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Hard, Soft, and Sticky Spheres for Dynamical Studies of Disordered
Colloidal Packings

Abstract
This thesis describes experiments which explore the role of interparticle interactions as a means to alter, and
control, the properties of dense colloidal packings.

The first set of experiments studied phonon modes in two-dimensional colloidal crystals composed of soft
microgel particles with hard polystyrene particle dopants distributed randomly on the triangular lattice. By
mixing hard and soft spheres we obtain close-packed lattices of spheres with random bond strength disorder,
\textit{i.e.,} the effective springs coupling nearest-neighbors are either very stiff, very soft, or of intermediate
stiffness. Video microscopy, particle tracking, and covariance matrix techniques are employed to derive the
phonon modes of the corresponding ``shadow'' crystals, thereby enabling us to study how bond strength
disorder affects vibrational properties. Hard and soft particles participate equally in low frequency phonon
modes, and the samples exhibit Debye-like density of states behavior characteristic of crystals at low
frequency. For mid- and high-frequency phonons, the relative participation of hard versus soft particles in
each mode is found to vary systematically with dopant concentration.

The second set of experiments investigated depletion interaction potentials between micron-size colloidal
particles induced by nanometer-scale micelles composed of the surfactant hexaethylene glycol monododecyl
ether (C$_{12}$E$_{6}$). The strength and range of the depletion interaction is revealed to arise from
variations in shape anisotropy of the rod-like surfactant micelles. This shape anisotropy increases with
increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract
the rod-like micelle length and shape anisotropy as a function of temperature. This work introduces micelle
shape anisotropy as a means to control interparticle interactions in colloidal suspensions, and shows how
interparticle depletion potentials of micron-scale objects can be employed to probe the shape and size of
surrounding macromolecules at the nano-scale.

The third set of experiments explored variation in the vibrational properties of colloidal glasses induced by
changes in interparticle interactions. In particular, we study the vibrational phonons of quasi-2D colloidal
glasses whose interparticle interactions are controlled via the temperature tunable depletion interaction
described in the aforementioned experimental work. This tunable attraction enables us to study the changes in
the properties of a colloidal glass as the interparticle attraction strength is gradually increased from weak
(nearly hard-sphere) to strong. We observed that particle dynamics slow monotonically with increasing
attraction strength and eventually plateau at very high attraction strength. The shape of the phonon density of
states is also revealed to change with increasing attraction strength; specifically, glasses with low interparticle
attraction strength exhibit comparatively more low frequency modes than glasses with high interparticle
attraction strength.
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ABSTRACT

HARD, SOFT, AND STICKY SPHERES FOR DYNAMICAL

STUDIES OF DISORDERED COLLOIDAL PACKINGS

Matthew Daniel Gratale

Arjun G. Yodh

This thesis describes experiments which explore the role of interparticle interactions as a means

to alter, and control, the properties of dense colloidal packings.

The first set of experiments studied phonon modes in two-dimensional colloidal crystals

composed of soft microgel particles with hard polystyrene particle dopantsdistributed randomly

on the triangular lattice. By mixing hard and soft spheres we obtain close-packed lattices of

spheres with random bond strength disorder,i.e.,the effective springs coupling nearest-neighbors

are either very stiff, very soft, or of intermediate stiffness. Video microscopy, particle tracking,

and covariance matrix techniques are employed to derive the phonon modesof the corresponding

“shadow” crystals, thereby enabling us to study how bond strength disorder affects vibrational

properties. Hard and soft particles participate equally in low frequency phonon modes, and the

samples exhibit Debye-like density of states behavior characteristic of crystals at low frequency.

For mid- and high-frequency phonons, the relative participation of hardversus soft particles in

each mode is found to vary systematically with dopant concentration.
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The second set of experiments investigated depletion interaction potentials between micron-

size colloidal particles induced by nanometer-scale micelles composed of the surfactant hex-

aethylene glycol monododecyl ether (C12E6). The strength and range of the depletion interaction

is revealed to arise from variations in shape anisotropy of the rod-like surfactant micelles. This

shape anisotropy increases with increasing sample temperature. By fitting thecolloidal interac-

tion potentials to theoretical models, we extract the rod-like micelle length and shape anisotropy

as a function of temperature. This work introduces micelle shape anisotropyas a means to

control interparticle interactions in colloidal suspensions, and shows howinterparticle depletion

potentials of micron-scale objects can be employed to probe the shape and size of surrounding

macromolecules at the nano-scale.

The third set of experiments explored variation in the vibrational propertiesof colloidal

glasses induced by changes in interparticle interactions. In particular, westudy the vibrational

phonons of quasi-2D colloidal glasses whose interparticle interactions are controlled via the tem-

perature tunable depletion interaction described in the aforementioned experimental work. This

tunable attraction enables us to study the changes in the properties of a colloidal glass as the

interparticle attraction strength is gradually increased from weak (nearly hard-sphere) to strong.

We observed that particle dynamics slow monotonically with increasing attractionstrength and

eventually plateau at very high attraction strength. The shape of the phonon density of states is

also revealed to change with increasing attraction strength; specifically, glasses with low inter-

particle attraction strength exhibit comparatively more low frequency modes than glasses with

high interparticle attraction strength.
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Chapter 1

Introduction

Colloids have proven to be a fundamentally interesting material in condensed matter physics

with incredible spin-off applications. A well-known colloid is milk, which consistsof fluid

drops of oily material suspended in another fluid, water. However, the more traditional colloidal

suspension consists of solid particles suspended in a fluid. The particles can range in size from

a few nanometers to tens of microns. Common examples of such colloids include ink, blood,

and paint. Micron-sized solid polystyrene and silica particles suspended ina fluid such as water

are among the most common colloids in physics. These colloids are interesting because they are

small enough to experience Brownian motion, yet large enough to be easily observed by optical

microscopy [6] (see Figure 1.1a for a sample microscope image of colloids in water). The

properties of such colloidal suspensions are thus thermal, like atomic and molecular systems,

but unlike atoms the motions of constituent particles can be observed in real-time. Thanks to

these traits, colloidal particles provide excellent models for traditional atomic and molecular

systems [7,8]. For these reason, colloidal experiments have often provided insight about both the
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microscopic and the macroscopic properties of all kinds of materials [9–11]. Of course, colloids

are interesting soft materials in their own right; they offer a starting point forunderstanding

pastes, inks, paints, cosmetics, food and more. Arguably, the key ingredient of the colloidal

suspension is the interparticle interaction. Other particle properties are important, e.g.,shape

[12–17]. Interparticle interactions and arrangement geometry ultimately determine the structures

that form and the properties of those structures [18–24].

In many colloidal experiments, the interaction between the constituent particlesis like a

hard-sphere. In a hard-sphere system, particles experience no interaction except at contact; at

contact, they experience an infinite potential wall (see Figure 1.1c). Ideal hard-sphere particles

are incompressible, and the free energy of hard-sphere systems is solely a function of the sys-

tems’ entropy [25–28]. However, not all systems, and indeed not all colloids, can be described

with hard-sphere models. Various other forms of interparticle interaction potentials have been

developed (or arise naturally) for colloids, and these interactions have subsequently been utilized

to explore a rich phase space of behaviors beyond that of the hard-sphere systems.

Perhaps the second most commonly studied interaction between colloidal particles is the at-

tractive interaction. In this case, a potential well is present in the interparticle potential (see an ex-

ample of depletion attraction potential in Figure 1.1d). Depending on the well depth, the spheres

become more (or less) sticky. The use of sticky spheres provides a meansfor the colloidal

systems to model other features of traditional atomic and molecular materials. Perhaps, more

importantly, they enable the creation of new soft materials such as colloidal gels [4,29–31], and

they can drive new phenomena such as re-entrance in colloidal glasses[29–34]. Attraction be-

tween colloidal particles can also provide a means for assembly in colloidal systems [18,35–46].
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Figure 1.1: a) Experimental image of colloidal particles (polystyrene, diameter = 1.5 µm). Scale
bar is10 µm. b) Cartoon schematic of two colloidal particles of radiusR separated by a center-
to-center distancer. c) The classic hard-sphere potential. No interaction arises between particle
until contact (r = 2R), wherein interaction potential jumps from 0 to infinity. Spheres cannot
overlap or be compressed. d) An example of an attractive interparticle potential. This example is
closely akin to the entropic depletion interaction, which will be discussed at length later in this
thesis. The strength of the attraction is related to the depth of the potential well,i.e., |Umin|. e)
Schematic of the potential between two soft spheres. In this case, particlescan be compressed.

A third type of colloid/colloidal-interaction derives from so-called “soft-spheres” wherein

the constituent particles can be compressed, and this compressibility leads to asoft sphere repul-

sive interaction potential at short range (see Figure 1.1e). Experimentswith colloids composed

of these kinds of particles expose, among other things, connections between particle stiffness and

colloid rheological properties (especially at high volume fraction) [23, 24]. Other experiments

suggest that the particle softness can qualitatively affect the phase behavior of suspensions [47];

specifically, this work observed that crystallization could be frustrated asparticles were made

“softer”.

In this thesis I will discuss experiments which explore the role of interparticle interactions
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as a means to alter, and control, the properties of dense colloidal packings. The experiments in-

vestigate how adding or altering the three interactions discussed above (hard-sphere, soft-sphere

and attractive) affect the bulk behavior of colloidal systems. Specifically, in one set of exper-

iments we studied the vibrational behavior of colloidal crystals consisting of both soft-spheres

and hard-spheres on an ordered lattice [48]. In another set of experiments, we developed and

were able to understand how a tunable depletion attraction is induced betweenmicron-size par-

ticles via changes in the shape of surfactant micelles (i.e.,micelles that are suspended along with

the particles in water). Another set of experiments explored the consequences of varying the

strength of this attraction in colloidal glasses; in particular, changes in the vibrational phonon

behavior of the colloidal glasses are studied as a function of increasing/decreasing interparticle

attraction.

In addition to the work above, during my time at Penn I have also had the pleasure of

contributin (as a co-author) to a variety of other interesting colloidal experiments. In one pa-

per, we investigated how particle shape influences the bending rigidity of colloidal monolayer

membranes [49]. In another paper, we explored the relationship betweenthe number of nearest

neighbors and the vibrational phonon spectra of colloidal glass clusters[50]. In a third paper, we

probed the vibrational signatures of the cross-over from dense glassy to sparse gel-like colloidal

packings [4]. In a fourth paper, we assembled 2-dimensional colloidal particle arrays on nematic

liquid crystal interfaces [1], and we studied the particle dynamics. The remainder of this chapter

will provide a brief introduction to each of the primary projects to be discussed in this thesis. An

outline of the thesis organization is also provided.
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1.1 Soft-sphere Colloidal Crystals with Hard-sphere Dopants

The macroscopic behavior of disordered (glassy) materials generally differ from their (ordered)

crystalline counterparts [11, 51–53], and the search for the microscopic origins of these differ-

ences is a fascinating and ongoing pursuit [54–61]. Recently, a numberof studies have observed

significant differences between the vibrational behavior of glasses and crystals, differences that

are primarily apparent at low frequencies. Specifically, crystals follow the Debye model at low

frequencies, where their Density of States (DOS(ω)) grows as the frequencyω to the power of

the dimension (d) minus one,i.e. DOS(ω) ∼ ωd−1. In disordered glasses, theDOS(ω) grows

faster than the Debye model predicts and exhibits an excess of low frequencies modes. This

excess of modes is sometimes called the “Boson peak” [62]. Further, low frequency modes in

crystals display long-wavelength behavior, usually in the form of plane waves, while in glasses

they can have a quasi-localized nature that have been suggested to be correlated with structural

rearrangements or soft spots [2,63–69].

To date, the vast majority of studies of glasses have focused on systems wherein the micro-

scopic constituents arestructurally disordered. This approach is reasonable, since structurally

disordered solids typically form from rapidly quenched atomic and molecularliquids [70, 71]

and, in the case of colloids, from densely-packed rapidly loaded and/orpolydisperse suspen-

sions [2,11,26,51,72–80]. Structural disorder, however, is notthe only kind of disorder present

in nature. Disorder can also be introduced into a crystalline material, for example, via heteroge-

neous bonds (heterogeneous interactions) between constituent particles [81]. Interestingly, sim-

ulations and numerical studies suggest that similarities and differences exist between systems

with pure structural disorder versus bond disorder [82–86], but experimental studies of such
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a b

Figure 1.2: Images of a soft PNIPAM particle colloidal crystal doped with a) 2% and b)11%
hard polystyrene particles. The white spheres are polystyrene particles, and the grey spheres are
PNIPAM particles. Scale bars are10 µm.

systems are lacking. Further, most studies have investigated bulk (material) properties like the

shape of the DOS, but little is known about the behavior of individual particles which make up

such systems. Thus, experiments that derive information about individual particle motions can

provide complementary insights and can help to elucidate similarities and differences between

structurally disordered versus bond-interaction disordered systems.

Chapter 2 of this thesis discusses experiments which explore the role of bond disorder in

crystals [48]. To accomplish this goal, crystals were created with two species of colloidal par-

ticles: “soft” PNIPAM microgel particles and “hard” polystyrene spheredopants. Three types

of bonds were thus present in the crystals due to the three possible interparticle combinations

(hard-hard, soft-hard, soft-soft). In this way we created geometrically ordered colloidal crystals

with bond heterogeneity. The number fractions of hard and soft particleswere varied in an effort

to control the amount of bond disorder. Particle trajectories were measured using standard video

microscopy techniques [87], and the vibrational phonon modes were calculated using previously

established covariance matrix methods [2,73,88–90].
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From these experiments we learned (over the parameter space that we were able to explore)

that regardless of number fraction of hard and soft particles, all crystals exhibited Debye behavior

at low frequencies. Soft spheres dominated the motion of the intermediate frequency modes, and

these modes had an extended character. The high frequency phonon modes were dominated by

hard spheres and were highly localized. Numerically generated spring networks corroborated

the experimental results and also enabled us to extrapolate to higher number fractions of hard

spheres, which are currently not experimentally accessible.

1.2 Tuning Depletion Interactions: Variations with Depletant Shape

As part of our effort to study interaction potential effects in glasses, wedeveloped a system for

tuning attractive interactions in suspension. This work was interesting in its own right.

A well-known attraction arises between large colloidal particles when many small non-

adsorbing particles, called depletants, are added to the suspension. Thisattractive force is

entropic in origin and is often called the depletion force [91, 92]. Over the years, depletion

forces have proved valuable as a means to control and study phase behavior [17,29–34,93–101],

to direct self-assembly [18, 35–46, 102–104], and to control the stabilityof colloidal suspen-

sions [105–118]. Depletion forces are also used in applications such asformulation and pro-

cessing of food [119–122] and paint [123], and related entropic effects called macromolecular

crowding are believed to play a role in cell biology [124, 125]. It is thus important to fully un-

derstand depletion phenomena and to continue to explore new means to induceand manipulate

depletion forces.

In laboratory experiments, most depletants are spherical, but sometimes depletants with other
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shapes are utilized, such as rods or disks [105,106,126–139]. Thefunctional form and strength

of the induced entropic potential depends on depletant shape. For example, at the same volume

fraction, ρ, small rods of lengthL will induce a stronger attraction than small spheres with

diameterL [126–128], and the spatial form of the potential induced by rods is steeper than that

of spheres. In practice, it is often desirable to vary interaction strength and this task is usually

accomplished by varying depletant volume fraction,e.g.,by adding more small particles into the

suspension [17,30–34,42–44,93,97,98,102,105,107–109] or by changing the sphere radiusin

situ [36,37,46,99–101,104].

In my thesis work, we show how depletant shape anisotropy (e.g.,the length of rod-like sur-

factant micelles) can be employed to tune interparticle attractions. Briefly, forcolloidal spheres

of radiusR in a suspension of smaller rods of lengthL (2R >> L) and cross-sectional diam-

eterD, there exists a shell of thicknessL/2 around the colloidal spheres that the center of the

depletants cannot enter. This shell is referred to as the “excluded volume”. When the excluded

volumes of the two spheres overlap, a volume called the “overlap volume” is created. This

overlap volume decreases the total excluded volume in the sample, and, in turn, increases the ac-

cesible free volume to the depletants. This situation is entropically favorable for the depletants,

and thus an entropic force proportional to the overlap volume is induced between the two col-

loidal spheres by the depletants. When the rod lengthL increases, and cross-sectional diameter

D and rod volume fractionρ is held constant, the overlap volume increases, which increases the

entropic force between colloidal spheres. Cartoon representations ofthe depletion interaction

between colloids induced by rod-shaped depletants are presented in Figure 1.3.
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D

Figure 1.3: Depletion between colloidal particles of radius,R, in suspension of rods with length,
L, and cross-sectional diameter,D. The rod centers cannot fit within regions of excluded vol-
ume (grey shaded region). a) When excluded volumes of two spheres overlap, the rod entropy
increases in proportion to excluded volume overlap (black region), and an attractive force thus
arises between colloidal particles. b) When rod length,L, is increased, while keeping rod vol-
ume fraction,ρ, and cross-sectional diameter,D, constant, then the excluded volume overlap in-
creases, and the strength and range of the attraction between colloidal particles increases. Rods
and colloidal particles not drawn to scale.

Chapter 3 of this thesis discusses experiments wherein depletion interactions between mi-

cron sized colloidal spheres are controlled by tuning the shape anisotropy of the nano-scale

depletants. In the process, the work introduces depletion interaction measurements of micron-

scale objects as a new method to extract information about the size and shapeof surrounding

macromolecules at the nano-scale. Specifically, temperature-dependent interparticle interaction

potentials are derived from video microscopy measurements of the pair correlation function of

micron-sized silica spheres suspended in the presence of hexaethyleneglycol monododecyl ether

(C12E6) surfactant micelles. The length and shape anisotropy of the micelles, as a function of

temperature, were extracted by fitting the measured interaction potentials to existing theoretical

models for the depletion forces of rod-like/ellipsoidal depletants [131].

We found that the measured depletion potentials vary substantially in magnitude and range
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with temperature. Specifically, both the potential well depth and its range increase with increas-

ing temperature. These effects arise from shape anisotropy variation, wherein nearly spherical

C12E6 micelles at low temperatures evolve into cylindrical micelles of varying length at higher

temperatures. The resultant derived dimensions of suspended micelles are found to be roughly

consistent with small angle neutron scattering (SANS) data for C12E6 [3]. To our knowledge

this is the first experiment to explicitly demonstrate temperature tuning of shape anisotropy as a

means to modulate the depletion interaction.

1.3 Effects of Interparticle Attraction Strength in Disordered Col-

loidal Packings

The glass transition is considered by many to be one of the greatest challenges in condensed

matter physics [140]. To date, much of the experimental, theoretical and simulation work study-

ing glasses have focused on systems containing hard-spheres [10, 11]. More recently, however,

studies have observed that many properties of glasses depend on the details of the underlying

interparticle interactions [141–145].

