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Fabrication and Actuation of Hierarchically-Patterned Polymer Substrates
for Dynamic Surface and Optical Properties

Abstract
Switchable optical materials, which possess reversible color and transparency change in response to external
stimuli, are of wide interest for potential applications such as windows and skylights in architectural and
vehicular settings or optical sensors for environmental monitoring. This thesis considers the tuning of optical
properties by tailoring and actuating responsive materials. Specifically, we demonstrate the design and
fabrication of tilted pillar arrays on wrinkled elastomeric polydimethylsiloxane (PDMS) as a reversibly
switchable optical window. While the original PDMS film exhibits angle-dependent colorful reflection due to
Bragg diffraction of light from the periodic pillar array, the tilted pillar film appears opaque due to random
scattering. Upon re-stretching the film to the original pre-strain, the grating color is restored due to the
straightened pillars and transmittance is recovered. Then, we develop a composite film, consisting of a thin
layer of quasi-amorphous array of silica nanoparticles (NPs) embedded in bulk elastomeric PDMS, with
initial high transparency and angle-independent coloring upon mechanical stretching. The color can be tuned
by the silica NP size. The switch between transparency and colored states could be reversibly cycled at least
1000 times without losing the film’s structural and optical integrity.

We then consider the micropatterning of nematic liquid crystal elastomers (NLCEs) as micro-actuator
materials. Planar surface anchoring of liquid crystal (LC) monomers is achieved with a poly(2-hydroxyethyl
methacrylate)-coated PDMS mold, leading to monodomains of vertically aligned LC monomers within the
mold. After cross-linking, the resulting NLCE micropillars show a relatively large radial strain when heated
above nematic to isotropic transition temperature, which can be recovered upon cooling. Finally, the
understanding of liquid crystal surface anchoring under confined boundary conditions is applied to the self-
assembly of gold nanorods (AuNRs) driven by LC defect structures and to dynamically tune the surface
plasmon resonance (SPR) properties. By exploiting the confinement of the smectic liquid crystal, 4-octyl-4’-
cyanobiphenyl (8CB), to patterned pillars treated with homeotropic surface anchoring, topological defects
are formed at precise locations around each pillar and can be tuned by varying the aspect ratio of the pillars
and the temperature of the system. As a result, the AuNR assemblies and SPR properties can be altered
reversibly by heating and cooling between smectic, nematic and isotropic phases.
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ABSTRACT 

FABRICATION AND ACTUATION OF HIERARCHICALLY-

PATTERNED POLYMER SUBSTRATES FOR DYNAMIC SURFACE 

AND OPTICAL PROPERTIES 

Elaine Lee 

Shu Yang 

Switchable optical materials, which possess reversible color and transparency 

change in response to external stimuli, are of wide interest for potential applications such 

as windows and skylights in architectural and vehicular settings or optical sensors for 

environmental monitoring. This thesis considers the tuning of optical properties by tailoring 

and actuating responsive materials. Specifically, we demonstrate the design and fabrication 

of tilted pillar arrays on wrinkled elastomeric polydimethylsiloxane (PDMS) as a reversibly 

switchable optical window. While the original PDMS film exhibits angle-dependent colorful 

reflection due to Bragg diffraction of light from the periodic pillar array, the tilted pillar film 

appears opaque due to random scattering. Upon re-stretching the film to the original pre-

strain, the grating color is restored due to the straightened pillars and transmittance is 

recovered. Then, we develop a composite film, consisting of a thin layer of quasi-amorphous 

array of silica nanoparticles (NPs) embedded in bulk elastomeric PDMS, with initial high 

transparency and angle-independent coloring upon mechanical stretching.  The color can be 

tuned by the silica NP size. The switch between transparency and colored states could be 

reversibly cycled at least 1000 times without losing the film’s structural and optical integrity. 

We then consider the micropatterning of nematic liquid crystal elastomers (NLCEs) 

as micro-actuator materials. Planar surface anchoring of liquid crystal (LC) monomers is 
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achieved with a poly(2-hydroxyethyl methacrylate)-coated PDMS mold, leading to 

monodomains of vertically aligned LC monomers within the mold. After cross-linking, the 

resulting NLCE micropillars show a relatively large radial strain when heated above nematic 

to isotropic transition temperature, which can be recovered upon cooling. Finally, the 

understanding of liquid crystal surface anchoring under confined boundary conditions is 

applied to the self-assembly of gold nanorods (AuNRs) driven by LC defect structures and to 

dynamically tune the surface plasmon resonance (SPR) properties. By exploiting the 

confinement of the smectic liquid crystal, 4-octyl-4’-cyanobiphenyl (8CB), to patterned 

pillars treated with homeotropic surface anchoring, topological defects are formed at precise 

locations around each pillar and can be tuned by varying the aspect ratio of the pillars and the 

temperature of the system. As a result, the AuNR assemblies and SPR properties can be 

altered reversibly by heating and cooling between smectic, nematic and isotropic phases.  
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1.1 Introduction 

The manipulation of nano- and microscaled surface features offers a well-

controlled approach for modulating optical phenomena. In nature, there is an abundance 

of hierarchical patterns which offer multi-scale functionality and tunability, such as the 

self-cleaning and hydrophobic lotus leaf,
3-5

 the chemically-sensitive structural color of 

the Morpho butterfly,
6-8

 and the adhesion pad of gecko lizards.
9-11

 These properties arise 

from the micro- and nanostructures of the systems. Advances in micro- and 

nanofabrication techniques have allowed for the fabrication of multi-scale hierarchical 

structures with dynamic properties. Physical modification, through the combination of 

bottom-up self-assembly and top-down lithography techniques, is a simple and well-

controlled approach to fabricate artificial multi-functional and well-ordered surfaces.
12-15

 

By drawing inspiration from naturally occurring structural color and exploiting the 

responsiveness of polymer systems, the fabrication and actuation of multi-scale, 
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dynamically-tunable optical components can be realized. Here, structural color, their 

underlying optical properties and examples of structural color in nature are introduced. 

The fabrication of artificial color using responsive materials, with an emphasis on 

elastomers and liquid crystals, and the manipulation of these systems are discussed. 

1.2 Optical origins of structural color  

The perception of color comes from interplay between the light source, the 

objects that interact with light, and the detector of light. The wavelength of light detected 

defines the color observed and new colors can be achieved by additive or subtractive 

color mixing. Additive coloring is created by mixing light of different wavelengths while 

subtractive coloring is created by selectively absorbing specific wavelengths of light 

using dyes, inks, pigments or filters.
16

 If all wavelengths of light are reflected, absorbed 

or transmitted, white, black or transparency is observed, respectively. Structural color 

results from the physical interaction of light with structures with length scales on the 

order of the wavelength of light. They are typically brighter and shinier than pigment 

colors, which can fade away over time under the sun. Structural color can be defined by 

the following optical processes and their combinations: thin-film interference, multi-layer 

interference, diffraction grating, and light scattering (Figure 1.1).
17-19
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Figure 1.1 Schematic diagram of (a) thin-film interference, (b) multi-layer inference, (c) 

diffraction, and (d) left to right: 1D, 2D, and 3D photonic crystals. 

1.2.1 Thin-film interference 

When a plane wave of light strikes a thin layer of thickness d and refractive index 

n2 at an angle θ1, the light is reflected at the top interface with air, refracted at an angle of 

θ2, and reflected at the bottom interface of the layer. The reflected beams from the two 

interfaces interfere with each other. Constructive interference, such that reflection is 

enforced, occurs when light of wavelength λ meets the following condition: 
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where m is an integer when the thin layer is attached to a material with higher refractive 

index, e.g. anti-reflective coatings, and a half integer when it is not, e.g. soap bubbles. 

The wavelength of maximum reflectivity is given by: 

 

      
    

    
 
 

   
  
 

  
    

    
 

 (1-2) 

 

As the incident angle increases, the wavelength of maximum reflectivity decreases, i.e. 

the color is angle-dependent, a phenomenon known as iridescence. 

1.2.2 Multi-layer interference 

Multi-layer interference occurs when two or more thin layers of different 

refractive indices are stacked. Considering two layers, A and B, with thicknesses dA > dB 

and refractive indices nA and nB stacked periodically on top of each other, the relation for 

constructive inference for an anti-reflective coating (i.e. the phases of the reflected light 

at the upper and lower interfaces between B and A change by 180°) is: 

 

                          (1-3) 

 

where θA and θB are the angles of refraction of layers A and B, respectively. If the phase 

of the reflected light does not change at the A-B interface, then the following is also 

satisfied: 

 

               
 

 
   (1-4) 
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The reflection at the interface adds to the interference, giving maximum reflectivity when 

m’ < m. The wavelength at which first-order maximum constructive interference occurs 

λmax = 2(nAdA + nBdB) for any multi-layer. For the ideal multi-layer (i.e. m = 1 and m’ = 0), 

the optical path lengths are equal, nAdA = nBdB = λmax/4, and the light reflected from every 

interface interferes constructively. If the thickness of layer A does not satisfy Equation 

(1-4), but the sum of layers A and B (nAdA + nBdB) satisfies Equation (1-3), then the 

reflection at the A-B interface is destructively interfering and the peak reflectivity can be 

decreased, i.e. the non-ideal multi-layer.  

1.2.3 Diffraction grating 

A diffraction grating is an optical component with periodic structures with lengths 

on the order of the wavelengths of light that split and diffract light into different 

directions, resulting in color. The diffracted light is the sum of the interfering light beams 

from each slit. The phase of the beams varies since the optical path length varies from 

each slit, resulting in constructive and destructive interference. When a plane wave of 

light is normally incident on a diffraction grating with slits of spacing d, the diffracted 

light has maxima at angles θm given by: 

 

          (1-5) 

 

where m is the order of the diffracted beam. 
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1.2.4 Photonic crystals 

Photonic crystals are materials that have periodically-modulated indices of 

refraction in one, two, or three dimensions, where light are interfered and totally reflected 

at the surface of the crystals at specific wavelengths, i.e. a photonic band gap (PBG). The 

location and width of the PBGs is determined by photonic crystal structures, including 

the symmetry, periodicity, volume filling fraction (or porosity), and refractive index 

contrast between the high and low dielectric materials.
20

 Here, we are primarily 

concerned with the resultant color. The color of photonic crystals arises from interference 

of reflected light as described by Bragg-Snell’s law: 

 

         
            (1-6) 

 

where d is the lattice spacing, neff is the average refractive index of the constituent 

materials, θ is the incident angle of light. 

1.2.5 Light scattering 

Unlike other structural color, the color generated by light scattering arises from 

structural irregularity. The scattering of electromagnetic radiation, i.e. broadband or Mie 

scattering, from a sphere is given by the Mie solution in the form of an infinite series of 

spherical Bessel functions.
21

 In the case of Rayleigh scattering, the intensity of 

unpolarized radiation of wavelength λ and intensity I0 scattered from a particle much 

smaller than the wavelength of light is given by: 
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where θ is the scattering angle, R is the distance between the particle and the detector, n 

is the index of refraction of the particle, and D is the diameter of the particle. For a 

particle film, the intensity is given by: 

 

 

  
 

   

  
 (1-8) 

 

where N is the number of particles per unit volume. 

1.3 Natural and artificial structural colors 

Biological organisms use color for a number of purposes, including signaling, 

camouflage, mating display, and optical filtering. Nature has evolved a multitude of 

structures, ranging from one-dimensional (1D) gratings to two-dimensional (2D) multi-

layers to three-dimensional (3D) photonic crystals, which exhibit structural color derived 

from a combination of the processes described above.
6,8,19,22-25

 Structural color can be 

divided into two classes: angle-dependent color from coherent interference and/or 

diffraction on periodic structures, as seen in some butterfly wings and beetle scales,
17,19,25

 

and angle-independent color from scattering on quasi-amorphous structures, as seen in 

some bird feathers and mandrill skin.
26

 Among the many organisms exhibiting structural 

color, the most widely studied is the Morpho butterfly.
6-8,17

 Male Morpho butterfly wings 

appear shiny blue, resulting from multi-layer interference within the hierarchical 

ridge/lamellar structure. Irregularity in the heights of the narrow ridges cancels the 
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interference between neighboring ridges, resulting in wide-angle reflection. In addition, 

pigments underneath the structure absorb unnecessary colors to enhance the color 

contrast. It is notable that the brilliant iridescent color observed results from a 

combination of structure regularity, irregularity, and pigmentation. 

While brilliant color is aesthetically pleasing, switchable color and/or 

transparency to suit the local environment may be desired in organisms for signaling or 

mating purposes.
24,27,28

 For example, color changes are observed for Morpho butterfly 

wings in different vapors
7
 due to gas adsorption within the lamellae structures and for 

longhorn beetle scales at different levels of humidity
24

 due to changes of refractive index 

in the surrounding medium. Color and transparency change are also advantageous for 

camouflage under stressful conditions. Hercules
29

 and tortoise
30

 beetles change color 

when under mechanical stress by effectively changing the difference in refractive indices 

within their structures via hydration and dehydration, allowing more and less light to be 

absorbed, respectively. Squids and octopi can switch between transparency and red color 

to become invisible to a predatory fish in down-welling light or to a predatory fish with 

bioluminescent searchlights, respectively, by stretching/contracting their skin to 

reveal/hide the embedded chromatophores.
31-33

 

Fabrication of artificial structures has been extensively studied to mimic the color 

and transparency changes found in nature. Often, polymeric materials are employed as 

the responsive components, either patterned at the optical scale or embedded with 

optical-scale particles. Given the immense library of available constituents, the 

composition, functional groups, architecture, and multi-scale morphology of polymeric 

materials can be tuned to induce dramatic and often reversible changes in shape,
34
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volume,
35

 morphology,
36

 and mechanical
37

 and optical properties.
38,39

 By engineering 

specific responsiveness, controlled transitions can be achieved, resulting in changes to the 

feature size, spacing, and refractive index and thus to the optical properties. Polymeric 

materials that are responsive to external stimuli, including temperature, pressure, pH, 

light, and electric and magnetic fields, are of interest for a wide variety of applications. 

Stimuli responsiveness arises from a system’s ability to transition between two minimum 

energy states when triggered either physically (i.e. mechanically, electrically, 

magnetically, optically, and thermally) or chemically (electrochemically, ionically, and 

biologically).
2,13,15,40-47

 

1.3.1 Hydrogels 

Responsive polymers undergo conformational changes as a result of a change in 

the polymer chain interactions. While polymers readily respond to stimuli in solutions, 

polymers existing in other states of matter require greater energetic inputs for 

responsiveness due to their limited segmental motions, dimensional restrictions, and 

structural integrity. Common states of polymers include cross-linked gels, elastomers, 

and polymer solids. Stimuli-responsive gels are formed by chemically or physically 

cross-linking responsive polymers.
40

 In particular, hydrophilic polymers can be cross-

linked to form hydrogels which can swell in solvents, depending on temperature, pH and 

ionic strength.
43,48,49

 The responsiveness of hydrogels can be tuned by both the 

constituent polymers and their responsiveness, as well as by the cross-linking density and 

cross-linking distribution of the hydrogels. Gels can be glassy in the dry state but exhibit 

a significant drop in elastic modulus in the swollen state.  
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Thermo-responsive polymers often possess either a lower or upper critical 

solution temperature, at which they undergo a coil-to-globule transition or vice versa.
49

 A 

well-known example is poly(N-isopropylacrylamide) (PNIPAAm), which has a lower 

critical solution temperature (LCST) above which it becomes hydrophobic and collapses 

out of water. By embedding a non-close-packed 3D colloidal crystal into a PNIPAAm 

hydrogel, thermally tunable diffraction was realized.
50

 When the system is heated above 

the LCST, the hydrogel shrinks, thereby reducing the inter-particle distance and the 

diffraction wavelength. Alternatively, PNIPAAm nanogel particles have been self-

assembled into colloidal crystals and polymerized, allowing thermally-induced 

synchronized shrinking of the particles. The change in the nanogel particle size and 

spacing results in increased diffraction and a drop of transmitted light within 900 ns. 

Porous thermo-sensitive hydrogels have also been fabricated by infiltrating a mixture of 

thermo-sensitive monomer and cross-linker into a colloidal crystal followed by gel cross-

linking and colloidal template removal.
51,52

 The color of the gel can be controlled by 

either the dimensions of the colloidal crystal or by the concentration of the cross-linker. 

The diffraction spacing of the inverse-opal gels can then be tuned by controlling the 

temperature. 

pH-responsive polymers have functional groups which are able to donate or 

accept protons under different pH conditions, which results in electrostatic repulsions 

between the resulting charges along the polymer backbone.
41

 Polyacids, such as 

poly(acrylic acid) (PAA), release protons and swell at pH values above their pKa. 

Contrarily, polybases such as poly(vinyl pyridine) (PVP) accept protons and swell at pH 

values below their pKa. Inverse opal hydrogels copolymerized with pH-sensitive 
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functional groups enable pH-induced swelling and therefore color change.
53,54

 

Alternatively, hydrogels can be functionalized with molecular-recognition groups for the 

selective binding of ions or molecules, leading to swelling-induced color change.
54-57

 

Similarly, by incorporating photochromic molecules into hydrogels, optically-induced 

color change has been demonstrated.
58-60

 Common light-sensitive molecules include 

azobenzene, which undergoes a cis-trans isomerization; spiropyran, which ionizes and 

generates a dissociated ion pair; and cinnamate, which dimerizes and cross-links two 

molecules in response to UV irradiation. 

1.3.2 Shape memory polymers 

While hydrogels offer multi-stimuli responsiveness and versatility, swelling of 

hydrogels requires a solvent thereby limiting the practical application, especially at larger 

scales. Polymer solids are highly cross-linked polymer networks, which have limited 

mobility and low free volume, resulting in restricted stimuli-responsive behaviors. In 

order to improve responsiveness, it is common to copolymerize the responsive solid with 

lower glass transition segments or add fillers to plasticize the material and increase the 

free volume. Alternatively, the polymer networks can be designed with cross-links which 

can be reversibly broken upon triggering.
61

 Polymers which can be programmed with 

temporary shapes and subsequently recover their  permanent shapes are known as shape 

memory polymers (SMPs).
62,63

 Most commonly, the shape change is thermally induced, 

whereupon heating the SMP above a transition temperature (Ttrans) will decrease the 

Young’s modulus by 2 or 3 orders of magnitude, allowing for the SMP to be deformed to 

a temporary shape. The temporary shape can then be fixed by cooling the sample. 
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Reheating SMP in the temporary shape to above Ttrans triggers the relaxation of the stored 

elastic energy and the recovery of the permanent shape. Cooling again to below Ttrans 

solidifies the permanent shape. The process can then be repeated to program a different 

temporary shape. By exploiting this property, the deformation of SMPs consisting of 

periodic microhole arrays
64

 and micro-optic components
65

 was demonstrated to switch 

between color and transparency. 

1.3.3 Elastomers 

Elastomers are polymer networks with low cross-linking density, allowing them  

to have high deformability even in the dry state. Polydimethylsiloxane (PDMS) is a 

typical elastomer that can be deformed mechanically due to its low elastic modulus, on 

the order of a few MPa.
66

 PDMS is also advantageous for the fabrication of nano- and 

microscale features via soft lithography.
67

 The reversible stretching of tapered PDMS 

nanopillar arrays (top diameter = 150 nm; bottom diameter = 300 nm; height = 150, 350, 

700 nm) on a microwrinkled PDMS film (wavelength λ = 31 μm, amplitude A = 4.4 μm) 

has been reported for mechanically tunable wetting and transparency. 
27

 PDMS substrates 

pre-patterned with nanopillars were pre-stretched and treated with oxygen plasma to 

induce wrinkling. As fabricated, the substrates are opaque but become transparent with 

strain. The nanopillars render the substrates superhydrophobic. The switchable 

transmission (transparent ↔ opaque) is achieved primarily by reversibly flattening the 

microwrinkles while the nanopillars are rather transparent in the visible wavelength. 

Similar to other reports, a non-close-packed 3D colloidal crystal was embedded within 
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PDMS. The diffraction spacing was reduced upon mechanical stretching, resulting in a 

blue shift of the reflectance maximum of the film.
68

 

1.3.4 Liquid crystal elastomers 

Liquid crystal elastomers (LCEs) are a unique class of shape memory elastomers, 

which combine the properties of liquid crystals (orientational order and responsiveness) 

and polymer networks (rubbery elasticity).
69-73

 The behavior of LCEs depends on their 

physical properties as defined by the liquid crystalline (LC) phases of the incorporated 

mesogens. LC phases exist at temperatures between the solid (crystalline) and liquid 

(isotropic melt) phases and are defined by the orientation of their anisotropic mesogens, 

represented by a dimensionless unit vector known as the local director n (Figure 1.2). 

Typically, LCs formed by rod-like molecules transition from the isotropic phase to the 

nematic phase to the smectic phase to the crystalline phase when cooled.  

 

Figure 1.2 Schematic representation of the (a) isotropic, (b) nematic, cholesteric, (c) 

smectic A, and smectic C phases. The red arrows indicate the local director n and the 

green arrow indicates the layer normal of the smectic phases. 

