly 

studied isozyme and is regarded as a robust model system for systematically studying 

protein-ligand binding (Elbaum, 1996; Krishnamurthy, 2008). Human CA II is a 

particularly good model system for many practical reasons, namely it is a 30 kDa 

monomeric enzyme that is simple to overexpress and purify from E. coli due to its 

exceptional stability. The catalytic mechanism of CA, as well as the mechanism of 

inhibition by Zn2+-binding ligands are well understood. Human CA II has the highest 

catalytic efficiency of the α-CAs, with kcat/KM = 1.5 x 108 M-1 s-1, approaching the limit 

of diffusion control.    

  

The X-ray crystal structures of several CA isozymes have been determined at 

high-resolution. These structures have enabled a thorough study of ligand/inhibitor 

binding. CA II, a soluble cytosolic isozyme, is particularly amenable to crystallization, 

resulting in hundreds of protein data bank (PDB) submissions, many at high resolution 

(better than 1.2 Å). The use of CA as a model for biophysical and physical-organic 

studies of protein-ligand interactions has been recently extensively reviewed 

(Krishnamurthy, 2008). The use of CA II as a model system for studying protein-ligand 

interactions is extended in this dissertation; CA II is utilized for the structure-based 

design of a xenon (129Xe) biosensor for use as a magnetic resonance imaging (MRI) 

contrast agent.  
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1.2 129Xe MRI 
 
 Proton (1H) magnetic resonance imaging (MRI) is one of the most widely used 

and versatile techniques for scanning deep tissue, with important applications in disease 

diagnosis. MRI offers many advantages for in vivo imaging; it is non-invasive, uses non-

ionizing radiation, and produces tomographic images. Although the intrinsic 1H MRI 

signals from water and fat typically have low sensitivity, contrast agents have been 

developed that contain gadolinium or iron-oxide particles, which improve the diagnostic 

power of the resulting images (Degani, 1997; Foster-Gareau, 2003). More recently 

however, research has shifted focus to investigate the use of other nuclear magnetic 

resonance (NMR) active nuclei, including 3He, 13C, 83Kr and 129Xe, which can be 

hyperpolarized to significantly increase the NMR signal. Hyperpolarization is achieved 

through a process known as spin-exchange optical pumping; angular moment is 

transferred from circularly polarized light to an alkali metal, the newly polarized metal 

interacts with the nuclear spin of the isotope of interest through dipolar coupling to 

increase the population of unpaired spins (Kauczor, 1998). 129Xe is particularly exciting 

for applications in imaging since it has a spin-½ nucleus, a >200-ppm chemical shift 

window in water, and a natural isotopic abundance of 26% (commercially available up to 

86%). Moreover, 129Xe hyperpolarization can enhance MRI signals ~10,000-fold 

(Cherubini, 2003).  

 

Current in vivo 129Xe MRI applications include functional lung imaging. 

Hyperpolarized 129Xe MRI offers increased signal-to-noise ratios for lung tissue with 



 8 

respect to conventional 1H MRI.  Typically, a mixture of hyperpolarized 129Xe gas and N2 

is inhaled by a patient, where it acts as a contract agent for visualizing the airways. 

Imaging the diffusion of xenon gas in the lungs has clinical applications in the diagnosis 

of asthma, chronic obstructive pulmonary disease, cystic fibrosis, and pediatric chronic 

lung disease (Fain, 2007). However, there are limitations to the application of 

hyperpolarized 129Xe MRI imaging due to the reliance of the technique on the diffusion 

of xenon to the tissue of interest. This limitation can be overcome by the development of 

functional xenon biosensors, a strategy first proposed by Spence and colleagues in 2001 

(Spence, 2001).   

 

1.3 129Xe-Cryptophane Biosensors 

 Extending the application of hyperpolarized 129Xe imaging beyond the lungs 

requires a biosensor that is able to bind xenon atoms, while simultaneously targeting the 

biological moiety of interest. An interesting class of organic supramolecular compounds 

known as cryptophanes can be used as the xenon cage. Cryptophane cages consist of two 

cup-shaped [1.1.1]orthocyclophane units connected by three bridging units (Figure 1.3). 

Cryptophanes of diverse shapes, sizes and chemical properties can be synthesized by 

varying the R1 and R2 substituents, the identity of the bridging units, Y, as well as the 

diastereomer (syn or anti). The type of bridging unit has a great effect on the size of the 

cage. The volume of a cryptophane-A cage [Y=O(CH2)2O, R1=R2=OCH3] is 95 Å3, and 

it can reversibly encapsulate xenon (KA ~ 3900 M-1). The highest affinity measured to 

date for a cryptophane-Xe interaction is KA ~3.3 x 104 M-1, for tri-acetate cryptophane-A.  
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Furthermore, varying the R1 and R2 substituents facilitates the use of cryptophane 

cages as xenon carriers in a biosensor that can be targeted to specific proteins using an 

appropriate affinity tag (Lowery, 2006; Schroder, 2006). The affinity-tags and their 

respective targets that have been investigated include biotin-streptavidin, peptide-antigen 

and DNA-DNA hybrid (Spence, 2001; Roy, 2007; Schlundt, 2009). In this work, a series 

of racemic biosensors have been designed to target the active site of the CA isozymes, 

and structural and binding studies of the biosensor with human CA I and CA II follow.  
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 Figure 1.3. General structures of cryptophanes. (a) anti diasteromer. (b) syn 

diasteromer. Varying the bridging atoms (Y) and substituents (R1 and R2) give rise to 

cages of diverse size, shape and chemical properties.   
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Chapter 2: Binding Studies of 129Xe-Cryptophane Biosensors and Carbonic 

Anhydrase 

 

2.1 Design and Synthesis of 129Xe-Cryptophane Biosensors 

The design of a functional 129Xe-cryptophane biosensor to target CA is quite 

simple. First, an appropriate cryptophane cage must chosen as the functional xenon 

binding moiety. Next, an appropriate CA affinity tag must be synthesized and attached at 

the R1 or R2 position, and finally, the remainder of R1 and R2 positions must be 

derivatized with appropriate side groups to impart sufficient biosensor solubility. As a 

starting point for the design, the cryptophane-A cage was chosen due to its superior 

xenon binding capabilities. To target the catalytically active Zn2+ ion in the active site of 

CA a benzene-sulfonamide functional group was chosen, and added at the R1 position. In 

order to increase the aqueous solubility of the biosensor, additional carboxylic acid 

functional groups were coupled to the two additional R1 positions, and –OCH3 groups 

were added at the R2 positions. A series of three biosensors were synthesized with 

varying linker lengths between the sulfonamidate functional group and the cryptophane 

cage to investigate the optimal biosensor construct. A summary of the synthesis, 

performed by J. M. Chambers is summarized in Figure 2.1. The CA targeting portion of 

the biosensor was synthesized starting from 1. The benzene-sulfonamide moiety was 

conjugated to an azide linker, varying the number of methylene groups between the 

benzene ring and the azide moiety from 0-2 to form 2-4. Next, starting with tripropargyl 

cryptophane (R1= CH2CCH and R2= OCH3), 5, the azide functionality on 2-4 was 

stoichiometrically coupled to the cryptophane via a copper catalyzed [3+2] cycloaddition. 
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Following silica column chromatography to remove unstoichiometric side products, the 

remaining R1 positions were coupled to 3-azidopropionic acid, 6, to form a series of 

water-soluble CA targeting cryptophane biosensors 7-9.  
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Figure 2.1. Cryptophane biosensor synthesis was performed by J. M. Chambers, for a 

detailed procedure see (Chambers, 2009). Reaction conditions: a: CuSO4, 2,6-Lutidine, 

Na Ascorbate, DMSO (for n=0, no light and dry dioxane), rt. b: CuSO4, 2,6-Lutidine, Na 

Ascorbate, DMSO, rt.   
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2.2 Isothermal Titration Calorimetry Measurements 

 2.2.1 Introduction  

Isothermal titration calorimetry (ITC) is a technique used to measure the 

thermodynamic parameters of interactions between molecules by measuring the change 

in heat upon mixing of the analytes of interest. Specifically, ITC directly measures the 

binding affinity (Ka), enthalpy change (∆H), and binding stoichiometry (n) of an 

interaction between two molecules, in our case CA and a cryptophane biosensor. Then, 

using the Gibbs free energy equation (2), the entropy (∆S) and Gibbs free energy (∆G) of 

the interaction can be determined (Falconer, 2010). 

∆G = -RTlnKa = ∆H – T∆S  (2) 

An ITC experiment is performed in a calorimeter that contains two identical small cells 

surrounded by an adiabatic jacket. One cell serves as a control/reference cell while the 

second cell serves as a sample cell. To begin an experiment, one of the analytes of 

interest, in our case the protein CA, is placed in the sample cell. Next, the biosensor is 

slowly titrated into the protein solution in aliquots of a few microliters per addition. 

Binding of the cryptophane biosensor to CA is exothermic. The instrument detects 

temperature differences between the sample and reference cell and measures the time-

dependent input of power required to maintain both cells at the same temperature. The 

raw data is integrated with respect to time to determine the total amount of heat released 

per analyte injection, and together with the molar ratio of biosensor to protein the 

thermodynamic parameters of the interaction can be determined.  The advantages of ITC 

include the ability to measure free energy, enthalpy, entropy, association constant, and 

stoichiometry of an interaction simultaneously without incorporating unnatural labels, 
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which could introduce bias to the measurement. The association constant for the 

interaction can be converted into a dissociation constant from the relationship Kd = 1/Ka 

(Freyer, 2008).  

  

2.2.2 Experimental Methods 

All calorimetry experiments were conducted at 298 K on a VP-ITC titration 

microcalorimeter from MicroCal, Inc. (Northhampton MA), using standard protocols and 

data analysis (Wiseman, 1989; Fisher, 1995). Human CA I was purchased from Sigma 

and used without further purification, human CA II was overexpressed in Escherichia 

coli and purified as previously described (Alexander, 1993). Biosensors 7, 8 and 9, as 

well as the benzenesulfonamide-linker, 4, were synthesized by J. M. Chambers 

(Chambers, 2009). CA I and CA II were diluted to ~ 20 µM and exhaustively dialyzed 

against 50 mM Tris-SO4 (pH 8.0). Biosensors (~10 mM stock solutions in DMSO) were 

dissolved at a concentration of 135-300 µM in an aliquot of the same buffer, and an 

equivalent concentration of DMSO was added to the enzyme solution. Prior to the 

titration experiment, samples were degassed under vacuum for 5 min. The sample cell 

(effective volume = 1.4 mL) was overfilled with 1.8 mL of CA at a concentration of 14-

26 µM, and the reference cell was filled with water. The contents of the sample cell were 

titrated with 30 aliquots (10 µL each) of inhibitor (two initial 2 µL injections were made, 

but not used in data analysis). After each injection, the heat change was measured and 

converted to the corresponding enthalpy value. The reaction mixture was continuously 

stirred at 300 rpm during titration. Control experiments were carried out by titrating the 

inhibitor into the buffer solution under identical experimental conditions. The 
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calorimetric data are presented with the background titrations subtracted from the 

experimental data. The amount of heat produced per injection was calculated by 

integration of the area under each peak. Data were fit to the equation q = 

VΔH[E] tK[L]/(1 + K[L]), where q is the heat evolved during the course of the reaction, 

V is the cell volume, ΔH is the binding enthalpy per mole of ligand, [E]t is the total 

enzyme concentration, K is the binding constant, and [L] is inhibitor concentration. 

Nonlinear regression fitting to the binding isotherm (ORIGIN 5.0 software, MicroCal) 

using a one-site model gave the equilibrium dissociation constant of the ligand, Kd, and 

estimates of the standard error. Representative isothermal calorimetric data and binding 

isotherms are shown in Figures 2.2 and 2.3 and a summary of dissociation constants for 

the CA-biosensor complexes are summarized Table 2.1. The error is σi = √(Ciiχ2), where 

Cii is the diagonal element of the variance-covariance matrix.   

 

2.2.3 Results and Discussion 

ITC binding measurements indicate that all three biosensors have nanomolar 

affinity for human CA I and CA II (Table 2.1). The Kd of the benzenesulfonamide 

affinity tag, 4, was measured as a control to determine the contribution of the 

cryptophane on the binding constant. ITC binding studies indicate that the presence of 

cryptophane and length of the linker between the sulfonamide and the cage has little 

effect on the Kd. Overall, all three biosensors exhibited modestly higher affinity for CA I 

(20 – 80 nM) versus CA II (60-100 nM). Biosensor 9 exhibited the highest affinity for 

CA II (60 nM), while biosensor 7 exhibited the highest affinity for CA I (20 nM) 

(Chambers, 2009).  
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Table 2.1. Summary of dissociation constants for biosensors-carbonic anhydrase 

complexation determined by ITC at 298 K.  

CA Isozyme Ligand Kd (nM) 
 

I 4 30 ± 10 
 7 20 ± 10 
 8 80 ± 10 
 9 30 ± 20 

II 4 100 ± 10 
 7 100 ± 20 
 8 110 ± 30 
 9 60 ± 20 
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Figure 2.2. Isothermal calorimetric data for the interactions of 4 and 7 with CA I 

(left panel) and CA II (right panel). CA I (19.9 µM) titrated with 4 (200.0 µM); CA II 

(25.9 µM) titrated with 4 (292.3 µM); CA I (20.0 µM) titrated with 7 (183.0 µM); CA II 

(19.32 µM ) titrated with 7 (182 µM). 
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Figure 2.3. Isothermal calorimetric data for the interactions of 8 and 9 with CA I 

(left panel) and CA II (right panel). CA I (22.4 µM) titrated with 8 (200.0 µM); CA II 

(16.6 µM) titrated with 8 (194.9 µM); CA I (14.2 µM) titrated with 9 (135.7 µM); CA II 

(14.9 µM ) titrated with 9 (200 µM). 
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2.3 Surface Plasmon Resonance Measurements 

 2.3.1 Introduction 

 Surface plasmon resonance (SPR) is a physical phenomenon that can be used to 

detect very small changes at a surface. Specifically, SPR experiments measure a change 

in the local index of refraction at a surface, resulting in a change in resonance conditions 

of surface plasmon waves (Pattnaik, 2005). Recently, a number of instruments based on 

SPR have become commercially available and are specifically designed to quantify 

macromolecular interactions (Jason-Moller, 2006). The experimental setup involves 

immobilization of one of the binding partners of interest (typically referred to as the 

“ligand”) to a sensor-chip. A typical sensor-chip is a glass slide coated with a thin layer 

of gold followed by a specific surface matrix, to which the ligand is attached (examples 

include carboxymethylated dextran, streptavidin, nickel cheltation, and hydrophobic 

monolayer). Surface plasmons are excited by incident light beam on the opposite side of 

the gold surface. The incident photons induce an evanescent light field into the gold film 

and at a certain incident angle are able to excite surface plasmons. When a plasmon is 

excited, the change in the reflected light is observed at that incident angle is measured by 

a charged couple device (CCD) chip (Pattnaik, 2005). The first step of an SPR 

experiment is to immobilize the “ligand” on the sensor chip surface. Next, the “analyte” 

flows over the chip, where it interacts with the “ligand” (the association phase), this 

interaction is correlated to the change in mass at the sensor surface, resulting in an 

observable change in the SPR angle, detected by a change in the intensity of the reflected 

light (measured in resonance units (RU)). Finally, the chip is regenerated by flowing 

buffer over the surface of the chip (dissociation phase). The time-dependant change in 
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SPR signal recorded during an experiment can be fit to calculate the binding constant, Kd, 

for the interaction of the specific ligand and analyte (Pattnaik, 2005).   

  

SPR techniques offer many advantages for studying binding of small molecules 

and macromolecular targets; the technique can be label-free, interactions can be studied 

in real time, it requires very small volumes of protein, and one immobilized sample on a 

chip can be reused many times to study a variety of different analytes. However there are 

a number of challenges as well since the change in refractive index is relatively small, 

accurate results require optimization of experimental parameters and high-quality data for 

consistent, accurate results (Cannon, 2004).    

 

 2.3.2 Experimental Methods 

 Interaction analyses were performed using a Biacore 3000 SPR instrument 

(Biacore AB, Uppsala, Sweden) at The Protein Core Facility, Children’s Hospital of 

Philadelphia. Recombinant human CA II was coupled to a carboxymethylated dextran 

(CM5) chip using amine coupling reagents N-ethyl-N’-(3-

dimethylaminopropyl)carbodiimide, N-hydroxysuccinimide (NHS), and ethanolamine 

HCl, using previously published procedures (Cannon, 2004). The CA II stock solution 

was prepared in 100 mM sodium acetate (pH 4.9). Samples of the analytes, biosensors 7-

9, were prepared in the running buffer (20 mM Na2HPO4-NaH2PO4, pH 7.4, 1.5 M NaCl, 

3% DMSO) at the following analyte concentrations, 62.5 nM, 125 nM, 250 nM, 500 nM, 

1000 nM, 2000 nM. Each concentration of analyte was tested in duplicate. Kinetic data 
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were fit to a simple 1:1 interaction model (Langmuir binding) using the program 

BIAevaluation.  

  

2.3.3 Results and Discussion  

 Dissociation constants for the interactions of human CA II and biosensors 7-9 

were determined using SPR (sensorgrams are shown in Figure 2.4 and a summary of the 

results in Table 2.2). Comparison of the dissociation constants obtained from ITC and 

SPR confirm nanomolar-binding affinity of the cryptophane biosensors to CA II. 

Furthermore, SPR measurements indicate that biosensor 7 binds tightest to human CA II, 

followed by biosensor 9 then 8. Interestingly, there is a greater than 10-fold discrepancy 

between the Kd determined by SPR and ITC for the biosensor 7-CA II interaction. The 

origins of this discrepancy are unclear; as the fitting parameters for the SPR and ITC data 

are satisfactory. Overall,  the SPR experiments illustrate the usefulness of this technique 

for studying cryptophane-biosensor-protein interactions, specifically in a high-throughput 

manner.  
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Table 2.2. Dissociation constant determined by surface plasmon resonance for 

biosensors 7-9 with human CA II.  

Analyte Kd (nM)  χ2 
7 7.33 0.853 
8 207 0.442 
9 40.9 1.1 
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Figure 2.4. Surface plasmon resonance sensorgrams for the interaction between 

human CA II and (A) biosensor 7, (B) biosensor 8, and (C) biosensor 9.
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Chapter 3: Structural Studies of 129Xe-Cryptophane-CA II 

  

3.1 Materials and Methods 

Human CA II was overexpressed in Escherichia coli and purified as previously 

described (Alexander, 1993). Crystals of the CA II-biosensor complex were formed by 

adding a two-fold excess of biosensor 9 (10 mM stock in DMSO) to 0.5 mg/mL CA II 

(50 mM Tris-SO4, pH 7.5) and incubating at 4 oC for one hour. The mixture was 

concentrated using a YM-10 filter to a final CA II concentration of 10 mg/mL. Crystals 

were grown using the hanging drop method: a 5 µL drop of CA II solution was added to a 

5 µL drop of precipitant solution (50 mM Tris-SO4, 16% PEG 3350, 3.5 mM β-

mercaptoethanol) and suspended over a reservoir containing 1 mL 50 mM Tris-SO4, 27-

32% PEG 3350 and 3.5 mM β-mercaptoethanol at 4 oC. Crystals formed within 1-2 

weeks and were improved with seeding. Cubic crystals grew to typical dimensions 0.2 

mm x 0.2 mm x 0.2 mm (Figure 3.1). Crystals were cryoprotected by augmentation of the 

mother liquor with 15% glycerol and then looped and pressurized with Xe(g) for 30 

minutes at 20 atm using a Xenon Chamber (Hampton Research). Crystals were flash 

cooled 10 seconds after Xe pressurization. Crystals yielded diffraction data to 1.70 Å at 

the Cornell High Energy Synchrotron Source (CHESS) beamline F-2 (λ = 0.9795 Å, 100 

K), using an ADSC Quantum 210 CCD detector (Szebenyi, 1997). Diffraction data were 

indexed, integrated and scaled using HKL2000 (Otwinowski, 1997). Crystals belonged to 

space group C2 (unit cell parameters a = 67.4 Å, b = 50.0 Å, c = 81.0 Å, β = 107.1o) and 

were isomorphous with those of T199P CAII complexed with thiocyanate (PDB 1LG6) 

(Huang, 2002). Initial phases were obtained by molecular replacement using the program 
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Phaser (Storoni, 2004) with PDB 1LG6 (less water molecules and ligand) as a search 

probe for rotation and translation functions. The programs CNS (Brunger, 1998) and O 

(Jones, 1991) were used in refinement and rebuilding, respectively. Figures were 

generated using PyMOL. Molecular surface area was calculated with protein interfaces, 

surfaces and assemblies service PISA at the European Bioinformatics Institute 

(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) (Krissinel, 2007). Data collection 

and refinement statistics are summarized in Table 3.1. 
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Figure 3.1. Crystals of Biosensor-9-CA II. 
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Table 3.1. Data Collection and Refinement Statistics for CA II-9-Xe complex. 