At least two kinds of disordered packings are found at high packing fraction,φ; they depend

on the strength of the interparticle attraction (see Fig. 1.4 for a cartoon representation of the

currently accepted state diagram). In “repulsive glasses”, the interparticle attraction strength is

weak (or zero), and in “attractive glasses” the interparticle attraction strength is strong. Perhaps

the biggest difference observed thus far between repulsive glassesand attractive glasses concerns

particle dynamics. Particle dynamics have been observed to be slower in attractive glasses than

in repulsive glasses [17, 19, 30, 32–34, 146]. It has also been observed in attractive glasses that
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Figure 1.4: Qualitative state diagram for disordered glassy packings as afunction of packing
fractionφ and interparticle attraction strength|Umin|.

particle dynamics are heterogeneous over a wider range of time and length scales compared to

repulsive glasses [146]. Additionally, the cooperative rearrangement regions (CRRs) are string-

like in repulsive glasses, while in attractive glasses they are compact and involve more particles

than the repulsive systems [146].

While previous research has uncovered these differences between particular repulsive and

attractive glasses, much less work has been done to elucidate the transition from a repulsive

glass to an attractive glass. For example, it is not known whether such a transition is gradual or

discontinuous. Additionally, the mechanisms at the microscale which vary as thetransition is

approached and crossed have not been worked out. Experiments studying the transition from the

repulsive glass state to the attractive glass state could help advance the currently accepted mode-

coupling theory describing such systems, or potentially encourage the development of a new

framework with which to describe glassy systems, and could thus lead to a better understanding

of the glass transition. Furthermore, understanding the changes in glasses induced by changes in
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the interparticle bonds could help derive methods to control the properties of glasses.

Chapter 4 of this thesis discusses experiments that begin to explore the transition from

the repulsive to the attractive glass state. Dense packings of a binary colloidal suspension in a

solution of C12E6 surfactant micelles enable us to study colloidal glasses as a function of the

strength of interparticle attraction. The two sizes of colloidal particles frustrate crystallization,

creating a disordered colloidal glass. The use of C12E6 surfactant micelles as depletants, as

discussed above and inChapter 3, allowed us to vary the attraction strength between colloidal

particles. We were thus able to gradually increase the interparticle interactionof a colloidal

glass from weakly attractive to strongly attractive, and concurrently study how the vibrational

properties of colloidal glasses change with changes in interparticle attraction.

Our initial results show that particle dynamics slow monotonically with increasing attraction

strength and saturate when the interparticle attraction strength becomes sufficiently strong. The

shape of the vibrational density of states also changes with increasing attraction strength. Specif-

ically, repulsive glasses have comparatively more low frequency modes than attractive glasses.

Further, the low frequency phonon modes in attractive glasses were observed to be spatially ex-

tended, whereas the motion was found to be more quasi-localized in repulsive glasses. These

changes in the vibrational and dynamical behavior signify the transition from the repulsive glass

state to the attractive glass state.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows.Chapter 2 will present published results

on the vibrational phonons of two-dimensional soft-particle colloidal crystals with hard-particle
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dopants,i.e.,with bond-strength disorder [48].Chapter 3will present results that have been sub-

mitted for publication which elucidate the change in depletion attraction between colloidal par-

ticles induced by changes in the shape of surfactant micelle depletants.Chapter 4 will present

initial work on the behavior of colloidal glasses induced by changes in interparticle attraction

strength. Chapter 5 summarizes the results presented in the previous chapters and proposes

ideas for future study.
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Chapter 2

Phonons in Two-Dimensional Colloidal

Crystals with Bond Strength Disorder

2.1 Introduction

The search for the microscopic origins of the differences between disordered (glassy) materials

and their (ordered) crystalline counterparts is an interesting and ongoingenterprise [54–61]. A

variety of disordered solids, ranging from metallic to colloidal glasses, have been found to exhibit

similar vibrational properties [147–156]. Thus far, most of this research has focused on materials

wherein the microscopic constituents arestructurallydisordered; these states of matter typically

form from rapidly quenched atomic and molecular liquids [70, 71] and, in thecase of colloids,

from rapidly loaded densely-packed and/or polydisperse suspensions [2,11,26,51,72–80].

However, other kinds of disorder are present in nature. For example,disorder can be in-

troduced into a crystalline material via heterogenous interparticle interactionsor, alternatively,
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heterogeneity in the bonding between constituent particles [81]. Simulations and numerical stud-

ies suggest that similarities and differences exist between systems with purestructural disorder

versus bond disorder [82–86], but experimental studies of such systems are lacking. The sim-

ulations and numerical studies carried out thus far have primarily focusedon the shape of the

phonon density of states, often in search for insights into the origin of the boson peak. However,

little is known about the concomitant behavior of individual particles that makeup such systems.

In this chapter, we experimentally investigate the vibrational behavior of two-dimensional

(2D) colloidal crystals with bond-strength disorder. These colloidal crystals are composed pri-

marily of “soft” poly(N-isopropylacrylamide) (PNIPAM) microgel particles, with “hard” polystyrene

(PS) particle dopants distributed randomly on the lattice. Thus, we study 2D structurally or-

dered lattices with a distribution of bond strengths; nearest-neighbor bonds are either very stiff,

very soft, or of intermediate stiffness. Video microscopy is employed to trackthe motion of

all particles, and particle displacement covariances are used to derive the phonon modes of the

corresponding “shadow” crystals with the same geometric configuration and interactions as the

experimental colloidal system, but absent damping. Thus, we explore phonon modes in crystals

with bond strength disorder as a function of increasing dopant concentration, and, among other

things, we ask whether it is possible to create a geometrically ordered solid withbond-strength

disorder whose phonons do not follow the Debye model at low frequencies. The bulk of the

work discussed in this chapter has been published [48].
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2.2 Contextual and Theoretical Background

2.2.1 Low-frequency Phonon Behavior of Ordered Crystalline Solids: The Debye

Model

The Debye model is the traditional theory employed to describe the vibrationalphonon modes

in solid materials. In the Debye model the low frequency phonon modes are described as plane

waves with a dispersion relationsω = c ~k ; hereω is the phonon frequency of a given mode,~k

is its wavevector, andc is the speed of sound. The density of states (DOS(ω)) is defined as the

number of modes in the frequency interval[ω, ω + dω].

In crystals, constituent particles are arranged in a periodic array,i.e.,the crystal lattice. Given

this periodic array of particles, the Debye model assumes evenly spaced modes ink-space. Thus,

the number of modes for each frequencyω is proportional to the area of a surface with constant

(corresponding)~k . Following this model for ad-dimensional solid, the density of states is

proportional to phonon frequency to the powerd− 1, i.e.,DOS ∝ ωd−1. The Debye model has

proven to accurately predict the low frequency phonon behavior of many solids. For example,

the Debye model accurately predicts the contributions of the phonons to the temperature,T ,

dependence of the specific heat,CV , of crystalline solids at low temperatures:CV ∝ T 3.

2.2.2 Low-frequency Phonon Behavior of Disordered Solids

While the behavior of ordered crystalline solids at low frequencies is accurately predicted by

the Debye model, the behavior of disordered glassy materials is different from their crystalline

counterparts and is not captured by the Debye model. Specifically, an excess of low-frequency

vibrational modes can exist in disordered solids compared to what is predicted by the Debye
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Figure 2.1: a)DOS(ω) for a 2D colloidal crystal at a liquid crystal-air interface reported in
ref. [1]. Black line represents Debye prediction for 2D system,DOS(ω) ∼ ω. Inset focuses
on low frequency regime. Note this inset is in log-log scale with a slope equal to1. Observe
DOS(ω) follows Debye prediction at low frequencies. b) Density of states scaled by Debye
predictions,DOS(ω)/ω, for a 2D colloidal glass reported in ref. [2]. The location of the Boson
peak is represented byω∗.

model [62]. This effect is visualized by scaling theDOS(ω)curve byωd−1 (the expected Debye

behavior),i.e.,DOS(ω)/ωd−1. For crystals,DOS(ω)/ωd−1 is a constant at low-frequencies

(see Figure 2.1a). For glasses, a “bump” is observed at low-frequencies (Figure 2.1b). This

bump is commonly referred to as the “Boson peak”. Along with this excess of modes at low fre-

quencies, the modes at low-frequencies were found to be quasi-localized and display enhanced

participation in regions prone to rearrangements [2,63–69].

17



a

c

b

d

Figure 2.2: Raw images of a soft PNIPAM particle colloidal crystal doped with a) 2% and b)
11% hard polystyrene (PS) particles. c) and d) Inverted images of a) and b), respectively. In a)
and b) the black spheres are PS particles, and the grey spheres are PNIPAM particles. In c) and
d) the white spheres are PS particles, and the grey spheres are PNIPAMparticles. Scale bars are
10 µm.

2.3 Experimental and Analytical Methods

2.3.1 Sample Preparation and Imaging

My experiments employed ensembles of particles sandwiched between a glassslide and cover

slip (Fisher Scientific), creating a quasi-2D chamber. Polystyrene (PS) particles (Invitrogen)

had a diameter of 1.1µm and the poly(N-isopropylacrylamide) (PNIPAM) particles [157] had

18



a diameter of∼1.1 µm. Because of this similarity in size, the particle mixture readily self-

assembled into a triangular crystal. PNIPAM particles have a soft interparticle potential [158],

while polystyrene particles are much more hard-sphere-like [27, 28, 146]. Since two different

species of particles are employed,i.e.,soft PNIPAM and hard polystyrene, three different inter-

particle interaction combinations arise (soft-soft, soft-hard, and hard-hard). A small amount of

Fluorescein dye (∼0.2% w/v, Sigma-Aldrich) was added to the aqueous suspension of particles

in order to improve imaging contrast. The dye was excited using light from a mercury lamp that

was directed through a 488 nm wavelength bandpass filter; the resulting video images consisted

of dark particles on a bright background. Sample images are shown in Fig.2.2a-b.

We thus create crystals with three distinct interparticle potentials distributed randomly on the

triangular lattice. Particle motion was recorded using video microscopy, while the samples were

kept at a temperature of25 ◦C using an objective heater (Bioptechs) connected to the microscope

oil immersion objective. Video data ofNtot ≈ 1000 − 1500 particles was recorded at a rate of

60 frames per second for500 seconds. The raw images (dark particles on a bright background)

were then inverted to yield images of bright particles on a dark background(Fig. 2.2c-d), and

the motion of all particles was extracted using standard particle tracking techniques [87].

2.3.2 Vibrational Phonons Calculated from Particle Trajectories

We derive the vibrational properties using the displacement covariance matrix method. This

state-of-the-art methodology has been described previously [2,73,88–90]. Here we measureu(t)

the 2Ntot-component vector of the displacements of all particles from their averagepositions

(x̄, ȳ). Then we compute the time-averaged displacement covariance matrix,Cij = 〈ui(t)uj(t)〉t

wherei, j = 1, ..., 2Ntot run over particles and positional coordinates, and the average runs over
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time (i.e.,over all frames). In the harmonic approximation, the potential energyV of the system

is given by:

V =
1

2
uTKu, (2.1)

whereK is the matrix of effective spring constants between all pairs of particles, witheach

element defined as:

Kij =
∂2V

∂ui∂uj
. (2.2)

The hamiltonian of the system is:

H =
1

2
uTKu+

p2

2m
, (2.3)

wherep is the momentum vector for the system. Knowing the hamiltonian of the system pro-

vides us with the form of the system’s partition function Z, which is:

Z ∝
∫

dudp e−β( 1
2
uTKu+ p2

2m
), (2.4)

whereβ is 1
kBT . With the partition function we can calculate the time-averaged displacement

covariance matrix,Cij = 〈ui(t)uj(t)〉t. Using basic statistical mechanics, and the form of the

partition function from equation 2.4, we find that:

〈ui(t)uj(t)〉t = 〈
∫

dudp uuT e−β( 1
2
uTKu+ p2

2m
)〉ij/Z. (2.5)

Note that the integral over momentum space only involves the momentum term in the exponent,

and so we can separate the momentum and position integrals, which we can alsodo for the
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partition functionZ, i.e.,:

〈ui(t)uj(t)〉t =
〈
∫

dp e−β p2

2m

∫

du uuT e−β 1

2
uTKu〉ij

∫

dp e−β p2

2m

∫

du e−β 1

2
uTKu

. (2.6)

The momentum terms cancel here, and we are left with just the integral over the displacement

phase space. Here we see that this measurement yields “static” information about the sample,

i.e. only dependent upon the particle positions and the interparticle interactions.

Solution of the displacement Gaussian integrals reveals that the covariancematrixC is di-

rectly related to the stiffness matrixK by (C−1)ijkBT = Kij . The experimental covariance

data therefore gives the vibrational properties of the so-called “shadow” system; this “shadow”

system of particles has the exact same static properties as our experimentalsystem (i.e.,with the

same covariance and stiffness matrices,C andK), but does not have the damping of our experi-

mental system. The phonon eigenvectors and frequencies are derivedfrom the dynamical matrix

D, which is directly related to the stiffness matrix withDij = Kij/mij , wheremij =
√
mimj

with mi the mass of particlei. Diagonalizing the dynamical matrix gives the eigenvaluesλi and

eigenvectorse(ωi) of the shadow system phonons. The eigenvaluesλi correspond to the phonon

frequenciesωi squared,i.e. λi = ω2
i , of the phonon modes, while the eigenvectorse(ω)i corre-

spond to the particle amplitudes associated with each of the phonon modes. Again, we remind

the reader that the displacement covariance and spring constant matrices,C andK, respectively,

only depend on the static interactions between particles and the geometric configuration of the

particles, both of which are the same for the real and shadow systems.

The accumulated mode numberN(ω) is then derived from the calculated phonon modes.

Note,N(ω) is defined as the number of modes with frequency less than or equal toω. As stated
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previously, the more commonly used phonon density of statesDOS(ω) is defined as the number

of modes per frequency intervaldω, DOS(ω) = dN(ω)/dω. Thus,N(ω) is the integral of the

DOS(ω) over the intervaldω.

2.3.3 Corrections to Derive “True” Phonon Frequencies

Recently, it has been observed that the scheme described above to derive phonon eigenfrequen-

cies is only truly correct when the ratio of (image) frames to degrees-of-freedom (number of

modes) is very large. If the data is not sufficient to satisfy this criteria, thenthe ”true” eigenfre-

quencies of the system are best found by linearly extrapolating the finite-frame data to an infinite

number of frames [90, 159]. The phonon eigenfrequencies measuredhere were extracted using

data derived from a finite number of frames. The total number of frames was approximately ten

times the number of degrees of freedom in the system (i.e. twenty times the number of parti-

cles). Thus the phonon frequencies of each mode were corrected using data from three different

numbers of image frames and then linearly extrapolating the data. Specifically,the inverse of

the phonon frequencies,1/ω, was plotted as a function of the ratio of the number of degrees of

freedom to the number of frames. An infinite number of frames would give a ratio of zero. We

then fit the three calculated frequencies to a straight line. The y-interceptof this fitted line is the

inverse “true” frequency. Figure 2.3 presents a representative example of one such plot for the

10th mode of the11% hard-particle crystal.

Figure 2.4 shows the experimental as well as extrapolated accumulated mode numberN(ω)

as a function of frequencyω for all samples. It is apparent from these plots that, while there was

some change in the frequencies, the overall trends remained the same. Theextrapolated “true”

frequencies are reported herein, but we can confidently say that the number of frames used in
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Figure 2.3: Hollow black squares are the inverse of the phonon frequency 1/ω for the 10th mode
of the11% hard-particle crystal found using three different number of frames. Red line is the
linear fit of the three points. Blue square is the ”true” frequency extrapolated to infinite frames.

the experiments also provide a qualitatively accurate depiction of our system.
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Figure 2.4: Accumulated mode numberN(ω) as a function of frequencyω for all samples from
experiments with (filled red circles) and without (hollow black squares) extrapolation correction.
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2.4 Results and Discussion

2.4.1 Characterization of Crystal Structure

To characterize the triangular crystalline order of the samples, the orientational and transla-

tional correlation functions,g6(r) andgT (r), respectively, were computed for all of the crystals.

gα(r=|r i-r j |) = 〈ψ∗
αi(ri)ψαj(rj)〉, whereri andrj are the positions of particlesi andj, and

α = 6, T . ψ6i andψ6j are the orientational order parameters for particlesi and j, andψT i

andψTj are the translation order parameters for particlesi andj. The orientational and trans-

lational order parameters for a given particlej are defined asψ6j = (
∑nn

k=1 e
6iθjk)/nn, where

θjk is the angle between particlej and its neighbork andnn is the number of nearest neighbors.

ψTj = eiG·rj , whereG is a primary reciprocal lattice vector determined from the peak in the

sample’s 2D structure factor,s(k).

In Fig. 2.5, the orientational correlation functiong6(r) is large (> 0.8) at short distances

and does not significantly decay over the longer distances probed; this observation suggests that

all the samples possess good triangular order. The translational correlation functions for the

0%, 11%, and21% hard-particle samples were found to exhibit excellent translational order(see

Fig. 2.5),i.e., gT (r) were large (> 0.8) at short distances and did not significantly decay at the

longer distances probed. However,gT (r) decayed more rapidly at longer distances for the2%

and7% hard-particle crystals. This decay is due to a single, large grain boundary that divided

these particular samples into two well-ordered domains.

To confirm that these grain boundaries did not substantially affect the vibrational properties

reported for these samples (i.e., based on measurements over the full field of view), we calcu-

lated the phonon modes of the smaller (pristine) subsections,i.e., the two grains with excellent
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Figure 2.5: a) The orientational correlation functions,g6(r), and b) the translational correlation
function,gT (r), of all crystals studied. Symbols represent local maxima and the dashed lines
represent the full correlation function.

crystalline order, (Fig. 2.6). By comparing the basic trends for both fields-of-view, we confirmed

that the presence of the grain boundary did not alter any of our primary conclusions. Specifi-

cally, since the number of particles is smaller in these subsections, the total number of modes is

obviously smaller. Therefore, to fit data of the subsections onto the same plot as those of the full

fields of view (labeled Full Field in Fig. 2.6), the accumulated mode numberN(ω) was rescaled

by the maximum accumulated mode numberN(ωmax). The participation fractionsPF (ω) and
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Figure 2.6: a-c) Data of full field of view and subsection of2% hard-particle doped crystal. d-f)
Data of full field of view and subsection of7% hard-particle doped crystal. a) and d) Scaled
accumulated mode numberN(ω)/N(ωmax) as a function of frequencyω. Black line represents
Debye model predictions (line is offset for clarity). b) and e) ParticipationfractionPF (ω) as a
function of scaled accumulated mode numberN(ω)/N(ωmax). c) and f) Participation ratio as a
function of scaled accumulated mode numberN(ω)/N(ωmax).

participation ratiosPR(ω) in Fig. 2.6b-c and Fig. 2.6e-f are also plotted as a function of the ac-

cumulated mode number divided by the maximum accumulated mode numberN(ω)/N(ωmax).