The isotropic phase is a disordered phase, where the LC molecules are oriented 

randomly. In nematic phases, LC molecules have long-range rotational order but no long-

range translational order, such that their center-of-mass is randomly distributed but their 

b ca

Isotropic Nematic Cholesteric Smectic A Smectic C
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long axes are aligned roughly parallel to a local director axis (Figure 1.2b).
69

 An order 

parameter can be used to define the average alignment of the LC molecules: 

 

  
          

 
 (1-9) 

 

where θ is the angle between the long axis of the LC molecule and the local director. For 

complete random alignment, S = 0 and for perfect alignment, S = 1. Topological defects 

in LCs are places where the order parameter is undefined and small isotropic regions may 

be embedded in the LC phase. These defects can exist in the form of points and lines.
74

 

The winding number of a LC defect is defined by the angle that the local director turns on 

a loop around the defect divided by 2π. Typical defects found in nematic LCs are shown 

in Figure 1.3. 

 

Figure 1.4 2D topological defects in nematic LCs. Point defects with winding number (a) 

-1/2, (b) +1/2, (c) -1, and (d) +1. (e) Line defect. Red lines define the local director and 

blue defines the defect. 

a c

b d

e
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Cholesteric LCs can be considered twisted nematic structures, with local in-plane 

nematic ordering but with a helical director distribution across the planes. The chiral 

pitch is defined by the distance over which the molecules rotate by 360°. Smectic LCs 

have quasi-long-range translational order (Figure 1.2c). Smectic LCs form parallel 

layers, in which the molecules are aligned with the local director parallel to or tilted from 

the layer normal with no long-range translational order within the layers, i.e. smectic A or 

smectic C phase, respectively. 

 

Figure 1.5 Schematic representation of the surface anchoring of LC molecules. 

When confined to a surface, LC molecules can be aligned by the topology, 

topography, and surface chemistry at the interface. Homeotropic and planar anchoring are 

defined as the alignment of LCs perpendicular and parallel to a surface, respectively 

(Figure 1.4). Depending on the boundary conditions of the nematic LCs, the director 

field may be distorted to accommodate the surface anchoring of the molecules via splay, 

twist, or bend elastic deformations (Figure 1.6a-c).
75

 The Frank elastic free energy 

density describes the penalty for distortions of the director in nematic LCs: 

 

         
 

 
                     

 
           

 
  (1-10) 
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where the K1, K2, and K3 refer to the splay, twist, and bend curvature elastic constants, 

respectively. In the smectic phase, bend and twist of the director are prohibited (Figure 

1.6d) and the free energy density depends on the splay, saddle-splay, and compressibility: 

 

         
 

 
   

 

  
 

 

  
 
 

  
 

    
 

 

 
  

    

  
 
 

 (1-11) 

 

where R1 and R2 are the principle radii of curvature of the layers,   is the saddle-splay 

elastic constant, B is the compression modulus, and d and d0 are the distorted and 

equilibrium layer thickness, respectively. 

 

 

Figure 1.6 (a) Splay, (b) twist, and (c) bend deformations of nematic LCs. (d) Splay 

deformation of smectic LC. Reproduced with permission from reference 75. 

LC monomers with functional groups can be cross-linked to form liquid 

crystalline polymers (LCPs) or LCEs. Due to the permanent dipoles in the polymer 

matrices of LCEs and the resulting optical and geometrical anisotropies, LCEs can 

respond to electromagnetic fields by realigning their mean optical axis parallel to the 



17 

 

external field, resulting in orientation changes.
76

 In addition, the orientational order of the 

mesogens can be controlled by temperature or solvent as well as light with the addition of 

photo-chromic molecules,
77

 resulting in conformation and/or shape change.
72

 Nematic 

LCEs exhibit a reversible shape memory effect, i.e. the permanent shape can be 

recovered upon removal of the stimulus or with the application of an additional 

stimulus.
77

 Thermo-responsive inverse opal films have been fabricated using the colloidal 

crystal film as a template by backfilling nematic LC monomers, followed by curing and 

removal of the colloidal template.
78

 They exhibit a spontaneous contraction along the 

director axis when heated above the nematic-isotropic phase-transition temperature (TNI), 

resulting from the polymer chains changing to a spherical conformation.
79

 This 

contraction reduces the diffraction spacing, resulting in a blue shift of the reflectance 

maximum of the film. The color of cholesteric LCEs can also be changed by tuning the 

helical pitch of the cholesteric LC phase using mechanical strain.
80,81

 

1.4 Thesis outline 

This thesis considers the tuning of optical properties by tailoring and actuating 

responsive materials. Specifically, we demonstrate the design and fabrication of tilted 

pillar arrays on wrinkled elastomeric polydimethylsiloxane (PDMS) as a reversibly 

switchable optical window. Then, we develop a composite film, consisting of a thin layer 

of quasi-amorphous array of silica nanoparticles (NPs) embedded in bulk elastomeric 

PDMS, which switches from initial high transparency state to angle-independent coloring 

upon mechanical stretching.  We then consider the micropatterning of nematic liquid 

crystal elastomer (NLCEs) micropillar arrays that change diameter and height when 
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heated above the nematic to isotropic phase temperature. The understanding of 

controlling liquid crystal surface anchoring on micropillars is then applied to self-

assemble gold nanorods (AuNRs) into topological defects imposed by the micropillars, 

leading to dynamic and significant tuning of the surface plasmon resonance properties. 

In Chapter 2, we exploit the surface wrinkling effect to reversibly tilt 

polydimethylsiloxane (PDMS) micropillars. We show that the pattern and wrinkle 

morphology, orientation and dimensions can be controlled by varying the treatment 

duration of the oxygen plasma and the angle of uniaxial stretching with respect to the 

pillar array axis. While the original PDMS film exhibits angle-dependent colorful 

reflection due to Bragg diffraction of light from the periodic pillar array, the tilted pillar 

film appears opaque due to random scattering. Upon re-stretching the film to the original 

pre-strain, the grating color is restored due to the straightened pillars and ~30% 

transmittance is recovered. Further stretching leads to higher transmittance due to the 

increasing spacing between the pillars. The switch in optical properties is reversible over 

many cycles and is applicable for a cheap, controllable optical window. 

In Chapter 3, we extend the study of smart windows to incorporate nanoparticles 

into the PDMS matrix. By embedding refractive-index matching silica nanoparticles, 

highly transparent (>90% transmittance in the visible wavelength) films are achieved in 

the initial state. Upon mechanical stretching, the transmittance is dramatically reduced to 

30% and displayed angle-independent structural color at a strain >40%. The color could 

be tuned by the silica NP size. Unlike the silica NPs/PDMS films prepared from highly 

ordered silica colloidal crystals,
68

 the reflective color is invariant with increased strain. 
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The switch between transparency and colored states can be reversibly cycled at least 

1000 times without losing the film’s structural and optical integrity. 

In Chapter 4, we develop a new micro-actuator system based on nematic liquid 

crystal elastomers (NLCEs). Controlling the molecular alignment of nematic liquid 

crystal (LC) monomers at interfaces before cross-linking plays a key role in manipulating 

the actuation behavior of NLCE micropillars. Specifically, formation of monodomains of 

vertically aligned NLC molecules within a pillar array is crucial in maximizing the shape 

change. A poly(2-hydroxyethyl methacrylate) (PHEMA)-coated PDMS mold is 

infiltrated with LCs, leading to planar anchoring of LC monomers on the mold surface 

and vertical alignment within the mold. After cross-linking, the resulting NLCE pillars 

show a relatively large radial strain (~30%) when heated above nematic to isotropic 

transition temperature, which can be recovered upon cooling. 

In Chapter 5, we extend the understanding of liquid crystal anchoring to achieve 

the self-assembly of AuNRs for dynamic tuning of the surface plasmonic properties. By 

exploiting the confinement of the smectic liquid crystal, 4-octyl-4’-cyanobiphenyl (8CB), 

to topologically patterned pillars, defects can be formed at precise locations around each 

pillar and tuned by varying the temperature of the system. By dispersing AuNRs in the 

liquid crystal prior to drop-casting, the nanorods can be directly assembled into the defect 

structure. Due to the temperature responsiveness of the liquid crystals, the dimensions of 

the defect structure and consequently, the nanorod assembly can be altered by heating 

and cooling. As the nanorod assembly changes, the plasmon peaks shift with temperature. 

By optimizing the surface anchoring conditions and dimensions of the pillar arrays, the 

plasmon peak shift can be maximized. For epoxy pillars with perpendicular anchoring 
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with aspect ratio 1.3, the transverse and longitudinal local surface plasmon peak shift are 

~100 and ~153 nm, respectively. These shifts are reversible over several heating and 

cooling cycles. 

In Chapter 6, the dissertation is summarized and the outlook and extensions of the 

current work are discussed. 
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CHAPTER 2: Tilted pillars on wrinkled elastomers as a reversibly 

tunable optical window 

Adapted from: 

Lee, E., Zhang, M., Cho, Y., Cui, Y., Van der Spiegel, J., Engheta, N. and Yang, S. 

(2014), Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window. 

Adv. Mater., 26: 4127–4133.
1
 Reproduced with permission. 

2.1 Introduction 

Switchable optical materials, which possess reversible light transmission 

properties in response to external stimuli, are of wide interest for potential applications 

such as windows and skylights in architectural and vehicular settings that can block or 

transmit light. Switchable optical properties have been achieved using suspended 

particles,
2
 polymer dispersed liquid crystals,

3-7
 photonic crystals,

8
 and chromogenic 

materials, driven by light,
9
 temperature

10
 and electrical field.

11
 However, the preparation 

and fabrication of such smart windows often require expensive equipment, complicated 

processes, and multi-layered design. In addition, many of these materials are chemically 

unstable, costly, or difficult to prepare. Thus, process simplification will be highly 

desired for the fabrication of large-area smart windows.
12

 Surfaces patterned with nano- 

or microscale features offer a new type of smart materials that can change physical 

properties by dynamically tuning surface geometry in response to external stimuli 

without altering the bulk properties. They have been utilized for a wide range of 

applications, including controlled wetting,
13

 adhesion,
14

 optical elements,
15

 and 

microfluidics.
16
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Previously, many groups have demonstrated the tuning of photonic structures, 

which are characterized by periodically modulated refractive index, to switch between 

diffraction colors in response to various stimuli.
8,17-19

 By deforming microstructured 

periodic membranes that can open and close their pores, our group has demonstrated 

reversible tuning between diffraction grating color to a transparent window.
20,21

 Further, 

capillary-force-induced clustering of polymeric micropillar arrays (diameter, 0.75-1 μm, 

aspect ratio up to 12, pitch, 1.5-2 μm) was exploited for switching from a colored film to 

ultrathin whiteness to transparency.
22

 The unique optical properties are realized by a 

capillary-force-induced instability when drying poly(2-hydoxylmethacrylate-co-methyl 

methacrylate) (PHEMA-co-PMMA) micropillar arrays of different elastic modulus. The 

structural color arises from the Bragg diffraction from the straight, highly ordered pillars; 

the whiteness comes from the laterally collapsed, randomly arranged pillars; and the 

transparency from the ground collapsed pillars. However, the color of the original pattern 

is irrecoverable due to large van der Waals force between collapsed pillars. Thus, we 

envision that when pillars are tilted on a substrate, but not touching each other, it is 

possible to achieve the dramatic and reversible visual effect between colorful, white, and 

transparent states by reversibly stretching the pillars from tilted to straight position using 

mechanical force. 

The ability to reversibly change the surface topography on an elastomeric 

substrate under an external force offers a simple, low-cost, and repeatable method to 

switch material’s optical properties. Compared to methods that use solvent (swelling or 

drying), pH, electrical field and light, application of mechanical force is simple and will 

allow for independent control of the amount, direction (uniaxial vs. biaxial, in-plane vs. 
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out-of-plane), and timing of strain to tune the surface features. In nature, chameleon and 

bobtail squids stretch out their skins to enlarge the chromophores embedded in the skins, 

thereby switching the body color for signaling or escape from predators.
23

 As mentioned 

earlier, we observed switching from grating color to ultrathin whiteness to transparency 

when collapsing the high-aspect-ratio (sub)micron pillar array (diameter of 750 nm and 

1m, height of 9 m).
22

 However, the color change is not reversible due to the permanent 

collapse of the pillars. It will be ideal if we can tilt the pillars such that they can intersect 

without touching each other, and the pillars can be reversibly changed from tilted, an 

analog of collapsed state, to a vertically aligned, highly ordered state.  

Previously researchers have created tilted polymeric pillars using techniques, 

including oblique metal deposition,
24

 ion beam irradiation,
25

 and shearing of shape 

memory polymers.
26,27

 The resulting pillars can achieve one-directional tilting but the 

tilting is often non-reversible. We and others have shown that microwrinkles can be 

reversibly stretched and released to change surface topography for tunable wetting and 

adhesion.
13,14,28

 This begs the question of whether wrinkling can be exploited to 

manipulate the dimensions and orientation of a micropillar array, i.e. reversible tilting. 

Lee et al. have reported the reversible wrinkling of nanopillar arrays on a microwrinkled 

surface for mechanically tunable wetting and transparency.
28

 In their system, nanopillars 

are slightly tilted near the valleys of the microwrinkles and the contribution of pillar 

tilting to the optical property should be minimal due to the large mismatch of the pillar 

(diameter = 150 nm) and wrinkle dimensions (periodicity λ = 31 μm and amplitude A= 

4.4 m). Therefore, the orientation of the nanopillars are largely unaffected by the 

wrinkling. The switchable transmission (transparent ↔ opaque) is achieved primarily by 
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reversibly flattening the light-scattering microwrinkles and no additional structural color 

change is reported due to the small size of the nanopillars. Kang et al., on the other hand, 

show that when the spacing ratio (space/diameter) of PDMS micropillars (diameter = 5 

m and height = 10 m)is increased to 6, the film has transmittance greater than 80% in 

the visible and near IR regions.
29

 Again, the film is not colored, nor is it tunable. Xu et al. 

and Xie et al. have demonstrated the mechanical deformation of microscopically 

patterned shape memory polymer substrates for tunable optical properties.
30,31

 

These studies intrigued the question of whether it is possible to switch a smart 

window between three states: opaque, colored and transparent ones by reversibly 

stretching (sub) micron-sized PDMS pillars atop microwrinkles using mechanical force. 

Here, we demonstrate the design and fabrication of tilted pillar arrays on wrinkled 

elastomeric polydimethylsiloxane (PDMS) as a reversibly switchable optical window. 

We exploit the surface wrinkling effect to reversibly tilt polydimethylsiloxane (PDMS) 

micro-pillars. Using square arrays of microposts (diameter 1μm, pitch 2μm, and height 

4μm), the wrinkle formation can be confined to the micropattern. We show that the 

pattern and wrinkle morphology, orientation and dimensions were controlled by varying 

the treatment duration of the oxygen plasma and the angle of uniaxial stretching with 

respect to the pillar array axis. While the original PDMS film exhibited angle-dependent 

colorful reflection due to Bragg diffraction of light from the periodic pillar array, the 

tilted pillar film appeared opaque. Upon re-stretching the film to the original pre-strain, 

the grating color is restored due to the straightened pillars and ~30% transmittance is 

recovered. Further stretching led to higher transmittance due to the increasing spacing 
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between the pillars. The switch in optical properties is completely reversible over many 

cycles and is applicable for a cheap, controllable optical window. 

2.2 Experimental methods 

2.2.1 Transmission simulation 

Finite-difference time-domain (FDTD) numerical simulation was performed first on a 

model of a periodic array consisting of micron-sized pillars. A linearly polarized plane 

wave with a wavelength in the range of 380nm to 680nm was illuminated onto the array 

vertically from a far field (larger than 5λ) as the incident light. In this simulation, a power 

monitor was located right under the surface of the substrate to detect the total amount of 

power passing through the pillar array. The thickness of the substrate, which was in the 

range of several millimeters, was assumed to be infinite while comparing to the height of 

the micron-sized pillars, while the pillar array dimensions were varied. 

2.2.2 Materials 

Dow Corning Sylgard 184 silicone elastomer kit was used for preparing PDMS. 

Tridecafluorotetrahydrooctyltrichlorosilane (SIT8174.0 from Gelest) was used to render 

the PDMS surface superhydrophobic 

2.2.3 Fabrication of PDMS pillar array 

The PDMS pillar array was replica molded from the epoxy pillar arrays master via PDMS 

membrane, following the procedure reported earlier.
32

 Briefly, PDMS precursor was 

mixed with a curing agent in a 10:1 weight ratio, degassed in a vacuum chamber for 1 h. 

The mixture was poured over the epoxy pillar master (1 μm diameter, 2 μm pitch, 4 μm 



31 

 

height) and cured at 65°C for 4 h. The resulting PDMS membrane was treated with UVO 

(Jelight, model 144AX) for 1 h, followed by vapor deposition of 

tridecafluorotetrahydrooctyltrichlorosilane as a release agent overnight to render the 

surface superhydrophobic. Another degassed mixture of PDMS precursor with 10 wt% 

curing agent was poured over the treated PDMS membranes and cured at 100°C 

overnight. After cooled to room temperature, the PDMS pillar array was peeled from the 

membrane mold. 

2.2.4 Surface wrinkling of PDMS substrates 

The fabrication followed the procedure reported in literature.
33

 Briefly, the molded 

PDMS film (flat, with the hole array or pillar array) was clamped and stretched uniaxially 

(ε up to 30%) using a custom-made stretching device. The surface was then treated with 

oxygen plasma (Technics, model PE11-A) at a power of 100 watts, pressure of 0.5 torr 

for1-20 min. Wrinkle patterns formed spontaneously upon release of the strain. 

2.2.5 Sample characterization 

Scanning electron microscopy (SEM) images were taken by FEI Quanta Field Emission 

Gun Environmental SEM in high vacuum mode at an acceleration voltage of 5kV. The 

topography of the substrates were examined using a DI Dimension 3000 atomic force 

microscope (AFM) and images were rendered using WSXM.
34

 Transmission spectra 

were taken using a custom-built free-space microscope with a white light source and 

normalized to a flat PDMS film. 
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2.2.6 Finite-element analysis 

ABAQUS/Standard,
35

 a commercial finite-element analysis software, was used. Young's 

modulus and Poisson's ratio of PDMS were chosen to be 2.6 MPa
14

 and 0.48.
36

 We 

assumed that the oxidized PDMS surface has the same properties as glass, of which 

Young's modulus and Poisson's ratio were 700 GPa and 0.33, respectively.
36

 While the 

thickness of the oxidized layer is generally unknown, here we estimated the thickness of 

500 nm for the prediction of buckled shape. Three-dimensional continuum element 

(C3D6) was adopted with approximately 200 nm in characteristic element length. 

2.3 Optical simulation 

To demonstrate the feasibility of this approach, we first performed finite-

difference time-domain (FDTD) numerical simulation on a model consisting of micron-

sized pillars in a square array (Figure 2.1). A linearly polarized plane wave with a 

wavelength in the range of 380nm to 680nm was illuminated onto the array vertically 

from a far field (larger than 5 times the wavelength). The thickness of the substrate, 

typically in the range of several millimeters, was assumed to be infinite compared to the 

height of the micron-sized pillars. In the simulation, a power monitor is located right 

under the surface of the substrate to detect the total amount of optical power passing 

through the pillar array. The employed model of the first study consisted of pillars with 

diameter D = 1 μm, height H = 4 μm, and the pitch P was varied from 1.1 μm to 2 μm. 

The 1 μm pillar size was chosen here to have grating color in the visible and near IR 

wavelength.
22

 In the second study, P was fixed at 2 μm, while the aspect ratio (=H/D) 

was varied from 2 to 8 (Figure 2.1d-f). Numerical results showed clear variation of the 
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transmittance of the incident wave. Increasing the aspect ratio of the pillars had a 

relatively minor effect (~20% drop) on the transmission (Figure 2.1c) over the simulated 

wavelengths, whereas increasing the pillar pitch induced an abrupt increase in 

transmission up to 60% (Figure 2.1d). Meanwhile, tilting the pillars (Figure 2.1e) 

induced a gradual drop in transmission with increasing tilt angle (Figure 2.1g). These 

results suggested that a hierarchical structure consisting of tilted pillars atop wrinkles of 

matching dimensions (Figure 2.1f) could lead to a gradual but significant decrease in 

transmission in the visible wavelength (Figure 2.1h), making it possible to design a 

smart optical window. 
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Figure 2.1 Simulated optical properties of straight and tilted periodic square pillar array 

of different dimensions, spacing, aspect ratio and tilt angles. (a-b) Schematic illustration 

of the straight pillars. (c-d) Transmission spectra of a straight pillar array with (c) varying 

pitch and (d) aspect ratio. (e-f) Schematic of a single tilted pillar (e) and an array of tilted 

pillars atop a wrinkled structure (f). (g-h) Transmission spectra of a tilted pillar array with 

(c) varying tilt angle θ and (d) θ = 20° with varying pitch. All samples are fixed at D = 1 

μm, H = 4 μm, P = 2 μm, θ = 0° unless otherwise indicated. 
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2.4 Wrinkling control 

Wrinkles can be generated by thermal stress,
37

 mechanical stress,
13,14,33

 capillary 

force,
38

 and osmotic pressure.
39

 One simple approach is to treat a pre-strained PDMS 

substrate by oxygen plasma or UV-ozonlysis (UVO).
33,36

 A hard silica-like skin layer will 

form on top of the elastomeric PDMS and the mismatch in elastic moduli will cause the 

substrate to wrinkle when the pre-strain is removed. The wrinkle periodicity in such an 

elastic bilayer system is given by
36,40
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where th is the film thickness,            is the plane-strain modulus, E is the 

Young’s modulus, ν is the Poisson’s ratio, and the subscripts ‘h’ and ‘s’ refer to the hard 

thin top layer and the soft bottom substrate, respectively.
41

 The amplitude of the wrinkle 

can be expressed as 
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where ε0 is the applied strain and εc is the critical strain given by 
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The thickness and modulus of the silicate layer, and therefore the wrinkle 

dimensions, depend on the oxygen plasma or UVO treatment power and exposure time. 

