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Abstract
Dynamic interactions with the cytoskeleton are essential to move and anchor nuclei during tissue
development, and defects resulting in nuclear mispositioning are often associated with human disease, such as
muscular dystrophy and myopathy. Skeletal muscle cells are large syncytia formed by fusion of myoblasts, and
contain hundreds of nuclei positioned regularly along the length the cell. During muscle cell development,
nuclear movement in myotubes requires microtubules, but the mechanisms involved have not been
elucidated. Here, we find that nuclei actively translocate through myotubes. As they translocate, they also
rotate in three-dimensions. These movements require an intact microtubule cytoskeleton, which forms a
dynamic bipolar network around the nuclei, and are driven by the microtubule motor proteins, kinesin-1 and
cytoplasmic dynein. Depletion of the plus-end directed motor kinesin-1 abolishes nuclear rotation and
significantly inhibits nuclear translocation, resulting in the abnormal aggregation of nuclei near the midline of
the myotube. Loss of the minus-end directed dynein motor also inhibits nuclear dynamics, but to a lesser
extent, leading to altered spacing between adjacent nuclei. The motors are found throughout the cytoplasm,
but also decorate the nuclear envelope. To test whether kinesin-1 on the nucleus is essential for nuclear
distribution, we controlled the recruitment of truncated, constitutively active kinesin-1 motors to the nuclear
envelope. We show that nuclear-based kinesin-1 is necessary to prevent nuclear aggregation. Additionally, we
show that kinesin-1 localization to the nuclear envelope in myotubes is mediated at least in part by interaction
with the nuclear envelope protein, nesprin-2. We identify a conserved kinesin light chain-binding motif in
nesprin-2 and show that recruitment of the motor complex to the nucleus via this motif is essential for proper
nuclear distribution. Thus, our work indicates that oppositely directed motors acting from the surface of the
nucleus drive nuclear motility in myotubes. The variable dynamics observed for individual nuclei within a
single myotube likely result from the stochastic activity of competing motors interacting with a complex
bipolar microtubule cytoskeleton. The three-dimensional rotation of myotube nuclei may facilitate their
motility through the complex and crowded cellular environment of the developing muscle cell, allowing for
proper myonuclear positioning.
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ABSTRACT 
 

MICROTUBULE MOTORS DRIVE NUCLEAR DYNAMICS AND POSITIONING IN DEVELOPING 

SKELETAL MUSCLE CELLS 

Meredith Hayley Wilson 

Dr. Erika L.F. Holzbaur 

 

Dynamic interactions with the cytoskeleton are essential to move and anchor nuclei 

during tissue development, and defects resulting in nuclear mispositioning are often 

associated with human disease, such as muscular dystrophy and myopathy.  Skeletal 

muscle cells are large syncytia formed by fusion of myoblasts, and contain hundreds of 

nuclei positioned regularly along the length the cell.  During muscle cell development, 

nuclear movement in myotubes requires microtubules, but the mechanisms involved have 

not been elucidated.  Here, we find that nuclei actively translocate through myotubes.  As 

they translocate, they also rotate in three-dimensions.  These movements require an intact 

microtubule cytoskeleton, which forms a dynamic bipolar network around the nuclei, and are 

driven by the microtubule motor proteins, kinesin-1 and cytoplasmic dynein.  Depletion of the 

plus-end directed motor kinesin-1 abolishes nuclear rotation and significantly inhibits nuclear 

translocation, resulting in the abnormal aggregation of nuclei near the midline of the 

myotube.  Loss of the minus-end directed dynein motor also inhibits nuclear dynamics, but to 

a lesser extent, leading to altered spacing between adjacent nuclei.  The motors are found 

throughout the cytoplasm, but also decorate the nuclear envelope.  To test whether kinesin-1 

on the nucleus is essential for nuclear distribution, we controlled the recruitment of truncated, 

constitutively active kinesin-1 motors to the nuclear envelope.  We show that nuclear-based 
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kinesin-1 is necessary to prevent nuclear aggregation.  Additionally, we show that kinesin-1 

localization to the nuclear envelope in myotubes is mediated at least in part by interaction 

with the nuclear envelope protein, nesprin-2.  We identify a conserved kinesin light chain-

binding motif in nesprin-2 and show that recruitment of the motor complex to the nucleus via 

this motif is essential for proper nuclear distribution.  Thus, our work indicates that oppositely 

directed motors acting from the surface of the nucleus drive nuclear motility in myotubes. 

The variable dynamics observed for individual nuclei within a single myotube likely result 

from the stochastic activity of competing motors interacting with a complex bipolar 

microtubule cytoskeleton.  The three-dimensional rotation of myotube nuclei may facilitate 

their motility through the complex and crowded cellular environment of the developing 

muscle cell, allowing for proper myonuclear positioning. 
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CHAPTER 1:  Introduction 

	
  

	
  

I.  Nuclear Positioning – An Introduction 

	
  

The nucleus is the largest and perhaps the most important organelle in a eukaryotic 

cell.  Essential functions of the nucleus include the storage, organization and replication of 

the genome, as well as the distribution of genetic information through both synthesis and 

processing of RNAs and the assembly of the translational machinery.  While these functions 

define the nucleus as the control center of the cell, the nucleus is not necessarily always 

located in the geometric center of the cell as is typically depicted in textbooks.  The position 

of a nucleus may vary with cell type, and may change during processes such as cell division, 

cell migration, tissue differentiation, and regeneration.   

For example, in the budding yeast Saccharomyces cerevisiae, migration of the 

nucleus to the bud neck during cell division is required for proper segregation of genetic 

material to daughter cells (Yeh et al., 1995).  Similarly, during zygote formation in many 

species, the male and female pronuclei must move toward one another following fertilization 

before undergoing the first mitosis, thereby ensuring that the daughter cells each receive 

equal amounts of paternal and maternal chromatin (Wilson, 1896).   

In developing zebrafish retinas, the position of the nucleus within neural precursor 

cells regulates cell-cycle exit and cell fate determination, such that defective nuclear 

migration results in a lack of photoreceptor cells (Del Bene et al., 2008).  Furthermore, during 

neocortical development, newly-born neurons migrate from the ventricular zone outward 

along radial glial fibers to more superficial layers of the cortex (Nadarajah and Parnavelas, 

2002).  In these examples, effective migration requires carefully coordinated movement of 
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the nucleus, and defects have dire consequences for brain architecture and function (Shu et 

al., 2004; Tsai et al., 2007).  

In the mechanosensory hair cells in the vertebrate ear, the nucleus resides at the 

basal cell surface.  Aberrant localization of the nucleus to the apical surface is associated 

with degeneration of the hair cells and progressive high-frequency hearing loss (Horn et al., 

2013).  In a last example, a cluster of 3-8 nuclei is specifically positioned under the 

membrane at the neuromuscular junction in skeletal muscle cells (Bruusgaard et al., 2003; 

Kelly and Zacks, 1969; Nakai, 1969).  Specialized gene expression in these nuclei is 

necessary for synaptic maintenance and transmission (Jevsek et al., 2006; Merlie and 

Sanes, 1985), and loss of the synaptic nuclei is correlated with neuromuscular disease in 

mice (Mejat et al., 2009; Zhang et al., 2007).  

From these examples, it is not only clear that nuclear positioning is essential to 

development and proper cell function, but also that nuclear positioning is an active process 

that involves two related mechanisms:  nuclei must move or migrate through the cytoplasm 

to first localize to the appropriate location, and then nuclei are anchored in order to maintain 

this position.   

Furthermore, nuclear movement can be subdivided into both translational 

components and rotational components.  Translation/translocation implies that a net force 

acts on the nucleus causing movement from one point of space to another, whereas during 

rotation, forces act on the nucleus to cause it to spin about its axis, but with no net change in 

space.  These components of nuclear movement can occur separately or concurrently, with 

the relative contribution of each depending on the cellular context.  For example, in the 

developing vertebrate neuroepithelium, nuclei undergoes interkinetic nuclear migration, 

consisting of oscillatory translational movements along the apico-basal axis of the cell 

(Chenn and McConnell, 1995; Sauer, 1935), whereas in rapidly migrating fish epidermal 
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keratocytes, the nucleus rolls forward along with the cell body during translocation (Anderson 

et al., 1996).    

 Central to both nuclear movement and anchorage is the interaction between the 

nuclear envelope and the cytoskeleton.  All three components of the cytoskeleton, the 

microtubules, actin filaments and intermediate filaments, are involved in nuclear positioning 

to varying degrees depending on cell type and differentiation state.  These cytoskeletal 

elements, including associated molecular motors, generate force or provide scaffolding, 

whereas protein complexes on the nuclear envelope mediate force transmission to the 

nucleoskeleton to effectively move or anchor the nuclei.  

 While our knowledge about nuclear positioning in many different cell types and 

different organisms is growing, there is still a great deal more to learn, especially with 

regards to the mechanisms of nuclear movement and the relationship between nuclear 

position and disease.  With these questions in mind, the work contained within this thesis 

was undertaken in order to further our understanding of the mechanisms driving nuclear 

movement and positioning in developing skeletal muscle cells. 

 

II.  The Microtubule Cytoskeleton  

 

The cytoskeleton is a network of protein filaments that extends throughout the 

cytoplasm of eukaryotic cells.  It provides a structural framework for the cell that determines 

cell shape and acts as a scaffold for organization of organelles.  Importantly, the 

cytoskeleton is a dynamic network that is continuously reorganized as cells move and 

change shape.  The cytoskeleton is composed of three main types of protein polymers: 

microtubules and actin filaments, which are inherently polarized, and intermediate filaments, 

which consists of a large family of non-polarized filaments.  Although cells most often employ 
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microtubules and/or the actin cytoskeleton to move nuclei, intermediate filaments may also 

play a role in nuclear positioning in certain cells.  As the focus of this dissertation is on a cell 

system utilizing microtubules for nuclear movement, mechanisms of nuclear positioning by 

actin and intermediate filaments will only be discussed briefly.       

 

Microtubules 

 Microtubules are not only structural elements within the cell, but also serve as tracks 

for intracellular transport.  Microtubules are polymers composed of heterodimers of two 

closely related polypeptides, α- and β-tubulin.  These tubulin subunits self-assemble head-

to-tail to form protofilaments, and protofilaments interact laterally to form the walls of the 

microtubule (for review see (Wade, 2009)).  Typically, microtubules are composed of 13 

protofilaments arranged radially to form a hollow tube approximately 25 nanometers in 

diameter (Tilney et al., 1973).  Because of both longitudinal and lateral contacts between 

heterodimers within the microtubule lattice, the addition or loss of subunits occurs almost 

exclusively at the microtubule ends.  Additionally, these contacts make microtubules stiff and 

difficult to bend, properties that are important for many of the microtubule’s cellular roles.    

The subunits in each microtubule protofilament are uniformly oriented, such that α-

tubulin is at the more stable microtubule minus-end, and β-tubulin faces the dynamic plus-

end.  This arrangement of α- and β-tubulin confers overall polarity to the microtubule 

(Hoenger and Milligan, 1996; Mitchison, 1993).  Microtubules grow mainly through addition of 

tubulin heterodimers to the plus-end, although slow growth can also occur at the minus-end 

in vitro and in cells (Jiang et al., 2014).  Additionally, microtubules alternate between periods 

of slow growth and rapid depolymerization (Horio and Hotani, 1986; Mitchison and Kirschner, 

1984).   

This phenomenon, known as dynamic instability, is the consequence of enzymatic 

activity of the tubulin monomers.  Both α- and β-tubulin monomers bind guanosine 
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triphosphate (GTP) in their guanine nucleotide binding site, however, only the GTP in the β-

tubulin site is hydrolyzed to guanosine diphosphate (GDP) (Jacobs et al., 1974; Weisenberg 

et al., 1976).  Hydrolysis proceeds slowly in the unbound state, so soluble tubulin 

heterodimers are typically in the GTP-bound state.  However, GTP hydrolysis is accelerated 

when the tubulin incorporates into a microtubule, and GDP no longer exchanges for the GTP 

in solution (David-Pfeuty et al., 1977; Kobayashi and Simizu, 1976; Weisenberg et al., 1976).  

The more time a subunit is in the microtubule, the more likely it is to have hydrolyzed the 

bound nucleotide.  In the GDP-bound state, tubulin heterodimers are more likely to 

dissociate from the end of the microtubule lattice, whereas GTP-tubulin is more stable and 

resists depolymerization.  The GTP or GDP-state of the tubulin subunits at the end of the 

microtubule depends on the rate of hydrolysis compared to the rate of subunit addition.  If the 

rate of polymer addition exceeds the rate of hydrolysis, as the microtubule grows, a GTP cap 

forms, which protects the microtubule from undergoing depolymerization (Drechsel and 

Kirschner, 1994).  However, if the rate of hydrolysis catches up to the rate of subunit 

addition, the GDP-bound tubulin is exposed at the microtubule end, enhancing the probability 

of ‘catastrophe’, the switch to a fast-shrinking state.  The difference in rates can again switch, 

leading to rescue and resumed growth of an individual microtubule.  Therefore, in a 

population of microtubules, some microtubules may be growing and some depolymerizing, 

with the ratio depending on the hydrolysis rate and free subunit concentration (Horio and 

Hotani, 1986; Kirschner and Mitchison, 1986; Mitchison and Kirschner, 1984).  Dynamic 

instability, when combined with additional cellular mechanisms for nucleating, stabilizing or 

destabilizing microtubules, allows for rapid rearrangements of the microtubule network that 

are essential for cellular re-organization as well as cell migration.   
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Microtubule Nucleation 

Though a solution of tubulin subunits at a sufficiently high concentration will 

polymerize into microtubules in vitro via spontaneous nucleation, cells have evolved 

mechanisms for nucleating microtubules.  Most animal cells have a single, well-defined 

microtubule organizing center (MTOC) known as the centrosome, which is typically located 

near the nucleus.  The centrosome, which was first observed over 100 years ago, is 

composed of two orthogonally arranged centrioles, surrounded by a dense amorphous 

material (referred to as the pericentriolar material or the centosome matrix), from which 

microtubules emanate (for review see (Mazia, 1984; Sathananthan et al., 2006)).  Electron 

microscopy has revealed that centrioles are composed of nine triplet microtubules and 

accessory proteins arranged to form a short cylinders (Vorobjev and Chentsov Yu, 1982).  

However, the ultrastructure, duplication, and function of the centrioles remains an area of 

active investigation (Jana et al., 2014).  The pericentriolar material contains proteins 

responsible for microtubule nucleation and anchoring, including γ-tubulin, pericentrin and 

ninein (Dictenberg et al., 1998; Doxsey et al., 1994).  The γ-tubulin ring complex, is 

composed of γ-tubulin subunits and two accessory proteins that form a capped ring-like 

structure that is thought to serve as a template for the 13 protofilament microtubule (Kollman 

et al., 2010; Moritz et al., 2000). 

Microtubule nucleation at the centrosome is most easily visualized in re-growth 

experiments where the cellular microtubules are first depolymerized with drugs like 

colchicine, and upon drug withdrawal, microtubules grow outward from the centrosome 

(Frankel, 1976; Spiegelman et al., 1979).  If detergent-extracted cells are provided with 

increasing amounts of purified tubulin, the number of microtubules nucleated by the 

centrosome reaches a plateau, suggesting a saturable number of defined microtubule-

nucleating sites in the pericentrosomal material (Brinkley et al., 1981).  Given that the minus-

ends of microtubules are composed of GDP-tubulin subunits, they will readily depolymerize if 
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not protected; therefore, the γ-TuRC, or other minus end capping proteins, such as ninein 

may serve to cap and anchor the microtubules at the centrosome (Mogensen et al., 2000).  

Microtubules are known to detach from the centrosomes in mitotic cells suggesting 

that it is a cell-cycle dependent event that may be important for the structure of the mitotic 

spindle and cell division (Yang et al., 2010).  Detachment is also frequent in migrating cells, 

and prevention of microtubule release is associated with inhibition of cell migration (Abal et 

al., 2002).  Additionally, release of microtubules from the centrosome in epithelial cells, 

followed by microtubule translocation and capture at apical sites, has been suggested as a 

mechanism by which epithelial cells re-organize their microtubules to form a predominantly-

non-centrosomal apical-basal array (Keating et al., 1997; Mogensen, 1999). 

In most proliferating animal cells, the centrosome-nucleated microtubules form a 

radial array with the plus-ends extending to the cell periphery.  In contrast, in most 

differentiated animal cells, including epithelial cells, neuronal cells and muscle cells, as well 

as in most fungi and plant cells, microtubules are arranged in noncentrosomal arrays. 

(Bartolini and Gundersen, 2006).  In addition to release from the centrosome, microtubules in 

these arrays may be generated either by nucleation at noncentrosomal sites, such as the 

Golgi (Efimov et al., 2007), or by breaking or severing of microtubules at sites distant from 

the centrosome by proteins such as katanin or spastin (Evans et al., 2005; McNally et al., 

1996). 

Different types of cells seem to have evolved different mechanisms for microtubule 

nucleation and organization.  For example, plant cells lack centrosomes and nucleation 

occurs from the nuclear envelope as well as from cortical sites (Hasezawa et al., 2000; 

Kumagai et al., 2001; Stoppin et al., 1994).  In neurons, some microtubules are nucleated at 

the centrosome in the cell body and initial evidence suggested that these microtubules were 

released or severed and transported into the axons and dendrites (Ahmad and Baas, 1995; 

Ahmad et al., 1999).  However, more recent reports indicate that axonal extension can occur 
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even after centrosome ablation (Nguyen et al., 2011; Stiess et al., 2010), and suggest that 

noncentrosomal nucleation of microtubules occurs in the neuronal processes, both from 

Golgi outposts and regions devoid of Golgi (Nguyen et al., 2014; Ori-McKenney et al., 2012; 

Yau et al., 2014).  In most, if not all of these examples of microtubule nucleation, γ-tubulin 

and the γ-TuRC are still responsible for nucleating microtubules.  However, other proteins, 

such as XMAP215 or doublecortin, may also act as nucleation factors in cells (Bechstedt and 

Brouhard, 2012; Brouhard et al., 2008; Popov et al., 2002). 

  

Microtubule Modifications and Microtubule Associated Proteins 

Tubulin can undergo a number of types of post-translational modification (PTM), 

which can affect microtubule stability, motor binding and activity, as well as the binding of 

microtubule associated proteins or MAPs.  The better-studied PTMs include detyrosination, 

acetylation and polyglutamylation, however, tubulin can also be polyglycylated, 

phosphorylated, ubiquitylated, sumoylated and palmitoylated (Magiera and Janke, 2014).   

The cloning of tubulin genes revealed that most α-tubulin genes contain a carboxy-

terminal tyrosine (Tyr) residue (Paturle-Lafanechere et al., 1991).  This Tyr can be removed 

(detyrosination) by a yet unidentified enzyme and can be replaced (tyrosination) by an 

enzyme known as tubulin Tyr ligase (TTL) (Schroder et al., 1985).  While the 

carboxypeptidase responsible for detyrosination is unknown, it is known to function 

preferentially on polymerized tubulin (Kumar and Flavin, 1981), while TTL acts on soluble 

tubulin dimers.  Detyrosinated tubulin (also known as Glu tubulin) can also be converted to 

Δ2-tubulin by the removal of the exposed glutamic acid (Paturle-Lafanechere et al., 1991).  

Detyrosination is a marker of long-lived microtubules, however the modification acts 

indirectly to stabilize microtubules by decreasing the affinity of microtubule depolymerizing 

kinesins, such as MCAK and Kif2A (Peris et al., 2009).  Additionally, there is evidence that 

the Δ2-modification locks the microtubule in the detyrosinated state, helping to further 
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stabilize them (Paturle-Lafanechere et al., 1994).  Detyrosination has been shown to 

enhance kinesin-1 transport in neurons (Dunn et al., 2008), while it inhibits the microtubule 

plus-end localization of plus-tip proteins containing CAP-Gly domains (Peris et al., 2006). 

