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Online and Statistical Learning in Networks

Abstract
Learning, prediction and identification has been a main topic of interest in science and engineering for many
years. Common in all these problems is an agent that receives the data to perform prediction and
identification procedures. The agent might process the data individually, or might interact in a network of
agents. The goal of this thesis is to address problems that lie at the interface of statistical processing of data,
online learning and network science with a focus on developing distributed algorithms. These problems have
wide-spread applications in several domains of systems engineering and computer science. Whether in
individual or group, the main task of the agent is to understand how to treat data to infer the unknown
parameters of the problem. To this end, the first part of this thesis addresses statistical processing of data. We
start with the problem of distributed detection in multi-agent networks. In contrast to the existing literature
which focuses on asymptotic learning, we provide a finite-time analysis using a notion of Kullback-Leibler
cost. We derive bounds on the cost in terms of network size, spectral gap and relative entropy of data
distribution. Next, we turn to focus on an inverse-type problem where the network structure is unknown, and
the outputs of a dynamics (e.g. consensus dynamics) are given. We propose several network reconstruction
algorithms by measuring the network response to the inputs. Our algorithm reconstructs the Boolean
structure (i.e., existence and directions of links) of a directed network from a series of dynamical responses.
The second part of the thesis centers around online learning where data is received in a sequential fashion. As
an example of collaborative learning, we consider the stochastic multi-armed bandit problem in a multi-player

network. Players explore a pool of arms with payoffs generated from player-dependent distributions. Pulling
an arm, each player only observes a noisy payoff of the chosen arm. The goal is to maximize a global welfare or
to find the best global arm. Hence, players exchange information locally to benefit from side observations. We
develop a distributed online algorithm with a logarithmic regret with respect to the best global arm, and
generalize our results to the case that availability of arms varies over time. We then return to individual online
learning where one learner plays against an adversary. We develop a fully adaptive algorithm that takes
advantage of a regularity of the sequence of observations, retains worst-case performance guarantees, and
performs well against complex benchmarks. Our method competes with dynamic benchmarks in which regret
guarantee scales with regularity of the sequence of cost functions and comparators. Notably, the regret bound
adapts to the smaller complexity measure in the problem environment.
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ABSTRACT

ONLINE AND STATISTICAL LEARNING IN NETWORKS

Shahin Shahrampour

Ali Jadbabaie

Alexander Rakhlin

Learning, prediction and identification has been a main topic of interest in science and engi-

neering for many years. Common in all these problems is an agent that receives the data to perform

prediction and identification procedures. The agent might process the data individually, or might

interact in a network of agents. The goal of this thesis is to address problems that lie at the interface

of statistical processing of data, online learning and network science with a focus on developing

distributed algorithms. These problems have wide-spread applications in several domains of sys-

tems engineering and computer science. Whether in individual or group, the main task of the agent

is to understand how to treat data to infer the unknown parameters of the problem. To this end,

the first part of this thesis addresses statistical processing of data. We start with the problem of

distributed detection in multi-agent networks. In contrast to the existing literature which focuses

on asymptotic learning, we provide a finite-time analysis using a notion of Kullback-Leibler cost.

We derive bounds on the cost in terms of network size, spectral gap and relative entropy of data

distribution. Next, we turn to focus on an inverse-type problem where the network structure is un-

known, and the outputs of a dynamics (e.g. consensus dynamics) are given. We propose several

network reconstruction algorithms by measuring the network response to the inputs. Our algorithm

reconstructs the Boolean structure (i.e., existence and directions of links) of a directed network from

a series of dynamical responses. The second part of the thesis centers around online learning where

data is received in a sequential fashion. As an example of collaborative learning, we consider the
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stochastic multi-armed bandit problem in a multi-player network. Players explore a pool of arms

with payoffs generated from player-dependent distributions. Pulling an arm, each player only ob-

serves a noisy payoff of the chosen arm. The goal is to maximize a global welfare or to find the

best global arm. Hence, players exchange information locally to benefit from side observations. We

develop a distributed online algorithm with a logarithmic regret with respect to the best global arm,

and generalize our results to the case that availability of arms varies over time. We then return to

individual online learning where one learner plays against an adversary. We develop a fully adaptive

algorithm that takes advantage of a regularity of the sequence of observations, retains worst-case

performance guarantees, and performs well against complex benchmarks. Our method competes

with dynamic benchmarks in which regret guarantee scales with regularity of the sequence of cost

functions and comparators. Notably, the regret bound adapts to the smaller complexity measure in

the problem environment.
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Chapter 1

Overview

In recent years learning, prediction and identification have become a main topic of interest in science

and engineering. In these fields, it is important to understand data, and process it efficiently. Many

scenarios in everyday life could be categorized as such. How can one make a smart choice when

buying a product? How can one beat the traffic to commute to work on time? How can one guess

the friendship network of a few individuals based on their behavior? These questions and many

mores motivate us to better understand the signals around us to be able to make a wise decision

or prediction. Common in all these problems is a learner or designer that attempts to incorporate

available data in a sensible way to develop prediction and identification procedures. Data could

either be generated arbitrarily or follow some statistical model, where in the latter the leaner can

take advantage of statistical properties to design more efficient algorithms.

Of particular interest in these problems are those in which the learner should interact in a group

to obtain missing data dispersed throughout a network. Network science has gained a growing pop-

ularity over the past few years [1–3]. This discipline serves the goal of studying interactions among

individuals (e.g. using graphs to model networks mathematically). Interesting problems arising in

1



sensor, social and economic networks have attracted attention of scientists in many different fields.

The goal of this thesis is to address problems that lie at the interface of statistical processing

of data, online learning and network science with a focus on developing distributed algorithms.

These problems have wide-spread applications in many domains of engineering such as distributed

estimation, optimization and machine learning. Whether in individual or group, the main challenge

is to understand how to treat data to infer the unknown of the problem. We contribute to these

emerging fields by providing algorithms that use the statistical or online nature of data to tackle the

problem.

To this end, the first part of this thesis addresses statistical processing of data. We start with

the problem of distributed detection in multi-agent networks. Distributed detection has gained a

considerable attention in the past few decades. The problem has wide range of applications from

sensor networks to social and economic networks. We propose an information aggregation scheme

where agents collaborate with each other to perform a team task. More formally, agents receive

private signals about an unknown state of the world. The underlying state is globally identifiable,

yet informative signals may be dispersed throughout the network. Using an optimization-based

framework, we develop an iterative local strategy for agents. To measure the efficiency of our local

update, we compare it to its global counter part using a notion of Kullback-Leibler cost.

In contrast to the existing literature which focuses on asymptotic learning, we provide a finite-

time analysis. We derive bounds on the cost in terms of network size, spectral gap, centrality of each

agent and relative entropy of agents’ signal structures. We further prove convergence of beliefs in

fixed and switching network topologies.

Next, we turn to focus on an inverse-type problem where the network structure is unknown, but

the outputs of a dynamics (e.g. consensus dynamics) are given. We propose several reconstruction

2



algorithms by measuring the cross-power spectral densities of the network response to the inputs.

Our algorithm reconstructs the Boolean structure (i.e., existence and directions of links) of a directed

network from a series of dynamical responses. Moreover, we propose a second algorithm to recover

the exact structure of the network (including edge weights), when an eigenvalue-eigenvector pair of

the connectivity matrix is known (for example, Laplacian connectivity matrices).

Finally, for the particular cases of nonreciprocal networks (i.e., networks with no directed edges

pointing in opposite directions) and undirected networks, we propose specialized algorithms that

result in a lower computational cost.

The second part of the thesis centers around online learning where the learner receives data in a

sequential fashion. As an example of collaborative learning, we consider the stochastic multi-armed

bandit problem in a multi-player network. Players explore a pool of arms with payoffs generated

from player-dependent distributions. Pulling an arm, each player only observes a noisy payoff of

the chosen arm. The goal is to maximize a global welfare in the sense of competing with the

arm with highest average payoff among players, i.e. to find the best global arm. To achieve this

goal, players (confined to a network structure) exchange information locally to benefit from side

observations. We use this model to develop a distributed online algorithm with a logarithmic regret

with respect to the best global arm. The algorithm can be generalized to deal with sleeping bandits

where availability of arms varies over time. The regret in that context is defined with respect to

the best-ordering benchmark. Our algorithms are optimal in the sense that in a complete network

they scale down the regret of their single-player counterpart by network size. We demonstrate the

application of the results in the context of distributed detection in sensor networks.

We then return to individual online learning where one learner plays against an adversary. We

develop a fully adaptive algorithm that takes advantage of a regularity of the sequence of observa-

3



tions, retains worst-case performance guarantees, and performs well against complex benchmarks.

Our method competes with dynamic benchmarks in which regret guarantee scales with regularity

of the sequence of cost functions and comparators. Notably, the regret bound adapts to the smaller

complexity measure in the problem environment. Finally, we apply our results to drifting zero-sum,

two-player games where both players achieve no regret guarantees against best sequences of actions

in hindsight.

1.1 Statistical Processing of Data in Networks

In many learning and identification problems, the learner deals with data samples that have certain

statistical characteristics. For instance, the leaner encounters a stream of i.i.d. signals, or has

knowledge about the power spectrum of signals. Then, these properties can be used to infer about

the unknown of the problem. There are many problems that can be statistically modeled with wide-

range of applications.

Consider a group of friends in which one person wants to buy a cell phone. The person can

always obtain information through ads, websites and other sources (private signals). Using these

signals, she might not be able to figure out the best option in isolation. However, as a part of the

friendship group, she can discuss her options with her friends to benefit from side observations, and

find out the best cell phone.

In the scenario we just described, we assumed that the network structure is given, and the out-

come is unknown. What if we know of output properties, and the network structure is unknown?

Can we use this information to identify the topology of the friendship network? Inverse problems

have a long history going back to several decades ago. In these problems, the goal is to charac-

terize the network structure given some input-output measurements. Complex dynamical networks

4



have attracted considerable attention in recent years. The power grid, the Internet, the World Wide

Web, as well as many other biological, social and economic networks, are examples of networked

dynamical systems that motivate this interest.

Distributed Detection in Fixed and Switching Topologies

Decentralized detection, optimization and observational social learning has been an intense focus

of research over the past three decades with applications ranging from sensor networks to social

and economic networks [4–10]. In these frameworks the computation burden is distributed among

agents of a network, allowing them to achieve a global task using local information. Developments

in distributed optimization [9–13] have opened new venues to investigate principled distributed

detection. Viewing with an optimization lens, one can think of the problem as minimizing a network

loss that is a sum of individual losses. Using linear losses, the problem coincides with distributed

detection, where the goal is to identify an unknown true state of the world.

We formalize this idea in Chapter 2, and propose a distributed detection algorithm. Observing

private signals (individual stochastic gradients), agents use purely local interactions to detect the

true state of the world which belongs to a finite state space. The main objective of the chapter is to

address the finite-time analysis of distributed detection and the impact of network topology.

To characterize the efficiency, we compare our algorithm to its centralized counterpart. More

specifically, consider an individual agent i that forms a probability distribution µi,t over the state

space at time t. Also, let µt be the probability distribution that agent would have formed, had it had

access to observations of others (at time t). Our goal is to analyze the following objective

Costi,T =

T∑
t=1

DKL(µi,t‖µt),

where DKL(·‖·) denotes the KL-divergence. We show that the cost can be bounded uniformly in

5



time in terms of relative entropy of signals, agents centralities and network spectral gap. Benefiting

from this fact, we show how one can speed up learning by designing an optimal network. We further

prove convergence results about following time-varying networks:

• Gossip protocol: in this scenario, the underlying topology of the network varies based on a

gossip communication rule between agents. At each time one agent is picked randomly, and

the selected agent communicates with a random agent in its neighborhood.

• Information-based switching: we study a more communication-efficient version of switch-

ing rules where agents need not interact with each other at every round. In fact, they only

communicate when their private signals are not informative enough. We measure the signal

information by total variation distance of the posterior belief from the prior. The hardness of

the problem stems from the fact that the communication protocol is signal-dependent.

In both cases, we prove the almost sure convergence of the beliefs to the true state, and characterize

the asymptotic rate in terms of relative entropy of signals.

Inverse Problem : Network Identification

In many distributed, information aggregation procedures, the focus is more on the aggregation

method rather than the network structure. In fact, the network structure is usually given, and the

algorithm outputs an estimate or prediction accordingly. However, one can also consider an inverse

problem where the outputs of an update (say a consensus algorithm where individuals eventually

converge to a common opinion) are given, and the network structure is unknown. The question is

whether we can reconstruct the topology of the network based on output measurements.

To this end, Chapter 3 addresses topology identification of networked dynamical systems. We

consider reconstruction of directed networks in the presence of intrinsic noise with unknown power
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spectral density. We propose a method which builds on the grounding procedure. When a node

is grounded, it broadcasts zero without being removed from the network. Sequentially grounding

the nodes, the cross-power spectral densities for each pair of nodes are measured. The relationship

between the power spectra ends up being a function of network structure, allowing us to identify the

network topology. While our method can reconstruct directed networks, it incurs a lower computa-

tional cost when the network is undirected or nonreciprocal. In particular, this work can solve the

reconstruction of LTI systems running a consensus dynamics.

1.2 Individual and Collaborative Online Learning

The term online is roughly used when a learner, predictor or designer, performs the corresponding

task in a sequential fashion. The main challenge in online settings is to develop efficient methods

that take advantage of the past history to predict the future. One can immediately observe that the

strength of these algorithms is their functionality without accessing the entire data set. Given their

power, it is not a surprise that online learning algorithms have received a considerable attention in

computer science, machine learning and statistics over the past few years.

To better understand the application of online learning we start with a few motivating examples.

Consider a person (learner) whose job is to place ads on a website, say, for a particular type of user.

The learner attempts to place an ad in which the user is interested. Indeed, before placing it on

the website, the learner does not know whether the user will click on the ad. However, after a few

rounds, the learner might get a sense of user’s interests. For example, the learner can notice whether

the user is interested in sports, music, traveling and etc., and offer those contexts to the user. The

game between the learner and user is an instance of individual online learning.

As another example, one can think of a person (learner) who commutes to work every day.
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Using past experience, she decides on a route every morning, and the goal is to get to office in the

shortest possible time (in the long run). Indeed, the learner does not receive any information about

the unchosen paths. In this problem the traffic pattern might not follow any specific distribution, but

the learner has the chance to predict the future traffic patterns based on the past. This problem can

be modeled as an online shortest path problem.

On the other hand, online learning could also be studied in multi-player frameworks. Consider

a group of sensors (players) that measure the location of a finite number of targets. Each sensor

contacts one target per time step, and can only measure a specified coordinate of its position. The

target reveals a noisy version of the coordinate to the sensor, and the noise characteristics are dif-

ferent among sensors. They aim to track the closest target to the origin, and with one coordinate at

hand, sensors must communicate with each other to supplement their imperfect observations.

Motivated by these examples and many others, we dedicate the second part of this thesis to

problems in the domain of online learning. We address both one-player and multi-player settings in

different contexts.

Multi-Armed Bandits in Multi-Agent Networks

The multi-armed bandit (MAB) problem has been extensively studied in the literature [14–18]. The

problem, defined by a set of arms or actions, captures the exploration-exploitation dilemma for a

learner. At each time step, the learner chooses an arm and receives its corresponding payoff or re-

ward. In stochastic MAB, the reward sequence (the data) is assumed to be iid (non-iid rewards have

also been addressed in the literature). The objective is to maximize the total payoff obtained from

sequentially selecting the arms. Equivalently, the learner aims to minimize regret when competing

with the best single arm in hindsight. While early studies on MAB dates back to nine decades ago,
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the problem has received considerable attention due to its modern applications. MAB could be an

instance of sequential decision making for ad placement, website optimization or packet routing.

In Chapter 4, we address the stochastic MAB in a multi-player network. Players explore a pool

of arms with payoffs generated from player-dependent distributions. Pulling an arm, each player

only observes a noisy payoff of the chosen arm. The goal is to maximize a global welfare in the

sense of competing with the arm with highest average payoff among players, i.e. to find the best

global arm. To achieve this goal, players (confined to a network structure) exchange information

locally to benefit from side observations.

The main contribution of the chapter is to develop a distributed online algorithm with a loga-

rithmic regret with respect to the best global arm. The method is a variant of the celebrated UCB1

algorithm in which the confidence bound relies on the network characteristics. The algorithm can be

generalized to deal with sleeping bandits where availability of arms varies over time. The regret in

that context is defined with respect to the best-ordering benchmark. Proposed algorithms are optimal

in the sense that in a complete network they scale down the regret of their single-player counterpart

by network size. We demonstrate the application of the results in the context of distributed detection

in sensor networks.

Online Optimization in Dynamic Environments

Apart from distributed (online) detection, one-player online learning is also a popular area of interest

in the literature of learning theory [19–21]. The problem models sequential decision making used in

wide spectrum of real-world applications. Early works on online learning started with the problem

of prediction with expert advice, and the topic has been expansively studied ever since.

Online learning / optimization is modeled as a game between a learner and an adversary where
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the learner sequentially chooses an action at each round, and the adversary in turn reveals a loss

to the learner. Typically, the goal is to minimize the static regret defined with respect to the best

single action in hindsight. In other words, the static regret is the difference between the accumulated

loss versus the smallest possible loss (achieved with one single action) had the learner been aware

of the entire loss sequence a priori. The literature has witnessed a series of works developing no-

(static)regret algorithms. Perhaps less well-known, is the notion of dynamic regret where the learner

competes against the best action of each round. Indeed, aiming for this stringent benchmark is only

possible under certain regularity conditions.

In Chapter 5, we pose an online learning problem where the learner selects action xt and incurs

the loss ft(xt) at time t. The goal is to compete with the best action of each round, or to minimize

the dynamic regret

RegdT =
T∑
t=1

ft(xt)− ft(x∗t ),

where xt is the minimizer of ft(·) over a convex set X . Our main tools to bound the dynamic regret

are three complexity measures: temporal variability of the loss sequence VT , deviation of gradients

from a predictable sequence DT and regularity in the pattern of minima sequence CT . We then

prove the following bound on the dynamic regret,

RegdT ≤ Õ
(√

DT + 1
)

+ Õ
(

min
{√

(DT + 1)CT , (DT + 1)1/3T 1/3V
1/3
T

})
.

The algorithm is adaptive in the sense that the learner needs no prior knowledge of the environment.

Unlike the stationary setting, the algorithm uses a non-monotone, adaptive step size tuned based on a

doubling trick. The intuition behind the choice of non-monotone step size lies under non-stationarity

of the environment where the learner needs to discard some information from the past. Interestingly,

combining these complexity measures allows the learner to adapt to the best measure.
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Part I

Statistical Processing of Data in

Networks
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Chapter 2

Distributed Detection in Fixed and

Switching Network Topologies

Recent years have witnessed an intense interest on distributed detection, estimation, prediction and

optimization [4–10]. Decentralizing the computation burden among agents has been widely studied

in networks ranging from sensor and robot to social and economic networks [22–25]. In this broad

class of problems, agents in a network need to perform a global task for which they only have

partial information. Therefore, they recursively exchange information with their neighbors, and the

global dispersion of information in the network provides them with adequate data to accomplish the

task. In the big picture, many of these schemes can also be embedded in the context of consensus

protocols which have gained a growing popularity over the past three decades [26–28].

In this chapter, we develop a distributed detection algorithm using the model of learning and

detection proposed by Jadbabaie et al. [29]. In this framework, the world is governed by a fixed true

state or hypothesis that is aimed to be recovered by a network of agents. The state belongs to a finite

set, and might represent a decision, an opinion, the price of a product or any quantity of interest.
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Each agent observes a stream of private signals generated by a marginal of the global likelihood

conditioned on the true state. However, the signals might not be informative enough for the agent to

distinguish the underlying state of the world. Therefore, agents use local diffusion to compensate

for their imperfect knowledge about the environment.

In the literature, a host of schemes build on the model in [29] to describe distributed learning.

Despite the wealth of results on the asymptotic behavior of these methods, the finite-time analysis

remains elusive. Though appealing in certain cases, asymptotic analysis only describes the dominant

factors that influence learning in the long run. In real world applications, however, the decision on

the true state has to be made in a finite time. Therefore, it is crucial to study the finite-time variant

of these schemes to gain insight into the interplay of network parameters which affect learning. For

instance, let us think of a social network where individuals need to choose a product which best

suits the network. Individuals might value the product differently, and they need to reach consensus

in a few rounds of opinion exchange. Agents do not have an infinite horizon to make a decision;

therefore, one needs to view this scenario as a finite-time problem. To this end, following up on the

work of Duchi et al. [30] on distributed dual averaging, we propose an optimization-based algorithm

for distributed detection.

The rest of the chapter is organized as follows: we provide a summary of our results and the

related literature to the problem in Section 2.1. We describe the formal statement of the problem,

and flesh out the distributed detection scheme in Section 2.2. Section 2.3 is devoted to the finite-time

analysis of the algorithm, whereas Section 2.4 elaborates on the impact of network characteristics

on the convergence rate. We discuss briefly about asymptotic learning in time-varying network

topologies in Section 2.5, and provide our numerical experiments in Section 2.6. The contents of

this chapter are mainly from the works of [31–33].
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2.1 Contribution and Related Literature

Our main goal is to address the non-asymptotic behavior of the algorithm. To this end, we introduce

the notion of Kullback-Leibler (KL) cost to measure the learning rate of an individual agent versus an

expert who has all available information for learning. The KL decentralization cost simply compares

the performance of distributed algorithm to its centralized counterpart. We derive an upper bound

on the cost which proves the spectral gap of the network is substantial beside agents’ centralities.

It turns out that the upper bound scales inversely in the spectral gap, and logarithmically with the

network size and number of states. The rate also scales with the inverse of the relative entropy of the

conditional marginals. More specifically, the KL cost grows when signals do not provide enough

evidence in favor of the true state versus some other state of the world.

Assuming that the network is realized with a default communication structure, each agent has

a fixed measure of influence or centrality. We establish that allocating more informative signals

to more central agents can expedite learning. More interestingly, the importance of spectral gap

opens new venues for optimal network design to facilitate agents’ interactions. Each agent assigns

different weights to its neighbors’ information while communicating with them. We demonstrate

how agents can modify these weights to achieve a faster learning rate. The key idea is to find the

Markov chain with the best mixing behavior that is consistent with the network structure and agents’

centralities. On the other hand, as a natural conjecture, we expect a more rapid learning rate in well-

connected networks. We study the ramification of link failures in the network, and prove that in

symmetric networks, less connectivity amounts to a sluggish learning process. We further apply

our results on star, cycle and two-dimensional grid network, and observe that in each case the effect

of spectral gap can be translated to the network diameter. Intuitively, a larger diameter makes the
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information propagation difficult around the network.

We also prove convergence of beliefs in two types of time-varying network topologies. First, we

restrict out attention to gossip protocols as an instance of stochastically switching networks. Next,

we develop a switching rule where agents communicate to their neighbors only if their private sig-

nals are not informative. The latter is motivated by social network applications in which individuals

only communicate when they need to obtain information from human resources. We finally present

several examples on binary signal detection which perfectly match our theoretical findings.

2.1.1 Related Literature

Earlier works on decentralized detection have considered scenarios where each agent sends its ob-

servations to a fusion center that decides over the true value of a parameter [4, 5, 22]. In these

situations, the fusion center faces a classical hypothesis testing (centralized detection) problem after

collecting the data from agents. Distributed detection has been widely regarded in various works

providing the asymptotic analysis. Cattivelli et al. [34] propose a fully distributed algorithm where

no fusion center is necessary. The methodology builds on the connection of Neyman-Pearson de-

tection and minimum-variance estimation to solve the problem. Jakovetić et al. [35] develop a

consensus+innovations algorithm for detection under Gaussian observations. The method achieves

an asymptotic exponential error rate even when communications of agents are noisy. In [36], the

authors extend the consensus+innovations method to generic (non-Gaussian) observations over ran-

dom networks.

We now elaborate on several works inspired by the learning model in [29]. The authors in [29]

propose a non-Bayesian update rule in the context of social networks. Each individual averages

her Bayesian posterior belief with the opinion of her neighbors. It is then shown that, under mild
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technical assumptions, agents’ beliefs converge to the true state almost surely. Lalitha et al. [37]

introduce another strategy where agents perform a local Bayesian update, and geometrically average

the posteriors in their neighborhood. The authors then provide the convergence and rate analysis

of their method. In [38, 39], a learning without recall approach is considered where each agent

performs Bayesian update sequentially using the prior of one particular neighbor. Nedić et al. [40–

42] address the finite-time analysis of a similar problem in deterministically switching networks. In

their setting, the prior is geometrically averaged among neighbors of each agent. On the other hand,

Rahnama Rad et al. [43] present a distributed estimation algorithm for continuous state space. They

prove the convergence of the algorithm, and characterize the asymptotic efficiency of the method in

compare to any centralized estimator. In [29, 37], the convergence occurs exponentially fast, and

the asymptotic rate is characterized in terms of the relative entropy of individuals’ signal structures

and their eigenvector centralities (see [44] for the rate analysis of [29]).

2.2 The Problem Description and Algorithm

In this section, we describe the observation and network model, and outline the centralized setting

for the problem. Then, we provide a formal statement of the distributed setting, and characterize the

decentralization cost.

2.2.1 Notation

We adhere to the following notation in the exposition of our results:

16



[n] The set {1, 2, ..., n} for any integer n

x(k) The k-th element of vector x

x[k] The k-th largest element of vector x

Im Identity matrix of size m

∆m The m-dimensional probability simplex

ek Delta distribution on k-th component

‖ · ‖p p-norm operator

1 Vector of all ones

‖µ− π‖TV Total variation distance between µ, π ∈ ∆m

DKL(µ‖π) KL-divergence of π ∈ ∆m from µ ∈ ∆m

λi(W ) The i-th largest eigenvalue of matrix W

Table 2.1: Notation

For any f ∈ Rm and µ ∈ ∆m, we let Eµ[·] represent the expectation of f under the measure

µ, i.e., we have Eµ[f ] =
∑m

j=1 µ(j)f(j). Throughout, all the vectors are assumed to be column

vectors.

2.2.2 Observation Model

The signal and observation model of this work closely follows the framework proposed in [29]. We

consider an environment in which Θ = {θ1, θ2, . . . , θm} denotes a finite set of states of the world.

We have a network of n agents that seek the unique, true state of the world θ1 ∈ Θ. At each time

t ∈ [T ], the belief of agent i is denoted by µi,t ∈ ∆m, where ∆m is a probability distribution over

the set Θ. In particular, µi,0 ∈ ∆m denotes the prior belief of agent i ∈ [n] about the states of the
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world, and it is assumed to be uniform1.

