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Abstract
Transforming growth factor-β (TGF-β) plays an important role in several diseases that characteristically
involve changes in tissue rigidity, such as cancer and tissue fibrosis. To determine whether matrix rigidity
regulates the effects of TGF-β, we examined NMuMG and MDCK epithelial cells cultured on polyacrylamide
gels with varying rigidity and treated with TGF-β1. Decreasing matrix rigidity reduced cell spreading and
increased TGF-β1-induced apoptosis, while increasing matrix rigidity resulted in epithelial-mesenchymal
transition (EMT). To more carefully control cell spreading, microcontact printing was used to restrict ECM
area and revealed that reducing cell spreading also increased apoptosis. Apoptosis on compliant substrates was
associated with decreased FAK expression, and FAK overexpression rescued cell survival but not EMT.
Further investigation revealed manipulations of FAK activity, using pharmacological inhibitors or expression
of FAK mutants, did not affect apoptosis or EMT, suggesting that FAK regulates apoptosis through expression
but not activity. Additional investigation into the signaling pathways regulated by rigidity revealed a role for
PI3K/Akt. We observed increased Akt activity with increasing rigidity, and that PI3K/Akt activity was
necessary for cell survival and EMT on rigid substrates. These findings demonstrate that matrix rigidity
regulates a switch in TGF-β-induced cell functions through rigidity-dependent regulation of FAK and PI3K,
and suggest that changes in tissue mechanics during disease contribute to the cellular response to TGF-β.
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ABSTRACT 

 

REGULATION OF TGF-β1-INDUCED APOPTOSIS AND  

EPITHELIAL-MESENCHYMAL TRANSITION BY MATRIX RIGIDITY 

 

Jennifer L. Leight 

Christopher S. Chen 

 

Transforming growth factor-β (TGF-β) plays an important role in several 

diseases that characteristically involve changes in tissue rigidity, such as cancer and 

tissue fibrosis. To determine whether matrix rigidity regulates the effects of TGF-β, we 

examined NMuMG and MDCK epithelial cells cultured on polyacrylamide gels with 

varying rigidity and treated with TGF-β1. Decreasing matrix rigidity reduced cell 

spreading and increased TGF-β1-induced apoptosis, while increasing matrix rigidity 

resulted in epithelial-mesenchymal transition (EMT). To more carefully control cell 

spreading, microcontact printing was used to restrict ECM area and revealed that 

reducing cell spreading also increased apoptosis. Apoptosis on compliant substrates was 

associated with decreased FAK expression, and FAK overexpression rescued cell 

survival but not EMT.  Further investigation revealed manipulations of FAK activity, 

using pharmacological inhibitors or expression of FAK mutants, did not affect apoptosis 

or EMT, suggesting that FAK regulates apoptosis through expression but not activity. 

Additional investigation into the signaling pathways regulated by rigidity revealed a 

role for PI3K/Akt. We observed increased Akt activity with increasing rigidity, and that 

PI3K/Akt activity was necessary for cell survival and EMT on rigid substrates. These 
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findings demonstrate that matrix rigidity regulates a switch in TGF-β-induced cell 

functions through rigidity-dependent regulation of FAK and PI3K, and suggest that 

changes in tissue mechanics during disease contribute to the cellular response to TGF-β. 

  



vi 
 

Table of Contents 

 

Chapter 1: Introduction   .................................................................................................1

 

Chapter 2: Background   ..................................................................................................5

2.1 TGF-β   .................................................................................................................5

2.1.1 Dual role of TGF-β during cancer progression   ...........................................5

2.1.2 TGF-β signaling pathways   ..........................................................................8

2.1.3 Regulation of apoptosis by TGF-β   .............................................................9

2.1.4 Regulation of EMT by TGF-β   ..................................................................12

2.2 The regulation of cell function by matrix rigidity   ............................................15

2.2.1 Changes in tissue rigidity during tumorigenesis   .......................................15

2.2.2 Regulation of cell function by matrix rigidity   ..........................................17

2.3 Methods to control rigidity   ...............................................................................18

2.3.1 Natural matrices   ........................................................................................19

2.3.2 Synthetic matrices   .....................................................................................21

2.4 Summary   ..........................................................................................................26

 

Chapter 3: Materials and methods   ..............................................................................28

3.1 Cell culture and reagents   ..................................................................................28

3.2 Experimental set up   ..........................................................................................28

3.3 Polyacrylamide gel preparation   ........................................................................29

3.4 Preparation of micropatterened substrates   .......................................................30

3.5 Adenovirus production   .....................................................................................30

3.6 Retrovirus production   .......................................................................................30

3.7 Caspase-3 activity assays   .................................................................................31

3.8 Western blotting   ...............................................................................................32

3.9 Microscopy, immunofluorescence, and image acquisition   ..............................32

3.10 Real-time RT-PCR   ...........................................................................................33



vii 
 

3.11 Luciferase assays   ..............................................................................................34

3.12 siRNA transfection   ...........................................................................................34

 

Chapter 4: Regulation of apoptosis and EMT by the cellular microenvironment   .35

4.1 Introduction   ......................................................................................................35

4.2 Results   ..............................................................................................................37

4.2.1 Matrix rigidity regulates TGF-β1-induced EMT and apoptosis   ...............37

4.2.2 Cell density regulates TGF-β1-induced EMT and apoptosis   ...................44

4.2.3 Cell spreading regulates TGF-β1-induced apoptosis   ................................50

4.3 Discussion   ........................................................................................................52

 

Chapter 5: Role of FAK in matrix rigidity regulated apoptosis   ...............................54

5.1 Introduction   ......................................................................................................54

5.2 Results   ..............................................................................................................56

5.2.1 FAK is important for rigidity-regulated apoptosis but not EMT   ..............56

5.2.2 Manipulation of FAK activity does not affect apoptosis or EMT   ............58

5.2.3 Knockdown of FAK expression does not affect apoptosis   .......................58

5.3 Discussion   ........................................................................................................63

 

Chapter 6: Role of PI3K/Akt in matrix rigidity regulated EMT and apoptosis   .....65

6.1 Introduction   ......................................................................................................65

6.2 Results   ..............................................................................................................67

6.2.1 Matrix rigidity regulates apoptosis and EMT through PI3K and Akt   ......67

6.2.2 FAK manipulations do not regulate Akt activity   ......................................72

6.2.3 Matrix rigidity regulates expression of Bcl-2 and Bcl-xL   ........................72

6.2.4 Role of initiator caspases in TGF-β1-induced apoptosis   ..........................74

6.3 Discussion   ........................................................................................................77

 

 

 



viii 
 

Chapter 7: Conclusions and Future Directions  ..........................................................79

7.1 Conclusions   ......................................................................................................79

7.2 Future Directions   ..............................................................................................80

7.2.1 Further exploration of the cellular microenvironment   .............................. 80

7.2.2 Further elucidating molecular mechanisms regulated by matrix rigidity 
and TGF-β   ............................................................................................................... 81

7.3 Concluding Remarks   ........................................................................................ 85

 

Bibliography   ..................................................................................................................86

 

  



ix 
 

List of Figures 
 

Figure 2.1 Illustration of TGF-β1 signaling.   ............................................................................... 10

Figure 2.2 Rigidity of tissues, natural, and synthetic matrices.   .................................................. 16

Figure 2.3 Polyacrylamide gel preparation.   ................................................................................ 24

Figure 4.1 TGF-β1 induces EMT in NMuMG cells.   .................................................................. 38

Figure 4.2 Matrix rigidity regulates TGF-β1 induced EMT and apoptosis.   ............................... 39

Figure 4.3 Matrix rigidity regulates TGF-β1 induced apoptosis.   ............................................... 41

Figure 4.4 Matrix rigidity regulates TGF-β1 induced EMT in MDCK cells.   ............................. 42

Figure 4.5 Smad signaling is unaffected by matrix rigidity.   ....................................................... 43

Figure 4.6 Decreased matrix rigidity inhibits EMT independent of apoptosis.   .......................... 45

Figure 4.7 Decreased matrix rigidity inhibits EMT independent of apoptosis.   .......................... 46

Figure 4.8 Cell seeding density regulates TGF-β1 induced apoptosis.   ....................................... 47

Figure 4.9 Cell seeding density regulates TGF-β1 induced N-cadherin expression.   .................. 48

Figure 4.10 Cell seeding density regulates TGF-β1 induced 3TP luciferase activity.   ................ 49

Figure 4.11 Cell spreading regulates TGF-β1 induced apoptosis.   .............................................. 51

Figure 5.1 FAK expression is regulated by matrix rigidity.   ....................................................... 57

Figure 5.2 FAK expression rescues survival on compliant gels but not EMT.  ........................... 59

Figure 5.3 Manipulation of FAK activity does not affect EMT or apoptosis.   ............................ 60

Figure 5.4 FAK knockdown does not increase apoptosis.   .......................................................... 62

Figure 6.1 Akt activity is regulated by matrix rigidity  ................................................................ 68

Figure 6.2 PI3K/Akt activity is necessary for EMT and cell survival   ........................................ 69

Figure 6.3 Increasing PI3K activity inhibits apoptosis but does not rescue EMT.   ..................... 70

Figure 6.4 Myr-Akt does not affect apoptosis or EMT   ............................................................... 71

Figure 6.5 FAK expression does not affect pAkt.   ....................................................................... 73

Figure 6.6 Matrix rigidity regulates Bcl-2 expression.   ............................................................... 75

Figure 6.7 Inhibition of caspase-8 and caspase-9 inhibits apoptosis.   ......................................... 76

 

 



1 
 

 

 

Chapter 1 

Introduction 

 

TGF-β is a pleiotropic cytokine essential for many physiological processes, 

including embryonic development, immune function, and wound healing (Wu and Hill, 

2009).  Misregulation of TGF-β signaling can contribute to the progression of disease 

states such as organ fibrosis and cancer, and a key to treating these diseases will be a 

better understanding of the TGF-β signal transduction machinery (Massague, 2008). 

However, due to its widespread effects, the role of TGF-β is often complicated. This is 

perhaps best illustrated in the context of tumor progression, though analogous situations 

can be found in other settings.  During early stages of tumorigenesis, TGF-β acts a 

tumor suppressor. In vitro, TGF-β induces growth arrest and apoptosis in most normal 

epithelial cells (Hannon and Beach, 1994; Pietenpol et al., 1990; Siegel and Massague, 

2003). Mice in which the TGFB1 or SMAD genes are disrupted are prone to the 

development of cancer (Engle et al., 1999; Go et al., 1999; Zhu et al., 1998). 

Retrospective studies of various human tumor types have also found frequent 

downregulation or mutations inactivating the TGF-β signaling pathway (Bacman et al., 

2007; Kaklamani et al., 2005; Stuelten et al., 2006). In later stages of cancer 
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progression, however, TGF-β is thought to switch roles and become a tumor promoter 

through tumor cell autonomous mechanisms and by regulating the tumor stroma.  

Within the tumor, TGF-β enhances migration, invasion, survival and epithelial-

mesenchymal transition (EMT) (Massague, 2008). High levels of TGF-β in clinical 

settings are associated with a poor prognosis (Friess et al., 1993; Fukai et al., 2003; 

Wikstrom et al., 1998), and treatment with TGF-β in animal models results in larger, 

more metastatic tumors (Fukai et al., 2003; Muraoka et al., 2003; Wikstrom et al., 

1998). TGF-β also plays an active role in remodeling of the tumor microenvironment, 

promoting activation of fibroblasts, increasing angiogenesis, and suppressing immune 

surveillance (Bierie and Moses, 2006).  Although the switch in TGF-β from a tumor 

suppressor to promoter during disease progression is well documented, it is still unclear 

how this switch occurs. One possibility is that changes in the cellular 

microenvironmental context guide the cellular response to TGF-β. 

While many aspects of the cellular microenvironment change during disease, 

including soluble factors, cell-cell interactions, and cell-ECM adhesion, changes in the 

mechanical properties of the microenvironment likely also modulate the response to the 

TGF-β.  The mechanical stiffness of tissue microenvironments varies widely, as adipose 

tissue is less rigid than muscle which is less rigid than bone, and tissue stiffness can also 

change within the same type of tissue during disease states (Dechene et al., 2010; 

Ebihara et al., 2000; Samani et al., 2007).  In the context of cancer progression as well 

as tissue fibrosis, increased tissue stiffness is well documented and is due to a number 

of factors including extracellular matrix remodeling, deposition, and crosslinking 

(Ebihara et al., 2000; Levental et al., 2009). In vitro studies have revealed that such 
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changes in matrix rigidity can regulate a number of cellular functions. Cells cultured on 

compliant substrates decrease proliferation and increase apoptosis as compared to cells 

on rigid substrates (Klein et al., 2009; Wang et al., 2000). Matrix rigidity modulates 

focal adhesion maturation, cell spreading, actin stress fiber formation, and cell motility 

(Lo et al., 2000; Pelham and Wang, 1997; Yeung et al., 2005). Differentiation of many 

cell types can also be regulated by matrix rigidity, including human mesenchymal stem 

cells, portal fibroblasts, mammary epithelial cells, and endothelial cells (Alcaraz et al., 

2008; Engler et al., 2006; Li et al., 2007; Paszek et al., 2005; Vailhe et al., 1997). 

Because matrix rigidity can regulate a number of cell functions, including functions 

regulated by TGF-β such as proliferation, apoptosis, and differentiation, and tissues 

become stiffer during disease progression, we hypothesized that changes in matrix 

rigidity could regulate TGF-β-induced cellular functions. 

