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Shape Representations Using Nested Descriptors

Abstract
The problem of shape representation is a core problem in computer vision. It can be argued that shape
representation is the most central representational problem for computer vision, since unlike texture or color,
shape alone can be used for perceptual tasks such as image matching, object detection and object
categorization.

This dissertation introduces a new shape representation called the nested descriptor. A nested descriptor
represents shape both globally and locally by pooling salient scaled and oriented complex gradients in a large
nested support set. We show that this nesting property introduces a nested correlation structure that enables a
new local distance function called the nesting distance, which provides a provably robust similarity function
for image matching. Furthermore, the nesting property suggests an elegant flower like normalization strategy
called a log-spiral difference. We show that this normalization enables a compact binary representation and is
equivalent to a form a bottom up saliency. This suggests that the nested descriptor representational power is
due to representing salient edges, which makes a fundamental connection between the saliency and local
feature descriptor literature. In this dissertation, we introduce three examples of shape representation using
nested descriptors: nested shape descriptors for imagery, nested motion descriptors for video and nested
pooling for activities. We show evaluation results for these representations that demonstrate state-of-the-art
performance for image matching, wide baseline stereo and activity recognition tasks.
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ABSTRACT

SHAPE REPRESENTATIONS USING NESTED DESCRIPTORS

Jeffrey Byrne

Jianbo Shi

The problem of shape representation is a core problem in computer vision. It can be argued

that shape representation is the most central representational problem for computer vision, since

unlike texture or color, shape alone can be used for perceptual tasks such as image matching, object

detection and object categorization.

This dissertation introduces a new shape representation called the nested descriptor. A nested

descriptor represents shape both globally and locally by pooling salient scaled and oriented com-

plex gradients in a large nested support set. We show that this nesting property introduces a nested

correlation structure that enables a new local distance function called the nesting distance, which

provides a provably robust similarity function for image matching. Furthermore, the nesting prop-

erty suggests an elegant flower like normalization strategy called a log-spiral difference. We show

that this normalization enables a compact binary representation and is equivalent to a form a bottom

up saliency. This suggests that the nested descriptor representational power is due to representing

salient edges, which makes a fundamental connection between the saliency and local feature de-

scriptor literature. In this dissertation, we introduce three examples of shape representation using

nested descriptors: nested shape descriptors for imagery, nested motion descriptors for video and

nested pooling for activities. We show evaluation results for these representations that demonstrate

state-of-the-art performance for image matching, wide baseline stereo and activity recognition tasks.
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Chapter 1

Introduction

Shape is arguably the most important property in visual perception [5]. Shape is the primary prop-

erty used for visual categorization, and unlike other properties such as texture, color, motion or

depth, shape alone can be used to predict other category properties. Central to the discussion of

shape in a computational vision context, is the shape representation. The issue of representation is

a fundamental problem in vision, leading many to argue that representation and generalization of

shape is the problem in vision [6][7][1][8].

Artists have long known the power of shape for capturing visual form. Master draughtsmen

such as Matisse, Rembrandt and Degas have captured such intangible qualities as strength, solitude

or elegance in only a few well chosen strokes. Figure 1.1 shows some examples of the masters at

work, where using only contours, they are capture the subtleties of the human form. Our perception

of these qualities would not be any clearer by adding color to Matisse’s “Woman Covering Her Face

With Her Hand”, or adding texture to Rembrandt’s “A Woman Sleeping”, or knowing the range

to arms and legs of “Three Studies of a Dancer” by Degas. The artists knew that shape alone can

capture these qualities, and that it is a powerful cue to inform our perception of the world.

What is a shape? Shape is an intuitive concept for most people since we perceive shapes every

moment of the day. However, it is a difficult concept to define unambiguously, which has led to

different operational definitions in different fields. For example, cognitive scientists define shape

in terms of objective shape and shape equivalence [9]. Objective shape refers to the concept that

objects in the world have a measurable volume, they have a surface boundary with a measurable

surface orientation independent of any observer. Marr defines objective shape as “the geometry of an
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Figure 1.1: Master draughtsmen and the use of shape in art. (left) “Woman Covering Her Face with
her Hand” by Matisse, (middle) “A Woman Sleeping” by Rembrandt, (right) “Three Studies of a
Dancer” by Degas.

object’s physical surface” [10] and Palmer observes “objective shape is no different in principle from

the well established belief that each object has an objectively definable size, position, orientation”

[5]. These objects have 3D extent that is the same for all observers, and therefore objectively

definable independent of perception. Intuitively, one can think of the objective shape in terms

of computer graphics, where the objective shape of an object is that which is captured by a 3D

model, used to render an image independent of the camera viewing it. Shape equivalence refers

to those shapes that are perceived to be the same object by observers. For example, viewing a

2D square that undergoes a translation is still perceived to be a square. The same holds for a

scaling or small in-plane rotation. Observers viewing such objects that undergo transformations of

translation, rotation or scaling perceive the same object following the transformation. The shape

before the transformation is equivalent to the shape after. In general, shape equivalence refers to

the variation due to the pose of the viewer relative to a fixed objective shape. A viewer can change

position (translation) move towards or away from (scale) or tilt their head (rotation), and “the shape”

perceived remains equivalent, even though the retinal image may change significantly.

Statisticians define shape in terms of a statistical shape model [11]. Different views of a shape

are assumed to have common keypoints such that these landmarks can be put into correspondence.

Given a set of shape images, a shape model is that which remains after optimally aligning landmarks,

when the translation, rotation and scale effects are removed. Alignment proceeds using Procrustes

analysis, which performs an optimal estimate of the aligning transform for a set of known land-

marks to a reference coordinate system. This assumes correspondence of a known set of shape

landmarks, which have been extracted from an image, such as points of high curvature. Then, once
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landmarks are in correspondence, deformation models can be learned from the remaining (non-

similarity) alignment errors. In computer vision, this type of analysis has led to active shape models

[12][13] for shape based models of faces.

Geometry defines shape in terms of an equivalence class under a group of transformations. A

group is a finite or infinite set of elements along with a binary group operation that satisfies closure,

associativity, identity and inverse properties. In the context of shape, the group is the set R2 under

similarity transformations. A similarity transformation is a group operator T : R2! R2 such that

for any set of points p ⇢ R2, the points T (p) are similar or related by a similarity. Formally,

||pi� p j||, a||T (pi)�T (p j)|| for all p 2 R2,a 2 R. In other words, for a similarity transform,

angles are preserved and distances are preserved up to a scale factor.

Computer vision does not provide one definition of shape, rather the literature provides many

task specific representations. Shape representations can be broadly organized into two main cate-

gories: template based and graph based. Template based approaches represent shape in terms of

a fixed or deformable template, where a template is a fixed, relative spatial distribution of features

[14, 15, 16, 17, 18, 19, 20, 21, 12, 22]. Graph based approaches represent shape in terms of graphs,

where features or parts have a variable spatial distribution where conditional dependencies are or-

ganized in a graphical structure [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Both template and

graph based approaches represent the geometry of an object in terms of the relative position of fea-

tures, however a template assumes a fixed relative position with small allowable deformations while

a graph assumes a variable relative position of parts encoded by the graph.

1.1 Related Work

In chapter 2, we describe the related work on shape representations and shape matching. Shape

representations can be broadly organized into two main categories: template based and graph based.

Template based approaches represent shape in terms of a fixed or deformable template, where a

template is a fixed, relative spatial distribution of features [14, 15, 16, 17, 18, 19, 20, 21, 12, 22].

Graph based approaches represent shape in terms of graphs, where features or parts have a variable

spatial distribution organized in a graphical structure [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34]. Both template and graph based approaches represent the geometry of an object in terms of

3



the relative position of features, however a template assumes a fixed relative position with small

allowable deformations while a graph assumes a variable relative position of parts encoded by the

graph.

The dominant local shape representation is the local feature descriptor. In chapter 2 we survey

the state of the art in local feature descriptors [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

We organize this survey by introducing a taxonomy for comparing and contrasting local feature

descriptors in terms of five criteria: preprocesssing, support, pooling, normalization and descriptor

distance. Preprocessing refers to the filtering performed on the input image, support patterns are

the geometric structure used for constructing the descriptor and pooling is the aggregation of filter

responses over the support structure. We compare and contrast our contribution in the context of

this related work.

The dominant global shape representation is attributed graph matching. In chapter 2, we sur-

vey the state-of-the-art for graph based shape representations. We organize the survey by grouping

graph based representations into geometric methods and topological methods, where each method

is organized by representations of increasing abstraction. First, we describe methods for construct-

ing attributed graphs using local feature descriptors. Next, we describe geometric methods for

graph matching. We use the unifying framework of weighted graph matching posed as relaxations

of a quadratic assignment problem, and we describe invariant shape properties maintained during

various tree, bipartite and general graph matching approximations. Topological methods for shape

representation are less well established for image matching, but they provide the potential for global

constraints such as interior, surrounded and connected to augment geometric representations. We

use the unifying framework of simplicial homology, and describe the persistent homology, a tech-

nique for recovering the homology given noisy data.

1.2 Globally Local Shape Representations

The problem of shape representation can be further decomposed into sub-problems of representa-

tion, similarity and inference. Representation is the problem of abstraction of an image into features

that capture the local or global properties of the image at each point in an image. Similarity is the

problem of computing an affinity function, distance function or matching score for sets of candi-
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date matching features, forming the cost function C. Finally, inference is the problem of selecting,

searching or optimizing an optimal assignment A.

In general, this problem can be described as the shape representation and matching problem.

Given two images I and I0 and a set of pixel locations P and P0, an optimal shape matching A⇤ is the

assignment function A : P! Q that minimizes a given cost function C

A⇤ = argmin
A

C(Q,A(P)) (1.1)

Shape representation and matching is a challenging problem due to the effects of occlusions,

geometric scene variation, camera pose variation, scene illumination and articulated shape varia-

tion. Imagery collected from different viewpoints of a scene vary due to the structure of the scene.

Specifically, occluded surfaces that are visible in one image and not visible in the other introduce

pixels that have no matches. Changes in distance and camera orientation introduce scale and rota-

tion variations in the imagery that must be addressed. Articulated objects introduce pose variations

that change the appearance and shape between two images. These challenges must be addressed by

a robust shape matching approach.

A shape representation can be global or local depending on the image support used in the rep-

resentation. The image support is defined as the set of pixels used to construct the shape repre-

sentation. A global shape representation is holistic and uses pixels sampled from the entire im-

age to construct the representation. These global shape representations are typically graph based

[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] where shape is encoded in the adjacency structure of

the graph. In contrast, a local shape representation is a representation that is localized at a specific

position in an image, with finite small scale support. Local shape representations are universally

template based, defined using properties of a local patch centered at an interest point. A near uni-

versal local shape representation is the local feature descriptor which captures the local distribution

of oriented edges within a local patch [35, 36, 31, 37, 38, 39, 16, 40, 41, 42, 43, 44, 45, 46]. Global

shape representations are typically defined in terms of local shape representations, where local shape

defines the nodes in a graph as parts and the graph structure encodes the geometric relationships

between these parts.

Local feature descriptors exhibit a fundamental tradeoff between selectivity and support. A
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Figure 1.2: Summary of contributions of this thesis.

local feature descriptor constructed using local support suffers from the aperture problem, where

the small support of a local image patch does not contain enough unique identifiying properties

to provide an unambiguous match. To compensate for the aperture problem, the support of the

local feature descriptor can be increased to provide additional information for an unambiguous

representation, however this increased support introduces representational errors due to occlusions

and pose variations that can corrupt the representation. An ideal local shape representation is ”just

local enough”.

In this thesis, we focus on the problem of globally local or glocal shape representations. This

shape representation is local such that it is centered at a single point in an image, however it is

defined with support covering the entire image making it global. This thesis introduces the nested

descriptor which is a globally local feature descriptor used to represent the globally local shape in

an image. To address the selectivity and support tradeoff, we introduce a robust distance function

which is able to reject outliers as the support size of the descriptor increases. Furthermore, when

extending the nested descriptor to motion, we introduce a camera invariant representation that is

able to maintain large support but it not corrupted by the effects of the global camera motion.

1.3 Primary Contributions

The primary contributions of this thesis are shape representations using nested descriptors. This

thesis makes three primary contributions: nested shape descriptors, nested motion descriptors and
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nested pooling. Using the decomposition for shape representation into problems of representation,

similarity and inference described in section 1.2, this contribution for shape representation can be

described as follows.

• Shape representation in imagery. Nested shape descriptors. We define a new globally local

shape representation for images. We demonstrate that this new binary local feature descriptor

captures salient edges in an image. We compare this to yhe state of the art in local feature

descriptors for the task of image matching, wide baseline stereo matching, dense interest point

matching and storage weighted matching. We show state of the art results. We describe this

contribution in chapter 3.

• Shape similarity in imagery. Nesting distance for nested shape descriptors. This is a

robust local distance function unique to the nested descriptors that outperforms the Euclidean

distance for similarity computations. We show that this distance provides robust matching of

a nested descriptor due to occlusions. We describe this contribution in chapter 3.

• Shape representation in video. Nested motion descriptors. We define a new globally local

shape representation for video. This is an extension of the nested shape descriptors to video

that is invariant to global camera motion. We evaluate this new representation for the task of

activity recognition against the state of the art in local motion descriptors and show strong

results. We describe this contribution in chapter 4.

• Shape similarity in video. Phase correction for nested motion descriptors. We show that a

straightforward correction of local phase in a video can be used to remove the effect of the

dominant camera motion from an interest point. This correction provides for a descriptor

which captures the shape of the local foreground motion, so that the hamming distance of

local motion descriptors captures the similarity of the foreground motion and not the effects

of the camera motion. We describe this contribution in chapter 4.

• Shape representation in video. Nested pooling. We show that a bag of features representa-

tion for functional scene element recognition can be improved using a nested pooling strategy

over a bagged or pyramid pooling strategy. We describe this contribution in chapter 5. How-

ever, the improvement is not uniform across all classes, so we conclude that this is a negative
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Figure 1.3: Thesis contributions for Nested Shape Descriptors

result for further investigation.

The primary contributions of this thesis are summarized in figure 1.2. We explore each contri-

bution in turn.

1.3.1 Nested Shape Descriptors

In this thesis, we propose a new family of binary local feature descriptors called nested shape de-

scriptors. These descriptors are constructed by pooling oriented gradients over a large geometric

structure called the Hawaiian earring, which is constructed with a nested correlation structure that

enables a new robust local distance function called the nesting distance. This distance function is

unique to the nested descriptor and provides robustness to outliers from order statistics. In this

paper, we define the nested shape descriptor family and introduce a specific member called the

seed-of-life descriptor. We perform a trade study to determine optimal descriptor parameters for the

task of image matching. Finally, we evaluate performance compared to state-of-the-art local feature

descriptors on the VGG-Affine image matching benchmark, showing significant performance gains.
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Our descriptor is the first binary descriptor to outperform SIFT on this benchmark.

In chapter 3, we introduce the nested shape descriptor and nesting distance using key concepts

of nested pooling and log spiral normalization. We perform a trade study to determine optimal de-

scriptor parameters for the task of image matching. Finally, we evaluate performance compared to

state-of-the-art local feature descriptors on the VGG-Affine image matching benchmark and Photo-

realistic Virtual City dataset, showing significant performance gains.

The key contributions of the nested shape descriptors are summarized in figure 1.3. The NSD

is the first binary descriptor to outperform SIFT on a standard image matching benchmark. NSD

significantly outperforms the state of the art in binary descriptors. The nesting distance is the first

robust local distance function. Finally, the nesting distance allows for large support without sacri-

ficing performance due to occlusions.

Finally, we motivate the structure of the nested shape descriptor in terms of bottom up saliency.

We show that the nested shape descriptor and the log spiral normalization is as representation of

salient edges in an image. We hypothesize that this salient edge representation provides a significant

performance improvement for shape representation.

1.3.2 Nested Motion Descriptors

In this thesis, we propose a new family of binary local motion descriptors called nested motion

descriptors. This descriptor provides a representation of salient motion that is invariant to global

camera motion, without requiring an explicit optical flow estimate. The key new idea underlying

this descriptor is that appropriate sampling of scaled and oriented gradients in the complex steerable

pyramid exhibits phase offset due to camera motion. This phase offset can be measured in the com-

plex steerable pyramid, then removed using the log-spiral normalization. This correction provides

invariance to camera motion without an explicit estimate of optical flow. This approach is inspired

by phase constancy [47], component velocity [48] and motion without movement [49, 50], which

uses phase shifts as a correction for translation without an explicit motion field estimate. Finally,

the phase corrected video is used to construct a nested motion descriptor using the approach for

nested shape descriptors introduced in [51]. The nested shape descriptor is a state-of-the-art binary

local feature descriptor, which we extend to representation of motion in video. This descriptor uses

log-spiral normalization to represent salient edges, therefore the nested motion descriptor represents
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Figure 1.4: Thesis contributions for Nested Motion Descriptors

salient motion. Figure 1.4 summarizes the contributions of this descriptor.

In chapter 4, we define the nested motion descriptor family and we evaluate performance com-

pared to state-of-the-art local motion descriptors on the the KTH actions, UCF sports actions and

HMDB activity recognition datasets.

1.3.3 Nested Pooling

In this thesis, we describe a new pooling strategy for representation of functional scene elements

called nested pooling. Bag-of-words based representations of activities rely on spatiotemporal pool-

ing regions to perform max-pooling of learned prototypes to construct prototype histograms based

representation of an activity. Nested pooling represents an activity as a bag-of-words model, how-

ever instead of pooling over a uniform region as in traditional bag of words models [52], or spatial

pyramid based pooling as in spatial pyramid matching [15], the pooling regions are nested. This

representation is inspired by a general class of local feature descriptors called nested shape descrip-

tors [51]. We show that this nested pooling is well suited for modeling weakly causal activities
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Figure 1.5: Thesis contributions for Nested Pooling

commonly found with functional scene elements. This approach can be considered a middle ground

in single level representations of human activities [53] between spatiotemporal feature based repre-

sentations which ignore causality [54, 55] and sequence or graphical model based activity represen-

tations [56, 57] which represent causality by computationally expensive optimization of sequence

alignments or probabilistic inference of optimal activity states. Nested pooling combines the best

properties of these two approaches, which enables a representation of weak causality while main-

taining the fast exemplar based recognition of unordered representations. Figure 1.5 summarizes

the contributions of the nested pooling.

Chapter 5 introduces the nested nested pooling. In this chapter, we describe nested pooling

structure and show results on the newly curated Penn Functional Scene Element (Penn-FSE) dataset.

We show cross validation results on Penn-FSE over ten functional scene elements, and we justify the

benefit of the nesting property by showing a 22% improvement in mean classification rate relative

to non-causal bagged and pyramid representations.
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1.4 Summary of Results

In this section, we summarize the results of our analysis from this work. These conclusions are

derived from studies and performance evalution performed for each primary contribution on existing

benchmarks and new datasets.

• The nested shape descriptor is the first binary descriptor to outperform SIFT on the VGG-

affine benchmark.

• The nested shape descriptor outperforms DAISY and other local feature descriptors on wide

baseline matching benchmark. This sets a new performance standard for wide baseline match-

ing.

• The nested shape descriptor significantly outperforms all other descriptors when considering a

storage weighted matching metric, comparing matching performance as a function of storage

requirements. This new metric sets a new performance standard for local feature descriptors.

• The nesting distance is the first provably robust local distance function to be proposed for

local feature descriptors.

• The nesting distance outperforms the Euclidean distance for the task of image matching.

• Nested motion descriptors are the first motion descriptor that does not require an explicit

optical flow solution.

• Nested motion descriptors are the first globally local motion descriptors which provide invari-

ance to global camera motion.

• Nested motion descriptors outperform HOG-HOF and HOG-3D on standard activity recog-

nition datasets.

• Nested pooling provides a 22% improvement over gridded or pyramid based descriptors for

the task of scene element recognition.
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Chapter 2

Related Work

In this chapter, we survey shape representations in computer vision. In the past fifteen years, there

has been significant progress in shape representations in the literature, as described in surveys

[58][59][60][39, 61]. In this review, we decompose shape representations into those representing

local shape vs. global shape, and describe each in detail. For local shape, we focus on local fea-

ture descriptors in imagery and video, and provide a taxonomy of these descriptors for comparing

and contrasting design choices. For global shape, we focus on graph based shape representations

which are well suited for modelling part based compositions of objects. We group graph based rep-

resentations into geometric methods and topological methods, where each method is organized by

representations of increasing abstraction. For geometric methods, we use the unifying framework of

weighted graph matching posed as relaxations of a quadratic assignment problem, and we describe

invariant shape properties maintained during various tree, bipartite and general graph matching ap-

proximations. For topological methods, we use the unifying framework of simplicial homology, and

describe the persistent homology, a technique for recovering the homology given noisy data, and op-

timal homologous cycle matching for matching topologically invariant cycles. Finally, we perform

analysis of this survey by comparing and contrast these representations both in a task independent

analysis based on representational power and computational tractability.
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Figure 2.1: Wittgenstein’s Joke [1]. This highlights the need for interpretation to create a useful
representation of a stimulus, or on this context, why not use a 3D representation of a duck/rabbit?

2.1 Introduction

2.1.1 Scope

What is the scope of this review? Our goal is to perform a survey of local and global shape rep-

resentations, however this goal is still quite a broad. Are we interested in 2D or 3D shape? Shape

for a specific task such as object detection? Local shape representations in terms of invariant lo-

cal features? Global representations, part based or category structure? Are we interested in shape

registration, matching or shape similarity algorithms, and data structures associated with efficient

solutions? How about classification and learning of shape within a category? What about other

non-shape or non-visually grounded features such as texture, motion and color? What about the

shape of a scene?

We limit the scope of the review to the following design choices:

Graph based global methods: We focus the global shape representations on graph based repre-

sentations rather than template based representations. The line between these two representations is

often indistinct, as many graph based presentations use local templates for representation of parts,

and some deformable template representations can be modelled as a graph such as a Markov random

field. Where appropriate, we discuss the overlap between these broad categorizations.

Graph matching based global methods: We focus on graph matching, also called registration,

or alignment correspondence, rather than graph similarity. Graph matching provides alignment be-

tween a reference model and an observation such that edge relations (e.g. geometry or topology)

are preserved. This matching may include matching constraints such as one-to-one, many-to-one

or many to many matching to reflect abstract representations of shape [8]. Recent work on graph

kernels [62] for structured prediction compute the similarity of two general graphs by considering
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the similarity of polynomial comparable substructures such as trees, cycles, walks or paths. These

approaches are motivated by the intractability of subgraph isomorphism for general graphs (see sec-

tion 2.3.3), and the need for an efficient computation of similarity of two graphs suitable for use in a

kernel machine for discriminative classification. These approaches do not provide correspondence

and therefore do not represent global geometric shape during matching. These approaches do con-

sider local geometric shape in terms of matching substructures, but the final similarity is analogous

to a “bag of substructures” representation which is not global. Therefore, we focus on geometric

and topological matching rather than non-geometric comparisons.

Exemplar similarity: We focus on similarity computations to exemplars [6][7][1][63], rather than

category models. This scope is appropriate for applications to shape matching. We will argue

in section 2.4.4 that any fixed category model, even category models learned at training time, is

classical categorization revisited. Therefore, since the classical theory of categorization has been

widely discredited, a category model of shape stands on a questionable foundation. As a result, we

will not consider graph based shape representations for categories such as recursive compositional

models [28, 64], hierarchical generative models [65][66, 52, 67], hierarchical object parsing [21,

68], stochastic image grammars [26], composition systems [27, 24]. This effectively descopes the

entire literature of generative models for visual category representation. Note that this does not

mean that categorization cannot be performed, it simply states that categorization that relies on a

fixed category model is questionable.

2D: We focus on 2D shape or view based representations rather than representation of 3D object

shape. A large body of literature exists on “shape from X” recovery of 3D shape from imagery.

Edelman [1] traces the history of 3D reconstruction as a shape representation, back to the influential

work of Marr [10] and the 2.5D sketch. The motivation for 3D representations was to provide object

constancy or viewpoint invariance for specific object identification across views, by first reconstruct-

ing the 3D geometry from multiple views. However, Edelman argues that 3D shape representations

still suffer from drawbacks namely: (i) the difficulty of recovering correspondence, (ii) the need for

task specific representations and (iii) the fact that 3D representations do not aid in further higher

level processing such as categorization or detection. As observed by many researchers, a 3D rep-

resentation still needs to be interpreted. Figure 2.1 shows an old joke due to Wittgenstein. A 3D
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representation requires a “homonculus” or little man sitting inside our vision box looking at the

3D representation for interpretation [1]. In short, a 3D reconstruction still requires similarity to an

internal labeled 3D representation, on top of the challenge of 3D reconstruction itself. Therefore,

we focus on 2D representations and the challenge of similarity.

shape matching: Optimal shape representations are task dependent [8][1]. We focus on the rep-

resentation for the task of shape matching. This task of matching an instance of an object in two

images, can be contrasted with related tasks. Object detection is the problem of assigning a bound-

ing box at a position and scale that surrounds all each instance of a given object category in an

image. Object classification is the labelling of images that contain at least one instance of a given

object category without localization. Object recognition [69], also called object identification or

specific object recognition is object classification for a known unique object instead of an object

category. Object segmentation is the grouping and labelling of pixels corresponding to foreground

and background for each instance of a given object category in an image.

Basic level categories: We focus on shape representations of basic level categories [70, 71, 8]. Ba-

sic level categories are the highest level category for which members have similar shape, and does

not include such categories as functional objects or scenes. There have been surveys for shape repre-

sentations of popular object categories including faces [72] and human body [73], however a general

shape representation for basic level categories should not be specialized for any one category.

2.1.2 Outline

There are many different ways of organizing and categorizing the literature on shape representa-

tions, such that each focuses on a different unifying theme. For example, we could focus on shape

matching, comparing and contrasting algorithmic complexity and data structures associated with

different frameworks. We could focus shape representations only, comparing features and parts ex-

tracted from imagery used to compose shapes. We could compare and contrast graph based methods

with template based methods or texture based methods.

The structure of this review is representations of shape of increasing abstraction and invariance.

We start with local shape representations in the form of local feature descriptors which capture

only the local properties of shape in terms of distributions of oriented and scaled gradients in a local
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patch centered at a single point in an image. We then broaden the representation to global shape

representations based on graphs, and we group the problem into two major categories of graph

based shape representations: geometric and topological graph based representations. Geometric

graph based representations represent shape in terms of distances and angles between parts, such

that nodes encode parts and edges encode geometric relations. This approach can be organized in

terms of the underlying graph structure. We describe methods based on trees, bipartite graphs and

general graphs, where the underlying graphical structure allows for more expressive representations

of shape, at the cost of more expensive matching. Topological representations represent shape in

terms of topological invariants such as connectivity or holes in a graph. These representations are

less well evaluated for shape representations in computer vision, so we survey the computational

topology literature and describe approaches based on persistent homology and homologous cycle

matching that have the potential to provide invariant features for shape representation.

In this review, section 2.2 describes the local feature descriptors used to capture the local shape

in both imagery and video. Section 2.3.1 describes global shape representations in terms of graphs

and describes common components to geometric and topological shape representations. Section

2.3.3 describes three graphical structures: trees, bipartite graphs and general graphs and the graph

constructions and graph matchings used for representation and detection. Section 2.3.4 describes

topology based representations which represent shape in terms of homologies. Finally, we compare

and contrast the different categories and draw conclusions for about the representations in sections

2.4 - 2.5.

2.2 Local Shape Representations

A local shape representation is a representation that is localized at a specific position in an image,

with finite small scale support. For example, a local shape representation of an eye in a face would be

constructed using the support of a small image patch surrounding the eye. Local shape representa-

tions are universally template based, defined using properties of a local patch centered at an interest

point. A common design choice is the local feature descriptor which captures the local distribu-

tion of oriented edges within a local patch [35, 36, 31, 37, 38, 39, 16, 40, 41, 42, 43, 44, 45, 46].

Global shape representations are typically defined in terms of local shape representations, where
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local shape defines the nodes in a graph as parts and the graph structure encodes the geometric

relationships between these parts.

In this section, we describe a taxonomy of local feature descriptors for representing the local

edge properties of a patch and the local motion properties of a video clip.

2.2.1 Local Feature Descriptors

A local feature descriptor is a representation for local 2D shape by pooling and normalizing ori-

ented gradients over specific support regions. These local feature descriptors are commonly used to

provide node attributes for use in graph matching. In this section, we describe the state-of-the-art.

Local feature descriptors have emerged in the past ten years as the dominant representation for

shape matching. There exist standard benchmarks for performance evaluation [39, 74, 61], and a

zoo of detectors and descriptors [38, 16, 37, 40, 42, 43, 44, 45, 46]. introduced with the trend of

faster and faster matching while maintaining approximately equivalent performance to SIFT [35].

Local feature descriptors have been successfully deployed for a wide range of shape matching tasks

including: stereo, optical flow, structure from motion, egomotion estimation, tracking, geolocation

and mapping.

There have been many local feature descriptors proposed in the literature in the past ten years.

From oldest to newest, the primary developments have been: SIFT [35], PCA-SIFT [36], Shape

context [31], Local Binary Patterns [37], SURF [38], GLOH [39], Sparse localized features (SLF)

[16], compressed HoG (cHoG) [40], DAISY [42], BRISK [43], BRIEF [44], ORB [45] and FREAK

[46].

The trend in local feature descriptor research has been to show comparable performance to SIFT

on the VGG-affine benchmark [39, 74, 61], with ever faster computation. Work has progressed from

PCA-SIFT [36] and SURF [38] which show close performance to SIFT with lower dimensionality

and faster preprocessing. Recent work has focused on introducing binary features from local com-

parison tests [44, 43, 45, 46] which enables fast distance metric based on Hamming distance and

faster derivatives [75]. These developments have been driven by the need for faster processing to

support mobile deployment.

