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Microbiome and Metagenomics: Statistical Methods, Computation and
Applications

Abstract
Human microbial communities are associated with many human diseases such as obesity, diabetes and
inflammatory bowel disease. High-throughput sequencing technology has been widely used to profile the
microbial communities in order to understand their impact on human health. In the first part of this
dissertation, we analyzed fecal samples using shotgun metagenomic sequencing from a prospective cohort of
pediatric Crohn's disease patients, who started therapy with enteral nutrition or anti-TNF-alpha antibodies.
The results reveal the full complement and dynamics of bacteria and fungi during treatment. Bacterial
community membership was associated independently with dysbiosis, intestinal inflammation, antibiotic use,
and therapy. Motivated by the problems in real data analysis, this dissertation also presents two novel
statistical models for microbiome data analysis. One important aspect of metagenomic data analysis is to
quantify the bacterial abundances based on the sequencing data. In order to account for certain systematic
differences in read coverage along the genome, we propose a multi-sample Poisson model to quantify
microbial abundances based on read counts that are assigned to species-specific taxonomic markers. Our
model takes into account the marker-specific effects when normalizing the sequencing count data in order to
obtain more accurate quantification of the species abundances. Another statistical model we proposed is for
longitudinal microbiome data analysis. A key question in longitudinal microbiome studies is to identify the
microbes that are associated with clinical outcomes or environmental factors. We develop a zero-inflated Beta
regression model with random effects for testing the association between microbial abundance and clinical
covariates for longitudinal microbiome data. The model includes a logistic regression component to model
presence/absence of a microbe in samples and a Beta regression component to model non-zero microbial
abundance, where each component includes a random effect to take into account the correlations among
repeated measurements on the same subject. The statistical methods were evaluated using simulations as well
as the real data from Penn microbiome study of pediatric Crohn's disease.
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ABSTRACT

MICROBIOME AND METAGENOMICS: STATISTICAL METHODS, COMPUTATION AND

APPLICATIONS

Zhang Chen

Hongzhe Li

Human microbial communities are associated with many human diseases such as obesity, diabetes

and inflammatory bowel disease. High-throughput sequencing technology has been widely used to

profile the microbial communities in order to understand their impact on human health. In the first

part of this dissertation, we analyzed fecal samples using shotgun metagenomic sequencing from a

prospective cohort of pediatric Crohn’s disease patients, who started therapy with enteral nutrition

or anti-TNFα antibodies. The results reveal the full complement and dynamics of bacteria and fungi

during treatment. Bacterial community membership was associated independently with dysbiosis,

intestinal inflammation, antibiotic use, and therapy. Motivated by the problems in real data analysis,

this dissertation also presents two novel statistical models for microbiome data analysis. One im-

portant aspect of metagenomic data analysis is to quantify the bacterial abundances based on the

shotgun sequencing data. In order to account for certain systematic differences in read coverage

along the genomes, we propose a multi-sample Poisson model to quantify microbial abundances

based on read counts that are assigned to species-specific taxonomic markers. Our model takes

into account the marker-specific effects when normalizing the sequencing count data in order to ob-

tain more accurate quantification of the species abundances. The estimated marker-specific effects

have interesting biological interpretations. Another statistical model we proposed is for longitudinal

microbiome data analysis. A key question in longitudinal microbiome studies is to identify the mi-

crobes that are associated with clinical outcomes or environmental factors. The analysis of such

data is complicated due to zero inflation, skewness of the data and dependency of measurements

over time. We develop a zero-inflated Beta regression model with random effects for testing the

association between microbial abundance and clinical covariates for longitudinal microbiome data.

The model includes a logistic regression component to model presence/absence of a microbe in

samples and a Beta regression component to model non-zero microbial abundance, where each

component includes a random effect to take into account the correlations among repeated mea-
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surements on the same subject. The statistical methods were evaluated using simulations as well

as the real data from Penn microbiome study of pediatric Crohn’s disease.
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CHAPTER 1

INTRODUCTION

1.1. Human microbiome

We live in an environment that is full of microorganisms such as bacteria, fungus and virus. It is

hard for humans to notice the existences of those small living creatures but they are everywhere.

The human body is one of major habitats for those microorganisms. It is well known that hundreds

of thousands of microbes reside on or in the human body such as skin, mouth, gut and vagina. The

total number of bacterial cells over the human body is estimated to be 1014, which is ten times more

than the number of human cells. The term, ”microbiome”, is used to refer to the totality of microbes

and their genomes. Different human body sites show distinctive microbiome compositions. For

example, the human gut is dominated by Firmicutes and Bacteroidetes, while the skin is primarily

inhibited by Actinobacteria and Bacteroidetes (Cho and Blaser, 2012). Substantial interpersonal

and temporal variations of microbiome composition are also observed in many microbiome studies

(Turnbaugh et al., 2007). The variation of the microbiome composition is possibly due to host

genetics (Knights et al., 2014), physiology (Sommer and Bäckhed, 2013), lifestyle (Wu et al., 2011)

and environment (Adams et al., 2015). Since these microbes over the human body are crucial to

human health, they are often considered as another human organ.

The microbiome plays a critical role in human health. Some of the microbes are beneficial to hu-

man health. For instance, probiotic bifidobacteria can protect the host from lethal infection (Fukuda

et al., 2012). Faecalibacterium prausnitzii is found to have anti-inflammatory effect and can guard

the host from intestinal inflammation (Sokol et al., 2008). Bacteroides and other intestinal bacteria

are essential for carbohydrate fermentation in the human gut. The product, fatty acids, gener-

ated from those microbes are then absorbed by human gut as an energy source (Wexler, 2007).

However, not all microbes are promoting good health for humans. Some of them are detrimen-

tal. For example, infection of Clostridium difficile can cause inflammation, bleeding and diarrhea,

which is life-threatening and kills thousands of people in the United States each year (Lessa et al.,

2015). E.coli O157:H7, which is a specific strain of Escherichia coli, can cause diarrhea, abdominal

pain, fever, dehydration, and sometimes kidney failure. It is estimated that this pathogen causes

1



about 2,100 hospitalizations and 60 deaths in the United States each year (Berkenpas, Millard, and

Cunha, 2006). In 2011, the outbreak of E.coli O104:H4, another strain of Escherichia coli, caused

hundreds of people to be admitted to hospital and resulted in several deaths in Germany. In order

to decipher the function and impact of the microbes on the human well-being, great efforts have

been made to develop new technology to study the microbiome in an accurate and efficient way.

1.2. High throughput sequencing approaches for microbiome studies

Before the advent of high-throughput sequencing technologies, researchers studied the human

microbiome by culturing the individual microbe. This approach has some disadvantages. First,

most microbes have not been cultured. Therefore, those non-culturable microbes in the sample

are difficult to study. Second, the traditional approach can only study a few microbes at a time

and thus is not efficient to profile the whole microbial community. Next generation sequencing

(NGS) technology has been widely used to explore the microbial community in order to understand

their roles in human health and diseases. This sequencing approach can be applied to samples

directly from patients without culturing the microbes, which is especially useful for studying non-

culturable microbes. Since the NGS technology can sequence millions of DNA sequences in a

parallel fashion, it has the advantage of investigating a large number of microbes in a sample at the

same time.

Currently, two NGS based approaches have been used in microbiome studies. Both approaches

are powerful and have been widely used in human microbiome studies, such as the Human Micro-

biome Project (HMP) (Turnbaugh et al., 2007) and the Metagenomics of the Human Intestinal Tract

(MetaHIT) project (Qin et al., 2010).

One approach is based on 16S ribosomal RNA (rRNA) sequencing, which sequences the 16S

rRNA gene to profile the bacterial community. The 16S rRNA gene uniquely exists in prokaryotes

and its high variability in microbial genomes can be exploited to identify different microbes. In this

approach, researchers design PCR primers based on the conserved region of the 16s rRNA gene

to amplify part of the genomic region of this gene. The amplicons are then sequenced by high-

throughput sequencing technology. The sequencing reads generated from the variable regions of

the 16s rRNA gene can be used for taxonomic classification and abundance quantification. How-

ever, the 16S data are limited in discerning the bacteria at the species or strain level. Also, the PCR

2



amplification could introduce bias and thus affects the accuracy of abundance quantification. Since

the 16S rRNA approach is cost effective and the data are relatively easy to analyze, it has been the

most popular approach in microbiome studies.

One important issue in 16S rRNA sequencing data analysis is how to identify the taxonomic ori-

gins of the 16S sequences. One strategy is to align the obtained 16S sequences against the 16S

databases such as Greengenes (DeSantis et al., 2006), RDP (Cole et al., 2014) and SILVA (Quast

et al., 2013). Another strategy is to cluster the sequences into Operational Taxonomic Units (OTUs)

using certain similarity threshold. Each cluster is assumed to represent one taxon. For instances,

with 97% sequence similarity as the clustering threshold, the OTUs are considered to represent

species. After obtaining the OTUs and their taxonomic assignments, one often performs standard

analyses such as distance based analysis, ordination (multiple dimensional scaling or principle

component analysis), clustering and association analysis such as regression analysis. For an ex-

ample of 16S rRNA data analysis, readers can refer to Wu et al. (2011). Several computational

tools have been developed for 16S rRNA sequencing data analysis such as QIIME (Caporaso et

al., 2010) and mothur (Schloss et al., 2009). The commonly used computational methods have

been included in those softwares.

Alternatively, shotgun sequencing of metagenomes, which sequences all genome sequences pre-

sented in the sample instead of just one marker gene, provides a more comprehensive approach

to study human microbiome. This approach provides richer information about the microbial compo-

sition and gene functions. However, the analysis for shotgun sequencing data is more challenging

than 16S rRNA sequencing data. One difficulty is how to quantify the microbial abundance. Since

the sequencing reads are generated from the whole genomes and microbial genomes share great

similarity, it is difficult to uniquely align the reads back to the corresponding reference genomes.

This makes the task of abundance quantification quite challenging. Currently, the most widely used

strategy is to utilize marker genes, either universal markers (Sunagawa et al., 2013) or taxa spe-

cific markers (Segata et al., 2012). For example, MetaPhlAn compares currently known microbial

genomes from public databases and identifies taxa specific markers (Segata et al., 2012). Those

taxa specific markers are then used as the references for alignment. Reads that fail to be aligned

to the markers are discarded. Reads that can be aligned are used for quantifying microbial abun-

dance. The marker-based analysis strategy used by MetaPhlAn is demonstrated in Figure 1.1.

3



Bacterial	genome	X	

Bacterial	genome	Y	

Bacterial	genome	Z	

Taxa	specific	markers	

Reads	from		
shotgun	sequencing	

These	reads	can	be	uniquely	aligned	
to	the	corresponding	genome	

Figure 1.1: An illustration of marker-based analysis strategy for shotgun metagenomic data. Taxa
specific markers are identified by comparing known microbial genomes from public databases.
Those taxa specific markers are then used as the references for alignment. Reads that fail to be
aligned to the markers are discarded. Reads that can be aligned are used for quantifying microbial
abundance.
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This dissertation focuses on statistical and computational methods for analysis of shotgun metage-

nomic data, motivated by Penn microbiome study of pediatric Crohn’s disease.

1.3. Penn microbiome study of pediatric Crohn’s disease

Inflammatory bowel disease (IBD) is a disease involving chronic inflammation of gastrointestinal

track. IBD can be categorized by the location of the inflammation into two forms, Crohn’s disease

(CD) and ulcerative colitis (UC). The symptoms of IBD include severe diarrhea, pain, fatigue and

weight loss. The cause of the IBD is not entirely known although it is known to associate with ab-

normal host immune response. Recent studies show that the gut microbiome may play a role in the

IBD onset (Gevers et al., 2014) but the mechanism is not completely understood. Although treat-

ments for IBD are available, currently there is no effective treatment to cure IBD without remission

or relapse. One commonly used treatment is anti tumor necrosis factor (anti-TNF) treatment, which

uses antibodies directed against host immune protein tumor necrosis factor α (TNFα) to suppress

immune response of the host. Anti-TNF treatment is not expected to alter the gut microbiome com-

position directly and is reported to have side effects including increased risk of infection (Borrelli

et al., 2006; Rutgeerts et al., 2012). Another treatment is enteral nutrition treatment, also called

diet treatment, which feeds patients with defined formula diet. It possibly alters the gut microbiome

composition. Diet treatment avoids immunosuppression but is difficult to maintain a long term effect

(Grover, Muir, and Lewindon, 2013). The mechanisms of these treatments are not entirely clear.

To improve our understanding of the role of human gut microbiome in Crohn’s disease pathogen-

esis and how microbiome is associated with treatment response, we carried out a microbiome

study, Pediatric Longitudinal Study of Enteral Nutrition Therapy and Stool Microbiome Composi-

tion (PLEASE) at University of Pennsylvania (Penn) and The Children’s Hospital of Philadelphia

(CHOP). This is a collaborative work with Dr. Gary Wu (Department of Gastroenterology), Dr. Rick

Bushman (Department of Microbiology), Dr. Jim Lewis (Department of Epidemiology) and people

on their teams. The basic study design is illustrated in Figure 1.2. In this study, we recruited a

prospective cohort of pediatric Crohn’s disease patients (ninety children) and collected their fecal

samples as well as clinical data. The patients started therapy with either enteral nutrition or anti-

TNFα antibodies (52 anti-TNF; 22 exclusive enteral nutrition [EEN]; 16 partial enteral nutrition with

ad lib diet [PEN]). Stool samples were collected at four time points: baseline, 1 week, 4 weeks,
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Week 1: Stool Microbiome, Dietary recalls x 3, FCP  

Week 4: Stool Microbiome, Dietary recalls x 3, FCP  

Week 8: Stool Microbiome, Dietary recalls x 3, FCP, PCDAI  

90 Children with Active  
Crohn’s Disease 

Diet Therapy (n=38) Anti-TNF Therapy (n=52) 

Treatment at Discretion 
of Treating Physician 

Baseline: Stool Microbiome, Dietary recalls x 3, FCP, PCDAI  

Figure 1.2: An illustration of the Penn Pediatric Longitudinal Study of Enteral Nutrition Therapy and
Stool Microbiome Composition (PLEASE) study. This is a collaborative work with Dr. Gary Wu
(Department of Gastroenterology), Dr. Rick Bushman (Department of Microbiology), Dr. Jim Lewis
(Department of Epidemiology) and people in their research groups.
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and 8 weeks into therapy. We analyzed fecal samples using shotgun metagenomic sequencing

approach.

1.4. Dissertation organization

This dissertation is structured as following. Chapter 2 presents the Penn microbiome study of pedi-

atric Crohn’s disease. In this project, we collected stool samples and clinical data from a prospective

cohort of pediatric Crohn’s disease patients, who started therapy with enteral nutrition or anti-TNFα

antibodies. The fecal samples were analyzed by shotgun metagenomic sequencing approach. The

results reveal the full complement and dynamics of bacteria and fungi during treatment. Bacte-

rial community membership was associated independently with dysbiosis, intestinal inflammation,

antibiotic use, and therapy.

Motivated by the problems in real data analysis, this dissertation also presents two statistical models

for microbiome data analysis. Chapter 3 presents a multi-sample Poisson model to quantify micro-

bial abundances. One important aspect of metagenomic data analysis is to quantify the bacterial

abundances based on the sequencing data. In order to account for certain systematic differences

in read coverage along the genomes, we propose a multi-sample Poisson model to quantify micro-

bial abundances based on read counts that are assigned to species-specific taxonomic markers.

Our model takes into account the marker-specific effects when normalizing the sequencing count

data in order to obtain more accurate quantification of the species abundances. The estimated

maker-specific effects have further biological interpretations.

Chapter 4 presents statistical models for longitudinal microbiome data analysis. A key question

in longitudinal microbiome studies is to identify the microbes that are associated with clinical out-

comes or environmental factors. A zero-inflated Beta regression model with random-effects (ZIBR)

is developed for testing the association between microbial abundance and clinical covariates for

longitudinal microbiome data. The model includes a logistic regression component to model pres-

ence/absence of a microbe in samples and a Beta regression component to model non-zero mi-

crobial abundance, where each component includes a random effect to take into account the cor-

relations among the repeated measurements on the same subject. The statistical methods were

evaluated using simulations as well as the real data analysis from Penn microbiome study of pedi-

atric Crohn’s disease.
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All the analyses included in this dissertation were carried out in a reproducible research fashion.

Chapter 5 briefly demonstrates the examples of reproducible research for the three projects pre-

sented in the dissertation.

Finally, Chapter 6 presents conclusions and outline the future research directions. The three

projects presented in Chapters 2, 3 and 4 are self-contained. Readers who are interested in in-

dividual project can read the corresponding chapter without referring to other ones.
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CHAPTER 2

INFLAMMATION, ANTIBIOTICS, AND DIET AS ENVIRONMENTAL STRESSORS OF

THE GUT MICROBIOME IN PEDIATRIC CROHN’S DISEASE

In the chapter, we present the Penn microbiome study of pediatric Crohn’s disease. Dysbiosis,

which is signified by abnormal composition of intestinal bacteria, is characteristic of Crohn’s dis-

ease. Disease treatments include dietary changes and immunosuppressive anti-TNFα antibodies

as well as ancillary antibiotic therapy, but their effects on microbiota composition are undetermined.

Using shotgun metagenomic sequencing, we analyzed fecal samples from a prospective cohort of

pediatric Crohn’s disease patients starting therapy with enteral nutrition or anti-TNFα antibodies

and reveal the full complement and dynamics of bacteria and fungi during treatment. Bacterial

community membership was associated independently with intestinal inflammation, antibiotic use,

and therapy. Antibiotic exposure was associated with increased dysbiosis, whereas dysbiosis de-

creased with reduced intestinal inflammation. Fungal proportions increased with disease and an-

tibiotic use. Dietary therapy had independent and rapid effects on microbiota composition distinct

from other stressor-induced changes and effectively reduced inflammation. These findings reveal

that dysbiosis results from independent effects of inflammation, diet, and antibiotics and shed light

on Crohn disease treatments. The work in this chapter has been published and readers who are

interested in this work can refer to Lee et al. (2015) and Lewis et al. (2015).

This project is a collaborative work with Gary Wu (Department of Gastroenterology), Rick Bush-

man (Department of Microbiology), Jim Lewis (Department of Epidemiology) and people in their

teams. They recruited the subjects, collected samples and clinical data, prepared and sequenced

the samples. My role in this project is to analyze the data and generate the report.

2.1. Introduction

The human gut microbiota is densely populated by microbes from all three domains of life together

with their viruses (Hoffmann et al., 2013; Human Microbiome Project Consortium, 2012; Minot et al.,

2011). Crohn’s disease results from a pathologic interaction between the mucosal immune system

and the environment, particularly the microbes residing in the gut lumen (Sartor, 2006; Sartor,
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2008), and is characterized by dysbiotic gut bacterial composition (Huttenhower, Kostic, and Xavier,

2014; Khor, Gardet, and Xavier, 2011; Sartor, 2006; Sartor, 2008). Numerous human genetic

loci encoding proteins involved in host immune responses have been linked to Crohn’s disease

(Jostins et al., 2012), but the impact of these genes on the dysbiosis associated with Crohn’s

disease is limited (Knights et al., 2014). Rather, dysbiosis is hypothesized to be a response of the

microbes, particularly bacteria, to environmental stressors such as the host inflammatory response

(Huttenhower, Kostic, and Xavier, 2014) and/or the production of electron acceptors that facilitate

anaerobic respiration (Winter and Bäumler, 2014). Dysbiosis is commonly characterized by an

expansion of Proteobacteria and a decrease in Firmicutes, along with a decrease in community

richness (Nagalingam and Lynch, 2012). Much less is known about the responses of other domains

of microbial life to environmental stressors. Similarly, it is unknown whether dysbiosis resulting from

inflammation is rapidly reversible. Patients with Crohn’s disease are exposed to antibiotics and

dietary changes that are likely to affect the microbiota, but the influence of these factors and their

interactions with each other are incompletely understood.

Antibiotics are often used as an ancillary therapy for Crohn’s disease (Khan et al., 2011). However,

the main therapies for Crohn’s disease includes episodic or chronic immunosuppression with corti-

costeroids, antimetabolite agents, or antibodies directed against host immune proteins such as tu-

mor necrosis factor α (anti-TNF) (Borrelli et al., 2006; Grover, Muir, and Lewindon, 2013; Rutgeerts

et al., 2012). The anti-TNF medications are administered parenterally and are not expected to alter

the gut microbiota composition directly. An alternative therapy, used predominantly in children, is

the defined formula diet, also known as enteral nutrition therapy. Both elemental and polymeric for-

mulae, containing, respectively, amino acids and intact protein, have proved efficacious in treating

symptoms and intestinal inflammation in Crohn’s disease in addition to supporting nutritional needs

for growth and weight maintenance (Borrelli et al., 2006; Grover, Muir, and Lewindon, 2013). The

efficacy of these diets is greatest when used as the exclusive source of nutrition (Grover, Muir, and

Lewindon, 2013; Lee et al., 2015). Dietary therapy has the advantage of avoiding immunosuppres-

sion but is difficult to maintain long term. If the mechanism of action of dietary-based therapies were

understood, it might be possible to develop less restrictive diets that deliver the same therapeutic

benefit. One hypothesis is that diet therapy alters the composition of the gut microbiota in a man-

ner that contributes to the therapeutic benefit, though data supporting this are limited (Gerasimidis

et al., 2014; Kaakoush et al., 2015).
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We reasoned that longitudinal characterization of the gut microbiome of pediatric Crohn’s disease

patients initiating therapy would allow us to characterize the concurrent effects of intestinal inflam-

mation, antibiotics, and diet on gut microbial community structure. We conducted a longitudinal

study of 90 children with Crohn’s disease who were initiating treatment with either a defined for-

mula diet or anti-TNF therapy and compared them to 26 healthy control children. We tracked

symptoms, mucosal inflammation, and changes in the gut microbiome over an 8-week study pe-

riod. The gut microbiome was quantified using shotgun metagenomic DNA sequence analysis of

longitudinal samples. Dysbiosis was quantified as the distance of each sample from the centroid

of samples from healthy controls. Communities partitioned into two distinct clusters based on the

bacterial composition, as seen previously (Frank et al., 2007; Gevers et al., 2014), one of which

overlapped the healthy controls. The dysbiotic community was associated with increases in spe-

cific fungi, prior antibiotic therapy, and higher concentration of human DNA in feces. By tracking

the microbiota composition over the course of therapy, we found that dysbiosis was reduced in

response to decreased bowel inflammation, and that inflammation, antibiotic exposure, and diet

independently influenced different taxa. Fungi were elevated with disease and antibiotic use, but

diminished with diet therapy. Thus while dysbiosis in the gut is common in Crohn’s disease, the

response of the gut microbiome depends on the environmental stressor.

2.2. Clinical outcomes in patients treated with a defined formula diet versus anti-

TNF

Ninety children initiated one of the study therapies (52 anti-TNF; 22 exclusive enteral nutrition

[EEN]; 16 partial enteral nutrition with ad lib diet [PEN]) (Lee et al., 2015). EEN- and PEN-treated

children consumed approximately 90% and 53% of daily calories from dietary formulas, respec-

tively. Inflammation was quantified by measuring fecal calprotectin (FCP). Response to therapy

was defined as a reduction of FCP to below 250 mg/g because this measure is associated with

diminished mucosal inflammation (Lin et al., 2014). Reduction in FCP below 250 mg/g was more

common among those receiving anti-TNF (62%) and EEN (45%) than PEN (10%) (Lee et al., 2015).

2.3. Microbial community patterns in Crohn’s disease and healthy controls

Adequate stool samples were available from 86 individuals to conduct shotgun metagenomic anal-

ysis. Samples were collected at four time points: baseline, 1 week, 4 weeks, and 8 weeks into
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therapy (Table 2.1). We also compared stool samples from 26 healthy children collected in a prior

study (Wu et al., 2011) but analyzed by shotgun metagenomic sequencing here. None of the healthy

children had received antibiotics in the prior 6 months. DNA was prepared from whole stool, and

sequenced using the Illumina HiSeq paired-end method. After filtering out low-quality, human, and

contaminating reads, we were left with 6.5× 1011 bases of microbial DNA sequence for analysis.

We quantified the bacterial taxonomic composition using MetaPhlAn (Segata et al., 2012). Fig-

ure 2.1 shows a comparison of bacterial lineages in the healthy control subjects and pediatric

Crohn’s disease cohort prior to initiation of therapy (hereinafter referred to as ”baseline”). Fig-

ure 2.1A shows taxonomic proportions for each sample at baseline with metadata summarized

above the heat map (all time points are shown in Figure 2.2).