The α-tubulin subunit can be acetylated on lysine 40 (K40) (L'Hernault and 

Rosenbaum, 1985), which is peculiar since it is positioned on the inside of the microtubule 

lumen, and it is unclear how this modification would influence binding of MAPs and motors.  

Immunostaining with an anti-K40-acetylation antibody staining reveals that certain 

populations of microtubules show strong acetylation, including microtubules in cilia and 

flagella, as well as stable populations of neuronal microtubules (Cambray-Deakin and 

Burgoyne, 1987; Lim et al., 1989; Piperno and Fuller, 1985).  While initial observations 

suggested that plus-end directed kinesin-1 motors preferred acetylated microtubules, more 

recent reports suggest that this cannot be explained by acetylation alone (Kaul et al., 2014; 

Reed et al., 2006; Walter et al., 2012).  Acetylation is especially abundant on old 

microtubules that are resistant to depolymerization and has thus been thought to promote 

microtubule stability.  While recent work indicates that tubulin acetyl transferase has slow 

catalytic activity, so that acetylation acts to preferentially mark long-lived microtubules (Szyk 

et al., 2014), there is also evidence that acetylation stabilizes microtubules by promoting salt 

bridge formation between adjacent protofilaments (Cueva et al., 2012). 

The carboxy-terminal tails of both α- and β-tubulin can be polyglutamylated 

(L'Hernault and Rosenbaum, 1985).  This entails enzymatic addition of glutamate side chains 

onto gene-encoded glutamate residues.  Polyglutamylation occurs on several sites within the 

tails and side chains of various lengths are generated (Edde et al., 1991).  The addition of 

the side chains affects the charge of the tails and is believed to regulate electrostatic 

microtubule-MAP interactions.  Polyglutamylated microtubules are preferred by the 

microtubule-severing enzymes katanin and spastin (Lacroix et al., 2010; Sharma et al., 

2007).  Interestingly, high levels of polyglutamylation are found on microtubules in centrioles, 
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cilia, flagella and in neurons (reviewed in (Janke et al., 2008)), suggesting that these 

microtubules must be shielded from severing activity, possibly by MAPs such as tau (Bonnet 

et al., 2001; Qiang et al., 2006).  

Microtubule associated proteins or MAPs, were originally identified as proteins that 

co-purified with tubulin through repeated cycles of microtubule polymerization and 

depolymerization and were shown to stimulate microtubule assembly (for review see 

(Olmsted, 1986)).  However, this definition has now broadened to include proteins that are 

found at least transiently associated with microtubules.  A number of diverse types of MAPs 

can be found in eukaryotes, including structural MAPs, centrosome-associated proteins, end 

binding proteins, and enzymatically active MAPs such as severing proteins and microtubule 

motors.  A number of enzymatically active MAPs and centrosome-associated proteins, such 

as katanin, spastin, pericentrin, and ninein, were introduced in the preceding sections, and 

microtubule motors will be discussed in the subsequent section. 

Structural MAPs, such as MAP1, MAP2, MAP4 and tau, are classical microtubule 

associated proteins in that they bind to, stabilize, and promote the assembly of microtubules 

(Mandelkow and Mandelkow, 1995).  MAP1A are MAP1B are predominantly expressed in 

neurons, where they are thought to be important in stabilizing microtubules for the formation 

and development of axons and dendrites.  MAP1 proteins can also interact with other cellular 

components, including filamentous actin and a number of signaling proteins (Halpain and 

Dehmelt, 2006).  Although they have different microtubule interaction motifs from the MAP1 

proteins, the MAP2/tau family, which also includes MAP4, all have a conserved carboxy-

terminal domain containing microtubule-binding repeats, and an amino-terminal projection 

domain of varying size (Dehmelt and Halpain, 2005).  Mammalian MAP2 and tau are 

predominantly found in the brain, with tau present mainly in axons and MAP2 restricted to 

cell bodies and dendrites of mature neurons.  MAP4 is expressed in various organs, 

including lung, muscle and liver (Kotani et al., 1988; Mangan and Olmsted, 1996).  Although 
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it is also found in the brain, it is only expressed in non-neuronal cells and is absent from 

neurons (Parysek et al., 1985).  Similar to MAP1 proteins, the MAP2/tau proteins bind to and 

stabilize microtubules (Gamblin et al., 1996).  They also increase microtubule rigidity 

(Felgner et al., 1997), bundle microtubules through cross-linking (Chen et al., 1992; 

Takemura et al., 1995) and regulate microtubule-mediated transport (Dixit et al., 2008; 

Ebneth et al., 1998; Hagiwara et al., 1994; Seitz et al., 2002). 

Microtubule plus-end binding proteins (+TIPs) are a structurally and functionally 

diverse group of proteins that predominantly accumulate at the growing microtubule plus 

ends.  More than 20 different families of +TIPs have been identified, including the end-

binding proteins (ex. EB1 and EB3), CAP-Gly domain-containing proteins (ex. CLIP170 and 

p150Glued), SxIP proteins (ex. APC and STIM1) and TOG domain-containing proteins (ex. 

XMAP215 and CLASP) (Akhmanova and Steinmetz, 2008).  A number of +TIP proteins 

contain features characteristic of several +TIP families and not all +TIP proteins 

autonomously track with growing microtubules, but hitchhike through interactions with other 

+TIP proteins.  For example, the EB proteins track plus-ends independently of any binding 

partners and target other +TIPs to the growing microtubule ends (Bieling et al., 2007; Dixit et 

al., 2009).  Enrichment at microtubule plus-ends allows +TIPs to regulate microtubule 

dynamics, by catalyzing growth (Brouhard et al., 2008), promoting rescue (Komarova et al., 

2002), and by mediating microtubule stabilization at the cell cortex (Mimori-Kiyosue et al., 

2005; Wen et al., 2004).  Additionally, there is a growing appreciation of the involvement of 

+TIPs in many cellular processes, such as linking microtubule ends to cellular structures 

such as the ER (Grigoriev et al., 2008) and the cell cortex (Lansbergen et al., 2006; Schmidt 

et al., 2012), contributing to loading cargo for minus-end directed microtubule transport 

(Lomakin et al., 2009; Moughamian and Holzbaur, 2012; Moughamian et al., 2013) and 

promoting organization of specialized microtubule arrays (Goshima et al., 2005).     
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Since microtubules fulfill a wide range of functions in the cell, marking microtubules 

with specific post-translational modifications and decorating them with MAPs may provide a 

mechanism by which a cell defines a microtubule’s identity and function.  Therefore, current 

work is aimed at identifying the ‘tubulin code’ and defining the +TIP interaction network in the 

hopes of better understanding how cells use microtubules for so many diverse functions 

(Akhmanova and Steinmetz, 2008; Galjart, 2010; Parrotta et al., 2014; Sirajuddin et al., 

2014; Vemu et al., 2014).  

 

III.  Microtubule Motors 

	
  

 Microtubule motors represent another family of microtubule-associated proteins.  

Kinesins and dyneins use polarized microtubules as railways for long-distance organelle 

transport in the cell.  Motors are ATPases, using the energy from ATP hydrolysis to generate 

the force needed for their movement along the microtubule.  Cargo transport by microtubule 

motors is essential for many cellular functions such as protein secretion, signaling, and 

organelle distribution, including the nucleus.  Additionally, when motors are anchored to solid 

surfaces in vitro or to certain cellular structures in vivo, such as the cell cortex, motors 

actively move microtubules.  Importantly, cells regulate motor function in various ways, 

including selective cargo binding, autoinhibition and activation mechanisms, and numbers 

and types of motors on a cargo.  In this way, motor activity is coordinated with cellular 

demands which can vary greatly during cell migration, growth and differentiation, as well as 

changes in the cellular environment.  
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The Kinesin Family of Motors 

The first kinesin motor to be identified, conventional kinesin or kinesin-1, was purified 

from preparations of cytoplasm from the giant axons of squid neurons (Lasek and Brady, 

1985; Vale et al., 1985a).  From these studies, it was determined that kinesin-1, which was 

also identified in bovine and chick brain, moves toward the microtubule plus-end in an ATP-

dependent manner (Brady, 1985; Vale et al., 1985a; Vale et al., 1985b; Vale et al., 1985c).  

Since this initial discovery, the kinesin superfamily has grown to include at least 45 

mammalian KIF genes that have been categorized into 14 subfamilies (Lawrence et al., 

2004; Miki et al., 2005).  Kinesins can be also classified into 3 major groups based on their 

domain architecture (Hirokawa et al., 2009).  Generally, kinesins with motor domains at the 

N-terminus, such as kinesin-1, are plus-end directed motors, whereas kinesins with motor 

domains at the C-terminus, such as kinesin-14 family members, move toward the minus-end 

of microtubules.  Additionally, the kinesin-13 family of motors, including the mitotic 

centromere-associated kinesin (MCAK), have motor domains in the center of the protein and 

depolymerize microtubules (Moores and Milligan, 2006).   

Most kinesins contain coiled-coil segments that allow for oligomerization.  Although 

many of the motors exist only as homodimers, Kinesin-1 motors can also form 

heterotetramers with 2 kinesin heavy chains (KHC) and 2 kinesin light chains (KLC).  

Additionally, some Kinesin-2 motors can form heterotrimers of Kif3A, Kif3B and kinesin-

associated protein (Cole et al., 1993).  Kinesin-3 motors can exist as monomers or 

homodimers and the Kinesin-5 family consists of homotetrameric motors that can cross-link 

and slide adjacent microtubules (Verhey and Hammond, 2009).  In addition to their motor 

domain and the coiled-coil segments, kinesins contain unique non-motor domains that confer 

isoform-specific regulatory and/or functional properties (Hirokawa et al., 2009).  The diversity 

of kinesin motors, together with the scaffolding and adaptor proteins they interact with, 

provides the cell with control over specificity of cargo recognition and transport regulation. 
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The motor domain, or head, of the kinesin motors is well conserved among various 

kinesins.  Each head contains a binding site for the microtubule and a binding site for ATP.  

As the kinesin-1 motor walks in a hand-over-hand manner, it moves along a single 

microtubule protofilament in uniform steps of 8 nm, coupled to the hydrolysis of one ATP 

molecule (Hua et al., 1997; Schnitzer and Block, 1997; Svoboda et al., 1993; Wang et al., 

1995).  This stepping mechanism requires tight coupling of the biochemical cycles of both 

heads so that the front head remains bound to the microtubule while the rear head detaches.  

Binding of ATP to the lead head results in a conformational change in the motor domain that 

moves the detached head forward.  This occurs by docking of the ~15 amino acid neck linker 

region on the motor domain in a position that extends toward the plus-end of the microtubule 

(Case et al., 2000; Rice et al., 1999).  Strain between the two heads caused by this 

conformational change in the neck linker region leads to coupling of their ATPase cycles, 

allowing coordinated stepping and processive motility (Yildiz et al., 2008).  The velocity at 

which a kinesin moves is directly correlated with its rate of ATP hydrolysis, and single 

molecule experiments indicate that this can vary for different families of kinesin motors (Friel 

and Howard, 2012).  

 

Conventional Kinesin or Kinesin-1 

 Kinesin-1 drives nuclear movement and positioning in a number of cell systems as 

will be discussed further below.  Kinesin-1 is composed of a dimer of kinesin heavy chains, 

of which there are three subtypes in mammals: Kif5A, Kif5B and Kif5C.  Kif5B is expressed 

ubiquitously, whereas the expression of the 5A and 5C isoforms is restricted to neurons 

(Kanai et al., 2000).  Typically, the KHC dimer is in a complex with two light chains, which 

serve as cargo adaptors and aid in regulation of motor activity (Figure 1.1).  Four different 

KLC isoforms have been identified (KLC1-4), but kinesin-1 tetramers contain identical light 

chains (Gyoeva et al., 2004).  Single kinesin-1 motors generate ~5-7 pN of force in vitro 
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(Svoboda and Block, 1994; Visscher et al., 1999) and have typical run lengths of ~1 µm 

(Kaul et al., 2014; Verbrugge et al., 2009), properties which make them very effective for 

long-distance transport in the cell.  Evidence suggests that even when multiple motors are 

bound to small cargoes, teams of kinesin-1 are capable of producing much higher forces 

than a single kinesin (~17 pN for 2 motors), but on average detachment forces are similar to 

cargoes with a single kinesin, suggesting that kinesin-1 motors don’t typically work together 

to move small cargoes (Jamison et al., 2010).  However, at high applied loads, teams of 

kinesin-1 share the load to a greater degree (Jamison et al., 2011), suggesting that kinesin-1 

motors may effectively cooperate to move large cellular cargoes. 

Kinesin-1 was originally identified as a transport motor within extended neuronal 

processes, where it is important for anterograde (away from the cell body) transport of many 

cargoes including endosomes, RNA granules, mitochondria and synaptic vesicle precursors, 

however, the ubiquitous Kif5B isoform is involved in similar trafficking functions throughout 

the body (Hirokawa et al., 2009).  Kinesin-1 associates with cargo either directly or through 

scaffolding/adaptor proteins present on vesicular cargoes (Fu and Holzbaur, 2014; Gindhart 

et al., 2003).  These cargo or adaptor proteins bind either to the tail domain of kinesin heavy 

chain or through interactions with kinesin light chain.  For example, kinesin-1 associates 

through its tail domain with the adaptor protein syntabulin to link the motor to synaptic 

membrane precursors (Su et al., 2004), and also binds TRAK1 (trafficking protein kinesin 

binding, also known as GRIF-1; and Milton in Drosophila) or Ran-binding protein 2 (RanBP2) 

to connect to mitochondria (Cho et al., 2007; Smith et al., 2006).  Alternatively, cargoes may 

associate with KLCs, which contain N-terminal heptad repeats that mediate binding to KHC 

stalk domain and interact with cargoes via the tetratricopeptide repeat (TPR) domain in the 

C-terminus.  KLC-interacting proteins include the tubulin binding protein CRMP-2, which is 

required for tubulin movement in axons and neurite elongation (Kimura et al., 2005), and the 

vaccinia integral membrane protein A36, which binds KLC for kinesin-1-dependent transport 
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of newly formed virus particles to the cell periphery (Rietdorf et al., 2001).  Another KLC-

binding protein is the scaffolding protein JNK-interacting protein 1 (JIP1), which binds to the 

TPR domain through the last 11 amino acids at the JIP1 c-terminus (Verhey et al., 2001).  

JIP1 also interacts directly with kinesin heavy chain, and this complex is required for amyloid 

precursor protein (APP) transport in neurons (Fu and Holzbaur, 2013). 

 Interestingly, a number of proteins that bind the TPR domain of kinesin light chain 

have been found to contain similar tryptophan-acidic-based motifs.  This was first noted in 

the neuronal transmembrane protein, calsyntenin-1 (also known as alcadein) where two 

conserved binding regions (897-KENEMDWDDS-906 and 966-ATRQLEWDDSTLSY-979) 

were identified (Araki et al., 2007; Konecna et al., 2006).  Although mutation of the 

tryptophan residue in either motif reduced binding, mutating both tryptophans abolished 

binding to KLC in vitro, suggesting that one site is sufficient to mediate the interaction 

(Konecna et al., 2006).  Similar tryptophan-acidic motifs have now been identified in other 

KLC binding proteins, such as the cayman ataxia protein, Caytaxin (ATCAY) (Aoyama et al., 

2009), Gadkin/AP1AR (Schmidt et al., 2009), the vaccinia virus protein A36 and the SifA-

kinesin interacting protein (SKIP), a host protein important in salmonella pathogenesis and 

lysosomal trafficking (Boucrot et al., 2005; Dodding et al., 2011).  Recently, a crystal 

structure of the SKIP WD-peptide in complex with the TPR domain of KLC2 has revealed the 

binding pocket for the peptide, which is mediated by a combination of sequence specific 

elements and electrostatic interactions (Pernigo et al., 2013).  Furthermore, a bioinformatic 

analysis found that similar bipartite WD-motifs are widespread throughout the human 

genome, implying that many KLC binding partners have yet to be discovered (Dodding et al., 

2011).  In the WD-containing KLC binding proteins examined thus far, single WD motifs can 

bind KLC and support transport, suggesting that the list of possible KLC-binding partners 

may be even larger than the initial search indicated.  It is also important to note that not all 

known KLC binding proteins contain WD-motifs.      
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 In the cell, kinesin-1 activity must be tightly regulated so as to prevent accumulation 

of the motor along microtubules and at the cell periphery as well as wasteful ATP hydrolysis 

in the absence of cargo.  Kinesin-1, as well as other kinesins, achieves this regulation in part 

through autoinhibition.  Kinesin-1 maintains a folded, inactive conformation that is mediated 

by a flexible hinge region in the stalk domain and association of the highly basic IAK motif in 

the tail domain with the cleft between the two motor heads of the KHC dimer (Coy et al., 

1999; Dietrich et al., 2008; Friedman and Vale, 1999; Hackney et al., 2009; Kaan et al., 

2011; Stock et al., 1999; Verhey et al., 1998)(Figure 1.1).  Full-length KHC containing the 

autoinhibitory IAK motif has weak affinity for the microtubule and pronounced inhibition of its 

ATPase activity compared to the truncated motor construct, likely because IAK binding 

prevents ADP release (Hackney and Stock, 2000; Kaan et al., 2011).  Additionally, there is 

evidence that KLC can also function to inhibit the motor activity of KHC.  Full-length 

KHC/KLC heterotetramers have decreased microtubule-binding compared to KHC dimers 

(Verhey et al., 1998) and fluorescence resonance energy transfer (FRET) studies suggest 

that in the inactive state, the KLC separates the KHC motor domains (Cai et al., 2007).  

 

 

Figure 1.1. Depiction of the plus-end directed kinesin-1 microtubule motor protein.  
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Binding of cargo to KHC is thought to relieve autoinhibition, allowing the motor to 

engage with the microtubule.  This has been demonstrated for recombinant KHC in vitro 

(Cho et al., 2009; Fu and Holzbaur, 2013), and in vivo (Blasius et al., 2007; Kawano et al., 

2012).  However, there is evidence that kinesin-1 motors can be inactive while attached to 

membrane cargo (Wozniak and Allan, 2006), suggesting that additional regulation may be 

needed to activate/inactivate cargo-bound motors.  This may involve phosphoregulation of 

kinesin and/or associated adaptor complexes (De Vos et al., 2000; Fu and Holzbaur, 2013; 

Gindhart et al., 2003; Morfini et al., 2002; Sato-Yoshitake et al., 1992), regulation by Rab 

GTPases (Grigoriev et al., 2007), or calcium signaling (Macaskill et al., 2009; Wang and 

Schwarz, 2009).   

An additional mechanism of activation that has been suggested involves the 

microtubule associated protein ensconsin (also known as MAP7 or E-MAP-115).  Ensconsin 

binds the microtubule lattice through its N-terminal microtubule-binding domain and the C-

terminal domain has been shown to be essential for efficient kinesin-1 transport in vitro and 

in vivo (Barlan et al., 2013; Sung et al., 2008).  This effect is thought to involve the relief of 

kinesin-1 autoinhibition by binding to ensconsin, because a hinge-less, constitutively active 

KHC rescues the motility defects in ensconsin-null neurons (Barlan et al., 2013).  However, 

while binding of MAP7 to kinesin-1 has been reported (Metzger et al., 2012), this binding has 

yet to be shown for fly ensconsin, suggesting that the interaction is transient, or highly 

regulated and therefore difficult to detect (Barlan et al., 2013; Sung et al., 2008).  