A taxonomy for comparing and contrasting local feature descriptors can be described in terms of

five criteria: preprocessing, support, pooling, normalization and descriptor distance. Preprocessing
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Figure 2.2: Taxonomy and comparison of local feature descriptors.

refers to the filtering performed on the input image, support patterns are the geometric structure used

for constructing the descriptor and pooling is the aggregation of filter responses over the support

structure. Figure 2.2 shows this taxonomy and a comparison of dominant local feature descriptors.

2.2.2 Local Motion Descriptors

Activity recognition has a long history in the computer vision literature. Recent surveys of action

recognition capturing the state of the art are are available[53, 76] and a critical review of action

recognition benchmarks [77]. Classic activity recognition datasets [78] focused on tens of actions

collected with a static camera of actors performing scripted activities, however the state-of-the-art

has moved to recognition of hundreds of activities captured with moving cameras and poor quality

video of ”activities in the wild” [79][80][81].

The literature on motion representation can be decomposed into approaches focused on local

motion descriptors, mid-level motion descriptors or global activity descriptors. Higher level mo-

tion representations are typically focused on representing semantic activity categories, and learning
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mid-level representations suitable for action recognition. Examples include discriminative mid level

features [82], actemes [83], motionlets [84], motion atoms and phrases[85]. In general, these higher

level representations build upon local motion representations to extract activity specific discrimina-

tive motion patterns. In this section, we will focus on local motion representations only, which are

most relevant to the nested motion descriptor.

A local motion descriptor is a representation of the local movement in a scene centered at a

single interest point in a video. Examples of local motion descriptors include HOG-HOF [86, 87],

cuboid [88], extended SURF [89] and HOG-3D [90]. These descriptors construct spatiotemporal

oriented gradient histograms over small spatial and temporal support, typically limited to tens of

pixels spatially, and a few frames temporally. HOG-HOF includes a histogram of optical flow

[86, 87], computed over a similar sized spatiotemporal support. Furthermore, recent evaluations

have shown that activity recognition performance is significantly improved by considering dense

regular sampling of descriptors [91][92], rather than sparse extraction at detected interest points,

such as spatio-temporal interest points (STIP) [54].

An interesting recent development has been the development of local motion descriptors that are

invariant to dominant camera motion. A translating, rotating or zooming camera introduces global

pixel motion that is irrelevant to the motion of the foreground object. Research has observed that this

camera motion introduces a global translation, divergence or curl into the optical flow field [93], and

removing the effect of this global motion significantly improves the representation of foreground

motion for activity recognition. The motion boundary histogram [86, 94, 95] computes a global

motion field from optical flow, then computes local histograms of derivatives of the flow field. This

representation is sensitive to local changes in the flow field, and insensitive to global flow. Motion

interchange patterns [96, 97, 98] compute a patch based local correspondence to recover the motion

of a pixel, followed by a trinary representation of the relative motion of neighboring patches. First

order differential motion patterns [93] compute ... Finally, dense trajectories [94, 95, 99] concatenate

HOG-HOF or co-occurrence HOG [100], and motion boundary histograms for a tracked sequence

of interest points forming a long term trajectory descriptor. The improved dense trajectories [99]

with fisher vector encoding is the current state-of-the-art on large datasets for action recognition

[101].
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2.3 Global Shape Representations

2.3.1 Graphical Representations of Shape

Graphical representations of shape refer to the abstraction of an image into an attributed graph, such

that the image encodes a graph embedding. A grayscale image I may be defined as a function I :

Z2! R, such that I is a mapping between integer valued pixel coordinates (i, j) and pixel intensity

I(i, j). A graph embedding in an image is a graph G = (V,E) such that each node is associated with

a pixel coordinate (i, j). An attributed graph is a graph G = (V,E,a) that has been augmented with

a set of node and edge attributes aV (v) aE(u,v) for all v 2 V,(u,v) 2 E. These attributes encode

local image properties from the graph embedding. Recent work has considered attributes for higher

order simplexes in hypergraphs [102], however in this section we consider pairwise node and edge

attributes only, and postpone the discussion of higher order simplex attributes to section 2.3.4.

Graph based shape representations for can be described in terms of attributes, structure, con-

struction and matching. Attributes refer to those local image properties associated with each node

and edge as determined from the graph embedding. Node attributes may be organized in order

of increasing support in an image, centered at the embedding coordinates. Pixel support refers to

attributes such as pixel intensity, oriented gradient filter response or corner response at only the em-

bedding coordinate. Patch support refers to attributes derived from a fixed, local region of interest

centered at the embedding coordinate, such as a grayscale patch, intensity histogram or oriented

gradient histogram. Region or contour support refers to attributes derived from perceptual organi-

zation of an image, such as segmentations or boundary detections. Finally, part support refers to

attributes derived from part responses, such that a part is itself an object with shape and is used in

compositional models to compose shape in terms of simpler component shapes.

Edge attributes capture pairwise geometric or topological relationships between nodes. For ex-

ample, geometric edge attributes may include length between two nodes, the angle between a node

and a reference orientation, or the scale normalized length between two nodes. As discussed in

section 2.1.1:similarity, we consider only attributed graphs in this review. Other methods such as

probabilistic graphical models enable efficient inference techniques by encoding conditional depen-

dence in edge relations, however as discussed we will not consider these cases. We will revisit this

issue in section 2.4.
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Graph construction is the process of graph embedding and attribute extraction, and graphs may

be explicitly or implicitly constructed. Explicit construction is the computation of a graph from an

image, prior to any processing or matching. Implicit construction postpones the graph constructing

to the matching phase. Implicit construction follows Marr’s principle of least commitment [10],

such that graph embedding decisions for nodes and edges are delayed until there is further informa-

tion from the matching process, rather than committing to mistaken embedding and corrupting the

match. Recent work in graph matching has transitioned from explicit to implicit graph construction,

and we will use this as a comparison criterion in section 2.4.

Graph matching is the problem of finding correspondences between two graphs such that re-

lational structure is preserved. We will discuss this problem in context of the unifying framework

of the quadratic assignment problem in section 2.3.2 following standard definitions of graphs and

graph properties in [103].

2.3.2 Quadratic Assignment Problem

Graph matching is the problem of finding correspondences between two graphs such that relational

structure is preserved. This is a fundamental problem in computer vision, machine learning and

pattern recognition since structured data in widespread in such forms as part based object recog-

nition, structured prediction, and shape representations. For recent surveys of graph matching, see

[104, 105]. In general, graph matching can be posed as a weighted graph matching problem, with

special cases of subgraph isomorphism and maximum common subgraph.

Weighted graph matching can be posed as follows. Given two attributed graphs G = (V,E,a),

G0 = (V 0,E 0,a0), let X be an |V |⇥ |V 0| permutation matrix, such that X(i, i0) = 1 if nodes (i, i0) are

matched and zero otherwise. Let W be an |V ||V 0|⇥ |V ||V 0| weight matrix determined from attributes

(a,a0) such that wii0, j j0 2 R encodes the compatibility of matching (i, i0) and ( j, j0). Let x be an an

|V ||V 0|⇥1 columwise vector representation of X such that xi j = X(i, j) and xT
i is the ith row and x j

is the jth column. Then,
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x⇤QAP = argmax xTWx

s.t.8(i, j) 1T x j = m

xT
i 1= n

xi j 2 {0,1}

(2.1)

The constraints 1T x j = m and xT
i 1 = n are mapping constraints. Let 1 be a vector of ones, then

1T x j is a column sum for columns x j of X , and xT
i 1 is a row sum of X . If m = n = 1, then the

mapping constraints are one-to-one such that each node in G must be mapped to exactly one node

in G. If n � 1 and m = 1, then the mapping constraints are many-to-one for many nodes in G0 to

one node in G0. Similarly, if n � 1 and m � 1 then the mapping constraints are many-to-many.

These mapping constraints enable the graph matching to encode constraints such as isomorphism

or homomorphism, and allows the graph matching to be robust to imperfect graph construction.

The optimization in (2.1) is an instance of a quadratic assignment problem, such that x⇤QAP is

a maximum weight edge preserving matching where (u,v) 2 E , (X(u),X(v)) 2 E 0 [106]. The

quadratic assignment problem is a classic problem in combinatorial optimization that can be moti-

vated as a facilities localization problem. Consider the problem of assigning a given set of facilities

to locations, where there are costs for a given assignment due to the cost of the flow of goods be-

tween facilities and the costs of assigning a facility at a given location. The goal is to determine

an optimal assignment given these costs. Formally, given N facilities and M locations, let A be an

N⇥N matrix defining the weight between facilities, and B be an M⇥M matrix for weights between

locations. Solve for an assignment x that minimizes (2.1) such that the cost of assigning facility i to

location j is Wi j.

The optimization in (2.1) is an integer quadratic program which is NP-complete, so approxi-

mate solutions are necessary. Approximation algorithms that have been explored in the literature

include combinatorial search [106], graduated assignment [107], spectral [108, 109], semidefinite

programming [110], and graph edit distance [111]. These approaches require a construction of the

quadratic objective weights W which is quadratic in the size |V ||V 0|. Robust performance has been

demonstrated [107, 109], but practical problem sizes are limited to hundreds of nodes due to the

quadratic objective, and weights are limited to pairwise interactions.

The optimization in (2.1) can be made efficient for constrained graph structures. For example,
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if the graph G is bipartite, then the quadratic assignment problem reduces to the linear assignment

problem for which polynomial time integer solutions are available [31]. Similarly, if the graph G is a

tree, then there exist tree edit distance algorithms [112] based on dynamic programming [113][114].

2.3.3 Geometric Graph Representations

Graph representations model an object or object category using a graph, such that alignment is iso-

morphic to graph matching. In general, graph matching approaches can be described in terms of the

structure being preserved. Given two attributed graphs G = (V,E,a), G0 = (V 0,E 0,a0) a structure

preserving matching f : V ! V 0 is an optimal solution f ⇤ = argmin c( f ), subject to structure pre-

serving matching constraints and assignment costs c. Exact structure preserving methods, such as

subgraph isomorphism, maximum common subgraph and weighted graph matching preserve edge

relations, such that (u,v) 2 E , ( f (u), f (v)) 2 E 0. In contrast, inexact graph matching, such as

graph edit distance problem [111, 115] require approximate solutions.

Recent work in the vision literature has focused on geometry preserving linearizations [30, 116,

117] of the quadratic assignment problem in (2.1). Similarity invariant matching [116] solves for

the optimal permutation matrix X and linearized similarity transformation parameters q to minimize

an assignment cost and an L1-norm linear deformation cost. Locally affine invariant matching [117]

solves for the optimal assignment X given L1-norm barycentric coordinate preservation costs for

each node, where barycentric coordinates are locally affine invariant and defined in terms of neigh-

boring graph nodes. Both approaches use an L1-norm in the objective, and exhibit linear constraints

([116] includes a linearization of the similarity constraints) resulting in a linear programming relax-

ation.

These geometric approaches provide fast and efficient matching, but they can suffer from ambi-

guity when the input graph does not satisfy the assumptions of the geometric transform model, such

as cases of non-similarity transformations or degenerate triangulations. Furthermore, assignment

weights are limited to node assignment weights only, ignoring informative assignment weights for

edges and other higher order structures [102]. Finally, these methods must discretize X to a final

binary permutation matrix for valid and invalid matches. Poor geometric alignments with large de-

formation costs may still be valid (e.g. articulated objects), and good geometric alignments with

small deformations may be invalid. These issues will be revisited in the topological methods in
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section 2.3.4.

Approaches to graph matching can be compared using graph construction and graph topology.

Graph construction refers to the approach used to create an attributed graph that represents an im-

age, including constructing nodes and edges and assigning attributes. Graph topology refers to the

structure of a graph, such as trees, bipartite or general graphs. The graph structure is closely related

to the efficiency and optimality of the matching, so there are tradeoffs between the fidelity of the

representation vs. the optimality of the matching. In this section, we will describe three different

graph structures.

2.3.3.1 Trees

Trees provide a useful abstraction to provide part based representations of shape. A part based

representation of shape decomposes an object into a discrete set of component subshapes or parts

that are configured to create an object. Parts may be large and sparse such as the decomposition

of a face into semantic parts such as eyes, nose and mouth. Alternatively, parts may be small

and dense such as contour fragments composed into a holistic shape representation. However, in

all part based representations, local parts are composed provide a structural decomposition of a

global representation of shape into a configuration of local parts. A graph G = (V,E) is a tree if

it is connected and acyclic. The nodes of a tree represent parts, the edges of the tree represent a

composition of discrete and independent parts into a whole.

The motivation for a part based representation is invariance, compositionality, reuse, and com-

putational tractability [8][5]. By decomposing an object into a set of parts that can be recomposed

into multiple different objects in different configurations, parts can be reused to represent many

object shapes. Similarly, by decomposing parts into a tree based or hierarchical representation or

hierarchy of parts, the tree structure can enable efficient matching by taking advantage of the acyclic

graphical structure.

Part based representations can be described in terms of part representations, structural represen-

tations and detection framework. Part representations capture the local appearance or geometry of

a small subset of an object such that each part captures some local property of an object. Part rep-

resentations may be appearance based or contour based, local or global, invariant (affine, rotation)

or non-invariant (patches). Structural representations describe the tree structure, which may be flat
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as in the case of constellation or star trees, or hierarchical with multiple levels of part interactions.

Finally, the detection framework considers how the part representations are detected in an image,

localized and composed into an object. Optimization approaches include dynamic programming,

belief propagation, generalized hough transform and graph matching.

2.3.3.2 Bipartite Graphs

A graph G = (V,E) is a bipartite graph if and only if the vertex set V can be partitioned into two

disjoint subsets V1 and V2 such that V = V1
S

V2 and no edge in the edge set E has endpoints in

the same subset [103]. Bipartite graphs are more general that the star graphs described in section

2.3.3.1, since a star graph is a special case of a complete bipartite graph. To see this, observe that the

star graph nodes can be partitioned into two subsets containing the central node and the leaf nodes

forming a bipartite graph, and that every pair (vi,v j) such that vi 2V1 and v j 2V2 has an associated

edge e = (vi,v j) 2 E, forming a complete bipartite graph.

Bipartite graphs are useful for representing one to one matching. A perfect matching M for a

bipartite graph G is a subset of edges (M ⇢ E) such that each vertex is incident to at most one edge

of M. A minimum weight perfect matching is a perfect matching of minimum cost where the cost of

a matching is given by c(M) = Â(i, j)2M ci j. The minimum weight perfect matching problem can be

posed as a linear assignment problem which is formulated as an integer linear program as follows

x⇤LAP = argmax Wx

s.t. 1T x j = 1

xT
i 1= 1

xi j 2 {0,1}

(2.2)

It can be shown that the constraint matrix A in equation (2.2) capturing the matching constraints

(after dropping the integer constraints) is totally unimodular, so the integer linear program has an

efficient integer solution. Minimum weight perfect matching can also be solved efficiently by using

special purpose algorithms such as the Hungarian algorithm or reducing to a maximum network

flow problem [118].

Shape contexts [31] are a representative approach to shape representations that uses bipartite

matching. Shape contexts use a descriptor to capture the local shape, and bipartite graph matching
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to align a reference shape with an observation. Complete bipartite graphs are constructed by first

performing edge detection in an image, then subsampling the resulting edge map. The subsampled

locations provide a graph embedding for V1, and the attributes of each node are a shape context

descriptor. This descriptor counts the number of nearby edges using a log-polar histogram centered

at the embedding coordinate and concatenates this log-polar histogram into a vector representation

di. The bipartition V2 is a reference shape, and a complete bipartite graph is constructed with edges

between image nodes V1 and reference nodes V2. Minimum weight perfect matching is performed

by setting the assignment weights W according to kernel weight between shape context descriptors

wi j = K(di,d j), where a common kernel is the Gaussian kernel.

Since shape contexts using bipartite matching, there are no edges between nodes within V1 and

V2. This means that the matching is performed on nodes only. It is assumed that the geometry is

encoded in the shape context descriptors, since each log-polar histogram has large support often

covering a large fraction of the object. However, since there are no explicit edges to preserve in the

matching, this approach cannot guarantee preserving geometric relationships. In practice, bipartite

matching has been subsumed by many to one matching on general graphs.

2.3.3.3 General Graphs

A general graph is an arbitrary graph G = (V,E) without additional constraints on edges or nodes.

Unlike the graphs considered in previous sections for which the special graph structure enabled

efficient matching algorithms, graph matching in general is NP-hard problem as it is isomorphic to

the quadratic assignment problem outlined in section 2.3.2.

2.3.4 Topological Graph Representations

2.3.4.1 Computational Topology

Computational topology is the study of the algorithmic questions in topology and topological ques-

tions in algorithms [119][120]. For example, topological problems are those about invariant prop-

erties of connectivity and continuity, without requiring spatial notions such as straightness, distance

or convexity. A topological question may ask about the number of “holes” in a topological space,

allowing deformations but not cutting or gluing, whereas an algorithmic question in topology may
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be the computation of the number of holes in a discrete representation of this space. Similarly, a

topological question in algorithms may be, given a discrete representation of a topological space,

does it preserve the topology of the underlying continuous space? Computational topology grew

out of the desire to extend discrete results in computational geometry for point sets, polygons and

polyhedra in to continuous domains, curved surfaces and higher dimensions. The success of com-

putational geometry and the interesting overlap of computer science and topological questions hold

promise of furthering both fields.

However, a challenge for collaboration between computer science and topology is the lack of

common language. Motivated computer scientists without appropriate training in topology may

find the topological literature unapproachable. Topology has an occasionally complex notation, and

requires a significant number of definitions and accumulated theory to be grasped to understand the

literature, and motivated readers may be unsure if the effort to learn this common language will be

worthwhile.

Fortunately, recent work has demonstrated the power of computational topology to justify this

learning curve. Topological concepts have been applied to a wide range of application areas includ-

ing shape acquisition for solid modelling using computer aided design, shape representations for

interoperability, portability and simplification in computer graphics, mesh generation for physical

simulation and finite element analysis, configuration spaces in robotics, molecular biology, com-

puter vision and databases. These application areas all rely on topological algorithms, and collab-

oration between topologists and computer scientists have analyzed the computational complexity.

Typically, planar topological problems are polynomially solvable, problems in R3 are exponentially

solvable and are thought to be NP-complete, while problems in R4 and above are known to be unde-

cidable [120]. Such analysis and the wide range of applications, many in high dimensional spaces,

highlights the need for further investigation into efficient algorithms for computational topology.

In this section, we summarize a survey on computational topology [119]. This survey focuses

on applications and methods, and provides an introductory set of definitions in topology to facilitate

the language barrier between topology and computer science. Next, we provide a more in depth

review of one application of computational topology to the qualitative analysis of the space of

natural images in computer vision [121][3]. This approach uses persistent homology to characterize

the topology of the space of 3x3 patches in natural images. This is an example application of
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computational topology which addresses an approach to suitably preprocess noisy data to enable

topological analysis of global structure.

The survey by Dey, Edelsbrunner and Guha [119] provides three main contributions: (i) a de-

scription with motivating examples of six application areas for computational topology including

image processing, cartography, computer graphics, solid modelling, mesh generation and molecular

modelling, (ii) a description of six topological methods and (iii) an appendix with technical defi-

nitions to aid the reader without a background in topology. In this section, we focus on intuitive

descriptions of the topological applications and methods, then provide an in depth description of

one application in section 2.3.4.3.

Methods. Topological methods are theoretical topics in topology, which in this survey paper focus

on: decompositions, fixed points, embedding, three-manifolds, and homology computation. Given

that definitions and theorems are often their own best summaries, in this section, we will focus on the

main ideas for each method rather than reiterating the definitions, theorems and proofs themselves.

Decompositions are the process of decomposing a shape into simple pieces. A classic result for

complexes defined by the boundary of polyhedra states that v� e+ f = 2, where v, e and f are the

number of vertices, edges and faces in the polyhedron. More generally, the Euler characteristic of a

space is the alternating simplex count, which is determined by counting vertices, edges and triangles

in a suitably oriented triangulation. The construction of a decomposition requires considering the

cover of a topological space, which is a collection of subsets whose union is the space, and the nerve

which is cover with non-empty common intersection. Such theorems have motivated the design of

automatic triangulation algorithms for a topological space. Shelling is the process of constructing

a complex by adding one cell at a time, and if a complex is shellable, then shelling can be used in

such applications as computing the convex hull of a set of n points in O(log(n)) per face, with an

initial O(n2) preprocessing.

Fixed points are those points of a function where the point is its own image. A classical result on

contracting maps is that they have a unique fixed point. Continuous Brouwer’s fixed point theorem

is one of the most basic facts about topological spaces and generalizes the metric fixed point theorem

stating that every map f : sd! sd has a fixed point, where sd is a d-simplex homeomorphic to Bd .

This theorem can be used to show the existence of a fixed point on a simplicial map, which is useful

29



for such applications as finding centerpoints and equipartitions.

An embedding of one topological space into another is an injection whose restriction to the

image is a homeomorphism. A classic result states that every abstract simplicial complex A has a

special embedding in Rd called a geometric realization, provided d is large enough, and is always

possible if d = 2k+ 1. For R2, a well studied problem is the embedding of planar graphs, which

can always be embedded in R3, but can only be embedded in R2 if and only if it does not contain a

subgraph homeomorphic to K5 (complete graph with 5 vertices) or K(3,3) (complete bipartite graph

with 6 vertices). Also, a classic result for R2 for more general spaces is that a 2-manifold can be

embedded in R2 iff it is orientable (e.g. projective plane, Klein bottle)

Three-Manifolds are topological spaces that is locally Euclidean (E3), and many specialized

results exist for 3-manifolds that do not generalize to higher dimensions. Unfortunately, this survey

shows its age in that the Poincaré conjecture is described as an open problem, which has since

been solved (proved 2002-2003, confirmed in 2006). A knot is an embedding of a closed curve in

space K : S 1! R3. A remarkable result due to Seifert states that every knot is the boundary of an

orientable 2-manifold embedded in R3.

Homology computation offers a formal algebraic framework for studying and counting holes

in a topological space by computing homology groups. Formally, these holes are characterized by

Betti numbers, and since Betti numbers are invariant to triangulation, computing the Betti numbers

of a simplicial complex is equivalent to computing the Betti number of the underlying space. Betti

numbers can be computed for higher dimensional simplices by computing smith normal forms,

using incremental algorithms or combinatorial laplacians, or using special cases of solids.

2.3.4.2 Simplicial Homology

In this section, we first provide a brief introduction to those definitions and results in simplicial

homology necessary for describing the topological approaches in later sections. For detailed dis-

cussion of homology and algebraic topology, see [122, 123, 2].

We begin with general definitions. Practical vision applications are typically limited to dimen-

sion  3, however we introduce general definitions for completeness.

Definition 2.3.1. A p-dimensional simplex or p-simplex is the convex hull of p+ 1 affinely inde-
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pendent vertices v 2 RD

Definition 2.3.2. A face of a p-simplex s is a non-empty subset of vertices of s.

Definition 2.3.3. A simplicial complex K is a set of simplices that satisfies the following closure

conditions

(i) Any face of a simplex in K is a simplex in K

(ii) The intersection of any two simplexes si, s j 2 K is a face of both si, s j

Let K be a finite simplicial complex of dimension p, such that all simplexes s 2 K have dimen-

sion at most p. A simplicial k-chain is a finite formal sum of k-simplices

N

Â
i=1

cisi, ci 2 Z2, si 2 K (2.3)

where ci 2 {�1,0,1} are binary valued coefficients. For each k� 0, k-chains along with the modulo-

2 addition operator form the chain group Ck(K).

Definition 2.3.4. The boundary operator ∂k : Ck!Ck�1 is a homomorphism between chain groups

such that

∂k(s) =
k

Â
i=0

(�1)ihv0, . . . ,vi�1, v̂i,vi+1, . . . ,vki (2.4)

The notation v̂i denotes that the vertex should be dropped. The boundary homomorphism is a linear

operator and commutes with addition ∂k(c1 + c2) = ∂k(c1) + ∂k(c2)8c1,c2 2 Ck(K) Observe that

∂k(s) = Âci∂k(si), and the boundary homomorphism is a map from k-simplexes to a sum of its

(k+1) faces.

The boundary homomorphism has a unique matrix representation with respect to a choice of

basis. Let {si} and {t j} be the sets of k-simplexes and (k�1)-simplexes of size |M�1| and |N�1|

that represent the elementary chain bases for Ck and Ck�1. Then, ∂k is represented as an M⇥N

boundary matrix with entries ai j 2 {�1,0,1}, such that |ai j|= 1 if i 2 t is a face of j 2 s with sign

determined from (2.4), and zero otherwise. Some authors distinguish the boundary operator ∂k with

the matrix form [∂k], however in this review, we assume that the context will make this distinction

clear.
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Definition 2.3.5. The chain complex

Ck
∂k�!Ck�1

∂k�1��!Ck�2 . . .C0
∂0�! 0

is a sequence of chain groups connected by boundary homomorphisms.

The boundary homomorphism has several useful properties, which we state but do not prove

[122].

Lemma 2.3.6. Given a boundary homomorphism ∂,

(i) The boundary of a boundary is zero, ∂k∂k+1d = 0, for every integer k and every (k+ 1)-

chain d.

(ii) A k-cycle c is a k-chain with zero boundary ∂kc = 0

(iii) The boundary of every 0-simplex is zero.

(iv) The cycle group Zk = ker(∂k) = {x 2Ck(K) : ∂kx = 0}

(v) The boundary group Bk = im(∂k+1) = {x 2Ck(K) : 9 y s.t. x = ∂k+1y}.

Elements of the cycle group Zk are k-chains called k-cycles, elements of the boundary group Bk are

k-chains which called k-boundaries, which are boundaries of a (k + 1)-chain and are also cycles

(Bk ⇢ Zk).

Definition 2.3.7. An homology class is an equivalence class of cycles such that for a fixed repre-

sentative cycle z0, {z|z = z0 +∂k+1c,c 2Ck+1(K)}, where equivalent cycles of the same homology

class are homologous and denoted c⇠ c0.

Definition 2.3.8. The homology group Hk(K) = Zk/Bk is a quotient group formed on the set of

homology classes.

Definition 2.3.9. The kth betti number bk = rank(Hk(K)) = rank(Lk) where Lk = ∂T
k ∂k +∂k+1∂T

k+1

is the rank of the kth homology group or equivalently the rank of the kth combinatorial laplacian Lk

[124].

Definition 2.3.10. A chain map Mk : K!K0 is a homomorphism mapping k-simplexes of simplicial
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Figure 2.3: Examples of cycle and boundary groups [2]

complexes K and K0. The chain map must satisfy boundary commutativity.

∂0k �Mk = Mk�1 �∂k

This requirement follows from the requirement ∂k �∂k+1 = 0. A chain map between chain com-

plexes maps boundaries to boundaries and cycles to cycles, and induces homomorphisms between

homology groups of the two complexes [122].

The definitions for simplicial homology were introduced in general for k-simplexes, however

these concepts have intuitive low dimensional interpretations in the context of graph theory. Given

a graph G = (V,E), a 0-simplex is a vertex in V , a 1-simplex is an edge in E, a 2-simplex is a

triangle which forms a three node clique, a 3-simplex as a tetrahedron or four node clique, and

so on. The faces of a edge (1-simplex) are the two incident vertex endpoints (0-simplexes), and

trivially the edge itself. The faces of a triangle (2-simplex) are the triangle itself (trivially), three

edges (1-simplexes) and three nodes (0-simplexes). The simplicial complex closure constraints in

(defn 2.3.3) states intuitively that if two edges are incident on a common vertex, then both edges

must contain the vertex as a face. A 1-chain (2.3) is any subset of edges, not necessarily connected.

The boundary map ∂1 (2.4) is the oriented node-edge incidence matrix, and the boundary map ∂2

is the edge-triangle incidence matrix. For node-edge incidence only, the combinatorial laplacian

L = ∂1∂T
1 = D�W , which is the classic graph laplacian for unit weights W . Betti numbers b1 (defn

2.3.3) capture the number of “holes” in the graph, and the homology group H1 contains equivalence

classes such that each homology class is the set of all cycles that differ by a boundary from a cycle

surrounding this hole. Finally, traditional graph matching is an estimation of M̂0, the permutation

matrix between graph nodes (0-simplexes) that preserves edges (1-simplex intersections).
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Homology groups (defn 2.3.8) are the key concept in this section, so let’s deconstruct it fur-

ther and give a simple example to build intuition. Figure 2.3 (left) shows a simplicial complex of

maximum dimension k = 2 that has the shape of a cylinder with a lid. The green edges (cg) form

the boundary of the three 2-simplexes (c) shown as dark grey triangles. Formally, (cg = ∂2c) and

observe that the “boundary” of the three dark triangles is what one would expect, it is formed from

the non-overlapping faces of the triangles. The two blue cycles are homologous since they differ by

a boundary, but are not homologous to the red or green cycles.