Since PDMS is elastomeric and both layers of the system are derived from the same 

material, large strain levels can be achieved without delamination and the wrinkles can be 

reversibly flattened. If pillars are patterned atop the wrinkles, they can be tilted using 

wrinkling and reversibly straightened. Further stretching of the straightened pillars could 

change their spacing ratio. The anisotropic and macroscopically-ordered nature of 

mechanical wrinkles can be used to manipulate pre-patterned substrates to form 

hierarchically tilted pillars. 

In order to exploit the interplay between the optical properties of periodically 

ordered micropillar arrays and reversibly tunable wrinkles, we fabricated PDMS pillars in 

a square array atop mechanically-induced wrinkles, with the wrinkle periodicity 

concurrent to the pitch of the pillar array. Here, we chose a micropillar array (diameter = 

1 μm, pitch = 2 μm, height = 4 μm) due to its inherent colorful appearance, resulting from 

Bragg diffraction of light. To match the pitch of the array, oxygen plasma was chosen to 

induce wrinkling since the typical periodicity of oxygen plasma treated wrinkles ranges 

from 300 nm to 10 μm.
41

 The PDMS pillar film was stretched uniaxially to 30% strain, 

followed by oxygen plasma treatment. Upon releasing the pre-strain, microwrinkles were 

formed as a result of balancing the compressive strain and elastic bending strain energy 

(Figure 2.2a). 
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Figure 2.2 (a) Schematic of a square PDMS pillar array, stretched, treated with oxygen 

plasma, and released to form wrinkles with low amplitude. (b) For the flat bilayer system, 

the thickness is a constant regardless of in-plane direction. (c) The thickness is a function 

of in-plane position in the case of bilayer system with pillar array. 

The introduction of a pre-pattern, here, a pillar array, altered the stress relief upon 

releasing the strain. According to Equation (2-1), the wrinkle periodicity is directly 

proportional to the thickness of the modified thin film. If the elastic bilayer system is flat, 

i.e. th is a constant along all directions (Figure 2.2b), wrinkle generation is expected to be 

independent from the stretching direction, defined in Figure 2.2a as y. In the pre-

patterned system, however, th is a function of position and discontinuous (Figure 2.2c). 

Rotation of the stretching direction is equivalent to varying the thickness function, 

leading to distinct wrinkle morphologies in relation to the pillar array. In this case, 

wrinkle formation cannot be described by Equation (2-2), which applies to a flat bilayer 

system as shown in (Figure 2.2b). In the micropillar pre-patterned system, each pillar 
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shields the bottom substrate from oxygen plasma treatment, thereby reducing the 

effective thickness (Figure 2.2c). Therefore the film thickness, th, becomes a function of 

position. While this thickness function has obvious discontinuity at the pillar boundary, 

we can describe a generalized form of wrinkle periodicity without losing continuity by 

adding the weighing factor of wavelength,  λ, which is given by 

 

               
      

      
 

 

 
 (2-4) 

 

where x is the in-plane position vector. The generalized form of the amplitude of wrinkle 

is expressed as 
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where    is the weighing factor of amplitude. When we take a constant thickness for th(x) 

and 1.0 for each weighing factor, we obtain the expression for flat bilayer system, 

Equation (2-1) and (2-2) again. Depending on the pillar dimension and its arrangement, 

the thickness function can be expressed as 
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where tf is the film thickness without consideration of pillar height and Sp is the in-plane 

space (R
2
) in which the pillars are located. 

This is different from confined wrinkling typically reported in literature, where 

wrinkles are confined to a pre-pattern of much larger size such that surface wrinkling size 

is not affected by the pre-pattern.
36,42

 Our prior study shows that when the pre-pattern 

size is comparable to the wrinkle periodicity, the wrinkles lose their isotropic nature 

completely and their formation is dominated by the edge effect of the pre-patterns.
43

 

Therefore, they are aligned perpendicularly to the pre-pattern wave vector. 

Here, when the PDMS pillar film was pre-strained along the pattern and treated 

with oxygen plasma for 1 min, wrinkles formed along the pattern, in the direction x, with 

periodicity similar to the pillar pitch (~2 μm), and the pillars were found atop the 

wrinkles (Figure 2.3b-c). However, in the region without pillars, wrinkles were shown to 

have a much smaller periodicity (~0.7μm) as measured by AFM (Figure 2.3a). This 

resulted in a transition region at the edge of the pillar pattern, in which the wrinkle 

periodicity changes to match the pillar pitch (Figure 2.3d). When stretched at an angle  

= 45° to the pillar axis (defined as k axis), wrinkles with periodicity similar to pillar pitch 

were observed with appearance of secondary wrinkles forming an “X” between the pillars 

(Figure 2.3e). A tilted SEM image shows that the pillars are still vertical (Figure 2.3f) 

and there is a transition region at the pattern edge (Figure 2.3g). When stretched at  

=30° and 60°, respectively, the wrinkles undulated to accommodate the pillars (Figure 

2.3h-m), leading to change of wrinkle periodicity depending on the position of the pillars 

and an interesting transition of the wrinkle dimensions from the flat region to the 

patterned region (Figure 2.3j, m). 
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Figure 2.3 (a) AFM image and height profile of wrinkles formed using oxygen plasma 

for 1 minute. SEM images of wrinkled PDMS with pillar arrays fabricated by stretching 

the PDMS film at an angle of (b-d) 0°, (e-g) 45°, (h-j) 30°, and (k-m) 60° to the k axis of 
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the 2D pattern, followed by oxygen plasma for 1 min, and release of the strain. SEM 

images of the samples tilted at 30° (c, f, i, l) and the transition region of wrinkles to 

pillars at the edge of the pattern (d, g, j, m). Scale bar: 2 μm. 

While slight changes to the film transparency were observed in these films, the 

low wrinkle amplitude (~250 nm) limited such effects. The amplitude of the wrinkles is 

proportional to the thickness of the top thin hard layer, as given by Equation (2-2). Thus, 

PDMS film treated by oxygen plasma for a longer time should generate wrinkles with 

higher amplitudes. To support our hypothesis, finite element simulation (Figure 2.4) was 

performed to better understand the effect of a thicker silicate layer on the wrinkle 

morphology of PDMS substrates with micropillar arrays. The buckling behaviors of pillar 

array on PDMS substrate were simulated based on the concept of a representative unit 

structure. The dimension of a unit structure was determined as the lattice structure with 

respect to the stretching direction (Figure 2.4a). The periodic boundary condition 

(PBC)
44

 was imposed on the cross-sectional face in all sides of the unit structure, as 

shown in Figure 2.4b, to maintain the periodicity in the course of buckling. Stress-free 

condition was assumed for the oxidized layer before the strain release, because the layer 

was formed after stretching (pre-strain ε ~ 30%). The thickness of the oxidized layer due 

to oxygen plasma is generally unknown, and can be in a range of 10-1000 nm
36

. Here, we 

assumed a thickness of 500 nm for the oxidized layer. The predicted buckling modes 

after strain release are shown in Figure 2.4c. 
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Figure 2.4 Finite element simulation. (a) Unit structures (marked in red) with respect to 

the reference stretching direction. arctan(0)=0°, arctan(1/2)~30°, and arctan(1)=45°, 

respectively. (b) Pre-stretched state. Yellow dotted lines indicate the reference lattice 

direction. Arrows indicate the stretching directions. (c) Predicted buckling modes. Top 

thin film with pillar array shows anisotropic buckling mode with respect to the stretching 

direction. 

As expected, wrinkles with higher amplitude were obtained in simulation, thus, 

tilting the pillar arrays. Experimentally, for an oxygen plasma treatment time of 20 min, 

both larger amplitude (~700 nm) and periodicity (~2.4μm) were observed (Figure 2.5a) 

for flat PDMS films. These wrinkles assumed the sinusoidal morphology of wrinkles 

formed from non-patterned films. Thus, the wrinkles formed under the micropillars tilted 

the pillars at variable degrees depending on the original pre-strain angle. 
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For films stretched parallel to the pattern direction, k axis, pillars on the same 

wrinkle tilt in the same direction along the wrinkle but in opposite directions of those on 

the neighboring wrinkles (Figure 2.5f). At  = 45°, the pillars tilted in alternating 

directions (perpendicular to the wrinkle) with each other along the long axis of the 

wrinkles, forming a mesh-like structure (Figure 2.5g). It is important to note here that the 

pillars did not touch each other. Similar alternating tilting was observed in substrates pre-

stretched at 30° and 60°, respectively (Figure 2.5h-i). However, the tilting of the pillars 

was not perpendicular to the wrinkle. Therefore, the tilted pillars could touch each other. 

SEM images of the transition region between the patterned and non-patterned areas 

showed that the wrinkles no longer undulated to accommodate the pillars; rather the 

pillars tilted atop the larger wrinkles (Figure 2.5j-m). The experimental results matched 

well with the simulation, with the tilting of the pillars depending on the angle between the 

stretching direction y and the pillar direction k (Figure 2.5b-e). 
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Figure 2.5 (a) AFM image and height profile of wrinkles formed using oxygen plasma 

for 20 minutes. Finite-element simulation and corresponding SEM images of PDMS 

wrinkles with pillar arrays stretched at an angle of (b, f) 0°, (c, g) 45°, (d, h) 30°, and (e, 

i) 60° to the pattern and treated with oxygen plasma for 20 minutes. SEM images of the 

transition region of wrinkles to pillars at the edge of the pattern (j-m). Scale bar: 2 μm. 

(n) Schematic of a square pillar array overlaying wrinkles.  
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The angle of the pillar tilting can be estimated using geometric analysis (Figure 

2.5n), where the wrinkle direction is defined as the x-axis. The wrinkle can be fitted with 

a sinusoidal curve: 
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Here, the valley of the wrinkle is located at x = 0 and the peak position is located at 

       .The slope at a given position along the wrinkle can then be expressed as: 

 

  

  
 

  

 
    

   

 
  (2-8) 

 

A pillar is spaced p from its nearest pillar and its distance along the x-axis can be 

calculated as pcosθ. By aligning the peak of the wrinkle with the halfway point between 

the pillars, the distance of the pillar      from the valley from the wrinkle is therefore 

             . The tilting angle of the bottom edge of the pillar (ϕ) with the horizontal 

at position x = a can then be calculated as: 
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The nearest pillar is located at position                    . The next nearest 

pillar is located at an angle of θ+45° from the x-axis and its position c can be calculated 

as  
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By plugging in the dimensions of the pillar array and wrinkle, the tilting angle of 

the pillars can be calculated for samples pre-stretched at various angles (see summary in 

Table 2.1). It is notable that for samples pre-stretched at 45°, all tilting angles of the 

pillars ϕ at different positions are equivalent to each other but in opposite directions, 

whereas those from pre-stretching angles at 30° and 60° depend on the pillar position 

relative to the pillar at which the origin is defined. This is confirmed by SEM (Figure 3b-

d). 

Table 2.1 Tilting angle of the pillars, ϕ, calculated geometrically. The pillar dimensions, 

diameter d = 1 μm and pitch p = 2 μm. The wrinkle had periodicity λ = 2.4 μm, and 

amplitude A = 750 nm. 

θ  [°] a [μm] b [μm] c [μm] ϕ at a [°]  ϕ at b [°] ϕ at c [°] 

30 0.33 2.07 1.07 20.63 -20.63 9.57 

45 0.49 1.91 0.49 25.25 -25.25 25.25 

60 0.70 1.70 -0.30 25.37 -25.37 -2.36 

 

2.5 Optical response 

The observed tilting disrupted the ordering of the originally square array pillars, 

causing a sharp decrease in the optical transmittance due to scattering on the pillar 

surface and the wrinkle surface. Unlike the previous observation of irreversible whitening 

from the clustered pillar arrays, the optical transmittance can be recovered upon 

stretching the PDMS films since the pillars did not bundle together but tilted in-between. 
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The switchability of transmission was characterized by UV-vis spectrophotometry using 

a custom-built free-space microscope. The film optical transmittance was measured as a 

function of wavelength at various strain levels (Figure 2.6a). The as-prepared substrate, 

stretched at 60° to the pattern, was optically opaque with an average transmission of 

42.1±0.4% at wavelengths 500-700 nm (Figure 2.6d). When stretching the film to the 

maximum pre-strain (~30%), the average transmission increased to 71.1±2.1% over the 

same wavelength range (Figure 2.6c). Accordingly, the grating color of the periodic 

pillar array was recovered and can be observed with incident light at an angle to the 

substrate (Figure 2.6f). Upon further stretching to 40% strain (i.e. beyond the original 

pre-strain to increase the pillar spacing), the transmission increased to 77.4±0.1%. 

Stretching of the substrates within an SEM showed that the tilted pillars of the as-

prepared substrate reverted to their vertical positions while the wrinkles were nearly 

flattened upon stretching to the original 30% pre-strain (Figure 2.6h-k). Upon release of 

the strain, the pillars again became tilted and the film whitened. Such transition from 

opaqueness to a colored film can be repeated mechanically and reversibly by stretching 

and releasing the underlying wrinkles. 
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Figure 2.6 (a) Transmission spectrum of a wrinkled PDMS film (pre-stretched at an 

angle of 60°) with a pillar array at various strains. Digital photograph of the substrate 

with incident light normal to the sample at (b) 40%, (c) 30% and (d) 0% strain. (e-g) 

Corresponding photographs of the substrate with incident light fixed at an angle to the 

sample. SEM images of wrinkled PDMS re-stretched to a strain of (h) 0%, (i) 10%, (j) 

20%, and (k) 30% (Scale bars 4 μm). 

To demonstrate mechanical robustness, the substrate was stretched and released 

for over 50 cycles. The transmission of the sample was measured again at 0% and 30% 

strain to be 42.7±1.7% and 63.3±0.8%, respectively (Figure 2.7). The latter decreased 

somewhat after 50 cycles, possibly due to formation of cracks and other defects in the 

film. We believe depositing a more compliant material (e.g. metal) on an elastomeric 

substrate (e.g. shape memory polymer above its glass transition temperature) could 

minimize the crack formation in oxidized PDMS films. Our initial study supported this. 

Nevertheless, the transition between color and opaqueness is reversible and repeatable 

over many cycles without any mechanical failure. 
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Figure 2.7 Transmission spectrum of a wrinkled PDMS film with a pillar array at 0% and 

30% strain measured at different stretch/release cycles. The number of cycles was 

indicated in the bracket. 

For comparison, we also characterized the regions without pillars, which had an 

intrinsic periodicity of ~2 μm (treated with oxygen plasma for 20 min). The wrinkled film 

appeared opaque with an average measured transmission of 55.1±1.1% from 500-700 nm 

relative to a flat PDMS film of comparable thickness (Figure 2.8a, c). When re-

stretching the film to 30% strain, this region becomes highly transparent (Figure S3b) 

with an average transmission of 87.1±1.1% over 500-700 nm (Figure 2.8a). As shown by 

SEM, this could be attributed to the flattening of the wrinkles (Figure 2.8d-g). These 

results suggest that both pillars and wrinkles contributed to the optical properties since 

both have periodicity in the micron scale. The hierarchical structure of tilted pillars on 

wrinkles greatly enhanced the film opaqueness while the straightened ones on wrinkles 

offered better color gratings than bare wrinkles. 
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Figure 2.8  (a) Transmission spectrum of a wrinkled PDMS film at various strains. 

Digital photograph of the sample at (b) 30% and (c) 0% strain. The boxes indicate the 

regions with pillars on top of wrinkles. Outside the boxes are regions with wrinkles only. 

SEM images of wrinkled PDMS pre-stretched at an angle of 60° to the pillar arrays and 

re-stretched to a strain of (d) 0%, (e) 10%, (f) 20%, and (g) 30%. Scale bars: 4 μm. 

2.6 Conclusions 

We demonstrated a reversibly tunable optical window from tilted pillar arrays 

confined by mechanically induced wrinkles. We showed that the wrinkles undulated to 

accommodate the pillar pattern. Longer oxygen plasma treatment time increased the 

amplitude and periodicity of the wrinkles such that each wrinkle could accommodate two 

pillars, which tilting them in varying directions depending on the pre-stretch angle vs. 

lattice axis. The experimental observation was in agreement with finite element analysis. 

When mechanically stretched, the hierarchical film could reversibly 1) flatten the 

microwrinkles, 2) reduce the tilt of the pillars, 3) increase the pillar pitch, and thus, 4) 
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offer a wide range of optical tunability from opaqueness (from tilted pillars) to grating 

color (from straight pillar array) to increasing transparency (from pillars at a larger pitch). 

Besides change of optical properties, we expect the fabricated hierarchical substrates to 

exhibit unique adhesion and wetting properties. The design of hierarchical surface 

structures demonstrated here offers a new concept to dynamically and dramatically 

change physical properties without altering materials’ intrinsic properties. Further, the 

tunable patterns can be prepared from or coated with other functional materials, such as 

liquid crystal elastomers and gold, respectively, which will enhance responsiveness to 

other stimuli and recyclability. 

2.7 Contributions 

Lee, E., Zhang, M., Cho, Y., Cui, Y., Van der Spiegel, J., Engheta, N. and Yang, S. 

(2014), Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window. 

Adv. Mater., 26: 4127–4133. 

Lee, E. performed sample fabrication and characterization experiments. Zhang, M. 

performed FDTD modeling. Cho, Y. performed FEA modeling. Cui, Y. performed earlier 

experiments on the wrinkling of pillar structures, which inspired this study. Dr. Ertugrul 

Cubukcu and Jason Reed are acknowledged for access to and training for the optical 

characterization microscope. 
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CHAPTER 3: A robust composite smart window for reversibly 

switching from high transparency to angle-independent structural 

color display 

Adapted from: 

Ge, D.,
†
 Lee, E.,

†
 Yang, L., Cho, Y., Li, M., Gianola, D. S. and Yang, S. (2015), A 

Robust Smart Window: Reversibly Switching from High Transparency to Angle-

Independent Structural Color Display. Adv. Mater., 27: 2489–2495. (
†
Equal 

contribution.)
1
 Reproduced with permission. 

3.1 Introduction 

Commercial buildings alone account for nearly 40% of the total energy 

consumption in the U.S. Among them, electricity is the largest energy source for 

buildings. Therefore, the design of new energy efficient materials and technologies is 

crucial to meet goals such as the Net-Zero Energy Commercial Building Initiative (CBI) 

put forward by the U.S. Department of Energy (DOE).  There has been tremendous 

interest in economizing energy uses in buildings through house roofing, skylights, and 

architectural windows.
2-4

 For example, smart windows have been developed, which 

become opaque to block or reflect sunlight on scorching days to save air conditioning 

costs, and return to a transparent state at a low lighting condition to improve light 

harvesting and capture free heat from the sun.
2,5-7

 Typically, optical-modulation in 

window or coating materials is realized through an external stimuli-triggered switch in 

chemistry and/or morphology to produce a change in optical properties, including the use 

of suspended particles,
8
 polymer dispersed liquid crystals (PDLCs),

9-13
 and chromogenic 
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materials driven by ion and electron insertion/extraction, light,
6
 temperature,

14
 and 

electrical field.
15

 The assembly of the device is often complex, and many of the 

components are chemically unstable and costly. Therefore, facile material handling and 

fabrication is desirable for large-area smart windows with switchable optical properties. 