2.4.2 Particle Cluster Statistics

The spatial distribution of hard particle dopants in our experimental samples was not completely

random, although the deviations from random distributions were relatively small. The origin of

this effect is not entirely clear, but it could have arisen via aggregation effects during sample
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loading. Nevertheless, to quantify the randomness we compared the measured distribution of

hard-particle cluster sizes in our experiments to standard statistical predictions for random sys-

tems. The comparison indicates that the experiments have slightly more hard-particle clusters

than predicted, especially at the lower dopant concentrations

By examining all possible configurations of two particle types on a hexagonal lattice, we

were able to derive the probabilityP (N) of a hard-particle being found in a cluster of N hard-

particles. Given a hexagonal crystal with number fraction of hard spheresφ, the probability

P (N) of finding a hard sphere in clusters ofN = 1, 2, 3, 4, 5 are:

P (1) = (1− φ)6 (2.7)

P (2) = 6φ(1− φ)8 (2.8)

P (3) = 3φ2(1− φ)9[2 + 9(1− φ)] (2.9)

P (4) = 12φ3(1− φ)10[1 + 4(1− φ) + 9(1− φ)2] (2.10)

P (5) = 15φ4(1− φ)11[2 + 7(1− φ) + 20(1− φ)2 + 31(1− φ)3]. (2.11)

Figure 2.7 presents the theoretically derived probabilities for truly randomsystems compared

to our experimental observations, as well as the results of computationally generated spring

network distributions. We observe that the computationally generated springnetworks line up

with the theoretical probabilities. The experimental system with21% hard particles follows the

theoretical and computationally generated probabilities. However, for the experimental samples

with 2%, 7%, and11% hard particles, the probability of finding a hard particle in a cluster of
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Figure 2.7: ProbabilityP (N) of finding a hard particle in a cluster ofN hard particles from
experiments (filled red circles), theoretical probabilities (black X’s), andcomputationally gener-
ated spring networks (hollow blue squares).

N > 1 is higher in experiment than in theoretical and computationally generated predictions,

though these deviations are not very large

We suspect that this clustering of hard particles arises from phase separation of hard and soft

spheres during the sample preparation process. Phase separation between the hard and soft parti-

cles was observed at low packing fractions (see Fig. 2.8). During samplepreparation, significant

flow arises as the suspension of particles spreads throughout the samplechamber. It is at this

time that phase separation begins; phase separation is arrested when the high packing fraction

required for crystallization is obtained. Thus, slightly more clusters of hardparticles are found
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Figure 2.8: Phase separation between hard polystyrene spheres (whitedots) and PNIPAM mi-
crogels (gray dots) at low packing fraction. Scale bar is10 µm.

in our samples than predicted. Nevertheless, even with non-ideal circumstances (i.e.,not a truly

perfect hexagonal lattice and not a truly random distribution of hard particles), all of our hard-

particle doped soft-particle crystals displayed similar Debye-like behavior at low frequencies,

soft particle dominated behavior at intermediate frequencies, and hard particle dominated high

frequencies.
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Figure 2.9: Effective spring constantsk between two hard particles (hollow squares), two soft
particles (circles), and hard-particle/soft-particle pairs (filled squares) derived from the computed
spring constant matrixK as a function of average particle separationr for the21% hard-particle
doped crystal.

2.4.3 Spring Stiffness Heterogeneity

From the spring constant matrixK, it is apparent that three distinct nearest neighbor springs are

present, corresponding to the three nearest neighbor particle combinations. Figure 2.9 shows

the effective spring constantsk as a function of the average particle seperationr measured in

the 21% hard-particle crystal. Notice that hard-hard particle pairings have the stiffest springs,

soft-soft particle pairings have the softest springs, and soft-hard particle pairings have springs

with an intermediate stiffness.

2.4.4 Vibrational Phonon Behavior

For a 2D crystal, the Debye model predicts that the accumulated number of phonon modes,

N(ω), should grow as the frequency-to-the-second-power (frequency-squared) in the low fre-

quency regime [160]. In Fig. 2.10 the measuredN(ω) is plotted for all doped crystals (2%, 7%, 11%, 21%
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Figure 2.10: Accumulated mode number,N(ω), for all doped crystals and pure PNIPAM crystal
as a function of the frequencyω scaled by the minimum frequencyωmin for each sample. The
solid black line represents Debye law scaling,N(ω) ∼ ω2. The accumulated mode numbers are
logarithmically binned.

PS/hard particles), as well as for a pure PNIPAM crystal (0% PS/hard particles). At low frequen-

cies,N(ω) exhibits similar scaling with frequency in all crystals. This scaling is very closeto

the Debye model prediction. Thus, despite different degrees of bond strength disorder, the low

frequency DOS behavior is quite similar to that of a perfect crystal (i.e., a crystal with0% dopant

particles).

At intermediate frequenciesN(ω) grows faster than predictions of the Debye model, and

at the highest frequencies,N(ω) plateaus. Note, a somewhat similar DOS behavior at low-

intermediate frequencies was also observed by Kayaet al. [88]; in their paper, however, they de-

rived the phonon information using two-dimensional slices within a three-dimensional colloidal

crystal. They attributed this deviation from Debye behavior to a heterogeneous distribution of

microgel particle stiffness and argued that the deviations were related to theboson peak. With-

out delving too deeply into the limitations (potential pitfalls) of their analysis approach [88],
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we simply note that our low-frequency data does not support the existence of a boson peak in

these systems. To better understand how crystalline behavior is preserved at low frequencies, as

well as to elucidate the behaviors exhibited by these systems at higher frequencies, we utilize

the derived eigenvectors of the present system to obtain spatial information about the phonon

modes.

First, we quantify the contributions of soft and hard particles to each mode.This information

is derived by calculating the participation fractions of each species for each mode. The eigenvec-

tors of each mode have components (i.e.,associated displacement amplitudes) corresponding to

each particle and each direction; for example,e(ω) = (e1x(ω), ..., eNtotx(ω), e1y(ω), ..., eNtoty(ω)),

whereNtot is the total number of particles in the sample. Further, all eigenvectors are normal-

ized such that|e(ω)|= ∑

α(e
2
αx(ω) + e2αy(ω)) = 1, whereα runs over all particles. The par-

ticipation fraction for particleα in a mode with frequencyω is therefore given byPF,α(ω) =

e2αx(ω) + e2αy(ω). Thus, the participation fraction of hard spheres in a mode with frequency

ω is PF,Hard =
∑

h(e
2
hx(ω) + e2hy(ω)), whereh is the set of indices corresponding to hard

spheres in the eigenvector. Similarly, the participation fraction of soft spheres isPF,Soft(ω) =

1−PF,Hard =
∑

s(e
2
sx(ω)+ e

2
sy(ω)), wheres is the set of indices corresponding to soft spheres

in the eigenvector.

Second, we quantify the spatial extent of each mode by calculating its participation ratio.

(Note, participation ratio and participation fraction have very different meanings; this vocabu-

lary is unfortunate, but since the field has adopted it, we adopt it here too.)The mode participa-

tion ratio is defined asPR(ω) = (
∑

α e
2
αx(ω) + e2αy(ω))

2/(Ntot
∑

α e
4
αx(ω) + e4αy(ω)). A low

numerical value for the participation ratio indicates that the mode is spatially localized, while a
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high value indicates the mode is spatially extended. The participation ratio cut-offused to sepa-

rate localized from extended modes is typically set to be0.2 [2, 4]. Modes with a participation

ratio below (above)0.2 are considered localized (extended).

The general behavior of the bond-disordered crystals can be gleaned from Fig. 2.11 wherein

representative phonon modes of an11% hard-particle-doped crystal are shown, along with the

accumulated mode number,N(ω), the participation fraction,PF (ω), and the participation ratio,

PR(ω). Interestingly, at low frequencies, where Debye-like behavior was observed in the accu-

mulated mode number, the participation fractions of hard and soft particles follow their respec-

tive number fractions in the sample,i.e.,soft and hard particles participate equally (Fig. 2.11b).

This representative mode and other modes at low frequencies, exhibits long-wavelength-like ex-

tended behavior; the behavior is similar to that of corresponding modes at low frequencies in

perfect crystals. Note also that a few low frequency modes have very low participation ratios

(i.e., they have at least some quasi-localized character); we believe these effects are probably

due lattice point defects and/or grain boundaries [161]. In the case of point defects, these low

frequency modes appear to possess both long-wavelength-like character and localized motions

near lattice defects. The mode shown in Fig. 2.11d is an example of one such mode (notice

the defect in the lower left hand corner). Thus, though the participation ratio of such modes is

typically below the expected participation ratio of extended modes (∼ 0.5), they clearly exhibit

a form of long-wavelength spatially extended behavior.

At intermediate frequencies, the accumulated mode number grows faster thanwould be ex-

pected had Debye scaling continued to higher frequencies. In addition, the motion in these

modes is dominated by soft spheres. This effect is best quantified by the participation fraction.
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Figure 2.11: Mode characterization and representation for11% hard-particle crystal. a) Accu-
mulated mode numberN(ω) with solid black line representing Debye law scaling,N(ω) ∼ ω2,
and dotted black lines show where representative modes (d-f) are found on plot. b) Participation
fractionPF (ω) of hard (filled red circles) and soft (hollow black squares) spheres.Horizontal
solid black lines show number fractions of soft and hard particles,89% and11% respectively,
and dashed black lines again show representative modes. The participation fraction of hard and
soft spheres is binned (i.e. averaged) over a bin size of20 × 103 rad/s. c) Participation ratio
PR(ω) with solid black line showing threshold for localized versus extended motion, and dotted
lines again show representative modes. The participation ratio of all particles is binned over a bin
size of20×103 rad/s. d-f) Vector displacement plots of representative modes d)ω = 86.4×103

rad/s, e)ω = 381.2× 103 rad/s, and f)ω = 758.7× 103 rad/s. Dark blue dots are hard particles,
light blue are soft particles, and arrows are the particles’ displacements.The larger the arrow,
the larger the particle’s displacement.

In particular, we see that the participation fraction of soft spheres in these modes is higher than

the number ratio of soft spheres in the system (Fig. 2.11b). The motion of these intermedi-

ate modes is also spatially extended, but their character appears qualitatively different than was

found at low frequencies.

The highest frequency modes are dominated by hard spheres. Specifically, a crossover in
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the participation fraction is observed wherein hard particles have enhanced participation, and the

participation of soft spheres is diminished. The highest frequency modesdo not display long

wavelength extended behavior; rather, they appear to be more localized than most of the modes

observed at intermediate and low frequencies. This latter effect is supported quantitatively by the

participation ratio (Fig. 2.11c). The participation ratio at intermediate frequencies is far above

the0.2 threshold. At high frequencies, however, the participation ratio drops below0.2.

We next explore the effects of differing dopant concentrations. To better compare samples

with different dopant concentrations, we scale the frequencies of each sample type by its mean

frequency〈ω〉. In this manner, we can plot the behaviors of all samples over the same relative fre-

quency range to discern trends more easily. Further, by subtracting the number fraction of hard

spheres in a sample from the measured participation fraction,i.e.,PF,Hard(ω) − NHard/Ntot,

we can suggestively plot all participation fraction versus frequency data as shown in Fig. 2.12.

Here, whenPF,Hard(ω)−NHard/Ntot has a value of zero, then all particles participate equally

(i.e., corresponding to their number fraction in the sample); a negative value means there is

diminished participation by the hard spheres and enhanced participation by the soft spheres; a

positive value means enhanced participation by the hard spheres and diminished participation

by the soft spheres. The three frequency regimes observed in the11% hard particle crystals are

apparent in all doped crystals when using this plotting scheme. Equal participation is observed

at low frequencies, diminished hard particle participation at intermediate frequencies, and en-

hanced hard particle participation at high frequencies. In addition, we find that the extent (i.e.,

frequency range) of the high frequency regime, wherein hard particles become the primary mode

participants, shifts to lower relative frequency as the number of hard-particle dopants increases.
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Figure 2.12: a) Hard-particle participation fractions shifted by hard-particle number fractions
PF,Hard(ω) − NHard/Ntot as a function of frequency scaled by the mean frequencyω/〈ω〉
for all doped crystals. Dotted line represents equal participation. b) Participation ratio as a
function of frequency scaled by the mean frequencyω/〈ω〉 for all doped crystals as well as
pure soft-particle crystal. Dotted line represents localized versus extended threshold. Legend is
for both figures, however data for0% hard-particle crystal only in Figure b. Both participation
fraction and participation ratio data is binned (i.e. averaged) over a bin sizeof 20 × 103 rad/s.
Note, the dark grey region represents the low frequency, equal participation regime, the white
region represents the soft-sphere dominated, extended motion regime, andthe light grey region
represents the hard-particle dominated, localized motion regime.

The participation ratio of all doped crystals and the pure soft PNIPAM crystal are also shown

in Fig. 2.12 as a function of scaled frequency. Notice that extended modespredominate at

low and intermediate frequencies for all crystals, regardless of dopantconcentration. The high
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frequency modes in the pure soft particle crystal are also observed to be extended; however, the

highest frequency modes of all doped crystals are found to be localized. Evidently, the hard

particle dopants dominate motion at high frequencies, thus localizing vibrationalmotion since

they are relatively isolated. This high frequency behavior appears similarto that observed in

colloidal glasses [2,153].

2.4.5 Computational Generated Spring Networks

To further confirm our findings, we studied computationally generated spring networks. These

spring networks employed varying ratios of stiff and soft springs locatedrandomly within the

lattice. Part of our motivation for carrying out these simulations was due to thefact that the spa-

tial distribution of hard particle dopants in the experimental samples was not perfectly random.

We therefore hoped to clarify whether this lack of perfect randomness would affect any of the

conclusions we made about the phonon spectra.

The computer simulations employed particles with equal masses on triangular lattices. The

particles were randomly chosen to have one of two spring constants,k1 or k2. We setk2 to be

five times larger thank1. Particles with spring constantk2 are referred to as “stiff” and particles

with spring constantk1 are referred to as “soft”. The effective spring between two neighboring

particles is the mean value of the spring constants of the two particles. In otherwords, the

effective spring constantkij between neighboring particlesi andj is given bykij = (ki+kj)/2,

whereki andkj are the spring constants of individual particlesi andj, respectively. This model

was employed to be consistent with our experiments, wherein two hard particles are coupled

by an effectively stiff spring, two soft particles are coupled by an effectively soft spring, and

hard-particle/soft particle pairs are coupled by an effective spring ofintermediate stiffness. All
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Figure 2.13: a) Stiff-particle participation fractions shifted by stiff-particlenumber fractions
PF,Stiff (ω)−NStiff/Ntot as a function of frequency scaled by the mean frequencyω/〈ω〉 for
computationally generated springs networks, excluding those which are purely soft particles or
purely stiff particles. Dotted line represents equal participation. b) Participation ratioPR(ω) as
a function of frequency scaled by the mean frequencyω/〈ω〉 for all computationally generated
spring networks, including those which are purely soft particles (black line with dots) or pure
stiff particles (grey line with dots). Dotted line represents localized versus extended threshold.
Legend is for both figures, however data for0% and100% stiff particle crystal only in Figure
b. Note, the dark grey region represents the low frequency, equal participation regime, the white
region represents the soft-sphere dominated, extended motion regime, andthe light grey region
represents the hard-particle dominated, localized motion regime.
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non-nearest neighbor springs were set to zero. We thus generated aspring constant matrixK

based on nearest neighbor spring interactions;K, in turn, gives rise to a dynamical matrixD for

the spring network. The eigenvalues and eigenvectors ofD were calculated, and the frequencies,

participation fractions, participation ratios, etc., were derived. One hundred different initial

configurations were employed for each network. Networks were chosen with 0, 10, 25, 35, 50,

65, 75, 90, and 100 percent stiff particles. By averaging over 100 iterations, we minimized

effects specific to any one configuration.

Plots derived from these “computationally generated data”, analogous to those of the exper-

imental data in Fig. 2.12, are provided in Fig. 2.13. Notice that the computationallygenerated

networks exhibit the same three frequency regimes as the experimental systems. Further, the

participation ratios,PR(ω), of all computationally generated spring networks (0% to 100% stiff

particles) exhibit trends similar to experiment. Thus, it appears that the small non-randomness in

the experimental dopant spatial distribution does not introduce any systematic errors that affect

our primary conclusions.

2.5 Conclusion

In summary, the vibrational modes in soft-particle crystals doped with hard particles exhibit

three distinct frequency regimes. At low frequencies, crystalline (Debye-like) behavior in the

DOS is observed in all systems regardless of doping. These low frequency modes display long

wavelength behavior in which hard and soft particles participate equally. At intermediate fre-

quencies, the modes are extended and dominated by soft particles. At the highest frequencies,

the modes are more localized and dominated by hard particles. Our computationally generated
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spring networks exhibit many of the trends observed here and even extrapolate to higher number

fractions of hard spheres.

The experimental results imply that while the introduction of bond-strength disorder does

indeed alter some of the vibrational properties of crystalline materials, compared to the intro-

duction of structural disorder, it does not as readily destroy the crystalline/Debye-like properties

at low frequencies. Thus, at least within the present experimental regimes, it appears that struc-

tural order in crystalline materials is more important than bond homogeneity for maintaining

crystalline phonon properties at low frequencies. This finding is in conflict with previous simu-

lation work on interaction disordered crystals which have found a boson peak at low frequencies

when enough disorder is present [82–86]. The previous simulation work examined a variety of

spring constant distributions including a box distribution with plus/minus20% variation about

the average [82], truncated Gaussian distributions with widths varying from 0.6 to 1 [83, 85],

power law distributions [84], and binary distributions with a spring constantratio of 0.1 [84,86].

None of these simulations matches our experimental conditions exactly, and thesimulations of

binary distributions are closest to our experiments. However, these simulations started with a

crystal of primarily hard springs and then doped it with soft springs. By contrast our experi-

ments employed a soft crystal doped with hard particles. Also, the simulations used only two

spring constants (soft and hard), whereas our experiments had threedistinct spring constants

(soft, hard, and intermediate stiffness) corresponding to our three inter-particle interactions,i.e.,

soft-soft, hard-hard, and soft-hard, respectively.
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2.6 Future Work

Possible future work (related to previous simulation research) could include increasing the con-

centration of hard spheres, or starting with hard-particle crystals and adding soft-particle dopants.

These experiments should be possible but are technically more difficult because the hard polystyrene

particles scatter significantly more light than the PNIPAM particles, and tracking PNIPAM par-

ticles surrounded by a large number of polystyrene particles is difficult.