In this study, we examined whether matrix rigidity regulates TGF-β-induced cell 

function. We examined two cell functions, apoptosis and EMT, as representative 

responses to TGF-β classically associated with tumor suppression or promotion, 

respectively (Massague, 2008). In most non-transformed epithelial cells, TGF-β induces 

programmed cell death, or apoptosis, and induction of apoptosis is one way TGF-β 

suppresses tumorigenesis during early stages of the disease (Rahimi and Leof, 2007). In 

contrast, EMT is a key step during metastasis and is characterized by dissolution of 

epithelial cell-cell junctions, remodeling of cell-matrix adhesion, and increased motility 

(Lee et al., 2006). Normal murine mammary gland epithelial cells (NMuMG) and 

Madin-Darby canine kidney epithelial cells (MDCK), well established in vitro model 

systems of EMT (Miettinen et al., 1994), were used to determine whether these effects 
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exist even in a non-cancerous genetic background. We found that substrate rigidity 

controlled TGF-β1-induced cell functions - epithelial cells cultured on compliant 

substrates underwent apoptosis when treated with TGF-β1, while on more rigid 

substrates, TGF-β1 induced EMT. Mechanistic studies revealed cells cultured on 

compliant gels had decreased Akt activity, and modulation of the PI3K/Akt pathway 

could regulate the switch between EMT and apoptosis.  
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Chapter 2 

Background 
 

2.1 TGF-β 

TGF-β was first identified as a cytokine that induces anchorage independent 

growth in fibroblasts (Assoian et al., 1984; de Larco and Todaro, 1978). The three 

mammalian TGF-β isoforms, TGF-β1, 2, and 3, are a part of the larger TGF-β 

superfamily which has over 30 members, including the TGF-βs, bone morphogenetic 

proteins (BMP), growth and differentiation factors (GDF), Activins and Nodal. The 

TGF-β superfamily regulates a myriad of biological processes from embryonic 

development to tissue homeostasis, and misregulation of the TGF-β signaling pathway 

results in a number of diseases. TGF-β1 is upregulated during tumorigenesis to greater 

extent than other isoforms, and thus has been the focus of the most cancer research to 

date (Derynck et al., 1987; Dickson et al., 1987). This work focuses on the 

microenvironmental regulation of TGF-β1-induced cell functions, motivated by disease 

states associated with changes in tissue stiffness, such as cancer and fibrosis. 

2.1.1 Dual role of TGF-β during cancer progression 

TGF-β has been shown to both suppress and promote cancer progression (Bierie 

and Moses, 2006). This dual role is likely due to the myriad of cell functions that TGF-
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β regulates. TGF-β acts a tumor suppressor through inhibition of proliferation and 

induction of apoptosis. TGF-β is a potent inhibitor of cell proliferation in many cell 

types, including epithelial, endothelial, neural, hematopoietic, and some mesenchymal 

cells. Proliferation is inhibited by TGF-β in several ways, including transcriptional 

upregulation of the cyclin-dependent kinase inhibitors p21CIP1/WAF1 and p15INK4b

While TGF-β can act as a tumor suppressor through inhibition of proliferation 

and induction of apoptosis, TGF-β also regulates several functions that promote cancer 

, 

downregulation of cdc25A, transcriptional repression of c-myc, and induced protein 

phosphatase 2A (PP2A) association with and inactivation of p70 S6K (Datto et al., 

1995; Hannon and Beach, 1994; Iavarone and Massague, 1997; Petritsch et al., 2000; 

Pietenpol et al., 1990). TGF-β also suppresses tumor formation through induction of 

apoptosis. TGF-β induces apoptosis through a variety of mechanisms, including 

activation of caspase-8, transcriptional upregulation of death associated protein kinase, 

downregulation of Bcl-xL, upregulation of Bim and Bmf, and activation of JNK and 

p38 (Chipuk et al., 2001; Kim et al., 2004; Perlman et al., 2001; Ramjaun et al., 2007; 

Yamashita et al., 2008). These anti-tumorigenic effects are also observed in vivo. Mice 

in which the TGFB1 or SMAD genes are disrupted are prone to the development of 

cancer (Engle et al., 1999; Zhu et al., 1998). Expression of dominant-negative TβRII 

increased propensity of lung, mammary, and skin tumors (Bottinger et al., 1997; Go et 

al., 1999). TβRII has also been found to be mutated in both sporadic and inherited colon 

cancer, and restoration of the receptor can reverse malignant transformation (Markowitz 

et al., 1995; Wang et al., 1995).  
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progression including EMT, ECM production, and cell motility (Massague, 2008). EMT 

is characterized by a loss of epithelial polarity, disassembly of epithelial cell-cell 

adhesions, cytoskeletal reorganization, ECM remodeling, and increased migration 

(Thiery et al., 2009). While EMT is a normal physiological process necessary for 

development, inappropriate induction of EMT is associated with tumor progression and 

fibrosis (Lee et al., 2006). The ability of TGF-β to enhance cell migration is especially 

important for metastasis, and several in vitro studies have shown that TGF-β treatment 

stimulates motility and invasiveness in non-tumorigenic cell lines transfected with the 

oncogene ErbB2 (Seton-Rogers et al., 2004; Ueda et al., 2004). Many in vivo studies 

also support a role for TGF-β as a tumor promoter. Increased levels of TGF-β1, through 

exogenous administration or by selection for cells overexpressing TGF-β1, facilitated 

tumor formation of MCF7 breast cancer cells implanted in nude mice (Arteaga et al., 

1993). Overexpression of activated TβRI or active TGF-β1 accelerated metastases from 

neu-induced primary mammary tumors in transgenic mice (Muraoka et al., 2003; Siegel 

et al., 2003). 

Several studies have also captured both the tumor suppressor and promoter 

functions of TGF-β. In a report by Cui and colleagues in 1996, TGF-β1 expression in 

keratinocytes in transgenic mice showed a biphasic action during long term chemical 

carcinogenesis treatment, with TGF-β1 inhibiting benign tumor outgrowth but 

enhancing malignant conversion (Cui et al., 1996). Other reports have shown a similar 

biphasic action, with an exogenous tumor stimulant such as a chemical carcinogen or 

oncogene cooperating with TGF-β to increase tumor invasion and metastasis (Ao et al., 

2006; Bandyopadhyay et al., 1999; Hojo et al., 1999; Oft et al., 1998; Oft et al., 1996). 
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It is not well understood how TGF-β can switch functions from tumor suppressor to 

tumor promoter during cancer progression. The main hypothesis revolves around 

evasion of TGF-β’s cytostatic effects through mutations or deletions in the TGF-β 

signaling pathway (Massague, 2008). However, because TGF-β can control so many 

functions, and often in the same genetic background, we postulate that the cellular 

microenvironment provides another level of regulation for TGF-β-induced cell 

functions. 

2.1.2 TGF-β signaling pathways 

TGF-β is secreted from cells in a large latent complex with a C-terminal latency 

TGF-β binding protein and a non-covalently bound latency associated peptide (Annes et 

al., 2003). The latency TGF-β binding protein allows TGF-β to bind to extracellular 

matrix (ECM) components such as fibrillin and fibronectin (FN) (Unsold et al., 2001). 

This large latent complex can be activated in several ways including proteolysis, 

interaction with other proteins, and even mechanical force (Annes et al., 2002; Ge and 

Greenspan, 2006; Wipff et al., 2007). Activated TGF-β binds to TGF-β receptor II 

(TβRII) which recruits and phosphorylates TβRI (Wrana, J.L. et al., 1994). The TβR1 

kinase then phosphorylates Smad2 and Smad3 which associate with Smad4, translocate 

to the nucleus, and initiate transcription (Lagna et al., 1996; Nakao et al., 1997; 

Yingling et al., 1997) (Fig. 2.1). 

The Smad pathway is considered the canonical TGF-β signaling cascade, 

however several other Smad-independent signaling pathways have also been implicated 

in the action of TGF-β, including ERK, p38, JNK, PI3K, and RhoGTPases (Zhang, 
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2009). TGF-β activation of ERK has been reported in a number of cell types, including 

epithelial cells and fibroblasts (Hartsough and Mulder, 1995; Mucsi et al., 1996). More 

recent studies have shown direct binding and phosphorylation of Shc to TβRI and II 

(Galliher and Schiemann, 2007; Lee et al., 2007), which allows recruitment of 

Grb2/Sos, activation of Ras and, further downstream, activation of Erk (Fig. 2.1). Two 

other MAPKs, JNK and p38, have also been shown to be directly activated by TGF-β 

(Bhowmick et al., 2001b; Frey and Mulder, 1997; Hocevar et al., 1999; Yu et al., 2002). 

TGF-β stimulation of JNK and p38 is mediated by TRAF6 interacting directly with 

TβRI and II (Sorrentino et al., 2008; Yamashita et al., 2008). Binding of TRAF6 to the 

receptor complex promotes association and activation of TAK1 which leads to 

downstream activation of JNK and p38 (Fig. 2.1). Several other pathways in addition to 

MAPKs have also been connected to TGF-β signal transduction, including the 

RhoGTPases: RhoA (Bhowmick et al., 2001a; Edlund et al., 2002), Cdc42 (Barrios-

Rodiles et al., 2005; Wilkes et al., 2003), and Rac (Hubchak et al., 2009), although it is 

still unclear exactly how TGF-β receptor complex regulates these pathways. Finally, the 

PI3K/Akt pathway can also be regulated by TGF-β (Bakin et al., 2000; Shin et al., 

2001; Vinals and Pouyssegur, 2001; Wilkes et al., 2005). Further studies revealed an 

indirect interaction of p85, the regulatory subunit of PI3K, with TβRI and II, and that 

activity of TβRI was necessary for PI3K activation (Yi et al., 2005) (Fig. 2.1). 

2.1.3 Regulation of apoptosis by TGF-β 

TGF-β has long been recognized as potent stimulus of apoptosis, or programmed cell  
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Figure 2.1 Illustration of TGF-β1 signaling.  

1. TGF-β binds to TβRII, and facilitates TβRI binding and activation. 2. The activated 
receptor complex phosphorylates Smad2/3, which allows complex formation with 
Smad4 and nuclear translocation to induce apoptosis and EMT. 3. Shc binds the 
receptor complex, allowing binding of Grb2, Sos, activation of Ras, and further 
downstream Erk. Erk promotes EMT and inhibits apoptosis. 4. TRAF6 binds activated 
TβRI, allowing TAK1 binding and activation, leading to downstream activation of 
JNK and p38. JNK and p38 activity are important for induction of EMT and apoptosis. 
5. The activated receptor complex activates the RhoGTPases, through still 
undiscovered mechanisms, and influence EMT. 6. The p85 subunit interacts indirectly 
with the TβRII, facilitating activation of PI3K, then Akt. PI3K/Akt activity is 
important for EMT and inhibits apoptosis.  



11 
 

death, in a number of cell types (Lin and Chou, 1992; Oberhammer et al., 1992; Rotello 

et al., 1991; Yanagihara and Tsumuraya, 1992). Induction of apoptosis occurs both 

through Smad dependent and independent signaling mechanisms (Fig. 2.1). TGF-β 

activation of the Smad pathway can transcriptionally upregulate several apoptotic 

related factors, such as Fas, AP1, and death associated protein kinase (Herzer et al., 

2008; Jang et al., 2002; Kim et al., 2004; Yamamura et al., 2000). Upstream of 

transcription, several studies have shown that sequestering of Smad3 by direct binding 

of Akt prevents Smad nuclear translocation and apoptosis (Conery et al., 2004; Remy et 

al., 2004). TGF-β/Smad signaling also regulates expression of Bcl-2 family members, 

including upregulation of pro-apoptototic proteins such as Bax, Bim, and Bmf (Motyl et 

al., 1998; Ramjaun et al., 2007; Yano et al., 2006), as well as downregulation of anti-

apoptotic factors Bcl-2 and Bcl-xL (Chipuk et al., 2001; Francis et al., 2000; Motyl et 

al., 1998). While the Smad proteins play an important role in TGF-β-induced apoptosis, 

there is also evidence that Smads are not an absolute requirement for apoptosis. As 

mentioned earlier, TGF-β can activate JNK and p38 to regulate apoptosis independent 

of Smad signaling (Perlman et al., 2001; Yamashita et al., 2008). Additionally, a novel 

septin related protein was discovered, apoptosis-related protein in the TGF-β signaling 

pathway (ARTS), that also participates in TGF-β mediated apoptosis (Gottfried et al., 

2004; Larisch-Bloch et al., 2000). The many studies summarized here highlight the 

variety of ways TGF-β stimulates apoptosis, and motivated the work in Chapter 6 to 

more carefully dissect how matrix rigidity might regulate TGF-β-induced apoptosis. 
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2.1.4 Regulation of EMT by TGF-β 

Epithelial-mesenchymal transition is the process whereby epithelial cells lose 

their epithelial characteristics and transdifferentiate to a mesenchymal phenotype. This 

transition includes loss of apico-basal polarity, disruption of cell-cell and cell-matrix 

adhesions, degradation of the surrounding ECM, and cytoskeletal reorganization 

resulting in a more migratory phenotype and cell scattering. EMT is described by a set 

of characteristics, but there is no standard definition that clearly demarcates EMT. 

These characteristics include: a change in morphology from cuboidal to more elongated 

and fibroblastic, a switch from cortical actin to pronounced actin stress fibers, a 

decrease in epithelial markers, such as E-cadherin and ZO-1, a gain of mesenchymal 

markers like N-cadherin, α-sma, vimentin, and Snail, and an increase in motility. EMT 

is a critical process during many developmental steps, including gastrulation, neural 

crest formation, palatal growth, and heart valve formation (Mercado-Pimentel and 

Runyan, 2007; Nawshad et al., 2004; Solnica-Krezel, 2005; Tucker, 2004). After 

development is complete, epithelia serve specialized functions and do not typically 

differentiate, except during wound healing or in disease contexts such as fibrosis or 

cancer (Thiery et al., 2009). EMT is hypothesized to contribute to tumor cell invasion 

and metastasis, and gene expression associated with EMT is often associated with poor 

prognosis in a wide array of cancers, including thyroid, breast, pancreatic, and 

colorectal cancer (Thiery et al., 2009). Additionally, recent studies have observed 

morphological evidence of EMT at the invasive fronts of colorectal and mammary 

tumors (Prall, 2007; Wyckoff et al., 2007). Elucidating the mechanisms regulating EMT 
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and the associated cell functions will be an important step in understanding tumor 

progression and metastasis.  

