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Biological Role and Disease Impact of Copy Number Variation in
Complex Disease

Abstract
In the human genome, DNA variants give rise to a variety of complex phenotypes. Ranging from single base
mutations to copy number variations (CNVs), many of these variants are neutral in selection and disease
etiology, making difficult the detection of true common or rare frequency disease-causing mutations.
However, allele frequency comparisons in cases, controls, and families may reveal disease associations. Single
nucleotide polymorphism (SNP) arrays and exome sequencing are popular assays for genome-wide variant
identification. To limit bias between samples, uniform testing is crucial, including standardized platform
versions and sample processing. Bases occupy single points while copy variants occupy segments. Bases are bi-
allelic while copies are multi-allelic. One genome also encodes many different cell types. In this study, we
investigate how CNV impacts different cell types, including heart, brain and blood cells, all of which serve as
models of complex disease. Here, we describe ParseCNV, a systematic algorithm specifically developed as a
part of this project to perform more accurate disease associations using SNP arrays or exome sequencing-
generated CNV calls with quality tracking of variants, contributing to each significant overlap signal. Red flags
of variant quality, genomic region, and overlap profile are assessed in a continuous score and shown to
correlate over 90% with independent verification methods. We compared these data with our large internal
cohort of 68,000 subjects, with carefully mapped CNVs, which gave a robust rare variant frequency in
unaffected populations. In these investigations, we uncovered a number of loci in which CNVs are significantly
enriched in non-coding RNA (ncRNA), Online Mendelian Inheritance in Man (OMIM), and genome-wide
association study (GWAS) regions, impacting complex disease. By evaluating thoroughly the variant
frequencies in pediatric individuals, we subsequently compared these frequencies in geriatric individuals to
gain insight of these variants' impact on lifespan. Longevity-associated CNVs enriched in pediatric patients
were found to aggregate in alternative splicing genes. Congenital heart disease is the most common birth
defect and cause of infant mortality. When comparing congenital heart disease families, with cases and
controls genotyped both on SNP arrays and exome sequencing, we uncovered significant and confident loci
that provide insight into the molecular basis of disease. Neurodevelopmental disease affects the quality of life
and cognitive potential of many children. In the neurodevelopmental and psychiatric diseases, CACNA,
GRM, CNTN, and SLIT gene families show multiple significant signals impacting a large number of
developmental and psychiatric disease traits, with the potential of informing therapeutic decision-making.
Through new tool development and analysis of large disease cohorts genotyped on a variety of assays, I have
uncovered an important biological role and disease impact of CNV in complex disease.
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ABSTRACT 
 

BIOLOGICAL ROLE AND DISEASE IMPACT OF COPY NUMBER VARIATION  

IN COMPLEX DISEASE 

 

Joseph Glessner 

 

Hakon Hakonarson 

 

 In the human genome, DNA variants give rise to a variety of complex 

phenotypes. Ranging from single base mutations to copy number variations (CNVs), 

many of these variants are neutral in selection and disease etiology, making difficult the 

detection of true common or rare frequency disease-causing mutations. However, allele 

frequency comparisons in cases, controls, and families may reveal disease associations. 

Single nucleotide polymorphism (SNP) arrays and exome sequencing are popular assays 

for genome-wide variant identification. To limit bias between samples, uniform testing is 

crucial, including standardized platform versions and sample processing. Bases occupy 

single points while copy variants occupy segments. Bases are bi-allelic while copies are 

multi-allelic. One genome also encodes many different cell types. In this study, we 

investigate how CNV impacts different cell types, including heart, brain and blood cells, 

all of which serve as models of complex disease. Here, we describe ParseCNV, a 

systematic algorithm specifically developed as a part of this project to perform more 

accurate disease associations using SNP arrays or exome sequencing-generated CNV 

calls with quality tracking of variants, contributing to each significant overlap signal. Red 

flags of variant quality, genomic region, and overlap profile are assessed in a continuous 

score and shown to correlate over 90% with independent verification methods. We 

compared these data with our large internal cohort of 68,000 subjects, with carefully 
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mapped CNVs, which gave a robust rare variant frequency in unaffected populations. In 

these investigations, we uncovered a number of loci in which CNVs are significantly 

enriched in non-coding RNA (ncRNA), Online Mendelian Inheritance in Man (OMIM), 

and genome-wide association study (GWAS) regions, impacting complex disease. By 

evaluating thoroughly the variant frequencies in pediatric individuals, we subsequently 

compared these frequencies in geriatric individuals to gain insight of these variants’ 

impact on lifespan. Longevity-associated CNVs enriched in pediatric patients were found 

to aggregate in alternative splicing genes. Congenital heart disease is the most common 

birth defect and cause of infant mortality. When comparing congenital heart disease 

families, with cases and controls genotyped both on SNP arrays and exome sequencing, 

we uncovered significant and confident loci that provide insight into the molecular basis 

of disease. Neurodevelopmental disease affects the quality of life and cognitive potential 

of many children. In the neurodevelopmental and psychiatric diseases, CACNA, GRM, 

CNTN, and SLIT gene families show multiple significant signals impacting a large 

number of developmental and psychiatric disease traits, with the potential of informing 

therapeutic decision-making. Through new tool development and analysis of large 

disease cohorts genotyped on a variety of assays, I have uncovered an important 

biological role and disease impact of CNV in complex disease. 
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Chapter 1  

1.1 Introduction and Significance 

Francis Crick and James Watson used the clues of Chargaff’s base ratio rules and 

Franklin’s X-ray crystallography to deduce the biochemical interactions that create the 

DNA double-helix, the fundamental information source for human health and disease 

biology. In an iterative process, the Human Genome Project has created the first draft 

sequence of the human genome and a number of major revisions (builds) every few 

years. The HapMap project assessed common (>5%) minor allele frequency variants in 

populations across the globe using SNP arrays. The ongoing 1000 genomes project aims 

to assess rare (<1%) minor allele frequency variants in populations across the globe using 

SNP arrays, in addition to exome and genome sequencing.  

 

1.1.1 Copy Number Variation 
 

Copy number variants (CNVs) are deviations from the expected one maternal and 

one paternal copy of DNA in a given genomic segment. Similar to considering four 

possible nucleotide bases at each DNA point (A, T, C, and G), we consider five possible 

copy states at each DNA point (0, 1, 2, 3, and 4). We expect that at most genomic loci, 

individuals have copy state two, termed diploid. Similar to linkage disequilibrium blocks 

where base genotypes are found in discrete patterns termed haplotypes, CNVs typically 

show larger segments with the same copy state at each point, although it is not clear to 

what extent these segments co-localize. While linkage disequilibrium is mediated by 

recombination hotspots, CNV segments are mediated by unequal crossing over due to 
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highly similar base sequences such as segmental duplications or repeats. Non-allelic 

homologous recombination is the primary mechanism for CNV formation. While base 

changes may affect the resulting 

amino acid at a given point, 

CNV affects the gene dosage 

and expression level in most 

cases of the entire amino acid 

chain product. The deleted copy 

number (CN) one or duplicated 

CN three or four may be 

maternal or paternal with the 

corresponding bases in the 

segment causing different impact, especially in imprinted regions. The duplication may 

be tandem or dispersed. A run of homozygosity (ROH) is similar to a deletion with 

respect to a singular base genotype sequence for a given segment, but having two 

identical copies. Mosaicism is defined as a percentage of cells being diploid and a 

percentage of cells having a CNV leading to a complex mixing pattern and possible cell-

type or organ-type specific pathology. Inversion is a segment where the maternal copy is 

inverted with respect to the paternal copy. Insertion is a novel sequence inserted into a 

segment. Since ROH, mosaicism, inversion, and insertion do not fit the strict definition of 

CNV, they are termed more broadly as structural variations (Figure 1.1). 

Rare and common CNVs 

Figure 1.1. Schematic representations of copy number 

variation (CNV) stages evaluated in the human genome 

 

 
 

Example structural variation deviations from reference. 
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Typically, we look for rare recurrent CNVs present in <1% of the population, but in more 

than one patient to identify if the phenotype is consistent. The vast majority of samples 

possessing normal diploid signals forms a reference baseline and supports the assumption 

made by clustering that the majority of samples in the population are diploid. However, if 

there is a relatively high standard deviation of normal samples, a sample observed in 

isolation may appear falsely to have a CNV. A common CNV has more of the population 

with the CNV signal, forming a representative profile for each CN state, but can be 

unclear due to some copy alleles being out of Hardy-Weinberg equilibrium due to 

embryonic lethality. Therefore, a three CN clustering SNP may be (0,1,2), (1,2,3), or 

(2,3,4) based on which mode is considered the diploid mode. Consequently, it is good to 

have baseline known CN state samples for particular genomic loci. 

1.1.2 Copy Number Variation Assays 
 

Historically, CNVs were first identified by karyotyping. Today, there are four 

major genome-wide assays used to assess CNV, ordered in terms of sophistication and 

price: array comparative genomic hybridization (aCGH), SNP microarray (array), whole 

exome sequencing (WES), and whole genome sequencing (WGS). aCGH provides 

intensity data (normalized at 0 for diploid) only so modes of relative less intensity are 

indicative of deletion. Modes of relative more intensity are indicative of duplication. 

Higher degrees of mosaicism may also be detectable, although mostly simplified into the 

discrete deletion or duplication states. SNP microarray provides both intensity and 

genotype data (normalized at 0, 0.5 and 1 for AA, AB, and BB, respectively) for 

haplotype tagging points across the genome. The paired genotype data is important 

confirmatory information, in which deletions have only homozygous genotypes in the 
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less intensity segment, and multiple heterozygote allelic genotype banding in the more 

intensity segment. Furthermore, ROH may be detected when many homozygous 

genotypes are paired with expected normal diploid intensity. Genotype frequencies show 

banding indicative of mosaicism. WES uses targeted exon capture genome wide to assess 

only protein coding gene content, which is of primary importance for base and copy 

variants, alike. However, due to the discontinuous coverage and larger gaps between 

exons of neighboring genes, flanking diploid data may not be available to observe a clear 

mode shift for state transition Hidden Markov Model (HMM) detection and boundary 

resolution of CNVs. Only exon-level intensity is used to inform CNV detection following 

principal components analysis (PCA) outlier removal and z-score normalization of wavy 

read depth data from exome capture. Therefore, the WES data utilization remains 

constrained to deletion and duplication detection, similar to aCGH with less uniform 

genomic coverage. WGS has the ultimate data potential to resolve the whole spectrum of 

structural variation, leveraging novel complementary features of pairs and split to resolve 

inversion and insertion, which are 

elusive to the other major 

technologies. In addition to low 

intensity and only homozygous 

genotypes at dbSNP positions, pairs 

distance high and split observed 

supports deletion calling. In 

addition to high intensity and 

triallelic genotypes at any position, low pairs distance and split reads rescuing orphan 

Figure 1.2. Assay resolutions for CNV platforms 

 

 
 

Different genomic platforms are shown delineating 

different coverage and density. 



5 

 

read pairs support duplication calling. While the whole genome is theoretically 

sequenced, some regions are poorly sequenced or mapped to the genome creating 

residual variability and imperfect continuous coverage (Figure 1.2). 

The broad scope of this dissertation includes CNV detection in assays (SNP array 

and whole exome sequencing) and association with diseases, including congenital heart 

disease, neurodevelopmental disease and a few other major disease categories together 

with longevity.  Comparisons are also being made between different study designs, where 

both family-based de novo and transmitted CNVs are being evaluated together with 

standard case-control design. 

 

Sample sources 

Blood is the DNA source of choice for ease of collection and quantity of quality 

DNA for genotyping. Saliva is easier for collection in infants but does not reliably yield 

the proper DNA for non-wavy intensity signals in genotyping. Cell-lines yield great 

quantities of DNA but can cause CNV artifacts from Epstein-Barr Virus transformation 

and immortalization. Tumor samples have many complex CNVs and heterogeneity from 

clonal expansion of cell subpopulations acquiring new CNVs. Over 95% of the 68,000 

samples presented here are blood-derived. 

CNV Verification 

For verification, PCR probes are sufficient to confirm CNV presence, as hybridization to 

specific regions in the CNV sample yields differing amplification curves compared to a 

normal diploid sample.  Experimental validation is additionally performed to verify 

specific CNV sizes and frequencies to ensure the CNV calls are accurate. 
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Key Biological Questions 

We have one genomic reference sequence, which is present with high fidelity throughout 

the human body, yet we have different programs in operation stabilizing distinct cell 

types. How does one genome encode 200 cell types? There are many CNVs detected by 

certain assays but less is known about which CNVs contribute to complex disease. The 

assays provide discontinuous and variable-quality data. How do we decipher 

discontinuous genome/gene data? We wish to optimize the number of true positives 

without missing any true signal, yet being too aggressive will lead to false calls. How do 

we balance maximizing true signals and minimizing false signals? We will explore these 

motivating questions throughout the dissertation. 

1.2 Landscape in Genetic Disease 

Monogenic Disease 

By reviewing families in pedigrees, simple recessive and dominant modes of 

inheritance are apparent, where the mutations of a single gene penetrate into a disease 

phenotype. Phenylketonuria, cystic fibrosis, sickle-cell anemia, and oculocutaneous 

albinism are examples of human autosomal recessive diseases. Huntington's disease, 

myotonic dystrophy, familial hypercholesterolemia, neurofibromatosis, and polycystic 

kidney disease are examples of human autosomal dominant diseases. Incomplete 

penetrance, genomic imprinting, uniparental disomy, and a variety of other factors 

account for imperfect inheritance models.  Most monogenic diseases are caused by 

mutations that are SNVs. 

Complex Disease 
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Most genetic disorders are complex and multi-factorial, or polygenic, meaning 

they are likely associated with the effects of multiple genes in combination with lifestyles 

and environmental factors. Multi-factorial disorders include heart disease, diabetes, 

asthma and arthritis to name a few. Although complex disorders often cluster in families, 

they do not have a clear-cut pattern of inheritance, making it difficult to determine the 

risk of inheriting these disorders. Complex disorders are also difficult to study and treat 

because the specific factors that cause these disorders have not yet been identified. 

Based on pedigree information, polygenic diseases do tend to run in families, but 

the inheritance pattern does not fit simple Mendelian disease patterns; however, this does 

not mean that the genes cannot eventually be located and studied. There is also a strong 

environmental component to many of these polygenic diseases (e.g., high blood 

pressure). 

 

1.3 Study Design for Genetics Disease Discovery  

Case-Control 

To identify complex disease loci, it is crucial to uniformly genotype large patient 

cohorts of those affected and unaffected by the disease of interest. Doing so allows for a 

more generalized scope of the case and control populations, as well as flexible patient 

recruitment. Population stratification must be corrected, using the principal components 

analysis as a covariate in association. With an arbitrarily large control cohort, we gather a 

more robust control minor allele frequency definition and increase the power for 

association p-value compared to family-based studies.  In addition, unaffected parents 



8 

 

used as controls may indeed have subtle phenotypes related to the disease; thus, an 

unaffected population control may be more suitable. 

 

Family Trios and Transmission Disequilibrium Test 

Families are immune to population stratification biases. For cases where a parent is 

heterozygous for an allele, the major or minor allele may be biased in its transmission 

rate across many families, specifically with unaffected parents and an affected child. 

Families require verification through a reasonably low inheritance error rate. 

 

De novo 

De novo is a Latin expression meaning new. De novo mutation is a genetic 

mutation that neither parent possessed nor transmitted. de novo CNVs are the clean 

explanation of unaffected parents, but an affected child, namely a novel variant not 

present in the parents is present in the child. True de novo CNVs are exceedingly rare, 

especially when considering the desired recurrent de novo at a particular locus associated 

recurrently with a disease phenotype. 

Statistics 

Fisher’s Exact Test involves defining a two by two contingency table of: counts 

case CNV (a), case not CNV (b), control CNV (c), and control not CNV (d). Instead of 

all CNV, we may count deletions separately from duplications of each copy number state 

separately. The probability is given by the hypergeometric distribution: 
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 The transmission disequilibrium test is defined as: the quantity transmitted minus 

untransmitted squared divided by the quantity transmitted plus untransmitted. The 

distribution follows a chi squared with 1 degree of freedom.  

Χ
2 

= (transmitted – untransmitted)
2
 / (transmitted + untransmitted)  

1.4 Congenital Heart Disease 

 

Heart defect subtypes, clinical picture 

 

Congenital heart disease 

(CHD) is a leading cause of infant 

mortality and accounts for one 

third of all birth defects. While 

population and familial studies 

have improved our understanding 

and diagnosis of CHD,  only about 

20% of the genetic architecture of 

CHD defects has been resolved. 

Present at birth, CHD is a 

defect of the heart and great 

vessels structure. Numerous types 

Figure 1.3. Heart Defect Locations 

 

 
 

Locations of heart malformations that are usually identified 

in infancy, and estimated prevalence based on the 

CONCOR database. Numbers indicate the birth prevalence 

per million live births. AS indicates aortic stenosis; ASD, 

atrial septal defect; AVSD, atrioventricular septal defect; 

CoA, coarctation of the aorta; Ebstein, Ebstein anomaly; 

HLH, hypoplastic left heart; MA, mitral atresia; PDA, 

patent ductus arteriosus, PS, pulmonary stenosis; PTA, 

persistent truncus arteriosus; TA, tricuspid atresia; TGA, 

transposition of the great arteries; SV, single ventricle; 

TOF, tetralogy of Fallot; and VSD, ventricular septal 

defect. 
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of heart defects occur, either by obstructing blood flow in the heart or vessels, or by 

causing blood to flow through the heart in an abnormal pattern, mixing oxygenated with 

deoxygenated blood (Figure 1.3).  

The most common heart defect is ventricular septal defect (VSD) at a prevalence 

of 0.36% of live births based on the CONCOR database, a national registry and DNA-

bank of patients with CHD in the Netherlands. The ventricular septum serves as a 

separating wall between left and right ventricles. The ventricular septum contains many 

cardiomyocytes. 

Atrial septal defect (ASD) occurs in 0.09% of live births, and is a defect of the 

interatrial septum, allowing blood to flow incorrectly between left oxygenated and right 

deoxygenated blood atria. Oxygen levels in arterial blood are often lower than normal, 

depending on the size of the defect. 

Patent ductus arteriosus (PDA) occurs in 0.08% of live births. In PDA, the ductus 

arteriosus remains open incorrectly after birth causing abnormal blood transmission to the 

aorta and pulmonary artery. 

 Pulmonary stenosis (PS) occurs in 0.07% of live births, and is a defect that 

obstructs the flow of blood from the right ventricle to the pulmonary artery. 

Tetralogy of Fallot (TOF), coarctation of the aorta (CoA), and aortic stenosis (AS) 

each occur in 0.04% of live births. TOF involves four anatomical abnormalities of the 

heart: pulmonary infundibular stenosis (right ventricular outflow narrowing), overriding 

aorta (aortic valve with biventricular connection), ventricular septal defect (hole between 

bottom chambers), and right ventricular hypertrophy (hyper-muscular right ventricle). 



11 

 

CoA involves narrowing of the aorta, where ductus arteriosus inserts. AS involves 

narrowing of the aortic valve connecting the left ventricle with the aorta. 

Atrioventricular septal defect (AVSD), transposition of the great arteries (TGA), 

and hypoplastic left heart (HLH) each occur at 0.03% of live births. AVSD is an 

atrioventricular septum deficiency. TGA is an abnormal arrangement of superior/inferior 

venae cavae, pulmonary artery, pulmonary veins, and aorta. HLH is an 

underdevelopment of the left ventricle. 

Persistent truncus arteriosus (PTA), single ventricle (SV), tricuspid atresia (TA), 

and Ebstein anomaly (EA) each occur at 0.01% of live births. PTA involves the truncus 

arteriosus not dividing into the pulmonary trunk and the aorta, as expected. SV means the 

left ventricle feeds both left and right atrium. TA involves an absent tricuspid valve; thus, 

the right atrioventricular connection, ASD and VSD, is required to maintain blood flow 

into the pulmonary arteries. EA involves the septal leaflet of the tricuspid valve being 

displaced towards the apex of the 

right ventricle of the heart. 

 

Known Causes of CHD 

Large chromosomal abnormalities, 

such as trisomies 21, 13, and 18, 

cause 5-8% of cases of CHD. 

Microdeletion of 22q11 (DiGeorge 

syndrome), 1q21, 8p23, and other 

loci identified by array 

Figure 1.4. Genomic Regions of Congenital Heart Disease 

Associations   

 

 
 

Blue: Developmental Syndromes With Prominent CHD 

Phenotypes 

Red: Copy Number Variations (CNVs) Associated With 

Recurrent Cases of Non-syndromic CHD(31, 50, 78, 132, 

165, 186, 187, 203) 

Black: Genes That Cause Isolated CHD 
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comparative genomic hybridization (aCGH), are cataloged in the database CDHWiki. 

 

Mutations of a heart muscle protein, α-myosin heavy chain (MYH6), are 

associated with atrial septal defects. Several proteins that interact with MYH6 are also 

associated with cardiac defects. The transcription factor GATA4 forms a complex with 

TBX5, which interacts with MYH6. Another factor, the homeobox (developmental) gene, 

NKX2-5, also interacts with MYH6. Mutations of these proteins are associated with both 

atrial and ventricular septal defect. In addition, NKX2-5 is associated with defects in the 

electrical conduction of the heart; TBX5 is related to the Holt-Oram syndrome, which 

includes electrical conduction defects and abnormalities of the upper limb. Another T-

box gene, TBX1, is involved in velo-cardio-facial syndrome, or DiGeorge syndrome, the 

most common deletion syndrome, which has extensive symptoms, including defects of 

the cardiac outflow tract and 

tetralogy of Fallot. The Notch 

signaling pathway, a regulatory 

mechanism for cell growth and 

differentiation, plays broad roles in 

several aspects of cardiac 

development.  Mutations of a cell 

regulatory mechanism, the 

Ras/MAPK pathway, are 

responsible for a variety of 

Figure 1.5. Genes That Cause Isolated CHD Protein-

Protein Interaction DAPPLE Network 

 

 
 

Permutation p-value of connectivity is shown by shade of 

color. 
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syndromes, including Noonan syndrome, LEOPARD syndrome, Costello syndrome, and 

cardiofaciocutaneous syndrome.  A significant proportion of this thesis work focuses on 

CNV analysis in children with CHD and their family members. 

 

Numerous genomic loci are implicated in CHD phenotypes (Figure 1.4). A network of 

interacting genes, based on protein-protein interactions, is also emerging (Figure 1.5). 

1.5 Neurodevelopmental Disease  

The following diseases are briefly reviewed and CNV analysis subsequently performed 

jointly across all disease phenotypes. 

Autism 

Autism presents as impaired social interaction, distinct verbal/non-verbal 

communication, and restricted/repetitive behavior typically in children by three years of 

age. Autism affects neural development and information processing in the brain by 

altering how nerve cells and their synapses connect and organize. Autism spectrum 

disorders (ASD) include Asperger syndrome and pervasive developmental disorder, not 

otherwise specified (PDD-NOS). Autism has a strong genetic basis based on very high 

heritability in families, although the genetics of autism are complex and it is unclear 

whether ASD is explained more by rare mutations, or by rare combinations of common 

genetic variants. All of these phenotypes are examined in detail in this thesis project. 

ADHD  

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental psychiatric 

disorder characterized by issues with attention, hyperactivity, or impulsive activity that 
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are inappropriate for a person's age, presenting typically by ages six to twelve. ADHD is 

diagnosed approximately three times more frequently in boys than in girls. 

ADHD management usually involves some combination of counseling, lifestyle 

changes, and medications. Medications are only recommended as a first-line treatment in 

children who have severe symptoms, and may be considered for those with moderate 

symptoms who either refuse or fail to improve with counseling. Long-term effects of 

medications are not clear and they are not recommended for preschool-aged children. 

Schizophrenia 

Schizophrenia is a mental disorder often characterized by abnormal social 

behavior and failure to recognize reality. Common symptoms include false beliefs, 

auditory hallucinations, confused or unclear thinking, inactivity, and reduced social 

engagement and emotional expression. Symptoms begin typically in young adulthood 

(13-18) and about 0.3–0.7% of people are affected during their lifetime. 

The mainstay of treatment is antipsychotic medication, which primarily 

suppresses dopamine receptor activity. Counseling, job training, and social rehabilitation 

are also important in treatment. In more serious cases, where there is risk to self or others, 

involuntary hospitalization may be necessary, although hospital stays are now shorter and 

less frequent than they once were. 

Bipolar Disorder 

Bipolar disorder is a mental illness characterized by episodes of elevated moods, 

known as mania, alternating with episodes of depression. During manic episodes, an 
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individual feels abnormally happy, energetic, or irritable, but often makes poor decisions 

due to unrealistic ideas, or poor regard of consequences. Manic and depressive episodes 

can impair the individual's ability to function in ordinary life. The most common age at 

which symptoms begin is 25. 

About 3% of people have bipolar disorder worldwide, a proportion consistent for 

both men and women and across racial and ethnic groups. Treatment commonly includes 

mood stabilizing medications and psychotherapy. 

Depression 

Major depressive disorder (MDD) is a mental disorder characterized by a 

pervasive and persistent low mood that is accompanied by low self-esteem and by a loss 

of interest or pleasure in normally enjoyable activities. The most common time of onset is 

between the ages of 20 and 30 years, with a later peak between 30 and 40 years. 

Typically, people are treated with antidepressant medication and, in many cases, 

also receive counseling. Psychological treatments are based on theories of personality, 

interpersonal communication, and learning. Most biological theories focus on the 

monoamine chemicals serotonin, norepinephrine and dopamine, which are naturally 

present in the brain and assist communication between nerve cells. 

 

Known CNV Gene Associations in Neurodevelopmental Disease 

CACNA 
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Voltage-dependent calcium channels mediate the entry of calcium ions into excitable  

cells, and are also involved in a variety of calcium-dependent processes, including muscle 

contraction, hormone or neurotransmitter release, and gene expression. Calcium channels are 

multi-subunit complexes composed of alpha-1, beta, alpha-2/delta, and gamma subunits. The 

channel activity is directed by the pore-forming alpha-1 subunit, whereas, the others act as 

auxiliary subunits regulating this activity. The distinctive properties of the calcium channel 

types are related primarily to the expression of a variety of alpha-1 isoforms, alpha-1A, B, C, 

D, E, and S.  

GRM 

G-protein coupled receptor for glutamate. Ligand binding causes a conformational 

change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and 

modulates the activity of down-stream effectors. Signaling activates a phosphatidylinositol-

calcium second messenger system. GRM may participate in the central action of glutamate in 

the CNS, such as long-term potentiation in the hippocampus and long-term depression in the 

cerebellum. 

 

CNTN 

The protein encoded by this gene is a member of the immunoglobulin 

superfamily. It is a glycosylphosphatidylinositol (GPI)-anchored neuronal membrane 

protein that functions as a cell adhesion molecule. It may play a role in the formation of 

axon connections in the developing nervous system. Contactins mediate cell surface 

interactions during nervous system development. CNTN is involved in the formation of 

paranodal axo-glial junctions in myelinated peripheral nerves and in the signaling 
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between axons and myelinating glial cells via its association with CNTNAP1. CNTN 

participates in oligodendrocytes generation by acting as a ligand of NOTCH1. Interaction 

with Tenascin-R induces a repulsion of neurons and an inhibition of neurite outgrowth. 

SLIT 

The protein encoded by this gene is secreted, likely interacting with roundabout 

homolog receptors to effect cell migration. SLIT may act as molecular guidance cue in 

cellular migration, and function may be mediated by interaction with roundabout 

homolog receptors. 

Given this perspective on the field of CNV detection and association that I have 

already contributed to in a significant way, we proceed into the specific aims and scope 

of this dissertation project aimed at improving CNV discovery, analysis and 

interpretation. 

1.6 Specific Aims 

 

Revealing functionally important variants in the human genome for different cell types, 

in complex disease such as heart, is a major challenge.  Congenital heart defects are a 

leading cause of infant mortality and contribute to one third of all birth defects(52). 

 Population and family studies look to advance the early diagnosis and treatment of heart 

defects by understanding the genetic architecture, a quarter of which has been resolved 

(52).  Efforts in DNA data assessment are shifting from SNP array and aCGH to whole 

exome and genome sequencing (36, 146).  However, the use of these methods presents a 

significant limitation in confident association of variant bases (SNPs) and copies (CNVs 
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The overall goal of this project is to revolutionize the association of genetic variation to 

complex disease, representatively addressed through in-depth examination of 

neurodevelopmental disorders ad congenital heart defects, by fundamentally improving 

the integrated array and exome analysis for copy variation.  This work is now possible by 

having access to large disease populations on exomes with high resolution on genes.  Our 

lab has unique access to a large family cohort of heart defect patients studied on array and 

exome platforms.  My previous CNV work  from SNP array data importantly uncovered 

rare recurrent CNVs impacting ubiquiting and neuronal cell adhesion molecule genes 

impacting  brain cell function in children with autism (65), CNV enrichment in synaptic 

transmission genes in schizophrenia  (67), and disruption in metabotropic glutamate 

receptor genes in ADHD(49). 

 

To advance the field, it is necessary to improve confidence related to association of 

exome and array variants with heart defects, thus opening up better detection and 

treatment options.  I am proposing to test the hypothesis that de novo CNVs contribute to 

the etiology of complex diseases, such as CHD with the following specific aims: 

 

Aim 1: To determine impact of de novo CNVs in complex disease, I will compare de 

novo CNV frequency between CHD families and healthy control families (termed 

burden). 

I hypothesize that uncovering de novo CNV in critical genes and pruning false genes will 

yield a more complete and accurate genomic architecture of heart defect tested by 

validation. 
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We have uncovered and reported significantly increased burden of de novo CNVs in 

congenital heart disease compared to controls with an odds ratio of approximately 4.  To 

optimize CNV results, we prioritize putative de novo CNVs by the trio recall option in 

PennCNV, use at least 2 algorithms to call de novo events (PennCNV, QuantiSNP, and 

Nexus), evaluate parental origin (if enough informative markers), ensure there are greater 

than 5 SNPs per locus and we have low/absent untransmitted CNV rate.  We also make 

sure there is low/absent control rate in public databases (DGV, SSC healthy trios, CHOP 

control, Framingham), that BAF/LRR inspection passes quality control measures (full 

trio in case false negative parent), and that the CNV is confirmed by ddPCR validation. 

Non-allelic homologous recombination (NAHR) is the primary biological mechanism to 

create CNVs (1 mother and 1 father copy deviation) which intriguingly affect expression 

dosage (86, 196) and imprinted (45) heart loci. CNV is noisier than SNP data and 

occupies genomic non-standard ranges rather than points, posing novel challenges 

addressed here by capturing significant CNV profiles which may be atypical. Here, I will 

implement bi-directional (detrimental, neutral, protective) gene/pathway based 

association to improve sensitivity over existing collapsing methods. I will create a formal 

CNV association confidence score based on a variety of rare genomic, variant, and 

overlap features to improve specificity over existing heuristics, validated by qPCR. 

 

Aim 2: To identify and define CNV genes, I will look for true recurrent de novo 

CNVs. 
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I hypothesize that relatively dense and uniform genome coverage will provide good CNV 

detection and boundary definition yielding significant heart biology further evidenced by 

gene expression. 

We observed novel recurrent de novo CNVs in four families on 15q11.2 encompassing 

CYFIP1, NIPA1, and NIPA2.Study experiments include diagnosed heart defect, parents 

and healthy control blood samples collected in the clinic, DNA extracted, and Array and 

Exome genotyping performed in the lab. Using improved association methods from Aim 

1, I can now confidently evaluate array data of heart defect families and controls boosting 

discovery of 1 gene with existing methods to 10 genes. These genes will aggregate in 

biological categories of transcriptional regulation, signal transduction, cardiac structure, 

and histone-modifying. I will use the latest sequencing informed SNP array Illumina 

Omni2.5 on 400 trios, 900 cases, and 1000 controls for de novo, TDT, and case-control 

analysis. Potential de novo CNVs will be prioritized using trio recall prior probability, 

parental origin, untransmitted (TDT), and control (case-control) data. Given low 

heritability of heart defect, de novo variants may play a large role. I will further prioritize 

the heart biology search informed by our parallel research finding of 4,162 genes 

expressed in the top 25% of developing heart by RNA-seq analysis. 

 

Aim 3: To assess biological gene function of single de novo CNVs, I will perform 

integrative gene network analysis of multiple datasets. 

I hypothesize that a gene focused CNV study will better resolve functional boundaries of 

complementing CNVs shown to exist by array and novel submicroscopic CNVs. 
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De novo CNV genes form a significant protein-protein interaction network hub 

elaborated by de novo base variant genes. After the heart genome association map is 

elucidated by Aim 2, I can now enhance the picture by fine resolution on genes. Exome 

sequencing exhibits very discontinuous data and most platforms have wavy read depth 

due to DNA capture and sequencing mapping biases normalized by PCA. Exon based vs. 

base level intensity, genotype, pairs, and split will be used for filtering higher confidence 

variants. Exome sequencing specific confidence features will be devised for CNV 

association.  

 

Much emphasis is placed on CNV detection but relatively little is placed on 

association. PennCNV arose as the dominant CNV calling algorithm for SNP arrays, but 

no accompanying association tool existed.  In chapter 2 I describe a new tool I developed 

to confidently evaluate CNVs for association with biological traits. In the following 

chapters I address the biological impact of CNVs in CHD and neurodevelopmental 

disorders as outlined in Specific Aims 1-3. 
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Chapter 2  

2.0 ParseCNV Integrative Copy Number Variation Association 
Software with Quality Tracking 
 

Summary 

A number of copy number variation (CNV) calling algorithms exist, however 

comprehensive software tools for CNV association studies are lacking. Here, we 

developed ParseCNV, unique software which takes CNV calls and creates probe-based 

statistics for CNV occurrence in both case-control design and in family-based studies 

addressing both de novo and inheritance events which are then summarized based on 

CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex 

CNV overlap while maintaining precise association region. Using this approach, we 

avoid failure to converge and non-monotonic curve fitting weaknesses of programs such 

as CNVtools and CNVassoc and while Plink is easy to use, it only provides combined 

CNV state probe-based statistics, not state specific CNVRs. Existing CNV association 

methods do not provide any quality tracking information to filter confident associations, a 

key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls 

underlying CNV associations is evaluated to verify significant results including CNV 

overlap profiles, genomic context, number of probes supporting the CNV, and single 

probe intensities. When optimal quality control parameters are followed using ParseCNV, 

90% of CNVs validate by polymerase chain reaction (PCR), an often problematic stage 

due to inadequate significant association review. ParseCNV is freely available at 

http://parsecnv.sourceforge.net. 
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2.1 Introduction and Significance 

CNV association is being increasingly adopted in genetic investigations of disease 

susceptibility loci (64, 116). Large de novo CNVs were once considered to be the cause 

of syndromes, but more complete CNV maps now show that CNVs pervade the genome 

and small CNVs can also be disease causing (35). Thus, CNV frequency difference 

between cases and controls at specific loci is necessary to determine if a given CNV 

plays a role in disease or impacts the expression of a clinical trait. Conceptually, the most 

important variables involved in CNV analysis include disease under study, sample 

cohort, array data, CNV calling algorithm and data interpretation using an algorithm 

implementing CNV statistics. CNV calling and methods of demonstrating association 

have been hampered by many challenges which has discouraged researchers from 

investigating CNVs. ParseCNV is designed to simplify  data processing and improve 

transparency to render CNV studies more accessible to researchers. 