 

Cytoplasmic Dynein 

 Well before the discovery of kinesins, dynein was first isolated from cilia in 1965 as 

the potential ATPase driving microtubule sliding in the cilia of Tetrahymena (Gibbons and 

Rowe, 1965).  Since then, sixteen genes in humans encoding dynein heavy chains have 

been identified, fourteen of which encode proteins that function within the axoneme, where 



19	
  
	
  

they drive coordinated beating of cilia and flagella, and one which drives retrograde 

intraflagellar transport (Wickstead and Gull, 2007; Yagi, 2009).  The remaining gene encodes 

cytoplasmic dynein, which localizes throughout the cell and drives cargo transport toward the 

minus-ends of microtubules (Lye et al., 1987; Paschal et al., 1987; Paschal and Vallee, 

1987).  Cytoplasmic dynein is responsible for the bulk of the minus-end-directed cargo 

transport in the cell, with the exception of a few minus-end-directed kinesins.  Cytoplasmic 

dynein function is essential in animals, primarily because dynein is needed for proper cell 

division and development (Gepner et al., 1996; Robinson et al., 1999; Vaisberg et al., 1993).  

In contrast, plants lack cytoplasmic dynein and instead rely on minus-end-directed kinesins 

(Wickstead and Gull, 2007).  

 Cytoplasmic dynein (referred to as dynein going forward) is a large 1.6 MDa complex 

of proteins that includes two heavy chains (DHC), which contain an N-terminal tail domain, 

AAA ATPase motor domain and microtubule-binding domain.  The tail domain promotes 

dimerization of DHC and provides a scaffold for the association of the additional subunits in 

the complex.  These subunits include two intermediate chains (DIC) that bind to the tail of 

DHC, two light intermediate chains (LIC) that bind independently to DHC and three different 

light chains (Tctex1, LC8 and LC7/roadblock) that bind to the intermediate chains.  In 

vertebrates, these intermediate and light chains are each encoded by two genes and are 

subject to alternative splicing and phosphoregulation, which has been suggested to provide 

regulation of cargo recognition (Pfister et al., 2006). 

 Dynein is a member of the AAA+ (ATPase associated with various cellular activities) 

family of proteins, which are large, ring-like hexamers of ATPase domains that function to 

unfold proteins, dismantle DNA and RNA and take apart macromolecular complexes and 

aggregates (Neuwald et al., 1999).  The DHC motor domain includes the six AAA+ modules 

that make up the ring, a linker domain that stretches over the ring, and a microtubule-binding 

domain (Burgess et al., 2003; Gee et al., 1997; Roberts et al., 2009).  Only the first four AAA 
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modules contain functional nucleotide binding motifs for ATP, with evidence for AAA1 being 

the main site of ATP hydrolysis (Kon et al., 2004).  The microtubule binding domain consists 

of a small globular domain at the end of a 10 nm antiparallel coiled-coil stalk domain that 

extends out from between AAA4 and AAA5 (Gee et al., 1997; Kon et al., 2011).  Near its 

base, the stalk interacts with a coiled-coil region known as the buttress (or strut) that 

emerges from AAA5 (Carter et al., 2011; Kon et al., 2011)(Figure 1.2).   

 

 

 

Figure 1.2.  Depiction of the minus-end directed cytoplasmic dynein motor and its 
cofactor dynactin. 

 

While the mechanical details of how the ATPase cycle transmits force over the large 

distance from the ring to the microtubule-binding domain are still emerging, current evidence 

suggests that conformational changes in the ring during ATP hydrolysis are transmitted to 

the stalk domain through the buttress (Carter et al., 2011).  Sliding within the stalk domain 

may then couple the ATP-induced conformational changes to changes in microtubule binding 

affinity (Gibbons et al., 2005; Kon et al., 2009).  More generally, ATP binding to AAA1 results 

in conformation changes in the ring, buttress and stalk that induce dissociation of the motor 

from the microtubule.  The linker region then undergoes a rearrangement, priming it for the 

subsequent powerstroke, and increasing the search range of the microtubule-binding domain 
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along the microtubule.  Re-binding of the motor to the microtubule stimulates release of 

phosphate (Pi), and ADP, which triggers the powerstroke – i.e. return of the linker to its 

original position and force generation (Burgess et al., 2003; Roberts et al., 2013; Roberts et 

al., 2012).     

 Single molecule studies of recombinant yeast dynein indicate that processive motion 

requires dimerization of the two DHC motor domains and that the dynein heads can take 

alternating steps, similar to processive kinesin motors (Reck-Peterson et al., 2006). 

However, although dynein predominantly takes 8-nm steps toward the minus-end of 

microtubules, its steps can vary in size 8-32 nm and it can also take steps toward the plus-

end and sideways onto adjacent protofilaments (DeWitt et al., 2012; Gennerich et al., 2007; 

Mallik et al., 2004; Qiu et al., 2012; Reck-Peterson et al., 2006).  Although coordination of 

stepping is not as tightly coupled as it is in kinesin motors, the heads are better coordinated 

as the distance between the motor domains increases and may be due to strain transmission 

between the two heads (Gennerich et al., 2007; Gennerich and Vale, 2009; Qiu et al., 2012).  

This flexibility in stepping may allow dynein to efficiently by-pass MAPs or other obstacles 

along the microtubule track (Dixit et al., 2008).  While individual mammalian dynein motors 

are weak, stalling at only ~1 pN of force in vitro (Mallik et al., 2004; Schroeder et al., 2010), 

most dynein cargoes in the cell likely have multiple motors functioning in teams to generate 

higher forces for cargo transport (Hendricks et al., 2012; Hendricks et al., 2010; Welte et al., 

1998). 

 As the predominant minus-end-directed microtubule motor in the cell, dynein is 

responsible for the transport of many organelles, including, but not limited to, endosomes 

(Driskell et al., 2007), autophagosomes (Maday and Holzbaur, 2012), lipid droplets (Gross et 

al., 2002), and ER-to-Golgi vesicles (Presley et al., 1997).  This transport is not only 

important for ubiquitous organelle positioning and protein trafficking needs in the cell, but is 

also important for signaling in neurons (Heerssen et al., 2004; Perlson et al., 2009), efficient 
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release of lytic granules at the immunological synapse by lymphocytes (Mentlik et al., 2010), 

and is used by viruses for establishment of infection (Bremner et al., 2009).  Furthermore, 

when anchored on cellular structures or the cell cortex, dynein can exert tension on 

microtubules (Hendricks et al., 2012).  For example, during cell division, dynein pulls on 

astral microtubules emanating from the spindle poles to position the spindle properly (Collins 

et al., 2012) and in fibroblasts dynein acts from the leading edge to, pull microtubules and 

orient the centrosome (Dujardin et al., 2003).  Dynein also has roles focusing the minus ends 

of microtubules at the spindle poles in the mitotic spindle (Merdes et al., 1996) and acts at 

the kinetochore to maintain spindle-kinetochore attachments, remove spindle assembly 

checkpoint proteins and drive rapid poleward chromosome movement (Foley and Kapoor, 

2013).    

 To perform most, if not all, of these roles, dynein functions with an activating factor 

known as dynactin (Figure 1.2).  Dynactin was originally identified in preparations of dynein 

from rat liver and testis (Collins and Vallee, 1989) and was shown to activate dynein in vitro 

(Gill et al., 1991; Schroer and Sheetz, 1991).  Dynactin is a large ~1.2 MDa complex of 

proteins that contains 11 subunits, and can be structurally divided into two parts, the Arp1 

rod and the projecting side-arm (Schafer et al., 1994; Schroer, 2004).  The side-arm of 

dynactin contains the largest subunit of the complex, p150Glued, which not only mediates the 

interaction of dynactin with dynein, via dynein intermediate chain (Karki and Holzbaur, 1995; 

Vaughan and Vallee, 1995), but it also interacts with microtubules directly through its N-

terminal microtubule-binding domain (Waterman-Storer et al., 1995).  Evidence suggests that 

microtubule binding by p150Glued enhances the recruitment of dynein to the microtubule 

(Ayloo et al., 2014) and is necessary for the efficient initiation of retrograde vesicular 

transport in neurons (Lloyd et al., 2012; Moughamian and Holzbaur, 2012).  Additionally, 

p150Glued may increase the processivity of dynein following initiation of transport (Culver-

Hanlon et al., 2006; King and Schroer, 2000).  The C-terminal domain of p150Glued contains a 
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cargo-binding domain that binds various vesicular adaptor proteins such as Rab7-interacting 

lysosomal protein (RILP)(Johansson et al., 2007), huntingtin-associated protein 1 

(HAP1)(Engelender et al., 1997), and JIP1 (Fu and Holzbaur, 2013).  Additionally, the Arp1 

rod of dynactin links to cargo.  For example, the Arp1 subunit directly interacts with βIII-

spectrin, which is found on the cytoplasmic surface of Golgi and other organelle membranes 

(Holleran et al., 2001; Holleran et al., 1996).  However, not all cargo binding occurs through 

dynactin, many cargoes have also been shown to bind dynein directly through the 

intermediate, light intermediate and light chains (Allan, 2011).  

 In the cell, dynein also interacts with a number of other activating complexes.  These 

include complexes of LIS1 (lissencephaly 1) and nuclear distribution protein E (NuDE) or 

NuDE-like (NuDEL).  Loss-of-function mutations in these proteins result in mitosis defects in 

neuronal precursors and defects in neuronal migration during brain development, resulting in 

severe malformation of the brain cortex (Dobyns et al., 1993; Shu et al., 2004).  Studies in 

fungi and metazoans have shown that these proteins are crucial to a number of dynein 

functions, including organelle transport and nuclear positioning (Lee et al., 2003; Liang et al., 

2004; McKenney et al., 2010; Smith et al., 2000; Tanaka et al., 2004; Tsai et al., 2007; Xiang 

et al., 1994).  Despite extensive investigation, the specific mechanisms by which these 

proteins function to regulate dynein activity are still unclear, but may involve regulation of 

dynein localization and/or ATPase activity (for review see (Kardon and Vale, 2009)).  

Bicaudal D (BICD) is another dynein adaptor protein, but it is specific to metazoans.  

In Drosophila, BICD is involved in dynein-mediated mRNA localization during oogenesis and 

embryonic development (Bullock and Ish-Horowicz, 2001; Dienstbier et al., 2009; Swan et 

al., 1999).  The mammalian homologues BICD1 and BICD2 recruit dynein for the transport of 

Golgi vesicles (Hoogenraad et al., 2001; Matanis et al., 2002), and bind RanBP2, a 

component of nuclear pore complexes, to localize dynein to the nuclear envelope (Splinter et 



24	
  
	
  

al., 2010).  In addition to serving as a cargo adaptor, BICD2 may also enhance dynein 

processivity (Matanis et al., 2002; McKenney et al., 2014; Schlager et al., 2014).    

Importantly, many cargoes in the cell have both minus-end directed dynein and plus-

end directed kinesin motors attached simultaneously and undergo bidirectional movements 

along microtubules.  These opposing motors may either undergo a stochastic tug-of-war 

(Hendricks et al., 2010; Muller et al., 2008), or cargo-based scaffolding proteins may more 

specifically regulate the activity of motors on the cargo (Fu and Holzbaur, 2014).  These 

mechanisms are not mutually exclusive, and the strategy employed is likely to be cargo-

specific.   

 

IV.  The Role of the Cytoskeleton and Molecular Motors in Nuclear Positioning 

 

Microtubule-Mediated Nuclear Positioning 

Nuclear positioning in many cell types involves the microtubule cytoskeleton.  

However, cells have evolved to utilize a number of different microtubule-based strategies for 

nuclear movement.  Generally, these mechanisms fall into two major categories:  MTOC-

dependent nuclear positioning and MTOC-independent mechanisms.  In MTOC-dependent 

movement, the microtubule organizing center is either embedded in the nuclear envelope 

(yeast spindle pole body) or tightly associated with it (the centrosome in animal cells) and the 

position of the nucleus follows the position of the MTOC.  Conversely, if a nucleus is not 

tightly coupled to an MTOC, nuclei may track along microtubules, similar to how smaller 

organelles move along the microtubule network (Reinsch and Gonczy, 1998).  Typically, both 

of these mechanisms involve the microtubule motor proteins, cytoplasmic dynein and/or the 

kinesin family of motors, yet non-motor microtubule-based mechanisms have also been 

described.  Furthermore, a cell will often use more than one mechanism to ensure correct 
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nuclear positioning.  For additional reviews, see (Dupin and Etienne-Manneville, 2011; 

Gundersen and Worman, 2013).   

As discussed above, the MTOC serves to nucleate and anchor the minus-ends of 

microtubules and is typically embedded in or closely associated with the nuclear membrane 

(For review see (Kellogg et al., 1994)).  In a number of systems, the centrosome can be 

positioned properly even when the nucleus is absent or its association to the nucleus is lost 

(Manes and Barbieri, 1977; Raff and Glover, 1988).  This suggests that the MTOC normally 

determines the position of the nucleus in these cells.  Experiments have also demonstrated 

that an intact, dynamic microtubule cytoskeleton is important for this MTOC positioning, as 

treatment with microtubule depolymerizing or stabilizing drugs prevents centrosome 

movement (Schatten and Schatten, 1981).     

Positioning of the MTOC is an active process, with force generated by microtubules 

associating with cortical or cytoplasmic sites.  In the simplest mechanism, forces resulting 

from microtubule polymerization and pushing on the fixed cell cortex can position the 

centrosome at the cell center, similar to how an aster composed of pure tubulin centers itself 

in a microfabricated chamber (Holy et al., 1997)(Figure 1.3A).  For example, in fission yeast, 

interphase microtubules emanating from the spindle pole body form bundles arranged along 

the long axis of the cell and as growing microtubules interact with the cell cortex, transient 

pushing forces are generated that maintain the nucleus in the middle of the cell (Tran et al., 

2001).  This mechanism has also been proposed to move the male pronucleus to the center 

of sea urchin, sand dollar and Xenopus eggs following fertilization, however, because the 

force that can be exerted by a microtubule decreases with increasing length due to buckling, 

it is likely that microtubule pushing is not the sole mechanism positioning the centrosome in 

these large cells (Xenopus eggs are 1mm in diameter) (Dogterom et al., 2005; Reinsch and 

Gonczy, 1998).  
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Figure 1.3.  Force generating mechanisms driving MTOC-dependent nuclear 
movement   
 
(A) Forces generated by microtubule polymerization can push the centrosome and attached 

nucleus away from the cell cortex.  (B) Microtubule depolymerization forces (when coupled to 

proteins on the membrane), or dynein-mediated forces can pull the centrosome and nucleus 

toward the cell cortex. 

 

 

Alternatively, microtubule pulling forces can contribute to MTOC and nuclear 

positioning (Figure 1.3B).  In this strategy, microtubule plus-ends are captured at specific 

sites on the cortex, typically by cytoplasmic dynein motors, and as the motors attempt to 

move to the minus-end of microtubules, a pulling force is transmitted to the microtubule and 

the attached centrosome or spindle pole.  Microtubule pulling forces can also result from 
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depolymerization of the microtubule itself (Grishchuk et al., 2005), and provided that a 

persistent linkage is present between the cortex and the shrinking microtubule, would also 

result in force transmission to the MTOC (Dogterom et al., 2005).  An example of microtubule 

pulling occurs during mitosis in budding yeast, where the nucleus is moved into the bud-neck 

prior to spindle elongation and nuclear division, ensuring the appropriate distribution of 

genetic material to mother and daughter cells.  Nuclear migration is mediated by astral 

microtubules which emanate from the spindle pole body; pulling forces are generated by 

microtubule depolymerization mediated by end-on contacts involving actin and cortical 

protein complexes (reviewed in (Pearson and Bloom, 2004; Yamamoto and Hiraoka, 2003)), 

and by dynein motors acting from the bud cell cortex to slide microtubules (Adames and 

Cooper, 2000; Yeh et al., 1995).  To maintain the nucleus at the bud neck, antagonistic 

pulling forces must also applied to the astral microtubules contacting the cortex in the mother 

to balance the force.   

 Microtubule pulling forces are also responsible for positioning of mitotic spindles in 

early C. elegans embryos (Gonczy et al., 1999), and eukaryotic cells (O'Connell and Wang, 

2000), as well as positioning of the centrosome in both migrating and non-migrating 

mammalian cells during interphase (Burakov et al., 2003; Koonce et al., 1999; Levy and 

Holzbaur, 2008).  In these cells, cortically-anchored dynein motors are believed to be the 

predominant force driving microtubule pulling, though there may also be contributions by the 

acto-myosin network acting on microtubules as well (Rosenblatt et al., 2004).   

Dynein-mediated microtubule pulling mechanisms also play a role in nuclear 

positioning in the hyphae of multinucleated filamentous fungi, including Aspergillus nidulans, 

Neurospora crassa, and Ashbya gossypii.  In growing hyphae, nuclei migrate towards the 

growing tip and distribute evenly along the cell length.  Though there are some differences 

between species, in general, an autonomous microtubule network emanates from the spindle 

pole body associated with each nucleus and dynein pulls nuclei by sliding microtubules along 
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the cell cortex (Yamamoto and Hiraoka, 2003).  Careful observations of nuclear movements 

in Ashbya gossypii hyphae indicate bidirectional movements of nuclei, rotation of nuclei, as 

well as nuclear bypassing events (Grava et al., 2011; Lang et al., 2010).  Almost all of these 

movements are led by the spindle pole body which is embedded in the nuclear envelope 

(Lang et al., 2010), and pulling on cytoplasmic microtubules by dynein is necessary to 

prevent nuclear aggregation (Grava et al., 2011).  Interestingly, this microtubule-dependent 

nuclear movement is superimposed on bulk cytoplasmic flow resulting from osmotic pressure 

gradients, as nuclear translocation still occurs when microtubules are depolymerized (Lang 

et al., 2010).     

In contrast to microtubule pushing and pulling mechanisms, nuclear tracking along 

microtubules occurs in cells in which the nucleus is not tightly coupled to the MTOC.  

Microtubule motors decorating the nuclear surface traffic the nuclei along microtubules in an 

analogous manner to smaller organelles (Figure 1.4).  For example, in newly fertilized eggs 

of many species, the female pronucleus lacks both a centrosome and microtubule-nucleating 

activity.  However, cytoplasmic dynein motors on the nuclear envelope move the female 

pronucleus toward the minus-ends of microtubules located at the centrosome associated 

with male pronucleus (Payne et al., 2003; Reinsch and Karsenti, 1997; Rouviere et al., 

1994)(Figure 1.4A).  Dynein is also responsible for nuclear movements in migrating neurons 

during development of the vertebrate central nervous system.  Following extension of the 

leading process and movement of the centrosome forward, dynein acts from the nuclear 

surface to walk the nucleus into the leading process toward the centrosome along a cage of 

polarized microtubules (Rivas and Hatten, 1995; Shu et al., 2004; Tsai et al., 2007; Tsai and 

Gleeson, 2005).    

In other systems, plus-end directed kinesin motors drive nuclear movements along 

microtubules (Figure 1.4B).  For instance, the nuclei in C.elegans embryonic hypodermal 

precursor cells migrate toward the plus-ends of polarized microtubule bundles by the action 
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of kinesin-1 motors.  Dynein is also present on these nuclei, and is responsible for back-

steps or rotation, allowing more efficient movement of the nuclei around cytoplasmic 

organelles (Fridolfsson and Starr, 2010).  Kinesin-3 (Kif1a) motors and dynein are also 

responsible for nuclear movements in neuroepithelial radial glial cells, which serve as 

neuronal precursors in vertebrate nervous system development.  The centrosome remains at 

the apical cell surface while the nuclei move along the apico-basal axis in a cell-cycle 

dependent manner.  The kinesin-3 motor, Kif1a, is implicated in the basal, plus-end directed 

nuclear movement and dynein drives the apical, minus-end directed movement along the 

polarized microtubules that extend the length of the cell (Tsai et al., 2010). 

 

 

Figure 1.4.  Nuclear-bound motors drive nuclear movement along microtubules. 
(A) Cytoplasmic dynein transports the nucleus toward the centrosome.  (B) Kinesin motors 

move nuclei away from the centrosome toward the plus-end of the microtubule. 