 A number of signaling mechanisms have been described to regulate EMT, but 

the literature can be confusing and contradictory, likely due to the various disparate 

events characteristic of EMT. A number of growth factors have been associated with 

EMT induction, including EGF, TGF-α, FGF, and HGF, however it remains 

controversial whether these induce a true EMT or just cell scattering. TGF-β, 

conversely, has been convincingly demonstrated to control EMT during development 

and in several in vitro models (Boyer et al., 2000), and we will focus on the signaling 

downstream of TGF-β here (Fig. 2.1). As mentioned earlier, one of the ways TGF-β 

signals are transduced to the nucleus and initiate transcription is through the Smad 

pathway, and, not surprisingly, the Smad pathway has been found to be important for 

TGF-β-induced EMT (Piek et al., 1999). For example, when TβRI is mutated to prevent 

Smad binding but still retain MAPK signaling, TGF-β fails to induce EMT (Itoh et al., 

2003; Yu et al., 2002). Similarly, disruption of Smad2 or Smad3 blocks EMT in both in 

vitro and in vivo studies (Saika et al., 2004; Sato et al., 2003; Valcourt et al., 2005), and 

later studies uncovered that Smad 3 upregulates transcription of Snail, a transcription 

factor that represses E-cadherin and promotes EMT (Cho et al., 2007; Vincent et al., 

2009). While a number of studies have found Smad signaling to be indispensible for 

TGF-β-induced EMT, contradictory evidence also exists that EMT can occur 

independently of the Smad pathway. For example, in one study, siRNA knockdown of 

Smad4 expression did not affect EMT, and other studies have shown upregulation of 
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Snail is independent of Smad4 (Levy and Hill, 2005; Medici et al., 2006; Peinado et al., 

2003). 

As highlighted before, TGF-β also regulates several Smad-independent 

pathways, and many of these pathways were discovered because of their role in 

regulating EMT. Several in vitro studies found TGF-β-induced RhoA activity was 

necessary for EMT (Bhowmick et al., 2001a; Cho and Yoo, 2007; Masszi et al., 2003), 

as well as in vivo during embryonic chick heart development (Tavares et al., 2006). In 

another report, TGF-β downregulation of RhoA at tight junctions was necessary to 

facilitate their disassembly, and suggests that TGF-β may spatially regulate Rho during 

EMT (Ozdamar et al., 2005). In addition to Rho, a number of studies have demonstrated 

a synergistic effect on EMT between TGF-β and MAPK signaling (Grande et al., 2002; 

Janda et al., 2002; Uttamsingh et al., 2008), and that blocking Erk activity inhibits EMT 

(Xie et al., 2004; Zuo and Chen, 2009). Interestingly, JNK and p38 MAPKs, which are 

also important for TGF-β-induced apoptosis, have been implicated during EMT (Alcorn 

et al., 2008; Bakin et al., 2002; Liu et al., 2008; van der Velden et al., 2010; Yu et al., 

2002). Finally, TGF-β stimulates the PI3K/Akt pathway, and PI3K/Akt activity was 

found to be necessary for EMT in both mammary and renal epithelial cell systems 

(Bakin et al., 2000; Bhowmick et al., 2001b; Kattla et al., 2008). TGF-β activation of 

Akt is often observed concurrently with activation of ERK (Bakin et al., 2000; Medici 

et al., 2006; Peinado et al., 2003), and this activity is important for Snail expression 

(Peinado et al., 2003). In squamous carcinoma cells, expression of a constitutively 

active Akt stimulated EMT (Grille et al., 2003) while inhibition of Akt activity induced 

reversion of EMT, or MET, mesenchymal-epithelial transition (Hong et al., 2009). 
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Whether these manipulations will also apply to non-tumorigenic cells or other cancers is 

still unknown, however Akt is often dysregulated during cancer and delineating its role 

during EMT will likely yield vital insights into the role of TGF-β and EMT during 

tumor progression. 

2.2 The regulation of cell function by matrix rigidity 

Mechanical properties, by definition, describe the properties of a material under 

stress, and these properties of a tissue or cell culture substrate can be measured by a 

variety of methods, including rheology, confined compression, tensile testing, 

microindentation, and atomic force microscopy. The reported values for a material’s 

mechanical properties are influenced by a number of factors, including sample 

preparation (hydration, anisotropy, polymerization conditions) and test parameters 

(temperature, dynamic vs static, boundary conditions, length scale, etc), thus 

measurements made by different methods and different labs often do not completely 

agree. While not numerically equivalent, these measurements are usually in relative 

agreement, for example that adipose tissue is less rigid than muscle which is less rigid 

than bone (Fig. 2.2). Additionally, tissue stiffness can also change within the same type 

of tissue during disease states, such as fibrosis (Dechene et al., 2010; Ebihara et al., 

2000), liver cirrhosis (Yeh et al., 2002), cancer (Lyshchik et al., 2005; Samani et al., 

2007), and atheroscelrosis (Wang et al., 2008). In this work, references to a modulus or 

rigidity, refer to the Young’s modulus (E), or the elastic tensile modulus.  

2.2.1 Changes in tissue rigidity during tumorigenesis 

A common theme from the literature relating to TGF-β’s role in cancer is that 

the oncogenic potential of TGF-β increases during tumor progression, indicating a   
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Figure 2.2 Rigidity of tissues, natural, and synthetic matrices.  

Tissue values adapted from (Levental et al., 2007). Disease tissue values: a (Paszek et 

al., 2005), b (Ebihara et al., 2000), c (Yeh et al., 2002). Natural matrices: d (Gehler et 

al., 2009), e (Georges et al., 2006), f (Wang et al., 2003a), g (West et al., 2007). 

Synthetic matrices: h (Yeung et al., 2005), i (Nemir and West, 2010), j (Fuard et al., 

2008), k (Teixeira et al., 2009). 
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switch occurs during tumorigenesis that allows cells to escape inhibition of proliferation 

and apoptosis and become more migratory and metastatic. Accumulation of genetic 

mutations in tumor cells is one component contributing to disease progression, however 

there are also dramatic changes occurring in the stromal compartment surrounding these 

cells. In addition to unchecked proliferation of tumor cells, there is an influx of 

activated fibroblasts, immune cells, and endothelial cells (Tlsty, 2001). This increase in 

cells leads to hypoxia and an altered and often elevated secretion of various growth 

factors (Hockel and Vaupel, 2001). There is also increased deposition and 

reorganization of the ECM (Burns-Cox et al., 2001; Kauppila et al., 1998; Strongin, 

2006; Zhu et al., 1995). Leaky blood and lymphatic vessels lead to increased interstitial 

pressure (Padera et al., 2004). The combination of these processes increases overall 

tissue rigidity, a hallmark of cancer which has long been used to detect cancer through 

physical palpation and several imaging modalities (Khaled et al., 2004; Manduca et al., 

2001; Parker and Lerner, 1992). It is well accepted that tumors become stiffer during 

disease progression, however how these changes in the mechanical properties of a tissue 

regulate tumorigenesis and TGF-β signaling remains unclear. 

2.2.2 Regulation of cell function by matrix rigidity 

Numerous recent studies in the past decade have demonstrated that matrix 

rigidity regulates cell function, including proliferation, apoptosis, and differentiation. 

These studies investigated a number of different cell systems and utilized both natural 

ECM components and synthetic substrates to vary matrix rigidity. For example, 

differentiation of human mesenchymal stem cells can be directed by substrate rigidity, 

whereby more compliant substrates promoter neuronal or adipogenic fate, and rigid 
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substrates promote osteogenesis (Engler et al., 2006; Fu et al., 2010). Substrate stiffness 

also regulates neuronal function, including differentiation of neural progenitors (Seidlits 

et al., 2010; Teixeira et al., 2009) , neurite extension (Balgude et al., 2001), and 

selective growth of neurons and astrocytes in a mixed population (Georges et al., 2006). 

Several studies have shown a role for matrix rigidity in regulation of capillary network 

formation using fibrin, poly(ethylene glycol), and self assembling peptide gels (Ghajar 

et al., 2008; Miller et al., 2010; Sieminski et al., 2007; Vailhe et al., 1997). Fibroblast 

biology has been extensively investigated. Compliant substrates decrease proliferation 

and increase apoptosis as compared to cells on rigid substrates (Klein et al., 2009; Park 

et al., 2010; Wang et al., 2000; Wang et al., 2007). Additionally, matrix rigidity also 

modulates focal adhesion maturation, cell spreading, actin stress fibers formation, and 

cell motility in fibroblasts (Fringer and Grinnell, 2001; Lo et al., 2000; Pelham and 

Wang, 1997; Yeung et al., 2005). Epithelial cell proliferation (Klein et al., 2009), 

apoptosis (Wang et al., 2007), and morphogenesis are regulated by matrix rigidity 

(Alcaraz et al., 2008; Paszek et al., 2005; Wozniak et al., 2003). Additionally a number 

of other cell systems are responsive to matrix rigidity, including chondrocytes (Genes et 

al., 2004; Klein et al., 2010), hepatocytes (Godoy et al., 2009; Li et al., 2007), and 

myoblasts (Boontheekul et al., 2007; Engler et al., 2004). A common theme among this 

literature is that mimicking tissue rigidity, either the native or disease states, often 

reveals important insights into the regulation of cell function. 

2.3 Methods to control rigidity 

Tissues within the body have different mechanical properties. Intuitively one 

would surmise that these properties might regulate cell function, and, the studies 
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summarized above demonstrate that cell function is indeed regulated by matrix rigidity. 

In order to study the regulation of cell function by matrix rigidity, researchers have 

developed a number of ways to modulate the mechanical properties of the 

microenvironment. These methods include natural matrices, such as collagen and fibrin, 

as well as synthetic materials like polyacrylamide and poly(ethylene glycol). Each 

method has pros and cons, and observations using each method must be interpreted in 

light of these. Here we highlight some of the most common methods and the advantages 

and drawbacks associated with each method, with a focus on the polyacrylamide system 

used in this work. 

2.3.1 Natural matrices 

A number of different natural matrices have been utilized to study the effects of 

substrate rigidity on cell function. One of the most widely used is type I collagen, which 

is commercially available and relatively inexpensive. Additionally, collagen I is the 

most abundant protein in vertebrate animals, well tolerated for in vivo studies, and 

highly adhesive for many cell types. Collagen I is commonly isolated from rat tail and 

solubilized in acetic acid, and a gel can be formed by increasing the pH and temperature 

of the collagen solution. Polymerization conditions, such as pH, temperature, collagen 

concentration, and fibril alignment, can affect the mechanical properties of the gel 

formed (Barocas et al., 1998; Roeder et al., 2002; Roeder et al., 2009). Changing the 

concentration of collagen from 1 to 5 mg/ml changes the elastic modulus of the gel 

from 100 to 800 Pa as measured by rheology (Gehler et al., 2009) (Fig. 2.2). The 

collagen matrix can also be stiffened after polymerization by glycation or enzymatic 

processes (Elbjeirami et al., 2003; Girton et al., 2000). In addition to changing the 
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properties of the matrix itself, the boundary conditions of the collagen gel can be 

manipulated to change the rigidity that the cells “feel”. In 2D, cells can be cultured on a 

thick layer of collagen gel, for a compliant matrix, or on collagen adsorbed to glass 

from a very dilute solution, to simulate a rigid matrix (Godoy et al., 2009; Wang et al., 

2003b). Finally, the collagen gel can also be released from the culture dish, reducing the 

isometric tension within the gel (Grinnell, 2000; Wozniak et al., 2003).  

 Fibrin gels are also a popular natural matrix used for in vitro rigidity studies, 

including for neuronal growth and angiogenesis assays (Georges et al., 2006; Ghajar et 

al., 2008; Vailhe et al., 1997). Fibrin gels use the natural clotting matrix, whereby 

fibrinogen monomers polymerize with the addition of thrombin. Fibrin gel architecture 

and rigidity, similar to collagen, can also be controlled by gelation conditions and 

monomer concentration, with a modulus range from 0.6 to 6 kPa (Blomback and Bark, 

2004; Georges et al., 2006) (Fig. 2.2). Fibrin and collagen are not linearly elastic 

materials, and stiffen with increasing strain (Winer et al., 2009b). Culturing cells at high 

densities in these materials can change their mechanical properties, and should be taken 

into account during experimental design and interpretation of data.  

Alginates are polysaccharides originally isolated from brown algae that can be 

ionically or chemically crosslinked to form hydrogels (Augst et al., 2006). Alginate is 

naturally protein resistant (Smetana, 1993), which can be an advantage but also requires 

covalently coupling adhesive peptides to the alginate to facilitate cell adhesion (Rowley 

et al., 1999). The rigidity of alginate can be controlled in variety of ways, including the 

molecular weight and composition of the polysaccharides, the stoichiometry of the 

alginate with the chelating cation, and the gelling temperature (Augst et al., 2006), 
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resulting in a modulus range from 1 to over 200 kPa (Wang et al., 2003a; West et al., 

2007) (Fig. 2.2). Alginate gels have been used to study stiffness in a variety of settings, 

including in vitro follicle development, myoblast phenotype, stem cell proliferation, and 

chondrocyte adhesion (Boontheekul et al., 2007; Genes et al., 2004; Hsiong et al., 2008; 

West et al., 2007).  

2.3.2 Synthetic matrices 

Purified, biologically derived materials, such as collagen and fibrin, have an 

intrinsic amount of biochemical and biophysical variability due to the inherent 

variability between animals and preparations. This variability leads to inconsistencies 

between experiments, as well as a high degree of heterogeneity within single gels. 

Additionally, the dynamic range of elastic moduli that can be reasonably achieved with 

these systems is limited by biochemical and biophysical constraints of these unique 

macromolecules. Therefore, although these materials have proven to be useful for 

clarifying the general influence of matrix on cell and tissue phenotypes, they are not as 

tractable for defining precise molecular mechanisms mediating mechanotransduction. 

To more carefully elucidate these mechanisms, synthetic materials have been developed 

that isolate changes in rigidity from other confounding factors such changes in ligand 

density and matrix remodeling.  

First introduced by Pelham and Wang in 1997, polyacrylamide (PA) hydrogels 

have been widely adopted to study the effect of substrate rigidity on cell function for 

several reasons. First, the materials to fabricate PA gels are commercially available, 

inexpensive, and familiar to biologists, as polyacrylamide has long been utilized for 

protein separation by gel electrophoresis. PA gel rigidity is well characterized and 



22 
 

easily controlled by varying the concentration of the bis-acrylamide and acrylamide 

monomers, with an elastic modulus range from 0.1 to 150 kPa (Pelham and Wang, 

1997; Yeung et al., 2005). Additionally, PA is clear and nonfluorescent, making it an 

ideal substrate for fixed and live microscopic imaging. Limitations of the PA gel system 

include the inability to embed cells or implant the material in vivo due to the toxicity of 

acrylamide. PA is also resistant to protein adsorption, so proteins must be chemically 

conjugated to the surface, which allows for careful control of ligand density separate 

from rigidity, but the protein conjugation process can be time intensive and problematic, 

as described below.  