Many CNV calling algorithms have been developed but relatively few CNV 

association methods exist. As a result, streamlined implementation of association 

methods is lacking. CNV calling algorithms evaluate allelic intensity and genotype states 

in the case of SNPs, whereas CGH signal is based on intensity alone. Typically, both 

SNP and CGH arrays assess raw data for CNVs at the genome wide level with discrete 

genetic determinants.  The latter include  CN=0, 1, 2, 3, 4 copy number states captured by 

both SNP and CGH arrays, together with AA, AB, BB genotype states for SNP arrays.   

Since the intensity of array probes have a Gaussian distribution, clustering algorithms are 

used to determine the expected value for a given state based on a population from which 

variation of a given sample can be quantified as a LogR-Ratio/Log2-Ratio, together with 
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B allele frequency for SNP arrays (156).  PennCNV (211) is a popular option for SNP 

array analysis, implementing a hidden Markov model algorithm. A number of other CNV 

calling options are available, including QuantiSNP (34), CNVCALL (24), CNVDetector 

(27), CGHCall (206), and CNV-Seq (222), all of which are publicly available tools and 

highly enabling to researchers. 

While there are several available CNV association methods in the public domain, 

including CNVtools (likelihood ratio trend test)(9), Birdsuite (regression sum number 

copies each allele) (112), Plink (permutation-based test) (167), and CNVassoc (latent 

class model) (197), all of them have significant limitations as they lack simple standard 

input and integrative reporting functions, which limits their discovery power, 

investigation potential, and validation success (Supplementary Note). While CNVtools 

and CNVassoc do both CNV calling and association, they make the actual CNV calls 

hidden to the user and are batch dependent.   Here we demonstrate the robustness of 

ParseCNV in producing high quality CNVR calls by improving transparency and 

accuracy of CNV association studies. 

 

2.2 Materials and Methods 

2.2.1 Upfront Quality Control 
 

Since multiple confounding factors can bias the detection of CNV calls, it is essential to 

apply filters, using sample based quality metrics affecting CNV detection accuracy. 

Several steps are taken upfront to remove samples with outlier values for the CNV 

metrics which can be briefly conceptualized as: low call rate, intensity noise, intensity 

waviness, population stratification, high number of CNVs, and relatedness. In this regard, 
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there are several important sample quality metrics measures, specifically: 1) sample call 

rate/clustering quality; 2) standard deviation of allelic intensity (SD LRR); 3) G/C base 

content waviness factor (GCWF); 4) count CNV; 5) majority ethnicity cluster using 

principle components analysis from Eigenstrat smartpca (163), multi-dimensional scaling 

(MDS) (125) or population stratification correction by covariate, and; 6) no duplicates.  

For Illumina 550k data and related Illumina chip platforms, the key data quality metric 

thresholds we have observed are: call rate > 98%, SD LRR < 0.3, |GCWF| < 0.05, and 

count CNV< 100.  For Affymetrix 6.0 data, these measures include: call rate > 96%, SD 

LRR < 0.35, |GCWF| < 0.02, and count CNV < 80.  In addition, observations of quality 

metric modes from individual labs and sample sources are advisable to determine 

appropriate QC thresholds. The distribution of these metric measures are constantly 

reviewed to include only those that fall within three standard deviations from the mean or 

a linear mode of the quality metric outside exponential modes for any given genotyping 

platform. Sample call rate/clustering quality and standard deviation of allelic intensity are 

crucial minimal sample exclusion metric measures that have been established as a field 

consensus (158). By providing the PennCNV log files (i.e., summary lines), together with 

GenomeStudio/GenotypingConsole/Plink missing call rates as input, ParseCNV 

generates images of the distributions of these quality metrics values to make informed 

decisions of the necessary data thresholds needed (balancing the tradeoff between sample 

number attrition and study bias). Also, different CNV calling programs provide different 

quality control fields so less standardization of input is possible. Among several high-

quality programs that are available, we find PennCNV to provide the most complete 

quality metrics. 
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2.2.2 Input Files 
 

After generation of CNV calls, independent of algorithm, CNV association is 

performed by the newly developed ParseCNV algorithm. ParseCNV utilizes four 

standard inputs: case CNV calls 

(PennCNV format is the default but 

any CNV calling method may be 

used), control CNV calls 

(PennCNV format), fam file (Plink 

format), and probe map file (Plink 

format) (Figure 2.1).  

 

Optional input of raw signal 

files used as input to the CNV 

calling algorithm allows raw 

genotype (B-allele frequency 

(BAF) if available) and intensity 

(LogR-Ratio (LRR) or Log2-Ratio) 

(156) signals of associated regions 

to be parsed with an image that is 

automatically generated for review. Sample batches can be defined to track their expected 

vs. observed contribution to significant associations. 

2.2.3 Probe-Based CNV Statistics 
 

The general outline of data processing involves mapping the individual level CNV calls 

into population level probe-based CNV statistics followed by filtering significantly 

Figure 2.1. CNV Analysis Workflow. 

 

 
 

Pre-processing, file formats, and post-processing. This 

general framework shows the stepwise procedure to 

prepare input data to utilize and evaluate ParseCNV output. 

“...” represents additional columns not shown. 
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associated population CNV Regions (CNVRs). CNV calls are mapped onto probe based 

statistics defined by the probe map file and tested for significance based on Fisher’s exact 

test. The Fisher’s exact test statistic consists of a two by two contingency table (with 

cases deleted vs. cases not deleted and controls deleted vs. controls not deleted) and is 

evaluated separately for 

duplications. This is a conceptual 

medium between associating all 

CN states separately and all CNVs 

together (Figure 2.2).  

Singular state and combined 

state statistics are also calculated 

for reference. Probes without 

nominal significance (p<0.05) are 

discarded from further association 

testing. Case-enriched significant 

probes are then separated from 

control-enriched significant probes.  

If a family based study is 

being done, the transmission disequilibrium test (TDT) is calculated and used to drive 

CNVR definition. Quantitative trait association is also supported by running ParseCNV 

with the includePed option, Plink association, and InsertPlinkPvalues (part of 

ParseCNV). 

2.2.4 Merging Probe Based Statistics into CNVRs 
 

Figure 2.2. Possible Statistical Contingency Table 

Definitions to Capture CNV Frequency Difference in Cases 

vs. Controls.  

 
 

The middle statistical definition of deletions signifying loss 

of function mutations and duplications signifying gain of 

function mutations is used predominantly. This is in 

contrast to a view that all CNVs are all similarly 

detrimental put forth by the top statistical definition and the 

view that all CNV states lead to a unique outcome put forth 

by the bottom statistical definition. 
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Flexibility in probe aggregation incorporated into CNVRs allows for boundary 

truncation variability problems inherent in many CNV calling algorithms and dynamic 

case/control overlap to be made, while refining the association region. The above 

mentioned probe-based statistic output is then merged into CNVRs based on probe 

proximity (less than 1MB) and comparable significance (+/- one log p-value) of 

neighboring probes. One Mb allows for extension of CNVRs over sparse probe coverage 

regions. This can be tuned by command line option in keeping with the average probe 

spacing of the dataset or can be made region-specific based on the distance of 5-10 

proximal probes.  

CNV boundary 

determination remains a challenge 

to differentiate true boundary 

variations vs. variability in the 

probe’s ability to differentiate CNV 

states.  The difficulty is typically 

attributed to noisy probes within 

true CNVs.  Thus, certain 

fluctuation in CNV frequency of 

cases vs. controls is captured by the 

respective p-values. Some case 

calls may stop and others start within the CNVR making p-value based merging of probe 

based statistics highly flexible. Therefore, the next probe with available data may be 

noisy and any probe available substantiating the similar p-value within 1 Mb can be used 

Figure 2.3. Complex CNV Overlap and CNVR Definition 

Examples. 

 

 
 

Rectangles represent individual sample CNV call 

boundaries as provided by a CNV calling algorithm. Each 

assayed point represented by the probe framework listed in 

the map file input determines the possible boundary 

assignments. The CNVR definition assigned by ParseCNV 

is shown as a dashed box. Small variance in individual 

CNV call boundaries allows extension of CNVR definition. 

CNV peninsula is shown as the most common false 

positive based on variable extension of CNV boundary 

(typically the region common to cases and controls has 

many probes while the case only extension has few 

probes). 

 



29 

 

to extend the CNVR. Noisy probes cannot be filtered out before CNV calling due to lack 

of metrics with specificity for noise and not for true CNV with both behaving similarly in 

classic probe-based call rate metrics. 

Many CNV detection and association tools have difficulties handling CNVR breakpoints 

and some algorithms make the assumption of considering CNVR breakpoints as static, 

which is an oversimplification often leading to false negative results. For example, a 

static CNVR may extend outside the boundary in some cases with only partial overlap in 

controls, while having pathogenic impact. Merging neighboring probes based on 

proximity and p-value supports dynamic CNVR definition and is flexible for the CNV 

boundary variations of complex CNVs (Figure 2.3). The most significant sub-region is 

included when multiple significant proximal extensions of the respective CNVR exist, to 

reduce redundancy. 

 

2.2.5 Review of Association Signals by Quality Tracking 
 

Based on various parameters that have been referenced in the CNV literature and 

review of many putative CNV associations by informatics and PCR validation, we have 

amassed red flags for evaluation of significant CNVRs for confidence. These contributing 

CNV call features are automatically annotated, viewable in the UCSC browser and are 

specifically tailored towards reducing false positive calls from the following criteria:  

1) Many segmental duplications (i.e., nearly identical DNA segments), representing 

genomic segments that are difficult to uniquely hybridize probes to, which could underlie 

false positive CNV detection (185).  
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2) Overlapping multiple Database of Genomic Variants (DGV) (225) entries, 

representing CNV signals observed in “healthy” individuals, suggesting that a potential 

association result in the study at hand may be false. 

3) Residing at centromere and telomere proximal regions as they often have sparse probe 

coverage and only have a single flanking diploid reference to base CNV calls.  

4) Harboring high or low GC content regions that bias probe hybridization kinetics even 

after GC model correction is done by CNV calling algorithms, producing false CNV 

calling and biasing the result.  

5) CNVs captured with low average number of probes, contributing to association with 

low confidence. If an association depends on a preponderance of small CNVs, the 

likelihood of false positive is high.  

6) Locus frequently found in multiple studies such as T cell receptor, immunoglobulin, 

human leukocyte antigen, and olfactory receptor genes. T cell receptors undergo somatic 

rearrangement due to somatic recombination causing inter-individual differences in the 

clonality of T-cell populations (119) and thus are not true CNVs, necessitating exclusion. 

7) CNV regions with high population frequency (for rare CNV focused studies) indicate 

that probe clustering is likely biased due to a high percentage of samples with CNV used 

in clustering definition thus biasing CNV detection. 

8) CNV peninsula of common CNV (sparse probe coverage and nearby high frequency 

CNV) indicates that within the range of contributing CNV boundaries there is a non-

significant (p>0.05) p-value which is notably different from the CNVR association 

typically due to random extension of common CNVs to neighboring sparse or noisy 

probes (Figure 2.3).  



31 

 

9) The same inflated sample driving multiple CNV associations signals. Certain samples 

have many noisy CNV calls arising in rare regions despite upfront sample quality 

filtering.  

All these features are built into ParseCNV and are annotated automatically for optimal 

CNVR association confidence. 

10) Sparse coverage with large gap in probe coverage exists within the CNV calls 

indicating uncertainty in the continuity of a single CNV event, typically due to dense 

clusters of copy number (intensity only) probes with large intervening gaps. 

11) Low BAF AB Frequency (0.1,0.4) or (0.6,0.9) are important for duplications, AB 

banding of BAF at 0.33 and 0.66 for CN=3 or 0.25 and 0.75 for CN=4 are very important 

observations given the relatively modest gain in intensity observed in duplications. 

12) Low average confidence based on the HMM confidence score of calls contributing to 

a CNVR association in PennCNV is a superior indication of CNV call confidence 

compared to numsnps and length in studies comparing de novo vs. inherited CNV calls, 

giving an indication of the strength of the CNV signal or aggregate difference in 

probability between the called CN and the next highest probability CN. Other CNV 

calling algorithms give different range confidence scores or lower values might mean 

more confidence (i.e. call p value) so threshold may need modification. It is 

recommended to be in .rawcnv file as column 8 i.e. “conf=20.659” but not required. 

13) Low average CNV length is a classical confidence scoring parameter of interest. If 

the CNV is too small, it is submicroscopic and even if many probes are tightly clustered, 

bias of local DNA regions and probe overlap make confidence low. 
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2.2.6 Multiple Testing Correction 
 

To inform the assessment process of statistical significance of CNVR association 

and reject the null hypothesis of no association of CNVs to the disease under study, 

various CNV metrics are calculated including:  1) the number of probes with a nominal 

frequency of CNV occurrence (only probes with some CNV detected are informative) 2) 

the number of probes with enrichment in cases vs. controls and vice versa (evidence of 

more case enriched loci than control enriched loci above certain significance thresholds) 

3) probes with less than 1% population frequency of CNV (optionally for rare CNV 

studies);  and 4) the number of CNVRs (multiple probes are needed to detect a single 

CNV and these do not count as separate events for multiple testing correction). These 

calculated values provide a realistic number of statistical tests to correct for. In practice, 

using the Illumina and Affymetrix high density SNP arrays, we find p=5x10
-4

 

uncorrected p-values meet conservative multiple testing significance based on these 

criteria. 

2.2.7 CNV Validation by Quantitative Polymerase Chain Reaction (QPCR) 
 

To validate the PennCNV algorithm I performed experimental validation.  For the 

experimental CNV validation I used qPCR, including sample input of 60 ul at 6.25 ng/ul 

(to run a random set of discovery lloci and 4 house-keeping genes in triplicate at 4ul each 

run). Twenty base forward and reverse primers are developed for each locus. Universal 

Probe Library (UPL; Roche, Indianapolis, IN) probes are selected using the ProbeFinder 

v2.41 software (Roche, Indianapolis, IN). Quantitative PCR is performed on an ABI 7500 

Real Time PCR Instrument or on an ABI Prism™ 7900HT Sequence Detection System 

(Applied Biosystems, Foster City, CA). Each sample is analyzed in quadruplicate either 
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in 25 ul reaction mixture (250 nM probe, 900 nM each primer, Fast Start TaqMan Probe 

Master from Roche, and 10 ng genomic DNA) or in 10 ul reaction mixture (100 nM 

probe, 200 nM each primer, 1x Platinum Quantitative PCR SuperMix-Uracil-DNA-

Glycosylase (UDG) with ROX from Invitrogen, and 25 ng genomic DNA). The values 

are evaluated using Sequence Detection Software v2.2.1 (Applied Biosystems, CA). Data 

analysis is further performed using either the ΔΔCT method or qBase. Reference genes, 

chosen from COBL, GUSB, and SNCA, are included based on the minimal coefficient of 

variation and then data was normalized by setting a normal control to a value of 1. 

The data output is 0.5 for deletions, 1 for diploid, 1.5 for duplications with standard error 

values from replicate runs. 

 

TaqMan® Copy Number Assay experiments are also run on Applied Biosystems 

7900HT Fast Real-Time PCR System to validate the presence of CNVs. Applied 

Biosystems CopyCaller™ Software performs relative quantitation analysis of genomic 

DNA targets using the real-time PCR data from TaqMan® Copy Number Assay 

experiments. Two replicates are run with confidence score >0.99 for CNV calls. Positive 

and negative controls are used to confirm probe accuracy. 

 

2.3 Results and Discussion 

I have generated a deletion and duplication CNVR report showing significant 

association, including 127 fields in a final output file with 54 highly informative fields 

included in the default output format and 11 fields in a brief report (Table 2.1) to aid 

accessibility for ParseCNV users.  
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Table 2.1.  Significant CNVR Output Fields Description 
 

Column Description 

CNVR CNV Region of greatest significance and overlap coordinates 

CountSNPs 

The number of probes available in the CNVR for this dataset In this case, 

contributing individual CNV calls may be larger 

SNP Tag SNP for ease and clarity of reporting and replication 

DelTwoTailed 

Two Tailed Fisher's Exact P-value based on the contingency table Cases 

Del/Cases Diploid/Controls Del/Controls Diploid as listed separately 

DupTwoTailed 

Two Tailed Fisher's Exact P-value based on the contingency table Cases 

Dup/Cases Diploid/Controls Dup/Controls Diploid as listed separately 

ORDel The Odds Ratio for deletion.  

ORDup The Odds Ratio for duplication.  

Cases Del The number of cases with a deletion detected in this region by PennCNV 

Cases Diploid 

The number of cases without a deletion or duplication detected in this 

region by PennCNV 

Control Del The number of controls with a deletion detected in this region by PennCNV 

Control Diploid 

The number of controls without a deletion or duplication detected in this 

region by PennCNV 

Cases Dup 

The number of cases with a duplication detected in this region by 

PennCNV 

Cases Diploid 

The number of cases without a deletion or duplication detected in this 

region by PennCNV 

Control Dup 

The number of controls with a duplication detected in this region by 

PennCNV 

Control Diploid 

The number of controls without a deletion or duplication detected in this 

region by PennCNV 

IDsCasesDel 

The sample IDs of cases corresponding to the Cases Del column for clinical 

data lookup. To convert to list in Excel: Data-TextToColumns-Delimited-

Space then Copy-PasteSpecial-Transpose 

IDsCasesDup 

The sample IDs of cases corresponding to the Cases Dup column for 

clinical data lookup. To convert to list in Excel: Data-TextToColumns-

Delimited-Space then Copy-PasteSpecial-Transpose 

StatesCasesDel CN states listed corresponding to IDsCasesDel (1(CN=0)/2(CN=1)) 

StatesCasesDup CN states listed corresponding to IDsCasesDup (5(CN=3)/6(CN=4)) 

TotalStatesCases(1) 

The number of cases in Cases Del with a homozygous deletion or both 

copies lost 

TotalStatesCases(2) 

The number of cases in Cases Del with a hemizygous deletion or one copy 

lost 

TotalStatesCases(5) 

The number of cases in Cases Dup with a hemizygous duplication or one 

copy gained 

TotalStatesCases(6) 

The number of cases in Cases Dup with a homozygous duplication or two 

copies gained 

IDsDelControl 

The sample IDs of controls corresponding to the Control Del column for 

clinical data lookup. 

IDsDupControl 

The sample IDs of controls corresponding to the Control Dup column for 

clinical data lookup. 

StatesDelControl CN states listed corresponding to IDsDelControl (1(CN=0)/2(CN=1)) 

StatesDupControl CN states listed corresponding to IDsDupControl (5(CN=3)/6(CN=4)) 

TotalStates(1) 

The number of Controls in Controls Del with a homozygous deletion or 

both copies lost 

TotalStates(2) 

The number of Controls in Controls Del with a hemizygous deletion or one 

copy lost 
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TotalStates(5) 

The number of Controls in Controls Dup with a hemizygous duplication or 

one copy gained 

TotalStates(6) 

The number of Controls in Controls Dup with a homozygous duplication or 

two copies gained 

ALLTwoTailed All CNV states considered together p 

ORALL All CNV states considered together OR 

ZeroTwoTailed Only CN=0 CNV state considered together p 

ORZero Only CN=0 CNV state considered together OR 

OneTwoTailed Only CN=1 CNV state considered together p 

OROne Only CN=1 CNV state considered together OR 

ThreeTwoTailed Only CN=3 CNV state considered together p 

ORThree Only CN=3 CNV state considered together OR 

FourTwoTailed Only CN=4 CNV state considered together p 

ORFour Only CN=4 CNV state considered together OR 

Gene 

The closest proximal gene based on UCSC Genes which includes both 

RefSeq Genes and Hypothetical Gene transcripts 

Distance 

The distance from the CNVR to the closest proximal gene annotated. If the 

value is 0, the CNVR resides directly on the gene. 

Description 

The gene description delimited by "/" for multiple gene transcripts or 

multiple genes listed 

Pathway 

Annotated pathway membership of Gene with reference compiled from 

Gene Ontology database, BioCarta database and the KEGG database 

(definition files in GeneRef folder) 

AverageNumsnpsCaseDel 

The average numsnp of CNV calls contributing to Case Del CNVR. Allows 

for much more informative CNV size (confidence) filtering post-hoc. 

AverageLengthCaseDel 

The average length of CNV calls contributing to Case Del CNVR. Allows 

for much more informative CNV size (confidence) filtering post-hoc. 

CNVRangeCaseDel 

Alternative larger CNV Range  Case Del definition compared to minimal 

common overlap definition of CNVR 

AverageNumsnpsControlDel 

The average numsnp of CNV calls contributing to Control Del CNVR. 

Allows for much more informative CNV size (confidence) filtering post-

hoc. 

AverageLengthControlDel 

The average length of CNV calls contributing to Control Del CNVR. 

Allows for much more informative CNV size (confidence) filtering post-

hoc. 

CNVRangeControlDel 

Alternative larger CNV Range  Control Del definition compared to minimal 

common overlap definition of CNVR 

CNVType Deletion or duplication CNVR Significant in combined report 

Cytoband Cytoband genomic landmark designations 

redFlagCount 

Count red flag from association review of 9 (see text, briefly: SegDups, 

DGV, Centro/Telo,  GC, ProbeCount, PopFreq, Peninsula, Inflated) 

redFlagReasons The failing metrics for association review and their values 

 

Besides p-value and odds ratios for each CNVR for all combined CNV state 

definitions (Figure 2.2), contributing sample IDs, their CN states, closest gene, gene 

description, pathway, and the average number of probes underlying contributing CNV 

calls are provided for confidence scoring and biological interpretation. Such tracking 
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information to enable quality assessment beyond initial sample based quality filtering is 

not available in other CNV association software tools.  

In addition to the main association results file, contributing calls to each 

association are included for trackability. Contributing calls allow for specific breakpoint 

assessment of individual samples and clear correlation of relevant raw input (i.e. intensity 

and genotype state). An UCSC custom track is created for graphical review of individual 

CNV boundaries to assess CNV overlap profiles (Figure 2.3). BAF and LRR value files 

for each CNVR are created with all samples having CNV contributing to association for 

review of the specific association region across many samples (Supplementary Figure 

2.1). Viewing probe intensity data across multiple cases for an associated region allows 

for generalization of robust signal qualities of a CNVR in a relatively quick manner. An 

image is automatically generated showing intensity and genotype raw values evaluated 

by the CNV calling algorithm delimiting each CNVR and each sample (Supplementary 

Figure 2.2). Ped files are created separately for deletion and duplication to allow for 

additional statistical output in Plink, including quantitative trait association. We define 

deletion ped: cn=0 → 1 1, cn=1 → 1 2, other → 2 2, and duplication ped: cn=4 → 1 1, 

cn=3 → 1 2, other → 2 2, designed from lowest to highest frequency in keeping with 

Hardy-Weinberg Equilibrium. An accessory function InsertPlinkPvalues allows for Plink 

generated output files to be imported into ParseCNV for Plink p-value driven CNVR 

definition. Full SNP based statistics are generated in ParseCNV to allow for specific 

locus queries regardless of significance. 

Correction of the CNV association statistics for population stratification can be 

achieved based on the PCA or MDS result. The deletion and duplication CNV peds 
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generated by ParseCNV are run in Plink with PCA/MDS as a covariate for a logistic 

statistical test. The additive model of population stratification corrected p-values is then 

imported into ParseCNV using InsertPlinkPvalues. 

Uncertainty in CNV calls underlying CNV associations is thoroughly evaluated 

by multiple lines of evidence to verify significant results including CNV call overlap 

profiles, genomic context, number of probes supporting the CNV call, and single probe 

intensities. CNV association results review follows four steps (Figure 2.1).   

First, CNV association review is facilitated by automatic red flag annotations 

which can be evaluated more carefully by UCSC track review for spurious association. 

Many segmental duplications, centromere, telomere, CNV peninsula of common CNV, 

extreme GC content regions, low average number of SNPs for CNV calls contributing to 

association, locus frequently found in diverse studies, greater than 1% population 

frequency, and same sample driving multiple CNV associations are all red flags for 

evaluation (See Methods). The number of red flags is scored automatically with their 

failing metric values provided. We use UCSC reference files which can be updated or 

adapted to different genome builds, as instructed.   

Second, intensity signal is reviewed for specific association regions across many 

samples, based on an automatically generated image of BAF and LRR probe values. 

Deletions are only accepted if they show clear drop in intensity (majority are below 0) 

and lack of heterozygous genotypes (BAF 0, 1). Duplications are similarly accepted only 

if they show AAB or ABB banding (BAF 0.33, 0.66) and increase in intensity (majority 

are above 0) although the latter is not always clear cut for duplications which is the 

reason duplications are often under called. 
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Third, probe based intensity is reviewed for whole chromosome data of a sample 

with each associated CNVR and population probe clusters, as done in Illumina 

GenomeStudio and Affymetrix Genotyping Console.  This review establishes clear 

diploid (CN=2) signal in flanking regions to limit noise likely to increase bias of false 

positive CNV calls. Intensity waves flanking a region with genotype support of CNV can 

be spotted that represent copy neutral loss of hetereozygosity (LOH)/ or run of 

homozygosity (ROH), which are often overcalled as a deletion by coinciding intensity 

waves.   

Fourth, qPCR wet lab review for confirmation of true positives and true negatives 

is critically important. These steps are done in order of increasing effort per locus but the 

number of loci will be filtered down by each step thus providing incremental stringency 

and re-review to establish confidence. Using ParseCNV with the robust quality tracking 

and confidence scoring through red flags, our validation success rate has been 90% in 

studies of autism (65), schizophrenia (67), depression (68), obesity (66), 

immunodeficiency (152) and attention deficit hyperactivity disorder (ADHD)(49). Here, 

we present the results of 409 attempted and 367 successful validation assays from 7 

disease studies with a range of different genomic loci and CN states (Table 2.2, Figure 

2.5).  
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Table 2.2.  Quantitative PCR Validation of CNVR Associations 

 

Project 
Validations 

Attempted 
Cases Controls Loci 

Count 

Del 
CN0 CN1 CN2 CN3 CN4 

PCR 

Failed 

Validation 

Failed 

Success 

Rate 

Autism 37 2,195 2,519 25 13 0 8 13 13 3 0 4 0.89 

Schizophrenia 52 1,735 3,485 8 47 14 21 14 3 0 0 10 0.81 

Obesity 104 2,559 4,075 35 36 0 31 45 27 0 10 5 0.95 

ADHD 135 3,506 13,327 12 57 0 35 56 37 7 7 11 0.92 

AutSczAdhd 10 9 1 1 10 0 9 1 0 0 0 0 1 

OldYoung 23 9,392 7,393 23 12 0 9 3 11 0 1 3 0.87 

Progressive 

Supranuclear 

Palsy 

48 1,855 6,701 24 38 0 32 9 7 0 4 9 0.81 

 

 

Reviewing the failed loci has led to establishment of the various red flag features 

presented. Over time, the validation 

success rate has improved as more 

rare and subtle red flags were 

identified and refined. Validation of 

CNVs with an independent method 

has remained a standard expectation 

due to false positives. With high 

validation success rate due to quality 

tracking and confidence scoring of 

known confounders leading to failed 

validations based on experience, we 

are confident that the majority of 

significant loci with good confidence 

scores can be interpreted for biological relevance to disease without prolonged suspicion 

of a false positive CNV call until PCR validation is done. 

Figure 2.4. Increased Frequency of Specific CNV State 

in Cases 

 

 
 
chr14:104241048-104348254 4:0 (case:control) deletions 2:11 

duplications 6:11 combined ParseCNV provides case enriched 

deletion significance for this region p=0.03 (duplication 

control enriched p=0.09). Since Plink only uses combined 

count definition the p=1 and the region is missed. 

chr11:133663955-133715739 1:3 deletions 5:0 duplications 

6:3 combined ParseCNV provides case enriched duplication 

significance for this region p=0.01 (deletion control enriched 

p=0.65). Since Plink only uses combined count definition the 

p=0.12 and the region is missed. 
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To provide a simplified 

demonstration of the file input 

format and output, we simulated 

data for 4 cases and 4 controls with 

CNV calls derived from 10 probes 

which after running ParseCNV 

results in a 1 probe CNVR deletion 

and a 3 probe CNVR duplication 

with nominal significance due to 

the reported ranges being observed in 4 cases and 0 controls along with other files for 

association and CNV signal review 

(Figure 2.1).  

As an example of a real 

dataset using a case/control publicly 

available dataset, 785 autism cases 

and 1110 controls were assessed 

with 561,308 probes. PennCNV 

called cases CN=0 1,855, CN=1 

19,484, CN=3 11,393, CN=4 1,060 

and controls CN=0 959, CN=1 

10,051, CN=3 6,236, CN=4 579. 

ParseCNV detected Del/Dup Probes p<0.05 Case Enrich: 696/1,309 and Del/Dup Probes 

p<0.05 Control Enrich: 468/1,313. Deletion CNVRs: 103 Duplication CNVRs: 59 were 

Figure 2.5. Quantitative PCR Validation of CNVR 

Associations. 

 

 
 

Each sample with attempted validation for a specific CNV 

at a specific locus is shown. The validation data output is 

0.5 for deletions, 1 for diploid, 1.5 for duplications with 

standard error values from triplicate runs. 

Figure 2.6. Sampling of Different Settings of Distance (1 

MB) and significance (+/- 1 power of ten p-value). 

 

 
 

Based on 785 cases vs. 1110 controls 561,308 probes 

dataset. By this sampling procedure, we show these 

defaults are justifiable based on balancing CNVR extension 

to allow boundary variability while maintaining unique loci 

except in rare instances. The x axis shows the CNVR typed 

and distance setting. The color shows the p-value variance 

setting. The y axis shows the count CNVRs resulting from 

these settings. 
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found (after joining based on 1MB probe neighbors and +/- power of ten p-value) before 

selecting the most significant CNVR in tightly clustering regions with varying 

significance. ParseCNV then condensed these probe based statistics into 57 deletion and 

33 duplication CNVRs with nominal significance. These loci were reviewed with red flag 

annotations, UCSC, raw intensity, and qPCR as described above resulting in 7 deletion 

and 12 duplication CNVRs (65). We used this dataset to sample different settings of 

proximity (1 Mb) and significance (+/- 1 power of ten p-value) (Figure 2.6).  

 By this sampling procedure, we show these defaults are justifiable based on 

balancing CNVR extension to allow boundary variability while maintaining unique loci 

except in rare instances. The rawcnv, fam, and map files can be freely downloaded from 

parsecnv.sourceforge.net to replicate the analysis.  

To further emphasize the unique output features of ParseCNV, we ran Plink on 

the same dataset.  Plink detected the same number of cases and controls at each probe and 

calculated statistical significance with similar values, albeit not the same since ParseCNV 

uses Fisher exact test and Plink uses permutation (Supplementary Figure 2.3). However, 

CNVRs were not called by Plink so part of ParseCNV was used to reduce redundancy in 

the Plink result. 4 deletion CNVRs and 4 duplication CNVRs were missed (not 

significant, p>0.09) by Plink due to the assessment of all CNV states together, while the 

opposite state was enriched in controls (Figure 2.4).  

All CNVRs called via Plink statistics were also significant in ParseCNV results. 

Plink found 92 combined CNV state groups of probes which were called as CNVRs by a 

ParseCNV component script. With combined CNV state statistics in ParseCNV, 79 

CNVRs resulted. Highly significant p-values using Fisher’s exact test were less 
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significant when asessed with permutation while marginally significant with control 

frequency using permutation were more constrained with Fisher’s exact test (i.e. 5:1 

case:control). Overall the counts of CNV per probe match exactly and the p-values 

correlate highly between ParseCNV and Plink providing independent validation of 

correctness (Supplementary Figure 2.3). However, the lack of CNVR calling and quality 

tracking in Plink makes for a strong contrast of Plink with ParseCNV. 

When families are available, inheritance rates of CNVs can improve confidence 

of CNV calls. Importantly, de novo events should show consistent parent of origin across 

genotypes of a given CNV. For example, if mother is AA, father is BB, and child is A, 

the parent of origin is mother for the remaining copy. Trio and joint family based CNV 

calling procedures in PennCNV can further improve the de novo rate (212). Such metrics 

can be developed by retrospective evaluation of raw data contributing to false positive 

associations and failing PCR validation. Waviness of the intensity data can be 

ameliorated using the GC wave correction model options (48). Individual CNV call 

quality metrics include confidence score, number of probes contributing to CNV call and 

physical CNV size. CNV call filtering may create false association by encountering a 

locus with control boundary truncation just under the threshold while case calls were just 

above. If multiple SNP array or exome capture versions are being used with different 

probe sets, filtering for the intersection set before CNV calling is recommended. If 

overlap is minimal between different platforms, a discovery phase with the largest subset 

can be done with replication in other subsets using all probes available on the chip.  

ParseCNV has the flexibility of handling multiple different input files and is optimized to 

handle CNV heterogeneity. 
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In conclusion, the above referenced probe resolution statistics and dynamic 

CNVR definition applied in ParseCNV will become increasingly important as the number 

of CNVs identified in each individual and the resolution of variable CNV boundaries 

expands in dense probe arrays and sequencing. With this increased resolution comes 

additional multiple testing burden although multiple probes are needed to call a given 

CNV and many probes may not detect any CNVs (conservative standard is p<5x10
-4

(65), 

See Methods). Assessment of CNVs across the genome has continued to improve (58, 61, 

94, 105, 140, 175). Recent reports of the extent of discordance between different arrays 

and CNV calling algorithms have been published (158). This can be readily seen in the 

Database of Genomic Variants entries with widely disparate CNV frequencies across 

different healthy populations. This is why large cohorts of cases and controls typed at a 

single facility are important with full tracking of quality metrics for each CNVR provided 

by ParseCNV rather than simply probe based significance values. Success frequency of 

qPCR CNV validation has continued to improve by association signal review enabled by 

ParseCNV. 

Note: Supplementary Data are available at NAR online: Supplementary figures 2.1-3, 

Supplementary methods, and Supplementary reference(221).  
 