Looking further to the future, it should be interesting to increase the bond-strength disparity

by using softer particles. This variation, as well as the use of higher hardparticle concentrations,

would enable us to probe systems closer to the onset of mechanical instability.The responses

of these materials to mechanical perturbations would also be interesting to study. Given that

colloidal glasses have been shown to possess quasi-localized “soft spots” which correlate with

the location of structural rearrangements [2,63–68], it would be interesting to see when and if the

soft spheres would become “literal” soft spots in hard crystals that facilitate rearrangements (due

to thermal motion or mechanical stress). Finally, in a different vein, these systems potentially

offer a new class of so-called phononic materials in which localization of elastic energy can

influence wave transport [162,163].
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Chapter 3

Tunable depletion potentials driven by

shape variation of surfactant micelles

3.1 Introduction

An entropic attractive force, often called the depletion force, arises between large colloidal par-

ticles in suspension when many small non-adsorbing particles or (macro)molecules, called de-

pletants, are added to the suspension [91, 92]. Over the years, depletion forces have proved

valuable as a means to control and study phase behavior [17, 30–34, 93–101, 164], to direct

self-assembly [18, 35–42, 44–46, 102, 104], and to control the stabilityof colloidal suspen-

sions [105, 106, 108, 110–118]. It is thus important to fully understanddepletion phenomena,

as well as continue to explore new means to induce and manipulate depletion forces.

Most depletants are spherical in shape. However, over the years, depletants with other ge-

ometric shapes have been utilized,e.g.,rods or disks [105, 106, 126–139]. Regardless of their
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shape, all depletants induce entropic attractions, but the functional formand strength of the

induced interparticle potential depends on their shape. At the same volume fraction, for exam-

ple, small rods of lengthL will induce a stronger attraction than small spheres with diameter

L [126–128], and the functional form of the potential induced by rods also exhibits more cur-

vature than that of the potential induced by spheres. In practice it is oftendesirable to vary

interaction strength, and this task is usually accomplished by varying depletionvolume fraction,

e.g.,by adding or subtracting small particles [17, 30–34, 42, 44, 93, 97, 98,102, 105, 108] or by

changing the radius of spherical depletants [36,37,46,99–101,104].

In this chapter we introduce shapeanisotropytuning as a means to control depletion in-

teractions in suspension. Specifically, we employ temperature variation to change the shape

of nanometer-size surfactant micelles from sphere-like to cylinder-like. As a result, the cor-

responding depletion potential depth and range is modulated. The potentials are derived from

video microscopy measurements of the pair correlation function of micron-sized silica spheres

suspended in a solution of hexaethylene glycol monododecyl ether (C12E6) surfactant micelles.

The depletion potentials are revealed to vary substantially in magnitude and range with temper-

ature. We demonstrate that these effects arise from shape anisotropy variation, wherein nearly

spherical C12E6 micelles at low temperatures grow and elongate into cylindrical micelles of con-

stant cross-sectional diameter and longer lengths at higher temperatures. By fitting the measured

interaction potentials to theoretical models for depletion forces of rod-like/ellipsoidal deple-

tants [131], we extract the length and shape anisotropy of the micelles as a function of tempera-

ture. The resultant derived dimensions of suspended micelles are foundto be roughly consistent

with neutron scattering data for C12E6 [3].
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Figure 3.1: Depletion between colloidal particles of radius,R, in suspension of spherical de-
pletants with diameter,L. a) The sphere centers cannot fit within regions of excluded volume
(grey shaded region). b) When excluded volumes of two spheres overlap, the sphere entropy
increases in proportion to excluded volume overlap (black region), and an attractive force thus
arises between colloidal particles. Spheres and colloidal particles not drawn to scale.

3.2 Contextual and Theoretical Background

3.2.1 Depletion Due to Spherical Depletants

The depletion interaction between colloidal spheres due to small spherical depletants is well

understood, especially when large and small spheres concentration arein the dilute limit. In

this case, for colloidal spheres of radiusR in a suspension of smaller spheres (depletants) of

diameterL (2R >> L), there exists a shell of thicknessL/2 around the large colloidal spheres

that the center of the depletants cannot enter (Figure 3.1). This shell region is referred to as

the “excluded volume”. When the center-to-center distance,r, between two colloidal spheres is

less than2R + L (Fig. 3.1b), the excluded volumes of the two large spheres overlap, creating a

so-called “overlap volume”. The creation of this overlap volume effectively decreases the total

excluded volume in the sample, and, in turn, increases the accessible free volume available to the

depletants. This situation is entropically favorable for the depletants. It lowers the free energy
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of the system, and thus an entropic force proportional to the overlap volumeis induced between

the two colloidal spheres in the presence of small depletants.

The functional form of the depletion interaction induced by spherical depletants isU(r)/kBT =

−3ρ(R/L) (1− (r − 2R)/L) [91, 92]. Here,L denotes depletant sphere diameter;kB is the

Boltzmann constant,T is temperature,ρ is the depletant volume fraction,r is the center-to-

center distance between colloidal particles,R is the large particle radius, andr − 2R is the

surface-to-surface distance between colloidal particles, sometimes denoted ash in other stud-

ies [126–128, 131]. Traditionally the depletant volume fraction is denoted by φ, however, we

useφ to denote theparticle packing fraction throughout this thesis. For the sake of consis-

tency, and to hopefully minimize confusion, we useρ to represent the depletant volume frac-

tion. Notice, the potential minimum (attraction strength) between particles at contact (r = 2R)

depends on depletant volume fraction and the ratio of large- to small-spherediameter,i.e.,

U(2R)/kBT = −3ρ(R/L).

3.2.2 Depletion Due to Thin-Rod Depletants

For thin-rod depletants, the same principles apply as in the spherical depletant case. However,

while spherical depletants only have translation entropy, the rod-shapeddepletants have ori-

entational entropy as well as translation entropy. In the case of rod depletants, in the dilute

concentration limit, the entropic interaction between large colloidal spheres isU(r)/kBT =

−(2/3)ρ(RL/D2) (1− (r − 2R)/L) [126–128]. HereL is the depletant rod length, andD is

the depletant rod cross-sectional width with the assumptionD/L << 1. The potential minimum

at contact remains directly proportional to the depletant volume fraction, but it also depends on

rod length,i.e., U(2R)/kBT = −(2/3)ρ(RL/D2). Notice that increasing rod length, while
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Figure 3.2: Depletion between colloidal particles of radius,R, in suspension of rods with length,
L, and cross-sectional diameter,D. The rod centers cannot fit within regions of excluded vol-
ume (grey shaded region). a) When excluded volumes of two spheres overlap, the rod entropy
increases in proportion to excluded volume overlap (black region), and an attractive force thus
arises between colloidal particles. b) When rod length,L, is increased, while keeping rod volume
fractionρ and cross-sectional diameterD constant, then the excluded volume overlap increases,
and the strength and range of the attraction between colloidal particles increases. Rods and
colloidal particles not drawn to scale.

holding the rod volume fraction and cross-sectional width fixed, increases the attraction strength

and decreases the number of rods. This increase in attraction strength withincreasing rod length

arises from a comparative increase in the free volume accessible to the longer rods, see Fig-

ure 3.2.

3.2.3 Depletion Due to Ellipsoidal Depletants

When the rod cross-sectional width of the depletant is no longer negligible compared to the rod

length, then the situation becomes more complex. In this case, the depletants arebetter modeled

as ellipsoids or cylinders. For ellipsoidal depletants the potential minimum is proportional to

depletant volume fraction, and to the long/major ellipsoid axis length (L). The aspect ratio of

the ellipsoidal depletants is significant too. The attraction strength grows with increasing aspect

ratio, and the shape of the potential also depends on aspect ratio. The potential function for
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ellipsoidal depletants has been derived [131] and is given below; it hasa different functional

forms for interparticle separations less than versus greater than the semi-minor axis length (D).

The entropic interaction is:

U(r;L,D,R, ρ)

kBT
= ρ

RL

D2
Q(r;L,D) (3.1)

with

Q(r;L,D) =






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for 2R ≤ r < 2R+D

x(r)− x(r)2

2 − 2
3 − 4

3A2 +
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√
(Ax(r))2−4

12A2
√
A2−1

+ x(r)

A
√
A2−1

ln

(

2A+2
√
A2−1

Ax(r)+
√

(Ax(r))2−4

)

for 2R+D ≤ r < 2R+ L

(3.2)

wherex(r) = (r − 2R)/(L/2) is the dimensionless interparticle separation, andA = L/D

is the ellipsoid aspect ratio. Note, this function may seem complicated, especiallyby com-

parison to the functional forms for spherical and infinitely thin rod depletants, but the result

is quite robust. For example, in the limit whereA = 1, i.e., spherical depletants, the poten-

tial minimum at contact calculated from equation 3.1 is identical to the potential minimumfor

spherical depletants provided earlier (U(2R)/kBT = −3ρ(R/L)). Similarly, in the opposite

limit whereA −→ ∞, i.e., thin-rod depletants, the potential minimum at contact calculated

from equation 3.1 is identical to the potential minimum for thin-rod depletants provided ear-

lier (U(2R)/kBT = −(2/3)ρ(RL/D2)). While the exact functional form of the potentials in
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these two limits as given by Eq. 3.1 are not identical to the functional forms shown earlier for

spherical and thin-rod depletants, Piech and Walz showed numerically thatthe shape of the po-

tential curves in the two limits are in fact very similar to those of the traditional spherical and

thin-rod depletants. Thus we employ this functional form of the interparticle potential for fitting

to interparticle potential data.

3.2.4 Depletion Interaction Due to Polydisperse Suspension of Rod-like Micelles

We also considered the distribution of sizes of the surfactant micelles in suspension by incor-

porating the size polydispersity of rod-like C12E6 surfactant micelles into our fitting procedure.

Our polydispersity model of the size distribution function is derived from the“Ladder Model”

described by Misselet al [165]. We describe the main assumptions and arguments behind this

analysis below.

Since the length of rod-like surfactant micelles,L, is directly proportional to the number

of surfactant molecules that compose the micelle,N , when we incorporate the micelle poly-

dispersity into our model it is useful to denote the length of the micelles asL(N). Rod-like

micelles consist of two spherical caps connected by a cylindrical body. The diameter of the

spherical caps is equal to the cross-sectional diameter of the rods (cylindrical body),D. Thus

the smallest possible micelle length isD, i.e., a spherical micelle of diameterD. The num-

ber of surfactant molecules in the spherical micelles is the minimum aggregation number,N0.

This also means that for all sizes of micelle,N0 molecules reside in the spherical caps, and

N − N0 molecules reside in the cylindrical body. The total micelle length,L(N), is given by

L(N) = D + (N − N0)d/Nd, whered is the effective diameter of the hydrophilic head of a

surfactant molecule andNd is the number of molecules which comprise a disk of diameterD
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and thicknessd. The quantityd/Nd is therefore the incremental length increase of a micelle by

the addition of a single surfactant molecule to the cylindrical body. We derive d/Nd through

geometric arguments about the shape of the micelles and the packing of the surfactant molecules

in the micelles.

We first estimate the value ofd by comparing the size of a single surfactant molecule to the

total surface area of a spherical micelle. Specifically, we know thatN0 molecules comprise a

spherical micelle of diameterD, and thus the surface area of a spherical micelle is filled withN0

circles of diameterd (diameter of the surfactant molecules’s hydrophilic head). Therefore,we

can determined from:

4π

(

D

2

)2

= N0π

(

d

2

)2

, (3.3)

whereD is the spherical micelle diameter,N0 is the minimum aggregationg number, andd is

the diameter of the surfactant molecules hydrophilic head. Solving ford, we findd = 2D/
√
N0.

Next, we estimateNd, the number of molecules which comprise a disk of diameterD and

thicknessd, by comparing the size of a single surfactant molecule to the circumference of a circle

with diameterD, i.e., the circumference of a micelle’s cylindrical body. To determineNd, we

find the number of molecules, of widthd, that fit along the circumference of a circle of diameter

D, i.e.,πD = Ndd. Solving forNd, and substituting the solution ford from Equation 3.3, we

findNd = π
√
N0/2.

Using these estimates ford andNd, we findd/Nd = 4D/πN . Thus, we can define the

incremental length increase of a micelle by the addition of a single surfactant molecule to the

cylindrical body,d/Nd in terms of known quantities, specifically the micelle widthD and the

minimum aggregation numberN0. The equation for the micelle length,L(N), can now be
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written as:

L(N) = D + (N −N0)
4D

πN0
. (3.4)

The number concentration of micelles of lengthL(N) in solution,XL(N), has the form

[165]:

XL(N) = Ce−N/M , (3.5)

whereC is a constant in units of number concentration andM is a unitless constant that defines

the broadness of the distribution. The constantC is derived when normalizing the distribution

for the total volume fraction of micelles in solution. The constantM is extracted by fitting to

our experimentally measuredU(r).

The volume fraction of micelles lengthL(N) in solution,ρL(N), is then calculated using the

number concentrationXL(N):

ρL(N) = XL(N)

(

4

3
π

(

D

2

)3

+ π

(

D

2

)2

(N −N0)
4D

πN0

)

. (3.6)

We then constrainρL(N) such that:

∞
∑

N=N0

ρL(N) = ρ. (3.7)

Finally, we substituteρL(N) andL(N) for ρ andL, respectively, in Equation 3.1, and perform

a summation overN to derive the interaction potential induced by a polydisperse suspension of
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Figure 3.3: Examples of calculated interparticle interaction potentials,U(r)/kBT , using the
Hypernetted Chain (HNC, black squares) and the Percus-Yevick (PY,red circles) approximations
for a)25 oC and b)27 oC. Notice, there is little difference between the two approximations.

rod-like micelles:

U(r;M,N0, D,R, ρ)

kBT
=

R

D2

∞
∑

N=N0

ρL(N)L(N)Q(r;L(N), D). (3.8)

The average length,〈L〉, of the distribution is calculated from:

〈L〉 =
∑∞

N=N0
L(N)XL(N)

∑∞
N=N0

XL(N)
. (3.9)

3.2.5 Deriving the Pair Interaction Potential

In the limit where particle packing densityφ approaches zero, the pair interaction potential,

U(r), is related to the radial distribution function,g(r), via the Boltzman relation,g(r) =

exp[−U(r)/kbT ] [166]. However, when the particle packing density,φ, is finite, as is the case

in the experiments presented in this chapter, theng(r) is instead related to the potential of mean

force,w(r), via the Boltzmann relation,g(r) = exp[−w(r)/kBT ] [166]. This potential of mean

52



forcew(r) is due to the pair interaction potentialU(r) as well as the many body effects that arise

at finiteφ. Therefore,U(r) is generally extracted from the experimentally calculatedw(r) by

removing the contributions from many body effects. This extraction is accomplished by em-

ploying closure relations to solve the Ornstein-Zernike integral equation [166]. Specifically, the

Hypernetted Chain (HNC) and Percus-Yevick (PY) approximations are quite often utilized for

this task. The true pair interaction potential,U(r), is calculated numerically fromw(r), where

w(r) = −kBT ln[g(r)]; U(r) is thus calculated from the experimentally measuredg(r) via the

following relations:

U(r)

kBT
= −ln [g(r)] +























φ
πR2 I(r) (HNC)

ln[1 + φ
πR2 I(r)] (PY ),

(3.10)

whereI(r) is the convolution integral,

I(r) =

∫

[g(r′)− 1− φ

πR2
I(r)][g(

∣

∣r − r′
∣

∣)− 1]d2r′. (3.11)

These equations are readily solved numerically [167]. We report resultsusing the HNC approx-

imation, which we found to be in excellent agreement with the PY approximation (Figure 3.3).
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Figure 3.4: Chemical structure for hexaethylene glycol monododecyl ether (C12E6).

3.3 Experimental and Analytical Methods

3.4 Experimental Materials

To experimentally measure the shape-dependent depletion interaction induced by surfactant mi-

celles, we suspend1625 nm diameter silica microspheres (Duke Scientific) with30 nm size

standard deviation in a solution of44 mM hexaethylene glycol monododecyl ether (C12E6,

Molecular Formula= C24H50O7, see Figure 3.4 for chemical structure) and17 mM NaCl.

The critical micelle concentration (CMC) of C12E6 is 7.2× 10−2 mM at25 ◦C [168]; the CMC

is the concentration of surfactant at which micelles begin to form. The concentration of sur-

factant is more than600 times that of the CMC. Thus, at such a high surfactant concentration,

small changes in CMC with temperature do not significantly affect the suspended micelle vol-

ume fraction. Specifically, as the sample temperature changes, we expect the micelle volume

fraction to remain constant. As a result, the depletant volume fraction was heldconstant in fits

at all temperatures and was set equal to the volume fraction of surfactantin water,i.e.,φ = 0.02.

Previous small angle neutron scattering (SANS) experiments provide independent estimates

about the shape of C12E6 micelles. In these SANS experiments, micelles were modeled as rod-

like with spherical caps. With increasing temperature, the length of the rods was measured to
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increase, while the cross-sectional diameter remained constant. Specifically, the length increases

from approximately19 − 31 nm over the temperature range studied in our work, and the cross-

sectional diameter remains constant at approximately4.3 nm [3]. Thus, the shape of C12E6

surfactant micelles can be tunedin situ through control of the sample temperature, and it provides

an excellent model system to study shape-dependent depletion interactions. Because the aspect

ratio ranges between4.4 and7.2, the cross-sectional diameter of the micelles is not negligible.

Therefore, it is critical to employ the more complex functional form (Eq.3.1) as a theoretical

model for the interaction potential [131].

Another parameter of the sample which had to be considered was the Debye screening length,

κ−1. In water,κ−1 is calculated usingκ−1 = 0.304/
√

I(M), whereI(M) is ionic strength

expressed in molar concentration (mol/L) [169]. The salt concentration,I(M) = 0.017 mol/L,

yields a screening lengthκ−1 = 2.3 nm. Although this screening length is negligible compared

to the colloidal particle diameter, it is significant when compared to the micelle lengthand width

[3]. Thus, the screening length should be included when fitting theoreticalinteraction potential

predictions to experimental data. To this end, we introduce aneffectiverod length,L′ = L +

2κ−1, and aneffectiverod width,D′ = D + 2κ−1, in place ofL andD in Equation 3.1. With

this notationL andD are the “true” (bare) length and width of the rod, respectively.

Samples were prepared by loading particle-surfactant solution between two glass coverslips.

The concentration of silica spheres was selected such that the areal packing density,φ, was

approximately0.08 in the two-dimensional (2D) regions we studied. The temperature of the

sample was controlled via an objective heater (Bioptechs), and measurements were made for

temperatures ranging from22 ◦C to 28 ◦C in 1 ◦C steps. Bright-field microscopy video was
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recorded at30 frames per second for65, 000 frames. Subpixel particle tracking algorithms were

employed to find particle positions in each frame of the video [87].