The learning model is given by a conditional likelihood function `(·|θk) which is governed by

a state of the world θk ∈ Θ. For each i ∈ [n], let `i(·|θk) denote the i-th marginal of `(·|θk), and

we use the vector representation `i(·|θ) = [`i(·|θ1), ..., `i(·|θm)]> to stack all states. At each time

t ∈ [T ], the signal st = (s1,t, s2,t, . . . , sn,t) ∈ S1 × · · · × Sn is generated based on the true state

θ1. Therefore, for each i ∈ [n], the signal si,t ∈ Si is a sample drawn according to the likelihood

`(·|θ1) where Si is the sample space.

The signals are i.i.d. over time, and also the marginals are independent, i.e., `(·|θk) = Πn
i=1`i(·|θk)

for any k ∈ [m]. For the sake of convenience, we define ψi,t := log `i(si,t|θ) which is a sample

corresponding to Ψi := log `i(·|θ) for any i ∈ [n].

A1. We assume that all log-marginals are uniformly bounded such that ‖ψi,t‖∞ ≤ B for any

si,t ∈ Si, i.e., we have | log `i(·|θk)| ≤ B for any i ∈ [n] and k ∈ [m].

Based on assumption A1, every private signal has bounded information content. The assumption

can also be interpreted as Radon-Nikodym derivative of every private signal (likelihood ratio) being

bounded [45]. This bound can be found, for instance, when the signal space is discrete and provides

a full support for distribution. Let us define Θ̄i as the set of states that are observationally equivalent

to θ1 for agent i ∈ [n]; in other words, Θ̄i = {θk ∈ Θ : `i(si|θk) = `i(si|θ1) ∀si ∈ Si} with

probability one. As evident from the definition, any state θk 6= θ1 in the set Θ̄i is not distinguishable

from the true state by observation of samples from the i-th marginal. Let Θ̄ = ∩ni=1Θ̄i be the set of

states that are observationally equivalent to θ1 from all agents perspective.

A2. We assume that no state in the world is observationally equivalent to the true state from the
1The assumption of uniform prior only lets us avoid notational clutter. The analysis holds for any prior with full

support.
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standpoint of the network, i.e., the true state is globally identifiable, and we have Θ̄ = {θ1}.

Assumption A2 guarantees that the global likelihood provides sufficient information to make the

true state uniquely identifiable. In other words, for any false state θk 6= θ1, there must exist an agent

who is able to distinguish θ1 from θk.

Let Ft be the smallest σ-field containing the information about all agents up to time t. Then,

when the learning process continues for T rounds, the probability triple (Ω,F ,P) is defined as

follows: the sample space Ω = ⊗Tt=1(⊗ni=1Si), the σ-field F = ∪Tt=1Ft, and the true probability

measure P = ⊗Tt=1`(·|θ1). Finally, the operator E denotes the expectation with respect to P.

2.2.3 Network Model

The interaction between agents is captured by a directed graph G = ([n], E), where [n] is the set

of nodes corresponding to agents, and E is the set of edges. Agent i receives information from j

only if the pair (i, j) ∈ E. We let Ni = {j ∈ [n] : (i, j) ∈ E} be the set of neighbors of agent

i. Throughout the learning process agents truthfully report their information to their neighbors.

We represent by [W ]ii > 0 the self-reliance of agent i, and by [W ]ij > 0 the weight that agent i

assigns to information received from agent j in its neighborhood. Then, the matrixW is constructed

such that [W ]ij denotes the entry in its i-th row and j-th column. Therefore, W has nonnegative

entries, and [W ]ij > 0 only if (i, j) ∈ E. For normalization purposes, we further assume that W is

stochastic; hence,

n∑
j=1

[W ]ij =
∑
j∈Ni

[W ]ij = 1.

A3. We assume that the network is strongly connected, i.e., there exists a directed path from any

agent i ∈ [n] to any agent j ∈ [n]. We further assume for simplicity thatW is diagonalizable2.
2Note that diagonalizability is not necessary for convergence analysis, and it only simplifies the results by avoiding
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The strong connectivity constraint in assumption A3 guarantees the information flow in the network.

The assumption implies that λ1(W ) = 1 is unique, and the other eigenvalues of W are strictly less

than one in magnitude [46]. Given the matrix of social interactions W , the eigenvector centrality is

a non-negative vector π such that for all i ∈ [n],

π(i) =
n∑
j=1

[W ]jiπ(j). (2.2.1)

for ‖π‖1 = 1. Then, π(i) denoting the i-th element of π is the eigenvector centrality of agent i. In

the matrix form, the preceding relation takes the form π>W = π>, which means π is the stationary

distribution of W . Assumption A3 entails that the Markov chain W is irreducible and aperiodic,

and the unique stationary distribution π has strictly positive components [46].

2.2.4 Centralized Detection

To motivate the development of distributed scheme, we commence by introducing centralized de-

tection3. In this case, the scenario could be described as a two player repeated game between

Nature and a centralized agent (expert) that has global information to learn the true state. More

specifically, the expert observes the sequence of signals {st}Tt=1 that are in turn revealed by Na-

ture, and knows the entire network characteristics. At any round t ∈ [T ], the expert accumu-

lates a weighted average of log-marginals, and forms the belief µt ∈ ∆m about the states, where

∆m = {µ ∈ Rm | µ � 0,
∑m

k=1 µ(k) = 1} denotes the m-dimensional probability simplex.

Letting

ψt :=
n∑
i=1

π(i)ψi,t =
n∑
i=1

π(i) log `i(si,t|θ), (2.2.2)

Jordan blocks. In the absence of this assumption, our theoretical results will depend on the size of the largest Jordan

block of W , which only complicates the message of the problem.
3The method can be cast as special cases of Follow the Regularized Leader [47] and Mirror Descent [48] algorithm.
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the sequence of interactions could be depicted in the form of the following algorithm:

Centralized Detection

Input : A uniform prior belief µ0, a learning rate η > 0.

Initialize : Let φ0(k) = 0 for all k ∈ [m].

At time t = 1, ..., T : Observe the signal st = (s1,t, s2,t, . . . , sn,t), update the vector

function φt, and form the belief µt as follows,

φt = φt−1 + ψt , µt = argminµ∈∆m

{
−µ>φt +

1

η
DKL(µ‖µ0)

}
. (2.2.3)

Weighting the marginals based on the eigenvector centrality (2.2.2), the centralized detector

aggregates a geometric average of marginals in φt. At each time t ∈ [T ], the goal is to maximize the

expected sum while sticking to the default belief µ0, i.e., minimizing the divergence. The trade-off

between the two behavior is tuned with the learning rate η.

Let us note that according to Jensen’s inequality for the concave function log(·), we have for

every i ∈ [n] and k ∈ [m] that

−DKL (`i(·|θ1)‖`i(·|θk)) = E

[
log

`i(·|θk)
`i(·|θ1)

]
≤ log E

[
`i(·|θk)
`i(·|θ1)

]
= 0,

where the inequality turns to equality if and only if `i(·|θ1) = `i(·|θk), i.e., iff θk ∈ Θ̄i. Therefore,

it holds that E[log `i(·|θk)] ≤ E[log `i(·|θ1)], and recalling that the stationary distribution π consists

of positive elements, we have for any k 6= 1 that,

E

[
n∑
i=1

π(i)Ψi(k)

]
= E

[
n∑
i=1

π(i) log `i(·|θk)

]

< E

[
n∑
i=1

π(i) log `i(·|θ1)

]
= E

[
n∑
i=1

π(i)Ψi(1)

]
,

where the strict inequality is due to uniqueness of the true state θ1, and the fact that Θ̄ = ∩ni=1Θ̄i =

{θ1} based on assumption A2. In the sequel, without loss of generality, we assume the following
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descending order, i.e.

E

[
n∑
i=1

π(i)Ψi(1)

]
> E

[
n∑
i=1

π(i)Ψi(2)

]
≥ · · · ≥ E

[
n∑
i=1

π(i)Ψi(m)

]
. (2.2.4)

We shall see that the ordering will only simplify the derivation of technical results throughout the

chapter.

2.2.5 Distributed Detection

We now extend the previous section to distributed setting modeled based on a network of agents. In

the distributed scheme, each agent i ∈ [n] only observes the stream of private signals {si,t}Tt=1 gen-

erated based on the parametrized likelihood `i(·|θ1). That is, agent i ∈ [n] does not directly observe

sj,t for any j 6= i. As a result, it gathers the local information by averaging the log-likelihoods in its

neighborhood, and forms the belief µi,t ∈ ∆m at round t ∈ [T ] as follows:

Distributed Detection

Input : A uniform prior belief µi,0, a learning rate η > 0.

Initialize : Let φi,0(k) = 0 for all k ∈ [m] and i ∈ [n].

At time t ∈ [T ] : Observe the signal si,t, update the function φi,t, and form the belief µi,t as

follows,

φi,t =
∑
j∈Ni

[W ]ijφj,t−1 + ψi,t , µi,t = argminµ∈∆m

{
−µ>φi,t +

1

η
DKL(µ‖µi,0)

}
. (2.2.5)

As outlined above, each agent updates its belief using purely local diffusion. We are interested

in measuring the efficiency of the distributed algorithm via a metric comparing that to its centralized

counterpart. At any round t ∈ [T ] , let us postulate that the cost which agent i ∈ [n] needs to pay to

have the same opinion as the expert is DKL(µi,t‖µt); then, the total decentralization cost that the
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agent incurs after T rounds is as follows

Costi,T :=

T∑
t=1

DKL(µi,t‖µt) =

T∑
t=1

Eµi,t

[
log

µi,t
µt

]
. (2.2.6)

At each round, the output of the centralized and decentralized algorithm is a probability distribu-

tion over state space. The KL-divergence captures the dissimilarity of two probability distributions;

hence, it could be a reasonable metric to measure the difference between two algorithms. The func-

tion quantifies the difference between the agent that observes private signals {si,t}Tt=1 and an expert

that has {st}Tt=1 and π available. In other words, it shows how well the decentralized algorithm

copes with the partial information. Note importantly that Costi,T is a random quantity since the

expectation is not taken with respect to randomness of signals.

We conclude this section with the following lemma which reiterates that both algorithms are

reminiscent of the well-known Exponential Weights algorithm.

Lemma 2.1. The update rules (2.2.3) and (2.2.5) have the explicit form solutions,

µt(k) =
exp{ηφt(k)}
〈1, exp{ηφt}〉

and µi,t(k) =
exp{ηφi,t(k)}
〈1, exp{ηφi,t}〉

,

respectively, for any i ∈ [n] and k ∈ [m]. Moreover,

φi,t =

t∑
τ=1

n∑
j=1

[
W t−τ ]

ij
ψj,τ .

One can observe from above that

n∑
i=1

π(i)φi,t =

t∑
τ=1

n∑
j=1

n∑
i=1

π(i)
[
W t−τ ]

ij
ψj,τ =

t∑
τ=1

n∑
j=1

π(j)ψj,τ = φt,

which connects the centralized and decentralized update via eigenvector centrality (2.2.1). As ex-

plored in [37, 44], we shall see that centrality plays an important role in the convergence rate.
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2.3 Finite-time Analysis of Cost Functions

In this section, we investigate the convergence of agents’ beliefs to the true state in the network.

Agents exchange information over time, and reach consensus about the true state. The connectivity

of the network plays an important role in the learning as W t → 1π> as t → ∞. To examine the

learning rate, we need to have knowledge about the mixture behavior of Markov chain W . The

following lemma sheds light on the mixture rate, and we invoke it later for technical analysis.

Lemma 2.2. Let the strong connectivity of network (assumption A3) hold, and define λmax(W ) :=

max {|λn(W )| , |λ2(W )|}. Then, for any t ∈ [T ] and n > 5, the stochastic matrix W satisfies

t∑
τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣ ≤ 4 log n

1− λmax(W )
,

for any i ∈ [n] where 0 ≤ λmax(W ) < 1.

We now establish that agents have arbitrarily close opinions in a connected network. Further-

more, the convergence rate is governed by cardinality of state space and network characteristics.

Lemma 2.3. Let the sequence of beliefs {µi,t}Tt=1 for each agent i ∈ [n] be generated by the Dis-

tributed Detection algorithm with the learning rate η. Given bounded log-marginals (assumption

A1), global identifiability of the true state (assumption A2), and strong connectivity of the network

(assumption A3), for each individual agent i ∈ [n] it holds that

1

η
log ‖µi,t − e1‖TV ≤ −I(θ1, θ2)t+

√
2B2t log

m

δ
+

8B log n

1− λmax(W )
+

logm

η
,

with probability at least 1− δ, where for k ≥ 2

I(θ1, θk) :=
n∑
i=1

π(i)DKL(`i(·|θ1)‖`i(·|θk)).

In particular, we have ‖µi,t − e1‖TV −→ 0 almost surely.
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Beside providing an any-time bound in the high probability sense, the lemma verifies that the

belief µi,t of each agent i ∈ [n] is strongly consistent, i.e., it converges almost surely to a delta dis-

tribution on the true state. We also remark that the asymptotic rate of I(θ1, θ2) was also discovered

in [31, 37, 44] for the updates under study. However, Lemma 2.3 provides a non-asymptotic version

of the convergence rate. Let us proceed to the next lemma to derive a total variation bound on the

decentralization cost (2.2.6).

Lemma 2.4. The instantaneous KL cost associated to the Distributed Detection algorithm with the

learning rate η satisfies for any t ∈ [T ]

DKL(µi,t‖µt) ≤ 2‖e1 − µt‖TV,

as long as η‖qi,t‖∞ ≤ 1/4 at each round, where qi,t := φi,t − φt.

The bound in Lemma 2.4 is evocative of a reverse Pinsker’s inequality. It provides a total

variation bound on the cost function which is of the KL-divergence form. Let us remark that an

appropriate choice of learning rate η warrants the condition η‖qi,t‖∞ ≤ 1/4. We now present the

main result of the chapter in the following theorem.

Theorem 2.1. Let the sequence of beliefs {µi,t}Tt=1 for each agent i ∈ [n] be generated by the

Distributed Detection algorithm with the choice of learning rate η = 1−λmax(W )
16B logn . Given bounded

log-marginals (assumption A1), global identifiability of the true state (assumption A2), and strong

connectivity of the network (assumption A3), we have

Costi,T ≤
18B2

I2(θ1, θ2)
max

{
log

[
6m

δ

]
,

3B
√

2

I(θ1, θ2)

}
+

48B log n

I(θ1, θ2)

logm+ 2

1− λmax(W )
,

with probability at least 1− δ.
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Regarding Theorem 2.1 the following comments are in order: the rate is related to the inverse

of I(θ1, θ2) which is a weighted average of KL-divergence of observations under θ2 (the second

best alternative) from observations under θ1 (the true state). Also, from the definition of I(θ1, θ2)

in Lemma 2.3, the weights turn out to be agents’ centralities. Intuitively, when signals hardly reveal

the difference between the best two candidates for the true state, agents must make more effort to

distinguish the two. In turn, this results in suffering a larger cost caused by slower learning. The

decentralization cost always scales logarithmically with the number of states m. Now define

γ(W ) := 1− λmax(W ), (2.3.1)

as the spectral gap of the network. Then, Theorem 2.1 suggests that for large networks, the cost

scales inversely in the spectral gap, and logarithmically with the network size n. Finally, the de-

tection cost is time-independent and optimal with respect to time horizon (with high probability).

Therefore, the average expected cost (per iteration cost) asymptotically tends to zero.

2.4 The Impact of Network Topology

The results of previous section verify that network characteristics govern the learning process. We

now discuss the role of agents’ centralities and the network spectral gap.

2.4.1 Effect of Agent Centrality

To examine centrality, let us return to the definition of I(θ1, θ2) in Lemma 2.3, and imagine that the

network is collaborative in the sense that the network designer wants to expedite learning. Then,

to have the best information dispersion, the marginal which collects the most evidence in favor of

θ1 against θ2 should be allocated to the most central agent. By the same token, in an adversarial
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network where Nature aims to delay the learning process, such marginal should be assigned to the

least central agent. To sum up, let us put forth the concept of network regularity as defined in [44]

in the context of social learning. Recalling the definition of eigenvector centrality (2.2.1), we say a

network G is more regular than G′ if π′ majorizes π, i.e., if for all j ∈ [n]

j∑
i=1

π[i] ≤
j∑
i=1

π′[i], (2.4.1)

where π[i] denotes the i-th largest element of π. Letting

u := [DKL(`1(·|θ1)‖`1(·|θ2)), . . . , DKL(`n(·|θ1)‖`n(·|θ2))]> ,

it is a straightforward consequence of Lemma 1 proved in [44] that

n∑
i=1

π[i]u[i] ≤
n∑
i=1

π′[i]u[i],

when π′ majorizes π. Therefore, spreading more informative signals among central agents speeds

up the learning procedure.

2.4.2 Optimizing the Spectral Gap

We now turn our attention to the spectral gap of network (2.3.1). Suppose that agents are given a

default communication matrixW which determines their neighborhood and centrality. The problem

is to find the optimal spectral gap assuming that the neighborhood and centrality of each agent are

fixed. The key idea is to change the mixing behavior of the Markov chain W . It is well-known, for

instance, that we could do so using lazy random walks [49] which replaces W with 1
2(W + In). To

generalize the idea, let us define a modified communication matrix

W ′ := αW + (1− α)In α ∈ [0, 1], (2.4.2)
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which has the same eigenstructure as W . Then, the eigenvalues of W ′ are weighted averages of

those of W with one. From standpoint of network design, one can exploit the freedom in choosing

α to optimize the spectral gap.

Proposition 2.1. The optimal spectral gap of the modified communication matrix W ′ (2.4.2) is as

follows,

γ∗ =
2− 2λ2(W )

2− λn(W )− λ2(W )
for α∗ =

2

2− λn(W )− λ2(W )
,

when λn(W ) + λ2(W ) < 0

Proof. To optimize the spectral gap, we need to minimize the second largest eigenvalue of W ′ in

magnitude, that is, to solve the min-max problem

min
α∈[0,1]

λmax(W ′) = min
α∈[0,1]

max {|αλ2(W ) + 1− α|, |αλn(W ) + 1− α|} . (2.4.3)

The functions |αλ2(W )+1−α| and |αλn(W )+1−α| are both convex with respect to α. Therefore,

the point-wise maximum of the two is also convex, and achieves its minimum on a compact set.

Since λn(W ) < −λ2(W ) by hypothesis, the minimum occurs at the intersection of the following

lines

αλ2(W ) + 1− α = −αλn(W ) + α− 1,

yielding α∗ = 2
2−λn(W )−λ2(W ) . Plugging α∗ into the min-max problem (2.4.3), we calculate the

optimal value λ∗max as

λ∗max =
λ2(W )− λn(W )

2− λn(W )− λ2(W )
,

and since γ∗ = 1− λ∗max the proof follows immediately.
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We remark that when the Markov chain is symmetric, the problem can be formulated as a convex

optimization [50]. Moreover, for gossip protocols where the expected communication matrix is

symmetric, the problem can be posed as a semidefinite program [51]. However, in our setting the

chain is not necessarily symmetric and these results are not applicable.

2.4.3 Sensitivity to Link Failure

It is intuitive that in a network with more links, agents are offered more opportunities for communi-

cation. Adding links provides more avenues for spreading information, and improves the learning

quality. We study this phenomenon for symmetric networks where a pair of agents assign similar

weights to each other, i.e., W> = W . In particular, we explore the connection of spectral gap with

the link failure. In this regard, let us introduce the following positive semi-definite matrix

∆W (i, j) := (ei − ej)(ei − ej)
>, (2.4.4)

where ei is the i-th unit vector in the standard basis of Rn. Then, for i, j ∈ [n] the matrix

W̄ (i, j) := W + [W ]ij∆W (i, j), (2.4.5)

corresponds to a new communication matrix that removes edges (i, j) and (j, i) from the network,

and adds [W ]ij = [W ]ji to the self-reliance of agent i and agent j.

Proposition 2.2. Consider the communication matrix W̄ (i, j) in (2.4.5). Then, for any i, j ∈ [n]

the following inequality holds

λmax (W ) ≤ λmax

(
W̄ (i, j)

)
,

so long as W is positive semi-definite.

29



Proof. We recall that ∆W (i, j) in (2.4.4) is positive semi-definite with λn (∆W (i, j)) = 0. Ap-

plying Weyl’s eigenvalue inequality on (2.4.5), we obtain for any k ∈ [n]

λk (W ) ≤ λk
(
W̄ (i, j)

)
,

which holds in particular for k = 2. On the other hand, the matrix W is positive semi-definite, so

we have that λmax (W ) = λ2 (W ). Combining with the fact that W̄ (i, j) is symmetric and positive

semi-definite, the proof is completed.

The proposition immediately implies that removing a link reduces the spectral gap. In this case,

in view of the bound in Theorem 2.1, the decentralization cost has more latitude to vary. Therefore,

to keep the costs small, agents tend to maintain their connections. Let us take note of the delicate

point that monotone increase in the upper bound does not necessarily imply a monotone increase in

the cost; however, one can roughly expect such behavior. We elaborate on this issue in the numerical

experiments. Notice that the positive semi-definiteness constraint on W is not strong, since it can

be easily satisfied by replacing a lazy random walk 1
2(W +In) withW . Finally, we remark that link

failures in distributed optimization [52] and consensus protocols [53] has been previously studied

in the literature. We refer the interested reader to these references where the impact of random link

failure is considered.

2.4.4 Star, Cycle and Grid Networks

We now examine the spectral gap impact for some interesting networks (Fig. 2.1), and derive ex-

plicit bounds for decentralization cost. In the star network (regardless of the network size), existence

of a central agent always preserves the network diameter, and therefore, we expect a benign scaling

with network size. On the other side of the spectrum lies the cycle network where the diameter
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grows linearly with the network size. We should, hence, observe how the poor communication in

cycle network affects the learning rate. Finally, as a possible model for sensor networks, we study

the grid network where the network size scales quadratically with the diameter.

Figure 2.1: Illustration of networks : star, cycle and grid networks with n agents. For each network, each individual

agent possesses a self-reliance of ω ∈ (0, 1).

Corollary 2.1. Under conditions of Theorem 2.1 and the choice of learning rate η = γ(·)
16B logn , for

n large enough we have the following bounds on the decentralization cost:

(a) For the star network in Fig. 2.1

Costi,T ≤ O
(

log [nm]

min {1− ω, 1− |2ω − 1|}

)
.

(b) For the cycle network in Fig. 2.1

Costi,T ≤ O

(
log [nm]

min
{

1− |2ω − 1|, 2(1− ω) sin2 π
n

}) .
(c) For the grid network in Fig. 2.1

Costi,T ≤ O

 log [nm]

min
{

1− |2ω − 1|, 2(1− ω) sin2 π√
n

}
 .
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Proof. The spectrum of the Laplacian of star and cycle graphs are well-known [54]. We have the

eigenvalue set corresponding to communication matrix of star and cycle graphs as

{
1, ω, . . . , ω, 2ω − 1

}
and

{
ω + (1− ω) cos

2πi

n

}n−1

i=0

,

respectively. Therefore, the proof of (a) and (b) follows immediately. The grid graph is the Cartesian

product of two rings of size
√
n (due to wraparounds at the edges), and hence, its eigenvalues are

derived by summing the eigenvalues of two
√
n-rings[54]. Therefore, the eigenvalue set takes the

form

{
ω + (1− ω) cos

π(i+ j)√
n

cos
π(i− j)√

n

}√n−1

i,j=0

,

and the proof of (c) is completed.

Let us use the notation Õ(·) to hide the poly log factors. Then, the bounds derived in Corollary

2.1 indicate that the algorithm requires Õ(1) iterations to achieve a near optimal log-distance from

the true state in the star network. However, the rate deteriorates to Õ(n2)(respectively, Õ(n)) in

the cycle (respectively, grid) network. In all cases, the rate depends on the diameter of the network

which is a natural indicator of information dissemination quality.

2.5 Switching Topologies : Asymptotic Learning

We addressed the finite-time analysis in the case of fixed network topology. What would happen

if the network structure varies over time? In other words, consider the following variant of (2.2.5)

with η = 1,

φi,t =
∑
j∈Ni

[W (t)]ijφj,t−1 + ψi,t, µi,t(k) =
exp{φi,t(k)}
〈1, exp{φi,t}〉

, (2.5.1)
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in which W (t) is a time-varying communication matrix. We would like to discuss two interesting

switching rules with applications in sensor and social networks. The two protocols are different in

nature, though they both guarantee asymptotic learning, i.e., in both scenarios the beliefs converge

to the true state asymptotically (in almost sure sense). For the rest of this section, we assume

W> = W .

2.5.1 Stochastic Links

Random link failures are unavoidable in many wireless sensor networks. Sensors might fail to

establish connection with each other at some time periods. Therefore, randomized communication

protocols are interesting subject of study in many engineering applications. In general, we can

discuss convergence of beliefs for any time-varying random sequence {W (t)}∞t=1 for which

W (t)W (t− 1) · · ·W (1) −→ 1

n
11
>,

almost surely. However, we particularize our discussion to an invariant gossip protocol studied

extensively in [51]. In this scenario, each node has a clock which ticks according to a rate 1 Poisson

process. Equivalently, there is a single global clock which ticks according to a rate n Poisson

process at times Tt, where {Tt − Tt−1} are i.i.d. exponential random variables with rate n. We

use the index t to refer to the t-th time slot [Tt−1,Tt), t ≥ 0. At each tick Tt of the global clock,

agent It ∈ [n] is picked uniformly at random. Then, it contacts a neighbor Jt ∈ [n] with probability

[W ]ItJt , and they update their belief according to (2.5.1). Denoting the communication matrix by

W (t), this amounts to W (t) taking the form

W (t) = In −
(eIt − eJt)(eIt − eJt)

>

2
, (2.5.2)
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with probability 1
n [W ]ItJt , where ei is the i-th unit vector in the standard basis of Rn. Since the

network topology is formed randomly at each time, we need to modify assumption A3 as follows:

A3*. The network is connected in expectation sense, i.e. there exists a path from any agent i ∈ [n]

to any agent j 6= i on graph G, and the second largest eigenvalue of E[W (t)] is strictly less

than one in magnitude.

The assumption, for instance, holds if the underlying structure of the network is connected and

nonbipartite. The following theorem shows that agents learn the true state almost surely using the

gossip protocol.

Theorem 2.2 (Learning with Gossip Protocol). Let the bound on log-marginals (assumption A1),

global identifiability of the true state (assumption A2), and the connectivity in expectation sense

(assumption A3*) hold. Then, following the update in (2.5.1) using the gossip protocol (2.5.2),

all agents learn the truth exponentially fast with an asymptotic rate given by I(θ1, θ2), defined in

Lemma 2.3.

The technical analysis is very similar to that of Theorem 2.3 whose proof is provided in Section

(2.7).