 

 

2.4 Model for Continuous Red Flag Score 

 

CNV calling has inherent uncertainty due to imperfect data modes at normal intensity (0) 

and normal genotype (0,0.5,1) and deviations thereof. The stronger the deviation, the 

stronger the PennCNV HMM confidence score, one of the red flags. Red flags were 
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defined over time of reviewing failed qPCR verification underlying intensity and 

genotype.  

Progressing from a heuristic confidence score involving the count red flags exceeding 

predefined thresholds into a formal statistic continuous confidence score will improve 

specificity. Here, I have created a continuous RedFlag score to increase specificity 

robustly correlating to validation and true association. I then provide a Pass/Fail 

annotation based on RedFlags. 

Red Flags are in main categories of genomic annotations, overlap profile, and average 

quality of overlapping calls (Table 2.3). Genomic annotations include SegDups, 

DgvEntries, TeloCentro, and AvgGC. Recurrent overlap profile annotations include 

PopFreq, PenMaxP, FreqInflated, Sparse, and ABFreq.Average quality of overlapping 

calls annotations include AvgConf, AvgProbes, and AvgLength. 

To accomplish a continuous red flag confidence score, first I designed ParseCNV with 

the –includeAllRedFlags command 

line option, plot R histogram of each 

read flag. This design uses 

MakeRedFlagPlots. pl, 

CNVR_ALL_ReviewedCNVRs_bri

ef.txt, and plot R curve.  

Lines(density(a$a)) is used to 

integrate observed value at 

significant CNVR in proper 

direction of red flag (+/-) depending 

Figure 2.7. Continuous Confidence Score 

 

 
 
Histogram of all red flags, curve fitting, and normalization, weights 

based on generalized linear model, correlation/ROC curve to 

independent verification 
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on if low or high values are detrimental. This algorithm uses dens2 <- 

density(a$SegDups, from=0, to=a$SegDups[i]) with(dens2, sum(y * diff(x)[1])), and 

correlate/weight with validation success using Generalized Linear Model weights 

assigned and correlation of 0.8 with validation success achieved with reasonable cutoff 

for GLMWeightedConfidence of 0.2. ROC curve looks solid and the AUC score is 0.983 

using ROCR package. Simple average (same weights) of the integration likelihoods was 

not very well correlated with validation success.  

 

Table 2.3.  ParseCNV Red Flags Definition 
 

RedFlag Default Report 

Threshold Explanation 

SegDups (count, 

max, avg) 
>10, >0.98 max Fraction 

Matching 
Many segmental duplications (i.e., nearly identical DNA segments), representing genomic segments that are 

difficult to uniquely hybridize probes to, which could underlie false positive CNV detection. Segmental 

Duplications inform CNV breakpoints if flanking (include) and noisy regions if overlapping (exclude). 

DgvEntries >10 
Overlapping multiple Database of Genomic Variants (DGV) entries, representing CNV signals 

observed in “healthy” individuals, suggesting that a potential association result in the study at hand may 

be false. 

TeloCentro any overlap Residing at centromere and telomere proximal regions as they often have sparse probe coverage and 

only have a single flanking diploid reference to base CNV calls. 

AvgGC 31>GC>60 Harboring high or low GC content regions that bias probe hybridization kinetics even after GC model 

correction is done by CNV calling algorithms, producing false CNV calling and biasing the result. 

AvgProbes <10 CNVs captured with low average number of probes, contributing to association with low confidence. If 

an association depends on a preponderance of small CNVs, the likelihood of false positive is high. 

Recurrent any overlap 
Locus frequently found in multiple studies such as TCR, Ig, HLA, and OR genes. TCRs undergo 

somatic rearrangement due to VDJ recombination causing inter-individual differences in the clonality 

of T-cell populations and thus are not true CNVs, necessitating exclusion. 

PopFreq >0.01 
CNV regions with high population frequency (for rare CNV focused studies) indicate that probe 

clustering is likely biased due to a high percentage of samples with CNV used in clustering definition 

thus biasing CNV detection. 

PenMaxP_Freq_Hi

ghFreq 
PenMaxP >0.5, Freq >0.5, 

HighFreq >0.05 

CNV peninsula of common CNV (sparse probe coverage and nearby high frequency CNV) indicates 

that within the range of contributing CNV boundaries there is a non-significant (p>0.5) p-value which is 

notably different from the CNVR association typically due to random extension of common CNVs to 

neighboring sparse or noisy probes. PenMaxP is the worst p-value in the span of CNV calls contributing 

to the significant CNVR. Freq is the frequency of this PenMaxP worst p-value. HighFreq is the 

frequency any non-nominally significant p-value (P>0.05). 

FreqInflated 

>0.5 sids at this locus have 

>(maxInflatedSampleCoun

t-2) occurrences in all 

significant results 

The same inflated sample driving multiple CNV association signals. Certain samples have many noisy 

CNV calls arising in rare regions despite upfront sample quality filtering. 

Sparse >50kb 
A large gap in probe coverage exists within the CNV calls indicating uncertainty in the continuity of a 

single CNV event, typically due to dense clusters of copy number (intensity only) probes with large 

intervening gaps. 

ABFreq <1% values (0.1,0.4) or 

(0.6,0.9) 
For duplications, AB banding of BAF at 0.33 and 0.66 for CN=3 or 0.25 and 0.75 for CN=4 are very 

important observations given the relatively modest gain in intensity observed in duplications. 
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AvgConf <10 

The HMM confidence score in PennCNV is a superior indication of CNV call confidence compared to 

numsnps and length in studies comparing de novo vs. inherited CNV calls, giving an indication of the 

strength of the CNV signal or aggregate difference in probability between the called CN and the next 

highest probability CN. Other CNV calling algorithms give different range confidence scores or lower 

values might mean more confidence (i.e. call p value) so threshold may need modification. It is 

recommended to be in .rawcnv file as column 8 i.e. “conf=20.659” but not required. 

AvgLength <10kb 
A classical confidence scoring parameter is the length of the CNV. If the CNV is too small, it is 

submicroscopic and even if many probes are tightly clustered, bias of local DNA regions and probe 

overlap make confidence difficult 

 

 

 

2.5 Comparison of CNV Association Tools 

Multiple CNV tools have been developed and their features are compared in Table 2.4.  
 

Table 2.4. Comparison of CNV Association Tools Features Currently Available 
 

 CONAN BirdSuite Plink CNVineta CNVassoc CNVTools R-Gada CNVRuler HD-CNV ParseCNV 

Input Platform Affymetrix Affymetrix ALL 
Illumina 

Affymetrix 
ALL ALL ALL ALL ALL ALL 

CNV Call Data PennCNV Array data PED1) APT1) CGHcall Text file1) BeadStudio1) Nexus 

PennCNV 

Genomic 

Workbench 

TCGA 

NimbleScan 

APT 

Genotyping 

Console 

Genome Studio 

Text file 

CSV Nexus 

PennCNV 

Genomic 

Workbench 

TCGA 

NimbleScan 

APT 

Genotyping 

Console 

Genome Studio 

Text file 

 QuantiSNP  BirdSuite2) QuantiSNP1) Plink  
Genotyping 

Console1) 
 

 
Genotyping 

Console 
   Text file1)  Text file1)  

 Text file1)        

 MS Exel1)        

         

         

         

         

OS ALL Linux ALL ALL ALL ALL ALL ALL ALL ALL 

Frequent CNV 

Region3) 

CNVR N/A N/A Fragment CGHregions N/A N/A CNVR CNVR CNVR 

       RO  RO 

        Fragment  Fragment 

GUI Yes No Yes4) No No No No Yes Yes Yes 

Required Oracle 

(Optional) 

Annotation File 

Matlab 

R 

Annotation File 

No R R R R R 
Java Swing 

JGraphT 

R 

        

        

Statistical Methods 
Linear 

regression 
Regression CA Trend 

Test 

Fisher’s 

exact test 

Stratified 

Test 

Multi-locus 

Test 

Likelihood 

Ratio Test 

Logistic 

regression 

Linear 

regression 

Logistic 

regression 

Logistic 

regression 

Maximum 

likelihood 

Logistic 

regression 

Fisher’s exact 

test 

Interval 

Graph Fisher’s exact 

test 

Chi-Square 

CA Trend Test 

Stratified Test 

Multi-locus 

Test 

Likelihood 

Ratio Test 

Logistic 

regression 

Linear 

regression 

Confidence 

Score 

  (SNP ref)  
Linear 

regression 
EM 

Likelihood 

Ratio Test 
Chi-Square 

Bron 

Kerbosch 

Clique 

Finder 

Algorithm 

       
Logistic 

regression 
Gephi 

       
Linear 

regression 
 

         

         

         

          

Disadvantage / 

Limitation 

Support 

Platform 

Support 

Platform 

Data 

conversion 

Support 

Platform 

Data 

conversion 

Data 

conversion 

Region 

definition 

User Interface 

No Covariates 

Limited data 

model 

(Binary, 

Normal 

distribution) 

User Interface 
Graphical 

Report 
P-value 

Graphical 

Report 

 
Single Statistical 

Method 

Large data 

handling 

Region 

definition 

Single 

Statistical 

Method 

User Interface   
Confidence 

Scoring 
 

  
Region 

definition 
 

User 

Interface 
     

  User Interface        

          

          

          

Reference Forer et al,2010 Korn et al, 2008 
Purcell et 

al, 2007 

Wittig et al, 

2010 

Subirana et al, 

2011 

Barnes et al, 

2008 

Pique-Regi et 

al, 2010 
Kim et al 2012 

Butler et al 

2012 

Glessner et al 

2013 

1) Manual Conversion required 

2) Supported by BirdSuite 

3) Since each tool named differently for identical region definition, the representative words are chosen from this study for convenience 

4) Supported by 3rd party front-end gPlink 
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ParseCNV was the first CNV association software when the idea was first conceived and 

the groundwork was laid out.  As shown in Table 2.4, there are currently nine other 

published softwares that exist with a variety of features. ParseCNV has the most features 

currently and I continue to improve functionality based on worldwide user feedback. 

ParseCNV has enabled CNV associations to be applied to all major disease categories 

and allows for evaluation of different versions of the SNP arrays and examination of 

CNV profiles in different ethnicities at the population level. The novel association utility 

of ParseCNV is more thoroughly delineated in the chapters presented below. 
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Chapter 3  

3.0 Genome Wide Rare Copy Number Variation Landscape and 
Disease Implications in 68,000 Humans 
 

Summary 

Copy number variants (CNVs) are commonly observed in healthy individuals and have 

gene dosage-sensitive effects on specific phenotypes. Several CNV maps have been 

reported that illustrate the wide-spread impact of CNVs on the human genome, 

implicating compelling biological functions for certain CNV regions; however, they are 

generated from relatively small sample sizes and therefore lack depth of rare CNV 

coverage. Here we evaluate 68,000 individuals typed with 520 thousand probes in 

common and report 4,969 deletion, 2,633 duplication, and 263 homozygous deletion 

CNVRs observed in multiple unrelated individuals. Of those, 17% are novel CNVRs, 

64% overlap genes, and 18% overlap significant genome-wide association (GWA) single 

nucleotide polymorphisms (SNPs) loci. We performed CNV association clustering across 

broad disease categories of cancer, autoimmune, cardio/metabolic disease, neurological 

disease populations in comparison with healthy controls, uncovering strong associations 

with OMIM genes, GWAS genes and non-coding RNAs and we subsequently assessed 

their contributions in different ethnic groups. We show that total CNV burden per 

individual averaged ~600kb and was ethnicity-dependent. We conclude that the rare 

CNVs identified represent a robust frequency definition for large scale rare variant 

association studies, which are enriched for disease associations at OMIM, GWAS and 

non-coding RNA loci with differential ethnicity-dependent impact. 
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Prior to the introduction of CGH- and SNP-microarrays and affordable sequencing, 

detection of CNVs was limited to observation based on karyotyping and fluorescence in 

situ hybridization (FISH). These technologies were limited to the discovery of large 

CNVs that are typically rare and thought to be disease causing based on their startling 

impact on the genome (11). As the SNP array technology developed for assaying the 

diploid human genome in mid-2000, the wide spread and common nature of CNVs 

became more readily apparent and multiple regions of the genome were shown to have 

such high frequency of CNVs that they are referred to as copy number polymorphisms 

(CNPs) (54). As a result, a wave of studies has assessed the frequency of CNVs across 

the human genome using different arrays, algorithms, and presentations (35, 39, 88, 94, 

98, 129, 139, 172, 182, 183, 185, 205). 

The functional consequence of CNVs was first described in model systems (19). In 

addition to conventional Mendelian inheritance of parental CNVs, a small subset of 

CNVs occurs as de novo events.  Both inherited and de novo structural changes can 

impact gene expression, phenotypic variation, adaptation and influence or be causal to 

disease (95). Moreover, association of a rare CNV with a disease trait can flag a more 

common genotype variation by uncovering a new disease pathway potentially impacted 

by other types of variants (213).    

Evolution and genome condensation occurs through various mechanisms, including 

chromosome splicing of highly similar sequences known as homologous recombination 

(HR) (32).  In somatic cells, HR is needed to repair extreme DNA damage such as double 

strand breaks (DSB). If spliced incorrectly, CNVs and genomic instability can result. An 

intermediate state is formed between two DNA strands which proceeds by crossover (two 
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way sharing, meiosis and DSB) or gene conversion (one way sharing and DSB) both of 

which can impact gene dosing and predispose to disease. The human genome has 

numerous regions of segmental duplication that provides similar sequences for HR to 

occur. Segmental duplications can masquerade as allelic sequences during meiosis that 

can lead to erroneous splicing with non-allelic homologous recombination (NAHR). 

Likewise, gene conversion can insert non-expressed sequences into homologous 

expressed genes resulting in reduction in gene function.  Large datasets are required to 

examine the impact of these mechanisms on disease phenotypes and genome evolution.   

To elucidate the impact of CNVs at the genome level and their potential relevance to 

disease states, we analyzed Illumina genome-wide SNP array data sharing 520,017 SNPs, 

including both genotype B allele 

frequency (BAF) and intensity log R 

ratio (LRR), from 68,028 unrelated 

high quality DNA samples. The 

CNVs were distributed in a 

heterogeneous manner throughout the 

genome and no large stretches of the 

genome were exempt from CNVs. 

The proportion of any given 

chromosome susceptible to CNV 

varied from 46.7% to 96.1% 

(Supplementary Fig. 5), due in part to 

SNP resolution. 

Figure 3.1. Individual Sample CNV Burden based on 

Total CNV Length Genome Wide.  

 

 
 
A) High Frequency CNVRs distribution; B) Low 

Frequency CNVRs distribution. The total combined 

length of CNVs impacting individual subject is shown. 
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3.1 Detection of Rare Recurrent CNVs 

CNVs were characterized by assembling a large population CNV map of the human 

genome through the study of 68,028 genotyped individuals from four populations with 

ancestry in Europe (52,321), Africa (12,548), Asia (2,299), and Latin America (860). 

CNV calls per individual sample averaged 18.6 with a median of 16, with CNV state per 

individual as follows: a) CN=0 with average of 1.48 and median of 1; b) CN=1 with 

average of 11.8 and median of 10; c) CN=3 with average of 5.71 and median of 5; and d) 

CN=4 with average of 2.20 and median of 1. The total size of the CNVs called per 

individual sample averaged 68,425.3 Kb with median of 20,750 Kb. The number of SNPs 

in a contiguous region in support of the CNVs call averaged 15.19 SNPs with median of 

7 SNPs. The average individual CNV burden amounted to ~600 kb with rare CNV 

component of ~200 kb (Figure 3.1 and Suppl. Fig. 3.1).  

We detected a total of 5,238 deletion copy number variation regions (CNVRs) and 2,707 

duplication CNVRs based on the above stringent CNV criteria. A CNVR was defined by 

a contiguous region of SNPs within sample frequency (0. 03% corresponding to 20 

samples) with spacing between SNPs not exceeding one MB. This allows for CNVR 

boundary extension to be defined with flexibility to uncertainty in CNV call boundary 

truncation at the sample level manifesting in a population scale and extension of a CNVR 

over SNPs with aberrant frequency (Suppl. Fig. 2). It should be noted that our CNVR 

definition is distinct from CNVRange, which would include minimum and maximum 

boundaries of overlapping CNVs, an alternative CNVR definition specifying a different 

CNV frequency range. While many CNVRs were rare, we detected 4,969 deletion, 2,633 
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duplication, and 263 homozygous deletion CNVRs in multiple unrelated individuals 

(Figure 3.2, Suppl. Figs. 3.3-4, and 

Suppl. Tables 3.5-7).  

The average deletion CNV frequency 

of these CNVRs was 0.22% with a 

median of 0.05%. The average 

duplication CNV frequency of these 

CNVRs was 0.21% with a median of 

0.06%. This indicates that the vast 

majority of the CNVs called were rare 

in keeping with the genotyping platforms used (the shared SNP content resides outside of 

common CNV regions).  We estimated CNV call sensitivity based on our detection rate 

of known CNVs in reference Hapmap individuals and CNVs reported in the Database of 

Genomic Variants. Similarly, we found CNV specificity to be high given positive 

independent experimental validation in 91% of 2,127 samples, testing different CNV size 

ranges across the entire genome, using qPCR (Sup. Fig. 7). We validated both the 

presence and absence of CNVs in various loci across randomly chosen samples. 

Furthermore, the inheritance rate of CNVs was 94% and concordance between biological 

replicates was 100%. 

The Database of Genomic Variants (DGV) is a centralized resource for CNV 

observations(133). There are over 200,000 entries of CNVs reported through various 

studies that have been run on different platforms, by different laboratories at different 

times and ascertained with different CNV calling algorithms (UCSC Table DGVMerged 

Figure 3.2. Genome-wide CNV Frequency of Deletions, 

Duplications, and Homozygous Deletions. 

 

 
 
Frequency plot of the CNV occurrence in the human 

genome with alternating color scheme to delineate each 

chromosome. 
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Downloaded 3-31-14).  Our study identified a common set of SNPs across different 

Illumina chip versions and used a 

unified SNP content of 520,017 SNPs 

to uncover 795 deletion and 265 

duplication CNVRs harboring 

74,516(54,655 and 19,601 

respectively) individual CNVs that 

were not reported in the DGV. We 

additionally uncovered 178 

homozygous deletion CNVRs 

impacting 260 individuals that did not 

have annotation in DGV.   

CNVs can make genome sequence 

assembly difficult (103). By 

referencing the frequency of CNVs 

flanking a given sequence run, the 

true sequence of the genome can 

more accurately predicted with 

improvement in continuity. Of 1,387 

such CNV regions identified 

exceeding 50 kb in size, it is 

noteworthy that many of the largest 

regions of the genome with sequence 

D 

Figure 3.3. PCA Population Genetics and Geographical 

Ancestry. 

 

 

 
 
A) Overall PCA of CVS (Heart Disease), NEU 

(Neurological), AID (Autoimmune), CCR (Cancer), and 

HLT (Healthy). B) Density based PCA differentiating  

areas of high overlap. C) Separate Hapmap and disease 

category overlaid PCAs. D) PCA Population Genetics 

and Geographical Ancestry of Table 2 CNV Loci 
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uncertainty reside at the centromeres (n=70) and telomeres (n=86), especially the 

centromeres of chromosomes 1 and 9 and the p arms of the acrocentric chromosomes, 13, 

14, 15, and 22 (Sup. Fig. 3.5). These regions are not covered by arrays due to highly 

repetitive DNA sequences that are chromosome non-specific. The average CNV 

occurrence on SNPs flanking DNA stretches exceeding 50kb in the Illumina array 

coverage was 58% for deletion and 78% for duplication. This frequency is much lower 

for regions of high SNP density (<18bp) which had an average CNV observation of 19% 

for deletion and 18% for duplication. Thus, sequence gaps in the reference human 

genome assembly are at least in part due to CNVs and segmental duplications and large 

gaps in SNP coverage and lack of continuity of spacing, in general, decrease confidence 

in CNV calls made by SNP platforms. Moreover, to differentiate the pattern of rare 

recurrent CNVs geographically at the population level, we applied principal components 

analysis (PCA) and evaluated identity by descent (IBD)(Figure 3.3). For main CNVR 

finding (Table 3.2), we investigated PCAs in the absence and presence of different 

disease states to determine the impact of ancestry on disease-associating CNVs. 

 

3.2 Deletion and Duplication Frequency and Genome 

Clustering 

We observed homozygous deletions in 894 CNVRs across the genome, with 376 (42.1%) 

homozygous deletion CNVRs residing on segmental duplications (Suppl. Fig. 4). While 

70.6% of homozygous deletion regions were only observed in a single individual, 10% 

were observed in 10 or more individuals encompassing 60 Mb of sequence, suggesting 

that approximately 2% of the human genome may be “disposable.” However, phenotypic 



55 

 

information on these individuals is of particular interest with respect to a potential role of 

a given disease gene and direction of intervention at a gene or biological pathway level.  

To determine if CNVs cluster at specific genome hotspots, we investigated the sequence 

content at the sites of CNV. Among 5,378 CNVRs uncovered, 1,725 (32.9%) deletion 

CNVRs and 1,150 (42.5%) duplication CVNRs reside on segmental duplications. The 

majority of CNVRs harbored both deletions and duplications: 5,091 (97.2%) of the 

deletion CNVRs also have duplications and 2,623 (96.9%) of duplication CNVRs also 

have deletions at these loci. Segmental duplication rearrangements are generated by non-

allelic homologous recombination; however, not all annotated segmental duplications are 

fixed in humans, but rather are CNVs. Thus, CNVRs harbor both deletions and 

duplications, whereas pairs of segmental duplications with high sequence similarity, 

including dispersed repetitive elements (Alu elements), retrotransposons, and sequence 

homology within 100bp segments, are all features of the human genome that contribute to 

extensive CNV aggregation over generations (43). 

 

The recombination hotspots of the genome predispose to CNVs and were found to be 

enriched for CNVs (Sup. Figure 3.8) as previously published (39).  To further emphasize 

this point, we have overlaid our CNVRs with publicly available recombination hotspot 

maps in order to make a collective conclusion that recombination hotspots correlate with 

CNV boundaries (Sup.Figure 3.9). 

 

To explore the potential of lethal homozygozity loci as determined by absence of 

expected homozygotes, we evaluated high frequency single copy deletions at specific loci 



56 

 

with significantly low homozygous deletion rate in search for loci out of Hardy Weinberg 

equilibrium that are likely to be homozygote lethal.  We observed ATP binding, 

intracellular organelle lumen, transmembrane transport, and metal ion binding genes to 

meet these criteria (Sup. Table 3.17), suggesting that these genes are of fundamental 

biological importance for survival. 

 

We did PCA on the raw GWAS data to address population stratification and to verify 

reported ethnicity. By using the correlates as a covariate for the logistical regression test 

statistic, the correlates are removed from any confounding. 

 

Regarding novelty of the CNV 

content uncovered, 17% of the 

CNVs we observed are novel, thus 

83% concur with previous reports, 

of which about 15% would be 

classified as large CNVs (i.e., 

above 100kb). Of the 17% novel 

CNVs, all CNVs represented with 

10 or more SNPs were 

experimentally validated without 

failure. Over 95% of the large 

CNVs (>100kb) are captured by more than 10 SNPs. These CNVs replicate between 

ethnicities in our study and frequency observed here compares to published studies such 

Figure 3.4. Frequency, Length and Gene Impact Features of 

CNVRs detected in this study. 

 

 
 
Increased frequency CNVRs tend to be biased away from 

genes and be restrained to smaller genomic regions. 

Duplications appear to be less constrained. 
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as Conrad et al., typically used as gold standard.  The ParseCNV algorithm used for the 

analysis (70), has been extensively validated for CNV confidence measures, providing 

another level of QC standard for CNV call validation. 

 

It is noteworthy that in general, deletions tend to be biased away from genes, whereas 

ancestral duplications appear to cluster on certain gene families throughout the course of 

evolution (Figure 3.4). While it can be difficult to define the exact CNV breakpoints, it is 

usually clear if a CNV disrupts genes/exons or not. Common CNVs are less likely to 

disrupt genes and are therefore less likely to impact on disease than are rare CNVs. 

Common variants typically flank disease associated regions, consistent with the intricate 

and fragile balance of such variation.  

 

3.3 Functional impact of CNV loci and relations to specific genomic elements 

 To evaluate the relationship between CNV location and disease impact, we investigated 

functional elements of the genome to see if CNVs were observed in critical regions 

including RefSeq genes, OMIM genes, Ultra-conserved elements, conserved non-coding 

elements, non-coding RNAs, gene exons, and OMIM morbid (Table 3.1), all of which 

have the ability to influence phenotype expression. 

 

We used DAVID(46) to evaluate genes impacted by CNVRs for functional annotation 

clustering by searching through Gene Ontology, INTERPRO and several other functional 

databases. We observed functional enrichment of deletion CNVR impacting several gene 

classes, including secreted proteins, growth factor mediators, molecules involved with 
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regulation of protein kinase cascade, regulation of protein amino acid 

phosphorylation,and tumor necrosis factor-like molecules. In contrast, 

 we observed significant functional enrichment of duplication CNVR in molecules 

 

Table 3.1. Impact of CNVR Loci on Functional Elements at the Genome-Wide Level    

 

involved with negative regulation of signal transduction, negative regulation of cell 

communication, phosphoprotein, DNA binding, as well as in several sequence variants 

affecting diversity of adult human height, or largely opposing effects to those of the 

deletion CNVRs. For homozygous deletion CNVRs, we observed significant enrichment 

for gene classes involving intermediate filament protein and cytoskeletal keratin 

molecules.  The CNV enriched regions of most interest included Coil 1A, Coil 1B, Coil 

2, Head, Linker 1, Linker 12, Rod, Tail, all of which are fundamentally biologically 

relevant with respect to disease influence (Sup. Figure 3.6). 

 

GWAS has been a powerful tool in uncovering disease loci and unfolding new biology in 

hundreds of complex medical disorders; thus, we leveraged the GWAS genotyping data 

from over 68k individuals to detect copy number variation. CNVs likely complement the 

CNVRs 
RefSeq 

genes 

OMIM 

genes 

Ultra-
conserved 

elements 

conserved 
non-coding 

elements 

non-coding 

RNAs 

Gene 

Exons 

OMIM 

morbid 

DGV 
CNV Map 

Study 

Freq High 
Conserved 

>1% 

NHGRI 
GWAS 

Catalog 

Loci Deletions 1.11 1.13 0.92 0.67 2.47 1.18 2.24 1.41 0.44 1.60 

Loci 

Duplications 
1.10 1.13 0.87 0.60 2.68 1.17 2.19 1.42 0.27 1.40 

Loci CN=0 
Deletions 

0.97 0.98 0.96 0.95 4.00 1.04 7.00 1.33 1.67 3.87 

Genes Deletions 1.29 1.07 1.59 0.63 1.70 0.36 1.51 2.14 0.31 1.73 

Genes 

Duplications 
1.41 0.91 1.70 0.46 1.48 0.09 1.56 2.24 0.22 6.12 

Genes CN=0 
Deletions 

0.96 1.32 0.88 1.17 5.00 1.14 8.00 2.00 2.15 10.82 
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genetic burden of many genes identified by genotype association. Among 5,378 CNVR 

loci uncovered, 1,409 resided in GWAS regions associating with one or more complex 

OMIM disease traits (Sup. Table 3.9). Moreover, 28% of deletions, 34% of duplications 

and 39% of homozygous deletions overlapped significant GWAS signals at P<5x10
-8

. 

For comparison, we generated random SNP seeded CNVR windows of equal number and 

size to the observed CNVRs to model the null distribution resulting in 17% deletions, 

24% duplications, 10% homozygous deletions overlapping reported GWAS signals at 

p<5x10
-8

, resulting in p=3.96x10
-38

 for deletions, p=5.94x10
-15

 for duplications and 

p=1.31x10
-47

 for homozygous deletions (p=4.56x10
-78

 combined) in favor of CNV 

enrichment for GWAS loci. Co-localization of CNVs with GWAS genomic regions is 

significantly above expectations, suggesting complementary genetic mechanisms 

perturbing disease genes through both common and rare variants that co-exist at GWAS 

loci. 

 

There are several genomic regions in the human genome that are unstable and hard to 

characterize.  The reasons for this vary but in general, these regions are highly duplicated, 

polymorphically inverted, contain assembly sequence gaps, or may be flanked by 

segmental duplications of variable copy number.  All of these features are being 

increasingly observed in CNV regions of the human genome and their biological 

implications are likely to unfold in the near future. Genotype calls in regions of CNVs 

characterized by homozygous deletions result in random genotyping since there is no 

DNA template to bind. Mendelian discrepancies in families are more often observed in 

deletions and Hardy–Weinberg disequilibrium regions, whereas no call SNP genotypes 
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are more often observed in duplications at the population level. The latter can also flag 

CNVs based on a region of genotypes (172). 

 

Due to the design of the Illumina SNP-array platform, common CNVs are poorly 

captured as SNPs are omitted from the array that resides in such regions.  The platform’s 

SNP tagging approach is based on linkage disequilibrium (LD), which is a measure of 

correlation between markers. When occurring in LD regions, SNP genotype studies have 

the power to tag and associate CNVs with the trait under study. When the LD between 

any two variations (r
2
) is close to 1, then either variation can be typed and the other 

inferred by the tagging approach. We calculated LD between each of the 48 common 

CNVRs we detected with frequency >5%. CNV tagging by SNP genotypes was poor 

with only 5 r
2
 values exceeding 0.8. Loci showing r

2
 of 0.6-0.8 accounted for 5 CNVRs. 

Loci showing r
2
 of 0.3-0.6 accounted for 11 CNVRs. Loci showing r

2
> 0.1 accounted for 

32 CNVRs. Thus, only 10% of CNV events could be effectively tagged by SNP 

genotypes in the surrounding region (Sup. Table 3.10). Since the CNV events dominantly 

captured by the platform are relatively rare (<1% population frequency) for the majority 

of loci while SNP genotypes are typically common (>1% population frequency) the 

common GWAS SNPs have diminished ability to tag rare CNVs. Therefore, these CNVs 

are rare events rather than copy number polymorphisms (CNPs) which could be more 

amenable to SNP genotype tagging. This underscores the value of CNV detection in 

addition to SNP genotype association to reveal novel insights into disease pathogenesis, 

as these are independent variants. 
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The recent Wellcome Trust Case Control Consortium (WTCCC) CNV study typed 

19,000 individuals on targeted Agilent Comparative Genomic Hybridization (CGH) 

uncovering 3,432 polymorphic common CNVs(39). However, a study of association of 

CNVs with disease revealed the same exact loci as the previously done SNP genotype 

GWAS (2), suggesting that analysis of common CNV may be somewhat redundant to 

SNP genotyping. Logically, it follows that rare CNV association may reveal novel 

disease association loci. Comparing the regions with >5% CNV occurrence in the current 

study with those reported by WTCCC, 16/29 deletions agree while 2/5 duplications agree 

for an overall concordance rate of 51% (Sup. Table 3.11). After reviewing the clustering 

of probes underlying these regions we conclude that the discordant calls are most likely 

due to incorrect or biased cluster definition due to high CNV frequency, leading to 

ambiguity of the diploid cluster based on the intensity only CGH array used by WTCCC. 

Thus, the apparent lack of overlap with the previous WTCCC study (39) results from the 

fundamental difference between the platforms used, where our focus is on rare recurrent 

CNVs which is tailored for the Illumina platform used, and that of the WTCCC is tailored 

towards common CNPs, with the two having little in common and yielding 

complementary findings. 

 

3.4 CNV Clustering by Sex and Ethnicity 

 

We assessed the impact from inferring the ancestral linkage disequilibrium blocks of 

African Americans (AA) on rare CNV frequency. Unlike several previous reports from 

smaller studies (141), we did not observe any differences in the overall frequency 

spectrum of duplication and deletions from such a selection process; however, we 
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observed clear differences in the distribution of CNV clustering, which was vastly 

different between the ethnic groups (Sup. Table 3.15). Further, we note that over 95% of 

the key CNV observations presented occur on a single ancestral haplotype so a very 

minor proportion of the CNVs presented are de novo. Thus, the vast majority of our 

observations represents single ancestral events and therefore sits on a single local 

haplotype (with similar CNV breakpoints) with the remaining being de novo events on 

multiple haplotypes with irregular breakpoints. The distribution of these types of events 

in different ancestries was surprising as several previous studies claim that overall CNV 

frequency is greater in African-Americans compared with Caucasians or Asians, 

presumably due the relative evolutionary age of these ethnicities (141). To the extent we 

have family material for subjects of African-American and Asian origin, our family-

based analysis shows that the frequency of such events is comparable between the 

different ethnic groups (Caucasian, African-American and Asian). However, evaluation 

of population specific CNVs has unveiled several genes impacted by CNVs and 

demonstrated ethnicity-specific enrichment in the frequency of specific CNV loci (Sup. 

Table 3.15). While intriguing, overall, the frequency differences in the spectrum of 

duplication and deletions are not informative about selection as the overall CNV 

frequency observed was comparable between the African Americans, Caucasians and 

Asians.  

 

While inference of the ancestry linkage disequilibrium blocks in the African Americans 

and assessment of rare CNVs on different backgrounds did not reveal significant 

differences between the three major ancestry groups presented. Thus, we did not observe 
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differences in our much larger dataset as the overall CNV frequency was not greater in 

subjects of AA origin. Loci with significantly enriched and different frequencies in 

respective ethnicities are included in Sup.Table 3.15. 

 

It is well known that subtle effects of population stratification are particularly 

problematic for rare variants.  It is therefore encouraging that the rare recurrent variants 

we observed impact all ethnic groups showing similar phenotypic effects based on the 

datasets we have reported in the past (49, 65-68, 152), as well as on the data we are 

reporting on here. We used base genotype (A/T/C/G) PCAs as a covariate to successfully 

correct for population stratification for the entire dataset. 

 

As we perform CNV association tests that are well standardized (70), the strength of this 

cohort of 68k subjects is that even many rare events occur recurrently enough to meet 

statistical standards of significance.  In this regard, aggregation, bi-directional, and 

collapsing statistical tests are being adopted from rare genotype variation association 

studies of sequencing data and across the 3 major ethnic populations.  Details on the 

statistical methods used are in our recently published ParseCNV algorithm (70). 