After filtering out very-low-abundance genera, comparison of median relative abundances showed

14 of 45 genera differed between children with Crohn’s disease and healthy controls (FDR con-

trolled p < 0.05 by Wilcoxon rank-sum test; Table 2.2). The Crohn’s patients had reduced relative

abundance of Prevotella, Eubacterium, Odoribacter, Akkermansia, Roseburia, Parabacteroides,

Alistipes, Coprococcus, Dorea, and Ruminococcus and increased abundance of Escherichia, Kleb-

siella, Enterococcus and Veillonella. Random forest was used to identify bacterial lineages that best

distinguished healthy children from Crohn’s patients with active disease, and predicted Crohn’s dis-

ease and normal with 86% prediction accuracy. Mostly similar lineages (Prevotella, Odoribacter,

Eubacterium, Escherichia, and Faecalibacterium) were found to distinguish the groups.

Community patterns were analyzed using partitioning around medoids with estimation of number of

clusters (PAMK) to find the optimal number of clusters, and visualized after multidimensional scal-

ing (MDS) (Figure 2.1B). Samples from patients with active Crohn’s disease partitioned into two

clusters (Figure 2.2B): one that was near to the healthy controls (near cluster) and one that clus-

tered separately (far dysbiotic cluster), paralleling previous studies (Frank et al., 2007; Gevers et al.,

2014). Thirty of 45 genera differed in abundance (q < 0.05) between the two clusters (Table 2.3).

The far dysbiotic cluster was characterized by an increased relative abundance of Streptococcus,

Klebsiella, Lactobacillus and reduced relative abundance of Faecalibacterium, Parabacteroides,

Dorea, Blautia, Holdemania, Collinsella, Coprococcus, Odoribater, Prevotella, Bacteroides, Dialis-

ter, Eubacterium, Alistipes, and Ruminococcus. Random forest with bacterial abundance had 92%

prediction accuracy for predicting these two clusters. The top five most predictive genera were
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Figure 2.1: Bacterial composition in samples from children with Crohn’s disease and healthy con-
trols. (A) A heatmap demonstrating relative abundance of bacterial taxa prior to therapy according
to presence or absence of Crohn’s disease, cluster assignment, use of corticosteroids and antibi-
otics, FCP concentration, and response to therapy. Metadata are indicated by the color code at the
top of the figure. White cells indicate missing data. Taxa that were statistically different in abun-
dance between Crohn’s disease and healthy controls are identified by *; taxa that were statistically
different in abundance between the two Crohn’s disease clusters are identified by + (q< 0.05). FCP
in this and subsequent figures indicates fecal calprotectin. Samples were ordered by the metadata
(healthy versus Crohn’s samples, and cluster 1 versus cluster 2, then other forms of metadata). (B)
MDS analysis of samples from children with Crohn’s disease and healthy controls. Bacterial taxa
present were quantified by MetaPhlAn, distances were calculated using binary Jaccard Index, and
samples were plotted based on MDS. Samples from healthy controls are shown by the filled circles,
and Crohn’s disease as open circles. Clusters were defined by partitioning around medoids with
estimation of number of clusters (PAMK), and are colored blue (healthy associated) and red (dysbi-
otic). The size of the dot is scaled by the proportion of human DNA in the sample. (C) Percentage
of human DNA reads in each metagenomic sequence sample. Near cluster (blue, associated with
healthy controls) and far cluster (red, dysbiotic) refer to the groups shown in (B).
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Figure 2.2: Bacterial composition in samples across all time points and analysis on the species
level. A) Heat map of genera detected over all time points. Sample metadata is summarized at
the top; a key to the metadata summarized is at the right. B) Silloutte score analysis of clustering
by taxonomic composition at the genus level. The analysis specifies two as the optimal number of
clusters. Separation is modest, so that data could also be described as a continuum. C) Analysis
at the species level. Heat map of taxonomic proportions. Crohn’s disease and healthy controls
are identified by *; taxa that were statistically different in abundance between the two Crohn’s
disease clusters are identified by + (q<0.05). D) PAM analysis of clustering using species-level
assignments. E) Ordination showing formation of two clusters using species-level data.
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Blautia, Faecalibacterium, Dialister, Lactobacillus, and Bacteroides.

To make sure the two-cluster pattern and its correlation with human DNA in the previous analysis

is not due to artifacts, we repeated the clustering analysis and MDS analysis at species level as

well as using another distance index, numerical Jaccard distance. The analysis at the species level

(Figures 2.2C and 2.2D) and analysis using numerical Jaccard distance (Figures 2.3A and 2.3B)

yielded similar conclusions.

In summary, baseline samples clustered into two groups, with the far dysbiotic cluster being more

distant from the healthy controls and characterized by altered bacterial composition and lower di-

versity.

2.4. High levels of human DNA in stool correlated with dysbiosis

In processing the metagenomic DNA from stool, we observed that the proportion of human DNA

varied widely (Figure 2.1C). The percentage of human reads was low in the healthy controls (mean

= 0.87%, max = 10.1%, minimum = 0.05%) relative to patients with active Crohn’s disease (mean =

16.6%, maximum = 94.2%, minimum = 0.01%; p < 5×10−11), with over 50% of the sequence reads

mapped to human in 49 Crohn’s disease samples. Selected DNA samples were tested for human

DNA content using QPCR to detect human beta-tubulin-coding sequences (performed by people in

Rick Bushman’s lab), revealing that the amounts detected were positively correlated with the calls

from metagenomic sequencing (r = 0.81 Pearson’s correlation, p = 9.3× 10−11). We hypothesized

that the source of human DNA was either epithelial cells or blood shed into feces associated with

disease activity.

2.5. Analysis of fecal microbial gene pathways

Next, we studied the functions of the gut microbiome and its association with IBD. We used HU-

MAnN (Abubucker et al., 2012) to measure the microbial gene and pathway abundance. The gene

content of the gut microbiota was compared to assess associations between gene function and

dysbiosis (Figure 2.4A) . Differences were found between IBD and healthy controls in 42 of 163

pathways examined (Table 2.4). Crohn’s samples clustered into two groups based on gene path-

way data, one of which more closely resembled the healthy controls and one more dysbiotic (Fig-

ure 2.4B; Table 2.5). The clusters separated based on pathway data tracked closely with the near
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and far clusters defined by bacterial taxonomic representation (Figure 2.4B, red and blue colors).

To guide interpretation, we analyzed the Spearman correlation between bacterial abundance and

gene pathway enrichment in these data (Figure 2.5A). Pathway data partitioned the bacteria into

two notable groups, one including gammaproteobacteria together with Streptococcus and Entero-

coccus and a second group dominated by Bacteroides and multiple anaerobic Bacteroidetes and

Firmicutes typical of healthy gut. Below we propose relationships between specific gene pathways

and persistence in the presence of different environmental stressors. However, enrichment may

also be due to passenger effects, where outgrowth of specific organisms resulted in enrichment in

pathways that were not themselves major contributors to differential fitness.

Random forest was used to identify those pathways that best discriminated between healthy chil-

dren and the active Crohn’s disease cohort at baseline (Figures 2.4C and 2.5B). Samples mem-

bership in the two categories could be predicted with 87% accuracy using gene pathway data,

comparable to the partitioning achieved using bacterial taxonomic data. The top six most no-

table pathways, higher in the Crohn’s samples, were sulfur relay systems, galactose metabolism,

biosynthesis of siderophores, glycerolipid metabolism, glutamine/glutamate metabolism, and nitro-

gen metabolism (Table 2.4). Similarly, 94 of 163 gene pathways were differentially abundant be-

tween the two clusters, 51 with greater representation in the more dysbiotic far cluster (Table 2.5).

Random forest using gene pathway abundance had 87% prediction accuracy for classification of the

two bacterial clusters (near and far dysbiotic) defined by taxonomic proportions. The five most pre-

dictive pathways were glycerophospholipid metabolism, aminobenzoate degradation, sulfur relay

system, and glutathione metabolism, which were increased in the far dysbiotic cluster, and seleno-

compound metabolism, which was decreased in the far cluster. Thirty-three of 42 pathways that

were significantly different between Crohn’s disease and healthy controls were also significantly

different between the two clusters of Crohn’s disease, suggesting that they are related primarily to

the composition of the dysbiotic microbiota rather than being intrinsic alterations associated with

IBD per se.

2.6. Fungal community structure

We characterized the fungal reads in the metagenomic data by alignment to sequenced fungal

genomes, followed by extensive filtering to remove artifacts (performed by people in Rick Bush-
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man’s lab). Five fungal taxa were detected in the samples, Saccharomyces cerevisiae, Clavispora

lusitaniae (also known as Candida lusitaniae), Cyberlindnera jadinii (also known as Pichia jadinii

and Candida utiliz), Candida albicans, and Kluyveromyces marxianus. Figure 2.6A shows the rep-

resentation of fungal taxa in healthy controls and Crohn’s disease samples at baseline, and the

relationship to metadata. All of the fungal taxa were more represented in the samples from Crohn’s

disease subjects, particularly those in the more dysbiotic far cluster as defined by the bacterial tax-

onomic analysis (Figures 2.6B-2.6F). Abundance of the different fungi were highly correlated with

each other (Spearman correlation 0.66-0.84). Higher fungal proportions in samples also correlated

with higher levels of human DNA (Figure 2.6G). Random Forest analysis based on fungal data

had 92% prediction accuracy for classification of normal and baseline Crohn’s disease samples.

The most predictive fungus was Clavispora lusitaniae. Thus, the five yeasts detected are positively

associated with Crohn’s disease, particularly in the setting of greater bacterial dysbiosis. Some

correlations were observed between bacteria and fungi in the cohort, but these varied between the

healthy controls and the two clusters of patients with Crohn’s disease (Figures 2.7A-2.7C).

2.7. Exploring the baseline clusters defined by bacterial abundance in a multivari-

ate model

We next explored factors associated with membership in the dysbiotic far cluster at baseline (Fig-

ure 2.1B). In the multivariable model, use of antibiotics within the preceding 6 months, current use

of corticosteroids, and abundance of fungi were independently associated with membership in the

far cluster. These data indicate that at least part of the previously described dysbiosis in IBD may

be due to antibiotic and corticosteroid exposure and that the dysbiosis extends beyond the bacteria

to include fungi.

Given the association with antibiotics, we further defined the bacterial taxa that distinguished

Crohn’s disease from healthy controls by analyzing only the subset of patients not treated with

antibiotics (Table 2.6). Separately, we analyzed the association of antibiotic use and taxonomic rep-

resentation within the Crohn’s disease cohort (Table 2.7). Bacterial genera associated with Crohn’s

disease in the absence of antibiotic use were almost completely different from genera associated

with antibiotic use in the Crohn’s disease cohort (discussed further below).
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Figure 2.7: Correlation of bacterial abundance and fungal abundance at baseline. Samples studied
included A) healthy controls, (B) Crohn’s disease cluster 1 and (C) Crohn’s disease cluster 2. The
heat map plots the Spearman correlation for each pair of bacteria and fungi (scale to the right of
each panel).
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with EEN, PEN, and Anti-TNF therapy. (A) Characterization of the bacterial taxonomic composition
based on distance from the centroid of healthy controls. Boxes show median and first and third
quartile. The x axis shows the group and time point, the y axis shows the distance from the cen-
troid of the healthy controls. The groups compared are shown to the right. (B) Plot of regression
coefficients and their confidence intervals. The dependent variable used is distance to the healthy
centroid. Covariates included antibiotic use, response to therapy defined as reduction in FCP to
less than 250 mg/g, and the starting distance from the healthy centroid. Regression coefficients
are shown as dots, one SD is shown as the thin lines, and two SDs as the thick lines.

23



0.2

0.4

0.6

0.8

COMBO PLEASE−T1 PLEASE−T2 PLEASE−T3 PLEASE−T4

D
is

ta
nc

e 
to

 th
e 

he
al

th
y 

ce
nt

ro
id

Species-level data

antiTNF Nonresponse

antiTNF Response

Healthy Control

EEN Nonresponse

EEN Response

PEN Nonresponse

PEN Response

A

Healthy
Baseline Week 1

Crohn’s
Week 4 Week 8

Regression Estimates
Species-level data

B

−1.0 −0.5 0.0 0.5 1.0

Starting distance from
healthy centroid

Response to therapy

Antibiotic use (current) All
antiTNF
EEN

Figure 2.9: Analysis of longitudinal results using species-level data. A) Analysis based on distance
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2.8. Clustering did not predict response to therapy

Rates of response to treatment were not significantly different among patients in the near or far

dysbiotic cluster. Twenty-seven patients (53%) in the near cluster and nine (45%) patients in the far

dysbiotic cluster achieved a reduction in FCP below 250 mg/g (p = 0.60). Among anti-TNF-treated

patients the response rates were 66.7% and 60%, respectively (p = 0.74). Too few EEN-treated

patients were available for meaningful comparison.

2.9. Dynamics of dysbiosis with treatment

We categorized sequences from each fecal sample by its Jaccard distance from the centroid of

the healthy control samples, providing a quantitative measure of dysbiosis, and then analyzed

longitudinal dynamics. One of the proposed mechanisms of action of diet-based therapy is to alter

the gut microbiota composition. We thus assessed the bacterial composition at baseline and 1 week

into therapy (Figure 2.9A). The microbiota composition among the EEN-treated group changed

within 1 week of therapy, moving significantly farther from centroid of the healthy controls (relative

to baseline p = 0.005 overall, p = 0.02 among responders, p = 0.14 among non-responders). One

week after initiation of EEN, abundance of 6 of the 40 genera examined were nominally different at a

threshold of p = 0.05 (Haemophilus, Alistipes, Streptococcus, Dialister, Dorea, and Gordonibacter;

not significant after correction for multiple comparisons; Table 2.8). A similar pattern was not seen

among the PEN-treated patients (p = 0.83) or anti-TNF-treated patients (p = 0.02, note anti-TNF-

treated group moved closer to healthy centroid within 1 week), suggesting that either there is a

dose-dependent effect of enteral nutrition or that fully removing regular table food from the diet

influences microbiota composition within 1 week.

We next used linear regression to examine the independent effects of reduction in FCP, antibiotic

exposure, and the degree of dysbiosis at baseline on the final state of the microbial community

(Figure 2.9B). Given the different microbial response to the three therapies during the first week,

analyses were conducted combined and stratified by treatment. At the end of the study, respon-

ders (i.e., those with reduction in FCP) were closer to the centroid of the healthy controls than

nonresponders after adjusting for antibiotic use and initial degree of distance from the centroid (p

= 0.003). Similar patterns were seen for anti-TNF therapy (p = 0.06) and EEN (p = 0.06). There

were too few responders to PEN for meaningful analysis. Analysis at the species level yielded gen-
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erally similar results, but with a more pronounced difference in the composition of responders and

non-responders to EEN after 1 week of therapy (p = 0.025), a difference that persisted at week 8

(Figures 2.9A and 2.9B).

The resolution of dysbiosis was not complete among responders. Among the anti-TNF-treated pa-

tients who were responders, 11 taxa differed in abundance from healthy controls at baseline (q <

0.05). At the end of follow-up, nine of these taxa (82%) remained significantly different at a nom-

inal p < 0.05, and six (55%) were significant at a q < 0.05 (Klebsiella, Prevotella, Escherichia,

Odoribacter, Enterococcus, and Fusobacterium). Thus, clinical response was associated with evo-

lution of communities toward healthy structure (Figure 2.9B), consistent with the observation that

human DNA levels diminished with successful therapy (q = 0.0002; quantile regression), but nor-

mal community structure was not usually fully restored (Figure 2.9A). This may be due to continuing

environmental stress from the host inflammatory response as indicated by mildly elevated FCP de-

spite response to treatment. An analysis at the species level yielded generally similar conclusions

(Figures 2.9A and 2.9B). Fungal colonization was not reduced with successful therapy (p = 0.35;

quantile regression).

To explore the independent effect of inflammation on the composition of the gut microbiota, we

created separate robust quantile (75%) regression models adjusted for antibiotic use and treatment

modality with fold-change in abundance of individual taxa as the dependent variable. Response

to therapy defined as final FCP < 250 mg/g was associated with decrease in Actinomyces (p =

0.0002, q = 0.01) and increase in Lactococcus (p = 0.002, q = 0.046) and Roseburia (p = 0.006, q

= 0.084). (Table 2.9). Multiple gene pathways were also associated with antibiotic use, treatment,

and response (Table 2.10).

Distinctive responses of genus-level taxa are summarized in Figure 2.10, which also indicates the

time points queried. Specific bacterial lineages showed increases or decreases in abundance as-

sociated with (1) health or Crohn’s disease at baseline, (2) antibiotic use in the Crohn’s disease

cohort at baseline, (3) diet therapy in the Crohn’s cohort at week 1, and (4) resolution of inflamma-

tion (corrected for antibiotic use) in the Crohn’s cohort at week 8.

Distinctive responses were also seen associated with fungal colonization (Figure 2.10; Table 2.11∼2.14).

At baseline, Candida, Clavispora, Cyberlindnera, and Kluyveromyces were all enriched in Crohn’s
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samples versus healthy controls (Table 2.11). Comparisons between antibiotic-treated versus not

treated patients showed enrichment of all these fungi plus Saccharomyces as well (Table 2.12). In

contrast, after one week of diet therapy, Candida, Clavispora, and Cyberlindnera were all reduced

in abundance (Table 2.13). Similarly, abundance of Clavispora Cyberlindnera, and Kluyveromyces

were significantly reduced from baseline to week 8 only in the EEN-treated group (q < 0.05) and

not the anti-TNF-treated group. At week 8, overall response to therapy after adjusting for treatment

and antibiotic use was not associated with a change in fungal abundance (Table 2.14).

2.10. Discussion

Here we assess the concurrent effects of inflammation, diet, and antibiotic use on the the gut micro-

biome in pediatric Crohn’s disease. The environmental stresses experienced by Crohn’s disease

patients were associated with changes in microbial taxonomy that mostly differed among the stres-

sors studied (Figure 2.10). We observed that patients with Crohn’s disease can be categorized

into two groups defined by the composition of the bacterial populations, paralleling previous studies

based on 16S rRNA gene tag sequencing (Frank et al., 2007; Gevers et al., 2014; Tong et al., 2013).

We further showed that dysbiosis involved differences in microbial gene representation, increases

in fungal representation, and higher levels of human DNA in stool. Antibiotic exposure, which is

common in this population, has also been identified as a risk factor for new onset Crohn’s disease

(Card et al., 2004; Margolis et al., 2010) and was strongly associated with the dysbiosis observed

here. EEN further altered the composition of the gut microbiota, possibly due to elimination of reg-

ular table food, despite having a favorable effect on gut inflammation. By our definition, the effect

of diet qualifies as dysbiosis, though we note that the changes were distinct from the other stres-

sors studied (Figure 2.10). Finally, effective therapy with either anti-TNF or EEN reduced, but did

not completely eliminate, the dysbiosis present at baseline. Thus, our data demonstrate that diet,

antibiotics, and inflammation each independently influence different components of the microbial

community.

We described two clusters of patients based on microbiota composition, though the data can be

characterized as either a continuum or a dichotomous grouping. The two clusters were associated

with clinical features such as antibiotic use and human DNA but did not appear to predict response

to therapy. Thus, the biologic and clinical significance of the clusters remains to be determined.
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Figure 2.10: Bacterial and fungal genera associated with environmental stressors. Microbial genera
are shown that differed in four comparisons: Crohn’s disease versus healthy controls at baseline
(”Disease”); antibiotic use at baseline in the Crohn’s disease cohort (”Antibiotics”); diet (EEN) or
anti-TNF therapy at week 1 (”Diet”); and reduction of inflammation or not at the end of the study
at week 8 (”Inflammation”). The time line is shown along the bottom (yellow). Baterial lineages
are shown in light blue and fungal lineages in pink. Taxa shown were significantly associated after
adjustment for multiple comparisons for Crohn’s disease versus healthy controls, for antibiotic use
comparisons, and for all fungal comparisons. The bacterial taxa shown for the effect of EEN, and
resolution of inflammation were significant at a nominal p value < 0.05 (i.e., without correction for
multiple comparisons).
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There were very few taxa whose abundance was associated with more than one stressor. However,

the genus Alistipes was increased with EEN but diminished by antibiotic treatment, raising the

possibility that antibiotics antagonize the beneficial effects of EEN.

The independent effects of antibiotics, diet, and inflammation likely reflect different mechanisms.

Antibiotics are direct toxins to bacteria and may facilitate outgrowth of fungi. Changes in diet pro-

vide novel substrates supporting bacterial growth. Inflammation may select for bacterial taxa able

to live in the setting of oxidative stress. The normal oxygen gradient in the colon influences the

composition of the gut microbiota with a higher abundance of Proteobacteria in the microaerobic

environment of the mucosal surface (Albenberg et al., 2014). Disruption of the epithelium and

bleeding due to active Crohn’s disease is expected to lead to greater intraluminal oxygen, which in

turn would favor outgrowth of taxa belonging to the Proteobacteria phylum. In addition, some Enter-

obacteriacaea are known to exploit compounds produced during inflammation as terminal electron

acceptors, promoting their outgrowth (Winter and Bäumler, 2014).

We observed a rapid change in the composition of the gut microbiota within 1 week of initiating

EEN, similar to that observed in other small studies of defined formula diets (Gerasimidis et al.,

2014) and with alterations in whole-food diets (David et al., 2014; Wu et al., 2011). However, this

study was unique in the ability to compare PEN to EEN. A similar change in the microbiota was not

observed in children receiving PEN, despite administration of nearly the same amount of enteral

formula, suggesting that the exclusion of table foods was the primary determinant in changing the

gut microbiota and perhaps mediating the increased effectiveness of EEN (Lee et al., 2015). After

1 week of EEN, the composition of the microbiota differed between ultimate responders and non-

responders, suggesting measures of the microbiota may be used to predict response to therapy.

Genes from the category ”biosynthesis of siderophore group nonribosomal peptides” (Figure 2.4A)

were more represented in the more dysbiotic far cluster. This may be due to the response of the

gut microbiota to blood in the gut lumen, as indicated by the association with human DNA in stool.

Siderophores scavenge iron from the environment. Iron has been linked to an invasive phenotype

in bacteria, thereby promoting inflammation (Nairz et al., 2010). Thus, blood associated with active

IBD may deliver iron to the gut microbiota, promoting dysbiosis.

The effect of environmental stress on the gut microbiota extends into the Eukaryotic domain. Others
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have documented increased richness of fungi in patients with Crohn’s disease using older meth-

ods but have not linked this directly to specific fungi, environmental stressors, or linked changes

in the bacterial microbiota (Ott et al., 2008; Richard et al., 2015). In a separate study using se-

quencing of fungal gene tags, we found that Cyberlindnera jadinii (also known as Pichia jadinii or

Candida utilis) was proportionally increased in Crohn’s patients (Chehoud et al., 2015), confirming

the detection of this lineage here. In this study, four of the five fungi detected (Candida, Clavispora,

Cyberlindnera, and Kluyveromyces) showed increased representation in Crohn’s disease samples

at baseline in the absence of antiboitic use. Independently, antibiotic use was also associated with

increased colonization by all five fungi. Diet therapy showed the opposite behaviorafter 1 week,

fungal colonization was diminished (Figure 2.10). Thus increased fungal colonization is associated

independently with disease and antibiotic treatment and diminished with EEN. The reduction with

EEN may be a consequence of lower consumption of fungi in food (Saccharomyces and Cyber-

lindnera are both found in foods), or due to a change in the microbial environment in the gut with

EEN, paralleling the change in bacteria. The importance for pathogenesis is unknown, though we

note that anti-Saccharomyces antibiodies are used as a biomarker in IBD (Peeters et al., 2001;

Prideaux et al., 2012; Quinton et al., 1998), and fungi have shown to exacerbate colitis in mouse

models (Iliev et al., 2012).

Cyberlindnera and Candida have been positively associated with bacteria including Streptococcus

and Lactobacillus. Positive correlation of Candida and Streptococcus has been reported for oral

samples from lung transplant recipients (Bittinger et al., 2014), an interaction proposed in medically

important mixed biofilms (Metwalli et al., 2013). Possibly antibiotic exposure promotes formation of

a mixed community in the inflamed gut, paralleling studies in mice (Dollive et al., 2013).

The presence of fungi may also have contributed to the metabolic genomic signature associ-

ated with IBD (Figures 2.4A and 2.4C). Since bacteria do not have phospholipid membranes as

in eukaryotic organisms, it may be that the predominance of genes associated with ”glycerolipid

metabolism” and ”glycerol phospholipid metabolism” (Figure 2.4C) in Crohn’s disease is due to the

abundance of fungi in the dysbiotic far cluster. Indeed, with the exception of actinomycetes group,

triacylglycerols in bacteria have rarely been described (Alvarez and Steinbüchel, 2002). These

same pathways might also be involved in the catabolism of fatty acid lipids through either peroxi-

somal or mitochondrial boxidation, again, a feature of eukaryotic organisms like yeast (Strijbis and
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Distel, 2010) and not bacteria.