Structural color resulting from the interference, diffraction and scattering of light 

from micro- or nano-structures with lengths scales on the order of the wavelength of 

light
16-18

 offers a promising alternative to dynamically tune the optical properties of 

materials in response to external stimuli without changing their bulk properties.
16-18

 In 

nature, bio-organisms switch color /opaqueness and/or transparency to suit the local 

environment for hiding from the predators, for signaling, or for mating purposes.
19-22

 For 

example, squids and octopus in deep sea are masters of disguise. They are normally 

transparent in sea, thus invisible to a predatory fish in down-welling light. They can 

quickly turn into red, however, thus become invisible again to fish with bioluminescent 

searchlights.
23

 They alternate the body color by stretching the skin to enlarge the 

embedded chromophores.
24

 

Mechanical modulation is a common practice to control light transmission 

macroscopically, such as the opening and closing of curtains and blinds. However, 

mechanical driving of macroscopic units is cumbersome and they must communicate 

through a mainframe. It is highly desirable to develop a skin-like material/device that can 

be integrated into building components to change transparency or color. At the micro- 

and nanoscales, tuning of the optical properties by mechanical stretching and 

compressing has been demonstrated from patterned polymer thin films, including micro-

25
 and nanopillar arrays

26
 on wrinkled polydimethylsiloxane (PDMS), shape memory 
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polymers consisting of periodic microhole arrays
27

 and micro-optic components.
28

 Many 

of these devices have inherent, angle-dependent structural color due to Bragg diffraction 

from the periodic structures. Typically, the initial state is opaque or colored, attributed to 

the pre-existing micro-/nanostructures. The windows exhibit increased transmission upon 

stretching due to the reduction of surface roughness, thus less scattering. However, the 

roughness of the materials and the resulting light scattering cannot be completely 

eliminated. Therefore, it is difficult to achieve high transparency with >90% 

transmittance in the visible region either before or after mechanical modulation.  

Here, we prepare a composite film consisting of a thin layer of quasi-amorphous 

array of silica nanoparticles (NPs) embedded in bulk elastomeric PDMS. Importantly, it 

is highly transparent (>90% transmittance in the visible wavelength) in the initial state. 

Upon mechanical stretching, the transmittance is dramatically reduced to 30% and 

display angle-independent structural color at a strain >40%. The color can be tuned by 

the silica NP size. Unlike the silica NPs/PDMS films prepared from highly ordered silica 

colloidal crystals,
29

 the reflective color is invariant with increased strain. The switch 

between transparency and colored states can be reversibly cycled at least 1000 times 

without losing the film’s structural and optical integrity. 

3.2 Experimental methods 

3.2.1 Materials 

Silica (SiO2) NPs with diameter of 221 nm, 258 nm and 306 nm were synthesized by 

Stöber method.
[9,10]

 The polydispersity of the silica NPs was less than 8%. Dow Corning 

Sylgard 184 silicone elastomer kit was used for preparing PDMS. 
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3.2.2 Fabrication of the hybrid window 

SiO2 NPs were dispersed into isopropanol (99.8%, Fisher Scientific Inc.) at 10 wt% and 

ultrasonicated for 2 h (Branson Ultrasonic Cleaner, 2210) to prepare the spray solutions. 

The spray solution was loaded into an airbrush with nozzle size of 0.2 mm (Master 

Airbrush Model G44) and the operating pressure was 50 kPa. The solution was sprayed 4 

times on the polystyrene (PS) petri dish at a spray distance of 5 cm and a moving speed 

of ~5 cm/s. Dow Corning Sylgard 184 silicone elastomer and curing agent were mixed at 

a weight ratio 10:1. After degassing, the PDMS precursor was cast on the sprayed PS 

petri dish, and infiltrated into the voids of the silica NP film. The thickness of the PDMS 

film was controlled from 0.5 mm to 1 mm. The whole setup was then cured at 65°C for 4 

h. Finally, the hybrid film was carefully peeled from the PS petri dish for stretching. 

3.2.3 Fabrication of the smart window with embedded letters 

A solid mask of “PENN” and a hollow mask of “N” were prepared from cut paper. The 

mask was placed on the petri dish, followed by spray coating of silica NPs. After removal 

of the mask, PDMS precursor was cast on the petri dishes following the same procedure 

to fabricate the hybrid window described above. 

3.2.4 Sample characterization 

Scanning electron microscopy (SEM) images were taken by FEI Quanta Field Emission 

Gun Environmental SEM in high vacuum mode at an acceleration voltage of 5kV. The 

reflectance and scattering spectra at various strains and angles, and the time-dependent 

transmittance were collected from a USB4000 fiber optical spectrometer (Ocean Optics) 

combined with a custom-built stretcher and angle-resolved stage. Transmittance of the 
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smart windows at various strains was measured using the Cary 5000 UV-Vis-NIR 

spectrophotometer (Agilent Technologies) combined with a custom-built stretcher. 

Optical images were taken by optical microscopy (BX 61, Olympus) in reflection and 

transmission modes.  In situ confocal microscopy was performed using a laser scanning 

confocal microscope (Thorlabs, Inc.) in reflection mode using a 635nm laser source.  

Mechanical testing using this imaging modality was performed using a custom-built 

microtensile testing apparatus. 

3.2.5 Finite-element analysis 

The finite element analyses were performed using the implicit finite element software 

ABAQUS/Standard (Dassault Systèmes Americas Corp., Waltham, MA). The materials 

were linear elastic with properties chosen to match the silica (Young's modulus = 73 GPa, 

Poisson's ratio = 0.17) and the PDMS (Young's modulus = 0.75 MPa, Poisson's ratio = 

0.49). The 3-dimensional continuum element, C3D4, was adopted with the characteristic 

element length of 5 nm. The adhesive contact between the spherical silica particle and the 

PDMS matrix was considered based on the linear elastic traction-separation model, which 

assumes initially linear elastic behavior followed by the initiation and evolution of 

damage. The elastic adhesive behavior is represented by an elastic constitutive matrix, 

which relates the normal and shear stresses to the normal and shear separations across the 

contact interface. 
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where the nominal traction stress, σ, has three components along the normal (n) and two 

shear (s and t) directions. K is the elastic constitutive matrix and δ is the corresponding 

separations. For simplification, we assumed that the normal and tangential stiffness 

components are not coupled. Then, the terms Knn, Kss, and Ktt determine the uncoupled 

traction-separation behavior on the contact interface. 

3.3 Window fabrication and actuation 

The fabrication of the smart window is illustrated in Figure 3.1a. First, the silica 

NP solution was spray-coated onto a polystyrene substrate following the procedure 

reported earlier to create superhydrophobic, angle-independent color coatings from quasi-

amorphous NP arrays.
30

 Here, angle-independent blue, green, and pink films (Figure 

3.1b) were obtained from silica NPs with diameters of 221 nm, 258 nm, and 306 nm, 

respectively. As shown in scanning electron microscopy (SEM) images, the particles 

formed quasi-amorphous arrays with short-range ordering yet were long-range disordered 

(Figure 3.1c), in agreement with our prior observation.
30

  PDMS precursor solution was 

then cast over the NP film, filling the voids between the particles. Since the refractive 

index of PDMS (1.425 at 632.8 nm)
31

 is very close to that of silica (1.457 at 632.8 nm),
32

 

the composite films were highly transparent in the visible and near infrared (vis-NIR) 

range, as seen in Figure 3.1d. Indeed, it is difficult to discern the PDMS films with and 

without embedded silica NPs. 
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Figure 3.1 (a) Schematic of the smart window fabrication process. (b) Digital 

photographs of the nanoparticle films prepared with nanoparticles of diameter (i) 221, (ii) 

258, and (iii) 306nm. (c) SEM image of nanoparticle film showing quasi-amorphous 

ordering. (d) Digital photograph and (e) SEM image of the highly transparent 

silica/PDMS composite film. (f) Digital photographs of stretched silica/PDMS films with 

embedded nanoparticles of diameter (i) 221, (ii) 258, and (iii) 306nm, respectively. 

Under SEM, it could be seen that the films had two layers: a thin layer of hard 

silica NP/PDMS composite (4-5 µm thick) and a bulk layer of pure PDMS (Figure 3.1e). 

The thickness of the pure PDMS layer ranged from 0.5-1 mm depending on the amount 

of PDMS solution used in casting. Close-packed silica NP films were also prepared for 

comparison. The latter tended to rupture easily at the interface between the composite 

layer and the pure PDMS layer when peeled off from the supporting substrate due to the 

narrow PDMS ligments (<20 nm)
33

 between the close-packed silica NPs. In comparison, 

the quasi-amorphous structure of spray-coated NP films possessed rather random, thus 

larger pores from place to place to infiltrate PDMS. The resulting thicker PDMS layers 

between the silica NPs offered much higher mechanical strength against macroscopic 

rupture. Upon stretching, two optical phenomena were observed: 1) switching from 
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transparency to opacity, and 2) appearance of uniform, angle-independent reflective 

color, blue, green, and yellow-white from the films with silica NPs of diameter 221 nm, 

258 nm, and 306 nm, respectively (Figure 3.1f). These phenomena are reversible upon 

release of the strains. 

3.4 Morphology characterization 

To investigate the origin of these phenomena, which have not been reported in the 

literature, we used optical microscopy and SEM to monitor the silica NP/PDMS films 

stretched at various strains (Figure 3.2a-b). As seen with optical microscopy in 

reflectance mode (Figure 3.2a), microcracks began to appear (Figure 3.2a_ii) when the 

strain level reached 20%. With further increase of strain, the number and length of 

microcracks increased and wrinkling began to occur transverse to the applied strain with 

wavelength of ~ 25 µm (Figure 3.2a_iii). The wrinkle formation can be explained by the 

mismatch of mechanical properties of the bilayer structure of the silica NP/PDMS 

composite film.
34

 In addition, the optical micrographs taken in reflection mode showed 

that color appeared randomly in the film. Since the inside of the composite layer could 

not be imaged clearly under reflection mode, transmission mode was used to image the 

film instead (Figure 3.2b). Figure 3.2b_iii-iv showed that the whole film was 

yellow/purple-ish, complementary to the reflective color of blue and green seen in Figure 

3.1f_ii under transmission mode. 

However, surface wrinkles and microcracks are not the only reasons contributed 

to the displayed color. Nanosized voids were also observed from the cross-sectional SEM 

of the composite film under ~40% strain (Figure 3.2c), and PDMS ligaments between 



63 

 

the particles were highly stretched, while the silica NPs remained embedded. Voids 

tended to form locally in high stress regions, rather than across the whole film. To better 

image the in-plane structure of the composite film and the formation of the voids under 

mechanical strain, we fabricated a PDMS film dispersed with silica particles of larger 

diameter, 5µm, and imaged the film before and after stretching using confocal 

microscopy. As seen in Figure 3.2d, microvoids were formed on both sides of the silica 

microparticles parallel to the stretching direction. It is known that PDMS can detach 

easily from the silica particles because of the low adhesion force (~10 kPa) between 

PDMS (hydrophobic) and untreated silica (hydrophilic).
35,36

 When the strain is released, 

the voids are closed and this process can be reversibly repeated. 
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Figure 3.2 Optical micrographs of a silica/PDMS film consisting of nanoparticles of 

diameter 258 nm at various strains in (a) reflection and (b) transmission modes (Scale 

bars: 20 μm). (c) SEM image of a stretched silica/PDMS film with nanoparticles of 

diameter 258 nm at ~ 80% strain. Arrows indicate PDMS ligaments. (d) Confocal optical 

micrograph of an (i) un-stretched and (ii) a stretched silica nanoparticle (diameter of 

5µm) /PDMS film. Circles indicate silica nanoparticles. Black regions indicate the voids. 

3.5 Optical response 

With knowledge of the film morphology under various strains, the transmittance 

of the film was investigated using UV-vis-NIR spectroscopy. By naked eyes, the 

transparent, as-prepared silica NP/PDMS film began to look translucent at about 20% 

strain and was completely opaque at about 100% strain (Figure 3.3a). The transmittance 

is dependent on the size of the silica NPs and thus, the resulting voids from mechanical 
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strain (Figure 3.3b-d). Smaller particles (221 nm in diameter) and voids have low 

transmittance at shorter wavelengths due to Rayleigh scattering, which is wavelength-

dependent. Larger particles (258 and 306 nm in diameters) and voids mainly have Mie 

scattering, which is wavelength-independent. 

 

Figure 3.3 (a) Digital photographs of a silica/PDMS film consisting of nanoparticles of 

diameter 258 nm at various strains. Transmission spectra of silica nanoparticle/PDMS 

composite films at various strains. The silica nanoparticles have diameters of (b) 221 nm, 

(c) 258 nm, and (d) 306 nm. 

The strain-transmittance curves (Figure 3.4a) showed three stages, corresponding 

to wrinkle and crack formation at 0-20% strain level, void formation at 20-80% strain 

level, and leveling-off at >80% strain, in agreement with observation from optical 

microscopy shown in Figure 3.2a-b. The transmittance decreased the most at the void 
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formation stage, suggesting that void formation was mainly responsible for the 

transparency change in our smart window. The average transmittance in the visible 

wavelength range (400-700 nm) of the as-prepared silica NP/PDMS film and a pure 

PDMS film were measured to be ~92% and ~94%, respectively (Figure 3.4b). When 

stretched, a significantly large drop in the transmittance of the silica NP/PDMS film in 

the visible region was observed (Figure 3.4b): over 50% in average for different particle 

sizes and the largest change was nearly 70%, much higher than those reported in 

literature.
25,26

 

To demonstrate repeatability and robustness of our smart window, we stretched 

and released the films from 20% to 70% strain at a frequency of 0.5 Hz for 1000 times, 

and the transparency was measured continuously at 500 nm. The transmittance of the 

films after stretching and releasing 1000 times was nearly identical to that of the un-

stretched film (Figure 3.4b inset). We believe that the durability and stability of the films 

can be attributed to the combination of thick PDMS layer (0.5-1 mm) and thin silica 

NP/PDMS composite layer (~4-5 µm). While the top thin layer is responsible for 

color/transmittance change, the bottom thick PDMS layer produces necessary restoring 

force for the entire film for repeated stretching and release. Meanwhile, the elastic PDMS 

nanoscale ligaments generated during stretching in the composite layer (Figure 3.2c) 

played a role to confine the silica NPs in their local regions, where color appeared and 

intensified upon stretching but did not change for a given NP size. 
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Figure 3.4 (b) Transmittance spectra of a pure PDMS film (black), an as-prepared silica 

nanoparticle/PDMS film (green), and a silica nanoparticle/PDMS film stretched at 100% 

strain (blue) and released (red) 1000 times. Inset: Transmittance change as a function of 

stretching/release cycles. (c) Transmittance vs. strain at wavelengths of 500 nm and 700 

nm, respectively. (d) Reflectance spectra of the composite film with nanoparticle 
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diameter of 258 nm at various strains at a viewing angle of 10°. Inset: schematic 

illustration of the viewing angle in the experimental setup. (e) Reflectance spectra of 

silica nanoparticle/PDMS films with 80% strain at a viewing angle of 10°. The 

nanoparticles have diameters of (i) 221, (ii) 258, and (iii) 306 nm, respectively. Inset: 

optical micrographs of the stretched silica/PDMS membrane with nanoparticles of 

diameter of (i) 221, (ii) 258, and (iii) 306 nm, respectively. Scale bars: 20 µm. (f) 

Reflectance spectra of the composite film with nanoparticle diameter of 258 nm with 

80% strain at various viewing angles. 

To characterize the color of the smart windows, we measured the reflectance of 

the films at different strain levels in the vis-NIR range using a custom-built 

spectrophotometer outfitted with a reflectance and backscattering optical fiber (Ocean 

Optics), as shown in the Figure 3d inset. Reflectance peaks started to appear at 40% 

strain and intensified at strains >60% (Figure 3.4c), which matched the formation of 

microwrinkles and nanovoids shown in Figure 3.2. The peak position did not noticeably 

change with increase of strain. We should note that the color of the silica NP/PDMS film 

(Figure 3.1f and Figure 3.4d), however, is different from that of quasi-amorphous silica 

NP array (Figure 3.1b and Figure 3.4e) of the same NP size. As seen in Figure 3.4e, the 

reflectance peaks (λR) of the silica NP arrays were dependent on the size of NPs, in 

agreement with literature:
37,38

 blue (NP diameter, 221 nm), green (258 nm) and pink (306 

nm) films had reflectance peaks at 461 nm, 517 nm, 625 nm, respectively. At 80% strain 

and a viewing angle of 10°, the reflectance peaks of the films prepared with 221 nm, 258 

nm, and 306 nm silica NPs were at wavelengths 454 nm, 501 nm, and 587 nm, 

respectively (Figure 3.4d). The reflectance peaks of the stretched silica NP/PDMS films 

were blue-shifted compared to pure NP films of the same NP size, but there was no 

further change of peak position at various strains. We then tilted the films with respect to 

the detector. As seen in Figure 3.4f, the reflectance peak positions did not change with 
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the viewing angles, characteristic of quasi-amorphous structural color. Instead, the 

reflectance peak intensity is dependent on the viewing angle and maximized at a viewing 

angle of 10°. In contrast, optically switchable windows reported in literature typically 

produce angle-dependent color due to Bragg diffraction of the highly-ordered 

structures.
25,28

 

3.6 Mechanism 

Based on our observations and measurements, we proposed a mechanism of void 

formation in Figure 3.5, where the changes in the optical properties could be attributed to 

the microstructural change, including micro-roughness from wrinkles and nano-voids 

formed between PDMS and silica NPs (Figure 3.2a-b). The void formation led to new 

reflection interfaces (i.e. void/silica, void/PDMS, Figure 3.2c-d) and a dramatic increase 

(over 200 times) in the reflectance at the interface and thus, a significant drop in 

transparency. The reflectance at the interface between two media under the normal 

incident light is given by 
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where n1 and n2 are the refractive indices of media 1 and media 2. As seen in Figure 3.5, 

there were three interfaces in the stretched silica/PDMS composite film: silica/PDMS 

interface, silica/void interface, and PDMS/void interface. Here, nsilica=1.457 at 632.8nm, 

nPDMS = 1.423 at 632.8nm, nvoid = 1. The reflectance at the interfaces is Rsilica/PDMS = 
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0.014%, Rsilica-void = 3.46%, and RPDMS-void = 3.05%. This greater than 200-fold increase in 

reflectance resulted in the observed color and drop in transmittance. 

 

Figure 3.5 Schematic illustration of the void formation around the silica particles when 

stretched. Arrows indicate PDMS ligaments. 

To support our hypothesis, finite element simulation (Figure 3.6) was performed 

to better understand the adhesive contact between the silica particle and the PDMS 

matrix. The stretching of a silica particle embedded in PDMS was simulated based on the 

concept of a representative unit structure, defined in Figure 3.6a. The adhesive terms 

Knn, Kss, and Ktt determine the uncoupled traction-separation behavior on the contact 

interface. For simulated adhesive contact terms ranging three orders of magnitude, it was 

shown that void formation on either side of the silica particle parallel to the stretching 

direction is possible (Figure 3.6b-d). 

 

250 nm

12.5 nm

a b c d
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Figure 3.6 Finite element simulation. (a) Cross-section of the unit structure (275 x 275 

nm) consisting of PDMS (gray) with a spherical silica nanoparticle of diameter 250 nm 

(blue). Predicted void formation where the adhesive contact terms Knn = Kss = Ktt = (b) 1.0 

MPa, (c) 10.0 MPa, and (d) 100.0 MPa. 

Mechanical strain causes the thinning of the silica NP/PDMS composite film due 

to the positive Poisson’s ratio of PDMS, 0.5. Since the top layer of silica NP/PDMS is 

much thinner than the bottom PDMS bulk layer, the thinning of the composite film 

should mainly occur in the bulk PDMS layer. Thus, the interplanar spacing (dplanar) of NP 

assembly should not change much with the strain, while the location of voids should 

correlate to the silica NP positions (Figure 3.2c-d). The void arrangements formed 

locally should also be quasi-amorphous, analogous to the quasi-amorphous silica NP 

arrays, which were somewhat locked by the adjacent PDMS layer. Thus, the angle-

independent structural color of the stretched films should be the result of the quasi-

amorphous structures consisting of voids and silica NPs. As mentioned earlier, voids 

occurred locally at the high stress positions, and the local strain, obtained from the SEM 

images (Figure 3.2c), was on the order of 100% even at a relatively low global strain 

level. To explain this, the local volume filling fraction of voids was calculated as follows. 

Typically, the reflection peaks λR of colloidal crystals are angle dependent and can 

be explained by the Bragg-Snell law: 

 

λ               
        

 

  (3-3) 

 

where dplanar is the interplanar spacing, neff is the effective refractive index, and θ is the 

incidental angle. However, the reflection peaks of quasi-amorphous arrays of 
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nanoparticles are angle-independent. According to the data fitting in a previous study,
37

 

the reflection peaks λR of quasi-amorphous arrays are linearly proportional to the silica 

nanoparticle size (Dsilica) and can be calculated as: 

 

λ                          (3-4) 

 

Taking θ = 0° in Equation (3-3), we obtained the factor a as 2.04 for quasi-amorphous 

nanoparticle arrays, and 2.18 for face-centered cubic (FCC) colloidal crystals. 

For the pure silica nanoparticle arrays, the effective refractive index neff is 

 

                             (3-5) 

 

where f is the volume filling fraction. Here, fsilica + fair = 1, nsilica = 1.457 and nair = 1, so 

 

λ                            (3-6) 

 

For the silica nanoparticle/PDMS composite layer, neff is 

 

                                          (3-7) 

 

The ratio of the volume filling fraction of the sprayed quasi-amorphous particle array to 

PDMS is fsilica:fPDMS = 0.35:0.65.
37 

Here fsilica + fPDMS + fvoid = 1, nsilica = 1.457, nPDMS = 

1.423 and nvoid = nair = 1, so 
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λ                              (3-8) 

 

 

Figure 3.7 (a) Schematic of a stretched silica/PDMS composite film with a single 

particle. (b) The relationship of strain and volume filling fraction of void. 