 

3.5 CNV Clustering by Disease Categories 

 

In addition to disease-free “super control” subjects (n=4,352), broad disease categories of 

autoimmune/inflammatory disease (n=11,489), cancer (n=9,105), congenital 

heart/metabolic disease (n=2,581), and neurological disorders (n=14,756) were present 

among the samples analyzed, providing CNV frequency at the population level with high 
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statistical power for association of rare CNVs (Box 1). We first flagged CNVRs with 

significant association to chip version (in addition to intersection set of probes used  

 

 

Box 1. Key CNV Map Study Features 

                                         
 

 

 

 
 

CNV calling involves interpreting the normally distributed values (in terms of genotype red/yellow/green 

continuum (B allele frequency) and fluorescent intensity (Log R Ratio)) of neighboring probes using 

hidden Markov model and Viterbi algorithm implemented in PennCNV to create discrete copy number 

states for genomic segments. Genomic CNV burden of individuals can be determined directly by adding 

the length of CNV calls or sorting large CNVs. The median of total length of CNVs is 600kb (Figure 1) but 

there is a long tail to the distribution representing much of an individual’s genome burdened by CNV 

without significant correlation to severe disease. Therefore, more careful comparison of locus specific CNV 

boundaries and population frequencies stratified by type is needed genome wide. CNV boundaries can vary 

slightly due to differential probe sensitivity so our CNVR determination allows small frequency 

fluctuations. Overlap of genomic functional elements and CNVs is done by comparing the many genome 

annotations provided by UCSC genome browser to determine which elements are enriched or depleted for 

CNVS. Since the healthy population is just a part of the overall study, subjects were assigned to broad 

disease categories and CNV association performed to find meta-features of disease with CNVs in specific 

loci, to maximize the power of rare CNV association with large sample sets. Bias of discernibly different 

subsets of data must be exhaustively considered. Although we used all Illumina beadchips, chip version, 

ethnicity, and sample set bias are key factors for evaluation. The intersect of probes makes datasets from 

different chip versions logically equivalent for CNV calling but SNP clustering modes and clustering 

accuracy may vary due to different probe populations in beadpools and reagent chemistry. Ethnicity has 

shown to have different frequencies of SNP genotypes and CNV states alike due to ancestral lineage of 

CNV generation and inheritance. Sample set bias can be subtle from blood collection, DNA extraction, 

storage, cell line immortalization, quantification, and fragmentation. 

 

 

 

PennCNV ParseCNV 

Genome-wide CNV 

Frequencies 

Genome Feature  

Referencing 
Disease Category  

Association 

Version, Ethnicity, 

Sample Set Bias 
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across all chips to minimize bias) and by ethnicity, which yielded the following 

categories of CNV bias: 304 deletion, 631 duplication, and 12 homozygous deletion 

CNVRs showed significant chip version bias; 335 deletion, 925 duplication, and 32 

homozygous deletion CNVRs showed significant ethnicity bias, both of which were 

adjusted for in relation with disease clustering described below. 

 

For statistical measures, CNVRs were scored based on chi square and Fisher’s exact test. 

In addition to overall CNV analysis and analysis separated by deletions and duplications 

across the entire cohort, we analyzed each disease category, such as autoimmune/ 

inflammatory disease, cancer, neurological disease etc.  Loci reaching P values of 5x10
-8

 

for deletion or duplication CNVs (and 9x10
-4

 in case of homozygous deletion) were 

considered significant after multiple testing correction.  Several chromosomal regions 

aggregated many contiguously significant CNVRs that were subsequently merged (Table 

3.2).  

Table 3.2. Loci enriched with CNVs in Disease Categories  

 

CNVR (hg18) 
CNV 

Type 
Count 

Count In 
Disease 

Category 

P Category RefSeq Genes 
Count GWAS 

Sig 

chr17:73799302-73808867 Del 65 48 1.86E-28 cancer LOC283999# 0 

chr22:17257787-19792353 Del 
120 

(113-

450) 

40 

(37-54) 
6.41E-27 

cardiovascul

ar 
59 0 

chr22:18170308-21353745 Del 119 74 1.95E-21 neurological 61 8 

chr1:2380448-62205688 Del 
70 

(10-427) 
43 1.08E-20 cancer 714 94 

chr17:1403257-7200392 Dup 58 43 2.33E-17 neurological 147 12 

chr4:133156765-135766744 Del 65 46 3.76E-17 neurological 
PABPC4L,PCDH1

0 
1 

chr16:83162917-88131087 Dup 53 40 1.05E-16 neurological 52 16 

chr16:1132214-1781034 Del 338 103 2.64E-16 cancer 26 1 

chr14:103629376-103638225 Del 185 68 1.02E-15 cancer ASPG 0 

chr4:39661333-39722082 Del 130 59 3.56E-14 autoimmune LOC344967 0 

chr19:19762136-20585008 Del 292 121 3.63E-14 neurological 
ZNF[253,486,506,
682,737,826,90, 

93] 

1 

chr11:67505393-67573512 Del 65 34 8.86E-14 cancer 

ALDH3B1,NDUFS

8,TCIRG1,UNC93
B1 

0 
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Disease category enrichment in CNVRs P<9x10
-14

.Complete results P<5x10
-8

 provided in Supplementary 

tables 12-14. Each disease category represents at least 10 distinct specific diseases. #CNVR does not 

overlap a gene so closest proximal gene provided. Count genes overlapped provided when many. Regions 

without parenthesis did not vary by more than 20 samples across the CNVR. 

 

We observed several regions of significant association with disease state, including 

chr1p36.2-p31.3, which was significantly enriched for deletions in cancer; chr17q21.1-

q25.3, which was significantly duplicated in cancer; and chr22q11.21, which was 

significantly deleted in congenital heart/metabolic disease, replicating previous reports 

(28, 136, 149). The significantly associated CNVRs were enriched for association in 

cases for the respective disease category they represented. In addition, several novel CNV 

loci demonstrated associations with the integrative disease category approach, all of 

which were rare, and we show that 55% of significantly associated CNVRs to disease 

category overlapped GWAS significant loci based on previous reports.   

 

In addition to the above CNV enrichments observed at OMIM genes and GWAS loci, we 

also noted significant CNV enrichment at genomic regions harboring noncoding RNAs 

(combined CNV P= 5.97E-91) (Table 3.1). While the biological consequences of the 

latter CNV enrichment are unclear, the data suggest that in keeping with the implications 

of enrichment at disease genes linked to OMIM genes and GWAS loci, CNVs impacting 

noncoding RNAs may confer disease-causing effects. In addition, more attention should 

be paid to noncoding RNAs in disease association studies, as shown by a recent autism 

study (102) where a modern RNA tiling approach uncovered and validated such a 

relationship. 
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Thus, evaluation of population 

specific CNVs has unveiled several 

genes impacted by CNVs and 

demonstrated ethnicity-specific 

enrichment in the frequency of CNV 

loci (Sup.Table 3.15). As noted 

above, we specifically addressed 

CNVR distributions that were 

enriched as a result of specific 

Illumina BeadChip version, subject 

ethnicity or sample source to  

 

3.6 Replication of 

Known CNVs and 

Impact at the 

Population Level 

 

We observed known Mendelian CNV 

disorders at an expected frequency in our sample set of 68,000 samples, including but not 

limited to Prader-Willi syndrome (15q11-13); Smith Magenis (17p11.2); DiGeorge 

(22q11.2); Williams (7q11.23); and X-linked ichthyosis (Xp22.31). As we did not have 

known Mendelian disorders pre-identified in our study, which in fact constitutes healthy 

controls and four major classes of complex diseases, the association of CNVs in these 

Figure 3.5. Deletion CNVR Samples Observed vs. 

Subgroups Represented with circle size as the number of 

CNVRs. 

 

 
 
A) Illumina Chip Version B) Ethnicity C) Sample 

Source. Circle size represents the number of CNVRs at 

each point. 

 

B 

A 

C 
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individuals with OMIM genes is novel and of high biological interest; however, one still 

needs to determine if these are Mendelian phenocopies of complex disease or if CNVs in 

Mendelian diseases are significant pathogenic factors in complex disease – which is a 

subject of future studies.  Moreover, unlike CNVs in the disease cohorts, there were 

clearly no CNVs in the super controls that were enriched at genome-wide significance 

level. We have healthy control enriched loci (Sup. Tables 3.12-14) as indicated in Table 

3.2, but none of those are genome-wide significant. 

 

It is important to note that the CNV associations we have captured are independent events 

and we do not have a measure on if two or more rare recurrent CNVs are disease causing 

– this requires complex biological studies beyond the scope of this manuscript. Indeed, 

two known disease associated CNVs in one individual is extremely rare and we carefully 

prioritized such cases for clinical evaluation. 

 

As noted above, our study is focused on reporting rare recurrent CNVs and, as such, is 

fundamentally different from that of Donnelly and colleagues (39), which is devoted to 

common CNVs.  The fact that rare recurrent CNVs co-occur with GWAS genes is 

unexpected, however, the common GWAS SNPs cannot tag these rare CNVs 

necessitating direct CNV detection herein.   

 

For power reasons, we report on four major disease categories (autoimmune/ 

autoinflammatory; cancer, neurological; metabolic/cardiovascular), as well as healthy 

controls, as individual diseases are underpowered for association with rare variants. This 
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gives us a focus which is fundamentally different from any previously reported GWAS 

study. For example, we demonstrate association to autoimmune/autoinflammatory 

diseases as a class (IBD T1D, JIA, SLE, Celiac disease, asthma). Thus, the observation 

that CNVs associate with the respective disease classes is novel and of important 

biological relevance, as it extends beyond any previous GWAS/CNV report. 

 

We have captured the global impact of rare recurrent CNVs in terms of frequency, 

distribution and the role of such structural variants in health and disease across four major 

disease categories as well as controls, including across different ethnicities following 

thorough correction for population stratification measures. We note that our evaluation of 

population specific CNVs has unveiled several genes impacted by CNVs and 

demonstrated ethnicity-specific enrichment in the frequency of CNV loci (Sup. Table 

3.15); however, no difference was observed in overall CNV frequency across the 

different ethnic groups (EA, AA, Asian). 

3.7 Discussion 

Our results demonstrate that there is an abundance of CNVs across the genome that 

impact and flank functional elements with potential for major disease implications 

(Tables 3.1-2). While CNVs have been shown to importantly contribute to disease 

association studies, it is critically important that databases with CNVs and associated 

phenotypes be annotated along with platform and CNV call confidence scores. The 

Database of Genomic Variants Structural Variation which is available in UCSC genome 

browser is currently one of the most informative and useful resources of CNV 

information for investigators (94). The current CNV map has uncovered numerous novel 

A 

B 
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CNV regions, many of which are disease associated (Tables 3.1-2). GWAS has similarly 

been highly successful in unfolding novel loci of strong disease and biological relevance 

(2); however, lack of linkage disequilibrium with rare CNVs at over 90% of loci 

underscores the needs for CNV detection to be performed separately, particularly for very 

rare CNVs. SNPs with three or more states and considerable heterozygote frequency are 

well suited to differentiate duplication based on genotype states.  

Copy number variation (CNV) is a commonly observed phenomenon in healthy 

individuals and also has gene dosage-sensitive effects on specific phenotypes.  While 

several CNV maps have been reported that illustrate the wide-spread impact of CNVs on 

the human genome and implicating compelling biological functions for some CNVs, they 

are all built on relatively small sample sizes and lack depth of rare CNV coverage (35, 

39, 88, 94, 98, 129, 139, 172, 182, 183, 185, 205). This study was designed to 

characterize rare CNV by assembling the largest population CNV map of the human 

genome through the study of 68,028 genotyped individuals from four populations with 

ancestry in Europe (52,321), Africa (12,548), Asia (2,299), and Latin America (860). We 

processed genotype and intensity data for CNV detection using Illumina single-

nucleotide polymorphism (SNP) genotyping arrays intersection set of 520,017 SNPs. 

CNVs called per individual averaged 18.6 probes and the length of the CNVs called 

averaged 68 Kb, with average individual CNV burden was 600 kb, including a rare CNV 

component of 200 kb (Figure 3.1).  

 

 

By mapping individual CNVs  into population statistics, 5,378 copy number variable 

regions (CNVRs) were identified, with deletions covering 2.35 gigabases (78% of the 

A 

B 
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genome) and duplications covering 2.46 gigabases (82% of the genome), in keeping with 

the pervasive nature of CNV (Sup. Tables 3.5-7). While most CNVRs were rare, 4,969 

deletion, 2,633 duplication, and 263 homozygous deletion CNVRs were detected in 

multiple unrelated individuals (Suppl. Tables 3.5-7). Reported GWAS loci were present 

in 2,729 of the CNVRs identified demonstrating strong enrichment for CNVs at GWAS 

loci (P=5.97E-91) and similarly 1,531 CNVRs overlapped OMIM disease associated 

genes. A total of 964 deletion and 343 duplication novel CNVRs were uncovered that 

were not reported in the DGV. Of the CNVRs detected, 64% overlapped genes. Of note, 

genes functionally enriched for growth factor signaling and other signal transduction 

processes and intermediate filaments, were most commonly enriched for CNVs.  Genes 

residing in segmental duplications and disease associated regions were also notably 

enriched for CNVs.  

All CNVRs were controlled for beadchip version, ethnicity, and sample source to exclude 

any processing bias. Linkage disequilibrium between common SNP genotypes and rare 

CNVs was poor. In addition to determining CNV distribution in healthy subjects, we also 

examined CNV clustering across broad disease categories of cancer, autoimmune disease, 

congenital heart/metabolic disease and neurological populations, with high statistical 

power for comparison, demonstrating significant enrichment for specific chromosomal 

regions impacted by CNVs to these disease categories (Table 3.2 and Suppl. Tables 3.12-

14).  Similar enrichment in CNV association was also observed for noncoding RNAs 

(Table 3.1), suggesting they may be more relevant to human disease that previously 

thought.  
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We additionally demonstrated population frequency differences of CNVs in loci across 

the genome (Figure 3.3 and Suppl. Table 3.15), suggesting the process of evolution 

through gene family extension is enabled by CNVs, and that CNVs impact gene networks 

across all major disease categories (Table 3.2 and Suppl. Tables 3.12-14). 

We thoroughly evaluated our dataset for inflation in the test statistic and adjusted for 

CNV classes.  This approach is fundamentally no different from standard statistical tests 

for GWAS.  Since there is no other cohort of this size that has GWAS performed by the 

same laboratory, we are setting standards for the genetics field with our analysis.  We 

note that details of the statistical methodology used for the CNV reporting herein were 

recently described inParseCNV (70), a novel algorithm developed by our laboratory 

(Suppl. Material).  

 

As noted, the average individual CNV burden is approximately 600kbp (Figure 3.1), 

including distribution of all CNVs across the study cohort.  The median CNV size of 7 

SNPs with minimal call size in SNPs of 3. The mean SNP coverage is 5,280 bp between 

neighboring SNPs. The median SNP coverage is 2,965 bp between neighboring SNPs.  

Our recently published CNV algorithm, ParseCNV, was used for CNV association 

capture, definition of CNVRs and statistical analysis, an algorithm that has been 

extensively validated for CNV call accuracy, based on experimental validation.  Thus, in 

addition to random experimental validation of CNV loci from the 68,000 samples with 

excellent success as presented (>90%), the algorithm used has been independently 

validated providing high level of confidence (>90%) for the results presented here. 
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While somatic alterations and mosaicisms exist in DNA samples derived from blood, 

their contributions overall are minimal and do not impact the results presented here.  

Moreover, we have no example of a common GWAS SNP capturing any of the rare 

recurrent CNVs reported.  The Illumina chips we used are designed to stay away from 

common CNV regions so they are highly underrepresented in our report as a result of 

chip design. We note that 48 common CNVs remained in our observed data despite the 

array being strongly biased away from copy number polymorphisms with >1% 

population frequency, which is a minor subset of what we are reporting here.  

 

The raw CNV counts (Sup. Table 3.16) were used to create randomized set of genomic 

regions of best matched length and number of SNPs to compare to CNVRs for genomic 

features to score statistical significance.  We searched for functional enrichment across 

all CNVRs to find insight into biological functions tempered by CNV as a major 

mechanism. As a result, we specifically reduced the phenotype variables to 4 major 

disease classes, all of which show strong association to specific CNV loci. We note that 

96% of the genome is CNVR-based refined to the portion of the genome we have 

reasonable coverage so the analysis is truly genome-wide and hypothesis-independent. 

The NHGRI GWAS catalog is the source of the GWAS signals that were intersected with 

CNVRs compiled across diverse disease association studies. In the CNV clustering by 

disease categories, we performed 7,602 statistical tests to correct for in association (4,969 

deletions and 2,633 duplications). To be inclusive for ethnicity differences we included 

both the super control cohort and the subjects in the four major disease categories. 
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Our extensive CNV validation measures (including those intrinsically supporting the 

ParseCNV algorithm which was used to make these CNVR calls) included separate 

deletions from duplications with respect to CN state.  Over 100 random deletion and 100 

random duplication validations are presented across diverse genome regions, length, and 

number of SNPs on our array with success rate in the above 90% (70). As we and others 

have reported previously, deletions and duplications co-exist in multiple disease-causing 

CNV regions, including well established disease loci such as16p11 and 15q11-13. We 

note that the population frequency of the alternate event is often much lower but 

recurrent. 

 

One limitation is that if a sample is A, AA, or AAA we cannot differentiate these allelic 

states based on B allele frequency. CNV sensitivity is supported with quantification with 

reference to HapMap samples typed on our arrays compared to the current gold standard 

set by Conrad et al. (35). Population frequency <1% (<680 subjects) defines a rare CNV 

in our study. It is important to note that we need to accurately assess CNVs in a 

“reference genome” sample in order to correctly make genotype A/T/C/G calls. Since 

genome sequencing always does mapping to this “reference genome” sequence assuming 

diploid status, we have implicated more of the genome than previously thought (133) is 

impacted by rare CNV. 

 

We have included the few common CNVs available by our array content to cross 

reference our findings with the popular gold standard paper by Conrad et al.  Otherwise, 

the Illumina arrays stay away from common CNVs, which is in sharp contrast with the 



75 

 

aCGH arrays used in the Conrad et al study. For all statistical measures, Fisher’s exact 

test was used as a conservative test.  As described earlier, a maximum variance of 20 

samples between neighboring probes was allowed. 

 

The present CNV study has high rare CNV coverage and encompasses the majority of the 

genome based on the large sample size used (Figure 3.2 and Suppl. Tables 3.5-7). We 

believe that our large population-based frequency characterization provides a unique 

opportunity to characterize the distribution and impact of CNVs in the genome and the 

fact that all samples were typed on comparable platform and with vast majority 

genotyped at the same laboratory accounts for high data quality. Future resequencing 

studies will ultimately improve our resolution and confidence of detecting smaller CNV 

calls of 1kb or less, we are unable to address in this study.  Indeed, combinations of 

sequence assembly comparisons, paired-end sequence relationships, sequence trace 

analysis, and higher-resolution tiling arrays will similarly aid in determining the precise 

CNV breakpoints and genotype state for individual CNVs. While GWAS and genome-

wide CNV analyses have contributed in a major way to the understanding of the 

distribution and biological impact of CNVs, whole-genome sequencing studies (146)will 

ultimately provide the most continuous and confident information of individual CNVs 

and their role in disease.  

 

Taken together, the CNV results reported herein include results from over 68,000 

subjects, an order of magnitude greater in the amount of data previously published. In 

addition, we took the unprecedented step to couple this dense map of SNP data to clinical 
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association findings. As a consequence, we show for the first time that rare CNVs, which 

cannot be tagged by standard genotyping arrays, are associated with the following 

genomic elements genome-wide: 1) GWAS genes; 2) OMIM genes; and, 3) non-coding 

RNAs.  These observations present a fundamental new concept on how GWAS genes 

(linked to common variants), OMIM genes (linked to rare diseases) and non-coding 

RNAs (most of which are thought to play no or unknown role in disease biology), impact 

on common complex disease through rare highly penetrant CNV providing new insight 

into the mechanistic role of rare recurrent CNVs in complex disease biology and etiology. 

 

Moreover, the analyses presented here are highly robust, as demonstrated by the strong P 

values generated and only made possible by the exceptional size of the cohort.  As such 

confidence in these findings is extremely high by adding further support of the key 

findings validated by either family-based analyses (heritable CNVs), visual inspection of 

B-allele frequency/LRRs of the genotyping data or by experimental validation if any 

uncertainty, resulting in over 90% validation success rate of the CNVs reported. These 

validation parameters are further supported in a recent manuscript reporting on a novel 

CNV analysis approach and statistical applications that were used here (70). Moreover, 

our novel CNV reporting, extensive mapping and reporting of homozygous CNVs 

(human knockouts) in the context of novel association findings delineate multiple bona 

fide discoveries that are well powered and of biological interest for others to follow.  

 

Thus, we have mapped multiple novel homozygous CNVs and observed novel 

associations to the four major disease categories we examined, and observed that CNVs 
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co-localize to important genomic elements, including GWAS genes, OMIM genes and 

non-coding RNAs, that surprisingly include the most significant genomic elements at the 

genome wide level that track with disease-associating CNVs.  

 

 

3.8 Methods 

  
The study inclusion criteria included:  1) availability of high-quality genotype data from 

subjects typed on a high-density SNP arrays; 2) sample having de-identified status and 

residing in the bio-repository at the Center for Applied Genomics (CAG) of the 

Children’s Hospital of Philadelphia (CHOP) where they were genotyped; 3) informed 

consent authorizing de-identified use of GWAS data with limited phenotype information.  

Different ancestry populations were analyzed and all 68,028 samples were typed at the 

same genotyping center within a five year interval from August 2006 to July 2011. Over 

95% of the DNA was extracted from fresh blood.  Six incremental versions of the 

Illumina 550k SNP set was used with a total of 520,017 SNPs in common to all the chip 

versions.  PennCNV was used for CNV calls and validated by QuantiSNP.  Quality 

metrics were calculated and their distributions assessed to ensure optimal quality and to 

minimize bias. Only samples with call rate >98% and Log R Ratio (LRR) standard 

deviation <0.35 were included in the analysis.  Furthermore, autosome genotype 

relatedness, excessive CNV calls as a measure of poor sample quality, and intensity wave 

variations following GC content wave correction were assessed for sample exclusion.   

CNV sensitivity was excellent based on CNVs in reference Hapmap individuals and 

CNV specificity exceeded 91% based on validation in 2,127 samples, testing different 
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size ranges across the entire genome, using qPCR. Here, we present the results of 409 

attempted and 367 successful validation assays from 7 disease studies with a range of 

different genomic loci and CN states (Sup. Fig. 7). 

 

Case and control matching was insured by calculating a genomic inflation factor between 

groups. Wave artifacts roughly correlating with GC content resulting from hybridization 

bias of low full length DNA quantity are known to interfere with accurate inference of 

copy number variations. Only samples where the GC corrected wave factor of LRR 

<|0.02| were accepted. If the count of CNV calls made by PennCNV exceeds 100, it is 

suggestive of poor DNA quality, and those samples were excluded. Thus, only samples 

with CNV call count < 100 were included.  Any duplicate samples (such as monozygotic 

twins or repeats on the same patient) were identified and as a result one sample was 

excluded. 

 

CNV frequency was compared between various groups, including between cases and 

controls. Comparisons were made for each SNP using Fisher’s exact test. To determine 

CNV enrichment, we only considered loci that were nominally significant between the 

comparative groups (p<0.05). For case-control comparisons, we looked for recurrent 

CNVs that were observed across different independent cohorts or were not observed in 

any of the control subjects, and were validated with an independent method. Three lines 

of evidence establish statistical significance: independent replication p<0.05, permutation 

of observations, and no loci observed with control enriched significance. We used 

DAVID (Database for Annotation, Visualization, and Integrated Discovery) to assess the 
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significance of functional annotation clustering of independently associated results into 

InterPro categories. 

 

Taken together, apart from unveiling multiple important disease associations, our 

genome-wide CNV analysis in over 68,000 individulas  has provided a robust population 

frequency distribution for rare CNVs in general. Now we proceed onto the challenge of a 

similar meta-view of disease in lifespan. 
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Chapter 4  

4.0 Copy Number Variations in Alternative Splicing Gene Networks 
Impact Lifespan 
 

Summary 

 

Longevity has a strong genetic component evidenced by family-based studies. 

Lipoprotein metabolism, FOXO proteins, and insulin/IGF-1 signaling pathways in model 

systems have shown polygenic variations predisposing to shorter lifespan. To test the 

hypothesis that rare variants could influence lifespan, we compared the rates of CNVs in 

healthy children (0-18 years of age) with individuals 67 years or older. CNVs at a 

significantly higher frequency in the pediatric cohort were considered risk variants 

impacting lifespan, while those enriched in the geriatric cohort were considered longevity 

protective variants. We performed a whole-genome CNV analysis on 7,313 children and 

2,701 adults of European ancestry genotyped with 302,108 SNP probes. Positive findings 

were evaluated in an independent cohort of 2,079 pediatric and 4,692 geriatric subjects. 

We detected 8 deletions and 10 duplications that were enriched in the pediatric group 

(P=3.33x10
-8

 - 1.6x10
-2

 unadjusted), while only one duplication was enriched in the 

geriatric cohort (P=6.3x10
-4

). Population stratification correction resulted in 5 deletions 

and 3 duplications remaining significant (P=5.16x10
-5

-4.26x10
-2

) in the replication 

cohort. Three deletions and four duplications were significant combined (combined 

P=3.7x10
-4

-3.9x10
-2

). All associated loci were experimentally validated using qPCR. 

Evaluation of these genes for pathway enrichment demonstrated ~50% are involved in 

alternative splicing (P=0.0077 Benjamini and Hochberg corrected). We conclude that 
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genetic variations disrupting RNA splicing could have long-term biological effects 

impacting lifespan.  

 

4.1 Introduction and Significance  

 

The idea of extended lifespan has fascinated generations of scholarly thought. Specific 

diseases have been the focus of much biomedical research rather than overarching 

longevity which in essence successfully avoids a variety of diseases. The average lifespan 

of the human population has continued to increase at a slow rate due to medical and 

technological advances that aim at preventing and treating both acute and chronic 

diseases and attenuating morbidity and mortality of old age (208).Identification of 

underlying causes of early fatality provides information that can facilitate preventive 

measures. As hypothesis free approach is the gold standard to assay genomic variants for 

disease states, it is equally important to take a hypothesis free approach to assay 

longevity, one of the most informative measures of health vs. disease states. This 

approach also addresses the complication in genetics of pleiotropy (one gene:many 

diseases) where disease phenotype variability results in insufficient power of single 

disease association studies. 

 

Model systems have demonstrated that lifespan can be dramatically extended by 

mutations in conserved pathways that regulate growth, energy metabolism, nutrition 

sensing, and reproduction (101). A low activity level of organs in many cases extends 

lifespan perhaps by reduction of somatic damage and increase of somatic maintenance 

and repair (101). Strict diet maintaining just above malnutrition has been shown to extend 
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longevity (30). The leap from model system to human is substantial given the lack of 

genetic diversity and protective laboratory environment of model systems. It is more 

probable that significant longevity was achieved by subtle changes in many genes over 

the course of evolution, not by single mutations with large effects, which often increase 

lifespan at a cost to reproduction or survival under stress (100).  

 

Genome instability, macromolecular aggregates, decrease in innate immunity, 

skin/cuticle morphology changes, decreased mitochondrial function, degenerative loss of 

skeletal muscle mass and strength, and decreased fitness are highly conserved phenotypes 

of ageing.  Lifelong accumulation of various types of damage, along with random errors 

in DNA maintenance, might underlie intrinsic ageing. Early findings of mutant C. 

Elegans with extended lifespan (107) and linkage studies (166)showed that longevity 

could be associated with genetic traits. A meta-analysis of 4 cohorts of individuals 

surviving over 90 years of age found MINPP1(involved in cellular proliferation) as well 

as LASS3 and PAPPA2 to be involved (150). Genes impacting lipoprotein metabolism (6, 

7, 10), FOXO proteins (57, 215), and insulin/IGF-1 signaling (16, 110, 153) in humans 

have also been associated with lifespan. 

 

Copy number variations (CNVs) are rare losses and gains in DNA sequences that have 

been importantly implicated in the pathogenesis of various neurodevelopmental and 

psychiatric diseases (65, 67, 116). As opposed to SNP genotypes which have revealed 

common variants conferring modest relative risk to the individual with the variant, CNVs 

are often rare variants not observed or extremely rare in a normal control population and 
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conferring high relative risk. SNP arrays have vastly improved the detection of CNVs 

across the human genome over classical methods of karyotype review under a 

microscope. While the realm of neuropsychiatric and other system disorders have been 

explained in part by CNVs, it remains to be determined if there are certain gene classes or 

networks of genes that are pathogenic or disease-causing in general, and if there are other 

gene networks that may be protective in the same manner.  One way of testing this is to 

compare CNV states and frequencies between pediatric and geriatric subjects and 

determine if certain CNVs are lost in the older age group (i.e. suggesting pathogenic 

impact with shortened lifespan), and if other CNVs are enriched and considered 

protective.  Since the detection of CNVs has greatly improved and continues to improve 

with simultaneous evaluation of genotype and intensity data with continuous coverage of 

the genome and differentiating models of the diploid from the CNV state, we have 

undertaken such comparisons in cohorts of pediatric cases (0-18) and adults above the 

age of 67. 

4.2 Results   

Table 4.1.  Discovery and Replication Case:Control Sample Sets 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Contributing project totals in discovery and replication phases. The totals represent the number of high 

quality datasets derived from samples. 

 

Cohort 
Samples 

Count 

Country of 

Origin 

Discovery 

CHOP Pediatric 
7,313 United States 

Discovery IHA 

Geriatric 
2,701 Iceland 

Replication 

CHOP Pediatric 
2,079 United States 

Replication 

Geriatric 
4,692 United States 
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The pediatric discovery group included 7,313 children recruited at the Children’s 

Hospital of Philadelphia (Table 4.1). The geriatric discovery cohort included 2,701 

individuals recruited by the 

Icelandic Heart Association in the 

AGES Reykjavik study of 67 years 

or older. Only samples meeting 

strictly established data quality 

thresholds for copy number 

variation were included in the 

analysis. Pediatric subjects were 

genotyped on the Illumina Human 

Hap550 while geriatric subjects 

were genotyped on the Illumina 

HumanCNV370-Duov1.0. To 

ensure comparability of results, 

only the intersection set of 302,108 

SNPs common to both platforms 

was evaluated. All arrays used the 

Illumina Infinium II 

beadchiptechnology with standardized reagents, oligos, and experimental protocol to 

minimize variation between genotyping at different sites. Multiple neighboring SNPs 

Figure 4.1. Principle Components Analysis of Pediatric and 

Geriatric Cohorts.  

 

 
 
Discovery U.S. Pediatric vs. Icelandic Geriatric A) Principal 

components (PC) 1 vs. 2 shows distinct clusters likely due to 

sporadic differential profiles of a specific subset of SNPs 

between arrays. Since CNV calling is based on multiple 

neighboring SNPs and differential clustering SNPs are 

randomly distributed, CNV discovery should not experience 

significant bias. B) PC2 vs. 3 representing population 

structure showing some overlap of pediatric and geriatric 

cohorts C) SNP genotype allele frequency differences 

genome wide showing close correlation. 

Replication U.S. Pediatric vs. U.S. Geriatric D) Replication 

of U.S. pediatric and U.S. geriatric PC1 vs. PC2 showing 

high overlap unlike panel A U.S. pediatric and Icelandic 

geriatric E) Geriatric replication cohort in isolation for 

clarity F) Population structure of pediatric subjects with 

significantly associated risk CNVs for short lifespan 

showing broad normal distribution minimizing test statistic 

inflation for rare variants opposed to tight clustering(37) G) 

Pediatric replication cohort in isolation for clarity. 
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(minimum 3) are required to make a CNV call so one biased SNP in a region will not bias 

the CNV calling. CNVs were scored with both PennCNV (211) and QuantiSNP (34) for 

copy number deviating from normal diploid state 2: states 0 and 1 for deletions and 3 and 

4 for duplications. We compared frequency of deletions and duplications between 

pediatric and geriatric subjects to assess significant enrichment of rare recurrent CNVs in 

either group. Evaluating the SNP 

genotype data revealed tight clustering 

of populations at the origin by principle 

components analysis (PCA) indicative 

of European ancestry. Unfortunately, 

low overlap of populations was 

observed when the pediatric and 

geriatric cohorts were plotted together 

(Figure 4.1A and 4.1B). Many CNV 

and genotype associations made in 

cohorts of European ancestry have 

shown robust replication in Icelandic 

cohorts (53, 76, 79, 189, 191, 202), 

indicating that CNVs observed in the 

more broadly-defined European and 

American Caucasian gene pool are also 

important in the Icelandic population. 

Figure 4.2. Manhattan Plot of (A)Deletion and 

(B)Duplication SNP based CNV Statistics 

 

 
 
Black and gray alternating chromosome coloring to 

differentiate. 
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The Icelandic cohort is unique in having risk factor assessments earlier in life and 

detailed late-life phenotypes of quantitative traits (85). Our rationale for comparing these 

cohorts was the availability of large pediatric and geriatric populations with extensive 

phenotype characterization both genotyped on the Illumina microarray. While the PCA 

analysis clearly shows this comparison to be impacted by population stratification and 

that PCA cannot be applied as covariates due to this lack of overlap, we believe this 

comparison can be hypothesis generating in showing if such associated variants can be 

replicated in an independent 

population with a very good PCA 

overlap, but less phenotype depth. 

 

To associate CNV loci potentially 

contributing to shortened lifespan, we 

applied a segment-based scoring 

approach that scans the genome for 

consecutive probes with more frequent 

copy number changes in pediatric 

compared to geriatric subjects. The 

genomic span for these consecutive 

probes forms common copy number 

variation regions (CNVRs). We uncovered 101 loci with deletion and 76 with duplication 

enrichment in the pediatric cohort. Conversely, we identified 90 loci with deletion and 74 

with duplication enrichment in the geriatric cohort (Figure 4.2).   

Figure 4.3. Independent Technology Validation of 

Presence of CNV Events to Confirm CNVs Detected by 

Illumina Array. 

 

 
 
Error bars denote the standard deviation of quadruplicate 

runs. 
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After raw data QC and genomic context review, a high confidence discovery set of 55 

deletions and 40 duplications that were significantly enriched in the pediatric cohort 

resulted while 53 deletions and 43 duplications were enriched in the geriatric cohort. 

These filtering criteria included exclusion of telomere, centromere, CNV boundary 

uncertainty, extreme GC content, poor SNP coverage, and CNVR sample bias. CNVR 

sample bias refers to the same sample contributing to the association signal of many 

different significant CNVRs, despite up-front sample quality control, often due to 

atypical intensity wave patterns. 

 

We next sought to independently replicate these CNV findings in additional pediatric and 

geriatric subjects. CNVs were called for 2,079 young age subjects from independent 

pediatric cohorts all of which were recruited in the U.S.A and genotyped on the Illumina 

Infinium HumanHap550. We compared the CNV frequency in young with an 

independent cohort of 4,692 older subjects (over 50), all of which were recruited in the 

U.S.A. and genotyped on the Illumina Infinium Human660W-Quad. We replicated in the 

same direction 11 deletions and 10 duplications that were significantly enriched in the 

pediatric cohort, while 1 duplication was enriched in the geriatric cohort. As shown in 

Figure 4.1, in contrast to the Icelandic geriatric vs. U.S. pediatric PCA plot (panel 1A), 

the replication U.S. geriatric vs. U.S. pediatric did show strong overlap (panel 1D) 

indicating comparable population structure.  