 Several methods have been developed to chemically couple proteins to the 

surface of PA. The original method by Pelham and Wang, described protein conjugation 

to the PA gels using sulfosuccinimidyl-6-(40-azido-20-nitrophenylamino) hexanoate, 

known as sulfo-SANPAH.  Polymerization of the acrylamide and bis-acrylamide 

monomers is initiated using a standard ammonium persulfate/TEMED free radical-

dependent polymerization reaction, and the solution is dropped onto a coverslip 

activated with aminopropyltrimethoxysilane and gluteraldehyde. After polymerization, 

the sulfo-SANPAH crosslinker is layered on top of the gel and crosslinked to the gel 

using exposure to UV light. This photoactivation step is usually repeated twice, and 

then the gels are incubated with a protein solution to allow the sulfosuccinimidyl group 

at the end of sulfo-SANPAH to react with the primary amines in the protein. The sulfo-

SANPAH method is still used by a number of labs, although limitations with the 

crosslinker, including limited solubility and stability, short shelf life, and expense, can 

make it difficult to work with. Methods have been also been developed that utilize other 
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crosslinking reagents. For example, in carbodiimide-mediated cross-linking, EDC, (1-

ethyl-3-(3-dimethylamino-propyl))carbodiimide-HCl, is mixed into the acrylamide 

solution, and after polymerization incubated overnight to conjugate the protein to the 

surface.(Beningo et al., 2002). N-succinimidyl ester of acrylaminohexanoic acid (N6) 

can also be mixed into the acrylamide mixture before polymerization, and one end of 

the molecule reacts with the acrylamide and the other with primary amines, similar to 

sulfo-SANPAH (Johnson et al., 2007; Reinhart-King et al., 2005). N6 is commercially 

available but sold in milligram quantities and prohibitively expensive, so it must be 

synthesized in the lab, a lengthy two to three day process that while not expensive does 

require an extensive chemistry background (Pless et al., 1983). A similar crosslinking 

reagent to the N6, N-hydroxysuccinimide ester (NHS ester) also incorporates the 

crosslinking reagent during polymerization but is commercially available and 

inexpensive. Unlike the N6 and EDC methods mentioned above, the acrylamide 

solution is overlaid with an immiscible toluene solution containing the NHS ester 

during polymerization (Fig. 2.3). The NHS ester copolymerizes with the surface of the 

PA gel, and then is reactive with the primary amines, allowing protein conjugation. 

While the NHS ester method is less expensive and time intensive than the sulfo-

SANPAH method mentioned above, addition of the toluene layer can affect gel 

polymerization and requires practice to produce homogeneous surfaces on very 

compliant (< 1 kPa) gels. In this work, we have used the NHS ester to conjugate 

proteins to the surface of the PA gels.  

 Similar to PA gels, poly(ethylene glycol) (PEG) hydrogels resist protein 

adsorption and allow for independent control of matrix rigidity and ligand density.  
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Figure 2.3 Polyacrylamide gel preparation. 

The polyacrylamide solution is placed on an activated coverslip and overlaid with the 

NHS crosslinker dissolved in toluene. A siliconized coverslip is placed on top of the 

acrylamide and toluene solutions. After the acrylamide solution is fully polymerized, 

the siliconized coverslip is removed. The polyacrylamide gel is then incubated with the 

protein solution, then the ethanolamine solution, and finally plated with cells. 
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However, PEG gels permit 3D encapsulation of cells and in vivo implantation. 

Additionally, different peptide sequences can be covalently incorporated to control a 

number of parameters including cell adhesion and degradability (Nuttelman et al., 

2008). The rigidity of PEG hydrogels can be controlled by varying the molecular weight 

and concentration of the macromer. PEG gels are not as compliant as natural matrices 

or PA gels, with a lower limit for the elastic modulus around 1 kPa (Nemir and West, 

2010) (Fig. 2.2). Substrate rigidity has been studied using PEG hydrogels in a number 

of cell systems, including muscle stems cells, neurite extension, angiogenesis assays, 

and smooth muscle cells (Gilbert et al., 2010; Gunn et al., 2005; Miller et al., 2010; 

Peyton et al., 2006).  PEG gels provide an attractive alternative to PA gels and will 

likely gain in popularity over the coming years due to the ability to study rigidity in 3D 

and in vivo. 

Poly(dimethyl siloxane) (PDMS), a silicone elastomer used widely for soft 

lithography, has also been used as to study the effects of substrate rigidity (Fuard et al., 

2008; Gray et al., 2003; Park et al., 2010; Teixeira et al., 2009). Although hydrophobic, 

PDMS can be used as cell culture substrate if plasma treated to render the surface 

hydrophilic. PDMS rigidity is controlled by varying the crosslinker concentration, and 

the temperature and time of baking (Fuard et al., 2008). PDMS can also be molded into 

different shapes, and work by our lab has recently shown that varying the length of 

PDMS micropillars can simulate changes in rigidity and has similar effects on cell 

morphology and stem cell differentiation (Fu et al., 2010).  

We have focused on the most common materials used today, but many other 

materials have been utilized to study material properties on cell function, including 
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agarose (Balgude et al., 2001; Ulrich et al., 2010), hyaluronic acid (Seidlits et al., 2010), 

ionic self assembling peptide gels (Sieminski et al., 2007) and polyelectrolyte 

multilayers (Schneider et al., 2007)

2.4 Summary 

 to name just a few. While the development of 

synthetic materials has allowed the careful control of matrix rigidity independent of 

other confounding factors, these systems can also lose some of the important 

biochemical and biophysical information in natural matrices. For example, many 

synthetic materials incorporate RGD peptides to facilitate cell adhesion. However, RGD 

is a very small region of fibronectin, and many studies have demonstrated the 

importance of the other domains of fibronectin, including for integrin binding, 

(Friedland et al., 2009), growth factor binding (Rahman et al., 2005), and interactions 

with other ECM molecules (Hynes, 2009). A number of ECM components in addition 

to fibronectin support cell adhesion, bind to different integrin heterodimers, and 

regulate cell function. Also, most synthetic materials are not affected by enzyme 

degradation or ECM deposition, so cells cannot remodel their matrix as occurs in vivo. 

Thus, while valuable insights can be gained by synthetic materials or purified biological 

materials, a reductionist approach might miss important regulatory actions of the ECM 

and matrix rigidity on cell function. 

The cellular microenvironment is a critical regulator of cell function, however 

many questions still remain regarding how crosstalk between the microenvironment and 

growth factor signaling regulates cell function. In the following chapters we investigate 

how the microenvironment regulates TGF-β-induced cell signaling and cell function. In 

Chapter 4, we examine the regulation of TGF-β-induced apoptosis and EMT by the 
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adhesive microenvironment through control of matrix rigidity, cell seeding density, and 

microcontact printing. We next explored the role of matrix rigidity in regulating focal 

adhesion signaling (Chapter 5) and the PI3K/Akt pathway (Chapter 6) to control the 

switch between apoptosis and EMT. Finally, in Chapter 7, we discuss the significance 

and future directions motivated by the work presented here.  
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Chapter 3 

Materials and methods 

3.1 Cell culture and reagents 

NMuMG and MDCK cells were obtained from American Type Culture 

Collection and cultured according to their recommendations. Reagents were obtained as 

follows. Monoclonal antibodies: α-smooth muscle actin (1A4; Sigma-Aldrich), Smad4 

(DCS-46; Sigma-Aldrich), vinculin (hVIN-1; Sigma-Aldrich), GAPDH (6C5; Ambion), 

E-cadherin (36; BD Biosciences), N-cadherin (32; BD Biosciences), FAK (77; BD 

Biosciences). Polyclonal antibodies: ZO-1 (Zymed Laboratories), pY397 FAK 

(Invitrogen), pAkt (cell signaling), Akt (cell signaling), Bcl-xL (cell signaling), cleaved 

caspase-3 (cell signaling), FAK (Cell Signaling Technology). 

3.2 Experimental set up 

Cells were cultured on FN-functionalized polyacrylamide gels, microcontact 

printed substrates, or at the indicated density for 16 hr in growth medium. The cells 

were rinsed in sterile PBS, and then growth factor starved in HGDMEM for 2 hr. Cells 

were treated in the absence of serum with 10 µg/ml insulin (Sigma-Aldrich) and 10 

ng/ml TGF-β1 (R&D Systems) for 2 hr (RNA isolation, FAK and Akt western 

blotting), 4 hr (caspase activity, focal adhesion immunofluorescence, luciferase 
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activity), or 48 hr (for EMT immunofluorescence and western blotting). For inhibitor 

studies, cells were treated 1 hr prior to TGF-β1 treatment with ZVAD-FMK (400 µM; 

Enzo Life Sciences), IETD-CHO (10 and 100 µM; Calbiochem), LEHD-CHO (10 and 

100 µM; Calbiochem), PF 573228 (1 µM; Tocris Biosciences), LY294002 (10 µM; 

Calbiochem), or Akt Inhibitor VIII (1 µM; Calbiochem). 

3.3 Polyacrylamide gel preparation 

Polyacrylamide gels were prepared as described previously with minor 

modifications (Winer et al., 2009a; Yeung et al., 2005). Mechanical properties of the 

polyacrylamide gels were controlled by varying the percentage of acrylamide and bis-

acrylamide as follows: elastic modulus (% acrylamide; % bis-acrylamide) - 0.4 kPa (3; 

0.05), 1 kPa (3; 0.1), 5 kPa (5.5; 0.15), 8 kPa (5; 0.3), 14.5 kPa (7.5; 0.15), 20 kPa (8; 

0.264), 60 kPa (10; 0.5). Acrylamide polymerization was initiated by 0.1% (v/v) 

TEMED and 0.1% (w/v) ammonium persulfate. 25 µL of acrylamide solution was 

pipetted directly onto activated 18 mm coverslips (400 µL for 50 mm coverslips). 10 µl 

of 20 µg/ml acrylic acid N-hydroxysuccinimide (NHS) ester (Sigma Aldrich) dissolved 

in toluene (45 µl for 50 mm) was pipetted directly on to the acrylamide solution, and a 

Rain-X coated coverslip placed on top of both solutions. After 10 min of 

polymerization, the top coverslip was removed, and the gels were rinsed in ddH2O. 

Gels were functionalized with 20 µg/ml FN in 50 mM HEPES pH8 for 1 hr at RT, and 

then rinsed in ddH2O. The NHS ester was quenched by incubation with 1% (v/v) 

ethanolamine in 50 mM HEPES pH 8 for 30 min at RT. After rinsing with ddH2O, the 

polyacrylamide gels were transferred to a sterile dish and sterilized in 5% (v/v) 
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isopropanol in PBS for 1 hr at RT. Before plating with cells, the gels were rinsed two 

times with sterile PBS. 

3.4 Preparation of micropatterened substrates 

Micropatterned substrates were prepared as described (Pirone et al., 2006). 

Briefly, micropatterned stamps were fabricated by casting poly(dimethoxysilane) 

(PDMS) (Sylgard 184, Dow Corning)on a photolithographically-generated master. 

Stamps were immersed for 1 hr in 20 µg/ml fibronectin, washed two times in water, and 

thoroughly dried with nitrogen. Protein was transferred to surface-oxidized PDMS 

coated glass coverslips. Stamped coverslips were immersed in 0.2% Pluronic F127 

(BASF) in PBS for 1 hr and rinsed in PBS before cell seeding. 

3.5 Adenovirus production 

FAK, FRNK, FAK-Y397F, p110-CAAX (Upstate Biotechnology), and GFP 

recombinant adenoviruses were constructed as described previously (Pirone et al., 2006) 

using the AdEasy XL system (Stratagene) 

3.6 Retrovirus production 

according to manufacturer's instructions. The 

CD2-FAK adenovirus was generated by C. Henke (University of Minnesota) and CA 

PI3K by L. Romer (Johns Hopkins University). Expression was optimized and verified 

by western blot. 

Retrovirus was produced as described (Ory et al., 1996) with 293GPG cells. 

Bcl-xL plasmid was obtained from Addgene (Plasmid 8790, (Cheng et al., 2001)) and 

myr-Akt plasmid from M. Birnbaum (University of Pennsylvania). Briefly, 293 GPG 

cells were cultured in 90% HGDMEM, 10% FBS, 1 µg/ml tetracycline, 2 µg/ml 
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puromycin, 300 µg/ml G418 and passaged at 80% confluence at a 1:5 dilution. For 

retroviral production, 9x106

3.7 Caspase-3 activity assays 

 293 GPG cells were plated in a 10 cm dish in 90% 

HGDMEM and 10 % FBS (virus production medium) with all antibiotics removed. The 

next day, the medium was replaced with 6.5 mLs of 1% HEPES, 10% FBS, 89% 

HGDMEM, and the cells were transfected with 12 µg retroviral DNA and 48 µl 

TransIT-LT1 transfection reagent (Mirus) per 10 cm dish. The next day, medium was 

discarded and replaced with virus production medium. Medium was collected at 24, 48, 

and 72 hrs later, and stored at 4⁰C until final collection. Collected medium was 

centrifuged to remove cells at 1000 RPM for 5 minutes and viral supernatant was sterile 

filtered, aliquotted, and stored at -80⁰C. For retroviral infection, viral supernatant was 

added to recipient cells plus 8 µg/ml polybrene. Expression was optimized and verified 

by western blot.  

Caspase-3 activity was determined by EnzChek Caspase-3 Assay (Invitrogen). 

Briefly, cells were lysed in provided lysis buffer and incubated at -80⁰C for 10 minutes 

to complete lysis. Samples were thawed at RT and centrifuged for 5 minutes at 7000 

RPM. 50 µl of cell lysate (or lysis buffer for blank well) was mixed with 50 µl of 

reaction buffer plus the Z-DEVD-AMC caspase substrate in a 96-well plate and 

incubated for 30 min at RT. Fluorescence was measured at 350 nm excitation/ 485 nm 

emission. Caspase activity was normalized to total DNA content as determined by 

CyQUANT Cell Proliferation Assay (Invitrogen). In a separate well, 10 µl of lysate (or 

10 µl of lysis buffer for blank), 1 µl of CyQUANT dye, and 90 µl of CyQUANT lysis 
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buffer were mixed, incubated for 5 minutes at RT, and fluorescence was measured at 

485 nm excitation/ 530 nm emission. Blank values were subtracted from all wells. 