Figure 2.3 (right) shows a different (smaller) simplicial complex for which we can construct

and example to explicitly compute homologous cycles. This simplicial complex contains five 0-

simplexes (a,b,c,d,e), seven 1 simplexes (ab,ac,ad,ae,bc,cd,ce) and two 2-simplexes (acd,ace)

shown in pink. The boundary matrices are constructed using defn 2.3.4 and are given by:

∂1 =

2

66666666664

�1 �1 �1 �1 0 0 0

1 0 0 0 �1 0 0

0 1 0 0 1 �1 �1

0 0 1 0 0 1 0

0 0 0 1 0 0 1

3

77777777775

∂2 =

2

666666666666666664

0 0

�1 �1

1 0

0 1

0 0

�1 0

0 �1

3

777777777777777775

(2.5)

Entries ∂1(i, j) correspond to whether the ith 0-simplex shares a face with the jth 1-simplex. For

example, ∂1(1,1) = 1 since the edge ab shares a face with point a, ∂2(3,2) = 0 since triangle

ace does not share a face with ad. Observe that the cycle cabc defined by the faces (ab,bc,ac) is

represented by a 1-chain cabc = [1 1 0 0 1 0 0]T and ∂1cabc = 0 which satisfies definition 2.3.6 for a

1-cycle. Remember that all addition is modulo-2. An homologous cycle cabcd ⇠ cabc surrounds the

same hole, such that the homologous cycle cabcd differs by a boundary from a representative cycle

cabc. In other words, there exists a chain c 2C2(K) such that

cabcd = cabc +∂2c (2.6)

Where the boundary of c is ∂2c and this boundary is added (modulo-2) to the representative cycle
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Figure 2.4: Persistent Homology [3]. (top) Rips complexes Re for increasing e. Colors correspond
to k-simplices. (bottom) “Barcode” representation of persistent homology groups for increasing e.
The vertical dotted lines correspond to the Rips complex at a specific e, and the homology groups
present with this representation.

to result in the homologous cycle. In this example, c = [1 0]T is a 2-chain that contains only the

2- simplex acd. The boundary ∂2c = [0 1 � 1 0 0 1 0]T is the set of faces {ac,da,cd}, and the

modulo-2 addition cabc = [1 1 0 0 1 0 0]T +[0 1 �1 0 0 1 0]T = [1 0 �1 0 1 1 0]T = cabcd . Notice

that the addition of the cycle and boundary cancelled out the face shared by both, namely ac.

2.3.4.3 Persistent Homology

Persistent homology is a tool from applied algebraic topology that characterizes the homology

groups that persist over scale variations for noisy data. Understanding the global properties of a

topological space includes characterizing it’s homeomorphism type, which involves understanding

the geometry of the space up to stretching and bending, but not tearing and gluing. Determining

the homeomorphism type is difficult, so an alternative is to characterize the homology of a discrete

approximation of the space, then computing its simplicial homology groups. Informally, the homol-

ogy of a topological space provides knowledge of number and type of holes in the space, such that

the characterization of these holes provides a description of the global topological structure.
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A fundamental challenge of computing topological features of real datasets is to determine

which features are real (“signal”), which which features are artifacts of the discrete representation

(“noise”). For example, given a collection of points x in Euclidean space En, the Rips complex Re

[125] is the abstract simplicial complex whose k-simplicies correspond to unordered (k+1)-tuples

of points that are pairwise within distance e. Figure 2.4 (top) shows an example of the Rips complex

for a set of points in E2 for increasing e. For this abstract simplicial complex, homology generators

Hj can be computed, such that the rank of H0 reflects the number of connected components, the

rank of H1 reflects the number of one dimensional holes and so on. Which is the “right” e for this

dataset? In other words, as e increases, holes appear and disappear, which begs the question which

holes are “real”? In general, without prior knowledge of the dataset generation, the true e cannot be

determined. However, observe that those topological features which persist across large changes in

scale e are unlikely to be due to topological noise. So, informally, let the persistent homology be

the homology that persists across large changes in e.

The persistent homology is computed as follows. Figure 2.4 (bottom) shows an example for

a representation of the persistent homology called a barcode [3]. Informally, a barcode can be

considered to be the persistence analogue of a Betti number. Recall that a Betti number captures

the rank of a homology group, however a homology group is dependent on the abstract simplicial

complex, which is dependent on a scale parameter. As the scale increases, some Betti numbers

decrease and others increase, which correspond to the changing topology of the abstract simplicial

complex. A barcode captures the changes in Betti numbers as a scale or persistence is changed.

Figure 2.4 (bottom) shows a scale parameter e as horizontal lines, the homology groups are shown

ordered vertically, and the rank of Hk(Rei) for the kth homology group Hk for a given Rips complex

Rei is the number of intervals intersecting the dotted lines. The rank of the homology group Hk

is equal to the kth Betti number bk of the complex, which is a quantitative measure of the global

topological structure. For example, b0 is the number of connected components of the complex. At

the second dotted line, the Rips complex contains six connected components, but as e increases at

the third dotted line, the Rips complex becomes fully connected. So, the rank of H0 changes from

b0 = 6 to b0 = 1, as shown by the intersection of the dotted lines with the red intervals. Similarly, at

the fifth dotted line, the Rips complex is connected and there is only one hole remaining, so b0 = 1

and b1 = 1 as shown by the intersection of the dotted line with the red and green intervals.
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Figure 2.5: Optimal Homologous Cycle Matching [4]. Given a reference cycle (red) for a given
homology group, optimal homologous cycle matching finds the minimum weight homologous cycle
(green).

One application of persistent homology is the topological analysis of the space of natural images

[121][3]. In [121], the authors extended the approach of [126] to characterize the topological space

M of projected 3x3 patches of natural images onto the seven dimensional unit sphere. Understand-

ing the statistics of natural images is motivated by the need to model prior probability distributions

of local image patches for use in object recognition, object localization, segmentation, denoising,

and compression. For example, in [126] the authors model the full probability distribution of high

contrast 3x3 binary patches from natural images, by projecting suitably preprocessed 3x3 patches

onto S 7, a 7 dimensional unit sphere in R8. Results show that the projected distribution of patches

in S 7 are strongly clustered, and that a majority of the patches are concentrated in submanifolds

in the unit sphere. This result shows that natural images are composed of basic image primitives

which generate low dimensional non-linear structures where intrinsic dimension of these manifolds

is fixed and independent of the embedding space dimension. Such analysis focuses on the proba-

bilistic and geometric model of basic image primitives in natural images. Results of this analysis

over a dense subset of points in M̃ showed that this topological space has b1 = 5.

2.3.4.4 Homologous Cycle Matching

Optimal homologous cycle matching is the problem of finding the shortest cycle in the same ho-

mology class as a given cycle. Intuitively, in a 2D graph, given a cycle surrounding a hole in the

graph, the optimal homologous cycle is the shortest cycle that surrounds the same hole. The pri-
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mary result of this paper is that finding optimal cycles in a given homology class can be solved in

polynomial time since it can be shown that the integer linear program for homology cycle matching

has totally unimodular constraints, and therefore the linear programming formulation provides an

integer solution.

In the context of shape matching, homologous cycles and chains have the potential to elegantly

capture global matching constraints. These constraints include surrounded, interior, connected

which cannot be captured by only local methods. Using these tools from algebraic topology has

not been demonstrated convincingly to provide improvements for object detection performance,

however it may provide an additional set of tools for characterizing shape to augment geometric

methods.

In this section, we will summarize the construction of an integer linear program for optimal

homologous cycle matching.

Problem Definition. Optimal homologous cycle matching [4][127] is formulated as follows. Let

c be a p-chain in a simplicial complex K, with n simplexes of dimension p+1 and m simplexes of

dimension p. The optimal homologous chain problem is to find a p-chain x⇤ which has the minimum

weighted l1-norm ||Wx⇤||1 among all chains homologous to c. Equation (2.7) shows the weighted

l1 optimization for homologous chains.

(x⇤,y⇤) = argmin ||Wx||1

s.t. x = c+∂p+1y

x 2 Zm,y 2 Zn

(2.7)

In this optimization, ∂p+1 : Cp+1 ! Cp is a boundary matrix mapping (p+ 1)-chains to p-chains

and y is a (p+1)-chain.

The key constraint in this optimization is x = c+ ∂p+1y. Recall from section 2.3.4.2, that a

homology group Hk is defined as Hk(K) = {z|z = z0 + ∂k+1c,c 2Ck+1(K)} (defn 2.3.8), where an

homologous cycle z differs by a boundary from a fixed representative cycle z0. In this case, the

known representative cycle is c, and the optimal homologous cycle x must differ by a boundary of

a (p+1)-chain y. Therefore, the resulting p-cycle x is homologous to c, and there exists a (p+1)-

chain y such that x and c differ by the boundary of y.

Integer Linear Program. Equation 2.7 includes an l1 norm in the objective which is non-linear in
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x due to the absolute value of the l1 norm. However, it is well known that an l1 minimization can be

rewritten as an linear program by adding slack variables and additional constraints.

(x+,x�,y+,y�)⇤ = argmin Âi wi(x+i + x�i )

s.t. x+� x� = c+∂p+1(y+� y�)

y+,y� � 0

x+,x�  1

x+,x� � 0

(2.8)

Observe that the constraint x 2 {�1,0,1} is equivalent to the relaxed constraint 0  (x+,x�) 

1 if x+ and x� are restricted to integer solutions. This constrains x to have a natural geometric

meaning for chain coefficients without explicitly requiring that x 2 Z2, which leads to an intractable

optimization.

The integer linear program in equation 2.8 can be written with linear inequality constraints of

the form Ax� b, such that x = [x+ x� y+ y�]T and

A =

2

6666666666666666666664

�I I ∂p+1 �∂p+1

I �I �∂p+1 ∂p+1

�I 0 0 0

0 �I 0 0

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

3

7777777777777777777775

b =

2

6666666666666666666664

�c

c

�1

�1

0

0

0

0

3

7777777777777777777775

(2.9)

It can be shown that if the boundary matrix ∂p+1 is totally unimodular, then the constraint matrix A

is totally unimodular, and therefore the linear program in (2.8) has an integer solution and can be

solved exactly in polynomial time.

Total Unimodularity and Boundary Matrices. An integer linear program can be solved in time

polynominal in the dimensions of the constraint matrix A if and only if the constraint matrix is

totally unimodular. The following lemma is proved in [128].
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Lemma 2.3.11. If a matrix A is totally unimodular (TUM) then a matrix A0 obtained from A by any

of the following operations is also TUM

• A0 = AT

• A0 = [A, I]

• A0 is obtained from gauss jordan pivoting

• Adding one or more rows or columns with all zeros and a single one.

• Removing a row or column from A

• Adding to A one or more rows or columns already in A

• Multiplying a row or column by -1

• Permuting rows or columns

Lemma 2.3.12. If ∂p+1 is totally unimodular, then the constraint matrix A in (2.9) is totally uni-

modular.

Proof: The proof uses the properties for totally unimodularity described in lemma 2.3.11. Let B be

of size M⇥N. If B is TUM, then [B B] is TUM by applying property five to repeat columns of B.

If [B B] is TUM, then [B �B] is TUM by applying property seven to multiply the first N columns

by -1. If [B �B] is TUM then [I I B �B] is TUM by applying property four. If [I I B �B] is TUM

then [�I I B �B] is TUM by applying property seven. Observe that this form is the same as the

first block row of A in (2.9). Let this block row be A1. If A1 is TUM, then [AT
1 �AT

1 ]
T is TUM by

applying properties one, six and seven. Let this matrix be A12. If A12 is TUM, then A is TUM by

applying properties four and six. Therefore, since B = ∂p+1, if ∂p+1 is TUM, then A is TUM.

Lemma 2.3.13. For a finite simplicial complex triangulating a (p+ 1)-dimensional compact ori-

entable manifold, ∂p+1 is totally unimodular.

Proof: Every p-face is a face of either one or two (p+ 1)-simplex. For example, in graph theory,

every node (0-face) has an endpoint at either one or two edges (1-simplex). Therefore, the boundary

matrix ∂p+1 will have row entries of at most two non-zeros. Since it is known that a consistent

orientation of (p + 1)-simplexes always exists for a finite triangulation of a compact orientable

manifold, the row entries for ∂p+1 with two nonzeros always contain a +1 and -1.
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It is known that a matrix A is totally unimodular if rows of A can be partitioned into two disjoint

sets A0 and A00 such that the following four properties hold (i) every column of A contains at most

two nonzeros (ii) every entry is {0,1,-1 }, (iii) If two nonzero entries of A have the same sign, then

the row of one is in A’ and the other in A” (iv) If two nonzero entries of A have opposite signs,

then both rows are in either A’ or A”. Consider A = ∂T
p+1. We have shown (i), (ii) follows from

construction of a boundary matrix, we have shown that (iii) for orientable manifolds and (iv) we

can construct matrices A0 = A and A00 = /0 [128]. Therefore, A is TUM, and if A is TUM, then AT is

TUM from property one of lemma 2.3.11. Therefore, ∂p+1 is TUM.

Finally, lemma 2.3.13 shows that the boundary matrix ∂p+1 is totally unimodular, therefore from

lemma 2.3.12 the constraint matrix A in (2.9) is totally unimodular, and the linear program in (2.8)

provides an integer solution.

Results. The main result is the linear program in equation 2.8, and a characterization of those sim-

plicial complexes for which the boundary matrix is totally unimodular. This characterization enables

practical use of this result. An example result is shown in figure 2.5, which shows a reference cycle

in red, and an optimal homologous cycle in green for the simplicial complex shown.

The total modularity for boundary matrices that are useful for shape representations were sum-

marized in lemma 2.3.13. The paper also presents extensions for more general cases such as non-

orientable manifolds and abstract simplicial complexes, however since these results are not directly

relevant for shape representations (shape representations can assume an embedding in R2), we do

not summarize them here.

2.4 Analysis of Global Shape Representations

In this chapter, we organized shape representations into local and global shape representations, and

further decomposed global shape representations into graph based geometric and topological meth-

ods. We gave an overview of geometric methods with an organization by graph structure, describing

trees, bipartite graphs and general graphs, and graph construction and graph matching approaches

for each. We showed graph matching results and described the computational complexity for rep-

resentational approaches for each graph structure. We described topological methods for shape

representation using a unifying framework of simplicial homology, where homology was comput-
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ing using persistent homology and matched using homologous cycle matching. We showed how

this type of topological representation could be used to capture global topological properties for use

in shape representations to complement geometric methods.

In this section, we analyze the performance of the graph based shape representations described

so far in both a task independent and task dependent manner. Task independent analysis refers to

comparing and contrasting the representational power and matching efficiency of different graph

based approaches independent of the computer vision task that this representation would be applied

to. Section 2.4.1 shows a comparison table and describes the tradeoff of representational power vs.

computational tractability inherent with graph based representations. We compare different shape

representations using a unifying criteria of structure, attributes, construction and matching, and

we compare shape representations using graph structures and matching algorithms, by considering

representational power of the graph structure and the efficiency of the matching algorithm.

Task specific analysis considers performance for graph based shape representations in a par-

ticular vision task, such as image matching. Unfortunately, the dirty little secret of graph based

representations is that they do not perform as well as discriminative template based methods for ob-

ject detection, recognition or categorization. In fact, all the methods discussed so far when applied

to categorization tasks augment graph matching for detection using either (i) a final discriminative

classifier, commonly an SVM or randomized forest [129, 130, 33, 25] or (ii) local distance learning

[131, 132] to optimize a distance metric for nearest neighbor classification. These classifiers are

practical since they result in improved detection performance by reducing the lower false alarm rate

for spurious detections on background features. However, they have a highly questionable founda-

tion for shape representation. In section 2.4.4 we will describe why these methods inherit the warts

of classical categorization and should be treated with skepticism.

In the remainder of this section, we ask broader questions. We seek to understand if graphs

and graph matching are an appropriate shape representation for practical vision tasks such as im-

age matching, or if they have fundamental limitations or if there are theoretical problems with the

representational power. Specifically we ask:

• Is shape similarity geometric? If we have perfect graph matching that optimally preserves

geometry and topology of a reference graph during matching, have we solved the shape match-
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Graph Matching Attributes Explicit? Example
star GHT prototypes no [29, 134]
star DP discriminative templates no [23]
star linear assignment contours no [33]
star GHT regions no [129]

bipartite perfect matching local descriptors yes [31]
tree tree edit distance weight matrix yes [114][113][112]
tree tree isomorphism inflection points yes [32]

general QAP weight matrix yes [107] [109]
general TPS local descriptors yes [30]
simplex Homologous cycles weight matrix yes [4]

Table 2.1: Comparison of graph based shape representations

ing problem? We show simple counter-examples where graph matching alone does not capture

the similarity of two objects. In general, graph matching is an example of a representation

based on a first order isomorphism, but a more powerful and expressive representation is based

on second order isomorphisms. We describe work by Shepard [133] and Edelman [1] outlining

this idea. This is addressed in section 2.4.2.

• Is shape similarity topological? If we have perfect topological shape representations such as

simplicial homology and optimal matching of topological representations that preserves topo-

logical invariants, have we solved shape matching? Clearly, this answer is no since topological

invariants alone do not capture perceptual similarity. We describe a simple counter example,

but sketch out how topological invariants can be useful to augment geometric based represen-

tations. This is addressed in section 2.4.3.

• Are discriminative classifiers classical categorization revisited?: Does the final discrimina-

tive classifier step introduced by most graph matching approaches to reduce false alarm rates

and handle the dirty little secret come at a cost? Are discriminative classifiers the way for-

ward for shape representations, or does it make an implicit assumption on a discredited theory

from cognitive science? In section 2.4.4, we argue that the final discriminative step is on a

shaky foundation, and that this is not a credible path forward, even though it looks to improve

performance.

43



2.4.1 Task Independent Comparison

These methods presented in this survey can be compared by considering the following criteria:

graph structure, attributes, construction and matching. The graph structure refers to the underlying

graphical structure, where in this survey we described trees, bipartite graphs, general graphs and

simplicial complexes. The attributes refer to the edge and node features used to describe the local

shape of the image at the graph embedding coordinates. Some work considers specific attributes

to define the local shape, and other consider a graph structure that requires only a weight matrix

to be defined. The graph construction can either be explicit or implicit, where explicit construction

means that the graph is embedded prior to matching and implicit means that the construction is

coupled with the matching. Finally, the graph matching defines the algorithm used for alignment of

the reference graph with the current observed image.

Table 2.1 shows a comparison of graph based shape representations. This table includes the

approaches reviewed in this survey, as well as other approaches that were not discussed in detail,

but are representative of graph based shape representations.

The primary tradeoff in comparing in graph based representations is representational power ver-

sus computational tractability. General graphs encode all relevant pairwise geometry and global

topology that capture shape, however matching for a general graph is equivalent to a quadratic as-

signment problem which is computationally intractable. Section 2.3.3.3 discussed two relaxations

of the QAP, a graduated assignment algorithm based on graduated non-convexity, and a spectral

relaxation. These algorithms match general graphs, however the final result is a fractional assign-

ment, which must be discretized to a final matching output. The graduated assignment provides an

iterative discretization using softassign and annealing, however it is unclear how to choose the an-

nealing schedule in general to avoid being trapped in local minima. The spectral relaxation relaxes

the matching constraints to perform a convex quadratic optimization, then enforcing the constraints

during the discretization step. The final result is an assignment matrix, but it is not an optimal as-

signment matrix, since the discretization is a convenient heuristic to recover a discrete solution from

a fractional optimization, unrelated to the original objective.

Sections 2.3.3.1 and 2.3.3.2 described bipartite graphs and trees, graph structures which enable

efficient matching algorithms. However, these graphs do not capture the full geometry of a shape,
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and therefore lack expressive representational power. For example, the tree structure of a star graph

cannot capture pairwise geometry between parts, and can only capture the geometry between parts

and the centroid. This limits the representational power, since for many objects, such as the legs and

torso of a pedestrian, are correlated. The star graph and independence assumption is a convenient

fiction to enable efficient matching using the generalized Hough transform. Similarly, a bipartite

graph cannot capture any pairwise geometry, and as described in section 2.3.3.2, it is assumed that

the overlapping shape context attribute will capture this pairwise interaction rather than having it

expressed as geometric constraints during matching. However, these weights are not constraints to

be enforced, and the result is that each node is independently matched according to weight, resulting

in the same lack of representational power as star graphs.

A similar problem of representational power vs. computational tractability exists in the gener-

ative model community. Stuart Geman describes this as the Markov dilemma. How do we model

constraints on attributes such as poses of pairs eyes while having a Markov network that is mod-

elling eyes as conditionally independent given a face, without giving up computational tractability?

[27]. The fact that probabilistic graphical models also share this representational limitation hints

that it is universal graph representations, which fundamentally limits the representational power.

2.4.2 Is Shape Similarity Geometric?

Shape matching is the problem of alignment of an exemplar in an input image. Clearly geometry

plays a role, as can be shown by dramatic performance improvements of alignment methods that

use shape representations that include even weak geometry [15] versus texture-only classification

[135]. However, is shape matching just alignment to a reference graph that preserves geometry

during matching?

Figure 2.6 shows two examples of where alignment fails to capture perceptual similarity. Figure

2.6 (left) shows two reference images, a dotted square and a triangle, and an observed image of

a square. Assume that these reference images and observation have an explicit graph embedding,

such that the attribute weights for graph matching are proportional to geometric deformation. In both

cases, the reference models will match to 50% of the observation, which from alignment would re-

sult in these triangle model and the dotted square as equally similar to the observed square. Clearly,

we perceive the dotted square as more similar to the observation that the triangle, so alignment is
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not capturing this perceptual similarity. Figure 2.6 (right) again shows two models, a handwritten

“O” and a typographic “Q”, and an observation of a typographic “O”. The handwritten “O” does not

align anywhere with the observation, while the “Q” aligns everywhere except the most important,

yet small, discriminative stroke. Alignment alone would define the “Q” more similar to the “O”,

while perceptually we would consider the handwritten “O” more similar. So, clearly there is more

to perceptual similarity than geometric alignment alone. However, alignment does provide a cue for

similarity, since the dotted square or the handwritten “O” are more similar to the observation than

say a cat or a motorcycle.

These examples show that similarity is more than alignment, it requires relevant alignment.

The same issue of representation has been explored in the categorization literature. For example,

Murphy and Medin make the following observation for the use of common attributes for object

categorization as described by Edelman [1]:

The number of attributes shared by plums and lawn-mowers could be infinite: both

weigh less than 1000 kilograms (and less than 1001 kilograms), both cannot hear well,

both have a smell, etc. Any two entities can thus be arbitrarily similar or dissimilar,

depending on what is to count as a relevant property.

This observation is an example of the ugly duckling theorem which states informally that similarity

requires bias, since otherwise is if similarity is judged in terms of number of predicates shared then

any two objects are equally similar. The same holds for shape representations. In figure 2.6, the

relevant alignments are not all precise deformations of the handwritten O, but rather discriminative

properties of the holistic shape. This begs the question, what is important? This seems to imply that

discriminative classifiers are necessary, since these classifiers are designed to weight features that

are important for classification, but we will see that they also inherit the deficiencies of classical

categorization. So, alignment is useful, but it does not tell the whole story.

2.4.3 Is Shape Similarity Topological?

Section 2.3.4 described using homology and homologous cycles for shape representation, but is

this sufficient for shape matching? Clearly, topology alone does not capture a representation of

objective shape. Topology can be described as qualitative geometry, and the invariants that remain
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Figure 2.6: Alignment does not capture all similarities

once geometric concepts are removed. However, objective shape is a geometric concept, as shown

by our clear perception of bagels and coffee cups as different objects, even though as topological

shapes they have the same Betti numbers, and therefore the same topological invariants.

However, homologous cycles and chains do have the potential to elegantly capture global match-

ing constraints in perceptual organization, such as “surrounded”, “interior” and “connected”. These

constraints are global which capture the holistic properties of a shape which cannot be captured by

local node or edge interactions only, and these constraints are independent of geometric deforma-

tion. These topological invariants may provide robustness to intraclass variability than geometric

attributes only. For example, topological features can be used for recognition of people and ob-

jects, such as pedestrians carrying a bag or pushing a stroller may exhibit significant variation in

geometric configuration, however the topological invariants remain stable (e.g. the loop of a bag

being held, a baby surrounded by and interior to a stroller). These topological attributes provide an

invariant shape representation that may provide improved generalization.

So, while use of topology to represent these global properties has not yet been demonstrated

convincingly, there is the potential to provide a combined geometric and topological framework

that is more powerful that either independently. So, topology may be useful, but it does not tell the

whole story.

2.4.4 Are We Revisiting the Classical Theory of Categorization?

The classical theory of categorization states that categories are defined by necessary and sufficient

conditions for membership [70, 71]. For example, the category of “triangle” can be defined unam-

biguously, such that any subset of line segments can be checked for consistency with the definition.

So, if a subset of line segments contains three segments, and if each pair of line segment endpoints

intersect at a unique point, then the subset is categorized as “triangle”. The conditions are neces-
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sary in that they must be satisfied to make a categorization decision, and they are sufficient in that

even if there are other properties present such as the lines colored red or dotted lines, the minimum

properties are enough to render a categorization decision. The necessary and sufficient conditions

define the category, so this is often called a definitional approach to categorization. This approach

can be traced back to Aristotle who discussed the essence of a category as those properties shared

by all members.

The definitional approach has a number of implied properties. First, an object is either in the

category or not. If a subset of line segments satisfies the definition of a triangle, then either it is a

triangle or it is not, there are no “in betweens”. This is often called the property of the excluded

middle. Second, there are no distinctions between category members. As long as the necessary

and sufficient conditions are satisfied, then the object is assigned membership to a category. There

are no “better” or “worse” examples of a category, since all members are equal in satisfying the

definition.

The classical view appears intuitive, and it does provide unambiguous categorization for some

objects with a definitional nature, but has been widely discredited as a general representation. Con-

sider the category of “dogs”, as described by Murphy [70]:

The definition for dogs...namely things that have four legs, bark have fur, eat meat

and sleep is obviously not true. Does something have to have four legs to be a dog?

Indeed, there are unfortunate dogs who have lost a leg or two. How about having

fur? Although most dogs do have fur, there are hairless varieties like chihuahuas that

don’t. What about barking? Almost all dogs bark, but I have known a dog that lost

its bark as it got older. This kind of argument can go on for some time when trying

to arrive at necessary features...Wittgenstein urged his readers not to simply say ’there

must be something in common’ but to specify the things in common. Indeed, it turns

out to be very difficult to specify necessary and sufficient conditions of most real world

categories.

This problem is not limited to animals. Murphy describes the practical problem of categorization

in material science by as described by distinguished metallurgist Robert Pond [70]

You really don’t know what a metal is, and there’s a big group of people that don’t
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know what is a metal is. Do you know what we call them? Metallurgists! ... Here’s

why metallurgists don’t know what a metal is. We know that a metal is an element

that has metallic properties. So, we start to enumerate all these properties: electrical,

conductivity, thermal conductivity, ductility, malleability, strength, high density. Then

you say, how many of these properties does an element have to have to classify as a

metal?...We can’t get the metallurgists to agree!...So, we just proceed along presuming

that we are all talking about the same thing.

These anecdotal examples of the problems facing definitional approach to categorization can be

traced back to Wittgenstein, who was the first to question the assumption that categories could be

defined. For example, Wittgenstein describes the category of games and argues that there are no

common definitional properties common to all games. Rather, games share family resemblances

such as amusement, rule following or competition. From Lakoff, “Games, like family members, are

similar to one another in a wide variety of ways. That, and not a single well defined collection of

common properties is what makes game a category.” [71].

Eleanor Rosch and her work on prototype theory provided a set of empirical evidence to chal-

lenge and eventually discredit classical categorization [136]. She made two key observations. First,

she observed that if categories are definitional, then no member should be any better example of

the category than any other. Rosch provided experimental evidence that all categories have best

examples called prototypes, such as a robin being a prototype of a bird and not an ostrich. These

central members are more commonly associated with the category, are more quickly labelled than

non-central members, children learn them more quickly, and they exhibit more family resemblances

to other members of the category than non-central members. Second, she observed that if category

membership is definitional, then there should be no ambiguity as to category membership and cate-

gorization should not be observer dependent. However, experimental evidence exists for categories

that are ambiguous (is swampwater water or poison?) and categorization that changes from person

to person (is a tomato a fruit or vegetable?).

These observations are not explained by classical categorization theory, which puts this theory

on shaky foundation. Murphy summarizes the arguments against classical theory as follows [70]:

It has simply ceased to be a serious contender in the psychology of concepts...First,
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it has been extremely difficult to find definitions for most natural categories...Second,

the phenomenon of typicality and unclear membership are both unpredicted by the

classical view...Third, the existence of intransitive category decisions (car seats are

chairs, chairs are furniture, but car seats are not furniture).

In short, classical categorization using abstract absolute definitions does not explain experimental

evidence for how we perform categorization. It is unlikely that there are “essences” that define

objects or “natural kinds” that define animals or plants. As Darwin said, ”We shall have to treat

species as artificial combinations made for convenience in order to be free from the vain search for

the undiscovered and undiscoverable essence of the term ’species’ ”.

However, even though classical categorization has been discredited, the literature on object cat-

egorization implicitly relies on it. Let’s assume that object categorization is limited to basic level

categories, then we ask the question, is object categorization equivalent to feature space classifica-

tion? Feature space classification refers to embedding a labelled training set into a common feature

space, then learning a discriminative classifier. Every training image is represented as a point in a

common feature space, and a learning framework optimizes a discriminative classification function

to partition this space. We will show that this assumption implicitly assumes the classical view of

categorization, and inherits its warts.

Consider the popular “bag of words” approach to object classification [135]. In this approach,

an image is represented by the number of times a set of local prototypes or visual words appear in

an image, independent of the relative position of these words. Each training image is represented

by a histogram which captures the frequency of this unordered “bag” of visual words. Each training

image is represented by a histogram, and the set of histograms from the training set serve as obser-

vations input to a support vector machine (SVM) classifier. The weights learned by this classifier

represent the category. What does this approach say about a category? The category is defined in

a feature space, such that each training image is represented as a point in this feature space. For

bag of words models, the dimensions of the feature space correspond to the frequency of prototypes

occurring in a given image. The weights learned for a (one vs. all) linear support vector machine

defines an optimal hyperplane in this feature space which separates category members from non-

members. Points one one side of the hyperplane are declared category members and points on the
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other side are not members. The SVM weights which define the hyperplane parameters define a

“rule” that can be used to define the category in terms of the weights in each of the feature space

dimensions. For a given observation, the SVM weights define necessary and sufficient conditions

for category membership, and either an object is a category member or not. In other words, classical

categorization.