 

While the two general mechanisms of nuclear movement and positioning can be 

described independently, MTOC-dependent nuclear movement is often linked to 

microtubule-tracking mechanisms.  This is because the centrosome, unlike the spindle pole 

body in yeast, is not embedded in the nuclear envelope and its tight association to the 

nucleus is often maintained by mechanisms analogous to the microtubule-tracking 

mechanisms described above.  This was first described in experiments in sea urchin 
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embryos in which the centrosomes and nuclei were forcibly separated by centrifuging the 

embryos in the presence of low dose colcemid to depolymerize the microtubules.  Upon 

inactivation of the drug, the nuclei were observed to track along newly polymerized 

microtubules and resume a tight association with the centrosome (Aronson, 1971).  Similar 

nuclear tracking has been observed in proliferating cells following reformation of the nuclear 

envelope at the end of mitosis (Murray et al., 1996). 

Given that microtubule minus ends are embedded in the centrosome, minus-end 

directed activity of dynein motors from the nuclear surface would result in a pulling force that 

brings the nucleus and the centrosome toward one another.  Consistent with this idea, acute 

inhibition of dynein in U2OS cells by injection of function-blocking antibodies leads to an 

almost immediate separation of the nucleus and the centrosomes (Splinter et al., 2010).  

Interestingly, additional inhibition of kinesin-1 prevents this separation, suggesting that 

kinesin-1 provides the force that drives the nucleus away from the centrosome (Splinter et 

al., 2010).  In C. elegans, dynein interacts with the outer nuclear envelope protein Zyg-12.  

Dynein pulls the centrosome and nucleus closer together, thereby establishing association of 

nuclear-bound Zyg-12 with a Zyg-12 splice variant localized to the centrosome, promoting a 

more stable attachment between the centrosome and the nucleus (Malone et al., 2003).  

Although Zyg-12 is not conserved, functional homologues of Zyg-12 that connect motors to 

the nuclear envelope in other organisms have now been identified, as will be further 

discussed in section V. 

Though most microtubule-dependent nuclear positioning involves the mechanisms 

described above, a number of atypical mechanisms have also been described.  For example, 

during Drosophila oocyte polarization, as the nucleus moves from the posterior to the 

anterior margin, there is a prominent indentation visible in the rear nuclear surface.  This is 

correlated with the position of the centrosome, which is located behind the nucleus and 

evidence from live imaging of EB1-GFP comets suggests that growing microtubules push the 
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nucleus to move it to its anterior position (Zhao et al., 2012).  Similar reports of microtubule-

pushing on the nucleus has also been described in the follicle epithelial cells of the 

Drosophila pre-vitellogenic egg primordia, where pushing forces have been described to 

rapidly rotate or ‘wriggle’ the nucleus as it slowly migrates to the basal membrane (Szikora et 

al., 2013).  

 

Nuclear Movements Mediated by the Actin and Intermediate Filament Networks 

 The actin cytoskeleton also contributes to nuclear positioning through roles in nuclear 

anchoring as well as by active movement of nuclei.  An example of actin-based restraint of 

nuclear movement occurs during the rapid movement of cytoplasm from nurse cells into the 

oocyte during Drosophila oogenesis.  The nuclei in the nurse cells are held in place by 

striated actin bundles extending from plasma membrane to form a cage around the nuclei 

(Guild et al., 1997; Gutzeit, 1986).  Loss of these bundles occurs following mutation of the 

actin bundling proteins, villin and fascin, and results in unanchored nuclei becoming lodged 

in the ring canals where they prevent the flow of cytoplasm into the oocyte (Robinson and 

Cooley, 1997).  Another example of nuclear anchoring by actin occurs in the four large 

syncytial hypodermal cells that cover the body of the adult C. elegans worm.  Normally, 

nuclei are evenly spaced and retain this positioning as the underlying muscles contract and 

relax.  However, mutations or displacement of the outer nuclear membrane protein ANC-1 

cause a nuclear anchorage defect in which nuclei float freely in the cytoplasm and often 

aggregate together (Hedgecock and Thomson, 1982; Starr and Han, 2002).  ANC-1 is an 

actin binding protein and over-expression of the actin binding domain results in a dominant 

negative nuclear anchorage defect, suggesting that association of the actin cytoskeleton with 

ANC-1 on the nuclear envelope anchors nuclei in these hypodermal cells (Starr and Han, 

2002).     
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 There are also a growing number of examples in which nuclei are actively moved 

through the cell by actin-dependent mechanisms.  For example, in the developing CNS, 

contraction of the acto-myosin network at the rear of the nucleus in migrating neurons has 

been shown to aide the movement of the nucleus forward, working in conjunction with the 

microtubule/dynein-dependent process described above (Bellion et al., 2005; Schaar and 

McConnell, 2005; Tsai et al., 2007).   Studies of nuclear positioning during polarization of 

cells in culture such as fibroblasts and astrocytes have shown that the actin cytoskeleton 

plays an active role in the rearward movement of the nucleus (Dupin et al., 2011; Gomes et 

al., 2005; Luxton et al., 2010).  In these cells, rearward-flowing cables of actin move across 

the dorsal surface of the nuclear envelope, perpendicular to the direction of cell migration 

(Luxton et al., 2010).  Because these transmembrane actin-associated nuclear (TAN) lines 

are attached to proteins on the outer nuclear envelope, this rearward actin flow induces 

nuclear movement.  Movement of these TAN lines is likely driven by myosin II activity, as 

inhibition of the motor prevents actin flow and nuclear movement (Gomes et al., 2005).   

Another network of highly organized, dynamic, contractile actin filament bundles containing 

phosphorylated myosin have also been identified to span the dorsal surface of the nucleus in 

a number of cell types (Khatau et al., 2009).  This perinuclear actin cap is aligned with the 

direction of migration, and links the nucleus to a subset of focal adhesions that are important 

for the mechano-sensing of matrix stiffness at the cell periphery (Kim et al., 2013).  While this 

structure regulates nuclear shape, its role in nuclear movement is still unclear (Khatau et al., 

2009).  It is also not clear whether TAN lines and the perinuclear actin cap co-exist in the 

same cell.  

 While the role of the intermediate filament network in nuclear positioning is not as 

apparent as that of the actin and microtubule-networks, there is evidence in a number of 

systems to suggest that these filaments can also influence nuclear movement and 

anchorage.  For example, MFT-16 fibroblasts, which lack vimentin, display excessive dynein-
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dependent nuclear rotation, whereas restoration of the intermediate filament returns rotation 

levels to that of wild-type MFT-6 cells (Gerashchenko et al., 2009).  Additionally there is 

evidence that during astrocyte cell migration, the force of actin retrograde flow at the leading 

edge is relayed to the nucleus by subsequent flow and asymmetric accumulation of 

intermediate filaments (nestin, vimentin, and GFAP) in front of the nucleus (Dupin et al., 

2011).  Finally, the cytolinker protein plectin, which interacts with the outer nuclear envelope 

protein nesprin-3, also interacts with intermediate filaments, suggesting a mechanical 

connection between the intermediate filament network and the nuclear envelope 

(Wilhelmsen et al., 2005).   

 In summary, nuclear positioning is an active process in which different components 

of the cytoskeleton act cooperatively to move and maintain the location of a nucleus.  The 

relative contribution of the cytoskeletal elements and associated motors varies depending on 

cell type and can change during cell differentiation and migration.  However, regardless of 

the specific mechanism, it is clear that all of these processes are highly dependent on 

interactions between the nuclear envelope and the cytoskeletal networks.  As discussed in 

the next section, we have made significant progress over the last fifteen years in uncovering 

the molecular details of these interactions, which in turn has greatly aided our understanding 

of the mechanisms of nuclear positioning.     

 

V.  Linking the Nucleus to the Cytoskeleton  

	
  

The Nuclear Envelope and the Nuclear Lamina 

The nuclear envelope is a specialized extension of the endoplasmic reticulum (ER) 

that surrounds and compartmentalizes the genome in eukaryotic cells.  It also serves to 

provide physical rigidity to the nucleus, plays an important role in chromatin organization and 
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permits only selective traffic of proteins and RNA into and out of the nucleus by passage 

through nuclear pore complexes (Hetzer, 2010).  It is composed of two concentric bilayer 

membranes, the inner nuclear membrane (INM) and the outer nuclear membrane (ONM), 

that are contiguous at the nuclear pore complexes.  The ONM is continuous with the rough 

ER so that the space between the inner and outer membranes (the perinuclear space) is 

directly connected with the lumen of the ER (Watson, 1955).  Despite the lipid continuity 

between the nuclear envelope and the ER, both the ONM and INM contain proteins that are 

not typically enriched in the ER (Schirmer and Gerace, 2005).  These include the proteins of 

the nuclear pore complexes, the LINC (linkers of the nucleoskeleton and cytoskeleton) 

complex proteins that will be discussed in greater detail below, as well as a number of 

additional inner nuclear membrane proteins, including lamin B receptor (LBR), lamina-

associated polypeptide (LAP), emerin, and MAN1, that interact with chromatin and/or the 

nuclear lamina (Hetzer, 2010).   

 The nuclear lamina underlies the inner nuclear membrane and is a meshwork of 

type-V intermediate filaments composed of A- and B-type lamins.  Unlike other intermediate 

filaments, all lamins contain a nuclear localization signal and are transported into the nucleus 

(Lehner et al., 1986; Loewinger and McKeon, 1988; Monteiro et al., 1994).  Mature B-type 

lamins retain a farnesyl group through which they can associate directly with the INM (for 

review see (Dechat et al., 2010)).  While B-type lamins are ubiquitously expressed and 

essential for cell viability, A-type lamins are developmentally regulated, with expression in 

most tissues appearing only after birth (Lehner et al., 1987; Rober et al., 1989). 

A major role for the nuclear lamina is to maintain nuclear shape and provide 

structural support.  The lamina acts as a molecular shock absorber, thought to be especially 

critical function in tissues that are exposed to mechanical forces such as muscle (Cohen et 

al., 2008; Dahl et al., 2004; Panorchan et al., 2004).  Additionally, nuclear lamins interact 

with INM proteins to maintain their localization to the NE (Foisner and Gerace, 1993; Lin et 
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al., 2000; Worman et al., 1988) and decrease lateral diffusion within the membrane 

(Ellenberg et al., 1997; Ostlund et al., 1999).  There is also growing evidence that the lamina 

plays important in regulating chromatin position and organization, transcription and gene 

expression, DNA replication and possibly DNA repair (for review see (Dechat et al., 2010)).  

Given all these structural and regulatory roles, it is not surprising that defects in the lamina 

result in a myriad of human diseases, such as progeria, muscular dystrophy, cardiomyopathy 

and lipodystrophy (Bonne and Quijano-Roy, 2013).  

The nuclear envelope and the nuclear lamina also play an important role in nuclear 

positioning.  With the identification of SUN-KASH proteins that form bridges across the 

nuclear envelope came the understanding that the cytoskeleton is mechanically linked to the 

nucleoskeleton.  Force generation by filaments and motors in the cytoplasm are transmitted 

across the nuclear membrane to the structural components inside the nucleus (Lombardi et 

al., 2011), providing the coupling needed for effective nuclear movement and anchoring. 

 

The LINC Complex 

 LINC complexes (LInkers of the Nucleoskeleton and the Cytoskeleton) are 

composed of outer nuclear membrane KASH (Klarsicht, ANC-1 and Syne Homology) 

proteins and inner nuclear membrane SUN (Sad1 and UNC-84) proteins.  These proteins 

interact in the perinuclear space to form a bridge across the nuclear envelope.  LINC 

complexes have been found in fungi, animals and plants and connect centrosomes, actin 

filaments, intermediate filaments and microtubules to the surface of the nucleus (Figure 1.5).  

 Identification of the first SUN domain protein, UNC-84 (Malone et al., 1999), resulted 

from studies of C. elegans mutants with uncoordinated motility caused by defects in nuclear 

migration (Horvitz and Sulston, 1980; Sulston and Horvitz, 1981).  UNC-84 localized to the 

nuclear envelope and the C-terminal ~175 residues showed similarity to the S. pombe 

spindle pole body protein Sad1 and to two predicted mammalian proteins which were then 
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named SUN1 and SUN2 (Malone et al., 1999).  The conserved region was termed the SUN 

domain and further studies have now shown it is highly conserved across evolution.  SUN 

domain proteins include Mps3 in S. cerevisiae, UNC-84 and SUN1/MTF-1 in C. elegans, 

Klaroid and Giacomo in D. melanogaster, and 5 mammalian proteins SUN1, SUN2, SUN3, 

SPAG4 and SPAG4L (Crisp et al., 2006; Jaspersen et al., 2002; Kracklauer et al., 2007; 

Malone et al., 1999; Shao et al., 1999).    

All SUN domain proteins are conserved type-II inner nuclear membrane proteins and 

contain at least one transmembrane domain and a C-terminal SUN domain that localizes 

inside the lumen of the nuclear envelope (Starr and Fridolfsson, 2010).  The recent crystal 

structures of human SUN2 reveals a homotrimer that resembles a three-lobed clover made 

of SUN domains sitting on a triple coiled-coil stalk which is suggested to span the 50 nm 

space between the INM and ONM (Sosa et al., 2012; Zhou et al., 2012).  The structures also 

revealed that each SUN trimer binds three KASH peptides in the grooves between the 

adjacent SUN domains and that a disulfide bond between the SUN and KASH domains may 

further stabilize the complex (Sosa et al., 2012).     

 In contrast to the C-terminal SUN domain, the nucleoplasmic domains of SUN 

proteins are not conserved, however many interact with lamins or chromatin.  While these 

interactions are crucial for retention of certain SUN proteins to the INM, others don’t rely 

solely on lamins for localization.  For instance, mammalian SUN1 and SUN2 both interact 

directly with A- and B-type lamins (Crisp et al., 2006; Haque et al., 2006), however only 

SUN2 mislocalizes significantly to the ER in fibroblasts lacking A-type lamins, suggesting 

SUN1 has additional mechanisms for INM retention (Crisp et al., 2006; Haque et al., 2006; 

Hasan et al., 2006).  In S. pombe, which lacks lamins, Sad1 interacts with centromeres and 

heterochromatin through the heterochromatin-binding protein Ima1 (King et al., 2008).  

Additional work is still needed to better understand how the SUN proteins are targeted to the 

INM and how they connect to the nucleoskeleton.   
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Figure 1.5.  LINC complexes. 

(A) Domain structure of the major nesprin isoforms in humans.   Nesprin-1 and nesprin-2 are 

alternatively spliced to produce a number of KASH-domain containing isoforms, as well as 

KASH-less isoforms (not shown).  (B) Illustration of LINC complexes spanning the nuclear 

envelope and interacting with the cytoskeleton and the nucleoskeleton.  SUN proteins on the 

inner nuclear membrane (INM) interact with both the nuclear lamina and the KASH domain 

of nesprins.  Nesprin-1 and -2 giant interact directly with the actin cytoskeleton, nesprin-3 

binds intermediate filaments indirectly via the cytolinker plectin, and nesprin-1, and -2 as well 

as nesprin-4 associate with microtubule motors, including cytoplasmic dynein and kinesin-1.   
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The KASH family of proteins constitutes the other half of the protein bridge across 

the nuclear envelope (Figure 1.5).  The founding members of this family include the D. 

melanogaster Klarsicht, C. elegans ANC-1 and mammalian Syne/Nesprin-1 and -2 proteins.  

Molecular cloning of ANC-1 resulted in the identification of a conserved KASH domain in 

each of these proteins (Starr and Han, 2002).  KASH domains consist of a predicted 

transmembrane region followed by a stretch of ~35 amino acids at the very C-terminus of the 

protein.  This domain is necessary and sufficient for targeting the proteins to the nuclear 

envelope where it interacts in the perinuclear space with the SUN domain proteins as 

described above (reviewed in (Starr and Fridolfsson, 2010)).  While most KASH proteins 

reside on the outer nuclear membrane, there is evidence that some of the shorter 

mammalian splice isoforms of nesprin-1 and -2 can also localize to the INM (Mislow et al., 

2002a; Mislow et al., 2002b; Morris and Randles, 2010; Zhang et al., 2005).   

The N-terminal domains of KASH proteins, which are variable in size and domain 

structure, extend into the cytoplasm where they interact with a variety of cytoskeletal 

elements.  The largest KASH proteins, C. elegans ANC-1, the Drosophila protein MSP-300, 

and the giant isoforms of mammalian nesprin-1 and -2 all contain a pair of calponin 

homology (CH) domains at the N-terminus which mediate their interaction with the actin 

cytoskeleton (Starr and Han, 2002; Volk, 1992; Zhen et al., 2002).  MSP-300 and nesprins 

contain large central domains composed of spectrin repeats, similar to those found in other 

CH-domain containing actin binding proteins such as α-actinin and dystrophin (Rosenberg-

Hasson et al., 1996; Zhang et al., 2001).  These repeats are ~100 residues and fold to form 

highly coiled, 5 nm long triple helical bundles (Yan et al., 1993).  ANC-1 also contains a large 

central region consisting of repetitive helical domains with short coiled-coil domains, which 

may function analogously to the spectrin repeats (Starr and Han, 2003).  Evidence from 

experiments with nesprin-2 constructs lacking the central domain, suggests that the role of 

the extended central domain may be to physically separate the actin-binding domain from 
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the nuclear envelope (Zhen et al., 2002).  An alternative hypothesis is that these giant 

nesprins form a spectrin-like filamentous lattice-like basket around the nucleus that provides 

support for the ONM (Schneider et al., 2008).  Support for this model is based on evidence 

that the spectrin repeats of nesprins dimerize (Mislow et al., 2002a) and that the CH domains 

of nesprins -1 and -2 can also interact with nesprin-3 (Lu et al., 2012).  Most of the available 

evidence indicates that the actin-binding KASH proteins serve to anchor nuclei in place in 

cells (Starr and Han, 2002; Zhang et al., 2007).  However, nesprin-2 giant connects TAN 

lines to the nuclear envelope, suggesting that KASH proteins may also be important in actin-

based mechanisms of nuclear movement as well (Luxton et al., 2010).  

 A number of KASH proteins have also been shown to interact indirectly with the 

microtubule network through microtubule motor proteins.  For example, the C. elegans 

protein UNC-83, binds the kinesin-1 motor through an interaction with kinesin light chain-2 

(Meyerzon et al., 2009), and also interacts with two separate dynein-regulating complexes 

(BICD1 and NUD2) to recruit the minus-end directed motor to the nuclear envelope.  

Together these motors drive nuclear migration in embryonic hypodermal precursor cells 

(Fridolfsson et al., 2010; Fridolfsson and Starr, 2010).  In the fly, dynein is thought to interact 

with the KASH protein Klarsicht to facilitate nuclear migration in developing photoreceptor 

cells (Mosley-Bishop et al., 1999; Welte et al., 1998).  In the mouse, nesprins in complex with 

either SUN1 or SUN2 are necessary for brain and retinal development by mediating both 

interkinetic nuclear migration as well as nucleokinesis during neuronal cell migration in the 

retina and the cerebral cortex.  In these studies, co-immunoprecipitation data suggested both 

nesprin-1 and -2 bind dynein/dynactin, and that nesprin-2 can also bind kinesin-1 (Yu et al., 

2011; Zhang et al., 2009).  In a later study, the interaction between kinesin-1 and nesprin-2 

was further defined, and shown to involve binding of the TPR domain of kinesin light chain to 

a region of the nesprin-2 cytoplasmic domain close to the transmembrane domain 

(Schneider et al., 2011).  This region is present in all but the shortest splice KASH-domain-
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containing isoforms of nesprin-2 (Duong et al., 2014), but it has not been examined whether 

nesprin-2 giant can bind actin and kinesin-1 simultaneously.     