Furthermore, we were able to correct for any residual population structure using the first 

three components of the PCA as covariates for logistic CNV association. This gives the 
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unique opportunity to test replication of associated loci between non-overlapping PCA 

populations which cannot be corrected by covariates with well overlapping PCA 

populations controlled by covariates. We can also assess replication between Illumina 

array versions for consistent CNV detection. We believe leveraging existing data with a 

variety of variations may lead to associations more likely to remain significant by further 

studies where these variations are often manifest in addition to data processing variations 

which we were able to control by applying consistent processing across all data. 

 

To assess the reliability of our CNV detection method, we experimentally validated all 

the significant CNVRs using an independent wet lab method, quantitative real time 

polymerase chain reaction (qPCR) (Figure 4.3) on a randomly selected samples with a 

CNV at each associated locus and samples without a CNV to normalize the measurement.  

 

 

This yielded a final confident set of 8 deletions and 10 duplications that were 

significantly enriched in the pediatric cohort (Table 4.2) while 1 duplication was enriched 

in the geriatric cohort (Table 4.3). 

Table 4.2. CNVs Enriched in Pediatric Individuals 
 

CNVR hg18 
CHOP 

Pediatric 

IHA 

Geriatric 

P 

Discovery 

Replication 

Pediatric 

Replication 

Geriatric 

P PCA 

Corrected 
Replication 

P 

Combined 
Gene Type 

chr8:2337918-

2570171 
87 4 3.33E-08 30 24 0.001406 0.00037 AK128880,BC045738 Dup 

chr22:18409878-
18439763 

42 0 3.89E-06 9 4 0.00487 0.003862 C22orf25,DKFZp761P1121 Del 

chr16:3553005-

3590430 
60 1 1.37E-07 16 0 0.9961 0.008209 BTBD12,NLRC3 Dup 

chr1:226561413-
226623411 

50 0 1.87E-07 7 0 0.9975 0.00924 KIAA1639,OBSCN Dup 

chr19:17245267-

17245267 
19 1 0.02286 12 3 5.16E-05 0.018451 HSPC142/BABAM1 Del 

chr1:6240656-
6289806 

26 0 0.0005 8 3 0.002979 0.020119 ACOT7,BACH,GPR153 Del 

chr11:47388879-

47443461 
66 4 9.00E-06 16 0 0.9965 0.038865 PSMC3,RAPSN,SLC39A13 Dup 

chr7:53428180-
53557744 

29 0 0.00019 8 5 0.1969 0.064854 FLJ45974* Del 
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chr17:71112486-

71153309 
20 1 0.02352 9 1 0.002534 0.076432 

LOC643008,MYO15B,REC

QL5 
Del 

chr21:43697488-

44395416 
14 0 0.01601 5 1 0.007178 0.096104 

AGPAT3,C21orf125,C21orf
33,C21orf84,CSTB,HSF2BP,

LOC284837,PDXK,PWP2,R

RP1,RRP1B,TRAPPC10 

Del 

chr4:973060-

1068187 
25 1 0.00626 9 1 0.02017 0.099286 

FGFRL1,IDUA,LOC285498,

RNF212,SLC26A1 
Dup 

chr7:71734626-

71921501 
37 3 0.00369 8 1 0.0426 0.10708 MGC87315 Dup 

chr17:2213549-

2231452 
25 0 0.0005 7 0 0.9981 0.15837 KIAA0397,RUTBC1 Dup 

chr16:1132214-

1138939 
38 3 0.00246 8 0 0.9979 0.26546 CACNA1H* Del 

chr19:10326832-

10403610 
14 0 0.01601 4 0 0.9986 0.46396 CDC37,PDE4A,TYK2 Dup 

chr19:3399694-

3421862 
22 2 0.03849 10 0 0.9974 0.5864 NFIC Del 

chr1:6245523-

6472963 
11 0 0.04318 12 0 0.997 0.60362 

ACOT7,ESPN,HES2,PLEKH

G5,TNFRSF25 
Dup 

chr17:76836926-

76916744 
11 0 0.04318 9 0 0.9977 0.60373 

C17orf55,MGC15523,TME

M105 
Dup 

*Gene not overlapped so closest proximal gene annotated. Gene delimiters were defined based on UCSC 

genes table reference including exons and introns. Any direct overlap of any segment of the gene delimiters 

is considered a hit such that complete overlap of the gene is not required. Combined p-values were 

calculated using Fisher’s method. 

 

To fully correct for population stratification, in addition to multi-dimensional scaling, we 

performed principal component analysis (PCA) on the genotypes and used the resulting 

first three components as covariates of logistic test CNV association in the replication 

cohort. CNV events in our study are rare and arise randomly shown by evaluating the 

 

Table 4.3. CNVs Enriched in Geriatric Individuals  
 

CNVR hg18 
CHOP 

Pediatric 

IHA 

Geriatric 

P 

Discovery 

Replication 

Pediatric 

Replication 

Geriatric 

P PCA 

Corrected 
Replication 

P 

Combined 
Gene Type 

chr5:26,246,320-

26,273,890 
1 7 0.00063 0 24 0.9963 0.17091 CDH9* Dup 

 

spatial distribution of samples having a risk CNV on the PCA plot revealing a Gaussian 

(at minimum uniform due to few data points) distribution which indicating minimal test 

statistic inflation (even less than common variants) as opposed to a small, sharply defined 

region (137) (Figure 4.1F). We verified that population stratification was fully controlled 

for based on a genomic inflation factor of 1.0. Eight of eighteen pediatric enriched CNV 
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loci remained significant (p<0.05) following PCA population stratification correction 

(five deletions and three duplications; see Table 4.2). These results indicate that, while 

population stratification did indeed influence nominal p-value of the associated rare CNV 

variants in the discovery cohort, it could be corrected in the independent replication 

cohort, leaving a number of associated loci that replicated. 

 

Given the diverse etiology of diseases and more generally, lack of fitness in an 

evolutionary context, the genes underlying the broad consideration of ageing are similarly 

diverse. Single significant loci are certainly of interest to the common genomic CNVs 

resulting in specific genes to study. However, strong confidence in the result set 

generated can be achieved by observing the same biological system being perturbed by 

multiple independently significant loci. Motivated by this, genes directly overlapped by 

associated CNVs were prepared as a single list and non-RefSeq hypothetical gene IDs 

were removed. This list was entered into DAVID functional annotation enrichment tool 

in contrast with a background representing genome-wide regions covered by the array. 

Taking into account the size of different genes and the gene family size of different 

annotations, the enrichment of our CNV impacted list was assigned a p-value with 

Benjamini and Hochberg correction for multiple testing. Functional annotations from 

multiple databases were used including KEGG and GO (gene ontology). Functional 

categories were reviewed for genes contributing from distinct genomic regions to reject 

enrichment of closely clustered gene families. 
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To identify potential functional biases specific to CNVs observed at significantly higher 

frequency in young individuals, we evaluated clustering into specific functional 

categories using DAVID (46, 92) (Database for Annotation, Visualization, and Integrated 

Discovery). We found significant overrepresentation of alternative splicing genes 

impacted by the CNVs. To limit contribution of regions with gene families of related 

function, each CNV loci was limited to contributing one gene to a functional cluster, 

done by referencing resulting gene clusters back to the input genes from each CNV 

region. Among the alternative splicing genes are AGPAT3, BTBD12, NLRC3, RECQL5, 

SCAPER, ACOT7, C19orf62, C21orf33, C22orf25, ESPN, HES2, LUZP2, NFIC, 

OBSCN, PDE4A, PLEKHG5, PLXDC1, KCNT1, PDXK, RAPSN, RRP1B, RNF212, 

SGSM2, SLC38A10, SLC39A13, and TNFRSF25 all of which were significantly enriched 

in the young age group (P=0.0077 Benjamini and Hochberg corrected), suggesting that 

genetic variations that disrupt RNA splicing may have long-term biological effects on 

human lifespan. 

 

4.3 Discussion 

 

Limited nutrition, somatic maintenance and growth are pathways to longevity. Emphasis 

on somatic maintenance is more important than early growth and reproduction. Post-

transcriptional modification of mRNA is an important mechanism which results in a 

variety of protein isoforms and occurs in at least 80% of human genes, and known to 

harbor variations that have been associated with human disease (138). It is therefore of 

interest that 50% of the genes impacted by CNV loci significantly enriched in young and 

replicated in an independent cohort were responsible for alternative splicing, suggesting 
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that genetic variants in these gene networks may be pathogenic and disease causing in a 

more global way than previously thought. 

 

Alternative splicing is an abundant violation of the original assumption of one gene one 

protein theory. The exons of an mRNA can be edited producing a variety of combinations 

which result in a variety of protein 

isoforms. This mechanism allows for a 

great diversity of protein products 

based on the same DNA code and 

branches out gene families, in a similar 

mechanism that ancestral duplications 

extend gene families in DNA.  Proteins 

responsible for alternative splicing bind 

to specific RNA sequences to promote 

or repress splicing.  

 

SNPs in the RNA editing genes 

ADARB1 and ADARB2 were associated 

with extreme old age in a United States 

based study of centenarians with replication to four other ethnic backgrounds (181). DNA 

maintenance is of fundamental importance throughout the lifespan and is under assault by 

environmental conditions such as sunlight and chemical exposures. BTBD12 and 

BABAM1 are part of a multi-protein complex containing enzymes involved in DNA 

Figure 4.4. Regions of CNV in Young Individuals 

observed at low levels in Older Individuals. 

 

 
ACOT7 locus shows significant excess of deletions and 

duplications in young individuals. Blue lines indicate 

SNP marker coverage to resolve CNV boundaries. 

Histogram shows the number of subjects with deletion 

and duplication CNVs in the Icelandic older population 

(very low). The red and green boundaries show 

individual CNVs observed in specific young samples 

from CHOP. Genomic region references including GC 

percent, RefSeq Genes, and Database of Genomic 

Variants are provided for reference. 
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maintenance and repair of serious damage such as collapsed replication forks and double-

strand breaks (DSBs)(198). Of note, BABAM1 is the most highly significant CNV 

associated locus following full statistical correction of population stratification 

(p=5.16x10
-5

). 

 

ACOT7 is involved with biosynthesis of unsaturated fatty acids and decreased expression 

is associated with mesial temporal lobe epilepsy. Young individuals showed significantly 

higher frequency of both 

deletions and duplications of 

this locus compared to older 

individuals (Figure 4.4).  

 

Nuclear factor kappa B 

(NFKB1) signaling pathway is 

a fundamentally important 

protein complex that controls 

the transcription of DNA and 

responds to external factors 

such as stress, cytokines, free 

radicals, ultraviolet radiation, oxidized LDL, and bacterial or viral antigens. PLEKHG5 

activates the NFKB1 signaling pathway. TNFRSF25 encodes a receptor that has been 

shown to stimulate NF-kappa B activity and regulate cell apoptosis. The TNF-receptor 

signaling pathway is critically involved in the pathogenesis of inflammatory bowel 

Figure 4.5. Representative Interactions of the Lifespan 

Longevity Associated Genes Identified. 

 

 
 

Gene-gene interactions of independently significant loci. 

Additional genes implicated by interacting with genes in 

significantly associated longevity loci. Alternative splicing 

gene function annotation enrichment of significant loci 

suggests diverse genetic perturbation with a common biological 

role. Extension of this functional category to other genes 

annotated by functional studies with interactions to associated 

genes implicates potential for screening diverse etiology. 
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disease and rheumatoid arthritis (12). Such a pivotal gene is an example of autoimmune 

disease and strong immunity aiding survival in early age but early death as a 

consequence. Increased recombination rate has been shown to occur in older age 

mothers(111). RNF212 is essential for recombination & chiasma formation in C elegans. 

A CNV in a gene controlling recombination could lead to genome instability and 

excessive recombination with more chances for errors. 

 

Given that typical cause of death among different individuals is highly heterogeneous 

from a clinical perspective, the underlying genetic causes of premature death or 

attenuated longevity are likely to have similarly variegated set of genes. Therefore, based 

on the specific loci found significantly associated with lifespan, more integrative systems 

biology is possible leveraging protein-protein interactions using Cytoscape (184) (Figure 

4.5).  

 

Profiling expressed sequence tags (ESTs), smaller numbers of cDNA sequences assayed 

by microarrays and RNA-Seq has allowed for more complete profiling of alternative 

splicing (15). Continuing study on different tissues of the body coupled to CNV findings 

through high-throughput sequencing approaches in the future can help elucidate 

underlying mechanisms of ageing. 

 

This study represents the first genome-wide population based copy number variation 

study of human longevity, applying a unique study design to identify the pathogenic 

nature of CNVs at a global scale in human.  The use of the relatively large cohorts 

assembled here was essential, both to discover and to confirm the findings and 
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demonstrates the potential of genome-wide association in complicated polygenic ageing. 

This type of unbiased study has discovered many novel targets that may underlie short 

lifespan. We have focused on robustly identifying CNVs observed in a large sample of 

pediatric and comparing those observations to a large geriatric sample to see which 

CNVs limit the lifespan from reaching old age. This is distinct from the question of 

longevity to extremely late age but CNV occurrence in these genes reduces longevity and 

its effects need to be counteracted to produce exceptional longevity. These genetic 

variations present risk factors that can be screened in a clinical setting to prognosticate 

the risk of future premature death where preventive measures could potentially be taken 

to reduce risk. 

4.4 Materials and Methods 

 

Ethics Statement 

This research was approved by the Institutional Review Board of the Children’s Hospital 

of Philadelphia. All subjects were recruited and signed written informed consent if age 18 

or older. Parents signed written consent on the behalf of minors/children age 0-17 and the 

child signed a written assent if 7-17 years of age. The Data Protection Commission of 

Iceland and the National Bioethics Committee of Iceland approved this research on adult 

samples. The appropriate written informed consent was obtained for all adult sample 

donors. 

 

Study subjects 
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A cohort of healthy children under the age of 19 recruited within the Health Care 

Network of the Children’s Hospital of Philadelphia was compared with adult subjects 

above the age of 67 (average age 76), recruited for the AGES-Reykjavik study (85). The 

replication cohort was composed of young previously published in the context of autism 

(65) and older individuals accessed from dbGaP, including the Personalized Medicine 

Research Project (PMRP). The average age of the children was 8.6 years and average age 

of the adults was 60 years, with equal numbers of males and females. 

 

Illumina Infinium assay for CNV Discovery 

We performed high-throughput, genome-wide SNP genotyping, using the InfiniumII 

HumanHap550 BeadChip technology (Illumina San Diego CA), at the Center for Applied 

Genomics at CHOP. The genotype data content together with the intensity data provided 

by the genotyping array provides high confidence for CNV calls. Importantly, the 

simultaneous analysis of intensity data and genotype data in the same experimental 

setting establishes a highly accurate definition for normal diploid states and any deviation 

thereof. To call CNVs, we used the PennCNV algorithm, which combines multiple 

sources of information, including Log R Ratio (LRR) and B Allele Frequency (BAF) at 

each SNP marker, along with SNP spacing, a trained hidden Markov model, and 

population frequency of the B allele to generate CNV calls. The intersection set of 

302,108 probes common to the Illumina 550K: 532,898 probes and Illumina 370 Duo: 

370,405 probes was used to make datasets as comparable as possible  

 

CNV quality control 
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We calculated Quality Control (QC) measures on our HumanHap660 GWAS data based 

on statistical distributions to exclude poor quality DNA samples and false positive CNVs. 

The first threshold is the percentage of attempted SNPs which were successfully 

genotyped. Only samples with call rate > 98% were included. The genome wide intensity 

signal must have as little noise as possible. Only samples with the standard deviation 

(SD) of normalized intensity (LRR) < 0.30 were included. All samples must have clear 

European ethnicity based on Eigenstrat smartPCA scoring and all other samples were 

excluded. Wave artifacts roughly correlating with GC content resulting from 

hybridization bias of low full length DNA quantity are known to interfere with accurate 

inference of copy number variations. Only samples where the GC wave factor of LRR 

|GCWF|<0.05 were accepted. If the count of CNV calls made by PennCNV exceeds 100, 

the DNA quality is usually poor. Thus, only samples with CNV call count < 100 were 

included. Any duplicate samples (such as monozygotic twins) had one sample excluded.  

 

Statistical analysis of CNVs 

CNV frequency between cases and controls was evaluated at each SNP using Fisher’s 

exact test. We only considered loci that were significant between cases and controls 

(p<0.05) where cases in the discovery cohort had the same variation, replicated in an 

independent cohort or were not observed in any of the control subjects, and validated 

with an independent method. We report statistical (p-value) local minimums to narrow 

the association in reference to a region of nominal significance including SNPs residing 

within 1 Mb of each other. Resulting significant CNVRs were excluded if they met any 

of the following criteria: i) residing on telomere or centromere proximal cytobands; ii) 
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arising in a “peninsula” of common CNV arising from variation in boundary truncation 

of CNV calling; iii) genomic regions with extremes in GC content which produces 

hybridization bias; or iv) samples contributing to multiple CNVRs. A peninsula is 

defined as a false positive association arising from a region of common CNV extending 

variably due to variability in probe performance and variability in samples. In other 

words, the specific significant subregion is confounded by contributing calls also 

extending to a non-significant subregion. 

To fully correct for population stratification, we performed (PCA) on the genotypes and 

used the resulting first three components as covariates of the logistic test for CNV 

association using Plink. 

Combined p-values were calculated using Fisher’s method. 





k

i

ipX
1

2 )log(2  

Where pi is the p-value for the ith study. Under the null hypothesis, X
2
 follows a chi-

squared distribution with 2k degrees of freedom, where k is the number of studies. In this 

case, there were two studies yielding a chi-squared distribution with four degrees of 

freedom. 

 

To inform multiple testing correction, CNV filtering steps have been performed as part of 

the analysis. Firstly, it is important to note that of the intersection set of 302,108 SNPs on 

the Illumina array, 3,911 (1.295%) showed deletion and 8,830 (2.923%) showed 

duplication in at least eleven or more unrelated cases in the discovery cohort (frequency ≥ 

0.150%). 41,392 (13.701%) deletion and 45,050 (14.912%) duplication SNPs were 

observed in at least two individuals. The threshold of three cases harboring a given CNV 
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is selected because it is the minimal case frequency to provide minimal expectation of 

frequency differences between cases and controls to yield nominal statistical significance 

and reproducibility for the calls in a given region. We find this upfront exclusion to be 

very similar to the inclusion threshold of 1% minor allele frequency in GWA SNP 

genotype studies. These SNPs were collapsed into 101 deletion and 76 duplication 

CNVRs based on necessary multiple neighboring SNP signals to call a CNV and 

resulting redundancy of individual SNP statistics. This results in a total of 171 tests being 

performed corresponding to a multiple testing correction bar of p=2.92E-4 close to the 

p=5E-4 bar we have seen previously. 

 

Gene Category Enrichment 

Given the diverse etiology of diseases and more generally, lack of fitness in an 

evolutionary context, the genes underlying the broad consideration of ageing are similarly 

diverse. Single significant loci are certainly of interest to the common genomic CNVs 

resulting in specific genes to study. However, strong confidence in the result set 

generated can be achieved by observing the same biological system being perturbed by 

multiple independently significant loci. Motivated by this, genes directly overlapped by 

associated CNVs were prepared as a single list and non-RefSeq hypothetical gene IDs 

were removed. This list was entered into DAVID functional annotation enrichment tool 

in contrast with a background representing genome-wide regions covered by the array. 

Taking into account the size of different genes and the gene family size of different 

annotations, the enrichment of our CNV impacted list was assigned a p-value with 

Benjamini and Hochberg correction for multiple testing. Functional annotations from 
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multiple databases were used including KEGG and GO (gene ontology). Functional 

categories were reviewed for genes contributing from distinct genomic regions to reject 

enrichment of closely clustered gene families. 

 

 

A major contributor to lifespan abbreviation is congenital heart disease resulting in the 

narrowing of major blood vessels or other structural anomalies. Congenital heart disease 

also involves holes in the heart leading to mixing of oxygenated and deoxygenated blood 

chambers. In the next chapter, we advance from an assay resolution of 550 thousand SNP 

array data to a resolution of 2.5 million SNP array data and whole exome sequencing to 

achieve high resolution on protein coding genes. 
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Chapter 5  

5.0 Increased Frequency of De novo Copy Number Variations in 
Congenital Heart Disease by Integrative Analysis of SNP Array and 
Exome Sequence Data 
 

Summary 

The rationale of this study is congenital heart disease (CHD) is among the most common 

birth defects. Most cases are of unknown etiology. The objective is to determine the 

contribution of de novo copy number variants (CNVs) in the etiology of sporadic CHD. 

Methods include 538 CHD trios using genome-wide dense single nucleotide 

polymorphism (SNP) arrays and/or whole exome sequencing (WES). Results were 

experimentally validated using digital droplet PCR. We compared validated CNVs in 

CHD cases to CNVs in 1,301 healthy control trios. The two complementary high-

resolution technologies identified 65 validated de novo CNVs in 53 CHD cases. A 

significant increase in CNV burden was observed when comparing CHD trios with 

healthy trios, using either SNP array (p=7x10
-5

, Odds Ratio (OR)=4.6) or WES data 

(p=6x10
-4

, OR=3.5) and remained after removing 16% of de novo CNV loci previously 

reported as pathogenic(p=0.02, OR=2.7). We observed recurrent de novo CNVs on 

15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs 

encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, 

genes that interact with established CHD proteins NKX2-5and GATA4. Integrating de 

novo variants in WES and CNV data suggests thatETS1 is the pathogenic gene altered by 

11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 

10q sub-telomeric deletions. In conclusion, we demonstrate a significantly increased 
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frequency of rare de novo CNVs in CHD patients compared with healthy controls and 

suggest several novel genetic loci for CHD. 

 

5.1 Introduction and Significance 

Congenital heart disease (CHD) is the most frequent birth defect, affecting approximately 

7 in 1000 live births,(90) and is a significant cause of childhood morbidity and 

mortality.(199)Rare Mendelian disorders, specific chromosomal abnormalities, and copy 

number variants (CNVs) are known to explain a subset of CHD cases,(52, 187, 199)but 

the cause of over 80% of CHD remains unexplained.(31, 51, 73, 78, 132, 165, 186, 203) 

 

The application of evolving technologies that detect structural variation throughout the 

genome has demonstrated a considerable contribution of CNVs to CHD. Early 

cytogenetic studies recognized an increased prevalence of de novo chromosomal 

abnormalities in syndromic CHD patients, observations that were replicated and extended 

to non-syndromic CHD with successive generations of CNV detection technologies 

including array CGH and low density SNP arrays.(17, 25, 50, 52, 78, 89, 154, 173, 186, 

187, 201, 214) Using these techniques, researchers have demonstrated significant burden 

of large de novo CNV in some specific CHD lesions. Such CNVs are reported to occur in 

13.9% of infants with single ventricles compared to 4.4% in controls,(25)in 10% of non-

syndromic tetralogy of Fallot (TOF) compared to 4% of controls,(78) and in 12.7% 

children with hypoplastic left heart syndrome compared to 2% of controls.(214)Among 

different CHD lesions, the frequency of large de novo CNVs is similar.(214)While many 
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large CNVs are unique to a single CHD patient, several are recurrent in CHD cohorts. A 

3-Mb 22q11.2 deletion is the most common recurrent de novo CNV associated with 

syndromic conotruncal defects (CTDs) and is found overall in at least 10% of TOF,(72, 

170) 35% of truncus and 50% of interrupted aortic arch (IAA) type B cases.(29)Recurrent 

de novo CNVs in CHD patients reported in multiple studies also occur at chromosomes 

1q21.1,3p25.1, 7q11.13, 8p23.1, 11q24-25, and 16p13.11.(78, 214) 

 

The identification of CHD loci that are altered by CNVs provides opportunities to 

elucidate disease pathogenesis. However, discerning the causal gene(s) and inferring 

critical networks and pathways that cause or contribute to CHD has been difficult 

because low-resolution technologies used in many studies (array CGH and low-density 

SNP arrays) typically define large CNVs(>100kb)involving many genes. To address 

these issues, we capitalized on two independent strategies, high-density SNP genotyping 

arrays (Illumina Omni-1.0 and 2.5M) and whole exome sequencing (WES), to detect 

smaller de novo CNVs in a family-based trio study of sporadic CHD cases with 

conotruncal, heterotaxy, and left ventricular outflow tract defects.(155) We compared 

CNVs found in CHD trios to those identified in healthy control trios. Through these 

analyses we sought to compare the robustness of genome-wide CNV detection using 

array-based and sequence-based technologies to determine if there was an increased 

burden of smaller de novo CNVs in CHD patients as was demonstrated with larger 

CNVs, and to determine if fewer genes altered by these CNVs enabled more precise 

detection of gene networks and pathways contributing to the pathogenesis of CHD.  
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5.2 Results 

 

5.2.1 Identification of De Novo CNVs 

We studied 415 CHD trios genotyped by SNP arrays and 356 trios by WES analysis, 

including 233 trios studied by both methods. No trios had an affected first-degree relative 

and the genetic cause of CHD in all studied children was unknown (Supplementary 

Tables 5.1 and 5.2).  

 

Sixty-five de novo CNVs identified in CHD cases were independently confirmed by 

ddPCR (Table 5.1). De novo CNVs were identified in 53 unique probands (9.8%). These 

CNVs ranged in size from 0.1 kb to 12.8 Mb. Fifty of these (74%) were <500kb and half 

were smaller than 110 kb. The number of genes in the CNV intervals ranged from 1 to 

175 with 44 (68%) having ≤ 5 genes. Four de novo intervals contained no genes. Six 

probands had two de novo CNVs, two had three CNVs and one had four CNVs. 

 

The parental origin of deletion CNVs was determined when the haplotype of the 

remaining copy could be uniquely assigned to one parent. Seven de novo CNVs arose on 

maternal chromosomes and10 on paternal chromosomes. The remainder could not be 

assigned due to uninformative or insufficient numbers of informative parent-of-origin 

SNPs. 
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Table 5.1. Confirmed de novo CNVs in Discovery Cohort. 

              Genomic coordinates refer to hg19. 
ID Chr Start 

 
End Band CNV1 Syndrome/ gene Analysis 

Observed2 
Cardiac Lesion: 
(diagnosis)3 

Parent 
Origin 

Extra-
cardiac 

N 
genes 

Size (kb) 

1-01401 1 59247993 59251097 p32.1 1 JUN A  LVOT(HLHS) - - 1 3.1 

1-03171 1 145586403 145799634 q21.1 3 1q21.1 dup/ GJA54 A E CTD(TOF/APVS) - - 7 213.2 

1-01036 1 146631133 147416212 q21.1 3 1q21.1 dup/ GJA54 E  CTD(TOF) M - 15 785.1 

1-01486 1 194201171 194304070 q24.2- q25 3 CDC73 A  LVOT(HLHS) - Yes 0 102.9 

1-01518 1 248750565 248795110 q44 3 OR2T10,OR2T11 A LVOT(HLHS) - - 2 44.5 

1-01536 2 70168995 70359345 p13.3 1 PCBP1 A  CTD(TOF/PA) - - 5 190.4 

1-01401 2 102493466 103001458 q11.2- q12.1 1 MAP4K4 E  LVOT(HLHS) - - 6 508.0 

1-01401 2 145155868 145274931 q22.3 1 Mowat-Wilson/ ZEB24 E  LVOT(HLHS) - - 1 119.1 

1-00762 3 60661 11712230 p26.1 3 ARL8B,ARPC4,CAMK1,CAV3, 
CRBN,EMC3,ITPR1,SEC13, 
SETD5,VGLL4 

A ASD/PS (ASD) - Yes 103 11651.6 

1-01049 3 15637812 15643461 p25.1 3 BTD,HACL1 E  CTD(TOF) - - 2 5.6 

1-01045 3 47780965 48309270 p21.31 3 CDC25A,DHX30, 
MAP4,SMARCC1 

A  LVOT(HLHS) - - 14 528.3 

1-02093 3 197143652 197186111 q29 3 BDH1 A  CTD(TOF/PA) - Yes 0 42.5 

1-00771 4 185603346 185638397 q34.1 1 CENPU,PRIMPOL E  CTD(DTGA/VSD) P Yes 2 35.1 

1-00789 5 136464 232969 p15.33 3 CCDC127,LRRC14B, 
PLEKHG4B,SDHA 

A  CTD(TOF) - - 4 96.5 

1-00113 5 133706994 133730455 q31.1 1 UBE2B A  CTD(TOF/PA) - Yes 1 23.5 

1-00296 5 166386727 173073664 q34- q35.2 1 NKX2.54 A CTD(TOF) M Yes 53 6686.9 

1-01916 6 36646788 36651971 p21.2 1 CDKN1A A HTX(HTX) - - 1 5.2 

1-01049 6 43484783 43485159 p21.1 3 POLR1C E  CTD(TOF) - - 1 0.4 

1-00096 7 50179707 50191153 p12.2 1 C7orf72 E  CTD(TOF/PA) - Yes 1 11.4 

1-00800 7 72719386 74138603 q11.23 1 Williams syndrome4 A CTD(VSD/PS) P Yes 34 1419.2 

1-00540 7 72721123 74140708 q11.23 1 Williams syndrome4 A LVOT(ASD) M Yes 34 1419.6 

1-00977 7 138258252 143807632 q24- q25 1 C7orf55,FAM115A,LUC7L2, 
MKRN1,NDUFB2,UBN2, 
ZC3HAV1L,ZYX 

E CTD(TOF) - - 175 5549.4 

1-01995 7 142334207 142460871 q34 1 MTRNR2L6,PRSS1 E  CTD(TOF) M - 15 126.7 
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1-01562 8 8067768 12530976 p22.1- p23.1 3 GATA44 A CTD(TOF) - - 75 4463.2 

1-02625 8 8102183 12190106 p23.1 3 GATA44 A LVOT(CoA) M Yes 62 4087.9 

1-00566 8 11606428 11710963 p23.1 1 GATA44 A E CTD(TOF) - - 6 104.5 

1-00948 8 119053343 119064098 q24.1 1 EXT1 A LVOT(CoA) P Yes 1 10.8 

1-02360 9 5302500 5337760 p24.1 3 RLN1,RLN2 A CTD(ASD) - Yes 3 35.3 

1-00561 11 18949220 18956690 p15.1 1 MRGPRX1 A  LVOT(ASD) - Yes 1 7.5 

1-02432 11 18949220 18956690 p15.1 3 MRGPRX1 A LVOT(CoA) - - 1 7.5 

1-01852 11 34458230 34460862 p13 1 CAT A CTD(VSD) - - 1 2.6 

1-00565 11 42968283 42970488 p12 3 HNRNPKP3 A  LVOTO(ASD) - - 0 2.2 

1-01536 11 65157239 65408708 q13.1 1 EHBP1L1,LTBP3,MAP3K11, 
PCNXL3,SCYL1,SSSCA1 

A  CTD(TOF/PA) - - 14 251.5 

1-00230 11 86939592 87025456 q14.2 1 TMEM135 A E LVOT(ASD) P Yes 1 85.9 

1-01486 11 125641368 134943190 q24.2- q25 1 Jacobsen / ETS14 A E LVOT(HLHS) P Yes 73 9301.8 

1-00795 11 134598043 134617838 q25 3 LOC283177 A CTD(VSD) M - 0 19.8 

1-00124 12 8003758 8123306 p13.31 3 SLC2A14,SLC2A3 A LVOT(As/HLHS) - - 3 119.5 

1-00050 12 52845952 52862783 q13.13 1 KRT6C A LVOT(HLHS) - - 1 16.8 

1-02411 14 58860893 58881694 q23.1 1 TIMM9,TOMM20L A  CTD(TOF) - - 2 20.8 

1-01049 14 74551632 74551731 q24.3 3 LIN52 E  CTD(TOF) - - 1 0.1 

1-00192 15 22296985 23161330 q11.2 3 1 MB from PW / CYFIP14 A LVOT(CoA) - - 20 864.3 

1-00315 15 22750305 23140114 q11.2 3 1 MB from PW / CYFIP14 A LVOT(CoA) M - 5 389.8 

1-01396 15 22750305 23228712 q11.2 1 1 MB from PW / CYFIP14 A E CTD(TOF/PA) P - 6 478.4 

1-00243 15 22835893 23062345 q11.2 1 1 MB from PW / CYFIP14 E  LVOT(CoA) P Yes 4 226.5 

1-01994 15 28389771 28446734 q13.2 1 HERC2 E  LVOT(ASD) P - 1 57.0 

1-01696 15 44833588 44856873 q21.1 1 EIF3J,SPG11 A E CTD(TriAtresia/DTGA) - - 2 23.3 

1-01941 15 88761539 88779300 q25.3 3 NTRK3 A  CTD(TOF/DTGA) P - 1 17.8 

1-01427 17 21562473 22252439 p11.2 1 FAM27L,FLJ36000,MTRNR2L1 A HTX(HTX) - Yes 7 690.0 

1-00561 17 27962393 28099002 q11.2 1 SSH2 A  LVOT(ASD) - Yes 3 136.6 

1-01995 17 38544624 38548586 q21.1 1 TOP2A A E CTD(TOF) - - 1 4.0 
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1-01049 17 39845210 39846477 q21.2 3 EIF1 E  CTD(TOF) - - 2 1.3 

1-01588 18 65138642 78015180 q22.1- q23 1 NFATC14 A LVOT(CoA) - Yes 58 12876.5 

1-02170 19 20601006 20717536 p12 1 ZNF826P A CTD(TOF) - Yes 1 116.5 

1-00174 19 40515744 40681387 q13.2 1 ZNF546,ZNF780A,ZNF780B A  CTD(TOF/PA) - Yes 4 165.6 

1-01536 19 47792293 47905132 q13.33 1 C5AR1,C5AR2,DHX34 A  CTD(TOF/PA) - - 3 112.8 

1-00730 20 14529657 14583899 p12.2 1 MACROD2,MACROD2-IT1 A  CTD(DTGA) - - 2 54.2 

1-01194 22 18844632 21500000 q11.2 1 DiGeorge / TBX14 A CTD(VSD) P Yes 80 2655.4 

1-00113 22 18886915 22000000 q11.2 1 DiGeorge / TBX14 A E CTD(TOF/PA) P Yes 96 3113.1 

1-01836 22 19020529 21380382 q11.2 1 DiGeorge / TBX14 A E CTD(TOF) M - 70 2359.9 

1-00988 22 20733495 21464479 q11.2 1 DiGeorge / TBX14 A CTD(HLHS/HTX) M Yes 31 731.0 

1-02133 22 25661725 25919492 q11.23 3 22q11 distal microdeletion4 A  CTD(TOF) - - 4 257.8 

1-00425 22 36038076 36149338 q12.3 1 APOL5,APOL6,RBFOX2 A E LVOT(HLHS) - - 4 111.3 

1-01427 22 42522638 42531210 q13.2 3 CYP2D6 A HTX(HTX) - Yes 2 8.6 

1-01941 X 23003525 23086619 p22.11 3 DDX53,RP11-40F8.2 A CTD(TOF/DTGA) - - 1 83.1 

1-00197 X 148685645 148693146 q28 3 TMEM185A E  LVOT(HLHS) - Yes 1 7.5 

1
Copy number: 1- deletion; 3- duplication,  

2
Analysis: A- identified with SNP Array; E- identified with WES 

3
Parental Origin: M- maternal chromosome; P- paternal chromosome 

4
De novo CNV loci that were previously reported as pathogenic 

Abbreviations: CTD-conotruncal defect; LVOT-Left Ventricular Outflow Tract Obstruction;TA-truncus arteriosus;TOF-tetralogy of Fallot;HLHS-hypoplastic left heart syndrome;APVS-
Absent pulmonary valve syndrome ; ASD- Atrial septal defect; CoA-Coarctation of the Aorta ; DTGA-dextro-Transposition of the great arteries; HTX-Heterotaxy; PA- PulmonaryAtresia; 
PS-Pulmonary Stenosis; TriAtresia-Tricuspid atresia ; VSD-Ventricular Septal Defect ; 
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5.2.2 Comparison of SNP Array and WES CNV calling 

To consider the accuracy of identifying de novo CNVs from SNP array data, we first 

considered a set of 40 high-confidence PennCNV de novo CNV calls that contained ≥10 

adjacent SNPs, were >10 kb in length, and passed visual inspection. Among these 40 

high-confidence putative CNVs, 32 (80%) were experimentally confirmed. For smaller 

de novo CNVs identified using the high-density array data, we considered a set of 97 

high-confidence PennCNV putative de novo CNV calls based on 7-9 SNPs. While 88% 

were experimentally validated by ddPCR in the proband, only four of the 97 (5%) were 

confirmed to be de novo. 