This argument is not limited to SVMs. Any discriminative classifier that learns a classification

function in a fixed feature space is learning a categorization rule. This is true by construction, since

a classification function is a mapping from feature space to label, which encodes a (complicated

and opaque and non-obvious) rule for assigning observations to categories. However, as described

in section 2.4.4 the classical theory has been widely discredited as a category representation by

cognitive scientists. Why then are they so popular? Critics of the classical view claim that the

definitional approach is flawed since they themselves cannot write down a definition for a natural

category such as dogs. This does not mean that a category definition does not exist, since the

definition may be hidden in the data, and can only be uncovered by statistical analysis. However,

if experts cannot agree on those features that are needed for categorization, and if a discriminative

classifier can capture the essence of a category, then why don’t the experts use a discriminative

classifier to settle the debate? Perhaps the classifier cannot capture an optimal statistical rule because

a rule does not exist.

So, approaches that use feature space classification appears to be a revisitation of the classical

theory of categorization. What are the alternatives? Edelman argues that shape representation

should be a second order isomorphism [6][1]. An isomorphism refers to a functional mapping that

is one to one and onto. Formally, a function f is an isomorphic map if and only if it is a bijection. In

the context of shape representations, a first order isomorphism refers to correspondence between a

model representing distal properties and an internal representation or proximal representation. For

example, 3D reconstruction attempts to create an internal 3D representation for an object that is

isomorphic with 3D shape of an object in the scene, or graph matching attempts to create an internal

graphical representation of an object that is isomorphic to a reference. In contrast, a second order

isomorphism [133] refers to the relationships between representations and not the representations

themselves. From Shepard [133]:
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Although the internal representation for a square need not itself be square, it should

(whatever it is) at least have a closer functional relation to the internal representation

for a rectangle than to that, say, for a green flash or the taste or persimmon.

Second order isomorphism and first order isomorphism or representation of similarity instead

of representation by similarity. ”The idea of second order isomorphism translates to the notion

that only certain relations between the objects - not the shape of individual objects themselves

- need be represented” [1]. Second order isomorphism neatly bypasses the question of the “right”

representation. Instead of trying to find the ideal representation that best captures an object category,

second order isomorphism asks for a given representation, do the proximal relations preserve the

distal relations? In other words, I may not know how to represent the category of “dog”, but for any

choice I make for representing shape of an individual dog, the shape of a golden retriever should

be more similar to a Doberman than a bus. This focuses on the representation of similarity rather

than the representation of an object category. This sentiment is shared in recent work in object

categorization on exemplar based similarity [137, 138].

An approach like second order isomorphisms neatly bypass the limitation of classical catego-

rization, since there are no global rules defining categories, there are only similarity relations among

data. Similarity computations are delayed until test time, which delays the classification decision

until test time, which does not require a predefined category definition learned during training. In

essence, the data is it’s own definition. In other words, in a complex world, perhaps the best model

of the world is the world itself [139].

2.5 Summary

In this chapter, we surveyed graph based shape representations by grouping into geometric methods

and topological methods, where each method is organized by invariances of increasing abstraction.

For geometric methods, we used the unifying framework of weighted graph matching posed as a

quadratic assignment problem as a unifying framework for discussion, and we described invariant

properties maintained during various tree, bipartite and general graph matching approximations.

For topological methods, we used the unifying framework of simplicial homology, and describe

the persistent homology, a technique for recovering the homology given noisy data, and optimal
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homologous cycle matching for matching topologically invariant cycles. Finally, we analyzed these

methods both in a task independent and task dependent context.

The conclusions are that graph based shape representations based on graph matching to an ex-

emplar, do provide both a measure of geometric and topological similarity. However, they do not

provide equivalence to perceptual similarity, they do not embody Edelman’s second order isomor-

phism, and they cannot provide the same performance as a discriminative classifier. However, since

discriminative classifiers have their own representational problems, more work is needed to cross

the representational gap.

David Weinberger in “Everything is Miscellaneous” [140] observes the same representational

problems with knowledge that we outlined with shape representations. The Dewey decimal system

for categorizing knowledge is good for for searching for books by author, but not for searching for a

birthday present. Alphabetization is good for categorizing knowledge in printed encyclopedias, but

only if you know the name of what you are looking for. These and other problems of categorization

he attributes to the fact that there is no one categorization model for knowledge. He observes, “The

world is too diverse for any single classification system to work for everyone in every culture at

every time...The best representation depends on the task.”. To compensate, he outlines four strategic

principles for organizing knowledge: (i) Filter on the way out not on the way in (ii) Put each leaf on

as many branches as possible, (iii) Everything is meta-data and everything can be a label and (iv)

Give up control. The next generation of shape representations may be down a similar path.
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Chapter 3

Nested Shape Descriptors

3.1 Introduction

Local feature descriptors have emerged in the past ten years as the dominant representation for

image matching. There exist standard benchmarks for performance evaluation [39, 74, 61], and

a zoo of detectors and descriptors [38, 16, 40, 42, 43, 44, 45, 46]. introduced with the trend of

faster and faster matching while maintaining approximately equivalent performance to SIFT [35].

Local feature descriptors have been successfully deployed for a wide range of image matching tasks

including: stereo, optical flow, structure from motion, egomotion estimation, tracking, geolocation

and mapping.

All existing local feature descriptors share a common performance tradeoff between support

size and matching selectivity. It is well known that for the task of image matching, descriptors con-

structed with larger support outperform descriptors with smaller support [42, 43, 44, 45, 46]. De-

scriptors with large support are constructed with larger image patches that increase the uniqueness

of a match and address the aperture problem, however there are diminishing returns for constructing

a descriptor too large. For example, there may be arbitrarily large outliers in the descriptor due to

occlusions and geometric variation effects far from the descriptor center. So, an ideal descriptor

would be as large as possible, while being robust to occlusions.

In this paper, we introduce nested shape descriptors to address this tradeoff. A nested shape

descriptor (NSD) is a family of binary local feature descriptors constructed by pooling oriented

and scaled gradients over a large geometric structure called an Hawaiian earring. An example of
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Figure 3.1: Nested shape descriptors pool scaled and oriented gradients over large geometric struc-
tures called Hawaiian earrings. (left) Hawaiian earrings with k-fold rotational symmetry define a
member of the nested shape descriptor family called the seed-of-life descriptor (right) Two Hawai-
ian earrings substructures in the seed-of-life descriptor are highlighted in grey.

the nested shape descriptor is shown in figure 3.1. Each descriptor has global support covering

the entire image, and the structure of the descriptor exhibits fractal self-similarity in scale. This

correlated nested structure enables new a robust distance function called the nesting distance. The

nesting distance uses order statistics for robustness to outliers while maintaining a descriptor with

global support.

Nested shape descriptors make four primary contributions.

• Global support: Each NSD exhibits support that covers the entire image, which provides

improved selectivity for cases exhibiting the aperture problem without sacrificing localization

accuracy.

• Binary: NSDs are binary, which enables for compact storage and allows the nesting distance

to use a fast Hamming distance, without sacrificing matching performance.

• Robust local distance function: The nesting distance is a quadratic local distance function

that is robust to corruption of the descriptor due to occlusions, geometric variations or light-

ing.

• Saliency: We show that the log-spiral normalization is performing a type of bottom up
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saliency computation, which provides a representation of orientation and scaled salient edges.

We show how the NSD can be used to provide a saliency map using steerable pyramid recon-

struction.

In this paper, we provide sufficient conditions for construction of a nested shape descriptor using

key concepts of nested pooling and log spiral normalization. We perform a trade study to determine

optimal descriptor parameters for the task of image matching. Finally, we evaluate performance

compared to other local feature descriptors on the VGG-Affine image matching benchmark and

Photorealistic Virtual City datasets showing measurable performance gains.

3.2 Related Work

There have been many local feature descriptors proposed in the literature in the past ten years.

From oldest to newest, the primary developments have been: SIFT [35], PCA-SIFT [36], Shape

context [31], local binary patterns [37], SURF [38], GLOH [39], Sparse localized features (SLF)

[16], compressed HoG (cHoG) [40], DAISY [41, 42], BRISK [43], BRIEF [44], ORB [45] and

FREAK [46].

The trend in local feature descriptor research has been to show comparable performance to

SIFT on the VGG-Affine benchmark [39, 74, 61], with ever faster computation. Work has pro-

gressed from PCA-SIFT [36] and SURF [38] which show close performance to SIFT with lower

dimensionality and faster preprocessing. Recent work has focused on introducing binary features

from local comparison tests [44, 43, 45, 46] which enables fast distance metric based on Hamming

distance and faster derivatives [75]. These developments have been driven by the need for faster

processing to support mobile deployment.

A taxonomy for comparing and contrasting local feature descriptors can be described in terms of

five criteria: preprocesssing, support, pooling, normalization and descriptor distance. Preprocessing

refers to the filtering performed on the input image, support patterns are the geometric structure used

for constructing the descriptor and pooling is the aggregation of filter responses over the support

structure. Figure 3.2 shows this taxonomy and a comparison of dominant local feature descriptors.

Using this taxonomy, the nested shape descriptor is most closely related to DAISY, BRISK

and FREAK. NSD has large support and distance robust to occlusions like DAISY, but it does not
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Figure 3.2: Taxonomy and comparison of local feature descriptors.

require an iterative optimization framework determine occlusion masks. NSDs are binary with large

support like BRISK/FREAK, however NSD support is larger and global relative to the image size.

Furthermore, unlike BRISK and FREAK, NSD uses scaled and oriented gradients comparisons

rather than pixel comparisons for computing the binary representation.

Finally, local distance functions [132] have been explored for metric learning of exemplar dis-

tances for the task of object recognition. However, distance functions for local feature descriptors

have been limited to Euclidean, Hamming and Mahalanobis distances, where covariance estimation

is typically used only for dimensionality reduction [36][39]. In the taxonomy of [132], the nesting

distance is per-exemplar (“where”), online (“when”) using order statistics (“how”) without requiring

any offline training.

3.3 Nested Shape Descriptors

In this section, we describe the construction of nested shape descriptors. NSD are constructed by

first defining the nested pooling structure (section 3.3.1), which can be decomposed into a sets
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Figure 3.3: Why nesting? (left) Occlusions corrupt half of a generic grid descriptor covering the
occluded region (red X’s), while the nesting distance selects the best subset of supports in the
nested descriptor that cover only the object (green checkmarks). (middle) Viewpoint changes for
long and thin foreground structures introduce errors in grid descriptor matching due to large changes
in the background. The nesting distance selects the subset of supports during matching that cover
the foreground and are the correct scale to allow for background variation. (right) Scale changes
without scale invariant detectors introduce errors in grid descriptor matching due to changes in
local support. The nesting distance uses a subset of both large and small scale supports, ignoring
intermediate scale supports with corruption.

of “Hawaiian earring” structures. We provide definitions for this construction and show how the

nested shape descriptor is constructed from these pieces (section 3.3.2). Furthermore, we define

the nesting distance (section 3.3.5), which uses the properties of the nested descriptor to provide

robust distance function. Finally, we define a specific member of the nested shape descriptor family

called the seed-of-life descriptor (section 3.3.3), constructed using Hawaiian earrings with k-fold

rotational symmetry.

What is the intuition behind the nested descriptor? Figure 3.3 shows three cases that motivate

the use of nesting. The nested descriptor and nesting distance are compared to a generic grid de-

scriptor (e.g. SIFT, but the same argument holds for log-polar grid descriptors) for three common

scene variations: occlusions, viewpoint and scale. The red X’s and green checkmarks show where a

grid descriptor is corrupted due to the scene variation, which leads to poor matching performance.

For these cases, the NSD and nesting distance are able to select the best subset of supports dur-

ing matching to provide robustness to these scene variations. See the caption in figure 3.3 for a

discussion.

Why the nesting distance? Given a pair of descriptors, the nesting distance computes a weighted

sum of the best k coordinate matches. If a coordinate is an outlier (e.g. the worst n� k coordinates,
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where n is the dimensionality of the descriptor), then any inliers correlated with this outlier are

suspect, and are appropriately downweighted. The nesting distance relies on nesting, such that all

supports are linked by exactly one point in the center of the descriptor. We discuss further in section

3.3.5.

3.3.1 Hawaiian Earrings and Nested Pooling

Nested shape descriptors represent shape by pooling of oriented gradients within Hawaiian ear-

rings. Figure 3.1 (right) shows an example of the Hawaiian earring substructure formed by a nested

set of circles all intersecting at exactly one point at the center. The Hawaiian earring is a nested

structure analogous to Matryoshka or Russian nesting dolls, where each smaller doll fits neatly in-

side the next larger doll. Hawaiian earrings may be combined into sets such that each earring is

called a lobe. Each lobe exhibits scale symmetry and all earrings intersect at exactly one point in

the center.

In the remainder of this section, we formally define the Hawaiian earrings geometric structure.

The definitions provide precise construction, however this formality should not obscure the simple

intuitive nature of this descriptor. Nested circles of exponentially increasing radius all intersect at

exactly one point in the center, and each circle pools oriented gradient responses at a specific scale.

Figure 3.1 shows this common center point in red.

3.3.1.1 Formal Definitions

The formal definitions of the Hawaiian earring used to construct the nested shape descriptor are as

follows. First, preliminary notation. Let I be an M⇥N greyscale image containing pixels p2 I with

greyscale value I(p).

Definition 3.3.1. A support S at c is S = {p| p 2 I, ||p� c||2  r}

This defines a support. Observe that a support is a set of all pixels within a given radius of a

center pixel c. For example, each circle in figure 3.5 is a support.

Definition 3.3.2. A nested support set at p is a set of supports Sp = {Si| ri�1 < ri, p 2 Si, i  n}

and S1 = {p}, Sn = {I}.
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This defines a nested support set. A nested support set is an ordered set of supports, such

that each support contains the element p and smaller supports are contained within larger supports.

Formally, inner support region are strict subsets of all outer support regions, S1 ⇢ S2 ⇢ . . . ⇢ Sn,

radii are totally ordered such that r1  r2  rn and p is contained in each support Si. The set of grey

circles shown in figure 3.5 (middle) form a nested support set.

The definition of the nested support set implies two useful properties. First, A nested support

set is precise. It follows from definition (3.3.2) that the smallest radius r1 = 0 since the innermost

support K1 must contain only p. This definition implies that there exists exactly one point p that is

in all supports Si. This property enables precise pixel level alignment of the nested descriptor for

a large support set. Second, a nested support set is bounded. The largest support region Sn con-

tains the entire image, which implies that rn�1 < max(M,N) and rn >= max(M,N). This provides

a requirement that the largest support must include the entire image to provide global descriptor

properties.

Definition 3.3.3. An Hawaiian earring K(q) is a nested support set S such that for each support set

Si 2 S, ri = 2i and ci = (2i�1,q) in polar coordinates.

This defines a specific case of a nested support set called the Hawaiian earring. Each support in

the Hawaiian earring have exponentially increasing radius, the center of each outer circle is on the

boundary of the inner circle and all share exactly one common point at the boundary of all circles.

The centers of each support are defined in polar coordinates, such that q is the orientation of the line

intersecting all support centers. For example, figure 3.5 (middle) shows a Hawaiian earring structure

in grey, such that the common point is the center of the seed of life structure, and the angle is Kp/2.

This structure is fundamental building block of the seed of life and the nested shape descriptor.

Definition 3.3.4. A seed of life Kn is a set of Hawaiian earrings such that Kn = {Ki(qi) | qi =

2pi
n , 8i n}.

This defines the seed of life. This geometric structure is a set of Hawaiian earrings such that each

is equally spaced in n polar orientations. Figure 3.5 (left) shows the seed of life K6 for six quantized

orientations. The seed of life defines the pooling structure used in the nested shape descriptor and

is the primary construction of this section. Figure 3.7 shows an example of increasing lobes from

K1�K10.
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In the remaining sections, we will use the following notation to reference the substructures of

Hawaiian earrings. The index Kn(u) refers to the uth of n Hawaiian earrings, also called the uth

lobe. The index K(u,v) refers to the vth support of the Hawaiian earring Kn(u). For example, in

figure 3.1 (right), the two lobes highlighted in grey are Hawaiian earrings K6(1) and K6(4) and the

two largest circles are referenced as supports K6(1,4) and K6(4,4).

3.3.2 Nested Shape Descriptors

A nested shape descriptor D at interest point p is defined by nested pooling, logarithmic spiral

normalization and binarization of oriented gradients B over a nested support Kn.

d(i, j,k) = Sq2K( j,k) Bik(q) (3.1)

d̂(i, j,k) = d(i, j,k)�d(i, j�1,k�1) (3.2)

D(i, j,k) =

8
>><

>>:

1 if d̂(i, j,k)> 0

0 otherwise
(3.3)

Equation (3.1) is nested pooling. Let Brs(q) be a bandpass response at pixel q for subband

orientation r at octave scale s [141]. The descriptor d(i, j,k) is the pooled response for orienta-

tion subband i, lobe j and lobe scale k. Observe that the bandpass octave scale s is equal to the

Hawaiian earring support radius k. In other words, support regions with radius 2k pool orientation

subbands over octave scales k. As the support radius increases, the pooling support contains the

next smaller support, resulting in nested pooling within a lobe. Figure 3.4 (left) shows an example

of this construction. Equation (3.1) shows sum-pooling, but we also experiment with max-pooling

over a support. Pooling strategies will be defined in the experimental results section.

Equation (3.2) is logarithmic spiral normalization. A logarithmic spiral is a curve that can be

written in polar coordinates as r = aebq for arbitrary positive real constants a and b. A nested support

set Kn exhibits a logarithmic spiral when considering neighboring supports. For example, figure 3.4

(right) shows an example of the logarithmic spiral for K6. Each turn of angle qi =
2p
6 i is a radius

of ri = 2i, which is equivalent to a logarithmic spiral numerically approximated with parameters

a = 1,b = 0.66191. Figure 3.4 (right) shows a log-spiral and it’s reflection r = ae�bq forming an

61



elegant flower-like pattern. This pattern encodes the normalization which is a difference of spiral

adjacent support, which provides invariance to additive gradient bias.

Equation (3.3) is binarization. A nested shape descriptor can be binarized by computing the

sign of (3.2). This constructs a nested shape descriptor with binary entries.

Figure 3.9 shows an example of this construction. Nested pooling is equivalent to pooling of

fixed radius over scales of a steerable pyramid [141], which is analogous to a “flattening” of a pyra-

mid representation of scaled and oriented gradients. The final nested shape descriptor D is a binary

vector of length (R⇥ |K|⇥ |K|) for R orientation bands over |K| lobes and |K| supports per lobe.

For example, for eight orientation subbands, five nested supports, and six lobes has dimensionality

(8⇥6⇥5) = 240.

3.3.3 The Seed-of-Life Descriptor

The nested shape descriptors in section 3.3.2 defines a family of descriptors that share the common

properties of nested pooling.log-spiral normalization and binarization. In this section, we define a

specific member of this family called the seed-of-life nested shape descriptor or simply the seed-of-

life descriptor.

The seed-of-life descriptor is a nested shape descriptor such that the nested pooling Kn is de-

fined using a rotationally symmetric geometric structure called the seed-of-life. The seed of life is

an ancient geometric symbol formed using Hawaiian earrings with n-fold rotational symmetry. This

structure has been discovered as artistic ornamentation in antiquity as far back as the Temple of

Osiris in Egypt and Phoenician art from the 9th century BC. It is a central figure in “sacred geom-

etry” where it is a primitive shape used in constructing the “flower of life” and “fruit of life”. An

example of the seed-of-life descriptor for K6 is shown in figure 3.1 (left).

The seed-of-life descriptor is perhaps the simplest member of the nested shape descriptor family

since it exhibits rotational symmetry where Hawaiian earring lobes are spaced uniformly in angle.

This descriptor is used for all experiments in section 3.4.
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Figure 3.4: (top) Logarithmic spiral property of the nested shape descriptor provides normaliza-
tion and binarization. The log-spiral and it’s reflection shown in grey form an elegant flower-like
structure. (bottom) An NSD is formed at each interest point by (left) nested pooling of scaled and
oriented gradients and (right) log-spiral difference and binarization.

3.3.4 Seed-of-Life Examples

Figure 3.5 shows an example of the nesting property. A nested shape descriptor exhibits nesting

in two ways, Hawaiian earring nesting and cocentric nesting. An Hawaiian earring is a geometric

structure formed by the nesting of a set of circles that intersect at exactly one point. The gray opacity

in this figure shows that the inner circles are fully contained within the outer circles. Cocentric

nesting is formed by a set of nested circles that have the same center. These nesting concepts will

be used to construct the nested shape descriptor in this section.

Figure 3.6 shows an example of the log-spiral pattern formed by neighboring supports. The

sequence of grey circles with centers and radii at left follow the logarithmic spiral shown in green
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Figure 3.5: Nesting property of the nested shape descriptor. (left) Seed of life, (middle) Hawaiian
earring, (right) Cocentric nesting.

Figure 3.6: Logarithmic spiral property of the nested shape descriptor provides normalization and
binarization. (right) The log-spiral and it’s reflection shown in grey form an elegant flower-like
structure.

in 3.6 (middle). Combining this log-spiral with it’s reflection (right) forms an elegant flower like

structure used for normalization and binarization.

Figure 3.7 shows nested shape descriptors computed for seed-of-life K1�K10. These examples

show the rotational symmetry as lobes are added.

3.3.5 Nesting Distance

The nesting distance is a robust quadratic local distance function [132] unique to NSDs based on

order statistics. Given two nested descriptors p and q, the nesting distance d(p,q) uses order statis-

tics to partition the supports of two nested descriptors into inliers and outliers by sorting the squared

differences up to a given maximum order k. Then, the nesting distance is equivalent to computing
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Figure 3.7: Nested shape descriptors with increasing lobes. (top row) K1�K5, (bottom row) K6�
K10.

the conditional Gaussian distribution of inliers given outliers.

First, we introduce order statistics. Order statistics are a partial order of a set of variables

{x1,x2, . . . ,xn} such that x(1) x(k) x(n), where the kth order statistic x(k) is equal to the kth smallest

value in the set. Common order statistics include the minimum x(1), maximum x(n) and median

x(n/2). To simplify notation, we introduce an n⇥ n binary diagonal selection matrix S( j,k) which

encodes a selection of all variables greater than j-order and less than k-order.

S( j,k)(i, i) =

8
>><

>>:

1 if x( j)  xi  x(k)

0 otherwise
(3.4)

Observe that using this notation, S(1,k) +S(k+1,n) = I, where I is the identity matrix. Furthermore, if

all variables are binary, then order statistics take on a simple form

x(k) =

8
>><

>>:

1 if Ân
i=0 xi � k, xi 2 {0,1}

0 otherwise
(3.5)

which is equivalent to a thresholded Hamming distance.

The nesting distance is defined as follows. Let p and q be two nested descriptors of length n.

Consider a partition of all squared differences (p� q)2 for a given maximum k-order statistic. Let
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Figure 3.8: Example stereo image matching using the nesting distance and nested shape descriptors.
Colors encode corresponding interest points between the reference image (middle) and the observed
image using the nesting distance (left) and Euclidean distance (right). The Euclidean distance is
affected by occlusions at the image boundary (left ellipse) resulting in local misalignments, while
the nested distance is more robust to these occlusion effects.

this partition be represented by selection matrices of inliers S(1,k) and outliers S(k+1,n). Then, the

nesting distance d is

d(p,q,L,k) = (p�q)T (I�S(k+1,n))LS(1,k)(p�q) (3.6)

where L is an optional quadratic weighting matrix. If L is diagonal, then this simplifies

d(p,q,L,k) = (p�q)T LS(1,k)(p�q) (3.7)

which is simply a sum of k smallest squared differences. Furthermore, if k = n and L = I then the

nesting distance is equivalent to the Euclidean distance.

Lemma 3.3.5. If the nesting distance is of the form (3.6), then it is equivalent to an unnormalized

negative log likelihood of a conditional Gaussian distribution for inliers given outliers.

Proof . We prove this property formally in section 3.3.6. Informally, consider a Mahalanobis

distance xT Lx µ N (0,L) as a negative log likelihood (unnormalized) of a Gaussian in canonical

form. If a subset of variables are observed (e.g. outliers from order statistics), then well known

Gaussian identities can update the conditional likelihood of the remaining variables (e.g. inliers)

using the precision matrix L for distance weighting.

The nesting distance was designed specifically for the structure of the nested shape descriptor.
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Figure 3.9: Construction of a nested shape descriptor. An NSD can be considered a “flattening” of
the steerable pyramid. Supports of fixed sizes at different levels of the pyramid result in exponen-
tially increasing descriptor supports.

First, recall that there exists exactly one point at the center of the NSD that is in all supports. Any

subset of supports represents the shape of the center pixel at some orientation and scale. Therefore,

this enables the use of order statistics to partition the supports into inliers and outliers, since all

supports have one point in common.

The nesting distance cannot be used for descriptors with support constructed on a log-polar

or Cartesian grid. Figure 3.3 (right) shows a simple counterexample. The majority of the green

checkmarks or “good matches” are for supports with no variation on the background far from the

center pixel. These matches match the background, are not descriptive for the corner at the center,

and would be the same if we remove the cube altogether. In contrast, all supports of the NSD include

the center pixel due to nesting, so any subset of supports, including large supports, capture the shape

of the center pixel.

Figure 3.8 shows an example of the benefits of the nesting distance for image matching. We

extract interest points using an edge based detector, compute nested descriptors at each point, then

perform greedy minimum distance assignment from the reference to the observation using either the

nesting distance or Euclidean distance. This example shows that the nested distance is more robust

to occlusions at the image border than the Euclidean distance.

Finally, The nesting distance has two useful properties that are proven in section 3.3.6. First, the
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nesting distance is non-metric, since it does not satisfy identity or the triangle inequality properties.

This property matches perceptual experimentation as it has been long understood that perceptual

distance and similarity functions are non-metric [142]. Second, the nesting distance is robust up to

corruption of n� k coordinates.

3.3.6 Proofs

In this section, we provide formal proofs for the lemmas referenced in the main body in chapter 3

Lemma 3.3.6. If the nesting distance is defined as d(p,q,L,k) = (p�q)T (I�S(k+1,n))LS(1,k)(p�

q), then it is equal to an unnormalized negative log likelihood of a conditional multivariate Gaussian

distribution.

Proof . The proof follows by derivation of the nesting distance to the form of an unnormalized

conditional Gaussian distribution.

First, preliminary definitions. A joint Gaussian distribution parameterized in canonical form is

given by

p(x) = N �1(h,L) (3.8)

f (x) =
1
2

xT Lx�hT x (3.9)

for information vector h and precision matrix L. The canonical form N �1(h,L) is equivalent to the

moment form N (µ,S) using the identities h = S�1µ and L = S�1. The quadratic form (3.9) follows

from the negative log likelihood of the joint density (3.8), and dropping the constant term.

Let variables x be partitioned into x = [x1 x2] such that the Gaussian parameters can be parti-

tioned

h = [h1 h2], L =

0

B@
L11 L12

L21 L22

1

CA (3.10)

The conditional distribution p(x1|x2) can be derived from the joint distribution p(x1,x2) using well
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known identities.

h̃ = h1�L12x2 (3.11)

L̃ = L11 (3.12)

where p(x1|x2) = N �1(h̃, L̃) is the conditional likelihood of remaining variables x1 given the ob-

servation x2 [143].

Next, we derive a quadratic function g as the conditional likelihood of remaining variables given

an observation. To simplify notation, define a selection matrix S that is a binary diagonal matrix

that encodes the partition of variables, where z1 = S1x, z2 = S2x. With this notation, observe that

x = z1 + z2, and S1 +S2 = I.

g(x) µ�log(p(x1|x2)) (3.13)

g(x) = xT
1 L̃x1�2h̃T x1 (3.14)

= xT S1LS1x�2(S1h�S1LS2x)T x (3.15)

= xT S1LS1x+2xT S2LS1x (3.16)

= xT (S1LS1 +2S2LS1)x (3.17)

= xT ((S1 +S2)LS1)x+ xT S2LS1x (3.18)

= xT (I +S2)LS1x (3.19)

This function g is unnormalized negative log likelihood of the conditional distribution, since it drops

the constant normalization term.

Finally, the nesting distance d is

d(p,q) = (p�q)T (I�S(k+1,n))LS(1,k)(p�q) (3.20)

Let the partition z1 = S(1,k)x be the set of inliers and z2 = S(k+1,n)x be the set of outliers deter-
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mined from order statistics. Then,

d(p,q) = (p�q)T (I�S1)LS2(p�q) (3.21)

d(p,q) = g(p�q) (3.22)

d(p,q) µ�log(p(x1|x2)) (3.23)

Lemma 3.3.7. The nesting distance is non-metric.

Proof . We show that the nesting distance satisfies non-negativity and symmetry, but not identity

and triangle inequality. Non-negativity d(P,Q) � 0 is satisfied since all coordinates (Pi�Qi)2 in

the sum are non-negative and real. Symmetry d(P,Q) = d(Q,P) is satisfied since for all coordinates

(Pi�Qi)2 = (Qi�Pi)2. Identity d(p,q) = 0 iff p = q is not satisfied which can be shown with a

simple counterexample. Let p = [0 0 0] and q = [0 0 1], then d(p,q,L = I,k = 2) = 0 but p 6= q.

Finally, we show a counterexample for the triangle inequality. Let P= [0 0 0], Q= [0 0 1], R= [1 1 1]

then d(P,R,L = I,k = 2) = 2, d(P,Q,L = I,k = 2) = 0 and d(Q,R,L = I,k = 2) = 1. Therefore,

d(P,R) 6 d(P,Q)+d(Q,R) since 2 6 0+1.

Lemma 3.3.8. Assuming that P corresponds to Q, and L = I, d(P,Q,L,k) = 0 if and only if

corruption(Q) < k
n .

Proof .

In this section, “corruption” can be anything that distorts a descriptor such as occlusion, view-

point, lighting or scale, introducing errors in squared differences in a coordinate during distance

computation. Furthermore, a “correspondence” is a true matching of two descriptors P and Q for a

given point in a scene.