The bacterial microbiota among responders became more similar to the healthy controls than the

microbiota of non-responders with both anti-TNF and EEN. Anti-TNF therapy is administered par-

enterally and is not expected to alter the gut microbiome directly, indicating that dysbiosis is likely a

consequence of inflammation. However, the bacterial dysbiosis was only partially resolved among

responders, and fungal dysbiosis did not resolve. Perhaps complete resolution would occur with

longer follow-up along with a reduction in the stressors to the gut microbiota described here. In turn,

complete resolution of bacterial and or fungal dysbiosis might have a favorable impact on Crohn’s

disease (Rajca et al., 2014; Samuel, Loftus, and Sandborn, 2010).

In conclusion, we document that dysbiosis of Crohn’s disease extends beyond bacteria to include

fungi. The dysbiosis results from a combination of inflammation, antibiotic exposure, and dietary

changes, each exerting different impacts on the gut microbiota composition. EEN caused further

departure of the composition of the gut bacteria from the pattern of healthy controls within 1 week,

likely due to the elimination of table foods, but was effective in reducing inflammation. The ex-

tent of dysbiosis diminished with reduction of inflammation by anti-TNF or EEN, consistent with

inflammation contributing directly to the dysbiosis. Gene pathway analysis suggested that the gut

microbiota responds to gut environmental stressors through the modification of metabolism. Thus,

while dysbiosis in general is common to Crohn’s disease, the nature of the dysbiosis is unique to

each environmental stressor. Future studies should explore whether these effects interact in ways

that influence outcome.
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Table 2.1: Metagenomic data sets used in this study.

Sample Subject Time Treatment FCP Antibiotics Steroids Total reads Human DNA % Fungal %
4000 4000 NA NA NA Not.Use NA 19515697 10.1983 0.0001
4001 4001 NA NA NA Not.Use NA 18185930 0.5288 0.0075
4002 4002 NA NA NA Not.Use NA 27338002 0.0985 0.0008
4004 4004 NA NA NA Not.Use NA 11092808 0.3729 0.0036
4005 4005 NA NA NA Not.Use NA 9492196 0.6128 0.0160
4006 4006 NA NA NA Not.Use NA 23634581 1.2993 0.0062
4007 4007 NA NA NA Not.Use NA 19368508 0.1209 0.0001
4009 4009 NA NA NA Not.Use NA 15076205 0.5804 0.0273
4010 4010 NA NA NA Not.Use NA 15533469 3.0424 0.0180
4011 4011 NA NA NA Not.Use NA 8136644 0.0651 0.0002
4013 4013 NA NA NA Not.Use NA 18943086 0.0564 0.0034
4014 4014 NA NA NA Not.Use NA 15495272 0.0458 0.0000
4017 4017 NA NA NA Not.Use NA 10603626 0.2833 0.0243
4018 4018 NA NA NA Not.Use NA 8514099 0.2640 0.0256
4019 4019 NA NA NA Not.Use NA 36200732 0.3610 0.0569
4020 4020 NA NA NA Not.Use NA 12334653 0.1642 0.0015
4021 4021 NA NA NA Not.Use NA 13632049 0.0630 0.0035
4022 4022 NA NA NA Not.Use NA 13206400 0.1255 0.0073
4023 4023 NA NA NA Not.Use NA 15064745 0.1460 0.0087
4024 4024 NA NA NA Not.Use NA 9780269 0.3793 0.0245
4025 4025 NA NA NA Not.Use NA 12662584 0.1160 0.0011
4026 4026 NA NA NA Not.Use NA 12604291 0.0992 0.0127
4027 4027 NA NA NA Not.Use NA 214239 0.7977 0.0019
4028 4028 NA NA NA Not.Use NA 6426484 0.1371 0.0338
4029 4029 NA NA NA Not.Use NA 11631985 0.4315 0.0023
4030 4030 NA NA NA Not.Use NA 14506623 2.3105 0.0062

5001-01 5001 1 antiTNF 2137 Not.Use Not.Use 11599370 91.0922 0.2073
5001-02 5001 2 antiTNF 607 Not.Use Not.Use 12641013 89.3180 0.0709
5001-03 5001 3 antiTNF 867 Not.Use Not.Use 13630280 19.6892 0.0122
5001-04 5001 4 antiTNF 557 Not.Use Not.Use 14353075 0.8513 1.2650
5002-01 5002 1 antiTNF 2178 Not.Use Use 10400185 27.6042 0.0135
5002-02 5002 2 antiTNF 950 Not.Use Use 14497980 17.0893 0.0105
5002-03 5002 3 antiTNF 1947 Not.Use Use 16679087 88.5445 0.0667
5002-04 5002 4 antiTNF 1880 Not.Use Use 5804379 89.5499 0.0567
5003-01 5003 1 antiTNF 1854 Not.Use Not.Use 7241664 0.4341 0.0085
5003-02 5003 2 antiTNF 1177 Not.Use Not.Use 10238790 4.7584 0.0247
5003-03 5003 3 antiTNF 282 Not.Use Not.Use 12894252 0.2021 0.0045
5003-04 5003 4 antiTNF 46 Not.Use Not.Use 14189310 0.7290 0.0115
5004-01 5004 1 PEN 1625 Not.Use Not.Use 14242923 31.4914 0.0106
5004-02 5004 2 PEN 161 Not.Use Not.Use 9820090 0.2262 0.0140
5004-03 5004 3 PEN 1458 Not.Use Not.Use 12543255 21.1037 0.0090
5004-04 5004 4 PEN 981 Not.Use Not.Use 16618938 0.4540 0.0114
5005-01 5005 1 antiTNF 1896 Not.Use Not.Use NA NA NA
5005-02 5005 2 antiTNF 1800 Not.Use Not.Use NA NA NA
5005-03 5005 3 antiTNF 929 Not.Use Not.Use NA NA NA
5005-04 5005 4 antiTNF NA NA Not.Use NA NA NA
5006-01 5006 1 antiTNF 343 Not.Use Not.Use 17243968 0.0406 0.0056
5006-02 5006 2 antiTNF 970 Not.Use Not.Use 3911681 0.0669 0.0051
5006-03 5006 3 antiTNF 280 Not.Use Not.Use 13509151 0.1451 0.0164
5006-04 5006 4 antiTNF 144 Not.Use Not.Use 15656896 0.0257 0.0044
5007-01 5007 1 antiTNF 1374 Use Not.Use 7042144 12.3010 0.0283
5007-02 5007 2 antiTNF 213 Use Not.Use 6026836 0.7321 0.0116
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5007-03 5007 3 antiTNF 228 Not.Use Not.Use 20253427 1.3537 0.0079
5007-04 5007 4 antiTNF 631 Not.Use Not.Use 2934904 1.5784 0.0437
5008-01 5008 1 PEN 852 Not.Use Not.Use 16003947 0.0782 0.0052
5008-02 5008 2 PEN 338 Not.Use Not.Use 8817907 0.2731 0.0065
5008-03 5008 3 PEN 332 Not.Use Not.Use 1486829 0.5910 0.0080
5008-04 5008 4 PEN NA Not.Use Not.Use 1400790 0.5865 0.0504
5010-01 5010 1 antiTNF 1311 Not.Use Not.Use 9617274 0.4466 0.0067
5010-02 5010 2 antiTNF 1325 Not.Use Not.Use 1104 8.1522 0.3945
5010-03 5010 3 antiTNF 279 Not.Use Not.Use 16091975 0.1894 0.0065
5010-04 5010 4 antiTNF 412 Not.Use Not.Use 4913506 0.6266 0.0127
5011-01 5011 1 PEN 2144 Use Use 29237981 77.0695 0.0447
5011-02 5011 2 PEN 1598 Use Use 20544281 53.1918 0.0198
5011-03 5011 3 PEN 482 Use Use 10625712 1.8862 0.0440
5011-04 5011 4 PEN 1041 Use Use 10947858 0.5956 0.0089
5012-01 5012 1 PEN 461 Not.Use Use 9663238 16.2560 0.0078
5012-02 5012 2 PEN 1125 Not.Use Use 3831035 0.2822 0.0063
5012-03 5012 3 PEN 2500 Not.Use Use 4837908 1.4325 0.0088
5012-04 5012 4 PEN 1129 Not.Use Use 6070173 3.2714 0.0089
5013-01 5013 1 PEN 1504 Not.Use Not.Use 8697517 0.8142 0.0053
5013-02 5013 2 PEN 372 Not.Use Not.Use 6674500 0.1513 0.0059
5013-03 5013 3 PEN 747 Not.Use Not.Use 9299951 0.0331 0.0062
5013-04 5013 4 PEN 743 Not.Use Not.Use 12734738 0.0226 0.0056
5015-01 5015 1 antiTNF 392 Use Use 7228455 0.1064 0.0054
5015-02 5015 2 antiTNF 80 Use Use 6843728 0.0121 0.0087
5015-03 5015 3 antiTNF 24 Use Use 7573849 0.0220 0.0057
5015-04 5015 4 antiTNF 26 Use Use 8469678 0.0231 0.0047
5016-01 5016 1 antiTNF 399 Use Use 2283485 59.8309 26.6041
5016-02 5016 2 antiTNF 236 Use Use 3260627 22.8888 1.3035
5016-03 5016 3 antiTNF 227 Use Use 4810979 0.8761 0.0631
5016-04 5016 4 antiTNF 334 Not.Use Use 6652415 0.2547 0.0188
5017-01 5017 1 PEN 379 Not.Use Use 10287120 3.7480 0.0056
5017-02 5017 2 PEN 238 Not.Use Use 4845144 0.5478 0.0073
5017-03 5017 3 PEN 701 Not.Use Use 6308649 0.0573 0.0092
5017-04 5017 4 PEN 690 Not.Use Use 3322423 0.1149 0.0052
5018-01 5018 1 PEN 379 Not.Use Use 8195134 0.4385 0.0109
5018-02 5018 2 PEN 397 Not.Use Use 58536 2.7744 0.1933
5018-03 5018 3 PEN 410 Not.Use Use 6121 0.3267 0.0983
5018-04 5018 4 PEN 195 Not.Use Use 12808694 0.0201 0.0050
5020-01 5020 1 PEN 47 Use Use 1618940 7.7967 0.3189
5020-02 5020 2 PEN 70 Use Use 5165378 2.3365 0.0175
5020-03 5020 3 PEN 93 Use Use 7124673 1.4249 0.0085
5020-04 5020 4 PEN 110 Use Use 13534664 0.0486 0.0070
5022-01 5022 1 antiTNF 1040 Use Not.Use 11047813 6.5517 0.0096
5022-02 5022 2 antiTNF 653 Use Not.Use 6130429 1.5631 0.0083
5022-03 5022 3 antiTNF 148 Use Not.Use 8780435 0.2941 0.0081
5022-04 5022 4 antiTNF 48 Not.Use Not.Use 17211378 0.3548 0.0654
5023-01 5023 1 antiTNF 921 Use Not.Use 14356771 18.6317 0.0120
5023-02 5023 2 antiTNF 218 Use Not.Use 11397519 14.6218 0.0385
5023-03 5023 3 antiTNF 323 Not.Use Not.Use 5671261 0.9377 0.0186
5023-04 5023 4 antiTNF 180 Not.Use Not.Use 2679 27.0623 0.3071
5025-01 5025 1 PEN NA Not.Use Use NA NA NA
5025-02 5025 2 PEN 457 Not.Use Use 11367288 20.5615 0.0503
5025-03 5025 3 PEN 816 Not.Use Use 14894699 0.5286 0.0756
5025-04 5025 4 PEN 54 Not.Use Use 7218406 0.6819 0.0486
5026-01 5026 1 PEN 961 Use Use 6084502 56.7901 4.3948
5026-02 5026 2 PEN 722 Use Use 5818626 61.4567 0.2509
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5026-03 5026 3 PEN 567 Use Use 8259927 30.0102 0.1687
5026-04 5026 4 PEN 365 Use Use 13642402 12.7829 0.1496
5027-01 5027 1 PEN 611 Not.Use Not.Use 7596126 0.1742 0.0128
5027-02 5027 2 PEN 716 Not.Use Not.Use 8760843 0.1641 0.0115
5027-03 5027 3 PEN 466 Not.Use Not.Use 20195710 0.2285 0.0132
5027-04 5027 4 PEN 375 Not.Use Not.Use 14403318 0.1000 0.0121
5029-01 5029 1 antiTNF 903 Not.Use Not.Use 6004698 36.3167 0.0483
5029-02 5029 2 antiTNF 636 Not.Use Not.Use 12741808 42.6572 0.0299
5029-03 5029 3 antiTNF 568 Not.Use Not.Use 10820369 5.3879 0.0732
5029-04 5029 4 antiTNF 486 Not.Use Not.Use 8918719 6.7019 0.0391
5030-01 5030 1 antiTNF 1445 Not.Use Not.Use 8822474 86.7239 0.1535
5030-02 5030 2 antiTNF 839 Not.Use Not.Use 13296995 2.5554 0.0163
5030-03 5030 3 antiTNF 631 Not.Use Not.Use 8922602 54.5344 0.2972
5030-04 5030 4 antiTNF 876 Not.Use Not.Use 9837970 10.0054 0.0263
5031-01 5031 1 antiTNF 317 Use Not.Use 20889887 79.6034 5.2561
5031-02 5031 2 antiTNF 52 Use Not.Use 25968202 9.8291 0.3473
5031-03 5031 3 antiTNF 27 Use Not.Use 6151211 31.2159 2.0652
5031-04 5031 4 antiTNF 21 Use Not.Use 4138618 20.7082 4.4073
5032-01 5032 1 antiTNF 813 Not.Use Not.Use 2614389 86.9049 0.1852
5032-02 5032 2 antiTNF 298 Not.Use Not.Use 3406304 70.2177 0.0664
5032-03 5032 3 antiTNF 206 Not.Use Not.Use 6892374 89.1729 0.1935
5032-04 5032 4 antiTNF 64 Not.Use Not.Use 18328030 0.1624 0.0124
5033-01 5033 1 antiTNF 127 Not.Use Not.Use 6865676 4.9233 0.0148
5033-02 5033 2 antiTNF 297 Not.Use Not.Use 19437578 0.6928 0.0120
5033-03 5033 3 antiTNF 140 Not.Use Not.Use 7528435 0.3262 0.0184
5033-04 5033 4 antiTNF 370 Not.Use Not.Use 9213794 0.3658 0.0168
5034-01 5034 1 antiTNF 2500 Not.Use Use 3285312 0.1570 0.0133
5034-02 5034 2 antiTNF 494 Not.Use Use 4036397 1.7559 0.0163
5034-03 5034 3 antiTNF 2165 Not.Use Use 2297587 2.8352 0.6844
5034-04 5034 4 antiTNF 2284 Not.Use Use 5025640 75.9482 0.0943
5035-01 5035 1 antiTNF 47 Use Not.Use NA NA NA
5035-02 5035 2 antiTNF 28 Use Not.Use NA NA NA
5035-03 5035 3 antiTNF 20 Use Not.Use NA NA NA
5035-04 5035 4 antiTNF 52 Use Not.Use NA NA NA
5037-01 5037 1 PEN 492 Not.Use Not.Use 74582008 7.9909 0.0176
5037-02 5037 2 PEN 2212 Not.Use Not.Use 34438194 0.5440 0.0183
5037-03 5037 3 PEN 1014 Not.Use Not.Use 1790636 0.3056 0.0202
5037-04 5037 4 PEN 822 Not.Use Not.Use 2152559 0.1268 0.0137
5039-01 5039 1 PEN 2500 Not.Use Not.Use 2029437 83.5586 0.3165
5039-02 5039 2 PEN 1521 Not.Use Not.Use 8908497 72.2014 0.0429
5039-03 5039 3 PEN 1475 Not.Use Not.Use 1962014 3.6575 0.0187
5039-04 5039 4 PEN NA Not.Use Not.Use 1029173 2.4329 0.2934
5040-01 5040 1 antiTNF 294 Not.Use Not.Use 28075241 0.1237 0.0017
5040-02 5040 2 antiTNF 92 Not.Use Not.Use 15463789 0.5265 0.0224
5040-03 5040 3 antiTNF 42 Not.Use Not.Use 10911644 0.7900 0.0819
5040-04 5040 4 antiTNF 30 Not.Use Not.Use 9808942 0.2869 0.0262
5041-01 5041 1 antiTNF 307 Not.Use Not.Use 15150699 4.6220 0.0094
5041-02 5041 2 antiTNF 185 Not.Use Not.Use 12355021 0.5391 0.0003
5041-03 5041 3 antiTNF 136 Not.Use Not.Use 13562938 33.6441 0.0087
5041-04 5041 4 antiTNF 17 Not.Use Not.Use 11522308 6.3358 0.2214
5042-01 5042 1 antiTNF 342 Not.Use Not.Use 22535561 0.2947 0.0005
5042-02 5042 2 antiTNF 182 Not.Use Not.Use 11828781 0.2123 0.0022
5042-03 5042 3 antiTNF 190 Not.Use Not.Use 16371967 0.0390 0.0004
5042-04 5042 4 antiTNF 29 Not.Use Not.Use 11444636 0.5479 0.0068
5043-01 5043 1 PEN 2400 Use Use 11964783 87.5406 0.0244
5043-02 5043 2 PEN 1159 Use Use 682256 26.6627 0.0751
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5043-03 5043 3 PEN 655 Not.Use Use 19269838 0.1763 0.0004
5043-04 5043 4 PEN 500 Not.Use Use 36696745 0.4341 0.0088
5044-01 5044 1 antiTNF 254 Not.Use Use 9340353 0.8946 0.0527
5044-02 5044 2 antiTNF 479 Not.Use Use 10116721 0.7430 0.0633
5044-03 5044 3 antiTNF 354 Not.Use Use 4316774 13.8935 0.5917
5044-04 5044 4 antiTNF 475 Not.Use Use 154750 2.3444 0.0093
5045-01 5045 1 antiTNF 188 Use Not.Use 17228967 0.1411 0.0019
5045-02 5045 2 antiTNF 27 Use Not.Use 12522717 0.0783 0.0010
5045-03 5045 3 antiTNF 71 Use Not.Use 16362609 0.1187 0.0007
5045-04 5045 4 antiTNF 56 Use Not.Use 10725574 0.2865 0.0030
5046-01 5046 1 antiTNF 175 Not.Use Use 13963765 0.2269 0.0027
5046-02 5046 2 antiTNF 222 Not.Use Use 10613814 0.4613 0.0374
5046-03 5046 3 antiTNF 134 Not.Use Use 9441992 0.7746 0.0123
5046-04 5046 4 antiTNF 100 Not.Use Use 1783759 4.0816 0.1862
5047-01 5047 1 antiTNF 273 Not.Use Use 10439441 2.5958 0.0121
5047-02 5047 2 antiTNF 183 Not.Use Use 11830819 1.0136 0.0150
5047-03 5047 3 antiTNF 117 Not.Use Use 17854757 1.0251 0.0108
5047-04 5047 4 antiTNF 117 Not.Use Use 12678606 1.7812 0.0142
5048-01 5048 1 antiTNF 2500 Use Use 26280822 62.4157 0.0334
5048-02 5048 2 antiTNF 742 Use Use 12088681 1.8644 0.0273
5048-03 5048 3 antiTNF 135 Use Use 13577418 40.8145 0.0123
5048-04 5048 4 antiTNF 54 Use Use 8808904 3.1827 0.1859
5049-01 5049 1 antiTNF 2500 Use Use 19127324 90.2792 0.0255
5049-02 5049 2 antiTNF 643 Use Use 9370287 26.8775 0.1222
5049-03 5049 3 antiTNF 1358 Use Use 15969824 81.9447 1.8719
5049-04 5049 4 antiTNF 16 Use Use 18801031 90.8234 0.0325
5050-01 5050 1 antiTNF 475 Not.Use Not.Use 16382545 0.3588 0.0005
5050-02 5050 2 antiTNF 979 Not.Use Not.Use 20773901 0.3808 0.0012
5050-03 5050 3 antiTNF 448 Not.Use Not.Use 15406882 0.2307 0.0034
5050-04 5050 4 antiTNF 16 Not.Use Not.Use 11691584 4.9108 0.0013
5051-01 5051 1 antiTNF 580 Use Not.Use NA NA NA
5051-02 5051 2 antiTNF 668 Use Not.Use NA NA NA
5051-03 5051 3 antiTNF NA NA Not.Use NA NA NA
5051-04 5051 4 antiTNF NA NA Not.Use NA NA NA
5052-01 5052 1 antiTNF 1160 Not.Use Not.Use 10729210 1.7819 0.0039
5052-02 5052 2 antiTNF 308 Not.Use Not.Use 12617073 0.8202 0.0427
5052-03 5052 3 antiTNF 150 Not.Use Not.Use 11124443 1.1617 0.0185
5052-04 5052 4 antiTNF 168 Not.Use Not.Use 8205232 0.2485 0.0059
5053-01 5053 1 antiTNF 48 Use Not.Use 11655187 0.5663 0.0127
5053-02 5053 2 antiTNF 23 Use Not.Use 1556543 3.2316 0.0767
5053-03 5053 3 antiTNF 38 Use Not.Use 951941 17.6339 1.0188
5053-04 5053 4 antiTNF 19 Use Not.Use 17667128 13.3496 0.0324
5054-01 5054 1 antiTNF 1368 Use Use 20599524 77.2987 0.0532
5054-02 5054 2 antiTNF 1078 Use Use 10007742 52.2793 0.0239
5054-03 5054 3 antiTNF 193 Use Use 4333465 48.7428 0.7540
5054-04 5054 4 antiTNF 490 Use Use 25145577 73.6434 0.2921
5055-01 5055 1 antiTNF 368 Use Not.Use 8681705 49.0373 5.2491
5055-02 5055 2 antiTNF 73 Use Not.Use 9604775 18.3173 5.0463
5055-03 5055 3 antiTNF 38 Use Not.Use 3292776 35.3810 4.1493
5055-04 5055 4 antiTNF 39 Not.Use Not.Use 8298968 1.7126 0.1305
5056-01 5056 1 antiTNF 283 Not.Use Not.Use 7468825 0.9790 0.0268
5056-02 5056 2 antiTNF 129 Not.Use Not.Use 8007527 0.4084 0.0303
5056-03 5056 3 antiTNF 17 Not.Use Not.Use 10081004 0.6913 0.0454
5056-04 5056 4 antiTNF 16 Not.Use Not.Use 7765830 0.9182 0.0567
5057-01 5057 1 antiTNF 519 Not.Use Use 10010582 50.2020 3.6336
5057-02 5057 2 antiTNF 224 Not.Use Use 14875277 2.0396 0.0241
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5057-03 5057 3 antiTNF 231 Use Use 4960112 36.0512 0.8362
5057-04 5057 4 antiTNF 363 Use Use 7121858 27.9359 1.6837
5058-01 5058 1 antiTNF 836 Not.Use Use 8585750 0.3260 0.0025
5058-02 5058 2 antiTNF 877 Not.Use Use 8512412 0.6551 0.0172
5058-03 5058 3 antiTNF 466 Not.Use Use 12885140 0.8309 0.0019
5058-04 5058 4 antiTNF 123 Not.Use Use 12382956 5.0393 0.0079
5060-01 5060 1 antiTNF 425 Use Use 4288336 52.0995 1.1957
5060-02 5060 2 antiTNF 78 Use Use 9491463 20.7642 0.6907
5060-03 5060 3 antiTNF 130 Not.Use Use 7310082 8.9870 0.0919
5060-04 5060 4 antiTNF 121 Not.Use Use 10794119 28.4916 0.1761
5062-01 5062 1 antiTNF 798 Not.Use Use 3459317 25.2335 3.1291
5062-02 5062 2 antiTNF 203 Use Use 1757490 46.1353 5.1693
5062-03 5062 3 antiTNF 85 Use Use 755656 15.1018 19.1166
5062-04 5062 4 antiTNF 54 Use Use 4497065 7.2661 1.2707
5063-01 5063 1 PEN 172 Use Use 10318180 1.2774 0.0624
5063-02 5063 2 PEN 158 Use Use 13526973 14.3750 0.0138
5063-03 5063 3 PEN 84 Not.Use Use 14747059 0.2094 0.0038
5063-04 5063 4 PEN 74 Not.Use Use 15650715 0.0577 0.0074
5064-01 5064 1 antiTNF 699 Not.Use Use 520057 1.2668 0.0997
5064-02 5064 2 antiTNF 339 Not.Use Use 20474996 0.2343 0.1254
5064-03 5064 3 antiTNF 81 Not.Use Use 19988863 0.4344 0.0191
5064-04 5064 4 antiTNF 38 Not.Use Use 17830015 0.0992 0.0834
5065-01 5065 1 antiTNF 380 Not.Use Use 19071529 1.1641 0.0021
5065-02 5065 2 antiTNF 194 Not.Use Use 6819408 11.3097 0.3539
5065-03 5065 3 antiTNF 126 Not.Use Use 7132053 1.7060 0.0471
5065-04 5065 4 antiTNF 358 Not.Use Use 15010026 10.6716 0.0042
5066-01 5066 1 PEN 443 Not.Use Use 11802820 0.7348 0.0017
5066-02 5066 2 PEN 1004 Use Use 12546644 31.2232 0.0038
5066-03 5066 3 PEN 632 Use Use 17429771 0.5105 0.0008
5066-04 5066 4 PEN 445 Use Use 29377003 0.0201 0.0003
6001-01 6001 1 EEN 1794 Not.Use Not.Use NA NA NA
6001-02 6001 2 EEN 449 Not.Use Not.Use NA NA NA
6001-03 6001 3 EEN NA NA Not.Use NA NA NA
6001-04 6001 4 EEN NA NA Not.Use NA NA NA
6002-01 6002 1 EEN 691 Use Not.Use 18661884 84.9108 0.6220
6002-02 6002 2 EEN 1321 Use Not.Use 13855279 83.9704 0.0946
6002-03 6002 3 EEN 1346 Use Not.Use 14209761 84.7150 0.1053
6002-04 6002 4 EEN 1210 Use Not.Use 15344664 85.9156 0.1137
6003-01 6003 1 antiTNF 991 Use Use 1670817 31.4838 6.5578
6003-02 6003 2 antiTNF 517 Use Use 3255045 15.6346 1.0363
6003-03 6003 3 antiTNF 531 Use Use 18212281 17.9231 0.5162
6003-04 6003 4 antiTNF 502 Use Use 5771672 3.2941 0.0851
6004-01 6004 1 EEN 809 Not.Use Not.Use 14204898 0.2059 0.0047
6004-02 6004 2 EEN NA NA Not.Use 19749554 9.3484 0.0010
6004-03 6004 3 EEN 199 Not.Use Not.Use 5809845 0.9170 0.5613
6004-04 6004 4 EEN 219 Not.Use Not.Use NA NA NA
6005-01 6005 1 EEN 1012 Not.Use Not.Use 6120699 0.2283 0.0125
6005-02 6005 2 EEN 330 Not.Use Not.Use 11508967 0.1478 0.0174
6005-03 6005 3 EEN 1093 Not.Use Not.Use 8606902 0.3453 0.0126
6005-04 6005 4 EEN 441 Not.Use Not.Use 15175 0.9094 0.0133
6006-01 6006 1 antiTNF 2500 Not.Use Use 13532231 87.7866 0.0230
6006-02 6006 2 antiTNF 2500 Not.Use Use 3671574 84.0176 0.0317
6006-03 6006 3 antiTNF 2500 Not.Use Use 10928439 90.8406 0.0226
6006-04 6006 4 antiTNF 16 Not.Use Use 12552758 94.2589 0.0819
6007-01 6007 1 antiTNF 546 Use Use 4249 57.4253 0.0000
6007-02 6007 2 antiTNF 98 Use Use 8479546 6.7026 0.7450
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6007-03 6007 3 antiTNF 36 Use Use 9627614 2.2279 0.3213
6007-04 6007 4 antiTNF 91 Not.Use Use 18525468 1.1944 0.0091
6008-01 6008 1 antiTNF 199 Use Not.Use 1902553 20.7997 1.6046
6008-02 6008 2 antiTNF 199 Not.Use Not.Use 6770155 35.1753 0.0425
6008-03 6008 3 antiTNF 17 Not.Use Not.Use 5628751 0.4224 0.0132
6008-04 6008 4 antiTNF 19 Not.Use Not.Use 23137720 3.1322 0.0092
6009-01 6009 1 EEN 1515 Not.Use Not.Use 14863813 8.9481 0.0073
6009-02 6009 2 EEN 1086 Not.Use Not.Use 17363653 8.6932 0.0004
6009-03 6009 3 EEN 242 Not.Use Not.Use 19188962 15.7104 0.0005
6009-04 6009 4 EEN NA NA Not.Use NA NA NA
6010-01 6010 1 EEN 918 Not.Use Not.Use 44127513 0.2510 0.0001
6010-02 6010 2 EEN 273 Not.Use Not.Use 19486594 0.5433 0.0001
6010-03 6010 3 EEN 43 Not.Use Not.Use 89293 7.3959 0.0048
6010-04 6010 4 EEN 35 Not.Use Not.Use 10393217 0.4857 0.0001
6011-01 6011 1 antiTNF 2378 Not.Use Use 23183241 90.5083 0.0144
6011-02 6011 2 antiTNF 1382 Not.Use Use 25267759 82.4781 0.2980
6011-03 6011 3 antiTNF 2500 Not.Use Use 12676781 85.6631 0.0287
6011-04 6011 4 antiTNF 1140 Not.Use Use 21923207 87.3108 0.0078
6012-01 6012 1 antiTNF 230 Not.Use Use 11975200 1.0505 0.0252
6012-02 6012 2 antiTNF 174 Not.Use Use 9209099 0.5301 0.0789
6012-03 6012 3 antiTNF 75 Not.Use Use 5008100 1.2725 0.1110
6012-04 6012 4 antiTNF 230 Not.Use Use 6906076 3.3363 0.2561
6013-01 6013 1 antiTNF 864 Not.Use Not.Use 15919643 1.4215 0.0018
6013-02 6013 2 antiTNF 240 Not.Use Not.Use 5806078 1.6179 0.0706
6013-03 6013 3 antiTNF 192 Not.Use Not.Use 7348649 61.6686 0.0643
6013-04 6013 4 antiTNF 42 Not.Use Not.Use 19462064 0.2437 0.0090
6014-01 6014 1 antiTNF 1060 Use Not.Use 11906592 61.4327 0.9244
6014-02 6014 2 antiTNF 414 Use Not.Use 2887799 16.2758 1.1956
6014-03 6014 3 antiTNF 144 Use Not.Use 2952235 5.5858 0.4023
6014-04 6014 4 antiTNF 58 Use Not.Use 2671818 19.4958 2.0387
6015-01 6015 1 antiTNF 2208 Not.Use Use 5690989 81.4385 0.0858
6015-02 6015 2 antiTNF 678 Not.Use Use 1973933 65.2522 0.1263
6015-03 6015 3 antiTNF 1607 Not.Use Use 6798449 74.0633 0.0715
6015-04 6015 4 antiTNF 1792 Use Use 4771585 82.3619 0.0456
6016-01 6016 1 antiTNF 1032 Not.Use Use 19949172 2.0520 1.4388
6016-02 6016 2 antiTNF 609 Not.Use Use 16032025 3.3823 0.0363
6016-03 6016 3 antiTNF 123 Not.Use Use 5836698 0.4512 0.0177
6016-04 6016 4 antiTNF 101 Not.Use Use 17553659 0.3665 0.0019
6017-01 6017 1 EEN 1440 Not.Use Not.Use 852489 2.3844 0.0113
6017-02 6017 2 EEN 369 Not.Use Not.Use 3589285 0.1113 0.0001
6017-03 6017 3 EEN 299 Not.Use Not.Use 4277065 0.0733 0.0002
6017-04 6017 4 EEN 221 Not.Use Not.Use 5119242 0.2982 0.0025
6018-01 6018 1 antiTNF 44 Use Use 6415400 28.2901 1.4109
6018-02 6018 2 antiTNF 154 Use Use 9850573 4.4017 0.2150
6018-03 6018 3 antiTNF 26 Use Use 2236450 7.0074 1.0101
6018-04 6018 4 antiTNF 47 Use Use 9885877 5.9078 0.5652
6019-01 6019 1 EEN 1471 Not.Use Not.Use 2432256 37.8718 0.0028
6019-02 6019 2 EEN 462 Not.Use Not.Use 7647697 2.2209 0.0001
6019-03 6019 3 EEN 313 Not.Use Not.Use 28110772 0.1449 0.0005
6019-04 6019 4 EEN 252 Not.Use Not.Use 17403470 0.5008 0.0059
7001-01 7001 1 EEN 353 Not.Use Not.Use 8504313 0.2609 0.0104
7001-02 7001 2 EEN 1175 Not.Use Not.Use 9971 0.0602 NA
7001-03 7001 3 EEN 464 Not.Use Not.Use 613 7.6672 5.3004
7001-04 7001 4 EEN 299 Not.Use Not.Use 637 1.7268 0.3195
7002-01 7002 1 EEN 276 Not.Use Not.Use 12059720 0.4252 0.0069
7002-02 7002 2 EEN 349 Not.Use Not.Use 7918822 0.1227 0.0076
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7002-03 7002 3 EEN 235 Not.Use Not.Use 18394580 0.1549 0.0060
7002-04 7002 4 EEN 371 Not.Use Not.Use 696 1.8678 1.1713
7003-01 7003 1 EEN NA Not.Use Not.Use 11681940 1.0765 0.0180
7003-02 7003 2 EEN 1508 Not.Use Not.Use 5719 18.1500 0.0855
7003-03 7003 3 EEN 456 Not.Use Not.Use 5049 2.2579 0.0000
7003-04 7003 4 EEN 661 Not.Use Not.Use 3491497 0.1763 0.0113
7004-01 7004 1 EEN 445 Use Not.Use 15804800 1.3306 0.0069
7004-02 7004 2 EEN 469 Use Not.Use 21004602 0.0209 0.0049
7004-03 7004 3 EEN 163 Not.Use Not.Use 3643098 0.6667 0.0159
7004-04 7004 4 EEN 100 Not.Use Not.Use 27190000 1.1843 0.0299
7005-01 7005 1 EEN 1599 Not.Use Not.Use 14316873 82.7166 0.0881
7005-02 7005 2 EEN NA Not.Use Not.Use 37769211 88.9530 0.0648
7005-03 7005 3 EEN 448 Not.Use Not.Use 15758259 1.2466 0.0086
7005-04 7005 4 EEN 69 Not.Use Not.Use 22079179 0.1590 0.0051
7006-01 7006 1 EEN 1651 Not.Use Not.Use 12612386 56.8051 0.0844
7006-02 7006 2 EEN 421 Not.Use Not.Use 3875110 2.1418 0.0229
7006-03 7006 3 EEN 473 Not.Use Not.Use 7228815 0.6281 0.0136
7006-04 7006 4 EEN 236 Not.Use Not.Use 12437406 0.3912 0.0128
7007-01 7007 1 antiTNF 2500 Not.Use Not.Use 5508692 87.8428 0.1150
7007-02 7007 2 antiTNF 651 Not.Use Not.Use 8810984 27.2283 0.2776
7007-03 7007 3 antiTNF 245 Not.Use Not.Use 7624761 11.9533 0.0286
7007-04 7007 4 antiTNF 201 Not.Use Not.Use 13295616 1.0704 0.1387
7008-01 7008 1 EEN 494 Not.Use Not.Use 32781369 9.9260 0.0006
7008-02 7008 2 EEN 268 Not.Use Not.Use 313413 1.7756 0.0006
7008-03 7008 3 EEN 194 Not.Use Not.Use 28265182 0.0788 0.0000
7008-04 7008 4 EEN 231 Not.Use Not.Use 31358441 0.2927 0.0000
7009-01 7009 1 EEN 474 Not.Use Not.Use 28587266 0.2790 0.0001
7009-02 7009 2 EEN 385 Not.Use Not.Use 1916 1.0960 0.1055
7009-03 7009 3 EEN 700 Not.Use Not.Use 5361 0.7834 0.0000
7009-04 7009 4 EEN 281 Not.Use Not.Use 46558 0.9343 0.0000
7010-01 7010 1 EEN 283 Not.Use Not.Use 38228169 0.5912 0.0002
7010-02 7010 2 EEN 2295 Not.Use Not.Use 2400 1.0417 0.0842
7010-03 7010 3 EEN NA NA Not.Use 6495 2.8176 0.0000
7010-04 7010 4 EEN 420 Not.Use Not.Use 7328679 0.0734 0.0000
7011-01 7011 1 EEN 332 Not.Use Not.Use 21679852 0.1591 0.0010
7011-02 7011 2 EEN 671 Not.Use Not.Use 25946 1.2565 0.0312
7011-03 7011 3 EEN 175 Not.Use Not.Use 186894 0.4430 0.0000
7011-04 7011 4 EEN 111 Use Not.Use 109801 0.3570 0.0018
7012-01 7012 1 EEN 473 Use Not.Use 7954988 3.5370 0.0171
7012-02 7012 2 EEN 1364 Use Not.Use 164001 2.7244 0.0614
7012-03 7012 3 EEN 669 Use Not.Use 6483922 4.4896 0.0005
7012-04 7012 4 EEN NA NA Not.Use NA NA NA
7013-01 7013 1 EEN 1584 Not.Use Not.Use 19105139 0.3070 0.0144
7013-02 7013 2 EEN 1080 Use Not.Use 7120769 0.5818 0.0004
7013-03 7013 3 EEN 372 Not.Use Not.Use 20111907 0.3094 0.0000
7013-04 7013 4 EEN 83 Not.Use Not.Use 2784797 0.3882 0.0014
7014-01 7014 1 EEN 1997 Not.Use Not.Use 22609213 0.9397 0.0002
7014-02 7014 2 EEN 1997 Not.Use Not.Use 61657 1.0672 0.0033
7014-03 7014 3 EEN 1123 Not.Use Not.Use 500128 3.9754 0.0004
7014-04 7014 4 EEN NA NA Not.Use NA NA NA
7015-01 7015 1 EEN 1968 Use Not.Use 7997853 10.0875 0.0132
7015-02 7015 2 EEN 1003 Use Not.Use 208338 0.3677 0.0289
7015-03 7015 3 EEN 459 Use Not.Use 14720924 0.2664 0.0003
7015-04 7015 4 EEN 202 Use Not.Use 1365117 1.8486 0.0054
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Table 2.2: Proportional abundance of bacteria (genus level) among children with