 Mammalian nesprin-4 also binds kinesin light chain to bring kinesin-1 to the nuclear 

envelope (Roux et al., 2009).  Unlike nesprin-1 and -2, which are widely expressed (Zhang et 

al., 2001), the tissue distribution of the much smaller nesprin-4 is mainly restricted to 

secretory epithelial cells and sensory epithelial cells of the inner ear (Horn et al., 2013; Roux 

et al., 2009).  In cultured cells, introduction of nesprin-4 to the nucleus increases the distance 

between the nucleus and the centrosome, presumably because kinesin-1 motors move to 

the plus-end of centrosomal microtubules, driving the structures apart (Roux et al., 2009).  In 

support of this hypothesis, the loss of nesprin-4 from hair cells in the cochlea results in 

abnormal positioning of the nuclei at the apical surface of the cell, close to the centrosome, 

instead of its typical localization at the basal surface of the epithelial cell (Horn et al., 2013).  

Mammalian nesprin-3 interacts with the cytolinker protein plectin to connect 

intermediate filaments to the nuclear envelope (Ketema et al., 2007; Wilhelmsen et al., 

2005).  While plectin is primarily an intermediate filament binding protein, it also contains a 

functional actin binding domain (Andra et al., 1998) and has been shown to interact with the 

microtubule cytoskeleton (Koszka et al., 1985; Svitkina et al., 1996).  However, the actin-

binding domain of plectin mediates its association with nesprin-3α (Wilhelmsen et al., 2005), 

which precludes its binding to the actin network (Postel et al., 2011).  In contrast, plectin 

binds MAP2 through its plakin domain (Valencia et al., 2013), suggesting that nesprin-

3/plectin may also help link the nuclear envelope to the MT cytoskeleton independently of 

microtubule motors.  Additionally, nesprin-3α binds the CH-domains of the neuronal and 

muscular isoforms of BPAG1 (bullous pemphigoid antigen 1) and well as MCAF 

(microtubule-actin crosslinking factor), which harbor microtubule-binding domains, again 

suggesting possible links between nesprin-3 and microtubules (Ketema and Sonnenberg, 

2011).   
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KASH proteins have also been shown to connect the nucleus to the MTOC.  As 

discussed in section IV, the C. elegans KASH protein Zyg-12 mediates attachment of the 

centrosome to the nucleus, a strategy that involves dynein and dynein-independent activities 

of Zyg-12 (Malone et al., 2003).  Additionally, in S. pombe, the KASH proteins Kms1 and 2 in 

complex with the SUN protein Sad1 creates a physical connection between spindle pole 

bodies and centromeric chromatin (King et al., 2008; Miki et al., 2004).  

 The importance of the LINC complexes in nuclear positioning and nuclear function 

are highlighted by a growing number of human diseases caused by mutations in the proteins 

that make up these complexes.  For instance, mutations in nesprin-1 have been found in 

patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) (Zhang et al., 

2007a), dilated cardiomyopathy (Puckelwartz et al., 2010), autosomal recessive cerebellar 

ataxia (Gros-Louis et al., 2007), autism (Yu et al., 2013), and autosomal recessive 

arthrogryposis (arthrogryposis multiplex congenita) (Attali et al., 2009).  Mutations in nesprin-

2 have been linked to Emery-Dreifuss muscular dystrophy (Zhang et al., 2007a).  

Furthermore, mutations in both nesprin-1 and nesprin-2 have been identified in patients with 

a number of types of cancer, including breast, lung, head and neck, pancreatic, ovarian, and 

colorectal, although it is still unclear what role nesprins are playing in these diseases 

(Cartwright and Karakesisoglou, 2014).  Mutations resulting in truncated nesprin-4 proteins, 

which do not localize properly to the nuclear envelope, cause progressive high-frequency 

hearing loss (Horn et al., 2013).  Finally, while mutations in SUN1 and SUN2 have not yet 

been identified as the cause of any human diseases, recent findings suggest that 

heterozygous mutations in SUN1 may enhance the disease phenotype of muscular 

dystrophy patients also bearing mutations in emerin or the lamina associated protein 

LAP2alpha (Li et al., 2014). 
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Additional Nucleus-Cytoskeleton Connections 

 While SUN-KASH complexes are the major bridges connecting the nucleus and the 

cytoskeleton, there is also evidence that the nuclear pore complex (NPC) proteins can 

mediate interactions as well.  For example, dynein/dynactin and kinesin-1 bind the motor 

adaptor protein Bicaudal2 (BICD2) (Grigoriev et al., 2007; Hoogenraad et al., 2001), which in 

turn interacts with the nuclear pore complex protein RanBP2 (also known as NUP358) 

(Splinter et al., 2010).  RanBP2 is a large protein that forms extended fibers at the 

cytoplasmic side of the NPC and acts as a docking factor in nucleocytoplasmic transport 

(Walde et al., 2012).  The association between BICD2 and RanBP2 occurs during the G2 

phase of the cell cycle, recruiting dynein motors to the nucleus to pull the centrosome and 

the nucleus together, with antagonistic action by recruited kinesin-1 motors.  These 

complexes serve to prevent centrosome detachment from the nucleus during entry into 

mitosis (Splinter et al., 2010).  The NPC protein Nup133 is also necessary for efficient 

anchoring of dynein/dynactin to the nuclear envelope in prophase, through a complex 

involving CENP-F and NudE/NudEL (Bolhy et al., 2011).  This interaction is distinct from the 

RanBP2-BICD2 pathway and inhibition of either pathway leads to defects in centrosome-

nucleus association.  Indeed, evidence suggests these two pathways act sequentially to 

recruit dynein/dynactin in G2 to the NPC during the dynein-dependent apical migration of 

nuclei toward the apically located centrosome during interkinetic nuclear migration in radial 

glial progenitor cells in the vertebrate neocortex.  Inhibition of the BICD2 pathway arrests 

nuclei early in migration whereas inhibition of the Nup133 pathway acts later in apical 

migration, however, in either case, nuclei are arrested in a premitotic state, suggesting 

migration is necessary for mitotic entry (Hu et al., 2013).    
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VI.  Nuclear Positioning in Skeletal Muscle Cells 

	
  

Overview 

Perhaps one of the most remarkable examples of nuclear positioning in vertebrates 

occurs in skeletal muscle fibers.  Muscle fibers are multinucleated cells formed by fusion of 

post-mitotic mononucleated myocytes (Capers, 1960; Cooper and Konigsberg, 1961; Lash et 

al., 1957; Stockdale and Holtzer, 1961).  During embryogenesis, mononucleated myoblasts 

undergo rounds of proliferation to produce daughter myocytes that fuse to initially form 

multinucleated myotubes (Engel and Franzini-Armstrong, 1994), which in humans, begins  

around 10-13 weeks of gestation depending on the specific muscle being formed (Romero et 

al., 2013).  As the myotube matures into an adult muscle fiber, the centrally-located nuclei 

move to the periphery of the cell and become anchored under the muscle cell plasma 

membrane, or sarcolemma.  By the 20th week of development, the muscle nuclei have 

elongated and are evenly distributed along the length of each fiber and by ~24-26 weeks of 

human gestation, most fibers have peripheral nuclei (Engel and Franzini-Armstrong, 1994; 

Romero et al., 2013).  Additionally, a subset of ~3-8 nuclei are found under the post-synaptic 

membrane at the neuromuscular junction (Kelly and Zacks, 1969; Nakai, 1969).  These 

nuclei are not only larger and rounder than extrasynaptic nuclei, but they are also 

transcriptionally specialized for maintenance of the synapse (Brosamle and Kuffler, 1996; 

Cardasis, 1979; Jevsek et al., 2006; Merlie and Sanes, 1985; Sanes et al., 1991; Sanes and 

Lichtman, 1999). 

During myogenesis in vertebrates, fusions of myoblasts with myoblasts or myoblasts 

with myotubes occurs asynchronously and it is unpredictable as to where along the length of 

a myotube a myoblast will fuse (Harris et al., 1989).  The fusion process is most easily 

visualized in movies of myocytes in culture, where mononucleated cells can be seen to 

migrate, align end-to-end, and subsequently fuse.  Myotubes in culture tend to elongate 
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through end-on fusion with myocytes or through fusion to other myotubes (Capers, 1960; 

Fear, 1977).  Despite observations of cell fusion during myogenesis as early as the 1950’s, 

the mechanistic details are still under active investigation (Abmayr and Pavlath, 2012).  

However, fusion creates myotubes that can contain hundreds of centrally localized nuclei.  

As the myotube matures into a muscle fiber, it grows in size from a mean diameter of ~7µm 

to 17-23 µm at birth in humans and the nuclei move to the periphery of the cell where they lie 

adjacent to the sarcolemma (Romero et al., 2013)(Figure 1.6).   

 

 

Figure 1.6.  Nuclear position during the stages of muscle cell development. 

Mononucleated myoblasts fuse to form myotubes.  The nuclei in these immature cells are 

mobile.  As the myotubes mature into myofibers, the nuclei move to the periphery of the cell 

where they are anchored beneath the sarcolemma.  Nuclei are regularly spaced along the 

myotube length to maximize internuclear distance.  A noticeable exception is the cluster of  

3-8 nuclei located under the neuromuscular junction.    

 

A thorough analysis of nuclear position in the mature myofiber through microinjection 

of labeled DNA indicates that the distribution of nuclei is optimized to achieve the greatest 

average distance between nuclei.  This finding was irrespective of fiber size or fiber type.  

This distribution resembles computer simulations based on algorithms in which the nuclei 

repel one another during positioning, and this optimized distribution has been hypothesized 
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to minimize transport distances between nuclei (Bruusgaard et al., 2003).  In support of this 

hypothesis are data showing that while cytoplasmic and sarcolemmal proteins can spread 

widely throughout a myotube, Golgi proteins and contractile proteins do not range far from 

their nucleus of origin, suggesting that mRNA does not diffuse throughout the muscle fiber.  

These findings have led to the idea that muscle fibers are composed of a mosaic of domains 

that are largely controlled by the activity of one myonucleus (Hall and Ralston, 1989; Pavlath 

et al., 1989; Ralston and Hall, 1989). 

While the peripheral nuclei in a mature, healthy fiber do not display appreciable 

mobility (Bruusgaard et al., 2003), following damage to the muscle fiber, nuclei can be once 

again found in center of the fiber (Lash et al., 1957; Rich and Lichtman, 1989; Schmalbruch, 

1976).  These centrally located nuclei are thus considered to be a marker of muscle repair.  

As such, elevated numbers of central nuclei in muscle biopsies are a hallmark of muscle 

disorders including Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, and 

the centronuclear myopathies, and it is believed that this is a consequence of the continual 

myofiber repair associated with these disorders (Dubowitz and Sewry, 2007).  During 

regeneration, activated satellite cells fuse with the damaged fiber and the newly incorporated 

nucleus moves to the center of the cell (Yin et al., 2013).  It is unclear whether the central 

position of this nucleus is simply a consequence of the repair process, or whether it serves 

an essential role in the regeneration process.  However, under normal conditions, the 

myonuclei are returned to the periphery of the fiber (Lash et al., 1957; Li et al., 2011; Rich 

and Lichtman, 1989; Schmalbruch, 1976; Terada et al., 2009), such that regenerated 

muscles in a healthy individual are morphologically and functionally indistinguishable from 

undamaged muscles (Yin et al., 2013).      

Together, these observations strongly suggest that nuclear positioning in skeletal 

muscle cells is an active and regulated process during both the development and 

regeneration of the muscle fiber.  This is further supported by findings that mutations in 
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proteins important in nuclear positioning are being found in patients with muscle disorders 

(Mejat et al., 2009; Mejat and Misteli, 2010; Zhang et al., 2007a). 

 

Early Observations of Myonuclear Movement 

Indeed, early observations of myogenesis of chick muscle cells in culture suggested 

that nuclei in myotubes are highly mobile.  Upon fusion, the nucleus from a mononucleated 

cell was reported to “rapidly incorporate into the host sarcoplasm and subsequently move 

about among the other nuclei” (Capers, 1960).  Nuclei were described to display “rotation, 

rocking and linear excursion through the cytoplasm producing transitory associations of 

nuclei in various configurations” (Cooper and Konigsberg, 1961).  Interestingly, nuclear 

rotation often occurred in more than one plane, in either the clockwise or counterclockwise 

direction and changes in the direction of rotation were observed (Capers, 1960).  Nuclei 

often showed dramatic deformation as they rotated, changing shape from circular to oval to 

dumbbell-like and sometimes this deformation resulted in the production of folds in their 

membranes.  Importantly, time-lapse phase-contrast imaging of nuclear deformation, 

especially the formation and resolution of nuclear folds, provided strong support against the 

model of amitotic nuclear division that had been proposed as a mechanism for muscle 

multinucleation (Capers, 1960; Cooper and Konigsberg, 1961; Weed, 1936). 

Though this work was clearly important for advancing our understanding of muscle 

development, these intriguing observations of nuclear translocation and rotation did not 

receive further attention until 1987 when Englander and Rubin investigated the movement of 

nuclei in myotubes in relation to the formation of acetylcholine receptor (AChR) clusters on 

the sarcolemma (Englander and Rubin, 1987).  Working both with chick and rat myotubes, 

these authors reported that ~85% of nuclei moved at a rate of least 3-4µm per hour, with an 

average rate of 13.5 µm/hour.  They also noted nuclear rotation and that nuclei were able to 

move around or pass other nuclei.  However, when myotubes were treated with extract from 
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Torpedo electric organ to cause clustering of AChRs, they noted that nuclei within one 

nuclear diameter (~8µm) of a cluster were essentially immobile.  They observed nuclei stop 

under AChR clusters and upon cluster dispersal, once immobile nuclei resumed migration.  

Importantly, these authors were the first to determine that nuclear translocation and rotation 

were dependent on the microtubule cytoskeleton, as treatment with the microtubule-

depolymerizing drug colchicine stopped nuclear movement.  In contrast, blocking actin 

polymerization with cytochalasin D did not alter nuclear translocation or rotation (Englander 

and Rubin, 1987).        

  

The microtubule cytoskeleton in muscle  

During myogenesis, the microtubule cytoskeleton is reorganized from the radial, 

centrosomal array found in mononucleated myoblasts to a parallel linear array oriented along 

the long axis of myotubes (Tassin et al., 1985a; Warren, 1974)(Figure 1.7).  This 

reorganization of microtubules is believed to underlie the changes in cell elongation 

associated with myogenesis as well as to allow for the proper organization of the developing 

myofibril cytoskeleton (Bischoff and Holtzer, 1968; Croop and Holtzer, 1975; Holtzer et al., 

1985; Pizon et al., 2005; Saitoh et al., 1988; Warren, 1968).  Work by Tassin et al. (1985) in 

human muscle cultures was the first to show redistribution of centrosomal material to the 

nuclear envelope shortly after myoblast fusion.  Additionally, through treatment of the 

myotubes with nocodazole followed by wash-out, the authors clearly show re-growth of 

microtubules from the nuclear periphery (Tassin et al., 1985).  Although their work pre-dated 

identification of the individual centrosomal proteins, subsequent studies have localized 

pericentrin, pericentriolar material protein 1 (PCM-1), γ-tubulin, and ninein to the nuclear 

envelope as well as to cytoplasmic foci in myotubes (Bugnard et al., 2005; Musa et al., 2003; 

Ralston et al., 2001; Srsen et al., 2009).  Contrary to early reports, recent work indicates that 

redistribution of centrosomal proteins is gradual and begins prior to cell fusion in 
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differentiated myoblasts (Srsen et al., 2009; Zaal et al., 2011).  Localization of centrosomal 

components to the nuclear periphery has also been described in mature cardiac myocytes 

(Kronebusch and Singer, 1987) as well as in isolated mouse skeletal muscle fibers (Ralston 

et al., 2001).  More recent work suggests that microtubule nucleation from the myotube 

nucleus occurs ~5 times/100 sec on average, and while Golgi complex elements on the 

nuclear envelope are occasional sources of nucleation, most comets are nucleated from 

nuclear areas devoid of Golgi markers (Zaal et al., 2011).    

 

 

Figure 1.7.  Microtubule re-organization during muscle cell development. 

Microtubules form a radial in proliferating myoblasts.  In differentiating myoblasts, 

centrosomal proteins redistribute to the nuclear envelope and microtubules re-organize to 

form an elongated array.  In myotubes, microtubules are nucleated from the nuclear surface 

and form a bidirectional parallel array, with plus-ends prominent at myotube poles.  

Microtubules surround nuclei in mature fibers, including a dense meshwork around the 

subsynaptic nuclei.  Microtubules are also form intricate lattice under the sarcolemma and 

between myofibrils.  Dynamic microtubules are observed at all stages of differentiation.   

 

The expression of fluorescently-tagged microtubule plus-end binding proteins has 

enhanced our understanding of microtubule organization and dynamics in myotubes.  

Observation of GFP-EB1 comets with confocal microscopy in mouse C57 myotubes revealed 
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that microtubule growth trajectories are mostly anti-parallel and aligned with the major axis of 

the cell (Pizon et al., 2005).  Rates of microtubule growth were fairly homogenous within a 

given cell, but varied between myotubes (average speed = 21 ± 6.7 µm/min, range 14 – 29 

µm/min).  Additionally, the pole-to-pole direction of comets was not always equal, but could 

vary according to focal position within a myotube (Pizon et al., 2005).  In stark contrast to 

bidirectional microtubule dynamics in the middle of the cell, the microtubules are uniformly 

polarized out toward the cell cortex at the ends of the myotube (Zhang et al., 2009a).  My 

own work with GFP-EB3 in C2C12 myotubes reveals this same pattern of microtubule 

dynamics, however, we also note dynamic microtubules polymerizing between adjacent 

nuclei as well as within invaginations in the nuclear surface (Wilson and Holzbaur, 

2012)(Also see Chapter 2).   

The re-organization of the microtubule cytoskeleton during fusion and differentiation 

of myotubes is also accompanied by post-translational modifications of the microtubules 

(Gundersen et al., 1989).  While microtubules in proliferating myoblasts are mainly 

tyrosinated, as the cells differentiate and elongate prior to fusion, there is an increase in the 

levels of detyrosinated tubulin, concomitant with an increase in microtubule stability.  

Microtubules in multinucleated myotubes retain high levels of Glu tubulin and at later stages 

of myogenesis, increases in the levels of acetylated tubulin are also noted (Gundersen et al., 

1989).  Interestingly, loss of EB1 from myoblasts prevents the normal increase in Glu-tubulin 

levels (Zhang et al., 2009a), and when induced to differentiate, myoblasts lacking EB1 or 

EB3 are unable to elongate or fuse to form myotubes (Straube and Merdes, 2007; Zhang et 

al., 2009a).  Furthermore, work in cultured muscle cells and mouse embryonic tissue has 

also shown that levels of muscle-specific variants of the microtubule associated protein, 

MAP4 (mMAP4), are also upregulated early during myogenesis (Mangan and Olmsted, 

1996).  Loss of mMAP4 does not affect myoblast fusion, but does significantly compromise 

myotube formation and differentiation, causing short myotubes with disorganized 
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microtubules and myofibrils (Mangan and Olmsted, 1996).  However, over-expression of 

mMAP4 is not sufficient to induce the reordering of the microtubule array that occurs during 

myogenesis (Casey et al., 2003).  While these studies indicate that microtubule stabilization 

is essential for myogenesis, additional work is needed to further clarify how microtubule 

modifications and MAPs influence microtubule stabilization and reorganization in myotube 

formation.        