2.5.2 Information-Based Communication

In many real-world applications, agents do not communicate each and every round. In fact, they

only communicate when they need information. An instance of this scenario could be a social

network in which individuals aim to decide on a certain product in the market. They do not keep

discussing about the best product, whereas they make a decision with a handful of interactions. With

no communication (Bayesian update or W (t) = I in (2.5.1)), agents do not distinguish between the
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true state and its observationally equivalents. On the other hand, a fully non-Bayesian learning

(W (t) = W in (2.5.1)) occurs at the cost of all-time communication. Can we stand somewhere

between these two extreme cases where agents learn with a low communication cost?

To solve this problem, we propose a switching rule in which agents communicate only when

their private signals are not informative. From technical point of view, informativeness is mea-

sured with total variation distance between the prior and the posterior of the Bayesian update.

That is, given any threshold τ > 0, agent i ∈ [n] communicates to its neighbors if and only if

‖µi,t−µi,t−1‖TV < τ givenW (t) = I . When the condition is satisfied, a bidirectional communica-

tion is established, and the matrix W (t) is updated such that [W (t)]ij = [W (t)]ji = [W ]ij = [W ]ji

for all j ∈ Ni. In summary, the switching protocol works as follows:

Switching Rule

Given τ > 0, for any i ∈ [n] that satisfies ‖µi,t − µi,t−1‖TV < τ with W (t) = I , the i-th

column and row of W (t) take the values of the i-th column and row of the symmetric matrix

W . Then, the diagonal elements of W (t) are filled such that the matrix is doubly stochastic.

Before shifting focus to the convergence analysis under the proposed rule, we note that with τ =

1 all signals will be considered uninformative to all agents at every epoch of time; hence, at every

time step agents choose to communicate, W (t) = W for all t, and they learn the truth exponentially

fast. However, the learning occurs under an all-time communication protocol, which is inefficient

when communication is costly. We shall demonstrate that the same learning quality can be achieved

through the proposed switching rule, while incurring only a few rounds of communications.

The following lemma concerns the behavior of agents in the Bayesian regime. In particular, it

guarantees that with probability one, if the switching condition is satisfied at some time t1, there

exists a t2 > t1 at which the switching condition is satisfied again. Furthermore, the length of
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interval t2 − t1 is finite almost surely.

Lemma 2.5 (Bayesian Learning). Let the log-marginals be bounded (assumption A1). Assume that

agent i ∈ [n] is allowed to follow the Bayesian update after some time t̂, i.e. W (t) = I in (2.5.1)

for t ≥ t̂. We then have

µi,t(k) −→ 0, ∀θk ∈ Θ \ Θ̄i, (2.5.3)

almost surely.

Lemma 2.5 simply implies that the Bayesian update does not provide information for agents

after a finite (but random) number of iterations. We also state the following proposition (using our

notation) from [55] to invoke later in the analysis.

Proposition 2.3. Consider a sequence of directed graphs Gt = ([n], Et, At) for t ∈ N where At

is a stochastic matrix. Assume the existence of real numbers δmax ≥ δmin > 0 such that δmin ≤

[At]ij ≤ δmax for any (i, j) ∈ Et. Assume in addition that the graph Gt is bidirectional for any

t ∈ N. If for all t0 ∈ N there is a node connected to all other nodes across [t0,∞), then the left

product AtAt−1 · · ·A1 converges to a limit.

We use the previous technical results to prove that under the proposed switching algorithm, all

agents learn the truth, asymptotically and almost surely.

Theorem 2.3 (Learning in Switching Regimes). Let the bound on log-marginals (assumption A1),

global identifiability of the true state (assumption A2), and strong connectivity of the network (as-

sumption A3) hold. Then, following the update in (2.5.1) using the switching rule proposed in this

section, all agents learn the truth exponentially fast with an asymptotic rate given by I(θ1, θ2),

defined in Lemma 2.3.
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Theorem 2.3 captures the trade-off between communication and informativeness of private sig-

nals. More specifically, private signals do not provide each agent with adequate information to learn

the true state. Hence, agents require other signals dispersed throughout the network, which high-

lights the importance of communication. On the other hand, all-time communication is unnecessary

since agents might only need a handful of interactions to augment their imperfect observations with

those of their neighbors.

2.6 Example : Binary Signal Detection

In this section, we discuss our numerical experiments. Note that, as mentioned in the footnote of

assumption A3, in our convergence results the communication matrix need not be diagonalizable,

and the assumption is only for convenience. In what follows, we disregard diagonalizability (in the

construction of network) for the first section. Therefore, we verify the generality of convergence for

arbitrary strongly connected networks.

2.6.1 Convergence of Beliefs

We generate a random network of n = 50 agents based on the Erdős-Rényi model. In our example,

each link exists with probability 0.3 independent of other links. We verify the strong connectivity

of the network before running the experiment. Though generated randomly, the network is fixed

throughout the process. Assume that there exist m = 51 states in the world and agents are to

discover the true state θ1. At time t ∈ [T ], a signal si,t ∈ {0, 1} is generated based on the true state

such that `i(·|θ1) = `i(·|θi+1). In other words, for agent i ∈ [n], we have Θ̄i = {θ1, θi+1} and θi+1

is observationally equivalent to the true state. Therefore, each agent i ∈ [n] fails to distinguish θ1

from θi+1 once relying on the private signals. However, since we have Θ̄ = ∩ni=1Θ̄i = {θ1}, the
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Figure 2.2: The belief evolution for all 50 agents in the network. The global identifiability of the true state and strong

connectivity of the network result in learning.

true state is globally identifiable. Consequently, in view of Lemma 2.3, all agents reach a consensus

on the true state (Fig. 2.2), and learn the truth exponentially fast.

2.6.2 Optimizing the Spectral Gap

To verify the result of Proposition 2.1, we must construct a communication matrix that is diagonal-

izable, yet not symmetric. We let

W1 =


0 0.95 0.05

0.95 0 0.05

0.05 0.95 0

 and W2 =

 0.5 0.5

0.3 0.7

 ,

and set W = W1 ⊗ (W2 ⊗W2). One can verify that W is row stochastic, diagonalizable and

asymmetric. Also, W t → 1π> as t → ∞, where π consists of positive elements. The resulting
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Figure 2.3: The plot of decentralization cost versus time horizon for agents 2, 4, 6 and 12 in the network. The cost in

the network with the optimal spectral gap (green) is always less than the network with default weights (blue).

network has a specific structure, but it suits our purposes since it satisfies all the conditions without

being symmetric. The signal generating process is precisely the same as the previous section. We

now turn to optimizing the spectral gap to speed up learning. We proved in Proposition 2.1 that

every default communication matrix can be adjusted to a matrix W ′ which has the optimal spectral

gap when centralities are fixed. Setting the parameter α in (2.4.2) equal to α∗ derived in Propo-

sition 2.1, we obtain the optimal network. In this example we have γ(W ) = 0.05, α∗ = 0.7273

and γ∗ = 0.5818. The dependence of decentralization cost to the spectral gap was theoretically

proved in Theorem 2.1. Applying the results of Proposition 2.1 verifies that in the optimal network,

agents suffer a lower decentralization cost comparing to the default network (Fig. 2.3). Also, we
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Figure 2.4: The decentralization cost at round T = 300 for agents 10, 11, 29 and 48 in the network. Removing the

links causes poor communication among agents and increase the decentralization cost.

proved theoretically in Theorem 2.1 that the cost bound is time-independent with high probability.

Interestingly, the plot verifies the high probability upper bound on the cost for both cases.

2.6.3 Sensitivity to Link Failure

To evaluate the result of Proposition 2.2, we need a symmetric network. The upper triangle of W is

generated using Erdős-Rényi model (similar to the first section), and the matrix is then symmetrized.

In this case every agent is equally central, and we have π = 1/n. To study the impact of link failure,

we sequentially select random pairs of agents in the network, and remove their connection. Each

time that a link is discarded, we compute the decentralization cost in the new network at iteration

T = 300, and continue the process until 50 bi-directional edges are eliminated from the network.

In view of Proposition 2.2, we expect a monotone decrease in the spectral gap which amounts to a
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larger decentralization cost. We plot the cost for four agents in the network, and observe that the

behavior is almost (not quite) monotonic (Fig. 2.4). The monotone dependence of the upper bound

to the spectral gap (Theorem 2.1) does not necessarily guarantee a monotone relationship between

cost and the spectral gap. Therefore, we can only roughly expect such behavior.

2.6.4 Efficiency of Information-Based Communication

We now exemplify the efficiency of the switching rule discussed in Section 2.5.2. We set the thresh-

old τ > 0 such that log10 τ = −17, and perform the update (2.5.1) for 1000 iterations. We also run

the same update for τ = 1 which corresponds to all-time communication algorithm (2.2.5). Fig.

2.5 represents the belief evolution under both algorithms for a randomly selected agent in the net-

work. We observe that both algorithms converge; however, the switching protocol (our algorithm in

this section) outperforms the all-time communication algorithm in terms of efficiency. The selected

agent involves in interactions only 41 times in 1000 rounds. Therefore, the communication load

simply reduces to 4.1% comparing to the green curve, which proves a significant improvement.

2.7 Omitted Proofs

Proof of Lemma 2.1. The proof is elementary, and it is only given to keep the chapter self-contained.

We write the Lagrangian associated to the update (2.2.3) as,

L(µ, λ) = −µ>φt +
1

η

〈
µ, log

µ

µ0

〉
+ λµ>1− λ,

where we left the positivity constraint implicit. Differentiating above with respect to µ and λ, and

setting the derivatives equal to zero, we get

µt(k) = µ0(k) exp {η(φt(k)− λ)− 1} and µ>t 1 = 1,
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Figure 2.5: The comparison of belief evolution for a randomly selected agent in the network. The blue curve is

generated under the switching protocol, while the green one is based on the all-time communication scheme .

respectively, for any k ∈ [m]. Combining the equations above and noting that µ0 is uniform, we

have

1

m
exp{−ηλ− 1}

m∑
k=1

exp{ηφt(k)} = 1,

which allows us to solve for λ and calculate the optimal solution µt as follows,

µt(k) =
exp {ηφt(k)}∑m
k=1 exp {ηφt(k)}

.
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The proof for µi,t follows precisely in the same fashion. To calculate φi,t, notice that in view of the

first update in (2.2.5) we have

φ1,t

φ2,t

...

φn,t


= (W ⊗ Im)



φ1,t−1

φ2,t−1

...

φn,t−1


+



ψ1,t

ψ2,t

...

ψn,t


,

where ⊗ denotes the Kronecker product. The equation above represents a discrete-time linear sys-

tem. Given the fact that φi,0(k) = 0 for all k ∈ [m] and i ∈ [n], the closed-form solution of the

system takes the form

φ1,t

φ2,t

...

φn,t


=

t∑
τ=1

(W ⊗ In)t−τ



ψ1,τ

ψ2,τ

...

ψn,τ


=

t∑
τ=1

(
W t−τ ⊗ In

)


ψ1,τ

ψ2,τ

...

ψn,τ


.

Therefore, extracting φi,t for each i ∈ [n] from the preceding relation completes the proof. �

Proof of Lemma 2.2. Since the network is strongly connected and the corresponding W is irre-

ducible and aperiodic, by standard properties of stochastic matrices (see e.g. [46]), the diagonaliz-

able matrix W satisfies

∥∥∥e>i W t − π>
∥∥∥

1
≤ nλmax(W )t, (2.7.1)

for any i ∈ [n], where π is the stationary distribution of a Markov chain with transition kernel W .

Let us observe the following inequality

nλmax(W )t−τ ≤ 2 for t− τ ≥ t̃ :=
log
[
n
2

]
log λmax(W )−1

,
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and recall that the inequality
∥∥e>i W t−τ − π>

∥∥
1
≤ 2 always holds since any power ofW is stochas-

tic. With that in mind, we use (4.5.1) to break the following sum into two parts to get

t∑
τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣ =
t∑

τ=1

∥∥∥e>i W t−τ − π>
∥∥∥

1

=
t−t̃∑
τ=1

∥∥∥e>i W t−τ − π>
∥∥∥

1
+

t∑
τ=t−t̃+1

∥∥∥e>i W t−τ − π>
∥∥∥

1

≤
t−t̃∑
τ=1

nλmax(W )t−τ + 2t̃

≤ nλmax(W )t̃

1− λmax(W )
+

2 log n
2

log λmax(W )−1
,

for any i ∈ [n]. Note that 1− λmax(W ) ≤ log λmax(W )−1 and 2 + 2 log n
2 ≤ 4 log n, since n > 1.

It follows by plugging t̃ into above that

t∑
τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣ =

t∑
τ=1

∥∥∥e>i W t−τ − π>
∥∥∥

1
≤ 4 log n

1− λmax(W )
,

which completes the proof. �

We use the following inequality in [56] in the proof of Lemma 2.3.

Lemma 2.6. (McDiarmid’s Inequality) Let X1, ..., XN ∈ χ be independent random variables

and consider the mapping H : χN 7→ R. If for i ∈ {1, ..., N}, and every sample x1, ..., xN , x
′
i ∈ χ,

the function H satisfies

∣∣H(x1, ..., xi−1, xi, xi+1, ..., xN )−H(x1, ..., xi−1, x
′
i, xi+1, ..., xN )

∣∣ ≤ ci,
then for all ε > 0,

P

{
H(x1, ..., xN )− E [H(X1, ..., XN )] ≥ ε

}
≤ exp

{
−2ε2∑N
i=1 c

2
i

}
.
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Proof of Lemma 2.3. According to Lemma 2.1, we have

µi,t(1) =
exp {ηφi,t(1)}∑m
k=1 exp {ηφi,t(k)}

=

(
1 +

m∑
k=2

exp {ηφi,t(k)− ηφi,t(1)}

)−1

≥ 1−
m∑
k=2

exp {ηφi,t(k)− ηφi,t(1)} , (2.7.2)

where we used the fact that (1 + x)−1 ≥ 1− x for any x ≥ 0. Since we know

‖µi,t − e1‖TV =
1

2

(
1− µi,t(1) +

m∑
k=2

µi,t(k)

)
= 1− µi,t(1),

we can combine above with (2.7.2) to obtain

‖µi,t − e1‖TV ≤
m∑
k=2

exp {ηφi,t(k)− ηφi,t(1)} . (2.7.3)

For any k ∈ [m], define

Φi,t(k) :=
t∑

τ=1

n∑
j=1

[
W t−τ ]

ij
log `j(·|θk),

and note that Φi,t(k) is a function of nt random variables. As required in McDiarmid’s inequality

in Lemma 2.6, set H = Φi,t(k), fix the samples for nt−1 random variables, and draw two different

samples sj,τ and s′j,τ for some j ∈ [n] and some τ ∈ [t]. The fixed samples are simply cancelled in

the subtraction, and we have

∣∣H(..., sj,τ , ...)−H(..., s′j,τ , ...)
∣∣ =

∣∣∣[W t−τ ]
ij

(
log `j(sj,t|θk)− log `j(s

′
j,t|θk)

)∣∣∣
≤
[
W t−τ ]

ij
2B,

where we used assumption A1. Since any power of W is stochastic, summing over j ∈ [n] and

τ ∈ [t], we get

t∑
τ=1

n∑
j=1

([
W t−τ ]

ij
2B
)2
≤ 4B2t.
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We now apply McDiarmid’s inequality in Lemma 2.6 to obtain

P
(
φi,t(k)− φi,t(1) > E [Φi,t(k)]− E [Φi,t(1)] + ε

)
≤ exp

{
−ε2

2B2t

}
,

for each fixed k. Setting the probability above to δ/m and taking a union bound over all states, the

following event holds

φi,t(k)− φi,t(1) ≤ E [Φi,t(k)]− E [Φi,t(1)] +

√
2B2t log

m

δ
, (2.7.4)

simultaneously for all k = 2, ...,m, with probability at least 1 − δ. On the other hand, in view of

assumption A1, we have

E [Φi,t(k)− Φi,t(1)] =
t∑

τ=1

n∑
j=1

[
W t−τ ]

ij
E [log `j(·|θk)− log `j(·|θ1)]

=
t∑

τ=1

n∑
j=1

([
W t−τ ]

ij
− π(j)

)
E [log `j(·|θk)− log `j(·|θ1)]

+
t∑

τ=1

n∑
j=1

π(j)E [log `j(·|θk)− log `j(·|θ1)]

≤ 2B
t∑

τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣− t n∑
j=1

π(j)DKL (`j(·|θ1)‖`j(·|θk))

= 2B
t∑

τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣− I(θ1, θk)t (2.7.5)

≤ 8B log n

1− λmax(W )
− I(θ1, θk)t,

where we applied Lemma 2.2 to derive the last step. Using (2.2.4), we simplify above to get

E [Φi,t(k)− Φi,t(1)] ≤ 8B log n

1− λmax(W )
− I(θ1, θ2)t, (2.7.6)

for any k = 2, ...,m. Plugging (2.7.6) into (2.7.4) and combining with (2.7.3), we have

‖µi,t − e1‖TV ≤
m∑
k=2

exp

{
−ηI(θ1, θ2)t+ η

√
2B2t log

m

δ
+

8ηB log n

1− λmax(W )

}

≤ m exp

{
−ηI(θ1, θ2)t+ η

√
2B2t log

m

δ
+

8ηB log n

1− λmax(W )

}
,
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with probability at least 1 − δ, and thereby completing the proof of the first part. Letting δ = 1/t2

in above and applying Borel-Cantelli lemma, the almost sure convergence follows immediately. �

Proof of Lemma 2.4. We recall from the statement of the lemma that qi,t(k) = φi,t(k)−φt(k), and

calculate the ratio µi,t(k)/µt(k) for any k ∈ [m] as follows,

µi,t(k)

µt(k)
= exp {ηqi,t(k)} Eµ0 [exp {ηφt}]

Eµ0 [exp {ηφi,t}]

= exp {ηqi,t(k)} Eµ0 [exp {ηφt}]
Eµ0 [exp {ηφt} exp {ηqi,t}]

= exp {ηqi,t(k)} 1

Eµ0
[

exp{ηφt}
Eµ0 [exp{ηφt}] exp {ηqi,t}

]
= exp {ηqi,t(k)} 1

Eµ0
[
µt
µ0

exp {ηqi,t}
]

= exp {ηqi,t(k)} 1

Eµt [exp {ηqi,t}]
.

This entails

1

η
Eµi,t

[
log

µi,t
µt

]
= Eµi,t [qi,t]−

1

η
log Eµt [exp {ηqi,t}] ≤ Eµi,t [qi,t]− Eµt [qi,t] ,

where we used Jensen’s inequality on the convex function − log(·). Setting the expectation mea-

sures in the right hand side of above to µt, and recalling the ratio µi,t/µt from above, we conclude
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that,

Eµi,t

[
log

µi,t
µt

]
≤ Eµt

[
µi,t
µt
ηqi,t

]
− Eµt [ηqi,t]

= Eµt

[(
exp{ηqi,t}

Eµt [exp{ηqi,t}]
− 1

)
ηqi,t

]
=

m∑
k=1

µt(k)ηqi,t(k)

(
exp{ηqi,t(k)}

Eµt [exp{ηqi,t}]
− 1

)

=
m∑
k=1

µt(k)ηqi,t(k)
〈ek − µt, exp{ηqi,t}〉
〈µt, exp{ηqi,t}〉

≤
exp{1

4}
4

m∑
k=1

µt(k)
∣∣〈ek − µt, exp{ηqi,t}

〉 ∣∣,
where we used the condition η‖qi,t‖∞ ≤ 1/4 to obtain the last line. We now apply Hölder’s

inequality for primal-dual norm pairs and use η‖qi,t‖∞ ≤ 1/4 again to simplify above as follows

Eµi,t

[
log

µi,t
µt

]
≤

exp{1
4}

4

m∑
k=1

µt(k) ‖ek − µt‖1 ‖ exp{ηqi,t}‖∞

≤
exp{1

2}
4

m∑
k=1

µt(k) ‖ek − µt‖1

≤
exp{1

2}
4

‖e1 − µt‖1 +
exp{1

2}
2

m∑
k=2

µt(k), (2.7.7)

where the last step follows from the fact that ‖ek − µt‖1 ≤ 2 for any k ∈ [m]. Recalling

1

2
‖e1 − µt‖1 =

1

2

(
1− µt(1) +

m∑
k=2

µt(k)

)

=
1

2

(
m∑
k=1

µt(k)− µt(1) +

m∑
k=2

µt(k)

)
=

m∑
k=2

µt(k),

as well as the fact ‖e1 − µt‖TV = 1
2‖e1 − µt‖1, we simplify (2.7.7) to get

Eµi,t

[
log

µi,t
µt

]
≤ exp

{
1

2

}
‖e1 − µt‖TV ≤ 2‖e1 − µt‖TV, (2.7.8)

and thereby completing the proof. �
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Proof of Theorem 2.1. We recall that qi,t in the statement of Lemma 2.4 satisfies

‖qi,t‖∞ =

∥∥∥∥∥∥
t∑

τ=1

n∑
j=1

([
W t−τ ]

ij
− π(j)

)
ψj,t

∥∥∥∥∥∥
∞

≤ B
t∑

τ=1

n∑
j=1

∣∣∣[W t−τ ]
ij
− π(j)

∣∣∣ ≤ 4B log n

1− λmax(W )
,

due to Lemma 2.2 and assumption A1. Therefore, the choice of η = 1−λmax(W )
16B logn guarantees that qi,t

satisfies η‖qi,t‖∞ ≤ 1/4 for all t ∈ [T ].

Let us follow exactly the same steps in the proof of Lemma 2.3, and note that the centralized

update can be recovered using W = 1π>. It can be verified from (2.7.5) that for any t ∈ [T ], we

only remain with

E [Φt(k)− Φt(1)] ≤ −I(θ1, θ2)t,

which yields

1

η
log ‖µt − e1‖TV ≤ −I(θ1, θ2)t+

√
2B2t log

m

δt
+

logm

η
, (2.7.9)

with probability at least 1 − δt. To have the above work for all t ∈ [T ] (simultaneously) with

probability at least 1 − δ, we need to take a union bound over any t ∈ [T ]. Therefore, we have to

choose {δt}Tt=1 such that
∑T

t=1 δt ≤ δ. Letting δt := δ exp
{
−t1/3

}
/6, we have

T∑
t=1

δt ≤
δ

6

∫ ∞
0

exp
{
−t

1
3

}
dt =

δ

6

∫ ∞
0

3u2 exp {−u} du =
δ

6
3! = δ. (2.7.10)

Let us avoid notational clutter, by defining a := I(θ1, θ2), b :=
(
2B2 log [6m/δ]

)1/2 and c :=
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√
2B, respectively. Then, in view of (2.7.9) and Lemma 2.4, with probability at least 1−δt we have

DKL(µi,t‖µt) ≤ 2‖e1 − µt‖TV

≤ 2m exp
{
η
(
−at+ bt

1
2 + ct

2
3

)}
≤ 2m exp

{
−a

3
ηt
}

for t ≥ t1 := max

{(
3b

a

)2

,

(
3c

a

)3
}

≤ 2, for t ≥ t2 :=
3

aη
logm.

Let t0 = max{t1, t2}, note all the inequalities above together, and observe the fact that ‖e1 −

µt‖TV ≤ 1 for any t ∈ [T ]. Also, recall the proper choice of δt for the union bound (2.7.10) to get

Costi,T =
T∑
t=1

DKL(µi,t‖µt) ≤ 2

t0∑
t=1

‖e1 − µt‖TV + 2
T∑

t=t0+1

m exp
{
−a

3
ηt
}

≤ 2t0 + 2
T∑

t=t2+1

m exp
{
−a

3
ηt
}

≤ 2t0 + 2

∫ ∞
t2

m exp
{
−a

3
ηt
}
dt = 2t0 +

6

aη
,

with probability at least 1− δ. Plugging our choice of η into above completes the proof. �

Proof of Lemma 2.5. Given the hypothesis, agent i follows the Bayesian update after t̂, and we

have

µi,t(k) =
µi,t−1(k)`i(si,t|θk)∑

k′∈[m] µi,t−1(k′)`i(si,t|θk′)
,

for any k ∈ [m] and t ≥ t̂. Recalling that θ1 denotes the true state, we can write for any t > t̂ and

k 6= 1,

log
µi,t(k)

µi,t(1)
= log

µi,t−1(k)

µi,t−1(1)
+ log

`i(si,t|θk)
`i(si,t|θ1)

. (2.7.11)
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Therefore, for any θk ∈ Θ̄i, we have

µi,t(k)

µi,t(1)
=
µi,t̂(k)

µi,t̂(1)
,

for all t > t̂, since in (2.7.11) the likelihood ratio is one, and log
`i(si,t|θk)
`i(si,t|θ1) = 0 by definition of

observationally equivalent states. On the other hand, for any θk ∈ Θ \ Θ̄i simplifying (2.7.11) and

dividing by t, we obtain for all t > t̂

1

t
log

µi,t(k)

µi,t(1)
=

1

t
log

µi,t̂(k)

µi,t̂(1)
+

1

t

t∑
τ=t̂+1

log
`i(si,τ |θk)
`i(si,τ |θ1)

−→ E

[
log

`i(·|θk)
`i(·|θ1)

]
= −DKL (`i(·|θ1)‖`i(·|θk)) < 0,

almost surely by the Strong Law of Large Numbers (SLLN). Note that since the signals are i.i.d.

over time and the log-marginals are bounded (assumption A1), SLLN could be applied. The above

entails that µi,t(k) −→ 0 for any θk ∈ Θ \ Θ̄i, and thereby completing the proof. �

Proof of Theorem 2.3. Fix any time t0 ∈ N. When an agent uses Bayes’ rule for t ≥ t0, in

view of Lemma 2.5, the condition ‖µi,t − µi,t−1‖TV < τ will be satisfied in a finite (random) time

due to almost sure convergence of Bayes’ rule. Therefore, all neighboring agents will eventually

communicate with each other in the interval [t0,∞). On the other hand, the underlying graph G

is strongly connected by assumption A3; hence, all the conditions of Proposition 2.3 are satisfied,

and the left product W (t)W (t − 1) · · ·W (1) has a limit, and since the matrices in the sequence

{W (t)}∞t=1 are doubly stochastic by the proposed switching rule, we get

t−1∏
ρ=0

W (t− ρ) −→ 1

n
11
>, (2.7.12)
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almost surely. We recall that Lemma 2.1 provides a closed-form solution of (2.5.1) for when

W (t) = W . The closed-form of (2.5.1), itself, can be derived in a similar fashion, and we get

1

t
φi,t(k) =

1

t

t∑
τ=0

n∑
j=1

t−1−τ∏
ρ=0

W (t− ρ)


ij

log `j(sj,τ |θk)

=
1

nt

t∑
τ=0

n∑
j=1

log `j(sj,τ |θk) + ei,t(k), (2.7.13)

where

ei,t(k) =
1

t

t∑
τ=0

n∑
j=1

t−1−τ∏
ρ=0

W (t− ρ)


ij

− 1

n

 log `j(sj,τ |θk).