3.4.1 Correcting Radial Distribution Function for Imaging Artifacts

When imaging colloidal particles with bright field video microscopy, the images ofthe spherical

particles appear as Airy patterns (Figure 3.5). Further, the experimentallymeasured radial distri-

bution function,g(r), has a systematic error caused by overlapping of neighboring particle Airy

patterns. This systematic error leads to incorrect identification of particle centroids. Therefore,

to calculate an accurate pair interaction potential,U(r), we must first ridg(r) of this systematic

error. These corrections are well known and were carried out following procedures described in

references [170,171]. They are described in detail below.

We refer to the experimentally measured radial distribution function with Airy disk errors,

g̃(r̃), as the “raw” radial distribution function. We refer to the undistorted radial distribution

function,g(r), as the “true” radial distribution function. The trueg(r) is related tõg(r̃) through

conservation of probability,g(r)dr = g̃(r̃)dr̃. From this, we see thatg(r) can be obtained from

a b c

Figure 3.5: Sample images of lone colloidal particle and its mirror image used to correct particle
tracking error due to overlapping Airy disks, for various known interparticle distances,r. a)
Particle and mirror image withr > a particle diameter, b) Airy disks barely overlapping, and c)
Airy disks overlapping in the particle images.
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Figure 3.6: a) Measured center-to-center distance,r̃, as function of true center-to-center distance,
r, calculated from Airy disk correction procedure for all temperatures. Solid black line represents
slope= 1, i.e., r̃ = r. Dashed black line represents particle diameter,2R = 18.9 pixels. b)
Derivative,dr̃/dr, of r̃ vs. r curves in a). Solid black line representsdr̃/dr = 1. Dashed
black line represents2R. c)-e) Corrected and uncorrected radial distribution functions,g(r) (red
circles) and̃g(r̃) (black squares), respectively for temperatures c)23 oC, e)25 oC, and f)27 oC.

the measured̃g(r̃) by,

g(r) = g̃(r̃)
dr̃

dr
. (3.12)

All that is required is to mapr to r̃ and differentiate.

This task is accomplished by first identifying a “lone” colloidal particle, defined here as a

particle with no other particles within a distance of three particle diameters, in a given frame of
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the video data. A mirror image of this lone particle is created and placed some known distance

away,r (Figure 3.5). The centroids of the particle and its mirror image are obtained using stan-

dard particle tracking techniques, and the distance between the measured centroid positions,̃r,

is calculated. Thus, the measured center-to-center distancer̃ is calculated as a function ofr for

a given particle. This process is then repeated for all lone particles in the given video frame,

and the average calculatedr̃ versusr curves for all particles in the video frame is calculated. To

ensure good statistics, the procedure is repeated for ten or more video frames and the resultant

r̃ vs. r curves for each frame sampled are averaged together (Figure 3.6a). The derivative of

the final averaged curve,dr̃/dr, is calculated (Fig. 3.6b) and then multiplied by the experimen-

tally measured̃g(r̃) to yield the undistortedg(r). This procedure is then carried out for each

temperature separately. Exemplaryg(r) andg̃(r̃) curves are given in Fig. 3.6c)-e).

3.4.2 Finding the Pure Depletion Interaction

To account for effects of all other interactions,i.e., imaging artifacts not caused by overlapping

Airy disks or by the depletants, the pair interaction potential between silica spheres was also

measured in the absence of depletants. This zero-depletant interaction potential was measured

and then subtracted from the measured pair interaction potentials with depletants (Figure 3.7).

In this way it was possible to derive pure depletion interaction potentials more accurately. At the

lowest temperatures (22 ◦C - 24 ◦C), the potential well depth was small,i.e.,on the order of the

measurement error, and full subtraction was critical. However, at higher temperatures (25 ◦C -

28 ◦C), the well depths were large and subtraction was only necessary for interparticle distances,

r, larger than the range of the potential well.
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Figure 3.7: a) Measured pair interaction potentials with depletants for temperatureT = 23 oC
(black squares) and zero-depletant potential (red circles). b) Puredepletion interaction potential
for T = 23 oC calculated from subtracting zero-depletant potential from measured pair interac-
tion potential. c) Measured pair interaction potentials with depletants for temperatureT = 27 oC
(black squares) and zero-depletant potential (red circles). b) Puredepletion interaction potential
for T = 27 oC.

3.4.3 Fitting Procedure

The experimental data was fit assuming a theoretical potential function,Ut(r), based on the

ellipsoid model (Eq. 3.1) defined earlier [131]. Here, the subscriptt denotes a theoretical func-

tion. To fit the experimental data to the givenUt(r) and thereby extract sample properties we

implemented an iterative multi-step approach. A flow diagram of this procedureis provided in

Figure 3.8.

The first step of the fitting procedure computes a theoretical potentialUt,i(r;L
′
i, D

′, R, ρ)
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with an initial guess for the effective rod lengthL′. Here, the subscripti denotes the itera-

tion number of the fitting procedure. The other parameters, effective cross-section diameter

D′ = D+2κ−1, colloid radiusR, and depletant volume fraction (ρ), were tightly constrained by

experiment and treated as constants. From the sample properties discussed in the materials sec-

tion,D′ was set to8.9 nm,R was set to1625 nm, andρ was set to0.02. The resulting initial es-

timate for the theoretical potentialUt,i(r;L
′
i, D

′, R, ρ) was then converted into a model pair cor-

relation function,gt,i(r), via the Boltzmann relation,gt,i(r) = exp[−Ut,i(r;L
′
i, D

′, R, ρ)/kBT ].

It is important to account for the effects of colloidal particle polydispersityin the exper-

iment. To account for this polydispersitygt,i(r) was broadened using a Gaussian kernel for

the particle size with standard deviationσ, ker(r, σ) = exp
[

−r2/2σ2
]

. The standard devi-

ation σ was set to30 nm, i.e., the value ofσ for our particles as discussed in the materials

section. It was kept fixed throughout the fitting process. Convolving thetheoretical pair cor-

relation functiongt,i(r) with the Gaussian kernel yields a broadened pair correlation function,

gBt,i(r) = [gt,i∗ker] (r), which incorporates particle polydispersity. The superscriptB denotes

a broadened function. The broadened pair correlation function was then converted back to

a broadened interaction potentialUB
t,i(r;L

′
i, D

′, R, ρ, σ) by taking the natural logarithm,i.e.,

UB
t,i(r;L

′
i, D

′, R, ρ, σ)/kBT = − ln(gBt,i(r)), following the Boltzmann relation.

The effective depletant lengthL′ was extracted by least-squares fitting of the experi-

mentally determinedU(r) to the polydispersity broadened theoretical interaction potential

UB
t,i(r;L

′
i, D

′, R, φ, σ). We observed that for initial guesses5 nm< L′
i < 60 nm, theL′ ex-

tracted from the fits converged to anL′ ± 1 nm. Finally, the “true” depletant length,L, was

derived by subtracting the Debye screening length factor from the best-fit effective length,i.e.,
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L = L′ − 2κ−1.
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Figure 3.8: Flow chart diagram ofU(r) fitting procedure.
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3.4.4 Incorporating Micelle Polydispersity in Fitting Procedure

To incorporate micelle polydispersity into our fitting procedure we follow a similarprocedure as

described above, but with some differences. The main difference is thatthe theoretical potential

function,Ut(r), is based off of the polydisperse suspension of rod-like micelles model (Eq. 3.8)

instead of the (monodispersed) ellipsoidal model (Eq. 3.8). Since Equation3.8 is not a function

of L, but rather a function ofM , the first step of this fitting procedure computes a theoretical

potentialUt,i(r;Mi, N0, D
′, R, ρ) with an initial guess for the “decay constant”M . The values

of D′,R, andρ are set to the same values as before, and again are treated as constant. The mini-

mum aggregation numberN0 is set to 135 [172], and is also treated as constant. From this step

forward the same procedure is followed as depicted in Figure 3.8, andM was extracted by least-

squares fitting of the experimentally determinedU(r). With the value ofM , the distribution of

micelles sizes and the averageeffectivemicelle length,〈L′〉 was calculated for all temperatures,

and the “true” average lengthL was derived from〈L〉 = 〈L′〉 − 2κ−1.

For each temperature we observed that the value ofM extracted from fits converged to an

M ± 25 for initial guessesM − 100< Mi <M +100. Such a change inM was found to cause

marginal changes in the distribution of sizes and the average lengths calculated converged to

〈L〉 ± 1 nm. Another possible source of error is the value of the minimum aggregation number,

N0, which was taken from literature [172]. We observed, however, that changingN0 by 10% led

to changes in〈L〉 of 1%. Therefore, any reasonable error in the value ofN0 causes only small

errors in our results.
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Figure 3.9: Experimentally measured a) radial distribution function,g(r), and b) interparticle
interaction potentials,U(r)/kBT , for temperatures22 ◦C, 24 ◦C, 26 ◦C, and28 ◦C.

3.5 Results and Discussion

3.5.1 Measured Depletion Potentials

Depletion interaction potentials,U(r), were calculated from experimentally measured radial

distribution functions,g(r). Exemplaryg(r) andU(r) curves are shown in Figure 3.9. It is

apparent that the depth of the potential well increases monotonically with temperature. The

absolute value of the minimum of the measured potential,|Umin/kBT |, is plotted as a function

of temperature in Figure 3.10. Note that|Umin/kBT | denotes the potential well depth, defined

here as the minimum value of the potential curveU(r) (see inset of Fig. 3.10). The potential

well depth, i.e., attraction strength, increases from≈ 0.2kBT to ≈ 2kBT over the range of

temperatures studied. Thus, the interparticle interaction can be tuned from nearly hard-sphere

to a strong attraction by increasing sample temperature. Further, the range of the interaction

grows with increasing temperature. This effect is apparent from the widths of theg(r) peaks and

U(r)/kBT wells in Fig. 3.9.
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Figure 3.10: Absolute value of potential minima|Umin/kBT | of interaction potentials versus
temperatureT . Inset: Sample measured interparticle potentialU(r) showingUmin represents
the potential well depth.

3.5.2 Rod Lengths Extracted from Fits

The observed increase in range and strength of the depletion attraction between colloidal par-

ticles is consistent with an increasing length of the rod-like micelle depletants. This effect is

exhibited from the rod lengthsL extracted from the fits. The calculated interparticle potentials

with fits for all temperatures are shown in Figure 3.11. In Figure 3.12, the lengths extracted from

the interaction potential fits are plotted as a function of temperature. Also shown are the lengths

measured by small angle neutron scattering (SANS) [3]. The lengths extracted from the interac-

tion potentials are in good agreement with the lengths from the SANS experimentsfor all but the

lowest two temperatures (22 ◦C and23 ◦C). However, the potential well depths for22 ◦C and

23 ◦C were very small (≈ 0.2kBT ) and were of the same order as experimental error. Therefore,
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Figure 3.11: Experimentally measured interparticle potentialsU(r)/kBT (black squares) and
fits from the theoretical function for ellipsoidal depletants (red lines) for all temperatures. a)
22 ◦C, b)23 ◦C, c)24 ◦C, d)25 ◦C, e)26 ◦C, f) 27 ◦C, and g)28 ◦C.
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Figure 3.12: a) Rod lengthL of the surfactant micelles measured by depletion interaction (black
squares) and by small angle neutron scattering SANS (red circles) in ref. [3] versus temperature
T . b) Cartoon representations of change in dimensions,L andD, of the surfactant micelles as
function of temperatureT . Note hereD remains constant.

data at these two (lowest) temperatures have large error bars. By contrast, the lengths measured

from temperatures24 ◦C to 28 ◦C are in good agreement with those measured by SANS. The

schematic representations of the surfactant micelles as a function of temperature in Fig. 3.12b

provide a visualization of the shape of the surfactant micelles over this temperature range. The

cross-sectional diameter,D, stays constant at4.3 nm, and the length,L, increases from≈ 5

nm at22 ◦C to≈ 30 nm at28 ◦C. The aspect ratio,L/D, of the surfactant micelles increases

from nearly spherical (≈ 1) to rod-like (≈ 7) over the range of temperatures studied. We have

thus determined the nano-scale increase in shape anisotropy of C12E6 surfactant micelles with

increasing sample temperature by measuring the depletion interaction between colloidal spheres
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induced by these micelles.

3.5.3 Distribution of Polydispersed Micelles

Using the model for a polydisperse suspension of rod-like micelles in solution, we extracted

the decay constant,M , of the size distributions at all temperatures. The calculated interparti-

cle potentials with fits for all temperatures are shown in Figure 3.13, andM as a function of

temperature is plotted in Figure 3.14.

Exemplary size distributionsXL, scaled by the maximum value of the distribution,

max(X(L)), calculated from extracted values ofM , are presented in Figure 3.15. We observed

that as temperature increases, the size distribution of the micelles becomes broader. From the

extractedXL, the average micelle length,〈L〉 was calculated at all temperatures. In Figure 3.16,

the calculated average lengths are plotted as a function of temperature. Alsoshown are the

lengths measured by SANS [3] and the lengths extracted from our fits assuming a monodisperse

suspension of rods. We observed that while the fits in the polydisperse case did not appear to be

as good as those in the monodisperse case, the average lengths calculatedfrom these fits were

not very far off the results obtained from our fits assuming a monodisperse suspension of rods

and from SANS. Note that the average lengths at the two lowest temperatures are actually in

better agreement with the SANS results than the monodisperse results. Also, the SANS results

assumed a monodisperse suspension of rods. Therefore, it is not unreasonable that the results

obtained using a model incorporating size polydispersity would not be in perfect agreement with

those obtained assuming a monodisperse suspension of rods.

Note that the potential minimum of the fits from the polydisperse model do not agree with

the minima of the experimental data. To further explore this system and model, wefound the
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Figure 3.13: Experimentally measured interparticle potentialsU(r)/kBT (black squares) and
fits from the theoretical function for a polydisperse suspension of rod-like depletants (red lines)
for all temperatures. a)22 ◦C, b)23 ◦C, c)24 ◦C, d)25 ◦C, e)26 ◦C, f) 27 ◦C, and g)28 ◦C.
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Figure 3.16: Average length,〈L〉, of the surfactant micelles extracted from interaction potentials
using the polydisperse model (blue triangles), the monodisperse model (grey squares), and as
measured by small angle neutron scattering (SANS) (red circles) in ref. [3] versus temperature
T .

values ofM , and thus average lengths,〈L〉, that resulted in the potential minima of the theoret-

ical functions and experimental data being equal. The〈L〉 that yield the same potential minima

as the experimental data are shown in Figure 3.17 along with all other measured lengths. We

found that the〈L〉 needed to have the potential minima be equal were slightly larger (approxi-

mately 1 nm) than the〈L〉 calculated from the fits. We did observe however that in forcing the

theoretical potentials to have the same minima as the experimental data, location of the minima

was shifted to largerr and the potentials wells were wider than the wells studied in experiment

(see Figure 3.18 for exemplary curves).
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Figure 3.18: Measured depletion interaction potentials (black squares) and theoretical potentials
calculated using polydisperse rod depletant model (red lines) such that potential minima of two
curves are equal for temperatures a)24 oC and b)28 oC.
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3.5.4 Lengths Extracted Without Screening Length

There is some debate as to whether the use of the Debye screening length,κ−1, should be used

in the fitting procedures, described earlier, to extract the lengths of C12E6 surfactant micelles.

C12E6 is a nonionic surfactant,i.e.,have a net charge equal to zero. Interestingly, the assignment

of zero charge to the C12E6 nonionic surfactant (and surfactant micelle) is currently debated. We

explored this issue in the literature and with colleagues, and it seems that considerable evidence

has been gathered to support the notion that the ethylene oxide groups ofthe C12E6 surfactant

micelles can acquire charge due in the presence of salt [173–175]. In such cases, the micelles

acquire charge that would be screened in solution. Thus, we chose to incorporate the screening

length,κ−1, in our initial calculations, and used effective dimensions,L′ = L + 2κ−1 and

D′ = D + 2κ−1, as discussed previously. Nevertheless, because of this controversy, we carried

out the fitting procedures for both the monodisperse model (Equation 3.1) and polydisperse

model (Equation 3.8) using the bare dimensionsL andD, instead of the effective dimensions,L′

andD′. See Figure 3.19 and Figure 3.20 for the fits of the monodisperse model andpolydisperse

model, respectively, wherein the bare dimensions were used in the fitting procedure. Remember

that the cross-sectional diameter,D, is 4.3 nm [3] and held fixed during the fitting process.

We observe that with both the monodisperse model and polydisperse model (Figure 3.21),

the extracted average micelle lengths,〈L〉, increased with sample temperature, while the cross-

sectional diameter,D, remained constant. Therefore, the increase in attraction strength between

colloidal particles measured here is still due to an increase micelle shape anisotropy. The lengths

extracted using the bare dimensions,L andD, were not in as good agreement with the lengths
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Figure 3.19: Experimentally measured interparticle potentialsU(r)/kBT (black squares) and
fits from the theoretical function for a monodisperse suspension of ellipsoidal depletants using
the bare dimensions,L andD, (red lines) for all temperatures. a)22 ◦C, b)23 ◦C, c)24 ◦C, d)
25 ◦C, e)26 ◦C, f) 27 ◦C, and g)28 ◦C.
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Figure 3.20: Experimentally measured interparticle potentialsU(r)/kBT (black squares) and
fits from the theoretical function for a polydisperse suspension of ellipsoidal depletants using
the bare dimensions,L andD, (red lines) for all temperatures. a)22 ◦C, b)23 ◦C, c)24 ◦C, d)
25 ◦C, e)26 ◦C, f) 27 ◦C, and g)28 ◦C.
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Figure 3.21: Average bare length,〈L〉, of the surfactant micelles extracted from interaction
potentials using the monodisperse model (black squares) and polydisperse model (red circles),
without incorporating the Debye screening length,κ−1, and as measured by small angle neutron
scattering (SANS) (blue triangles) in ref. [3] versus temperatureT .

measured by small angle neutron scattering (SANS) experiments compared tothe lengths ex-

tracted when incorporating the Debye screening length. However, the mainconclusion of this

experiment, that the attraction strength between colloidal particles induced byC12E6 surfactant

micelles increases due to an increase of the micelle shape anisotropy, remainstrue.

3.6 Conclusion

In summary, we measured the strength and range of the depletion attraction between colloidal

particles induced by C12E6 surfactant micellesin situ as a function of temperature. We demon-

strated that tuning shape anisotropy of these surfactant micelles facilitates modulation of this

entropic attraction. Specifically, we showed that the increase in the measured strength and range
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of the depletion attraction arises from an increase in the aspect ratio of the depletant micelles.

This approach introduces a simple and useful tool for controlling interactions in suspension. We

also independently measured the rod length and size distribution of C12E6 surfactant micelles

as a function of temperature. The exact lengths of the micelles, as a functionof temperature,

depend upon whether there is a build up of charge on the surface of the surfactant micelles.

Assuming there is a build up of charge on the surface of the micelles, and thusthe screening

length is important, the lengths measured are in good agreement with those reported in neutron

scattering experiments. If there is no build up of charge on the surface ofthe micelles, then

the lengths measured are smaller than those reported in neutron scattering experiments, but are

still reasonable. Therefore, we demonstrated that measuring the depletioninteraction between

micron-size colloidal particles via the optical microscopy techniques presented here is a new

method of measuring the size and shape of nano-scale macromolecule depletants.