 CA II-9-Xe complex 
Data Collection   

PDB Code 3CYU 
Resolution, Å 38.7 – 1.70 

Total reflections measureda 52826 (4698) 
Unique reflections measureda 27728 (2556) 

Rmerge
a,b 0.078 (0.496) 

I/σ(I)a 27.1 (2.3) 
Completeness (%)a 97.0 (90.3) 

Redundancya 3.9 (3.7) 
Refinement  

Reflections used in 
refinement/test set 

24730/1139 

Rwork 0.226 
Rfree 0.249 

Protein atomsc 2049 
Water moleculesc 185 

Xe atomsc 2 
Cryptophane-A-

benzenesulfonamide atomsc 
103 

R.m.s deviations  
Bond lengths, Å 0.016 
Bond angles, o 1.8 

Dihedral angles, o 22.4 
Improper dihedral angles, o 0.7 

Average B-factors, Å2   
Main chain 31 
Side chain 35 
Xe atoms 43 
Zn atom 28 

Cryptophane-A-
benzenesulfonamide atoms 

42 

Solvent 40 
Ramachandran Plotd  

Allowed (%) 86.6 
Additionally allowed (%) 12.5 
Generously allowed (%) 0.9 

Disallowed (%) 0.0 
aNumber in parentheses refer to the outer 0.1 Å shell of data. 
bRmerge = ∑I-〈I〉/∑I, where I is the observed intensity and 〈I〉 is the average intensity calculated 
for replicate data. 
cPer asymmetric unit 
dRamachandran plot statistics calculated for non-proline and non-glycine residues using 
PROCHECK (Laskowski, 1993). 
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 3.2 Results and Discussion 

 The X-ray crystal structure of the CA II-9-Xe complex was solved to 1.70 Å 

resolution, and refined to final Rwork and Rfree values of 0.23 and 0.25, respectively 

(Aaron, 2008). Two xenon sites were identified by inspection of the Bijvoet difference 

Fourier map calculated from anomalous data. The first site is near the opening of the 

active site cleft, 18 Å from Zn2+ and 8 Å from the protein chain, and corresponds to the 

Xe atom encapsulated by the cryptophane (Figure 3.2). The encapsulation of Xe within 

the cryptophane cage of 9 is confirmed by inspection of the Bijvoet difference Fourier 

map calculated from anomalous scattering data. X-ray diffraction data was collected at a 

wavelength λ = 0.9795 Å, which is far from the Xe LI edge of 2.27 Å (Watanabe, 1965). 

Nevertheless, the anomalous scattering component f”  is 3.4 e- for Xe, so the anomalous 

signal is still prominent at the wavelength of data collection. The second Xe site is a 

hydrophobic pocket defined by A116, L148, V218, L157, V223 and F226, which is 

consistent with the known binding interactions of Xe in other systems (Figure 3.3) 

(Prange, 1998). The crystallographic occupancies of these Xe sites refine to 0.50 and 

0.37, respectively. Anomalous scattering peaks are absent from crystals not subject to Xe 

pressurization. 

 

The occupancy of the active site zinc ion was refined at 0.5, which was consistent 

with the occupancy of 0.5 determined for biosensor 9.  Because the crystallographic 

occupancy was thus 0.5 for Xe encapsulated within the cryptophane moiety, and the 

electron density map indicated the binding of both cryptophane enantiomers, each 

enantiomer was refined with an occupancy of 0.25 (average B-factor = 42 Å2). A total of 



 30 

185 water molecules were included in later cycles of refinement. Data reduction and 

refinement statistics are recorded in Table 2. The N-terminus (N1-H3) was disordered 

and is omitted from the final model. 

  

Biosensor 9 coordinates to the active site Zn2+ ion as the sulfonamidate anion, 

displacing the zinc-bound hydroxide ion of the native enzyme as previously observed in 

other complexes of CA II with benzenesulfonamide derivatives (Eriksson, 1988b; 

Elbaum, 1996; Supuran, 2007; Krishnamurthy, 2008). The crystallographic occupancies 

of 9 and Zn2+ are refined at 0.5. It is unusual to observe diminished Zn2+ occupancy in a 

CA II-inhibitor complex, and the molecular origins of this effect are not clear. Notably, 9 

contains a chiral axis and the electron density map reveals the binding of equal 

populations of both enantiomers (Figures 3.4 and 3.5), (each refined with an occupancy 

of 0.25) (Eliel, 1994; Collet, 1996; Ruiz, 2006). Overall, the binding of 9 does not cause 

any significant structural changes in the active site, and the root-mean-square deviation is 

0.34 Å for 256 Cα atoms between the current structure and the unliganded enzyme (PDB 

2CBA) (Hakansson, 1992). The total surface area of 9 is ~1500 Å2, of which ~500 Å2 

becomes solvent inaccessible due to contacts of 9 within the active site cleft of CAII 

designated molecule I in Figure 3.6. Crystal contacts bury an additional 540 Å2 of the 

surface of 9 as follows: 270 Å2 with molecule III, and 240 Å2 and 30 Å2 with the front 

and back faces of molecule II, respectively. Molecule IV does not contact 9 bound to 

molecule I.  
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 Figure 3.2. Anomalous Fourier map showing Xe location at opening of CA II 

active site. Xe (yellow sphere) was identified upon inspection of Bijvoet difference 

Fourier map (black) calculated from anomalous data to be 18 Å from Zn2+ (gray sphere) 

at opening of active site cleft. The Xe occupancy is refined at 0.50. The van der waals 

radius of Xe is shown as a translucent yellow sphere. 
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 Figure 3.3. Anomalous Fourier map showing Xe location in CA II hydrophobic 

pocket. A second binding site is observed in a hydrophobic pocket defined by A116, 

L148, V218, L157, V223 and F226. Binding at this site is consistant with Xe binding in 

other proteins. Occupancy is 0.37. The van der waals radius of Xe is shown as a 

translucent yellow sphere. 
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Some structural changes are observed near the outer rim of the active site cleft 

where the cryptophane binds. The most notable change is observed for Q136, which 

rotates ~180o to make van der Waals contacts with the cryptophane and the symmetry-

related cryptophane bound to molecule III in the crystal lattice. Other residues at the 

active site rim of molecule I that make close contacts with the cryptophane are G132 and 

P202. Additional structural changes in the crystal lattice result from the binding of 9 to 

molecule I: in molecule II, H36 rotates ~90o to make a van der Waals contact with the 

cage, and Q137 of molecule III rotates ~90o to donate a hydrogen bond to an ether 

oxygen atom of 9. 

  

Although the pendant propionates appear to be more disordered than the 

cryptophane and are characterized by correspondingly weaker electron density, a 

hydrogen bond between a propionate moiety and Q53 of molecule II is observed. The 

relative dearth of strong cryptophane-protein interactions may explain why the affinity of 

9 measured by ITC is only slightly better than that measured for the parent triazole-

benzenesulfonamide lacking the cryptophane (KD =  100  ± 10 nM). Larger refined 

thermal (B) factors for 9 (<B> = 42 Å2) compared with the overall CA II model 

(<B>main chain = 31 Å2; <B>side chain = 35 Å2) reflect the mobility and conformational 

heterogeneity of the bound biosensor. 

  

Limited hydrogen bond interactions between CA II and the cryptophane moiety of 

9 may be advantageous for the use of cryptophanes as 129Xe biosensors. Translational and 

rotational freedom, the consequence of a flexible linker between the cryptophane and the 
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benzensulfonamide, could allow the cage to reorient rapidly in situ, independently of the 

protein, to result in decreased correlation times and narrower line widths that increase the 

sensitivity of 129Xe NMR measurements in solution. In conclusion, this work reveals the 

first experimentally determined structure showing how an encapsulated 129Xe atom can 

be specifically directed to a biomedically relevant protein target. The possible 

implications for cancer diagnosis are profound, given that CA isozymes IX and XII are 

overexpressed on the surface of certain cancer cells (Pastorekova, 2006).  Moreover, a 

search of the Protein Data Bank reveals that with its molecular mass of 1554, the 9-Xe 

complex is one of the largest synthetic organic ligands ever cocrystallized with a protein. 

Thus, this work demonstrates the feasibility of preparing crystalline complexes between 

proteins and nonbiological, nanometer-scale ligands. 
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 Figure 3.4. The MoMo and PoPo enantiomers of the cryptophane-A-derived CA 

biosensor. The benzenesulfonamide moiety serves as an affinity tag that targets the Zn2+ 

ion, and the R1 substituents contain triazole propionate moieties that enhance aqueous 

solubility. 
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 Figure 3.5. The crystal structure of biosensor 9 bound to CAII. Refinement 

revealed the binding of equal populations of both enantiomers of 9.  A simulated 

annealing omit map showing 9-MoMo (blue) and 9-PoPo (red) bound in the active site (1.9 

σ contour, teal). 
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 Figure 3.5. The unit cell of CAII-biosensor-9 complex. The crystals in space 

group C2 contains four molecules: I (x,y,z), II (x+½,y+½,z), III (-x,y,-z) and IV (-

x+½,y+½,-z). 
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3.3 Future Applications of Cryptophane-based CA Biosensors 

 Although a very valuable model system, molecular imaging of human CA II is not 

relevant for disease diagnosis since CA II is found in many tissues in the body, and is not 

upregulated in connection with a particular disease. In comparison, CA IX and CA XII 

overexpression is induced by hypoxia, a pathological condition caused by oxygen 

deprivation, and associated with many types of cancer (Supuran, 2008; De Simone, 

2010). CA IX and CA XII are two of only three transmembrane human CAs (the third is 

CA XIV). In addition to tumors, CA IX is also localized in gastrointestinal mucosa, while 

CA XII is localized in renal, intestinal, reproductive epithelial, and eye tissues (Kivela, 

2005; Supuran, 2008). Structural analyses of human CA IX and XII offer useful insight in 

the design of a selective biosensor for imaging cancerous tissue.  

  

Human CA IX contains four domains in addition to an N-terminal 37 amino acid 

signal peptide.  Attached to the signal peptide is a proteoglycan-like (PG) domain, 

followed by a 257 residue catalytic domain, a transmembrane segment that transverses 

the membrane once, and finally a short intracytoplasmic tail (De Simone, 2010). The 

crystal structure of the catalytic domain of CA IX was recently determined (Alterio, 

2009), and revealed several interesting structural observations, which may aid in rational 

drug design of selective CA IX inhibitors. Human CA IX forms a dimer (Hilvo, 2008), 

mediated by an intermolecular disulfide bond between C41 of each monomer, in addition 

to ~1590 Å2 buried surface area (Alterio, 2009). The structure of the dimer suggests that 

the proteoglycan domains are located at the border of the active site, and are proposed to 

be involved in assisting the catalytic domain in catalysis. pH dependent activity profiles 
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indicate that the presence of the PG domains reduces the pKa of the zinc-bound water 

molecule from 7.01 to 6.49, making CA IX more active in solid and hypoxic tumors 

where the pH is typically slightly acidic, and coincidently where CA IX is typically 

overexpressed (Alterio, 2009). Overall, the structure of the catalytic region of CA IX is 

highly conserved with respect the other CA isozymes, the rmsd for the superposition of 

the backbone atoms of the catalytic domain of CA IX with human CA II is 1.4 Å. CA IX 

was co-crystallized with the acetazolamide, a sulfonamide inhibitor with a KI of ~9-25 

nM, depending upon the CA IX construct (Hilvo, 2008).  However, some structural 

differences in the region of residues 125-137, namely residues 131, 132, 135, and 136 can 

be exploited for specific inhibitor design. Furthermore, the extracellular localization of 

CA IX allows for the design of positively charged, membrane-impermeable, inhibitors 

which can bind to membrane-associated CA isozymes without effecting cytosolic and 

mitochondrial CA isoforms (Alterio, 2009).  

  

Since CA IX expression is highly tumor specific, and is primarily localized on the 

surface of solid tumors including gliomas/ependymomas, mesotheliomas, and many types 

of carcinomas (Potter, 2003), it is an ideal candidate for selective imaging for early 

cancer detection. Specifically, a functionalized cryptophane containing a CA IX targeting 

moiety coupled with positively-charged amine water-solubilizing groups are a starting 

point for design of a CA IX-specific 129Xe MRI contrast agent (Taratula, 2009).  

  

The crystal structure of the catalytic domain of human CA XII also indicated the 

formation of a biological isologous dimer (Whittington, 2001). The dimer interface 
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contains 19 hydrogen-bond interactions and buries ~1,100 Å2 of surface area per 

monomer, while leaving the enzyme active site accessible. The residues that define the 

core of the active site are highly conserved with respect to CA II, however the structures 

diverge in the “130’s segment” of the active site. Specifically, human CA XII has an 

alanine residue in place of F131 in human CA II, creating a larger cavity in the active site 

and exposing S135 (Whittington, 2001). This region of the human CA XII active site can 

be exploited for CA XII-specific biosensors.  

Recently, bioreductive nitro-containing sulfonamides have been investigated as 

carbonic anhydrase inhibitors with selectivity for tumor associated CA IX and XII. 

Several compounds have been identified with selectivity ratios for the inhibition of CA 

IX and XII over CA II up to 17 times, and for the inhibition of CA IX and XII over CA I 

up to 1400 times (D'Ambrosio, 2008). These compounds serve as excellent lead 

compounds for the design of a selective CA IX or CA XII biosensor.  
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Part II: Structural and Functional Studies of the Sesquiterpene Cyclase epi-

Isozizaene Synthase 

 

Chapter 4: Introduction 

4.1 Terpenes and Terpene Synthases 

The terpenome is comprised of a family of more than 55,000 structurally and 

stereochemically diverse natural products, all of which ultimately derive from the 

universal 5 carbon precursors dimethylallyl diphosphate (DMAPP) and isopentenyl 

diphosphate (IPP) (Figure 4.1) (Christianson, 2007). Increasingly longer polyisoprenoids 

are formed by the coupling of DMAPP and IPP, in a head to tail fashion to form 

geranyldiphosphate, farnesyl diphosphate, gernarylgeranyl diphosphate, and 

geranylfarnesyl diphosphate, the linear precursors of the mono-, sesqui-, di-, and sester-

terpenes, respectively (Figure 4.1) (Tholl, 2006). Terpenoids are ubiquitous throughout 

nature and serve a multitude of specific functions in plants, animals, insects, bacteria and 

fungi. For example, terpenoids are critical for plant survival and account for a large 

number of primary metabolites, including molecules involved in photosynthesis, 

respiration, and membrane structure. Terpenoids also account for a wide range of 

secondary metabolites in plants, where they bestow unique flavors and fragrances, 

provide chemical defense against pests, and facilitate interactions between plants and 

other organisms (Aharoni, 2005; Pichersky, 2006). From a medicinal perspective, 

terpenoids are of great interest because many of these natural products exhibit anti-

cancer, anti-malarial, and anti-microbial activities (Aharoni, 2005). Furthermore, two 

molecules of farnesyldiphosphate can be coupled together via a head-to-head 
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condensation to form squalene, the triterpene linear precursor to the steroids (Abe, 1993).  

 

A family of enzymes known as terpenoid synthases, are responsible for the 

tremendous structural diversity of the terpenoids. Terpenoid synthases can be divided into 

two categories: class I enzymes adopt the FPP synthase α-helical fold and initiate 

catalysis by metal triggered ionization of the substrate diphosphate group, and class II 

enzymes adopt an unrelated double α-barrel fold and initiate catalysis by protonation of 

an epoxide ring or carbon-carbon double bond (Figure. 4.2). Class I terpenoid synthases 

can be further subdivided into three categories: coupling enzymes that catalyze chain 

elongation reactions to form increasingly longer polyisoprenoid diphosphates, coupling 

enzymes that catalyze irregular (i.e., non-head-to-tail) isoprenoid condensation reactions 

such as cyclopropanation, cyclobutanation, or branching reactions (Thulasiram, 2007), 

and cyclization enzymes that catalyze the conversion of linear isoprenoid substrates into 

single and multi-ringed hydrocarbon products (Croteau, 1985; Cane, 1990; Lesburg, 

1998; Wendt, 1998). The potential diversity of carbon-carbon bond formation afforded 

by the flexible linear isoprenoid substrate, and the chemical potential for subsequent 

biosynthetic functionalization of cyclic terpenoids by cytochrome P450, 

monooxygenases, etc., make terpenoid biosynthesis an attractive system for engineering 

novel compounds (Aharoni, 2005; Yoshikuni, 2006; Austin, 2008). 
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Figure. 4.1. General scheme of terpenoid nomenclature and biosynthesis (OPP = 

diphosphate, PPi = inorganic diphosphate). 
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The crystal structures of several class I terpenoid coupling and cyclization 

enzymes have been solved, revealing a conserved α-helical terpenoid synthase fold 

across the domains of life. Structures of enzyme complexes with substrates, inhibitors, 

and/or products have also revealed the universal conservation of a trinuclear metal cluster 

implicated in the molecular recognition of the substrate diphosphate group as well as the 

initiation of catalysis. Metal ions are coordinated by metal binding motifs on opposing 

helices near the mouth of the active site. The metal binding motifs are generally 

described as either “aspartate-rich” [DDXX(XX) D/E] or as a secondary metal binding 

motif “NSE/DTE” [(N,D)D(L,I,V)X( S,T)XXX E], in which boldface residues typically 

coordinate to catalytically obligatory Mg2+ or Mn2+ ions (where metal ligands are 

indicated in boldface) (Christianson, 2006). X-ray crystal structures have been 

instrumental in understanding the catalytic mechanisms of terpenoid synthases: the active 

site of each synthase provides a template that binds the flexible substrate(s) in the proper 

orientation and conformation so that, upon the departure of the diphosphate leaving group 

and resultant generation of a reactive carbocation, the active site template ensures a 

specific trajectory of intermolecular and intramolecular carbon-carbon bond formation in 

the ensuing cyclization cascade (Christianson, 2008).  
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Figure 4.2. Structural similarities among various terpenoid synthases define the 

core class I terpenoid cyclase fold (blue). Conserved metal binding motifs are the 

aspartate-rich motifs (red) and “NSE/DTE” motifs (orange) highlighted in (a) E. coli FPP 

synthase (PDB code 1RQI), (b) epi-isozizaene synthase (PDB code 3KB9), and (c) (+)-

bornyl diphosphate synthase (PDB code 1N22), which contains an additional N-terminal 

domain (cyan). This α-helical domain is topologically similar to the α-barrel fold of the 

class II terpenoid cyclases, which occurs in a double domain architecture in the triterpene 

cyclase (d) oxidosqualene cyclase (PDB code 1W6K). 
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4.2 Streptomyces 

 Streptomyces are gram-positive, filamentous, saprophytic, soil-dwelling bacteria. 