The void volume filling fraction (fvoid) can be estimated based on the model. Here, 

the void is assumed as a perfect ellipsoid and a silica particle is embedded in the void 

(Figure 3.7a). So the volume of void is 

 

      
 

 
     

 

 
     

     

 
        (3-9) 

 

The void volume filling fraction is 

 

      
     

                   
 (3-10) 
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Particles are near close-packed, so the edge PDMS thickness (b) is very small comparing 

to the particle diameter. Here b is ignored, the strain is ε= (a-r)/r and VPDMS:Vsilica = 

0.65:0.35. Therefore, 

 

      
      

        
 (3-11) 

 

The ε-fvoid curve is shown in Figure 3.7b. When the strain is greater than 80%, fvoid is 

greater than fair = 0.35. 

These results suggest that the local strain applied to the thin NP/PDMS layer is 

not equivalent to the global strain applied to the whole film; cracking/wrinkling and 

nanovoids occur to relax the local strain despite the continuing straining of the bulk 

PDMS layer. Therefore, the reflection peak position did not change with the increase of 

applied strain, while the peak intensity increased (Figure 3.4c) due to the increase in the 

number of voids. Likewise, blue-shift of the reflection peaks of stretched silica 

NP/PDMS film vs. the as-prepared silica NP arrays can be explained by the decrease of 

dplanar and increase of fvoid according to Equation (3-8). 

In addition to being a light blocking smart window or a scattering surface for 

projectors, the composite film can also be used in display and security applications. 

Positive or negative letters can be embedded in the composite films by spray coating of 

silica NPs on different masks, followed by mask removal and PDMS casting. As seen in 

Figure 3.8, hidden letters “PENN” (negative) and “N” (positive) can be reversible 

revealed upon stretching and releasing of the film. 
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Figure 3.8 Reversibly revealing and hiding the letters patterned within the silica 

nanoparticle/PDMS film under mechanical stretching and releasing. 

3.7 Conclusions 

In summary, we presented a smart optical window that could be reversibly 

switched from a highly transparent state (90% transmittance in the visible region) to 

opaqueness (30% transmittance) and display angle-independent reflective colors through 

mechanical stretching and release. The window was a bilayer elastomeric film consisting 

of a thin, hard layer of quasi-amorphous silica NP/PDMS and a thick, elastomeric layer 

of bulk PDMS. The displayed colors were found dependent only on the NP size not the 

stretching strain, although they blue-shifted compared to the films prepared from NPs 

only. The dramatic change of optical responses is attributed to an increase of diffused 

light scattering and absorption resulting from the formation of microwrinkles and voids 

during stretching. The design of composite structures demonstrated here offers a facile 

and low cost approach to dynamically and dramatically change optical properties. 

Compared to smart windows reported in literature, ours have several unique 

characteristics, including: 1) The initial state is truly transparent due to refractive index 

match between silica NPs and PDMS, whereas most smart windows are opaque or 

colored in the original state; 2) The change of transmittance in the vis-NIR region is very 

large, ~60%; 3) The sprayed NPs are quasi-amorphous, therefore, much more robust 

against stretching in comparison to highly ordered colloidal crystals. They offer angle-
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independent color display upon stretching whereas most stretchable smart windows 

display angle-dependent colors; 4) The displayed color is independent of stretching 

strain, but dependent on NP size; 5) The film is highly robust in repeated stretching and 

releasing (at least 1000 cycles) since the majority of the film under strain is the bulk 

PDMS layer. Although smart windows are demonstrated here for light transmission 

control, they can also be used in applications such as displays, camouflages, and security, 

as well as heat/solar gain control. The material design presented here offers new insights 

to dynamically and dramatically change physical properties. Further, the concept 

presented here can be applied to other functional material systems, such as liquid crystal 

elastomers and shape memory polymers, to design highly responsive, nano-/micro-

structured materials that are sensitive to heat, light and moisture. 

3.8 Contributions 

Ge, D.,
†
 Lee, E.,

†
 Yang, L., Cho, Y., Li, M., Gianola, D. S. and Yang, S. (2015), A 

Robust Smart Window: Reversibly Switching from High Transparency to Angle-

Independent Structural Color Display. Adv. Mater., 27: 2489–2495. (
†
Equal 

contribution.)  

Ge, D. and Lee, E. performed sample fabrication and characterization. Yang, L. 

participated in discussion and provided physical insights of experiments. Cho, Y. 

provided theoretical insights through FEA modeling. Li, M. performed confocal optical 

microscopy characterization. 
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CHAPTER 4: Directing highly uniform molecular alignment in liquid 

crystal elastomer micropillar arrays through interplay of interfacial 

chemistry and topography 

Yu Xia, Elaine Lee, Hao Hu, Mohamed Amine Gharbi, Daniel A. Beller, Eva-Kristina 

Fleischmann, Randall D. Kamien, Rudolf Zentel, and Shu Yang, Manuscript in 

preparation 

4.1 Introduction 

Because of their geometrical, mechanical, and electronic anisotropy, liquid crystal 

(LC) molecules are not only highly sensitive to external aligning fields but can also 

exquisitely control the propagation of electromagnetic phenomena. Consequently, LC 

molecules have long been of interest for scientific advancement and technological 

applications, including display, artificial muscles and actuators that rely on anisotropic 

properties of LC molecules.
1-4

 It is known that nematic liquid crystalline elastomers 

(NLCEs) exhibit a spontaneous contraction along the director axis when heated above 

their nematic (N) to isotropic (I) phase-transition temperatures (TNI), and the polymer 

chains change to a spherical conformation.
5
 Therefore, NLCEs have a reversible shape 

memory effect when triggered by external stimuli, including heat, UV light and electric 

field.
6-10

 However, the deformation of LCE networks is highly dependent on the 

molecular alignment of LC molecules, both globally and locally, depending on the 

boundary conditions at interfaces, including topology and surface chemistry, and 

application of an external field. 
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Coupling of responsive materials with patterned surfaces at the micro/nanoscale 

often leads to interesting surface properties for potential applications, including dynamic 

colors,
11-13

 reversible "gecko-like" adhesion,
14,15

 switchable hydrophilicity and 

hydrophobicity.
16-18

 Recently, many have begun to pattern micro-structured LCE 

actuators.
7,8,10

 To achieve a large and reversible strain, it is critically important to control 

LC anchoring within a patterned network at the molecular level. So far, in literature, the 

most common techniques to control LC anchoring are to rub the substrate and to apply a 

magnetic field before the LC monomers are cross-linked. Rubbing is effective when 

preparing non-patterned LCE membranes where LC molecules align along microgrooves 

generated by rubbing.
6,19,20

 However, rubbing often fails in the fabrication of micro- and 

nanostructures, for example, LCE micropillar arrays, not to mention the generation of 

static charge, scratches and potential high production cost of this technique. 

Keller et al. first demonstrated the fabrication and actuation of NLCE micropillar 

arrays using a polydimethylsiloxane (PDMS) mold with cylindrical pores and by 

applying a magnetic field (1-1.5Tesla) to align LCs vertically along the film thickness in 

the mold.
21,22

 As a result, a large contraction strain (35%) was generated when actuating 

the pillars above TNI (120°C) for side-chain NLCE micropillars.
22

 Nevertheless, detailed 

investigation (both experimentally and theoretically) of LC anchoring in such pillars 

remains lacking. In part, this is due to the fact that micro-patterned PDMS molds provide 

much more complicated topographical interfaces compared to a flat substrate, making it 

more challenging to control the LC anchoring. Given the wide range of potential 

applications of structured NLCEs, it is pressing to understand and eventually precisely 
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control LC anchoring under confinement of PDMS molds during soft lithography, 

through surface topography, surface chemistry, and/or use of an external field. 

Here, using a NLCE pillar array as a model system, we demonstrate the 

importance of surface chemistry in controlling LC alignment within micron-sized PDMS 

molds, and thus reversible actuation of NLCEs. Landau-de Gennes numerical modeling 

was performed to simulate the LC alignment in both homeotropic (i.e., vertical 

alignment) and planar anchoring of PDMS molds. We found that perfect alignment of 

NLC molecules along the pillar thickness can only be achieved in PDMS molds with 

planar anchoring surface chemistry, as opposed to the application of a strong magnetic 

field (4.0×10
5 

A/m) in the vertical direction. Experimentally, we coated a thin layer of 

poly(2-hydroxyethyl methacrylate) (PHEMA) to the PDMS mold surface to create a 

degenerate planar surface for NLC small molecule, 4-Cyano-4'-pentylbiphenyl (5CB), 

and NLC monomer, (4''-acryloyloxybutyl)-2,5-di- (4'-butyloxybenzoyloxy) benzoate 

(LCM4), leading to full vertical alignment of NLCs inside the pores as confirmed by 

polarized optical microscope (POM). In comparison, NLCs in untreated PDMS mold 

maintained homeotropic anchoring at the interfaces and the director escaped from the 

center of the mold. The NLCE pillars with planar anchoring demonstrated a relatively 

large radial strain (~30%) when heating across TNI. 

4.2 Experimental methods 

4.2.1 Materials 

(4’’-acryloyloxybutyl)-2,5-di-(4’-butyloxybenzoyloxy)benzoate (LCM4) was synthesized 

according to the literature.
3
 N,N-dimethyl-n-octadecyl-3-amino-propyltrimethoxysilyl 
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chloride (DMOAP), hydroxyethyl methacrylate (HEMA), 1,6-hexane-diol diacrylate and 

4-Cyano-4'-pentylbiphenyl (5CB) were purchased from Sigma Aldrich and used as 

received. Photoinitiator, Irgacure®184 (1-hydroxy cyclohexyl phenyl ketone), was 

obtained from Ciba Specialty Chemicals. 

4.2.2 Preparation of PDMS molds 

The PDMS porous membrane (diameter 10μm, pitch 20μm, and depth 40μm) was 

replicated from the epoxy (D.E.R. 354, Dow Chemical) pillar master, following the 

protocol reported earlier.
23

 

4.2.3 Preparation of PDMS molds with different surface chemistry 

The surface of as-cured PDMS porous membranes offered homeotropic anchoring to LCs 

for control experiments. To prepare a planar anchoring mold, a PDMS mold was 

immersed into a solution consisting of photo-initiator (Irgacure®184, 30 wt%) in acetone 

for 30 min, followed by rinsing with acetone three times and drying by air gun. The dried 

PDMS mold was immersed into neat HEMA liquid and exposed under UV light (365 nm, 

Hg lamp) at a dosage of 1000 mJ/cm
2
. The resulting mold was rinsed by ethanol three 

times to remove unreacted HEMA monomers, followed by drying on a hot stage at 95°C. 

4.2.4 Preparation of DMOAP coated glass substrates 

1 vol% DMOAP solution was prepared in water. Then the glass slides were immersed 

into the solution for 30min, followed by washing with DI water for three times and 

baking at 110°C
 
in an oven for 1 h. 
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4.2.5 Preparation of 5CB in the PDMS mold 

A glass slide was pre-cleaned by washing with ethanol and acetone twice, respectively. 

Then one drop of 5CB (~5μL) was placed on the glass slide, and the PDMS mold 

(untreated or treated) was applied on top. After filling the mold with 5CB by capillary 

force for 1 min, it was lifted and bladed with a razor blade on the top surface to remove 

the residual 5CB. A DMOAP treated glass slide was placed on top of the PDMS mold, 

and the sample filled with 5CB in the mold was characterized by polarized optical 

microscopy (POM). 

4.2.6 Fabrication of LCM4 pillars 

LCM4 and 1,6-hexanediol diacrylate were first mixed at a molar ratio of 4:1 in 

dichloromethane (20 wt%) to obtain a homogeneous solution, followed by addition of 

2wt% of photoinitiator (Irgacure® 184). 20 μL of the mixture was drop-cast on a clean 

glass slide and dried under vacuum. The mixture was then heated to 110°C on a hot stage 

and covered by the PDMS mold for 10 min. After the pores of the mold were completely 

filled with LCs, the glass slide was carefully removed, and a razor blade was used to 

scrape off the residual LCs. The PDMS mold was then placed on a DMOAP treated glass 

substrate, and the sample was examined under POM to check LC anchoring before UV 

exposure. The PDMS mold along with LC monomers was exposed to 365 nm UV light 

(97435 Oriel Flood Exposure Source from Newport, intensity of 54 mW/cm
2
) at 17,000 

mJ/cm
2
 dosage, followed by removal of the DMOAP coated glass substrate. The sample 

was then placed on top of a thin layer of polyurethane (PUA) liquid (Minuta Technology) 

on a clean glass slide, and exposed with another 17,000 mJ/cm
2
 dosage of UV light to 
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bond PUA onto pillars. After the sample was cooled to room temperature, the PDMS 

mold was peeled off to obtain the LCE pillars supported on a PUA thin film. 

4.2.7 Polarized optical microscopy 

The liquid crystal structure was observed by an Olympus BX61 motorized optical 

microscope with crossed polarizers using CellSens software. 

4.2.8 Landau-de Gennes numerical modeling 

Numerical modeling of LC alignment within the PDMS mold was performed according 

to literature. The Frank elastic constants of 5CB at 298K,
24

 K1 = 0.64x10
−11

 N (splay), K2 

= 0.3x10
−11

 N (twist), and K3 = 1x10
−11

 N (bend), were used. The simulation box to 

model 5CB in cylindrical pores was set as diameter 352 nm and height 1408 nm, that is, 

the aspect ratio (height/diameter) = 4, same as that of the micropillars in experiments. 

To evaluate the effect of vertical magnetic field on the alignment of LC molecules in the 

cylindrical pores, an external magnetic field H was applied in the simulation, which 

contributed to the free energy as 

 

      
 

 
                   (4-1) 

 

where                     is the magnetic permeability of vacuum, H is the 

magnetic field strength, and   and    are the isotropic and anisotropic part of the 

magnetic susceptibility, respectively. Typically, for nematic LCs
25

,   and    are positive 

with values on the order of 10
-7

. H was estimated from the magnetic flux density B by 

neglecting the magnetization M of 5CB in the external magnetic field. 
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Therefore 

 

        
 

  
 (4-3) 

 

Since    ,   
 

  
 

     

                          . 

Here, the surface magnetic flux density B of the magnetic disk, used in literature
[9] 

with 

1.5 Tesla demagnification flux density or magnetic flux density inside the magnet, was 

estimated at 0.5 Tesla. Flux density on the centerline of a rectangular magnet at a 

distance z from the magnet surface in the north-south pole direction can be calculated as 

 

  
  

 
        

  

            
         

  

                    
   (4-4) 

 

where Br is the magnet flux density inside the magnet, z is the distance from the magnet 

surface, and L, W, D are the length, width, thickness of the rectangular magnet, 

respectively. Therefore, from Eq. (4) we can calculate B at z = 0.01 mm above the 

magnet with L = 30 mm, W = 20 mm, D = 10 mm and Br = 1.5 T, to be around 0.45 T. 

For a cylinder (or disc) magnet, B can also be estimated in a similar manner. 
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As shown in Eq. 4, the flux density B decays rapidly with increasing z. However, decay 

of magnetic field through the sample was neglected in this simulation. 

4.3 Landau-de Gennes numerical modeling 

So far, fabrication of LCE microstructures by soft lithography has focused on 

using an external field (e.g. magnetic field) to align LCs using non-treated PDMS 

molds.
7,22,26

 The freshly prepared PDMS surface has a low surface energy (~20 mJ/m
2
). 

The commonly used small molecule nematic liquid crystal (NLC), 5CB, has weak 

homeotropic anchoring on PDMS surfaces. To understand the effect of surface chemistry 

vs. magnetic field to align NLCs, we first simulated the anchoring of 5CB in a PDMS 

porous membrane using Landau-de Gennes numerical modeling. As seen in Figure 4.1, 

5CB filled in the untreated hydrophobic PDMS mold were barely aligned by the 

magnetic field (up to 0.5 Tesla) (Figure 4.1a). 5CB remained homeotropically anchored 

on the PDMS mold surface with or without the strong magnetic field, and the director of 

the LCs escapes from the center of the mold. Under this LC anchoring configuration, it is 

therefore challenging to achieve large actuation strain near TNI, as molecular re-

orientation near the transition temperature would partially cancel with each other. 

Interestingly, when 5CB had planar anchoring within the PDMS mold, we observed that 

5CB molecules were not only aligned along the LC/mold interface, but vertically oriented 

in the pores (Figure 4.1b). Such mono-domain alignment of the LCs within the mold 

could lead to a relatively large strain of the LCE pillars, which is necessary for actuation. 

Since no magnets will be needed to align the LC during sample preparation, the 

experimental set-up could be much simplified by controlling the interfacial chemistry. 
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Figure 4.1 Landau-de Gennes numerical modeling of 5CBs in a PDMS mold with (a) 

homeotropic anchoring and (b) planar anchoring with and without a magnetic field.  

4.4 Control of liquid crystal surface anchoring 

Guided by simulation results, we grafted a thin layer of PHEMA on the PDMS 

mold to introduce planar anchoring of LCs (Figure 4.2a). While planar anchoring of LCs 

on a glass slide is usually achieved by absorbing a thin layer of poly(vinylalcohol) (PVA) 

or polyimide (PI) on the substrate, it is challenging to uniformly coat hydrophilic 

polymers, i.e. PVA or PI, on a hydrophobic PDMS mold. Here, we first treated the mold 

with the acetone solution of photoinitiator (Irgacure®184), which was expected to be 

partially trapped within the mold surface since PDMS could be slightly swollen by 
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acetone (swelling ratio ~1.03). The PDMS mold was then immersed into HEMA 

monomers, which wet the PDMS surface, followed by UV curing at different dosages to 

ensure complete coverage of PHEMA on the PDMS mold  

 

Figure 4.2 (a) Schematic illustrations of the preparation of the PDMS molds with 

different surface chemistry and the fabrication of LCE pillar array. Pillar dimensions: 

diameter 10μm, pitch (center-to-center distance) 20μm and height 40μm. (b) Chemical 

structures of LC systems used in the experiments. 

To ensure the complete coverage of PHEMA on PDMS mold, we monitored the 

water contact angles of the treated molds prepared at different UV dosages (Figure 4.3). 

At low UV dosages (≤800 mJ/cm
2
), the water contact angle of the mold was found 

greater than 50°. At 1000 mJ/cm
2
, the lowest water contact angle (~27°) was achieved, 

suggesting sufficient coverage and polymerization of PHEMA. At a higher dosage (1500 
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mJ/cm
2
), the water contact angle increased again, possibly due to the increased thickness 

of the PHEMA layer, leading to larger roughness and a more hydrophobic surface. 

 

Figure 4.3 Average water contact angles on PHEMA coated PDMS exposed to different 

UV dosages. 

The cured PHEMA has very similar chemistry to PVA as they both have one 

hydroxyl group in each repeat unit. As evident from Figure 4.4, 5CB molecules and 

LCM4 monomers had planar anchoring in porous mold made of pure PHEMA, where the 

directors were nearly all vertically aligned. 
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Figure 4.4 POM images of 5CB (a) and LCM4 (b) in a PHEMA porous mold with pore 

diameter 10μm, pitch 15μm, and depth 20μm. Vertical alignments of LC molecules were 

observed in both LC systems. Scale bar: 20μm. 

Anchoring of 5CB and LCE monomers (LCM4) in PDMS molds was further 

investigated under POM. For homeotropically anchoring molds, an escaped radial 

configuration is expected, as shown in Figure 4.5a. On the untreated PDMS mold, 5CB 

exhibited uniform escaping configuration (Figure 4.5b), while polydomain anchoring of 

LCM4 was observed with non-uniform light transmittance under POM (Figure 4.5c). In 

agreement with the simulation (Figure 4.1), alignment of 5CB in the PDMS mold were 

experimentally confirmed, including the escaping configuration in the homeotropic mold 

and vertical alignment in the planar mold. From Figure 4.1, simulation shows in both 

anchoring configurations, the director fields exhibit axial symmetry along the vertical 

axis, thus we discuss the topologies in the 2D manner of each radial slice of the nematics 

(Figure 4.5a and d). In homeotropic anchoring conditions, as illustrated in Figure 4.5a, 

alignment of 5CB created two sets of topological defects at the top corner and the bottom 

corner of the mold, respectively. Under constraint of the elastic energy, the director of 
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LCs would escape from the center (dotted line), leading to a black dot under POM (red 

circle in Figure 4.5b inset), when the sample was viewed in the normal direction. 

 

Figure 4.5 (a) Schematic of LC anchoring in a homeotropic anchoring mold. Red dotted 

line indicates the escaping direction of LC director. (b-c) POM images of (b) 5CB and (c) 

LCM4 in a homeotropic anchoring PDMS mold. Insert: LC escaping direction (red 

circle) under cross polarizers when observing the sample vertically. (d) Schematic of 

5CB in a planar anchoring PDMS mold. (e-f) POM images of (e) 5CB and (f) LCM4 in a 

planar anchoring PDMS mold. 