Let c = corruption(Q) be a nonzero modification of cN coordinates of Q, where n = |Q|. The

proof follows from the definition of the nesting distance in that the sum includes the sum of the

smallest k squared differences. The largest n�k squared differences can be arbitrarily large without

affecting the distance.
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( ): If corruption(Q) < k
n , then at least k of the coordinates are uncorrupted. Since P = Q,

an uncorrupted coordinate i has a squared distance d(Pi,Qi) = 0. The bounds of the sum in the

nesting distance are the smallest k squared differences, and since at least k are uncorrupted, and

each uncorrupted coordinate has distance zero, the sum d(p,q,L,k) = (p�q)T LS(1,k)(p�q) = 0.

(!): If d(P,Q,L,k) = 0 then the sum of the smallest k squared differences is zero. Since each

squared difference is non-negative, each coordinate of the smallest k squared differences must be

zero. Therefore, since corruptions are non-zero modifications, the k coordinates are uncorrupted

and corruption(Q) < k
n .

Lemma 3.3.9. Assuming that P corresponds to Q and exactly one central pixel q of Q is corrupted,

then corruption(Q) = 1.0 and d(P,Q,L = I,k)> 0 for all k > 0.

Proof . Let c = corruption(Q) be a nonzero modification of cN coordinates of Q, where n = |Q|.

The central pixel q of the nested shape descriptor Q is the center of the nested support set as defined

in (3.3.2). By construction, the smallest radius of the nested support set r1 = 0 since the innermost

support K1 must contain only q. This implies that there exists exactly one point q that is contained

within all supports. Therefore, if q is corrupted, then every support is corrupted. If every support

is corrupted, then corruption(Q) = 1.0, then from lemma 3.3.9 d(P,Q) 6= 0, and from the non-

negativity property of lemma 3.3.7 d(P,Q)> 0.

3.3.7 Rotation Invariance

In this section, we describe an extension of the nested shape descriptor to a rotation invariant rep-

resentation. Local feature descriptors are traditionally not rotation or scale invariant, rather interest

point detectors are used to select salient points in an image with dominant orientation or scale. This

dominant orientation and scale is used to normalize the descriptor to the canonical orientation and

scale. Rotation invariance is useful for representation of objects with significant pose variation at a

single scale, such as objects with in plane rotation.

The nested shape descriptor can be made rotation invariant by pooling over relative rotations.

Figure 3.10 shows an overview of this approach. Recall that the NSD pools oriented gradients,

where the scale of the circle defines the pooling region and scale. Each circle pools at set of R
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Figure 3.10: Rotation invariant nested shape descriptor. (left) Relative orientations between lobe
and gradient orientation are pooled over all lobes and (right) each lobe is summarized with a single
pooled relative orientation value.

orientations, shown as the R = 8 orientations as a black star in the center of each circle. Each

point of this star represents the orientation of the gradients pooled in this region. Furthermore, each

circle represents the Hawaiian earring lobe at a given orientation. Consider the relative orientation

q between the lobe orientation (qlobe) and the oriented gradient (qgrad), such that q = qlobe�qgrad is

constant. The constant relative orientations are pooled and each circle is represented by the pooled

relative orientation, shown by the pooled red and green circles at figure 3.10 right. Finally, this

pooled result is log-spiral normalized and this result is the final rotation invariant descriptor. By

selecting the pooled relative orientations over only specific lobes, we can provide any subset of

partial rotation invariance to full rotation invariance. This provides tradeoff between selectivity and

rotation invariance based on the amount of rotation invariance desired.

Figure 3.11 shows an example of rotation invariant matching on a synthetically rotated image.

This image pair undergoes an in-plane rotation, and we perform greedy image matching using the

rotation invariant descriptor. The experimental setup for this result is dense interest point extraction

(canny edges), rotation invariant descriptor extraction, exhauastive all pairs distance computation

and greedy assignment. Figure 3.11 shows the greedy assignment where colors encode correspond-

ing interest points. Observe that this assignment example does not include any dominant orientation

estimation. Interest points can be computed densely without selecting interest points according to

dominant orientation.
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Figure 3.11: Rotation invariant nested shape descriptor.

3.4 Experimental Results

In this section, we provide experimental results for the nested shape descriptor and nesting distance

for the task of image matching. First, we perform a trade study using the new experimental protocol

of similarity stereo matching to determine an optimal set of descriptor parameters for the seed-

of-life descriptor. Next, we compare results for the seed-of-life and binary seed-of-life descriptor

for the standard VGG-Affine benchmark [74] against SIFT [35] and BRISK [43]. Finally, we show

results on a challenging application for which traditional local feature descriptors are not applicable.

A Matlab toolbox to reproduce these experiments is available at https://github.com/jebyrne/

seedoflife.

3.4.1 Experimental System

In this section, we describe the experimental system used to construct seed-of-life descriptors. The

subbands B for a nested shape descriptor are scaled and oriented gradients derived from a complex

steerable pyramid [141]. The complex steerable pyramid includes steerable filters in a quadrature

pair whose magnitude and phase response are useful for representing signed orientations for ”black

to white” vs. ”white to black” transitions. A Matlab toolbox for building and decomposing separable

complex steerable pyramids is available at https://github.com/jebyrne/sepspyr.

Max-pooling is performed by max-filtering and sampling and steerable pyramid. First, all bands

and scales of the steerable pyramid are 7⇥ 7 max-filtered. Then, for each interest point p, we
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Figure 3.12: Trade study for the seed-of-life descriptor. (left-right) parameter analysis of orienta-
tions, lobes, scales and pooling.

construct lobes by uniform polar sampling of each band at n-orientations at a radius of 3 from

p. This sampling proceeds cumulatively over scales, and if a lobe is outside the image, then the

cumulative pooling simply uses the nearest valid response. Observe that a 7⇥7 max-filter at scale i

is equivalent to a max-pooled support of size 7⇤2i which allows supports to grow exponentially in

size without an exponentially increasing number of pixels in each lobe. Sum-pooling is performed

by 7⇥ 7 max filtering, followed by summing over spatial support to construct a histogram rather

than sampling.

A nested shape descriptor can be similarity normalized using a similarity invariant local feature

detector. Given a dominant orientation r⇤ from a feature detector, a normalizing similarity transform

is applied to the seed-of-life pooling structure K for each interest point. Then, orientation bands are

circularly shifted and linearly interpolated such that D(i0, j,k) = D̂(i, j,k) and i0= (i�r⇤) mod (|R|).

An analogous approach is used for scale normalization.

A Matlab toolbox for constructing seed-of-life nested shape descriptors is available at https:

//github.com/jebyrne/seedoflife.

3.4.2 Middlebury Stereo and Trade Study

In this section, we perform a trade study to determine an optimal set of parameters for the seed-of-

life descriptor. The parameters under study were the number of orientation bands, number of lobes,

number of scales, pooling strategy, and binary vs. floating point descriptor elements. We performed

a set of studies to understand the effect of these parameters on descriptor performance for the task

of image matching.

The experimental protocol for performance evaluation is detection rate in similarity stereo
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matching. We use six images from the Middlebury stereo dataset [144] (teddy, cones, venus,

tsukuba, map and sawtooth). Given a stereo pair (I,J), ground truth disparity D and similarity

transform A, we construct a similarity stereo pair (I,J0) such that J0 = A(J) by applying the simi-

larity transform A to J. Then, corresponding interest points (p,q) in the similarity stereo pair (I,J0)

satisfy p = A�1q+Dp. Correspondences are the composition of stereo disparity and a similarity

transform.

The similarity stereo matching uses the repeatability evaluation protocol of [74] for a range of

increasing similarity distortions (scale=0.5-1.5, rotation=-± p
16 ). Random similarities are sampled

10 times for each image at the deformation level and the mean detection rate over all six images for

each deformation magnitude is shown.

Figure 3.12 shows the results of this study. First, we analyzed the effect of the number of

orientations. Increasing the number of orientation subbands offers a modest improvement, up to di-

minishing returns at eight bands. Second, we analyzed the effect of the number of lobes, and found

that increasing significantly improves performance up to eight lobes. Third, we analyzed the effect

of scales, and found that scale is inversely correlated with deformation. For small deformations,

larger scales perform better, but for larger deformations smaller scales perform better. This result

summarizes the known tradeoff between descriptor support and matching performance as was dis-

cussed in section 3.1. We selected seven scales. Fourth, we analyzed the pooling strategy and found

that sum-pooling (e.g. orientation histograms) had a dramatic improvement over max-pooling for

image matching.

The conclusions of this study are a selection of a nominal parameter set. We use eight unsigned

orientations, eight lobes, seven scales and sum-pooling. We use these parameters for all experiments

in this paper.

3.4.3 VGG-Affine

We show comparative performance for local feature descriptor matching on the VGG-Affine bench-

mark [74]. This dataset includes images of five distortion classes including blur, viewpoint, scale/

rotation, ambient light and JPEG compression. Each distortion class is represented by six images

such that the distortion gets progressively worse, and a ground truth homography for performance

comparison of local feature descriptors for the task of image matching.
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Figure 3.13: Example matching results from the VGG-Affine dataset.(top-bottom) wall, graf, boat,
leuven, bikes, ubc

The experimental protocol is as outlined by Mikolajczyk and Schmid [74]. Performance evalu-

ations for local feature descriptors was performed using the matching score criterion (feature match

recall). We compare the performance of seed-of-life (SOL) and binary SOL descriptor (section

3.3.3) to SIFT [35] and BRISK [43]. The seed-of-life is identical to the binary seed-of-life but

without the final binarization step of eq. (3.3). Both SOL and Binary SOL use the Euclidean (and

Hamming) distance, as we evaluate the effect of the nesting distance separately in section 3.4.4.

We use a dominant orientation and difference of Gaussians (DoG) scale space feature detector for

SIFT and NSD, and the AGAST detector [145] for BRISK. All parameters are defaults provided by

the authors, and the parameters for NSD are determined from the trade study in section 3.4.2, with

k = 0.7n for nesting distance. We use the analysis tools and software provided by [74][146][43], and

we leave out “bark” for consistency with previous work [43]. However, “bark” results are provided

separately below for completeness.

Performance results are shown in figure 3.14. These results show that either seed-of-life (SOL)

and Binary-SOL outperform SIFT and BRISK for all distortion classes. Furthermore, the binary

SOL and SOL descriptor perform equally, which shows that the binarization provides a more com-

pact descriptor without sacrificing performance.
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Figure 3.14: VGG-Affine image matching results. (top) “graf”, “bikes”, “ubc”, “boat”, (bottom)
“wall”, “trees”, “leuven” and composite. Both SOL and BSOL outperform SIFT and BRISK, and
Binary-SOL is the first binary descriptor to outperform SIFT on this benchmark.

Figure 3.13 shows imagery and example feature matching from the VGG-affine dataset. These

examples show matched features using NSD and nesting distance for image 2 and image 4 in a

subset of distortion classes.

Figure 3.15 shows the matching score for the “bark” example. This example is commonly left

out of evaluations of the VGG-Affine dataset as discussed in the main results, since as you can see

competing descriptors often perform poorly on this example. However, the results show that the

seed-of-life descriptor is competitive with SIFT.

3.4.4 Local Distance Functions

Next, we performed a comparison of the nesting distance vs. the Euclidean distance on the VGG-

Affine benchmark. This evaluation was proposed to demonstrate the relative benefit of the nesting

distance over the Euclidean distance baseline.

Figure 3.16 shows the results of this study. All distortion classes showed improved performance

of the nesting distance over Euclidean. Figure 3.16 shows matching performance plots for the three

distortion classes with the largest benefit, blur (“bikes” and “trees”) and decreasing light (“leuven”).

The overall performance shows a 4.1% improvement for the nesting distance.
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Figure 3.15: Matching score for “bark” in the VGG-Affine dataset

Figure 3.16: Evaluation of the nesting distance on VGG-Affine dataset. See text for a discussion.

3.4.5 Photorealistic Virtual City

Next, we performed a set of experiments using the Photorealistic Virtual City (PVC) dataset [147].

The PVC dataset is a synthetic wide baseline stereo dataset that was designed to study how feature

matching performance using local feature descriptors degrade given controlled changes in the light-

ing, scene, and viewing conditions. Unfortunately, dense ground truth is difficult and expensive to

gather for such evaluations in controlled manner. Instead, this dataset uses a photorealistic virtual

world to gain complete and repeatable control of the environment in order to evaluate image features.

Raytraced rendering is used to study the effects on descriptor performance of controlled changes in

viewpoint and illumination. This synthetic dataset has been validated by comparing matching per-

formance on rendered imagery and comparing matching performance to actual imagery of the same

scene, and results have shown approximately equivalent performance. This justifies the use of a

synthetic dataset to predict performance on natural imagery.

This dataset contains 3000 640x480 color PNG images, over four scenes in an dense urban
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Figure 3.17: Example ground truth correspondence for rendered imagery in the PVC dataset. Shown
are a random subset of five hundred pixels such that colors encode corresponding pixels between
the right and left images. (top left) camera 1 with translation correspondence (bottom left) camera
2 with rotation correspondence (top right) camera 3 with translation and rotation correspondence
(bottom left) camera 4 with translation and rotation correspondence.

environment. Each scene is represented by an image sequence of a translating camera along a city

street, such that each image overlaps. At each translation, the camera also rotates by plus and minus

22.5 degrees to provide both orientation change and translation change. Finally, at each camera

pose, the lighting is varied by time of day for a sunny august day for five different times at two hour

intervals from 9am to 5pm. This provides controlled lighting changes for each scene. No additional

noise is added to the rendered imagery, which provides an idealized controlled scenario to evaluate

matching using local feature descriptors.

Figure 3.17 shows example imagery from this dataset. We show the ground truth correspon-

dence between a subsampled set of pixels in the right image and the corresponding pixels in the left

image, determined from the ground truth range from the virtual city. Correspondences are encoded

by color, such that red pixels in the right match red pixels in the left. This image shows examples

from each of four cameras, with correspondences consistent with translation only, rotation only and

translation and rotation. These images are all shown at the constant time of day of 9am.

The experimental protocol for evaluation on this dataset was greedy matching score given exact

correspondence. For each overlapping image pair, we extracted the ground truth correspondence

for each pixel in the right image to the corresponding pixel in the left image. We selected a set

of 500 correspondences at random, and extracted local feature descriptors for the corresponding
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locations in both the left and right image. The descriptors are computed at canonical scale and

rotation. Finally, we compute an exhaustive pairwise distance computation, and perform greedy

bipartite matching to assign matches from the right to the left. We define a correct match to be

a match to within 10 pixels of the ground truth correspondence. The matching score is the total

number of correct matches divided by the total number of matches.

This experimental protocol enables isolated analysis of the effects of descriptors only on match-

ing performance. Recall that the VGG-Affine dataset evaluation includes both local feature de-

tectors, which provides affine invariant keypoints with local feature descriptors to compute a final

matching score. This score is affected by the quality and accuracy of the keypoint extraction, which

can conflate the effects of the matching score with the descriptor performance and the detector per-

formance. In this evaluation, we decouple the detectors and descriptors by including the ground

truth correspondences in as ”detectors”, then compute the descriptors for these ground truth corre-

spondences. Therefore, the matching performance is a function of the descriptors only. This allows

conclusions to be drawn about the effect of the descriptors only on matching performance.

In this section, we show the matching performance as a function of translation, rotation or

translation and rotation. Furthermore, we show the mean matching perfomrance and the matching

performance as a function of time of day. We compare performance of the nested shape descriptor

with DAISY [42], SIFT [35], ORB [45], BRISK [43] and FREAK [46]. In this descriptor com-

parison, DAISY and SIFT are real valued descriptors, while ORB, BRISK, FREAK and NSD are

binary valued. The DAISY descriptor was specifically designed and optimized [41] for wide base-

line stereo matching. Our results show that NSD outperforms all descriptors in all experiments,

which provides a basis of confidence for concluding that the NSD is a state-of-the-art descriptor

for wide baseline stereo matching. Our experimental evaluation code is available for download at

https://github.com/jebyrne/PhotorealisticVirtualCity.

3.4.5.1 Translation Evaluation

First, we performed an evaluation for wide baseline binocular stereo. For each camera, we consider

pairs of images that overlap and that are related by a translation only, such as the correspondences

shown in figure 3.17 (top left). This scenario models a calibrated and rectified wide baseline stereo

configuration such that epipolar lines are aligned with scanlines. Figure 3.18 shows the mean match-
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Figure 3.18: Photorealistic Virtual City - Translation only results. (left) Aggregate (right) Time of
day

ing score for each descriptor over all cameras and time of day, as well as the mean matching score

as a function of time of day. In all cases, our NSD outperforms all local descriptors in all scenarios,

including the DAISY descriptor that was specifically designed for wide baseline stereo matching.

Figure 3.19 shows the detailed matching performance for each pair of overlapping images at

at given position for each camera in the dataset. The plots in figure 3.18 (left) were constructed

by computing the mean over all four plots in this figure. This shows that the NSD is consistently

outperforming the other descriptors across all cameras.

3.4.5.2 Rotation Evaluation

Next, we performed an evaluation for a rotational homography. For each camera, we consider pairs

of images that are formed by rotating the camera by plus and minus 22.5 degrees in yaw. An

example of this rotation scenario is shown in figure 3.17 (top right). Figure 3.20 (left) shows the

mean matching score over all cameras for each descriptor, and Figure 3.20 (right) shows the mean

matching score as a function of time of day. In this scenario, NSD outperforms all other descriptors,

however the performance of DAISY is quite close.

Figure 3.21 shows the matching performance per image for each camera. This shows that the

NSD is consistently outperforming DAISY on each image and not just in aggregate performance.
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Figure 3.19: Photorealistic Virtual City - Translation only results per location

3.4.5.3 Translation and Rotation

Next, we performed an evaluation for a combined rotational homography and translation. For each

camera, we consider pairs of images that are formed by rotationing the camera by plus 22.5 degrees

then translating the camera and rotating by -22.5 degrees. This scenarios is the combination of the

translation only and rotation only cases evaluated above.

Figure 3.22 (left) shows the mean matching score for each descriptor over all cameras. Figure

3.22 (right) shows the mean matching score for each descriptor as as function of the time of day.

Figure 3.23 shows the detailed results for translation and rotation. This shows that the NSD is

consistently outperforming DAISY on each image and not just in aggregate performance.
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Figure 3.20: Photorealistic Virtual City - Rotation only results. (left) Aggregate (right) Time of day

3.4.6 Storage Weighted Matching

Next, we performed an analysis comparing the matching score as a function of storage require-

ments for each descriptor. The storage requirements per descriptor are as follows: NSD=64 bytes,

DAISY=800 bytes, SIFT=128 bytes, ORB = 32 bytes, BRISK=64 bytes, FREAK=64 bytes. The

large storage requirements for DAISY are due to the fact that this descriptor is a real valued 200

dimensional descriptor such that each dimension requires a 32 bit floating point number for stor-

age. We define a storage weight as a scale factor relating the storage requirements relative to SIFT,

such that a storage weight w = exp(�(b�32)2/1282) is defined for each byte requirement b. This

weight is normalized to be in the range [0,1] such that the minimum storage requirement (ORB) has

weight one. This storage weight is used to weigh the matching score for the translation evaluation

from section 3.4.5.1. The result is a storage weighted matching used to compare the relative perfor-

mance of the descriptors taking in to account the storage requirements necessary to achieve a given

matching score.

Figure 3.24 shows the results for storage weighted matching. Observe that the performance rank

for storage weighted matching changed from [1. NSD, 2. DAISY, 3. BRISK, 4. ORB, 5. SIFT,

6. FREAK] to [1. NSD, 2. ORB, 3. BRISK, 4. FREAK, 5. SIFT, 6. DAISY]. The large storage

requirements for SIFT and DAISY caused these descriptors to fall in rank to the binary descriptors

(ORB, BRISK, FREAK). However, in all cases, the NSD remains the top performing descriptor in

both overall matching performance and storage weighted matching performance. This shows that
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Figure 3.21: Photorealistic Virtual City - Rotation only results per location

NSD is the state-of-the-art compact descriptor for image matching.

3.4.7 Dense Strided Descriptors

Finally, we performed an analysis to determine the matching performance under dense descriptor

extraction. Dense extraction considers descriptors computed at every pixel location, or at subsam-

pled pixel locations with uniform spacing or stride. An example is shown in figure 3.25. Recent

analysis has shown [148, 149, 42] that matching performance is significantly improved when the

interest point detectors are bypassed and dense interest points on the subsampled image lattice are

extracted in both images. Performance is significantly improved performance over methods relying

on affine invariant interest point extraction. Therefore, a successful descriptor must be robust to

stride variations.

The experimental protocol for this analysis is matching score given dense interest points. We
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Figure 3.22: Photorealistic Virtual City - Translation and Rotation results. (left) Aggregate, (right)
Time of day

extract interest points at strides of 2, 4, 8, 16, 32, 64 in x and y at the same locations in both

images. We consider the subset of interest points that are visible in both images, perform descriptor

extraction at each interest point, compute a distance for all pairs of descriptors, then compute a

greedy bipartite matching. We show the matching score as a function of stride for the translation

only case described in section 3.4.5.1.

Figure 3.26 shows the same ranking as displayed in the previous examples with the NSD as the

top performer and DAISY as the second best performer. This example shows that the performance

of SIFT, BRISK and FREAK have a faster falloff than ORB, DAISY and NSD. Furthermore, as the

stride increases the matching performance decreases, up to a stride of 24. At this point, the matching

performance for NSD increases faster than DAISY and the others. This shows that the NSD shows

better performance as stride increases than the state of the art.

3.4.8 Saliency

The experimental results presented have shown that the nested shape descriptor is a state of the

art local feature descriptor. However, can we do a better job in motivating the structure of the

descriptor? For example, why do we perform the log-spiral normalization step when constructing

the descriptor? Why does this spiral structure work so well? In this section, we show that the log-

spiral normalization is computing a center surround difference in scale which is a form of bottom

up saliency. So, the nested shape descriptor is not simply a pooling of scaled and oriented edges,
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Figure 3.23: Phtorealistic Virtual City - Rotation and Translation results per location

but rather it is a representation of salient edges. This suggests that the representational power of

the nested descriptor is due to representation of salience, which makes a fundamental connection

between the saliency and local feature descriptor literature.

Saliency is a measure of “interesting-ness” or visual features that attract the attention of visual

observers. Salient features are said to pop-out from the background, and can be used to to prioritize

candidate object detections to apply finite resources for higher level reasoning. The seminal work

of Itti and Koch [150] described salient features in terms of center surround differences in color,

grayscale intensity and orientation. A center surround difference in oriented gradients computes

derivatives in scale and position of the oriented gradients as a measure of the salience of a region.

The nested shape descriptor can be motivated in terms of bottom up saliency. The log-spiral

normalization step of the nested shape descriptor computes the difference between neighboring
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Figure 3.24: Photorealistic Virtual City - Storage Weighted Matching Results

scales and positions in the steerable pyramid.

d̂(i, j,k) = d(i, j,k)�d(i, j�1,k�1) (3.24)

Equation (3.24) shows this log-spiral normalization, where d(i, j,k) is the pooled response at ori-

entation subband i, lobe j and lobe scale k. The difference is d(i, j�1,k�1) with the smaller scale

k�1 and neighboring lobe j�1. Therefore, this is a difference between neighboring scales, form-

ing a type of center surround difference. Intuitively, this operation highlights changes in oriented

gradients in scale and position, which is a classic low-level measure of bottom up saliency.

We can demonstrate that the nested shape descriptor is computing salient edges by using it to

construct a saliency map. A saliency map is a real valued scalar field that encodes the salience of

regions in an image. The nested shape descriptor can be used to compute a saliency map in a very

simple manner. Recall that the nested shape descriptor requires the construction of a quadrature

steerable pyramid to compute multiscale oriented gradients. Given this pyramid, replace the ori-

entation and scale bands with the clipped mean square response of the NSD for each orientation

and lobe. Then, replace the low pass response of the steerable pyramid with the squared Laplacian

filter response, to implement a center surround difference. Finally, reconstruct the image from this

saliency pyramid. In short, a saliency map is the image reconstructed from the squared response of
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Figure 3.25: Photorealistic Virtual City - Dense Stride. (top) Stride=32, (bottom) Stride=64. Colors
encode matching densely extracted interest points for each stride. See text in section 3.4.7 for a
discussion.

the nested shape descriptor.

Formally, let a steerable pyramid B = {I0,Bi j ; i  R, j  S} for orientation bands Bi j over R

orientations i and S scales j and lowpass residual image I0. Each band Bi j encodes the oriented

gradient response at orientation i and scale j. Furthermore, let d̂ be a log-spiral normalized nested

shape descriptor constructed following eq. 3.1 and 3.2, computed densely at each pixel. Then, let

B̂i j = max(Â
j

d̂(i, j,k)2, t) (3.25)

Î0 = (I0 ⇤L)2 (3.26)

where L is a 3x3 Laplacian kernel, ⇤ is the convolution operation, and t is a clipping threshold for the

maximum squared difference. These are collected as subbands in a steerable pyramid B̂ = {Î0, B̂i j},

and these bands are used to reconstruct an image using the standard steerable pyramid reconstruction

algorithm, where the filters used for reconstruction are the magnitude of the quadrature pair. This

reconstructed image is a saliency map. A Matlab toolbox to construct this saliency map is available

at https://github.com/jebyrne/seedoflife.

Figure 3.27 shows four examples of the saliency map for a set of classic pop-out images. These
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Figure 3.26: Dense Stride evaluation. See text in section 3.4.7 for a discussion.

images show a semi-transparent saliency map overlayed with the original grayscale image, such

that red encodes ”salient” and blue is ”not-salient”. The global maximum is shown with a black

plus, which encodes the most salient position in the image. These results show that the most salient

location is equal to the pop-out location according to convexity, orientation or intensity features.

This shows that the descriptor is representing salient edges, and not just histograms of oriented

gradients.

Figures 3.28 and 3.29 show example saliency maps from two academic saliency datasets. We

computed saliency maps for the MIT saliency benchmark [151] and the MSRA Salient Object

database [152]. Modern evaluations of saliency include both bottom up and top down context

for constructing and evaluating scaliency maps. In this section, we are interested in showing the

saliency for bottom up features only, so we show qualitiative results only rather than compare against

the state-of-the-art.

Finally, we observe that the saliency construction methodology described here is unique to the

nested shape descriptor. Recall from the construction of the NSD described in figure 3.9, the nested

shape descriptor can be considered to be a ”flattening” of the steerable pyramid. This structure pro-
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Figure 3.27: Popout examples for NSD saliency map. (left to right) Convexity, orientation, contrast,
orientation. (top) input image, (bottom) saliency map where red is high saleincy and blue is low
saliency, and maximum saliency shown with a black ’+’.

vides a mapping between pooling regions of the nested descriptor and scale/orientation coefficients

in the steerable pyramid. This mapping provides a means of visualizing the nested shape descriptor

by leveraging the reconstruction property of the steerable pyramid, but replacing the pyramid coef-

ficients with NSD pooled and log-spiral normalized coefficients then performing reconstruction.

3.5 Summary

In this chapter, we introduced the nested shape descriptor family and the associated nesting distance,

and showed performance of the seed-of-life descriptor for the task of image matching. Results show

that this is the first binary descriptor to outperform SIFT on the standard VGG-Affine benchmark.

Furthermore, the NSD binary descriptor significantly outperforms BRISK, a state-of-the-art binary

descriptor and DAISY a state of the art wide baseline stereo matching descriptor. Future work

includes exploring other members of the NSD family such as the flower-of-life or fruit-of-life for

improved performance.
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Figure 3.28: Qualitative saleincy results from the MIT Saliency Benchmark.

Figure 3.29: Qualitative saliency results from the MSRA salient object database.
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Chapter 4

Nested Motion Descriptors

4.1 Introduction

The problem of activity recognition is a central problem in video understanding. This problem is

concerned with detecting actions in a subsequence of images, and assigning this detected activity a

unique semantic label. The core problem of activity recognition is concerned with the representation

of motion, such that the motion representation captures the informative or meaningful properties of

the activity, and discards irrelevant motions due to camera or background clutter.

A key challenge of activity recognition is motion representation in unconstrained video. Classic

activity recognition datasets [78] focused on tens of actions collected with a static camera of actors

performing scripted activities, however the state-of-the-art has moved to recognition of hundreds of

activities captured with moving cameras of ”activities in the wild” [79][80][81]. Moving cameras

exhibit unconstrained translation, rotation and zoom, which introduces motion at every pixel in

addition to pixel motion due to the foreground activity. The motion due to camera movement is not

informative for the activity, and has been shown to strongly affect the overall activity representation

performance [93].

Recent work has focused on motion descriptors that are invariant to camera motion [96, 97, 98,

93, 94, 95, 99, 100, 101]. Local spatiotemporal descriptors such as, such as HOG-HOF [86, 87] or

HOG-3D [90], have shown to be a useful motion representation for activity recognition. However,

these local descriptors are not invariant to dominant camera motion. Recent work has focused on

aggregating these local motion descriptors into dense trajectories, where optical flow techniques are
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Figure 4.1: Nested motion descriptors

used to provide local tracking of each pixel. Then, the local motion descriptors are constructed using

differences in the flow field, and then are concatenated along a trajectory for invariance to global

motion. However, these approaches all rely on estimation of the motion field using optical flow

techniques, which have shown to introduce artifacts into a video stream due to an early commitment

to motion or over-regularization of the motion field, which can corrupts the motion representation.

In this paper, we propose a new family of binary local motion descriptors called nested motion

descriptors. This descriptor provides a representation of salient motion that is invariant to global

camera motion, without requiring an explicit optical flow estimate. The key new idea underlying

this descriptor is that appropriate sampling of scaled and oriented gradients in the complex steer-

able pyramid exhibits a phase shift due to camera motion. This phase shift can be removed by

a technique called a log-spiral normalization, which computes a phase difference in neighboring

scales and positions, resulting in a relative phase where the absolute global image motion has been

removed. This approach is inspired by phase constancy [47], component velocity [48] and mo-

tion without movement [49, 50], which uses phase shifts as a correction for translation without an
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explicit motion field estimate. The nested motion descriptor is an extension of the nested shape

descriptors introduced in [51]. The nested shape descriptor is a state-of-the-art binary local feature

descriptor, which we extend to motion representation in this paper. This descriptor uses log-spiral

normalization to represent salient edges, therefore the nested motion descriptor represents salient

motion. Figure 4.1 shows the 3D pooling structure of this descriptor, and figure 4.3 shows the phase

correction procedure.