Since the log-marginals are bounded (assumption A1), in view of (2.7.12) we get

|ei,t(k)| ≤ B

t

t∑
τ=0

n∑
j=1

∣∣∣∣∣∣
t−1−τ∏

ρ=0

W (t− ρ)


ij

− 1

n

∣∣∣∣∣∣
−→ 0, (2.7.14)

as t→∞, since Cesàro mean preserves the limit. Also, applying SLLN we get

1

nt

t∑
τ=0

n∑
j=1

log `j(sj,τ |θk) −→
1

n

n∑
j=1

E [log `j(·|θk)] ,

almost surely. Combining above with (2.7.13) and (2.7.14) and recalling the definition of I(θ1, θk)

in Lemma 2.3, we derive

1

t
φi,t(k)− 1

t
φi,t(1) −→ −I(θ1, θk), (2.7.15)

almost surely, which guarantees that

eφi,t(k)−φi,t(1) −→ 0, (2.7.16)

for any k 6= 1, since I(θ1, θk) > 0 due to global identifiability of θ1 (assumption A2). Now observe

that

µi,t(1) =
eφi,t(1)∑m
k=1 e

φi,t(k)
=

1

1 +
∑m

k=2 e
φi,t(k)−φi,t(1)

. (2.7.17)
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Taking the limit and using (2.7.16), the proof of convergence follows immediately, and per (2.7.15)

this convergence is exponentially fast with the asymptotic rate I(θ1, θ2) corresponding to the slow-

est vanishing summand in the denominator of (2.7.17). �
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Chapter 3

Inverse Problem : Network

Identification

In the previous chapter we considered an information aggregation procedure over networks. We

focused on a setting where the network structure is given, and the algorithm outputs beliefs accord-

ingly. However, we now aim to address an inverse-type problem: what would happen if the outputs

of an update (say a consensus algorithm) are given, and the network structure is unknown? Can we

reconstruct the network topology if we measure the outputs? We are interested to find the answer to

these questions in this chapter.

The reconstruction of networks of dynamical systems is an important task in many realms of

science and engineering, including biology, physics and finance [57–61]. Networked dynamical sys-

tems have been widely used to study the phenomenon of synchronization [62, 63]. Motivated by this

line of research, we propose several algorithms to reconstruct the structure of a directed network of

interconnected linear dynamical systems. We begin with an algorithm to find the Boolean structure

of the unknown topology. This algorithm is based on the analysis of power spectral properties of the
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network response when the inputs are wide-sense stationary (WSS) processes of an unknown power

spectral density (PSD). The measurements are performed via a node-knockout procedure inspired by

work of Nabi-Abdolyousefi and Mesbahi [64]. Apart from recovering the Boolean structure of the

network, we propose another algorithm to recover the exact structure of the network (including edge

weights) when an eigenvalue-eigenvector pair of the connectivity matrix is known. This algorithm

can be applied, for example, in the case of the connectivity matrix being a Laplacian matrix or the

adjacency of a regular graph. Apart from general directed networks, we also propose reconstruction

methodologies for directed nonreciprocal networks (networks with no directed edges pointing in

opposite directions) and undirected networks. In the latter cases, we propose specialized algorithms

able to recover the network structure with less computational cost.

This chapter is organized as follows. In Section 3.1, we introduce some preliminary definitions

needed in our exposition and describe the network reconstruction problem under consideration. Sec-

tion 3.2 provides several theoretical results that are the foundation for our reconstruction techniques.

In Section 3.3, we introduce several algorithms to reconstruct the Boolean structure of a directed

network, the exact structure of a directed network given an eigenvalue-eigenvector pair, and the

structure of undirected and nonreciprocal networks. We also provide an overview of relevant works

in Section 3.4. The content of the chapter is mostly from the work of Shahrampour and Preciado

[65].
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3.1 Preliminaries and Problem Description

Id d× d identity matrix.

1d d-dimensional vector of all ones.

ek k-th unit vector in the standard basis of RN .

E(·) Expectation operator.

Rxy(τ) Cross-correlation function, E(x(t)y(t− τ)).

Rx(τ) Auto-correlation function, E(x(t)x(t− τ)).

F {·} Fourier transform.

Syiyj (ω) Cross-power spectral density (CPSD), F
{
Ryiyj (τ)

}
.

Syi(ω) Power spectral density (PSD), F
{
Ryiyi(τ)

}
.

Table 3.1: Nomenclature

3.1.1 Graph Theory

A weighted, directed graph is defined as the triad D := (V, Ed,Fd), where V := {v1, . . . , vN}

denotes a set of N nodes and Ed ⊆ V × V denotes a set of m directed edges in D. The function

Fd : Ed → R++ associates positive real weights to the edges. We define the weighted in-degree of

node vi as

degin (vi) =
∑

j:(vj ,vi)∈Ed

Fd ((vj , vi)) .

The adjacency matrix of a weighted, directed graph D, denoted by AD = [aij ], is a N ×N matrix

defined entry-wise as aij = Fd((vj , vi)) if edge (vj , vi) ∈ Ed , and aij = 0 otherwise. We define

the Laplacian matrix LD as LD = diag(degin (vi))−AD. The Laplacian matrix satisfies LD1 = 0,

i.e., the vector 1/
√
N is an eigenvector of the Laplacian matrix with eigenvalue 0.
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3.1.2 Dynamical Network Model

Consider a dynamical network consisting of N linearly coupled identical nodes, with each node

being an n-dimensional, LTI, SISO dynamical system. The dynamical network under study can be

characterized by

ẋi(t) = Axi(t) + b

 N∑
j=1

gijyj(t) + wi (t)

 , (3.1.1)

yi(t) = c>xi(t),

where xi(t) ∈ Rn denotes the state vector describing the dynamics of node vi ∈ V . A ∈ Rn×n and

b, c ∈ Rn are the given state, input and output matrices corresponding to the state-space representa-

tion of each node in isolation. wi (t) and yi(t) ∈ R are stochastic processes representing the input

noise and the system output, respectively, gij ≥ 0 is the coupling strength of a directed edge from vi

to vj , which we shall assume to be unknown. It is worth remarking that considering identical nodes

allows us to use tensor notation that simplifies our technical analysis. Relaxing this assumption as

well as studying coupling strengths of dynamic form are currently under investigation.

Defining the network state vector, the noise vector, and the network output vector as

x(t) := (x>1 (t), . . . , x>N (t))> ∈ RNn

w(t) := (w1(t), . . . , wN (t))> ∈ RN

y(t) := (y1(t), . . . , yN (t))> ∈ RN ,

respectively, we can rewrite the network dynamics in (3.1.1), as

ẋ(t) =
(
IN ⊗A+ G⊗ bc>

)
x(t) + (IN ⊗ b)w(t), (3.1.2)

y(t) =
(
IN ⊗ c>

)
x(t),
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where G = [gij ] is the connectivity matrix of a (possibly weighted and/or directed) network D. For

the networked dynamical system to be stable, we assume the network state matrix IN⊗A+G⊗bc>

to be Hurwitz.

Hereafter, we will analyze the following scenario. Consider a collection of N dynamical nodes

with a known LTI, SISO dynamics defined by the state-space matrices (A, b, c>, 0). The link struc-

ture of the network dynamic model, described by the connectivity matrix G, is completely unknown.

We assume the input noises, {wi (t)}Ni=1, are i.i.d. wide-sense stationary processes of unknown but

identical power spectral densities, i.e., Swi(ω) = Sw(ω) for all i = 1, . . . , N . We are interested in

identifying all the links in the network by exploiting only the information provided by the realiza-

tions of the output stochastic processes y1(t), . . . , yN (t). Formally, we can formulate this problem

as follows:

Problem 3.1. Consider the dynamical network model in (3.1.2), whose connectivity matrix G is

unknown. Assume that the only available information is a spectral characterization of the output

signals y1(t), . . . , yN (t) in terms of power and cross-power spectral densities, Syi(ω) and Syiyj (ω),

which can be empirically estimated from the output signals1. Then, find the Boolean structure of the

directed network, i.e., the location and direction of each edge.

It is worth remarking that we assume the input noise to be an exogenous signal of unknown

power spectral density, Sw(ω).

1One can use, for example, Bartletts averaging method [66] to produce periodogram estimates of power and cross-

power spectral densities, Syi(ω) and Syiyj (ω).
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3.2 The Relationship between Input-Output Power Spectral Densities

We start by stating some assumptions we need in our subsequent developments. The following

definition will be useful for determining sufficient conditions for detection of links in a network.

Definition 3.1. [Excitation Frequency Interval, [67]] The excitation frequency interval of a vector

w (t) of wide-sense stationary processes is defined as an interval (−Ω,Ω), with Ω > 0, such that

the power spectral densities of the input components wi (t) satisfy Swi(ω) > 0 for all ω ∈ (−Ω,Ω),

and all i ∈ {1, 2, ..., N}.

Throughout, we impose the following conditions on the input vector:

A1. The collection of signals {wi(t), i = 1, ..., N} are uncorrelated, zero-mean WSS processes

with identical autocorrelation function, i.e., for any t, τ ∈ R, Rwi(τ) = E(wi(t)wi(t+τ)) :=

Rw(τ).

A2. The input noise w (t) presents a nonempty excitation frequency interval (−Ω,Ω).

In our derivation, we will invoke the following variation of the matrix inversion lemma [68]:

Lemma 3.1 (Sherman-Morrison-Woodbury). Assume that the matrices D and I +WD−1UE are

nonsingular. Then, the following identity holds

(D + UEW )
−1

= D−1 −D−1UE
(
I +WD−1UE

)−1
WD−1,

where E,W,D, and U are matrices of compatible dimensions and I is the identity matrix.

Based on Woodbury’s formula, we derive an expression that provides an explicit relationship

between the (cross-)power spectral densities of two stochastic outputs, yi (t) and yj (t), when we

inject a noise wk (t) into node k with power spectral density Sw (ω).
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Lemma 3.2. Consider the continuous-time networked dynamical system (3.1.2). Then, under as-

sumptions (A1)-(A2), the following identity holds

S (ω) = Sw(ω)

(
IN

|h (jω)|2
+ G>G− G

h∗ (jω)
− G>

h (jω)

)−1

, (3.2.1)

where S (ω) :=
[
Syiyj (ω)

]
is the matrix of output CPSD’s, and h (jω) := c> (jωIn −A)−1 b is

the nodal transfer function.

Proof. The N × N transfer matrix, H (jw) := [Hji (jω)], of the state-space model in (3.1.2) is

given by

H (jω) = (IN ⊗ c>)

(
jωINn − IN ⊗A−G⊗ bc>

)−1

(IN ⊗ b)

= (IN ⊗ c>)

(
IN ⊗ (jωIn −A)−G⊗ bc>

)−1

(IN ⊗ b). (3.2.2)

Assume that we inject a noise signal into the k-th node, i.e., w (t) = wk (t) ek. Hence, the power

spectral density measured on the output of node i is equal to

Syi(ω) = Hki(ω)H∗ki(ω)Swk(ω).

On the other hand, the transfer functions from input wk (t) to the outputs yi (t) and yj (t) are,

respectively,

Yi (jω)

Wk (jω)
= Hki(jω) and

Yj (jω)

Wk (jω)
= Hkj(jω),

where Yi (jω) and Wk (jω) are the Fourier transforms of yi (t) and wk (t), respectively. Hence,

Yj (jω)

Yi (jω)
= H−1

ki (jω)Hkj(jω),

which implies

Syiyj (ω) =

(
Hkj(jω)H−1

ki (jω)

)∗
Syi(ω).
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Since Swk(ω) = Sw(ω) for all k, we have that Syiyj (ω) = Hki(jω)H∗kj(jω)Sw(ω). Assume that

we inject noise signals satisfying assumptions (A1)-(A2) into all the nodes in the network, i.e.,

w (t) =
∑N

k=1wk (t) ek. Hence, we can apply superposition to obtain

Syiyj (ω)

Sw(ω)
=

N∑
k=1

H∗kj(jω)Hki(jω)

=

N∑
k=1

e>k H
∗ (jω) eje

>
i H (jω) ek

=

N∑
k=1

Tr
(
H∗ (jω) eje

>
i H (jω) eke

>
k

)

= Tr
(
H∗ (jω) eje

>
i H (jω)

N∑
k=1

eke
>
k

)

= e>i H (jω)H∗ (jω) ej , (3.2.3)

for any ω ∈ (−Ω,Ω), where we used the identity
∑N

k=1 eke
>
k = IN in our derivation.

Let us define the matricesW := IN⊗c>, U := IN⊗b, E := −G, andD := IN⊗(jωIn −A).

Then, we can rewrite the transfer matrix H (jω) in (3.2.2) as

H (jω) = W (D + UEW )−1U. (3.2.4)

Also, we have that h (jω) IN = WD−1U . Then, applying Lemma 3.1 to (3.2.4), we can rewrite the

transfer matrix, as follows

H (jω) = h (jω)

(
IN + G

(
IN − h (jω)G

)−1
h (jω) IN

)
= h (jω)

(
IN + G

(
IN

h (jω)
−G

)−1)
= h (jω)

(
IN +

(
G− IN

h (jω)
+

IN
h (jω)

)( IN
h (jω)

−G
)−1
)

= h (jω)

(
IN − IN +

1

h (jω)

( IN
h (jω)

−G
)−1
)

=

(
IN

h (jω)
−G

)−1

.

Substituting above into (3.2.3), we reach the statement of our lemma.
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In the following section, we will use this lemma to reconstruct an unknown network structure

G from the empirical CPSD’s of the outputs. We will also show that, assuming that we know one

eigenvalue-eigenvector pair of G, we can recover the weighted and directed graph D (not only its

Boolean structure, but also its weights), as well as the PSD of the noise, Sw (ω). Relevant examples

of this scenario are: (i) networks of diffusively coupled systems with a Laplacian connectivity

matrix [69], i.e., G = −LD, since Laplacian matrices always satisfy LD1N = 0; or (ii) k-regular

networks [70], i.e., G = Ak, since the adjacency matrix Ak satisfy Ak1N = k.

As stated in Problem 3.1, the PSD of the input noise w (t) is not available to us to perform

the network reconstruction. The following lemma will allow us reconstruct this PSD when an

eigenvalue-eigenvector pair of G is known a priori.

Lemma 3.3. Consider the continuous-time networked dynamical system (3.1.2). Then, under as-

sumptions (A1)-(A2), the input PSD can be computed as

Sw(ω) =
λ2|h (jω) |2 − 2λRe{h (jω)}+ 1

(u>S−1 (ω)u)|h (jω) |2
, (3.2.5)

where (λ,u) is an eigenvalue-eigenvector pair of G, h (jω) is the nodal transfer function, and

S (ω) :=
[
Syiyj (ω)

]
is the matrix of CPSD’s.

Proof. From (3.2.1), we have

S−1 (ω)Sw(ω) =
IN

|h (jω)|2
+G>G− G

h∗ (jω)
− G>

h (jω)
.

Pre- and post-multiplying by u> and u, respectively, we obtain

(
u>S−1 (ω)u

)
Sw(ω) =

1

|h (jω)|2
+ λ2 − λ

h (jω)
− λ

h∗ (jω)
.

Dividing by u>S−1 (ω)u, we reach (3.2.5).
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Lemma 3.3 shows that, given the eigenvalue-eigenvector pair (λ,u), the PSD of the input noise

can be reconstructed from the nodal transfer function and the matrix of CPSD’s, S (ω), which can

be numerically approximated from the empirical cross-correlations between output signals.

3.3 Reconstruction Methodologies

Based on the above results, we introduce several methodologies to reconstruct the structure of an

unknown network following the dynamics in (3.1.2) when the PSD of the input noise is unknown.

Consider Problem 3.1, when G is an unknown connectivity matrix representing a weighted,

directed network D. We propose a reconstruction technique to recover the Boolean structure of D

when the PSD of the input noise is unknown. Note that, in general, the result in Lemma 3.2 is not

enough to extract the underlying structure of the network, even if the input noise PSD were known.

In what follows, we propose a methodology to reconstruct a directed network of dynamical nodes by

grounding the dynamics in a series of nodes, similar to the approach proposed in [64] to reconstruct

undirected networks following a consensus dynamics.

Definition 3.2 (Grounded Dynamics). The dynamics of (3.1.2) grounded at node vj takes the form

˙̃x (t) =
(
IN−1 ⊗A+ G̃j ⊗ bc>

)
x̃(t) + (IN−1 ⊗ b) w̃(t), (3.3.1)

ỹ(t) =
(
IN−1 ⊗ c>

)
x̃(t),

where w̃(t) is obtained by eliminating the j-th entry from the input noise w (t), and G̃j ∈ R(N−1)×(N−1)

is obtained by eliminating the j-th row and column from G.

The dynamics in (3.3.1) describes the evolution of (3.1.2) when we ground the state of node vj

to be xj(t) ≡ 0. Applying Lemma 3.2 to the grounded dynamics (3.3.1), one obtains the following
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expression for the CPSD’s:

S̃j(ω) = Sw(ω)

(
IN−1

|h (jω)|2
+ G̃>j G̃j −

G̃j

h∗ (jω)
−

G̃>j
h (jω)

)−1

. (3.3.2)

We will use the next Theorem to propose several reconstruction techniques in Subsections 3.3.1

and 3.3.2.

Theorem 3.1. Consider the networked dynamical system (3.1.2) with connectivity matrix G = [gij ].

Let us denote by Sw (ω) the PSD of the input noise, by S (ω) =
[
Syiyj (ω)

]
the N × N matrix of

CPSD’s for the (ungrounded) dynamics (3.1.2), and by S̃j (ω) = [S̃yiyk(ω)]i,k 6=j theN −1×N −1

matrix of CPSD’s for the dynamics in (3.3.1) grounded at node vj . Then, under assumptions (A1)-

(A2), we have that, for i < j,

gji =
[
Sw (ω0)

(
[S−1 (ω0)]ii − [S̃−1

j (ω0)]ii

)]1/2
. (3.3.3)

For i > j

gji =
[
Sw (ω0)

(
[S−1 (ω0)]ii − [S̃−1

j (ω0)]i−1,i−1

)]1/2
. (3.3.4)

Proof. Without loss of generality, we consider the case that j = N (for any other j 6= N , we can

transform the problem to the case j = N via a simple reordering of rows and columns). Subtracting

the diagonal elements of S−1 (ω) in (3.3.2) from those of S̃−1
j (ω) in (3.2.1), we obtain

[S−1 (ω)]ii − [S̃−1
j (ω)]ii =

[G>G]ii − [G̃>NG̃N ]ii
Sw(ω)

.

Also, since [G>G]ii =
∑

k g
2
ki and [G̃>NG̃N ]ii =

∑
k 6=N g

2
ki, we have that

[G>G]ii − [G̃>NG̃N ]ii = g2
Ni,

for any i < N . The same analysis holds for j 6= N . Hence, we can recover the entries gji,

for i < j, as stated in our theorem. Notice also that, for j 6= N and i > j, we must use the entry
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[S̃−1
j (ω)]i−1,i−1 in (3.3.4), to take into account that S̃j (ω) is an (N−1)×(N−1) matrix associated

to the dynamics grounded at node vj .

3.3.1 Boolean Reconstruction of Directed Networks

Theorem 3.1 allows us to reconstruct the Boolean structure of an unknown directed network if we

have access to the matrices of CPSD’s, S (ω0) and S̃j (ω0), for any ω0 in the excitation frequency

interval (−Ω,Ω). In particular, one can verify the existence of a directed edge (i, j) by checking

the condition gji > 0, where gji is computed from Theorem 3.1. In practice, the CPSD’s S (ω0)

and S̃j (ω0) are empirically computed from the stochastic outputs of the network, y (t) and ỹ (t);

therefore, they are subject to numerical errors. Hence, in the implementation, one should relax the

condition gji > 0 to gji > τ , where τ is a small threshold used to account for numerical precision.

Based on Theorem 3.1, we propose Algorithm 1 to find the Boolean representation of G, de-

noted by B (G), when a directed dynamical network is excited by an input noise of unknown PSD.

Algorithm 1 incurs the following computational cost:

(i) It computes the cross-correlation functions for all the N2 pairs of outputs in (3.1.2). For

each one of the N grounded dynamics in (3.3.1), the algorithm also computes (N − 1)2

pairs of cross-correlation functions, resulting in a total of O(N3) computations. To compute

these cross-correlations we use time series of length L. Since each each cross-correlation

takesO
(
L2
)

operations, we have a total ofO
(
N3L2

)
operations to compute all the required

cross-correlations.

(ii) Algorithm 1 evaluates the DFT of all (N + 1)N2 cross-correlation functions of lengthL in (i)

at a particular frequency ω0 ∈ (−Ω,Ω). Since evaluating the DFT at a single frequency takes
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Algorithm 1 Boolean reconstruction of directed networks
Require: h(jω), y(t) from (3.1.2), ỹ(t) from (3.3.1), and any ω0 ∈ (−Ω,Ω);

1: Compute S(ω0) from y(t);

2: for j = 1 : N do

3: Compute S̃j(ω0) from ỹ(t);

4: for i = 1 : j − 1 do

5: if [S−1 (ω0)]ii − [S̃−1
j (ω0)]ii > τ then bji = 1;

6: if [S−1 (ω0)]ii − [S̃−1
j (ω0)]ii < τ then bji = 0;

7: end for

8: for i = j + 1 : N do

9: if [S−1 (ω0)]ii − [S̃−1
j (ω0)]i−,1i−1 > τ then bji = 1;

10: if [S−1 (ω0)]ii − [S̃−1
j (ω0)]i−1,i−1 < τ then bji = 0;

11: end for

12: end for

O(L) operations, we have a total of O
(
N3L

)
operations to compute the CPSD’s matrices

S (ω0) and S̃j (ω0), for all j = 1, . . . , N .

(iii) Our algorithm also needs to compute the inverse of S (ω) and S̃j (ω). Since each inversion

takesO
(
N3
)
, we have a total ofO

(
N4
)

operations to compute the inverses of all the N + 1

matrices involved in our computations.

Therefore, the total computational cost of our algorithm is O
(
N4 +N3L2

)
. In the next sub-

section, we extend Algorithm 1 to reconstruct the exact connectivity matrix G.

3.3.2 Exact Reconstruction of Directed Networks

Apart from a Boolean reconstruction of G, we can also compute the weights of the edges in the

network if we know one eigenvalue-eigenvector pair (λ,u) of G, as follows. This can be the case
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of G being, for example, a Laplacian matrix (since G1N = 0, in this case), or the adjacency matrix

of a d-regular graph (since G1N = d1N ). In these cases, we use Lemma 3.2.5 to find the value of

Sw (ω0) at a particular frequency ω0 ∈ (−Ω,Ω). For example, in the case of G being a Laplacian,

we have the following result:

Corollary 3.1. Consider the networked dynamical system in (3.1.2), when G = −LD, where LG

is the Laplacian matrix of a directed graph D. Then, under assumptions (A1)-(A2), the PSD of the

input noise, Sw(ω), can be computed as

Sw(ω) =
N

(1>S−1 (ω)1)|h (jω) |2
.

Proof. This result can be directly obtained from Lemma 3.3 taking into account that the eigenpair

(λ,u) for the Laplacian matrix is (0,1N ).

In general, we can reconstruct the weights of directed edges in a dynamical network using

Algorithm 2.

Remark 3.2. It is worth remarking that the proposed reconstruction methods do not require the entire

power spectra for S (ω) or Sw (ω), but only the values of these spectral densities at any frequency

ω0 ∈ (−Ω,Ω). This dramatically reduces the computational complexity of the reconstruction.

We now turn to two particular types of networks, namely, undirected and nonreciprocal net-

works, in which the computational cost of reconstruction can be drastically reduced.

3.3.3 Exact Reconstruction of Undirected Networks

Consider Problem 3.1, when the connectivity matrix G is an unknown (possibly weighted) sym-

metric matrix. Then, when an eigenpair (λ,u) is known, we can find the exact structure of the
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Algorithm 2 Exact reconstruction of directed networks
Require: h(jω), y(t) from (3.1.2), ỹ(t) from (3.3.1), and any ω0 ∈ (−Ω,Ω);

1: Compute S(ω0) from y(t) and Sw(ω0) using (3.2.5);

2: for j = 1 : N do

3: Compute S̃j(ω0) from ỹ(t);

4: for i = 1 : j − 1 do

5: gji =
[
Sw (ω0)

(
[S−1 (ω0)]ii − [S̃−1

j (ω0)]ii
)]1/2

;

6: end for

7: for i = j + 1 : N do

8: gji =
[
Sw (ω0)

(
[S−1 (ω0)]ii − [S̃−1

j (ω0)]i−1,i−1

)]1/2
;

9: end for

10: end for

network from the matrix of CPSD’s, S (ω) =
[
Syiyj (ω)

]
1≤i,j≤N , and the nodal transfer function,

h (jω) = c> (jωIn −A)−1 b, using the following result:

Theorem 3.3. Consider the networked dynamical system (3.1.2), when G = G>. Then, under

assumptions (A1)-(A2), we have that

G =

(
S−1 (ω0)Sw(ω0)− Im2

{
h−1 (jω0)

}
IN

)1/2

+ Re
{
h−1 (jω0)

}
IN . (3.3.5)

for any ω0 ∈ (−Ω,Ω).

Proof. From Lemma 3.2, we obtain the following for G> = G:

S−1 (ω)Sw(ω) =
IN

|h (jω)|2
+ G2 − G

h∗ (jω)
− G

h (jω)

= G2 − 2Re{h−1 (jω)}G

+ IN
(
Im2{h−1 (jω)}+ Re2{h−1 (jω)}

)
=
(
G− Re{h−1 (jω)}IN

)2
+ Im2{h−1 (jω)}IN ,
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thereby completing the proof.

Based on Theorem 3.3, we can reconstruct the connectivity matrix G = G> when we know

an eigenpair of G. The input PSD in (3.3.5) can be computed using Lemma 3.3. Notice that this

algorithm does not require grounding the dynamics of the network, resulting in a reduced computa-

tional cost. In particular, the computational cost is dominated by the computation of S (ω0), which

requires O
(
N2L2

)
operations, and its inversion, which requires O

(
N3
)
, resulting in a total cost

of O
(
N2L2 +N3

)
.

3.3.4 Reconstruction of Non-Reciprocal Networks

Another particular network structure that does not require grounding in the reconstruction method is

the so-called nonreciprocal directed networks. In a nonreciprocal network, having an edge (vj , vi) ∈

Ed implies that (vi, vj) 6∈ Ed. In other words, the connectivity matrix of a purely unidirectional

network satisfies Tr(G2) =
∑

i

∑
j gijgji = 0, since, if gij 6= 0, then gij = 0 (and assuming there

are no self-loops in the network).