3.8 Western blotting 

Cells were rinsed in PBS and lysed in ice cold modified RIPA buffer (25 mM 

HEPES, 75 mM NaCl, 1% NP-40, 0.25% deoxycholate,1 mM EDTA, 1 mM NaF, 1X 

Halt protease and phosphatase inhibitor cocktail (Thermo Scientific) ), and centrifuged 

at 14000 RPM for 10 minutes at 4⁰C. Protein concentration was determined by 

Precision Red Advanced Protein Assay (Cytoskeleton). 25 µg of protein were separated 

by denaturing SDS-PAGE, electroblotted onto PVDF blocked with 5% BSA or milk in 

TBS-0.3% Tween-20, immunoblotted with specific antibodies, and detected using 

horseradish peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch 

Laboratories) and SuperSignal West Dura (Pierce Chemical Co.) as a chemiluminescent 

substrate. Densitometric analysis was performed using a VersaDoc imaging system with 

QuantityOne software ( Bio-Rad Laboratories). 

3.9 Microscopy, immunofluorescence, and image acquisition 

Samples were rinsed in PBS, and fixed in 4% paraformaldehyde at RT for 10 

minutes, or, for E-cadherin staining, cells were fixed in 1:1 acetone/methanol on ice for 

20 minutes. After fixation, all samples were rinsed two times with PBS, permeabilized 

with 0.5% Triton-x, and blocked in 10% goat serum for 1 hr at RT. Samples were 

incubated with primary antibodies (1:200) for 1hr at RT, rinsed three times with PBS, 

then incubated with Alexa Fluor 488, 555, or 647 secondary antibodies (1:200; 

Invitrogen), Alexa Fluor 488 Phalloidin (1:200, Invitrogen), and Hoechst 33342 

(1:1000; Invitrogen) for 1 hr at RT. Samples were rinsed three times in PBS, then 
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mounted with Fluormount G (Electron Microscopy Sciences). Images were acquired 

using an epifluorescence microscope (model TE200; Nikon), equipped with Plan Fluor 

10×, 0.3 NA, and Plan Apo 60×, 1.4 NA, oil immersion lenses, Spot camera and 

software (Diagnostic Instruments). Some image levels were adjusted using Photoshop 

(Adobe). 

For pY397 and vinculin immunofluorescence, samples were rinsed with ice cold 

cytoskeleton extraction buffer (10 mM PIPES, 50 mM NaCl, 150 mM sucrose, 3 mM 

MgCl2, 1X Halt protease and phosphatase inhibitor cocktail) for 1 min on ice, followed 

by two 30 second incubations with cytoskeleton buffer plus 0.5% triton, one rinse with 

cytoskeleton buffer, and fixation with 4% paraformaldehyde for 10 minutes at RT. 

Staining was completed as above. Images were acquired using an epifluorescence 

microscope (Axiovert 200M; Carl Zeiss MicroImaging, Inc.) equipped with 63x Plan-

Apochromat, 1.4 NA, oil immersion objective, an Axiocam camera, and Axiovision 

software. 

3.10 Real-time RT-PCR 

Total RNA was isolated using an RNeasy Mini or Micro kit (Qiagen) according 

to the manufacturer’s instructions. Complementary DNA (cDNA) was transcribed with 

high-capacity cDNA reverse transcription kit (Applied Biosystems) with 0.5 ug of total 

RNA per reaction. Quantitative polymerase chain reaction (PCR) was performed in an 

ABI 7,300 system (Applied BioSystems) using TaqMan gene expression assays 

according to the manufacturer’s instructions. Results were analyzed using the relative 

quantitation method, and all mRNA expression data were normalized to 18S expression 
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in the corresponding sample and then to the control sample. TaqMan gene expression 

assays used were as follows: Snai1 (Mm00441533_g1), 18S (Hs99999901_s1). 

3.11 Luciferase assays 

Cells were transfected with p3TP-lux Addgene plasmid 11767 (Wrana et al., 

1992) using Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions. 

The next day, transfected cells were seeded on polyacrylamide gels overnight. 

Transfected cells were treated with TGF-β1 for 4 hours, then lysed and analyzed using 

the dual-luciferase reporter assay (Promega). Luminescence was measured with 

GloMax 

3.12 siRNA transfection 

20/20 Luminometer (Promega). Luciferase values were normalized to DNA 

content as described in caspase-3 activity assays. 

0.37 x 106

 

 cells per well in a 6 well plate were plated, and the next day 

transfected according to manufacturer’s instructions with Lipofectamine 2000 control 

(Invitrogen), 5 nM scrambled siRNA, and 5-100 nM FAK siRNA #1 and #2 (Ambion). 

24 hr after transfection, cells were replated for experiments. 
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Chapter 4 

Regulation of apoptosis and EMT by the cellular 

microenvironment 

4.1 Introduction 

The adhesive cellular microenvironment is a key regulator of cell function, and 

adhesion to the ECM is necessary for survival in many cell types (Frisch and Francis, 

1994; Meredith et al., 1993). In addition to survival, manipulation of cell-ECM 

adhesion by a variety of methods has revealed that adhesion also regulates numerous 

other cell functions, including proliferation, apoptosis, and differentiation (Chen et al., 

1997; McBeath et al., 2004). A classic method to modulate cell-ECM and cell-cell 

adhesion is through cell seeding density. In many cell types, increased seeding density 

“crowds” cells together and reduces cell spread area and ECM contact while increasing 

cell-cell adhesion (Liu et al., 2006; Nelson et al., 2008). Because seeding density affects 

more just than just cell-ECM adhesion, many methods have been developed to more 

carefully dissect how cells interact with the ECM, including varying adhesive ligand 

density, microcontact printing, and nanopatterned surfaces (Arnold et al., 2004; Tan et 

al., 2004).  
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In this chapter, we examine the effects of the cellular microenvironment on 

TGF-β-induced cell function. We examined two cell functions, apoptosis and epithelial-

mesenchymal transition (EMT), as representative responses to TGF-β classically 

associated with tumor suppression or promotion, respectively (Massague, 2008). By 

modulating matrix rigidity using polyacrylamide gels, we found that epithelial cells 

cultured on compliant substrates underwent apoptosis when treated with TGF-β1, while 

on more rigid substrates, TGF-β1-induced EMT. By inhibiting apoptosis on compliant 

substrates, we found that NMuMG cells still failed to undergo a complete EMT. To 

further investigate how changes in the cellular microenvironment affect cell function, 

we seeded cells at different densities and assessed TGF-β1-induced apoptosis and EMT. 

Interestingly, we found increasing cell density inhibited both apoptosis and EMT. 

Because changing matrix rigidity or cell seeding density affects both cell-ECM and cell-

cell adhesion, we isolated the effect of changing cell-ECM adhesion by micropatterning 

islands of fibronectin to control spreading of single cells. Cells in which spreading was 

restricted were found to have increased apoptosis in response to TGF-β1. Taken 

together, these findings reveal that the cellular microenvironment regulates TGF-β1-

induced cell functions, and suggest that during diseases such as cancer and fibrosis, 

changes in the microenvironment likely play an important the role in the regulation of 

TGF-β1-induced cell fates.  
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4.2 Results 

4.2.1 Matrix rigidity regulates TGF-β1-induced EMT and apoptosis 

To explore whether matrix rigidity influences cellular responses to TGF-β1, we 

first examined normal murine mammary gland (NMuMG) epithelial cells cultured on 

fibronectin-conjugated polyacrylamide (PA) gels with a range of elastic moduli from 

0.4 to 60 kPa and treated with TGF-β1. Before addition of TGF-β1, NMuMG cells 

cultured on PA gels exhibited differences in morphology as a function of substrate 

compliance (Fig. 4.1).  Cells on the most rigid gels (E > 14 kPa) appeared cuboidal and 

formed a monolayer on the surface identical to cells on tissue culture plastic.  In 

contrast, cells on compliant gels (E<1 kPa) were more rounded and formed spherical 

clusters.  On more rigid PA gels (E>5 kPa), or on tissue culture plastic, TGF-β1 

treatment induced an elongated morphology and scattering of cells, characteristic of an 

epithelial-to-mesenchymal transition (EMT) (Fig. 4.1).  Examination of known EMT 

markers confirmed this response, as evidenced by delocalization of the epithelial 

junctional markers, ZO-1 and E-cadherin, and increased expression of mesenchymal 

markers N-cadherin and α-smooth muscle actin (α-SMA) (Fig. 4.1). In contrast, cells 

did not appear to undergo EMT on compliant PA gels, as exemplified by loss of 

expression of the EMT associated transcription factor, Snail, with decreasing substrate 

rigidity (Fig. 4.2). Interestingly, compliant substrates (E < 1 kPa) not only suppressed 

EMT, but also induced a rapid and dramatic increase in apoptosis in response to TGF-

β1 treatment, as evidenced by TGF-β1-induced caspase activity on compliant gels but 

not rigid gels (Fig. 4.2).  This was observed across a range of TGF-β1 concentrations 
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Figure 4.1 TGF-β1 induces EMT in NMuMG cells. 

(A) Phase contrast images of NMuMG cells cultured on PA gels with elastic moduli 

ranging from 0.4 to 60 kPa for 24 h. (B) Western blot of N-cadherin (135 kD), E-

cadherin (120 kD), α-sma (42 kD), and GAPDH control (38 kD) in NMuMG cells 

cultured on rigid PA gels treated with TGF-β1 or BSA control for 48 hr. (C) Phase 

contrast images and immunostaining of NMuMG cells cultured on rigid (E=8 kPa) PA 

gels and treated with TGF-β1. Bars, 50 µm.  
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Figure 4.2 Matrix rigidity regulates TGF-β1-induced EMT and apoptosis.  

Graph of caspase-3 activity ( ) and Snai1 mRNA expression ( ) (representative of 

n=5) in NMuMG cells plated on PA gels treated with TGF-β1 (solid lines) or BSA 

control (dashed lines). Error bars indicate the SEM of 5 independent experiments. 
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and by 24 hrs most cells cultured on compliant gels treated with TGF-β1 exhibited 

significant nuclear fragmentation (Fig. 4.3). A similar switch in TGF-β1-induced cell 

fate was also observed in MDCK epithelial cells, with increased apoptosis on compliant 

gels and induction of EMT on rigid gels (Fig. 4.3 and 4.4), suggesting that this control 

mechanism is not restricted to mammary epithelia. 

 One way matrix rigidity may regulate the switch between EMT and apoptosis is 

by blocking TGF-β/Smad signaling on compliant substrates.  In the canonical TGF-β 

signaling pathway, ligand binding activates the TGF-β receptor complex which 

phosphorylates Smad2 and Smad3, allowing Smad2/3 and Smad4 complex formation 

and translocation to the nucleus to regulate transcription.  To investigate the effects of 

matrix rigidity on TGF-β/Smad signaling, we first observed the nuclear translocation of 

Smad4. As early as 2 hrs after TGF-β1 treatment, Smad4 translocated to the nucleus in 

NMuMGs to similar degrees on both rigid and compliant substrates (Fig. 4.5). In 

addition, use of a Smad-responsive 3TP-luciferase reporter plasmid also showed no 

difference in Smad transcriptional activity on rigid versus compliant substrates (Fig. 

4.5) (Wrana et al., 1992; Yingling et al., 1997). These results suggest that Smad 

signaling is not involved in matrix rigidity regulation of TGF-β1-induced cellular 

functions.  

Given that the apoptotic response occurred within hours while EMT occurred 

after several days, it was not clear if the decreased EMT on compliant gels was a result 

of TGF-β1-induced cell death, or if compliance directly regulated EMT independent of 

its effects on cell survival.  To address this, we blocked the apoptotic response by either  



41 
 

 

 

Figure 4.3 Matrix rigidity regulates TGF-β1-induced apoptosis. 

(A) Hoechst stained nuclei of NMuMG cells cultured on rigid (E=5 kPa) and compliant 

(E=0.4 kPa) gels. (B) Graph of caspase-3 activity in NMuMG cells treated with 0.1 to 

10 ng/ml TGF-β1. (C, D) Graph of percentage of positive staining for cleaved-caspase-

3 immunofluorescence in NMuMG (C) or MDCK cells (D) treated with TGF-β1 for 24 

hr. Error bars indicate SEM of three independent experiments. **, P<0.01; ***, 

P<0.001, calculated by t test compared to 0.4 kPa +TGF-β1.  Bar, 50 µm. 
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Figure 4.4 Matrix rigidity regulates TGF-β1-induced EMT in MDCK cells. 

(A, B)  Immunostaining of MDCK cells cultured on rigid (E=5 kPa) (A) and compliant 

(E=0.4 kPA).  (B) PA gels and treated with TGF-β1 or BSA control for 48 hr. Bars, 50 

µm. 
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Figure 4.5 Smad signaling is unaffected by matrix rigidity.  

(A) Immunostaining for Smad4 and nuclei in NMuMG cells cultured on rigid (E=8 kPa) 

and compliant (E=0.4 kPA) PA gels, and treated with TGF-β1 or BSA control for 8 hr. 

(B) Graph of luciferase activity in NMuMG cells transfected with p3TP-lux, plated on 

PA gels, and treated with TGF-β1. Error bars indicate the SEM of three independent 

experiments. 
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overexpressing the survival factor, Bcl-xL, or treating with a pan-caspase inhibitor, 

ZVAD-FMK, and observed whether EMT on compliant gels would be rescued.  Both 

reagents decreased caspase-3 activity and prevented nuclear fragmentation (Fig. 4.6). 

When apoptosis was inhibited, NMuMGs cultured on compliant gels still failed to 

undergo EMT.  E-cadherin remained localized to junctions, N-cadherin and α-sma 

failed to express, and cells did not transition to an elongated phenotype (Fig. 4.6 and 

4.7).  Together, these data suggest that substrate stiffness regulates a switch in the 

response of cells to TGF-β1, between EMT and apoptosis, and that these two responses 

are independently regulated. 

4.2.2 Cell density regulates TGF-β1-induced EMT and apoptosis 

Previous studies have shown that cell density can regulate TGF-β-induced cell 

functions, and that cells grown to confluence do not undergo EMT (Nelson et al., 2008; 

Petridou et al., 2000). To investigate if cell density regulates the switch between 

apoptosis and EMT, NMuMG and MDCK cells were seeded at different densities and 

treated with TGF-β1 (Fig. 4.8). Similar to published reports, confluent cells did not 

undergo EMT, as indicated by retention of a cuboidal epithelial phenotype and lack of 

N-cadherin expression (Fig. 4.8 and 4.9) (Petridou et al., 2000). E-cadherin expression 

did not change significantly by varying seeding density. Interestingly, increasing 

seeding density also inhibited TGF-β1-induced apoptosis (Fig. 4.8). Although matrix 

rigidity did not affect TGF-β/Smad signaling, increasing cell density resulted in 

decreased TGF-β1-induced 3TP luciferase activity (Fig. 4.10). Together these results 

suggest that matrix rigidity and cell density regulate apoptosis and possibly EMT in 

different ways. 
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Figure 4.6 Decreased matrix rigidity inhibits EMT independent of apoptosis.  