4.2 Related Work

Activity recognition has a long history in the computer vision literature. Recent surveys of action

recognition capturing the state of the art are are available[53, 76] and a critical review of action

recognition benchmarks [77]. Classic activity recognition datasets [78] focused on tens of actions

collected with a static camera of actors performing scripted activities, however the state-of-the-art

has moved to recognition of hundreds of activities captured with moving cameras and poor quality

video of ”activities in the wild” [79][80][81].

The literature on motion representation can be decomposed into approaches focused on local

motion descriptors, mid-level motion descriptors or global activity descriptors. Higher level mo-

tion representations are typically focused on representing semantic activity categories, and learning

mid-level representations suitable for action recognition. Examples include discriminative mid level

features [82], actemes [83], motionlets [84], motion atoms and phrases[85]. In general, these higher

level representations build upon local motion representations to extract activity specific discrimina-

tive motion patterns. In this section, we will focus on local motion representations only, which are

most relevant to the nested motion descriptor.

A local motion descriptor is a representation of the local movement in a scene centered at a

single interest point in a video. Examples of local motion descriptors include HOG-HOF [86, 87],

cuboid [88], extended SURF [89] and HOG-3D [90]. These descriptors construct spatiotemporal

oriented gradient histograms over small spatial and temporal support, typically limited to tens of

pixels spatially, and a few frames temporally. HOG-HOF includes a histogram of optical flow

[86, 87], computed over a similar sized spatiotemporal support. Furthermore, recent evaluations

have shown that activity recognition performance is significantly improved by considering dense
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regular sampling of descriptors [91][92], rather than sparse extraction at detected interest points,

such as spatio-temporal interest points (STIP) [54].

An interesting recent development has been the development of local motion descriptors that

are invariant to dominant camera motion. A translating, rotating or zooming camera introduces

global pixel motion that is irrelevant to the motion of the foreground object. Research has observed

that this camera motion introduces a global translation, divergence or curl into the optical flow field

[93], and removing the effect of this global motion significantly improves the representation of

foreground motion for activity recognition. The motion boundary histogram [86, 94, 95] computes

a global motion field from optical flow, then computes local histograms of derivatives of the flow

field. This representation is sensitive to local changes in the flow field, and insensitive to global flow.

Motion interchange patterns [96, 97, 98] compute a patch based local correspondence to recover the

motion of a pixel, followed by a trinary representation of the relative motion of neighboring patches.

Finally, dense trajectories [94, 95, 99] concatenate HOG-HOF (or more recently co-occurrence

HOG [100], or first order differential motion patterns [93]), and motion boundary histograms for a

tracked sequence of interest points forming a long term trajectory descriptor. The improved dense

trajectories [99] with fisher vector encoding is the current state-of-the-art on large datasets for action

recognition [101].

4.3 Nested Motion Descriptors

A nested motion descriptor is a representation of salient motion in a video that is invariant to camera

motion. The nested motion descriptor is an extension of the nested shape descriptor [51] to the rep-

resentation of motion. Figure 4.2 shows that while the nested shape descriptor pools the magnitude

of edges, the nested motion descriptor pools phase gradients which captures translation of edges in

a video. In section, 4.3.2 we discuss the use of the complex steerable pyramid to compute relative

phase. In section 4.3.3, we derive the relationship between phase gradients and component velocity,

which provides a connection between relative phase and motion in a video. This component ve-

locity captures all motion in an image, however a local motion descriptor should be representative

of the motion of the foreground only and not influenced by the global motion of the camera. In

section 4.3.7, we show that by pooling component velocity, we can remove the effect of camera
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Figure 4.2: From nested shape descriptors to nested motion descriptors. Nested shape descriptors
pool oriented and scaled gradients magnitude which captures the contrast of an edge in an image.
Nested motion descriptors pool relative phase which captures translation of an edge. Projecting the
structure of the nested motion descriptor onto a single image (”collapsing” the descriptor) will form
the structure of the nested shape descriptor.

motion by computing a difference between neighboring positions and scales. This difference re-

moves the constant velocity from the component velocity and provides an estimate of acceleration.

This approach does not require an explicit optical flow estimate, and is inspired by work on phase

based optical flow [153, 154, 48, 47] and ”motion without movement” [49, 50] which leverages

the relationship between phase shifts in the frequency domain and translation in the spatial domain.

Finally, in section 4.3.6, we describe the overall construction of the nested motion descriptor, and

show how this descriptor can be used to visualize salient motion in section 4.3.8. This visualization

demonstrates that the NMD captures salient motion due to the foreground and not global motion

due to the camera.

4.3.1 Overview

Figure 4.3 provides an overview of the construction of the nested motion descriptor. This procedure

is summarized as a three step process: bandpass filtering, spatio-temporal phase pooling and log-

spiral normalization. First, bandpass filtering is performed to decompose each image in a video into

a set of orientation and scale selective subbands using the complex steerable pyramid [155, 141,

156]. The complex steerable pyramid includes basis filters in quadrature pairs, which allows for

magnitude and phase estimation for each subband. We compute the relative magnitude and relative
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Figure 4.3: Nested Motion Descriptors (NMD). (left) An input video is decomposed into a set
of frames of length 2kn, where k is the number of scales in the pyramid decomposition and n
is a fixed velocity tuning parameter. (middle) The relative magnitude and phase is computed for
each orientation and scale subband in a steerable pyramid decomposition from the first frame to
subsequent frames on a log-scale. Frames further away in time are represented with a large scale
coarse motion, and frames close in time are represented with a small scale fine motion. Shown is
the 0o orientation subband only. (right) For each dense interest point in the current frame t, we pool
the robust component velocity derived from relative phase in a set of circular pooling regions all
intersecting at the center interest point. Log-spiral normalization computes the difference between
phases in neighboring scales and positions along a log-spiral curve. The phase pooling aggregates
component velocities, so this difference computes an acceleration which is invariant to constant
velocity of the camera. The result is a nested motion descriptor at this interest point that is invariant
to camera motion.

phase for each subband from a current frame to a past frame. This relative bandpass response is

visualized in figure 4.3. We compute relative magnitude and phase for scales following a log scale,

so that we compute a large scale bandpass response for frames further away in time. This encodes

a fixed velocity tuning for a velocity parameter n.

Relative magnitude and phase provide measurements of speed and direction of motion in a

video. An example is shown in figure 4.3 (middle) of a kiss from the human motion database [79].

In this example, the man on the left tilts his head and moves in towards the woman on the right.

Observe that there is small scale motion of the man’s sideburns and ear, medium scale motion of the
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collar and woman’s eyes, and large scale motion of the two heads moving towards each other. The

relative magnitude over various scales captures this motion. Similarly, the relative phase encodes a

spatial translation from frame t to t�k. The relative phase is shown on the scale [�p,p] where zero

phase is green, negative phase is blue and positive phase is red. The phase of the mid and large scale

motions encode the movement of the faces. Furthermore, at the largest scale, observe that there are

two motions present, of the two heads moving towards each other.

Second, we perform phase pooling. We derive the relationship between phase gradients and

component velocity, such that pooling component velocity is equivalent to pooling phase gradients.

Futhermore, we derive a robust form of the component velocity using phase stability, to provide

robust measurements of component velocities in regions of unstable phase. We define a set of

pooling regions to pool the component velocity in neighboring spatial and temporal regions, to

provide invariance to local geometric transformations. Each of the pooling regions is centered at an

interest point, and the pooling regions are uniformly distributed in angle around the interest point.

Each pooling region is represented by a single component velocity, and all orientations and scales

are concatenated into a single nested motion descriptor for the interest point. This is visualized

in figure 4.3 by the ”collapsing” of the descriptor across scales into a combined descriptor at the

bottom of the figure. This pooling and sampling of subband component velocity is the primary

construction of the nested motion descriptor.

Third, we perform log-spiral normalization. Relative phase or phase gradients are proportional

to the motion in an image. This motion could be due to the salient motion of a foreground object,

or due to the global motion of the camera. Observe that the global motion of the camera introduces

pixel motion that is a composition of global translation, rotation and scale. In these cases, the motion

field in a local patch is uniformly offset, so that all vectors in the motion field in this patch are offset

by a fixed bias due to the camera motion. The relative phase is also offset by a fixed constant. We

can remove this constant by computing a phase difference with neighbors in position and scale. This

is the goal of the log-spiral normalization, which computes a phase difference to remove this fixed

bias due to camera motion. The log-spiral normalization procedure is outlined in figure 4.3 (bottom

right), with the spiral like arrangement showing the differences to be computed along this spiral.

The nested motion descriptor is a spatiotemporal extension of the nested shape descriptor for

video. Figure 4.2 shows a comparison of the nested shape descriptor (NSD) and the nested motion
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Figure 4.4: Pyramid decomposition and reconstruction with the complex steerable pyramid.

descriptor (NMD). Observe that the NSD is constructed by pooling oriented and scaled gradient

magnitudes in a single image, while the NMD pools scaled and oriented phase over frames of

a video. However, the fundamental nested pooling structure is the same, and the NMD extends

the pooling to 3D spatiotemporal pooling regions. Observe that ”collapsing” the NMD over time

results in the same structure of the NSD. This allows the tools of log-spiral normalization and

saliency visualization developed for the nested shape descriptor to be applied to the nested motion

descriptor.

In the remaining section, we describe each of these stages of processing in more detail.

4.3.2 Complex Steerable Pyramid

The complex steerable pyramid [155, 141, 156] is an overcomplete decomposition of an image into

orientation and scale selective subbands. The orientation subbands exhibit a steerability property

such that the response to an arbitrary orientation is a linear combination of basis subbands. Further-

more, a complex steerable pyramid includes basis filters in quadrature pairs, such that each basis

filter is further decomposed into a an oriented filter and it’s Hilbert transform, forming an in-phase

and quadrature component shifted by 90o in phase.

The complex steerable pyramid is computed using a recursive pyramid decomposition [156].

Given a set of steerable basis filters G and Hilbert transform H, let a basis filter F be represented

in complex form by F = G+H ⇤ i. Each filter is tuned to a bandpass response in frequency w and

orientation q forming a set of complex steerable filters Fw,q. The bandpass response Bw,q = I⌦Fw,q

is formed by convolution of an image I with the complex filter. The pyramid decomposition is
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Figure 4.5: An example of the magnitude and phase response of a complex filter to a translating
1D step edge signal. (left column, top to bottom) (a) step edge signal (b) impulse response of 1D
quadrature filters (c) magnitude of complex filter response to step edge (d) phase and spatial phase
gradient (|~f|) of complex filter response showing linearity of phase. (right column, top to bottom)
(e) A step edge translating left to right. (f) the magnitude response (g) the temporal phase gradient
(ft). Observe that at the edge, the spatial phase gradient |~f|= 1 and the temporal phase gradient is
ft =±2, which measures a spatial shift of ft

|~f| =±2.

formed by recursively convolving an image I with a lowpass filter F0, downsampling the image by

a factor of 2, then computing the bandpass response B. This pyramid decomposition procedure is

shown in figure 4.4 This decomposition can be made faster by considering separable kernels for the

lowpass and complex steerable filters forming a separable quadrature steerable pyramid [141].

The complex steerable pyramid provides a measurement of the magnitude and phase of oriented

and scaled edges. Following pyramid decomposition, complex valued bandpass coefficients can

be decomposed into a real component representing the in-phase response, and the imaginary com-

ponent representing the quadrature response. Let a coefficient cw,q(u,v) = x+ iy be the complex

valued coefficient for subband with orientation q and scale w for pixel (u,v) with real component

x and imaginary component y. Then, the magnitude and phase of this coefficient is |c| =
p

x2 + y2

and phase of \c = atan2(y,x). Intuitively, the magnitude is proportional to the contrast of an edge

at the tuned orientation and scale at (u,v), and the phase is proportional to the shift in the direction

of the tuned filter orientation to the dominant edge. In other words, phase encodes a spatial offset

to an edge.

Figure 4.5 (a-d) shows an example of the magnitude and phase response of a complex quadra-

ture filter for a 1D step edge. The impulse response of this real and imaginary component of this
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quadrature pair is shown in the second plot. Observe that these filters form a quadrature pair such

that the quadrature component is shifted by +p
2 relative to the in-phase component. The phase plot

show that the phase exhibits a linear response near the step edge (modulo p where the phase wraps

from +p to �p). Furthermore, the phase gradient is constant in this region and equal to one. This

linearity of phase is exploited to estimate velocity in the next section.

4.3.3 Phase Gradients and Component Velocity

In general, the relationship between phase, translation and velocity is summarized in the Fourier

shift theorem. This classic theorem states that a translation in the spatial domain is equivalent to a

phase shift in the frequency domain. In this section, we derive the relationship between phase and

phase gradients to derive a measurement of velocity.

An interesting property of the complex steerable pyramid is the ability to introduce motion with-

out changing position simply by varying the local phase. This phenomenon has been described as

”Motion without Movement” [49], such that continuously varying the local phase of a bandpass

response induces the visual phenomenology of global motion. This relationship between phase and

motion has been used in phase based optical flow methods [48, 47] to enforce the phase constancy

constraint [48], such that feasible optical flow solutions are constraint to lie on contours of constant

phase. This constraint has shown to be more stable than the more common brightness constancy

constraint [154, 47] over ranges of shape deformation and lighting. Recent work has exploited this

relationship between phase and motion to amplify small changes in phase to visualize of micro-

scopic motion at macro scale [50]. This approach multiplies small changes in phase by a large

constant, then each image is reconstructed by collapsing the steerable pyramid, introducing a local

image translation due to the local phase shift.

The phase constancy constraint is defined as follows [48]. Let a complex bandpass response B

tuned to an orientation and scale be given by:

B(x, t) = r(x, t)eif(x,t) (4.1)

The magnitude r and phase f of this complex valued spatiotemporal function are also are spatiotem-

poral functions that evolve in space and time. Next, consider a moving point at x0. This moving
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point evolves according to the motion field, a spatiotemporal vector field that defines the movement

of each pixel through time. The motion field is encoded as a function x0(t) which defines the spatial

position of x0 as a function of time. Fleet and Jepson in their seminal work on phase based optical

flow [153, 154, 48, 47] hypothesized that the temporal evolution of spatial contours of constant

phase provides a better approximation to the motion field than do contours of constant amplitude.

This phase contour assumption states that the motion field must satisfy

f(x0(t), t) = c (4.2)

where c is a real valued constant. A point x0(t) propagating as a function of time according to the

motion field is constrained to fall on a contour of constant phase f(x0(t), t). Intuitively, this states

that phase is coherent and is preserved as a point propagates through time.

The phase contour assumption can be used to construct the phase constancy constraint. Differ-

entiating the phase contour constraint, we obtain:

5f(x, t)•~v = 0 (4.3)

where5f(x, t) = [ ∂f
dx ,

∂f
dy ,

∂f
dt ]

T is the phase gradient and~v= [ ∂x0
dt ,

∂y0
dt , 1]T is the component velocity

at point (x0,y0). Rearranging terms

∂f
dx

vx +
∂f
dy

vy =�
∂f
dt

(4.4)

where we use the shorthand notation~v = [vx, vy, 1] for the partial derivatives of component velocity

and similarly5f(x, t) = [fx, fy, ft ]T for the phase gradient. The phase constancy constraint states

that the projection of the component velocity onto the spatial phase gradient is equal to the negative

temporal phase gradient. This is identical to the classic brightness constancy constraint, using local

phase instead of local brightness. Observe that the dot product in (4.3) shows that the velocity cannot

be determined normal to the phase gradient, which provides a constraint only on the component of

velocity tuned to the orientation of the filter B. The phase constancy constraint in (4.4) shows the

explicit relationship between the phase gradient and velocity.

This method can be used to estimate the component velocity for each tuned orientation and
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scale Bw,q. We use the notation~f = [fx, fy]T to denote the spatial phase gradient, then the spatial

phase gradient defines a unit vector n̂ = [ fx

|~f| ,
fy

|~f| ]
T . The unit vector constraints the direction of

the component velocity, due to the dot product in the phase constancy constraint. The velocity

magnitude a can be determined directly from (4.4):

a =
�ft

|~f|
(4.5)

where~f = [fx, fy] is the spatial phase gradient. This is a single equation in a single unknown for the

velocity scale a. Given the observed phase gradient, the component velocity is estimated ~v = an̂.

Fleet and Jepson further proposed that the component velocities can be used as an overcomplete set

of measurements to estimate the optical flow v using regularized least squares optimization. This

can provide an estimate of pixel velocity or optical flow from measurements of component velocity,

which is the foundation of phase based optical flow methods [153, 154, 48, 47].

The component velocity (4.5) is a function of only phase gradients which can be computed

efficiently from the complex steerable pyramid. The bandpass response in the complex steerable

pyramid for a given tuned orientation and scale at time t is denoted Bt
w,q. To simplify notation,

when the bandpass orientation and scale (w,q) is implied, let this bandpass response be written as

Bt
w,q = Bt . The phase gradient is given by

5f =
Im(B⇤DB)

|B|2 (4.6)

where Im(z) is the imaginary component of the complex number z, and B⇤ is the complex conjugate

of the complex valued bandpass response [48]. This identity for the phase gradient depends only

on the complex bandpass response, and avoids an explicit computation of the phase angle using a

trigonometric function.

Figure 4.5 (d-f) shows an example of the phase gradient and component velocity estimate. In

this example, a 1D step edge is translating by two pixels from left to right. Figure 4.5 (e) shows the

magnitude response of this translation, and (f) shows the temporal phase gradient computed using

(4.6). The spatial phase gradient is shown in figure 4.5 (d). Using the measured phase gradients,

we can use (4.5) to compute the velocity magnitude a = ±2
1 , which shows that the phase gradients
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Figure 4.6: Robust Phase Pooling. The temporal phase gradient is noisy due to the measurement of
phase in regions where phase is unstable, such as the region on the grass and in the crowd. The phase
stability measure provides an estimate of locations of stable phase. Only the stable phase is used
for pooling, resulting in pooled phase that captures the motion of the background and foreground of
the golfer in the scene. This pooled phase is used to construct the nested motion descriptor.

provide a measurement of shift of the translating step edge.

4.3.4 Robust Component Velocity

It is important to discuss the stability of phase based component velocity estimation. Fleet and

Jepson [154, 47] suggest a threshold on a function of the magnitude response to discard regions

with poor phase stability. They show that a sufficient statistic for a robust phase estimate is the

ratio between the spatial derivative of magnitude and the absolute magnitude. In other words, we

require a small change in magnitude relative to the absolute magnitude in order to have stable phase

estimate.

P = {q | |rx(q)|
r(q)

< t, q 2 I} (4.7)

The set P is a set of interest points in an image I such that each interest point satisfies the constraint

for phase stability. A feasible interest point is one that has a small spatial change in magnitude (e.g.

a local maxima of magnitude, at the phase zero crossing) and has a large edge magnitude. This

constraint discards regions of low contrast (small denominator) and non-maximum edges (large

numerator), leaving interest points that have sufficiently stable phase characteristics for computing

component velocity.

The stability constraint in (4.7) be combined with the phase gradient (4.6) into a single mea-
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surement of robust phase gradient5f̂

f (r,t,b) = 1

1+ exp(�b(t� |rx|
r ))

(4.8)

5f̂ = f (r,t,b)5f =
5f

1+ exp(�b(t� |rx|
r ))

(4.9)

The logistic function in (4.8) provides a soft threshold for the stability constraint. The robust phase

gradient is equal to5f when |rx|
r ⌧ t, and smoothly transitions to zero as |rx|

r � t. The parameter

b encodes the sharpness of the transition of the logistic function from zero to one.

This estimate of robust phase gradient can be used to define a robust component velocity. Fol-

lowing the definition of component velocity in (4.5), and replacing the phase gradients with the

robust phase gradients in (4.9), we define the robust component velocity as

â =
�f̂t

|~̂f|
(4.10)

Intuitively, this function provides a measurement of component velocity that is equal to the observed

velocity if the magnitude is sufficient. However, if the magnitude is not sufficient and the phase is

unstable, such as a region of low contrast, then the function will provide a measurement of zero

velocity. This formulation of robust component velocity is a new contribution of this work.

Figure 4.6 shows and example of the phase stability and robust phase gradient. In this example,

a golfer is in the middle of the backswing and the camera is panning from left to right to begin

following the ball. We show the magnitude and phase for an oriented bandpass response tuned

to two octave scales and 0o orientation. The observed temporal phase gradient is very noisy due to

regions of poor stability where the magnitude is small or non-maximum. The phase stability in (4.7)

can be used to identify the regions in the imagery with stable phase, which is shown in the grayscale

image such that white pixels are stable, and black are unstable. Finally, the robust phase gradient

is computed using this stability constraint as in (4.9) resulting in stable phase measurements. The

figure shows that the stable phase gradient is much less noisy and clearly reflects the true motion

of the background and the swing of the golfer. In the next section, we discuss aggregation of this

stable phase using spatial and temporal phase pooling, as shown in the final column.
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Figure 4.7: Perspective views of the spatiotemporal pooling regions of the nested motion descriptor.
(left) az=90o, el=90o, the temporal axis is pointed into the page. We overlay the nested shape
descriptor onto this view, which shows that the NMD has an equivalent pooling structure to the
NSD (middle) az=45o, el=25o, with the temporal axis pointed into the page, (right) az=90o, el=0o,
with the Y axis pointed out of the page. This view shows that the temporal pooling regions increase
proportionally to spatial scale. The slope of the line connecting the centers is determined by the
velocity tuning of the descriptor. A video visualization of this descriptor is available at http:
//youtu.be/RfJJHmXnRAw.

4.3.5 Robust Phase Pooling

Spatiotemporal phase pooling refers to the aggregation or accumulation of phase gradients over

neighboring positions and times. The pooling regions over which the accumulation occurs are

represented as spheres in a 3D spatiotemporal volumes (x,y, t) where (x,y) are spatial image support

in pixels and t is the temporal support in frames of a video. The radius of the sphere defines

the spatial and temporal support of the aggregation. Figure 4.7 shows perspective views of the

spatiotemporal pooling regions for the nested motion descriptor.

Spatiotemporal pooling in the nested motion descriptor is constrained such that the temporal

projection of pooling regions is equivalent to the nested shape descriptor [51]. Figure 4.7 (left)

shows an example of this spatiotemporal pooling constraint. Furthermore, as the spatial scale of

the pooling region increases, the temporal scale also increases and the center of the pooling region

shifts in time. This is shown in the perspective view in figure 4.7 (right). The intuition for this

pooling strategy is that motions far away in time should be measured at coarser scale while motions

close in time should be measured at a finer scale. Figure 4.7 (right) shows that the projection of the

spheres onto the (x,y) plane will result in a set of circles that intersect at exactly one point at the

origin. The highlighted set of spheres in grey form an Hawaiian earring structure when projected

onto the (x,y) plane.

Formally, the spatiotemporal nested pooling is defined as follows. We will use the notation
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and conventions defined in [51], where sets of spheres are grouped into lobes forming an Hawaiian

earring when projected onto the (x,y) plane. The descriptor exhibits n-fold rotational symmetry so

that there are n lobes equally spaced in angle. The notation Kn(i, j) refers to the sphere in the ith lobe

at jth scale, with center ci j = [2 jcos(i 2p
n ), 2 jsin(i 2p

n ),2 jn]T and radius ri j = [2i, 2i, 2in]T in (x,y, t)

spatiotemporal volume. The parameter n is the velocity tuning of the NMD, which ”squashes” the

descriptor temporally to tune to faster or slower motion.

For example, Figure 4.7 shows an NMD with 8-fold rotational symmetry, such that there are 8

lobes each containing a nested set of spheres over five scales. The set of all pooling regions in this

NMD is K8. Figure 4.7 (right) shows a set of spheres highlighted in grey all which are in the same

lobe. These spheres are referenced as K8(0, j) for the i= 0 lobe, and each lobe is referenced by scale

j. As the scale increases, both the center and radius of each pooling sphere increases exponentially.

Finally, we perform pooling of robust phase gradients within these spherical pooling regions.

Recall that the definition of the robust phase gradients uses the fact that some regions of the image

are unstable, and do not provide reliable phase estimates. So, phase cannot just be accumulated over

each pooling region, as there may be different number of stable phase estimates in each region. To

compensate, we pool robust phase gradients, but normalize by the total phase stability measure in

the pooling region. This phase pooling is equivalent to the mean robust phase gradient within the

pooling region. Figure 4.6 shows an example of this pooling in the final column. This phase pooling

is used to construct the robust component velocity and the nested motion descriptor.

4.3.6 Construction of the Nested Motion Descriptor

Finally, we can pull together the results from the previous sections to construct a nested motion

descriptor at an interest point as follows. Let Bt
w,q be a bandpass response at scale w and orienta-

tion q at time t, for each frame in a video clip as computed in section 4.3.2. Next, compute the

phase gradients for each bandpass response following (4.6), and compute the robust phase gradient

following (4.9). This stable phase is pooled using the spatiotemporal pooling in section 4.3.5 for a

given spatiotemporal pooling support Kn, such as the visualization in figure 4.7. Finally, the robust

component velocity is computed as in (4.10) for the pooled phase gradients. Let the robust compo-

nent velocity be indexed ât
i j(q) for orientation i and scale j at pixel q, where the phase gradient is

computed using the current frame and frame t. Then, the nested motion descriptor is constructed
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Figure 4.8: (top) Logarithmic spiral property of the nested motion descriptor provides normaliza-
tion and binarization. The log-spiral and it’s reflection shown in grey form an elegant flower-like
structure. (bottom) An NMD is formed at each interest point by (left) nested pooling of scaled and
oriented gradients and (right) log-spiral difference and binarization.

from pooled robust component velocities, normalized by the stability constraint:

d(i, j,k, t) =
Sq2Kn( j,k) ât

ik(q)
Sq2Kn( j,k) f (q)

(4.11)

d̂(i, j,k) = d(i, j,k, t�2kn)�d(i, j�1,k�1, t�2kn) (4.12)

D(i, j,k) =

8
>><

>>:

1 if d̂(i, j,k)> 0

0 otherwise
(4.13)

Equation (4.11) is robust component velocity pooling. The descriptor d(i, j,k, t) is the pooled

component velocity for orientation subband i, lobe j and lobe scale k at frame t. Observe that the

bandpass scale k is equal to the pooling support radius k. In other words, support regions with

radius 2k pool orientation subbands over octave scales k, so we pool coarser gradients over larger

supports. Furthermore, the normalization constant is the pooled phase stability constraint in (4.8).

This provides a weighted mean component velocity within the pooling region, where the weight is

provided by the phase stability.

Equation (4.12) is logarithmic spiral normalization. This log-spiral normalization computes the

difference between component velocities at neighboring scales and positions within the same frame.

Observe that there is a coupling between the frame offset, pooling scale and bandpass scale, since

all depend on k. This results in pooling coarser velocities over larger supports. We discuss in the

next section how this normalization provides invariance to camera motion.

Figure 4.8 shows an example of this log-spiral normalization. In general, a logarithmic spiral is
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a curve that can be written in polar coordinates as r = aebq for arbitrary positive real constants a and

b. A nested support set Kn exhibits a logarithmic spiral when considering neighboring supports. For

example, figure 4.8 (right) shows an example of the logarithmic spiral for K6. Each turn of angle

qi =
2p
6 i is a radius of ri = 2i, which is equivalent to a logarithmic spiral numerically approximated

with parameters a = 1,b = 0.66191. Figure 4.8 (right) shows a log-spiral and it’s reflection r =

ae�bq forming an elegant flower-like pattern. The sequence of grey circles with centers and radii

at left follow the logarithmic spiral shown in green in 4.8 (middle). Combining this log-spiral with

it’s reflection (right) forms an elegant flower like structure used for normalization and binarization.

Figure 4.8 (right) shows an example of the log-spiral normalization procedure. This pattern encodes

the normalization which is a difference of spiral adjacent support, which provides invariance to

camera motion. Intuitively, the log-spiral difference is a difference in component velocities between

neighboring positions and scales. If these component velocities are the same (due to global camera

motion) then the difference will remove this motion. We discuss this further in section 4.3.7.

Finally, equation (4.13) is binarization. A nested motion descriptor can be binarized by com-

puting the sign of (4.12). This constructs a nested motion descriptor with binary entries. This is an

optional step which can be used to provide compact representation.

The final nested motion descriptor D from (4.13) is a binary vector of length (R⇥ |K|⇥ |K|)

for R orientation bands over |K| lobes and |K| supports per lobe. For example, for eight orientation

subbands, five nested supports, and six lobes has dimensionality (8⇥ 6⇥ 5) = 240. The nested

motion descriptor can also be real valued using (4.12), without the final binarization step.

4.3.7 Invariance to Camera Motion

In this section, we describe how the log-spiral normalization of the nested motion descriptor pro-

vides invariance to global camera motion. The key intuition for this procedure is that each dimension

of the NMD encodes the robust component velocity of estimated at a specific orientation and scale.

The log-spiral normalization computes a difference between neighboring scales and positions in the

NMD, within the same frame. If both of these dimensions are moving with the same velocity, due

to the global camera motion, then the difference will remove this effect. Basically, the log-spiral

difference is computing an local acceleration or second order derivative between neighboring ve-

locities pooled in the nested motion descriptor. Acceleration is invariant to constant velocity, so if
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Figure 4.9: The nested motion descriptor is invariant to global camera motion. (top) A video se-
quence of a rock climber where the camera is following the climber up the rock face. For a given
fixed interest point on the background, we compute the nested motion descriptor. Observe that
the robust component velocities for this interest points are the same. (bottom) When computing
the log-spiral difference, the constant velocity due to the camera motion is removed, leaving only
acceleration.

the camera is translating with a constant velocity, the descriptor will be invariant to this motion.