To-date, more than 500 species of Streptomyces have been identified. In addition to their 

central role in carbon recycling, Streptomyces are also characterized by their complex 

secondary metabolism (Challis, 2003). Streptomyces are a very abundant source of 

antibiotics, amazingly, over two-thirds of naturally derived antibiotics currently in use are 

produced by Streptomyces (Bentley, 2002). Of the thousands of secondary metabolites 

that are isolated from Streptomyces many are polyketides (ie. tetracycline) (Pickens, 

2009) and aminoglycosides (ie. neomycin) (Kudo, 2009), however very few are cyclic 

terpenoids. One such example of a cyclic terpenoid is pentalenonelactone, an antibiotic 

derived from the sesquiterpene pentalenene, produced by a number of Streptomyces 

strains (Cane, 1994). Prior to this work, the X-ray crystal structure of pentalenene 

synthase (Lesburg, 1997) was the only known structure of a bacterial sesquiterpene 

cyclase. However, the structure of pentalenene synthase, determined at 2.6 Å resolution, 

was is in an open, unliganded conformation, and therefore did not provide evidence of a 

conserved trinuclear metal cluster among bacterial sesquiterpene cyclases. Additional X-

ray crystal structures of bacterial terpenoid cyclases are necessary to draw conclusions 

about the evolutionary relationships among these enzymes.   Furthermore, comparative 

studies of the harmless Streptomyces genus with other members of the Actinomycetales 

order, for example disease causing Mycobacterium tuberculosis (tuberculosis) and 

Mycobacterium leprae (leprosy), may offer insight into the treatment of these pathogens 

(Bentley, 2002).  
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The complete genome of Streptomyces coelicolor A3(2) was sequenced in 2002, 

and contained a surprisingly high 7,825 predicted genes, compared with 4,289 genes in 

the Gram-negative bacterium Escherichia coli; and a predicted 31,780 in humans 

(Bentley, 2002). The genome contains many genes involved in secondary metabolism 

including polyketide synthases, chalcone synthases, non-ribosomal peptide synthetases as 

well as several gene clusters coding for terpene synthesis including geosmin, hopanoid, 

and albaflavenone biosynthesis (Bentley, 2002).      

   

4.3 epi-Isozizaene 

 epi-Isozizaene is a member of a unique family of tricyclic sesquiterpene, 

like its parent hydrocarbon, zizaene (Coates, 1972), it has a highly strained ring system 

including a quaternary center (Figure 4.3). epi-Isozizaene was first observed as a natural 

product from the bacteria Streptomyces coelicolor A3(2), where it is formed by a novel 

terpene cyclase, epi-isozizaene synthase (EIZS). EIZS was first characterized by Lin and 

Cane (Lin, 2006), due to its 23.8% sequence identity with pentalenene synthase, a 

sesquiterpene cyclase isolated from Streptomyces exfoliates UC5319. Furthermore, the 

EIZS protein contained the two conserved Mg2+-binding motifs, an aspartate-rich motif 

(D99DRHD) and the secondary metal binding motif (N240DLCSLPKE).  EIZS catalyzes 

the Mg2+-dependant cyclization of the FPP (the linear precursor of the sesquiterpenes).  

 

The proposed mechanism for the cyclization of farnesyl diphosphate to epi-

isozizaene was elucidated by 1-D and 2-D NMR analysis of the products isolated from 

the incubation of EIZS with several isotopically labeled substrates, namely [1,1-2H2]-
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FPP, (1R)-[1-2H]-FPP and (1S)-[1-2H]-FPP (Figure 4.4) (Lin, 2006). Recently, new 

mechanistic insights into the epi-isozizaene folding pathway have been provided by 

computational quantum chemistry (Hong, 2009). Using the computational program 

GAUSSIAN03 (Frisch, 2003) to conduct a thorough analysis of carbocation 

intermediates and transition states from several sesquiterpene cyclization pathways, Hong 

and Tantillo suggest that the conformation of the bisabolyl cation attainable in the 

enzyme active site is a primary determinate of the structure and stereochemistry of the 

resultant sesquiterpenes. They report four unique bisabolyl cation conformers; each 

proposed to be involved in formation of a specific set of sesquiterpene products. 

Surprisingly, outwardly related products, for example epi-isozizaene and isozizaene, are 

proposed to be formed by different conformers of the bisabolyl cation, which vary in the 

orientation of the acyclic hydrocarbon chain. However, some folding pathways appear to 

be somewhat permissive, certain products, including epi-isozizaene, can be formed via 

more than one bisabolyl cation conformer.  

 

Using an arbitrarily defined zero-energy bisabolyl conformer, A0, as a basis for 

their calculations, Hong and Tantillo present a detailed theoretical cyclization scheme for 

the formation of epi-isozizaene, consisting of 6 cationic intermediates, beginning from 

(3R)-nerolidyl diphosphate in the cisoid conformation (Figure 4.5). The first 

intermediate, A1, is bisabolyl cation conformer formed by 1,6-cyclization of cisoid (3R)-

nerolidyl diphosphate. The A1 conformer is in a productive conformation to undergo a 

[1,2]-hydride shift between carbons 6 and 7 via the exterior face of the acyclic chain, to 

form cationic intermediate B1. Intermediate B1 is in an appropriate conformation to then 
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undergo a subsequent 6,10-cyclization via attack of the C10=C11 π-bond on the pro-R 

face of the C6 cationic center for form the acorenyl cation, C1. Next, a 

thermodynamically favorable rearrangement to the C2 acorenyl cation confomer 

facilitates the direct conversion of C2 to E1 via a concerted cyclization and alkyl shift, 

circumventing the formation of a discrete secondary cation. The final intermediate, F1, is 

the result of a [1,2]-methyl shift of either C12 or C13, via a bridged nonclassical 

carbocation transition state. The final product, epi-isozizaene is formed by direct 

deprotonation of F1 at C10. Although the total calculated energy change for the pathway 

depends on the density functional theory method chosen, the overall rearrangement 

beginning from the bisabolyl cation is considerably exothermic, and involves a minimal 

number of conformational changes between steps. Overall, the theoretical study of the 

epi-isozizaene folding pathway is consistent with that presented by Lin and Cane, and 

offers additional insight into several steps in the pathway, namely the concerted 3,11-

cyclization and C4 alkyl shift going from C2 to E1, and the approximately equal energy 

for the [1,2]-methyl shift of C12 or C13 to form F1 (Hong, 2009). This study illustrates 

the utility of quantum calculations for studying terpenoid cyclase reaction coordinates.  

By expanding theoretical calculations to include contributions from an enzyme active 

site, we can continue to develop an understanding of terpenoid cyclase structure-function 

relationships and work towards engineering novel, efficient terpenoid cyclases. 
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Figure 4.3. The structures of zizaene sesquiterpenes. 
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Figure 4.4. Proposed mechanism for the formation of epi-isozizane from FPP by 

EIZS.  (1) Ionization of FPP. (2) Isomerization will give (3R)-nerolidyl diphosphate. (3) 

Rotation about the newly generated C-2/C-3 bond generates the corresponding cisoid 

(3R)-nerolidyl diphosphate conformer. (4) Ionization of (3R)-nerolidyl diphosphate. (5) 

Cyclization to form bisabolyl cation. (6) A 1,2-hydride shift. (7) Spirocyclization. (8) 

Cyclization. (9) Ring contraction. (10) Methyl migration. (11) Deprotonation to yield (+)-

epi-isozizaene.  
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 Figure 4.5. Proposed epi-isozizaene cyclization scheme based on quantum 

chemical calculations (Hong, 2009). The C12 1,2-methyl shift (E1 to F1 step) is 

preferred over a C13 1,2-methyl shift by ~2kcal/mol, however both are energetically 

accessible and could be affected by the active site of the enzyme.   

 

 

 

 



 62 

 In the Streptomyces colicolor A3(2) genome, EIZS is transcriptionally coupled to 

to cytochrome P450 170A1 (CYPA170 A1) (Zhao, 2008). Cytochrome P450 

monooxygenases belong to a superfamily of heme-containing proteins that catalyze redox 

reactions. Specifically, P450 monooxygenases catalyze the oxidation of organic products 

using atmospheric dioxygen as the oxygen source and electrons from NAD(P)H, and 

producing a molecule of water as a side product (Bernhardt, 2006). CYP170A1 from S. 

coelicolor carries out a two-step allylic oxidation to convert epi-isozizaene to an epimeric 

mixture of albaflavenols and ultimately to the sesquiterpene antibiotic albaflavenone 

(Figure 4.6). Therefore, epi-isozizaene has been identified as an intermediate in 

albaflavenone synthesis, and is only detected in bacterial extracts in CYP170A1 knockout 

strains of S. coelicolor. The final product of the two-gene cluster, albaflavenone, has also 

been isolated from S. albidoflavus, and exhibits modest antibacterial activity against 

Bacillus subtilis (Zhao, 2008).  

 

 EIZS was chosen as a target for structure determination via protein X-ray 

crystallography in order to investigate the structural changes that occur upon the binding 

of the three Mg2+ ions and the substrate (FPP) or substrate analogues, triggering active 

site closure and substrate ionization. Previous work has indicated that the details of these 

structural changes generally differ between plant (Starks, 1997; Gennadios, 2009) and 

fungal (Rynkiewicz, 2001; Shishova, 2007) sesquiterpene cyclases. Until now, the 

mechanism of active site closure of a bacterial terpenoid cyclase has remained unknown 

since the only available crystal structure of a bacterial cyclase has been that of S. 



 63 

exfoliatus UC5319 pentalenene synthase, which was determined only in an open, ligand-

free conformation (Lesburg, 1997).   
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Figure 4.6. Albaflavenone biosynthetic pathway in S. coelicolor. EIZS catalyzes the 

Mg2+ dependent cyclization of FPP to form epi-isozizaene, then CYP170A1 catalyzes a 

two-step allylic oxidation to albaflavenone. 
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Chapter 5: X-Ray Crystal Structure of epi-Isozizaene Synthase from Streptomyces 

coelicolor  

 

5.1 Expression and Purification  

 Recombinant EIZS from Streptomyces coelicolor A3(2) was expressed at high 

levels in Escherichia coli BL21(DE3) and purified as previously described (Lin, 2006) 

with minor modifications. Briefly, E. coli BL21(DE3) carrying pET28a(+)/SCO5222 was 

inoculated into Luria-Bertani (LB) medium containing kanamycin and grown overnight 

at 37 °C. A total of 4 L of LB/kanamycin medium was inoculated with 5 mL of the 

overnight seed culture, and E. coli was grown at 37 °C until the OD600 reached 0.5. The 

temperature was reduced to 20 oC and the cells were induced with 0.2 mM isopropyl β-

D-thiogalactopyranoside (IPTG) for 18 h. Cells were harvested, resuspended in 50 mL of 

Talon buffer A [50 mM sodium phosphate (pH 8.0), 300 mM NaCl, 20 % glycerol and 5 

mM β-mercaptoethanol (BME)], supplemented with phenylmethylsulfonyl fluoride and 

DNase, and sonicated for 6 min using a 40 % duty cycle and power range 30 %. After 

three cycles of sonication, the cell lysate was clarified by centrifugation at 16000g and 4 

°C for 75 min. The clarified lysate was loaded on a Talon (Clontech) Co2+ metal affinity 

resin (5 mL), and a step gradient from 0 to 200 mM imidazole in Talon buffer was 

applied to elute the enzyme. The fractions were analyzed using SDS-PAGE, and the most 

concentrated fractions were pooled and applied to a Superdex gel filtration column 

(HiLoad 26/60 Superdex, GE Healthcare) equilibrated in 20 mM Tris-HCl (pH 7.5), 300 

mM NaCl, 10 % glycerol, 10 mM MgCl2 and 2 mM Tris(2-carboxyethyl)phosphine 

(TCEP). The fractions were analyzed by SDS-PAGE and the fractions containing the 
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enzyme were pooled and concentrated to 8 mg/mL enzyme using a YM-10 centricon. The 

resulting protein preparation was >99 % pure on the basis of SDS-PAGE.  
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Figure 5.1. SDS-PAGE analysis of the purification of epi-isozizaene synthase. (A) 

Fractions from the Talon column: Molecular weight markers are shown on in the right 

lane, and the column flow-through is in the second lane from the right. The strong band is 

due to epi-isozizaene synthase (44 kDa). (B) Fractions from the Superdex (2660) column. 

Molecular weight markers are shown on in the right lane.  
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5.2 Crystallization 

 EIZS was crystallized by the sitting drop, and hanging drop vapor diffusion 

methods. Protein was freshly filtered using a 0.22 µm filter prior to setting up drops.  

Typically, a 4 µL drop of protein solution [8-10 mg/mL EIZS, 20 mM Tris-HCl (pH 7.5), 

300 mM NaCl, 10 mM MgCl2, 10 % glycerol, 2 mM TCEP, 2 mM sodium 

pyrophosphate, 2 mM benzyltriethylammonium chloride] was added to 4 µL of 

precipitant solution [100 mM Bis-Tris (pH 5.5), 25-28 % polyethylene glycol 3350, 0.2 

M (NH4)2SO4] and equilibrated against a 1 mL well reservoir of precipitant solution. 

Initial crystallization conditions were identified using the commercially available Index 

screen from Hampton Research (condition #66). Crystals appeared within 2-3 days and 

grew to maximal dimensions of 100 µm × 10 µm × 10 µm. Initial crystals diffracted to 

2.15 Å at the home source, where the space group and unit cell parameters were first 

determined. Higher resolution data was then collected at the synchrotron. Crystals 

diffracted X-rays to 1.60 Å resolution at the Advanced Photon Source, beamline NE-

CAT 24-ID-C (Argonne, IL), and belonged to space group P21 with unit cell parameters a 

= 53.185 Å, b = 47.374 Å, c = 75.376 Å and β = 95.53o; with one monomer in the 

asymmetric unit, the Matthews coefficient VM = 2.1 Å3/Da, corresponding to a solvent 

content of 43 %. 
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Figure 5.2. Crystals of epi-isozizaene synthase.  
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5.3 Structure Determination with Heavy Atoms 

 5.3.1 Introduction  

 A crystal structure can be described as the best-fit model to a contour map of the 

electron density throughout the unit cell. The electron density, ρ(x,y,z), can be 

represented by equation 5.1, a periodic function represented by a Fourier series using the

          ρ(x,y,z) = 1/V ∑∑∑ Fhkle -2πi(hx+ky+lz)   5.1 
                h  k  l 

structure factors, Fhkl. A structure factor is a complete description of a diffracted X-ray. 

Since an X-ray can be described as a wave, it has a frequency, amplitude, and phase. To 

calculate the electron density according to equation 5.1, and thus build a model of the 

protein structure, the frequency, amplitude and phase of each reflection, hkl, must be 

known. When an X-ray diffracts off a protein crystal, the frequency of the X-ray does not 

change, therefore the frequency is equal to that of the X-ray source. The amplitude of the 

diffracted X-ray is proportional to (Ihkl), the square root of the measured intensity of 

reflection hkl (Rhodes, 2000). However, the phase of the diffracted X-ray is unknown, 

and is the missing piece of the crystallography puzzle that must be found to complete a 

crystal structure determination. 

  

Protein crystallographers have developed several methods to obtain the “lost” 

phase information from the diffraction data. A very commonly used method is known as 

molecular replacement (MR), when the phases of a similar, known structure are used as 

the initial phase estimates for the new structure. This method works best when a 

homologous structure is known, typically the phasing model has >25 % sequence identity 

and an r.m.s. deviation of <2.0 Å between the Cα atoms of the model and the new 
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structures (Taylor, 2003). When MR is not successful, other methods that rely upon the 

incorporation of heavy atoms to the crystal lattice are used. When heavy atoms are 

incorporated into a crystal lattice, measurable intensity changes are observed in the 

diffraction pattern, with respect to the native diffraction pattern. Upon incorporation of 

the heavy atoms, if the crystal lattices remain isomorphous, except for the presence of the 

heavy atom, the isomorphous difference between the reflection amplitudes of native and 

derivative crystals can be used as an estimate of the heavy-atom structure-factor 

amplitude, which can be used to determine the positions of the heavy-atoms. Once the 

phases of the heavy atoms are known, a first approximation of the phase of the native 

protein can be made. When a single heavy atom derivative is used, this method is known 

as single isomorphous replacement (SIR). This method can be extended, when necessary, 

to include information from more than one heavy atom derivative, and is known as 

multiple isomorphous replacement (MIR) (Taylor, 2003). SIR and MIR are typically very 

effective methods for structure determination, however in some cases the incorporation of 

heavy atoms into native crystals causes unexpected protein conformational changes. 

These conformational changes are sometime evident from changes in the unit cell 

parameters, however in other cases non-isomorphism is not apparent, yet critically 

hampers structure solution. 

  

In addition to their mere presence, heavy atoms can additionally aid in structure 

solution due to their ability to anomalously scatter X-rays. Heavy atoms absorb X-rays at 

specific wavelengths, known as the element’s absorption edge, resulting in unequal 

intensities between the hkl and –h –k –l reflections. The anomalous difference can be 
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used to determine the location of the anomalous scattering atom in the unit cell, thus 

providing phase information. Single-wavelength anomalous diffraction (SAD), can be 

advantageous since it does not require an isomorphous native data set. Also, anomalous 

scattering methods can be extended include multiwavelength anomalous diffraction 

(MAD), where several data sets are collected from the same crystal at different 

wavelengths. Furthermore, isomorphous and anomalous heavy atom methods can be 

combined, for example in SIRAS (single isomorphous replacement with anomalous 

scattering), and MIRAS (multiple isomorphous heavy-atom replacment using anomalous 

scattering) (Taylor, 2003). Some of the most common heavy atoms used for phasing are 

mercury, platinum, gold, and uranium. These metals are typically incorporated into the 

crystal lattice by soaking preformed crystals in a precipitant solution supplemented with a 

millimolar concentration of the metal ion, where they typically interact with surface 

cysteine, histidine, and methionine residues (Rhodes, 2000). Selenium can also be used as 

a heavy atom for phasing, and can be incorporated into the protein itself by expressing 

recombinant protein in media supplemented with selenomethionine (Hendrickson, 1990). 

Recently, xenon has also been explored as a heavy atom for phasing. Protein crystals are 

briefly pressurized with xenon gas prior to flash cooling, causing xenon atoms to be 

trapped in hydrophobic pockets within the protein, which can be used for phasing (Evans, 

2003).  

  

5.3.2 Results 

 A number of heavy metal compounds were tested to identify a good heavy metal 

derivative for phasing. These heavy metal compounds included thimerosal 
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(C9H9HgNaO2S), mercuric chloride (HgCl2), mersalyl acid (C13H18HgNO6), 

ethylmercuryl chloride (C2H5HgCl), methylmercuric acetate (C3H6HgO2), ytterbium 

chloride (YbCl3), PIP (di-µ-iodobis(ethylenediamine)diplatinum (II) nitrate) 

(C4H16I2N6O6Pt2), dipotassium platinum hexachloride (K2PtCl6), samarium chloride 

(SmCl2), manganese chloride (MnCl2), and sodium bromide (NaBr). Additionally, 

selenomethionine containing EIZS protein was expressed and crystallized. 

  

Of the many heavy metal derivatives that were investigated, two mercury 

compounds were identified which were used for successful phasing. Mercury derivatives 

were prepared by soaking crystals in precipitant buffer supplemented with 1 mM ethyl 

mercury chloride or methylmercuric acetate for 1-2 days, followed by flash cooling. 

Diffraction data were collected at the absorption edge of mercury (1.0548 Å) on beamline 

X29 at the National Synchrotron Light Source (NSLS). A sample diffraction image of a 

methylmercuric acetate dervatized EIZS crystal is shown in Figure 5.3. Complete data 

sets of ethylmercury chloride, and methylmercuric acetate derivatized EIZS crystals were 

collected. Crystals diffracted X-rays to 1.90 Å and 2.10 Å, respectively and belonged to 

space group P21 with unit cell parameters in Table 5.1; data reduction was achieved with 

Denzo and Scalepack (Otwinowski, 1997), derivative data sets were scaled anomalously.   
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Figure 5.3. Diffraction pattern of methylmercuric acetate derivatized EIZS 

crystals, collected at beamline X29, National Synchrotron Light Source. The crystal 

diffracted to 2.1 Å resolution. 
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Table 5.1. Data collection statistics for native and mercury derviatized EIZS 

crystals. The space group of all crystals is P21. 