The following theorem allows the Boolean reconstructing of a nonreciprocal network. More-

over, if we have access to an eigenpair of G, this theorem could be used to perform an exact

reconstruction without grounding the dynamics of the network.

Theorem 3.4. Consider the networked dynamical system (3.1.2), with a connectivity matrix satisfy-

ing G ≥ 0 (nonnegativity) and Tr(G2) = 0 (nonreciprocity). Then, under assumptions (A1)-(A2),

we have that

gij = max

{
Sw(ω)

(
[Im{S−1(ω)}]ij
Im{h−1(jω)}

)
, 0

}
, (3.3.6)

for 1 ≤ i 6= j ≤ N .
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Proof. Under purview of Lemma 3.2, we obtain

S−1 (ω)Sw(ω) =
IN

|h (jω)|2
+ G>G− G

h∗ (jω)
− G>

h (jω)
.

Taking the imaginary parts, we obtain

Im{S−1 (ω)Sw(ω)} = Im{− G

h∗ (jω)
− G>

h (jω)
}

= Im{h−1 (jω)}(G−G>),

which entails

G−G> =
Sw(ω)

Im{h−1 (jω)}
Im{S−1 (ω)}.

Given that G ≥ 0 and the network is nonreciprocal, if
[
G−G>

]
ij
> 0, then gij > 0 and gji = 0.

If
[
G−G>

]
ij
< 0, then gij = 0 and gji > 0. Finally, if

[
G−G>

]
ij

= 0, then no directed edge

between vi and vj exists. These three conditional statements can be condensed into (3.3.6).

Using this theorem, we can find the the Boolean representation of G, B (G) = [bij ], as follows,

bij =


1, if [Im{S−1(ω0)}]ij

Im{h−1(jω0)} > 0,

0, otherwise,

where ω0 ∈ (−Ω,Ω). Moreover, if an eigenvalue eigenvector pair of G is known, we can recover

Sw (ω0) using Lemma 3.3, which allows us to recover the value of gij directly from 3.3.6. Following

the analysis of previous algorithms, the computational cost of the reconstruction of a nonreciprocal

directed network is O
(
N2L2 +N3

)
.

3.4 Related Literature

In the literature, we find a wide collection of approaches aiming to solve the network reconstruction

problem. In the physics literature, we find in [59] a method to identify a network of dynamical

70



systems which assumes that the input of each node can be individually manipulated. In [71], an

approach based on Granger’s causality [72] and the theory of reproducing kernel Hilbert spaces is

proposed. In the statistics community, Bach and Jordan [73] used the Bayesian information crite-

rion (BIC) to estimate sparse graphs from stationary time series. The optimization community has

recently proposed a collection of papers aiming to find the sparsest network given a priori structural

information [58, 60]. Although the assumption of sparsity is well justified in some applications, this

assumptions might lead to unsuccessful topology inference, as illustrated in [74, 75]. Gonçalves et

al. [74] investigate the necessary and sufficient conditions for reconstruction of LTI networks. Their

work has been recently extended to reconstruction in the presence of intrinsic noise in [76]. On the

other hand, for tree networks, several techniques for reconstruction are proposed in [61] and [77].

More recently, in a seminal work by Materassi and Salapaka [67], the authors propose a methodol-

ogy for reconstruction of directed networks using locality properties of the Wiener filters. Although

being applicable to many networks, this methodology is not exact when two nonadjacent nodes point

towards a common node. In [64, 78, 79], several techniques are proposed to extract structural infor-

mation of an undirected network running consensus dynamics. In particular, Nabi-Abdolyousefi et

al. proposed in [64] a reconstruction technique based on a node-knockout procedure, where nodes

are sequentially forced to broadcast a zero state (without being removed from the network).

Fazlyab and Preciado [80] propose an identification+control method over networks. In their

approach, the unknown network is recovered using the combination of Lyapunov based adaptive

feedback input and sliding mode control. In [81, 82], authors provide a sufficient condition that

guarantees identifiability for a class of linear network dynamic systems exhibiting continuous-time

weighted consensus protocols. Another interesting approach to network identification problem is

distributed reconstruction addressed recently in [83, 84]. Finally, identification of subspaces has
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been studied in [85] for directed acyclic graphs.
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Part II

Individual and Collaborative Online

Learning
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Chapter 4

Multi-Armed Bandits in Multi-Agent

Networks

Online prediction, learning and decision making is a main topic of research in the theory of machine

learning. A popular model for studying sequential decision problems is the multi-armed bandit

(MAB) problem. Early studies on the problem dates back to 1933 when W. R. Thompson proposed

the celebrated Thompson Sampling method. The problem has been extensively studied ever since,

and many variants of it have been investigated in the literature [14–18]

Capturing the exploration-exploitation dilemma for a learner, MAB is defined by a set of arms

or actions. At each time step, the learner chooses an arm and receives its corresponding payoff

or reward. The objective is to maximize the total payoff obtained from sequentially selecting the

arms. Equivalently, the learner aims to minimize regret when competing with the best single arm

in hindsight. The reward model could be stochastic or non-stochastic, and optimal algorithms are

proposed for both cases [15, 16]. While early studies on MAB dates back to nine decades ago,

the problem has received considerable attention due to its modern applications. MAB could be an
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instance of sequential decision making for ad placement, website optimization or packet routing

[18].

In this chapter we depart from the classical setting, and address the stochastic MAB in a multi-

player network. Consider a group of sensors (players) that measure the location of a finite number

of targets (arms). Each sensor contacts one target per time step, and can only measure a specified

coordinate of its position. The target reveals a noisy version of the coordinate to the sensor, and the

noise characteristics are different among sensors. They aim to track the closest target to the origin,

and with one coordinate at hand, sensors must communicate with each other to supplement their

imperfect observations. The problem is even harder when some targets are not responsive all the

time. Motivated by this example, we propose two algorithms in Section 4.3, and apply them to the

problem in Section 4.4.

4.1 Outline of the Problem and Results

The multi-player MAB is an instance of many problems where a group of players or agents col-

laborate to achieve a team task, say maximizing a global payoff. Players intend to reach consensus

on an arm which best fits the network, i.e., the arm that maximizes the global reward. Naturally,

each arm may reveal different rewards when chosen by distinct players. The goal is to compete with

the arm that has the highest average reward among players. Alternatively, one can also think of the

following scenario. Each arm has a true global payoff that can be written as an average of indi-

vidual payoffs. Once a player pulls an arm, the adversary filters out the corresponding individual

reward, and unveils a noisy version of that to the player. Agents are not able to compete with the

best global arm unless they benefit from side observations gained from local communication. The

model has a flavor of distributed algorithms where the parameter of interest is not fully observable
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to an individual learner [9, 30, 32]. However, it is in a bandit setup where the player only receives

the payoff of a chosen action.

Pulling an arm, a player incurs an individual regret which is the difference between the payoff

of the action and the best global arm. The network regret is then the average of individual regrets.

We propose an algorithm named Distributed Upper Estimated Reward (d-UER ) to minimize the

network regret. The algorithm exploits a confidence bound that relies on the network topology

and connectedness. We further extend the setting to sleeping MAB where some actions might be

unavailable to players at each round. In this environment, the natural benchmark to compete with

is the sequence of best available arms per round [86]. We develop the Distributed Awake Upper

Estimated Reward (d-AUER ) algorithm for sleeping bandit problem. Our algorithms are optimal

in the sense that in a complete network they scale down the regret of their single-player counterpart

by network size. We finally apply our methods to distributed detection of targets in sensor networks,

and provide numerical experiments for our theoretical findings [87].

4.1.1 Related Literature

In recent years, many variants of MAB have been a major focus of research in several communities.

In [88] a decentralized MAB has been formulated with applications in cognitive radio networks and

multi-channel communication systems. In this model, simultaneous selection of one arm by a few

players results in zero or shared reward. The authors in [89] propose a decentralized method for

allocating multiple users to a set of wireless channels. Similarly, when multiple players use the

same channel, the channel quality reduces due to interference. The work of [90] is also in the same

spirit in which any collaboration among players is prohibited and adds to regret. The authors study

the stochastic and rested Markovian reward model, and build on a distributed bipartite matching to
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introduce a new decentralized policy.

There is also an extensive literature focused on decentralized MAB problems with application

in advertising systems. In the setting proposed in [91], the interaction between users in a social

network provides information for an external decision maker. The decision maker benefits from the

side observation to choose a content for each user. In [92] only a single major agent in the network

has access to its reward sequence, while other agents are aware of the sampling pattern of the major

agent. Comparing to the classical MAB, the asymptotic lower bound on regret scales down by the

number of agents when the network is connected. On the other hand, the network model in [93, 94]

encodes the connection between arms. That is, sampling an arm reveals side information on the

reward of neighboring arms. The authors in [95] propose an algorithmic approach to networked

contextual bandits, where the learner leverages side observations provided as a result of social rela-

tionships. Outside of network context, structured bandits is addressed in [96] where the reward of

arms may depend on each other through a parameter.

Of particular relevance to the sleeping bandits is the work in [97] where a graphical MAB is

introduced. In this setting the subset of available arms at any round is a function of the arm chosen in

the previous round. The authors develop a block allocation algorithm for the problem that achieves

a logarithmic regret. In [98] a combinatorial MAB problem is formulated where multiple arms can

be selected once they respect a given constraint. The learner is rewarded with a linear combination

of chosen arms, and the objective is to compete with the best linear combination. Finally, our work

lies on the spectrum that covers a wide range from the classical MAB to distributed detection and

learning. The works of [16–18, 86] form one side of the spectrum which is known as one-player

MAB. On the other side, we can place distributed detection algorithms under full information setting

[32, 40]. In these models, the world is governed by a fixed true state (arm), aimed to be recovered
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by a network of agents. Despite the local access to data, agents receive information about all states

per round.

4.2 Notation and Problem Formulation

[n] The set {1, 2, ..., n} for any integer n

x> Transpose of the vector x

x(k) The k-th element of vector x

1{·} The indicator function

1 Vector of all ones

σi(W ) The i-th largest singular value of matrix W

Table 4.1: Notation

Consider a multi-agent network where N players or agents sequentially select arms or actions. The

set of arms is of size K which is a common knowledge among players. Pulling arm k ∈ [K] at time

t ∈ [T ] yields a reward Xi,t(k) ∈ [0, 1] for player i ∈ [N ]. We study a stochastic model of rewards

where µi = E[Xi,t] ∈ RK is a fixed vector over time horizon. Also, the average reward of each arm

might be different among players, i.e., for any k ∈ [K] and i 6= j, µi(k) is not necessarily equal to

µj(k). Therefore, a “good” arm for a player might be a “bad” arm for another one. The rewards are

independent and identically distributed over time, while they are also independent across players

and arms. The random variable Ii,t represents the action of player i at time t, and the player only

observes the corresponding reward Xi,t(Ii,t) at that period.
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4.2.1 Standard Setting

In the classical framework, agents want to maximize an average global welfare. That is, the players’

objective is to identify the most rewarding arm k∗,

k∗ := argmaxk∈[K]

{
µ(k) :=

1

N

N∑
i=1

µi(k)

}
,

which best suits the whole network. Without loss of generality, we assume the following order

µ(1) ≥ µ(2) ≥ · · · ≥ µ(K), (4.2.1)

to simplify the exposition of our results. For any pair k ≤ m, we define

∆k,m := µ(k)− µ(m) =
1

N

N∑
i=1

µi(k)− µi(m),

to capture the suboptimality of arm m comparing to arm k. Let ni,t(k) denote the number of times

that arm k has been chosen by player i until time t. Then, players aim to minimize the regret in the

following sense,

RT := Tµ(1)− 1

N

N∑
i=1

T∑
t=1

E [µ(Ii,t)] =
1

N

N∑
i=1

K∑
k=2

∆1,kE[ni,T (k)], (4.2.2)

where the expectation is taken over the randomness in the choice of arms.

4.2.2 Sleeping Bandits

In the sleeping MAB problem, not every arm is awake all the time. At time t ∈ [T ], there exists

a specific set of arms Ai,t ⊆ [K] available to player i, and the player cannot choose some action

k /∈ Ai,t. The dependence of Ai,t to i reiterates that at any time t ∈ [T ], an available arm to a

player might be unaccessible to another player. In this scenario, it is reasonable to compete with the

sequence of best available arms. Let k∗i,t :=argmaxk∈Ai,t{µ(k)} be the best available arm to player
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i at round t, and for any m > k, ni,t (m | k) denote the number of times that agent i has played the

suboptimal arm m until time t given that some better arm in the set [k] has been available. We now

define the regret with respect to the described benchmark as follows

RT :=
1

N

N∑
i=1

T∑
t=1

µ(k∗i,t)−
1

N

N∑
i=1

T∑
t=1

E [µ(Ii,t)]

=
1

N

N∑
i=1

K∑
m=2

m−1∑
k=1

∆k,mE [ni,T (m | k)− ni,T (m | k − 1)]

=
1

N

N∑
i=1

K∑
m=2

m−1∑
k=1

(∆k,m −∆k+1,m) E [ni,T (m | k)] , (4.2.3)

where the last step follows from rearranging the terms and the convention that ∆m,m = 0 and

ni,T (m | 0) = 0. Given the order of arms (4.2.1), a player regrets over pulling arm m only if some

arm k < m is awake when making the decision.

4.2.3 Network Structure

A player cannot track the best arms in isolation as the best “global” arm might be “suboptimal” for

the player. Therefore, players need to exchange information with each other at every round. We let

the symmetric and doubly stochastic matrix W encode the interaction structure among agents. The

matrix has positive diagonals, and any positive entry [W ]ij > 0 implies that player i ∈ [N ] assigns

a weight [W ]ij = [W ]ji to observations of player j ∈ [N ]. Of course, when [W ]ij = 0, agents i

and j never communicate with each other directly. Therefore,

for all i ∈ [N ] :
∑
j∈Ni

[W ]ij =

N∑
j=1

[W ]ij = 1

for all j ∈ [N ] :
N∑

i∈Nj

[W ]ij =
N∑
i=1

[W ]ij = 1,

where Ni := {j ∈ [N ] : [W ]ij > 0} is the local neighborhood of agent i. We assume that the

underlying network is connected, i.e., there exists a path from any player i ∈ [N ] to any player
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j ∈ [N ]. Intuitively, the assumption guarantees the information flow over the network.

We now state a few properties of the depicted network model, and refer the interested reader

to [99] for a complete survey on stochastic matrices. It follows from doubly stochasticity of W

that the largest singular value is σ1(W ) = 1. Furthermore, since W has positive diagonal and the

topology is connected, the Markov chain W is irreducible and aperiodic. As a consequence, the

largest singular value is unique, and it holds that σ2(W ) < 1. Also, the stationary distribution of

the chain is unique and W t → 1
N 11

>, as t → ∞. Finally, without loss of generality, we assume

that N is large enough (N > 8) to simplify our regret bounds.

4.3 Algorithms

We now present our technical results and their consequences. We first describe the d-UER algorithm

for the case of all-awake arms, and then we propose d-AUER to deal with sleeping bandits setting.

Our algorithms are optimal up to constant factors in that removing network error recovers the result

for one player MAB in both settings. Omitted proofs are included in the supplementary material.

4.3.1 The d-UER Algorithm

In this section, we delineate the d-UER algorithm to examine the case where every arm is available

at any time. The algorithm can be cast as a distributed variant of the celebrated UCB1 [16]. As

we discussed in the Preliminaries 4.2, the feedback setup does not allow a single player to compete

solely with the best arm. Therefore, players need to communicate to collectively explore the arms.

While taking into account an upper confidence bound, each player aggregates observations in her

local neighborhood to make decision as follows:

Unlike the UCB1 algorithm, d-UER exploits a confidence bound that depends on parameter d.
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Algorithm 3 Distributed Upper Estimated Reward
Input : The parameters d and N .

Initialization :

Each action is played once, and the rewards are stored in vector Xi,0 for all i ∈ [N ].

For each i ∈ [N ] and k ∈ [K], let φi,0(k) = 0, ni,0(k) = 1 and ψi,1(k) = Xi,0(k).

for t = 1 to T do

for i = 1 to N do

Calculate the vector φi,t =
∑N
j=1[W ]ijφj,t−1 + ψi,t.

Select Ii,t = argmaxk∈[K]

{
1

ni,t−1(k)
φi,t(k) +

√
2 log t

(
1

Nni,t−1(k)
+ 2d

n2
i,t−1(k)

)}
.

Update the counter as ni,t(k) = ni,t−1(k) + 1{k = Ii,t} for any k ∈ [K].

Score µ(Ii,t), observe Xi,t(Ii,t) and let ψi,t+1(k) = Xi,t(k)1{k = Ii,t} for any k ∈ [K].

end for

end for

We shall see that this parameter must be tuned as an upper bound on a quantity that depends on

network characteristics. We state the following lemma which provides a closed-from solution for

{φi,t}Tt=1, and sheds light on the mixture behavior of Markov chain W .

Lemma 4.1. Any update of the form φi,t =
∑N

j=1[W ]ijφj,t−1 + ψi,t can be expressed as,

φi,t =

t∑
τ=1

n∑
j=1

[
W t−τ ]

ij
ψj,τ ,

whenever the update is initialized at φi,0(k) = 0, for any i ∈ [N ] and k ∈ [K]. Also, given strong

connectivity of the network, the doubly stochastic matrix W with positive diagonal satisfies

t∑
τ=1

N∑
j=1

∣∣∣∣[W t−τ ]
ij
− 1

N

∣∣∣∣ ≤ 2

1− σ2(W )
+

logN

log [σ2(W )−1]
,

for any i ∈ [N ], where σ2(W ) < 1 is the second largest singular value of W .

The lemma suggests that the update simultaneously admits new information and averages out

the past. The connectivity of the network plays an important role in decision making, since it allows
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W t → 1
N 11

> as t → ∞. Indeed, when the underlying topology is disconnected, information

cannot propagate through the whole network. On the other hand, the lemma suggests that the regret

relies on how fast the Markov chain W mixes. This is captured by dependence of the RHS of above

to σ2(W ).

Theorem 4.1. The regret of d-UER algorithm, defined in (4.2.2), satisfies the following bound

RT ≤
K∑
k=2

{
4 max

{
12 log T

N∆1,k
, Nd

}
+ 2.5

(
1 + log

[
4

∆1,k

])
dE1dE2 +

2π2

3
∆1,k

}
,

whenever d ≥ dE1, where

dE1 :=
2

1− σ2(W )
+

logN

log [σ2(W )−1]
, and dE2 :=

logN

log [σ2(W )−1]
.

Theorem 4.1 indicates that the regret depends on the network size and second largest singular

value of W . The local feedback does not provide each player with adequate information, yielding

a delay in proper decision making. For instance, in cycle and path networks where the diameter is

O(N) the incurred penalty dE1 = Õ(N2) is large, whereas in a complete network W = 1
N 11

>

the Markov chain is mixed from the outset. The scenario can be seen as N copies of a single-player

MAB where σ2(W ) = 0. In this case, the network errors become dE1 = 2 and dE2 = 0, and the

well-known result of [16] for UCB1 algorithm is recovered (scaled down by a factor of N ). This

advantage is gained through reducing the variance of samples by distributing N samples among N

individuals. Recall that UCB1 algorithm is optimal in the sense that a lower bound is available under

mild assumptions on reward distributions (see e.g. [14, 18]).

4.3.2 The d-AUER Algorithm

We now extend the results to sleeping bandits where some arms might be unavailable at every round.

The single-player version of the problem has been addressed in [86]. Here, agents also suffer from
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an insufficient feedback which provides only local information. Naturally, players compete with the

sequence of best awake arms as in Algorithm 4. Again note that unlike the single-player version in

[86], the estimator and confidence bound rely on network structure.

Algorithm 4 Distributed Awake Upper Estimated Reward
Input : The parameters d and N .

Initialization :

For each i ∈ [N ] and k ∈ [K], let φi,0(k) = 0, ni,0(k) = 0 and ψi,1(k) = 0.

for t = 1 to T do

for i = 1 to N do

Calculate the vector φi,t =
∑N
j=1[W ]ijφj,t−1 + ψi,t.

if ∃k ∈ Ai,t such that ni,t−1(k) = 0 then

Choose the action Ii,t = k.

else

Select Ii,t = argmaxk∈Ai,t

{
1

ni,t−1(k)
φi,t(k) +

√
2 log t

(
1

Nni,t−1(k)
+ 2d

n2
i,t−1(k)

)}
.

end if

Update the counter as ni,t(k) = ni,t−1(k) + 1{k = Ii,t} for any k ∈ [K].

Score µ(Ii,t), observe Xi,t(Ii,t) and let ψi,t+1(k) = Xi,t(k)1{k = Ii,t} for any k ∈ [K].

end for

end for

Lemma 4.2. For any sequence of nonnegative real numbers {ak}mk=1, we have

m−1∑
k=1

ak

(
∑m

s=k as)
2 ≤

1

am
, (4.3.1)

as long as am > 0. In particular, letting ak = ∆k,k+1, we have

m−1∑
k=1

∆k,k+1

∆2
k,m

≤ 2

∆m−1,m
. (4.3.2)

The inequality (4.3.2) plays a key role in bounding the regret of sleeping bandit problem. We

remark that in [86] the authors derive the same inequality as a corollary of a lemma which involves a
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complicated proof. While the result of [86] is also valuable for the case that the difference between

arms is small, we provided an easy alternative to derive (4.3.2). Let us now present the main result

of this section.

Theorem 4.2. The regret of d-AUER algorithm, defined in (4.2.3), satisfies the following bound

RT ≤
K∑
k=2

{
96
N log T + 8Nd+ 30k dE1 dE2

∆k−1,k
+

2kπ2

3
∆1,k

}
,

so long as ∆k−1,k > 0 and d ≥ dE1, for k > 1.

Theorem 4.2 articulates the relation of regret and network errors in the sleeping bandit model.

Interestingly, we observe that W = 1
N 11

> (which results in dE1 = 2 and dE2 = 0) recovers the

regret bound of AUER algorithm [86] for single-player case (scaled down by a factor of N ). Similar

to Theorem 4.1 the result interpolates between well-connected and poorly connected networks using

dE1 and dE2. Notice that one can simply relax the condition ∆k−1,k > 0 in Theorem 4.2 as follows.

For an arbitrary choice of ε ≥ 0, separate out any arm k > 1 such that ∆k−1,k ≤ ε. Then, in view

of (4.2.3), the regret bound in the theorem can be modified to

RT ≤ O(εT ) +

K∑
k=2

{ 96
N log T + 8Nd+ 30k dE1 dE2

∆k−1,k
1 {∆k−1,k > ε}+

2kπ2

3
∆1,k

}
.

4.4 Application : Detection of the Closest Target in Sensor Networks

4.4.1 Sensing Model

We now present the application of our methods to distributed detection in sensor networks [100].

Consider a strongly connected network of N sensors that respects a fixed topology. The sensors

(players) sequentially measure the location of K targets (arms) that live in R2 space. At any time

t ∈ [T ], each sensor can contact one target to query the location, and the target discloses a noisy

version of its position. The sensors broadcast the noisy data over the network to detect the farthest

(or equivalently the closest) target to the origin.
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We partition the set of sensors to two sets X and Y of the same size. Sensors in X measure the

x-coordinate, while the other half in Y measure the y-coordinate. For any sensor i ∈ [N ] at time

t ∈ [T ], let random variables θi,t and ri,t be drawn independently from uniform distribution with

supports [−π, π] and [0, ri], respectively. Then, the location of target k ∈ [K] from the standpoint

of sensor i ∈ X takes the following form

xi,t(k) = p(k) + ri,t cos(θi,t) yi,t(k) = ri,t sin(θi,t), (4.4.1)

whereas sensor j ∈ Y observes

xj,t(k) = rj,t cos(θj,t) yj,t(k) = q(k) + rj,t sin(θj,t). (4.4.2)

Therefore, any sensor i ∈ [N ] measures a (wrong) distance of target k as

dist2i,t(k) = x2
i,t(k) + y2

i,t(k), (4.4.3)

and report it to other sensors in its local neighborhood. Calculating the expected squared-distance,

we obtain

E
[
dist2i,t(k)

]
= p2(k)1{i ∈ X}+ q2(k)1{i ∈ Y}+

r2
i

3
.

One can observe that each sensor has a different perception about the expected distance of target k

from the origin. Therefore, they cannot identify the farthest target on their own. However, for any

k ∈ [K] it holds that

d2(k) :=
1

N

N∑
i=1

E
[
dist2i,t(k)

]
=

1

2
p2(k) +

1

2
q2(k) +

1

N

N∑
i=1

r2
i

3
,

which allows sensors to correctly distinguish the farthest target, since the maximizers

argmaxk∈[K]

{
d2(k)

}
= argmaxk∈[K]

{
p2(k) + q2(k)

}
,
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coincide. In this example, sleeping bandits corresponds to when some targets are not responsive,

and sensors cannot obtain measurements from them. Therefore, we have the following corollary of

Theorems 4.1 and 4.2.

Corollary 4.1. Assume the sensing model given in (4.4.1) and (4.4.2) in the sensor network, and let

sensors observe the feedback (4.4.3) at time t ∈ [T ]. Then, the d-UER algorithm enjoys the regret

bound

RT ≤ O

{
K∑
k=2

{
max

{
24 log T

Nu1,k
, Nd

}
+ log

[
8

u1,k

]
dE1dE2 + u1,k

}}
,

where uk,m := p2(k) + q2(k)− p2(m)− q2(m) for any k < m. Moreover, the d-AUER algorithm

satisfies the regret bound

RT ≤ O

{
K∑
k=2

48
N log T + 4Nd+ 15k dE1 dE2

uk−1,k
+ ku1,k

}
.

4.4.2 Numerical Experiments

We now illustrate our approach via simulation of the described sensor network. Let N = 30

and K = 4 be the number of sensors and targets, respectively. For any target k ∈ [K], the true

coordinates p(k) and q(k) are drawn independently from a uniform distribution on the unit interval.

Also, we let r` = 0.1 + 0.02` for any ` ∈ [N ] to discriminate between sensors with respect to noise

radius. In our experiment, the minimum gap is mink∈[K]{∆1,k} ≈ 0.2.

We would like to evaluate the performance of d-UER algorithm in three networks : complete,

cycle and 4-regular (all with self-loops). Using the sensing model in the previous section for each

network, we average out 50 experiment runs to plot Fig. 4.1. As verified in theoretical results, the

regret bound scales inversely with 1−σ2(W ), called the spectral gap. We can observe the impact in

Fig. 4.1 where the networks are sorted correctly with respect to this metric. The complete network
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(largest spectral gap) has the best performance, while the 4-regular outperforms the cycle (due to

its larger spectral gap). We can see that the spectral gap is roughly an indicator of the network

connectivity.
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Figure 4.1: Performance of d-UER in complete, cycle and 4-regular networks.