Crohn’s disease and healthy controls.

Control group Crohn’s disease
Taxa Wilcoxon P value Wilcoxon Q value Median abundance Present% Median abundance Present%
Prevotella 2.41E-08 1.08E-06 0.056 0.96 0 0.33
Eubacterium 1.52E-06 3.43E-05 6.8 1 0.27 0.76
Escherichia 2.43E-05 3.64E-04 0 0.42 0.49 0.8
Odoribacter 5.65E-05 5.89E-04 0.52 0.81 0 0.28
Akkermansia 6.54E-05 5.89E-04 0.047 0.62 0 0.22
Roseburia 9.76E-05 7.32E-04 1 0.96 0.024 0.65
Parabacteroides 1.19E-03 7.62E-03 1.7 0.96 0.049 0.62
Alistipes 1.40E-03 7.85E-03 7.3 1 0.33 0.84
Coprococcus 2.41E-03 1.20E-02 0.28 0.81 0 0.42
Klebsiella 2.77E-03 1.25E-02 0 0.038 0 0.33
Dorea 4.79E-03 1.80E-02 0.44 0.88 0.031 0.54
Veillonella 4.79E-03 1.80E-02 0.0071 0.69 0.058 0.75
Enterococcus 6.01E-03 2.08E-02 0 0.038 0 0.31
Ruminococcus 1.01E-02 3.23E-02 3.5 1 1.1 0.88
Collinsella 1.95E-02 5.84E-02 0.15 0.81 0 0.41
Fusobacterium 2.84E-02 8.00E-02 0 0 0 0.16
Citrobacter 4.46E-02 1.18E-01 0 0 0 0.14
Bilophila 5.44E-02 1.25E-01 0.024 0.69 0 0.39
Lactobacillus 5.40E-02 1.25E-01 0 0.23 0 0.41
Proteus 5.57E-02 1.25E-01 0 0 0 0.13
Desulfovibrio 7.28E-02 1.49E-01 0.006 0.58 0 0.31
Anaerotruncus 7.26E-02 1.49E-01 0.0047 0.65 0 0.39
Rothia 8.15E-02 1.59E-01 0 0.12 0 0.26
Blautia 8.87E-02 1.66E-01 0.068 0.92 0.034 0.69
Eggerthella 1.07E-01 1.92E-01 0 0.38 0 0.47
Actinomyces 1.31E-01 2.26E-01 0 0.077 0 0.2
Gemella 1.43E-01 2.38E-01 0 0.15 0 0.27
Streptococcus 2.06E-01 3.31E-01 0.14 0.96 0.39 0.88
Granulicatella 2.38E-01 3.69E-01 0 0.23 0 0.31
Holdemania 2.64E-01 3.95E-01 0.013 0.69 0 0.45
Haemophilus 3.49E-01 5.07E-01 0.024 0.69 0.028 0.69
Bacteroides 4.25E-01 5.26E-01 43 1 33 0.99
Sutterella 4.10E-01 5.26E-01 0 0.19 0 0.26
Dialister 4.13E-01 5.26E-01 0.027 0.58 0.0049 0.55
Coprobacillus 4.01E-01 5.26E-01 0 0.38 0 0.44
Enterobacter 4.33E-01 5.26E-01 0 0.038 0 0.082
Pediococcus 4.24E-01 5.26E-01 0 0.038 0 0.082
Lactococcus 4.51E-01 5.35E-01 0 0.38 0 0.26
Peptoniphilus 5.41E-01 6.24E-01 0 0.12 0 0.16
Clostridium 5.84E-01 6.58E-01 0.36 0.96 0.55 0.88
Gordonibacter 7.68E-01 8.43E-01 0 0.19 0 0.22
Bifidobacterium 8.70E-01 9.21E-01 0.7 0.88 0.54 0.81
Anaerostipes 8.88E-01 9.21E-01 0 0.23 0 0.21
Anaerococcus 9.01E-01 9.21E-01 0 0.12 0 0.12
Faecalibacterium 9.22E-01 9.22E-01 2.4 0.96 1.9 0.85
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Table 2.3: Proportional abundance of bacteria (genus level) among children with

Crohn’s disease stratified by clusters in relation to distance from microbiota com-

position of healthy controls.

Near cluster Far cluster
Taxa Wilcoxon P value Wilcoxon Q value Median abundance Present% Median abundance Present%
Faecalibacterium 7.29E-09 2.11E-07 8.5 0.96 0.039 0.61
Parabacteroides 9.36E-09 2.11E-07 0.48 0.86 0 0.14
Dorea 2.24E-08 2.52E-07 0.14 0.77 0 0.071
Blautia 2.01E-08 2.52E-07 0.055 0.93 0 0.21
Holdemania 4.99E-08 4.49E-07 0.017 0.67 0 0
Lactobacillus 6.08E-08 4.56E-07 0 0.25 1.1 0.75
Bacteroides 1.30E-07 7.34E-07 54 1 0.94 0.96
Klebsiella 1.25E-07 7.34E-07 0 0.16 0.13 0.68
Collinsella 2.92E-07 1.46E-06 0.13 0.61 0 0
Coprococcus 7.23E-07 3.25E-06 0.078 0.61 0 0.036
Bilophila 8.92E-07 3.65E-06 0.052 0.58 0 0
Dialister 9.88E-07 3.70E-06 0.36 0.72 0 0.21
Eggerthella 1.31E-06 4.54E-06 0.03 0.67 0 0.071
Eubacterium 1.34E-05 4.32E-05 0.56 0.89 0.00087 0.5
Enterococcus 1.52E-05 4.55E-05 0 0.18 0.019 0.57
Streptococcus 2.54E-05 7.15E-05 0.058 0.88 4.9 0.89
Desulfovibrio 3.10E-05 8.21E-05 0 0.46 0 0
Odoribacter 7.79E-05 1.95E-04 0 0.42 0 0
Anaerotruncus 1.82E-04 4.31E-04 0.0011 0.54 0 0.071
Alistipes 2.10E-04 4.73E-04 1.7 0.89 0.048 0.71
Citrobacter 4.97E-04 1.06E-03 0 0.053 0 0.32
Gordonibacter 6.64E-04 1.36E-03 0 0.33 0 0
Ruminococcus 9.88E-04 1.93E-03 1.4 0.98 0.19 0.68
Pediococcus 1.76E-03 3.30E-03 0 0.018 0 0.21
Prevotella 4.26E-03 7.66E-03 0 0.44 0 0.11
Rothia 4.75E-03 8.23E-03 0 0.18 0 0.43
Lactococcus 1.94E-02 3.23E-02 0 0.19 0 0.39
Enterobacter 2.29E-02 3.68E-02 0 0.035 0 0.18
Roseburia 2.72E-02 4.22E-02 0.054 0.74 0 0.46
Peptoniphilus 3.40E-02 5.09E-02 0 0.23 0 0.036
Anaerostipes 4.88E-02 7.09E-02 0 0.28 0 0.071
Akkermansia 5.29E-02 7.44E-02 0 0.28 0 0.11
Clostridium 5.81E-02 7.92E-02 0.7 0.96 0.23 0.71
Granulicatella 7.11E-02 9.41E-02 0 0.26 0 0.39
Gemella 1.03E-01 1.29E-01 0 0.23 0 0.36
Anaerococcus 1.03E-01 1.29E-01 0 0.16 0 0.036
Escherichia 1.09E-01 1.33E-01 0.3 0.86 3.3 0.68
Bifidobacterium 2.21E-01 2.62E-01 0.42 0.82 1.9 0.79
Proteus 2.42E-01 2.79E-01 0 0.11 0 0.18
Veillonella 3.49E-01 3.92E-01 0.057 0.81 0.31 0.64
Haemophilus 3.91E-01 4.29E-01 0.027 0.75 0.18 0.57
Coprobacillus 4.67E-01 5.00E-01 0 0.47 0 0.36
Actinomyces 6.16E-01 6.44E-01 0 0.19 0 0.21
Fusobacterium 7.78E-01 7.95E-01 0 0.16 0 0.18
Sutterella 8.32E-01 8.32E-01 0 0.26 0 0.25
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Table 2.4: Proportional abundance of microbial gene pathways comparing children

with Crohn’s disease and healthy controls.