EIZS Structure Native Ethylmercury 
chloride 

Methylmercuric 
acetate 

Data    
Wavelength, Å 1.0080 1.0548 1.075 
Resolution, Å 1.60 1.90 2.10 

Completeness*, % 92.9 (100) 99.4 (98.6) 99.6 (97.8) 
Redundancy* 3.6 (3.6) 5.8 (5.1) 3.5 (3.0) 

Rsym* † 0.058 
(0.208) 

0.075 (0.325) 0.108 (0.390) 

I/σ 34 (8.3) 18 (4.4) 10 (2.7) 
Unit Cell Parameters    

a, Å 53.185 51.693 52.931 
b, Å 47.374 46.549 46.462 
c, Å 75.376 75.551 75.689 
β, (o) 95.53 92.338 94.992 

 
*Values in parentheses refer to the highest shell 
† Rsym = ∑Ih - <Ih>/∑Ih, where <Ih> is the average intensity over symmetry equivalent 
refections. 
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Difference Patterson maps generated with anomalous scattering data revealed 

large peaks corresponding to mercury. Initial attempts to solve the crystal structure using 

single or multiple isomorphous replacement were not successful due to apparent non-

isomorphism between the native and mercury-derivatized crystals. The program 

autoSHARP (Vonrhein, 2007) was ultimately used for structure determination. 

AutoSHARP is an automated structure solution program built around the phasing 

program SHARP (Bricogne, 2003), the density modification program SOLOMON 

(Abrahams, 1996), and the ARP/wARP package (Langer, 2008) for automated model 

building and refinement using REFMAC (Skubak, 2004). The following data is required 

to begin an autoSHARP run, the type of heavy atom present in the crystal, the number of 

expected heavy atom sites, the space group and wavelength of data collection. The file 

format of the reflection data input can be either MTZ or SCALEPACK. Additionally, the 

contents of the asymmetric can be input as a molecular weight, number of residues or the 

amino acid sequence, the later enables automatic building of the structure. 

 

 The initial electron density map was phased by single-wavelength anomalous 

dispersion (SAD) of with the 1.90 Å data set of the ethylmercury chloride derivative 

using autoSHARP. Four mercury sites were identified, and the phase correlation 

coefficient calculated by autoSHARP for this data set was 0.466, with anomalous phasing 

power 0.447. Following density modification and automatic building, approximately 50% 

of the protein residues were built into the electron density map. At this point, the 

molecular model of EIZS was refined against the 1.60 Å resolution data set collected 

from the native crystal instead of the mercury derivative. Molecular replacement using 
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the partially built model was achieved with PHASER (Storoni, 2004). Iterative cycles of 

refinement and manual model building using CNS (Brunger, 2007), O (Jones, 1991), 

COOT (Emsely, 2004), and PHENIX (Adams, 2002) allowed for the assembly of the 

complete protein model. Individual atomic B-factors were utilized during refinement. 

Buffer molecules, ions, water, glycerol, the benzyl triethylammonium cation (BTAC), 

PPi, and a sulfate ion (hydrogen bonded to R163, H164, R220 and R226) were included 

in later cycles of refinement. Data reduction and refinement statistics are recorded in 

Table 5.2. A total of 340 of 381 residues (A16-N355) are present in the final model, as 

the N- and C- termini are disordered. According to the program PROCHECK 

(Laskowski, 1993), 95 % of the residues were located in the most favorable regions of the 

Ramachandran plot, and no residues are in disallowed regions (Figure 5.4).   

  

 In order to investigate the mercury binding sites of the ethyl mercury chloride 

derivatized crystals used for structure determination, refinement of the 1.90 Å-resolution 

structure was completed. Four mercury binding sites were identified by strong peaks in a 

Bijvoet difference Fourier map adjacent to C68, C213, C243 and C283. Iterative cycles 

of refinement and manual model building were achieved with PHENIX and COOT, 

respectively. Ions and water molecules were included in later cycles of refinement. 

Individual atomic B-factors were utilized, and the mercury, chloride and sulfur atoms 

were refined anisotropically. Data reduction and refinement statistics are recorded in 

Table 5.2. A total of 323 of 381 residues are present in the final model, as there was no 

interpretable density for the A251-L267 loop as well as the N- and C- termini.  
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Figure 5.4. Ramachandran plot of the refined EIZS-Mg2+
3-PPi-BTAC structure.  
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Table 5.2. Refinement Statistics for wild-type EIZS complexes 

 
EIZS Structure: 

Mg2+
3-PPi-

BTAC 
complex 

Hg2+
4 

complex 

Data    
   Wavelength, Å 1.0080 1.0548 
   Resolution, Å 40 - 1.60 50 - 1.90 
   Unique reflections 46,113 28,446 
   Completeness*, % 92.9 (100) 99.4 (98.6) 
   Redundancy* 3.6 (3.6) 5.1 (5.1) 
   Rsym* †  0.058 

(0.208) 
0.075 

(0.325) 
Refinement   
   Rcryst/Rfree

‡ 0.158 / 
0.189 

0.169 / 
0.202 

   r.m.s.d. bonds, Å 0.012 0.005 
   r.m.s.d. angles, o 1.4 0.8 
   r.m.s.d. dihedral 
angles, o 

21 15 

No. of atoms   
   Protein atoms 2858 2512 
   Solvent atoms 431 335 
   Ligand atoms 55 13 
Ramachandran plot   
   Allowed, % 94.7 95.2 

Additionally 
allowed, % 

5.3 4.8 

 
*Values in parentheses refer to the highest shell 
† Rsym = ∑Ih - <Ih>/∑Ih, where <Ih> is the average intensity over symmetry equivalent 
refections.  
‡Rcryst = ∑|Fobs| - |Fcalc|/∑|Fobs|, where summation is over the data used for refinement. 
Rfree was calculated as for Rcryst by using 5% of the data that was excluded from 
refinement. 
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5.4 Structure of EIZS-Mg2+-PPi-BTAC Complex 

 At 1.60 Å resolution, the crystal structure of this complex is the highest resolution 

structure of any terpenoid cyclase determined to date (Aaron, 2010). EIZS adopts the 

class I terpenoid synthase α-helical fold and consists of a bundle of 10 α-helices, 

designated A-J (Figure 5.5), in which the 20 Å-deep active site is defined mainly by 

helices C, D, G, H, and J. Among the terpenoid cyclases of known structure, EIZS is 

structurally most similar to pentalenene synthase (r.m.s. deviation = 3.3 Å for 304 Cα 

atoms). EIZS crystallizes as a monomer, consistent with dynamic light scattering 

measurements indicating that the protein is a monomer in solution (Figure 5.6).  

 

The electron density map clearly reveals 3 Mg2+ ions, PPi, and a BTAC molecule 

bound in the active site (Figure 5.7 (a)). The side chain of D99 in the aspartate-rich motif 

D99DRHD103 coordinates to Mg2+
A and Mg2+

C with syn,syn-bidentate geometry, while 

Mg2+
B is chelated by the “NSE” motif N240DLCSLPKE248 (boldface indicates Mg2+ 

ligands). Each Mg2+ ion is coordinated with octahedral geometry, with nonprotein 

coordination sites occupied by the oxygen atoms of PPi and by water molecules. The PPi 

anion also accepts hydrogen bonds from the side chains of R194, K247, R338, and Y339 

(Figure 5.7 (b)). It is likely that similar metal coordination and hydrogen bond 

interactions are normally formed with the diphosphate group of the substrate FPP in the 

precatalytic Michaelis complex. These interactions stabilize the closed active site 

conformation that sequesters FPP from bulk solvent and triggers ionization to initiate the 

electrophilic cyclization cascade. 
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Figure 5.5. (a) Ribbon plot of the EIZS-Mg2+
3-PPi-BTAC complex showing the 

aspartate-rich motif (red) and the NSE motif (orange) flanking the mouth of the active 

site. The Mg2+ ions are shown as magenta spheres, PPi and BTAC molecules are color 

coded by atom [carbon (yellow), nitrogen (blue), oxygen (red), and phosphate (orange)]. 

Helices are labeled according to the convention first established for FPP synthase 

(Tarshis, 1994). (b) The quaternary ammonium group of the benzyltriethylammonium 

cation (BTAC) serves as a mimic of a carbocation intermediate in catalysis.  
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Figure 5.6. Particle size distribution of EIZS sample, measured by dynamic light 

scattering. Results indicated a monomeric sample, with an average particle radius of 3 

nm.
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 Crystals of EIZS form upon addition of BTAC (Figure 5.5 (b)), commonly used 

in synthetic organic chemistry as a phase transfer catalyst. As a hydrophobic cation, 

BTAC mimics the bisabolyl carbocation intermediate proposed for the EIZS-catalyzed 

cyclization mechanism (Lin, 2006). The positively charged quaternary ammonium group 

of BTAC appears to be stabilized by long-range electrostatic interactions with the PPi 

anion (the shortest N---O separation is 4.1 Å), as well as cation-π interactions with the 

aromatic side chains of F95, F96 and F198 (N---ring centroid separations range 4.7 – 5.4 

Å) (Figure 5.6 (a)). Such cation-π interactions are proposed to play a critical role in 

stabilizing the highly reactive carbocation intermediates found in all enzyme-catalyzed 

terpenoid cyclizations (Jenson, 1997; Lesburg, 1997; Ma, 1997). The binding of BTAC in 

the active site of EIZS demonstrates that the bacterial terpenoid cylase active site can 

accommodate and stabilize a positively charged ligand resembling the positively charged 

carbocation intermediates of the normal cyclization cascade. Although determined at a 

much lower resolution of 2.85 Å, the recently reported structure of the trichodiene 

synthase-Mg2+
3-PPi-BTAC complex provides an example of the stabilization of 

positively charged ligands in the active site of a fungal terpenoid cyclase (Vedula, 2007).  

 

5.5 Structure of EIZS-Hg2+
4 Complex 

To date, we have been unable to prepare crystals of wild-type EIZS in a 

completely ligand-free state, since the additives BTAC and PPi required for 

crystallization are not readily dialyzed out of the crystals. However, soaking crystals of 

the EIZS-Mg2+
3-PPi-BTAC complex with ethyl mercury chloride displaces 3 Mg2+ ions, 
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PPi, and BTAC to yield the 1.90 Å resolution structure of the EIZS-Hg2+
4 complex in 

which all Hg2+ ions bind remotely from the active site (Figure 5.8 (a)). In this complex, 

Hg2+
A is coordinated by C68, Hg2+

B is coordinated by C283 (the electron density is best 

interpreted as 2 alternate positions), Hg2+
C is coordinated by C243, and Hg2+

D is 

coordinated by C213 (2 alternate positions). Surprisingly, however, the now ligand-free 

active site is not open and empty, as it is in all other ligand-free terpenoid cyclase 

structures. Instead, helix G, which forms one side of the active site (and contains R194, a 

residue that donates a hydrogen bond to PPi in the ligand-bound structure), bends by 

~110o to occupy the location formerly occupied by Mg2+
3-PPi (Figure 5.8 (c)). 

Additionally, helix D moves ~1.5 Å outward, helix J moves ~4 Å outward, while helix H, 

which was bent in the ligand-bound structure to enable Mg2+
B chelation by the NSE 

motif, becomes straight and also moves outward (Figure 5.8 (c)). The positions and 

conformations of helices C, E, and F remain essentially unchanged, and there is no 

interpretable electron density for helix I or the loop (A251-L267) connecting it to helices 

H and J. Salt bridges between helix G and helices D and F stabilize the closed ligand-free 

structure: R194 makes a salt-bridge with E175 (helix F) and R195 makes a salt bridge 

with D103 (helix D) (Figure 5.8 (c)). Although these residues are found in pentalenene 

synthase as R173, F174, D84 and E152, a comparable closed ligand-free conformation 

was not observed by Lesburg and colleagues (Lesburg, 1997). Although the EIZS-Hg2+
4 

structure illustrates a unique terpenoid cyclase structure, the role of the Hg2+ ions in 

dislodging the Mg2+
3-PPi-BTAC complex to result in the closed ligand-free conformation 

of EIZS is unclear. However, this structure does not appear to be biologically relevant, as 
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this structural transition would result in an inactive enzyme and does not likely reflect the 

state of the wild type enzyme in the absence of substrate.  
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Figure 5.7. Active site of EIZS-Mg2+
3-PPi-BTAC complex. (a) Simulated 

annealing omits maps (black) of the PPi anion, Mg2+ ions, and BTAC, contoured at 5σ. 

Note the cation-π interactions between the positively charged quaternary ammonium 

group of BTAC and the aromatic rings of F95, F96 and F198 (red dashed lines).  (b) 

Metal coordination interactions (black dashed lines) and hydrogen bond interactions (red 

dashed lines) in the EIZS-Mg2+
3-PPi complex.  
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Figure 5.8. Structural changes between EIZS Mg2+
3-PPi-BTAC and Hg2+

4 

Complexes. (a) Ribbon diagram of EIZS-Hg2+
4 complex. Anomalous Fourier map (black) 

contoured to 6 σ, indicates the location of Hg atoms (red spheres). (b) Superposition of 

ribbon plots of EIZS-Mg2+
3-PPi-BTAC (green) and EIZS-Hg2+

4 (cyan; Hg2+ ions appear 

as red spheres). Helices D, G, H and J, which undergo the largest changes, are labeled. (c) 
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Salt bridges (black dashes) between helix G and helices D and F stabilize the closed 

ligand-free structure.   

Chapter 6: X-ray Crystal Structure of D99N epi-Isozizaene Synthase and 

Implications for Substrate Recognition 

  

6.1 Introduction 

Interestingly, the detailed structural changes that occur between open and closed 

active site conformations differ between fungal and plant terpenoid cyclases. For 

example, the r.m.s. deviation between ligand-free and Mg2+
3-PPi–complexed trichodiene 

synthase from F. sporotrichioides is 1.4 Å (Rynkiewicz, 2001), whereas that of bornyl 

diphosphate synthase from S. officinalis (culinary sage) is only 0.6 Å for the catalytic 

domain (Whittington, 2002). Until now, it had not been possible to study the structural 

changes between the open and closed active site conformations of bacterial terpenoid 

cyclases because pentalenene synthase had been determined only in the ligand-free state 

(Lesburg, 1997). Since the residues that interact with Mg2+ ions or PPi in epi-isozizaene 

synthase (EIZS) are conserved in pentalenene synthase, superposition of the closed, 

ligand-bound structure of EIZS with ligand-free pentalenene synthase enables an 

approximated comparison of the open-to-closed structural transition in bacterial terpenoid 

cyclases. Alignment of the two structures reveals a very similar alignment of the metal 

binding motifs, with pentalenene synthase helices D (“aspartate-rich” motif) and H 

(“NSE” motif) being 1.5 Å further apart than in EIZS. We hypothesize that upon binding 

of Mg2+
3 and substrate or PPi, the active site of pentalenene synthase undergoes a change 

to a closed conformation comparable to that observed for the EIZS-Mg2+
3-PPi-BTAC 
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complex.  To further explore structural changes resulting from the dissociation of Mg2+
3-

PPi-BTAC from the active site of EIZS, we attempted to determine the structure of EIZS 

in the absence of Mg2+ and PPi, however we were unable to obtain crystals of the WT 

enzyme without Mg2+, PPi and BTAC. Furthermore, we were not able to remove, via 

soaking, Mg2+-PPi-BTAC from crystals of the EIZS-Mg2+-PPi-BTAC complex.  

 

Therefore, an alternative approach was taken to investigate the open structure of 

EIZS. The D99N amino acid substitution severely decreases catalytic efficiency (Lin, 

2009) by compromising the syn,syn-bidentate coordination of Mg2+
A and Mg2+

C (Figure 

5.7). Thus this single-site mutant enables the structural study of an unliganded 

conformation of EIZS.  

 

6.2. Experimental Methods 

6.2.1 Site-Directed Mutagenesis, Expression and Purification 

The D99N single site-specific mutation was introduced into the EIZS wild-type 

plasmid using primers 1 and 2 as follows (lower case letters represent the mutant codon 

introduced): primer 1, 5’GGT TCT TCG TCT GGa acG ACC GTC ACG AC-3’, primer 

2, 5’-GTC GTG ACG GTC gtt CCA GAC GAA GAA CC-3’. The optimal reaction 

mixture for PCR amplification of the insert was 100 ng of each forward and reverse 

primer, 3 µL of 10 mM dNTP mix, 100 ng plasmid, 5 µL of Pfu turbo polymerase buffer, 

and 1 unit of Pfu turbo polymerase diluted with water to a final volume of 50 µL. 

Optimal PCR conditions required initial denaturation of the reaction mixture at 95 °C for 

5 min, addition of polymerase followed by thirty cycles (1 min denaturation at 95 °C, 1 
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min annealing at 60 °C, 8 min extension at 72 °C), and a final 10 min extension at 72 °C 

followed by a final hold at 4 °C. One µL of Dpn1 was added to the PCR mixture and 

incubated at 37 °C for 1 h to digest the template. PCR products were transformed into 

XL1-Blue cells for DNA isolation and sequencing.  DNA was purified (Qiagen mini-prep 

kit) from cultures from single colonies, and DNA sequencing (DNA Sequencing Facility, 

University of Pennsylvania) confirmed incorporation of the mutation. Mutant proteins 

were expressed and purified using the same procedures as described for the wild-type 

enzyme (Section 5.1). 

 

6.2.2 Crystallization and Structure Determination 

The D99N EIZS mutant was crystallized by the hanging drop vapor diffusion 

method. Crystals formed with a precipitant solution at a slightly higher pH than the wild 

type crystals [100 mM Bis-Tris (pH 6.0), 25-28% polyethylene glycol 3350, 0.2 M 

(NH4)2SO4], and were improved by successive rounds of micro-streak seeding using 

D99N crystals as the seed stock. Crystals diffracted to 1.9 Å resolution at APS beamline 

NE-CAT 24-ID-C and belonged to space group P212121 with unit cell parameters a = 

41.144 Å, b = 81.952 Å, c = 106.693 Å. The Matthew’s coefficient (VM) of 2.04 Å3/Da, 

and solvent content of 40 % suggest the presence of one monomer per asymmetric unit. 

Molecular replacement calculations were performed with PHASER (Storoni, 2004) using 

the atomic coordinates of native EIZS (less ligand and solvent atoms) as a search probe. 

Iterative cycles of refinement and manual model building were achieved with PHENIX 

(Adams, 2002) and COOT (Emsely, 2004), respectively. Sulfate and water molecules 

were included in later cycles of refinement. Individual atomic B-factors were utilized. 
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Data reduction and refinement statistics are recorded in Table 6.1. A total of 316 of 381 

residues (P18-E335) are present in the final model, as the N- and C- termini are 

disordered. 
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Table 6.1. Data Collection and Refinement Statistics for D99N EIZS. 

 
EIZS Structure: 

D99N 
(ligand-free) 

Data   
   Wavelength, Å 0.9795 
   Resolution, Å 50 – 1.90 
   Unique reflections 28,694 
   Completeness*, % 97.6 (95.6) 
   Redundancy* 3.3 (3.0) 
   Rsym* †  0.089 (0.634) 
Refinement  
   Rcryst/Rfree

‡ 0.162 / 0.207 
   r.m.s.d. bonds, Å 0.009 
   r.m.s.d. angles, o 1.1 
   r.m.s.d. dihedral angles, o 16 
No. of atoms  
   Protein atoms 2638 
   Solvent atoms 316 
   Ligand atoms 5 
Ramachandran plot  
   Allowed, % 94.4 
   Additionally allowed, % 5.6 

 
*Values in parentheses refer to the highest shell 
† Rsym = ∑Ih - <Ih>/∑Ih, where <Ih> is the average intensity over symmetry equivalent 
refections.  
‡Rcryst = ∑|Fobs| - |Fcalc|/∑|Fobs|, where summation is over the data used for refinement. 
Rfree was calculated as for Rcryst by using 5% of the data that was excluded from 
refinement. 
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6.3. Structure of D99N EIZS and Implications for Substrate Recognition 

Unexpectedly, D99N EIZS crystallizes in a unique packing arrangement with 

respect to wild-type EIZS, resulting in a different space group and unit cell parameters. 

Both crystal forms contain one monomer per asymmetric unit, however wild-type EIZS 

crystallized in space group P21, with two monomers in the unit cell (Figure 6.1 (a)), 

whereas D99N EIZS crystallized in space group P212121, with four equivalent monomer 

positions in the unit cell (Figure 6.1. (b)).    