Adult muscle fibers have a more intricate microtubule lattice that is subsarcolemmal, 

perinuclear and found within the intermyofibrillar spaces (Boudriau et al., 1993; Ralston et 

al., 1999).  The intermyofibrillar microtubules are mostly longitudinal but some oblique and 

transverse staining can also be observed (Boudriau et al., 1993).  Microtubules are more 

abundant under the sarcolemma, and patterns of microtubules vary more clearly between 

fiber types.  In soleus muscles (primarily type I fibers), microtubules form dense interlacing 

bundles around the nuclei and in long longitudinal lines between nuclei, whereas in the fast 

type IIB fibers of the tensor fascia latae (TFL) and extensor digitorum longus (EDL), the 

microtubules appear more organized.  These microtubules form a more orthogonal pattern, 

individual microtubules are more easily noted and microtubule asters, suggesting sites of 

nucleation, are more obvious (Ralston et al., 1999; Ralston et al., 2001).  In all fiber types 

microtubules are found in close association with nuclei, this is especially evident for the 

cluster of nuclei at the post-synaptic membrane.  Additionally, prominent asters of 

microtubules are often evident at the poles of TFL and EDL fibers, consistent with higher 

pericentrin content at the nuclear poles (Bruusgaard et al., 2006; Ralston et al., 1999; 

Ralston et al., 2001).  Changes in fiber activity can modulate the content and organization of 

microtubules, such that denervation of muscle fibers decreases the density of microtubule 

staining throughout the fibers, and stimulating fast twitch EDL fibers for 2 weeks with a 20Hz 

slow-twitch protocol increases the density and disorganization of subsarcolemmal 

microtubules (Ralston et al., 1999; Ralston et al., 2001).  



51	
  
	
  

Although most of our understanding of microtubule structure in adult muscle fibers is 

based on static immunofluorescent images from isolated fibers, very recent in vivo imaging 

of flexor digitorum brevis muscle fibers provides insight into the microtubule dynamics that 

support this network (Oddoux et al., 2013).  Live imaging of EB3-GFP and mCherry-tubulin 

imaging reveals constant nucleation and growth on top of a durable microtubule frame, and 

superresolution microscopy suggests most tracks contain 2-4 microtubules.  The authors 

suggest that what appears to be a static network may actually be entirely composed of 

dynamic microtubules, which may be better suited to managing the compressive forces 

associated with contraction.  Additionally, they show that microtubules are nucleated at both 

nuclear sites as well as discrete, immobile Golgi elements that appear to be positioned along 

z-lines (Oddoux et al., 2013).  While new microtubules grow along existing bundles, it is still 

unclear how these bundles obtain their orthogonal organization.  However, it has been 

shown that microtubules interact directly with dystrophin (Prins et al., 2009) and that muscle 

fibers from the dystrophin-deficient mdx mouse exhibit microtubule disorganization (Percival 

et al., 2007).  Similarly, the membrane adaptor protein ankyrin B has also been shown to 

bind microtubules (Bennett and Davis, 1981; Davis and Bennett, 1984) and loss of ankyrin B 

from muscle cells results in disruption of the subsarcolemmal microtubule organization 

(Ayalon et al., 2008), suggesting that dynamic microtubules may use dystrophin and ankyrin 

on the sarcolemma as a guide for microtubule organization. 

 

Myonuclear positioning in Mature Muscle Fibers 

Unlike nuclei in developing myotubes, nuclei in mature muscle fibers are immobile 

over the course of several days of observation suggesting they become anchored at the 

sarcolemma (Bruusgaard et al., 2003).  However, changes in activity or age of the fibers can 

alter myonuclear distribution and shape (Bruusgaard et al., 2006; Ralston et al., 2006; 

Ralston et al., 1999).  Denervation increases the proportion of clustered nuclei ~4-fold 
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(Ralston et al., 1999), and denervation combined with a chronic stimulation protocol results 

in marked association of EDL nuclei with newly generated blood vessels (Ralston et al., 

2006).  These chronic protocols also result in significant remodeling of the fibers and the 

muscle as a whole, suggesting that changes in nuclear positioning may be secondary to 

cytoskeletal changes that occur over the course of days and weeks.  While these protocols 

alter microtubule organization as described above, they also alter organization of the desmin 

intermediate filament network.  In denervated rat muscles, desmin redistributes from a 

mostly transverse staining pattern to a longitudinal and disorganized pattern with aggregation 

of unpolymerized desmin around nuclei (Ralston et al., 2006).  Additionally, desmin-null 

muscle fibers have aberrant nuclear positioning, with large aggregates of nuclei interspersed 

with areas of very few or no nuclei.  However, these nuclei are still found at the periphery of 

the fiber (Ralston et al., 2006).  These data suggest that both microtubules and desmin are 

necessary for proper distribution and anchoring of nuclei in mature muscle fibers. 

Additionally, it has been suggested that the subsarcolemmal actin network associated with 

AChR clusters immobilizes nuclei at the developing postsynaptic membrane (Englander and 

Rubin, 1987).  

 Anchoring of the nuclei by the cytoskeleton in mature fibers implies that there must 

be coupling between the nuclear envelope and the cytoskeletal elements.  Indeed there is 

substantial evidence that the LINC complex proteins are mediating this interaction in muscle, 

as they do in other cell types.  In fact the first mammalian nesprin proteins were identified in 

a yeast two-hybrid screen for proteins that interact with the muscle-specific tyrosine kinase 

(MuSK), an essential component of the postsynaptic membrane (Apel et al., 2000).  

Immunostaining for nesprin-1 (Syne-1) was present on all adult mouse muscle nuclei, but 

synaptic nuclei were noticeably brighter.  The authors noted that enrichment occurred 

gradually over the course of the first postnatal month, suggesting that nesprin-1 was not 

required for aggregation of nuclei at the synapse or transcriptional specialization of nuclei, 
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but for maintenance of these characteristics.  Searching sequence databases, the authors 

also identified nesprin-2 (Syne-2) based on similarity to nesprin-1 and show by RT-PCR that 

nesprin-2 is also expressed in skeletal and cardiac muscle (Apel et al., 2000). 

  Subsequent work has confirmed the localization of various isoforms of both nesprin-

1 and nesprin-2 to the nuclear envelope in skeletal muscle cells, including both the Giant 

isoforms and the short isoforms that interact with lamin A/C and emerin (Mislow et al., 2002b; 

Zhang et al., 2005; Zhang et al., 2001).  Evidence also suggests that isoforms of nesprin-2 

are abundant in the cytoplasm and associate with the sarcomere of the adult muscle fiber, 

though the significance of this localization is still unclear (Zhang et al., 2005).  The SUN 

domain containing SUN1 and SUN2 proteins are also found on the nuclear envelope in 

mammalian skeletal muscle (Crisp et al., 2006; Ding et al., 2007; Lei et al., 2009).  While 

SUN1 and SUN2 are unchanged in expression or localization throughout muscle 

development, evidence from human muscle culture and muscle biopsies suggest nesprins 

switch isoforms as they mature.  Nesprin-1 predominates in myoblasts, myotubes and 

regenerating immature fibers, while nesprin-2 is more abundant in mature fibers except on 

synaptic nuclei (Apel et al., 2000; Randles et al., 2010).  Additionally, there appears to be a 

switch toward higher expression of the smaller nesprin-1 and nesprin-2 isoforms in mature 

fibers compared to the giant isoforms (Randles et al., 2010; Zhang et al., 2005).  Nesprin-3 is 

also expressed in skeletal muscle cells (Wilhelmsen et al., 2005), though its localization and 

expression pattern during development in mammalian muscle has not yet been examined.      

 The necessity of the LINC complex in nuclear positioning in adult skeletal muscle has 

been demonstrated with a number of transgenic mouse lines.  In an initial study, muscle-

specific over-expression of the KASH domain of nesprin-1, which partially displaced 

endogenous nesprin-1 (and likely nesprin-2) from the envelope, led to an ~60% decrease in 

numbers of synaptic nuclei.  No changes were observed in the location, size, or shape of 

extrasynaptic nuclei, despite the presence of the dominant negative KASH domain (Grady et 
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al., 2005).  These findings were recapitulated using a nesprin-2 KASH dominant negative 

construct (Zhang et al., 2007b).  Furthermore, deletion of the nesprin-1 KASH domain, which 

effectively removed all isoforms of nesprin-1 from the nuclear envelope, resulted in complete 

loss of synaptic nuclei as well as abnormal clustering of non-synaptic nuclei, suggesting that 

nesprin-1 is essential for proper nuclear spacing and anchoring in muscle.  Conversely, 

deletion of nesprin-2 KASH, did not alter the positioning of either synaptic or non-synaptic 

nuclei.  However, nesprin-1 and nesprin-2 KASH double knock-out mice were unable to 

breathe and died shortly after birth, likely due to defects in the central nervous system 

(Zhang et al., 2007b).  Together these data suggest that nesprin-1 and -2 both play roles in 

myonuclear anchorage, but that nesprin-1 plays a more prominent or specialized role.   

 Additional studies examining the loss of nesprin-1 from the nuclear envelope report 

significant increases in the numbers of centrally-located nuclei, failure of nuclei to remain 

attached to the myofibers following glycerol-mediated removal of the sarcolemma and 

decreased strain transmission during controlled fiber stretching.  These alterations in nuclear 

positioning and mechanics are associated with increased perinatal lethality, small size, loss 

of coordination, kyphoscoliosis, and reduced exercise capacity (Puckelwartz et al., 2009; 

Zhang et al., 2010).   

 Loss of SUN1 and SUN2 from the nuclear envelope in myofibers also results in 

altered nuclear positioning.  SUN1-/- mice only exhibit a modest decrease in synaptic nuclei, 

consistent with the continued presence of nesprin-1 on the nuclear envelope, however, 

SUN1/2 double-knockout mice do not survive, and show obvious loss of synaptic nuclei as 

well as aggregation of non-synaptic nuclei (Lei et al., 2009).  Nesprin-1 was absent from the 

nuclear envelope in these mice, again indicating the importance of the nesprins in 

myonuclear positioning.   

While the specific identity of the nesprin splice isoforms involved in anchoring nuclei 

have not yet been established, no defects were reported in skeletal muscle in mice lacking 
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the c-terminal calponin-homology domain of nesprin-2 giant (Luke et al., 2008).  This 

suggests that actin-binding by nesprin-2 giant may not be necessary for anchoring nuclei in 

muscle fibers, consistent with decreased expression of the giant isoform in mature fibers 

(Randles et al., 2010).  However, more analysis of the myonuclei in these mice as well as 

transgenic mice lacking the nesprin-1 actin-binding domain is necessary before ruling out a 

role for the calponin-homology domains in myonuclear anchoring.  Finally, zebrafish lacking 

nesprin-3 do not have altered myonuclear positioning in 3-day old embryos, nor do the fish 

display motility defects as embryos or adults, suggesting that nesprin-3 is dispensable for 

nuclear positioning in fish muscle fibers (Postel et al., 2011).  However, it is still unclear 

whether nesprin-3 plays a role in nuclear positioning in mammalian muscle cells.  

As introduced in Section V, recent genetic analyses have identified mutations in 

nesprin-1 and -2 in patients with Emery-Dreifuss muscular dystrophy (Zhang et al., 2007a).  

These mutations map to cytoplasmic regions in the C-terminal portion of the giant isoforms; 

these regions are also found in almost all of the shorter KASH-containing isoforms.  

Immunohistochemistry in patient muscle tissue, indicates that localization of mutant nesprins 

to the nuclear envelope is reduced, as is staining for emerin (Zhang et al., 2007a).  This is 

consistent with data indicating that emerin mutations (which cause x-linked EDMD) disrupt 

binding of emerin to nesprin-1 and nesprin-2 and are associated with loss of nesprin-1 and -2 

from the nuclear envelope (Wheeler et al., 2007; Zhang et al., 2007a).  While it has not been 

examined whether the muscle fibers from patients with nesprin or emerin mutations show 

impaired nuclear positioning, EDMD2 patients with mutations that impair lamin processing 

and localization, have reduced levels of SUN1 on the nuclear envelope, and show obvious 

clustering of myonuclei in muscle fibers (Mattioli et al., 2011).  

These mouse and human studies clearly reveal the necessity of the LINC complex 

for proper nuclear positioning in muscle, however, the defects in positioning are described 

almost exclusively as defects in nuclear anchoring, without much acknowledgement that 
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mispositioning of nuclei may also be due to defects in nuclear movement during myogenesis.  

With this acknowledgment comes the realization that there are large gaps in our 

understanding of nuclear movement and anchoring in developing and adult muscle cells.  

For example, by what mechanism do the microtubules support nuclear translocation and 

rotation in developing cells – are microtubule motors involved?  Are nesprins involved?  How 

do nuclei move from the center of the myotube to the periphery of the cell and how do they 

stop moving?  What cytoskeletal elements and which nesprin isoforms are interacting in 

mature cells to anchor nuclei?  What is special about these connections at the post-synaptic 

membrane that makes them more susceptible to nuclear mispositioning?  Why do nesprins 

switch isoforms as muscle cells mature?  Are some isoforms responsible for nuclear 

movement while others anchor nuclei?  

 

Emerging roles for microtubule motors in myonuclear movement 

In the last few years, significant first steps have been made toward answering these 

questions.  In particular, the question of how microtubules control nuclear movement has 

received a good deal of attention, and from work both in cultured muscle cells and in vivo, it 

is now apparent that the microtubule motor proteins, cytoplasmic dynein and kinesin-1, play 

essential roles in myonuclear movement.  Moreover, growing evidence also suggests that 

nesprins also play an important role in motor-dependent nuclear movements.   

In work by Metzger et al. (2012), a mutagenesis screen revealed a myonuclear 

positioning mutant in the Drosophila embryo.  The nuclei in these mutant flies failed to 

migrate normally through the developing muscle cells, resulting in a centralized cluster of 

nuclei.  These flies were found to carry a nonsense mutation in the gene encoding the 

microtubule associated protein, ensconsin (also known as MAP7 or E-MAP-115 in 

vertebrates).  Depletion of MAP7 in cultured C2C12 and primary mouse myotubes 

phenocopied the fly and resulted in significant nuclear aggregation.  When no obvious 
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alteration in the microtubule network was observed, a yeast two-hybrid screen was 

conducted to look for proteins that interact with MAP7, which identified kinesin heavy chain.  

Flies with a kinesin-null mutation, or a motor-dead mutation, as well as mouse myotubes 

depleted of Kif5B, all showed significant nuclear aggregation defects.  Moreover, the authors 

saw no positioning defect when the dominant negative KASH domain of nesprin-2 was 

expressed in C2C12 myotubes, but did note rescue of nuclear alignment with expression of a 

Kif5B-MAP7 chimera protein, leading them to propose a model in which Kif5B interacts with 

MAP7 to cross-link and slide anti-parallel microtubules.  In their model, the microtubule 

minus-ends are still attached to the nuclear envelope, such that microtubule sliding would 

push nuclei apart (Metzger et al., 2012), similar to how the Eg5 kinesin motor facilitates 

spindle elongation during mitosis (Ferenz et al., 2010).  However this proposed mechanism 

does not account for the nuclear rotation and deformation previously observed in cultured 

myotubes (Capers, 1960; Englander and Rubin, 1987).   

My own work in C2C12 myotubes also identifies an essential role for Kif5B in 

myonuclear movement and positioning.  As is discussed in Chapter 2 of this thesis, in cells 

depleted of Kif5B, rates of nuclear translocation were reduced, nuclear rotation was 

essentially abolished, and nuclei aggregated dramatically at the myotube center (Wilson and 

Holzbaur, 2012).  Immunocytochemistry indicates localization of both kinesin light chain and 

kinesin heavy chain on the nuclear envelope and contrary to Metzger et al., we noted a 

tendency for the nuclei to aggregate when decorated with the dominant negative EGFP-

nesprin-2-KASH construct.  Additionally, in binding assays, nesprin-2 pulled down both KLC 

and Kif5B from myotube lysates, suggesting that nesprins localize Kif5B to the nuclear 

envelope where the motors act to drive nuclear translocation and rotation along the 

microtubule network.  Importantly, this model does permit for the observed nuclear rotation 

and deformation that occurs during nuclear movement (Wilson and Holzbaur, 2012)(Also see 

Chapter 2). 
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 The role of Kif5B in myonuclear positioning was even further substantiated by a 

conditional knock-out of Kif5B from skeletal muscle in the mouse (Wang et al., 2013a).  

These mutant mice survive only one postnatal day at most because they have difficulty 

breathing and are unable to eat.  They have severe limb muscle dystrophy and display no 

limb movement.  Myofibers are abnormally short in the Kif5B-deficient muscles, and central 

aggregation of nuclei and mitochondria is prominent.  Additionally, the muscles have 

disorganized myofibril and intermediate filament assembly and localization.  Although these 

fiber defects may be secondary to nuclear aggregation, Kif5B was found to interact directly 

with desmin and transport it to the myotube ends, as well as transport nestin, α-sarcomeric 

actin, and non-muscle myosin IIB through indirect means, suggesting that Kif5B plays 

essential roles in many aspects of muscle cell development (Wang et al., 2013a).  Notably, in 

myotube cultures from these mice and their wild-type littermates, these authors confirm that 

Kif5B localizes to the nuclear envelope and show evidence that both the light chain binding 

domain and the autoinhibitory IAK motif are indispensible for this localization (Wang et al., 

2013b).  These data further support a model in which kinesin-1 motors drive nuclear 

dynamics from the nuclear surface, similar to movement of nuclei in C. elegans hypodermal 

precursor cells (Meyerzon et al., 2009).   

There is growing evidence to suggest that dynein also plays an important role in 

myonuclear movements in developing muscle cells.  Immunostaining for components of the 

dynein/dynactin complex localizes the motor to the nuclear envelope in C2C12 myotubes 

(Cadot et al., 2012; Wilson and Holzbaur, 2012).  Consistent with this finding, we find that 

depletion of DHC with siRNA in cultured myotubes reduces nuclear translocation and 

rotation, and results in localized nuclear aggregation, although this effect was not as 

pronounced as in Kif5B-deficient myotubes (Wilson and Holzbaur, 2012)(Also see Chapter 

2).  Observations of end-on myoblast to myotube fusion, also revealed that depletion of 

DHC, DIC or p150Glued reduced the rate at which a new nucleus moved into the center of a 
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myotube (Cadot et al., 2012).  These latter observations, combined with the localization of 

components of the dynactin complex on the nuclear envelope, led to a proposed model in 

which nuclear-based dynein motors pull on microtubules emanating from an adjacent 

nucleus, thereby pulling the nuclei toward one another (Cadot et al., 2012).  While this model 

does not account for nuclear rotation and does not explain why loss of dynein from the 

myotube results in aggregation of nuclei, these observations may be more readily explained 

if the microtubules that dynein is pulling on are not necessarily still attached to the nuclei.  In 

our proposed model, nuclear-based dynein would serve to assist nuclear-based kinesin 

motors to maneuver the nuclei along the bipolar microtubule network, providing more 

flexibility in navigating around cellular obstacles (Wilson and Holzbaur, 2012). 

Further work in Drosophila embryo muscles suggests that both dynein and kinesin-1 

localize to the nuclear envelope, however, there is spatial segregation of motors such that 

Kif5B is located on the side closest to the myotube end (leading edge), whereas dynein is on 

the opposite surface (lagging edge) (Folker et al., 2014).  Furthermore, these authors find 

prominent localization of dynein at the cell cortex at the muscle poles (Folker et al., 2012; 

Folker et al., 2014).  They propose a model in which cortical dynein pulls on microtubules 

emanating from the nuclear surface to pull nuclei toward muscle poles.  Simultaneously, 

nuclear-based kinesin motors “stretch” the leading edge of the nucleus toward the pole and 

release of dynein from microtubules at the rear of the nucleus relieves this tension as the 

nucleus is pulled to the muscle pole.  Although they do note rare rotations of nuclei, or 

changes in direction, they argue that the nucleus always reorients such that the leading edge 

is maintained.  The nuclei in kinesin and dynein mutant embryos changed direction more 

frequently and have trouble maintaining a leading edge (Folker et al., 2014).  It is unclear 

how the motors are associating with the nucleus in the muscle cells of the fly embryo. 