Near cluster Far cluster

Wilcoxon Wilcoxon Median Present Median Present

Pathway P value Q value abundance % abundance %

ko01053 Biosynthesis of siderophore group nonribosomal peptides 2.68E-07 2.18E-05 6.00E-04 0.77 0.025 0.96

ko04122 Sulfur relay system 1.56E-07 2.18E-05 0.31 1 0.55 1

ko02010 ABC transporters 6.96E-07 3.78E-05 0.31 1 0.43 1

ko02060 Phosphotransferase system PTS 1.43E-06 3.96E-05 0.0059 1 0.22 0.99

ko03010 Ribosome 1.63E-06 3.96E-05 3 1 2.3 1

ko00052 Galactose metabolism 1.70E-06 3.96E-05 0.59 1 0.72 1

ko00480 Glutathione metabolism 1.36E-06 3.96E-05 0.65 1 0.78 1

ko04626 Plant pathogen interaction 3.12E-06 6.36E-05 0.31 1 0.18 1

ko00473 D Alanine metabolism 4.78E-06 8.65E-05 0.92 1 1.2 1

ko02020 Two component system 1.51E-05 2.46E-04 0.16 1 0.22 1

ko00130 Ubiquinone and other terpenoid quinone biosynthesis 2.95E-05 4.37E-04 0.47 1 0.61 1

ko00561 Glycerolipid metabolism 3.51E-05 4.77E-04 0.23 0.95 0.3 0.99

ko00564 Glycerophospholipid metabolism 4.01E-05 5.03E-04 0.41 1 0.48 1

ko03008 Ribosome biogenesis in eukaryotes 5.86E-05 6.82E-04 0.058 1 0.072 1

ko00020 Citrate cycle TCA cycle 9.47E-05 1.03E-03 1.9 1 1.6 0.99

ko04141 Protein processing in endoplasmic reticulum 1.87E-04 1.90E-03 0.037 0.91 0.021 0.71

ko00290 Valine leucine and isoleucine biosynthesis 2.93E-04 2.81E-03 3.9 1 3.5 1

ko00910 Nitrogen metabolism 3.13E-04 2.84E-03 0.73 1 0.78 1

ko01040 Biosynthesis of unsaturated fatty acids 3.65E-04 2.97E-03 0.18 0.95 0.21 0.96

ko00640 Propanoate metabolism 3.59E-04 2.97E-03 0.68 1 0.78 0.96

ko00250 Alanine aspartate and glutamate metabolism 6.09E-04 4.51E-03 2.7 1 2.5 0.97

ko00970 Aminoacyl tRNA biosynthesis 6.09E-04 4.51E-03 2.9 1 2.5 1

ko00627 Aminobenzoate degradation 6.84E-04 4.85E-03 0.072 0.77 0.11 0.85

ko02030 Bacterial chemotaxis 1.00E-03 6.80E-03 0 0.45 0.045 0.68

ko04112 Cell cycle Caulobacter 1.52E-03 9.59E-03 1.2 1 1.1 1

ko00791 Atrazine degradation 1.53E-03 9.59E-03 0.0043 0.95 0.014 0.88

ko00720 Carbon fixation pathways in prokaryotes 1.85E-03 1.11E-02 1.9 0.95 1.6 0.84

ko03020 RNA polymerase 2.37E-03 1.38E-02 0.9 1 0.76 1

ko04630 Jak STAT signaling pathway 3.03E-03 1.70E-02 0 0 0 0.32

ko00670 One carbon pool by folate 3.55E-03 1.93E-02 2.5 1 2.2 0.99

ko00500 Starch and sucrose metabolism 4.20E-03 2.20E-02 0.67 1 0.83 1

ko00770 Pantothenate and CoA biosynthesis 4.32E-03 2.20E-02 2.1 1 2 1

ko00380 Tryptophan metabolism 5.58E-03 2.76E-02 0 0.45 0.19 0.67

ko00600 Sphingolipid metabolism 5.83E-03 2.77E-02 0.17 1 0.21 0.92

ko04080 Neuroactive ligand receptor interaction 5.96E-03 2.77E-02 7.70E-06 0.77 4.20E-05 0.75

ko01055 Biosynthesis of vancomycin group antibiotics 7.61E-03 3.45E-02 3.6 1 2.9 0.99

ko00562 Inositol phosphate metabolism 1.01E-02 4.45E-02 0.37 1 0.32 0.95

ko00710 Carbon fixation in photosynthetic organisms 1.04E-02 4.45E-02 0.0058 1 0.014 0.96

ko03018 RNA degradation 1.15E-02 4.80E-02 0.81 1 0.79 1

ko00240 Pyrimidine metabolism 1.18E-02 4.80E-02 1.5 1 1.4 1

ko00680 Methane metabolism 1.24E-02 4.92E-02 0.63 1 0.58 1

ko00531 Glycosaminoglycan degradation 1.27E-02 4.92E-02 0.24 1 0.13 0.93
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ko00740 Riboflavin metabolism 1.40E-02 5.31E-02 1.5 1 1.3 1

ko00430 Taurine and hypotaurine metabolism 1.56E-02 5.52E-02 0 0.32 0.91 0.67

ko00350 Tyrosine metabolism 1.53E-02 5.52E-02 0.41 0.77 0.43 0.82

ko00330 Arginine and proline metabolism 1.51E-02 5.52E-02 0.94 1 0.91 1

ko00071 Fatty acid metabolism 1.78E-02 6.16E-02 0.19 1 0.23 0.85

ko03320 PPAR signaling pathway 1.92E-02 6.51E-02 0 0.091 0 0.33

ko03060 Protein export 2.26E-02 7.51E-02 1.6 1 1.4 1

ko00053 Ascorbate and aldarate metabolism 2.47E-02 7.91E-02 0.12 1 0.22 0.96

ko04514 Cell adhesion molecules CAMs 2.47E-02 7.91E-02 0 0.045 0 0.26

ko00280 Valine leucine and isoleucine degradation 3.31E-02 1.04E-01 0.44 1 0.47 0.97

ko00760 Nicotinate and nicotinamide metabolism 3.69E-02 1.06E-01 1.2 1 1.3 1

ko00195 Photosynthesis 3.66E-02 1.06E-01 0.0018 0.95 0.00019 0.62

ko00534 Glycosaminoglycan biosynthesis heparan sulfate 3.54E-02 1.06E-01 0 0 0 0.18

ko00410 beta Alanine metabolism 3.54E-02 1.06E-01 0 0 0 0.18

ko00983 Drug metabolism other enzymes 3.59E-02 1.06E-01 0.0094 0.95 0.0046 0.77

ko00623 Toluene degradation 3.87E-02 1.09E-01 0 0.45 0.00027 0.55

ko00364 Fluorobenzoate degradation 4.44E-02 1.21E-01 0 0 0 0.16

ko02040 Flagellar assembly 4.38E-02 1.21E-01 0.026 0.95 0.049 0.95

ko00906 Carotenoid biosynthesis 4.54E-02 1.21E-01 6.10E-05 0.5 0 0.27

ko05150 Staphylococcus aureus infection 5.38E-02 1.42E-01 0.0011 1 0.0038 0.9

ko00450 Selenocompound metabolism 5.66E-02 1.45E-01 1.8 0.95 1.8 0.9

ko00590 Arachidonic acid metabolism 5.80E-02 1.45E-01 0 0.14 0 0.33

ko00310 Lysine degradation 5.73E-02 1.45E-01 0.095 1 0.14 1

ko04650 Natural killer cell mediated cytotoxicity 6.97E-02 1.67E-01 0 0 0 0.14

ko00601 Glycosphingolipid biosynthesis lacto and neolacto series 6.97E-02 1.67E-01 0 0 0 0.14

ko00633 Nitrotoluene degradation 6.85E-02 1.67E-01 0.016 1 0.047 0.92

ko00362 Benzoate degradation 7.83E-02 1.83E-01 0.00075 0.86 0.002 0.75

ko04146 Peroxisome 7.87E-02 1.83E-01 0.045 0.82 0.058 0.79

ko00520 Amino sugar and nucleotide sugar metabolism 8.46E-02 1.94E-01 1.1 1 1.1 1

ko00621 Dioxin degradation 8.65E-02 1.96E-01 0 0.091 0 0.25

ko00900 Terpenoid backbone biosynthesis 9.28E-02 2.07E-01 1 1 1.1 1

ko00281 Geraniol degradation 1.02E-01 2.26E-01 0.38 0.95 0.47 0.88

ko04950 Maturity onset diabetes of the young 1.09E-01 2.37E-01 0 0 0 0.11

ko00660 C5 Branched dibasic acid metabolism 1.15E-01 2.47E-01 2.2 1 2.1 0.95

ko00550 Peptidoglycan biosynthesis 1.17E-01 2.48E-01 1.8 1 1.9 1

ko00190 Oxidative phosphorylation 1.22E-01 2.51E-01 0.74 1 0.71 1

ko00624 Polycyclic aromatic hydrocarbon degradation 1.21E-01 2.51E-01 0 0.045 0 0.18

ko04810 Regulation of actin cytoskeleton 1.29E-01 2.63E-01 0 0.36 0 0.45

ko04145 Phagosome 1.35E-01 2.66E-01 0 0.23 0 0.36

ko00620 Pyruvate metabolism 1.33E-01 2.66E-01 1.5 1 1.5 1

ko00650 Butanoate metabolism 1.35E-01 2.66E-01 0.8 1 0.83 1

ko00750 Vitamin B6 metabolism 1.73E-01 3.35E-01 1.9 1 1.9 1

ko04974 Protein digestion and absorption 1.93E-01 3.40E-01 0.069 1 0.066 0.97

ko03440 Homologous recombination 1.78E-01 3.40E-01 1.4 1 1.4 1

ko00730 Thiamine metabolism 1.90E-01 3.40E-01 1.6 1 1.6 1

ko04512 ECM receptor interaction 1.91E-01 3.40E-01 0 0.045 0 0.15

ko00312 beta Lactam resistance 1.86E-01 3.40E-01 0 0.045 0 0.15

ko04614 Renin angiotensin system 1.83E-01 3.40E-01 0 0.27 0 0.44

ko04330 Notch signaling pathway 1.92E-01 3.40E-01 0 0.45 0 0.49
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ko00140 Steroid hormone biosynthesis 1.96E-01 3.40E-01 0 0.18 0 0.29

ko04310 Wnt signaling pathway 1.95E-01 3.40E-01 0 0.27 0 0.36

ko04150 mTOR signaling pathway 1.91E-01 3.40E-01 0 0.14 0 0.26

ko00311 Penicillin and cephalosporin biosynthesis 2.08E-01 3.58E-01 0.14 1 0.072 0.88

ko04621 NOD like receptor signaling pathway 2.11E-01 3.58E-01 0 0.091 0 0.19

ko00830 Retinol metabolism 2.16E-01 3.62E-01 0 0.045 0 0.14

ko00920 Sulfur metabolism 2.46E-01 3.97E-01 1.2 0.95 1.1 0.97

ko00300 Lysine biosynthesis 2.42E-01 3.97E-01 1.7 1 1.7 1

ko00790 Folate biosynthesis 2.46E-01 3.97E-01 1.2 1 1.3 1

ko03430 Mismatch repair 2.46E-01 3.97E-01 1.5 1 1.5 1

ko00960 Tropane piperidine and pyridine alkaloid biosynthesis 2.51E-01 4.00E-01 0 0.14 0 0.055

ko03013 RNA transport 2.53E-01 4.01E-01 0.054 1 0.058 1

ko00860 Porphyrin and chlorophyll metabolism 2.61E-01 4.09E-01 0.34 1 0.35 1

ko00930 Caprolactam degradation 2.70E-01 4.19E-01 0 0 0 0.055

ko00062 Fatty acid elongation in mitochondria 2.78E-01 4.27E-01 0 0.045 0 0.12

ko00565 Ether lipid metabolism 2.88E-01 4.38E-01 0 0.091 0 0.18

ko00270 Cysteine and methionine metabolism 2.96E-01 4.46E-01 1.3 1 1.4 1

ko00540 Lipopolysaccharide biosynthesis 3.04E-01 4.55E-01 1.6 1 1.6 0.97

ko04111 Cell cycle yeast 3.12E-01 4.63E-01 0.00026 0.91 0.00025 0.89

ko03030 DNA replication 3.25E-01 4.78E-01 1.2 1 1.2 1

ko03050 Proteasome 3.38E-01 4.92E-01 0.00066 0.95 0.00093 0.84

ko00100 Steroid biosynthesis 3.46E-01 5.00E-01 0.00079 0.86 0.00023 0.67

ko00521 Streptomycin biosynthesis 3.57E-01 5.10E-01 1.6 1 1.6 1

ko00513 Various types of N glycan biosynthesis 3.62E-01 5.14E-01 1.30E-05 0.5 4.00E-05 0.55

ko00230 Purine metabolism 3.66E-01 5.14E-01 1.1 1 1.1 1

ko00051 Fructose and mannose metabolism 3.80E-01 5.29E-01 1.5 1 1.5 1

ko00363 Bisphenol degradation 3.87E-01 5.34E-01 0 0.18 0 0.096

ko00471 D Glutamine and D glutamate metabolism 3.99E-01 5.47E-01 2.6 1 2.6 1

ko00630 Glyoxylate and dicarboxylate metabolism 4.09E-01 5.56E-01 0.89 1 0.9 1

ko00072 Synthesis and degradation of ketone bodies 4.46E-01 5.86E-01 0 0 0 0.027

ko00260 Glycine serine and threonine metabolism 4.45E-01 5.86E-01 1.4 1 1.4 1

ko00591 Linoleic acid metabolism 4.46E-01 5.86E-01 0 0 0 0.027

ko00903 Limonene and pinene degradation 4.46E-01 5.86E-01 0 0 0 0.027

ko00780 Biotin metabolism 4.51E-01 5.88E-01 1.3 1 1.3 1

ko05120 Epithelial cell signaling in Helicobacter pylori infection 4.56E-01 5.90E-01 0.097 1 0.093 0.99

ko00010 Glycolysis Gluconeogenesis 4.61E-01 5.92E-01 1.5 1 1.4 1

ko00400 Phenylalanine tyrosine and tryptophan biosynthesis 4.67E-01 5.94E-01 1.4 1 1.4 1

ko00121 Secondary bile acid biosynthesis 4.83E-01 6.10E-01 1.9 1 1.9 0.97

ko04020 Calcium signaling pathway 4.96E-01 6.18E-01 0 0.091 0 0.14

ko03420 Nucleotide excision repair 4.94E-01 6.18E-01 0.73 1 0.73 1

ko03410 Base excision repair 5.17E-01 6.38E-01 1.2 1 1.1 1

ko00040 Pentose and glucuronate interconversions 5.22E-01 6.40E-01 1.3 1 1.3 1

ko04120 Ubiquitin mediated proteolysis 5.26E-01 6.40E-01 0.00023 0.86 0.00013 0.75

ko00340 Histidine metabolism 5.46E-01 6.59E-01 1.5 1 1.5 1

ko00061 Fatty acid biosynthesis 5.52E-01 6.61E-01 1.6 1 1.6 1

ko00510 N Glycan biosynthesis 5.60E-01 6.66E-01 0.0044 0.95 0.0039 0.85

ko00626 Naphthalene degradation 5.86E-01 6.92E-01 0 0.045 0 0.082

ko05322 Systemic lupus erythematosus 5.97E-01 7.00E-01 0 0.32 0 0.33

ko05130 Pathogenic Escherichia coli infection 6.09E-01 7.07E-01 0 0.18 0 0.21
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ko04210 Apoptosis 6.12E-01 7.07E-01 0.00026 0.68 0.00013 0.67

ko00360 Phenylalanine metabolism 6.24E-01 7.17E-01 0.42 1 0.42 0.97

ko00785 Lipoic acid metabolism 6.43E-01 7.33E-01 1.9 1 1.7 0.99

ko00361 Chlorocyclohexane and chlorobenzene degradation 6.68E-01 7.51E-01 0 0.045 0 0.068

ko05143 African trypanosomiasis 6.68E-01 7.51E-01 0 0.045 0 0.068

ko03070 Bacterial secretion system 7.08E-01 7.90E-01 0.74 1 0.7 0.99

ko00030 Pentose phosphate pathway 7.21E-01 7.99E-01 1.9 1 1.9 1

ko00440 Phosphonate and phosphinate metabolism 7.34E-01 8.09E-01 0.31 1 0.31 1

ko03015 mRNA surveillance pathway 7.68E-01 8.40E-01 5.10E-05 0.68 1.90E-05 0.52

ko03450 Non homologous end joining 7.77E-01 8.44E-01 2.40E-05 0.5 0 0.45

ko04962 Vasopressin regulated water reabsorption 8.04E-01 8.66E-01 0 0.27 0 0.25

ko00625 Chloroalkane and chloroalkene degradation 8.08E-01 8.66E-01 0 0.091 0 0.068

ko00603 Glycosphingolipid biosynthesis globo series 8.37E-01 8.92E-01 0 0.045 0 0.055

ko00511 Other glycan degradation 8.56E-01 9.07E-01 0.84 1 0.84 1

ko00908 Zeatin biosynthesis 8.77E-01 9.23E-01 0.54 1 0.51 0.99

ko04113 Meiosis yeast 8.97E-01 9.38E-01 3.00E-04 0.82 0.00015 0.71

ko00563 Glycosylphosphatidylinositol GPI anchor biosynthesis 9.07E-01 9.42E-01 0.00038 0.77 0.00018 0.66

ko04140 Regulation of autophagy 9.31E-01 9.48E-01 2.00E-04 0.73 9.20E-05 0.53

ko00514 Other types of O glycan biosynthesis 9.20E-01 9.48E-01 5.40E-05 0.68 2.60E-05 0.58

ko04011 MAPK signaling pathway yeast 9.25E-01 9.48E-01 0.00026 0.82 0.00024 0.7

ko03022 Basal transcription factors 9.43E-01 9.55E-01 0.00028 0.77 2.00E-04 0.66

ko00592 alpha Linolenic acid metabolism 9.49E-01 9.55E-01 0 0.045 0 0.041

ko04130 SNARE interactions in vesicular transport 9.60E-01 9.60E-01 0.00034 0.64 0.00012 0.58

44



Table 2.5: Proportional abundance of microbial gene pathways among children with Crohn’s

disease. Samples were separated into two clusters using data on the microbiota composition.

Near cluster Far cluster

Wilcoxon Wilcoxon Median Present Median Present
Pathway P value Q value abundance % abundance %

ko00564 Glycerophospholipid metabolism 3.01E-16 4.91E-14 0.43 1 0.75 1
ko02060 Phosphotransferase system PTS 1.62E-12 1.15E-10 0.021 0.98 1.3 1
ko02010 ABC transporters 2.12E-12 1.15E-10 0.35 1 0.8 1
ko00052 Galactose metabolism 9.75E-12 2.65E-10 0.63 1 1.2 1
ko00480 Glutathione metabolism 6.73E-12 2.65E-10 0.74 1 1.1 1
ko04122 Sulfur relay system 9.75E-12 2.65E-10 0.38 1 1.3 1
ko00561 Glycerolipid metabolism 2.59E-10 5.28E-09 0.25 1 0.63 0.96
ko02020 Two component system 2.59E-10 5.28E-09 0.18 1 0.42 1
ko00250 Alanine aspartate and glutamate metabolism 3.66E-10 6.63E-09 2.7 1 1.8 0.93
ko00400 Phenylalanine tyrosine and tryptophan biosynthesis 2.77E-09 4.51E-08 1.5 1 0.96 1
ko00720 Carbon fixation pathways in prokaryotes 3.04E-09 4.51E-08 1.8 0.96 1.3 0.64
ko00500 Starch and sucrose metabolism 3.66E-09 4.97E-08 0.7 1 1.2 1
ko00680 Methane metabolism 4.39E-09 5.51E-08 0.6 1 0.52 1
ko00520 Amino sugar and nucleotide sugar metabolism 7.54E-09 8.19E-08 1.1 1 1.3 1
ko00340 Histidine metabolism 7.54E-09 8.19E-08 1.6 1 0.89 1
ko04120 Ubiquitin mediated proteolysis 3.60E-08 3.67E-07 3.70E-05 0.62 0.01 0.96
ko00627 Aminobenzoate degradation 6.13E-08 5.88E-07 0.083 0.82 0.25 0.89
ko00450 Selenocompound metabolism 7.70E-08 6.76E-07 1.9 0.98 1.5 0.79
ko00740 Riboflavin metabolism 7.88E-08 6.76E-07 1.4 1 0.92 1
ko00380 Tryptophan metabolism 8.33E-08 6.79E-07 0.14 0.53 0.31 0.89
ko00750 Vitamin B6 metabolism 1.71E-07 1.33E-06 1.9 1 1.4 1
ko00020 Citrate cycle TCA cycle 4.16E-07 3.08E-06 1.7 1 1.4 0.96
ko00670 One carbon pool by folate 5.16E-07 3.66E-06 2.4 1 1.9 0.96
ko04112 Cell cycle Caulobacter 6.86E-07 4.66E-06 1.1 1 0.96 1
ko00531 Glycosaminoglycan degradation 1.04E-06 6.76E-06 0.2 0.98 0.0035 0.86
ko03008 Ribosome biogenesis in eukaryotes 1.20E-06 7.50E-06 0.067 1 0.093 1
ko04140 Regulation of autophagy 1.42E-06 8.59E-06 0 0.36 0.0044 0.82
ko00260 Glycine serine and threonine metabolism 3.04E-06 1.74E-05 1.4 1 1.3 1
ko04330 Notch signaling pathway 3.09E-06 1.74E-05 0 0.31 0.0012 0.79
ko04626 Plant pathogen interaction 3.24E-06 1.76E-05 0.22 1 0.12 1
ko04974 Protein digestion and absorption 4.46E-06 2.34E-05 0.073 1 0.01 0.93
ko04111 Cell cycle yeast 1.52E-05 7.77E-05 0.00013 0.84 0.0039 0.96
ko01040 Biosynthesis of unsaturated fatty acids 3.91E-05 1.93E-04 0.2 0.98 0.36 0.93
ko05150 Staphylococcus aureus infection 4.73E-05 2.27E-04 0.0012 0.91 0.026 0.89
ko04310 Wnt signaling pathway 5.48E-05 2.55E-04 0 0.2 0.00028 0.61
ko00513 Various types of N glycan biosynthesis 6.47E-05 2.93E-04 0 0.42 0.001 0.75
ko03015 mRNA surveillance pathway 7.05E-05 3.10E-04 0 0.38 0.00064 0.75
ko00311 Penicillin and cephalosporin biosynthesis 7.58E-05 3.25E-04 0.13 0.93 0.012 0.79
ko00660 C5 Branched dibasic acid metabolism 8.25E-05 3.36E-04 2.2 0.98 1.9 0.89
ko00514 Other types of O glycan biosynthesis 8.25E-05 3.36E-04 0 0.47 0.00092 0.75
ko00290 Valine leucine and isoleucine biosynthesis 8.95E-05 3.56E-04 3.7 1 2.6 1
ko00511 Other glycan degradation 9.94E-05 3.86E-04 0.89 1 0.53 1
ko00310 Lysine degradation 1.10E-04 4.18E-04 0.11 1 0.29 1
ko00330 Arginine and proline metabolism 1.50E-04 5.54E-04 0.92 1 0.86 1
ko01053 Biosynthesis of siderophore group nonribosomal peptides 1.55E-04 5.60E-04 0.0097 1 0.11 0.89
ko03010 Ribosome 1.74E-04 6.03E-04 2.5 1 1.8 1
ko03022 Basal transcription factors 1.72E-04 6.03E-04 6.50E-05 0.58 0.0049 0.79
ko00770 Pantothenate and CoA biosynthesis 2.84E-04 9.63E-04 2 1 1.8 1
ko00650 Butanoate metabolism 2.98E-04 9.90E-04 0.81 1 0.92 1
ko03440 Homologous recombination 3.12E-04 1.02E-03 1.4 1 1.5 1
ko00010 Glycolysis Gluconeogenesis 3.27E-04 1.05E-03 1.4 1 1.5 1
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ko04810 Regulation of actin cytoskeleton 3.86E-04 1.21E-03 0 0.31 2.00E-04 0.68
ko00190 Oxidative phosphorylation 4.34E-04 1.33E-03 0.74 1 0.62 1
ko00362 Benzoate degradation 5.11E-04 1.54E-03 0.00074 0.76 0.23 0.75
ko03320 PPAR signaling pathway 5.75E-04 1.70E-03 0 0.2 7.50E-05 0.54
ko04011 MAPK signaling pathway yeast 7.35E-04 2.14E-03 8.10E-05 0.64 0.0018 0.79
ko00062 Fatty acid elongation in mitochondria 7.60E-04 2.17E-03 0 0.022 0 0.29
ko05130 Pathogenic Escherichia coli infection 7.85E-04 2.21E-03 0 0.089 0 0.39
ko04080 Neuroactive ligand receptor interaction 8.11E-04 2.24E-03 2.10E-05 0.71 0.00079 0.82
ko04962 Vasopressin regulated water reabsorption 8.96E-04 2.39E-03 0 0.13 0 0.43
ko04130 SNARE interactions in vesicular transport 8.90E-04 2.39E-03 0 0.49 0.0017 0.71
ko00300 Lysine biosynthesis 1.06E-03 2.79E-03 1.7 1 1.5 1
ko00621 Dioxin degradation 1.23E-03 3.19E-03 0 0.13 0 0.43
ko00970 Aminoacyl tRNA biosynthesis 1.69E-03 4.30E-03 2.6 1 2.2 1
ko00364 Fluorobenzoate degradation 2.57E-03 6.41E-03 0 0.067 0 0.32
ko00710 Carbon fixation in photosynthetic organisms 2.59E-03 6.41E-03 0.0063 1 0.037 0.89
ko00563 Glycosylphosphatidylinositol GPI anchor biosynthesis 2.76E-03 6.72E-03 1.00E-04 0.62 0.0021 0.71
ko03070 Bacterial secretion system 3.73E-03 8.68E-03 0.69 1 0.85 0.96
ko00350 Tyrosine metabolism 3.65E-03 8.68E-03 0.42 0.82 0.49 0.82
ko00471 D Glutamine and D glutamate metabolism 3.73E-03 8.68E-03 2.9 1 2.2 1
ko00590 Arachidonic acid metabolism 3.90E-03 8.95E-03 0 0.2 0.0035 0.54
ko04113 Meiosis yeast 4.33E-03 9.80E-03 9.20E-05 0.71 0.0037 0.71
ko00195 Photosynthesis 4.88E-03 1.08E-02 6.50E-05 0.58 0.0019 0.68
ko03050 Proteasome 4.89E-03 1.08E-02 0.00046 0.82 0.0051 0.86
ko00473 D Alanine metabolism 5.04E-03 1.09E-02 1.2 1 1.4 1
ko00130 Ubiquinone and other terpenoid quinone biosynthesis 8.62E-03 1.82E-02 0.6 1 0.76 1
ko03013 RNA transport 8.62E-03 1.82E-02 0.054 1 0.061 1
ko04210 Apoptosis 9.51E-03 1.99E-02 8.10E-05 0.64 0.0037 0.71
ko00121 Secondary bile acid biosynthesis 1.02E-02 2.10E-02 2 1 0.8 0.93
ko05322 Systemic lupus erythematosus 1.05E-02 2.13E-02 0 0.24 0 0.46
ko00270 Cysteine and methionine metabolism 1.13E-02 2.28E-02 1.4 1 1.3 1
ko00040 Pentose and glucuronate interconversions 1.21E-02 2.41E-02 1.3 1 1.1 1
ko00100 Steroid biosynthesis 1.28E-02 2.51E-02 1.00E-04 0.64 0.0023 0.71
ko04150 mTOR signaling pathway 1.41E-02 2.73E-02 0 0.18 0 0.39
ko00640 Propanoate metabolism 1.45E-02 2.78E-02 0.76 1 0.85 0.89
ko01055 Biosynthesis of vancomycin group antibiotics 1.52E-02 2.89E-02 3 1 2.6 0.96
ko00053 Ascorbate and aldarate metabolism 1.64E-02 3.08E-02 0.19 1 0.45 0.89
ko00730 Thiamine metabolism 1.90E-02 3.53E-02 1.6 1 1.5 1
ko03450 Non homologous end joining 2.10E-02 3.84E-02 0 0.4 0.00023 0.54
ko04650 Natural killer cell mediated cytotoxicity 2.45E-02 4.39E-02 0 0.067 0 0.25
ko04950 Maturity onset diabetes of the young 2.45E-02 4.39E-02 0 0.044 0 0.21
ko04630 Jak STAT signaling pathway 2.57E-02 4.55E-02 0 0.22 0 0.46
ko00601 Glycosphingolipid biosynthesis lacto and neolacto series 2.70E-02 4.70E-02 0 0.067 0 0.25
ko00592 alpha Linolenic acid metabolism 2.71E-02 4.70E-02 0 0 0 0.11
ko00230 Purine metabolism 3.09E-02 5.31E-02 1.1 1 1.2 1
ko00071 Fatty acid metabolism 3.13E-02 5.31E-02 0.21 0.96 0.45 0.68
ko00633 Nitrotoluene degradation 3.58E-02 5.98E-02 0.037 0.98 0.098 0.82
ko04020 Calcium signaling pathway 3.60E-02 5.98E-02 0 0.067 0 0.25
ko05120 Epithelial cell signaling in Helicobacter pylori infection 3.68E-02 6.06E-02 0.096 1 0.08 0.96
ko02040 Flagellar assembly 3.79E-02 6.17E-02 0.039 0.98 0.15 0.89
ko00534 Glycosaminoglycan biosynthesis heparan sulfate 4.04E-02 6.52E-02 0 0.11 0 0.29
ko00600 Sphingolipid metabolism 4.71E-02 7.52E-02 0.2 0.89 0.24 0.96
ko04146 Peroxisome 5.07E-02 8.02E-02 0.055 0.78 0.073 0.82
ko04145 Phagosome 5.23E-02 8.19E-02 0 0.29 0 0.46
ko00625 Chloroalkane and chloroalkene degradation 5.36E-02 8.32E-02 0 0.022 0 0.14
ko00410 beta Alanine metabolism 5.57E-02 8.56E-02 0 0.11 0 0.29
ko00072 Synthesis and degradation of ketone bodies 7.42E-02 1.12E-01 0 0 0 0.071
ko00903 Limonene and pinene degradation 7.42E-02 1.12E-01 0 0 0 0.071
ko00430 Taurine and hypotaurine metabolism 8.42E-02 1.26E-01 1.1 0.64 0.86 0.71
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ko00281 Geraniol degradation 8.54E-02 1.27E-01 0.49 0.98 0.45 0.71
ko00785 Lipoic acid metabolism 9.90E-02 1.45E-01 1.9 1 1.6 0.96
ko00830 Retinol metabolism 1.13E-01 1.64E-01 0 0.089 0 0.21
ko00860 Porphyrin and chlorophyll metabolism 1.17E-01 1.68E-01 0.34 1 0.42 1
ko00540 Lipopolysaccharide biosynthesis 1.19E-01 1.70E-01 1.6 1 1.5 0.93
ko00624 Polycyclic aromatic hydrocarbon degradation 1.48E-01 2.09E-01 0 0.13 0 0.25
ko00051 Fructose and mannose metabolism 1.49E-01 2.09E-01 1.5 1 1.4 1
ko00626 Naphthalene degradation 1.56E-01 2.18E-01 0 0.044 0 0.14
ko00910 Nitrogen metabolism 1.59E-01 2.19E-01 0.77 1 0.87 1
ko02030 Bacterial chemotaxis 1.61E-01 2.21E-01 0.043 0.76 0.16 0.57
ko00061 Fatty acid biosynthesis 1.84E-01 2.50E-01 1.6 1 1.5 1
ko04512 ECM receptor interaction 1.86E-01 2.51E-01 0 0.11 0 0.21
ko04614 Renin angiotensin system 2.18E-01 2.91E-01 0 0.38 2.40E-05 0.54
ko00521 Streptomycin biosynthesis 2.42E-01 3.21E-01 1.6 1 1.4 1
ko00360 Phenylalanine metabolism 2.79E-01 3.66E-01 0.43 1 0.36 0.93
ko00550 Peptidoglycan biosynthesis 2.81E-01 3.66E-01 1.9 1 1.7 1
ko04514 Cell adhesion molecules CAMs 2.83E-01 3.66E-01 0 0.22 0 0.32
ko00630 Glyoxylate and dicarboxylate metabolism 2.86E-01 3.67E-01 0.92 1 0.83 1
ko00780 Biotin metabolism 2.91E-01 3.70E-01 1.4 1 1.3 1
ko04621 NOD like receptor signaling pathway 2.94E-01 3.71E-01 0 0.16 0 0.25
ko03430 Mismatch repair 2.96E-01 3.71E-01 1.5 1 1.5 1
ko00760 Nicotinate and nicotinamide metabolism 3.23E-01 4.02E-01 1.3 1 1.3 1
ko00565 Ether lipid metabolism 3.63E-01 4.48E-01 0 0.16 0 0.21
ko00791 Atrazine degradation 3.73E-01 4.48E-01 0.011 0.98 0.03 0.71
ko00790 Folate biosynthesis 3.76E-01 4.48E-01 1.3 1 1.3 1
ko03020 RNA polymerase 3.76E-01 4.48E-01 0.77 1 0.73 1
ko00908 Zeatin biosynthesis 3.76E-01 4.48E-01 0.52 1 0.49 0.96
ko00280 Valine leucine and isoleucine degradation 3.76E-01 4.48E-01 0.48 0.98 0.45 0.96
ko00623 Toluene degradation 4.08E-01 4.82E-01 0.0012 0.67 0 0.36
ko00562 Inositol phosphate metabolism 4.24E-01 4.86E-01 0.32 0.96 0.29 0.93
ko05143 African trypanosomiasis 4.22E-01 4.86E-01 0 0.089 0 0.036
ko00030 Pentose phosphate pathway 4.20E-01 4.86E-01 1.9 1 1.9 1
ko00983 Drug metabolism other enzymes 4.21E-01 4.86E-01 0.0046 0.87 0.0029 0.61
ko03410 Base excision repair 4.67E-01 5.32E-01 1.1 1 1.1 1
ko00620 Pyruvate metabolism 4.88E-01 5.52E-01 1.5 1 1.5 1
ko00312 beta Lactam resistance 5.12E-01 5.75E-01 0 0.18 0 0.11
ko00900 Terpenoid backbone biosynthesis 5.46E-01 6.10E-01 1.1 1 1.1 1
ko00140 Steroid hormone biosynthesis 5.80E-01 6.43E-01 0 0.31 0 0.25
ko00240 Pyrimidine metabolism 5.84E-01 6.44E-01 1.4 1 1.4 1
ko00930 Caprolactam degradation 5.95E-01 6.51E-01 0 0.044 0 0.071
ko00363 Bisphenol degradation 6.02E-01 6.54E-01 0 0.11 0 0.071
ko03060 Protein export 6.08E-01 6.56E-01 1.4 1 1.4 1
ko00603 Glycosphingolipid biosynthesis globo series 6.15E-01 6.59E-01 0 0.067 0 0.036
ko04141 Protein processing in endoplasmic reticulum 6.26E-01 6.66E-01 0.024 0.62 0.014 0.86
ko03420 Nucleotide excision repair 6.48E-01 6.86E-01 0.73 1 0.78 1
ko00440 Phosphonate and phosphinate metabolism 6.64E-01 6.99E-01 0.32 1 0.29 1
ko00960 Tropane piperidine and pyridine alkaloid biosynthesis 6.77E-01 7.07E-01 0 0.044 0 0.071
ko00510 N Glycan biosynthesis 6.87E-01 7.13E-01 0.004 0.93 0.0038 0.71
ko00591 Linoleic acid metabolism 7.33E-01 7.56E-01 0 0.022 0 0.036
ko03030 DNA replication 7.82E-01 7.97E-01 1.2 1 1.2 1
ko00906 Carotenoid biosynthesis 7.78E-01 7.97E-01 0 0.29 0 0.25
ko00920 Sulfur metabolism 8.43E-01 8.53E-01 1.1 1 1.1 0.93
ko00361 Chlorocyclohexane and chlorobenzene degradation 9.07E-01 9.13E-01 0 0.067 0 0.071
ko03018 RNA degradation 9.33E-01 9.33E-01 0.79 1 0.79 1
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Table 2.6: Proportional abundance of bacteria (genus level) among children with