 

In the closed, ligand-bound conformation of EIZS only the first aspartate of the 

D99DRHD motif coordinates to Mg2+
A and Mg2+

C; substitution of a neutral asparagine 

residue for the negatively-charged aspartate residue at position 99 is sufficient to disrupt 

the assembly and stability of the trinuclear metal cluster required for substrate recognition 

and activation. The crystal structure of D99N EIZS reveals the complete absence of 

Mg2+
3-PPi-BTAC in the active site. Moreover, the active site of D99N EIZS adopts an 

open conformation (Figure 6.2) without any conformational changes of helix G. 

Therefore, we conclude that the conformational change of helix G shown in Figure 5.8 is 

somehow caused by Hg2+ binding and is not biologically relevant.  

 

Comparison of EIZS-Mg2+
3-PPi-BTAC and D99N EIZS structures enables a 

structural understanding of the molecular recognition of substrate by EIZS, and the 

ensuing structural changes that result in closing of the active site upon binding of 

substrate and Mg2+ ions. The crystal structures are particularly informative in that they 

reveal two biologically relevant active site conformations: a closed, ligand-bound 
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conformation and an open, ligand-free conformation, respectively.  Alignment of the two 

structures reveals ligand-induced conformational changes of helix H and loop H-α-1, as 

well as the J-K loop (which is completely disordered in D99N EIZS). The overall r.m.s. 

deviation between wild-type and D99N EIZS structures is 1.6 Å for 318 Cα atoms. The 

D99N EIZS structure suggests that in the absence of PPi, or a PPi-containing substrate, 

the C-terminal residues, beginning at E335, become disordered, which results in an open 

active site. Upon Mg2+ and PPi (or PPi-containing substrate) binding, the C-terminus 

becomes ordered and closes the active site and blocks the solvent from entering the active 

site. Corresponding structural changes generally accompany active site closure in fungal 

(Shishova, 2008) and plant (Whittington, 2002) terpenoid cyclases. The template for FPP 

cyclization is fully formed in the closed active site conformation of EIZS as well as all 

other class I terpenoid cyclases.  
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Figure 6.1. (a) The unit cell of EIZS-Mg2+
3-PPi-BTAC crystals viewed along the b axis. 

The crystals belong to space group P21, the asymmetric unit is a monomer, and the two 

positions are related in the unit cell by a screw axis along b.  
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Figure 6.1. (b) The unit cell of D99N EIZS crystals viewed along the a axis. The 

crystals belong to space group P212121, the asymmetric unit is a monomer. There are four 

equivalent positions in the unit cell, which possesses three perpendicular twofold screw 

axes. 
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Figure 6.2. A stereoview of a superposition of the structures of EIZS-Mg2+
3-PPi-

BTAC complex (green) and D99N EIZS (purple), illustrating the structural changes in 

helix H and the H-α-1 and J-K loops that accompany active site closure. 
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 The newly determined open and closed structures of EIZS enable a comparison of 

substrate recognition and active site closure amongst bacterial, fungal and plant terpenoid 

cyclases. Although the first and third aspartate residues in the aspartate-rich metal 

binding motif coordinate to Mg2+
A and Mg2+

C in the plant terpenoid cyclases containing a 

complete trinuclear metal cluster such as (+)-bornyl diphosphate synthase (Figure 6.3 (c)) 

(Whittington, 2002), limonene synthase (Hyatt, 2007), and (+)-δ-cadinene synthase 

(Gennadios, 2009), only the first aspartate residue in the aspartate-rich motif coordinates 

to Mg2+
A and Mg2+

C in Mg2+
3-PPi complexes with the fungal cyclases trichodiene 

synthase (Rynkiewicz, 2001) and aristolochene synthase (Figure 6.3 (b)) (Shishova, 

2007). EIZS is similar to the fungal cyclases in that only D99 coordinates to Mg2+
A and 

Mg2+
C. A critical role for D99 in metal complexation is reflected in the dramatic losses of 

catalytic activity measured for the D99N and D99E mutants (Lin, 2009). Although D100 

of EIZS does not directly interact with the Mg2+ ions or PPi, it does accept a hydrogen 

bond from R338, which also donates a hydrogen bond to PPi (Figure 6.3 (a)). Site-

directed mutagenesis reveals that the D100N mutant has lost >95 % activity compared to 

the native enzyme (Lin, 2009), suggesting that the D100N mutation disrupts the D100-

R338-PPi hydrogen bond network. In aristolochene synthase, the second aspartate in the 

aspartate-rich motif, D91, similarly stabilizes a hydrogen bond network with R314 and 

PPi (Shishova, 2007). Surprisingly, in (+)-bornyl diphosphate synthase, the second 

aspartate, D352, is involved in a hydrogen bond network with R314 and PPi (Whittington, 

2002), illustrating the importance of the arginine residue in stabilizing the closed 

conformation. Furthermore, a second conserved arginine residue makes a hydrogen bond 

to the opposite end of the diphosphate moiety, R194 in EIZS, R175 in aristolochene 
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synthase and R493 in (+)-bornyl disphosphate synthase, suggesting that the bacterial, 

fungal, and plant cyclases share the same molecular strategy for linking the molecular 

recognition of the substrate diphosphate group with the mechanism of active site closure. 

Two additional PPi coordinating interactions are conserved amongst EIZS and 

aristolochene synthase; K247 and Y339 in EIZS donate H-bonds to diphosphate oxygen 

atoms and are conserved as K226 and Y315 in aristolochene synthase. A higher degree of 

conservation amongst active site residues suggests bacterial and fungal terpenoid cyclases 

derive from a more recent common ancestor than plant terpenoid cyclases.  
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Figure 6.3. Conservation of Mg2+
3-PPi and -diphosphate binding motifs among 

bacterial and fungal terpenoid cyclases. Metal coordination (black) and hydrogen bond 

(red) interactions with phosphate(s) are indicated. (a) Bacterial sesquiterpene cyclase S. 

coelicolor epi-isozizaene synthase-Mg2+
3-PPi complex (PDB code 3KB9); (b) Fungal 

sesquiterpene cyclase A. terreus aristolochene synthase-Mg2+
3-PPi complex (PDB code 

2OA6); (c) Plant monoterpene cyclase S. officinalis (+)-bornyl diphosphate synthase-

Mg2+
3-PPi complex (PDB code 1N22; metal ions are labelled according to the convention 

first established for trichodiene synthase). 
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Chapter 7: Structural and Biochemical Studies of the Active Site of EIZS 

 

7.1 Introduction 

In general, the permissiveness and promiscuity of terpenoid cyclases vary, both in 

terms of the substrates they accept and the product(s) they generate. These properties are 

dictated by the three-dimensional contour of the fully formed template in the closed 

active site conformation. Many terpenoid cyclases, such as A. terreus aristolochene 

synthase (Felicetti, 2004), are high-fidelity cyclases that generate one product 

exclusively. However other cyclases, such as EIZS, generate one major product and 

minor quantities of one or more alternative products. Detailed gas chromatography-mass 

spectrometry (GC-MS) analysis of the organic products that result from incubation of 

WT EIZS with FPP reveal the promiscuity of the EIZS template. Specifically, 79 % of 

the total sesquiterpene product mixture is epi-isozizaene, and the remaining 21 % is 

identified as a mixture of β-farnesene (5 %), sesquisabinene-A (3 %), zizaene (9 %), α-

cedrene (2 %), sesquiphellandrene (1 %), and 2 % of an unidentified sesquiterpene (Lin, 

2009). The structural basis for such mechanistic promiscuity is presumably rooted in how 

well the active site contour enforces the correct regiochemistry and stereochemistry for 

cyclization and eventual quenching of the carbocation intermediates by chaperoning the 

conformations of reactive intermediates. Intriguingly, the conformations and orientations 

of such intermediates may not reflect the original conformation and orientation of the 

substrate if the template is somewhat permissive (Hong, 2009). A more permissive 

template allows alternative premature quenching of on-pathway intermediates or off-

pathway conformations that lead to the formation of aberrant products.  
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Manipulation of the cyclization template by site-directed mutagenesis can redirect 

the biosynthetic trajectory of a terpenoid cyclase. This result can be achieved by 

modification of active site contour residues (Yoshikuni, 2006) or of residues that are 

more distant from the active site (O’Maille, 2008). With EIZS, two different strategies 

have been employed to manipulate the cyclization template: mutagenesis of metal-

binding motif residues, and residues that directly contribute to forming the unique active-

site contour.  

 

Mutagenesis of the conserved Mg2+-binding domains severely compromises 

catalytic efficiency. Single-site metal-binding motif mutants D99E, D100N, N240D, 

S244A, and E248D all retain less than 5% of WT activity, however GC-MS analysis of 

their respective organic products indicates these mutations have only a modest effect on 

the cyclization template, resulting in slightly altered relative proportions of epi-isozizaene 

and alternate sesquiterpene side-products. Specifically, epi-isozizaene accounts for 62 to 

91 % of the relative sesquiterpene products of these mutants, and only one additional 

sesquiterpene side product is identified, α-neocallitropsene (3 % D99E, 3 % N240 D, <1 

% E248D), thus the fidelity of epi-isozizaene biosynthesis is not significantly 

compromised. Indeed, certain amino acid substitutions involving the Mg2+-binding 

residues, such as D100N, N240D, S244A, and E248D, actually lead to increased 

proportions of epi-isozizaene and lower levels of the alternative sesquiterpene products, 

although with significantly decreased overall catalytic efficiency (Lin, 2009). 
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It is hypothesized that the structural and stereochemical diversity achieved by the 

terpenoid cyclases is the result of an enzyme active site that merely chaperones a multi-

step interamolecular cyclization cascade. As such, a terpenoid cyclase active site is 

primarily lined with hydrophobic and aromatic residues, which serve to guide the 

cyclization cascade by assisting in the stabilization of carbocation intermediates 

(Christianson, 2008). Aromatic residues are able to stabilize carbocation intermediates 

via charge-quadrupole (cation-π) interactions. The active site of EIZS has several 

aromatic residues, namely F95, F96, F198, W203, F332, H333, and W325. As a first step 

in exploring the importance of active site aromatic residues for catalysis and product 

diversity in EIZS, we have prepared the F96A, F198A, and W203F mutants. These 

residues were selected for mutation based on their proximity to the BTAC cation that was 

observed to coordinate in the active site of the WT EIZS-Mg2+-PPi-BTAC complex 

presented in Chapter 5 (Figure 5.6). Furthermore, the effect of mutating aliphatic residues 

in the active site was also explored. Specifically L72, A236 and V329 were chosen for 

investigation, and each site was selectively mutated to investigate the following single-

site EIZS mutants: L72V, L72I, A236G, A236V, V329A and V329L to explore the 

effects of subtle changes to the active site contour on enzyme activity and product 

distribution.  

 

7.2  Experimental Methods 

7.2.1 Site-Directed Mutagenesis, Expression and Purification 

The following EIZS single-site mutants were investigated: F96A, F198A, 

W203A, W203F, L72V, L72I, A236G, A236V, V329A and V329L. Single site-specific 
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mutations were introduced into the EIZS wild-type plasmid using forward and reverse 

primers for each respective mutant (Table 7.1). The optimal reaction mixture for PCR 

amplification of the insert was 100 ng of each forward and reverse primer, 3 µL of 10 

mM dNTP mix, 100 ng plasmid, 5 µL of Pfu turbo polymerase buffer, and 1 unit of Pfu 

turbo polymerase diluted with water to a final volume of 50 µL. Optimal PCR conditions 

required initial denaturation of the reaction mixture at 95 °C for 5 min, addition of 

polymerase followed by thirty cycles (1 min denaturation at 95 °C, 1 min annealing at 60 

°C, 8 min extension at 72 °C), and a final 10 min extension at 72 °C followed by a final 

hold at 4 °C. One µL of Dpn1 was added to the PCR mixture and incubated at 37 °C for 1 

h to digest the template. PCR products were transformed into XL1-Blue cells for DNA 

isolation and sequencing.  DNA was purified (Qiagen mini-prep kit) from cultures from 

single colonies, and DNA sequencing (DNA Sequencing Facility, University of 

Pennsylvania) confirmed incorporation of the mutations. Mutant proteins were expressed 

and purified using the same procedures as described for the wild-type enzyme (Section 

5.1). The W203A mutant expressed poorly, and could not be successfully purified, 

therefore a more conservative W203F mutant was investigated. The L72I, A236V and 

V329L EIZS mutants did not express as well as their respective counterparts L72V, 

A236G and V329A, and were not investigated further.    
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Table 7.1. EIZS mutagenic primer sequences. Lower case letters represent the 

mutant codon introduced.   

Protein  Primers 

Forward  5′-CTA CAG CGC GTG GTT Cgc aGT CTG GGA CGA CCG TC-3′ 

F96A Reverse  5′-GAC GGT CGT CCC AGA Ctg cGA ACC ACG CGC TGT AG-3′ 

Forward 5′-GAA CTG CGC CGG CTC ACG gca GCG CAC TGG ATC TGG AC-3′ 

F198A Reverse 5′-GTC CAG ATC CAG TGC GCt gcC GTG AGC CGG CGC AGT TC-3′ 

Forward  5’-GTT CGC GCA CTG CAT Cgc aAC CGA CCT GCT GGA G-3’ 

W203A Reverse 5’-CTC CAG CAG GTC GGT tgc CAT CCA GTG CGC GAA C-3’ 

Forward  5′-GTT CGC GCA CTG GAT Ctt tAC CGA CCT GCT GG-3′ 

W203F Reverse  5′-GCT CCA GCA GGT CGG Taa aGA TCC AGT GCG CG-3′ 

Forward  5’-CTG TGC TAC ACG GAC att ATG GCG GGC TAC TAC C-3’ 

L72I Reverse  5’-GGT AGT AGC CCG CCA Taa tGT CCG TGT AGC ACA G-3’ 

Forward  5’-CTG TGC TAC ACG GAC gtg ATG GCG GGC TAC TAC-3’ 

L72V Reverse  5’-GTA GTA GCC CGC CAT cac GTC CGT GTA GCA CAG-3’ 

Forward  5’-GTC AGG AAT TCg gcG CCT GGT ACA AC-3’ 

A236G Reverse  5’-GTT GTA CCA GGC gcc GAA TTC CTG AC-3’ 

Forward  5’-GAG TCA GGA ATT Cgt gGC CTG GTA CAA CGA C-3’ 

A236V Reverse  5’-GTC GTT GTA CCA GGC cac GAA TTC CTG ACT C-3’ 

Forward 5’-CTG GTT CAG TTC Cgc gTA CTG GTT CCA CC-3’ 

V329A Reverse  5’-GGT GGA ACC AGT Acg cGG AAC TGA ACC AG-3’ 

Forward 5’-GAA CTG GTT CAG TTC Cct gTA CTG GTT CCA CCA CG-3’ 

V329L Reverse 5’-CGT GGT GGA ACC AGT Aca gGG AAC TGA ACC AGT TC-3’ 
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7.2.2 Crystallization and Structure Determination of EIZS active site mutants 

  7.2.2.1 F198A EIZS-Mg2+
3-PPi-BTAC complex. 

The F198A EIZS mutant was crystallized by the hanging drop vapor diffusion 

method with the same conditions used to crystallize the wild-type enzyme, but with 

successive rounds of micro-streak seeding using native crystals as the seed stock. 

Crystals diffracted to 1.64 Å resolution at NSLS beamline X29 and belonged to space 

group P21 with unit cell parameters a = 53.241 Å, b = 47.179 Å, c = 75.568 Å and β = 

95.57o. Molecular replacement calculations were performed with PHASER (Storoni, 

2004) using the atomic coordinates of native EIZS (less ligands and solvent atoms) as a 

search probe. The electron density clearly revealed the F198A mutation. Iterative cycles 

of refinement and manual model building were achived with PHENIX and COOT, 

respectively. Ions, PPi, BTAC, and water molecules were included in later cycles of 

refinement. Individual atomic B-factors were utilized. Data collection and refinement 

statistics for the F198A EIZS-Mg2+
3-PPi-BTAC complex are listed in Table 7.2.  

 

7.2.2.2 L72V EIZS-Mg2+
3-PPi-BTAC complex. 

The L72V EIZS mutant was crystallized by the hanging drop vapor diffusion 

method with the same conditions used to crystallize the wild-type enzyme. Crystals 

diffracted to 2.10 Å resolution at NSLS beamline X29 and belonged to space group P21 

with unit cell parameters a = 52.977 Å, b = 47.236 Å, c = 75.084 Å and β = 95.66o. 

Molecular replacement calculations were performed with PHASER (Storoni, 2004) using 

the atomic coordinates of native EIZS (less ligands and solvent atoms) as a search probe. 

The electron density clearly revealed the L72V mutation. Iterative cycles of refinement 
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and manual model building were achived with PHENIX and COOT, respectively. Ions, 

PPi, BTAC, and water molecules were included in later cycles of refinement. Individual 

atomic B-factors were utilized. Data collection and refinement statistics for the L72V 

EIZS-Mg2+
3-PPi-BTAC complex are listed in Table 7.2.  

 

7.2.2.3 A236G EIZS-Mg2+
3-PPi-BTAC complex. 

The A236G EIZS mutant was crystallized by the hanging drop vapor diffusion 

method with the same conditions used to crystallize the wild-type enzyme. Crystals 

diffracted to 1.76 Å resolution at APS beamline NE-CAT-ID-C and belonged to space 

group P21 with unit cell parameters a = 53.137 Å, b = 47.220 Å, c = 75.211 Å and β = 

95.51o. Molecular replacement calculations were performed with PHASER (Storoni, 

2004) using the atomic coordinates of native EIZS (less ligands and solvent atoms) as a 

search probe. The electron density clearly revealed the A236G mutation. Iterative cycles 

of refinement and manual model building were achived with PHENIX and COOT, 

respectively. Ions, PPi, BTAC, and water molecules were included in later cycles of 

refinement. Individual atomic B-factors were utilized. Data collection and refinement 

statistics for the A236G EIZS-Mg2+
3-PPi-BTAC complex are listed in Table 7.2.  

 

7.2.2.4 V329A EIZS-Mg2+
3-PPi-BTAC complex. 

The V329A EIZS mutant was crystallized by the hanging drop vapor diffusion 

method with the same conditions used to crystallize the wild-type enzyme. Crystals 

diffracted to 1.95 Å resolution at NSLS beamline X29 and belonged to space group P21 

with unit cell parameters a = 53.214 Å, b = 47.485 Å, c = 75.283 Å and β = 95.50o. 
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Molecular replacement calculations were performed with PHASER (Storoni, 2004) using 

the atomic coordinates of native EIZS (less ligands and solvent atoms) as a search probe. 

The electron density clearly revealed the V329A mutation. Iterative cycles of refinement 

and manual model building were achieved with PHENIX and COOT, respectively. Ions, 

PPi, BTAC, and water molecules were included in later cycles of refinement. Individual 

atomic B-factors were utilized. Data collection and refinement statistics for the V329A 

EIZS-Mg2+
3-PPi-BTAC complex are listed in Table 7.2.  
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Table 7.2. EIZS active site mutant data collection and refinement statistics. 