3.7 Future Work

In situ modulation of colloidal attraction via shape anisotropy permits easy phase space explo-

ration of the state diagram of colloidal glasses with attractive interparticle interactions. Most

previous studies of the state diagram of colloidal glasses with attractive interparticle interactions

controlled the strength of the interparticle attraction by making a large number ofsamples with

various concentrations of depletant molecules [17,30–34]. In the nextchapter of this thesis, we

show that utilizing C12E6 surfactant micelle depletants permits us to explore this phase space

simply by changing the temperature of a single sample.

Use of this tunable depletion effect also potentially opens up a route to the self-assembly
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of colloidal bigels, interpenetrating gel networks [176, 177]. Bigels could be formed in a bidis-

persed colloidal suspensions with C12E6 surfactant micelles using a two step process. First, the

sample temperature is set low to permit large spheres to aggregate and form agel network. Then,

the sample temperature could be raised to permit small spheres to aggregate and form a second

gel (or composite) network. Thus, two interpenetrating gel networks would exist: a large particle

gel network and a small particle gel network.

Finally, this novel experimental method offers a qualitatively new and effective means to

measure the size and shape of many types of depletant molecules in the nanoscale range. One

interesting opportunity is to study depletion due to lyotropic chromonic liquid crystals [178–181]

wherein the underlying plank-like macromolecules stack to produce rod-likemesogens which in

turn assemble into liquid crystalline phases; the present method offers a novel way to measure

the average length and length distribution of the stacks. In principle, the measurement also offers

a tool to probe the size, shape, and folding of proteins.
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Chapter 4

Phonon Behavior of Two-Dimensional

Colloidal Glasses with Increasing

Interparticle Attraction Strength

4.1 Introduction

Many properties of glasses, such as the Debye-Waller factor which is related to the mean-squared

displacement, are predicted to depend on the interaction potential between theconstituent par-

ticles [141–145]. In glasses with a high packing fraction, two states have been observed to

depend on the strength of the short range attraction between constituent particles. Glasses with

very weak interparticle attraction strength are commonly called “repulsive” glasses, and glasses
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with strong interparticle attraction strength are commonly called “attractive” glasses. The in-

ternal particle dynamics in repulsive versus attractive glasses have been observed to be dif-

ferent [17, 19, 30, 32–34, 146]. These studies, however, have focused primarily on comparing

the two limits,i.e., glasses with no interparticle attraction (hard-spheres) and glasses with very

strong interparticle attraction. Very little work, however, has been done to explore the transition

in the properties of glasses as the interparticle attraction strength gradually increases from nearly

hard-sphere to strongly attractive.

In this chapter, we describe experiments that explore the changes in the vibrational properties

of colloidal glasses induced by changes in interparticle interactions. In particular, we study the

vibrational phonons of quasi-2D colloidal glasses whose interparticle interactions are controlled

via the temperature tunable depletion interaction developed and discussed inChapter 3. This

tunable attraction enables us to study the changes in the properties of a colloidal glass as the

interparticle attraction strength is gradually increased from very weak (nearly hard-sphere) to

very strong. We observed that particle dynamics slow monotonically with increasing attraction

strength, and then saturate at a strong enough attraction strength. The shape of the phonon

density of states are also revealed to change with increasing attraction strength. Specifically,

comparatively more low-frequency modes were observed in glasses with weak attraction strength

than those with strong attraction.
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Figure 4.1: Qualitative “state” diagram for disordered glassy packings as a function of particle
packing fraction,φ, and interparticle attraction strength,|Umin|. Black arrow represents direc-
tion in state diagram studied in these experiments. Red arrow represents direction studied in
experiments by Lohret al [4].

4.2 Contextual and Theoretical Background

4.2.1 Repulsive vs. Attractive Glasses

Mode coupling theory (MCT) has predicted that in densely packed glasses with short range

interparticle attraction two distinct arrested states exist [5, 141, 182–184]: a “repulsive” glass

when the interparticle attraction is weak and an “attractive” glass when the interparticle attraction

is strong (see Figure 4.1). The prediction of these two states has been confirmed by experiment

[30,146,185] and simulation [19,143,186,187].

The differences in the properties of repulsive versus attractive glasses arise due to different

mechanisms of dynamical arrest. In repulsive glasses, the particle dynamics slow due to local

crowding, wherein particles are trapped in an entropic “cage” created by neighboring particles.
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Figure 4.2: Debye-Waller factorfq as function of reduced temperaturekBT/u0 for various
dimensionless wave vectorsqd from ref. [5]. Here,u0 is the potential well depth,q is the wave
vector, andd is the particle diameter. Observe a discontinuous jump infq at the transition point
kBT/u0 = 1.

In attractive glasses, local crowding is also present, but particle dynamics are slowed even further

due to strong inter-particle attractive bonds. The dynamics in attractive glasses have also been

observed to be heterogeneous over a larger range of length and time scales compared to repulsive

glasses [146]. The cooperative rearrangement regions (CRRs) in repulsive glasses are string-

like, while in attractive glasses CRRs are compact. The differences in dynamical arrest also

lead to differences in bulk rheological properties, for example, two-stepyielding in attractive

glasses [31].

The transition from the repulsive glass state to the attractive glass state predicted by MCT [5,

141,182–184] was signified by discontinous jumps in various quantities with respect to attraction

well depth. For example, Figure 4.2) shows the Debye-Waller factorfq as a function of reduced

temperaturekBT/u0, whereu0 is the depth of the interparticle potential well,i.e., attraction
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strength.

The work presented in this chapter represents the first experiments to explore this transition,

i.e., to experimentally study the change in behavior of a glass as interparticle attraction strength

gradually increases from very weak (repulsive) to very strong, or ifthere is a discontinous jump

in the behavior at the transition as predicted by MCT. One of the goals of this work was to

quantitatively define the attraction strength near the transition. Put more simply,our work seeks

to discern what attraction strengths are “weak”, leading to the repulsive glass state, and “strong”,

leading to the attractive glass state? Further, this work searched for quantities measured at the

single-particle level that display the transition; what are these quantities anddo these quantities

change gradually or sharply around the transition point.

4.2.2 Low-Frequency Phonon Behavior of Disordered Solids

A discussion of the low frequency behavior of disordered (glassy) solids was presented inChap-

ter 2 of this thesis. Here, we will give a brief overview of similar topics relevant for the results

presented in this chapter, especially differences in low-frequency phonon behavior of attractive

densely packed glasses compared to attractive sparsely packed gels.

In disordered solids,e.g.,glasses, an excess of low-frequency vibrational modes is typically

found. This excess is not predicted by the Debye model, and is known as the “boson” peak [62].

This boson peak is observed as a “bump” at low frequencies when the vibrational Density of

States (DOS(ω)) is scaled by the expected Debye behavior,i.e.,DOS(ω)/ωd−1, whered is

the dimension (Figure 4.3). The presence and height of the boson peak has been previously

used as an indicator of the glass transition [2, 188]. It has also been observed that these low-

frequency modes in glasses are quasi-localized and display enhanced participation in regions
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Figure 4.3: a)DOS(ω) for a 2D colloidal crystal at a liquid crystal-air interface reported in
ref. [1]. Black line represents Debye prediction for 2D system,DOS(ω) ∼ ω. Inset focuses
on low frequency regime. Note this inset is in log-log scale with a slope equal to1. Observe
DOS(ω) follows Debye prediction at low frequencies. b) Density of states scaled by Debye
predictions,DOS(ω)/ω, for a 2D colloidal glass reported in ref. [2]. The location of the Boson
peak is represented byω∗.

prone to rearrangements [2,63–69].

The vibrational phonon mode distribution, namelyDOS(ω), has also been shown to de-

scribe the cross over from the attractive glass state to the gel state, wheremore conventional

order parameters had failed to distinctly describe the transition [4]. This previous work studied

the vibrational phonons of disordered materials with a strong interparticle attraction that was

held constant as a function of packing fraction,i.e.,moving from right to left in the upper part of

the state diagram provided in Fig. 4.1 at strong attraction strength. It was observed that sparsely
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packed gel-like states have an excess of low frequency modes comparedto densely packed attrac-

tive glass states. This excess of modes arises largely from localized vibrations involving small

clusters of particles. These results provide further motivation for the work presented herein. If

the vibrational phonons could describe the transition from the densely packed attractive glass

state to the sparsely packed gel state, something traditional order parameters had failed to do,

then perhaps the study of vibrational phonons will provide insight into the attractive to repulsive

glass transition that is not accessible via studies of traditional structural and dynamical proper-

ties.

4.3 Experimental and Analytical Methods

4.3.1 Experimental Materials

Samples are composed of silica spheres at a volume fraction of approximately, φ = 0.1, sus-

pended in a solution of44 mM hexaethylene glycol monododecyl ether (C12E6) and17 mM

NaCl in water. The colloidal particles used were silica spheres with diameters1.57 µm and

1.2 µm (a size ratio≈ 1.3). The number ratio of the two sizes in suspension was set to be

1 : 1. The size ratio and number ratio in the samples helped to insure that crystallization is

frustrated [72, 189, 190], and thus a geometrically disordered glass formed. Note, initially the

colloidal volume fraction in the sample is relatively dilute. However, as the nextsection will

explain, gravity is used to create dense 2D colloidal glasses which we study.

Attraction between the constituent colloidal particles was achieved using the depletion in-

teraction induced by the suspension of C12E6 surfactant micelles. As discussed in detail in

Chapter 3, the depletion interaction is an entropic force between colloidal particles thatarises
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when small non-adsorbing particles, known as depletants, are added to the suspension. We

showed that the use of C12E6 micelles as depletants provides a temperature tunable depletion

interaction; wherein the strength of the interparticle attraction increases as sample temperature

is increased.

Note, the concentrations of C12E6 and NaCl used in these experiments are the same used

in the depletion experiments described inChapter 3. At these concentrations, the attraction

strength,|Umin|, defined as the depth of the potential well, was measured to be small (< 1kBT ),

i.e., nearly hard-sphere, at temperatures below24 oC. It increased monotonically with temper-

ature. Therefore, to experimentally study a colloidal glass at various attraction strengths, we

did not need to make a large number of samples with various depletant concentrations as has

been done in previous experiments. Instead, a single sample was made, andthe interparticle

attraction strength was varied via control of the sample temperature using a Bioptechs objective

heater. In the end, we studied a densely packed colloidal glass with constant packing fraction,

φ = 0.82, and the interparticle attraction strengths ranged from nearly hard-sphere repulsive

(weak attraction) to strongly attractive.

4.3.2 Preparation of Wedge Cells

Creating densely packed quasi-2D colloidal glasses with the above mentioned temperature tun-

able depletants proved to be a difficult endeavor. Due to the sample’s high viscosity, simply

sandwiching the sample solution between a glass slide and glass coverslip, asdone in many of

our group’s previous experiments, did not yield 2D domains. Thus, another means of sample

preparation was required.

For experiments presented herein, we found that the use of wedge cells provided a means

86



Coverslips

Water

Foil

1.57 m Silica 1.2 m Silica

C12E6 micelles

a b

c

d e

f

0.1o

Figure 4.4: Diagram of wedge cell construction. Drawings are not to scale. a) On a cleaned22
mm by50 mm microscope coverslip, a small drop of water is placed on one end, while a piece
of aluminum foil is placed on the other end of the coverslip. b) A second cleaned coverslip is
then pressed against the first coverslip such that the water spreads asmuch as possible. c) The
sample cell is loaded with the sample material from the foil side, and sealed with UVglue. Here
the sample is a bidispersed suspension of1.57 µm and1.2 µm silica spheres in a suspension
of C12E6 surfactant micelles. d) After the glue has fully cured (4-6 hours), the sample is tilted
upright with the thin end pointing downward. e) After 2-3 days, the colloidalparticles have
sedimented to the thin end and are packed in a dense quasi-2D packing. f) The wedge cell is
then left to lie flat for 24 hours. After which the sample is ready to be imaged.

of repeatably creating large quasi-2D domains (> 8 mm2 in area) of densely packed colloid.

Further, the samples did not alter the temperature tunability of the depletion interaction. The

wedge cells were constructed using a procedure adapted from the procedure used by Gerbodeet

al [191]. A diagram of the procedure is presented in Figure 4.4, and explained in detail below.

First, two22 mm by 50 mm coverslips (Fisher Scientific) were dipped in ethanol to form

a thin coating of the ethanol on the surface of each coverslip. The ethanol coated coverslips
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were then passed through a flame from a Bunsen burner. This burned off the ethanol coating

as well as the coating the manufacturer uses to prevent the coverslips from sticking together.

Removing the manufacturer’s coating prevents the colloidal particles from sticking to the sample

cell walls when the depletion force is strong, and it also makes the coverslipshydrophilic. Both

of these effects are necessary for my experiments. If particles become immobile at high attraction

strength then we cannot study their vibrational properties. The hydrophilicity is also necessary

for the next step in the cell construction.

Next, a very small drop of water (≤ 0.2 µL) is placed at one end of one of the coverslips. A

small piece of aluminum foil is then placed at the other end. The foil used in these experiments

was measured to have a thickness of12.5 µm. The two coverslips are then pressed together.

The water droplet on the one end of the coverlsip spreads, creating a seal, and acting as a tiny

spacer between the two coverslips. A rough calculation based on the volumeof the water droplet

and the area covered after the droplet had spread suggested the height/separation between the

coverslips at this end of the cell, referred to here as the “thin end”, was less than1 µm. At the

other end of the cell, where the piece of foil acts as a spacer, the seperation between the two

coverslips is not smaller than the thickness of the foil (12.5 µm). The foil end of the chamber

is referred to as the “wide end”. Thus, we create a chamber whose thickness increases from

below 1 µm to 12.5 µm over a distance of50 mm, or in other words, a wedge with an angle

approximately equal to0.1 degrees.

The sample solution was then loaded into the chamber with a pipette at the wide end of the

chamber. By using a dilute suspension of colloids to start, the sample solution easily flows into

the sample cell. The sample cell is sealed and glued to a microscope slide using UVoptical
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glue (Norland Optics), and left under a UV lamp for4 − 6 hours to ensure the glue is cured

completely. This is necessary as the following steps take4− 5 days and the samples need to be

as air tight as possible to avoid evaporation over this time period.

Once the glue has cured, the samples are then tilted upright such that the thin end of the cells

are pointed down and left for2 − 3. Then, gravity does the work for us. The colloidal particles

sediment to the thin end of the sample cell. After2− 3 days, most of the particles have packed

tightly at the thin end of the chamber. The samples cells are then laid flat on the work bench

over night to allow the sample to equilibrate. The next morning the sample cell is placed on the

microscope for imaging.

There is a large region (> 8 mm2) near the thin end of the cell such that the thickness of

the cell is approximately1.1 times the particle diameter. In this region the sample is quasi-2D

and densely packed (Figure 4.5). The angle of the wedge is shallow enough that over the field

of view (60 µm by 60 µm), and the cell walls are effectively parallel. As one moves to regions

where the cell thickness increases above1.1 times the particle diameter, but still near the thin

end of the sample cell, densely packed multilayered region is observed as well (shown on right

hand side of cartoon in Fig. 4.5). On the other side of this densely packed multilayered regions,

which is the thick end of the wedge cells, is an extremely dilute colloidal fluid. However, only

the quasi-2D domain of the sample is studied.

4.3.3 The Depletion Interaction in Wedge Cell Chambers

The use of these wedge cells, as well as the use of the same depletant and salt concentrations as

discussed inChapter 3, also allow us to approximate the value of the interparticle potential well

depth,|Umin|, i.e.,attraction strength, as a function of temperature, to be equivalent to the values
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> 300 m 

Figure 4.5: Cartoon representation of wedge cell with experimental image ofquasi-2D dense
colloidal glass. The angle of wedge cell is shallow enough such that overa distance of larger
than 400 µm, the sample is quasi-2D and the top and bottom walls are effectively parallel.
Drawings not to scale.

presented inChapter 3. We make these approximations using osmotic pressure arguments in

the ideal gas limit, as well as using the Carnahan-Starling equation of state [192].

The densely packed multilayered region mentioned above acts as a semipermeable mem-

brane between the densely packed quasi-2D region, the region we are interested in studying,

and the dilute colloidal fluid. The depletant molecules can pass through the membrane and the

colloidal particles cannot. Our system is thus analogous to the system in the traditional osmotic

pressure problem, where two compartments are separated by a semipermeable membrane. The
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pressure of the two sides of our semipermeable membrane must be equal. Forthe following argu-

ments, we denote the side of the membrane consisting of the colloidal fluid ascompartment 1,

and all quantities associated withcompartment 1 with a subscript1, and the densely packed

quasi-2D region ascompartment 2, and all associated quantities with a subscript2.

We first look atcompartment 1, the dilute colloidal fluid. Here, because the concentra-

tion of C12E6 depletants and colloidal particles is the same as in the experiments presented in

Chapter 3, the depletion interactions on this side are the same as those measured inChapter

3. The (3D) colloidal particle volume fraction,ρspheres,1 << 0.1, is negligible compared to

the volume fraction of the depletants,ρdepl,1 = 0.2. Note, here we useρ to denote3D volume

fractions instead of the more commonly usedφ because we have previously definedφ as2D

area fractions. The pressure ofcompartment 1, P1, is dominated by the pressure of the deple-

tants,Pdepl,1, on that side of the semipermeable membrane,i.e., P1 = Pdepl,1, because of low

the colloidal volume fraction is. The depletants are treated as ideal gas, andthus the pressure

P1 = ndepl,1kBT/V1, wherendepl,1 is the number of depletants incompartment 1 andV1 is

the total volume ofcompartment 1. We next define the free volume accessible to the deple-

tants,Vfree,1 = V1 − Vspheres,1, whereVspheres,1 is the total volume of the colloidal particles in

compartment 1. The total volume of the colloidal particles is negligible compared to the total

volume of the compartment, and thereforeVfree,1 ≈ V1. Remember, the volume fraction of the

depletants in this compartment is the same as in the experiments inChapter 3, and therefore

the number density of depletants from the previous depletion experiments,n/V , is equal to the

number density of depletants incompartment 1, n1/Vfree,1. Knowing the volume fraction,ρ,

and dimensions of rod-shaped depletants (lengthL and cross-sectional diameterD) the pressure
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in compartment 1 can be written asP1 = 4ρkBT/πD
2L. Using reasonable approximations for

the average size/dimensions of the (rod-shaped) C12E6 micelle depletants (based off the results

from Chapter 3), for example a lengthL = 20 nm and diameterD = 4 nm, and knowing the

depletant volume fractionρ = 0.2, we calculateP1 ≈ 8× 10−5 kBT nm−3.