(A, B) Western (A) and graph of caspase-3 activity (B) in NMuMG cells infected with 

retro-GFP, retro-Bcl-xL, or treated with 400 µM ZVAD-FMK, plated on rigid (E=8 

kPA) and compliant (E=0.4 kPA) gels, and treated with TGF-β1 or BSA control. (C) 

Immunostaining for N-cadherin, E-cadherin, α-sma, and nuclei of NMuMG cells 

infected with retro-Bcl-xL on compliant gels and treated with TGF-β1. Error bars 

indicate SEM of three independent experiments. **, P<0.01, calculated by t test.  Error 

bars indicate SEM of 3 independent experiments. Bars, 50 µm.   
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Figure 4.7 Decreased matrix rigidity inhibits EMT independent of apoptosis.         

Western blot and quantification of N-cadherin (135 kD), E-cadherin (120 kD), α-sma 

(42 kD), and GAPDH control (38 kD) in NMuMG cells infected with retro-GFP, retro-

Bcl-xL, or treated with 400 µM ZVAD-FMK, plated on rigid (E=8 kPa) and compliant 

(E=0.4kPa) gels, and treated with TGF-β1 or BSA control. Error bars indicate SEM of 4 

independent experiments. 
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Figure 4.8 Cell seeding density regulates TGF-β1-induced apoptosis.  

(A) MDCK cells seeded at increasing density on tissue culture plastic, treated with 

TGF-β1 for 48 hr. (B) Graph of cleaved caspase-3 positive cells plated at increasing 

density and treated with TGF-β1 for 24 hr. n=1. Bar, 50 µM. 
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Figure 4.9 Cell seeding density regulates TGF-β1-induced N-cadherin expression. 

(A, B) Western blot of E-cadherin (120 kD) (A), N-cadherin (135 kD) (B), and GAPDH 

(38 kD) expression in MDCK cells seeded at increasing density, treated with TGF-β1 

for 48 hr.  (C, D) Quantification of E-cadherin (C) and N-cadherin (D) expression in 

NMuMG and MDCK cells plated at increasing density and treated with TGF-β1 for 48 

hr. Error bars indicate SEM of four independent experiments. 
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Figure 4.10 Cell seeding density regulates TGF-β1-induced 3TP luciferase activity.  

3TP luciferase activity in MDCK cells seeded at increasing density, treated with TGF-

β1 for 24 hr. Error bars indicate standard deviation of two independent experiments.  
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4.2.3 Cell spreading regulates TGF-β1-induced apoptosis 

Matrix rigidity and cell density could regulate TGF-β1-induced apoptosis and 

EMT at a number of levels, including through regulation of cell-ECM adhesion. 

Previous work has shown that inhibition of cell spreading inhibits MMP-induced EMT, 

but the effect on apoptosis was not studied (Nelson et al., 2008). Here we used 

microcontact printing to limit cell spreading to 225 µm2

 

 islands of FN or allowed the 

cells to fully spread on FN printed with flat stamps (Fig. 4.11). Cells in which spreading 

was restricted underwent significantly more apoptosis than cells that were fully spread 

(Fig. 4.11). These results indicate that one way matrix rigidity regulates apoptosis may 

be through regulation of cell-ECM adhesion and cell spreading. 
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Figure 4.11 Cell spreading regulates TGF-β1-induced apoptosis.  

(A) NMuMG cells seeded on 225 µm2

***, P<0.001, calculated by two-way ANOVA. Bar, 25 µm.  

 micropatterned islands (unspread) or flat stamps 

(spread) of fibronectin. (B) Graph of percent positive cleaved caspase-3 cells treated 

with TGF-β1 for 24 hr. Error bars indicate SEM of three independent experiments.  
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4.3 Discussion 

In this chapter, we provide evidence that the extracellular microenvironment 

regulates TGF-β1-induced EMT and apoptosis. Inhibition of cell spreading or seeding 

on compliant substrates promotes apoptosis with TGF-β1 treatment. Compliant 

substrates also inhibit EMT, and it will be interesting in future experiments to explore 

the role of cell spreading and EMT. Previous work indicates MMP but not TGF-β-

induced EMT is inhibited by restricting cell spreading (Nelson et al., 2008), but it is 

unclear whether cell spreading is important for TGF-β-induced EMT in the system 

presented here because of the use of different cell types and due to the results presented 

earlier that matrix rigidity does inhibit EMT. 

Increasing cell density to confluence, similar to compliant substrates, inhibited 

TGF-β-induced EMT. Unlike compliant substrates, however, confluence also inhibited 

apoptosis. The inhibition of TGF-β-induced functions by confluence is likely due to the 

down regulation of the TGF-β receptors, as reported previously (Petridou et al., 2000), 

and as supported by data presented here that increasing cell density decreased TGF-

β/Smad responsive luciferase reporter activity. Compliant substrates, conversely, did 

not affect luciferase activity, indicating that matrix rigidity likely regulates TGF-β-

induced cell functions by a different mechanism than cell seeding density. One 

intriguing possibility is that in addition to restricting cell spreading, confluence induces 

apico-basal polarity (Balcarova-Stander et al., 1984; Rodriguez-Boulan and Nelson, 

1989). Polarity has previously been shown to confer apoptosis resistance to mammary 

epithelial cells in 3D through a different mechanism than regulation of receptor 
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expression level (Weaver et al., 2002), but this work raises two interesting possibilities. 

One, are confluent, polarized monolayers in 2D resistant to apoptotic stimuli other than 

TGF-β? And, two, if cells plated on compliant substrates were allowed to polarize 

before addition of TGF-β, would apoptosis be inhibited through receptor down 

regulation or some other mechanism? Additionally, it is still unclear how cells sense 

matrix rigidity, possibilities include changes in F-actin dynamics, cellular contractility, 

integrin binding, cell-cell adhesion, and focal adhesion formation (Chan and Odde, 

2008; Fouchard et al., 2011; Huebsch et al., 2010; Liu et al., 2010; Yeung et al., 2005). 

It is also likely that several mechanisms are involved and that different mechanisms are 

important for different cell functions. Future studies to explore these questions will be 

invaluable towards the understanding of microenviromental regulation of TGF-β-

induced functions both in vitro and in vivo.  
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Chapter 5 

Role of FAK in matrix rigidity-regulated 

apoptosis 

5.1 Introduction 

Matrix rigidity and TGF-β, independently, have been shown to regulate actin 

stress fiber and focal adhesion formation (Edlund et al., 2002; Miettinen et al., 1994; 

Pelham and Wang, 1997; Yeung et al., 2005). Additionally, focal adhesion kinase 

(FAK), one of the main signaling components within focal adhesions, can also be 

regulated by matrix rigidity and TGF-β1 (Cicchini et al., 2008; Paszek et al., 2005; 

Walsh et al., 2008; Wang et al., 2004). Several studies have demonstrated that FAK is 

necessary for EMT in hepatocytes and renal tubular epithelial cells (Cicchini et al., 

2008; Deng et al., 2010), and that FAK plays a prominent role in survival of several cell 

types, including epithelial cells and fibroblasts (Frisch et al., 1996; Ilic et al., 1998; 

Sonoda et al., 2000; Xia et al., 2004; Zouq et al., 2009). It is unknown, however, if cross 

talk between matrix rigidity and TGF-β regulates focal adhesion signaling to control 

apoptosis and EMT. 

FAK activity and localization is regulated by cell-ECM adhesion.  Cells adhere 

to the ECM through integrins, transmembrane receptors that consist of selectively 
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paired α and β subunits which bind to different ECM molecules. Binding to the ECM 

induces integrin clustering, and this aggregation recruits intracellular scaffolding and 

signaling components to form focal adhesions and connections to the cytoskeleton. 

Over 50 proteins have been identified that localize to focal adhesions, including i) 

integrin-binding proteins, ii) adaptors and scaffolding enzymes, and iii) enzymes 

(Zaidel-Bar et al., 2007). These protein complexes transmit and receive 

mechanochemical information from the inside of the cell, and this signaling controls 

numerous downstream cellular functions, including proliferation, survival, motility, and 

transcription. Tyrosine phosphorylation by recruited kinases is one of the main 

signaling events that take place at focal adhesions. There are many kinases localized to 

focal adhesions, and FAK is one of the best characterized. FAK interacts with β integrin 

tails and localizes to focal adhesions (Chen et al., 2000; Schaller et al., 1992; Schaller et 

al., 1995). FAK is initially activated by integrin engagement which induces 

autophosphorylation at Y397 (Schaller et al., 1994). After phosphorylation at Y397, 

Src, another tyrosine kinase present in focal adhesions, binds to FAK and increases 

FAK activity by phosphorylating it at Y567 and Y577 (Calalb et al., 1995). Src also 

phosphorylates FAK at Y861 and Y925 to activate docking sites for other signaling 

components (Calalb et al., 1996; Schlaepfer et al., 1994; Schlaepfer et al., 1998) and 

activation of a number of downstream signaling pathways, including MAPKs 

(Schlaepfer et al., 1994), RhoGTPases (Medley et al., 2003; Zhai et al., 2003), and PI3K 

(Chen et al., 1996). 
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In the following chapter, we characterize the effects of matrix rigidity and TGF-

β on the actin cytoskeleton, focal adhesion formation, and FAK. FAK’s role in TGF-β-

induced-EMT and apoptosis will also be explored.  

5.2 Results 

5.2.1 FAK is important for rigidity-regulated apoptosis but not EMT 

To investigate whether FAK may be involved in this system, we first examined 

whether matrix compliance and TGF-β1 modulated focal adhesion formation and FAK 

phosphorylation. Prominent focal adhesions, as indicated by punctate immuno-

fluorescence staining for vinculin, and actin stress fibers were observed in NMuMGs 

cultured on rigid substrates (Fig. 5.1 A). On compliant substrates, focal adhesion 

markers were diffuse and cortical actin was observed (Fig. 5.1 B). Treatment with TGF-

β1 qualitatively increased focal adhesion size on rigid substrates, but no effect was 

observed on compliant gels.  We also observed increased phospho-FAK localization to 

focal adhesions by immunofluorescence, in a manner that directly correlated with 

vinculin localization (Fig. 5.1 A). Western blot analysis confirmed this observation, 

showing increased levels of phosphorylated Y397-FAK (Fig. 5.1 C and D).  

Interestingly, however, specific activity of FAK (pFAK normalized to total FAK) 

showed no significant difference between compliant and rigid gels, as FAK protein 

levels were greatly decreased on compliant gels. Decreased FAK expression and a lack 

of change in FAK specific activity on compliant gels suggest that compliance regulates 

FAK signaling primarily at the level of protein expression rather than its 

phosphorylation.  To test this possibility, we overexpressed FAK using an adenoviral 

vector, and observed a decrease in TGF-β1-induced apoptosis on compliant gels, but  
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Figure 5.1 FAK expression is regulated by matrix rigidity.  

(A,B) NMuMG cells immunostained for F-actin (green), nuclei (blue), vinculin 

(magenta), and phospho-FAK (yellow) on rigid (E=8 kPA) (A) and compliant (E=0.4 

kPA) (B) gels. Inset shows magnification of vinculin (V), phospho-FAK (F), and 

merged (M) images. (C, D) Western blot and quantification of phospho-FAK (125 kD), 

total FAK (125 kD), and GAPDH (38 kD). Error bars indicate the SEM of at least three 

independent experiments. *, P < 0.05; ***, P<0.001, calculated by two-way ANOVA. 

Bars, 25 µm. 
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not a rescue of Snail mRNA expression (Fig. 5.2).  Previous reports have shown 

decreased FAK expression on collagen gels due to FAK degradation by calpain (Wang 

et al., 2003b). In this system, however, we did not observe lower molecular weight 

bands associated with FAK degradation by western blot, and treatment with a calpain 

inhibitor, ALLN, did not increase FAK expression or inhibit apoptosis on compliant 

gels (data not shown). A caveat to this observation is that the inhibitor was used at 10 

µM, the concentration used in previous studies, and a higher concentration of 20 µM 

caused death on compliant substrates, even before addition of TGF-β1. 

5.2.2  Manipulation of FAK activity does not affect apoptosis or EMT 

While overexpression of wild type FAK rescued cell survival on compliant gels, 

expression of CD2-FAK, an activated FAK allele (Frisch et al., 1996), failed to inhibit 

apoptosis on compliant gels (Fig. 5.3 D and E). Further supporting this model, 

pharmacological inhibition of FAK activity with the small molecule inhibitor, PF 

573228, reduced Y397 FAK phosphorylation, but did not affect EMT or apoptosis (Fig. 

5.3 A, B, and C)., Expression of the dominant negative FRNK and the phosphorylation 

mutant FAK Y397F, both at physiological levels and highly overexpressed, did not 

reduce FAK phosphorylation at Y397, and did not affect TGF-β1-induced EMT or 

apoptosis (Fig. 5.3 D and E). These data suggest that matrix rigidity is regulating FAK 

signaling by modulating FAK protein levels, and that FAK levels in turn regulate 

compliance-induced apoptosis but not EMT. 

5.2.3 Knockdown of FAK expression does not affect apoptosis  

While FAK overexpression inhibited TGF-β1-induced apoptosis on compliant 

substrates, it was not clear if FAK expression was necessary for NMuMG survival on  
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Figure 5.2 FAK expression rescues survival on compliant gels but not EMT.  

(A) Western blot of NMuMG cells infected with Ad-GFP or Ad-FAK. (B,C) Caspase-3 

activity (B) and Snai1 mRNA expression (C) in NMuMG cells infected with Ad-GFP or 

Ad-FAK cultured on rigid and compliant gels treated with TGF-β1. Error bars indicate 

the SEM of at least three independent experiments. *, P < 0.05; **, P<0.01, calculated 

by two-way ANOVA.  
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Figure 5.3 Manipulation of FAK activity does not affect EMT or apoptosis.  