 
EIZS Structure: 

F198A 
Mg2+

3-PPi-
BTAC 

complex 

L72V 
Mg2+

3-PPi-
BTAC 

complex 

A236G 
Mg2+

3-PPi-
BTAC 

complex 

V329A 
Mg2+

3-PPi-
BTAC 

complex 
Data      
   Wavelength, Å 1.075 0.9795 0.9795 0.9795 
   Resolution, Å 50 – 1.64 50 – 2.10 50 – 1.76 50 – 1.95 
   Unique reflections 45,831 22, 011 37, 050 26,839 
   Completeness*, % 99.8 (100) 99.9 (99.2) 99.2 (98.2) 97.3 (97.4) 
   Redundancy* 3.6 (3.5) 3.6 (3.5) 3.3 (3.1) 4.2 (3.7) 
   Rsym* †  0.062 

(0.238) 
0.104 

(0.301) 
0.071 

(0.339) 
0.116 

(0.432) 
Refinement     
   Rcryst/Rfree

‡ 0.156/0.190 0.156/0.206 0.159/0.203 0.152/0.201 
   r.m.s.d. bonds, Å 0.015 0.007 0.009 0.007 
   r.m.s.d. angles, o 1.6 1.050 1.167 1.014 
   r.m.s.d. dihedral angles, o 18 15 17 17 
No. of atoms     
   Protein atoms 2858 2788 2801 2812 
   Solvent atoms 467 272 357 376 
   Ligand atoms 31 31 31 42 
Ramachandran plot     
   Allowed, % 95.0 94.0 94.7 94.0 
   Additionally allowed, % 5.0 6.0 5.3 6.0 

 
*Values in parentheses refer to the highest shell 
† Rsym = ∑Ih - <Ih>/∑Ih, where <Ih> is the average intensity over symmetry equivalent 
refections.  
‡Rcryst = ∑|Fobs| - |Fcalc|/∑|Fobs|, where summation is over the data used for refinement. 
Rfree was calculated as for Rcryst by using 5% of the data that was excluded from 
refinement. 
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 7.2.3 Radioactive substrate kinetic assay of EIZS mutants 

EIZS mutants were assayed as previously described (Lin, 2006) in 50 mM 

piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) (pH 6.5), 20 % glycerol, 100 mM 

NaCl, 10 mM MgCl2, and 5 mM BME. Each series of assays was performed 2-3 times 

using concentrations of [1-3H]FPP (100 mCi/mmol) ranging from 0.025 to 50 µM. The 

optimal enzyme concentration for each mutant was determined where the dependence of 

product formation on enzyme concentration was linear and less than 10% of the substrate 

was turned over: wild-type (1 nM), F96A (20 nM) , F198A (20 nM), W203F (20 nM), 

L72V (2.5 nM), A236G (2.5 nM), and V329L (2.5 nM). A 1-mL reaction mixture in a 

test-tube was overlaid with 1 mL hexane immediately after addition of substrate, covered 

with aluminum foil, and incubated for 15 min at 30 °C. The reaction was quenched by 

addition of 75 µL of 500 mM EDTA (pH 8.0) and vortexed for 20 s. The hexane extract 

was passed through a silica gel column directly into a scintillation vial containing 5 mL 

of scintillation fluid. The aqueous phase was extracted with an additional 2 x 1 mL 

hexane and passed through the same silica gel column. Finally, the column was washed 

with an additional 1 mL hexane. A Beckman scintillation counter was used to measure 

product formation, and the substrate concentration versus rate of product formation data 

was fit by nonlinear regression using the program Prism to determine kcat based on the 

known total enzyme concentration. For the L72V, A236G and V329A EIZS mutants, the 

method was adapted to a 0.5 mL reaction volume format, however the volume of hexane 

used for the extraction was not changed.  
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7.2.4 GC-MS Analysis of Product Arrays Generated by EIZS Mutants.  

The substrate, farnesyl diphosphate (60 µM), was incubated with 40 µM mutant 

EIZS (F96A, F198A or W203F) in 6 mL buffer (50 mM PIPES, 15 mM MgCl2, 100 mM 

NaCl, 20% glycerol, 5 mM BME) and overlaid with 3 mL HPLC-grade n-pentane in a 

glass test tube at 30 °C for 18 h. Reaction products were extracted with n-pentane 3 

times, dried with anhydrous MgSO4, and concentrated on an ice-water mixture under 

reduced pressure until the volume was reduced to 100 µL. The products were analyzed 

using an Agilent 6890 GC/JEOL JMS-600H mass spectrometer, using a 30 m x 0.25 mm 

HP5MS capillary column (Department of Chemistry, Brown University) in EI (positive) 

mode  mode using a temperature program of 60-280 °C, with a gradient of 20 °C /min 

and a solvent delay of 3.5 min. Analysis of the organic extracts resulting from the 

incubation of FPP with the mutant cyclases by GC-MS reveals the formation of mixtures 

of sesquiterpene hydrocarbons with m/z = 204. Compounds were identified by 

comparison of their individual mass spectra and chromatographic retention indices with 

those of authentic compounds in the MassFinder 3.0 Database (Harangi, 2003). 

 

7.3 Results 

 7.3.1 Radioactive Substrate Kinetic Assay  

  The steady-state kinetic parameters, KM and kcat, of the WT and mutant enzymes 

were measured by a radioactive substrate (3H-FPP) assay. Scintillation counting was used 

to monitor the amount of tritium labeled organic products generated by the enzyme 

during a fixed time. For WT and mutant EIZS, a plot of initial velocity versus substrate 

concentration (Figures 7.1 and 7.2) was used to determine the steady-state kinetic 
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parameters using non-linear regression. The resulting kinetic parameters, summarized in 

Table 7.3, indicate that the mutations only modestly affect KM, with respect to WT EIZS. 

This result is expected since the residues required for recognition of the substrate 

diphosphate (R194, K247, R338, and Y339) are not affected by the mutations. However, 

the rate of the reaction is affected by some of the mutations. Specifically, the three 

aromatic mutants (F98A, F198A, and W203F), cause a dramatic decrease in kcat of two 

orders of magnitude, resulting in overall catalytic efficiencies (kcat/KM) decreased 205- to 

275-fold. The aliphatic mutations (L72V, A236G, and V329A), however, do not result in 

decreased reaction rates, and thus retain the catalytic efficiency of the WT protein. It is 

important to note however that this assay simply measures tritium-labeled products 

extracted in hexanes, therefore the total product yield of the WT or mutant EIZS contains 

a mixture of sesquiterpene products. Furthermore, the activity of the enzymes may be 

underestimated, since hydroxylated products may not be extracted with this procedure. 

This is particularly important in the case of the aromatic mutants, which may be able to 

accommodate solvent molecules in their active sites (Section 7.4.1), which may increase 

the proportion of hydroxylated products. 
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 Figure 7.1. Initial rate versus substrate concentration for the reaction of WT and 

aromatic mutant EIZS with FPP. (a) WT EIZS. (b) F96A EIZS. (c) F198A EIZS. (d) 

W203F EIZS.  
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 Figure 7.2. Initial rate versus substrate concentration for the reaction of aliphatic 

mutant EIZS with FPP. (a) L72V EIZS. (b) A236G EIZS. (c) V329A EIZS.  
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Table 7.3. Steady-state kinetic parameters for wild-type EIZS and site-specific 

mutants. 

Protein kcat  
(s-1) 

KM  
(nM) 

kcat/KM  
(M-1s-1) 

WT 0.045 ± 
0.003 

710 ± 
100 

6.3 ± 0.1 
× 104 

F96A 0.00024 ± 
0.00002 

770 ± 
130 

310 ±  
60  

F198A 0.00030 ± 
0.00002 

1200 ± 
200 

250 ± 
 45 

W203F 0.00034 ± 
0.00003 

1450 ± 
200 

250 ± 
 45 

L72V 0.044 ± 
0.003 

600 ± 
120 

 7.3 ± 1.5 
× 104  

A236G 0.066 ± 
0.002 

450 ± 
50 

1.5 ± 0.2 
× 105 

V329A 0.126 ± 
0.007 

470 ± 
80 

2.7 ± 0.5 
× 105 
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7.3.2 GC-MS Analysis 

The sesquiterpene products of the F98A, F198A, and W203F mutants were 

separated and identified by gas chromatography-mass spectrometry (GC-MS) as GC 

peaks with corresponding MS parent ions having m/z of 204 (C15H24) in the MS. The gas 

chromatograms of the products of the three aromatic mutants, shown in Figure 7.3, 

illustrate very unique product arrays for each mutant. The identity of each peak was 

confirmed by comparison of the observed mass spectra from the MassFinder 3.0 database 

(Figure 7.4). Several products could not be identified from the available MS data, and are 

recorded as unknown sesquiterpene products (Figure 7.5). Results are summarized in 

Table 7.4.    

 

As expected, the product array is severely altered in the aromatic site-specific 

EIZS mutants. However, the formation of each sesquiterpene product identified can be 

reasoned to be a result of derailing the proposed EIZS cyclization pathway (Figure 7.6). 

Notably, none of the three active site aromatic mutants generate epi-isozizaene as a major 

product; indeed, no epi-isozizaene whatsoever is generated by the F198A mutant, and the 

active site contour of this variant as observed in the crystal structure of the F198A EIZS-

Mg2+
3-PPi-BTAC complex is more complementary in shape to bisabolene-derived 

cyclization products such as β-acoradiene, as illustrated in Figure 7.7. Notably, β-

acoradiene is not generated by wild-type EIZS, so the appearance of this spiroterpenoid 

represents a new catalytic activity introduced by a single amino acid substitution. 
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Figure 7.3. Gas chromatographs of hexane extracts of reaction of mutant EIZS 

with FPP. Unidentified products are labeled as A-E, and identified products are labeled 

as follows: Sesquisabine (1), β-farnesene (2), epi-Isozizaene (3), Zizaene (4), β-

acoradiene (5), Z-α-bisabolene (6), Sesquiphellandrene (7), Z-γ-bisabolene (8). (a) F96A 

EIZS. (b) F198A EIZS. (c) W203F EIZS.  
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 Figure 7.4 (Following pages). Mass spectra of identified sesquiterpene products 

of F96A, F198A, and W203F EIZS. For each product the experimental MS is shown on 

the left and the reference MS from the MassFinder 3.0 database is shown on the right. (a) 

Sesquisabine. (b) β-farnesene. (c) β-acoradiene. (d) Zizaene. (e) Z-α-bisabolene. (f) 

Sesquiphellandrene. (g) Z-γ-bisabolene. 
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Figure 7.5. Mass spectra of unidentified sesquiterpene products (a-e) of F96A, 

F198A, and W203F EIZS, and (f) epi-Isozizaene. 
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Table 7.4.  Distribution of sesquiterpene products from wild-type EIZS and site 

specific mutants. Relative product percentages were calculated from the relative peak 

areas of the sesquiterpene products. The relative product proportions are based on the 

assumptions that the relative areas of the peaks in the gas chromatogram represent the 

relative proportion of each sesquiterpene analyte, and the concentration of each 

sesquiterpene analyte is within the linear range for detection by the instrument.  

 
Protein Relative product percentage (%) 

 

U
nk

no
w

n 
A

 

S
es

qu
is

ab
in

e 

β−
F

ar
ne

se
ne

 

e
p

i-I
so

zi
za

en
e 

Z
iz

ae
ne

 

β-a
co

ra
di

en
e 

Z
-α

-b
is

ab
ol

en
e 

S
es

qu
ip

he
lla

nd
re

ne
 

Z
-γ-

bi
sa

bo
le

ne
 

U
nk

no
w

n 
B

 

U
nk

no
w

n 
C

 

U
nk

no
w

n 
D

 

U
nk

no
w

n 
E

 

α-
ce

dr
en

e 

WT - 2 5 79 9  - 1 - - - - - 2 

F96A 7 9 70 8 - - - - 7 - - - - - 

F198A 6 20 5 - - 12 6 13 24 - 7 7 - - 

W203F 4 7 6 14 7 - - - 47 6 - 8 3 - 
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OPP -OPP

OPP OPP

farnesene Z-γ-bisabolene

H

HH

H

epi-isozizaene

α-cedrene

H

zizaene

sesquisabinene-A

H

sesquiphellandrene β-acoradiene

Z-α-bisabolene

farnesyl diphosphate
------- nerolidyl diphosphate -------

- OPP-

- H+

- H+

- H+

- H+

- H+

- H+

- H+

- H+

- H+
bisabolyl cation

- H+

α−neocallitropsene

WT 5 %
E248D 13 %
F96A 70 %
F198A 5 %
W203F 6 %

WT 2 %
D99E 24 %
D100N 7 %
N240D 6 %
S244A 4 %
F96A 9 %
F198A 20 %
W203F 7%

F198A 6 %
F96A 7 %
F198A 24 %
W203F 47 %

F198A 12 %

WT 1 %
F198A 13 %

WT 9 %
D99E 8 %
D100N 7 %
N240D 5 %
S244A 4 %
E248D 4 %
W203F 7 %

WT 79 %
D99E 62 % 
D100N 83 %
N240D 84 %
S244A 91 %
E248D 81 %
F96A 8 %
W203F 14 %

D99E 3 %
N240 D 3 %WT 2%

  

 

 Figure 7.6. Proposed cyclization cascade for observed products of WT and 

mutant EIZS. Biosynthetic versatility of EIZS can be manipulated by site-directed 

mutagenesis, as illustrated for sesquiterpene products identified for wild-type (WT) and 

mutant cyclases. In general, more diverse sesquiterpene product arrays result from the 

substitution of aromatic residues defining the active site contour (red labels) than from 

substitution of residues that coordinate the Mg2+ ions required for catalysis (blue labels 

(Lin, 2009)). For example, F198A EIZS does not generate epi-isozizaene at all, but 

instead generates a mixture of sesquisabinene-A, Z-α- and Z-γ-bisabolenes, 

sesquiphellandrene, and β-acoradiene as its major cyclization products. Remolding the 

active site contour permits the generation of alternative products as long as they can be 

accommodated within the remolded template, as illustrated for β-acoradiene in Figure 

7.7.  
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Altering the active site contour of EIZS alters the conformations and cyclization 

trajectories of FPP and reactive carbocation intermediates, and the formation of 

alternative products appears to depend on how well a particular alternative product fits 

the remolded active site contour in a mutant cyclase. Additionally, the F96A and F198A 

substitutions could compromise the potential stabilization of carbocation intermediates by 

cation-π interactions. Some of the sesquiterpenes generated by these aromatic mutants 

have previously been observed as side products generated by both wild-type and mutant 

EIZS enzymes (Lin, 2009), while three sesquiterpene products have not previously been 

observed with this cyclase. 

 

(E)-β-Farnesene, the major product (70%) formed by F96A EIZS, results from 

deprotonation at C-31 of the allylic cation that results from the initial ionization of FPP; 

other reaction products include sesquisabinene-A, Z-γ-bisabolene, and an unidentified 

hydrocarbon presumed to be a sesquiterpene based on mass spectrometry, with m/z = 

204. F198A EIZS generates sesquisabinene-A, (E)-β-farnesene, zizaene, β-acoradiene, Z-

α-bisabolene, sesquiphellandrene, Z-γ-bisabolene and 3 unidentified sesquiterpenes. 

Interestingly, F198A EIZS generates no epi-isozizaene. The predominant product of 

W203F EIZS is Z-γ-bisabolene, generated by the abstraction of a proton from the 

intermediate bisabolyl cation (Figure 7.6). epi-Isozizaene accounts for 14% of the 

products of the W203F mutant; the remaining products include sesquisabinene, (E)-β-

farnesene, zizaene, and 4 unidentified sesquiterpenes. It is notable that epi-isozizaene 

biosynthetic activity is preserved, if only partially so, in the EIZS mutant with the most 
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conservative aromatic-aromatic substitution, which presumably preserves more of the 

general contour and electrostatic profile of the active site. 

 

7.4 Crystal Structures of Mutant EIZS 

 7.4.1 F198A EIZS-Mg2+
3-PPi-BTAC complex 

In order to investigate structural changes in the active site resulting from 

mutagenesis of aromatic residues, the X-ray crystal structure of F198A EIZS was 

determined at 1.64 Å resolution. This mutant was selected for X-ray crystallographic 

study because it retains some catalytic activity (Table 7.3) and exhibits a remarkably 

altered product array (Table 7.4). Overall, the F198A mutation results in minimal 

structural perturbations, and the r.m.s. deviation between the structure of wild-type EIZS 

and F198A EIZS is 0.10 Å for 340 Cα atoms. In the active site, the largest structural 

changes resulting from the F198A substitution are a ~30o rotation of the side chain of F95 

and an alternative rotamer of M73. The binding mode of Mg2+
3-PPi is identical to that 

observed in the wild-type enzyme; however, the BTAC molecule occupies an alternative 

position such that its benzyl ring makes quadrupole-quadrupole interactions with the 

aromatic rings of F95, F96, W203, and W325 (Figure 7.8). Surprisingly, 4 solvent 

molecules are observed in the active site, forming a hydrogen bonding network with 

N233 and the backbone carbonyl of A236. Comparison of the contours of WT and 

F198A EIZS helps to explain the production of side products such as β-acoradiene by 

F198A EIZS, due to the higher complementary in shape to bisabolene-derived cyclization 

products (Figure 7.7). 
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 Figure 7.7. (a) A stereoview of the active site surface contour encapsulated by the 

closed conformation of EIZS is shown as magenta meshwork. The aspartate-rich motif 

(red) and the NSE motif (orange) are oriented as in Figure 1. (b) The cyclization product, 

epi-isozizaene, is modeled into the enclosed active site contour of EIZS (magenta 

meshwork), and the location of the Mg2+
3-PPi cluster is shown as a visual reference. (c) 

The enclosed active site contour of F198A EIZS (light brown meshwork) into which the 

new cyclization product β-acoradiene is modeled. The remolded active site contour in 

this mutant prevents epi-isozizaene formation but permits the formation of new or 

alternative sesquiterpene products predominantly derived from the bisabolyl carbocation 

intermediate.  
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Figure 7.8. Stereoview of the active site of F198A EIZS-Mg2+
3-PPi-BTAC 

complex. Simulated annealing omit maps (black) of the PPi anion, Mg2+ ions, and BTAC 

in the active site of F198A EIZS, contoured at 5σ. Note the alternative position of BTAC 

resulting from the F198A mutation. 
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7.4.2 L72V, A236G and V329A EIZS-Mg2+
3-PPi-BTAC complexes 

Crystal structures of the L72V, A236G and V329A EIZS- Mg2+
3-PPi-BTAC 

complexes were determined at 2.10 Å, 1.76 Å, and 1.95 Å respectively. These mutants 

were chosen for crystallography because they expressed well and, once purified, were 

stable and well behaved in solution. Notably, each of these three mutations replaced a 

larger residue with a smaller residue, resulting in slight changes to the active site cavity 

contour without altering the polarity of the cavity. All three mutants crystallized under 

the same conditions as the WT enzyme, including the addition of pyrophosphate and 

BTAC, resulting in the respective mutant EIZS-Mg2+
3-PPi-BTAC complexes. Overall, 

each single mutation caused minimal structural perturbations; the rmsd between the 

structure of WT EIZS and the L72V, A236G and V329A mutants is 0.13 Å, 0.096 Å, and 

0.125 Å respectively for 340 Cα atoms. The binding mode of the trinuclear Mg2+ cluster 

and pyrophosphate was unchanged in the three mutants, and furthermore the position and 

orientation of BTAC was also unchanged, except for the L72V mutant in which BTAC 

moved ~0.5 Å deeper into the active site and rotated by ~20o (Figure 7.9). Minimal 

changes in the active site are confirmed by active site volume calculations using the 

program VOIDOO (Kleywegt, 1994). After removing BTAC’s coordinates from the 

active site, the calculated volume of the WT cavity is 62.22 Å3, compared with 62.71 Å3 

for L72V, 62.86 Å3 for A236G and 61.71 Å3 for V329A. To determine whether these 

seemingly trivial volume changes result in altered products arrays, future experiments 

include GC-MS analysis of the products of these mutants. 
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 Figure 7.9. Stereoview of an overlay of the active sites of WT (green), L72V 

(cyan), A236G (blue) and V329L (purple) EIZS-Mg2+
3-PPi-BTAC complexes. 
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7.5 Discussion 

Mutagenesis of aromatic residues that contribute directly to the active site contour 

significantly compromises the fidelity of epi-isozizaene biosynthesis (Figure 7.6), with 

the F198A substitution completely suppressing epi-isozizaene formation and redirecting 

the cyclization cascade toward the generation of alternative acyclic, monocyclic, and 

bicyclic sesquiterpenes. Thus, remolding the active site contour by mutagenesis opens up 

new cyclization trajectories while closing off old ones. 