Next, we look at the densely packed quasi-2D region,compartment 2, wherein the colloidal

particle volume fraction,ρspheres,2, is no longer negligible. The pressure ofcompartment 2,

P2, is the sum of the pressures from the depletants,Pdepl,2, and the colloidal particles,Pspheres,2,

i.e., P2 = Pdepl,2 + Pspheres,2. The pressure of the two compartments must be equal, therefore:

Pdepl,2 + Pspheres,2 = P1 =
n

V
kBT ≈ ndepl,1

Vfree,1
≈ 8× 10−5 kBT nm−3, (4.1)

whereP1 is the pressure ofcompartment 1, n/V is the number density of depletants from

the experimentsChapter 3, and ndepl,1/Vfree,1 is the number density of depletants in the

free volume accessible to depletants incompartment 1 (ndepl,1/Vfree,1 = n/V , as shown

in the previous paragraph). In the densely packed quasi-2D region, thecolloidal particle vol-

ume fractionρsphere,2 ≈ 0.5. At this volume fraction, we cannot treat the colloidal particles

as an ideal gas, but we can approximate the pressure using the Carnahan-Starling equation of

state,Pspheres,2 = Znspheres,2kBT/V2, wherenspheres,2 is the number of colloidal particles in

compartment 2, V2 is the total volume ofcompartment 2, andZ is the compressibility factor

defined as:

Z =
1 + ρspheres,2 + ρ2spheres,2 − ρ3spheres,2

(1− ρspheres,2)
3 . (4.2)

The colloidal particle number density incompartment 2, nspheres,2/V2 = 2.45 × 10−10, and
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volume fractionρsphere,2 ≈ 0.5 yields a pressure ofPspheres,2 ≈ 3.2× 10−9 kBT nm−3. Look-

ing back to Equation 4.1, we seePspheres,2 is 4 orders of magnitude smaller than the pressure

of compartment 1, P1 ≈ 8 × 10−5 kBT nm−3,and is thus negligible. Therefore, the pres-

sure ofcompartment 2 must be dominated by the pressure of the depletants,Pdepl,2, and so

Pdepl,2 ≈ P1.

In compartment 2 (the densely packed quasi-2D region), the pressure of the depletants,

Pdepl,2 = n2kBT/Vfree,2 [93], wheren2 is the number of depletants andVfree,2 is the free vol-

ume accessible to the depletants incompartment 2. We define the free volume accessible to the

depletants incompartment 2 similarly to the definition of the free volume incompartment 1.

Specifically,Vfree,2 = V2 − Vspheres,2, whereV2 is the total volume ofcompartment 2 and

Vspheres,2 is the volume of colloidal particles incompartment 2. We can now rewrite Equa-

tion 4.1:

ndepl,2
Vfree,2

kBT =
ndepl,1
Vfree,1

kBT =
n

V
kBT. (4.3)

Finally, after the temperature terms cancel, we find the number density of depletants in the

accessible free volume ofcompartment 2, ndepl,2/Vfree,2, is equal to the number density of

depletants from the experiments inChapter 3. Therefore, the strength of the attractive deple-

tion interaction,|Umin|, as a function of temperature, between colloidal particles in the densely

packed quasi-2D region we study should be equal to the attraction strengths measured inChap-

ter 3.
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4.3.4 Image Recording and Particle Tracking

Particle motion was recorded using video microscopy. Bright-field microscopy video was

recorded at100 frames per second for100, 000 frames. Videos were taken at12 sample temper-

atures ranging from23 ◦C to35 ◦C in 1 ◦C steps. The sample temperature was controlled using

an objective heater (Bioptechs) connected to the microscope oil immersion objective. Subpixel

particle tracking algorithms were employed to find positions of theNtot ≈ 1700 particles in each

frame of the videos [87].

4.3.5 Correcting for Oscillatory Noise

Long wavelength oscillations were observed in the individual particle displacements due to very

small temperature fluctuations from the objective heater. A sample of a single particle’s dis-

placement from the average position,ui(t) as a function of time is provided in Figure 4.6a. In

this figure, the long wavelength oscillations are clearly observable. Theselong wavelength oscil-

lations are not part of the Brownian motion of the particles. They had to firstbe removed before

the the data could be properly analyzed.

To remove these oscillations, Fourier analysis was utilized to find the specific frequencies at

which the objective heater was oscillating, and a Fourier filter was implemented toremove those

frequencies. First, the Fourier signal,fi(q), of the displacements from the equilibrium position

for each particle in each dimension was calculated (Fig. 4.6b), whereq is the Fourier frequency

andi = [1, 2, ..., 2Ntot] is the indices representing each particle in each dimension. Then, the

power spectrum of eachfi(q), |fi(q)|2, was calculated and averaged over alli, I(q). In Fig. 4.6d,

an example of one suchI(q) is provided. Notice there is a large peak near the zero frequency
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Figure 4.6: a) Displacement from the equilibrium position,ui(t), for a single particle in the32
oC data set. b) Fourier signal,fi(q), of the displacement in a) before (black squares) and after
(red circles) Fourier filter procedure. c) Fourier filtered displacementfrom equilibrium position.
d) Power spectrum,I(q), of Fourier signal in b) before (black squares) and after (red circles)
filtering.

which is due to the finite time of the data, but there are other distinct peaks at slightly largerq

that are from the long wavelength noise observed in the particle displacements. It is these peaks

that are larger than the zero frequency peak that must be removed.

To filter those peaks out, one need only find the frequency at which the first peak occurs, we

call this frequencyq∗, as all other peaks are at integer multiples ofq∗. The Fourier signal was

set to zero for frequencies betweennq∗ − δ andnq∗ + δ, whereδ is an integer value selected

manually such that the entire peak is set to zero, andn = 1, 2, 3, ... is an integer representing the
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Figure 4.7: Mean-squared displacement,
〈

∆r2
〉

, of 32 oC data set versus lag time∆t before
(black squares) and after (red circles) Fourier filtering procedure.

integer multiple ofq∗ for the higher frequency peaks that are to be removed. Figure 4.6b shows

an exemplary fourier signal before and after filtering for the displacement presented in Fig. 4.6a,

and Fig. 4.6d shows the power spectra of the raw signal and the filtered signal.

Finally, an inverse Fourier transform is performed on the filtered Fouriersignal of each par-

ticle and each direction. The real part of the inverse Fourier signals arethe real particle dis-

placements without the long wavelength oscillations caused by the objective heater, and thus are

the displacements used in the measurements and calculations presented. Figure 4.6c shows the

displacement presented in Fig. 4.6a after filtering.

An exemplary mean-squared displacement,
〈

∆r2
〉

, versus lag time,δt, is presented in Fig-

ure 4.7. It is apparent that this filtering does not significantly alter the the overall motion in the

sample; it just removes the underlying oscillitory noise.
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4.3.6 Vibrational Phonons Calculated from Particle Trajectories and Accounting

for Finite Sampling

The vibrational phonons were calculated from particle trajectories, and finite sample effects were

corrected, using the same techniques discussed inChapter 2 of this thesis. The accumulated

mode numberN(ω) is defined as the number of modes with frequency≤ ω. The density of

statesDOS(ω) is defined as the derivative ofN(ω) with respect toω, dN(ω)/dω. Equivalently,

we can say theDOS(ω) is the number of modes in the frequency range, or bin,[ω, ω + dω]

divided bydω. Commonly, theDOS(ω) is calculated using a constantdω, which is very similar

to calculating the histogram of modes. Here we compensate for varying statistics at different

frequency ranges by allowingdω to vary, but keeping the number of modes per bin,i.e., dN ,

constant. TheDOS(ω) was then calculated fromdN = M consecutive modes, whereM

is an intereger, in the frequency range[ωj , ωj+M ]. The density of states is then defined as

DOS(ωj) =M/(ωj+M − ωj).

4.4 Results and Discussion

4.4.1 Structural Characterization

To check if any structural changes arise as the temperature/attraction strength increases, the pair

correlation function,g(r), was calculated for all temperatures studied. Theg(r) for a subset of

the temperatures are provided in Figure 4.8. All data presents behavior commonly observed in

a glass of a bidispersed colloid suspension. Specifically, 3 nearest neighbor peaks arising from

small-small, small-big, and big-small particle bonds are observed. We find no changes ing(r)
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Figure 4.8: Pair correlation function,g(r), for a representative subset of temperatures (24 oC,26
oC, 28 oC, 30 oC, 32 oC, and34 oC).

as the strength of the interparticle attraction varies, and so evidence of the repulsive glass to

attractive glass transition is not present (within our signal-to-noise) in the structural properties

of the system. Therefore, we turn to the vibrational and dynamical properties to shed light on

this transition. Note that inChapter 3 we presented a method of measuring the interparticle

attraction fromg(r), however this was only possible because that experiment was done in the

dilute colloid packing fraction limit. In this experiment the colloids are packed to nearly their

maximum packing fraction. Therefore, the structure is dominated by the entropy of particle

packing and not by the interparticle interactions [26,76].

4.4.2 Particle Dynamics

The particles dynamics at all temperatures are highly arrested (Figure 4.9), displaying a plateau

in the mean-squared displacements (MSD),
〈

∆r2
〉

. This plateau is a classic feature of colloidal

glasses [19,78,146,193–195], which arises from the particles exploring “cages” formed by their
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neighbors. Note that the upturn commonly seen in glasses at long lag times is notobserved

because no rearrangements are observed during the chosen experimental time interval in order

to insure the vibrational phonons can be calculated. To observe rearrangements, as well as to

measure other traditional dynamical quantities such as the four point susceptibility, χ4, a longer

time interval is needed. However, information about the particle dynamics canstill be ascertained

with the time interval studied here.

We observed that the MSD monotonically decreases with increasing temperature/attraction

strength. To more clearly observe this, we plot the MSD for a given lag time (21.8 seconds)

as a function of temperature,T (Fig. 4.9b). We also provide the attraction strengths,|Umin|,

measured in the previous chapter, and extrapolate to higher temperatures,on the upper x-axis.

It is expected that the dynamics are slow at the higher attraction strengths since the particles

are arrested by both their cage and nearest neighbor bonds. At weaker attraction strengths the

motion is arrested primarily due to caging. We observe that while the MSD decreases monoton-

ically with increasing attraction strength, it does not decrease linearly. Specifically, we observe

what appears to be a saturation in the slowing of the dynamics at strong interparticle attraction

strengths, and this saturation appears to begin when the attraction is between1.5kBT and2kBT .

This saturation of the dynamics suggests the presence of a transition. However, we do not

see a discontinous jump in the MSD as a function of attraction strength, as was observed in the

Debye-Waller factor calculated by MCT. To further explore, and hopefully define, the transition

from the repulsive glass state to the attractive glass state, we calculated the vibrational phonon

modes.
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Figure 4.9: a) Mean-squared displacement,
〈

∆r2
〉

, for all temperatures studied. Dashed line
represents lag time∆ = 21.8 seconds. b)

〈

∆r2
〉

for ∆t = 21.8 seconds of all temperatures,
T , studied. Top x-axis is|Umin/kBT | measured in depletion experiments explained in previous
chapter. Black dashed lines are linear fits to the two regimes (monotonic decrease and plateau),
corresponding to the two glass states (repulsive and attractive). The red dashed line represents the
intersection of the two fits. The shaded red region represents the range of temperatures/attraction
strengths at which the repulsive-to-attractive glass cross-over couldreasonable occur.
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Figure 4.10: Vibrational Density of States,DOS(ω), versus scaled phonon frequency,ω/ 〈ω〉,
in a) linear and b) semi-log plots. Dashed line representsω/ 〈ω〉 = 0.7.

4.4.3 Vibrational Phonon Behavior

The distribution of theDOS(ω) changes as the strength of interparticle attraction increases

(Figure 4.10). Specifically, we observe theDOS(ω) of low frequency modes decreases as the

strength of the attraction grows,i.e., the number of low frequency modes decreases with in-

creasing attraction strength. This is clearly observed whenDOS(ω) is plotted as a function

of the scaled phonon frequency,ω/ 〈ω〉, on a log-scale (Fig. 4.10b). We qualitatively observe
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Figure 4.11: AverageDOS(ω) for ω/ 〈ω〉 < 0.7, 〈DOS(ω/ 〈ω〉 < 0.7)〉, for all temperatures,
T . Top x-axis is|Umin/kBT | measured in depletion experiments. Black dashed lines are lin-
ear fits to the two regimes (monotonic decrease and plateau), corresponding to the two glass
states (repulsive and attractive). The red dashed line represents the intersection of the two fits.
The shaded red region represents the range of temperatures/attraction strengths at which the
repulsive-to-attractive glass cross-over could reasonable occur.

that the value ofDOS(ω) at low frequencies decreases monotonically with increasing tempera-

ture/attraction strength. To quantifiy this effect, we calculated the averageDOS(ω), 〈DOS(ω)〉,

for modes withω/ 〈ω〉 < 0.7 (Figure 4.11). We observe a trend similar to that found in the

MSD, where〈DOS(ω/ 〈ω〉 < 0.7)〉 decreases monotonically and plateaus at strong attraction

strengths. We observe that〈DOS(ω/ 〈ω〉 < 0.7)〉 plateaus at attraction strengths larger than

2kBT . This provides further evidence of a transition occurring when the interparticle attraction

strength is approximately2kBT .
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Figure 4.12: Mean (black squares) and median (red circles) frequencies for all temperatures, T.
Top x-axis is|Umin/kBT | measured in depletion experiments.

It was observed that the mean and median phonon frequencies calculatedincreased mono-

tonically with temperature (Figure 4.12). There was no evidence of a transition in the mean and

median frequencies similar to the trends observed in the MSD and shape of theDOS(ω), as the

mean and median frequencies appeared to follow a nearly linear trend with increasing temper-

ature. This continuous increase in the mean and median frequencies is consistent with the fact

that the interparticle attraction strength increases linearly with temperature. Weexpect that with

increasing attraction strength, the effective spring constants,k, between all pairs of particles

increase. Increasing spring constants leads to increasing frequencies sinceω ∝
√
k. The con-

tinuous increase of the mean frequencies is evidence that the strength of the interparticle bonds

is continuously increasing. Therefore, the plateaus observed in other measured and calculated

quantities are not caused by a saturation in the interparticle bond strength, but due to a saturation

of the dynamical arrest in the system.
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Figure 4.13: a) Participation ratio,PR(ω), for all temperatures versus scaled frequency,ω/ 〈ω〉.
b) PR(ω) of modes withω/ 〈ω〉 < 1. Dashed line represents the cut-off value for extended
(PR(ω) > 0.2) and localized (PR(ω) < 0.2) modes. c) and d) Vector displacement plots of
representative low frequency modes in a repulsive glass (T = 23 oC, |Umin| = 0.5kBT ) and an
attractive glass (T = 35 oC, |Umin| = 4.2kBT ), respectively.

We also measured the localization of the motion of these low frequency modes using the

participation ratio. As previously described inChapter 2, the participation ratio is defined as

PR(ω) = (
∑

α e
2
αx(ω) + e2αy(ω))

2/(Ntot
∑

α e
4
αx(ω) + e4αy(ω)), whereeαx(ω) andeαy(ω) are

thex andy eigenvector components for particleα, respectively. Following convention, we refer

to frequencies with a participation ratio below0.2 as localized, and frequencies with participation

ratio above0.2 as extended [64]. At strong interparticle attractions, extended modes areobserved

that are not found in samples with weak interparticle attractions (Figure 4.13a-b).

Representative low frequency modes of a repulsive glass and an attractive glass are presented

in Fig. 4.13a and b, respectively. These representative modes help visualize the effect that in
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repulsive glasses the motion at low frequencies is quasi-localized, whereas in attractive glasses

extended collective motion is found throughout the sample. The low frequency behavior of the

repulsive glasses studied here are consistent with those previously studied [2,63–69], specifically

the presence of quasi-localized modes is found. The extended motion observed here in the low

frequency modes of attractive glasses is likely due to the strong interparticlebonds in attractive

glasses. As one particle moves, it pulls its neighbors with it, who in turn pull theirneighbors.

This same reasoning can be used to account for the size and shape of cooperative rearrangement

regions (CRRs) observed in attractive glasses is larger than those observed in repulsive glasses

[146].

To quantify the presence of these extended low frequency modes in attractive glasses, we

looked at the lowest 100 modes and found those modes that have a participation ratio larger

than 0.2,i.e., are extended. Looking at the number of the lowest 100 modes that are extended

(Figure 4.14), we again see the same trend as observed in all of our otherdata: the number of

extended modes of the lowest 100 modes that plateaus at attraction strengthsabove2kBT . Thus,

numerous quantities show the same trend: the vibrational and dynamical properties of colloidal

glasses change monotonically as the interparticle attraction strength increases, and then saturates

when the attraction strength is larger than2kBT . This saturation signifies the transition from the

repulsive glass state to the attractive glass state.
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Figure 4.14: Number of extended modes (PR(ω) > 0.2) of the lowest 100 modes. Top x-axis
is |Umin/kBT | measured in depletion experiments. Black dashed lines are linear fits to the two
regimes (monotonic decrease and plateau), corresponding to the two glassstates (repulsive and
attractive). The red dashed line represents the intersection of the two fits.The shaded red region
represents the range of temperatures/attraction strengths at which the repulsive-to-attractive glass
cross-over could reasonable occur.

4.5 Conclusion

In summary, we experimentally studied the vibrational phonons of 2D colloidalglasses with

increasing attraction strength, and present evidence that the transition from the repulsive glass

state to the attractive glass state occurs above an interparticle attraction strength of 2kBT . This

transition is signified by changes in the distribution of theDOS(ω), as well in a saturation of

the particle dynamics. We observe that repulsive glasses have an excess of low frequency modes

compared to attractive glasses. Furthermore, the motion of a majority of the lowest frequency

modes in attractive glasses is spatially extended, wherein repulsive glasses the motion at low
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frequencies is quasi-localized. We also observed that particle dynamics decreased monotoni-

cally with increasing attraction strength, but for attraction strengths larger than 2kBT particle

dynamics are saturated, signifying the system reaching a point of maximal arrest. The quantities

measured herein did not display a discontinous jump at the transition point like those calculated

from MCT, yet still displayed a noticeable change in behavior at the transition point.

There are two things to note in comparing the results presented here and the results from

MCT. First, the state diagram predicted by MCT is for three-dimensional (3D) systems, while

the work here is in 2D. Second, and perhaps more importantly, MCT uses a single interparticle

attraction strength between all particles. However, in our experiments, three interparticle attrac-

tion strengths arise due to the bidispersed colloidal suspension used to frustrate crystallization.

Remember that the depletion force is proportional to the size of the colloidal spheres, and so the

three particle combinations (small-small, small-large, large-large) present in the sample are the

cause of the three attraction strengths. Thus, our system is not a perfect experimental model for

MCT.