For planar anchoring, 5CB molecules were mostly vertically aligned with the 

topological defects appearing at the bottom of the mold, and no defect was found at the 

top corner (Figure 4.5d). Thus, under POM, most of the image was dark with only 

slightly bright dots coming from transmitting light through the bottom of the mold 

(Figure 4.5e). Interestingly, we found the anchoring behaviors of LCM4 in both 

untreated and treated PDMS molds were very similar to that of 5CB, despite the 

difference between the chemical structures of 5CB and LCM4. Even though LCM4 in the 
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homeotropic-anchoring mold exhibited polydomain alignment, escaping configuration 

samples have been achieved by applying a vertical magnetic field from a 1.5T permanent 

magnet
7
. In the planar anchoring mold, however, we found for the first time that POM 

images of LCM4 and 5CB (Figure 4.5e-f) were nearly identical, both of which showed 

slightly bright dots in the dark background. This indicated that LCM4 had molecular 

alignment in agreement with that of 5CB, which undoubtedly confirmed the vertical 

alignment of LCM4 molecules within the mold. 

4.5 Actuation of cross-linked LCEs 

After LCM4 was carefully cross-linked within the mold with planar anchoring, 

mono-domain alignment of LCM4 within the pillars was maintained as observed by 

POM; defects could be found on top of the pillars by comparing POM images of the 

pillars at 45° and 0° polarization angles (Figure 4.6a-b). Landau-de Gennes numerical 

modeling was employed to better understand the anchoring of the LCM4 and how these 

defects are formed when LCM4 infiltrates the PDMS mold (Figure 4.6). The observed 

defects arose from the planar anchoring of the monomer to the PDMS mold at the bottom 

of each micro-hole. As the planar anchoring strength was increased, the size of the defect 

domain is increased. In addition to the twist region, a defect ring was observed at the 

bottom of each micro-hole, which arose from the corner energy (Figure 4.7). From the 

calculations, we estimated the planar anchoring strength to be on the order of 1-10 J/m
2
 

and corner energy to be about ten times smaller than the anchoring strength. 
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Figure 4.6 Landau-de Gennes numerical modeling of 5CBs in a PDMS mold with planar 

anchoring strength of (a) 0.1, (b) 1, and (c) 10 J/m
2
 without corner energy. 

 

Figure 4.7 Landau-de Gennes numerical modeling of 5CBs in a PDMS mold with ratio 

of planar anchoring strength to corner energy of (a) 1:0.1, (b) 10:1, and (c) 10:0.1. 

Across TNI, this mono-domain vertical alignment of LC molecules led to a 

relatively large strain in the radial direction (~30%), measured from the diameters in the 

middle of the pillars at 50°C and 110°C, respectively (Figure 4.6c-d). Actuation of 

LCM4 pillars was also characterized through the top view of the sample under bright 

field (BF) microscopy, as shown in Figure 4.6f. A 30% radial strain could also be 

measured from Figure 4.6f. Upon heating above TNI, a slightly titling of the pillars was 

found at 110°C, which can be explained by the instability of the pillars caused by the 

different thermal expansion coefficients between polyurethane (PUA) supporting layer 

and LCM4 pillars. Such tilting behavior can be recovered when the sample was cooled 
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down, but minor residual deformation remained. The measured strain value was 

consistent with literature for LCM4 nano-fibers (~300 nm in diameter, 6 μm in length) 

templated from anodic aluminum oxide (AAO) membrane with 20 mol% cross-linker
27

. 

AAO surface also has a large amount of hydroxyl groups, thus, providing planar 

anchoring of LCM4. Although in the later case, AAO template has to be chemically 

etched to obtain the pillars, while here we can peel off the LCM4 pillars from the PDMS 

mold. 
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Figure 4.8 (a-b) Cross-sectional views of POM images of LCM4 pillars after UV curing 

at (a) 45º and (b) 0º angle between the polarizer and the nematic director.(c-d) Cross-

sectional views of BF images of LCM4 pillars at 50°C (c) and 110°C (d). (f) Top-view 

BF image of LCM4 pillars at a heating and cooling cycle. Blue and Red arrows in (c-f) 

indicate the position of pillars for measurement of diameter at 50°C and 110°C, 

respectively. Length of arrow: blue-8.6 μm, red-11.1 μm. Scale bar: 20 μm.  

4.6 Conclusions 

We demonstrated the importance of interfacial chemistry in molding LCE 

microstructures. Using Landau-de-Gennes numerical modeling, we showed that vertical 

alignment of LC monomers could only be achieved within PDMS mold when LCs had 

planar anchoring at the LC-mold interface and not in molds with homeotropic anchoring 

with or without an applied magnetic field. LC monomers in the mold with homeotropic 

anchoring surface, however, always exhibited an escaping configuration. By coating of 

PHEMA to the PDMS mold surface, we switched the mold surface from hydrophobic to 

hydrophilic, thus turning the LC anchoring from homeotropic to planar for both 5CB and 

LCM4, leading to highly uniform mono-domains of LC alignment along the film 

thickness. After cross-linking LCM4 monomers, the alignment of LCE pillars was 

maintained, leading to a large radial strain (30%) across TNI compared to almost no 

change if the mold surface was not treated.  

The concept of controlling interfacial chemistry in soft-lithography is much 

simpler and more effective than the use of an external field to direct LC anchoring over a 

large area, especially in the case of more complex systems, such as porous membranes, 

channels, and 3D structures. By combining topology and interfacial chemistry to 

manipulate the boundary conditions within the micro- and nanostructures, we expect to 

observe much richer library of LCE actuation behaviors. In turn, it could intrigue and 
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facilitate the exploration of LC anchoring theory in LCEs for potential applications, 

including actuators, displays, sensors, dry adhesion, photonic materials, and “origami-

like” folding of 2D structures into 3D. 

4.7 Contributions 

Xia, Y., Lee, E., Hu, H., Gharbi, M. A., Beller, D.A., Fleischmann, E., Kamien, R. D., 

Zentel, R. and Yang, S. “Control of liquid crystal anchoring in liquid crystal elastomer 

pillar arrays by interfacial chemistry.” Manuscript in preparation. 

Xia, Y., Lee, E. and Hu, H performed the liquid crystal elastomer experiments and data 

analysis. Xia, Y. performed simulation of LCM4 in pillars using the code developed by 

Beller, D.A. and Kamien, R., D., who also provided theoretical insights. Gharbi, M. A., 

participated in discussion and provided physical insights of experiments. Fleischmann, E. 

and R. D. Zentel provided initial LCM4 materials for testing the concept, while Xia, Y. 

later synthesized large quantities of LCM4 to carry out the experiments reported here. 
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5.1 Introduction 

Control over the assembly of functional, nanostructured materials is imperative 

for the realization of novel nanodevices. Much work has focused on the assembly of 

metal-nanoparticles due to their applications in energy harvesting,
1
 sensing,

2
 

metamaterials,
3
 and catalysis.

4
 Gold nanorods (AuNRs), in particular, have received 

considerable interest due to the facile synthesis of variable size and aspect ratios,
5,6

 

diverse chemistry for surface modification,
7-11

 and anisotropic optical properties.
12

 

Collective oscillations of free electrons at the surface of metal nanoparticle surfaces 

interact with light to cause strong resonances in the optical region of the electromagnetic 

spectrum, known as localized surface plasmon resonance (LSPR). Owing to their shape, 

AuNRs have two such absorbance bands, a transverse mode and a longitudinal mode, 

which depend on the diameter and length of the AuNR, respectively. Furthermore, 

AuNRs have significantly enhanced electric fields near their tips, which make AuNRs 

attractive for use as a sensing platform based on surface enhanced Raman spectroscopy 

(SERS).
13,14

 However, in order to apply them for any optical device, it is essential to 

control the assemblies of AuNRs, and thus their optical properties. 
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The absorbance of AuNRs significantly changes when AuNRs come into close 

contact with each other due to plasmonic coupling. For instance, when two AuNRs come 

together side-by-side the absorbance band undergoes a hypsochromic (blue) shift, 

whereas when two AuNRs come together end-to-end the absorbance band undergoes a 

bathochromic (red) shift.
12

 The strength of the shift depends upon the number of AuNRs 

in the assembly and their spacing. AuNRs can be assembled in solutions in a controlled 

manner.
9-11

 However, solution assembly may not be desired in device fabrication. More 

recent work has shown controlled assemblies of AuNRs in polymer matrices,
8,15

 but the 

optical properties cannot be tuned once the films are cast. Therefore, a more dynamic 

approach, where AuNRs can be reversibly assembled and disassembled triggered by a 

specific stimulus, is attractive to realize the full potentials of AuNR-based nanodevices. 

Liquid crystal (LC), an anisotropic soft matter introduced in Chapter 1.3.4, is one 

such promising candidate for the reversible tuning of the assemblies of AuNRs. The 

alignment of LCs can be controlled by surface chemistry, surface topography, or by 

external field. The coupling of the optical properties of AuNRs with the spontaneous 

order-disorder transitions of LCs upon triggering by external stimuli such as heat, light 

and electrical field will offer great capabilities for active plasmonic devices. This 

coupling can be achieved in several ways, including functionalizing AuNRs with liquid 

crystalline ligands, depositing an active LC layer over immobilized AuNRs, and simply 

mixing AuNRs with LCs. Umadevi et al. showed that AuNRs functionalized with a 

liquid crystalline ligand could be assembled into large scale aggregates with some 

ordering.
16

 However, further manipulation and dynamic tuning of the optical properties 

was not shown. Several groups have shown that the optical properties of metallic particle 
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arrays could be tuned by assembling LCs on top of them.
17-21

 However, only a small shift 

of plasmon resonance peak (<50 nm) and a drop in peak intensity were observed upon 

application of an electric field. It is suggested that the change in optical properties is the 

result of change in the refractive index of the LC medium due, via changing the 

alignment of the LC molecules, rather than by the actuation of the active plasmonic 

particles. Liu et al. showed AuNRs could be directionally aligned in the nematic phase of 

a LC, leading to polarization-dependent optical properties of the AuNR/LC 

dispersion.
22,23

 However, the unique temperature-dependent properties of LCs were not 

further exploited to actuate the AuNRs. While these previous studies have shown the co-

assembly of AuNRs and LCs, none have demonstrated direct manipulation of the optical 

responses of AuNRs by LC phase transitions. 

Recent theoretical
24

 and experimental
25

 work has demonstrated the sequestration 

of individual AuNRs into the defects in ordered LC phases. However, the reversible 

clustering of nanoparticle ensembles to tune the plasmonic resonance has not been 

realized. In this work, we exploit the anisotropic thermal, optical and elastic properties of 

LCs to tune the clustering of AuNRs, and thereby modulating their plasmonic resonances. 

By exploiting the confinement of smectic-A LCs (SmA LCs) to topographically patterned 

pillars, we show that defects can be formed at precise locations around each pillar and 

tuned by varying the temperature of the system. When dispersing polystyrene (PS)-

functionalized AuNRs into the LC prior to drop-casting onto the polymer pillar arrays, 

the AuNRs are spontaneously assembled into the defects surrounding pillars. The 

dimensions of the defect structure and consequently, the nanorod assembly can be altered 

by heating and cooling. Accordingly, the plasmonic peaks shift with temperature. By 
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optimizing the surface anchoring conditions (homeotropic vs. planar) and aspect ratio 

(AR = height/diameter) of the pillar arrays, we can maximize the plasmonic peak shift. 

For homeotropic anchoring epoxy pillars with an AR= 1.3, the transverse and 

longitudinal local surface plasmonic peak shift are ~100 and ~150 nm, respectively. 

5.2 Experimental methods 

5.2.1 Surface functionalization of gold nanorods with polystyrene 

Three 40 mL solutions of cetyltrimethylammonium bromide (CTAB) coated AuNRs in 

deionized (DI) water were synthesized by a seed-mediated growth method as outlined 

elsewhere.
5-7

 Excess CTAB was removed through two washing cycles consisting of 

centrifugation (20 min at 8,000 RPM, Eppendorf 5804) followed by replacement of the 

supernatant with approximately 40 mL of Milli-Q water. Following the washing steps, 

the three AuNR solutions were combined and concentrated in 40 mL of water, providing 

a stock solution of concentrated AuNRs. 

The stock solution of AuNRs (9 mL, 0.4 nM) in DI water was centrifuged (20 min at 

8,500 RPM, Eppendorf 5804) and the supernatant was removed so that there was only a 

small aliquot of concentrated AuNR solution. 30 mg of 5,300 g/mol thiol-terminated 

polystyrene (HSPS) (Polymer Source) was added to a solution of 10 mL THF until 

dissolved. Next, the AuNR aliquot was added to the THF/HSPS solution under stirring. 

The solution was stirred overnight and then solvent exchanged to chloroform twice to 

remove free HSPS. Finally, AuNRs were suspended in 1 mL of chloroform. 
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5.2.2 Substrate functionalization 

To achieve planar anchoring, the epoxy pillars or glass cover slips were treated with 

UVO (Jelight, model 144AX) for 1 h and used immediately. For homeotropic anchoring 

substrates, silicon tetrachloride was evaporated onto the epoxy pillars or glass cover slips 

in a vacuum dessicator for 10 min.
26

 Then, the substrates were placed into a 65°C oven 

with water vapor for 10 min, forming a silica thin film. The substrates were then 

immersed into a 3 wt% ethanol solution of dimethyloctadecyl[3-

(trimethoxysilyl)propyl]ammonium chloride (DMOAP) for 1 h. They were then washed 

with DI water 3 times and dried in a 100°C oven. 

5.2.3 Assembly of gold nanorods in liquid crystals 

4′-n-octyl-4-cyano-biphenyl (8CB) (Sigma Aldrich or Kingston Chemicals) was added to 

the chloroform solution of PS-AuNR and ultra-sonicated for dispersion. The chloroform 

was then evaporated using a vacuum oven at room temperature. The suspension was 

heated to 45°C (above the nematic-isotropic transition temperature, TNI) and drop cast 

over the surface-treated epoxy pillars. A surface-treated glass cover slip was used to close 

the liquid crystal cell. 

5.2.4 Characterization 

Transmittance of the AuNR and PS-AuNR suspensions as synthesized were measured 

using the Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies). The LC 

cell was mounted on a Mettler FP82 hot stage equipped with FP 90 controller and heated 

at 45°C for 5 min to reach the isotropic group. It is then cooled down to 25°C at a rate of 

10°C min
−1

 to form the smectic-A (SmA) phase. In parallel to the heating and cooling 
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cycle, the LC textures were observed under the Olympus BX61 motorized optical 

microscope with crossed polarizers using CellSens software. Alternatively, the 

transmission of the LC cell is measured using a custom-built spectrophotometer with a 

fiber-coupled tungsten-halogen light source and a USB4000 detector (Ocean Optics). 

5.3 Optical properties of gold nanorods 

The functionalization of the AuNRs with PS is detailed in Figure 5.1a. As-

synthesized PS-AuNRs displayed two characteristic extinction bands at 512 nm 

(transverse band) and 727 nm (longitudinal band) in water, as can be seen in Figure 5.1b. 

The longitudinal band underwent a slight bathochromic (red) shift to 742 nm after 

AuNRs are functionalized with HSPS and solvent exchanged to chloroform, as seen in 

Figure 5.1c. Finally, PS-AuNRs were characterized via SEM (Figure 5.1d) with length 

of 31  4 nm and diameter of 11.3  1.5 nm. 
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Figure 5.1 (a) Schematic detailing the functionalization of AuNRs with polystyrene 

brushes. (b-c) Extinction spectra of (b) AuNRs in water and (b) PS-AuNRs in 

chloroform. (d) SEM image of PS-AuNRs. 

5.4 Control of liquid crystal surface anchoring 

Square arrays of cylindrical epoxy micropillars (diameter = 10 μm, pitch = 20 

μm) with various aspect ratios (=height/diameter 0.9, 1.3, and 1.6) were prepared by 

replica molding followed by surface functionalization to introduce different surface 

anchoring properties (Figure 5.2a). Homeotropic or planar anchoring was imposed on 

the surfaces of the pillars as well as the glass cover slip. PS-AuNRs dispersed in smectic-

A LC, 4′-n-octyl-4-cyano-biphenyl (8CB), were sandwiched between the pillars and a 

glass cover slip to form a LC cell. The structure and phase transition temperatures of 8CB 
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are shown in Figure 5.2b. The cell was heated above the clearing temperature to the 

isotropic phase and subsequently cooled to the nematic phase. 

 

Figure 5.2 Schematic of the substrate functionalization. 

When the homeotropic boundary conditions were imposed on the pillars and 

cover slip, distortions to the director field appeared in the form of bright lines encircling 

the micropillars when observed under crossed polarizers (Figure 5.3). Outside these 

bright lines, the entire region was dark even under sample rotation, due to complete 

homeotropic anchoring on all surfaces. 

a Epoxy pillars from replica molding

Oxygen Plasma: Planar Anchoring DMOAP: Homeotropic Anchoring

Surface treated glass cover slip

8CB/PS-AuNR suspension

CNC8H17

Crystalline Smectic A Nematic Isotropic

b

21.5 C 33.5 C 40.5 C
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Figure 5.3 Polarized optical microscopy images of PS-AuNRs in 8CB with homeotropic 

anchoring epoxy pillar arrays and cover slips. Pillar dimensions are diameter = 10 µm, 

spacing = 10 µm, and AR = 0.9 (a-b), 1.3 (c-d), and 1.6 (e-f). The temperature is 35°C 

(nematic, a, c, e) and 30°C (smectic, b, d, f). Scale bars: 20 μm. 

a b

c d
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There should be three possible LC director field configurations within the pillar 

arrays with homeotropic anchoring, including uniform escaping of the director field and 

bulk disclination lines with either +1/2 or -1/2 winding geometry (Figure 5.4). The 

director fields exhibit axial symmetry along the vertical axis and can be discussed in 

terms of each radial slice of the nematic LCs. The director fields correspond to the local 

minima of the Landau-de Gennes free energy of a nematic LC surrounding a cylindrical 

micropillar sandwiched between two planar substrates, all with homeotropic anchoring, 

as previously reported.
27

 At the top and bottom corners of the micropillar, the LC can 

have positive or negative winding via splay or bend elastic deformations, respectively. If 

there is opposite winding at the corners, then there exists uniform escaping of the director 

field. Bulk disclination lines with +1/2 or -1/2 winding numbers result from positive or 

negative winding at both corners, respectively. 

 

Figure 5.4 Schematic of the director field lines of 8CB in the nematic phase between two 

pillars. (a) Uniform escaping of the director field and (b) bulk disclination lines with +1/2 

and (c) -1/2 winding number. X indicates the defect location. 

 Image analysis was used to further investigate the circle dimensions for 

homeotropically-anchoring micropillars. The radius of the rings depended on the 

temperature and the aspect ratio of the pillars (Figure 5.5). For pillars with AR = 0.9 

(Figure 5.5a), the average ring radius in the nematic range 33-38°C was 8.8 ± 0.2 μm 

a b c
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and the maximum ring radius was 9.1 μm. There was no clear dependence of the ring 

radius on the temperature. For pillars with AR = 1.3 (Figure 5.5b), the average ring 

radius in the nematic range 33-38°C was 8.3  0.8 μm. The ring increased in size as the 

sample is cooled with the maximum ring radius 9.4 μm at 33°C. For pillars with AR = 1.6 

(Figure 5.5c), the average ring radius in the nematic range 33-38°C was 7.7  0.2 μm. 

The ring increased in size as the sample is cooled with the maximum ring radius 8.1 μm 

at 33°C. The changes in ring dimensions are summarized in Figure 5.6. 



111 

 

 

Figure 5.5 Polarized optical microscopy images of PS-AuNRs in 8CB with homeotropic 

anchoring epoxy pillar arrays and cover slips. Pillar dimensions are diameter = 10 µm, 

spacing = 10 µm, and AR = 0.9 (a), 1.3 (b), and 1.6 (c). The temperature (°C) is indicated 

in the bottom center of each image. Scale bars: 20 μm. 

a

b

c
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Figure 5.6 Radius of the outer defect as a function of the temperature below the nematic-

to-isotropic transition temperature. 

As the sample was further cooled, 8CB transitioned into the smectic phase at 

~32°C. Homeotropic anchoring can induce three possible LC structures in the smectic 

phase due to geometric frustration between uniform layer spacing, mean curvature, and 

Gaussian curvature imposed by the boundary conditions. For AR = 0.9, the structure of 

8CB around a single micropillar appeared as a bright square octasect by intersecting dark 

lines under POM (Figure 5.3b and 5.5a/32°C). In 3D space, this should correspond to 

intersecting concentric cylindrical smectic layers wrapped around a lattice of intersecting 

line defects (Figure 5.7a), a smectic blue phase previously calculated by DiDonna et al.
28

 

The 2D projection of the proposed structure overlaid with the POM image (Figure 5.7b) 

shows good agreement. For AR = 1.3, 8CB appeared dark between nearest neighbor 

micropillars with Maltese cross patterns between next-nearest neighboring pillars under 

POM (Figure 5.3d and 5.5b/32°C). The dark regions represent smectic layers with 
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homeotropic alignment of the LCs, with both the layer normal and local director parallel 

to the surface normal of the substrate. Thus, the edges of the dark regions have planar 

anchoring perpendicular to the surface normal. The hybrid anchoring with planar at the 

sides and homeotropic at the top and bottom boundaries led to the formation of focal 

conic domains (FCDs), where the smectic layers are wrapped around two disclination 

lines formed by a circle and a straight line through the circle center (Figure 5.7c).
29

 The 

boundaries of the FCDs are overlaid with the POM image (Figure 5.7d) for clarity. 