 

The appearance of low levels of new or alternative cyclization products resulting 

from mutagenesis of the active site contour in a terpenoid cyclase may reflect past or 

future evolutionary potential, i.e., catalytic promiscuity in enzyme function may provide 

a "toehold of evolution" (Petsko, 1993). The evolution of biosynthetic diversity in this 

family of enzymes is achieved by simply remolding the active site contour to promote 

one cyclization pathway while suppressing hundreds of others, and it is notable that this 

is readily achieved by only a handful of amino acid substitutions. The current work 

represents the first step in deciphering the relationship between the structure of the EIZS 

active site and its biosynthetic specificity as a product-like template for terpenoid 

cyclization reactions: the three-dimensional contour of the active site can be remolded to 

better fit another product and disfavor others, even to the point of excluding epi-

isozizaene formation. That the biosynthetic specificity of a terpenoid cyclase is so 

sensitive to and so readily manipulated by minimal mutagenesis in nature or in the 

laboratory will likely contribute to the growing structural and stereochemical diversity of 

the terpenome. 
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Chapter 8: Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases 

 

8.1 Introduction 

Terpenoid synthases are ubiquitous enzymes that catalyze the formation of 

structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid 

coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and 

animals share the class I terpenoid synthase fold. This family of enzymes, which is 

responsible for such a diverse range of products, is of great interest medicinally since 

many terpenoid natural products exhibit anti-cancer, anti-malarial, and anti-microbial 

activities (Aharoni, 2005). Furthermore, in humans, the 15 carbon linear isoprenoid 

farnesyl diphosphate (FPP) is a precursor in the biosynthesis of steroids and is also 

utilized for posttranslational prenylation of Ras in GTPase signaling (Rondeau, 2006; 

Agrawal, 2009). Recently, human farnesyl diphosphate synthase (FPP synthase) has been 

identified as the target of nitrogen-containing bisphosphonate drugs used for the 

treatment of bone diseases such as osteoporosis, hypercalcemia, and metastatic bone 

disease (Ebetino, 2005; Licata, 2005). Moreover, protozoan FPP synthase homologues 

have recently been identified as targets for the treatment of parasitic infections, including 

Chagas disease and African sleeping sickness (Ferella, 2008).  

 

Despite generally low amino acid sequence identity class I terpenoid synthases, 

which adopt the FPP synthase α-helical fold, contain conserved metal binding motifs that 

coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the 

flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the 
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departure of the diphosphate leaving group to generate a carbocation that initiates 

catalysis. Review of the available crystal structures of class I terpenoid synthases 

complexed with trinuclear metal clusters and either isoprenoid diphosphates or inorganic 

pyrophosphate highlights the conserved structural aspects of the trinuclear metal cluster 

and the additional conserved hydrogen bond donors that are required for catalysis.  

 

 8.2 Isoprenoid Coupling Enzymes 

 8.2.1 Farnesyl diphosphate synthase 

 Farnesyl disphosphate synthase, the archetypical prenyltransferase, catalyzes the 

formation of farnesyl diphosphate (FPP), the linear isoprenoid precursor of sesquiterpene 

natural products. Chain elongation to form FPP proceeds in two distinct steps (Figure 

4.1): first, isopentenyl disphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are 

coupled to form geranyl diphosphate (GPP), and then a second molecule of IPP is 

coupled to GPP to form FPP.  The first crystal structure of FPP synthase was that of the 

avian enzyme (Tarshis, 1994), which revealed a novel α-helical fold. The structure 

revealed two conserved aspartate-rich (DDXXD) sequences (Ashby, 1990) on helices D 

and H, which flank the mouth of the active site cavity. Additionally, a single Sm3+ ion, 

used for heavy metal derivatization for MIR phasing, was bound by each DDXXD motif.   

 

A decade later, the crystal structure of E. coli FPP synthase was the first to reveal 

the binding of a trinuclear magnesium cluster in the active site of an isoprenoid coupling 

enzyme (Hosfield, 2004), similar to the trinuclear magnesium clusters previously 

observed in fungal and plant terpenoid cyclases (Rynkiewicz, 2001; Whittington, 2002). 
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The structure of E. coli FPP synthase was solved as the enzyme-substrate ternary 

complex with the noncleavable DMAPP analogue, dimethylallyl S-thiolodiphosphate 

(DMSPP), and a molecule of IPP. Applying the Mg2+
A, Mg2+

B, and Mg2+
C nomenclature 

first established for the trinuclear magnesium cluster of trichodiene synthase 

(Rynkiewicz, 2001), the crystal structure of the E. coli FPP synthase-Mg2+
3-DMSPP-IPP 

complex reveals octahedral coordination of all three metal ions (Figure 8.1 (a)): Mg2+
A is 

coordinated by D105 and D111 of the first aspartate-rich motif on helix D, two 

diphosphate oxygen atoms, and two water molecules; Mg2+
C is coordinated by the side 

chains of D105, and D111, as well as one diphosphate oxygen and three water molecules; 

and Mg2+
B is coordinated by D244 of the second aspartate-rich motif, two diphosphate 

oxygen atoms, and three water molecules. The diphosphate group of DMSPP also accepts 

hydrogen bonds from R116, K202, and K258.  

 

More recently, the structure of the human FPP synthase-Mg2+
3-zoledronate-IPP 

complex (Rondeau, 2006) reveals complete conservation of Mg2+
3-diphosphate 

recognition between E. coli and human FPP synthases (Figure 8.1 (b)). In human FPP 

synthase, two DDXXD motifs coordinate to the Mg2+
3 cluster: the first aspartate of the 

D103DXXD107 (hereafter boldface residues indicate Mg2+ coordinating residues) motif 

coordinates to Mg2+
A and Mg2+

C with syn,syn-bidentate geometry, and one oxygen atom 

of D107 bridges Mg2+
A and Mg2+

C with syn,anti-coordination stereochemistry; the first 

aspartate of the second D243DXXD motif coordinates to Mg2+
B. The diphosphate moiety 

additionally accepts hydrogen bonds from R112, K200, and K257. Interestingly, the 

closed active site conformation is also stabilized by newly formed hydrogen bonds 
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between K266 and D107 and D174. The r.m.s. deviation between the unliganded enzyme 

and the closed conformation of the Mg2+
3-zoledronate-IPP complex is 1.3 Å (341 Cα 

atoms). Analysis of X-ray crystal structures of several human FPP synthase-Mg2+
3-

bisphosphonate complexes suggests a two-step mechanism for substrate binding 

(Rondeau, 2006). First, the binding of DMAPP and 3 Mg2+ ions brings together the two 

DDXXD motifs, and loops D-E and H-I come together to form a hydrogen bond between 

T111 and the backbone of I258. These structural changes close the entrance to the allylic 

binding site and complete the formation of the IPP binding site. Secondly, as IPP binds, 

and as the basic C-terminal tail of the enzyme becomes ordered and closes the IPP 

binding site, IPP and DMAPP are properly oriented for catalysis.  

 

The binding of a trinuclear magnesium cluster is similarly conserved in FPP 

synthases from parasitic organisms. The flagellated protozoan T. cruzi causes Chagas 

disease, primarily in Latin America (Tanowitz, 2009). Bisphosphonates have emerged as 

a potential treatment for Chagas disease by inhibiting T. cruzi FPP synthase (Garzoni, 

2004). The crystal structures of T. cruzi FPP synthase-Mg2+
3-inhibitor complexes 

(Gabelli, 2006) suggest conservation of the trinuclear magnesium cluster for substrate 

binding and catalysis. In the complex with risedronate (Figure 8.1 (c)), the first 

carboxylate of the D98DXXD102 motif on helix D coordinates to Mg2+
A and Mg2+

C with 

syn,syn-bidentate geometry, and one oxygen atom of D102 bridges Mg2+
A and Mg2+

C 

with syn,anti-coordination stereochemistry. The first carboxylate of the D250DXXD motif 

on helix H is the only residue that directly coordinates to Mg2+
B; however, D251 and 

D254 indirectly interact with Mg2+
B via bridging water molecules. Each Mg2+ ion is 
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coordinated with octahedral geometry, with non-protein coordination sites occupied by 

oxygen atoms of the inhibitor phosphonate groups and water molecules. Oxygen atoms of 

the two risedronate phosphonate groups accept hydrogen bonds from the side chains of 

R107, K207, and K264.  

 

Trypanosoma brucei is an African parasitic protist, and its FPP synthase is related 

to that of T. cruzi by 70 % amino acid sequence identity. The crystal structure of T. 

brucei FPP synthase complexed with 3 Mg2+
 ions and the bisphosphonate inhibitor BPH-

721 (Zhang, 2009) reveals conservation of the trinuclear magnesium cluster for substrate 

binding and catalysis (Figure 8.1 (d)). The first carboxylate of the D103DXXD107 motif on 

helix D coordinates to Mg2+
A and Mg2+

C with syn,syn-bidentate geometry, and one 

oxygen atom of D107 bridges Mg2+
A and Mg2+

C with syn,anti-coordination 

stereochemistry. The first aspartate in the D255DXXD motif on helix H is the only residue 

that directly coordinates to Mg2+
B; however, D256 and D259 indirectly interact with 

Mg2+
B via bridging water molecules. Oxygen atoms of the two phosphonate groups of the 

inhibitor BPH-721 also accept hydrogen bonds from the side chains of R112, K212, and 

K269 (Mao, 2006). 
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Figure 8.1. Conservation of Mg2+
3-PPi and -diphosphate binding motifs among 

isoprenoid coupling enzymes. Metal coordination (black) and hydrogen bond (red) 

interactions with phosphate(s) are indicated. (a) E. coli FPP synthase-Mg2+
3-DMSPP-IPP 

complex (PDB code 2EGW); (b) human FPP synthase-Mg2+
3-zoledronate complex (PDB 

code 2F8Z); (c) T. cruzi FPP synthase-Mg2+
3-risedronate complex (PDB code 1YHL); (d) 

T. brucei FPP synthase-Mg2+
3-BPH-721 complex (PDB code 3DYH); (e) S. cerevisae 

GGPP synthase-Mg2+
2-BPH-252 complex (PDB code 2Z4X); (f) C. parvum nonspecific 

prenyl synthase-Mg2+
3-zoledronate complex (PDB code 2Q58). 



 137 

  8.2.2 Geranylgeranyl diphosphate synthase 

 Geranylgeranyl disphosphate synthase (GGPP synthase) catalyses the 

condensation of IPP and FPP to form GGPP (Figure 4.1). Recently, GGPP synthase has 

emerged as a pharmaceutical target for the treatment of cancer since geranylgeranylation 

is involved in Rac, Rap and Rho signaling pathways (Russell, 2006). The crystal 

structures of GGPP synthases from Thermus thermophilus (Nishio, 2004), Sinapis alba 

(Kloer, 2006), and Saccharomyces cerevisiae (Chang, 2006) have been determined in 

addition to that of human GGPP synthase (Kavanagh, 2006). However, a crystal structure 

containing a complete trinuclear magnesium cluster has only been observed in the active 

site of monomer B of the S. cerevisiae GGPP synthase-Mg2+
3-BPH-252 complex (Figure 

8.1 (e)) (Chen, 2008). The first aspartate of the D80DIED84 motif coordinates to Mg2+
A 

and Mg2+
C with syn,syn-bidentate geometry, and one oxygen atom of D84 bridges Mg2+

A 

and Mg2+
C with syn,anti-coordination stereochemistry; the first aspartate of the second 

D214DYLN motif coordinates to Mg2+
B. Each Mg2+ ion is coordinated with octahedral 

geometry, with non-protein coordination sites occupied by oxygen atoms of the inhibitor 

phosphonate groups and water molecules. Oxygen atoms of the two phosphonate groups 

of the inhibitor BPH-252 also accept hydrogen bonds from R89, K174 and K238. 

  

 8.2.3 Nonspecific prenyl synthase 

 Recently, the crystal structure of a nonspecific prenyl synthase from 

Cryptosporidium parvum has been determined (Artz, 2008). C. parvum causes livestock 

infections and is classified as a bioterrorism threat by the Centers for Disease Control and 

Prevention (Hashsham, 2004). The enzyme has a unique ability to catalyze chain 
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elongation reactions with isoprenoid substrates of various lengths to generate C20-C45 

linear isoprenoids products. The crystal structure of the enzyme reveals conservation of 

the classic α-helical terpenoid synthase fold, and its complex with the inhibitor 

risedronate reveals that a complete trinuclear magnesium cluster is coordinated by 

DDXXD and NDXXD motifs (Figure 8.1 (f)) (Artz, 2008). The first carboxylate of the 

D115DXXD119 motif on helix D is oriented for coordination to Mg2+
A and Mg2+

C with 

syn,syn-bidentate geometry; however, the distance between D115 and Mg2+
C is 3.14 Å, 

thus too long to be considered an inner-sphere metal coordination interaction. One 

oxygen atom of the third aspartate, D119, bridges Mg2+
A and Mg2+

C with syn,anti-

coordination stereochemistry. N254 of the N254DXXD motif on helix H coordinates to 

Mg2+
B, and D255 and D258 indirectly interact with Mg2+

B via bridging waters. The 

diphosphate moiety additionally accepts hydrogen bonds from K210 and G251, and the 

closed active site conformation is stabilized by hydrogen bonds between D116 of the 

DDXXD motif and R124, and D255 of the NDXXD motif and Q251. 

 

 8.3 Isoprenoid Cyclization Enzymes 

 8.3.1 Fungal cyclases 

 The sesquiterpene cyclase trichodiene synthase from Fusarium sporotrichioides 

catalyzes the first committed step in the biosynthesis of nearly 100 different trichothecene 

mycotoxins. Trichodiene synthase is one of the most thoroughly studied terpenoid 

cyclases, and enzymological and crystallographic studies have illuminated important 

features in the cyclization mechanism (recently reviewed in (Christianson, 2006)). Recent 

computational studies have also provided new insight on the catalytic mechanism (Hong, 
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2009). The structures of unliganded trichodiene synthase and the trichodiene synthase-

Mg2+
3-PPi complex were the first to reveal the binding of a trinuclear magnesium cluster 

in the active site of a terpenoid synthase (Figure 8.2 (a)) (Rynkiewicz, 2001). The first 

aspartate of the D100DXXD motif on helix D coordinates to Mg2+
A and Mg2+

C with 

syn,syn-bidentate geometry. The second metal binding motif N225DLMS229FYKE333 is 

located on helix H and coordinates to Mg2+
B. All three metal ions are additionally 

coordinated by PPi and solvent molecules to complete octahedral coordination polyhedra.    

 

Superposition of the unliganded and Mg2+
3-PPi complexed trichodiene synthase 

structures reveals conformational changes that cap the active site upon ligand binding. 

Overall, the r.m.s. deviation between the native and liganded structures is 1.4 Å for 349 

Cα atoms.  Interestingly, upon ligand binding, D101 in the aspartate-rich motif forms a 

salt bridge with R304, which donates a hydrogen bond to PPi. In addition to Mg2+ 

coordination interactions, the PPi anion also accepts hydrogen bonds from R182, K232, 

and Y305. The D101-R304-PPi hydrogen bond network appears to link substrate binding 

with the transition between the open and closed active site conformations. Assuming that 

the diphosphate group of FPP triggers the same structural changes as observed for PPi, 

the substrate is sequestered from bulk solvent and the complete trinuclear magnesium 

cluster triggers departure of the diphosphate leaving group to generate the carbocation 

that initiates the cyclization cascade. The seemingly conservative D100E mutation results 

in a 22-fold loss in catalytic activity (measured by kcat/KM) and structural studies indicate 

that the additional methylene group of E100 perturbs the Mg2+
3-PPi complex such that 

Mg2+
A binding is weakened, E233 breaks its coordination interaction with Mg2+

B, and 
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Mg2+
C is dissociated; additionally, hydrogen bond interactions between PPi and R182 and 

R304 are broken (Rynkiewicz, 2002; Vedula, 2005b).  

 

The role of the D101-R304 salt bridge in closing the trichodiene synthase active 

site has been explored in mutagenesis studies. The D101E mutation results in a moderate 

5-fold decrease in catalytic activity; however, there are no crystal structures of this 

mutant available for study (Cane, 1996). In contrast, the R304K mutant results in a 5000 

fold decrease in catalytic activity, and the crystal structure of R304K trichodiene synthase 

complexed with Mg2+
3-PPi-(R)-azabisabolene reveals the loss of the expected hydrogen 

bond between K304 and D101 (Vedula, 2005a). Although the PPi binding motif remains 

intact in the R304K mutant, it is evident that the R304-D101 hydrogen bond is critical for 

properly activating the substrate diphosphate group. In contrast, while Y305 donates a 

hydrogen bond to PPi in the wild-type enzyme complex with Mg2+
3-PPi, catalytic activity 

and PPi binding are not significantly affected in the Y305F mutant (Cane, 1995; Vedula, 

2005b).             

 

Another fungal cyclase that has been the subject of extensive structural and 

functional study is aristolochene synthase, which is a sesquiterpene cyclase that catalyzes 

the cyclization of FPP to form (+)-aristolochene. Structures of aristolochene synthases 

from Penicillium roqueforti (Caruthers, 2000) and Aspergillus terreus (Shishova, 2007) 

have been solved; these enzymes are related by 61 % amino acid sequence identity. 

Although there is no crystal structure of P. roqueforti aristolochene synthase complexed 

with Mg2+
3-PPi, the structure of the A. terreus aristolochene synthase Mg2+

3-PPi complex 
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(Shishova, 2007) (Figure 8.2 (b)) indicates conservation of the Mg2+
3-PPi binding motif 

first observed in trichodiene synthase (Rynkiewicz, 2001). 

 

The aspartate-rich motif of aristolochene synthase on helix D appears as 

D90DXXE. The carboxylate side chain of D90 coordinates to Mg2+
A and Mg2+

B with 

syn,syn-bidentate geometry, and is the only residue in the aspartate motif that coordinates 

to the Mg2+ ions. The carboxylate group of D91 makes a salt bridge with R304, and the 

final carboxylate in the motif is E119, which accepts a hydrogen bond from a water 

molecule coordinated to Mg2+
A. The second metal binding motif N219DIYS223YEKE227 is 

located on helix H and chelates Mg2+
B (Shishova, 2007), consistent with the structures of 

terpenoid cyclases from plants, bacteria, and fungi (Starks, 1997; Rynkiewicz, 2001; 

Whittington, 2002; Hyatt, 2007; Aaron, 2010). As found in the active sites of trichodiene 

synthase (Rynkiewicz, 2001) and epi-isozizaene synthase (Aaron, 2010), PPi binding in 

aristolochene synthase is similarly accommodated by hydrogen bonds donated from two 

arginines (R175 and F314), one lysine (K226), and one tyrosine (Y315) (Figure 8.2 (b)). 
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Figure 8.2. Conservation of Mg2+
3-PPi and -diphosphate binding motifs among 

terpenoid cyclases. Metal coordination (black) and hydrogen bond (red) interactions with 

phosphate(s) are indicated. (a) F. sporotrichioides trichodiene synthase-Mg2+
3-PPi 

complex (PDB code 1JFG); (b) A. terreus aristolochene synthase-Mg2+
3-PPi complex 

(PDB code 2OA6); (c) S. coelicolor epi-isozizaene synthase-Mg2+
3-PPi complex (PDB 

code 3KB9); (d) N. tabacum 5-epi-aristolochene synthase-Mg2+
3-farnesyl 

hydroxyphosphonate complex (PDB code 5EAT; note that many of the metal-phosphate 

interactions indicated are too long to be considered inner-sphere metal coordination 

interactions); (e) S. officinalis (+)-bornyl diphosphate synthase-Mg2+
3-PPi complex (PDB 

code 1N22; metal ions are labeled according to the convention first established for 

trichodiene synthase); (f) M. spicata limonene synthase-Mn2+
3-FLPP complex (PDB code 

2ONG; conserved hydrogen bonding is indicated between D353 and R315 despite poor 

geometry).  
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8.3.2 Bacterial cyclases  

 In recent years, prokaryotes have emerged as sources of diverse isoprenoids. 

Specifically, a large number of novel isoprenoids have been isolated from organisms 

belonging to the taxonomical order Actinomycetales (Daum, 2009). The crystal structures 

of two bacterial sesquiterpene cyclases have been solved, and both derive from 

Actinomycetales: pentalenene synthase from Streptomyces UC5319 (Lesburg, 1997) and 

epi-isozizaene synthase from Streptomyces coelicolor (Aaron, 2010). Pentalenene 

synthase catalyzes the cyclization of FPP to form the tricyclic sesquiterpene pentalenene 

in the first committed step in the biosynthesis of the pentalenolactone family of 

antibiotics (Seto, 1980). Although the structure of pentalenene synthase was the first to 

be reported of a terpenoid cyclase and demonstrated that the terpenoid cyclase shared the 

FPP synthase fold first observed for avian FPP synthase (Tarshis, 1994), no structure of 

this bacterial terpenoid cyclase complexed with metal ions is available.  