 

From the WES data, we selected an initial set of 29 putative CNVs with a size range 

spanning six orders of magnitude from 530 bases in length (two exons) to more than 8Mb 

in length covering hundreds of exons. Twenty-six of the 29 CNVs (90%) confirmed 

experimentally. The three false positive CNVs included one 530-bp region that contained 

only two exon targets and two different inherited CNVs that were miscalled as de novo 

because both parents harbored CNVs at the locus. Based on these considerations, we 

restricted subsequent WES de novo CNV calls to those containing ≥3 exons and for 

which each parental dataset contained no CNVs within the locus. 

 

To evaluate false negative rates of the two platforms and analyses, we tested our ability to 

detect four CNVs (two 22q11 deletions, one 17p11 duplication, and one 10q terminal 

deletion; Supplemental Table 5.5) in clinical cases previously diagnosed with these 

CNVs. These four CNVs served as positive controls and were distinct from the PCGC 
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cohort. Both the SNP array and WES platforms detected each of these four large, 

clinically significant CNVs.  

 

We also compared the results of de novo 

CNVs analysis from the 233 trios 

studied by both SNP array and WES. 

Among 42 confirmed de novo CNVs in 

these trios, 24% (10/42) were identified 

by both platforms while 40% (17/42) 

were identified only with the SNP 

arrays and 35% (15/42) only by WES 

(Figure 5.1). The recognized technical 

limitations of each platform prevented 

detection of some CNVs. For example, CNVs that occur exclusively in noncoding 

sequences are not captured by WES whilst CNVs in coding or non-coding genomic 

regions where the SNP density is sparse can escape detection by SNP arrays. 

From our studies we deduced that de novo CNVs were accurately detected by arrays 

when ≥10 adjacent SNPs were impacted or by WES when greater than three adjacent 

exons were impacted. In our dataset, 29 of 42 CNVs fulfilled both of these criteria and 

should have been identified by both technologies (Figure 5.1). However, only 

34% (10/29) of these CNVs were identified by both platforms. SNP arrays uniquely 

identified 34% (10/29) and WES analyses uniquely identified 31% (9/29). Taken 

together, the false negative rate of each methodology is approximately 30-35%. Overall, 

Figure 5.1. Comparison of CNVs detected by SNP array 

and WES platforms in the subset of 233 probands 

studied by both technologies. 

 

 
 

Based on confirmation data, CNVs that span ≥10 SNPs 

on arrays and ≥3 exons on WES had high confirmation 

rates and were deemed detectable by both technologies. 

We assessed how many CNVs identified by one 

platform could not be identified by the other technology 

because they were below the detection limits. Both SNP 

Array and WES platforms have a false negative rate of 

~30-35% based on detectable regions. 
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the genome-wide analyses of de novo CNVs identified by SNP arrays was reasonably 

concordant with WES data, but each also identified complementary CNVs. The minimum 

CNV size that we reliably detected by SNP arrays was 10 kb and by WES was 1 kb, 

although some smaller CNVs identified by these techniques were validated. 

 

5.2.3 CNV Burden Analysis 

The burden of de novo CNVs in CHD cases and control trios was initially compared 

using analyses from SNP arrays. De novo CNVs were assessed in 841 control trios, 

studied using the Illumina Omni1M array to match the case trio array resolution and 

called using the PennCNV algorithm using computational parameters described 

previously(176) that required >20 SNP probes. Nine de novo CNVs were identified 

among 841 control trios. Twenty-two de novo CNVs were identified among 462 CHD 

patients. These data define a significant burden of CNVs in CHD cases compared to 

controls (OR: 4.6, Fisher p-value: 7 x 10
-5

; Table 5.2). After excluding nine previously 

identified CHD-associated CNVs, the calculated burden of novel CNVs identified in 

CHD cases remained modestly significant (OR:2.7, Fisher p=0.02). 

Table 5.2. Case Control de novo CNV Burden 
 

  N Probands N (%) CNVs OR P-value 

SNP Array SSC1 841 9 (1%) - - 

 PCGC: all CNVs 462 22 (4.7%) 4.6 7 x 10-5 

 PCGC: novel loci  13 (2.8%) 2.7 0.02 

WES SSC2 872 14 (1.6%) - - 

 PCGC: all CNVs 356 19 (5.6%) 3.5 6 x 10-4 

 PCGC: novel loci  13 (3.9%) 2.3 0.03 
1
Controls derived from State, 2011.(176)  

2
Controls derived from three studies: Iossifov, 2012;(97) Sanders, 2012;(177) and an additional set of 

unpublished controls provided by Matthew State selected by the same criteria and sequenced as described 

in.(177) 
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To provide further support for this finding, we analyzed the burden of de novo CNVs that 

were identified by WES. WES in CHD cases and control trios were technically 

comparable, including the same Nimblegen V2 exome capture chemistry and similar 

sequence read depths obtained on identical Illumina platforms. Sixty percent of control 

trios were sequenced at the same site (Yale Center for Genome Analysis) that sequenced 

the cases. Raw sequence reads were processed through the identical short read aligner 

(Novoalign) for CNV burden analysis. SNP genotyping of CHD and control datasets and 

principal component analysis did not identify any systematic biases (Supplemental 

Figure5.5). Cases and controls were matched for gender as best as possible with slight 

excess of male cases. Using an identical XHMM pipeline (CNVs involving≥3 exons and 

no parental CNVs within 1 MB), we identified 19 de novo CNVs in 358 CHD trios, 

and14 de novo CNVs in 8732 control trios (OR: 3.5, Fisher p=6 x 10
-4

; Table 5.2). 

Excluding the six de novo CNVs previously identified as CHD-associated, we identified 

a similar OR and p-value as in the SNP array data (OR:2.3, Fisher p=0.03). 

Our data identify an increased burden of CNVs, detected by SNP arrays or WES, in CHD 

patients compared to controls. We observed a larger mean size of de novo CNVs with 

increased burden in CHD patients (3.6 Mb) than controls (495 kb; t-test p=0.035) with 

the distribution of CHD CNVs skewed towards the largest CNVs identified in CHD 

cases. The median size of de novo CNVs from CHD cases (522 kb) was also significantly 

larger than controls (118 kb; Mann-Whitney p=0.028). Of the CNVs identified by SNP 

array which were capable of detecting CNVs outside of coding regions, there was a trend 

towards an increased number of de novo CNVs in controls that contained no coding exon 

(4/9) compared to PCGC cases (3/22; Fisher p= 0.15). 
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5.2.4 Putative CHD Loci at 15q11.2 and 2p13.3 

Overlapping de novo CNVs found in multiple cases and not in controls likely contain 

disease genes. Sixteen of 65 (25%) de novo CNVs in CHD probands have been 

previously implicated in CHD(78), 

including four 22q11.2 deletions, 

three 8p23 deletions (involving 

GATA4), two 1q21.1 duplications 

(involving PRKAB2, PDIA3P, 

FMO5, CHD1L, BCL9, ACP6 and 

GJA5), one 22q11.2 distal 

microdeletion, one 2q22.3 deletion 

(that causes Mowat-Wilson syndrome), one 11q24.2-q25 deletion (that causes Jacobsen 

syndrome) and four with CNVs in 15q11.2. 

 

CNVs in four CHD probands (two deletions, two duplications) at the 15q11.2 locus that 

spans approximately 225 kb (chr15:22,836,000-23,062,000) were observed as recurrent 

de novo events (Figure 5.2 and 5.3). Both patients with duplications (1-00192, 1-00315) 

and one with a deletion (1-00243) had LVO due to aortic coarctation. The remaining 

proband (1-01396) had TOF with pulmonary atresia. As there was no de novo CNV 

identified in this region among 814 and 872 control trios studied respectively by SNP 

arrays or WES, this locus has a significant burden of de novo CNVs in CHD cases (4/538 

CHD vs. 0/1301 controls; Fisher p=0.007). CNVs at the 15q11.2 locus were observed at 

low frequency (AF<1%) in the Database for Genomic Variants (DGV). Among the three 

Figure 5.2. Genomic Boundaries of 4 recurrent de novo 

CNVs 

 

 
 

Red rectangles represent de novo deletion calls. 
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genes altered by this CNV (CYFIP1, NIPA1, and NIPA2), only CYFIP1 is highly 

expressed in the developing mouse heart. (224) (223) (222) (221) (215) (216) (214) (213) 

(212) (210) CYFIP1encodes the cytoplasmic FMR1-interacting protein 1, which has dual 

roles in inhibiting local protein synthesis and in promoting actin remodeling.(42) An 

earlier study observed an increased burden of inherited deletions in CHD cases at 

15q11.2
1
 and a recent paper identified a single proband with a 6-Mb de novo duplication 

at 15q11.2-q13.1(214) and two additional cases with inherited 300-400-kb duplications at 

15q11.2. Our data provide additional evidence that de novo CNVs at 15q11.2 may 

contribute to disease risk in CHD.  

 

In addition, a recurrent CNV was observed to alter a novel locus at chromosome 2p13.3. 

A de novo 190-kb deletion was 

identified in a TOF proband (1-01536) 

and was maternally inherited in a 

proband with truncus arteriosus (1-

01805). No 2p13.3 CNV was found in 

control samples or in DGV. Among 

three genes included in the CNV 

interval (ASPRV1, PCBP1 and PCBP1-

AS1), only PCBP1 is highly expressed 

in the developing mouse 

heart.(224)PCBP1 encodes a major 

cellular poly(rC)-binding protein, 

Figure 5.3. A novel recurrent de novo deletion on 

15q11.2. 

 

 
SNP Array PennCNV Plot for diploid mother, diploid 

father, and deleted child with CNV region in red with 

flanking diploid in blue.  

 



114 

 

which controls translation from mRNAs containing the DICE (differentiation control 

element).(143)In Database of Chromosomal Imbalance and Phenotype in Humans using 

Ensembl Resources (DECIPHER), patient 257771 with an atrioventricular canal defect 

had a 7-Mb overlapping deletion of 2p13.3, suggesting this locus may also contribute to 

disease risk in CHD. 

 

5.2.5 Integration of CNV and Sequence Data to Identify CHD Genes 

To improve the identification of specific genes altered by CNVs that might cause or 

contribute to CHD, we searched the WES data for de novo, rare loss-of-function (LOF) 

variants in genes encoded in CNV intervals. We identified a terminal deletion of 

chromosome 11q24.2-q25, which causes Jacobsen syndrome in one CHD patient (1-

01486) with clinical manifestations typical of this dominant disorder (hypoplastic left 

heart, coarctation of the aorta, mitral and aortic valve atresia, strabismus, and short 

stature). ETS1 has been proposed as the critical CHD gene in the Jacobsen syndrome 

locus based on impaired ventricular development in an Ets1-null mouse.(223) WES 

analyses identified a de novo ETS1 frameshift mutation (chr11:128350159GTCCT>G, 

c.1046_1049delAGGA, [p.K349fs]) in another CHD patient without the chromosome 

11q24.2-q25 deletion with cardiac abnormalities observed in Jacobsen syndrome 

(hypoplastic left heart and mitral valve atresia). Our data provide the first human genetic 

evidence to suggest that ETS1 mutations contribute to the cause of cardiac malformations 

in Jacobsen syndrome. 
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We also assessed whether de novo CNVs in combination with a rare or novel deleterious 

variant on the other allele might produce recessive forms of CHD. One CHD patient (1-

01179) with a de novo 10q25-26 deletion also had a novel CTBP2 variant (p.R134W) on 

the remaining allele. The hemizygous variant was absent from public genome 

databases,(1, 62) is predicted to be damaging (Polyphen2 score of 0.998), and altered a 

phylogenetically conserved residue (PhyloP score = 2.54). Cardiac abnormalities are 

present in approximately one third of patients with subterminal chromosome 10q 

deletions and recently CTBP2 was proposed as a candidate CHD gene.(37)The clinical 

manifestations of our patient, truncus arteriosus and right aortic arch, resemble the 

phenotypes identified in a Ctbp2-null mouse (failure of vascular remodeling and cardiac 

looping).(87)We suggest that CTBP2 sequence analyses in individuals with chromosome 

10q deletions may identify additional variants in a subset of patients that modify 

phenotype. 

 

5.2.6 Correlation of CHD Phenotypes and CNVs 

The frequency of de novo CNVs was 10% among conotruncal anomalies, 6% among left-

sided obstructive lesions and 21% in heterotaxy. We observed a modest trend towards 

increased extra-cardiac manifestations such as developmental delay in patients with de 

novo CNVs (Supplemental Table 5.6). Approximately 31% of all CHD patients studied 

with SNP arrays or WES had extra-cardiac manifestations, whilst 40% (21/52; OR:1.5, 

Fisher p=0.2) of patients with de novo CNVs had extra-cardiac features. This association 

has been found in some,(18) but not all,(214) previous studies, perhaps due to differences 

in the ages of the CHD patients studied, methods of clinical data collection, and the 

definition of an extra-cardiac anomaly. 
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5.2.7 Gene Networks Impacted by CNVs in CHD 

We employed pathway and network analysis with DAVID,(91) DAPPLE,(174)and 

WebGestalt,(210) using as input four different lists of genes encoded within all de novo 

CNV loci (Methods and Supplemental Table 5.4). Initial gene lists contained:(1) all genes 

encoded in a de novo CNV interval; (2) genes previously defined as causative within 

CNVs intervals plus all genes in novel de novo CNV intervals; (3) only genes contained 

within novel de novo CNV intervals; (4) all genes contained within de novo CNV 

intervals that are highly expressed (top 25%) in the developing heart.(224) 

 

DAVID identified enrichment of gene pathways implicated in acetylation (p<2.3x10
-4

), 

phosphoprotein (p<3.9x10
-4

), and G protein-activated inward rectifier potassium channel 

(p<2.5x10
-2

) (Benjamini-Hochberg corrected). WebGestalt implicated an enrichment of 

previously identified CHD genes including ELN, NKX2.5, GATA4, and ZEB2 

contributing to Gene Ontology processes: anatomical structure formation involved in 

morphogenesis (p<0.03), cardioblast differentiation (p<0.03), and septum secundum 

development (p<0.02) (Benjamini-Hochberg corrected). 

 

Using DAPPLE, we identified two additional sub-networks of direct protein/protein 

interactions that were consistently observed across four gene lists. Among genes encoded 

within CNVs that are highly expressed in the developing heart, a sub-network consisting 

of NKX2.5 and GATA4 (p<0.1, Figure 5.4a) and a sub-network consisting of ETS1, JUN, 

TOP2A, and MKI67 (p<0.01, Figure 5.4b) were identified. By further expanding the 

CNV gene lists to include genes with de novo LOF mutations, the ETS1/JUN/TOP2A 
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sub-network was significantly elaborated upon and enriched (p<0.005). Each of these 

three genes was directly linked 

through protein-protein interactions 

to sub-networks containing ≥ 10 

additional genes identified in either 

CNV or WES datasets.(224) This 

entire network incorporated over 60 

genes implicated in CHD (Figure 

5.4c). As the ETS1/JUN/TOP2A sub-

network was robust to the specific de 

novo CNV gene list (criteria 2 above) 

and expanded with the addition of 

genes containing rare de novo LOF 

mutations, the data suggest that this 

sub-network contains genes and 

pathways involved in CHD.  

 

5.3 Discussion 

We report whole-genome CNV analyses using complementary detection technologies in 

a large cohort of CHD patients. CNV detection in WES has been investigated in 

schizophrenia(60)and autism,(162) but array-based and sequence-based strategies have 

not previously been directly compared, and our data highlight the differences between 

array-based and sequence-based strategies to detect de novo CNVs. By defining small 

Figure 5.4. Network analysis of CNV loci genes. 

 

 
Two networks of direct protein-protein interactions, (A) 

NKX2.5/Gata4 and (B) ETS1/JUN/TOP2A, were 

consistently identified in the DAPPLE de novo CNV 

loci analysis. P-values from the genes highly expressed 

in the developing heart, the most restrictive gene set list, 

are presented here. (C) The ETS1/JUN/TOP2A network 

was significantly elaborated upon by incorporating 

genes with deleterious de novo point mutations and 

indels in the WES exome sequencing analysis in 

addition to the CNV loci. Of note, two probands had de 

novo ETS1 variants (one CNV and one frameshift), two 

probands had de novo SMAD2 variants (a splice site 

mutation and a highly conserved missense variant) and 

two probands had de novo ELN variants (both Williams 

syndrome CNVs). 
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CNVs with high resolution and integrating these findings with WES data that identified 

rare deleterious mutations, we identified novel de novo CNVs and genes involved in the 

pathogenesis of CHD. We show that 9.8% (53/538) of CHD patients without a previously 

identified genetic etiology have rare de novo CNVs (Figure 5.5). We previously 

demonstrated that 10% of CHD patients in our cohort have de novo single nucleotide or 

small insertion/deletion mutations in genes highly expressed in the developing heart that 

are likely to be damaging.(224) None of the CHD patients with rare de novo CNVs 

reported here carry these variants. Even if all the de novo CNVs and de novo predicted 

pathogenic sequence variants we have identified were causative, we do not yet know the 

etiology for the majority of CHD subjects in our study. 

 

Our detection rate of approximately 

10% de novo CNVs in CHD patients 

is equivalent to previous studies,(18, 

78, 214) despite identifying small 

CNVs. Had we not excluded patients 

with known pathogenic CNVs 

identified through clinical care, we 

expect that de novo CNVs would 

have been identified in approximately 

15% of CHD patients, based on the 

prevalence of common de novo CNVs 

in CHD (e.g., 7% of TOF with 

Figure 5.5. Distribution of de novo rare, damaging 

genetic variants in the case cohort with unknown CHD 

etiology. 

 

 
 

Of the CHD probands without identified genetic 

etiologies based upon clinical evaluations including 

karyotype and chromosome microarray, approximately 

2.5% of CHD probands had de novo CNVs that have 

been previously described as pathogenic and had not 

been clinically recognized upon study enrollment. 7.3% 

of CHD probands had novel de novo CNVs. 10% of 

CHD probands studied by WES had de novo rare, 

damaging variants in genes that are highly expressed in 

the developing mouse heart.(224) 
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chromosome 22q11 deletions, and 1% of TOF to 1q21 CNVs). In our study, these CNV 

loci accounted for <1% of CHD probands 

 

Despite these exclusion criteria, we identified a four-fold increased frequency of de novo 

CNVs relative to the background frequencies of 1.2% (detected by SNP arrays) and 1.8% 

(detected by WES) of de novo CNVs in controls (p=7 x 10
-5

, p=4 x10
-4

 respectively). 

Even after excluding previously defined CNVs, we still observed an approximate two-

fold increase in novel de novo CNVs (p=0.02).  

Since the odds ratio of de novo CNVs in cases vs controls was 3.5-4.6, we estimate that 

between 50-70% of de novo CNVs observed in cases may be disease causing. The 

possibility exists that a higher percentage of de novo CNVs increase the risk of CHD but 

may not be sufficient to cause CHD without other contributing genetic or environmental 

factors. Additionally, subtle anatomic defects in the heart may not have been diagnosed 

in the control group since controls were not systematically examined by echocardiogram. 

Overall, our evidence suggests a model in which de novo CNVs contribute to CHD. 

The comparison of dense array-based platforms and WES analyses to detect 

independently validated CNVs indicate that each strategy identifies only ~70% of the 

CNVs that should be within the detection limitations of each technology. As such, these 

two CNV methodologies provide substantial complementary information. An important 

corollary to this conclusion is that previously published CNV analyses in human disease 

may have significantly underestimated the burden conveyed by these structural variants.  
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Amongst all confirmed de novo CNVs, 61% (41) were deletions and 39% (26) were 

duplications. The proportion of these classes of CNVs are not significantly different; 

whether or not the trend toward more CNV deletions in CHD is biologically meaningful 

or reflects greater sensitivity to detect deletions by these methods will require further 

analyses. De novo CNVs ranged in size from less than 1 kb to 12.8 Mb, with a median 

size of 110 kb. Thus, half of the independently confirmed CNVs were smaller than the 

reported detection limit of most prior studies. While the pathogenicity of the identified 

CNVs remains to be determined, we propose that the smaller CNVs involving fewer 

genes are particularly valuable in defining specific candidate CHD genes in comparison 

to larger CNVs that typically include many more candidates. The ability to reliably detect 

small CNVs is helpful, particularly if they fall within large CNVs previously identified 

and define a critical interval of overlap. For example, we identified one de novo CNV 

that only affected JUN and another that only altered TOP2A, two genes that were 

implicated by network analyses as interacting with transcription factors SMAD2, SMAD4 

and ETS1, molecules that play important roles in cardiovascular development.  

 

Although there is considerable complexity in CHD phenotypes, we observed no 

significant difference in the frequencies of de novo CNVs among distinct CHD sub-

classifications. While CHD patients with CNVs in our cohort were more likely to have 

extra-cardiac phenotypes (OR: 1.5), this trend fell short of significance. Whether this 

finding reflects shared developmental biologic pathways among different organ systems or 

the possibility that CNVs perturb multiple genes that individually contribute to organ 

system development is unknown. 
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We identified several de novo CNVs that impacted established CHD genes including 

GATA4 and GJA5. We also identified a CHD patient with a deletion of chromosome 

5q34-q35.2, encompassing NKX2-5. LOF NKX2-5 mutations are an established cause of 

CHD,(31, 78, 180, 186, 187, 203)and CNVs encompassing NKX2-5 have been previously 

recognized in CHD.(8, 22, 201) 

 

We identified recurrent de novo CNVs involving deletions or duplications at 

chromosome 15q11.2. As the proximal region of chromosome 15 is meiotically unstable 

due to the segmental duplications that serve as breakpoint hotspots, recurrent de novo 

events at this locus might reflect locus genomic instability. However, the excess burden 

of de novo CNVs at this locus in CHD patients compared to controls (Fisher p=0.007) 

suggests significant enrichment. The report of an excess burden of inherited deletions in 

CHD patients at this locus(187) lends further evidence for pathogenicity although this 

study lacked information on inheritance.  

 

The 200-kb CNV that we identified at 15q11.2 is from BP1-BP2 and is encompassed 

within the BP1-BP3 Prader-Willi syndrome interval at 15q11-q13.(21)
,
(20) 

Approximately 20% of Prader-Willi patients have congenital heart defects,(204) and a 

patient with a large 6-Mb duplication in the Prader-Willi locus has been described in 

another CHD cohort.(214) 
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Chromosome 15q11.2 deletions and duplications are implicated in neurodevelopmental 

disorders including schizophrenia, intellectual disability and autism.(106, 190, 192)That 

chromosome 15q11.2 CNVs are also associated with CHD adds to a growing list of loci 

(22q11,(109) 1q21,(78, 142)7q11.23,(75)16p11.2,(63, 74) and 16p13.11(74, 214) that 

link cardiac malformations and neurocognitive disorders. These (and other) genetic loci 

may explain in part the significant co-expression of heart and brain developmental 

phenotypes in many children.  

 

By integrating CNV and sequencing data from WES, we also identified candidate genes 

within CNV regions that may cause dominant or recessive forms of CHD. We present the 

first humanETS1 LOF mutation that likely contributes to Jacobsen syndrome. We also 

identified a rare inherited and predicted deleterious CTBP2 missense variant that is 

hemizygous due to a de novo CNV deletion, associated with a CHD phenotype 

comparable to that observed in Ctbp2-null mice. Continued integration of CNV and 

sequence data should enable more comprehensive assessments of genetic causes of 

disease. The current study provides suggestive data, and sequencing large cohorts of 

CHD patients for mutations in these two genes will be necessary to unambiguously prove 

the role of these genes in CHD. 

 

Network analyses by DAPPLE was more successful in elucidating novel network biology 

than DAVID and WebGestalt, which rely heavily on previously annotated gene sets and 

are challenged by the addition of unrelated genes encoded with CNV intervals along with 

pathogenic genes. If pathogenic CNVs on average contain one main causal gene and 
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approximately five unrelated genes, then we might expect DAVID and WebGestalt to be 

less informative for CNV network analyses.(93) Conversely, DAPPLE, based on 

proteome-wide protein-protein interaction data rather than previously curated gene lists, 

calculates p-values through within-degree node-label permutation, which is more 

permissive to background noise.(174) 

 

DAPPLE network analysis reinforced the central role of transcriptional regulation in 

congenital heart disease. The identification of one network, including NKX2.5/GATA4, 

provided a robust positive control as protein-protein interactions and substantial 

contributions by these molecules to CHD are previously described.(179, 194) Direct 

protein-protein interactions between ETS1/JUN/TOP2A have also been reported,(113, 

130, 147) but this network has not been previously implicated in CHD. In an expanded 

network analysis of these molecules that included rare LOF mutations identified from 

exome sequencing, JUN was linked to SMAD2 and SMAD4, molecules that participate 

in cardiac development through TGF-beta.(23, 26, 134, 209) 

We focused our current analysis solely on de novo CNVs. As the etiology of CHDs is 

known to be polygenic, and incomplete penetrance of genes for CHD has been previously 

described, future analyses of rare inherited CNVs may expand these findings. 

Replication of the overall effect and the magnitude of the risk of these identified variants 

is needed. While it is not yet possible to draw a conclusion about whether any particular 

de novo CNV is causal, the identification of additional CNVs and mutations in specific 

genes within the CNV intervals will be required to validate the new loci identified here. 
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In summary, integration of high resolution complementary platforms for CNV and 

sequence data on large numbers of patients with CHD has proven valuable to define the 

underlying genomic architecture of CHD and expand the genes and networks involved in 

cardiac development and is likely applicable to the study of other diseases. 

 
 

5.4 Methods 

 

5.4.1 Ethics Statement 

The protocol was approved by the Institutional Review Boards of Boston Children’s 

Hospital, Brigham and Women’s Hospital, Great Ormond St. Hospital, Children’s 

Hospital of Los Angeles, Children’s Hospital of Philadelphia, Columbia University 

Medical Center, Icahn School of Medicine and Mt. Sinai, Rochester School of Medicine 

and Dentistry, Steven and Alexandra Cohen Children’s Medical Center of New York, and 

Yale School of Medicine. Written informed consent was obtained from each participating 

subject or their parent/guardian.  

 

5.4.2 Patient cohorts 

CHD probands and parents were recruited into the CHD Genes Study of the Pediatric 

Cardiac Genomics Consortium (CHD genes: ClinicalTrials.gov identifier NCT01196182) 

as previously described,(155) using protocols approved by Institutional Review Boards of 

each institution. Trios selected for this study had no history of CHD in first-degree 

relatives. CHD diagnoses were obtained from echocardiograms, catheterization and 

operative reports; extra-cardiac findings were extracted from medical records and 

included dysmorphic features, major anomalies, non-cardiac medical problems, and 
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deficiencies in growth or developmental delay. The etiologies for CHD were unknown; 

patients with previously identified cytogenetic anomalies or pathogenic CNVs identified 

through routine clinical evaluation were excluded. Whole blood samples were collected 

and genomic DNA extracted. 

 

CHD trios were studied by SNP arrays (n=414) or by WES (n=358), including a subset 

(n=233) that were analyzed by both methods. The distribution by CHD lesions in patients 

genotyped by arrays was: 403 (61%) left ventricular obstruction (LVO); 197 (30%) 

conotruncal defects (CTD); 49 (7%) heterotaxy (HTX); and 12 (2%) other cardiac 

diagnoses (Supplementary Table 5.1). The distribution by CHD lesions in patients 

studied by WES was 284 (46.1%) left ventricular obstruction (LVO); 235 (38.1%) 

conotruncal defects (CTD); 78 (12.7%) heterotaxy (HTX); and 19 (3.1%) with other 

cardiac diagnoses (Supplemental Table 5.2).  

 

Control trios were the unaffected sibling and parents of a child with autism who were 

consented and recruited through the Simons Simplex Collection (SSC). CNVs were 

identified in the same way in the control trios as in the cases using SNP arrays (n=814) or 

WES (n=872), including a subset (n=385) analyzed by both methods.(56, 176, 177) 

 

Additional data on the distribution and prevalence of previously reported CNVs in the 

general population was derived from the Database of Genomic Variants 

(http://dgv.tcag.ca) and from 649 de-identified control subjects who had participated in 

an unrelated psychiatric case-control study, genotyped on the same high density SNP 

http://dgv.tcag.ca/
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array platforms at the same genotyping center as the CHD probands (438 on the Illumina 

Omni-1M and 211 on the Illumina Omni-2.5M). These controls were used only to 

prioritize the de novo CNVs identified by SNP array methods that were selected for 

confirmation analyses. 

 

5.4.3 Array Genotyping and CNV identification 

A total of 360 CHD parental samples genotyped on the Omni1M and 654 on Omni2.5M 

arrays were applied for cluster definition using Illumina Genome Studio clustering 

algorithm. Raw data is publicly available through the database of genotypes and 

phenotypes (dbGaP) National Heart, Lung, and Blood Institute (NHLBI) Bench to 

Bassinet Program: The Pediatric Cardiac Genetics Consortium (PCGC) under dbGaP 

Study Accession: phs000571.v1.p1.We removed clusters with outlier values of SNP call 

rate, Hardy-Weinberg equilibrium, AA/AB/BB cluster means, and minor allele frequency 

to improve the intensity noise (Log R ratio standard deviation) from a mean of 0.2 (using 

the default cluster file from Illumina) to 0.1 for CHD samples. Briefly, individual 

samples were filtered through a standard quality control pipeline.(176)B-allele frequency 

(BAF) and LogR ratio (LRR) values were exported from Illumina Genome Studio. Only 

samples with SNP call rate > 98%, standard deviation (SD) of normalized intensity 

(LRR) < 0.3, absolute value of GC-corrected LRR <0.005, as well as CNV call count 

<800 for Omni1-Quadv1 or <300 for Omni2.5-8v1 were included.(71)Samples with high 

inbreeding coefficients, that were duplicated, or had gender mismatches, and trios with 

Mendelian errors > 1% were removed from analyses. We started with 1,536 genotyped 

samples (512 trios), including 561 on the Illumina Omni-1M and 969 on the Illumina 

Omni-2.5M. Four hundred and sixty-one trios had the same array version for all family 
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members. Upon completion of these QC procedures 1,245 samples, including 447 

genotyped on the Illumina Omni-1M and 798 on the Illumina Omni-2.5M high-density 

SNP array platforms, were taken forward for analysis, constituting 415 complete trios 

(Supplemental Table 5.3). 

 

Three groups (CHOP, Harvard, Yale) independently analyzed genotyping data using 

slightly different algorithms to detect putative de novo CNVs. For each of the three 

independent analyses, CNVs were called for each subject using PennCNV(211) with the 

hidden Markov model algorithm and custom-made population frequency of B-allele 

(PFB) and GC model files. CNVs were called when 10 or more consecutive probes 

demonstrated consistent copy number change. The PennCNV detect_cnv --trio option 

was used to boost transmission probability of CNV calling for initially de novo scored 

CNVs. Fragmented CNV calls were merged using clean_cnv. All candidate CNVs were 

visually inspected to ensure the appropriate pattern of LRR and B-allele frequency was 

consistent with the CNV call. Additionally, Gnosis,(176) QuantiSNP,(34) and Nexus 

(biodiscovery.com) were used to increase specificity. De novo CNVs were prioritized for 

quality by genomic length, number of probes, confidence score based on signal strength, 

50% overlap of two or more algorithms, low parental origin p-value using 

infer_snp_allele, and visual BAF/LRR review. All putative de novo CNVs were 

experimentally evaluated by digital droplet PCR (ddPCR, Supplemental Figure 5.1), and 

only validated CNVs are reported. 
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De novo CNV loci that were previously reported as pathogenic were defined by reported 

recurrence in at least two publications using independent data. Although some of the 

CNVs reported here overlap with previously reported CNVs in CHD patients based on 

review of the literature,(207), they do not meet our frequency constraint for previously 

reported pathogenic de novo CNV loci. 

 

5.4.4 CNV identification and variant calling from WES Data 

WES data from 356 CHD trios were analyzed for de novo CNVs (Supplemental Table 

5.2). WES samples were captured with the Nimblegen SeqCap Exome V2 chemistry and 

sequenced on the Illumina HiSeq 2000 platform as previously described.(224) Sequence 

reads were aligned to the human reference genome hg19 using Novoalign 

(http://novocraft.com), BWA,(123) and ELAND.(38)Duplicates were marked with Picard 

(http://picard.sourceforge.net). Indel realignment and Base Quality Score Recalibration 

was done with GATK. XHMM is an algorithm to detect exon-level copy number 

variation and assign CNV quality metrics(60)and was used at four of the PCGC analysis 

sites (CHOP, Harvard, Columbia and Mount Sinai) to identify de novo CNVs 

(Supplemental Figure 5.2). Candidate de novo CNVs were inspected visually. Putative de 

novo CNVs were prioritized for confirmation based on genomic length, low sequence 

depth variability and low prevalence in the XHMM call set data (AF<1%). All putative 

de novo CNVs were independently confirmed by ddPCR. 