Figure 4.9 shows an example of the invariance to the dominant camera motion. This figure

shows a video sequence of a rock climber where the camera is following the climber up the rock

face. This introduces constant velocity motion in the background due to the camera motion. We

show a single interest point on the background to show that this effect of the motion from the

camera is removed. We compute the robust component velocities using the nested motion descriptor

construction in the previous section. Observe that each pooling region on this background interest

point result in the same component velocity. This is the same due to the global motion of the camera.

When we compute the log-spiral difference, this constant velocity is removed, resulting in robust

component velocities of zero.

Finally, it is important to note that this approach to invariance to camera motion does not re-

quire an estimate of the dominant camera motion, or an estimate the optical flow field. Both of

these alternative techniques require a commitment to a motion estimate, which if incorrect can in-

troduce errors or smoothing artifacts into the motion representation. The NMD does not require

these assumptions.
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4.3.8 Motion Saliency

We can visualize salient motion using the steerable pyramid reconstruction. In chapter 3, we showed

that there exists a mapping from the dimensions of the nested shape descriptor and the coefficients

of steerable pyramid, and that we can use this mapping to provide a saliency map by pyramid

reconstruction. In this chapter, we have shown that there exists a mapping from the nested motion

descriptor to the nested shape descriptor, which means that we can reuse the same technique for

saliency map construction,

A saliency map is a real valued scalar field that encodes the salience of regions in an image. The

nested motion descriptor can be used to compute a saliency map in a very simple manner. Recall that

the nested motion descriptor requires the construction of a quadrature steerable pyramid to compute

multiscale oriented gradients. Given this pyramid, replace the orientation and scale bands with the

clipped mean square response of the NMD for each orientation and lobe. Then, replace the low pass

response of the steerable pyramid with the squared Laplacian filter response, to implement a center

surround difference. Finally, reconstruct the image from this saliency pyramid. In short, a motion

saliency map is the image reconstructed from the squared response of the nested motion descriptor.

Formally, let a steerable pyramid B = {I0,Bi j ; i  R, j  S} for orientation bands Bi j over R

orientations i and S scales j and lowpass residual image I0. Each band Bi j encodes the oriented

gradient response at orientation i and scale j. Furthermore, let d̂ be a log-spiral normalized nested

motion descriptor constructed following eq. 3.1 and 3.2, computed densely at each pixel. Then, let

B̂i j = max(Â
j

d̂(i, j,k)2, t) (4.14)

Î0 = (I0 ⇤L)2 (4.15)

where L is a 3x3 Laplacian kernel, ⇤ is the convolution operation, and t is a clipping threshold for the

maximum squared difference. These are collected as subbands in a steerable pyramid B̂ = {Î0, B̂i j},

and these bands are used to reconstruct an image using the standard steerable pyramid reconstruction

algorithm, where the filters used for reconstruction are the magnitude of the quadrature pair. This

reconstructed image is a saliency map. Finally, a saliency video is encoded from the set of saliency

maps computed from the video, and rescaled so that the maximum saliency response is encoded as
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Figure 4.10: The nested motion descriptor represents salient motion in video. We show a semitrans-
parent saliency map for motion overlayed on each frame of video. This saliency map shows salient
responses in red and non-salient in blue. The salient responses show the foreground motion of the
basketball dribbling and suppresses the motion of the camera in the background.

red.

The final saliency map encodes the unoriented motion saliency, of motion in any direction. Col-

orization to encode oriented motion saliency is straightforward since these orientations are already

computed in the nested motion descriptor. However, we leave this visualization extension as future

work.

Figure 4.10 shows an example of salient motion constructed using this technique. This example

shows four frames from a short clip of dribbling a basketball from the human motion database [79].

This clip contains large scale and small scale motion of the body and hands of the player, as well

as global camera motion down and to the left. The colors encode the saliency map such that red

is salient and blue is not-salient. Observe that the salient motion extracted using this technique

highlight the small motions of dribbling the basketball and not the large motions due to the camera.

In section 4.4.3 we show a comparison of this motion saliency with and without the log-spiral

normalization to demonstrate the representational power of this approach.

4.4 Experimental Results

In this section, we show results for applying nested motion descriptor to the task of activity recog-

nition. We focus on three datasets, and compare results for a simple bag-of-words classification

framework, to highlight the performance differences due to motion descriptors only.

The goal of our experimental evaluation is demonstrating of relative performance of local mo-

tion descriptors for the task of activity recognition. This experimental evaluation does not attempt to

achieve the state of the art in activity recognition on any one dataset. For example, the current state

of the art uses higher level activity representations using improved dense trajectories and Fisher
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vector encoding of activities [101]. Instead, we are interested in determining the relative effect of

only the local motion descriptors, in order to determine the relative benefit of this representation for

this task. As a result, we consider only the relative performance of classification using a simple and

well understood activity representation based on bag-of-words. This will not achieve state of the

art, but the relative ranking is insightful for the performance of the descriptors only. These descrip-

tors could then be used to improve the performance of dense trajectories to further push the state of

the art. This evaluation strategy was used for baseline comparisons of local motion descriptors in

activity recognition evaluations in [91, 92], and we follow the same approach.

We compare performance of the nested motion descriptors to HOG-HOF [54] and HOG-3D

[90]. As described in the related work, there are many other motion descriptors including motion

boundary histograms, motion interchange patterns and variants of dense trajectories. However, all

of these descriptors are non-local. They focus on optical flow to aggregate local descriptors by

tracking points through a long trajectory, which is a form of a global representation. In fact, dense

trajectories define their representation as set of HOG-HOF descriptors extracted along a trajectory.

The nested motion descriptor is local to a specific interest point, rather than capturing the properties

of a trajectory. Therefore, we compare to other local motion descriptors. The evaluation in [91]

showed that HOG-HOF and HOG-3D outperformed cuboid and dense SURF, so we limit our eval-

uation to these two descriptors. Furthermore, the improved dense trajectories consider HOG-HOF

as the local motion descriptor extracted along the trajectory, so we use this as our baseline.

The datasets chosen for this evaluation span the complexity representative of classic and modern

activity recognition problems. The KTH actions dataset [78] (2004), is representative of classic

activity recognition dataset, with six classes and unmoving and zooming cameras. The UCF sports

actions dataset [157] (2008) has nine activity classes, but these videos are collected in unconstrained

television footage. Finally, the human motion database (HMDB) [79] (2011) is representative of a

modern dataset with over fifty actions in unconstrained video.

The state of the art for activity recognition has moved to larger and more diverse datasets

[80][158] with hundreds of activity classes, however since our focus is on relative performance of

descriptors, we focus on classic datasets that span the complexity rather than pushing the absolute

classification accuracy performance. Furthermore, classification performance has saturated on the

KTH actions dataset to near perfect classification results, due primarily to the fact that the camera
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Figure 4.11: Examples frames from the six activity classes in the KTH actions dataset.

is not moving. However, remember that our analysis is focused on demonstrating the relative per-

formance benefit of the local motion descriptors, and not the absolute classification performance of

the activity recognition framework. So, these datasets remain informative for this relative analysis

task.

4.4.1 Experimental System

The experimental system we consider for evaluation of nested motion descriptor performance is

activity recognition using a bag of words representation.

For each observation, we densely extract local motion descriptors from each frame in the video,

with the given spatiotemporal stride. We use a all descriptors from a random sample of 30 videos

to perform vector quantization to learn the K words in the vocabulary. Then, for each video, we

construct a bag-of-words representation by assigning each densely extracted descriptor to the closest

word, and creating a normalized histogram of word occurrence. Finally, classification is performed

by training a one-vs-rest linear SVM classifier for each class, then selecting the maximum likelihood

class for each observation. We report results in classification rate or mean average precision across

all classes for each dataset.

We compare to the baseline of [54] and HOG-3D [90] local motion descriptors. We use the
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public implementations available from the author’s websites, and initialize these descriptors to the

parameters listed below.

Finally, we use the following parameters in all experiments, in addition to the default parameters

recommended by the original authors.

• Resolution: We downsample frames so that the maximum dimension is 160 pixels.

• Visual words: 600 words in the vocabulary, trained from a random sample of 10,000 descrip-

tors from 30 videos.

• Stride: dx=5, dy=5 spatially, dt=5 temporally

• NMD parameters: scales=5, orientations=8, lobes=8, real valued (without binarization),

with log-spiral normalization

• Dataset size per class: 30 training videos, 65 testing videos.

Training and testing splits follow the recommendations from the dataset authors, unless other-

wise noted. For KTH actions, we follow the recommended training and testing splits where we

divide the test set into nine subjects (2, 3, 5, 6, 7, 8, 9, 10, and 22) and the training set into the

remaining subjects. For HMDB, we use the unstabilized HMDB videos and limit the training and

testing to the listed number of videos per class above. For UCF sports, we perform leave one out

cross validation due to the limited number of videos available per class and report only confusion

matrix and mean classification rate results.

4.4.2 Experimental Datasets

KTH actions is a classic activity recognition dataset [78]. This dataset contains six types of hu-

man actions (walking, jogging, running, boxing, hand waving and hand clapping) performed several

times by 25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes and indoors. This dataset contains 2391 sequences, such that all sequences

were taken over homogeneous backgrounds with a static camera with 25 Hz frame rate. The se-

quences were downsampled to the spatial resolution of 160x120 pixels and have an average length

of four seconds. Figure 4.11 shows example frames for all six activity categories in the KTH actions

dataset.
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Figure 4.12: Examples frames from 14/51 activity classes in the Human Motion Database (HMDB).

The UCF sports actions dataset [157] consists of a set of nine actions collected from various

sports typically featured on broadcast television channels such as the BBC and ESPN. The video se-

quences were obtained from a wide range of stock footage websites including BBC Motion gallery,

and Getty Images. This dataset contains close to 200 video sequences at a resolution of 720x480.

The collection represents a natural pool of actions featured in a wide range of scenes and view-

points. Actions in this data set include: Diving (16 videos), Golf swinging (25 videos), Kicking

(25 videos), Lifting (15 videos), Horseback riding (14 videos), Running (15 videos), Skating (15

videos), Swinging (35 videos) and Walking (22 videos).

The Human Motion DataBase (HMDB) is a recent activity dataset containing a large num-

ber of activities in the wild [79]. HMDB is an activity recognition dataset collected from various

sources, mostly from movies, and a small proportion from public databases such as the Prelinger

archive, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action cate-

gories, each containing a minimum of 101 clips. The categories can be grouped in five types:

• General facial actions such as smile, laugh, chew, talk.

• Facial actions with object manipulation such as smoke, eat, drink.

• General body movements: cartwheel, clap hands, climb

• Body movements with object interaction: brush hair, catch, draw sword,

• Body movements for human interaction: fencing, hug, kiss

Figure 4.12 shows examples from fourteen activity classes in this dataset.
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Figure 4.13: Motion saliency for basketball dribbling. (top) Salient motion using NMD with
log spiral normalization. (bottom row) NMD without log-spiral normalization. The log-spiral
normalization suppresses the camera motion and highlights the salient motion of the basket-
ball dribbling in the scene. A video visualization of this motion saliency is available at http:
//youtu.be/t6D1c6M98aE.

4.4.3 Motion Saliency

In this section, we show results applying the visualization of salient motion captured by the NMD

as described in section 4.3.8. Recall that a motion saliency map is the image reconstructed from

the squared response of the nested motion descriptor. We show results for a sampling of videos

from the KTH actions and HMDB datasets, and compare qualitative results with and without the

log-spiral normalization. These results demonstrate the effectiveness of the log-spiral normalization

in representation of salient motion and suppressing the effect of camera motion.

Video saliency is a emerging field of investigation with datasets and approaches recently be-

ing developed for evaluation [159]. However, like image based saliency, quantitative performance

evaluation typically considers such metrics as human gaze prediction, which requires cultural and

contextual biases such as high level information of human faces and center bias. Instead, we show

qualitative results for bottom up motion saliency, to show that the dominant camera motion can be

suppressed in these videos. These results could be integrated into a larger system for video saliency

that includes both bottom up and top down information for a more quantitative analysis.

Figure 4.13 shows an example of basketball dribbling from HMDB. The top row shows the

output of the motion saliency using the NMD, and the bottom row shows the same output using the

NMD without the log spiral normalization. This video includes a dominant camera motion down

and to the left, and this manifests in the bottom row as motion in the background. This motion

is shown as a motion on the horizon where there is sufficient texture to satisfy the phase stability
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Figure 4.14: Motion saliency for KTH jogging. (top) Salient motion using NMD with log spiral
normalization. (bottom row) NMD without log-spiral normalization. The log-spiral normalization
highlights the salient motion of the runners legs and arms, while the motion without log-spiral
normalization saturates with the motion of the mean velocity of the body. A video visualization of
this motion saliency is available at http://youtu.be/zzhos4lj-QE

requirements. Furthermore, the motion of the body of the player dominates the motion without the

log-spiral, but when this is included in the representation, then the salient motion of the basketball

and the head relative to the motion of the body pops out.

Figure 4.14 shows an example of jogging from the KTH actions dataset. This example considers

a static camera, so there is zero motion in the background due to camera motion. The bottom row

shows the motion visualization without the log-spiral normalization, and this shows that the motion

is dominated by the overall movement of the jogger from right to left. The top row shows the effect

of the log-spiral normalization which causes the motion of the legs and pumping of the arms to pop

out.

Figure 4.15 shows an example of rock climbing from the HMDB. In this example, two rock

climbers are racing to the top of an indoor rock climbing wall and the camera follows the climbers up

the wall introducing large camera motion up and to the right. The bottom row shows that without the

log-spiral normalization, the background motion tends to dominate the motion representation which

manifests as motion everywhere in the scene. The top row shows that the log-spiral normalization

is able to suppress this dominant motion so that the motion of the climbers pops out from the

background.

Figure 4.16 shows an example of hug from the HMDB. This example also includes a camera

motion panning from left to right as the two people converge to a hug. Without the log-spiral
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Figure 4.15: Motion saliency for HMDB rock climbing. (top) Salient motion using NMD with
log spiral normalization. (bottom row) NMD without log-spiral normalization. The log-spiral
normalization suppresses the significant camera motion in the scene focusing on the salient mo-
tion of the rock climbers only. A video visualization of this motion saliency is available at
http://youtu.be/MShHPal5KsU.

Descriptor KTH Actions UCF Sports Actions HMDB
HOG-HOF 0.81 0.62 0.23
HOG-3D 0.86 0.75 0.24

NMD 0.87 0.77 0.25

Table 4.1: Mean average precision (mAP) results for activity recognition. Results show that the
nested motion descriptor (NMD) outperforms the baseline on all classes.

normalization, this camera motion dominates, reducing the scene to a single motion blob. With the

log-spiral normalization, the salient motion of the hands and head as two enter the hug.

4.4.4 Activity Recognition

The overall results are shown in table 4.1. We report mean classification rate results over all activity

classes for activity recognition using the experimental framework in section 4.4.1.

Results show that the nested motion descriptor (NMD) outperforms the baseline on all datasets.

These results are consistent with reported results in the literature using bag-of-words framework,

albeit at a lower overall classification rate. We believe this is due to the smaller total vocabulary size

(600 vs. 4000 in [91]), however the relative performance change across the dataset is consistent.

The best performance is on the KTH actions dataset which does not contain any global camera

motion, the second best is on UCF sports which contains camera motion but a limited number

of object classes. The worst performance is on unstabilized HMDB, due to the large number of
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Figure 4.16: Motion saliency for HMDB hug. (top) Salient motion using NMD with log spiral
normalization. (bottom row) NMD without log-spiral normalization. The log-spiral normalization
focuses on the subtle hand movements that form a hug and suppresses the background motion
of the camera. A video visualization of this motion saliency is available at http://youtu.be/
yx1g9rvXvuQ.

classes. However, we observe that the NMD does still provide improved performance over the

baseline descriptors.

Figure 4.17 shows detailed classification results on the UCF sports actions dataset. Recall that

this dataset requires leave one out cross validation results due to the limited number of training

examples per class. We observed that this dataset includes a significant background context that

affects the results for comparing motion descriptor. Specifically, the ”Kicking-Front” and ”Kicking-

Side” classes contains wide open grass fields with strong field line markers. Observe that the HOG-

3D descriptor confuses only kicking-front and kicking-side, while the NMD performs poorly on

this class but better on all other classes. We hypothesize that this is due to the context of the large

football fields on which this action takes place, rather than the motion of the foreground itself. The

NMD suppresses the motion on the ground due to the dominant camera motion, while the HOG-

3D descriptor leverages this context that is unique to these two classes. If we remove these biased

classes from the aggregate scores, we see that the NMD outperforms the HOG-3D using motion

only on the remaining classes, and these are the score reported. However, this result does highlight

the need for a composite descriptor that can leverage features from many different sources, including

the surrounding context of the background.

Figure 4.18 shows detailed classification results on the KTH actions dataset. This dataset has

a large number of training examples per class which allows for evaluation using precision-recall
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Figure 4.17: Activity recognition results on UCF sports actions. (top) Classification rate, (bot-
tom) confusion matrices. The class index for each result: ’Diving-Side’, ’Golf-Swing-Back’,’Golf-
Swing-Front’, ’Golf-Swing-Side’, ’Kicking-Front’, ’Kicking-Side’ , ’Lifting’, ’Riding-Horse’,
’Run-Side’, ’SkateBoarding-Front’, ’Swing-Bench’, ’Swing-SideAngle’ ,’Walk-Front’. Class con-
fusion results show that HOG-3D is inflating the classification results for ’kicking” by leveraging
the background context of the football pitch, while the NMD is penalized for suppressing this back-
ground due to camera motion. See text for a discussion.

curves in addition to the confusion matrices and classification rates. This result shows that the

NMD exhibits significantly improved average precision for boxing and handwaving, but is worse

on jogging. An analysis of the confusion matrix for the NMD shows that performance on jogging

is confused with running and walking. This suggests that the absolute velocity is a discriminative

feature for this class, and the log-spiral normalization discards this information when computing

the invariance to camera motion. It is interesting to note that in some cases, the dominant motion

in the scene is informative for classification. This highlights the need for a composition of various

descriptors for accurate activity classification.
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4.5 Summary

In this chapter, we introduced the nested motion descriptor for representation of salient motion for

activity recognition. We motivated the cosntruction of this descriptor using phase based optical

flow, we described the construction of the descriptor, we described how the use of the log-spiral

normalization provides invariance to dominant camera motion. Furthermore, we showed example

motion saliency results for videos with large camera motions, and demonstrated the performance of

this descriptor for activity recognition.

The results show that there is a slight improvement for the NMD over HOG-3D and a significant

improvement over HOG-HOF for all datasets considered. Furthermore, results show that the nested

motion descriptor is suppressing dominant camera motion, however this suppression can have a

negative affect on activity recognition. There are activity classes for which the absolute velocity

is a discriminative feature such as jogging vs. walking. Any feature that suppresses this absolute

velocity and considers only changes in velocity will suppress this discriminative feature and the

result will be worse recognition performance for this class. We observed this in the KTH actions

dataset, where all other classes showed improved performance over the baseline, but jogging was

worse. Furthermore, there are classes for which there exist background biases such as the football

pitch present for ”kicking” in the UCF sports actions. The NMD suppresses this background motion

as being non-informative motion of the camera. However, this field was present only in these

two classes, resulting in a dataset bias that can be exploited. We saw that HOG3D exploited this

background context when confusing Kicking-Side and Kicking-Front, and artifically inflating the

classification rate. When these classes were removed, the performance of the NMD was shown to

be superior as shown in the figure, however including these classes results in a classification rate of

NMD=0.67 and HOG3D=0.71. This result highlights the fact that sometimes the camera motion is

informative for classification.

These results suggest that a successful representation for activity recognition should include a

composite of descriptors that capture a wide range of features. This is the strategy taken by the

current state of the art in activity recognition (improved dense trajectories [101]). So, we expect

that introducing the NMD into this composite framework should provide improved performance.
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Figure 4.18: Activity classification results on KTH actions (top) Precision-recall curves for each of
six activity classes (middle) average precision per class, mean classification rate, (bottom) confusion
matrices. For all results, the class indexes are ordered: boxing, handclapping, handwaving, jogging,
running, walking. NMD results are improved for boxing and handclapping, but worse for jogging.
See text body for a discussion.
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Chapter 5

Nested Pooling

5.1 Introduction

Human-scene interactions are the interplay of humans with static objects or functional scene ele-

ments over a wide area. For example, figure 5.1 shows a terrestrial surveillance video of an urban

scene that contains the functional scene elements (FSE) bike rack, newspaper box, trashcan, sub-

way entrance, crosswalk, road, parking space and sidewalk. A pedestrian may enter the scene, lock

a bike to a bike rack, get a newspaper, discard trash and enter the subway. FSEs exhibits large

spatiotemporal variations in both appearance and usage, however usage patterns are generally more

consistent than appearance. For example, a bike rack may be anything from a metal bar to a tree

trunk, but usage generally includes some combination of insert-bike-into-rack, remove-helmet and

lock -bike. The goal of recognition of human-scene interaction is the recognition of such functional

scene elements using patterns of activities executed during usages over extended time periods.

Human-scene interaction is a growing area of investigation that is driven by Wide Area Motion

Imagery (WAMI) data collections. WAMI data is collected from a high resolution, low frame rate

electro-optical (EO) camera from a high altitude aerial platform. WAMI data collections over urban

areas can enable such new applications as functional building recognition, empty parking space

detection or FSE surveillance. However, WAMI data presents a unique challenge for human-scene

recognition algorithms due to low frame rate, wide field of view, stabilization, occlusions and large

intraclass variations. Furthermore, due to the cost of aerial data collections, there are limited WAMI

datasets available for evaluation, and due to privacy concerns, almost all WAMI data collects are
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Figure 5.1: Recognition of human-scene interactions is the classification of functional scene el-
ements such as bike racks, newspaper boxes or trashcans using only activities performed during
usage. FSEs such as bike racks (1) and (2) may vary widely in appearance, but exhibit similar
weakly causal usage patterns over time which can be used for classification.
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restricted and distribution limited. Those datasets that are publically available, such as CLIF-07 over

Columbus OH, GREENE-07 over Beavercreek OH or webcam surveillance datasets [160, 161] are

either too short in duration or they are focused on tracking or functional object recognition rather

than curation for evaluation of functional scene element recognition.

In this paper, we make two primary contributions. First, we introduce a new dataset that has

been collected and curated for functional scene element recognition called the Penn-FSE dataset.

The Penn-FSE dataset is static, terrestrial surveillance video of urban scenes, capturing hundreds of

annotated functional usages of eleven object classes over 8 hours of video. This dataset is described

in section 5.4.

Second, we describe a new pooling strategy for representation of functional scene elements

called nested pooling. Bag-of-words based representations of activities rely on spatiotemporal pool-

ing regions to perform max-pooling of learned prototypes to contstruct prototype histigrams based

representation of an activity. Nested pooling represents an activity as a bag-of-words model, how-

ever instead of pooling over a uniform region as in traditional bag of words models [135], or spatial

pyramid based pooling as in spatial pyramid matching [162], the pooling regions are nested. This

representation is inspired by a general class of local feature descriptors called nested shape descrip-

tors [51]. We show that this nested pooling is well suited for modeling weakly causal activities

commonly found with functional scene elements. This approach can be considered a middle ground

in single level representations of human activities [53] between spatiotemporal feature based repre-

sentations which ignore causality [54, 55] and sequence or graphical model based activity represen-

tations [56, 57] which represent causality by computationally expensive optimization of sequence

alignments or probabilistic inference of optimal activity states. Nested pooling combines the best

properties of these two approaches, which enables a representation of weak causality while main-

taining the fast exemplar based recognition of unordered representations. This approach is described

in section 5.3.

Finally, we show classification results using the nested pooling on the Penn-FSE dataset. Results

show that the nesting property provides a demonstrable improvement over a non-causal baseline for

recognition of usages of functional scene elements. Results are described in section 5.5.
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5.2 Related Work

Human-scene interaction is related to human-object interaction [163, 164, 165, 57] which is fo-

cused on interactions of humans with objects such as instruments or sports equipment over small

time scales. These approaches use both appearance and object specific motion during usage for

classification. In contrast, human-scene interactions with functional scene elements [166, 167] as-

sumes that the scene is static (or stabilized) and large scale, and the human is interacting with many

static functional scene elements within a large scale operational area. Functional scene elements are

more closely related to functional objects [168] which are moving objects in a scene with a specific

purpose such as a postman or delivery truck. Unlike human-object interactions, functional objects

and FSEs are defined primarily by their usage and not by appearance.

Human activity recognition has a long history [53], and we touch only those approaches most

closely related to the proposed approach. Activity representations using spatiotemporal templates

[169, 170, 171] can be used to capture causality over small time scales. However, these repre-

sentations are not broadly selective to deformations and do not capture causality over large time

scales. Activity representations using spatiotemporal features [54, 172, 173, 174] provide a com-

pact motion representation that are tolerant to clutter, occlusions and scale changes. A key compo-

nent of an activity representation is a binning or pooling strategy for aggregating feature responses,

where strategies explored include histograms of spatiotemporal interest points [54], spatial pyra-

mids [175, 15, 176] or non-overlapping horizontal, vertical and temporal grids [173, 87]. These

approaches are sensitive to the grid spacing since an optimal spacing depends on the activity. In

contrast, nested pooling provides a new strategy that uses overlapping nested aggregation regions

to represent causality without grid assumptions.

This approach is most closely related to recent work in activity representation [175, 162] which

uses pyramid max pooling of a set of either trained action classifiers or object classifiers over a

temporal support. In contrast, this work evaluates nested pooling strategies instead of pyramid

pooling strategies, and we show that this has a demonstrable benefit for the class of functional scene

element recognition.
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Figure 5.2: Nested pooling is the encoding of an activity as a max pooled set of motion prototypes in
a nested set of support regions centered at object usage event, where each support region inceases on
a log scale. Each gray region is a pooling region which is represented by a histogram of prototype
responses within the pooling region. Observe that the inner support regions are fully contained
within the outer support regions, forming nested pooling.

5.3 Nested Pooling

Nested pooling is a new activity representation well suited for recognition of functional scene el-

ements. Figure 5.2 shows an example of nested pooling. Activities can be described as a set of

motions that are temporally linked into a causal sequence to form the activity. Nested pooling rep-

resents this spatiotempral sequence by max-pooling motion prototypes over nested support regions

centered at a given spatiotemporal point p. Each region is represented as an unordered bag-of-words,

and each histogram from each nested pooling region is concatenated into an overall representation

for the activity.

Nested pooling is a representation that captures weak causality in activity representation. Weak

causality is defined as a partial order of temporal activities. Nested supports provides a total order

of temporal supports, however within each support the max pooling provides a locally unordered

representation of activities. This type of representation is suitable for functional scene elements

usages which have large temporal variations on usage patterns.

Figure 5.3 shows why nested pooling captures weak causality. In this example, two usages

of a bike rack differ in the local order of remove-helmet and lock-bike action prototypes. The
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Figure 5.3: Why nesting for activity representation? Nested pooling preserves partial order for
locally unordered action prototypes (helmet/lock) and unknown temporal scale variations (loi-
ter/depart).

pyramid pooling cannot capture this partial order since the relative temporal position of these actions

is unknown and they fall in different bins. So, pyramid pooling can only represent the actions

unordered in the largest bin (1,2,3), which is non-causal. In contrast, nested pooling can capture the

order that approach comes before either helmet or lock (1� (2,3)), since even if there are temporal

variations, at least one nested support will capture (2,3) without (1). So, nesting preserves weak

causality.

Nested pooling is straightforward to construct. Assume that a given frame at time t0 is given

as the reference frame. Nested pooling considers the set of K temporal pooling regions P =

{P1,P2, . . . ,Pk} such that Pi = {t|t � t0� 2i, t  t0}. Intuitively, Pi is the set of frames from time

t0�2i up to time t0. Observe that each pooling region exhibits nesting, such that P1 ⇢ P2 ⇢ . . .⇢ Pk.

Finally, given a set of K motion prototypes, constructed using vector quantization of local motion

descriptors, nested pooling is used to compute a histogram of words for each pooling region. Each

histogram is independently normalized to sum to one, and concatenated into a nested pooling rep-

resentation of an activity.

Nested pooling can be compared to a classic bag of features representation [135]. If a nested

pooling was (i) constructed with only the largest support region Pk then nested pooling would be

equivalent to a bag of features histogram. However, the nested pooling is more expressive than a bag
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Figure 5.4: Penn Functional Scene Element (Penn-FSE) dataset. Shown are representative frames
from of 12 of 24 videos in the full dataset. The dataset includes annotations for 177 functional scene
elements and 463 usage annotations in over 8 hours of video.

of features, since the nesting property captures weak causality through the ordering of the nested

supports. This will be demonstrated experimentally in section 5.5.

5.4 Penn Functional Scene Element (Penn-FSE) Dataset

The Penn Functional Scene Element (Penn-FSE) dataset is a new dataset collected to provide func-

tional scene element recognition that is longer, cheaper, more extensible and unrestricted than

WAMI video. This dataset contains over 8 hours of annotated video collected in downtown ur-

ban scenes. These scenes include the 11 most common static functional scene elements that are

found in a typical city street in downtown Philadelphia: benches, bike racks, bus stops, crosswalks,

doorways, newspaper boxes, parking kiosks/parking meters, roads, sidewalks, subway entrances

and trashcans. The videos are collected from a static surveillance camera mounted on buildings

looking down on the street, typically from the top floor of large, open air parking garages. Twenty

four videos were collected, each approximately a half hour long, and each contains multiple objects

and usages performed by both volunteer actors and random pedestrians.

Figure 5.4 shows example frames and annotations from each of videos in the dataset. The
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Figure 5.5: Data collection locations for the Penn Functional Scene Element dataset. The dataset
contains 24 data collection sites in western Philadelphia.

dataset includes scale variations, pose variations and complex urban activities. Usage statistics for

each of the functional scene elements is shown in figure 5.4. The dataset includes hundreds of

annotated usages of each object, which allows for statistically significant performance evaluation of

the classification algorithm.