Finally, for AR = 1.6, 8CB appeared dark throughout the sample with slight brightness 

around the edge of the micropillars under POM (Figure 5.3f and 5.5c/32°C). In 3D, this 

should correspond to parallel smectic layers confined by homeotropic anchoring at all 

interfaces with defects at the side interfaces (Figure 5.7e). These defects may be high 

density dislocations created at the pillar edge due to meniscus formation during the 

nematic-to-smectic phase transition.
30

 Here, the micropillars and the top and bottom 

surfaces form the boundaries with homeotropic anchoring (Figure 5.7f). The expressed 

configuration in the smectic phase clearly depended on the aspect ratio of the pillars and 

also indicates the director field configuration in the nematic phase. As the aspect ratio 

increases, less bending of the smectic layers was observed, resulting in uniform 

homeotropic anchoring. The intersecting concentric cylindrical smectic layers, FCDs, and 

parallel smectic layers corresponded to bulk disclination lines with +1/2 winding 

geometry, uniform escaping of the director field and bulk disclination lines with -1/2 

winding geometry in the nematic phase, respectively. We note that the exhibited textures 

could also depend on the cooling rate, which is not considered here. 
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Figure 5.7 Schematic of the proposed minimum energy surfaces of 8CB in the smectic 

phase between micropillars (a, c, e) overlaid with the corresponding POM images (b, d, 

f). Pillar dimensions are diameter = 10 µm, spacing = 10 µm, and AR = 0.9 (a-b), 1.3 (c-

d), and 1.6 (e-f). (a) Surfaces constructed by intersecting concentric cylindrical smectic 

layers wrapped around a lattice of intersecting line defects. Reproduced with permission 
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from reference 28. (b) POM image overlaid with the top-down view of the intersecting 

cylinders and line defects. Red and green rectangles indicate cylinders. Black lines 

indicate the line defects. Blue lines indicate where the cylinders intersect, i.e. where the 

smectic layers bend. (c) An FCD formed by confining smectic layers within a cylinder of 

planar anchoring on the sides and homeotropic anchoring at the top and bottom surfaces. 

Copyrighted image from reference 29. (d) POM image overlaid with the top-down view 

of the confining cylinders (blue circles). Red dots indicate the disclination lines 

perpendicular to the viewing plane. (e) Parallel smectic layers confined by homeotropic 

anchoring at all interfaces with bending of the layers at the side interfaces. (f) POM 

image overlaid with red circles indicating the micropillars and a blue line indicating the 

cross-sectional view of the smectic layers shown in (e). 

For comparison, LC cells with planar anchoring were also fabricated. The defects 

of the planar cells were highly disordered in both the nematic and smectic phases (Figure 

5.8). 



116 

 

 

Figure 5.8 Polarized optical microscopy images of PS-AuNRs in 8CB over planar 

anchoring epoxy pillar arrays. Pillar dimensions are diameter = 10 µm, spacing = 10 µm, 

and AR= 0.9 (a-b), 1.3 (c-d), and 1.6 (e-f). The temperature is 35°C (nematic, a, c, e) and 

30°C (smectic, b, d, f). Scale bars: 20 μm. 
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5.5 Optical response 

The transmission of PS-AuNRs in 8CB between micropillars with AR = 1.3 with 

homeotropic anchoring was measured as the sample was cooled from the isotropic phase. 

The spectra were normalized and subtracted from 1 to calculate extinction and offset for 

visualization (Figure 5.9a). At 40°C, 8CB was in the isotropic phase and the rods were 

uniformly distributed within the LCs and a peak could be observed at about 636 nm. At 

38°C, 8CB has transitioned into the nematic phase and the peak red shifted to about 683 

nm. At 36°C, two peaks could be observed at about 414 nm and 712 nm, corresponding 

to the transverse LSPR (TLSPR) and longitudinal LSPR (LLSPR), respectively. As the 

sample was further cooled through the nematic phase to 33°C, the TLSPR red shifted to 

453 nm and the LLSPR red shifted to 729 nm. As the sample transitions to the smectic 

phase at 32°C, the plasmon peaks further red shifted to 483 nm and 789 nm but minimal 

shift was observed as the sample was cooled through the smectic phase to room 

temperature. The total peak shift for the TLSPR and LLSPR were 101 and 153 nm, 

respectively. This shift was one order of magnitude higher than that of systems 

previously reported based on the refractive index change of LC over metal nanoparticle 

arrays deposited on a surface.
17-19

 The plasmonic peak shift observed came from the 

dynamic interaction of the PS-AuNRs and the highly ordered LC defect ring structures. 

The change in the peak could be correlated to the defect ring radius (Figure 5.9b). As the 

sample was cooled, the ring radius increased, resulting in the compression of the LC 

director field and a red shift of the plasmon peak. The peak shift was reversed upon 

heating the sample. 
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Figure 5.9 (a) Extinction spectra of PS-AuNRs in 8CB over homeotropic epoxy pillars. 

The extinction is offset for clarity. Red, blue, and black colors indicate isotropic, nematic, 

and smectic phase, respectively. (b) The defect radius of the LC and transverse localized 

surface plasmonic resonance wavelength of the PS-AuNRs over epoxy pillars as a 

function of temperature. 

For comparison, the transmission of the PS-AuNRs in 8CB in a planar LC cell 

was measured at various temperatures (Figure 5.10a). At 40°C, 8CB was in the isotropic 

phase and slight distinction peaks were observed at ~516 and 887 nm, which might be 

attributed to the TLSPR and LLSPR of the PS-AuNRs, respectively. As the cell was 

cooled to the nematic phase, the same peaks were observed. Due to the disordered defect 

structure of the planar cell, the peaks were insignificant. PS-AuNRs were randomly 

dispersed within the LC structure. In addition, they may have aggregated during the 

isotropic-nematic phase transition due to capillarity. In the smectic phase, peaks with 

a b
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slightly higher intensity could be observed at the same positions. This may be due to the 

higher order of the smectic phase. No plasmon peaks shifts were observed for PS-AuNRs 

dispersed between planar anchoring micropillars upon cooling, in sharp contrast to the 

large shifts observed for the homeotropic anchoring micropillars (Figure 5.10b). 

Therefore, it was imperative to control the anchoring conditions of the micropillar arrays 

to direct the assembly and optical response of PS-AuNRs in the LC defect structures. 

 

Figure 5.10 (a) Extinction spectra of PS-AuNRs in 8CB over planar epoxy pillars. The 

extinction is offset for clarity. Red, blue, and black colors indicate isotropic, nematic, and 

smectic phase, respectively. (b) The transverse and longitudinal localized surface 

plasmonic resonance peak position as a function of temperature for both homeotropic and 

planar cells.  

a b
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To further demonstrate the importance of the micropillar array in assembling the 

AuNRs, a LC cell consisting of two flat glass slides treated with homeotropic anchoring 

on top and bottom was fabricated. As seen in Figure 5.11, no plasmon peaks were 

observed. In POM images, aggregation of the rods was observed when cooling the 

sample from the isotropic phase to the nematic phase transition, which could be attributed 

to capillarity (Figure 5.11b-e). 

 

Figure 5.11 (a) Extinction spectra of PS-AuNRs in 8CB sandwiched between two glass 

slides with homeotropic anchoring. The extinction is offset for clarity. Red, blue, and 

black colors indicate isotropic, nematic, and smectic phase, respectively. (b-e) POM 

images of PS-AuNRs in 8CB in a homeotropic flat cell; the sample is transitioning from 

the nematic to the smectic phase from b to e. 

As mentioned earlier, the appearance of 8CB smectic phases was highly 

dependent on the aspect ratio of micropillar arrays. Therefore, we expected the optical 

properties of AuNRs dispersed in 8CB over micropillar arrays would be dependent on 

AR too. As seen in Figure 5.12, for micropillars with AR = 0.9, two peaks were 

observed: the LLSPR shifting from 431 nm to 593 nm and the TLSPR shifting from 464 

nm to outside the detector range into the UV region when cooled from 40°C to 28°C 

a b c

d e
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(Figure 5.12a). The total peak shift for the observed LLSPR was 165 nm. No peaks were 

observed for micropillars with AR = 1.6 (Figure 5.12b). We correlated the peak shift to 

the observed ring defect size. As seen in Table 5.1, pillars with AR= 0.9 and 1.3 both had 

larger ring radii on the order of the pillar spacing. However, for AR=1.6, the ring radius 

was smaller and so the defect rings were not compressed against each other, therefore, 

there was no measureable peak shift. In addition, for AR=0.9, the change in ring radius as 

the temperature is swept was much smaller than that of AR=1.3. However, it shows a 

comparable resonance peak shift; this may indicate that the ring size change does not 

matter as much as the largest ring size, which allowed for the interaction of the defect 

structures from pillar to pillar (Figure 5.12c). Our hypothesis is that the large ring radius 

induced a compression of the LC director field, allowing for the coupling of the surface 

plasmon resonance of the PS-AuNRs. 

 

Figure 5.12 Extinction spectrum of PS-AuNRs in 8CB over homeotropic epoxy pillars, 

with diameter = 10 µm, spacing = 10 μm and AR = 0.9 (a) and 1.6 (b). Red, blue, and 

black colors indicate isotropic, nematic, and smectic phase, respectively. (c) The 
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transverse and longitudinal localized surface plasmonic resonance peak position as a 

function of temperature for epoxy pillars with AR= 1.3 and AR = 0.9. 

Table 5.1 Comparison of the defect ring sizes and the plasmon peak shift of PS-AuNRs 

in 8CB over homeotropic pillar arrays of different aspect ratios. 

Pillar Aspect Ratio  0.9  1.3  1.6  

Outermost Ring Radius Max (µm) 9.1 9.4 8.1 

Outermost Ring Radius Min (µm) 8.6 7.4 6.9 

Change in Ring Radius (µm) 0.5 2.0 1.2 

Peak Shift (nm) 165.3 173.2 N/A 

Besides the aspect ratio effect, we wondered whether the anisotropy of LCs (e.g. 

polarization sensitivity) plays a role or not.  Since AR = 1.3 gave the largest peak shift, 

we investigated the polarization dependence of the transmission of PS-AuNRs in 8CB 

within pillars with AR = 1.3 and homeotropic anchoring was measured (Figure 5.13). 

The polarization angle was fixed and the transmission spectrum was measured every 1°C 

as the sample was cooled from 40°C to 31°C. The polarizer was then rotated by 30° and 

the measurements were then repeated. As seen in Figure 5.13, no polarization 

dependence was observed, possibly because the micropillars have circular cross-sectional 

shapes. 
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Figure 5.13 (a) The peak resonance wavelength as a function of polarization angle at 

various temperatures. (b) The average peak resonance wavelength as a function of 

temperature. Error bars indicate standard deviation of the wavelength across polarization 

angles. 

5.6 Conclusions 

PS-AuNRs were trapped into LC defects of 8CB on surface-treated epoxy pillar 

arrays. Comparison of different surface treatments showed that homeotropic anchoring 

induces a plasmon peak shift as the sample was cooled and the LC transitioned from the 

isotropic to the nematic to the smectic phase sequentially due to the formation of well-

a
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ordered defects surrounding the pillars. Meanwhile, planar anchoring induced random 

defect structures, resulting in indistinguishable plasmon peaks with no peak shift as the 

sample is cooled. Comparison of pillars with different aspect ratios showed that samples 

with AR = 1.3 exhibited a higher peak shift than samples with AR = 0.9, while no peaks 

were observed for those with AR = 1.6; this was found correlated to the defect ring 

structure in the nematic phase. Polarization-resolved optical measurements show that the 

plasmonic peak resonance wavelength was not affected by the angle of light polarization 

due to the circular symmetry of the micropillar arrays. Dispersing PS-AuNRs in LCs in a 

flat homeotropic cell induced rod aggregation and a suppression of the plasmon 

resonance response. The ensemble assembly and actuation of PS-AuNRs demonstrated is 

achieved through several factors, including 1) the surface functionalization of AuNRs 

with PS brushes allowing for dispersion in 8CB without aggregation, 2) the control over 

the surface topography at a microscale, 3) the manipulation of the LC surface anchoring 

through surface functionalization to form well-ordered defect structures, and 4) the 

reversible compression of the LC director field tuned by temperature. Precise control 

over the surface properties of all the components in the system leads to reversible 

coupling of the PS-AuNRs and large plasmon peak shifts. This effect can be applied for 

enhanced and selective sensing applications. 

5.7 Contributions 

Lee, E.,
†
 Ferrier, R. C.,

† 
Xia, Y.,

†
 Kim, H.-N., Gharbi, M. A., Kamien, R. D., Stebe, K. J., 

Composto, R. J. and Yang, S. “Self assembly and actuation of gold nanorods in liquid 
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crystals for tunable plasmon resonance.” Manuscript in preparation. (
†
Equal 

contribution.) 

Lee, E and Kim, H.-N. performed PS-AuNR assemblies in liquid crystal/micropillar 

experiments. Ferrier, R.C. performed gold nanorod synthesis and functionalization. Xia, 

Y. and Gharbi, M. A. performed earlier experiments and simulation of LC assemblies in 

micropillar arrays. The observations of LC defect ring structures and ring compression 

depending on pillar aspect ratio and spacing inspired the study of AuNR assembly in 

LC/micropillar arrays. 
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CHAPTER 6: Summary and Outlook 

6.1 Summary 

6.1.1 Smart window fabrication and actuation 

Facile fabrication and mechanical actuation of smart windows are demonstrated 

using tilted pillar arrays confined by mechanically induced wrinkles
1
 and transparent 

films embedded with refractive-index-matching quasi-amorphous silica arrays.
2
 The 

design of the structures demonstrated in this thesis offers a simple and low-cost approach 

to dynamically and dramatically change optical properties. Longer oxygen plasma 

treatment time of PDMS substrates pre-patterned with micropillar arrays increases the 

amplitude and periodicity of the wrinkles such that each wrinkle could accommodate two 

pillars, tilting them in varying directions depending on the pre-stretch angle vs. lattice 

axis. When mechanically stretched, the hierarchical film can reversibly 1) flatten the 

microwrinkles, 2) reduce the tilt of the pillars, 3) increase the pillar pitch, and thus, 4) 

offer a wide range of optical tunability ranging from opaqueness (from tilted pillars) to 

grating color (from straight pillar array) to increasing transparency (from pillars at a 

larger pitch). While this approach achieves a reversible visual effect between colorful, 

white, and transparent states, there was no control over the film color and the resting state 

of the film was opaque.  

To achieve an initially transparent smart window with color control upon 

actuation, a thin layer of quasi-amorphous array of silica nanoparticles (NPs) is 

embedded in bulk elastomeric PDMS. The film can be reversibly switched from a highly 

transparent state (90% transmittance in the visible region) to opaqueness (30% 
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transmittance), and display angle-independent reflective colors through mechanical 

stretching and release. The displayed colors are found dependent only on the NP size not 

the stretching strain or viewing angle, unlike previously reported literatures. The dramatic 

change of optical responses is attributed to an increase of diffused light scattering and 

absorption resulting from the formation of microwrinkles and voids during stretching. 

The sprayed NPs are quasi-amorphous, therefore, much more robust against stretching in 

comparison to highly ordered colloidal crystals. The film can withstand repeated 

stretching and releasing (at least 1000 cycles).  

6.1.2 Control of liquid crystal defect structures for directed self-assembly and actuation 

By controlling surface topography and interfacial chemistry to manipulate the 

boundary conditions within micro- and nano-structures, we demonstrate large-scale 

assembly of microscale LC molecules and their defect structures for potential 

applications, including the actuation of micro-scale LCEs and dynamic tuning of surface 

plasmonic resonance. Landau-de-Gennes numerical modeling is employed to show that 

vertical alignment of LC monomers could only be achieved within PDMS porous 

membrane (the mold) with planar anchoring, with or without an external magnetic field. 

When coating the surface the PDMS porous membrane with a thin layer of poly(2-

hydroxyethyl methacrylate), the mold surface is switched from hydrophobic to 

hydrophilic, and thus leading to highly uniform mono-domains of LC alignment along 

the film thickness. After cross-linking the aligned LCMs, the LC director field is 

maintained. A large radial strain (30%) across TNI is shown compared to almost no 

change in LC elastomer micropillars fabricated from untreated molds.  
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Armed by the understanding of LC surface anchoring and director field in 

confinement, we investigate the self-assembly and actuation of PS-AuNRs into LC defect 

structures imposed by the micropillars and boundary conditions. By exploiting the 

confinement of the smectic-A LC, 8CB, to epoxy micropillar arrays, defects can be 

formed at precise locations around each pillar, and tuned by varying the aspect ratio of 

the pillars and the temperature of the system. Comparison of different surface treatments 

shows that homeotropic LC anchoring on pillar surface induces a surface plasmon peak 

shift as the sample is cooled and the LC transitions from the isotropic to the nematic to 

the smectic phase due to the formation of well-ordered defects to the LCs. The 

dimensions of the defect structure and consequently, the nanorod assembly and its 

plasmon peak can be altered by reversible heating and cooling cycles at the phase 

transition temperatures. For homeotropically anchored epoxy pillars with aspect ratio 1.3, 

the transverse and longitudinal local surface plasmon peak shifts are ~100 and ~153 nm, 

respectively, much larger than previously reported peak shifts. In comparison, PS-

AuNRs/LCs in planar anchoring pillars exhibited reduced plasmon resonance peaks and 

no shifts with temperature change and PS-AuNRs/LCs in a flat liquid crystal cell with 

homeotropic anchoring exhibited no plasmon resonance peaks. 

6.2 Outlook 

The design of hierarchical surface structures demonstrated in this thesis offers a 

new concept to change a material’s physical properties without altering its intrinsic 

properties. The reversible tilting of PDMS micropillars is used for switching between 

whiteness, color, and transparency. Besides the change in optical properties, we expect 
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the actuation of the fabricated hierarchical substrates to exhibit unique adhesion and 

wetting properties due to large changes in the surface roughness.
3
 Using these substrates, 

we have studied the morphology of vascular smooth muscle cell and fibroblast using 

topological and chemical cues (APPENDIX A). Further, the tunable patterns can be 

prepared from other functional materials, such as LCEs and SMPs which will enhance 

responsiveness to other stimuli and recyclability.  Preliminary studies of engaged 

complementary SMP micropillars with reversible pillar tilting via wrinkling show 

enhanced interlocking adhesion. 

The use of refractive-index-matching nanoparticles embedded within an elastomer 

film is simple yet highly versatile and effective method to fabricate tunable transparency 

windows that can easily be scaled up and commercialized. Preliminary studies show that 

we can produce films up to 10 cm long, which can be actuated in tandem using rollers 

with a motor.  This system can be extended to other thermoplastic elastomers, e.g. 

ethylene-vinyl acetate, thermoplastic polyurethane (TPU), and poly(styrene-butadiene-

styrene) (SBS), and LCE, and nanoparticle systems, e.g. surface-functionalized silica, 

poly(methyl methacrylate), polystyrene, indium tin oxide, to further enhance mechanical 

performance and introduce additional functionality in the ultraviolet, near-infrared, and 

infrared regions. Although smart windows demonstrated here are for control of light 

transmission, they can also be used in applications such as sensing, displays, camouflage, 

security encoding, anti-bird collision and heat/solar gain control. Stretched composite 

smart windows have been preliminary demonstrated for use as projection screens, while 

they act as transparent films in the un-stretched state. Masks were also used for 

nanoparticle spraying to encode positive and negative messages within the composite 
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films. The use of UV-reflective particles within the films may be useful for anti-bird 

collision applications. The actuation of composite films with such particles may alert 

birds (which are sensitive to UV reflection and high frequency fluctuations) to the 

presence of normally transparent windows.
4-6

 

The concept of controlling interfacial chemistry using soft lithography techniques 

is much simpler and more effective than the use of an external field to direct LC 

anchoring over a large area, especially in the case of more complex and micro/nanoscale 

systems, such as porous membranes, channels, and 3D structures. In turn, LC 

confinement can be applied to fabricate micro- and nanoscale structures for potential 

applications, including actuators, displays, sensors, dry adhesion, photonic materials, and 

origami 2D structures to 3D. The nanorod assembly and actuation demonstrated here can 

be extended to other LC systems (e.g. light responsive LCEs, cholesteric LCs) and 

particle systems (e.g. quantum dots, titanium dioxide). The use of LCEs would enable the 

cross-linking of the LC phases with particles embedded within, thereby allowing the 

fabrication of free-standing solid films which can be actuated and observed using 

conventional electron microscopy techniques. LCEs exhibit a spontaneous contraction 

along the director axis when heated above their nematic to isotropic phase-transition 

temperatures, and the polymer chain changes to a spherical conformation.
7
 Therefore, 

LCEs have a reversible shape memory effect when triggered by external stimuli, 

including heat, UV light and electric field.
8-12

 The use of LCEs would therefore enable 

the actuation of the nanoparticles by multiple stimuli and prevent the aggregation of 

particles by fixing it within the network structure. The assembly and actuation of 

quantum dots, such as cadmium selenide nanoparticles, and titanium dioxide particles 
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using this technique may also lead to novel optical properties, which can be exploited for 

solar cell applications. The use of indium tin oxide substrates to form the LC cells would 

allow for electrical actuation of the LC/nanorod system, which is desirable for 

metamaterial applications. 
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APPENDIX A: Guiding cell morphology using 

topological and chemical cues 

Elaine Lee, Yu Xia, Kaori Ihida-Stansbury, Shu Yang. Manuscript in preparation.  