Crohn’s disease and healthy controls excluding patients with antibiotic use.

Control group Crohn’s disease
Taxa Wilcoxon P value Wilcoxon Q value Median abundance Present% Median abundance Present%
Prevotella 2.80E-08 1.26E-06 0.056 0.96 0 0.34
Escherichia 1.59E-05 2.71E-04 0 0.42 0.41 0.86
Eubacterium 1.81E-05 2.71E-04 6.8 1 0.27 0.79
Veillonella 4.44E-04 5.00E-03 0.0071 0.69 0.066 0.84
Akkermansia 8.45E-04 7.61E-03 0.047 0.62 0 0.26
Roseburia 1.17E-03 8.79E-03 1 0.96 0.044 0.69
Odoribacter 1.43E-03 9.18E-03 0.52 0.81 0 0.33
Parabacteroides 1.83E-03 1.03E-02 1.7 0.96 0.07 0.67
Eggerthella 7.65E-03 3.83E-02 0 0.38 0.018 0.6
Coprococcus 1.48E-02 6.68E-02 0.28 0.81 0 0.48
Klebsiella 1.64E-02 6.70E-02 0 0.038 0 0.26
Fusobacterium 1.87E-02 7.00E-02 0 0 0 0.19
Dorea 2.89E-02 1.00E-01 0.44 0.88 0.1 0.66
Lactococcus 4.13E-02 1.28E-01 0 0.38 0 0.16
Enterococcus 4.26E-02 1.28E-01 0 0.038 0 0.22
Alistipes 4.67E-02 1.31E-01 7.3 1 1.5 0.88
Collinsella 5.65E-02 1.50E-01 0.15 0.81 0 0.45
Citrobacter 9.31E-02 2.33E-01 0 0 0 0.1
Ruminococcus 1.27E-01 2.88E-01 3.5 1 1.4 0.91
Proteus 1.28E-01 2.88E-01 0 0 0 0.086
Clostridium 1.40E-01 3.00E-01 0.36 0.96 0.68 0.97
Coprobacillus 2.26E-01 4.61E-01 0 0.38 0 0.48
Haemophilus 2.67E-01 5.23E-01 0.024 0.69 0.033 0.74
Bilophila 2.94E-01 5.37E-01 0.024 0.69 0 0.45
Faecalibacterium 3.00E-01 5.37E-01 2.4 0.96 4.5 0.88
Actinomyces 3.10E-01 5.37E-01 0 0.077 0 0.16
Anaerotruncus 3.78E-01 6.31E-01 0.0047 0.65 0 0.47
Peptoniphilus 3.96E-01 6.36E-01 0 0.12 0 0.19
Rothia 4.20E-01 6.51E-01 0 0.12 0 0.17
Bacteroides 4.36E-01 6.54E-01 43 1 53 1
Blautia 4.64E-01 6.57E-01 0.068 0.92 0.04 0.81
Bifidobacterium 4.67E-01 6.57E-01 0.7 0.88 0.29 0.81
Desulfovibrio 5.25E-01 7.07E-01 0.006 0.58 0 0.4
Gordonibacter 5.34E-01 7.07E-01 0 0.19 0 0.26
Dialister 5.59E-01 7.18E-01 0.027 0.58 0.0051 0.57
Lactobacillus 5.86E-01 7.32E-01 0 0.23 0 0.28
Sutterella 6.02E-01 7.32E-01 0 0.19 0 0.24
Streptococcus 7.02E-01 8.31E-01 0.14 0.96 0.083 0.83
Gemella 7.49E-01 8.64E-01 0 0.15 0 0.17
Enterobacter 7.93E-01 8.86E-01 0 0.038 0 0.052
Granulicatella 8.07E-01 8.86E-01 0 0.23 0 0.22
Holdemania 8.68E-01 9.30E-01 0.013 0.69 0.0038 0.53
Anaerococcus 9.04E-01 9.46E-01 0 0.12 0 0.12
Anaerostipes 9.32E-01 9.53E-01 0 0.23 0 0.22
Pediococcus 9.64E-01 9.64E-01 0 0.038 0 0.034
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Table 2.7: Proportional abundance of bacteria (genus level) among children with

Crohn’s disease with and without antibiotic use.

Without Antibiotics With Antibiotics
Taxa Wilcoxon P value Wilcoxon Q value Median abundance Present% Median abundance Present%
Bacteroides 8.44E-05 1.27E-03 53 1 4.3 0.96
Streptococcus 5.60E-05 1.27E-03 0.083 0.83 2.3 1
Lactobacillus 5.97E-05 1.27E-03 0 0.28 0.3 0.7
Ruminococcus 1.36E-03 1.02E-02 1.4 0.91 0.37 0.81
Lactococcus 1.04E-03 1.02E-02 0 0.16 0 0.48
Gemella 1.25E-03 1.02E-02 0 0.17 0 0.48
Enterococcus 2.21E-03 1.42E-02 0 0.22 0 0.48
Blautia 4.19E-03 1.88E-02 0.04 0.81 0 0.44
Eggerthella 3.73E-03 1.88E-02 0.018 0.6 0 0.19
Rothia 3.89E-03 1.88E-02 0 0.17 0 0.44
Alistipes 5.41E-03 2.03E-02 1.5 0.88 0.072 0.74
Desulfovibrio 5.39E-03 2.03E-02 0 0.4 0 0.11
Granulicatella 1.04E-02 3.59E-02 0 0.22 0 0.48
Clostridium 1.28E-02 3.95E-02 0.68 0.97 0.13 0.7
Klebsiella 1.32E-02 3.95E-02 0 0.26 0 0.48
Bifidobacterium 1.49E-02 4.20E-02 0.29 0.81 2.3 0.81
Pediococcus 1.61E-02 4.27E-02 0 0.034 0 0.19
Holdemania 2.37E-02 5.92E-02 0.0038 0.53 0 0.26
Dorea 2.64E-02 6.26E-02 0.1 0.66 0 0.3
Anaerotruncus 3.24E-02 7.30E-02 0 0.47 0 0.22
Veillonella 4.95E-02 1.06E-01 0.066 0.84 0.019 0.56
Proteus 5.83E-02 1.19E-01 0 0.086 0 0.22
Bilophila 6.37E-02 1.25E-01 0 0.45 0 0.26
Faecalibacterium 7.16E-02 1.34E-01 4.5 0.88 0.35 0.78
Citrobacter 8.49E-02 1.53E-01 0 0.1 0 0.22
Actinomyces 9.38E-02 1.62E-01 0 0.16 0 0.3
Enterobacter 1.32E-01 2.21E-01 0 0.052 0 0.15
Roseburia 1.57E-01 2.53E-01 0.044 0.69 0.0042 0.56
Odoribacter 1.70E-01 2.55E-01 0 0.33 0 0.19
Coprococcus 1.67E-01 2.55E-01 0 0.48 0 0.3
Coprobacillus 2.37E-01 3.44E-01 0 0.48 0 0.33
Akkermansia 2.60E-01 3.55E-01 0 0.26 0 0.15
Gordonibacter 2.60E-01 3.55E-01 0 0.26 0 0.15
Peptoniphilus 3.31E-01 4.38E-01 0 0.19 0 0.11
Eubacterium 3.64E-01 4.68E-01 0.27 0.79 0.16 0.7
Sutterella 3.94E-01 4.93E-01 0 0.24 0 0.3
Fusobacterium 4.17E-01 5.08E-01 0 0.19 0 0.11
Collinsella 4.88E-01 5.78E-01 0 0.45 0 0.33
Parabacteroides 5.16E-01 5.91E-01 0.07 0.67 0.023 0.52
Dialister 5.33E-01 5.91E-01 0.0051 0.57 0.0036 0.52
Anaerostipes 5.39E-01 5.91E-01 0 0.22 0 0.19
Haemophilus 5.59E-01 5.99E-01 0.033 0.74 0.022 0.59
Escherichia 6.73E-01 7.05E-01 0.41 0.86 0.73 0.67
Prevotella 9.77E-01 9.80E-01 0 0.34 0 0.3
Anaerococcus 9.80E-01 9.80E-01 0 0.12 0 0.11
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Table 2.8: Proportional abundance of bacteria (genus level) among children with

Crohn’s disease before (T1) and 1 week after starting EEN (T2).

T1 median T2 median Wilcoxon signed Wilcoxon signed
Taxa abundance abundance rank P value rank Q value
Haemophilus 0.005 0.000 0.009 0.232
Alistipes 2.675 10.809 0.011 0.232
Dialister 0.005 0.000 0.025 0.258
Streptococcus 0.027 0.000 0.025 0.258
Dorea 0.204 0.059 0.031 0.258
Gordonibacter 0.000 0.000 0.036 0.258
Veillonella 0.019 0.000 0.068 0.411
Coprococcus 0.110 0.000 0.083 0.411
Odoribacter 0.000 0.000 0.093 0.411
Prevotella 0.000 0.000 0.108 0.411
Parabacteroides 0.477 1.172 0.117 0.411
Faecalibacterium 8.843 2.192 0.124 0.411
Escherichia 0.168 0.376 0.124 0.411
Eubacterium 1.347 0.223 0.151 0.465
Actinomyces 0.000 0.000 0.181 0.498
Gemella 0.000 0.000 0.201 0.498
Enterobacter 0.000 0.000 0.205 0.498
Klebsiella 0.000 0.000 0.208 0.498
Clostridium 0.390 0.434 0.229 0.503
Bilophila 0.111 0.000 0.234 0.503
Eggerthella 0.013 0.000 0.359 0.665
Rothia 0.000 0.000 0.371 0.665
Anaerococcus 0.000 0.000 0.371 0.665
Citrobacter 0.000 0.000 0.371 0.665
Anaerotruncus 0.001 0.000 0.415 0.713
Bifidobacterium 0.058 0.000 0.477 0.751
Bacteroides 59.073 41.885 0.489 0.751
Ruminococcus 2.400 2.047 0.489 0.751
Roseburia 0.106 0.017 0.572 0.848
Collinsella 0.079 0.018 0.624 0.894
Akkermansia 0.000 0.000 0.675 0.936
Desulfovibrio 0.000 0.000 0.787 0.998
Sutterella 0.000 0.000 0.789 0.998
Granulicatella 0.000 0.000 0.789 0.998
Coprobacillus 0.000 0.000 0.834 1.000
Holdemania 0.015 0.000 0.838 1.000
Blautia 0.035 0.039 1.000 1.000
Lactococcus 0.000 0.000 1.000 1.000
Lactobacillus 0.000 0.000 1.000 1.000
Anaerostipes 0.000 0.000 1.000 1.000
Peptoniphilus 0.000 0.000 1.000 1.000
Enterococcus 0.000 0.000 1.000 1.000
Fusobacterium 0.000 0.000 1.000 1.000
Pediococcus 0.000 0.000 NA NA
Proteus 0.000 0.000 NA NA
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Table 2.11: Proportional abundance of fungi among children with Crohn’s disease

and healthy controls excluding patients with antibiotic use.

Control group Crohn’s disease
Wilcoxon Wilcoxon Median Present% Median Present%

Fungi P value Q value abundance Present% abundance Present%
Candida albicans 1.66E-05 2.77E-05 1.90E-06 0.5 2.80E-05 0.88
Clavispora lusitaniae 7.46E-12 3.73E-11 4.40E-06 0.5 0.00048 1
Cyberlindnera jadinii 1.89E-06 4.73E-06 5.50E-06 0.5 0.00012 0.91
Kluyveromyces marxianus 4.72E-04 5.90E-04 1.30E-05 0.58 5.90E-05 0.83
Saccharomyces cerevisiae 2.40E-01 2.40E-01 0.0051 1 0.0063 1

Table 2.12: Proportional abundance of fungi among children with Crohn’s disease

with and without antibiotic use.

Without Antibiotics With Antibiotics
Wilcoxon Wilcoxon Median Present% Median Present%

Fungi P value Q value abundance Present% abundance Present%
Candida albicans 1.24E-05 3.11E-05 2.80E-05 0.88 0.0012 1
Clavispora lusitaniae 1.40E-04 1.87E-04 0.00048 1 0.007 0.96
Cyberlindnera jadinii 1.04E-05 3.11E-05 0.00012 0.91 0.0024 1
Kluyveromyces marxianus 1.49E-04 1.87E-04 5.90E-05 0.83 0.0015 0.96
Saccharomyces cerevisiae 8.01E-04 8.01E-04 0.0063 1 0.03 1

Table 2.13: Proportional abundance of fungi among children with Crohn’s disease

before (T1) and 1 week after starting EEN (T2)

T1 median T2 median Wilcoxon signed Wilcoxon signed
Taxa abundance abundance rank P value rank Q value
Candida albicans 1.19E-05 0 0.0263 0.0439
Clavispora lusitaniae 0.000326081 1.47E-05 0.0136 0.0439
Cyberlindnera jadinii 4.59E-05 0 0.0210 0.0439
Kluyveromyces marxianus 4.22E-05 0 0.2681 0.3351
Saccharomyces cerevisiae 0.005574747 0.006333789 0.8695 0.8695
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CHAPTER 3

A MODEL-BASED APPROACH FOR SPECIES ABUNDANCE QUANTIFICATION

BASED ON SHOTGUN METAGENOMIC DATA

In this chapter, we propose a multi-sample Poisson model to quantify microbial abundances. One

important aspect of metagenomic data analysis is to quantify the bacterial abundances based on

the sequencing count data. Existing methods almost always quantify such abundances one sample

at a time, which ignore certain systematic differences in read coverage along the genomes due to

GC contents, copy number variation and the bacterial growth dynamics. In order to account for

such differences in read counts, we propose a multi-sample Poisson model to quantify microbial

abundances based on read counts that are assigned to species-specific taxonomic markers. Our

model takes into account the marker-specific effects when normalizing the sequencing count data

in order to obtain more accurate quantification of the species abundances. Compared to currently

available methods on simulated data and real data sets, our method has demonstrated an improved

accuracy in bacterial abundance quantification, which leads to biologically interesting results from

downstream data analysis. We have implemented this statistical model as an R package MSSQ,

which is available on GitHub (https://github.com/chvlyl/MSSQ).

3.1. Introduction

The vast majority of the microorganisms on or in the human body inhabit in the gut. The collective

genomes of these microbes are called microbiome. The gut microbiome plays important roles in

human metabolism, nutrient intake and energy generation and are associated with many human

diseases such as obesity, diabetes, and inflammatory bowel disease (IBD) (Cho and Blaser, 2012;

Cox et al., 2014; Lewis et al., 2015). High-throughput sequencing technologies have been widely

used to explore the microbial community in order to understand their roles in human health and

diseases. One approach used in microbiome studies is based on 16S ribosomal RNA (rRNA) se-

quencing, which sequences the 16S rRNA gene to profile the bacterial community. The 16S rRNA

gene sequence uniquely exists in prokaryotes and its high variability in microbial genomes can be

exploited to identify different microbes. However, the 16S data are limited in discerning the bacteria

at the species or strain level. Alternatively, shotgun sequencing of metagenomes, which sequences

58



all genome sequences presented in the sample instead of just one marker gene, provides a more

comprehensive approach to study human microbiome. This approach provides richer information

about the microbial composition and gene functions. Both approaches are powerful and have been

widely used in human microbiome studies (Qin et al., 2010; Turnbaugh et al., 2007).

One key problem in analysis of shotgun metagenomic sequencing data is to accurately and effi-

ciently estimate the microbial abundances in the samples. Unlike the 16S rRNA sequencing ap-

proach that only involves one marker gene, the shotgun sequencing approach generates millions

of reads potentially from all the microbial genomes, which may share great similarity and also dis-

tribute unevenly in the sample. Therefore, analysis of shotgun metagenomic data is more complex

and requires new statistical models and computational tools. To quantify microbial abundances,

the majority of the current methods for metagenomic data analysis first align the sequencing reads

to the known microbial genomes by sequence-alignment tools such as BLAST (Altschul et al.,

1990) or Bowtie (Langmead et al., 2009). Since the microbial genomes presented in the sample

share similarities, it is usually difficult to uniquely align the sequencing reads that are generated

from these similar genome regions. Aligning sequence reads of the whole metagenomes is also

computationally demanding since each read has to be aligned to thousands of complete bacterial

genomes.