(A) Western blot of FAK (125 kD) and GAPDH control (38 kD) in NMuMG cells 

treated with 1, 5, and 10 µM PF 573228 in NMuMG cells. (B, C) Graphs of caspase-3 

activity (B) and Snai1 mRNA expression (C) in NMuMG cells treated with 1 µM PF 

573228.  (D, E) Western blot (D) and graph of caspase-3 activity (E) in NMuMG cells 

infected with Ad-GFP, Ad-FAK, Ad-CD2 FAK, Ad-FRNK, and Ad-Y397F FAK, 

plated on PA gels, and treated with TGF-β1. Error bars indicate the SEM of at least 

three independent experiments.  
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rigid substrates.  Knockdown of FAK expression with short interfering RNA (siRNA) 

reduced FAK expression by approximately 80% as compared to lipofectamine or 

scrambled siRNA controls (Fig. 5.4). Despite decreased FAK expression, apoptosis was 

not affected with or without TGF-β1 treatment (Fig. 5.4). We also did not observe 

increased death after siRNA transfection when comparing lipofectamine control or FAK 

siRNA conditions. 
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Figure 5.4 FAK knockdown does not increase apoptosis.  

(A, B) Western blot (A) and graph of caspase-3 (B) activity in NMuMG cells 

transfected with lipofectamine control, scrambled siRNA control (scr.), FAK siRNA #1 

and #2 (5 and 100 nM), and plated on compliant and rigid gels. Error bars represent 

SEM of four independent experiments.  
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5.3 Discussion 

In this chapter, we investigated the role of matrix rigidity and TGF-β in 

regulating focal adhesion formation and FAK signaling. Similar to previous studies, 

compliant substrates inhibited stress fiber and focal adhesion formation (Pelham and 

Wang, 1997; Yeung et al., 2005). Here we show that while TGF-β can increase stress 

fiber and focal adhesion formation on rigid substrates, it was not sufficient to overcome 

inhibition by compliant substrates. Further investigation revealed compliance modulates 

FAK activity by protein expression and not phosphorylation. The decrease in FAK 

expression on compliant substrates agrees with a previous report (Wang et al., 2003b), 

and this work as well as others demonstrated a role for calpain in the proteolytic 

degradation of FAK (Carragher et al., 1999; Chan et al., 2010). However, inhibition of 

calpain with the pharmacological inhibitor ALLN did not rescue FAK expression or cell 

survival on compliant substrates in our system, although higher concentrations of 

ALLN could not be investigated due to increased cell death. In addition, most reports of 

FAK degradation by calpain used a collagen matrix (Bhadriraju et al., 2009; Wang et 

al., 2003b), and because we used fibronectin as our adhesive matrix, FAK degradation 

might be regulated by a different mechanism. Future studies are needed to delineate the 

mechanism regulating FAK expression, such as investigation of FAK mRNA 

expression or degradation by other enzymes, such as caspase-6 or 7 (Gervais et al., 

1998; Wen et al., 1997).  Rescue of FAK protein levels by adenoviral overexpression 

promoted cell survival on compliant substrates. However decreasing FAK expression 

using siRNA did not increase death, which may be due to insufficient knockdown, 

compensation by other factors such as Pyk2 (Lim et al., 2010), or that overexpression of 
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FAK inhibits apoptosis in a way that does not connect to the TGF-β1-induced apoptosis 

observed on compliant substrates (Lim et al., 2008; Sonoda et al., 2000). 

Contrary to previous reports, we did not find a role for FAK in regulating EMT 

(Cicchini et al., 2008; Deng et al., 2010). A more careful characterization of focal 

adhesion components, such as Src, zxyin, and paxillin, might reveal a role for focal 

adhesion signaling in the regulation of EMT (Mori et al., 2009; Tumbarello et al., 

2005). Matrix rigidity might regulate EMT through other mechanisms related to cell-

ECM adhesion as well, such as Rho activity or contractility (Bhowmick et al., 2001a; 

Cho and Yoo, 2007; Gomez et al., 2010). Investigation of these pathways using 

activated or dominant negative Rho mutants and contractility inhibitors, like ML-7 or 

blebbistatin, might reveal another level of control whereby matrix rigidity regulates 

EMT. 
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Chapter 6 

Role of PI3K/Akt in matrix rigidity regulated 

EMT and apoptosis 

6.1 Introduction  

Because modulation of FAK expression regulated TGF-β1-induced apoptosis 

but not EMT, we investigated whether other pathways might be regulated by rigidity 

and prove important for both survival and EMT. Akt is a prominent player in cell 

survival, proliferation, growth control, and metabolism and is often hijacked during 

tumor progression. Akt promotes cell survival through many mechanisms including 

inhibition of proapoptotic proteins such as BAD, caspase-9, and the forkhead 

transcription factor family, activation of NF-κB, and antagonizing p53 (Brunet et al., 

1999; Cardone et al., 1998; Datta et al., 1997; Kane et al., 1999; Mayo and Donner, 

2001). Relevant to this work, TGF-β1 can also induce phosphorylation of Akt and 

activation of the PI3K/Akt pathway is required for EMT in murine mammary epithelial 

cells and rat kidney epithelial cells (Bakin et al., 2000; Kattla et al., 2008). In addition, 

TGF-β1-induced Akt activity also contributes to cell survival (Chen et al., 1998; Conery 

et al., 2004; Remy et al., 2004; Shin et al., 2001). Matrix adhesion is also a known 
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regulator of PI3K and Akt (Armulik et al., 2004; Levental et al., 2009; Matter and 

Ruoslahti, 2001).  

The Akt/protein kinase B (PKB) family of serine-threonine kinases consists of 

three members, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. Activity of Akt is regulated 

by upstream signaling by phosphoinositide-3 kinase (PI3K) that upon activation by 

growth factors phosphorylates PIP2 to become PIP3. PIP3 interacts with the Pleckstrin 

homology (PH) domain of Akt promoting translocation to the plasma membrane and 

subsequent phosphorylation of Ser473 and Thr308. PDK1 phosphorylates Thr308, 

however the kinase that phosphorylates Ser473 has not been fully characterized, 

although some evidence exists for autophosphorylation or phosphorylation by integrin 

linked kinase (Persad et al., 2001; Stephens et al., 1998; Toker and Newton, 2000). Akt 

activity can be downregulated by PTEN phosphatase, which removes a phosphate from 

PIP3, and thereby induces Akt translocation away from the plasma membrane.  

In this chapter, we examined the hypothesis that signals from matrix rigidity and 

TGF-β converge on PI3K/Akt to regulate the switch between EMT and apoptosis. We 

observed that both matrix rigidity and TGF-β1 treatment stimulated Akt activity, and 

pharmacological inhibition of PI3K/Akt increased cell death and inhibited EMT. 

Increasing PI3K activity rescued cell survival but not EMT on compliant gels. 

Additional studies explore the regulation of other downstream members of the apoptotic 

response, including Bcl-2 family members and initiator caspases. 

 

 

  



67 
 

6.2 Results 

6.2.1 Matrix rigidity regulates apoptosis and EMT through PI3K and Akt  

To investigate if substrate rigidity regulates the PI3K/Akt signaling pathway, we 

first measured Akt phosphorylation at serine 473. Because insulin is an essential 

component of the growth media of NMuMGs and insulin is known to stimulate Akt 

activity, exposure to insulin was included as a background control.  In all cases, 

NMuMGs cultured on compliant gels showed decreased Akt activation compared to 

cells on rigid gels (Fig. 6.1). Treatment with TGF-β1 induced more apoptosis on 

compliant gels as compared to rigid gels with or without insulin treatment (Fig. 6.1 C). 

Inhibition of PI3K or Akt activity with pharmacological inhibitors increased TGF-β1-

induced apoptosis in NMuMGs on rigid gels (Fig. 6.2 A and B). Inhibition of PI3K 

decreased Snail mRNA expression on rigid gels, however inhibition of Akt did not (Fig. 

6.2 C). Although these studies suggest that PI3K is necessary for survival and EMT 

following TGF-β1 treatment, it was not clear if it was also sufficient.  We increased 

PI3K activity by adenoviral expression of a constitutively active p110-CAAX, a 

membrane localized subunit of PI3K, and observed suppression of apoptosis on 

compliant gels to similar levels observed on rigid gels (Fig. 6.3 A and B). p110-CAAX 

expression, however, did not rescue Snail mRNA expression on compliant gels (Fig. 6.3 

C).   

While increasing PI3K activity rescued cell survival, retroviral expression of a 

constitutively active Akt1 modified with the Src myristoylation sequence (myr-Akt1) 

did not affect apoptosis or EMT (Fig. 6.4). Expression was verified but no downstream 

targets were investigated. Akt may not be the key regulatory element in this system or  
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Figure 6.1 Akt activity is regulated by matrix rigidity  

(A,B) Western blot (A) and quantification (B) of pAkt (60 kD), total Akt (60 kD), and 

GAPDH control (38 kD) in NMuMG cells plated on compliant (E=0.4 kPa) and rigid 

(E=8 kPa) polyacrylamide gels. (C) Caspase-3 activity in NMuMG cells. Error bars 

indicate the SEM of at least five independent experiments. *, P < 0.05; **, P<0.01, 

calculated by two-way ANOVA with Bonferroni posttests.  
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Figure 6.2 PI3K/Akt activity is necessary for EMT and cell survival  

(A) Western blot of phospho-Akt, total Akt, and GAPDH in NMuMG cells treated with 

DMSO control, 10 µM LY294002, or 1 µM Akt inhibitor 8. (B,C) Graphs of caspase-3 

activity (B) and Snai1 mRNA expression (C) in NMuMG cells treated with DMSO, 

LY294002, or Akt inhibitor 8. Error bars indicate the SEM of at least three independent 

experiments. *, P < 0.05; **, P<0.01; ***, P<0.001, calculated by two-way ANOVA. 
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Figure 6.3 Increasing PI3K activity inhibits apoptosis but does not rescue EMT. 

(A) Western blot of phosphor-Akt, Akt, and GAPDH in NMuMG cells infected with 

Ad-GFP or Ad-p110. (B, C) Graphs of caspase-3 activity (B) and Snai1 mRNA 

expression (C) in NMuMG cells infected with Ad-p110. Error bars indicate the SEM of 

at least three independent experiments. *, P < 0.05; **, P<0.01; ***, P<0.001, 

calculated by two-way ANOVA. 
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Figure 6.4 Myr-Akt1 does not affect apoptosis or EMT  

(A) Western blot of Akt, myr-Akt1, and GAPDH in NMuMG cells. (B,C) Graphs of 

caspase-3 activity (B) and Snai1 mRNA expression (C) in NMuMG cells infected with 

retro-GFP or retro-myr-Akt, plated on compliant and rigid PA gels, and treated with 

TGF-β1. Error bars indicate SEM of at least three independent experiments.  
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the construct may not act as a constitutively active Akt, tethering it to the membrane 

with the myristoylation sequence might somehow interfere with the function of Akt. 

Despite the lack of effect of the myr-Akt1 construct, data described above demonstrate 

a role for PI3K and Akt in transducing substrate compliance and regulating the 

compliance-induced switch in cellular response to TGF-β1.  

6.2.2 FAK manipulations do not regulate Akt activity 

Previous work has shown that FAK plays an important role in cell survival 

through several mechanisms, including through regulation of Akt activity (Chen et al., 

1996; Sonoda et al., 2000). Data from this work showed that FAK expression was 

decreased on compliant gels, and overexpression inhibited TGF-β1-induced apoptosis 

on compliant gels. In this system, however, Akt activity was not affected by FAK 

manipulations. FAK overexpression did not affect Akt phosphorylation or expression, 

and siRNA knockdown of FAK also did not affect Akt phosphorylation (Fig. 6.5 A and 

B).  

6.2.3 Matrix rigidity regulates expression of Bcl-2 and Bcl-xL 

Previous studies have demonstrated that one way TGF-β induces apoptosis is by 

regulating Bcl-2 family members, including decreasing expression of the anti-apoptotic 

Bcl-2 and Bcl-xL (Chipuk et al., 2001; Motyl et al., 1998) and upregulating pro-

apoptotic members such as Bax, Bim, and Bmf (Ramjaun et al., 2007; Yano et al., 

2006). ECM adhesion has also been demonstrated to regulate Bcl-2 expression. α5β1 

integrin binding to fibronectin activates the PI3K/Akt pathway which upregulates Bcl-2 

expression and enhances cell survival (Matter and Ruoslahti, 2001; Zhang et al., 1995). 

To investigate if Bcl-2 and Bcl-xL were regulated by matrix rigidity and TGF-β in this  
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Figure 6.5 FAK expression does not affect pAkt.  

(A) Western blot of FAK, pAkt, and GAPDH in NMuMG cells overexpressing FAK.   

(B) Western blot of FAK, pAkt, and GAPDH in NMuMG cells transfected with 

lipofectamine control, scrambled siRNA control, FAK siRNA #1 and #2 (5 and 100 

nM). 
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system, we analyzed protein expression in NMuMGs plated on compliant and rigid gels, 

in growth medium or treated with TGF-β1. In all culture conditions, cells on compliant 

gels had reduced Bcl-2 expression as compared to rigid gels (Fig. 6.6). A slight but not 

significant reduction was also observed for Bcl-xL expression. 

6.2.4 Role of initiator caspases in TGF-β1-induced apoptosis 

Proapoptotic caspases, a family of cysteine proteases responsible for the 

execution of apoptotic cell death, are subdivided into two groups, initiator caspases, 

caspase-2, 8, 9, and 10, and effector caspases, caspase-3,6 and 7. Caspases are 

expressed in an inactive proenzyme form and are activated by proteolytic processing. 

The effector, or executioner, caspases are responsible for DNA degradation, nuclear 

condensation, and plasma membrane blebbing that are characteristic of apoptosis. The 

effector caspases become active after cleavage by the initiator caspases.  Initiator 

caspases can be activated by two pathways, the extrinisic and intrinisic pathways. In the 

extrinisic pathway, ligand binding to a death receptor initiates apoptosis through the 

death inducing complex (DISC) and subsequent activation of caspase-8. The intrinsic, 

or mitochondrial, pathway is initiated by internal stressors such as DNA damage or 

hypoxia, and results in activation of caspase-9 and mitochondrial permeabilization.   