 

SNP and short insertions/deletions (indels) were called from the Novoalign alignment of 

WES trios using a pipeline derived from GATK version 2.7 best practices.(47) Briefly, 

aligned reads were first compressed using the GATK ReducedReads module and variants 

http://novocraft.com/
http://picard.sourceforge.net/
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were called on all CHD WES trios using the UnifiedGenotyper joint variant calling 

module. Identified variants were filtered using GATK variant quality score recalibration. 

Variants were annotated using SnpEff.(33) De novo SNPs and indels were independently 

confirmed using Sanger sequencing. 

 

5.4.5 CNV confirmation with digital droplet PCR 

Putative CNVs were experimentally confirmed with ddPCR as previously reported(157) 

using an 18-27 base pair FAM probe designed within each candidate CNV region, 

avoiding homopolymer runs or probes that began with G. A VIC probe targeting the 

RPP30 gene was used as reference. Reaction mixtures of 20 μL volume comprising 

ddPCR Master Mix (Bio-Rad), relevant forward and reverse primers and probe(s) and 

100 ng of digested DNA were prepared, ensuring that approximately 25-75% of the 

10,000 droplets ultimately produced were positive for FAM or VIC signal. For de novo 

CNV confirmations, DNA from the CHD patient and parents was used. After thermal 

cycling, plates were transferred to a droplet reader (Bio-Rad) that flows droplets single-

file past a two-color fluorescence detector. Differentiation between droplets that contain 

target and those that did not was achieved by applying a global fluorescence amplitude 

threshold in QuantaSoft (Bio-Rad). The threshold was set manually based on visual 

inspection at approximately the midpoint between the average fluorescence amplitude of 

positives and negative droplet clusters on each of the FAM and VIC channels. Confirmed 

CNV duplications had approximately 50% increase in the ratio of positive to negative 

droplets as did the reference channel. Conversely confirmed CNV deletions had 

approximately half the ratio of positive to negative droplets as did the reference channel. 
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5.4.6 Network analysis 

Three bioinformatic algorithms were utilized: DAVID,(91) DAPPLE,(174)and 

WebGestalt.(210) Four different gene lists derived from the de novo CNV loci were used 

(Supplemental Table 5.4). The lists were constructed as follows:(1) All genes contained 

within de novo CNV intervals; (2) Published “causative” genes from previously reported 

CHD CNVs intervals in addition to all genes in novel CHD CNV intervals. “Causal” 

genes in previously reported CNV intervals included ELN(Williams syndrome), 

RAI1(Smith-Magenis syndrome),TBX1(22q11 deletion), GATA4 

(8p23.1 deletion), GJA5(1q21.1 duplication),and NKX2.5(5q35.1 deletion); (3) Genes 

contained solely within novel CHD CNV intervals (e.g., exclude genes from previously 

published CNVs); (4) Genes contained within de novo CNV intervals that are highly 

expressed in the developing mouse heart (top quartile of all genes expressed E14.5 mouse 

heart).(224) We anticipated that genes in list 2 and list 4 would have increased specificity 

for CHD in comparison to genes in list 1 and that genes in list 3 would be biased towards 

new disease networks.  

 

We expanded network analysis input gene lists by including both de novo CNV genes 

and de novo single nucleotide variants (SNV) that were previously identified in CHD 

probands by WES.(224) Only de novo SNVs predicted to be deleterious (e.g., loss of 

function (LOF): nonsense, frame-shift, and splice site mutations and missense variants 

that alter highly conserved amino acid residues or predicted to be deleterious by SIFT or 

PolyPhen2) were included in the expanded gene list. The additional gene lists included: 

(5) All genes within a de novo CNV interval (e.g., list 1) and protein-altering SNVs and 
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(6) Published “causative” genes from previously reported CHD CNVs intervals in 

addition to all genes in novel CHD CNV intervals (e.g., list 2) and protein altering SNVs. 

 

5.4.7 Statistical analysis 

Burden calculations were done with a Fisher exact test computed in the R statistical 

computing environment. For analyses using DAVID, networks with an enrichment of 

genes impacted by CNVs were assigned a p-value with Benjamini and Hochberg 

correction for multiple testing with a false discovery rate of 0.05. In DAPPLE, type I 

error was controlled through permutation. p-values of less than 0.05 were considered 

significant. 

 

5.5 Heart Histone Modification Single Nucleotide 

Variants 

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% 

of live births. Many cases occur sporadically and impair reproductive fitness, suggesting 

a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 

severe CHD cases and 264 controls by analyzing exome sequencing of parent–offspring 

trios. CHD cases show a significant excess of protein-altering de novo mutations in genes 

expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature 

termination, frameshift, splice site) mutations. Similar odds ratios are seen across the 

main classes of severe CHD. We find a marked excess of de novo mutations in genes 

involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, 

or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also 
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two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic 

left–right organizer. The combination of both activating (H3K4 methylation) and 

inactivating (H3K27 methylation) chromatin marks characterizes ‘poised’ promoters and 

enhancers, which regulate expression of key developmental genes. These findings 

implicate de novo point mutations in several hundreds of genes that collectively 

contribute to approximately 10% of severe CHD. 

 

In addition to de novo variants, transmitted variants were assessed for over-transmission 

above expected 0.5 chance for WES (Table 5.3) and array (Table 5.4). 

 

Table 5.3. Exome Transmission Enriched CNVs by TDT in CHD. 
 

CNVR(hg19) TDT P 
Transmit

Untrans

mit 
Gene 

Average 

Numsnps 

Case 

Average 

Length 
Conf 

Case(bp) 
CNV 

Type 

chr7:72023758-

72414061 
0.011412 t=9;u=1 

DQ601342,MIR4650-

1,POM121,SBDSP1,S

PDYE7P,TYW1B 
22.66667 333137.7 94 Dup 

chr1:247835420-

248652837 
0.0455 t=4;u=0 OR11L1,TRIM58 22.75 599049.4 99 Dup 

chr5:37358169-

37725152 
0.0455 t=4;u=0 NUP155,WDR70 55.625 373516.1 96 Dup 

chr11:95568454-

95621425 
0.05778 t=8;u=2 MTMR2 13.05263 42981.53 93.73684 Dup 

chr20:44351007-

44354321 
0.059347 t=13;u=5 SPINT4 3.03125 3831.656 97.84375 Del 

chr2:97815016-

97849405 
0.071861 t=17;u=8 ANKRD36 26.95 113748.7 93.85 Del 

chr1:65858114-

65897602 
0.083265 t=3;u=0 

DNAJC6,LEPR,LEPR

OT 
15 43594 99 Dup 

chr3:1189671-

1427481 
0.083265 t=3;u=0 CNTN6 10.33333 179273.7 97.83333 Dup 

chr6:117730726-

117739697 
0.083265 t=3;u=0 GOPC,ROS1 3.5 12226.5 94 Dup 

chr7:5920501-

5923630 
0.083265 t=3;u=0 OCM 11.83333 100091.7 94 Dup 

chrY:25375731-

25375830 
0.083265 t=3;u=0 DAZ2,DAZ3,DAZ4 1 100 31 Dup 
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Table 5.4A. Array Transmission Enriched CNVs by TDT for Common CNVs. 
 

CNVR(hg19) P TDT CNV Transmit : 
Untransmit 

CNV Gene Distance 
from 

Gene (bp) 
Copy 

Number 

chr19:20801607-

20802000 1.52E-13 t=184;u=67 ZNF626 745 1 

chr3:131711896-

131712898 1.87E-11 t=249;u=120 CPNE4 0 1 

chr20:42272198-

42273045 9.24E-11 t=155;u=60 IFT52 0 1 

chr16:23048233-

23049446 9.84E-10 t=131;u=49 USP31 23282 1 

chr18:54946766-

54948517 3.36E-09 t=126;u=48 ST8SIA3 71204 1 

chr16:25341372-

25343049 9.26E-09 t=137;u=57 ZKSCAN2 72517 1 

chr11:29967596-

29968238 3.52E-07 t=108;u=45 KCNA4 63050 1 

chr15:39744425-

39744669 5.13E-06 t=120;u=59 THBS1 128611 1 

chr15:86057437-

86059128 6.94E-06 t=81;u=33 AKAP13 0 1 

chr17:41517705-

41518185 5.93E-05 t=92;u=45 MIR2117 3989 1 

chr15:65817527-

65819037 6.33E-05 t=0;u=16 PTPLAD1 3790 3 

chr11:65642127-

65642343 6.68E-05 t=100;u=51 EFEMP2 1722 1 

chr14:54711242-

54713593 0.000451 t=85;u=45 CDKN3 150080 1 

 

Table 5.4B. Array Transmission Enriched CNVs by TDT for Rare CNVs. 

CNVR(hg19) P TDT CNV 
Transmit : 

Untransmit 
CNV 

Gene 
Distance 

from 
Gene 
(bp) 

Copy 
Number 

chr12:73988439-

74105393 0.008151 t=7:u=0 LOC100507377 421563 1 

chr2:81519114-

81557442 0.014306 t=6:u=0 5S_rRNA 165896 1 

chr10:13056587-

13060410 0.018422 t=14:u=4 AK311458,CCDC3 0 1 

chr10:62427293- 0.025347 t=5:u=0 ANK3 0 1 
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62428017 
chr22:44564975-

44565393 0.032509 t=11:u=3 PARVB 0 1 

chr12:99994315-

99995706 0.033895 t=7:u=1 ANKS1B 0 1 

chr12:98405248-

98405248 0.033895 t=7:u=1 MIR4303 16022 1 

chr1:17616194-

17619279 0.033895 t=7:u=1 PADI3 5467 3 

chr19:54180400-

54180706 0.034808 t=9:u=2 MIR520E 1349 1 
chr20:44204861-

44378173 0.034808 t=9:u=2 SPINT4,WFDC10A,WFDC10B, 
WFDC11,WFDC13,WFDC8,WFDC9 0 1 

chr10:55086553-

55086886 0.0455 t=4:u=0 PCDH15 475647 1 

chr5:74182586-

74186901 0.0455 t=4:u=0 FAM169A 0 1 

chr8:122325332-

122341946 0.0455 t=4:u=0 HAS2 283325 3 
 

To assess the control frequency directly in a test statistic compared to controls, we use 

Fisher’s exact test for both WES (Table 5.5) and array (Table 5.6) data. 

 

Table 5.5. WES Case-Control CNV Association in CHD 
 

CNVR(hg19) 
P 

(perm adj) 
Cases 

CNV 
Controls 

CNV 
Gene 

Avg 
Num 

Exons 

Avg 
Length 

Avg 
Conf 

CNV 
Type 

chr1:145273185-
145282043 1q21.1 

0.004 20 2 

NOTCH2NL 
SEC22B, 
NBPF14, 
NBPF9 

25 265,755 80 Dup 

chr19:54197623-
54216713 
19q13.42 

0.03 11 0 MIR517A, 24 48,456 89 Del 

chr7:26245988-
26251828 7p15.2 

0.04 14 1 CBX3 4 17,394 70 Del 

 

 

 



135 

 

Table 5.6. Array Case-Control CNV Association in CHD 
 

CNVR(hg19) P CNV 
Logistic 

Cases 
CNV 

Controls 
CNV Gene(s) Average 

Numsnps 
Copy 

Number 
Exon 

Distance 
P CNV 
Fisher 

chr15:60090457-
60103464 4.01E-10 14 5 BNIP2 13.0 1 108815 0.017882 

chr1:8359110-
8362754 8.31E-09 15 1 SLC45A1/ RERE 5.4 1 21636 0.000125 

chr14:27479798-
27481036 1.11E-08 8 1 MIR4307 14.3 1 101867 0.014167 

chr5:32106628-
32107084 1.33E-08 36 14 PDZD2 46.7 3 364 0.000242 

chr4:7183984-
7186257 6.93E-08 12 2 SORCS2 8.1 1 8117 0.004893 

chr6:66074421-
66080908 3.57E-07 14 1 EYS 13.0 1 10911 0.000249 

chr3:88706819-
88715097 2.52E-06 9 1 EPHA3 11.2 1 441577 0.007493 

chr12:34438235-
34478239 9.12E-06 9 1 ALG10 152.4 3 256999 0.008521 

chr10:105718227-
105720104 9.54E-06 14 3 SLK 9.8 1 7366 0.002511 

chr11:50543494-
50585298 9.66E-06 64 20 LOC646813 28.2 3 163692 7.7E-09 

chr17:44249838-
44263765 2.22E-05 13 4 KANSL1 25.6 1 240 0.005428 

chr9:66849886-
66861820 2.79E-05 15 1 AK310876 6.7 1 61147 0.000124 

chr6:24325627-
24325627 0.000103 21 3 DCDC2 28.3 1 23355 3.61E-05 

chr4:183570100-
183571844 0.000214 7 1 TENM3 17.5 3 3080 0.028486 

chr21:10858540-
10858651 0.000383 104 107 TPTE 44.7 3 48092 0.000768 

chr16:16203345-
16261251 0.00045 7 1 ABCC1,ABCC6 285.7 3 0 0.028093 

chr1:232460612-
232461177 0.00048 10 2 SIPA1L2 16.4 3 72535 0.016979 

 

 

Now that we have better understood congenital heart disease we move into 

neurodevelopmental disorders and comparing a variety of disorders and different arrays 

in a meta-analysis. 
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Chapter 6  

6.0 CNV Meta-Analysis of 5 Major Neurodevelopmental Disorders 
 

Summary 

Psychiatric disease in children and young adults poses a major health burden and is 

growing rapidly in prevalence. However, diagnostic phenotypes are not necessarily 

distinct from each other suggesting a shared genetic etiology. There is also a potential to 

target a shared associated variant using a shared therapeutic. Here, we investigate copy 

number variants in cohorts of schizophrenia, bipolar, autism, ADHD, and depression. We 

can consider the effected domains of cognition, psychosis, and mood. A total of 11,418 

cases were compared to 14,789 controls. The well-known 22q11 deletion was found to be 

enriched in cases vs. controls (p=5.33x10
-7

). Duplication of DOCK8/KANK1 was found 

to be significant p=7.5x10
-7

. Several known and novel loci were significant by case-

control association with CNVs enriched in cases across the neurodevelopmental 

disorders. 

6.1 Introduction 

Studies of the base variants of DNA in psychiatric disease in very large cohort sizes have 

begun to bear intriguing results (3, 117, 118, 168, 193). However, these single nucleotide 

polymorphisms (SNPs) imprecisely tag nearby genes and have modest odds ratios. Copy 

number variants (CNVs) have more direct gene dosage impacts and have been implicated 

in psychiatric disease by a number of smaller cohort sizes with high odds ratios (49, 65, 

67, 68). Although family studies have been very popular for avoiding population 
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stratification issues, de novo and transmission disequilibrium (TDT) tests lack power to 

find recurrent and significant results respectively. Case-control studies allow an 

abundance of independent controls, population based allele frequency comparisons, 

correction for population stratification of rare CNV variants by linear mixed model, with 

enhanced power for recurrent significant confident results. Ambiguity in CNV calling in 

different cohorts with different array resolutions can be challenging and impinge on 

independent replication efforts. Here we process 5 large psychiatric disease cohorts in a 

systematic manner to promote comparability of results. 

6.2 Results 

Five large psychiatric diseases with matched SNP array version controls were genotyped 

and quality metric filtered (Table 6.1).  

Table 6.1. Psychiatric Disease Cohorts Analyzed 
 

Disease Cohort Cases Controls Array Statistic 

Schizophrenia 

Bipolar cohort 
3,377 1,301 Illumina 1MDv3 GEMMA 

Schizophrenia 2,790 4,500 Affymetrix 6.0 GEMMA 

Autism 3,360 3,288 Illumina 550v3 GEMMA 

ADHD 1,244 4,110 Illumina 550v1 Fisher 

Depression 647 1,590 Perlegen 660k Fisher 

GEMMA and Fisher exact test p-values and Betas/odds ratios were calculated for each 

disease case-control study. The closest gene was used as the marker name instead of the 

rs ID SNP name to allow for more dynamic matching between CNVs derived from 

different arrays (Table 6.2).  
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Table 6.2. SNP ID Matches between SNP arrays  (top panel) and Gene ID Array Matches for Deletions 

(middle panel) and Duplicaitons (bottom panel) 
 

Matches SNPs 

Between Cohorts 
Count 

Significant 

CNVRs 
1,758,390 1 127 

385,436 2 30 

225,641 3 25 

88,750 4 7 

9,976 5 0 

 

Matches Genes Del 

Between Cohorts 
Count 

Significant 

CNVRs 
2,921 1 12 

2,671 2 20 

1,900 3 18 

14,547 4 40 

7,900 5 175 

 

Matches Genes Dup 

Between Cohorts 
Count 

Significant 

CNVRs 
2,865 1 37 

2,776 2 22 

1,844 3 7 

15,297 4 16 

7,262 5 43 

The lowest p-value was used for meta-analysis. Using Genome-wide Efficient Mixed 

Model Association (GEMMA) for the initial discovery cohorts of patients with 

schizophrenia, schizoaffective, and bipolar disease, we performed principal components 

analysis (PCA) and subsequently matched Caucasians cases with Caucasians controls, to 

, correct for residual population stratification while maintaining power for rare CNV 

variants. Correction for population stratification for rare population frequency variants 

which may be geographically concentrated or dispersed while maintaining power, 

remains an important fundamental open challenge of ongoing investigation
(127, 137)

. 

http://stephenslab.uchicago.edu/software.html#gemma
http://stephenslab.uchicago.edu/software.html#gemma
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The known and well characterized 22q11 deletion was found across psychiatric diseases 

and we were able to resolve smaller 

CNVs in a couple patients on COMT 

and PRAME, implicating these genes 

as key drivers in the deletion 

phenotype for these psychiatric 

disorders (Figure 6.3). 

A novel duplication of DOCK8 and 

KANK1 on 9p24 was the most 

significant result with duplication 

CNVs enriched in each of the 5 case-

control cohorts meta-analyzed with 

significant contributions from each cohort (Table 6.3) (Figure 6.1). These were 

subsequently validated visually (Figure 6.4) and experimentally (Table 6.10). 

Table 6.3. DOCK8 Contributing Signals from each Psychiatric Disease Cohort 
 

Cohort ChrPosHg18 SNPID P Beta/OR 
Cases 
Dup 

Cases 
Diploid 

Controls 
Dup 

Controls 
Diploid 

Gene 
Exon 

Distance 

Schizo 

Bipolar 
chr9:435364 rs4741936 0.00693 3.15E-01 6 2911 0 1113 DOCK8 1006 

CHOP 
Schizo 

chr9:383339 
SNP_A-
2057057 

0.00800 10.7119 7 957 1 1465 DOCK8 2773 

CHOP 

Autism 
chr9:432030 rs1887958 0.00384 infinity 7 2071 0 2518 DOCK8 21 

CHOP 

ADHD 
chr9:344334 rs943625 0.08985 3.31932 4 1235 4 4105 DOCK8 11257 

CHOP 

Depression 
chr9:283360 rs943628 0.00731 4.96401 8 639 4 1586 DOCK8 3779 

 

Figure 6.1. DOCK8/KANK1 Duplications 

 

 
 

Green rectangles represent duplication calls. 
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Analysis, using GEMMA for the various disease cohorts in Table 6.1 (Schizophrenia 

Bipolar, Schizophrenia, Autism, ADHD, and Depression) demonstrated significant P 

values across multiple loci (Table 6.4).  

 
Table 6.4. Meta-analysis across five major neuropsychiatric cohorts.  Deletions (top table) and Duplications 

(bottom table) 
 

MarkerName 

Deletion Weight Zscore Meta p-

value *Direction 

KIAA1693 4 7.185 6.73E-13 -+++? 
NBPF20 4 7.036 1.97E-12 ++++? 
POTEA 3 5.756 8.59E-09 +?++? 
CYP2A6 4 4.637 3.54E-06 ++++? 
COMT 3 4.494 6.99E-06 +?++? 

GRIN3B 3 -4.482 7.41E-06 -?--? 
CTNNA3 4 -4.439 9.05E-06 ----? 
AK058147 4 4.394 1.11E-05 ++++? 
C21orf56 3 4.112 3.93E-05 +?++? 
DUSP22 3 4.007 6.15E-05 ++?+? 

DKFZp434L187 4 3.916 9.02E-05 +++-? 
ZNF804A 4 3.88 0.000104 ++++? 
MAMDC1 4 3.8 0.000145 ++++? 

PSG11 4 3.743 0.000182 ++++? 
ASB3 4 3.666 0.000247 ++++? 
HCN1 4 3.597 0.000322 +++-? 

 

MarkerName 

Duplication Weight Zscore Meta p-

value Direction 

DOCK8 5 4.948 7.50E-07 +++++ 
AK075337 3 4.629 3.68E-06 +?++? 
AF161442 3 4.574 4.78E-06 ?-++? 

KANK1 5 4.141 3.45E-05 +++++ 
AK123120 4 4.128 3.67E-05 +-++? 
FAM60A 5 4.111 3.94E-05 ++++- 
UNKL 3 3.816 0.000136 +?++? 

ALG10B 4 3.748 0.000179 ++++? 
 
*Some arrays had poor coverage or no CNVs observed on certain genes, resulting in missing direction of 

association (“?”); “+” indicates more cases than controls while; “-“ indicates more controls than cases. 
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Analysis of Protein-Protein Interaction Network was performed using brain expression 

filters 

capturing 20 

genes of 55 

(Figure 6.2). 

Topological 

features:  

1. the main 

network is 

around gene 

UBC  

2. smaller 

cluster involving ZWINT neighborhood (also RAB11FIP3 and ERBB4). 

  

Calcium channels have been associated in GWAS meta-analysis of the psychiatric 

diseases(3). These CACNA genes, specifically CACNA1H (p=7.33x10
-5

) demonstrated 

the strongest signal in autism, and more modest signals in schizophrenia, bipolar, and 

depression. Interestingly, ADHD had a significant lack of CNVs in this region. 

6.3 Discussion 

There is mounting evidence for the shared genetic and epidemiological etiology 

of psychiatric disorders. We are the first to perform CNV meta-analysis between all five 

major neurodevelopmental disorders: autism, ADHD, schizophrenia, bipolar, and 

depression. These genetic discoveries pave the way for new drugs and diagnostics which 

Figure 6.2. Protein-Protein Interaction Network Brain Expressed. 

 

 
 

20 genes (of 55). Topological features: 1. the network is around gene UBC 2. small 

cluster involving ZWINT neighborhood (also RAB11FIP3 and ERBB4). 
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can be applied across clinical indications. Using gene based association statistics, we 

were able to robustly meta-analyze different psychiatric conditions across different 

microarrays and generate and uncover novel loci with neurodevelopmental/psychiatric 

disease associations.                                                                                                        

22q11 deletion is a well know locus for schizophrenia and syndromic conditions with 

heart and brain involvement. Here, we are able to partially gain greater resolution of 

pathogenic CNVs in this genomic locus, highlighting COMT.9p24 duplications of 

DOCK8 and KANK1 are intriguing given that these genes have been shown to be 

involved in severe mental dysfunctions of mental retardation and cerebral palsy, 

respectively. DOCK8 is the dedicator of cytokinesis 8, a member of the DOCK180 

family of guanine nucleotide exchange factors (GEF), of which there are 11 DOCK 

genes. Guanine nucleotide exchange factors interact with Rho GTPases and are 

components of intracellular signaling networks. GEF proteins activate some small 

GTPases by exchanging bound GDP for free GTP. Mutations in DOCK8 have been 

shown to cause mental retardation. KANK1 is KN motif and ankyrin repeat domains 1 

(KANK1). There are 4 KANK genes. KANK1 functions in cytoskeleton formation by 
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regulating actin polymerization. Mutations in this gene cause cerebral palsy spastic 

quadriplegic type 2, a central nervous system development disorder. KANK1 inhibits 

neurite outgrowth. KANK1 inhibits actin fiber formation and cell migration. KANK1 also 

inhibits RhoA activity; the function involves phosphorylation through PI3K/Akt 

signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to 

sequester them from active complexes. Inhibits the formation of lamellipodia (projection) 

but not of filopodia (far projection); the function may depend on the competitive 

interaction with BAIAP2 to block its association with activated RAC1. KANK1 inhibits 

fibronectin-mediated cell spreading; the function is partially mediated by BAIAP2. 

KANK1 is involved in the establishment and persistence of cell polarity during directed 

cell movement in wound healing. In the nucleus, KANK1 is involved in beta-catenin-

dependent activation of 

transcription. 

CACNA was first implicated in our 

previous schizophrenia CNV 

association study(REF). A GWAS 

meta-analysis of psychiatric disease 

base genotypes also implicated this 

locus as highly significant. Here we 

show CACNA1H as highly 

significant further underscoring the 

importance of this gene family in 

psychiatric conditions. 

Figure 6.3. 22q11 Deletion in Individual Sample Profiles 

 

 
 

Red rectangles represent deletion calls. 
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These CNVs add to the catalog of neurodevelopmental variants(77) to be further 

investigated and replicated(83) by ongoing studies in this important domain. 

6.4 Conclusion 

With mounting awareness of childhood psychiatric conditions comes mounting need for 

large-scale genetic studies and unified picture of the catalog of rare variants underlying 

these conditions. We take the unprecedented step to meta-analyze CNVs across 

psychiatric diseases and reveal multiple significant genes which could serve as viable 

drug targets with cross-indication clinical utility. 

6.5 Methods 

Sample 

The dbGaP non-GAIN schizophrenia samples were downloaded from the dbGaP website. 

We did have total of 5825 non-GAIN Affymetrix 6.0 raw CEL files. The CEL files were 

converted to raw intensity data using PennCNV Affy workflow 

[http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html].  We 

only included samples with call rate>=98% for generating CNVs.   

 PennCNV and QC 

CNV were generated using PennCNV(211)
 
a Hidden Markov Model(HMM) based 

algorithm which combines multiple source of information including LRR, BAF ,SNP 

spacing and population frequency of B allele to generate the CNV.  The following  QC 

criteria were used to select the CNV’s for further analysis: 1) For all Illumina chip 

platform call rate >98%, SD LRR <0.3, |GCWF| <0.05 and count CNV <100;  2) For 
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Affymetrix 6.0 data call rate >96%, SD LRR <0.35, |GCWF| <0.02 and count CNV <80 

(70)
 
. 

For Affymetrix 6.0 Schizophrenia dbgap non-gain samples, we did LD based SNP 

pruning using Plink(167).We only included the SNP with genotype rates < 5%, minor 

allele frequency > 0.01, as well as HWE P value > 0.0001. We generated the pairwise 

IBD values for samples using genome command and excluded one sample from any pair 

with a PI_HAT value exceeding 0.3. 

We ran PCA on Affymetrix 6.0 data using Eigenstrat(163)
 
package. The first 10 Eigen 

vectors were plotted and samples were excluded if the values were greater than 0.05 for 

the first 2 principal components to select eastern European individuals. 

CNV Association 

ParseCNV(70) was used to conduct the CNV association analysis. Case control CNV 

association  was done on Schizophrenia (case=2790, control=4500), Autism (case=3360, 

control=3288) cohorts separately which generates a deletion, duplication  CNVRs based 

on probe statistics of CNV’s. The –includeped option was used in the ParseCNV(70) 
 

which generates a ped file for SNP analysis. 

GEMMA 

The bed file was imported into GEMMA version 0.94(227).The relatedness matrix for 

genotype was calculated using the -gk 1 option .The matrix file was then imported for 

univariate linear mixed model association which accounts for population stratification 

estimate the proportion of variance of phenotype and -lmm 4 option was used which 
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includes Wald test, likelihood ratio test and score test statistics, we also removed SNPs 

whose MAF<0.000005.  

InsertPlinkPvalues 

We used InsertPlinkPvalue program from ParseCNV(70) 
 
package to insert the SNP p-

value generated by GEMMA association result to define ParseCNV CNVRs . 

METAL 

For meta-analysis, METAL was used on SNP-based population CNV association 

statistics sorted by p-value to include the most significant SNP in each gene. The 

logarithm of the odds ratio was taken to ensure consistency with Beta for the direction of 

association considerations. 

Statistical Analysis 

Two-tailed fisher’s exact test and Gemma linear mixed model. P-values of less than 0.05 

after correction for 100 independent and informative tests (5x10
-4

 uncorrected) were 

considered significant.  

Table 6.5. GEMMA analysis in Schizophrenia/Bipolar discovery samples together with CHOP samples 

from Schizophrenia, Autism, ADHD and Depression cases. 

A) 

Marker Name 

Del 
Weight Zscore P-value Direction Region(hg19) 

LOC729862 3 7.042 1.90E-12 +?++? chr5:28926976-28927420 

HLA-B 3 4.882 1.05E-06 ++?+? chr6:2618277-2704782 

MED18 3 4.773 1.81E-06 +++?? chr1:28655512-28662478 

C11orf74 3 4.745 2.09E-06 -?++? chr11:36616066-36696390 

NBPF4 3 4.709 2.49E-06 +++?? chr1:108918459-108953434 

HINT1 3 4.698 2.62E-06 +?++? chr5:130494874-130501034 

BC035867 3 4.677 2.91E-06 +?++? chr22:20970516-21011201 

SLITRK6 3 4.671 3.00E-06 +?++? chr13:86366921-86373483 

CPNE4 3 4.669 3.03E-06 +++?? chr3:131253576-132004254 

POTEA 3 4.559 5.13E-06 +?++? chr8:43147584-43218328 
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RNF168 3 4.525 6.03E-06 +++?? chr3:196195656-196230639 

PHACTR4 4 4.455 8.38E-06 ++++? chr1:28696092-28826881 

WDR53 3 4.449 8.64E-06 +++?? chr3:196281058-196295413 

HCN1 3 4.371 1.24E-05 +?+-? chr5:45255051-45696220 

C3orf43 3 4.296 1.74E-05 +++?? chr3:196233749-196242237 

BC070396 4 4.252 2.12E-05 ++++? chr3:103646038-103730578 

RGS18 4 4.207 2.59E-05 ++++? chr1:192127591-192154945 

KHDRBS2 4 4.077 4.57E-05 ++++? chr6:62389864-62996100 

CCDC91 3 4.07 4.69E-05 +?++? chr12:28332209-28703099 

AK093205 4 4.046 5.20E-05 ++++? chr4:33893553-33908510 

LOC10014460

2 
4 4.039 5.38E-05 ++++? chr4:66535678-66559104 

KCND2 3 3.889 0.000101 +?++? chr7:119913721-120390387 

GUCY1A3 3 3.804 0.000143 ++?+? chr4:156587861-156658214 

SESN2 3 3.79 0.000151 +++?? chr1:28585962-28609002 

FBXO45 3 3.766 0.000166 +++?? chr3:196295724-196315930 

BC051808 4 3.711 0.000206 ++++? chr1:108963310-108975804 

PER4 3 3.646 0.000267 +?++? chr7:9673899-9675447 

JARID2 3 3.626 0.000288 +++?? chr6:15246526-15522253 

PRR16 3 3.604 0.000313 +?++? chr5:119800018-120022964 

SEMA5A 3 3.602 0.000315 +?++? chr5:9035137-9546233 

OR12D3 3 3.6 0.000319 ++?+? chr6:29341199-29343068 

AK098570 3 3.587 0.000335 +?++? chr5:29143667-29153802 

KCNJ3 3 3.579 0.000345 ?+++? chr2:155555092-155713014 

ARHGEF16 4 3.563 0.000367 ++++? chr1:3371146-3397677 

BC034799 4 3.561 0.00037 ++++? chr4:58292037-58332152 

SPRY2 3 3.523 0.000427 +?++? chr13:80910111-80915086 

EYS 4 3.493 0.000477 -+++? chr6:64429875-66417118 

DPP10 4 3.482 0.000499 ++++? chr2:115199898-116602326 

 

 

  

B) 

Marker Name 

Dup 
Weight Zscore P-value Direction Region(hg19) 

AF161442 2 6.232 4.60E-10 ??++? chr9:139543061-139554873 

SIK1 3 4.87 1.12E-06 +?++? chr21:44834397-44847002 

BC036345 4 4.725 2.30E-06 ++++? chr4:33897960-34041515 

ZNF85 2 4.358 1.31E-05 +?+?? chr19:21106058-21133503 

AK075337 3 4.217 2.48E-05 +?++? chr19:28129390-28137384 

TRNA_Lys 2 4.15 3.33E-05 ?++?? chr1:55423541-55423614 

TRNA_Pseudo 2 4.026 5.68E-05 ?++?? chr5:151988595-151988771 

GPC5 3 3.99 6.62E-05 +?++? chr13:92050934-93519487 

C19orf36 2 3.77 0.000163 -??+? chr21:11057795-11098937 

TRNA_Gln 2 3.756 0.000172 ?++?? chr20:17855141-17855219 
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AK056166 2 3.732 0.00019 +??+? chr20:17855141-17855219 

AF088005 2 3.726 0.000195 +??+? chr19:13209841-13213974 

HLA-A 3 3.669 0.000243 ++?+? chr6:1150035-1295564 

HCN1 3 3.656 0.000256 +?++? chr5:45255051-45696220 

ITGB2 2 3.639 0.000273 ??++? chr21:46305867-46348753 

BX648270 2 3.637 0.000276 ++??? chr2:132442469-132457442 

ALG10B 3 3.622 0.000293 +?++? chr12:38710556-38723528 

ICOSLG 2 3.619 0.000296 ??++? chr21:45646721-45660834 

AX747706 2 3.616 0.000299 ??-+? chr9:139442078-139444195 

TRNA_His 2 3.512 0.000444 ?++?? chr1:145396880-145396952 

LOC728989 2 3.512 0.000444 ?++?? chr1:146490894-146514599 

 

 

Description of schizophrenia/bioplar discovery cohort samples 

The unrelated schizophrenia (SCZ), schizoaffective (SA), or bipolar I (BP) patients were 

from 28 clinical trials (Table 6.6) conducted by Janssen Research & Development, LLC 

to assess the efficacy and safety of risperidone, paliperidone and an investigative 

compound (R209130). The diagnoses of SCZ, SA, and BP were based on expert clinician 

interviews conducted using DSM-IV-TR criteria. In two studies (NCT00397033 and 

NCT00412373), the diagnosis of schizoaffective disorder was confirmed using an 

interview based SCID (Structured Clinical Interview for DSM-IV-TR). Detailed 

descriptions of these clinical trials can be found at ClinicalTrials.gov, as well as in 

published works
1-30

, and thus, are not repeated here. 