To overcome the problem of read assignment ambiguity and to improve the computational efficiency,

Segata et al. (2012) developed a computationally efficient algorithm, MetaPhlAn, which aligns reads

only to the unique clade-specific marker genes that are identified from known microbial genomes

and thus allows unambiguous taxonomic assignments. The relative abundances of the bacteria

are then quantified only by the read counts that are aligned to these marker genes. However,

for a given species, we observed that the reads are not evenly aligned to the markers and this

marker-to-marker variability is consistent across all samples. Such a marker-to-marker variability

observed can be due to different GC contents, mappability and possible lateral gene transfers.

MetaPhlAn ignores such marker effects and simply averages the normalized read counts of each

marker to estimate the microbial abundances. Without considering such marker-specific effects,

the abundance estimation can be biased.

Here, we propose a multi-sample species quantification (MSSQ) method based on Poisson model

to account for the marker effects for robust estimation of microbial abundances based on shotgun
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sequencing data. In our proposed method, we develop a Poisson model with additional parame-

ters to handle the marker effects, which are estimated by using multiple samples together. One

innovation of our proposed methods is to take into account the systematic bias of the taxonomic

markers when estimating the microbial abundances. We evaluate and compare the performances

of proposed method with MetaPhlAn, a popular clade-specific marker genes approach for bacterial

abundance quantification.

The chapter is organized as follows. Section 2 introduces the multi-sample Poisson model to ac-

count for marker-to-marker variability of the mapped read counts. Section 3 presents the simulation

results to evaluate the MSSQ model and to compare it with MetaPhlAn. Section 4 applies the pro-

posed method to a human gut microbiome data set to quantify the bacterial species that associated

with pediatric Crohn’s disease (CD). Finally, we give a brief discussion of the methods and results

in Section 5.

3.2. A multi-sample Poisson model for species abundance quantification

Our proposed method is based on the aligning of metagenomic read data into a set of clade-specific

marker genes (Segata et al., 2012) or universal marker genes (Sunagawa et al., 2013), both have

been shown to be effective in quantifying known microorganisms at species-level resolution using

shotgun sequencing data. These methods simply average the normalized read counts, which are

the read counts normalized by the marker lengths over all the markers to estimate the relative

microbial abundances. However, we have observed that the number of aligned reads is not uni-

formly distributed across the marker genes within the same clade and sample (see Figure 3.2 for

an illustration of such marker-specific effects). In order to account for such a marker-to-marker vari-

ability and to estimate the microbial abundances, we propose a Poisson model for multiple sample

analysis of read counts mapped to these marker genes.

3.2.1. A multi-sample Poisson model to account for marker-specific effects

Consider a metagenomic study with N samples. After the sequencing reads are aligned to sets of

clade-specific marker genes, the data can be summarized as a large table of counts as shown in

Figure 3.1, where Xijk is the count data of sequencing reads for sample i (i = 1, 2, . . . , n), species

j (j = 1, 2, . . . , p) and marker k (k = 1, 2, . . . ,mj). We model the count data for all species and all
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Figure 3.1: Summary of read count data that aligned to clade-specific markers. The sequencing
reads from n metagenomic samples are aligned to a set of mj clade-specific marker genes for the
ith species for a total of p species, where Xijk is the number of reads that are assigned to the kth
marker gene of the jth species for the ith sample. θij is the relative abundance of jth species in
the ith sample and this is the parameter we want to estimate.

samples together and assume that the count Xijk is generated from the following Poisson model,

Xijk ∼ Poisson(θijtiφjkljk),

where θij > 0 is the relative abundance for the jth species in the ith sample. In common practice,

the bacterial abundance are usually transformed into relative abundances (i.e. the bacterial abun-

dance sum to 100% in one sample). We therefore impose that
∑p
j=1 θij = 1. This constraint also

avoids the identifiability issue in the model. Here ti is the total read counts for sample i that are

mapped to the marker genes and ljk is the length of the kth marker gene for jth species. Note

that the species may have different number of markers. ti and ljk are known or can be calculated

from the data directly. The parameters φjk > 0 (j = 1, · · · , p and k = 1, · · · ,mj) are used to model

the market-specific effects for the set of marker genes. The marker-specific effect can be due to

different GC contents, mappability and possible lateral gene transfers. Our model uses data from

multiple samples to estimate the marker effects φjk. When φjk = 1, our model is a Poisson model

without considering the marker effects, which is essentially the approach used by MetaPhlAn.
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Figure 3.2: Marker effects in the shotgun metagenomic data for four bacterial species. The raw
sequencing reads were first aligned to the taxonomic markers and then normalized as the number
of aligned read for each marker divided by marker length and total number of aligned reads for each
sample. The normalized data was then clustered and showed in heatmap. The rows are samples
and columns are taxonomic markers from MetaPhlAn.

3.2.2. Model fitting

We fit the model and estimate the parameter using the maximum likelihood estimation, where the

likelihood function is

L =
∏
i

∏
j

∏
k

e−θijtiφjkljk(θijtiφjkljk)xijk

xijk!
,

and its logarithm is

logL =
∑
i

∑
j

∑
k

(−θijtiφjkljk + xijklog(θijtiφjkljk)− log(xijk!)).
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Estimates θ and φ can be obtained iteratively. We first estimate all θij by fixing φik at the current

values,

θ̂ij =

∑
k xijk

ti
∑
k φjkljk

,

and then normalize these values so that
∑p
j=1 θ̂ij = 1 for i = 1, · · · , n. We estimate all φik by fixing

θij at the current values,

φ̂ik =

∑
i xijk

ljk
∑
i θijti

.

We iteratively update θij and φik until convergence. Since the closed-form updating formula are

available, the algorithm is very efficient. To avoid the problem of local optimum, we used the es-

timated values from model without marker effect as the initial values. That is, use estimated θij

values from Poisson model with φik = 1 as the initial values.

3.3. Simulation studies

We first performed a simulation study to examine the model fitting, where we simulated different

sample size n = (20, 50, 100) and different number of markers m = (20, 50, 100) per species. In

order to mimic the skewed distribution of species abundance in a sample, we simulated θij from a

log-normal distribution with µ = 0 and sd = 1.5. The simulated θij were then normalized so that∑p
j=1 θij = 1. The scaled marker length ljk and total read counts ti was simulated uniformly from

[0.1,10] and [50,500], respectively. We simulated φjk from a log-normal distribution with µ = 0 and

sd = 1.5. We fitted the MSSQ model on the simulated data and then calculate the average relative

difference (AVGRD) for θ̂ and φ̂, which is defined as

1

n

n∑
i

|θij − θ̂ij |
θ̂ij

,
1

m

m∑
k

|φjk − φ̂jk|
φ̂jk

.

The simulations were repeated 1,000 times for each combination of sample size and marker size.

The mean and standard error of the AVGRD over 1000 repeated simulations were then calculated

and reported.

Table 3.1 shows the simulation results. When the number of markers per species is fixed, increasing
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sample size improves the estimation accuracy of both θ and φ. Similarly, when the sample size is

fixed, more markers can improve the estimation accuracy of both θ and φ.

Table 3.1: Parameter estimation for data simulated from the multi-sample Poisson model with dif-
ferent sample size n and different marker size m. For each parameter, the mean and standard error
(SE) of average relative difference (AVGRD) are calculated based on 1000 replications. For each n
and m, the first row are estimates for θ; the second row are for φ.

AVGRD m = 20 m = 50 m = 100
mean SE mean SE mean SE

n=20 θ 0.19 0.05 0.14 0.04 0.11 0.03
φ 0.22 0.07 0.16 0.05 0.13 0.03

n=50 θ 0.09 0.02 0.07 0.01 0.06 0.01
φ 0.08 0.02 0.07 0.02 0.07 0.01

n=100 θ 0.06 0.01 0.05 0.01 0.04 0.01
φ 0.04 0.01 0.04 0.01 0.04 0.01

We next studied the effects of allowing the marker-specific effects in the Poisson on species abun-

dance quantification, where we simulated n = 50 samples and each sample had p = 50 species.

The true abundance θij , the scaled marker length ljk and total read counts ti were simulated in

the same way as previously. For each species, the number of markers mj was uniformly simulated

from [10,50]. To mimic different degrees of marker effects, we simulated φjk from a log-normal

distribution with µ = 0 and sd = (0, 0.5, 1, 1.5) for four different simulation settings, respectively. The

simulation setting with log-normal(µ = 0, sd = 0) indicates no marker effect in the data and the

other three settings indicate increasing marker effects.

We observed that ignoring the marker-specific effects led to large biases in the estimates of the

abundance θij , as shown in Figure 3.3 (full-scale in upper panel and zoomed-in to 0-5% scale in

lower panel). When the marker effect increases, the estimated abundance deviated more from the

true abundance, where the mean of AVGRD were 0.07, 0.15, 0.28, 0.52. In contrast, estimates of

the relative abundances from MSSQ showed little biases when there were strong marker-specific

effects. The mean of AVGRD were 0.07, 0.09, 0.09, 0.10, respectively.

3.4. Application to the human gut microbiome data

3.4.1. Data description and processing

We applied MSSQ to a data set of shotgun metagenomic study comparing gut microbiome between

healthy children and children with Crohn’s disease (Lee et al., 2015; Lewis et al., 2015). A total of
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Figure 3.3: Comparison of relative abundance estimation by MSSQ with and without estimating
marker effect (φjk = 1) for four scenarios with increasing marker-specific effects (from left to right).
A total of 50 samples, each with 50 species were simulated. Upper panel, full scale; lower panel,
zoom-in 0-5% scale

90 children with Crohn’s disease and 26 healthy controls were recruited to the study and provided

fecal samples for shotgun metagenomic sequencing. DNAs were prepared from whole stool and

were sequenced using the Illumina HiSeq paired-end method, resulting in an average number of

reads per sample of 11×106 with an average length 100 bases on each end of the paired-end read.

We were interested in quantifying the bacterial abundances and identifying the bacteria species

that show differential abundance between the normal samples and the Crohn’s disease samples.

We first aligned the sequencing reads to the MetaPhlAn clade specific markers for each of the

bacterial species. In order to compare our method with MetaPhlAn, we applied the same filtering

criteria used by MetaPhlAn. Specifically, for each species, we filtered out the upper 10% percentile

of the most abundant markers and lower 10% percentile least abundant markers. We replaced

the read counts of those filtered markers with NAs and our model ignores the NAs in the model

fitting procedure. We ran MetaPhlAn on the same data set and compare the results with those from

MSSQ.

3.4.2. Abundance estimation with MSSQ

After the filtering steps, we applied MSSQ to quantify the species abundance from healthy children

and those with Crohn’s disease separately. MSSQ identified a total of 138 species presented in

the control samples and 216 in the disease samples. MetaPhlAn identified the same number of
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species in control and disease samples.

We then compared the abundance estimation by MSSQ and MetaPhlAn (Figure 3.4). When the

marker-specific effects were excluded from the model, i.e., setting all φjk=1, as expected, MSSQ

resulted in the same abundance estimate as the MetaPhlAn for both control and disease samples.

When the marker-specific effects were estimated, MSSQ shows different abundance estimation

from MetaPhlAn. Overall, we observed that the estimates from both methods were comparable with

a Pearson correlation of 0.92 (See Figure 3.4 upper panel). However, for low abundant species,

a large discrepancies of the estimates were observed (Figure 3.4 lower panel). Due to low read

counts to these species, a large variability in these estimates were expected. The overall pattern

was similar to our simulation results in Figure 3.3. We also observed that the differences were

greater in disease samples than in the control samples.

3.4.3. Clustering and differential abundance analysis

We next evaluated whether the abundance quantification by MSSQ can improve the downstream

analysis such as clustering and differential abundance analysis. Before we performed the down-

stream analysis, we first filtered out the rare species, which is a common pre-processing procedure

often used in the literature (Kostic et al., 2015; Romero et al., 2014; Stein et al., 2013). Partic-

ularly, the species with an estimated abundance < 1% in all the control and disease samples in

both MSSQ and MetaPhlAn estimation were filtered out. After filtering, 136 species were left for

following analysis.

Figure 3.5 shows the heatmap of the estimated abundances from MSSQ and MetaPhlAn, where

the samples were clustered with Bray-Curtis distance and the species were clustered based on

Pearson’s correlations. We observed a clear separation of normal and Crohn’s disease gut micro-

biome samples based on MetaPhlAn and MSSQ estimation of the species abundances. However,

the clustering results based on the MSSQ estimation show a clearer pattern.

As a comparison, we also tested for differential abundance between control and disease sam-

ples for each species using the Wilcoxon rank-sum test. Using these estimated abundance from

MetaPhlAn, Wilcoxon rank-sum test identified 39 differentially abundant species with FDR adjusted

p-value < 0.05. Based on the estimated abundance from MSSQ, 41 species were identified to be

differentially abundant between control and disease samples, including all 39 differentially abundant
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Figure 3.4: Comparison of estimated relative abundances from MSSQ and MetaPhlAn. Upper
panel: all species; Lower panel: species with abundances < 5%.

species identified based on the MetaPhlAn estimation. Among the species that are more abundant

in Crohn’s patients, E. coli, Bacteroides, Enterococcus, Klebsiella, and Ruminococcus gnavus have

been reported in literature (Liu et al., 1995; Sartor, 2006). Among the protective species, Bifi-

dobacterium, Roseburia and Eubacterium were also reported in previous studies (Manichanh et

al., 2012). Manichanh et al., 2012 detected Lactobacillus as a protective species that was more

abundant in normal gut.

The two species that were only identified when MSSQ was applied include Coprococcus comes,
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Figure 3.5: Heatmap of the estimated abundances from MSSQ and MetaPhlAn based on analysis
of metagenomic data comparing normal samples and those with Crohn’s disease. Clinical meta-
data are presented in the top bars. See Lewis et al., 2015 and Lee et al., 2015 for details of the
clinical meta-data.

which belongs to genera Coprococcus, and Clostridium symbiosum. Both species were reported

to be associated with dysbiosis, CD (Gevers et al., 2014) and UC (Du et al., 2015). Clostridium

symbiosum has been reported to protect the gut mucosa by producing butyrate (Abbeele et al.,

2013).

3.4.4. Comparing marker effect in control and disease samples

Figure 3.6 shows the estimated marker effect φ̂ for each species in normal control and disease

samples. The dispersion of φ̂ values indicates the marker effects indeed present in the real data.

The average dispersion of φ̂ is 43.10 for species in control samples and 729.12 for species in

disease samples, where the dispersion was measured by the standard deviation.

Korem et al. (2015) studied the bacterial growth dynamics using shotgun metagenomic data. They

observed that when the bacteria is in replication status, the read coverage is not uniformly dis-
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tributed across the bacterial genome. They further showed that bacterial growth dynamics are

associated with diseases such as diabetes and Crohn’s disease. Specifically, they found that the

growth dynamics of two bacterial species Bifidobacterium longum and Escherichia coli are associ-

ated with Crohn’s disease. We are interested to see if our model can capture the bacterial growth

dynamics. We examined the estimated marker effects (φ) for those two species between control

and Crohn’s disease samples in our metagenomic study (Figure 3.7). We also plotted the estimated

marker effects from several non-association species in Korem et al. (2015) as negative control. In-

terestingly, the marker effects estimated from MSSQ show great difference between control and

disease groups. No significant difference is observed for the other negative controls. This result

indicate that marker effects (φ) from MSSQ capture the bacterial growth dynamics and the differ-

ence in growth rate is associated with disease status. The bacterial relative abundance and growth

dynamics are not necessarily correlated. MSSQ captures these two biological features.

3.5. Discussion

We have proposed a multi-sample Poisson model to quantify the bacterial abundances based on

the shotgun metagenomic data. Our method uses the count data of reads aligned to clade-specific

marker genes to quantify the species abundances, taking into account the marker effects that are

observed in the shotgun sequencing data. In our analysis of real data, we used the marker genes

sets used in MetaPhlAn package. Alternatively, one can also use the 40 universal marker genes

defined by Sunagawa et al., 2013. It would be interesting to compare whether different marker

genes lead to similar species quantification. Simulation results indicate that the proposed model-

based approach can lead to better quantification of species abundances.

We further demonstrated the proposed methods in an analysis of pediatric gut microbiome to iden-

tify the species that are associated with Crohn’s disease. The discrepancy of the differential abun-

dant species identified by MSSQ and MetaPhlAn is due to whether the marker-specific effects are

accounted in the estimation. Our simulations have clearly demonstrated the ignoring such marker-

specific effects can lead to biased quantification of the species abundances. The marker-specific

effects could originates from different sources. For example, it is well known that the sequencing

reads are not uniformly distributed among genomic regions and are correlated with GC contents

of the genomic regions (Ross et al., 2013). Further, the copy number variation of the genes can
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Figure 3.7: MSSQ capture the bacterial growth dynamics. Korem et al. (2015) showed the growth
dynamics of two bacterial species Bifidobacterium longum and Escherichia coli are associated with
Crohn’s disease. The estimated marker effects (φ) for those two species between control and
Crohn’s disease samples in our metagenomic study are plotted. Three non-association species in
Korem et al. (2015) are also plotted as negative control.
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also contribute to the under- or over- presentation of certain gene regions. Sequencing error and

alignment error are other potential sources for non-uniform distribution of the reads and may cause

the large marker-to-marker variability we observed in the data.

In our analysis, we fitted the multi-sample Poisson model for all the species and all the samples

simultaneously. Since we do not expect to observe all the species in all the samples, some regular-

ization on the relative abundance parameter θij may help to improve the abundance quantification.

Finally, it is interesting to establish the asymptotic distribution of the resulting estimates of the rela-

tive abundances when both the sample size n and the numbers of marker genes mj go to infinity.
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CHAPTER 4

A TWO-PART MIXED-EFFECT MODEL FOR ANALYZING LONGITUDINAL MICROBIOME

COMPOSITIONAL DATA

In this chapter, a statistical model is proposed for longitudinal microbiome data analysis. Longitudi-

nal measurements of microbial communities are commonly obtained in many microbiome studies.

A key question in such microbiome studies is to identify the microbes that are associated with clin-

ical outcomes or environmental factors. However, the longitudinal microbiome compositional data

are highly skewed, bounded in [0,1), and often sparse with many zeros. In addition, the obser-

vations from repeated measures are correlated. A method that takes into account these features

is needed for association analysis in longitudinal microbiome data. In this chapter, we propose a

two-part zero-inflated Beta regression model with random effects (ZIBR) for testing the association

between microbial abundance and clinical covariates for longitudinal microbiome data. The model

includes a logistic regression component to model presence/absence of a microbe in samples and

a Beta regression component to model non-zero microbial abundance, where each component in-

cludes a random effect to take into account the correlations among repeated measurements on

the same subject. Both simulation studies and the application to real microbiome data show that

ZIBR model outperforms the previously used method. This provides a useful tool for identifying the

relevant taxa based on longitudinal or repeated measures in microbiome research.The model was

implemented in R package ZIBR and freely available at https://github.com/chvlyl/ZIBR.

4.1. Introduction

The human microbial communities are associated with many human diseases such as obesity, di-

abetes and inflammatory bowel disease (IBD) (Kostic et al., 2015; Qin et al., 2012; Turnbaugh et

al., 2006). In order to decipher the function and impact of the microbes on the human well-being,

two high-throughput sequencing based approaches have been widely used in microbiome studies.

One is the 16S ribosomal RNA (rRNA) sequencing approach, which profiles bacterial community

by sequencing the 16S rRNA marker gene. Another approach is the shotgun sequencing, which

sequences all the microbial genomes presented in the sample, rather than just one marker gene.

Both 16S rRNA and shotgun sequencing approaches are quite useful and have been widely applied
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to human microbiome studies, such as the Human Microbiome Project (HMP) (Turnbaugh et al.,

2007) and the Metagenomics of the Human Intestinal Tract (MetaHIT) project (Qin et al., 2010). To

quantify the microbial abundance, the sequencing reads usually are aligned to some known refer-

ence sequences (Segata et al., 2012). Due to the uneven total sequence counts of samples, the

microbial abundance measured in read counts are not comparable across samples. Therefore, it is

common that the read counts are normalized to the relative abundance by dividing total sequence

counts in the sample so that the relative abundances of all microbes in one sample sum to one

(Tyler, Smith, and Silverberg, 2014), resulting in compositional data with lots of zeros.

It is of great interest to study how microbial abundance changes across time and its association

with treatments, clinical outcomes or other covariates. To address this question, many microbiome

studies employed the longitudinal study design (for reviews, see Faust et al., 2015; Gerber, 2014;

González et al., 2012). For example, Lewis et al. (2015) studied the gut microbiome from pediatric

IBD patients during an eight-week treatment. One interesting question in this study is to identify

the bacterial taxa that change their abundance under different treatments across time. In another

longitudinal microbiome study, Bäckhed et al. (2015) studied the microbiome change during the first

years of newborn babies with different delivery methods and feeding activities.

Modeling such sparse longitudinal compositional data is challenging for several reasons. First,

the microbiome compositional data is non-normally distributed and bounded in [0,1). Methods

with normal distributional assumption are not expected to perform well. Second, the microbiome

data is often observed with many zeros, which leads to great heterogeneity in the data. Third, in

microbiome studies, it is important to adjust for the other covariates/confounders such as patient

age or antibiotics use. Therefore, a multivariate regression based method is more preferred than

univariate tests such as the t-test or Wilcoxon rank test. Fourth, the repeated measurements in

the longitudinal data are correlated, i.e, observations from the same subject across time are not

independent. This renders the methods with independence assumption not directly applicable.

Ignoring the correlation among repeated measures can lead to incorrect inference. Therefore,

taking into account the correlation among repeated measurements is necessary.

Several methods have been used to analyze the longitudinal data in order to identify the covariate-

associated taxa, but with their own limitations. To overcome the issue of non-independence of the

data across time points, most of the longitudinal microbiome studies analyzed data at individual

73



time point (Arrieta et al., 2015; Cox et al., 2014; David et al., 2014; Rutten et al., 2015; Schulz

et al., 2014; Zhou et al., 2015) or compared two time points but ignored the other time points

(Bäckhed et al., 2015; Koren et al., 2012). To take into account the excessive zeros in the data, a

two-part test combining a Z-test for testing the proportion of zeros and a Wilcoxon rank-sum test for

testing the non-zero values, was developed for identifying differential abundant microbes between

two groups (Markle et al., 2013; Wagner, Robertson, and Harris, 2011). Such tests cannot be

applied to longitudinal correlated data and are limited to only two-group comparison. Romero et al.

(2014) used a zero-inflated Poisson regression model with random effect to take into account the

correlations in longitudinal data, but the model can only be applied to count data. A linear mixed

effect model with arcsine square root transformation on the microbiome compositional data was

used (Kostic et al., 2015; La Rosa et al., 2014), however, this method does not explicitly handle

the excessive zeros in the data. This motivates us to develop a flexible method that identifies the

covariate-associated taxa while handling the features of the microbiome compositional data and

jointly modeling data from all time points.

The focus of this chapter is to develop a statistical model for identifying the bacterial taxa that are

associated with covariates while addressing the above limitations. We propose a two-part mixed-

effect zero-inflated Beta regression model, which is a mixture of a logistic regression component

and a Beta regression component, with the random effects included in the model to allow the cor-

relations between repeated measures. This model takes into account the nature of the microbiome

compositional data and also allows for multiple covariates in the regression setting. In addition, the

model can jointly analyze data from all the time points. Simulation results show that our method

outperforms several previously used methods in terms of increased power in detecting covariate-

associated taxa. We apply ZIBR to a real microbiome study and identify several bacterial taxa that

are associated with different treatments of inflammatory bowed disease (IBD). ZIBR model was

implemented in R package ZIBR and is freely available at https://github.com/chvlyl/ZIBR.

4.2. A two-part mixed-effect regression model for longitudinal microbiome data

To illustrate the features of the sparse compositional data observed in microbiome studies, Figure

4.1 shows the distribution of the relative abundance of two bacterial genera from a real microbiome

data set from Lewis et al. (2015). The data show several important features: (1) are bounded in
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Figure 4.1: Examples of two genera from the real human microbiome data. Red bars represent the
density of the non-zero data (left Y axis). Black bars represent the zero proportion (right Y axis).
Back curves show the fit of the non-zero data using a Beta distribution.

[0,1); (2) the data highly skewed; (3) the data include excessive zeros. In addition, if the microbiome

data are measured in a longitudinal study, the repeated measures from the same subjects across

time points are expected to be correlated. In order to identify the microbes that are associated

with clinical outcomes, we develop a two-part logistic-Beta regression model with random effects to

model such longitudinal data.