We next turn to focus on importance of communication in detection. Each sensor shall not be

able to find the closest target based on its own observations. In other words, agents might contact a

wrong target in the order of measurement numbers, resulting in a linear regret. We investigate the

phenomenon using the same procedure withN = 8 sensors. To this end, we compare a disconnected

network versus a complete network in Fig. 4.2. In the disconnected network sensors are not able to

distinguish the closest target, and the regret grows linearly in time.

88



500 1000 1500 2000 2500 3000 3500 4000 4500 5000

100

200

300

400

500

600

700

Number of Measurements

R
e
g
r
e
t

 

 

Complete Network
Disconnected Network

Figure 4.2: Sensors fail to detect the right target in a disconnected network, yielding a linear regret.

4.5 Proofs

Note : As mentioned in Section 4.2.3, for the proofs we sometimes assume that N > 8 to simplify

the bounds. This assumption is made with no loss of generality, and only avoids notational clutter.

Proof of Lemma 4.1. The proof of the first part is standard (see e.g. Lemma 1 in [32]). For the

second part, we follow the lines in the proof of Lemma 2 in [32]. Let ei be the i-th unit vector in the

standard basis of RN . The Markov chain W is irreducible and aperiodic, so by standard properties

of stochastic matrices (see e.g. [46]), we have

∥∥∥∥e>i W t − 1

N
1
>
∥∥∥∥

1

≤
√
Nσ2(W )t, (4.5.1)

for any i ∈ [N ], as 1
N 1
> is the stationary distribution of the transition kernel W . Hence,

√
Nσ2(W )t−τ ≤ 2 for t− τ ≥ t̃ :=

log
[√

N
2

]
log [σ2(W )−1]

,

and recall that the inequality
∥∥e>i W t−τ − 1

N 1
>∥∥

1
≤ 2 always holds since any power of W is
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doubly stochastic. With that in mind, we use (4.5.1) to break the following sum into two parts to get

t∑
τ=1

N∑
j=1

∣∣∣∣[W t−τ ]
ij
− 1

N

∣∣∣∣ =
t∑

τ=1

∥∥∥∥e>i W t−τ − 1

N
1
>
∥∥∥∥

1

=
t−t̃∑
τ=1

∥∥∥∥e>i W t−τ − 1

N
1
>
∥∥∥∥

1

+
t∑

τ=t−t̃+1

∥∥∥∥e>i W t−τ − 1

N
1
>
∥∥∥∥

1

≤
t−t̃∑
τ=1

√
Nσ2(W )t−τ + 2t̃

≤
√
Nσ2(W )t̃

1− σ2(W )
+ 2t̃ ≤ 2

1− σ2(W )
+

logN

log [σ2(W )−1]
,

for any i ∈ [N ].

Proof of Theorem 4.1. We provide the proof in several steps:

Step 1 : Preliminaries

Recall the definition of dE1 in the statement of the theorem. Throughout the proof we refer to the

following quantities

` := max

{
48 log T

N∆2
1,k

,
4Nd

∆1,k

}
ct,s :=

√
2 log t

(
1

Ns
+

2d

s2

)

`′ :=
4 dE1

∆1,k
t̂ :=

5 log
[

4
√
N

∆1,k

]
4 log

[
σ−1

2 (W )
] , (4.5.2)

listed here for reader’s convenience. To bound the regret (4.2.2), we need to bound the expected

number of times that suboptimal arms are played during the entire game. For any `, `′ > 0 (and in

particular for the choice of ` and `′ given above), we have

ni,T (k) = 1 +
T∑
t=1

1 {Ii,t = k} ≤ `+

T∑
t=1

1 {Ii,t = k, ni,t−1(k) ≥ `} = `+ PT +QT , (4.5.3)

where

PT :=

T∑
t=1

1
{
Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) > `′

}
QT :=

T∑
t=1

1
{
Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) ≤ `′

}
.
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Though PT and QT depend on i and k, we suppress the dependence to avoid notational clutter. We

need to bound PT and QT to complete the proof.

Step 2 : Bounding PT

For any k > 1, we have

PT =
T∑
t=1

1
{
Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) > `′

}
≤

T∑
t=1

t∑
sk≥`

t∑
s1>`′

1 {Ii,t = k, ni,t−1(k) = sk, ni,t−1(1) = s1} (4.5.4)

≤
T∑
t=1

t∑
sk≥`

t∑
s1>`′

1

{
φi,t(k)

sk
+ ct,sk ≥

φi,t(1)

s1
+ ct,s1 , ni,t−1(k) = sk, ni,t−1(1) = s1

}
,

(4.5.5)

where we recall the definition of ct,s from (4.5.2). Let

Sk,t := {τ ∈ [t] : Ii,τ−1 = k} , (4.5.6)

notice the explicit form of φi,t given in Lemma 4.1, and recall that ψi,t(k) = Xi,t−1(k)1{k =

Ii,t−1} for any k ∈ [K]. Then, the indicator (4.5.5) implies that at least one of the following

statements must hold

1

s1

∑
τ∈S1,t

N∑
j=1

[
W t−τ ]

ij
(Xj,τ−1(1)− µj(1)) ≤ −ct,s1 (4.5.7)

1

sk

∑
τ∈Sk,t

N∑
j=1

[
W t−τ ]

ij
(Xj,τ−1(k)− µj(k)) ≥ ct,sk (4.5.8)

1

s1

∑
τ∈S1,t

N∑
j=1

[
W t−τ ]

ij
µj(1)− 1

sk

∑
τ∈Sk,t

N∑
j=1

[
W t−τ ]

ij
µj(k) < 2ct,sk . (4.5.9)
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We can write

LHS of (4.5.9) =
1

s1

∑
τ∈S1,t

N∑
j=1

([
W t−τ ]

ij
− 1

N

)
µj(1)

− 1

sk

∑
τ∈Sk,t

N∑
j=1

([
W t−τ ]

ij
− 1

N

)
µj(k) + ∆1,k

≥ −dE1

(
1

s1
+

1

sk

)
+ ∆1,k ≥

∆1,k

2
, (4.5.10)

using the second part of Lemma 4.1 to bound the sums, and noting that sk ≥ ` and s1 > `′ where `

and `′ are defined in (4.5.2). On the other hand, we have

RHS of (4.5.9) ≤ 2cT,sk ≤
∆1,k

2
, ∀sk ≥ `, (4.5.11)

since by the definition of ` in (4.5.2) we have

4c2
T,sk

=
8 log T

sk

(
1

N
+

2d

sk

)
≤
N∆2

1,k

6

(
1

N
+

2d

sk

)
≤
N∆2

1,k

6

(
1

N
+

2∆1,kd

4Nd

)
≤

∆2
1,k

4
.

Combining (4.5.9), (4.5.10) and (4.5.11), we get

RHS of (4.5.9) ≤
∆1,k

2
≤ LHS of (4.5.9) < RHS of (4.5.9),

which results in a contradiction, and implies (4.5.9) never holds for sk ≥ ` and s1 > `′. To study

(4.5.7) we use McDiarmid’s inequality. When sequences {Xj,τ−1(1)}j,τ and {X ′j,τ−1(1)}j,τ are

equal but for the fixed sample (τ ′, j′), the difference of the sum is bounded as∣∣∣∣∣∣ 1

s1

∑
τ∈S1,t

N∑
j=1

[
W t−τ ]

ij

(
Xj,τ−1(1)−X ′j,τ−1(1)

)∣∣∣∣∣∣ ≤
[
W t−τ ′

]
ij′

s1
,
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and we can compute,

1

s2
1

∑
τ ′∈S1,t

N∑
j′=1

[
W t−τ ′

]2

ij′
=

1

Ns1
+

1

s2
1

∑
τ ′∈S1,t

N∑
j′=1

([
W t−τ ′

]2

ij′
− 1

N2

)

≤ 1

Ns1
+

2

s2
1

∑
τ ′∈S1,t

N∑
j′=1

([
W t−τ ′

]
ij′
− 1

N

)

≤ 1

Ns1
+

2dE1

s2
1

≤ 1

Ns1
+

2d

s2
1

,

where the last line is due to the second part of Lemma 4.1. Therefore, we have the right confidence

bound to use for McDiarmid’s inequality (given that d ≥ dE1), and we get

P {Eq. (4.5.7) holds} ≤ exp
{
− log

(
t4
)}

=
1

t4
. (4.5.12)

A similar statement holds for (4.5.8), and combining with (4.5.5) we conclude

E[PT ] ≤
T∑
t=1

t∑
sk≥`

t∑
s1>`′

(
P {Eq. (4.5.7) holds}+ P {Eq. (4.5.8) holds}

)

≤
T∑
t=1

t∑
sk≥`

t∑
s1>`′

2

t4
≤
∞∑
t=1

2

t2
=
π2

3
. (4.5.13)

Step 3 : Bounding QT

We now return to bound QT as follows. First, note that

QT =

T∑
t=1

1
{
Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) ≤ `′

}
≤

`′∑
s1=1

T∑
t=1

1 {Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) = s1} .
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Let us for each s1 ∈ [1, `′] denote by ts1 the first time that the indicator holds for the particular value

of s1. Fixing any t̂ > 0, we have

QT ≤
`′∑

s1=1

ts1+1−1∑
t=ts1

1 {Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) = s1}

≤ `′t̂+
`′∑

s1=1

ts1+1−1∑
t=ts1+t̂

1 {Ii,t = k, ni,t−1(k) ≥ `, ni,t−1(1) = s1}

≤ `′t̂+

`′∑
s1=1

ts1+1−1∑
t=ts1+t̂

t∑
sk=`

1 {Ii,t = k, ni,t−1(k) = sk, ni,t−1(1) = s1} , (4.5.14)

where the last sum is similar to (4.5.4) with different indices. Hence, to satisfy the indicator, at

least one of the statements (4.5.7), (4.5.8) and (4.5.9) must hold (for new indices). Since sk ≥ `

the analysis of RHS of (4.5.9) given in (4.5.11) is still valid. Observe that by standard properties of

irreducible and aperiodic Markov chains we have [46],

N∑
j=1

∣∣∣∣[W t
]
ij
− 1

N

∣∣∣∣ ≤ √Nσt2(W ) <
∆1,k

4
, ∀t >

log
[

4
√
N

∆1,k

]
log
[
σ−1

2 (W )
] . (4.5.15)

To analyze the LHS, let t̂ be defined as in (4.5.2) and recall (4.5.6). Then, for any s1 ∈ [1, `′] and

t ∈ [ts1 + t̂, ts1+1 − 1] we have S1,t = S1,ts1
by definition of ts1 . Hence, we modify the expression

in (4.5.10) as

LHS of (4.5.9) =
1

s1

∑
τ∈S1,ts1

N∑
j=1

([
W t−τ ]

ij
− 1

N

)
µj(1)

− 1

sk

∑
τ∈Sk,t

N∑
j=1

([
W t−τ ]

ij
− 1

N

)
µj(k) + ∆1,k

≥ −
√
Nσt̂2(W )− dE1

sk
+ ∆1,k ≥

∆1,k

2
,

where in the last line we used Lemma 4.1, equation (4.5.15) and the fact that sk ≥ `. Combining

above with (4.5.11) implies that (4.5.9) never holds. Notice that our argument about the probability

of events (4.5.7) and (4.5.8) holds for any s1, sk, t > 0, and therefore, the tail bound (4.5.12) holds
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true again. Employing these facts and returning to (4.5.14) we get

E[QT ] ≤ `′t̂+
π2

3
. (4.5.16)

Step 4 : Finishing the Proof

Substituting (4.5.13) and (4.5.16) into (4.5.3) gives us the bound

E[ni,T (k)] ≤ `+ E[PT ] + E[QT ] ≤ `+ `′t̂+
2π2

3
. (4.5.17)

Recall the definition of dE1 and dE2 from the statement of the theorem and the fact that N is large

enough. Then, plugging the above into (4.2.2) using quantities defined in (4.5.2) concludes the

proof.

Proof of Lemma 4.2. Noting the contiguous intervals Ik := (
∑k−1

s=0 am−s,
∑k

s=0 am−s] for any

k ∈ [m − 1], the sum in the LHS of (4.3.1) is an under approximation of the area under the curve

x−2 on the interval x ∈
⋃m−1
k=1 Ik = [am,

∑m
k=1 ak], and therefore,

m−1∑
k=1

ak

(
∑m

s=k as)
2 ≤

∫ ∞
am

1

x2
dx =

1

am
.

Now let ak = ∆k,k+1, and observe that

m−1∑
k=1

∆k,k+1

∆2
k,m

=
1

∆m−1,m
+

m−2∑
k=1

∆k,k+1(∑m−1
s=k ∆s,s+1

)2 ≤
2

∆m−1,m
.

Proof of Theorem 4.2. We slightly change the notation introduced in (4.5.2) as follows,

`km := max

{
48 log T

N∆2
k,m

,
4Nd

∆k,m

}
ct,s :=

√
2 log t

(
1

Ns
+

2d

s2

)

`′km :=
4 dE1

∆k,m
t̂km :=

5 log
[

4
√
N

∆k,m

]
4 log

[
σ−1

2 (W )
] . (4.5.18)
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Let us now proceed with bounding ni,T (m | k) in (4.2.3) which represents the number of times that

m was played by agent i given that at least one arm in the set [k] was awake (k < m). Recalling

that Ai,t represents the set of awake arms at time t ∈ [T ] for player i ∈ [N ], we have

ni,T (m | k) =

T∑
t=1

1 {Ii,t = m,Ai,t ∩ [k] 6= ∅}

≤ `km +

T∑
t=1

1 {Ii,t = m,Ai,t ∩ [k] 6= ∅, ni,t(m) ≥ `km}

≤ `km +
k∑

k′=1

T∑
t=1

1
{
Ii,t = m, k′ ∈ Ai,t, ni,t(m) ≥ `km

}
≤ `km +

k∑
k′=1

T∑
t=1

1
{
Ii,t = m, k′ ∈ Ai,t, ni,t(m) ≥ `km, ni,t(k′) > `′km

}
+

k∑
k′=1

T∑
t=1

1
{
Ii,t = m, k′ ∈ Ai,t, ni,t(m) ≥ `km, ni,t(k′) ≤ `′km

}
,

where we arrive to a similar equation to (4.5.3). Therefore, following exactly the lines in the proof

of Theorem 4.1, the final bound resembles the one in (4.5.17), and we obtain

E [ni,T (m | k)] ≤ `km + k`′kmt̂km +
2kπ2

3
. (4.5.19)

Note that since we used a new notation (4.5.18) in the proof of this theorem, in above we replaced

the variables in (4.5.17) with their corresponding quantities defined in (4.5.18). Also, the extra

factor of k is an artifact of the outer summation over k′ ∈ [k]. Since log x ≤ x for x > 0, we can

bound

`′kmt̂km =
4 dE1

∆k,m

 5 log
[

4
√
N

∆k,m

]
4 log

[
σ−1

2 (W )
]


≤ 5 dE1

∆k,m

(
0.5 logN + 4∆−1

k,m

log
[
σ−1

2 (W )
] )

≤ 5 dE1

∆2
k,m

(
0.5 logN + 4

log
[
σ−1

2 (W )
]) ≤ 15 logN

log
[
σ−1

2 (W )
]∆−2

k,m dE1,
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since ∆k,m ≤ 1 and N is large enough. Recalling (4.5.18) as well as the definition of dE2 from

Theorem 4.1, we can simplify (4.5.19) using above as follows,

E [ni,T (m | k)] ≤
48
N log T + 4Nd+ 15k dE1 dE2

∆2
k,m

+
2kπ2

3
.

Substituting above into (4.2.3) and noting that the bound is independent of i, we obtain

RT ≤
K∑
m=2

m−1∑
k=1

∆k,k+1

(
48
N log T + 4Nd+ 15k dE1 dE2

∆2
k,m

+
2kπ2

3

)

≤
K∑
m=2

{(
48

N
log T + 4Nd+ 15m dE1 dE2

)m−1∑
k=1

∆k,k+1

∆2
k,m

}
+

K∑
m=2

2mπ2

3
∆1,m

≤
K∑
m=2

{
96
N log T + 8Nd+ 30m dE1 dE2

∆m−1,m
+

2mπ2

3
∆1,m

}
,

where in the last step we applied (4.3.2).
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Chapter 5

Online Optimization in Dynamic

Environments

Multi-armed bandit is recognized as a special case (partial feedback version) of the well-known

expert advice problem [101–103]. The expert advice problem, itself, can be categorized in the class

of online linear optimization problems. More generally, online convex optimization has been well-

studied in the literature, and there are numerous algorithms solving the problem in static regime. In

this chapter, we revisit the topic using non-static performance metric to shed light on the behavior

of online algorithms in dynamic environments. The content of this chapter is mostly relevant to the

work of [104].

In an online optimization problem, a learner plays against an adversary or nature. At each

round t ∈ {1, . . . , T}, the learner chooses an action xt from some convex feasible set X ⊆ Rd.

Then, nature reveals a convex function ft ∈ F to the learner. As a result, the learner incurs the

corresponding loss ft(xt). A learner aims to minimize his regret, a comparison to a single best
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action in hindsight:

RegsT :=

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (5.0.1)

Let us refer to this as static regret in the sense that the comparator is time-invariant. In the literature,

there are numerous algorithms that guarantee a static regret rate of O(
√
T ) (see e.g. [19–21]).

Moreover, when the loss functions are strongly convex, a rate of O(log T ) could be achieved [105].

Furthermore, minimax optimality of algorithms with respect to the worst-case adversary has been

established (see e.g. [106]).

There are two major directions in which the above-mentioned results can be strengthened: (1)

by exhibiting algorithms that compete with non-static comparator sequences (that is, making the

benchmark harder), and (2) by proving regret guarantees that take advantage of niceness of nature’s

sequence (that is, exploiting some non-adversarial quality of nature’s moves). Both of these distinct

directions are important avenues of investigation. In the present chapter, we attempt to address these

two aspects by developing a single, adaptive algorithm with a regret bound that shows the interplay

between the difficulty of the comparison sequence and niceness of the sequence of nature’s moves.

With respect to the first aspect, a more stringent benchmark is a time-varying comparator, a

notion that can be termed dynamic regret [21, 107–109]:

RegdT :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (5.0.2)

where x∗t := argminx∈X ft(x). More generally, dynamic regret against a comparator sequence

{ut}Tt=1 is

RegdT (u1, . . . , uT ) :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut).

It is well-known that in the worst case, obtaining a bound on dynamic regret is not possible. How-
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ever, it is possible to achieve worst-case bounds in terms of

CT (u1, . . . , uT ) :=
T∑
t=1

∥∥ut − ut−1

∥∥, (5.0.3)

i.e., the regularity of the comparator sequence, interpolating between the static and dynamic regret

notions. Furthermore, the authors in [110] introduce an algorithm which proposes a variant of CT

involving a dynamical model.

In terms of the second direction, there are several ways of incorporating potential regularity of

nature’s sequence. The authors in [111, 112] bring forward the idea of predictable sequences, a

generic way to incorporate some external knowledge about the gradients of the loss functions. Let

{Mt}Tt=1 be a predictable sequence computable by the learner at the beginning of round t. This

sequence can then be used by an algorithm in order to achieve regret in terms of

DT :=
T∑
t=1

∥∥∇ft(xt)−Mt

∥∥2

∗. (5.0.4)

The framework of predictable sequences captures variation and path-length type regret bounds (see

e.g. [113–115]). Yet another way in which niceness of the adversarial sequence can be captured is

through a notion of temporal variability studied in [116]:

VT :=
T∑
t=1

sup
x∈X

∣∣ft(x)− ft−1(x)
∣∣. (5.0.5)

What is interesting—and intuitive— is that dynamic regret against the optimal sequence {x∗t }Tt=1

becomes a feasible objective when VT is small. When only noisy versions of gradients are revealed

to the algorithm, Besbes et al. in [116] show that using a restarted Online Gradient Descent (OGD)

[21] algorithm, one can get a bound of form T 2/3(VT + 1)1/3 on the expected regret. However, the

regret bounds attained in [116] are only valid when an upper bound on VT is known to the learner

before the game begins. For the full information online convex optimization setting, when one re-
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ceives exact gradients instead of noisy gradients, a bound of order VT is trivially obtained by simply

playing (at each round) the minimum of the previous round.

The three quantities we just introduced — CT , DT , VT — measure distinct aspects of the online

optimization problem, and their interplay is an interesting object of study. Our main contribution,

presented in Section 5.2, is to develop a fully adaptive method (without prior knowledge of these

quantities) whose dynamic regret is given in terms of these three complexity measures. This is done

for the full information online convex optimization setting, and augments the existing regret bounds

in the literature which focus on only one of the three notions — CT , DT , VT — (and not all the

three together). To establish a sub-linear bound on the dynamic regret, we utilize a variant of the

Optimistic Mirror Descent (OMD) algorithm [111].

When noiseless gradients are available and we can calculate variations at each round, we not

only establish a regret bound in terms of VT and T (without a priori knowledge of a bound on VT

), but also show how the bound can in fact be improved when deviation DT is o(T ). We further

also show how the bound can automatically adapt to CT the length of sequence of comparators.

Importantly, this avoids suboptimal bounds derived only in terms of one of the quantities — CT , VT

— in an environment where the other one is small.

The second contribution of this work is the technical analysis of the algorithm. The bound

on the dynamic regret is derived by applying the doubling trick to a non-monotone quantity which

results in a non-monotone step size sequence (which has not been investigated to the best of authors’

knowledge).

As an instance of learning in dynamic environments, we provide uncoupled strategies for two

players playing a sequence of drifting zero sum games (Section 5.3). We show how when the two

players play the provided strategies, their payoffs converge to the average minimax value of the
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sequence of games (provided the games drift slowly). In this case, both players simultaneously

enjoy no regret guarantees against best sequences of actions in hindsight that vary slowly. This is a

generalization of the results by Daskalakis et al. [117], and Rakhlin et al. [112], both of which are

for fixed games played repeatedly.

5.1 Preliminaries

5.1.1 Notation

Throughout, we assume that for any action x ∈ X ⊂ Rd at any time t, it holds that

|ft(x)| ≤ G. (5.1.1)

We denote by ‖ · ‖∗ the dual norm of ‖ · ‖, by [T ] the set of natural numbers {1, . . . , T}, and by f1:t

the shorthand of f1, ..., ft, respectively. Whenever CT is written without arguments, it will refer to

regularity CT (x∗1, . . . , x
∗
T ) of the sequence of minimizers of the loss functions. We point out that

our initial statements hold for the regularity of any sequence of comparators. However, for upper

bounds involving
√
CT , one needs to choose a computable quantity to tune the step size, and hence

our main results are stated for CT (x∗1, . . . , x
∗
T ).

The quantity DT is defined with respect to an arbitrary predictable sequence {Mt}Tt=1, but this

dependence is omitted for brevity.

5.1.2 Existing Regret Bounds in the Dynamic Setting

We state and discuss relevant results from the literature on online learning in dynamic environments.

For any comparator sequence {ut}Tt=1 and the specific minima sequence {x∗t }Tt=1 the following

results are established in the literature:
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Reference Regret Notion

Regret Rate

[21]
∑T
t=1 ft(xt)− ft(ut)

[110] O
(√

T (1 + CT (u1, . . . , uT ))
)

[116]
∑T
t=1 E [ft(xt)]− ft(x∗t )

O
(
T 2/3(1 + VT )1/3

)
[112]

∑T
t=1 ft(xt)− ft(u)

O
(√
DT
)

Our work
∑T
t=1 ft(xt)− ft(x

∗
t )

Õ
(√

DT + 1 + min
{√

(DT + 1)CT , (DT + 1)1/3T 1/3V
1/3
T

})
Table 5.1: Comparison of the results

where Õ(·) hides the log T factor. In our initial result, Lemma 5.1 below also yields a rate

of O
(√
DT + 1(1 + CT (u1, . . . , uT ))

)
for any comparator sequence {ut}Tt=1. A detailed explanation

of the bounds will be done after Theorem 5.1.

We remark that the authors in [116] consider a setting in which a variation budget (an up-

per bound on VT ) is known to the learner, but he/she only has noisy gradients available. Then,

the restarted OGD guarantees the mentioned rate for convex functions; the rate is modified to√
(VT + 1)T for strongly convex functions.

For the case of noiseless gradients, we first aim to show that our algorithm is adaptive in the

sense that the learner needs not know an upper bound on VT in advance when he/she can calculate

variations observed so far. Furthermore, we shall establish that our method recovers the known

bounds for stationary settings (as well as cases where VT does not change gradually along the time

horizon)
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5.1.3 Comparison of Regularity and Variability

We now show that VT and CT are not comparable in general. To this end, we consider the classical

problem of prediction with expert advice. In this setting, the learner deals with the linear loss

ft(x) = 〈ft, x〉 on the d-dimensional probability simplex. Assume that for any t ≥ 1, we have the

vector sequence

ft =


(− 1

T , 0, 0, . . . , 0) , if t even

(0,− 1
T , 0, . . . , 0) , if t odd

.

Setting ut, the comparator of round t, to be the minimizer of ft, i.e. ut = x∗t , we have

CT =
T∑
t=1

‖x∗t − x∗t−1‖1 = Θ(T ) VT =
T∑
t=1

‖ft − ft−1‖∞ = O (1) ,

according to (5.0.3) and (5.0.5), respectively. We see that VT is considerably smaller than CT in

this scenario. On the other hand, consider prediction with expert advice with two experts. Let

ft = (−1/2, 0) on even rounds and ft = (0, 1/2) on odd rounds. Expert 1 remains to be the best

throughout the game, and thus CT = O(1), while variation VT = Θ(T ). Therefore, one can see

that taking into account only one measure might lead us to suboptimal regret bounds. We show that

both measures play a key role in our regret bound. Finally, we note that if Mt = ∇ft−1(xt−1), the

notion of DT can be related to VT in certain cases, yet we keep the predictable sequence arbitrary

and thus as playing a role separate from VT and CT .

5.2 Adaptive Optimistic Mirror Descent

5.2.1 Optimistic Mirror Descent and Relation to Regularity

We now outline the OMD algorithm previously proposed in [111]. Let R be a 1-strongly convex

function with respect to a norm ‖ · ‖, and DR(·, ·) represent the Bregman divergence with respect to
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R. Also, letHt be the set containing all available information to the learner at the beginning of time

t. Then, the learner can compute the vector Mt : Ht → Rd, which we call the predictable process.

Supposing that the learner has access to the side information Mt ∈ Rd from the outset of round t,

the OMD algorithm is characterized via the following interleaved sequence,

xt = argminx∈X

{
ηt
〈
x,Mt

〉
+DR(x, x̂t−1)

}
(5.2.1)

x̂t = argminx∈X

{
ηt
〈
x,∇t

〉
+DR(x, x̂t−1)

}
, (5.2.2)

where ∇t := ∇ft(xt), and ηt is the step size that can be chosen adaptively to attain low regret.