 

A total of 5,544 DNA samples from 5,431 patients and 49 quality control (QC) samples 

were genotyped on the Illumina Human1M-DuoV3. DNA samples from all patients who 

participated in these clinical trials and consented to the genetic study were genotyped for 

21 out of the 28 clinical trials. A small number of DNA samples from the remaining 7 

clinical trials were also genotyped (Table 6.6). The DNA samples were genotyped in 2 

batches, with 3,102 samples in the first batch and 2,491 samples in the second batch. 
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Genotype data were successfully generated on 5,508 samples. A few sample QC steps 

were performed to remove the duplicated and/or problematic samples. First, gender 

discrepancies were examined using both the heterozygosity rate of the X-chromosome 

SNPs and the call rate of the Y-chromosome SNPs. Samples with discrepant and 

ambiguous gender information were excluded. Second, the relatedness of the genotyped 

samples was examined using pairwise Identity-by-State. Planned but not confirmed 

duplicates, as well as unplanned duplicates, with discrepant phenotype data were 

excluded from subsequent analyses. For each pair of samples that were planned and 

confirmed duplicates, unplanned duplicates with consistent phenotype data, or samples of 

related individuals, the sample with a smaller standard deviation of the LogR-ratio (LRR) 

was retained. After the sample QC, there were 4,962 samples (3,251 SCZ, 377 SA, and 

1,334 BP) remaining.  

 

Table 6.6: Summary of the clinical trial samples 

ClinicalTrials.gov 
Identifier 

Disease 
Number of 
Patients 

Genotyped 

Genotyping 
Batch 

Publication PMID 

NCT00791232 SCZ 1 1 Cleton et al 2007 
 

NCT00086320 SCZ 187 1 Kramer M et al 2007 17224706 

NCT00085748 SCZ 93 1 Tzimos A et al 2008 18165460 

NCT00078039 SCZ 473 1 
Kane J et al 2007,  17092691, 

18466043 Meltzer HY et al 2008 

NCT00077714 SCZ 296 1 
Marder SR et al 2007,  17601495, 

18466043 Meltzer HY et al 2008 

NCT00083668 SCZ 333 1 
Davidson M et al 2007,  17466492, 

18466043 Meltzer HY et al 2008 

NCT00334126 SCZ 220 1 Canuso CM et al 2009 19411369 

NCT00397033 SA 173 2 Canuso CM et al 2010 
20492853, 
20957127 

NCT00412373 SA 187 2 Canuso et al 2010 
20814330, 
20957127 

NCT00299715 BP 310 2 Berwaerts J et al 2012 20624657 
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NCT00309699 BP 350 2 Vieta E et al 2010 20565430 

NCT00309686 BP 214 2 Berwaerts J et al 2011 20947174 

NCT00074477 SCZ 168 1 Kramer M et al 2010 19941696 

NCT00111189 SCZ 14 1 
Hough D et al 2010,  19959339, 

21696265 Kozma CM et al 2011 

NCT00210717 SCZ 493 1 
Fleischhacker WW et al 

2011 
21777507 

NCT00210548 SCZ 249 1 Gopal S et al 2010 20389255 

NCT00101634 SCZ 404 1 Nasrallah HA et al 2010 20555312 

NCT00119756 SCZ 17 1 Hough D et al 2009 19481579 

NCT00590577 SCZ 468 2 
Pandina GJ et al 2010,  20473057, 

21569242 Bossie CA et al 2011 

NCT00297388 
SCZ or 

SA 
148 2 Simpson GM et al 2006 16965196 

NCT00061802 
SCZ or 

SA 
62 1 

Gharabawi GM et al 
2006 

17054789 

NCT00076115 BP 120 2 Hass M et al 2009 19839994 

 
SCZ 8 1 Turner M et al 2004 15201572 

NCT00253162 BP 233 2 Smulevich AB et al 2005 15572276 

NCT00257075 BP 186 2 Hirschfeld RM et al 2004 15169694 

NCT00034775 SCZ 16 1 
Lindenmayer JP et al 

2004 
15323593 

 
SCZ 7 1 

  
NCT00063297 SCZ 1 1 

  
 
 
Data presented in table 6.7 below summarize the basic demographic information of these 

patients. 

 

 
Table 6.7: Basic demographic information of the JNJ SZ, SA, and BP patients 

 
Schizophrenia  

(N=3251) 
Schizoaffective  

(N=377) 
Bipolar 

(N=1344) 

Sex, n (%) 
   

F 1240 (38.1) 152 (40.3) 629 (47.2) 

M 2011 (61.9) 225 (59.7) 705 (52.8) 

Age, years 
   

Mean (SD) 40.2 (12) 38.7 (9.5) 37.8 (13.5) 

Median (Range) 40 (17, 81) 39 (19, 61) 39 (10, 77) 

Race, n (%) 
   

Asian 117 (3.6) 52 (13.8) 37 (2.8) 

Black or African American 703 (21.6) 86 (22.8) 247 (18.5) 

White 2360 (72.6) 228 (60.5) 1021 (76.5) 

Other 71 (2.2) 11 (2.9) 29 (2.2) 
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Schizophrenia GAIN and non-GAIN: Inclusion criteria for samples included in the 

analysis were as follows:  The subject must give signed, informed consent.  The proband 

must have a consensus best-estimate DSM-IV diagnosis of SZ (schizophrenia) or of 

schizoaffective disorder with at least 6 months’ duration of the “A” criteria for 

schizophrenia.   The subject must be over 18 years of age at interview (male or female).  

The informant should have known the subject for at least 2 years, be familiar with the 

psychiatric history, and have at least 1 hour of contact per week with the proband (close 

family members preferred). 

Exclusion criteria were as follows:  The subject is unable to give informed consent to all 

aspects of the study.  The subject is unable to speak and be interviewed in English (to 

ensure validity of the interviews). 

Psychosis is deemed secondary to substance use by the consensus diagnostic procedure 

because psychotic symptoms are limited to periods of likely intoxication or withdrawal, 

or there are persistent symptoms likely related to substance use (e.g. increasing paranoia 

after years of amphetamine use, symptoms limited to visual hallucinations after extensive 

hallucinogen use).   The psychotic disorder is deemed secondary to a neurological 

disorder, such as epilepsy, based on the nature and timing of symptoms. For example, 

nonspecific, nonfocal EEG abnormalities are common in SZ, but subjects with psychosis 

that emerged in the context of temporal lobe epilepsy would be excluded. 

The subject has severe mental retardation (MR). A subject with mild MR (IQ ≥ 55 or 

based on clinical and educational history) can be included if SZ symptoms and history 

can be clearly established. 
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Control Population Typed on Affymetrix 6.0 at CHOP 

The control population included de-identified subjects collected at CHOP and UPenn was  

Only Caucasian samples from subjects without psychiatric disease were included and 

validated by Eigenstrat principal components analysis before use. 

 

Autism   

The ASD subjects within the ACC cohort were collected from multiple collaborative 

projects across the US. We assembled an ASD Autism Case-Control (ACC) cohort by 

collecting, from multiple sites within the United States, 859 subjects of European 

ancestry affected with ASD (Table 6.8). Among these subjects, 703 were male and 156 

were female, all of whom met diagnostic criteria for autism based on ADI, and 124 met 

criteria for other ASDs based on ADOS. The best estimate procedure was used with 

autism experts evaluating all available information (including ADI/ADI-R and ADOS 

which was attained for all subjects) to provide the final diagnosis of Autism or ASD. 

Subjects ranged from 2-21 years of age when diagnosis was made. ADI-Autism 

Diagnostic Interview, ADOS-Autism Diagnostic Observation Schedule, IQ-Intelligence 

quotient, NVIQ-nonverbal IQ, VIQ-verbal IQ, FSIQ-full scale IQ. 

 
Table 6.8. ACC Cohort Description 

blood 98%  ADI_dx Autism 859  IQ age (months)  n=496 

cell line 2%  ADI_dx not Autism 0  Median 117 

   ADOS_dx ASD 124  Mean 141.4 

Female 156  ADOS_dx Autism 708  SD 95.5 

Male 703  ADOS_dx not Autism 27    

      NVIQ n=382 

      Median 92 

      Mean 89 
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Control subjects from the Children’s Hospital of Philadelphia 
 

The control group included 2519 children of self-reported Caucasian ancestry (mean age 

was 8.7 years, median=9, SD=5.46 and 52.5% males). All controls had no history of 

ASD. The CHOP controls were recruited by CHOP nursing and medical assistant staff 

under the direction of CHOP clinicians within the CHOP Health Care Network, including 

four primary care clinics and several group practices and outpatient practices that 

included well child visits. The controls are recruited though our primary care and well 

child clinics - they range in age from 1-19 years; both questionnaire data (obtained during 

recruitment) and electronic health care records (average coverage 3-4 years) indicated 

that they have no chronic disease and are developmentally on target; age, sex and ethnic 

background are also reported. The questionnaire data asked specifically if the patient has 

been evaluated for autism; any underlying medical condition and any medication they 

may be taking (so all the controls are negative for autism or any other CNS disorder, 

chromosomal disorder, syndrome or genetic disorder). 

 

      SD 25.5 

        

      VIQ n=378 

      Median 86 

      Mean 81.1 

      SD 29.5 

        

      FSIQ n=453 

      Median 87 

      Mean 85.7 

      SD 25.5 
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Autism Genetic Resource Exchange (AGRE) 
 

The Autism Genetic Resource Exchange (AGRE; http://www.agre.org) has a collection 

of DNA samples and clinical information from families with autism spectrum disorder 

(ASD). We have collected DNA samples from 943 families (4,444 individuals) from the 

entire AGRE collection (as of August 2007). These AGRE families include 917 

multiplex families, 24 simplex families and 2 families without ASD diagnosis (not used 

in analysis). 

The AGRE annotation database classifies autism, broad spectrum (patterns of 

impairment along the spectrum of pervasive developmental disorders, including PDD-

NOS and Asperger’s syndrome) or Not Quite Autism (individuals who are no more than 

one point away from meeting autism criteria on any or all of the social, communication, 

and/or behavior domains and meet criteria for “age of onset”; or, individuals who meet 

criteria on all domains, but do not meet criteria for the "age of onset"). In our analysis, 

AGRE patients with “Autism” (n=1202) and “Broad Spectrum” (n= 134) phenotype 

annotation were treated as a single ASD group. Among them, 11 subjects had autism 

diagnoses assigned by ADOS (Autism Diagnostic Observation Schedule) without ADI-R 

(Autism Diagnostic Interview-Revised). SRS-Social Responsiveness Scale
 
(Table 6.9). 

 
Table 6.9. AGRE Cohort Clinical Description 

 
Multiplex  95%  ADOS_Diagnosis Count   SRS n=821 

Simplex  5%  Autism 775  Median 106 

   not ASD or Autism 76  Mean 104.2 

Cell Line 1336  Spectrum 171  SD 33.7 

        

Female 284  Assessed age yrs   SRS Age yrs  

Male 1052  Median 8  Median 9.49 

   Mean 9.2  Mean 10.0 

Sibs Count  SD 5.3  SD 4.6 
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0 282       

1 438  ADIR Count   Raven IQ n=645 

2 54  Autism 93  Median 103 

3 4  Asperger's 18  Mean 100.7 

   PDD 16  SD 18.9 

AGRE Status  Count       

Autism 1202  Assessed age yrs   Raven IQ Age 

yrs 

 

BroadSpectrum 134  Median 7.08  Median 8 

   Mean 8.0  Mean 8.9 

   SD 4.4  SD 3.9 

 

 

ADHD 

 

Our discovery cohort included a total of 1,013 ADHD cases of European descent 

recruited and genotyped at The Children’s Hospital of Philadelphia (CHOP) consisting of 

664 cases without parents and 349 cases from complete trios. We established a minimum 

inclusion IQ threshold of 70 to exclude cases with intellectual disability. The control 

group included 4,105 healthy children of European ancestry 32% female and 68% male 

aged 6-18 years old. Medical records and parental/self-reported questionnaires were 

screened for developmental delays and special educational needs. Additional 128 cases 

from NIMH and 90 cases from The University of Utah were used for replication. The 

DNA samples were genotyped on different platforms; to manage differences in CNV 

detection between arrays we used controls genotyped on platforms matching case 

platforms. 

 

Additional controls on the Illumina platform were genotyped on the InfiniumII 

HumanHap550 BeadChip technology (Illumina San Diego CA), at the Center for Applied 

Genomics at CHOP. Subjects were primarily recruited from the Philadelphia region 

through the Hospital's Health Care Network, including four primary care clinics and 
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several group practices and outpatient practices that performed well child visits. 

Eligibility criteria for this study included all of the following: (1) disease-free children 

and parents of these children in the age range of 0–18 yr of age who had high quality, 

genome-wide genotyping data from blood samples (defined in Supplemental Methods); 

(2) self-reported ethnic background; and (3) no serious underlying medical disorder, 

including but not limited to neurodevelopmental disorders, cancer, chromosomal 

abnormalities, and known metabolic or genetic disorders. For more details see
33

. 

 

Depression 

 

Case:Control Data 

Raw genotyping data from three Genetic Association Information Network (GAIN) 

projects typed on the Perlegen 600K (Perlegen Sciences Mountain View, CA, USA) array 

were accessed through dbGaP. MDD cases and controls who were at low liability for 

MDD were utilized from the case:control project “Major Depression: Stage 1 

Genomewide Association in Population-Based Samples (phs000020.v2.p1)”. Psoriasis 

Cases and Controls were used to supplement our Perlegen 600K control cohort for MDD 

“Collaborative Association Study of Psoriasis (phs000019.v1.p1)”. Lastly, parents from 

parent-offspring trios were used to further supplement the control from “International 

Multi-Center ADHD Genetics Project (phs000016.v2.p2)”. Parents from the ADHD 

study were used to maximize the number of unrelated individuals that could be leveraged 

for optimal study power. 

 

Case selection 
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MDD cases were recruited through mental health care organizations, general practices 

and in the community setting. The inclusion criteria for the 1,780 (1,693 of which were 

used in this study) participants are: 1) a DSM-IV diagnosis of major depressive disorder 

as confirmed by the CIDI psychiatric interview, 2) an age between 18 through 65 years, 

3) sufficient knowledge of the Dutch language, and 4) North-European ancestry. As the 

samples should be representative of patients seen in different settings, there are few a 

priori exclusion criteria. Excluded patients are: 1) those with a primary diagnosis of 

psychosis, bipolar disorder, obsessive compulsive disorder, severe addiction disorder and 

2) those with insufficient knowledge of the Dutch language. 

 

Control selection 

Age and gender matched control subjects are mainly derived from the Netherlands Twin 

Register, for which data collection in twin, their parents, spouses and siblings occurred in 

1991, 1993, 1995, 1997, 2000, 2002/3 and 2004/5. A total of 1860 (1,697 of which were 

used in this study) controls were selected (only one member from each family) with the 

following inclusion criteria: 1) age 18 through 65 years, 2) never scoring high (> 0.65) on 

a general factor score for anxious depression (a combined measure of neuroticism, 

anxiety and depressive symptoms via questionnaires), 3) never reported a history of 

MDD in any survey, and 4) North-European ancestry. Controls and their parents were 

born in the Netherlands or northwestern Europe. 

 

Additional control subjects were obtained from two other studies both of which were 

unrelated to MDD.  The first one included a case control study on psoriasis who were 

genotyped on the Perlegen platform and included as controls (n=1,600).  The psoriasis 
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cases were diagnosed by dermatologists and their matched controls had no history of 

psoriasis, no family history of psoriasis or other auto-immune disorders. All subjects 

were 18 years of age or older.  The second control cohort included parents from the 

ADHD parent-offspring trios study who were also genotyped on the Perlegen platform 

and included as controls (n=1,209). For more details see
34

. 
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Figure 6.4. KANK1 Duplications Raw BAF LRR Plots 

 

 

 
Red points show the elevated Log R Ratio (hybridization intensity) and triallelic B allele 

frequency (genotype) in the duplicated region with flanking blue points showing normal 

diploid state. Schizophrenia and bipolar cases are represented. 
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Table 6.10. KANK1 Duplications Independent Validation with Roche Universal Probe Library 
 Assay #: 132 134 135 137 141 145 Duplication call 

 

Chromosomal 

Location 

(hg18): 

chr9:279,035

-279,138 

chr9:326,544

-326,608 

chr9:416,891

-417,000 

chr9:460,349

-460,443 

chr9:537,138

-537,211 

chr9:559,914

-560,007 

Chromosomal 

Location (hg18): 

S
u

b
je

ct
 I

D
 

4303995005 2 2 3 3 3 1 
chr9:474299-

702599 

5026401799 2 2 2 2 2 1 
chr9:549715-

626251 

6626851238 2 3 3 3 3 1 
chr9:323820-

733353 

6921106789 2 2 2 2 3 1 
chr9:516773-

801972 

7015457340 2 2 3 3 3 1 
chr9:396118-

689065 

7565556942 2 3 3 3 4 1 
chr9:323820-

801972 

7720672852 2 2 3 3 2 1 
chr9:490811-

534956 

9392414481 2 3 3 3 3 1 
chr9:287395-

723374 

9527354896 2 3 3 3 2 1 
chr9:308154-

474850 

2885798241 2 2 3 3 3 1 
chr9:468154-

697859 

8697617291 3 3 3 3 2 1 
chr9:263161-

520703 

 

Six assays were run on each subject, with the assays covering much of the region covered 

by the duplications. The copy number calls for each subject for each of the six assays is 

shown. The table has been colored gray for assays that were within the predicted deletion 

call for that subject, and the CNVs detected are highlighted with the red numbers. In 10 

out of 11 samples with duplications of KANK1 by array analysis, duplications were 

observed by independent validation. There are a few regions flanking the called CNVs 

where duplications were observed, refining the CNV boundaries. Four assays were 

designed that fell between chr9:559,000 and chr9:601,000, and only one ran properly in 

the control dilutions that were run. When that assay (Assay #145) was applied to these 

subjects, it repeatedly (3 independent runs) resulted in CN:1 calls in all subjects. It is 

suspected that those results are incorrect, but an experimental reason to discard them was 

not uncovered. They are provided here for completeness and because they were 



161 

 

reproducible. Unfortunately, the trouble with the assays in that region means that one of 

the subjects (5026401799) had no predicted duplication region covered by a good assay. 

 

Taken together, we have explored CNVs or the brain in neurodevelopmental disorders, 

the capstone project of this dissertation. We have traveled a long distance through 

different genomic assays, diseases, and study designs and uncovered multiple loci that are 

shared among multiple neuropsychiatric/neurodevelopmental disorders. Future work will 

tell if effective therapies can be developed in relation with the targeted loci observed. 
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Chapter 7  

7.0 Conclusions and Future Directions 
 

7.1 Significance and Impact of My Thesis Work 

My dissertation research, comprised of three broad components, aims to elucidate the 

genetic etiology of complex disease that is mediated through CNVs.  I have used large 

disease projects, including CHD and brain developmental disorders as representative of 

human complex disease in relation to copy number variant analysis. My approach is as 

follows:  First, to examine de novo (variant not present in unaffected parents, but present 

in affected child) CNV frequency in both congenital heart disease and healthy families. 

Second, to find and define genes significantly associated to CHD, true recurrent de novo 

CNVs through a genome-wide analysis. Third, to assess biological gene function of 

single de novo CNVs as well as CNV networks impacting selective biological pathways. 

 

In Chapter 2 I present a computational method that I developed to perform a genome-

wide association study of CNVs in complex disease with quality tracking. ParseCNV 

takes CNV calls as input and creates probe based statistics for CNV occurrence in (1) 

cases and controls, (2) families, or (3) populations with quantitative traits, then calls 

CNVRs based on neighboring probes of similar significance. CNV calls may be from 

aCGH, SNP array, exome sequencing, or whole genome sequencing. I compare other 

methods, such as Plink results from Autism case-controls datasets to ensure consistency 

and compare features. 
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In Chapter 3 I present a large population-based CNV study to robustly define rare CNV 

frequency. The large sample, genotyped at the same lab with the same array content, 

considerably adds to detection power in case-control studies for rare variants. Here, we 

evaluate 68,000 individuals typed with 520,000 probes in common, and report 4,969 

deletion, 2,633 duplication, and 263 homozygous deletion CNVRs observed in multiple 

unrelated individuals. The CNVs uncovered are shown to co-localize with ncRNA, 

GWAS, and OMIM annotated regions above random expectation. We performed CNV 

association clustering across the broad disease categories of cancer, autoimmune, 

cardio/metabolic disease, and neurological disease populations in comparison to healthy 

controls. Subsequently, we assessed their contributions in different ethnic groups. 

 

In Chapter 4 I focused on the potential lifespan longevity impact of CNVs by comparing 

rates of CNVs genome-wide in pediatric populations and geriatric populations. CNVs at a 

significantly higher frequency in a pediatric cohort in comparison with a geriatric cohort 

were considered risk variants impacting lifespan, while those enriched in the geriatric 

cohort were considered longevity protective variants. We performed a whole-genome 

CNV analysis on 7,313 children and 2,701 adults of European ancestry genotyped using 

302,108 SNP probes. Positive findings were evaluated in an independent cohort of 2,079 

pediatric and 4,692 geriatric subjects. We detected eight deletions and 10 duplications 

that were enriched in the pediatric group (P=3.33x10
-8

 - 1.6x10
-2

 unadjusted), while only 

one duplication was enriched in the geriatric cohort (P=6.3x10
-4

). Population 

stratification correction resulted in five deletions and three duplications remaining 

significant (P=5.16x10
-5

-4.26x10
-2

) in the replication cohort. Three deletions and four 

duplications were significantly combined (combined P=3.7x10
-4

-3.9x10
-2

). All associated 
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loci were experimentally validated using qPCR. Evaluation of these genes for pathway 

enrichment demonstrated that ~50% are involved in alternative splicing (P=0.0077 

Benjamini and Hochberg corrected). 

 

In Chapter 5 I present the results from analysis of congenital heart disease (CHD) 

families for CNV association, the first large cohort study using WES and dense state of 

the art SNP arrays. CHD is among the most common birth defects. Most cases are of 

unknown etiology. To determine the contribution of de novo CNVs in the etiology of 

sporadic CHD, we studied 538 CHD trios using genome-wide dense SNP arrays and/or 

whole exome sequencing (WES). Results were experimentally validated using digital 

droplet PCR. We compared validated CNVs in CHD cases to CNVs in 1,301 healthy 

control trios. The two complementary high-resolution technologies identified 65 

validated de novo CNVs in 53 CHD cases. A significant increase in CNV burden was 

observed when comparing CHD trios with healthy trios, using either SNP array (p=7x10-

5, Odds Ratio (OR)=4.6) or WES data (p=6x10
-4

, OR=3.5), and remained after removing 

16% of de novo CNV loci previously reported as pathogenic (p=0.02, OR=2.7). We 

observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and 

NIPA2; and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, 

PTPRE SREBF1, TOP2A, and ZEB2 genes that interact with established CHD proteins 

NKX2-5 and GATA4. Integrating de novo variants in WES and CNV data suggest that 

ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome, and 

that CTBP2 is the pathogenic gene in 10q sub-telomeric deletions. We demonstrate a 
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significantly increased frequency of rare de novo CNVs in CHD patients compared to 

healthy controls and suggest several novel genetic loci for CHD. 

 

In Chapter 6 I present genome-wide CNV meta-analysis across five major 

neuropsychiatric/developmental disorders. Psychiatric diseases in children and young 

adults pose a major health burden, and are just beginning to be widely diagnosed. 

However, diagnostic phenotypes are not necessarily distinct from each other, suggesting 

a shared genetic etiology. There is also a potential to target this shared variant using a 

shared therapeutic. Here, we investigate CNVs in cohorts of schizophrenia, bipolar, 

autism, ADHD, and depression. We can consider the affected domains of cognition, 

psychosis, and mood. A total of 11,418 cases were compared to 14,789 controls. The 

well-known 22q11 deletion was found to be significant (p=5.33x10
-7

). Duplication of 

DOCK8/KANK1 was found to be significant (p=7.5x10
-7

). Several known and novel loci 

were significant by case-control association with CNVs enriched in cases across the 

neurodevelopmental disorders. 
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7.2 Discussion and Future Directions 

 

7.2.1 Summary of the Thesis Project  

DNA variants abound in the human genome and give rise to complex traits. These 

variants may be base or copy number variants. However, many variants are neutral in 

selection and disease etiology, making detection of true common and rare frequency 

variants impacting disease traits difficult. Comparing allele frequencies in cases and 

controls, and in families, can reveal disease associations. SNP arrays and exome 

sequencing are popular assays of variants genome-wide. Uniform version and processing 

is crucial between samples being compared to limit bias. Bases occupy single points, 

while copy variants occupy segments. Bases are bi-alleleic, whereas copies are multi-

allelic. One genome also encodes many different cell types, such as heart and brain. I 

chose to examine CHD as it is the most common birth defect and cause of infant 

mortality. I have also chosen to examine neuropsychiatric/developmental diseases as they 

affect the quality of life and cognitive potential of a large number of children.  

 

In the thesis, I describe ParseCNV, which I developed to perform disease association 

studies using SNP arrays or exome sequencing generated CNV calls with quality tracking 

of variants, contributing to each significant overlap signal. Red flags of variant quality, 

genomic region, and overlap profile are assessed in a continuous score shown to correlate 

with independent verification over 90%. Comparing congenital heart disease families, 

cases, and controls genotyped both on SNP arrays and exome sequencing, we uncovered 

significant and confident loci with intriguing biological insights. We compared this with 

a large cohort CNV map that gave a robust rare variant frequency in unaffected 
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populations. By evaluating thoroughly the variant frequencies in pediatric individuals, we 

can compare these frequencies in geriatric individuals to gain insight on lifespan. 

Through these investigations, we have uncovered a number of CNVs that are 

significantly enriched in ncRNA, OMIM, and GWAS regions. Congenital heart disease is 

associated with de novo variants in histone modification genes. Longevity associated 

CNVs enriched in pediatric patients aggregate in alternative splicing genes. In the 

neuropsychiatric/developmental domain, CACNA, GRM, CNTN, and SLIT gene families 

show multiple significant CNV signals impacting a large number of developmental and 

psychiatric disease traits, with the potential of informing therapeutic decision-making. 

Through a new tool development and analysis of large disease cohorts genotyped on a 

variety of assays or whole exome sequenced, I have uncovered important biological role 

and disease impact of CNV in complex disease. 

 

7.2.2 Copy Number Analysis in Whole Genome Sequencing Data 

 
WGS can be used to detect CNVs, although there are still many challenges. Indeed, Mills 

and colleagues recently reported that only 53% of CNVs could be mapped to nucleotide 

resolution from 185 human WGS data sets using the previously developed CNV 

detection tools for sequencing (146). The methods that have thus far been developed are 

unreliable as they only make partial use of the information available, such as paired-end 

read distance or region-specific sequence coverage to make calls. The PennCNV(211) 

program, which was used widely to infer CNVs from GWAS data, advanced a new 

adapted hidden Markov model (HMM) based algorithm (PennCNV-SEQ), for reliable 

and efficient detection and localization of CNVs from WES and WGS datasets. The 
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PennCNV-SEQ program is novel, incorporating sequence depth coverage, allelic dosage, 

population allele frequency, and paired-end reads distance to infer CNVs, as well as an 

alignment algorithm for post-calling breakpoints refinement. 

WGS read mapping can be done with BWA or mrsFAST-Ultra(81) for CNV and 

SNP-aware read mapping. Genome STRucture in Populations (STRiP) is the most 

sensitive and specific method available taking into account read depth (RD), aberrant 

distance or orientation read pairs (RP), and split reads (SR) having segments mapping to 

non-contiguous genome regions (84). The continuous nature of whole genome 

sequencing data allows CNV calling with higher confidence than tag SNP microarrays or 

WES. WGS also allows for inversion and translocation detection, which cannot be 

performed using microarrays. By optimizing sequencing properties – coherence (multiple 

read pairs supporting the same deletion), heterogeneity (null expected read depth based 

on a population with low standard deviation vs. an observed aberration in an individual), 

and substitution (CNV alleles often alternative) – confident CNV calls can be made using 

sequencing.  Genome STRiP considers discordant RPs as a starting point and RD as a 

downstream filter. Similarly, DELLY (171) analyzes discordant RPs first, and then 

attempts to strengthen the results with supporting SRs. cnvHiTSeq (13)uses an integrative 

approach to sequencing-based CNV detection and genotyping that jointly models all 

available NGS features at the population level. By organically combining evidence from 

RD, RPs and SRs, cnvHiTSeq provides sensitive and precise discovery of all CNV 

classes even from low-coverage sequence data. Furthermore, the probabilistic model 

employed allows extensive pooling of information across individual samples and 
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reconcile copy number differences among data sources, thus achieving a high CNV 

genotyping accuracy. 

Singular value decomposition is a powerful method to remove high variance 

features contributing to noise and to mitigate sample-to-sample biases in sequencing data. 

High-count chimeric clones found in libraries and loci flanked by homologous sequences 

causing incorrect alignment can be filtered out to limit the false positive rate of CNV 

detection. Visualization of reads at CNV-called loci, using Integrative Genomics Viewer, 

further establishes confidence. We will also attempt to negate the CNV-calling 

limitations of WGS by using de novo assembly of unaligned reads, and the use of a 

number of existing tools, including BreakDancer, CREST and Pindel, which have been 

developed for this purpose. We will also utilize SNP array platforms in union with WGS 

to delineate CNVs in individuals when CNV results are unclear from the WGS data, 

which should greatly assist the de novo assembly process. We anticipate that progress in 

this area will be rapid, and we will adopt new technologies and algorithms as they 

emerge.    

A major challenge we have addressed is to generate B-allele frequency (BAF) values 

from sequencing. Certainly, for each base we can get count reference (A) and count 

variant (B) reads, respectively. These BAF values calculated directly are distributed 

uniformly (0-1) in a test data, due to quality and variability in regions. Thus, some quality 

heuristics as proposed by the VarScan2 paper and expected value of B (variant) allele 

frequency (i.e. clustering) are needed to normalize to 0.5. Specific heuristics VarScan2 

proposed were read position 10-90, strandedness 1-99%, variant reads ≥4, variant 

frequency ≥5%, distance to 3’ ≥20, Homopolymer <5, map quality difference <30, read 
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length difference <25, and mismatch quality sum difference <100. Another challenge is 

binning the per-base BAF into each exon, since the depth is calculated per exon. Three 

ways to obtain the allele counts per sample are: samtools mpileup and VarScan v2 (108) 

yields (1) VarFreq (Allele frequency of variant by read count), (2) GATK VCF contains 

AD (depth per allele by sample) and DP(depth of coverage), and (3) SNVer provides 

both Filtered and unfiltered total depth and allele depth while GATK only provides 

filtered total depth and unfiltered allele depth, which may not always be comparable. We 

calculate a continuous value for genotype (0,1) rather than the static 3 state calls AA 0/0, 

AB 0/1, BB 1/1, NC 

./.. The BAF is a 

continuous value for an 

individual’s genotype 

with expected values: 0-

A/AA/AAA, 0.25-

AAAB, 0.33-AAB, 0.5-

AB, 0.66-ABB, 0.75-

ABBB, 1-B/BB/BBB. 

The straightforward 

approach would simply 

take the frequency of 

reads with the B allele, divided by the total reads. The RPKM (SVD-ZRPKM or 

zPCARD i.e. LRR or intensity) is a value across a targeted exon, whereas BAF would be 

one value per base. Therefore, the BAF values would need to be summarized across the 

Figure 7.1. Mosaicism Profiles by WGS derived BAF and LRR 
 

 
 

Blue dots show representative modes of mosaicism. 
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exon by a majority-voting scheme. If there are more than 10% of values 0.4-0.6, the 

diploid evidence is quite strong and 0.5 would be a reasonable exonic BAF. Else, select 

majority 0-0.1, 0.1-0.4, 0.6-0.9, 0.9-1. This is conditional on the population frequency of 

the B allele.  

Mosaicism is a mixing of cell-populations with different copy number states. 

Liver specific somatic copy number variation could mix with blood cell diploid copy 

number to result in 

mosaicisim. Therefore, 

fractional copy numbers 

must be considered. R-

GADA(160) and 

BAFsegmentation (188) 

can detect mosaicism 

CNV calls using 

normalized intensity and 

allele depth / total depth 

WGS BAF profiles 

(Figure 7.1). Mosaic 

Alteration Detector 

(MAD) (99) is a module 

of R-GADA specifically for mosaic detection. Characteristic genotype (BAF) banding is 

observed in mosaic deletion and duplication in tandem with intensity (LRR) banding. 

 

Figure 7.2. CNV Model for Sequencing with Intensity, Genotype, Pairs 

and Split HMM Emissions 

 

 

 
 

Sequencing features informing CNV detection shown. 
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Depth, genotype, pairs split and assembly can be used in an integrative model to 

optimize CNV break point resolution (Figure 7.2). Split reads can allow for base-pair 

resolution CNV breakpoint detection. Lengths of confidently mapped reads flanking the 

CNV are also important variables for establishing the precise diploid to CNV transition 

point. Pairs and split 

features can be used to 

enhance calling for 

sequencing, which relies 

primarily on normalized 

depth and genotype 

frequency. SR performs 

on deletion and small 

insertions. However, SR 

has low sensitivity in regions with low-complexity, as they rely on unique mapping 

information to the genome. The copy number of each base can be calculated based on its 

number of overlapping high-quality mapped reads to predict breakpoints in base pair 

resolution, at the trade-off of more noisy local signals rather than a smoothed window 

size of 100 base pairs. De novo assembly (AS) first reconstructs DNA fragments 

(contigs) from short reads by assembling overlapping reads. By comparing the assembled 

contigs to the reference genome, the genomic regions with discordant copy numbers are 

then identified. AS is very computationally intensive and requires minimum read depth 

but can resolve to the base pair CNV boundaries. 

 

Figure 7.3. XHMM Test Data Deletion Detected by Intensity 

(Depth/ZPCARD) Verified by BAF 

 

 
 

Sequencing features informing CNV detection shown. 
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ParseCNV (70) was developed at CAG and can be used to perform disease 

association studies using WGS generated CNV calls with quality tracking of variants 

contributing to each significant overlap signal. Red flags of variant quality, genomic 

region, and overlap profile are assessed in a continuous score shown to correlate with 

independent verification over 90%. 

The exome as defined by Nimblegen V2 capture contains 628,118 dbSNP 

reported common SNPs which could inform CNV detection, similar to the utility 

demonstrated by supplementing intensity with genotype in SNP array studies. 

 

My contribution in this dissertation is to explore the genetic etiology of complex disease 

where I have focused on the study of copy number variation in congenital heart disease 

and neuropsychiatric/developmental disorders. 

Others have advanced on similar frontiers of research, I contribute to the scientific 

discussion and provide novel insights and methods for evaluating CNV overlap quality 

for statistically significant associations in ParseCNV. 

These findings seek to serve the greater good of improving patient care through more 

targeted genetic diagnostics and therapeutic interventions. 
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