 

 However, the crystal structure of epi-isozizaene synthase complexed with Mg2+
3-

PPi-BTAC (BTAC is the benzyltriethylammonium cation, a crystallization additive) 

reveals that Mg2+
3-PPi binding motifs are conserved between fungal and bacterial 

terpenoid cyclases (Figure 8.2 (c)) (Aaron, 2010). The first aspartate of the aspartate-rich 

motif D99DRHD coordinates to Mg2+
A and Mg2+

C with syn,syn-bidentate geometry, and 

Mg2+
B is chelated by N240DLCS244LPKE248.  Each Mg2+ ion is coordinated with 

octahedral geometry and nonprotein coordination sites are occupied by oxygen atoms of 

PPi and water molecules. The PPi anion also accepts hydrogen bonds from the side chains 

of R194, K247, R338, and Y339 which correspond to R182, K232, R304 and Y305 of 
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trichodiene synthase (Rynkiewicz, 2001) and R175, K226, R314 and Y315 of 

aristolochene synthase (Shishova, 2007). Pentalenene synthase and epi-isozizaene 

synthase share 24 % amino acid sequence identity, and residues that interact with Mg2+ 

ions or PPi in epi-isozizaene synthase are conserved in pentalenene synthase. 

Superposition of the liganded closed structure of epi-isozizaene synthase with unliganded 

pentalenene synthase reveals a very similar alignment of the metal binding motifs, with 

pentalenene synthase helices D and H 1.5 Å further apart than in epi-isozizaene synthase. 

Accordingly, upon substrate or PPi binding the active site of pentalenene synthase 

presumably undergoes a conformational change to a closed conformation comparable to 

that observed for the epi-isozizaene synthase Mg2+
3-PPi-BTAC complex. 

 

Although the second aspartate of the epi-isozizaene synthase aspartate-rich motif, 

D100, does not directly interact with the Mg2+ ions or PPi, it does accept a hydrogen bond 

from R338, which also donates a hydrogen bond to PPi. Site-directed mutagenesis reveals 

that the D100N mutation causes a >95 % loss of activity with respect to the native 

enzyme (Lin, 2009), suggesting that the D100N mutation disrupts the D100-R338-PPi 

hydrogen bond network presumed to be important for substrate recognition. As 

previously discussed, the second aspartate in the aspartate-rich motifs of trichodiene 

synthase and aristolochene synthase similarly stabilizes a hydrogen bond network with 

R304 and PPi (Rynkiewicz, 2001; Shishova, 2007), so it appears that the bacterial and 

fungal cyclases share the same molecular strategy for linking the molecular recognition 

of the substrate diphosphate group with the active site closure mechanism (Aaron, 2010). 

The third aspartate in the aspartate rich motif of epi-isozizaene synthase, D103, points 
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away from the active site and makes no hydrogen bond interactions that are involved in 

substrate binding, as also observed in Mg2+
3-PPi complexes of trichodiene synthase. The 

absence of a structural or catalytic role for the terminal aspartate in the aspartate-rich 

motif of bacterial terpenoid cyclases is supported by mutagenesis of the corresponding 

residue in pentalenene synthase: the D84E mutation results in a mere 3-fold loss of 

catalytic activity (as measured by kcat/KM), whereas the D80E and D81E mutations yield 

3500- and 400-fold reductions in activity, respectively (Seemann, 2002). 

 

 8.3.3 Plant Cyclases 

 5-epi-Aristolochene synthase from Nicotiana tabacum catalyzes the cyclization of 

FPP to form 5-epi-aristolochene in the first committed step in the biosynthesis of the 

antifungal phytoalexin capsidiol (Starks, 1997). As the first crystal structure determined 

of a plant terpenoid cyclase and the second terpenoid cyclase structure to be reported, the 

structure of 5-epi-aristolochene synthase reveals the presence of 2 domains (Starks, 

1997): a catalytically active C-terminal domain that adopts the α-helical class I terpenoid 

synthase fold, and an N-terminal domain of unknown function that exhibits an α-helical 

fold similar to that of a class II terpenoid synthase (Wendt, 1998). Two metal-binding 

motifs are identified: an aspartate-rich motif D301DXXD305, and a D444DTAT448YEVE452 

motif. While the binding of a trinuclear magnesium cluster was identified in the 5-epi-

aristolochene synthase farnesyl hydroxyphosphonate complex (Figure 8.2 (d)), analysis 

of the structure reveals that many of the coordination interactions with Mg2+ ions range 

2.2 Å – 3.7 Å, longer than expected for ideal Mg2+ coordination (Zheng, 2008). This 

could suggest that the structure is that of a partially closed conformation. Nonetheless, 
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D301 and D305 of the aspartate-rich motif coordinate to Mg2+
A and Mg2+

C, while the 

“DTE” motif chelates Mg2+
B.     

 

Interestingly, metal binding motifs are shared between sesquiterpene cyclases and 

monoterpene cyclases from plants. The monoterpene cyclase (+)-bornyl diphosphate 

synthase catalyzes the cyclization of geranyl diphosphate (GPP) to form (+)-bornyl 

diphosphate. This cyclization is unusual in that the substrate diphosphate group is 

reincorporated into the product. The structure of (+)-bornyl diphosphate synthase from 

Salvia officinalis was the first of a monoterpene cyclase (Whittington, 2002), and remains 

the only monoterpene cyclase for which structures have been solved in unliganded and 

liganded states. The crystal structure of (+)-bornyl diphosphate synthase reveals the two-

domain α-helical architecture first observed for the plant sesquiterpene synthase 5-epi-

aristolochene synthase: a catalytically active C-terminal domain adopting the class I 

terpenoid synthase fold, and an N-terminal domain adopting the class II terpenoid 

synthase fold (however, the N-terminal polypeptide caps the active site of the C-terminal 

domain in ligand complexes) (Whittington, 2002). The (+)-bornyl diphosphate synthase-

Mg2+
3-PPi complex reveals that conserved metal-binding motifs and the PPi anion (or the 

diphosphate group of the product itself, (+)-bornyl diphosphate) coordinate to 3 Mg2+ 

ions (Figure 8.2 (e)). The first carboxylate of the D351DXXD355 motif coordinates to 

Mg2+
A and Mg2+

C with syn,syn-bidentate geometry, and D355 bridges Mg2+
A and Mg2+

C 

with syn,anti-coordination stereochemistry. Interestingly, unlike metal binding in the 

active sites of bacterial and fungal cyclases, both the first and third aspartates in the 

DDXXD motif of plant terpenoid cyclases coordinate to the catalytic metal ions.  The 



 147 

second metal binding motif, D496DKGT500SYFE504, chelates Mg2+
B (Whittington, 2002). 

In addition to metal ion coordination interactions, the PPi anion accepts hydrogen bonds 

from R314, R493, and K512. Comparison of the structures of unliganded and Mg2+
3-PPi 

complexed (+)-bornyl diphosphate synthase reveals several Mg2+
3-PPi induced 

conformational changes; however, the r.m.s. deviation of 306 Cα atoms in the catalytic 

C-terminal domain is only 0.6 Å (Whittington, 2002), significantly lower than observed 

for ligand-induced conformational changes in trichodiene synthase (1.4 Å) (Rynkiewicz, 

2001) and aristolochene synthase (1.8 Å) (Shishova, 2007).    

 

The recent structure determination of another plant monoterpene cyclase, 

limonene synthase from Mentha spicata (Hyatt, 2007), similarly reveals conservation of a 

trinuclear metal cluster in a cyclization reaction that generates 94% (–)-(4S)-limonene, 

and ~2% myrcene, (-)-α-pinene, and (-)-β-pinene (Williams, 1998). Limonene synthase 

shares the 2-domain α-helical fold common to plant terpenoid cyclases. Limonene 

synthase displays similar activity with Mg2+ or Mn2+ (a common feature of some 

terpenoid cyclases), and the structure of the enzyme has been determined in complex with 

3 Mn2+ ions and the intermediate analogue 2-fluorolinalyl diphosphate (FLPP) (Figure 

8.2 (f)) (Hyatt, 2007). Metal coordination interactions are similar to those observed in 

(+)-bornyl diphosphate synthase (Whittington, 2002). In limonene synthase, the first 

carboxylate of the D352DXXD356 motif coordinates to Mn2+
A and Mn2+

C with syn,syn-

bidentate geometry, and one oxygen atom of D356 bridges Mn2+
A and Mn2+

C with 

syn,anti-coordination stereochemistry. Two out of three residues in the second metal 

binding motif, D496DLGT500SVEE504, chelate Mg2+
B; the position of the side chain of 
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E504 is not indicated and is presumably disordered. Additionally, the γ-hydroxyl of T500 

is 3.2 Å away from Mg2+
B, which is too long to be considered an inner sphere 

coordination interaction. The diphosphate group of the bound intermediate analogue 

FLPP accepts hydrogen bonds from R315, R493, and K512 (Hyatt, 2007).   

 

Finally, the sesquiterpene cyclase (+)-δ-cadinene synthase from Gossypium 

arboreum (tree cotton) catalyzes the first committed step in the biosynthesis of the 

triterpene phytoalexin gossypol, a major defense metabolite synthesized by cotton plants 

(Chen, 1995). The recently determined structure of the unliganded enzyme and its 

complex with 2-fluorofarnesyl diphosphate (2F-FPP) reveals that minimal structural 

deviations result from ligand binding (the r.m.s. deviations are 0.28 Å and 0.50 Å 

between unliganded and liganded monomers A (514 Cα atoms) and B (494 Cα atoms), 

respectively) (Gennadios, 2009). In contrast with the plant terpenoid cyclases previously 

discussed (Starks, 1997; Whittington, 2002; Hyatt, 2007), (+)-δ-cadinene synthase 

contains a second aspartate-rich motif in place of the DTE motif on helix H. As 

previously discussed, this motif on helix H is common to chain elongation enzymes such 

as farnesyl diphosphate synthase, and (+)-δ-cadinene synthase is unique among known 

class I terpenoid cyclases in that it contains two aspartate-rich motifs for metal 

coordination. The structure of the liganded enzyme reveals a putative Mg2+
3 cluster 

(weak electron density characterizes the three Mg2+ ions); Mg2+
A and Mg2+

C are 

coordinated by D307 and D311 of the first D307DXXD311 motif, and Mg2+
B is coordinated 

by D451 and E455 of the second aspartate-rich motif, D451DVAE455 (Figure 8.3). 

However, many of the carboxylate-Mg2+ distances observed are too long for inner sphere 
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metal coordination interactions; therefore, the structure may reflect an incomplete 

transition between the “open” and “closed” active site conformations. The diphosphate 

moiety of 2F-FPP accepts one hydrogen bond from a nearby basic residue, R448. 
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Figure 8.3. The diphosphate binding site of (+)-δ-cadinene synthase from G. 

arboreum  (PDB code 3G4F) with a putative Mg2+
3 cluster and 2F-FPP bound. Metal 

ions are labeled according to convention established for trichodiene synthase. Some 

metal-phosphate interactions are too long to be considered inner-sphere metal 

coordination interactions, which could be a consequence of the nonproductive binding 

mode observed for 2F-FPP. 
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8.4 Discussion 

Although the metal-dependence of catalysis by class I terpenoid synthases has 

been known for decades (Robinson, 1970), it was not until 2001 that the crystal structure 

of a terpenoid cyclase-Mg2+
3-PPi complex (trichodiene synthase) revealed that a 

trinuclear metal cluster accommodates PPi binding; this trinuclear metal cluster is 

similarly implicated in binding and activating substrate farnesyl diphosphate for catalysis 

(Rynkiewicz, 2001). Since then, many X-ray crystal structures of isoprenoid coupling 

enzymes and terpenoid cyclases have been determined containing Mg2+
3 (or Mn2+

3) 

clusters. Comparisons of these structures reveal significant conservation in the 

constellation of metal ions and the residues that coordinate to these metal ions (Figures 

8.1 and 8.2) despite generally insignificant amino acid sequence identity among these 

enzymes. 

 

Trinuclear metal cluster coordination in FPP synthases is conserved among 

humans, bacteria and protozoans. Two aspartate-rich DDXXD binding motifs coordinate 

to 3 Mg2+ ions, which are also coordinated by the substrate diphosphate group. The first 

and last aspartate in the first DDXXD motif coordinate to Mg2+
A and Mg2+

C, and the first 

aspartate of the second DDXXD motif coordinates to Mg2+
B. Also conserved are one 

arginine and two lysine residues that donate hydrogen bonds to diphosphate oxygens; the 

conserved arginine residue also donates hydrogen bond(s) to the second aspartate in the 

first DDXXD motif (Figure 8.1 (a)-(d)). The crystal structures of other isoprenoid 

coupling enzymes, GGPP synthase and nonspecific prenyl synthase, similarly reveal 

conservation of Mg2+
3 binding motifs. Hydrogen bond interactions with PPi are also 
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conserved (Figure 8.1 (e)-(f)). 

 

It is notable that the constellation of three metal ions and hydrogen bond donors is 

also conserved, with minor variations, in terpenoid cyclases from plants, bacteria, and 

fungi  (Figure 8.2). First, Mg2+
A and Mg2+

C are coordinated by the first DDXXD motif: 

bacterial and fungal cyclases utilize only the first aspartate of this motif, whereas plant 

cyclases utilize the first and third aspartates of this motif (analogous to isoprenoid 

coupling enzymes). Second, the second aspartate-rich motif is usually replaced by an 

NDXXSXXX E motif in bacterial and fungal terpenoid cyclases and a DXXX TXXX E 

motif in plant terpenoid cyclases, in which boldface residues chelate Mg2+
B (although 

there can be some variations in this sequence, e.g., see (Zhou, 2009)). One exception, 

however, is (+)-δ-cadinene synthase, in which two aspartate-rich motifs coordinate to the 

trinuclear metal cluster. Third, residues that donate hydrogen bonds to PPi are conserved 

in terpenoid cyclases across different domains of life. Specifically, two arginines donate 

hydrogen bonds to diphosphate oxygens: one appears to replace a conserved lysine 

serving this function in the isoprenoid coupling enzymes, and the other also donates a 

hydrogen bond to the second aspartate of the first DDXXD motif (as observed in the 

isoprenoid coupling enzymes). In bacterial and fungal terpenoid cyclases, conserved 

lysine and tyrosine residues additionally donate hydrogen bonds to PPi. 

 

In all cases in which a complete Mg2+
3-PPi cluster is bound, two 6-membered ring 

chelates are formed with Mg2+
A and Mg2+

B (Figure 8.4). The conformations of these 6-

membered rings can vary, e.g., sofa, half-chair, etc. Such 6-membered ring chelates are 
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occasionally observed in metal-diphosphate binding interactions, e.g., in the binding of 

the substrate analogue imidodiphosphate to inorganic pyrophosphatase (Fabrichniy, 

2007).  

 

In summary, conservation of a trinuclear metal cluster is critical for catalysis by 

class I terpenoid synthases. This cluster not only serves to bind and orient the flexible 

isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers leaving 

group departure and initial carbocation formation. Conserved hydrogen bond donors in 

the terpenoid synthase active site assist the metal cluster in this function. That the 

trinuclear metal cluster is conserved for catalysis by terpenoid synthases from many 

domains of life suggests a common ancestry for this family of enzymes in the evolution 

of terpenoid biosynthesis.  
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Figure 8.4. Stereoview of the Mg2+
3-PPi cluster from epi-isozizaene synthase. Dashed 

lines (black) represent metal-coordination interactions. The PPi anion forms 6-membered 

ring chelates with Mg2+
A and Mg2+

B, both of which adopt distorted sofa conformations.      
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Chapter 9: Future Directions 

 

 Terpenoid cyclases initiate and chaperone cyclization reactions to generate a 

multitude of structurally complex terpenoid products with precise regio- and stereo- 

specificity. The striking diversity of the terpenome is a direct result of the plasticity of the 

terpenoid synthases (Segura, 2003). It has been shown that the active site of a terpenoid 

synthase is predominantly lined with inert amino acids, which play a minimal role in the 

chemistry of catalysis beyond serving as a template and chaperone for the reaction 

(Christianson, 2008). The plasticity of the terpenoid cyclase active site has been studied 

in many systems (Greenhagen, 2006; Yoshikuni, 2006; Aaron, 2010).  

 

A study of the sesquiterpene cyclase γ-humulene synthase provides an excellent 

example of the engineering potential of terpenoid cyclases. Abies grandis γ-humulene 

synthase, a promiscuous sesquiterpene cyclase, produces a mixture of 52 different 

terpenoid products. In the absence of a crystal structure of γ-humulene synthase, a 

homology model based on the known 5-epi-arisolochene synthase structure was used to 

identify “plasticity” residues in the γ-humulene synthase active site. The altered product 

profiles of a library of single-site mutants of the “plasticity” residues were determined 

and used to develop an algorithm to rationally design mutants using a combination of 

single-site mutations, based on the hypothesis that each plasticity residue is independent, 

meaning that the effect of a single mutation on the reaction mechanism is the same for the 

WT or any mutant form of the enzyme. Using their rational design algorithm, two to five 
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mutations were combined to create mutant enzymes with up to 13 times greater relative 

yields of the preferentially desired sesquiterpene product (Yoshikuni, 2006). 

 

 In this work, epi-isozizaene synthase (EIZS) has been identified as an excellent 

model system for studying the structure-function relationships of sesquiterpene cyclases. 

EIZS is a stable, monomeric enzyme that readily forms crystals which diffract to ~1.6 Å 

resolution, and accommodates single amino acids mutations to active site residues, 

facilitating its potential use as a template for the rational design of novel terpenoid 

cyclases. Proposed experiments to continue this work include completing a GC-MS 

analysis of the products of the aliphatic active site mutants (L72V, A236G, and V329A) 

discussed in Chapter 7, to determine whether these small modifications to the contour of 

the active site result in perturbed product ratios. In addition, determining the kinetic 

activity, product-arrays by GC-MS, and crystal structures of several additional EIZS 

active site mutants, namely F95A, F332A, H333A, and W325F, would provide a 

thorough understanding of which residues directly affect the chaperoned cyclization 

cascade. Furthermore, crystal structures of the active site mutants provide an accurate 

picture of the enzymatic template, which can be used for modeling and quantum chemical 

calculations. To test the hypothesis that the product of a terpenoid cyclase can be 

predicted by how well the contour of the active site complements the shape of the 

product, modeling software, such as AutoDock (Morris, 2009), will be tested to 

determine a matching score for the respective enzymatic products of each EIZS mutant. 

These scores will be used to predict and test EIZS double and triple mutants, and to 

facilitate engineering new terpenoid cyclization templates.  
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It is important to remember that protein crystal structures provide a static picture 

of a dynamic system. Therefore, the orientation of the residues that form the active site 

cyclization template may occupy alternative conformations when the enzyme binds FPP 

in the closed conformation, with respect to the observed positions of the side chains in the 

Mg2+
3-PPi-BTAC complexes determined. Additional proposed crystallography 

experiments include determining crystal structures of WT and mutant EIZS with 

substrate, or intermediate, analogues in order to observe the position of a partially folded 

substrate in the active site. A crystal structure containing a partially folded intermediate 

would offer insight into the role of the active site aromatic residues in stabilizing the 

cationic intermediates via cation-π interactions.   

 

The ultimate goal of the structure-function studies of the terpenoid cyclases is to 

increase our understanding of these enzymes to the point where it is possible to 

systematically alter the function of a terpene cyclase using a rational design strategy. The 

potential terpenoid rational design has also recently led to the launch of Allylix, a start-up 

company aiming to exploit the versatility and plasticity of these enzymes to cost 

effectively produces useful commercial quantities of useful and novel terpenoids (Allylix, 

2010). Exploiting the specificity and efficiency of these enzymes may have profound 

effects on the large-scale production of terpenoid products useful in the food, cosmetics 

and pharmaceutical industries.  
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