4.6 Future Work

Looking forward, we intend to study how the dynamical heterogeneity in colloidal glasses

changes with changing interparticle attraction strength. Previous studies have shown that the

dynamics in attractive glasses are heterogeneous over a larger range of length and time scales

compared to repulsive glasses [146]. These studies further showed that the cooperative rear-

rangement regions (CRRs) in attractive glasses are more compact and include more particles

than the string-like CRRs in repulsive glasses. It would thus be interesting tosee how the size
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and shape of CRRs changes as a function of interparticle attraction strength.

To accomplish this study, samples will be made following the procedure set forth here, but

video microscopy data will be recorded for at least 2 hours. Imaging over such a long time

period ensures a number of rearrangements will be observed, and the upturn in the mean-squared

displacement at long lag times can be measured. Quantification of the dynamicalheterogeneity

will be accomplished by measuring the four-point susceptibility,χ4. Previous studies have used

the peak value ofχ4 as an indicator of the crystal-to-glass transition in samples with increasing

structural disorder [72]. It would thus be interesting to see if the peak inχ4 can be a further

indicator of the transition from the repulsive glass state to the attractive glassstate along with

the measurements presented in this chapter.

It would also be interesting to see if the re-entrance phenomenon observed in 3D experiments

[30, 32–34] is also present in 2D samples (see Figure 4.1). Re-entrance in 3D occurs at lower

colloidal packing fractions than the repulsive-to-attractive glass transition. This phenomenon is

found when the attraction strength between particles increases, and the system transitions from

the repulsive glass state to the fluid state. As interparticle attraction strength increases further,

the system undergoes a second transition from the fluid state to the (solid) gel state. This is

where the name “re-entrance” comes from; the system transitions from a solid state to a liquid

state, and then back to a solid state. To date, re-entrance has not been observed in 2D. Exploring

re-entrance in 2D would contribute to the larger picture of studying the role of dimensionality in

the state diagram of glasses with attractive interparticle interactions, and would provide further

insight into the glass transition.
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Chapter 5

Conclusion/Future Directions

5.1 Summary

The vibrational properties of densely packed colloidal packings depend on the interparticle in-

teractions and configurations of the constituent particles. In this thesis, weexplored how the

vibrational behavior of colloidal packings varied as the interparticle interactions evolved away

from the traditional hard-sphere potential. Specifically, the interactions varied from hard-sphere

repulsion to soft-sphere repulsion to depletion attraction. As part of this process, we developed

a new means of tuning the attractive depletion interaction between colloids via control of deple-

tant shape anisotropy; the scheme introduced a novel methodology for measuring properties of

nano-scale macromolecules using video microscopy techniques.

In the first group of experiments, the phonons of colloidal crystals with bond strength dis-

order were studied. Vibrational modes in soft-particle crystals doped with hard particles were

found to exhibit three distinct frequency regimes. At low frequencies, crystalline (Debye-like)
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behavior in the density of statesDOS(ω) was observed in all systems regardless of the num-

ber of hard-particle dopants,i.e. regardless of the degree of bond heterogeneity. These low

frequency modes display long wavelength behavior in which hard and soft particles participate

equally. At intermediate frequencies, the modes are extended and dominatedby soft particles.

At the highest frequencies, the modes are more localized and are dominatedby hard particles.

Computationally generated spring networks were created for comparison and exhibited many of

the trends observed; they also offered means for extrapolation of the observed behavior to higher

number-fractions of hard spheres. These experimental results imply thatwhile the introduction

of bond-strength disorder does indeed alter some of the vibrational properties of crystalline ma-

terials, compared to the introduction of structural disorder (at least for the levels of disorder

probed by our experiments), the bond-strength does not as readily destroy the crystalline/Debye-

like properties at low frequencies.

The second group of experiments measured the strength and range of thedepletion attraction

between colloidal particlesin situ as a function of temperature. The depletants were surfactant

micelles. We demonstrated that tuning the shape anisotropy of surfactant micelles permits mod-

ulation of the entropic attraction. This work introduces a simple and useful tool for controlling

interactions in suspension. As part of this research, we also measured the rod length of C12E6

surfactant micelles as a function of temperature. The measured lengths arein good agreement

with lengths reported by neutron scattering experiments. We show that the procedure reported

is also an effective way to accurately measure the size and shape of the depletant molecules,

even in the nanoscale range. Thus, the geometric properties of nanoscale macromolecules,e.g.,

nanoparticles, surfactant micelles, chromonic liquid crystal stacks,etc., could be ascertained by
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measuring the depletion interaction between colloids suspended in a solution ofthe nanoscale

macromolecules via the same approach.

The third group of experiments studied the phonons of 2D colloidal glassesas a function of

interparticle potential, from hard-sphere like to depletion with increasing attraction strength. The

work presents evidence for the existence of a cross-over transition from the repulsive glass state

to the attractive glass state as the interparticle attraction strength increases above approximately

2kBT . This transition is signified by changes in the distribution of theDOS(ω), as well as in

a saturation of various properties of the particle dynamics. We observed that repulsive glasses

have an excess of low frequency modes compared to attractive glasses.Furthermore, the motion

of a majority of the lowest frequency modes in attractive glasses tend to be spatially extended,

whereas the motion in the low frequency modes of repulsive glasses tend to be quasi-localized.

We also observed that for a given lag time the mean-squared displacement decreased monoton-

ically with increasing attraction strength, but for attraction strengths larger than2kBT particle

dynamics saturated, signifying the system had reached a point of maximal arrest. Therefore, we

show that in 2D colloidal glasses the transition from the repulsive glass stateto the attractive

glass state exists and occurs at an interparticle attraction strength of about2kBT .

5.2 Future Directions

In this section, ideas for future work with colloids whose interactions are different from the tra-

ditional hard-sphere interaction are described. Further, some of the groundwork for the proposed

experiments has been worked out and is discussed below.
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Figure 5.1: a) Qualitative representation of the state diagram of monodispersed colloidal pack-
ings with interparticle attraction. Red arrow represents the transition to be studied. b) Sample
image of crystal at lowest temperature studied (T = 24.5 oC) in preliminary experiments.

5.2.1 Attractive Interactions in Colloidal Crystals

Experiments with colloidal crystals that are modestly similar to the study of structurally disor-

deredglasses with increasing interparticle attraction strength would be interesting to carry out.

In particular, one could consider how the introduction of attractive interactions changes the be-

havior of structurallyorderedcrystals. Theoretical studies [196] and simulation work [20, 21]

have shown that a phase transition is induced when the interparticle attractionstrength between

constituent particles in a crystal becomes sufficiently strong (Figure 5.1).Specifically, a sin-

gle crystal evolves into a fluid-crystal coexistence regime, wherein the resulting crystal phase is

denser than the initial crystal. Using the temperature tunable depletion interaction presented in

this thesis, a detailed experimental study (the first) of this transition is possible.

We have taken the first steps towards this study. In preliminary work we observed struc-

tural changes in a colloidal crystal as the temperature, and thus interparticle attraction strength,

increased. This preliminary sample was prepared following a similar procedure to that used to
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Figure 5.2: a) Measured pair correlation function,g(r), for all temperatures studied. b) Lattice
constant obtained from first peak ing(r) as function of temperature.

make the glassy samples discussed inChapter 4. The only difference in the procedure was that

a monodisperse suspension of spheres (1.57 µm in diameter) was used to enable crystallization

to occur (Fig 5.1). Therefore, a triangular lattice is formed. The overall structure of the sys-

tem was not observed to change significantly, as evidenced by the measuredg(r) at each of the

few temperatures studied, which were found to be very similar (Figure 5.2a). The first peak

in g(r) represents the lattice spacing of the crystal. Further, the overall structure of g(r) was

not observed to change; we found that the lattice constant shrank monotonically with increasing

attraction strength (Fig. 5.2b).

We then observed that the number of defects increased with increasing attraction strength.

In a perfect triangular lattice, all particles should have 6 nearest neighbors,NN . Therefore, we

defined a defect as particle who hasNN 6= 6. We see the number of defect particles increased as

the temperature (attraction strength) increased (Figure 5.3a), while the number of particles with

NN = 6 obviously decreased (Figure 5.3b). In order to have a single crystal transition into a

coexistence regime between a dilute fluid and a dense crystal, interparticle bonds must be broken

113



24 25 26 27 28 29 30 31 32 33 34

0.00

0.01

0.02

0.03

0.04

0.05

0.06  NN = 4 
 NN = 5
 NN = 7
 NN = 8
 NN = 9

Fr
ac

tio
n

T (oC)
24 25 26 27 28 29 30 31 32 33 34

0.90

0.91

0.92

0.93

0.94

0.95

0.96  NN = 6 

Fr
ac

tio
n

T (oC)

ba

Figure 5.3: Fraction of a) defected particles,i.e., particles with number of nearest neighbors
NN 6= 6 and b) particles withNN = 6 as a function of temperatureT .

to allow some regions of the crystal to melt into a fluid. Thus it makes sense that the number of

defect particles increases.

While these preliminary results on the lattice constants and nearest neighborsshow contin-

uous changes with no clear signature of a transition, the susceptibility,χ6, of the orientational

order parameter,ψ6, may provide an indicator for the crystal to fluid-crystal coexistence. We

observed a sharp change inχ6 as the interparticle attraction strength increased (Figure 5.4).

However, more temperatures (attraction strengths) are necessary in order to fully characterize

and understand these changes inχ6.

To fully map out the phase transition from the crystal to the crystal-fluid coexistence phase,

we also need to study several colloidal particle packing fractions. Further, to more accurately

study this transition, we would ideally start with a perfect crystal lattice,i.e., a crystal with

no defects or grain boundaries. The crystal studied in the preliminary workhad a number of

defects and a grain boundary; this situation could affect the behavior ofthe system as the at-

traction strength is increased. Defects, especially grain boundaries, are the most likely to affect
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Figure 5.4: Susceptibility,χ6, of the orientational order parameter as a function of temperature,
T .

the quantities measured; their presence could make quantifying the transition difficult (but also

interesting). The use of fractionation techniques should decrease the polydispersity in the par-

ticle size which, in turn, could reduce disorder in the crystals, since even asmall amount of

polydispersity is known to affect the structural order of a colloidal crystal. By decreasing the

particle size polydispersity, we should be able to create larger crystal grains, and then by calcu-

latingχ6 as a function of attraction strength for these larger crystal grains, we should be able to

experimentally map out the phase diagram of crystals with attractive interparticle interactions.

5.2.2 Tuning Local Structure of Colloidal Gels

The use of the temperature tunable depletion interaction discussed in this thesisalso provides a

route to controlling the local structure in colloidal gel networks. Most (if not all) colloidal gel

experiments to date have not had control over the local structure of the gel networks studied.

The investigators were content to simply study the dynamical [30, 32–34], rheological [31],

and vibrational properties [4] of gels whose constituent particles are structurally disordered.
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However, it would be interesting to see how the properties of gel networkschange as the local

structure becomes more or less ordered.

We have conducted some qualitative experiments to explore our ability to control the local

structure in a 2D colloidal gel network via tunable depletion interactions. These preliminary

observations were accomplished utilizing the fact that the depletion force between colloidal

spheres is proportional to the size of spheres along with temperature tunable depletion inter-

actions. Specifically, in a binary suspension of colloids with temperature tunable depletion in-

teractions, the sample temperature can first be set to a temperature at which the large particles

aggregate, denoted asT1. We then hold the sample temperature atT1 for some time,τ , to allow

the large particles to self-assemble into colloidal crystallites. Then the sample temperature is

raised to the temperature at which the small particles aggregate, denoted asT2, and a gel net-

work is formed. This procedure is much easier (but also somewhat similar) towhat would be

needed to create colloidal bigels, as briefly discussed inChapter 3.

The timeτ at which the sample remains atT1 is the knob that can be used to control the local

structure of the gel. For longerτ , larger crystal domains of large particles form. Preliminary

observations were done using a binary suspension of1.57 µm (large) and1 µm (small) silica

spheres in a suspension of C12E6 surfactant micelles and salt (NaCl). The number-ratio of big to

small particles was set to approximately 1:1 in these samples. The concentrations of C12E6 and

NaCl are the same as those used in the various experiments explained in this thesis. With these

two sizes of colloidal particles and the concentrations of C12E6 and NaCl used,T1 = 29 oC and

T2 = 35 oC. Since the temperature tunability of the depletion interaction is reversible, large

quantities of data can be acquired from a single sample by decreasing the sample temperature to
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Figure 5.5: a) Colloidal fluid at temperatureT < T1 = 29 oC. b) and c) Gel networks formed
with τ = 0 and60 minutes, respectively.
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belowT1 and waiting for the system to fully melt back into the fluid state (Figure 5.5a).

Qualitatively, the structure was observed to be significantly different forvarious values of

τs. Forτ = 0, we observe the traditional structurally disordered glass network (Fig. 5.5b). The

gel networks formed withτ = 60 minutes appear as crystal domains of large particles connected

by “bridges” of small particles (Fig. 5.5c).

Looking to the future, it would be interesting to characterize the structures formed as a

function of τ , and then study the dynamical and vibrational properties of the various struc-

tures. Perhaps an even more interesting and application-based study would be to measure the

rheological properties of gels as a function of their local structure. Theuse of an interfacial

rheometer [197, 198] would provide a means to study concurrent changes in structure at the

single-particle level while the system is driven by an oscillatory stress.

5.2.3 Vibrational Behavior and Particle Dynamics in Buckled Colloidal Monolay-

ers

Previous colloid experiments have observed that quasi-two-dimensional densely packed col-

loidal spheres form in-plane triangular lattices with out-of-plane up and down buckling. These

samples are sandwiched between parallel walls with a separation approximately 1.5 times the

particle diameter [199, 200]. The buckled monolayer configurations are classical colloids anal-

ogous to the famous antiferromagnetic Ising model. Particles that buckle upwards (downwards)

are associated with the “up” (“down”) spin state (Figure 5.6a). The nearest-neighbor excluded

volume interactions between particles favor opposite states. More simply, up particles want to

be next to down particles, and vice versa. In 1D, these bond requirements are easily fulfilled.

In a 2D triangular lattice however, for any given triangle two bonds are satisfied, but the third
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Figure 5.6: a) Side view of buckled monolayer. Particles buckled upwards(downwards) are those
in the up (down) state. b) Three spins on a triangular plaquette cannot simultaneously satisfy all
antiferromagnetic interactions. c) Experimental image of buckled colloidal monolayer. White
(grey) particles are considered to be in the “up” (“down”) state.

cannot be satisfied. Thus the system is considered “frustrated” (Fig. 5.6b). In fact, this is the

classic example of a frustrated system.

Our previous experiments, and accompanying theory, showed that single-particle dynamics

governed by in-plane lattice distortions partially relieve frustration and produce ground states

with zigzagging stripes (Fig. 5.6c). The out-of-plane particle motions in thesestudies were

treated as binary,i.e.,up or down. To shed further light on such systems it would be interesting to

measure the in-plane and out-of-plane Brownian motion (Brownian vibrations) of the particles.

We performed preliminary experiments along these lines, decomposing the in-plane and

out-of-plane particle motions. The key to carrying out this task is to realize that the out-of-plane

motion can be derived from the intensity of the particles as measured by videomicroscopy.
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Figure 5.7: Participation fraction,PF (ω), for the in-plane (black squares) and out-of-plane (red
circles) particle vibrations.

Specifically, we measured the vibrational phonons of the zigzagging stripeground state. We

observed that the motion at low frequencies was dominated by the out-of-plane motion, while

the motion at high frequencies was dominated by the in-plane motion (Figure 5.7). Presently,

the conversion of particle intensity to out-of-plane motion was somewhat coarse and could be

improved. To further the study of the in- and out-of-plane vibrations, a more accurate mapping of

the particle intensities to particle motions is necessary. The use of holographicvideo microscopy

[201] might be a useful tool for this endeavor.

In the future, it would be interesting to further explore the differences between the in-plane

and out-of-plane motion in such a frustrated system. In-plane, the average particle positions are

stable as the 2D structure of the system is always a triangular lattice. However, particles can

“flip” from the up state to the down state and vice versa. One could considerthis changing of

state as somewhat analogous to rearrangements observed in glasses. When decomposing the
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particle motions into their in-plane and out-of-plane contributions, it might be observed that

the in-plane motion follows behavior found in ordered crystals, while the out-of-plane motion

follows behavior more commonly found in disordered packings. Perhaps this frustrated system

might lead to a new form of material due to its display of both crystalline and glassy behavior.

5.2.4 Measuring Length Distributions of Lyotropic Chromonic Liquid Crystal

Stacks

Liquid crystals (LCs) are partially oredered matter that are found in our every-day lives, in de-

vices such as computer screens, phone screens and television screens. The most prevalent LC

phase of interest is the nematic phase wherein the rod-like mesogens tend to align along a partic-

ular direction (they are orientationally ordered) but the mesogens are translationally disordered.

An especially interesting set of liquid crystals are lyotropic chromonic liquid crystals (LCLCs).

LCLCs are composed of stacks of plate-like molecules. The stacks are very long compared to

the cross-sectional width (one molecule), and so the aspect ratio of the stack is large,i.e., the

stacks have a large anisotropy and can be modeled as thin rods. The phases observed in LCLCs

are found to depend on the length of the stacks, which can be tuned via concentration or tem-

perature. Ultimately, it is desirable to know the distribution of stack sizes in order to better

understand these LCLC systems, and also to further advance the varioustechnologies that make

use of these particular liquid crystals which reside in water-based media andthus hold potential

to bring LC technology to biomaterials.

Previous (unpublished) research in our lab has shown that the LCLC Disodium cromogly-

cate (DSCG) can be used as a depletant to induce an attractive force between colloidal spheres
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Figure 5.8: Sample images of 1µm polystyrene spheres in a suspension of 0.1% NaCl a) 0.01%
and b) 7% DSCG. Observe that at low concentrations of DSCG (a) no aggregation is found,
while at high concentrations (b) aggregation is observed due to depletion interactions.

suspended in a solution of DSCG (Figure 5.8). In this work, we observedthat at very low con-

centrations of DSCG no attraction arose between the colloidal particles (Fig.5.8), but when the

concentration of DSCG was increased, then the colloidal spheres beganto aggregate (Fig. 5.8).

In Chapter 3 of this thesis, we described a method to measure the sizes of anisotropic nano-

scale macromolecules; this approach measured the depletion interaction between micron-size

colloidal particles. While our early work on LCLC aggregation was qualitative, in the context of

this new experimental probe we should be able to measure the average size (and size distribution)

of the DSCG LCLCsin situ. In particular, by fine tuning of various experimental parameters,

e.g.,concentrations of DSCG and salt (NaCl) and sample temperature, the experimental pro-

cedure described inChapter 3 could be employed to quantitatively characterize the size and

distribution of sizes of DSCG stacks as a function of both concentration andtemperature. This

information would be new, and ultimately, understanding the size distributions ofthe DSCG

stacks would help us further understand and predict the phase behavior of such LCLCs.
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