In summary, the available data provide substantial evidence that kinesin-1 and 

cytoplasmic dynein are necessary for microtubule-dependent nuclear movement and 
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positioning in developing muscle cells.  However, the mechanisms by which each motor 

exerts its role is less clear.  More work is necessary to directly test the models proposed in 

these recent studies.  To this end, the experiments presented in Chapter 3 of this 

dissertation are aimed at testing the hypothesis that kinesin-1 is necessary on the nuclear 

envelope for proper nuclear distribution in developing myotubes.     
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CHAPTER 2:  Opposing Microtubule Motors Drive Robust Nuclear Dynamics in 

Developing Muscle Cells 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is adapted from:    

Wilson, M.H., and Holzbaur, E.L. (2012). Opposing microtubule motors drive robust nuclear 

dynamics in developing muscle cells. Journal of Cell Science 125, 4158-4169.  
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I.  Summary 

 
Dynamic interactions with the cytoskeleton drive the movement and positioning of 

nuclei in many cell types.  During muscle cell development, myoblasts fuse to form syncytial 

myofibers with nuclei positioned regularly along the length of the cell.  Nuclear translocation 

in developing myotubes requires microtubules, but the mechanisms involved have not been 

elucidated.  We find that as nuclei actively translocate through the cell, they rotate in three-

dimensions.  The nuclear envelope, nucleoli, and chromocenters within the nucleus rotate 

together as a unit.  Both translocation and rotation require an intact microtubule cytoskeleton, 

which forms a dynamic bipolar network around nuclei.  The plus- and minus-end directed 

microtubule motor proteins, kinesin-1 and dynein, localize to the nuclear envelope in 

myotubes.  Kinesin-1 localization is mediated at least in part by interaction with 

klarsicht/ANC-1/Syne homology (KASH) proteins.  Depletion of kinesin-1 abolishes nuclear 

rotation and significantly inhibits nuclear translocation, resulting in the abnormal aggregation 

of nuclei at the midline of the myotube.  Dynein depletion also inhibits nuclear dynamics, but 

to a lesser extent, leading to altered spacing between adjacent nuclei.  Thus, oppositely 

directed motors acting from the surface of the nucleus drive nuclear motility in myotubes.  

The variable dynamics observed for individual nuclei within a single myotube likely result 

from the stochastic activity of competing motors interacting with a complex bipolar 

microtubule cytoskeleton that is also continuously remodeled as the nuclei move.  The three-

dimensional rotation of myotube nuclei may facilitate their motility through the complex and 

crowded cellular environment of the developing muscle cell, allowing for proper myonuclear 

positioning. 
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II.  Introduction 

 

Nuclear movement and positioning in many systems is controlled by connections 

between the nuclear envelope and the cytoskeleton (reviewed in (Fridolfsson and Starr, 

2010)).  Microtubule-dependent nuclear movement is particularly important for cells as they 

migrate and differentiate during development.  For example, nuclear movement is tightly 

coupled to neuronal migration during brain development and mutations that disrupt this 

movement result in severe developmental defects such as lissencephaly (reviewed in 

(Kuijpers and Hoogenraad, 2011)).  In neurons, nuclear migration requires the minus-end 

directed microtubule motor protein, dynein.  Dynein walks the nucleus toward the 

centrosome along a microtubule cage that surrounds the nucleus (Shu et al., 2004; Tsai et 

al., 2007; Xie et al., 2003).  In contrast, as nuclei migrate through hypodermal precursor cells 

in the developing C. elegans embryo, kinesin-1 is the predominant motor moving the nucleus 

toward the plus-end of a polarized parallel non-centrosomal bundle of microtubules, with 

dynein driving small backsteps along this network (Fridolfsson and Starr, 2010).  In these 

examples, both the polarity of the microtubule network and the type of motors present on the 

nuclear surface determine the overall direction of nuclear translocation. 

Proper nuclear positioning is also critical in skeletal muscle cells.  Mammalian 

skeletal muscle fibers are large multinucleated cells formed by the fusion of hundreds of 

post-mitotic mononucleated myocytes.  Adult muscle fibers can extend many centimeters in 

length and, except for a cluster of specialized nuclei at the neuromuscular junction, the nuclei 

are found at the periphery of the cell, evenly spaced along the long-axis of the fiber 

(Bruusgaard et al., 2003; Kummer et al., 2004).  This positioning is thought to ensure 

sufficient transcriptional capacity as well as to minimize transport distances between the 

nuclei and the cytoplasm in these extraordinarily long cells (Bruusgaard et al., 2003).  

Abnormally clustered nuclei have been found in patients with autosomal dominant Emery-
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Dreifuss muscular dystrophy (Mattioli et al., 2011), suggesting that correct nuclear 

positioning may be required for proper muscle function. 

Nuclei in developing chick myotubes have been observed to translocate along the 

long axis of the cell (Capers, 1960; Cooper and Konigsberg, 1961; Cooper, 1958).  Although 

this translocation was shown to be dependent on an intact microtubule cytoskeleton 

(Englander and Rubin, 1987), the mechanisms that drive this translocation have not yet been 

explored. 

Early studies in primary myotubes suggested that nuclei may rotate as they 

translocate (Capers, 1960; Cooper and Konigsberg, 1961; Cooper, 1958).  Nuclear rotation 

has been explored in cultured fibroblasts, where nuclei rotate in two dimensions, within the 

plane of substrate attachment (Ji et al., 2007; Levy and Holzbaur, 2008).  This rotation 

occurs more frequently in migrating cells and is driven by dynein motors (Levy and Holzbaur, 

2008).  The function of rotation in migrating fibroblasts is still unclear, but has been 

suggested to be important in maintaining nuclear centrality.  Given the length and complexity 

of the myotube, it is possible that nuclear dynamics during development, including both 

translocation and rotation, are essential for proper distribution of nuclei in the mature muscle 

fibers; however, this has not yet been examined.  

In this study, we use live cell microscopy to examine the dynamics of nuclear 

movement in developing C2C12 myotubes, a well-established model system that faithfully 

replicates most features of early myogenesis and myofibril assembly, with cytoskeletal 

organization and dynamics closely resembling that of developing myotubes in vivo (reviewed 

in (Sanger et al., 2010)).  We find that nuclei translocate within myotubes and also display 

robust three-dimensional rotation.  Kinesin-1 and dynein both localize to the nuclear surface, 

likely mediated at least in part through interactions with the klarsicht/ANC-1/Syne homology 

(KASH) proteins.  While both motors contribute to nuclear dynamics, kinesin-1 is the more 

dominant motor in this system.  Loss of either kinesin or dynein causes abnormal 
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aggregation and inappropriate dispersal of nuclei in myotubes, indicating that normal nuclear 

dynamics are essential for the proper distribution of nuclei in developing muscle cells. 
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III.  Results 

 

Nuclei both translocate and rotate in three dimensions in developing myotubes  

 Myotubes are formed as myoblasts fuse to generate multinucleated syncytial cells.  

As additional myoblasts fuse, the length of the cell increases concomitant with an increase in 

the number of nuclei per myotube (Fig. 2.1).  Most myotubes display a relatively even 

distribution of nuclei throughout the length of the cell (Fig. 2.1A), with the average distance 

between nuclei in myotubes 7 days post differentiation (D7) found to be 22.7±0.95 µm (mean 

± s.e.m.; n = 630 nuclei in 66 myotubes). 

 

      

Figure 2.1.  Nuclei distribute throughout the cell during myotube differentiation. 

(A) Representative images of myotubes differentiated for 3-7 days in vitro (D3-D7).  Nuclei 

were stained with Hoechst dye; α-actinin is in green.  Images are maximum projections of 

confocal z-series.  (B,C) Myotube length and number of nuclei per myotube are shown 

(mean ± s.e.m.; n > 30 myotubes). 

 

We imaged C2C12 myotubes with time-lapse phase microscopy and found that 

nuclei display robust and complex dynamics.  Nuclei translocate along the length of the 

developing cell (Fig. 2.2A, Video 1) at an average rate of 11.7±7.8 µm/hr (0.2±0.13 µm/min; 

mean ± s.d.), similar to initial observations of nuclear translocation in primary myotubes 

(Englander and Rubin, 1987).  Average velocities remained relatively constant in myotubes 
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differentiated for 4-7 days in culture.  We focused primarily on myotubes differentiated 7 days 

in order to study dynamics in cells that had undergone substantial myofibrillogenesis; past 

this time point myotubes begin to form branched networks and contract too strongly for 

accurate analysis. 

Most nuclei in myotubes are mobile and exhibit complex dynamics, characterized by 

episodic, rather than continuous, movement.  Translocation velocities of individual nuclei can 

vary greatly over the course of  >3 hours of imaging (Fig. 2.2A, Video 1).  Nuclei migrate in 

either direction along the long-axis of the cell; individual nuclei will occasionally change 

direction.  Nuclei within the same myotube can move individually, or in groups, and nuclei 

can pass one another as they translocate (Fig. 2.2A, arrowhead), suggesting that the 

dynamics of each nucleus is influenced, but not dependent, on those nearby. 

Remarkably, nuclei also rotate in three-dimensions, as assessed by monitoring the 

movement of nucleoli in time-lapse phase imaging (Fig. 2.2A, arrow; Video 1).  To monitor 

this rotation more precisely, we labeled the DNA with a live-cell Hoechst dye, and used 

confocal microscopy to track the positions of the brightly stained chromocenters in focal 

stacks over time (Fig. 2.2B; Video 2).  Within an individual nucleus, the positions of 

chromocenters remain fixed relative to one another over the time course of observation (15 

min), allowing accurate tracking of their trajectories in XYZ space.   

Nuclei rotate clockwise or counterclockwise about the axes perpendicular to the long 

axis of the myotube.  Occasionally individual nuclei change their direction of rotation (Video 

1).   The extent and rate of rotation varies considerably, with 50-60% of nuclei rotating more 

than 2°/min, some reaching velocities as high as 14.4˚/min (Fig. 2.2B, bottom panel).  

Isolated nuclei, as well as nuclei moving in concert with others, can rotate; the rate and 

direction of rotation for individual nuclei appear to be independent of the dynamics of 

neighboring nuclei.  Rotation is usually accompanied by translocation.  The ability of nuclei to 

pass one another closely correlates with nuclear rotation.  Analysis of time series from 75 
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myotubes indicates that in 29 pass events, all involved rotation of at least one nucleus, and 

in 93% of these events, both nuclei rotated.  The observed rotation during passing is often 

accompanied by deformation of nuclear shape (Fig. 2.2A; Video 1).   

When nuclei rotate in two-dimensions in fibroblasts, nucleoli within the interior of the 

nucleus rotate with the nuclear lamina and nuclear envelope as an intact structure (Ji et al., 

2007; Levy and Holzbaur, 2008).  To determine whether this is also true for nuclei rotating in 

three-dimensions, we transfected myotubes with RFP-laminA to label the nuclear lamina, co-

labeled the DNA with Hoechst dye to observe chromocenters and examined nuclear rotation 

using time-lapse confocal microscopy.  Comparison of chromocenter movements with 

fiduciary marks in the RFP-laminA labeling show that the nuclear lamina is rotating along 

with the chromatin (Fig. 2.2C; Video 3).  Expression of a GFP-tagged emerin (GFP-emerin) 

construct reveals that the inner membrane of the nucleus also rotates in tandem with the 

Hoechst-labeled chromocenters.   

To determine whether structures associated with the outer nuclear membrane also 

move in conjunction with the envelope, we expressed either a DsRed-Centrin-2 construct or 

mCherry-GPP130 and observed the dynamics of the labeled nuclei.  We found that the 

centrosomal protein centrin-2 localizes in puncta both in the cytoplasm and at the outer 

surface of the nucleus, as described for other centrosomal proteins in myotubes (Bugnard et 

al., 2005; Srsen et al., 2009).  DsRed-Centrin-2 likely identifies sites of microtubule 

nucleation, known to occur from the surface of the nuclei in these cells (Bugnard et al., 2005; 

Tassin et al., 1985b; Zaal et al., 2011).  Tracking shows that individual centrin-2 puncta 

rotate with the nucleus (Fig. 2.2C; Video 3).  We also found that the Golgi, labeled with 

mCherry-tagged Golgi matrix protein, GPP130, (Linstedt et al., 1997), rotates with the 

nucleus (Fig. 2.2C; Video 3).  Together, these experiments reveal that the nuclear interior 

and nuclear envelope rotate together as a unit in three-dimensions, along with associated 

organelles including the Golgi. 
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Figure 2.2.  Nuclei actively rotate and translocate during myotube differentiation. 
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Figure 2.2.  Nuclei actively rotate and translocate during myotube differentiation. 

(A) Phase images from a time-lapse sequence of nuclear migration in a D7 myotube (Video 

1).  The long-axis of the myotube runs in the horizontal direction; all visible nuclei in the 

myotube have been pseudo-colored blue.  The arrow highlights the counter-clockwise 

rotation of a nucleus, visible in phase by watching prominent nucleoli; the arrowhead follows 

the path of a nucleus as it deforms and passes an adjacent nucleus.  Scale bar = 10 µm.  (B) 

Representative examples of nuclear rotation (Video 2).  DNA was labeled with Hoechst dye 

and maximum projections of confocal z-stacks are shown over time.  Bidirectional arrow 

indicates the long-axis of the myotube and colored dots label bright chromocenters to aid 

visualization of rotation. (C) Nuclei in myotubes expressing fluorescent constructs to label the 

nuclear lamina (LaminA), inner nuclear membrane (emerin), outer nuclear membrane 

(centrin-2) or Golgi (GPP130) are shown (Video 3).  Colored dots label bright chromocenters 

in each nucleus; fiduciary marks of nuclear envelope-associated structures are demarcated 

with arrowheads and arrows.  Chromocenters were tracked in XYZ over time. The right 

panels in B & C highlight representative tracks of individual chromocenters during rotation of 

the nuclei.  Shaded tracks correspond to the chromocenters labeled with colored dots in the 

time series.  Scale bar = 2 µm. 
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As myotubes develop in culture, we noted a dramatic change in the shape of nuclei 

in myoblasts compared to those in myotubes (Fig. 2.3).  While nuclei in mononucleated 

myoblasts resemble the disc-shaped structures seen in fibroblasts, in myotubes the nuclei 

are more spherical (Fig. 2.3A,B).  This change in shape correlates with changes in nuclear 

rotation.  The flattened nuclei in myoblasts occasionally exhibit two-dimensional rotation in 

the plane of the substratum, which resembles the nuclear rotation described in fibroblasts (Ji 

et al., 2007; Levy and Holzbaur, 2008), and is distinct from the three-dimensional rotation 

observed in more fully developed myotubes.  

 

 

 

Figure 2.3.  Nuclei are spherical in myotubes.   

(A) Image of myotube in cross-section stained with antibodies to tubulin (red) and α-actinin 

(green).  Nuclei are labeled with Hoechst dye (blue).  Microtubules in myotubes run parallel 

to the developing myofibril network, forming a tube around the centrally-located nuclei (one Y 

plane in XZ, scale = 5 µm).  (B) The nuclei in myotubes adopt a spherical shape whereas the 

nuclei in myoblasts are wider and flatter.  Cells were transfected with YFP-α-actinin to show 

development of myofibrils in myotubes and nuclei are stained with Hoechst dye.  Panels 1 & 

2 show maximum projections of a confocal z-series of a nucleus in a myoblast (top) and two 
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nuclei in a neighboring myotube.  Panel 2 includes the YFP-α-actinin signal to denote the 

myotube.  The dotted line indicates the location of the single YZ plane shown in panel 3.  In 

this cross-section, the difference in the height of the nuclei in the myoblast and myotube can 

be appreciated.  Panel 4 is a three-dimensional rendering of these nuclei to again emphasize 

the spherical vs. flattened shape of the myotube and myoblast nuclei, respectively.  For 

panels 1-3, scale = 5 µm.      

 

 

Microtubules are necessary for both nuclear translocation and rotation in myotubes 

 During myogenesis, the microtubule cytoskeleton is reorganized from the radial, 

centrosomal array found in mononucleated myoblasts to a linear array oriented along the 

long-axis of multinucleated myotubes (Pizon et al., 2005; Warren, 1974).  In cross-section, 

both the microtubules and the myofibrils surround the centrally located nuclei (Fig. 2.3A), 

with the microtubule array located more toward the interior, consistent with studies showing 

that nascent myofibrils form initially at the cell cortex and move inward (reviewed in (Sanger 

et al., 2010)). 

 To explore the polarity and dynamics of the microtubule array, we labeled the plus-

tips of microtubules with a fluorescently-tagged end-binding protein (GFP-EB3) that tracks 

with the growing end of the microtubule (Akhmanova and Steinmetz, 2008).  At the ends of 

the myotube, microtubules are generally oriented with their plus-ends toward the cortex (Fig. 

2.4A, 2 and 2', 2C; Video 4).  In contrast, in the center of the cell, we observe an anti-parallel 

microtubule organization along the long axis of the cell (Fig. 2.4A, 1 and 1', 2.2B; Video 4), 

also described by (Pizon et al., 2005; Zhang et al., 2009a).  Most cells showed a small 
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Figure 2.4.  The microtubule cytoskeleton forms a dynamic network around nuclei 
in myotubes. 

(A) Myotubes were transfected with GFP-EB3 to label the growing plus-ends of microtubules 

(Videos 4 and 5).  Images were obtained every 3 seconds and three sequential frames were 

pseudo-colored with green, purple and red, respectively, and overlaid (1-4) to show the 

direction of microtubule growth.  Scale bars = 10 µm in panel 1 and 5 µm in panels 2 & 3.  1ʹ′-

3ʹ′ depict the direction of representative microtubule growth. 4ʹ′ shows the invagination in the 

nuclear surface.  The DNA was labeled with Hoechst dye, single Z-plane in XY, scale bar = 2 

µm.  (B) Model of microtubule orientation within a myotube.  (C) Microtubules lie between 

adjacent nuclei (arrow) and within invaginations (arrowheads) on the nuclear surface. Cells 

were stained for tubulin (red) and nuclei were labeled with Hoechst dye (blue).  Single Z-

plane in XY, scale bars = 10 µm.  
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overall bias in microtubule growth toward one end of the myotube (58.6±2.4 vs. 41.4±2.4 

(mean ± s.e.m.) for dominant vs. non-dominant direction, respectively).  Often there were 

areas within a myotube that exhibited highly polarized growth, raising the possibility that local 

differences in microtubule polarity may influence microtubule-dependent nuclear movement.   

 Microtubules are often found in close apposition to the nucleus.  Microtubules lie 

between adjacent nuclei (Fig. 2.4C, top panel, arrow) as well as within invaginations, or 

grooves, on the nuclear surface (Fig. 2.4C, arrowheads).  The deeper, wider grooves contain 

both microtubules (Fig. 2.4C, bottom panel) and myofibrils (not shown), whereas only 

microtubules are found in smaller invaginations (Fig. 2.4C, top panel, arrowhead).  

Microtubules in close contact with the nuclear surface are dynamic.  Microtubules can 

polymerize along the curve of the nuclear surface (Fig. 2.4A, 3 and 3' top arrow; Video 5), 

between two nuclei (bottom arrow), and within invaginations (Fig. 2.4A, 4 and 4'; Video 5).  

Together, these observations indicate that the microtubule network is in close association 

with the nuclei in myotubes, forming a complex and constantly changing network around 

each nucleus.  

Microtubule depolymerization effectively inhibits nuclear translocation in primary 

myotubes, whereas the inhibition of actin dynamics had no effect (Englander and Rubin, 

1987). In C2C12 cells, we found that treatment of myotubes with concentrations of 

nocodazole that depolymerize the microtubule network (Fig. 2.5A) significantly reduced the 

rate of nuclear translocation when compared to the DMSO-treated control myotubes 

(0.082±0.009 µm/min vs. 0.181±0.032 µm/min, respectively; mean ± s.e.m., p < 0.001) (Fig. 