One could observe that for Mt = 0, the OMD algorithm amounts to the well-known Mirror Descent

algorithm [118, 119]. On the other hand, the special case of Mt = ∇t−1 recovers the scheme

proposed in [114]. It is shown in [111] that the static regret satisfies

RegsT ≤ 4Rmax

(√
DT + 1

)
,

using the step size

ηt = Rmax min

{(√
Dt−1 +

√
Dt−2

)−1
, 1

}
,

where R2
max := supx,y∈X DR(x, y). The following lemma extends the result to arbitrary sequence

of comparators {ut}Tt=1. Throughout, we assume that ‖∇0 −M0‖2∗ = 1 by convention.

Lemma 5.1. Let X be a convex set in a Banach space B. Let R : B 7→ R be a 1-strongly convex

function on X with respect to a norm ‖ · ‖, and let ‖ · ‖∗ denote the dual norm. For any L > 0,

employing the time-varying step size

ηt =
L√∑t−1

s=0 ‖∇s −Ms‖2∗ +
√∑t−2

s=0 ‖∇s −Ms‖2∗
,
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and running the Optimistic Mirror Descent algorithm for any comparator sequence {ut}Tt=1, yields

RegdT (u1, . . . , uT ) ≤ 2
√

1 +DTL+ 2
√

1 +DT
γCT (u1, . . . , uT ) + 4R2

max

L
,

so long as DR(x, z)−DR(y, z) ≤ γ‖x− y‖,∀x, y, z ∈ X .

Lemma 5.1 underscores the fact that one can get a tighter bound for regret once the learner

advances a sequence of conjectures {Mt}Tt=1 well-aligned with the gradients. Moreover, if the

learner has prior knowledge of CT (or an upper bound on it), then the regret bound would be

O
(√

(DT + 1)CT

)
by tuning L.

Note that when the function R is Lipschitz on X , the Lipschitz condition on the Bregman

divergence is automatically satisfied. For the particular case of KL divergence this can be achieved

via mixing a uniform distribution to stay away from boundaries (see e.g. Section 5.3.2 in this

regard). In this case, the constant γ is of O(log T ).

5.2.2 The Adaptive Optimistic Mirror Descent Algorithm

The main objective of the chapter is to develop the Adaptive Optimistic Mirror Descent (AOMD)

algorithm. The AOMD algorithm incorporates all notions of variation DT , CT and VT to derive a

comprehensive regret bound. The proposed method builds on the OMD algorithm with adaptive step

size, combined with a doubling trick applied to a threshold growing non-monotonically (see e.g.

[19, 111] for application of doubling trick on monotone quantities). The scheme is adaptive in the

sense that no prior knowledge of DT , CT or VT is necessary.

Observe that the prior knowledge of a variation budget (an upper bound on VT ) does not tell

us how the changes between cost functions are distributed throughout the game. For instance, the

variation can increase gradually along the time horizon, while it can also take place in the form of
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discrete switches. The learner does not have any information about the variation pattern. Therefore,

she must adopt a flexible strategy that achieves low regret in the benign case of finite switches or

shocks, while it is simultaneously able to compete with the worst-case of gradual change. Before

describing the algorithm, let us first use Lemma 5.1 to bound the general dynamic regret in terms of

DT , CT and VT .

Lemma 5.2. Let X be a convex set in a Banach space B. Let R : B 7→ R be a 1-strongly convex

function on X with respect to a norm ‖ · ‖. Run the Optimistic Mirror Descent algorithm with the

step size given in the statement of Lemma 5.1. Letting the comparator sequence be {ut}Tt=1, for any

L > 2Rmax we have

RegdT (u1, . . . , uT ) ≤ 4
√

1 +DTL+ 1
{
γCT (u1, . . . , uT ) > L2 − 4R2

max

} 4γRmaxTVT
L2 − 4R2

max

,

so long as DR(x, z)−DR(y, z) ≤ γ‖x− y‖,∀x, y, z ∈ X .

We now describe AOMD algorithm shown in table 5, and prove that it automatically adapts to

VT , DT and CT . The algorithm can be cast as a repeated OMD using different step sizes. The learner

sets the parameter L = 3Rmax in Lemma 5.1, and runs the OMD algorithm. Along the process, the

learner collects deviation, variation and regularity observed so far, and checks the doubling condi-

tion in table 5 after each round. Once the condition is satisfied, the learner doubles L, discards the

accumulated deviation, variation and regularity, and runs a new OMD algorithm. Note importantly

that the doubling condition results in a non-monotone sequence of step size during the learning

process.
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Algorithm 5 Adaptive Optimistic Mirror Descent Algorithm
Parameter : Rmax, some arbitrary x0 ∈ X

Initialize N = 1, C(1) = V(1) = 0, D(1) = 1, x1 = x0, L1 = 3Rmax, ∆1 = 0 and k1 = 1.

for t = 1 to T do

% check doubling condition

if L2
N < γmin

{
C(N) , V

2/3

(N) ∆
2/3
N D

−1/3

(N)

}
+ 4R2

max then

% increment N and double LN

N = N + 1

LN = 3Rmax2N−1, C(N) = V(N) = 0, D(N) = 1 and ∆N = 0

kN = t

end if

Play xt and suffer loss ft(xt)

Calculate Mt+1 (predictable sequence) and gradient∇t = ∇ft(xt)

% update D(N), C(N), V(N) and ∆N

D(N) = D(N) + ‖∇t −Mt‖2∗

C(N) = C(N) + ‖x∗t − x∗t−1‖

V(N) = V(N) + supx∈X |ft(x)− ft−1(x)|

∆N = ∆N + 1

% set step-size and perform optimistic mirror descent update

ηt+1 = LN

(√
D(N) +

√
D(N) − ‖∇t −Mt‖2∗

)−1

x̂t = argmin
x∈X

{
ηt
〈
x,∇t

〉
+DR(x, x̂t−1)

}
xt+1 = argmin

x∈X

{
ηt+1

〈
x,Mt+1

〉
+DR(x, x̂t)

}
end for

Notice that once we have completed running the algorithm,N is the number of doubling epochs,

∆i is the number of instances in epoch i, ki and ki+1 − 1 are the start and end points of epoch i,∑
i=1 ∆i = T ,

∑N
i=1C(i) = CT ,

∑N
i=1D(i) = DT + N and

∑N
i=1 V(i) = VT . Also, there is a

technical reason for initialization choice of L which shall become clear in the proof of Lemma 5.2.
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Theorem 5.1 shows the bound enjoyed by the proposed AOMD algorithm.

Theorem 5.1. Assume that DR(x, z) − DR(y, z) ≤ γ‖x − y‖, ∀x, y, z ∈ X , and let CT =∑T
t=1

∥∥x∗t − x∗t−1

∥∥. The AOMD algorithm enjoys the following bound on dynamic regret :

RegdT ≤ Õ
(√

DT + 1
)

+ Õ
(

min
{√

(DT + 1)CT , (DT + 1)1/3T 1/3V
1/3
T

})
,

where ˜O(·) hides a log T factor.

Based on Theorem 5.1 we can obtain the following table that summarizes bounds on RegdT for

various cases (disregarding the first term Õ
(√
DT + 1

)
in the bound above):

Regime Rate

CT ≤ T 2/3(DT + 1)−1/3V
2/3
T Õ

(√
CT (DT + 1)

)
VT ≤ DT + 1 Õ

(
(DT + 1)2/3T 1/3

)
DT ≤ VT − 1 Õ

(
V

2/3
T T 1/3

)
DT = O(T ) Õ

(
T 2/3V

1/3
T

)
Table 5.2: Regret bound in different regimes

The following remarks are in order :

• In all cases, given the condition VT = o(T ), the regret is sub-linear. When the gradients

are bounded, the regime DT = O(T ) always holds, guaranteeing the worst-case bound of

Õ
(
T 2/3V

1/3
T

)
.

• Theorem 5.1 allows us to recover Õ(1) regret for certain cases where VT = O(1). Let nature

divide the horizon into B batches, and play a smooth convex function fi(x) on each batch

i ∈ [B], that is for some Hi > 0 it holds that

‖∇fi(x)−∇fi(y)‖∗ ≤ Hi‖x− y‖, (5.2.3)
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∀i ∈ [B] and ∀x, y ∈ X . Set Mt = ∇fi(x̂t−1) and note that the gradients are Lipschitz

continuous. In this case, the OMD corresponding to each batch can be recognized as the Mirror

Prox method [120], which results in Õ(1) regret during each period. Also, since CT = O(1)

the bound in Theorem 5.1 is of O(log T ).

5.3 Applications

5.3.1 Competing with Strategies

So far, we mainly considered dynamic regret RegdT defined in Equation 5.0.2. However, in many

scenarios one might want to consider regret against a more specific set of strategies, defined as

follows :

RegΠ
T :=

T∑
t=1

ft(xt)− inf
π∈Π

T∑
t=1

ft(πt(f1:t−1)),

where each π ∈ Π is a sequence of mappings π = (π1, . . . , πT ) and πt : F t−1 → X . Notice that if

Π is the set of all mappings then RegΠ
T corresponds to dynamic regret RegdT and if Π corresponds

to set of constant history independent mappings, that is, each π ∈ Π is indexed by some x ∈ X and

πx1 (·) = . . . = πxT (·) = x, then RegΠ
T corresponds to the static regret RegsT . We now define

CΠ
T =

T∑
t=1

∥∥π∗t (f1:t−1)− π∗t−1(f1:t−2)
∥∥ ,

where π∗t = arginfπ∈Π

∑t
s=1 fs(πs(f1:s−1)). Assume that there exists sequence of mappings

C̃1, . . . , C̃T where C̃t maps any f1, . . . , ft to reals and is such that for any t and any f1, . . . , ft−1,

C̃t−1(f1:t−1) ≤ C̃t(f1:t),

and further, for any T and any f1, . . . , fT ,

T∑
t=1

∥∥π∗t (f1:t−1)− π∗t−1(f1:t−2)
∥∥ ≤ C̃T (f1:T ).
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In this case a simple modification of AOMD algorithm whereC(N)’s are replaced by C̃∆N
(fkN :kN+1−1)

leads to the following corollary of Theorem 5.1.

Corollary 5.1. Assume that DR(x, z)−DR(y, z) ≤ γ‖x− y‖,∀x, y, z ∈ X . The AOMD algorithm

with the modification mentioned above achieves the following bound on regret

RegΠ
T ≤ Õ

(√
DT + 1

)
+ Õ

(
min

{√
(DT + 1)C̃T (f1:T ), (DT + 1)1/3T 1/3V

1/3
T

})
.

The corollary naturally interpolates between the static and dynamic regret. In other words,

letting C̃T (f1:T ) = 0 (which holds for constant mappings), we recover the result of [112] (up to

logarithmic factors), whereas C̃T (f1:T ) = CT simply recovers the regret bound in Theorem 5.1

corresponding to dynamic regret. The extra log factor is the cost of adaptivity of the algorithm as

we assume no prior knowledge about the environment.

5.3.2 Switching Zero-sum Games with Uncoupled Dynamics

Consider two players playing T zero sum games defined by matrices At ∈ [−1, 1]m×n for each

t ∈ [T ]. We would like to provide strategies for the two players such that, if both players honestly

follow the prescribed strategies, the average payoffs of the players approach the average minimax

value for the sequence of games at some fast rate. Furthermore, we would also like to guarantee that

if one of the players (say the second) deviates from the prescribed strategy, then the first player still

has small regret against sequence of actions that do not change drastically. To this end, one can use

a simple modification of the AOMD algorithm for both players that uses KL divergence as DR, and

mixes in a bit of uniform distribution on each round, producing an algorithm similar to the one in

[112] for unchanging uncoupled dynamic games. The following theorem provides bounds for when

both players follow the strategy and bound on regret for player I when player II deviates from the

strategy.
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On round t, Player I performs

Play xt and observe f>t At

Update

x̂t(i) ∝ x̂′t−1(i) exp{−ηt[f>t At]i}

x̂′t = (1− β) x̂t + (β/n)1n

xt+1(i) ∝ x̂′t(i) exp{−ηt+1[f>t At]i}

and simultaneously Player II performs

Play ft and observe Atxt

Update

f̂t(i) ∝ f̂ ′t−1(i) exp{−η′t[Atxt]i}

f̂ ′t = (1− β) f̂t + (β/m)1m

ft+1(i) ∝ f̂ ′t(i) exp{−η′t+1[Atxt]i}

Note that in the description of the algorithm as well as the following proposition and its proof,

any letter with the prime symbol refers to Player II, and it is used to differentiate the letter from its

counterpart for player I.

Proposition 5.1. Define Ft :=
∑t

i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞, and let

ηt = min

{
log(T 2n)

L√
Ft−1 +

√
Ft−2

,
1

32L

}
.

Also define At :=
∑t

i=1 ‖Aixi −Ai−1xi−1‖2∞, and let

η′t = min

{
log(T 2m)

L√
At−1 +

√
At−2

,
1

32L

}
.

Let β = 1/T 2, Mt = f>t−1At−1, and M ′t = At−1xt−1. When Player I uses the prescribed strategy,

irrespective of the actions of player II, the regret of Player I w.r.t. any sequence of actions u1, . . . , uT
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is bounded as :

T∑
t=1

(
f>t Atxt − f>t Atut

)
≤ 2 log(T 2n) (CT (u1, . . . , uT ) + 2)

(
32L+

2
√

FT

log(T 2n)L

)

+ log(T 2n)
L

2

√
FT .

Further if both players follow the prescribed strategies then, as long as

2L2 > max
{
CT , C

′
T

}
+ 3, (5.3.1)

we get,

T∑
t=1

sup
ft∈∆m

f>t Atxt ≤
T∑
t=1

inf
xt∈∆n

sup
ft∈∆m

f>t Atxt +
256L

T
+

1

2L
+ 4

T∑
t=1

‖At−1 −At‖∞

+ 32L
(
log(T 2n)CT + log(T 2m)C ′T + 2 log(T 4nm)

)
+ (CT + C ′T + 4)

20 + 4
√∑T

t=1 ‖At−1 −At‖2∞
L

.

A simple consequence of the above proposition is that if for instance the game matrixAt changes

at most K times over the T rounds, and we knew this fact a priori, then by letting L = 1√
log(T 2n)

,

we get that regret for Player I w.r.t. any sequence of actions that switches at most K times even

when Player II deviates from the prescribed strategy is O
(

(K + 2)
√

log(T 2n)T
)

. At the same

time if both players follow the strategy, then average payoffs of the players converge to the average

minimax equilibrium at the rate of O
(
L (K + 2) log(T 4nm)

)
under the condition on L given in

(5.3.1). This shows that if the game matrix only changes/switches a constant number of times, then

players get
√

log(T )T regret bound against arbitrary sequences and comparator actions that switch

at most K times while simultaneously get a convergence rate of O (log(T )) to average equilibrium

when both players are honest. Also, when we let K = 0 and set L to some constant, the proposition

recovers the rate in static setting [112] where the matrix sequence is time-invariant.
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5.4 Proofs

Proof of Lemma 5.1. For any ut ∈ X , it holds that

〈xt − ut,∇t〉 = 〈xt − x̂t,∇t −Mt〉+ 〈xt − x̂t,Mt〉+ 〈x̂t − ut,∇t〉 . (5.4.1)

First, observe that for any primal-dual norm pair we have

〈xt − x̂t,∇t −Mt〉 ≤ ‖xt − x̂t‖ ‖∇t −Mt‖∗ .

Any update of the form a∗ = arg mina∈X 〈a, x〉+DR(a, c) satisfies for any d ∈ X ,

〈a∗ − d, x〉 ≤ DR(d, c)−DR(d, a∗)−DR(a∗, c) .

This entails

〈xt − x̂t,Mt〉 ≤
1

ηt

{
DR(x̂t, x̂t−1)−DR(x̂t, xt)−DR(xt, x̂t−1)

}

and

〈x̂t − ut,∇t〉 ≤
1

ηt

{
DR(ut, x̂t−1)−DR(ut, x̂t)−DR(x̂t, x̂t−1)

}
.

Combining the preceding relations and returning to (5.4.1), we obtain

〈xt − ut,∇t〉 ≤
1

ηt

{
DR(ut, x̂t−1)−DR(ut, x̂t)−DR(x̂t, xt)−DR(xt, x̂t−1)

}
+ ‖∇t −Mt‖∗ ‖xt − x̂t‖

≤ 1

ηt

{
DR(ut, x̂t−1)−DR(ut, x̂t)−

1

2
‖x̂t − xt‖2 −

1

2
‖x̂t−1 − xt‖2

}
+ ‖∇t −Mt‖∗ ‖xt − x̂t‖ , (5.4.2)
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where in the last step we appealed to strong convexity: DR(x, y) ≥ 1
2 ‖x− y‖

2 for any x, y ∈ X .

Using the simple inequality ab ≤ ρa2

2 + b2

2ρ for any ρ > 0 to split the product term, we get

〈xt − ut,∇t〉 ≤
1

ηt

{
DR(ut, x̂t−1)−DR(ut, x̂t)−

1

2
‖x̂t − xt‖2 −

1

2
‖x̂t−1 − xt‖2

}
+
ηt+1

2
‖∇t −Mt‖2∗ +

1

2ηt+1
‖xt − x̂t‖2 ,

Applying the bound

1

2ηt+1
‖xt − x̂t‖2 −

1

2ηt
‖xt − x̂t‖2 ≤ R2

max

(
1

ηt+1
− 1

ηt

)
,

and summing over t ∈ [T ] yields ,

T∑
t=1

〈xt − ut,∇t〉 ≤
T∑
t=1

ηt+1

2
‖∇t −Mt‖2∗ +

T∑
t=1

1

ηt

{
DR(ut, x̂t−1)−DR(ut, x̂t)

}
+
R2

max

ηT+1

≤
T∑
t=1

ηt+1

2
‖∇t −Mt‖2∗ +R2

max

(
1

η1
+

1

ηT+1

)

+
T∑
t=2

{
DR(ut, x̂t−1)

ηt
− DR(ut−1, x̂t−1)

ηt−1

}

≤
T∑
t=2

{
DR(ut, x̂t−1)

ηt
− DR(ut−1, x̂t−1)

ηt

}

+
T∑
t=2

{
DR(ut−1, x̂t−1)

ηt
− DR(ut−1, x̂t−1)

ηt−1

}

+
T∑
t=1

ηt+1

2
‖∇t −Mt‖2∗ +

2R2
max

ηT+1

≤
T∑
t=1

ηt+1

2
‖∇t −Mt‖2∗ + γ

T∑
t=2

‖ut − ut−1‖
ηt

+
T∑
t=2

DR(ut−1, x̂t−1)

(
1

ηt
− 1

ηt−1

)
+

2R2
max

ηT+1

≤
T∑
t=1

ηt+1

2
‖∇t −Mt‖2∗ + γ

T∑
t=2

‖ut − ut−1‖
ηt

+
4R2

max

ηT+1
,
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where we used the Lipschitz continuity of DR in the penultimate step. Now let us set

ηt =
L√∑t−1

s=0 ‖∇s −Ms‖2∗ +
√∑t−2

s=0 ‖∇s −Ms‖2∗

=

L

(√∑t−1
s=0 ‖∇s −Ms‖2∗ −

√∑t−2
s=0 ‖∇s −Ms‖2∗

)
‖∇t−1 −Mt−1‖2∗

,

and ‖∇0 −M0‖2∗ = 1 to have

T∑
t=1

〈xt − ut,∇t〉 ≤
L

2

T∑
t=1


√√√√ t∑

s=0

‖∇s −Ms‖2∗ −

√√√√ t−1∑
s=0

‖∇s −Ms‖2∗


+

2γ
√

1 +
∑T

t=1 ‖∇t −Mt‖2∗
L

T∑
t=2

‖ut − ut−1‖

+
8R2

max

√
1 +

∑T
t=1 ‖∇t −Mt‖2∗
L

≤ 2

√√√√1 +
T∑
t=1

‖∇t −Mt‖2∗

(
L+

γ
∑T

t=1 ‖ut − ut−1‖+ 4R2
max

L

)
.

Appealing to convexity of {ft}Tt=1, and replacing CT (5.0.3) and DT (5.0.4) in above, completes

the proof . �

Proof of Lemma 5.2. We define

UT :=

{
u1, ..., uT ∈ X : γ

T∑
t=1

‖ut − ut−1‖ ≤ L2 − 4R2
max

}
, (5.4.3)

and

(u∗1, ..., u
∗
T ) := argminu1,...,uT∈UT

T∑
t=1

ft(ut).

Our choice of L > 2Rmax guarantees that any sequence of fixed comparators ut = u for t ∈ [T ]

belongs to UT , and hence, (u∗1, ..., u
∗
T ) exists. Noting that (u∗1, ..., u

∗
T ) is an element of UT , we have
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γ
∑T

t=1

∥∥u∗t − u∗t−1

∥∥+ 4R2
max ≤ L2. We now apply Lemma 5.1 to {u∗t }Tt=1 to bound the dynamic

regret for arbitrary comparator sequence {ut}Tt=1 as follows,

RegdT (u1, ..., uT ) =
T∑
t=1

{
ft(xt)− ft(u∗t )

}
+

T∑
t=1

{
ft(u

∗
t )− ft(ut)

}

≤ 4
√

1 +DTL+
T∑
t=1

{
ft(u

∗
t )− ft(ut)

}

≤ 4
√

1 +DTL

+ 1

{
γ

T∑
t=1

‖ut − ut−1‖ > L2 − 4R2
max

}(
T∑
t=1

{
ft(u

∗
t )− ft(ut)

})
,

(5.4.4)

where the last step follows from the fact that

T∑
t=1

ft(u
∗
t )−

T∑
t=1

ft(ut) ≤ 0 if (u1, ..., uT ) ∈ UT .

Given the definition of R2
max, by strong convexity of DR(x, y), we get that ‖x − y‖ ≤

√
2Rmax,

for any x, y ∈ X . This entails that once we divide the horizon into B number of batches and use a

single, fixed point as a comparator along each batch, we have

T∑
t=1

‖ut − ut−1‖ ≤ B
√

2Rmax, (5.4.5)

since there are at most B number of changes in the comparator sequence along the horizon. Now

let B = L2−4R2
max

γ
√

2Rmax
, and for ease of notation, assume that T is divisible by B. Noting that ft(x∗t ) ≤

ft(ut), we use an argument similar to that of [116] to get for any fixed ti ∈ [(i − 1)(T/B) +
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1, i(T/B)],

T∑
t=1

{
ft(u

∗
t )− ft(ut)

}
≤

T∑
t=1

{
ft(u

∗
t )− ft(x∗t )

}
(5.4.6)

=
B∑
i=1

i(T/B)∑
t=(i−1)(T/B)+1

{
ft(u

∗
t )− ft(x∗t )

}

≤
B∑
i=1

i(T/B)∑
t=(i−1)(T/B)+1

{
ft(x

∗
ti)− ft(x

∗
t )

}
(5.4.7)

≤
(
T

B

) B∑
i=1

max
t∈[(i−1)(T/B)+1,i(T/B)]

{
ft(x

∗
ti)− ft(x

∗
t )

}
. (5.4.8)

Note that x∗ti is fixed for each batch i. Substituting our choice of B = L2−4R2
max

γ
√

2Rmax
in (5.4.5) implies

that the comparator sequence ut = x∗ti1
{

(i−1)T
B + 1 ≤ t ≤ iT

B

}
belongs to UT , and (5.4.7) follows

by optimality of (u∗1, ..., u
∗
T ). We now claim that for any t ∈ [(i− 1)(T/B) + 1, i(T/B)], we have,

ft(x
∗
ti)− ft(x

∗
t ) ≤ 2

i(T/B)∑
s=(i−1)(T/B)+1

sup
x∈X
|fs(x)− fs−1(x)|. (5.4.9)

Assuming otherwise, there must exist a t̂i ∈ [(i− 1)(T/B) + 1, i(T/B)] such that

ft̂i(x
∗
ti)− ft̂i(x

∗
t̂i

) > 2

i(T/B)∑
t=(i−1)(T/B)+1

sup
x∈X
|ft(x)− ft−1(x)|,

which results in

ft(x
∗
t̂i

) ≤ ft̂i(x
∗
t̂i

) +

i(T/B)∑
t=(i−1)(T/B)+1

sup
x∈X
|ft(x)− ft−1(x)|

< ft̂i(x
∗
ti)−

i(T/B)∑
t=(i−1)(T/B)+1

sup
x∈X
|ft(x)− ft−1(x)| ≤ ft(x∗ti),

The preceding relation for t = ti violates the optimality of x∗ti , which is a contradiction. Therefore,

Equation (5.4.9) holds for any t ∈ [(i − 1)(T/B) + 1, i(T/B)] Combining (5.4.6), (5.4.8) and

118



(5.4.9) we have

T∑
t=1

{
ft(u

∗
t )− ft(ut)

}
≤ 2T

B

B∑
i=1

i(T/B)∑
t=(i−1)(T/B)+1

sup
x∈X
|ft(x)− ft−1(x)|

=
2TVT
B

=
2γ
√

2RmaxTVT
L2 − 4R2

max

. (5.4.10)

Using the above in Equation (5.4.4) we conclude the following upper bound

RegdT (u1, ..., uT ) ≤ 4
√

1 +DTL

+ 1

{
γ

T∑
t=1

‖ut − ut−1‖ > L2 − 4R2
max

}
4γRmaxTVT
L2 − 4R2

max

,

thereby completing the proof. �

Proof of Theorem 5.1. For the sake of clarity in presentation, we stick to the following notation for

the proof

D(i) := D(i) − ‖∇ki+1−1 −Mki+1−1‖2∗

C(i) := C(i) − ‖x∗ki+1−1 − x∗ki+1−2‖

V (i) := V(i) − sup
x∈X

∣∣fki+1−1(x)− fki+1−2(x)
∣∣

∆(i) := ∆i − 1,

for any doubling epoch i = 1, ..., N , where we recall that ki+1 − 1 is the last instance of epoch i.

Therefore, any symbol with lower bar refers to its corresponding quantity removing only the value

of the last instance of that interval.