Our model considers each taxon separately. For each given bacterial taxon, let Yit (i = 1, 2, . . . , N, t =

1, 2, . . . , T ) be its relative abundance for subject i at time t, where 0 ≤ Yit < 1. We assume that

Yit v 0 with probability 1− pit (4.1)

v Beta(µitφ, (1− µit)φ) with probability pit, (4.2)

where the density function of the Beta distribution is parameterized as

f(yit;µit, φ) =
Γ(φ)

Γ(µitφ)Γ((1− µit)φ)
yµitφ−1
it (1− yit)(1−µit)φ−1 (4.3)

with µit (0 < µit < 1) and φ (φ > 0) being the mean and dispersion parameters of the Beta

distribution, respectively. The parameter pit is the probability that the observation Yit is generated

from the Beta component. Figure 4.1 shows that the Beta distribution fits the non-zero values of
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the real data well. In addition, we let the probability pit of the logistic component and the mean of

the Beta component µit depend on the covariates through the logit link function,

logit(pit) = log

(
pit

1− pit

)
= XT

itα+ ai, (4.4)

logit(µit) = log

(
µit

1− µit

)
= ZTitβ + bi, (4.5)

where ai and bi are the individual-specific random intercepts, Xi and Zi are the covariates that can

be time-dependent and are not necessarily the same, and α and β are the corresponding vectors

of the regression coefficients.

This model can be considered as a two-part model with a logistic component and a Beta compo-

nent. The logistic component models the presence/absence of the taxon in the samples and the

Beta component models the non-zero abundance of the taxon. A covariate can affect the micro-

biome composition in two different ways: (1) it affects the presence/absence of the taxon in the

samples, which is modeled through the logistic regression part in the model; (2) it affects the rela-

tive abundance when the taxon presents in the samples. This is modeled by the Beta regression

in the model. The data observed are from a mixture of these two models. This model is flexible to

allow that the covariates affecting the presence/absence of the microbial species and the covariates

affecting microbial abundance to be different.

If the data are measured at repeated times, the responses at different time points within a subject

are expected to be correlated. The repeated measures Yit (t = 1, . . . , T ) on the same subject i

share the same individual-specific values of ai and bi, which can be used to model such correla-

tions. We only include the random intercepts in the model since such simple random intercepts are

often adequate in practice (Min and Agresti, 2005) to capture the longitudinal correlations. How-

ever, it is easy to extend our model to include random slops. The random effects are assumed to

follow an independent normal distribution,

ai ∼ N(0, σ2
1), bi ∼ N(0, σ2

2).

The parameters can be estimated by the standard maximum likelihood estimation (MLE), where

76



the likelihood function is given as

L(α, β, φ, σ2
1 , σ

2
2)

=

N∏
i=1

∫ ∞
−∞

∫ ∞
−∞

T∏
t=1

(1− pit)I(Yit=0)[pitf(µit, φ)]I(Yit>0)

× g(ai, bi|σ2
1 , σ

2
2) daidbi,

where pit and µit are defined through the logistic regression models (4.4)-(4.5), f(µit, φ) is the Beta

density function given in (4.3) and g(ai, bi|σ2
1 , σ

2
2) is the product of two normal density functions.

To evaluate this likelihood function, we first integrate out the unobserved random effects to obtain

a marginal likelihood. Since the integrals are analytically intractable, the marginal likelihood does

not have a closed-form. We use Gauss-Hermite quadrature to approximate the integral by a finite

sum. The MLE of (α, β, φ, σ2
1 , σ

2
2) can be obtained numerically. We use likelihood ratio test for three

biologically interesting null hypotheses:

1. the covariates are associated with the bacterial taxon by affecting its presence or absence,

H0 : αj = 0;

2. the taxon is associated with the covariates by showing different abundances, H0 : βj = 0;

3. the covariates affect the taxon both in terms of presence/absence and its abundance, H0 :

αj = 0 and βj = 0 for each covariate Xj and Zj .

The p values can be obtained for each of these hypotheses. If the covariate X and Z are the same,

the joint null is H0 : αj = 0 and βj = 0, which tests the overall association between the covariate

and the taxon abundance. We have implemented this model as an R package ZIBR.

4.3. Simulation studies

To evaluate the performance of our proposed method ZIBR for longitudinal microbiome data, we

carried out simulation studies first. We compared our method with linear mixed effect model with

arcsine squared root transformation (LMM) on the microbiome abundance as proposed in La Rosa

et al., 2014 and Kostic et al., 2015. We compared ZIBR with LMM since it was currently the only

method that can jointly model data measured over all time points in longitudinal microbiome studies.
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Table 4.1: Type I error for ZIBR and LMM for α-level of 0.05 and 0.01 for various sample sizes.
Simulations were repeated 10,000 times.

ZIBR LMM ZIBR LMM
Sample size 0.001 0.05
N=50 0.013 0.0107 0.0584 0.0484
N=100 0.0105 0.0096 0.0532 0.0507
N=150 0.0095 0.001 0.0493 0.0494

We first evaluated the type I errors of the two methods. The simulation was carried out with different

number of subjects (N = 50, 100, 150), each with T = 5 time points. One binary covariate for both

logistic and Beta components was used to mimic the case-control study design, where X = Z = 0

for 1
2N subjects and X = Z = 1 for the other 1

2N subjects. We set the regression coefficients as

α = (0, 0), β = (−0.5, 0), the variance of the mixed effect as σ1 = σ2 = 0.5 and the dispersion

parameter of the Beta distribution as φ = 5. These parameters were chosen to mimic parameters

estimated based on the real data analyzed in Chapter 2. The simulations were repeated 10,000

times under each sample size setting. The type I error was calculated with two different nominal

levels of 0.01 and 0.05.

The results are shown in Table 4.1, indicating that both our proposed method ZIBR and LMM control

the type I error reasonably well. We also evaluated the running time of ZIBR. It took 2.3s, 4.0s, and

7.0s per simulation to run on a Macbook Pro laptop for sample size of N=50, 100, 150, respectively,

indicating that the algorithm is very efficient.

We next simulated the data sets to evaluate the power of ZIBR for identifying the true association.

We simulated 1000 bacterial species, of those, 400 were associated with a binary covariate and the

rest, 600, were not associated. For each species, we simulatedN=50 subjects with T=5 time points

for each subject. We simulated the regression coefficients (α0, α1, β0, β1) either from a uniform dis-

tribution or set them to zero. Particularly, they were set to (1) (−0.5, U(0.1, 1),−0.5, U(0.1, 1)) for 100

species; (2) (0.5, U(−1,−0.1), 0.5, U(−1,−0.1)) for 100 species; (3) (−0.5, U(0.1, 1), 0.5, U(−1,−0.1))

for 100 species; (4) (0.5, U(−1,−0.1),−0.5, U(0.1, 1) for 100 species; (5) (0, 0,−0.5, 0) for 600

species. Here scenarios (1) and (2) indicate that the association in the logistic and Beta com-

ponents have the same direction while scenarios (3) and (4) indicate different directions. Scenario

(5) indicates no association in either logistic or Beta component. We simulated variance of the

random effect as σ1 ∼ U(0.1, 1), σ2 ∼ U(0.1, 1) and Beta dispersion parameter as φ ∼ U(2, 10).
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Figure 4.2: ROC curves for identifying association by ZIBR and LMM, where 1000 species were
simulated and 400 of them had true association with the covariate. The simulations were carried
out with N = 50 subjects and T = 5 time points for each subject. LMM is the linear mixed effect
model with arcsine squared root transformation on the microbial abundance. The best cutoff and
the corresponding specificity and sensitivity for each method are indicated, where the best cutoff is
defined as the value such that the sum of sensitivity and specificity is the largest.

The performance of ZIBR and LMM were evaluated based on the ROC curve for identifying the

covariate-associated species. The ROC and AUC analysis were performed using pROC package

in R (Robin et al., 2011). The results are shown in Figure 4.2. The AUC for ZIBR is 92.0 compared

to 79.1 for LMM, showing a significant difference (p < 2.2× 10−16 by DeLong’s test).

4.4. Real data analysis

We applied ZIBR to a real microbiome study comparing different therapies for pediatric IBD patients

(Lee et al., 2015; Lewis et al., 2015). The study collected 90 children with IBD who received

one of the three study therapies, including 52 children receiving anti-TNF, 22 receiving exclusive

enteral nutrition (EEN) and 16 receiving partial enteral nutrition with ad lib diet (PEN). Adequate

stool samples were available from 86 individuals to conduct shotgun metagenomic analysis. Gut
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Table 4.2: Comparison of results between ZIBR and LMM for four bacterial genera, where three
covariates, including the baseline abundance, time and treatment, are included in each model. For
each genus, the FDR-adjusted p-value is shown for each of the three covariates in the model.

LMM ZIBR
Species Baseline Time Treatment Baseline Time Treatment
Lactobacillus 1.10E-11 5.68E-02 4.97E-01 2.46E-07 5.38E-01 9.41E-03
Veillonella 9.04E-07 8.04E-01 5.27E-01 4.81E-07 9.89E-01 1.76E-02
Collinsella 2.28E-07 9.85E-01 2.91E-01 6.14E-09 5.38E-01 1.57E-02
Eubacterium 1.03E-02 1.84E-02 5.04E-02 1.18E-02 2.43E-01 2.67E-02

microbiome samples were collected at four time points: baseline, 1 week, 4 weeks, and 8 weeks

into the therapy. The bacterial abundances at genus level were quantified using MetaPhlAn 1.7.6

(Segata et al., 2012). The low sequencing depth samples and low abundant genus were removed

as in Kostic et al., 2015, Romero et al., 2014 and Stein et al., 2013. After filtering, we had a total

of 236 samples with 59 subjects (47 anti-TNF and 12 EEN) and four time points for each subject

as well as 18 most common bacterial genera. Our goal was to identify the bacterial genera that

showed overall different abundances over three time points between EEN and anti-TNF treatments,

adjusting for time effect and the abundance at the baseline. We fitted ZIBR with the baseline

abundance, week and treatment as covariates and compared the results from fitting the linear

mixed effect model (Kostic et al., 2015; La Rosa et al., 2014) with the same covariates and a

subject-specific random effect. For the LMM, the relative abundance was arcsine squared-root

transformed before fitting the model. The linear mixed effect model was fitted using the lme function

from nlme package in R. The p-values were adjusted using the Benjamini-Hochberg procedure to

control the FDR.

At FDR=5%, LMM identified seven genera, including Ruminococcus, Faecalibacterium, Bifidobac-

terium, Dialister, Streptococcus, Haemophilus and Alistipes. ZIBR identified all those seven genera

and also identified four additional genera, Lactobacillus, Veillonella, Collinsella, and Eubacterium

(see Figure 4.3). Table 4.2 shows the FDR-adjusted p-value for each of the three covariates in the

model, indicating that the initial abundance of these four genera had large effects for their abun-

dance during the course of the treatment. However, these genera were relatively stable in their

abundance during the 8 weeks of treatments.

After adjusting the baseline abundance, these four genera showed different abundances between

anti-TNF and the EEN treatments. Figure 4.4 shows the abundances of those four genera over time.
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Figure 4.3: Bacterial genera that showed different abundances between anti-TNF and EEN treat-
ments identified by ZIBR and LMM after adjusting for the initial abundance. LMM identified seven
genera, which were also identified by ZIBR. ZIBR identified additional four genera.

Lactobacillus and Veillonella were observed more frequently in the anti-TNF treated group across

different time points than in the EEN group. However, no significant difference was observed for the

non-zero abundance when they were observed. In contrast, Collinsella and Eubacterium showed

consistent differences across all three time points in the non-zero abundance but not the frequen-

cies being observed. Results from ZIBR showed that different treatments led to different probabil-

ities of observing Lactobacillus and Veillonella (FDR adjusted p=0.0049, FDR adjusted p=0.0085),

but not Collinsella and Eubacterium (FDR adjusted p=0.299,FDR adjusted p=0.50). In addition,

different treatments seemed to lead to different abundances for Collinsella and Eubacterium (FDR

adjusted p=0.0254,FDR adjusted p=0.0254), but not for Lactobacillus and Veillonella (FDR adjusted

p=0.42, FDR adjusted p=0.93). The advantage of ZIBR is that it considers these two types of dif-

ferences simultaneously and therefore potentially leads to more power in detecting the differences

in abundances between the two treatment groups.

4.5. Discussion

We have proposed a two-part mixed-effect model to identify the taxa that are associated with clinical

covariates in the longitudinal microbiome studies. Our model takes into account the compositional

and sparse nature of the microbiome data as well as the correlation between repeated measures in

the longitudinal study. We have demonstrated that our proposed model outperforms the commonly

used linear mixed-effect models. We applied our method to the real human microbiome study of IBD
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Figure 4.4: Four genera identified by ZIBR but not by LMM. Left panel shows the percentage of
samples in EEN or anti-TNF groups where the genus was present. Right panel shows the non-zero
abundance in EEN or anti-TNF groups, where the abundances were logit-transformed.
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treatment and identified a number of bacterial genera that showed different abundances between

two commonly used treatments during the eight-week treatment period.

In our simulations and analysis of real data, te ZIBR model involves the same covariates for logistic

regressions and Beta regression. However, our model is more flexible, which can include multiple

covariates and different covariates in two different components of the model. Besides identifying

bacterial taxa, the model proposed here can also be applied to identify microbial genes or pathways

that show different profiles in longitudinal microbiome studies.
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CHAPTER 5

REPRODUCIBLE RESEARCH

The concept of reproducible research has been advocated by more and more researchers in the

scientific community (Peng, 2011; Sandve et al., 2013). The idea of reproducible research is that

any computational results the researchers generate, such as numbers, figures, tables, etc., can be

re-generated with minimal effort by themselves and other researchers. This is especially necessary

for computational and big data research. The computational analysis usually involves multiple steps

of data preprocessing and the statistical models and computational tools used in the analysis often

involve many parameters. The analysis procedure, statistical models and computational tools need

to be validated and reproduced by other researchers.

One interesting and effective idea in reproducible computational research is to use literate pro-

gramming. Simply put, literate programming is to organize the code with results and annotations

together in just one file. In R, one can generate this type of file with RMarkdown (or knitr) package.

In Python, one can do this with IPython Notebook. Since R is mainly used for the analysis in this

dissertation, RMarkdown was used as the tool for reproducible research. The output of RMark-

down reports can be PDF, Word or HTML format. HTML format can be distributed easily so that

researchers can view it in the regular web browser. All the analyses in this dissertation are reported

in HTML format. Figure 5.1 shows an example of the RMarkdown report in HTML format. The code

and corresponding results such as figures and tables are integrated together in one report. The

code along with the parameters and options are demonstrated above the results. Researchers who

want to repeat the analysis can rerun the same code.

To make sure that all the statistical models proposed in this dissertation can be easily applied by

other researchers in their research, I implemented the statistical models in R packages and made

them available in Github (Figure 5.2). Github is freely accessible to public users and it is easy

to install R package directly from Github. In this way, researchers do not need to implement the

proposed statistical models by themselves. Users who identify bugs in the package or have any

improvement suggestions can comment on the corresponding package website.

Some analyses are also implemented in interactive web applications with R Shiny (Figure 5.3).
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Users can explore the analyses and results by simply changing certain parameters. The figures

are then automatically updated. This is especially useful in exploratory statistical analysis that

researchers want to investigate certain analysis using different parameter settings.
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Figure 5.1: An example of Rmarkdown report. The RMarkdown integrates R code, analysis output
such as numbers, figures, tables, and annotation text. The analysis in the RMarkdown report
is organized and indexed by an index table. All the analyses included in this dissertation were
implemented as RMarkdown reports.
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Figure 5.2: An example of R package MSSQ on Github. Researchers who are interested in using
this package can easily install it from Github. All the code are freely available to the public users. An
instruction of the package is also included at the main website of this package. Another R package
ZIBR introduced in this dissertation was also submitted to Github in a similar fashion.
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Figure 5.3: An illustration of interactive analysis of microbiome data. Users can analyze and visu-
alize the correlations between metabolites and bacterial taxa in different groups. Users can also
filter out the taxa with low correlations. The figure is automatically updated after users change the
setting. This interactive web application was implemented with R Shinny.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation presents three projects related to analysis of the human microbiome. The first

project presents the analyses and results of Penn microbiome study of pediatric Crohn’s disease.

By analyzing the microbiome data and clinical data from a prospective cohort of pediatric Crohn’s

disease patients, we revealed the full complement and dynamics of bacteria and fungi associated

with Crohn’s disease and treatment. The second project proposes a multi-sample Poisson model to

quantify microbial abundances based on the shotgun metagenomic data. The third project presents

a statistical model for association analysis of longitudinal microbiome data. The work provides new

insights into the role of human gut microbiome in Crohn’s disease. The statistical models proposed

in this dissertation also provide new computational tools for microbiome data analysis. However,

microbiome is still a relatively new and challenging research area. Following are some future works

that need further studies.

6.1. Integration of metabolomic data with metagenomic data to further understand

Crohn’s disease

The work presented in the dissertation focused on analysis of microbiome data in order to under-

stand the dysbiosis in Crohn’s disease. We have demonstrated that the dysbiosis is caused by

multiple factors such as inflammation, antibiotic use and diet. However, the detailed mechanism

of dysbiosis development in Crohn’s disease is still undetermined. In order to address this ques-

tion, we also generated metabolomic data from the same fecal samples as in the previous study.

Figure 6.1 shows a global profile of the metabolites in control and Crohn’s disease samples. The

clustering of samples and metabolites shows some interesting patterns. For example, the car-

nitines such as C5 carnitine and C9 carnitine are positively correlated with disease status (control

vs. Crohn) and disease activity indicated by the FCP values. We applied the Random Forest

model to predict the control and Crohn’s disease samples using metabolite abundances of charac-

terized metabolites (Figure 6.2). The out-of-bag prediction accuracy is 89% and the most important

metabolites are lipids as well as carnitines. These preliminary results from the metabolomic data

analysis indicate that the lipids especially carnitines may play critical role in dysbiosis in Crohn’s
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disease. By integrating metabolomic data with metagenomic data such as microbial abundance

and gene pathway abundance, as well as clinical data, we can investigate the association among

metabolites, bacteria, fungus, disease activity. It is interesting to know how this association can

shed light on novel diagnostic and therapeutic procedures for Crohn’s disease.

6.2. Analysis of microbiome data with k-mers

The shotgun metagenomic data are s challenging to analyze because many similar microbial

genomes are presented in the sample and thus it is difficult to sort the sequencing reads back

to the reference genomes. Currently, the most popular approach for shotgun metagenomic data

analysis is to utilize marker genes, either taxa specific markers or universal markers, as the align-

ment reference. This approach has been well adapted and widely applied in shotgun metagenomic

studies. However, since those markers are only a small subset of the microbial genomes, only a

small proportion of the sequencing reads can be aligned to the markers. Thus majority of the data

are discarded because they are originally generated from the non-marker genomic regions.

One alternative approach for shotgun metagenomic data analysis is to use of k-mers. We can split

the sequencing reads into k-mers, say 6-mers, and count the k-mer frequencies in the sample.

The k-mer frequencies could potentially be informative. To test this idea, we generated 6-mers

from the shotgun metagenomic data used in the previous analysis after removing human reads

and low quality reads. The frequency of each 6-mer was counted and then normalized into relative

abundance so that the abundances of all 6-mers in one sample sum to one. We then applied

Random Forest to predict control and Crohn’s disease samples using the 6-mer relative abundance.

The out of bag prediction accuracy is 85% using 6-mers and the top six 6-mers that are most

important to the prediction accuracy are plotted in Figure 6.3. The 6-mers such as TACAAC and

AAGCTT showed significant differential abundance between control and Crohn’s disease samples.

It is interesting to further explore why those 6-mers are associated with disease status. Testing

the association between the 6-mer abundance and other clinical variables such as FCP values and

response status to the treatments is another future research direction.

More advanced and rigorous statistical models need to be developed for the analysis of k-mers from

shotgun metagenomic data. One possible research direction is to apply the topic model on k-mer

data. The topic model is a class of statistical models to identify the hidden topics in a collection of
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Figure 6.1: A heatmap demonstrating the relative abundance of known metabolites in control and
disease samples at the baseline. Metadata are indicated by the color code at the top of the figure.
The metabolites are grouped into several classes and indicated by the color code on the left side
of the figure. Only metabolites that show differential abundances between control and disease
samples at baseline are plotted in the heatmap, which are defined by q value < 0.05 with Wilcoxon
rank-sum test.
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Figure 6.2: Prediction of control and Crohn’s disease samples using known metabolites by Random
Forest. The metabolites are ranked by Random Forest so that the top ones are most important in
predicting control versus disease samples. Control and Crohn’s disease samples at baseline were
used in the Random Forest analysis.
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documents. In this case, we can consider each sample as a document and k-mers as words in the

document. By using topic models, we can identify the hidden biological structure in the data.

Taddy (2013) introduced a multinomial inverse regression to model the word frequency in the doc-

ument and derive low dimension representations.

Xy ∼Multinomial(qy,my),

where

qyj =
exp(αj + βjy)∑p
l=1 exp(αl + βly)

,

my =
∑
i:yi=y

mi. Here, y is the index for documents. Xy is the word frequency and my is the total

word counts. For details of this model, readers can refer to Taddy (2013). The number of unique

words in the documents usually is very large and thus we are facing a high dimensional regression

problem. The dimensions can be reduced through sufficient reduction (SR) and it can be calculated

as

zi = β′fi,

where fi = xi

mi
. The SR score is shown to correlate with main theme of the data such as restaurant

rating score (Taddy, 2013).

We applied the multinomial inverse regression model to the k-mer data generated from control

and Crohn’s disease samples. We first extracted 6-mers from the shotgun sequencing reads after

removing human reads and low quality reads and then counted the frequency of each unique 6-

mer. We fitted the multinomial inverse regression model and calculated the SR score for each

sample. Figure 6.4 shows that the SR scores generated from 6-mer data are associated with

disease status. We further stratified the Crohn’s disease samples into antibiotic use and non-use

groups (Figure 6.5). The Crohn’s disease samples with antibiotic use show higher SR score than

control samples and Crohn’s disease samples without antibiotic use.

Although the results are interesting and promising to observe the association between SR score

summarized from the 6-mers and clinical variables such as disease status and antibiotic use, there

are still many unsolved issues. First, different from words in the documents, the k-mer data gen-

erated from metagenomic data have several unique features. Due to the sequencing error, the
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observed k-mers that originate from the same genomic region may have different sequences. In

addition, the metagenomic data are mixture of sequencing reads from microbial genomes and hu-

man genomes. However, none of the currently available topic models takes into account those

unique features in the metagenomic data. Thus, developing a topic model that handles these prob-

lems is necessary. Second, the longer the k-mer, the more informative it would be. For example, in

the current analysis, we used 6-mers. However, longer k-mers such as k=30 are more biologically

informative. But k=30 will generate 1.152922 × 1018 unique 30-mer sequences. It is very computa-

tionally challenging to model such data. Therefore, statistical models and computational algorithms

for analyzing such ultra-high dimensional data are worth exploring. Third, the topic models can

identify topics with corresponding theme words. In the k-mer case, how to interpret the biological

topics and how to functionally annotate k-mers in each topic are not clear.

In summary, microbiome is still a relative new and challenging research area. More advanced

statistical models and efficient computational tools are needed for metagenomic data analysis.
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Figure 6.3: Comparison of control and Crohn’s disease samples using 6-mers data. The 6-mers
were generated from the shotgun metagenomic data used in the previous analysis after removing
human reads and low quality reads. The frequencey of each 6mer was counted and then nor-
malized into relative abundance so that the abundance of all 6-mers in one sample sums to one.
Random Forest was then applied to predict control and Crohn’s disease samples using 6-mer rel-
ative abundance. The top six 6-mers that are most important for prediction accuracy are plotted.
The 6-mer sequences are indicated at the top of each plot.
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Figure 6.4: Comparison of control and Crohn’s disease samples using SR scores estimated from
the multinomial inverse regression model. k-mers (k=6) were extracted from the shotgun sequenc-
ing reads and the frequency of each k-mer was counted. Multinomial inverse regression model was
fitted to the k-mer count data and the sufficient reduction (SR) score was calculated.
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Figure 6.5: Comparison of control and Crohn’s disease samples using SR scores estimated from
the multinomial inverse regression model. k-mers (k=6) were extracted from the shotgun sequenc-
ing reads and the frequency of each k-mer was counted. Then multinomial inverse regression
model was fitted to the k-mer count data and the sufficient reduction (SR) score was calculated.
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ald, D, Haberman, Y, Walters, T, Baker, S, Rosh, J, Stephens, M, Heyman, M, Markowitz, J,
Baldassano, R, Griffiths, A, Sylvester, F, Mack, D, Kim, S, Crandall, W, Hyams, J, Huttenhower,
C, Knight, R, and Xavier, RJ (2014). The Treatment-Naive Microbiome in New-Onset Crohn’s
Disease. Cell host & microbe 15.3, 382–392.
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