Information about which pathway, extrinsic or intrinsic, is initiated after TGF-β 

treatment on compliant gels would aid in understanding how matrix rigidity regulates 

apoptosis (Frisch, 1999). NMuMG cells plated on compliant PA gels were treated with 

inhibitors to caspase-8 and -9, IETD-CHO and LEHD-CHO respectively, prior to TGF-

β1 treatment. Caspase-3 activity was reduced by the caspase-8 inhibitor at 10 µM and 

by the caspase-9 inhibitor at 100 µM (Figure 6.7). Because the inhibitors might affect  
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Figure 6.6 Matrix rigidity regulates Bcl-2 expression.  

(A, B) Western blot (A) and quantification (B) of Bcl-xL (27 kD), Bcl-2 (26 kD), and 

GAPDH (38 kD) expression in NMuMG cells in growth media or treated with TGF-β1, 

and plated on compliant and rigid gels. Error bars indicate SEM of four independent 

experiments.   *, P<0.05 calculated by t test.   
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Figure 6.7 Inhibition of caspase-8 and caspase-9 inhibits apoptosis. 

Graph of caspase 3 activity in NMuMG cells plated on compliant PA gels, treated with 

DMSO control, IETD (caspase-8), LEHD (caspase-9), and ZVAD (caspase-3) 

pharmacological inhibitor prior to TGF-β1 treatment. Error bars indicate SEM of four 

independent experiments. ***, P<0.001 as compared to DMSO TGF-β1 condition, 

calculated by one-way ANOVA.   
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other caspases, particularly at higher concentrations, more studies will need to be done, 

such as caspase-8 and caspase-9 activity assays, and further work to characterize 

apoptosis, such as nuclear fragmentation assays.  

6.3 Discussion 

Numerous previous studies have demonstrated the importance of the PI3K/Akt 

signaling pathways for cell survival (Dudek et al., 1997; Khwaja et al., 1997; Shin et al., 

2001) and EMT (Bakin, A.V. et al., 2000, Kattla, J.J. et al., 2008). Here, we find that 

decreasing matrix rigidity inhibits PI3K/Akt activity, and through this action impinges 

on both survival and EMT. Increasing PI3K activity by adenoviral expression of a 

constitutively active p110 subunit of PI3K rescued cell survival but not EMT. While 

previous literature stated expression of p110 induced EMT in the absence of TGF-β1, 

EMT in that study was only characterized by a loss of tight junctions, and there was no 

evidence of a morphology change or upregulation of mesenchymal markers (Bakin et 

al., 2000). Myr-Akt1 was also not sufficient to rescue EMT in our studies, although 

these results are not entirely surprising, given other work where downregulation of the 

Akt1 isoform induced EMT, and the Akt2 isoform was necessary for this transformation 

(Irie et al., 2005). Studies isolating each isoform, Akt1, 2, and 3, through 

overexpression and siRNA manipulations would likely help elucidate the role of matrix 

rigidity in regulating Akt and EMT induction in this system. Another important 

question that arises from the results in this chapter is how does matrix rigidity regulate 

PI3K/Akt? In this system, it does not appear that FAK is regulating PI3K/Akt activity, 

but there are other possibilities. Matrix rigidity could regulate integrin linked kinase 

(ILK), which has been postulated as the elusive second kinase responsible for 
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phosphorylation of Ser473 (Delcommenne et al., 1998; Persad et al., 2001). 

Additionally, rigidity could modulate PTEN, a lipid phosphatase that antagonizes PI3K 

signaling, or traditional growth factor signaling upstream of PI3K.  

Finally, work presented at the end of this chapter begins to dissect the apoptotic 

mechanism regulated by matrix rigidity and TGF-β1. Matrix compliance downregulates 

Bcl-2 and Bcl-xL expression, and overexpression of Bcl-xL rescues cell survival, 

suggesting that apoptosis occurs through the intrinsic mitochondrial pathway. 

Pharmacological inhibition of the initiator caspase-8 and 9 reduced caspase-3 activity, 

however more work is needed to confirm the involvement of these caspases and the 

specificity of the inhibitors, such as caspase activity assays with the substrate specific to 

each caspase and, to avoid non-specific inhibition of caspase-3 activity, apoptosis 

assays such as nuclear fragmentation or TUNEL. Additionally, exploration of the role 

of FAK and Akt in the regulation of Bcl-2 family members and caspase activation will 

also yield valuable information on the regulation of apoptosis by both of these 

pathways.  
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Chapter 7 

Conclusions and Future Directions 

7.1 Conclusions 

TGF-β regulates a diverse array of cellular functions, including proliferation, 

motility, and differentiation. How TGF-β regulates often divergent functions, 

particularly in disease contexts such as fibrosis and tumorigenesis, is not well 

understood. Here we demonstrate that matrix rigidity regulates a switch between TGF-

β-induced apoptosis and EMT, and we investigated the signaling mechanisms involved 

in this switch.   

 In Chapter 4, we explored how varying cell adhesion to the ECM modulated the 

cellular response to TGF-β. Decreasing substrate rigidity increased TGF-β-induced 

apoptosis and inhibited EMT. Modulating cell-ECM adhesion by changing cell seeding 

density revealed that at confluence, a condition with decreased cell spreading and 

increased cell-cell contact, both apoptosis and EMT are inhibited. Finally, limiting 

ECM adhesion of single cells by microcontact printing, increased TGF-β-induced 

apoptosis, similar to compliant substrates, suggesting that limiting cell adhesion may be 

the mechanism whereby rigidity controls apoptosis. 

The role of focal adhesion formation and signaling in regulating apoptosis and 

EMT was investigated in Chapter 5. Compliant matrices inhibited stress fiber and focal 



80 
 

adhesion formation even with TGF-β1 treatment. Further investigation revealed FAK 

was regulated at the level of protein expression and not activity. Compliant matrices 

decreased expression of FAK, and overexpression of FAK rescued cell survival. 

Modulation of FAK activity, by a pharmacological inhibitor or various adenoviral 

expressed mutants, did not affect apoptosis or EMT.  

Further mechanistic studies in Chapter 6 demonstrated that matrix rigidity 

regulates PI3K/Akt activity to control the switch in TGF-β1-induced apoptosis and 

EMT. Decreasing matrix rigidity inhibits PI3K/Akt activity, and through this action 

impinges on both survival and EMT. Increasing PI3K activity rescued survival but not 

EMT on compliant substrates. It is perhaps not surprising that upregulation of FAK or 

PI3K failed to rescue EMT on low rigidity substrates, given the many disparate 

processes that are collectively coordinated to drive EMT. 

 

7.2 Future Directions 

7.2.1 Further exploration of the cellular microenvironment  

In this thesis, we have explored the role of the cellular microenvironment in 

regulating TGF-β-induced cell functions. Our results demonstrate that modulating the 

microenvironment, by changing substrate rigidity, cell seeding density, or cell 

spreading, can regulate TGF-β-induced apoptosis and EMT. Through the use of 

microcontact printing, we demonstrated that restricting cell spreading alone increases 

TGF-β1-induced apoptosis. From other work in the lab, we have also observed that 

increasing cell-cell contact did not affect TGF-β1-induced apoptosis, suggesting that 
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matrix rigidity is regulating apoptosis through changes in cell spreading and not cell-

cell adhesion (unpublished data). Previous studies have demonstrated a role for cell 

spreading, cell-cell adhesion, and contractility for induction of EMT, but whether these 

observations are true in the system used here remains to be seen (Gomez et al., 2010; 

Nelson et al., 2008). Although cell-cell adhesion did not appear to play a role at early 

time points, it would be interesting to observe if polarized multicellular structures are 

resistant to TGF-β-induced apoptosis or EMT (Weaver et al., 2002). 

We have used fibronectin as the adhesive ligand in the studies presented here, 

but other matrices including collagen I and basement membrane proteins, such as 

laminins and collagen IV, would elucidate if certain integrins are important for the 

matrix rigidity regulated switch between apoptosis and EMT. These studies would also 

give extra insight into regulation of cell function during disease progression. In normal 

tissues, epithelial cells are in contact with a basement membrane, and during tumor 

progression and metastasis, tumor cells encounter different ECM components, such as 

collagen I. Additionally, the results presented here were limited to 2D studies, and it 

will be important to determine how the effects observed in this work translate to a 3D 

environment using methods discussed earlier, such as collagen and PEG gels.  

7.2.2 Further elucidating molecular mechanisms regulated by matrix rigidity and 

TGF-β 

The studies presented in this work demonstrate a role for FAK and Akt in 

regulating apoptosis, however there are several other mechanisms that warrant further 

study and will elucidate how matrix rigidity regulates TGF-β1 induced apoptosis. As 

discussed in Chapter 2, a number of pathways can be activated downstream of TGF-β 
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that are also important for EMT and apoptosis, and it is likely that these pathways may 

also be involved in this switch, including MAPKs and RhoGTPases. 

7.2.2.1 The role of EMT in cell survival 

In Chapter 4, we explored the possibility that compliant substrates inhibit EMT 

by increasing TGF-β-induced apoptosis thus preventing EMT. Apoptosis occurred 

within hours of TGF-β treatment, however EMT could only be fully characterized after 

several days, leading us to ask whether cells on compliant substrates would undergo 

EMT at longer time points.  To answer this question, we inhibited apoptosis and 

demonstrated that cells on compliant substrates, even with inhibition of apoptosis, were 

not able to fully undergo EMT. The reverse question could also be posed, though: does 

induction of EMT protect cells from apoptosis? Indeed, several reports from the 

literature show that after induction of EMT, cells become immune to TGF-β-induced 

apoptosis (Del Castillo et al., 2006; Gal et al., 2008; Robson et al., 2006; Valdes et al., 

2002). Additionally, Snail, a transcription factor both necessary and sufficient for EMT, 

and the closely related Slug are also a survival factors (Franco et al., 2010; Leroy and 

Mostov, 2007; Vega et al., 2004). It would be interesting to overexpress Snail on 

compliant substrates and observe whether there is inhibition of apoptosis and induction 

of EMT. And, conversely, does siRNA knockdown of Snail on rigid substrates increase 

apoptosis and inhibit EMT? A more clear understanding of the role of Snail in EMT and 

apoptosis would help to delineate the interplay between these two functions and the 

regulation by matrix rigidity. 
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7.2.2.2 Further regulation of EMT and apoptosis by focal adhesions 

We demonstrated that compliant substrates decreased FAK expression, and 

increasing FAK expression rescued cell survival.  However, we did not identify the 

mechanism regulating FAK expression. We did not find a role for calpain mediated 

degradation as previous literature had reported, however previous studies used a 

collagen matrix and found a role for the discoidin domain receptors (DDR1 and 2) in 

FAK degradation (Bhadriraju et al., 2009; Wang et al., 2003b). Because we used 

fibronectin as our adhesive matrix, FAK degradation is likely regulated by a different 

mechanism. Future studies are needed to delineate the mechanism regulating FAK 

expression, such as investigation of FAK mRNA expression or degradation by other 

enzymes, such as caspase-6 or 7 (Gervais et al., 1998; Wen et al., 1997).  Rescue of 

FAK protein levels by adenoviral overexpression promoted cell survival on compliant 

substrates. However decreasing FAK expression using siRNA did not increase death, 

which may be due to insufficient knockdown, or compensation by other factors such as 

Pyk2 (Lim et al., 2010). Observation of apoptosis during siRNA transfection might 

reveal that FAK is necessary for survival in these cell lines, and explain why increased 

siRNA concentration did not decrease FAK expression. Finally, investigation of Pyk2 

expression and activity would reveal if Pyk2 compensation prevents increased apoptosis 

by FAK knockdown. 

Contrary to previous reports, we did not find a role for FAK in regulating EMT 

(Cicchini et al., 2008; Deng et al., 2010). A previous study has reported compliance 

induced degradation of focal adhesion components in addition to FAK, including talin, 

paxillin, and p130Cas (Wang et al., 2003b). A more careful characterization of focal 
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adhesion components, such as Src, zxyin, and paxillin, in the system presented in this 

work might reveal a role for focal adhesion signaling in the regulation of EMT (Mori et 

al., 2009; Tumbarello et al., 2005). Additionally, if degradation of focal adhesion 

components was inhibited with a protease inhibitor, is induction of EMT restored and 

apoptosis prevented on compliant substrates? Further investigation into the role of focal 

adhesion regulation of EMT and apoptosis will further elucidate how matrix rigidity 

controls these processes. 

7.2.2.3 Role of Rho-mediated contractility in matrix rigidity regulation of EMT and 

apoptosis 

Matrix rigidity might regulate EMT and apoptosis through other mechanisms 

related to cell-ECM adhesion as well, such as Rho activity and contractility. Matrix 

rigidity has been shown to regulate Rho activity and actin stress fiber formation in a 

number of previous studies (Krndija et al., 2010; Paszek et al., 2005; Provenzano et al., 

2009; Wozniak et al., 2003). TGF-β1 also increases Rho activity and stress fiber 

formation (Bhowmick et al., 2001a; Cho and Yoo, 2007; Gomez et al., 2010). In this 

work, we observed stress fiber formation on rigid gels, which was increased with the 

addition of TGF-β1, however we did not measure or manipulate Rho activity. 

Investigation of these pathways using activated or dominant negative Rho mutants and 

contractility inhibitors, like ML-7 or blebbistatin, would likely reveal another level of 

control whereby matrix rigidity regulates EMT.  
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7.3 Concluding Remarks 

This thesis explores the role of matrix rigidity in regulating cell function. We 

demonstrated that varying matrix rigidity regulates a switch between TGF-β-induced 

apoptosis and EMT. We found that on compliant substrates, with a modulus similar to 

native breast tissue, TGF-β induces apoptosis, whereas on rigid substrates, with a 

modulus similar to tumor or fibrotic tissue, TGF-β induces EMT. Further investigation 

revealed matrix rigidity downregulates FAK expression and inhibits PI3K/Akt activity, 

and through this action impinges on both survival and EMT. As discussed in the future 

directions section, further studies are needed to fully understand the complex interplay 

between the cellular microenvironment, TGF-β, and the underlying signaling 

mechanisms. The work presented here provides a possible explanation for the switch in 

TGF-β’s action from tumor suppressor to promoter during tumorigenesis, and likely 

extends to other disease contexts such as atherosclerosis and fibrotic diseases, during 

which there is tissue stiffening and TGF-β is a major contributing factor. Furthermore, 

these studies highlight the central role for matrix mechanics in regulating cell signaling 

and fate, and stress the importance of considering physical factors in biological systems. 
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