Figure 5.5 shows the data collection locations for this dataset. The dataset includes 24 different

data collection sites in western Philadelphia. These sites were selected to provide open air visibility

of complex urban scenes, and typically were collected from large open air parking structures in the

city.

The dataset has been curated for public release and is available for download [URL redacted].

This dataset release is 31GB, and includes twenty four H.264 encoded videos, 860850 exported

color JPEG images at 1280x720 resolution, Matlab annotation tools and an annotation spreadsheet

describing 177 FSE and 463 usages. This spreadsheet describes all metadata for the videos including

date and time collected, total usages, total number of objects, functional scene element bounding

boxes and usage annotations for temporal bounding box containing a usage of each scene element.

Figure 5.1 shows an example of the annotation tools. Unlike existing annotation tools that focus

on bounding boxes or polygons in static imagery, functional scene element annotation requires video

bounding boxes to capture usages of each element. The Matlab annotation tools include a Matlab

GUI that makes it efficient to play frame sequences to temporally localize a bounding box containing
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usages. The visualization tools include the ability to display any video annotation and display all of

the bounding boxes for a video. The output of this annotation is in an excel spreadsheet format that

is importable into Matlab, and other cross platform tools for analysis. Finally, we annotated “hard”

and “easy” usages of objects, where hard cases are those with large occlusions, background clutter

or significant scale variation. The user can optionally choose to include these during evaluation.

5.4.1 Penn-FSE Dataset Examples

In this section, we show example imagery from the Penn-FSE dataset showing usages for each

functional scene element. The dataset overview in section 5.4 shows a wide field of view image of

an urban scene, with labeled bounding boxes containing a functional scene element. Figures 5.6

and 5.7 show the cropped bounding box for one instance of each functional scene element class.

Each row is a set of ten frames from the bounding box which shows a “video clip” usage of the

functional scene element. The full set of frames in the bounding box were used for computing the

nested pooling, however we limit to ten frames for visualization.

Figures 5.6, 5.7 and 5.8 show that there are significant variability in camera pose, object appear-

ance, object scale and usage patterns. For example,

• Figure 5.6 (row one), shows a bench being used by two people, such that one person joins the

other and then wanders around left and right while talking.

• Figure 5.6 (row two) contains a pedestrian unlocking a bike from a tree which is being used

functionally as a bike rack.

• Figure 5.6 (row three) contains a crosswalk that includes both pedestrians and bikes.

• Figure 5.7 (row one) shows a parking kiosk being used by two people simultaneously, one

helping the other.

As these examples show, no attempt was made to engineer “easy” usages of these functional

scene elements. The scene contains background clutter and natural usage patterns which are often

subtle and partially occluded. For example, figure 5.8 shows additional usages that highlight some

of this variability.

• Figure 5.8 (row one,two), shows the appearance variability of trashcans that can be found in

an urban environment. These examples show that the difference between a passing pedestrian
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Figure 5.6: Examples of functional scene element usages in Penn-FSE. (rows) bench, bikerack,
crosswalk, door, newsbox

and a usage of a trashcan is often small and subtle motion of the arm making it challenging

to recognize.

• Figure 5.8 (row three) shows a low concrete wall that is being used as a bench by two women

waiting for the bus.

• Figure 5.8 (row four) shows the pose variations for the subway, with pedestrians entering,

exiting and loitering.

• Figure 5.8 (row five) shows a parking kiosk being used at a small scale with an occlusion by

a passing truck and partial occlusion by the kiosk.

• Figure 5.8 (row six) shows a sidewalk with significant shadowing due to time of day.

These examples highlight the challenge and unique nature of this dataset.

5.5 Experimental Results

The objective of the experimental evaluation is to determine the benefit of the nested pooling for

the task of recognition of functional scene elements (FSE). In this investigation we seek to show the

relative performance improvement due to nesting as compared to two baseline pooling strategies:
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Figure 5.7: Examples of functional scene element usages in Penn-FSE. (rows) parking kiosk, road,
sidewalk, subway, trashcan

bagging and temporal pyramid pooling. Specifically, this investigation was designed to answer the

following three questions:

• What is the average precision for each FSE using nesting (weakly causal) as compared to

a bagged (non-causal) and pyramid (weakly causal, pyramid gridded) baseline , and does

nesting provide a demonstrable performance improvement?

• Which FSE classes does nesting provide the biggest relative benefit over the baseline and

why?

• What is the overall mean classification error for nested pooling on Penn-FSE?

To answer these questions, we performed analysis of the nested pooling classifier on the Penn-

FSE dataset. Results are shown in this section. Chapter 6 shows additional application of this

approach on functional scene element recognition in WAMI video.
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Figure 5.8: Examples of variability of functional scene element usages in Penn-FSE. (rows) trash-
can, trashcan, bench, subway, bike rack, parking kiosk, sidewalk

5.5.1 Experimental System

The experimental regime evaluated in this effort is leave one out cross validation for supervised

classification of stabilized spatiotemporal bounding boxes. We assume that we are given a labeled

dataset of N bounding boxes each representing one of K classes from stabilized video. Each bound-

ing box has a fixed position and spatial image support over a given number of frames in a video.

This spatiotemporal bounding box contains exactly one functional scene element, and the temporal

support contains at least one usage of the functional scene element. Key performance metrics are

average precision computed from precision-recall curves and mean classification error accumulated

over all N�1 leave-one-out cross validation rounds.

The experimental system architecture used for evaluation is as follows. Given labeled bounding

boxes in the training set, bounding boxes were normalized to a uniform scale such that the minimum

dimension was normalized to 128 pixels. For each image sequence, we compute spatiotemporal

interest points [54] then compute a HOG-HOF local motion descriptor [54] for each interest point.
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Motion prototypes were computed using k-means clustering of a sampled subset of HOG-HOF

descriptors, where k=1024. We computed nested pooling using k=13 nested support regions, which

covers approximately five minutes of 30Hz video. Finally, nested pooling was densely sampled at

every fifth frame within the spatiotemporal bounding box. Finally, we use a local naive Bayes near-

est neighbor (LNBNN) classifier [177][178], which is a data driven classifier using local distance

function.

Finally, we compare results of the experimental system to three baseline approaches. The base-

lines are constructed using a bag-of-words model [135], such that vector quantization is used to

compute visual prototypes, and these prototypes are pooled over finite pooling regions to construct

a histogram representation. In this comparison, each baseline differs in the pooling support used

for matching of prototypes. First, we consider a non-causal baseline using bagged pooling. This

is the default bag-of-words model using a single temporal pooling region to construct histograms.

Second, we consider pyramid pooling. This performs max-pooling over supports defined by a three

level temporal pyramid, consistent with [162]. Note that we do not consider gridded pooling, as it

was determined in [87] that bagged outperform gridded pooling, and since the lowest level of the

pyramid is a 4x1 temporal grid, the grid pooling is a subset of pyramid pooling and is redundant.

Finally, we consider nested pooling which replaces the pyramid pooling with a nested pooling struc-

ture. This baseline was included to determine the effects of the temporal pooling only to capture

weak causality.

5.5.2 Penn-FSE Results

We performed a leave one out cross validation on the Penn-FSE dataset and generated performance

evaluation results for the nested pooling based classifier. For each round, we ran the experimental

system and baseline and accumulated key metrics.

Figure 5.9 shows the confusion matrices for the experimental system as well as an overlayed

precision recall curve for the experimental system for all classes. The overall mean classification

rate is 0.45 for the nested pooling, 0.37 for the bagged baseline and 0.28 for the pyramid baseline.

Nesting provides a 22% improvement over bagging and 61% improvement over temporal pyramid.

Figure 5.10 shows separate precision-recall curves for each of ten classes. Each figure has an asso-

ciated relative average precision which is the difference (APexp APbaseline ), where a positive relative
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Figure 5.9: Summary results. (left) Confusion matrix for nested pooling with mean classification
rate 0.45, (right) Precision recall for each class. Class indexes for confusion matrix are in the order
of the legend in the precision-recall curve.

AP means that the nested experimental system is performing better than the bagged baseline.

Some observations regarding the relative performance of the experimental system and baseline

system.

• The best relative performance is on crosswalk and parking kiosk with a relative average pre-

cision of +0.33. These are both classes that have weak causal usage patterns. For example,

crosswalks have many pedestrians walking in an unordered manner, then cars driving.

• The worst relative performance is on subway entrance with a relative AP of -0.13. In many

instances, the subway entrances are viewed in profile, so the downward stairs are not visible.

In these cases, the training set exemplars appear to have the pedestrians slowly disappearing

into the sidewalk. The sum accumulation of bagging captures this phenomenon better than

the max-pooling.

• The pyramid pooling performs the worst overall, which is consistent with the conclusions in

[87] regarding poor performance of gridded pooling.

Some observations regarding the absolute performance of the experimental system.

• The best performance is on “subway” and “newsbox”, which exhibit weakly causal usages.

• Roads are most commonly confused with crosswalks.

• Sidewalks are most commonly confused with roads.
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Figure 5.10: Precision recall and average precision on Penn-FSE dataset for nested pooling com-
pared to baseline pyramid pooling and bagged pooling. (rowwise) Class [APexp, APbaseline]: (1)
bench [0.26,0.33], (2) bikerack [0.36,0.39], (3) crosswalk [0.61,0.28], (4) door [0.52,0.32], (5)
newsbox [0.63,0.64], (6) parkingkiosk [0.98,0.66], (7) road [0.55,0.29], (8) sidewalk [0.32,0.25],
(9) subway [0.53,0.66], (10) trashcan [0.27,0.23]. Mean classification rate over all classes shows
that nesting provides a 22% improvement over bagging and 61% improvement over temporal pyra-
mid.

• Parking kiosks are confused with newsboxes

• Trashcans are commonly confused with benches since in many of the exemplars, trashcans

are located next to benches.

• The worst performance is on “road” which is due to the spatial variation of the orientation of

the road not being normalized prior to classification..

• For some classes, such as sidewalk, the top scoring test samples are incorrect whch results in

a spike to zero of the precision. This effect requires further analysis.

5.6 Summary

We have described a new pooling strategy for representing weakly causal activities called nested

pooling. We evaluated performance of this representation for functional scene element recognition

in a new functional scene element dataset. Results show that the nesting provides a marginal im-

provement over bagged and pyramid pooled baseline systems for representation of weak causality.

The conclusions that we reach for nested pooling are that this approach provides at best a

marginal improvement over other pooling strategies. We collected a challenging new dataset for

138



functional scene element recognition, and evaluated the nested pooling strategy using a baseline

bag of words framework. However, while the nested pooling did provide an improvement over the

baseline pyramid and bagged pooling strategies, it was not significant enough to make a claim that

this would generalize. Furthermore, there were object classes for which the nested pooling was dis-

tinctly worse, even though in aggregate the results were a net improvement. Since these results were

not dramatically better on this dataset, we make the claim that while results did improve, we use

this as a negative result. The pooling strategy does not have as dramatic affect on the performance

of activity recognition as compared to the local descriptors used to construct the representation. So,

we do not recommend further analysis along this path.
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Chapter 6

Applications to Perception for

Unmanned Aerial Systems

In this chapter, we describe two applications of nested descriptors to problems in perception for

unmanned aerial systems (UAS). First, we describe the problem of deck pose estimation for landing

of an autonomous rotorcraft. We describe the algorithm used to generate the results in section

6.1.1 and show results in section 6.1. Next, we describe an application of the nested pooling to

classification of functional scene elements in wide area motion imagery data. We show results on

the LAIR dataset in section 6.2.

6.1 Shipboard Landing using Nested Descriptors

In this section, we describe an application of the nested shape descriptors to the problem of visual

landing of a rotary wing platform. NSD are used to estimate the position and orientation of a

candidate landing zone over a wide range of scales during the approach and landing.

Visual pose estimation for landing is the problem of estimating the 6-DOF position and orien-

tation of a moving landing zone relative to a vehicle with suitable accuracy for safe landing. Given

correspondences between an observed image and a known metric markings on the landing zone, we

can recover pose using well known techniques of robust homography estimation and decomposition

[179].

The primary challenge of this problem is the standardized markings in a landing zone. Figure
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6.1 shows short wave infrared (SWIR) imagery collected during a nominal daytime flight showing

typical landing zone markings. Observe that the standard markings are composed of a white outer

circle, solid inner circle and bisecting line on a grey background. Commonly used feature detectors

that rely on corners or scale-space extrema do not provide enough features for robust homography

estimation. The nested shape descriptors provide broadly selective response to scale variations

and can use edge based detectors, which provides a larger set of interest points for homography

estimation.

Performance results are shown in figure 6.1. We collected four landing approaches of 10Hz

2456x2048 color video and 30Hz 640x512 SWIR video of a manned helicopter approaching a static

landing zone during midday. We collected differential GPS ground truth position of both the landing

zone and the air vehicle with 1s accuracy of 5-15cm. We manually estimated correspondences be-

tween the observed imagery and the reference landing markings to recover the ground truth camera

orientation. Next, we processed the video to estimate nested shape descriptors at edge detections,

performed greedy assignment, and passed these matches to a robust homography estimation and

decomposition to estimate the landing zone position relative to the camera. We compared the esti-

mated landing zone position to differential GPS ground truth and results show that the nested shape

descriptors achieve 2s position errors in X, Y and Z of less than 1ft during the descent and landing.

6.1.1 Deck Pose Estimation

The shipboard landing problem can be defined as follows. Given an image of planar landing deck

with known markings, recover the camera pose (translation and rotation) relative to the deck within

accuracy requirements suitable for safe landing during all terminal descent stages.

In this section, we describe the computer vision algorithm used to estimate the deck pose from

an input image. Our approach is sparse feature based matching using nested descriptors, a least

median of squares robust homography estimation [180] with preconditioning [181], bagging [182]

and nested shape reprojection error. The novel contribution is the use of the nested shape descrip-

tors during reprojection for increased accuracy and the use of nested covariance for homography

estimation to compensate for uncertain correspondence given circular deck markings.

This section is organized as follows. First, we will describe the nested descriptors. These are a

local shape representation of an image that is useful for precise correspondence between an input
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Figure 6.1: Application of the nested shape descriptors to visual landing zone pose estimation.
Colors encode the matching of the observed landing zone with the known markings (red=right,
blue=left), and the green square encodes the detected position of the landong zone. Nested shape de-
scriptors provide broadly selective scale matching without requiring scale invariant interest points.

image and a reference template. Next, we will derive the optimization for estimating the planar

homography between corresponding planar points. This homography is the projective transforma-

tion relating the camera and the deck, such that this homography can be decomposed to provide an

estimate of the deck pose suitable for shipboard landing. Finally, we will describe the full deck pose

estimation algorithm in detail.

6.1.2 Nested Shape Descriptors

Refer to Chapter 3 for a detailed discussion.
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6.1.3 Planar Homography

Homography estimation is a well understood problem with a long history [179, 183]. Given a set of

projective points xi in a plane and a corresponding set of projective points x0i in a second plane, an

homography is a projective transformation H such that x0i = Hxi for each xi. Given a camera C with

image plane P0 and pixel x0 corresponding to a point x in a world plane P, an homography captures

the relationship x0 = Hx mapping corresponding points.

In this section, we derive the planar homography from the perspective projection and derive the

decomposition of the homography into scene relative position and orientation.

Before introducing homography estimation, we first provide preliminary notation and defini-

tions. Assume that all points p and lines l are in projective (homogeneous) points in P2, unless

otherwise noted as Cartesian coordinates in R2 by an hatted variable such that projective and Carte-

sian points are related by homogenization p̂ = [(p1/p3) (p2/p3)]T for elements pi of p. Let q be

a point in pixel coordinates, q̃ be a point in retinal coordinates such that q̃ = K�1q for an intrinsic

camera calibration matrix K. Let there be a scene or world coordinate frame W , such that xW is

a point R3 relative to the world frame. Similarly, let there be a camera coordinate frame C in the

scene such that xC is a point in R3 relative to the camera frame.

The perspective projection matrix PW is the imaging model from the scene frame to the camera

retinal frame.

PW = K


RW
C TC

W

�
(6.1)

For a 3D point x in scene coordinates, p̂ = PW x is the corresponding 2D point p in retinal coor-

dinates in the image. The perspective projection PW encodes the perspective projection for image

formation, and is decomposed into camera pose parameters. The camera pose is defined as a rota-

tion RW
C of the scene frame in the camera frame and the translation TC

W for the position of the scene

origin in the camera frame.

A homography is a perspective projection when the scene points are constrained to be planar.

Assume that there exists a planar scene, and without loss of generality assume that the scene plane
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is at Z = 0. The perspective projection reduces to a projective transform or homography H.

H = [PW ](1,2,4) (6.2)

where the notation [A](i, j,k) refers to forming a matrix using only the columns (i, j,k) of A. Observe

that since Z = 0 (or a linear transform applied to the planar scene points to enforce Z=0) the third

column corresponding to the Z coordinate can be dropped, reducing the 3⇥4 perspective projection

to a 3⇥3 projective transformation.

The homography H can be decomposed into a parameters (R,T ) which capture the camera pose

in terms of the rotation R and translation T of the scene frame in the camera. The rotation and

translation have a trivial decomposition using columns of H, which follows directly from (6.1) and

(6.2)

TC
W = H(3) (6.3)

RW
C =

⇥
H(1) H(2) (H(1)⇥H(2))

⇤
(6.4)

where the notation u⇥ v is the vector cross product to recover an orthogonal rotation matrix R. The

translation TC
W is the position of the world frame in the camera frame, and provides a camera relative

position of the deck in the camera.

6.1.4 Direct Linear Transform

The direct linear transform (DLT) [179] is a classic technique for homography estimation which

provides a least squares optimal homography using singular value decomposition. In this section,

we derive the direct linear transformation.

The direct linear transform for homography estimation can be described as follows. Given n� 4

corresponding points (p,q), for points p in the image corresponding to points q in the scene plane,

an optimal homography H⇤ minimizes the least square error

H⇤ = argmin
H2H

Â
in

||q̂i�\HK pi||2 (6.5)

The constrained minimization is performed over the space of feasible rank-8 constrained homogra-
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phies H .

Observe that the norm domain in (6.5) uses Cartesian points ( p̂, q̂), however the homography

to estimate is a projective transform which is defined up to a scale. These projective points can be

homogenized to result in Cartesian points q̂ where

q̂1 =
H1K p
H3K p

(6.6)

q̂2 =
H2K p
H3K p

(6.7)

where the notation Hj refers to the jth row of H. This homogenized notation can be rearranged to

an objective (0�Aih) such that

Ai =

2

64
�q3 pT KT 0T q1 pT KT

0T �q3 pT KT q2 pT KT

3

75 (6.8)

where q j refers to the jth element of vector q. In this formulation, the 3⇥ 3 matrix unknown H

are reshaped to a 9⇥ 1 vector unknown h, such that the (homogenized) linear system cH p = q̂ is

equivalent to Aih = 0. This is repeated for all corresponding points, such that the submatrices Ai are

concatenated into an 2n⇥9 observation matrix A

A =

2

66664

A1
...

An

3

77775
(6.9)

Finally, the least squares solution for the overdetermined linear system Ah = 0 is

h⇤ = argmin
h2H

||Ah||2 (6.10)

where the constrained minimization is over feasible homography matrices of rank 8, which is equiv-

alent to a norm constraint ||h||= 1 on the vector form. Observe that the matrix optimization (6.5) is

equivalent to the vector optimization (6.10).

The constrained objective in (6.10) is minimized by the right singular vector corresponding to

the smallest singular value of A, following a standard Rayleigh quotient argument [179]. In the case
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with n = 4, the vector h spans the nullspace of A and the residual errors are zero. The 9⇥1 vector

h⇤ is then reshaped rowwise to a 3⇥3 matrix and normalized by the second singular value l2 of A

[179]

H⇤ = l�1
2

2

66664

h⇤1 h⇤2 h⇤3

h⇤4 h⇤5 h⇤6

h⇤7 h⇤8 h⇤9

3

77775
(6.11)

resulting in the least squares homography H⇤ that minimizes (6.5).

6.1.5 Nested Shape Reprojection Error

A reprojection error is an error metric used to score the accuracy of an homography H estimated

from a small representative sample using all correspondences. Classic reprojection error considers

the geometric error of the reprojected points. For example, Hartley and Zisserman’s “Gold Stan-

dard” reprojection [179] is

Egeom(p,q) = ||q̂� cH p||2 (6.12)

However, this geometric reprojection error does not take into account the appearance or shape at the

reprojected points which can results in fine registration errors. Furthermore, this reprojection does

not take into account the uncertainties of correspondences.

In contrast, a shape reprojection error

End(p,q) = ||XT (q)�XT (H p)||2F (6.13)

takes into account the local appearance of the image to provide a more precise local distance func-

tion that is shape aware. The norm || • ||F in (6.13) is the Frobenius matrix norm.

6.1.6 Deck Pose Estimation Algorithm

In this section, we describe a feature based approach to deck pose estimation. Our approach is

sparse feature based matching using nested descriptors, a least median of squares robust homogra-

phy estimation [180] with preconditioning [181], bagging [182] and nested shape reprojection error.
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Algorithm 1: Deck Pose Estimation
Input: K, I,R, p,q,HR

D,qb,k
Output: t̂
(pi,qi) 8i argmin j ||XI(pi)�XR(q j)||2 // Greedy nested shape assignment
leastMedian •
for i 1 to maxiter do

(p̃, q̃) qb(p,q,k) // Bagged sample
HI

R fdlt(K�1 p̃,K�1q̃) // Linear Homography
z ||XI(KHI

RK�1q)�XR(q)||2F // Nested shape reprojection error (6.13)
if median(z)< leastMedian then

leastMedian = median(z) // Least median of squares
t̂ =

⇥
(KHI

RK�1)HR
D
⇤
(3) // Position of deck origin in camera frame

(6.3)

The novel contribution is the use of the nested shape descriptors during reprojection for increased

accuracy to compensate for uncertain correspondence given circular deck markings.

The algorithm for deck pose estimation which uses the nested shape descriptors and robust

homography estimation is summarized in algorithm 1. This algorithm assumes as input

• K: a calibrated intrinsic calibration matrix determined from an offline calibration procedure

to determine focal length, principal point, and lens distortion [184].

• I: an input grayscale image of size M⇥N

• R: a reference image of size M0 ⇥N0. This reference template is determined offline from

reference drawings of the deck. An example reference template is the black and white circle

shown in figure 6.1. This is the standard deck marking for shipboard landing for the Firescout

UAS on air capable ships.

• p: n interest points in I, as determined from Canny edge positions.

• q: m interest points in R as determined from Canny edge positions.

• HR
D: a presurveyed homography from the deck to reference template determined from a man-

ual correspondence between the corners of reference template and a manually metric survey

of the deck, and these correspondences are input to the DLT algorithm in section 6.1.4.

• qb: a bagged sample function with sample regions defined to capture the unique structures in

the template, such as the center circle and the upper and lower corners.

• k: The number of correspondences to use in the homography s, such that k � 4.
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• maxiter: The maximum number of iterations of the least median of squares randomized ho-

mography search.

Algorithm 1 proceeds as follows. First, we compute an initial correspondence using greedy

assignment of nested descriptors. XI(p) is the nested descriptor computed from image I at interest

points p, and XR(q) is the nested descriptor from reference template R at interest points q. For each

descriptor in the observed image using the minimum pairwise Euclidean distance to all nested shape

descriptors in the template. This provides a list of n initial correspondences ( p̂, q̂).

Next, we perform bagged sampling [182]. The bagged sample function qb is a function that se-

lects k correspondences at random from the initial correspondence list, such that samples are chosen

in a round robin selection phase from one of b sample bags. A sample bag is a regions of interest in

the reference template, such that a correspondence (p,q) drawn from bag j guarantees that point q

is in sample region j. In this application, the bagged sample function defines five sampling regions

from the template that capture the circle corners and lines as groups. k samples are chosen round

robin from each of these bags in order. The bagged sampling function provides efficiency in the

random sample so that non-degenerate and unambiguous correspondences are chosen. For exam-

ple, if all samples are drawn from only bags 1 and 2 there exists a rotational symmetry in the outer

circle that will results in an incorrect alignment. Similarly, if all of the samples are chosen from bag

5, then since the samples are closely spaced, the resulting homography is likely to be numerically

unstable. By performing round-robin random sampling from each bag in order, we maintain well

separated non-degenerate and non-ambiguous correspondences for use in homography estimation.

Next, we perform robust homography estimation using a least median of squares approach [180].

We randomly select k correspondences using the bagged sampling, then we compute the DLT ho-

mography from this random sample. The points are first preconditioned for improved numerical

stability [181]. The nested covariance is important to provide an uncertainty of the correspondences

since the majority of points on a deck template are ambiguous, such as points on the inner line or the

outer circle. Next, we compute the nested shape reprojection error (6.13) for the remaining points,

and compute the median of this reprojection error. If the median is less than the least median so far,

we update the best solution and iterate. The algorithm terminates after maxiter iterations.

The output of the algorithm is t̂, the best position of the deck in the camera frame as estimated
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from the homography decomposition (6.3). This uses the transitivity property of homographies

HI
D = HI

T HT
D , such that a homography from deck to image (HI

D) is given by the product of presur-

veyed homography from deck to reference template (HR
D) and estimated homography from template

to image (DI
R).

6.2 Classification in Aerial Imagery using Nested Pooling

In this section, we show classification results applying the nested pooling from chapter 5 to the

LAIR 2010 dataset.

The LAIR 2010 dataset is a wide area motion imagery (WAMI) dataset containing seven min-

utes of high altitude, high resolution imagery of an urban environment. This WAMI dataset was

annotated with polygonal bounding boxes capturing 523 annotations of 28 classes of functional

scene elements and buildings. These classes include roads, intersections, crosswalks, check points,

parking lots, banks, gas stations, churches and restaurants. These annotations serve as a labeled

training set for evaluation of a functional scene element classification task. This dataset is distribu-

tion limited, therefore example imagery cannot be shown in this thesis.

The experimental system for this evaluation is as follows An analyst extracts a bounding box in

a large WAMI image and asks ”what is in this bounding box?”. The experimental system performs

preprocessing to stabilize the WAMI data, then the subsystem shown in the green box performs

classification of this bounding box. The processing chain includes four steps: spatiotemporal inter-

est point extraction [54], hog-hof descriptor computation, nested pooling construction, local naive

bayes nearest neighbor classification [178]. The final classification uses an offline training set con-

structed by user annotation.

The experimental protocol for evaluation on this dataset was leave one out cross validation over

378 rounds. We generated precision recall curves for each class by considering all LOOCV rounds

for the class under test.

The precision recall performance on a subset of this labeled dataset is shown in figure 6.2 and

6.3. Confusion matrix and summary results are shown in figure 6.4 which shows that the overall

classification rate is 0.33 and a mean average precision of 0.24.
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Figure 6.2: LAIR precision-recall performance evaluation
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Figure 6.3: LAIR precision-recall performance evaluation (continued)

Figure 6.4: LAIR performance evaluation summary. Shown are summary statistics and confusion
matrix result for classification performance. The summary also includes annotations for the best
and worst classes, and highlights those classes that are most often confused.
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Chapter 7

Conclusions

In this thesis, we introduced shape representations using nested descriptors. This thesis made three

primary contributions: nested shape descriptors, nested motion descriptors and nested pooling. We

described the place for these descriptors in the larger framework of global vs. local shape represen-

tations, we provided the theoretical foundation for each of these approaches, discussed related work

and showed state of the art results for each of these approaches for representing shape in imagery or

video.

The conclusions we reach are that shape representation using nested shape descriptors and

nested motion descriptors provide a significant improvement over the state-of-the- art for repre-

sentation of local shape. These descriptors outperformed the state of the art, and can serve as a

new foundation for local shape when constructing global shape representations. Furthermore, we

demonstrated a connection between the nested descriptors and salient edges and motion that sug-

gest that the representational power of these descriptors is due to the representation not of pooled

spatiotemporal edges, but rather pooled salient spatiotemporal edges. Finally, we show an intuitive

visualization of these descriptors in imagery and video that provides an natural way of displaying

the descriptor contents to a user for debugging a higher level shape representation.

The conclusions that we reach for nested pooling are that this approach provides at best a

marginal improvement over other pooling strategies. We collected a challenging new dataset for

functional scene element recognition, and evaluated the nested pooling strategy using a baseline

bag of words framework. However, while the nested pooling did provide an improvement over the

baseline pyramid and bagged pooling strategies, it was not significant enough to make a claim that
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this would generalize. Furthermore, there were object classes for which the nested pooling was dis-

tinctly worse, even though in aggregate the results were a net improvement. Since these results were

not dramatically better on this dataset, we make the claim that while results did improve, we use

this as a negative result. The pooling strategy does not have as dramatic affect on the performance

of activity recognition as compared to the local descriptors used to construct the representation. So,

we do not recommend further analysis along this path.

The nested descriptors suggest extensions that can be further evaluated as future work. The ap-

proaches for shape representation presented in this thesis focus on representations that are globally

local. The related work discusses the tradeoffs between local, global and globally local represen-

tations, and suggests that using a globally local representation as attributes to construct a global

representation suggests an improved representation. We believe that the nested descriptors provide

a solid foundation for further exploration of such higher level global shape representations.

Finally, we observe the connection between nested descriptors and second order isomorphism.

In the related work, we discussed the global shape representation theorems based on Shepard’s

classic work on second order isomorphism [133, 1], which proposes that representations of shape

is not the shape itself, but rather relationships between representations and not the representations

themselves. We have shown that part of the representational power of the nested descriptors comes

from the log-spiral normalization, which is in effect a difference of differences, or a second order

shape representation. This form of representation is a fundamental departure from the classic first

order representations of shapes in terms of templates, and suggests that future research should focus

on shape representations with similar second order effects.
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