Let the AOMD algorithm run with the step size given by Lemma 5.1 in the following form

ηt =
Li√∑t−1

s=0 ‖∇s −Ms‖2∗ +
√∑t−2

s=0 ‖∇s −Ms‖2∗
,

119



and let Li be tuned with a doubling condition explained in the algorithm. Once the condition stated

in the algorithm fails, the following pair of identities must hold

γmin{C(i) , ∆
2/3
i V

2/3
(i) D

−1/3
(i) }+ 4R2

max ≤ L2
i

γmin{C(i) , ∆
2/3
i V

2/3
(i) D

−1/3
(i) }+ 4R2

max > L2
i . (5.4.11)

Observe that the algorithm doubles Li only after the condition fails, so at violation points we suffer

at most 2G by boundedness (5.1.1). Then, under purview of Lemma 5.2, it holds that

RegdT ≤
N∑
i=1

{
4
√
D(i)Li + 1

{
γC(i) > L2

i − 4R2
max

} 4γRmax∆iV (i)

L2
i − 4R2

max

}
+ 2NG

≤
N∑
i=1

{
4
√
D(i)Li + 1

{
C(i) > ∆

2/3
i V

2/3
(i) D

−1/3
(i)

} 4γRmax∆iV (i)

L2
i − 4R2

max

}
+ 2NG, (5.4.12)

where the last step follows directly from (5.4.11) and the fact that D(i) ≤ D(i). Bounding
√
D(i)Li

in above, using the second inequality in (5.4.11), we get

√
D(i)Li ≤

√
γmin

{
D(i)C(i) , ∆

2/3
i V

2/3
(i) D

2/3
(i)

}
+ 4R2

maxD(i)

≤ 2Rmax

√
D(i) +

√
γmin

{√
D(i)C(i) , ∆

1/3
i V

1/3
(i) D

1/3
(i)

}
,

by the simple inequality
√
a+ b ≤

√
a +
√
b. Plugging the bound above into (5.4.12) and noting

that

N∑
i=1

√
D(i) = N

N∑
i=1

1

N

√
D(i) ≤ N

√√√√ 1

N

N∑
i=1

D(i) =
√
NDT +N,

by Jensen’s inequality, we obtain

RegdT ≤ 2NG+ 8Rmax

√
NDT +N + 4

√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}
+

N∑
i=1

1
{
C(i) > ∆

2/3
i V

2/3
(i) D

−1/3
(i)

} 4Rmax∆iV (i)

min
{
C(i),∆

2/3
i V

2/3
(i) D

−1/3
(i)

} ,
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where we used the first inequality in (5.4.11) to bound the last term. Given the condition in the

indicator function 1 {·}, we can simplify above to derive,

RegdT ≤ 2NG+ 8Rmax

√
NDT +N + 4

√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}
+ 4Rmax

N∑
i=1

1
{
C(i) > ∆

2/3
i V

2/3
(i) D

−1/3
(i)

}
D

1/3
(i) V

1/3
(i) ∆

1/3
i

= 2NG+ 8Rmax

√
NDT +N + 4

√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}
+ 4Rmax

N∑
i=1

1
{√

D(i)C(i) > ∆
1/3
i V

1/3
(i) D

1/3
(i)

}
D

1/3
(i) V

1/3
(i) ∆

1/3
i

≤ 2NG+ 8Rmax

√
NDT +N + 4

√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}
+ 4Rmax

N∑
i=1

min
{√

D(i)C(i), D
1/3
(i) V

1/3
(i) ∆

1/3
i

}
. (5.4.13)

Let ` := 2
√
γ + 2Rmax. Given the fact that

C(i) ≤ C(i) D(i) ≤ D(i) V (i) ≤ V(i) ∆i ≤ ∆i,

we return to (5.4.13) to derive

RegdT ≤ 2NG+ 8Rmax

√
NDT +N + 2`

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}
≤ 2NG+ 8Rmax

√
NDT +N + 2`min

{
N∑
i=1

√
D(i)C(i),

N∑
i=1

D
1/3
(i) ∆

1/3
i V

1/3
(i)

}

≤ 2N
(
G+ 4Rmax

√
DT + 1 + `min

{√
(DT + 1)CT , (DT + 1)1/3T 1/3V

1/3
T

})
. (5.4.14)

where we bounded the sums using the following fact about the summands

C(i) ≤ CT D(i) ≤ DT + 1 V(i) ≤ VT ∆i ≤ T.

To bound the number of batches N , we recall that Li = 3Rmax2i−1, and use the second inequality
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in (5.4.11) to bound LN−1 as follows

N = 2 + log2(2N−2) = 2 + log2(LN−1)− log2(3Rmax)

≤ 2 +
1

2
log2

(
γmin

{
C(N−1),∆

2/3
N−1V

2/3
(N−1)D

−1/3
(N−1)

}
+ 4R2

max

)
− log2(3Rmax)

≤ 2 +
1

2
log2

(
γC(N−1) + 4R2

max

)
− log2(3Rmax)

≤ 2 +
1

2
log2

(
2γRmaxT + 4R2

max

)
− log2(3Rmax).

In view of the preceding relation and (5.4.14), we have

RegdT ≤ κ
(
G+ 4Rmax

√
DT + 1 + `min

{√
(DT + 1)CT , (DT + 1)1/3T 1/3V

1/3
T

})
,

where κ := 4 + log2

(
2γRmaxT + 4R2

max

)
− 2 log2(3Rmax), thereby completing the proof. �

Proof of Proposition 5.1. Assume that the player I uses the prescribed strategy. This corresponds

to using the optimistic mirror descent update with R(x) =
∑n

i=1 xi log(xi) as the function that is

strongly convex w.r.t. ‖·‖1. Correspondingly, ∇t = f>t At and Mt = f>t−1At−1. Following the

line of proof in Lemma 5.1, in particular, using Equation 5.4.2 for the specific case with DR as KL

divergence, we get that for any t and any ut ∈ ∆n,

f>t Atxt − f>t Atut ≤
1

ηt

{ n∑
i=1

ut[i] log

(
x̂t[i]

x̂′t−1[i]

)
− 1

2
‖x̂t − xt‖21 −

1

2

∥∥x̂′t−1 − xt
∥∥2

1

}

+
∥∥∥f>t At − f>t−1At−1

∥∥∥
∞
‖xt − x̂t‖1

≤ 1

ηt

{ n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
− 1

2
‖x̂t − xt‖21 −

1

2

∥∥x̂′t−1 − xt
∥∥2

1

}

+
∥∥∥f>t At − f>t−1At−1

∥∥∥
∞
‖xt − x̂t‖1 +

1

ηt
max
i∈[n]

log

(
x̂t[i]

x̂′t[i]

)
.

Now let us bound for some i the term, log
(
x̂t[i]
x̂′t[i]

)
. Notice that if x̂t[i] ≤ x̂′t[i] then the term is

anyway bounded by 0. Now assume x̂t[i] > x̂′t[i]. Letting β = 1/T 2, since x̂′t[i] = (1−T−2)x̂t[i]+
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1/(nT 2), we can have x̂t[i] > x̂′t[i] only when x̂t[i] > 1/n. Hence,

log

(
x̂t[i]

x̂′t[i]

)
= log

(
x̂t[i]

(1− T−2)x̂t[i] + 1/(nT 2)

)
≤ 2

T 2
.

Using this we can conclude that :

f>t Atxt − f>t Atut ≤
1

ηt

{ n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
− 1

2
‖x̂t − xt‖21 −

1

2

∥∥x̂′t−1 − xt
∥∥2

1

}

+
∥∥∥f>t At − f>t−1At−1

∥∥∥
∞
‖xt − x̂t‖1 +

2

T 2

1

ηt
.

Summing over t ∈ [T ] we obtain that :

T∑
t=1

(
f>t Atxt − f>t Atut

)
≤

T∑
t=1

1

ηt

{ n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
− 1

2
‖x̂t − xt‖21 −

1

2

∥∥x̂′t−1 − xt
∥∥2

1

}

+

T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥
∞ ‖xt − x̂t‖1 +

2

T 2

T∑
t=1

1

ηt
.

Note that 1
ηt
≤ O

(√
T
)

and so assuming T is large enough, 1
T 2

∑T
t=1

1
ηt
≤ 1 and so,

T∑
t=1

(
f>t Atxt − f>t Atut

)
≤

T∑
t=1

1

ηt

{ n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
− 1

2
‖x̂t − xt‖21 −

1

2

∥∥x̂′t−1 − xt
∥∥2

1

}

+

T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥
∞ ‖xt − x̂t‖1 + 1. (5.4.15)

Now note that we can rewrite the first sum in the above bound and get :

T∑
t=1

1

ηt

n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
≤

T∑
t=2

∑n
i=1 ut[i] log

(
1

x̂′t−1[i]

)
ηt

−

∑n
i=1 ut−1[i] log

(
1

x̂′t−1[i]

)
ηt−1

+
log(T 2n)

η1

≤
T∑
t=2

∑n
i=1 (ut[i]− ut−1[i]) log

(
1

x̂′t−1[i]

)
ηt

+

T∑
t=2

n∑
i=1

ut−1[i] log

(
1

x̂′t−1[i]

)(
1

ηt
− 1

ηt−1

)
+

log(T 2n)

η1
.
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Since by definition of x̂′t−1, we are mixing in 1/T 2 of the uniform distribution we have that for any

i, x̂′t−1[i] > 1
T 2n

and, since ηt’s are non-increasing, we continue bounding above as

T∑
t=1

1

ηt

n∑
i=1

ut[i] log

(
x̂′t[i]

x̂′t−1[i]

)
≤ log(T 2n)

T∑
t=2

‖ut−1 − ut‖1
ηt

+ log(T 2n)
T∑
t=2

(
1

ηt
− 1

ηt−1

)
+

log(T 2n)

η1

≤ log(T 2n)

(
T∑
t=2

‖ut−1 − ut‖1
ηt

+
1

ηT
− 1

η1

)
+

log(T 2n)

η1

≤ log(T 2n)

(
T∑
t=2

‖ut−1 − ut‖1
ηt

+
1

ηT

)
,

using the above in Equation 5.4.15 we get

T∑
t=1

f>t Atxt − f>t Atut

≤ log(T 2n)

T∑
t=2

‖ut−1 − ut‖1
ηt

− 1

2

T∑
t=1

1

ηt
‖x̂t − xt‖21 −

1

2

T∑
t=1

1

ηt

∥∥x̂′t−1 − xt
∥∥2

1
+ 1

+

T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥
∞ ‖xt − x̂t‖1 +

log(T 2n)

ηT

≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

ηT
− 1

2

T∑
t=1

1

ηt
‖x̂t − xt‖21 −

1

2

T∑
t=1

1

ηt

∥∥x̂′t−1 − xt
∥∥2

1

+

T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥
∞ ‖xt − x̂t‖1 . (5.4.16)

Notice that our choice of step size given by,

ηt = min

log(T 2n)
L√∑t−1

i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2
∞ +

√∑t−2
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2
∞

,
1

32L


= min

log(T 2n)

L

(√∑t−1
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2
∞ −

√∑t−2
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2
∞

)
∥∥f>t−1At−1 − f>t−2At−2

∥∥2
∞

,
1

32L

 , (5.4.17)

guarantees that

η−1
t = max


√∑t−1

i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞ +
√∑t−2

i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞
log(T 2n)L

, 32L

 .
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Using the step-size specified above in the bound 5.4.16, we get

T∑
t=1

f>t Atxt −
T∑
t=1

f>t Atut

≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

2
√∑T

t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞
log(T 2n)L

+ 32L


+

T∑
t=1

∥∥∥f>t At − f>t−1At−1

∥∥∥
∞
‖xt − x̂t‖1

− 16L

T∑
t=1

‖x̂t − xt‖21 − 16L

T∑
t=1

∥∥x̂′t−1 − xt
∥∥2

1
. (5.4.18)

Now note that by triangle inequality, we have

∥∥∥f>t At − f>t−1At−1

∥∥∥
∞

=
∥∥∥f>t At − f>t At−1 + f>t At−1 − f>t−1At−1

∥∥∥
∞

≤ ‖At−1 −At‖∞ + ‖ft − ft−1‖1

≤ ‖At−1 −At‖∞ +
∥∥∥ft − f̂t−1

∥∥∥
1

+
∥∥∥f̂t−1 − ft−1

∥∥∥
1
,

since the entries of matrix sequence {At}Tt=1 are bounded by one. Using the bound above in (5.4.18)

and splitting the product term, we see that

T∑
t=1

f>t Atxt − f>t Atut

≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

2
√∑T

t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞
log(T 2n)L

+ 32L


+ 2

T∑
t=1

‖At −At−1‖∞ − 8L
T∑
t=1

‖x̂t − xt‖21 − 16L
T∑
t=1

∥∥x̂′t−1 − xt
∥∥2

1

+
1

16L

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+

1

16L

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1
, (5.4.19)

where we used the simple inequality ab ≤ ρ
2a

2 + 1
2ρb

2 for ρ > 0.

When Player II follows prescribed strategy In this case we would like to get convergence of

payoffs to the average value of the games. To get this, using the notation x∗t = argmin
xt∈∆n

f>t Atxt and
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denoting the corresponding sequence regularity for Player I by CT , we get

T∑
t=1

f>t Atxt−f>t Atx∗t

≤ log(T 2n) (CT + 2)

2
√∑T

t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞
log(T 2n)L

+ 32L


+ 2

T∑
t=1

‖At −At−1‖∞ − 8L

T∑
t=1

‖x̂t − xt‖21 − 16L

T∑
t=1

∥∥x̂′t−1 − xt
∥∥2

1

+
1

16L

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+

1

16L

T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
+

1

4L
,

where the term 1
4L appeared in the last line comparing to (5.4.19) is due to

1

16L

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1
− 1

16L

T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
≤ 1

4L
.

Using the same bound for Player 2 (using loss as −f>t Atxt on round t), as well as using f∗t =

argmin
ft∈∆m

− f>t Atxt and denoting the corresponding sequence regularity by C ′T , we have that

T∑
t=1

f>t Atxt − f∗t
>Atxt ≥ − log(T 2m) (C ′T + 2)

2
√∑T

t=1 ‖Atxt −At−1xt−1‖2∞
log(T 2m)L

+ 32L


− 2

T∑
t=1

‖At −At−1‖∞ + 8L

T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
+ 16L

T∑
t=1

∥∥∥f̂ ′t−1 − ft
∥∥∥2

1

− 1

16L

T∑
t=1

‖xt − x̂t−1‖21 −
1

16L

T∑
t=1

‖x̂t − xt‖21 −
1

4L
.

Combining the two and noting that

f∗t
>Atxt = sup

ft∈∆m

f>t Atxt ≥ inf
xt∈∆n

sup
ft∈∆m

f>t Atxt

= sup
ft∈∆m

inf
xt∈∆n

f>t Atxt ≥ inf
xt∈∆n

f>t Atxt = f>t Atx
∗
t ,
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we get

T∑
t=1

sup
ft∈∆m

f>t Atxt ≤
T∑
t=1

inf
xt∈∆n

sup
ft∈∆m

f>t Atxt +
256L

T
+

1

2L
+ 4

T∑
t=1

‖At −At−1‖∞

+ log(T 2n) (CT + 2)

2
√∑T

t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞
log(T 2n)L

+ 32L


+ log(T 2m)

(
C ′T + 2

)2
√∑T

t=1 ‖Atxt −At−1xt−1‖2∞
log(T 2m)L

+ 32L


+

(
1

16L
− 8L

) T∑
t=1

‖x̂t − xt‖21 +

(
1

16L
− 16L

) T∑
t=1

‖x̂t−1 − xt‖21

+

(
1

16L
− 8L

) T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
+

(
1

16L
− 16L

) T∑
t=1

∥∥∥f̂t−1 − ft
∥∥∥2

1
,

(5.4.20)

where the constant 256L/T appeared in the first line accounts for the identities

‖x̂t−1 − xt‖21 −
∥∥x̂′t−1 − xt

∥∥2

1
≤ 8

T 2

∥∥∥f̂t−1 − ft
∥∥∥2

1
−
∥∥∥f̂ ′t−1 − ft

∥∥∥2

1
≤ 8

T 2
.

Using the triangle inequality again,

T∑
t=1

∥∥∥f>t At − f>t−1At−1

∥∥∥2

∞
=

T∑
t=1

∥∥∥f>t At − f>t At−1 + f>t At−1 − f>t−1At−1

∥∥∥2

∞

≤ 2
T∑
t=1

‖At−1 −At‖2∞ + 2
T∑
t=1

‖ft − ft−1‖21

≤ 2
T∑
t=1

‖At−1 −At‖2∞

+ 4

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+ 4

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1
, (5.4.21)
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which also implies√√√√ T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞

≤

√√√√2

T∑
t=1

‖At−1 −At‖2∞ + 4

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+ 4

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1

≤ 2

√√√√ T∑
t=1

‖At−1 −At‖2∞ + 2

√√√√ T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1

≤ 2

√√√√ T∑
t=1

‖At−1 −At‖2∞ + 2 + 2

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+ 2

T∑
t=1

∥∥∥f̂t−1 − ft−1

∥∥∥2

1

≤ 2

√√√√ T∑
t=1

‖At−1 −At‖2∞ + 10 + 2

T∑
t=1

∥∥∥ft − f̂t−1

∥∥∥2

1
+ 2

T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
, (5.4.22)

where we used the bound
√
c ≤ c + 1 for any c ≥ 0 in the penultimate line. Similar bounds as

Equations (5.4.21) and (5.4.22) hold for the other player as well. Using them in Equation 5.4.20

after some calculations, we conclude that

T∑
t=1

sup
ft∈∆m

f>t Atxt ≤
T∑
t=1

inf
xt∈∆n

sup
ft∈∆m

f>t Atxt +
256L

T
+

1

2L
+ 4

T∑
t=1

‖At−1 −At‖∞

+ 32L
(

log(T 2n)CT + log(T 2m)C ′T + 2 log(T 4nm)
)

+ (CT + C ′T + 4)
20 + 4

√∑T
t=1 ‖At−1 −At‖2∞
L

+ 4

(
CT + 3

L
− 2L

)( T∑
t=1

∥∥∥f̂t − ft∥∥∥2

1
+ 2

T∑
t=1

∥∥∥f̂t−1 − ft
∥∥∥2

1

)

+ 4

(
C ′T + 3

L
− 2L

)( T∑
t=1

‖x̂t − xt‖21 + 2

T∑
t=1

‖x̂t−1 − xt‖21

)
.
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When Player II is dishonest In this case we would like to bound Player I’s regret regardless of

the strategy adopted by Player II. Dropping one of the negative terms in Equation 5.4.16, we get :

T∑
t=1

(
f>t Atxt − f>t Atut

)
≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

ηT
− 1

2

T∑
t=1

1

ηt
‖x̂t − xt‖21

+
T∑
t=1

∥∥∥f>t At − f>t−1At−1

∥∥∥
∞
‖xt − x̂t‖1

≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

ηT
− 1

2

T∑
t=1

1

ηt
‖x̂t − xt‖21

+

T∑
t=1

ηt+1

2

∥∥∥f>t At − f>t−1At−1

∥∥∥2

∞
+

1

2

T∑
t=1

1

ηt+1
‖xt − x̂t‖21 .

(5.4.23)

Noting to the telescoping sum

1

2

T∑
t=1

(
1

ηt+1
− 1

ηt

)
‖xt − x̂t‖21 ≤ 2

T∑
t=1

(
1

ηt+1
− 1

ηt

)
≤ 2

ηT+1
,

as well as the choice of step-size (5.4.17) which entails

T∑
t=1

ηt+1

2

∥∥∥f>t At − f>t−1At−1

∥∥∥2

∞

≤ log(T 2n)
L

2

T∑
t=1

√√√√ t∑
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞ −

√√√√ t−1∑
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞

≤ log(T 2n)
L

2

√√√√ T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞,
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we bound (5.4.23) to obtain

T∑
t=1

f>t Atxt − f>t Atut

≤ log(T 2n) (CT (u1, . . . , uT ) + 2)

ηT
+

2

ηT+1

+ log(T 2n)
L

2

√√√√ T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞

≤ 2 log(T 2n) (CT (u1, . . . , uT ) + 2)

32L+
2
√∑T

t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞

log(T 2n)L


+ log(T 2n)

L

2

√√√√ T∑
t=1

∥∥f>t At − f>t−1At−1

∥∥2

∞.

A similar statement holds for Player II that her/his pay off converges at the provided rate to the

average minimax equilibrium value. �
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Chapter 6

Concluding Remarks

6.1 Thesis Summary

In this thesis we addressed problems in the fields of online learning and statistical identification. In

the first part of the thesis, we focused on environments where the leaner should statistically process

the data for inference, whereas the second part was dedicated to online learning in which data arrive

in a sequential fashion. In all problems studied in this thesis, the main objective was to understand

data and its properties, and design efficient algorithms for inference of the unknown.

In the first part, we started with Chapter 2, and presented a distributed detection model where

a network of agents aim to learn the underlying state of the world. As they cannot distinguish the

true state in isolation, agents engage in a local communication. Each agent iteratively forms a be-

lief about the state space using the collected data in its neighborhood. We analyzed the learning

procedure for a finite time horizon. To study the efficiency of our algorithm versus its centralized

counterpart, we brought forward the idea of KL cost. It turned out that network size, spectral gap,

centrality of each agent and relative entropy of agents’ signal structures are the key parameters
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that affect distributed detection. We further provided asymptotic analysis for time-varying network

topologies. In Chapter 3, we considered an inverse problem where we reconstruct the topology of

an unknown directed network of LTI systems. We proposed several reconstruction algorithms based

on the power spectral properties of the network response to the input noise. Our first algorithm

reconstructs the Boolean structure of a directed network based on a series of grounded dynami-

cal responses. Our second algorithm recovers the exact structure of the network (including edge

weights) when an eigenvalue-eigenvector pair of the connectivity matrix is known. This algorithm

is useful, for example, when the connectivity matrix is a Laplacian matrix or the adjacency matrix

of a regular graph. Apart from general directed networks, we also proposed more computation-

ally efficient algorithms for reconstruction of both directed nonreciprocal networks and undirected

networks.

The second part of the thesis focused on online learning in multi-player and one-player setting.

In Chapter 4, we studied the MAB problem in the context of multi-agent networks. Each player

sequentially pulls an arm, and receives a noisy payoff from a player-dependent distribution. Players

want to detect the arm with highest average payoff among themselves (best global arm). Therefore,

they communicate with each other to augment their imperfect observations with side information.

Based on this model, we proposed a distributed online algorithm to compete with the best global

arm. We further extended our results to sleeping bandits where a full set of arms is not available

all the times. In both methods, the regret bound scales inversely in the spectral gap of the network,

highlighting the impact of network structure. Interestingly, the regret scales down by the network

size, which is an artifact of variance reduction through decentralizing the MAB problem. In Chap-

ter 5, however, we considered an instance of one-player online learning. We proposed an online

algorithm for dynamic environments, where the regret is measured with respect to time-varying
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benchmarks. Our proposed method is fully adaptive in the sense that the learner needs no prior

knowledge of the environment. We derived a comprehensive upper bound on the dynamic regret

capturing the interplay of regularity in the function sequence versus the comparator sequence. In-

terestingly, the regret bound adapts to the smaller quantity among the two, and selects the best of

both worlds.

6.2 Future Directions

There are many open questions and interesting research directions relevant to what was presented

in this thesis:

Distributed Detection in Fixed and Switching Network Topologies

In Section 2.5.2, we addressed a switching rule that works based on information of signals. Our

convergence result holds for bidirectional communication. A potentially challenging problem is to

investigate unidirectional communication, i.e., the case that sending and receiving information do

not necessarily coincide. We have numerical experiments in support of convergence; however, the

technical analysis is still under study.

Another interesting direction is optimal design of communication threshold τ . In particular, one

can think of the following problem: given fix threshold τ , find the minimum (or expected) number

of communication rounds for learning. This setting essentially addresses finite-time learning with

an efficient communication protocol.
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Competing with Structured Benchmarks in Online Optimization

The notion of regret with respect to arbitrary comparators has been studied in the past few years.

Alternatively, one can consider the dynamic regret when the comparators are not arbitrary, and they

follow an unknown dynamical model. Learning the dynamical model given different feedbacks

(depending on the application of the problem) is an interesting subject of study. For instance,

the comparator can follow an LTI dynamics where the learner partially observes the comparator.

This scenario might be of potential interest to many control engineers to study linear or non-linear

systems. A version of the problem has been investigated by [110] where the comparators potentially

follow some dynamics. The authors proved regret bounds for the cases that the dynamical model is

either known or unknown but finite. Going beyond the finite, unknown models is also an interesting

line of research.

Stochastic Optimization in Non-stationary Environments

Our results in Chapter 5 were based on receiving noiseless feedback. That is, at each round of the

algorithm, the learner could query a noiseless gradient. A complementary direction is to develop

an adaptive algorithm that works in stochastic environments, i.e., an algorithm with low expected

dynamic regret given a noisy access to loss functions and gradients. The main challenge in the

problem is that noisy feedback does not quite specify the changes of the environment. For instance,

even when the environment is stationary, the learner could incorrectly infer some non-stationarity

due to noise. It is currently known that the regret bound in this setting can be expressed in terms of

variability of loss functions [116]; however, an adaptive solution to the problem is still open.
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Multi-player Zero-sum Games

We studied the application of dynamic regret to two-player zero-sum games in Chapter 5. Another

interesting direction is to propose a framework which can be applied to multi-player games (games

on networks or graphical games [121]). For instance, in a recent work of [122] a multi-player static

framework is addressed. The extension of this problem to dynamic setting would be an interesting

line of research.

135



Bibliography

[1] D. Watts and S. Strogatz, “Collective dynamics of small-world networks,” Nature, vol. 393,

no. 6684, pp. 440–442, 1998.

[2] A.-L. Barabási, Linked: The New Science Of Networks. Basic Books, 2002.

[3] M. Jackson, “Social and Economic Networks”. Princeton Univ Pr, 2008.

[4] R. R. Tenney and N. R. Sandell Jr, “Detection with distributed sensors,” IEEE Transactions

on Aerospace Electronic Systems, vol. 17, pp. 501–510, 1981.

[5] J. N. Tsitsiklis et al., “Decentralized detection,” Advances in Statistical Signal Processing,

vol. 2, pp. 297–344, 1993.

[6] V. Borkar and P. P. Varaiya, “Asymptotic agreement in distributed estimation,” IEEE Trans-

actions on Automatic Control, vol. 27, no. 3, pp. 650–655, 1982.

[7] S. Kar, J. Moura, and K. Ramanan, “Distributed parameter estimation in sensor networks:

Nonlinear observation models and imperfect communication,” IEEE Transactions on Infor-

mation Theory, vol. 58, no. 6, pp. 3575–3605, 2012.

[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online prediction

using mini-batches,” The Journal of Machine Learning Research, vol. 13, pp. 165–202, 2012.

136



[9] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,”

IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[10] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed averaging algo-

rithms and quantization effects,” IEEE Transactions on Automatic Control, vol. 54, no. 11,

pp. 2506–2517, 2009.

[11] I. Lobel and A. Ozdaglar, “Distributed subgradient methods over random networks,” in Proc.

Allerton Conf. Commun., Control, Comput, 2008.

[12] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgradient projection algo-

rithms for convex optimization,” Journal of optimization theory and applications, vol. 147,

no. 3, pp. 516–545, 2010.

[13] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for distributed optimization:

convergence analysis and network scaling,” IEEE Transactions on Automatic Control, pp.

592–607, March 2012.

[14] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in

applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[15] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed

bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77, 2002.

[16] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit

problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.
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