A.1 Introduction 

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling, 

including the hyperplasia and hypertrophy of smooth muscle cells (SMCs). This causes 

the medial thickening of lung arteries, resulting in pulmonary vascular resistance, high 

blood pressure and leading to right ventricular dysfunction and heart failure within 2 

years without treatment.
1
 As shown by previous work done in Dr. Kaori Ihida 

Stansbury’s lab, the ultrastructure of the artery matrix is greatly altered by PAH. Healthy 

artery matrix is composed of well-organized fibers (Figure A.1a), while diseased PAH 

arterial matrix exhibits random fiber alignment (Figure A.1b). In addition, the adventitial 

layer (outermost connective tissue covering) of the artery, which has been implicated as 

the modulator of arterial remodeling, thickens with increased cellularity and extracellular 

(ECM) deposition. Hypoxic animal models of PAH showed increased production of 

fibroblasts, expression of contractile proteins (e.g. α-smooth muscle actin) in fibroblasts, 

and differentiation to myofibroblasts.
2-4

 The transition of fibroblasts to myofibroblasts, 

increased myofibroblast proliferation, myofibroblast apoptosis, myofibroblast migration 

into the intima, adventitial fibrosis, and expression of matrix metalloproteinases (MMPs) 

all contribute to structural changes in the vascular wall.
2-4

 Additionally, previous studies 

have shown that the extracellular matrix (ECM) glycoprotein, Tenascin-C (Tn-C), is 
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highly expressed in PAH tissues, promoting vascular SMC proliferation, fibroblast 

migration, and angiogenesis.
5
 

 

Figure A.1 SEM images of (a) normal artery matrix and (b) pulmonary arterial 

hypertension artery matrix. Scale bar: 10 μm. Images provided by Dr. Kaori Ihida-

Stansbury. 

This begs the question of whether the fiber orientation of the ECM plays a role in 

arterial cell alignment, and therefore cell morphology, behavior, and proliferation as well 

as PAH vascular wall remodeling. The cell has been described as “an integrated 

mechanochemical sensory system” which probes the surrounding environment by 

adhering to the ECM, spreading over the substrate, and contracting the cytoskeleton.
6
 

Cytoskeleton contraction leads to stresses at the focal adhesions, which then traduce the 

stresses into regulatory signals causing changes in the ECM. ECM stiffness regulates 

stem cell fate via cytoskeletal alterations. Cells are also sensitive to the anisotropy of the 

substrate texture, which can cause cell alignment, elongation, and directional migration. 

Although it is well-established that cells respond to the surface chemistry and stiffness of 

their substrates, the spatiotemporal coordination and mechano-transduction of 

extracellular mechanics into cellular regulation and signaling is not well-quantified and 

understood. Although previous studies have shown that spatiotemporal cues elicit various 

 

a b 
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cell behavior, changes in cell morphology, and the guiding of cell fate and differentiation, 

little has been studied in relation to the pathogenesis. In this study, we hope to elucidate 

the effect of ECM properties on SMC and fibroblast behavior in PAH using synthetic 

substrates to mimic the healthy and diseased ECM environment.  

In recent years, microfabrication methods, such as microcontact printing and 

capillary force lithography, have been developed to fabricate patterned substrates for 

cellular studies with better spatiotemporal control over the surface chemistry and 

topography. Through the use of platforms such as elastomeric micropillars,
7
 hydrogels,

8
 

nanogrooves,
9
 it has been shown that cell morphology and function can be regulated by 

the substrate stiffness and topography, an analog to the ECM microenvironment. Of 

these, micropillar arrays circumvent the limitations of previously reported techniques 

involving continuous substrates, and offer precise control of the compliance of the 

underlying substrates for cellular studies.
7
 In a micropillar array, the multidirectional 

mechanical forces exerted by a cell can be isolated to each individual pillar and measured 

independently and collectively. Alternatively, nanogrooves have been shown to guide cell 

spreading and alignment.
9
 Here, the mechanically tunable wrinkling instability in PDMS 

was exploited to create a series of substrates to study cell differentiation of human SMCs 

and fibroblasts, including a 1D sinusoidal wavy wrinkle structure, a 2D pillar array and a 

composite structure that combines wrinkles with a 2D pillar array. Periodically ordered 

wrinkle structures were fabricated by mechanical stretching and release of oxidized 

PDMS, as described in Chapter 2.4. These hierarchically patterned substrates were used 

to survey cell behavior and morphologies and it was shown that cells align along the 

wrinkle direction. However, the introduction of pillars or Tn-C masked the wrinkle 
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geometry, resulting in a less elongated morphology in the case of SMCs. In addition, 

cells on wrinkles with pillars or Tn-C exhibited longer filopodia, which suggests that the 

cells were continuously probing the surrounding geometry. 

A.2 Experimental methods 

A.2.1 Fabrication of PDMS Pillar Array 

The PDMS pillar array was replica molded from an epoxy master following the 

procedure reported earlier.
10

 Briefly, PDMS precursor (Sylgard 184, Dow Corning) was 

mixed with a curing agent in a 10:1 weight ratio and degassed in a vacuum chamber for 1 

hour. The mixture was poured over the epoxy pillar master (1 μm diameter, 2 μm pitch, 4 

μm height) and cured at 65°C for 4 h. The resulting PDMS membrane was treated with 

UVO for 1 hour, followed by vapor deposition of 

tridecafluorotetrahydrooctyltrichlorosilane (SIT8174.0, Gelest) as a release agent 

overnight to render the surface hydrophobic. Another degassed mixture of PDMS 

precursor with 10 wt% curing agent was poured over the treated PDMS membranes and 

cured at 100°C overnight. After cooling to room temperature, the PDMS pillar array was 

peeled from the mold. 

A.2.2 Surface wrinkling of PDMS substrates 

The fabrication followed the procedure reported previously.
11

 Briefly, the molded PDMS 

film (no pattern, hole array, or pillar array) was clamped and stretched uniaxially (ε up to 

30%) using a custom-made stretching device. The surface was then treated with oxygen 
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plasma (Technics, model PE11-A) at a power of 100 watts, pressure of 0.5 torr for1-20 

min. Wrinkle patterns formed spontaneously upon release of the strain. 

A.2.3 Sample characterization 

Scanning electron microscopy (SEM) images were taken by FEI Quanta Field Emission 

Gun Environmental SEM in high vacuum mode at an acceleration voltage of 5kV after 

the substrates were sputtered with gold-palladium. The topography of the substrates were 

examined using a DI Dimension 3000 atomic force microscope (AFM) and images were 

rendered using WSxM.
12

 Transmission spectra were taken using a custom-built free-

space microscope with a white light source and normalized to a flat PDMS film. 

A.2.4 Cell culture 

Human pulmonary artery smooth muscle cells (SMCs) and human fibroblasts (CCD-

19Lu) were maintained in Sm-GM-2 culture medium (Lonza), supplemented with growth 

factors (hEGF, insulin, hFGF-B, FBS and gentamicin/amphotericin B), and were cultured 

at 37°C in a humidified atmosphere with 5% CO2 until seeded onto PDMS substrate for 

cellular experiments. 

A.2.5 Cell seeding 

PDMS substrates were exposed to UV to render the surface hydrophilic, washed with 

phosphate buffered saline (PBS) solution and coated with 0.2mg/mL collagen I (Pure 

Col) at 4°C overnight. After washing with PBS several times, cells were seeded on the 

substrates at a concentration 1 x 10
4
 cells/cm

2
 in cell culture media and incubated at 37°C 

in a humidified atmosphere with 5% CO2 until processed for further examination. 
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A.2.6 SEM pre-processing 

Decellularized tissue and cells cultured on PDMS substrates were fixed in 2% 

glutaraldehyde containing 0.1M cacodylate buffer, dehydrated in ethanol diluted distilled 

water at intervals of increasing ethanol content until 100%. The substrates were then 

critically dried or chemically dried using hexamethyldisiloxane (HMDS). Dried 

specimens were then sputtered with palladium/gold for imaging using SEM. 

A.2.7 Immunofluorescence Staining 

Cells cultured on PDMS substrates were rinsed with PBS fixed with 4% 

paraformaldehyde diluted in PBS. After washing with PBS, cells were then permeabilised 

with 0.2% triton X-100 to block non-specific IgG binding and then incubated with 

primary antibodies. Anti- α-smooth muscle actin (SMA) (Sigma-Aldrich) was used for 

SMC differentiation state and anti- Ki67 was used to detect proliferating cells. Following 

th primary antibody incubation, cells were incubated with species-specific fluorescent-

conjugated antibodies (Molecular Probes Inc) for antigen detection. DAPI (KPL) staining 

was applied for nuclear staining. Specimens were then mounted using mounting medium 

(KPL) and examined using a Nikon 90i fluorescence microscope and analyzed using 

NIS-Elements AR, ImageJ software and/or Matlab. 

A.3 Smooth muscle cells 

Since cells respond to both biochemical and mechanical signals, it is essential to 

control the surface/bulk chemistry and the mechanical properties of the substrates used 

for cellular studies.
7
 Here, PDMS was chosen as the base substrate due to its low elastic 

modulus, allowing reversible mechanical deformation up to 30% strain. By using 
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micropatterned substrates, the topography and compliance can be tuned by altering the 

micropillar and wrinkle dimensions without changing the surface chemistry. From a flat 

PDMS film, regular wrinkles formed perpendicularly to the stretch direction with 

wavelength of 2 μm (Figure A.2a). Wrinkles combined with pillars were fabricated as 

described in Chapter 2.4 (Figure A.2e). On wrinkle-only PDMS substrates, smooth 

muscle cells were found to align along the wrinkle direction, i.e. perpendicular to the 

stretch direction (Figure A.2b, d), suggesting that cell spreading is guided by the 

topography of the substrate.  The results were consistent with literature reporting the 

nanogroove-induced alignment of fibroblasts
13

 and glioma cells.
14

  However, when SMCs 

were seeded on the composite wrinkle substrates, i.e. pillars on top of the wrinkles, cells 

exhibit a less elongated morphology (Figure A.2f, h), suggesting that the pillars masked 

the underlying surface wrinkle geometry. Higher magnifications show that cells on 

wrinkles with pillars exhibited longer filopodia, suggesting that the cells were still 

probing the pillar environment (Figure A.2e, g).
15,16

 

 

Figure A.2 SEM images of wrinkled PDMS from (a) a flat film, and (e) a square pillar 

array. SEM and fluorescence microcopy images of smooth muscle cells cultured on (b-d) 

wrinkled PDMS, and (f-h) wrinkled PDMS with a pillar array. Higher magnifications 
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show that cells on wrinkles (c) have shorter filopodia  than cells on wrinkles with pillars 

(g). All substrates were coated with collagen. Red arrows indicate stretch direction. 

Yellow arrows indicate filopodia. Cell culture data provided by Dr. Kaori Ihida-

Stansbury. 

In comparison with cells seeded on wrinkle-only substrates coated with collagen, 

random alignment of SMCs was observed on wrinkles coated with Tenascin-C (Tn-C) 

(Figure A.3a), suggesting that both surface geometry and chemistry affect SMC 

behaviors. Long filopodia were observed at high magnification (Figure A.3b), 

suggesting that SMCs were unable to sense the underlying wrinkle substrate when it was 

coated by Tn-C. 

 

Figure A.3 SEM images of smooth muscle cells cultured onto wrinkled PDMS coated 

with Tenascin-C at (a) low and (b) high magnifications. Data provided by Dr. Kaori 

Ihida-Stansbury. 

A.4 Fibroblasts 

While PAH is often characterized by the hyperplasia and hypertrophy of smooth 

muscle cells, recent research has shown that fibroblasts also play a vital role in the 

vascular wall modeling.
2
 Found primarily in the adventitial layer, fibroblasts can 

dramatically alter the production of ECM proteins in response to stress or injury. 

Pathological studies have shown that PAH legions are accompanied by excessive ECM 

proteins, such as collagen, elastin, fibronectin, and Tn-C. In turn, these proteins are 

associated with fibroblast proliferation and transition into myofibroblasts.
3
 Therefore, it is 

important to understand the role of fibroblasts in the progression of PAH, which I have 

b a 
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pursued by using synthetically fabricated substrates to mimic the ECM. Using a similar 

procedure as SMCs, human lung fibroblasts (CCD-19Lu, ATCC) were cultured onto 

PDMS substrates with various topography, including flat substrates, wrinkles with low 

amplitude, wrinkles with high amplitude, and micropillars, and coated with either 

collagen or Tn-C (Figure A.4a-c). As shown by fluorescence microscopy, fibroblasts are 

randomly aligned on bare PDMS (Figure A.4d) and substrates patterned with 

micropillars (Figure A.4e). On wrinkled substrates, the cells align along the wrinkle 

direction (Figure A.4f-g). Image analysis indicates that cells cultured on flat or pillar 

substrates show a broad distribution of cell direction with respect to the horizontal 

(Figure A.4h, red and black) while more than 90% of cells on wrinkles align within 20° 

of the wrinkle direction (Figure A.4h, blue, turquoise and pink). While cells are aligned 

on wrinkles of both low (~250 nm) and high (~750 nm) amplitude, cells exhibited much 

more elongation on wrinkles of high amplitude with aspect ratios of up to 35. 
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Figure A.4 SEM images of PDMS with (a) pillars with diameter 1 μm, pitch 2 μm, and 

aspect ratio 4, (b) wrinkles with amplitude ~250 nm, (c) wrinkles with amplitude ~750 

nm. Scale bars 4 μm. Fluorescence images of human fibroblasts CCD19-Lu cultured on 

PDMS with (d) no pattern, (e) pillars with diameter 1 μm, pitch 2 μm, and aspect ratio 4, 

(f) wrinkles with amplitude ~250 nm, and (g) wrinkles with amplitude ~750 nm. Scale 

bars 100 μm. All substrates were coated with collagen. Arrows indicate wrinkle direction. 

Distribution of cell (h) alignment and (i) elongation. Abbreviations: Col = collagen 

coated, F = flat, P = pillar, W = wrinkle, WP = wrinkles with pillars, # = oxygen plasma 

treatment time. 

In contrast to SMCs, fibroblasts cultured on substrates coated with Tn-C did not 

show obvious differences in cell alignment and elongation (Figure A.5a-g) compared to 

those cultured on substrates coated with collagen. Fibroblasts cultured on wrinkles coated 

with Tn-C also exhibited over 90% alignment within 20° of the wrinkle direction (Figure 

A.5h) with elongations of up to 15 (Figure A.5i). 
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Figure A.5 SEM images of PDMS with (a) pillars with diameter 1 μm, pitch 2 μm, and 

aspect ratio 4, (b) wrinkles with amplitude ~250 nm, (c) wrinkles with amplitude ~750 

nm. Scale bars 4 μm. Fluorescence images of human fibroblasts CCD19-Lu cultured on 

PDMS with (d) no pattern, (e) pillars with diameter 1 μm, pitch 2 μm, and aspect ratio 4, 

(f) wrinkles with amplitude ~250 nm, and (g) wrinkles with amplitude ~750 nm. Scale 

bars 100 μm. All substrates were coated with Tenascin-C. Arrows indicate wrinkle 

direction. Distribution of cell (h) alignment and (i) elongation. Abbreviations: Tn-C = Tn-

C coated, F = flat, P = pillar, W = wrinkle, WP = wrinkles with pillars, # = oxygen 

plasma treatment time. 

Following initial studies showing that cells preferred alignment along one-

dimensional wrinkles, a series of wrinkle substrates with controlled dimensions were 

fabricated by varying the oxygen plasma treatment time of pre-stretched PDMS 

membranes (Table A.1). The AFM images of the wrinkle topography are shown in 

Figure A.6a-d. By taking cross-sectional profiles of the AFM images (Figure A.6e), the 

 

a 

e f g 

b c 

d 

h i 



145 

 

wrinkle amplitude and wavelength was deduced. The fabrication conditions and resulting 

wrinkle dimensions are summarized in Table A.1. The wrinkles were then either coated 

with collagen or Tn-C and fibroblasts were cultured atop the wrinkles (Figure A.7). 

Table A.1. Summary of the fabrication conditions of PDMS wrinkles and their resulting 

dimensions, amplitude and wavelength. 

Oxygen Plasma Treatment Time (min) Amplitude (μm) Wavelength(μm)  

1 0.25  0.9  

5 0.35  1.2  

10 0.5  1.6  

20 0.7  2.5  
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Figure A.6 AFM images of wrinkles fabricated by pre-stretching PDMS by 30% strain 

and treating with oxygen plasma (P = 100W; p=0.5 torr) for (a) 1, (b) 5, (c) 10, and (d) 20 

min. (e) Profiles of the corresponding AFM images (# = oxygen plasma treatment time). 
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Figure A.7 Fluorescence images of human fibroblasts CCD19-Lu cultured on PDMS  

wrinkles with amplitude of about (a, e) 250, (b, f) 350, (c, g) 500, and (d, h) 750 nm. The 

wrinkles were coated with (a-d) collagen and (e-h) Tenascin-C. 
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Image analysis was then used to calculate the aspect ratio (=length/width) (Figure 

A.8) and alignment of the cells (Figure A.9). No significant differences in the cell 

elongation were found for substrates with different dimensions and coatings. However, 

the number of cells found on Tn-C substrates was lower, especially on lower aspect ratio 

wrinkles. 

 

Figure A.8 Frequency distribution of aspect ratio of fibroblasts cultured on PDMS 

wrinkles. Abbreviations: COL = collagen coated, TN-C = Tenascin-C coated, W = 

wrinkle, # = oxygen plasma treatment time. 
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Figure A.9 Angular distribution of human fibroblasts CCD19-Lu cultured on PDMS  

wrinkles with amplitude of about (a, e) 250, (b, f) 350, (c, g) 500, and (d, h) 750 nm. The 

wrinkles were coated with (a-d) collagen and (e-h) Tenascin-C. 
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The cell orientation of the fibroblasts on collagen-coated wrinkles appeared to 

depend on the wrinkle amplitude, while that of those on Tn-C-coated wrinkles did not. To 

further study the effect of the surface coating, image processing was used to analyze the 

fluorescence of the cells stained for α-smooth muscle actin (α-SMA) expression (Figure 

A.10). All substrates coated with Tn-C exhibited higher α-SMA expression, indicating 

that the fibroblasts on the Tn-C-coated substrates are in a more contractile state. 

 

Figure A.10 Fluorescence optical microscopy images of fibroblasts stained for α-SMA 

cultured on PDMS wrinkles coated with (a) collagen and (b) Tn-C. (c) Fluorescence 

intensity of fibroblasts cultured on PDMS wrinkles stained for α-SMA. 

A.5 Conclusions and Outlook 

A series of PDMS substrates was fabricated to study the effect of surface 

topography, including flat, microwrinkles with various dimensions, and microwrinkles 

with pillars, and chemistry, including collagen and Tn-C, on the behavior of vascular 
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smooth muscle cells and fibroblasts. We showed that the alignment of vascular SMCs 

and fibroblasts could be guided by the topography of the underlying substrate. In 

particular, cells preferred to align and elongate along one-dimensional wrinkle substrates 

of higher amplitude and treated with collagen. This topography could be masked by the 

addition of high aspect ratio features on the surface, inhibiting the alignment of SMCs 

and fibroblasts. In the case of SMCs, altering the ECM composition, such as coating of 

Tn-C, altered the cells’ ability to sense the substrate and align along the topography. In 

the case of fibroblasts, Tn-C coating on the substrates did not appear to affect the 

alignment of the cells. However, cells on such substrates exhibited much higher α-SMA 

expression, indicating that they are in a much more contractile state. Since Tn-C is over-

expressed in the ECM in PAH arteries, our results imply that PAH cells may be a more 

contractile state, leading to vascular remodeling. This begs the question of whether the 

morphology of PAH cells can be altered using artificial substrates to reverse the diseased 

state. Further studies using PAH patient cells on artificial substrates, such as those 

reported here, are needed to further elucidate the relationship between the cells’ health 

state, the artificial ECM environment, and the cells’ ability to sense and adapt to the 

ECM. 
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