2.5B,D).  Additionally, nuclear rotation was abolished in myotubes treated with 10 µg/ml 

nocodazole (Fig. 2.5C,E; Video 6).  Thus, microtubules are necessary for both nuclear 

translocation and rotation.   

While an intact microtubule network is necessary for nuclear dynamics, nuclei are 

still able to translocate and rotate in myotubes treated with a lower dose of nocodazole (100 
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ng/ml) (Video 7).  This concentration inhibits microtubule growth (Video 7, central panel), but 

does not eliminate the microtubule network, suggesting that dynamic microtubules are not 

essential for nuclear translocation or rotation.  

 

 

 

Figure 2.5.  The microtubule cytoskeleton is required for both nuclear 
translocation and rotation.   
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Figure 2.5.  The microtubule cytoskeleton is required for both nuclear 
translocation and rotation. 
  
(A) Representative images of myotubes and surrounding myoblasts treated with DMSO or 

nocodazole (10 µg/ml) for 30 min at 37°C.  Cells were stained with antibodies to tubulin; 

scale bar = 20 µm.  (B) Phase images from time-lapse sequences of nuclear migration in 

myotubes treated with DMSO (left) or 10 µg/ml nocodazole (right).  The long-axis of the 

myotube run in the horizontal direction and all visible nuclei in myotubes have been pseudo-

colored blue. Arrowheads follow the migration of representative nuclei.  Scale bar = 10 µm.  

(C) Representative examples of nuclear rotation in myotubes treated with DMSO (top panel) 

or 10 µg/ml nocodazole (bottom panel) (Video 6).  DNA was labeled with Hoechst dye and 

maximum projections of confocal z-stacks are shown over time.  White lines depict the 

orientation of the myotube and colored dots label bright chromocenters to aid visualization.  

Right panel highlights representative chromocenter tracks during rotation of the boxed nuclei 

on the left.  Shaded tracks correspond to the chromocenters labeled with colored dots in the 

time series.  Scale bars = 10 µm.  (D) Mean velocity of nuclear translocation following 

treatment of myotubes with DMSO or nocodazole (mean ± s.e.m.; ∗∗∗, p <0.001, ANOVA; 

n>30 nuclei in 5-7 myotubes).  (E) Quantification of the degree of nuclear rotation in treated 

myotubes (∗∗∗, p <0.001, χ-square test, shown are pooled data for n>100 nuclei in 20-22 

myotubes).  
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Kinesin-1 drives nuclear translocation and rotation in myotubes 

In other systems displaying microtubule motor-dependent nuclear translocation 

and/or rotation such as migrating neurons and fibroblasts, the motors act from the surface of 

the nucleus (Levy and Holzbaur, 2008; Zhang et al., 2009b).  To determine whether the 

kinesin-1 motor localized to the nuclear envelope, we performed immunofluorescence on D7 

C2C12 myotubes.  Antibodies directed against kinesin light chains 1 and 2 (KLC1/2) and 

kinesin heavy chain (KHC, mAb 1614) abundantly decorate the nuclear surface 

(representative images are shown in Fig. 2.6).  A similar pattern was also found when 

myotubes were stained with a second pan-KHC antibody (SUK4 mAb, not shown).  We also 

found that transfection of myotubes with a GFP-tagged KIF5C tail domain construct, which 

binds to KHC partner proteins, including KLC1/2 (Bi et al., 1997; Konishi and Setou, 2009), 

led to uniform decoration of the nucleus envelope (Fig. 2.6).    

 

 

Figure 2.6.  Kinesin-1 localizes to the nuclear envelope in myotubes.    

Myotubes were stained for subunits of the plus-end directed microtubule motor kinesin-1 

(kinesin light chains 1/2 (KLC1/2); kinesin heavy chain (KHC)).  Also shown is a myotube 

transfected with EGFP-KIF5C tail, the domain of KHC that interacts with KLC1/2. Myotubes 

were fixed with methanol for KLC1/2 and KHC.  DNA was labeled with Hoechst dye.  Scale = 

10 µm. 
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KASH proteins mediate links between the nucleus and the cytoskeleton in many 

systems (reviewed in (Starr and Fridolfsson, 2010)), and the KASH protein nesprin-2 has 

recently been shown to bind to KLC (Schneider et al., 2011).  To examine this interaction in 

myotubes, we performed GST-pulldown assays from C2C12 myotube lysate with the minimal 

KLC binding domain of nesprin-2, residues 6348-6552 and observed specific binding of 

KLC1, KLC2 and KHC to the nesprin-2 construct (Fig. 2.7A).  This result suggests that 

nesprin-2 mediates, at least in part, the localization of kinesin-1 to the nuclear envelope in 

myotubes.  

 To further test this possibility, we expressed the KASH domain of nesprin-2α (EGFP-

nesprin-2α-KASH) in myotubes and assessed its effect on nuclear rotation.  This domain 

localizes specifically to the nuclear envelope in myotubes (Fig. 2.7B) and acts as a dominant 

negative by displacing the endogenous nesprins from the nuclear membrane (Grady et al., 

2005; Zhen et al., 2002).  We found that expression of EGFP-nesprin-2α-KASH partially 

displaced kinesin-1 from the nuclear envelope in myotubes (Fig. 2.7C).  Although this 

displacement was not complete, we found that EGFP-nesprin-2α-KASH positive nuclei 

rotated less than those in control cells (Fig. 2.7D).  Furthermore, expression of the dominant 

negative construct induced aggregation of nuclei along the myotube, with a decreased mean 

distance between adjacent nuclei (13.0±0.9 µm vs. 19.3±0.9 µm in EGFP-nesprin-2α-KASH 

positive myotubes as compared to control myotubes expressing EGFP, respectively, mean ± 

s.e.m., p<0.0001; mean myotube length was not different)(Fig. 2.7E). 
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Figure 2.7.  Kinesin-1 localizes to the nuclear envelope in myotubes and binds to 
the LINC protein, nesprin-2.  
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Figure 2.7.  Kinesin-1 localizes to the nuclear envelope in myotubes and binds to 
the LINC protein, nesprin-2.  
 
(A) Schematic of nesprin-2giant and GST-nesprin-26348-6552 (orange, green, purple and blue 

shapes represent the actin-binding domain, spectrin repeats, transmembrane domain and 

KASH domain, respectively).  Pull-down assays with GST-nesprin26348-6552 or GST beads 

incubated with C2C12 myotube lysate.  Bound protein was eluted first with 80mM glutathione 

(2 rounds: E1,E2); beads were then boiled in denaturing buffer (Boil).  Blots were probed 

with antibodies to KLC1/2 (63-90 mAb) and KHC (SUK4 mAb); blot shown is representative 

of three independent replicates.  (B) Representative image of a myotube expressing EGFP-

nesprin-2α-KASH (maximum projection of a confocal z-series; DNA was labeled with 

Hoechst dye, scale bar = 10 µm).  (C) Myotubes were transfected with either EGFP or 

EGFP-nesprin-2α-KASH and stained for subunits of the plus-end directed microtubule motor 

kinesin-1 (kinesin light chains 1/2 (KLC1/2); kinesin heavy chain (KHC)) and for EGFP.  

Myotubes were fixed with methanol, DNA was labeled with Hoechst dye.  Scale = 10 µm. (D) 

Quantification of the degree of nuclear rotation in myotubes treated with EGFP or EGFP-

nesprin2α-KASH (χ-square test; p = 0.18; shown are pooled data for n>140 nuclei from 19-

21 myotubes).  (E) Frequency distributions of the distance between adjacent nuclei in 

myotubes treated with EGFP- nesprin-2α-KASH (1 µm bin width; less than 8% of the data 

lies above 50 µm so distribution is truncated at 50 µm for clarity, n > 382 nuclei in >29 

myotubes). 
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In order to more directly determine whether kinesin-1 drives translocation and/or 

rotation in myotubes, we reduced the expression of the motor with siRNA and evaluated the 

resulting effects on nuclear dynamics.  Myotubes were transfected with siRNA against 

KIF5B, which is the only kinesin-1 isoform expressed in skeletal muscle (Kanai et al., 2000), 

on day 4 of differentiation and nuclear dynamics were assessed 72 hours later in D7 

myotubes. We were able to consistently reduce the levels of KIF5B to ~20% percent of 

expression levels in mock siRNA-treated myotubes (Fig. 2.8A).  

The mean nuclear translocation velocity in KIF5B deficient cells was reduced to 48.7 

± 3.5% (mean ± SEM) of mock-treated myotubes (Fig. 2.8B).  Although we did note a small 

decrease in the mean rate of translocation in the KIF5B SCR control myotubes, the 

dynamics of nuclear movement in KIF5B-deficient myotubes were distinctly different than 

those in either the mock or KIF5B SCR control myotubes.  Nuclei tended to pile on top of one 

another and squeeze together as a unit in the KIF5B-deficient myotubes rather than 

exhibiting persistent, independent translocation.   

We found that depletion of KIF5B also led to a striking reduction in nuclear rotation 

(Fig. 2.8C,D and Video 8), similar to the effect of nocodazole (Fig. 2.5E).  In a parallel 

experiment, we found that inhibiting kinesin-1 using a dominant negative GFP-KIF5C tail-

domain construct, which acts to displace endogenous motors from cargos (Bi et al., 1997; 

Konishi and Setou, 2009), also induced a decrease in nuclear rotation (Fig. 2.8E).  

Together, these observations suggest that KIF5B drives nuclear dynamics by acting from the 

surface of the nucleus.  Consistent with this hypothesis, we found that KHC is no longer 

localized to the nucleus in cells treated with siRNA-treated cells, although some residual 

signal for KLC1/2 persists (Fig. 2.8F).  However, it is also possible that loss of the motor 

alters microtubule organization in myotubes, which may in turn impact on the dynamics of 

the nuclear movement.  In >50% of KIF5B-deficient myotubes, the microtubule network was 

not different from that seen in control cells (Fig. 2.8G (SCR and siRNA panel 1); 58% of 
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myotubes, n = 50).  In 42% of KIF5B-depleted cells, microtubules tended to form a more 

complex network in the center of the myotube, but only in the vicinity of nuclei.  In these 

myotubes, microtubules appeared to wrap more frequently around the nuclei, with the 

direction of GFP-EB3 comets relative to the long-axis of the myotube more variable (Fig. 

2.8G (siRNA panel 2); Video 9).  However, in regions devoid of nuclei such as myotube 

ends, microtubule organization and polarity were indistinguishable from control myotubes 

(Fig. 2.8H; Video 9).  We also noted KIF5B-deficient myotubes can develop organized 

myofibrils, as judged by YFP-α-actinin localization in D7 C2C12 cells (Fig. 2.8G, siRNA 

panel 1 inset).  Kinesin-1-depleted myotubes were observed to contract spontaneously, 

again suggesting that these cells develop functional sarcomeres despite the mis-organization 

of the nuclei.   
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Figure 2.8.  KIF5B acts from the nuclear surface to drive nuclear translocation and 
rotation in myotubes.
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Figure 2.8.  KIF5B acts from the nuclear surface to drive nuclear translocation and 
rotation in myotubes. 

Myotubes were treated with siRNA to KIF5B or with scrambled control oligos (SCR).  (A) 

Representative immunoblots and quantification for KIF5B in myotubes treated with siRNA 

and SCR siRNA for KIF5B; GAPDH serves as a loading control (mean ± s.e.m.; ANOVA, n = 

3 independent replicates).  (B) Mock- or siRNA-treated myotubes were imaged with phase 

microscopy for 60 min and absolute velocity was quantified (mean ± s.e.m.; ANOVA; n>50 

nuclei in 10-12 myotubes).  (C) Representative examples of nuclear rotation in myotubes 

treated with KIF5B SCR siRNA or KIF5B siRNA (Video 8).  DNA was labeled with Hoechst 

dye and maximum projections of confocal z-stacks are shown over time on the left.  Red and 

blue dots label chromocenters to aid visualization.  Right panel highlights representative 

chromocenter tracks during rotation of the boxed nuclei on the left.  Shaded tracks 

correspond to the chromocenters labeled with colored dots in the time series.  Scale bars = 

10 µm.  (D, E) Quantification of the degree of nuclear rotation in myotubes treated with 

siRNA (D) or GFP-KIF5C tail dominant negative construct to disrupt KIF5B 

localization/function (E) (χ-square test, shown are pooled data for n>120 nuclei from 20-27 

myotubes).  (F) Treated myotubes were stained for subunits of the plus-end directed 

microtubule motor kinesin-1 (kinesin heavy chain (KHC); kinesin light chains 1/2 (KLC1/2)).  

DNA was labeled with Hoechst dye.  Scale = 10 µm.  (G & H) Treated myotubes were 

stained for tubulin; DNA was labeled with Hoechst dye.  Representative images from the 

central region of the myotubes are shown in G (inset in siRNA panel 1 shows α-actinin 

staining).  Representative image from the end of a KIF5B siRNA treated myotube is shown in 

H; inset shows the aggregation of nuclei from the center region of this myotube, which is to 

the left of the region of the myotube shown. Scale = 10 µm.  For all panels, ∗, p <0.05, ∗∗, p 

<0.01, ∗∗∗, p <0.001 vs. Mock or GFP. 
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Dynein also contributes to nuclear translocation and rotation 

Antibodies to both dynein and dynactin reveal that the minus end-directed 

microtubule motor complex is also enriched at the nuclear periphery of myotubes, in addition 

to a strong cytosolic localization of the motor consistent with a broad range of cellular 

functions (Fig. 2.9).  The localization of dynein and dynactin on the envelope was more 

irregular than that observed for KHC and KLC1/2 (Fig. 2.6).  This may reflect a limitation of 

epitope accessibility, or may suggest that the dynein complex is less homogenously 

distributed across the nuclear surface than the kinesin-1 motor.   

 

 

 

 

Figure 2.9.  Dynein localizes to the nuclear envelope in myotubes.   

Myotubes were stained for components of the minus-end directed dynein/dynactin complex 

(dynein heavy chain (DHC); dynein intermediate chain (DIC); p150Glued subunit of dynactin).  

Myotubes were fixed with methanol for p150, and with 1:1 acetone-methanol for DHC and 

DIC.  DNA was labeled with Hoechst dye.  Scale = 10 µm. 
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  To test the role of dynein in nuclear dynamics, we used siRNA to deplete the motor.  

We were able to consistently reduce the levels of DHC to ~20% percent of expression levels 

in mock siRNA-treated myotubes after 72 hours of knock-down (Fig. 2.10A).  DHC siRNA 

concomitantly reduces levels of DIC, suggesting that the dynein complex is destabilized, as 

has been observed in other cell types (Caviston et al., 2007; Levy and Holzbaur, 2008).  

Immunofluorescence analysis of myotubes treated with DHC siRNA demonstrate a depletion 

of DHC and DIC throughout the cell (Fig. 2.10B).  Although western blot analysis indicates 

that overall expression levels of p150Glued were not reduced in cells treated with DHC siRNA 

(not shown), immunostaining for p150Glued suggests that dynactin may also be depleted from 

the nuclear envelope in dynein-depleted myotubes (Fig. 2.10B). 

Knockdown of DHC reduced the average rate of nuclear translocation and rotation 

(Fig. 2.10C,D).  However, the effect of dynein depletion on nuclear dynamics was not as 

striking as observed for the kinesin-1 motor.  Mean nuclear translocation velocity in dynein-

deficient cells was reduced to 64.7% of mock-treated myotubes (Fig. 2.10D), with 25% of the 

nuclei continuing to rotate more than 30° in 15 min, as compared to only 2% of nuclei in 

KIF5B-deficient myotubes (Figs. 2.10E, 2.8D).  These data suggest that while both dynein 

and KIF5B contribute to nuclear dynamics, the plus-end directed KIF5B is the more dominant 

motor. 
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Figure 2.10.  Dynein drives nuclear translocation and rotation.   

(A-D) Myotubes were treated with siRNA to DHC, or with scrambled control oligos (SCR).  

(A) Representative immunoblots and quantification for dynein heavy chain (DHC) and dynein 

intermediate chain (DIC) in myotubes treated with siRNA for DHC; GAPDH serves as a 
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loading control (mean ± s.e.m.; ANOVA, n = 3 independent replicates).  (B) Myotubes 

treated with DHC siRNA or DHC SCR siRNA were stained for DHC, DIC, & p150Glued.  DNA 

was labeled with Hoechst dye.  Scale = 10µm.  (C) Mock- or siRNA-treated myotubes were 

imaged with phase microscopy for 60 min and absolute velocity was quantified (mean ± 

s.e.m.; ANOVA; n>50 nuclei in 10-12 myotubes).  (D) Quantification of the degree of nuclear 

rotation in myotubes treated with DHC siRNA.  Data for siRNA is compared to the same 

Mock data as in Fig. 2.8D (χ-square test, shown are pooled data for n>120 nuclei from 20-27 

myotubes).  For all panels, ∗∗, p <0.01. 

 

 

Motor-dependent nuclear dynamics are necessary for proper nuclear distribution in 

myotubes 

After seven days of differentiation, myotubes display a relatively even distribution of 

nuclei along the length of control cells (Fig. 2.1A; Fig. 2.11A,B).  However, we noted that the 

nuclei in myotubes deficient for KIF5B tended to densely aggregate at the midline of the cell 

(Fig. 2.11A,B).  This aggregation was also observed in myotubes expressing the GFP-KIF5C 

tail construct.  In myotubes treated with siRNA for DHC, we observed some nuclear 

aggregation, but these aggregates were not enriched toward the myotube center as seen 

with kinesin-1 disruption.  Instead, clusters of nuclei were observed along the length of the 

myotube in dynein-depleted cells (Fig. 2.11A,B).  

Mean myotube length was not different between control and treated myotubes, nor 

did we detect a difference in the number of nuclei per myotube.  However, the distance 

between nuclei was noticeably reduced when either kinesin or dynein function was disrupted 

(Fig. 2.11C,D).  The mean distance between adjacent nuclei was significantly smaller in 

KIF5B-depleted or dynein-depleted myotubes (Fig. 2.11D), and disruption of kinesin function 
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using a dominant negative approach (expression of GFP-KIF5C tail) also significantly 

reduced the average distance between nuclei (Fig. 2.11D). These data indicate that proper 

nuclear dynamics are necessary to prevent aggregation of nuclei.  Live cell data suggest that 

nuclei need to rotate in order to pass one another.  As nuclei in myotubes treated with siRNA 

to KIF5B or dynein do not rotate normally (Figs. 2.8D, 2.10D), reduced rotation may be 

sufficient to induce nuclear aggregation. 

To further compare the effects of motor depletion or inhibition on nuclear localization, 

we plotted the position of nuclei as a function of distance along the myotube length (Fig. 

2.11E).  Nuclei in KIF5B-deficient myotubes clustered near the midline as compared to 

control myotubes.  This same pattern was seen for cells treated with GFP-KIF5C tail.  

Conversely, despite their increased propensity to aggregate, the nuclei in dynein-deficient 

myotubes were found along the full myotube length, similar to the distribution of nuclei in the 

control cells (Fig. 2.11E).  This suggests, that in addition to driving rotation and preventing 

aggregation, KIF5B is also necessary for proper translocation of the nuclei out toward the 

ends of these elongated cells. 
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Figure 2.11.  Motor-dependent nuclear dynamics are necessary for proper 
distribution of nuclei in myotubes. 
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Figure 2.11.  Motor-dependent nuclear dynamics are necessary for proper 
distribution of nuclei in myotubes.   

Myotubes were transfected with either siRNA + GFP, GFP or GFP-KIF5C tail. (A) 

Representative images of treated myotubes.  Nuclei are stained with Hoechst dye, images 

represent maximum projections of confocal z-series.  (B) Nuclear distribution in myotubes.  

Each line on the y-axis represents an individual myotube, organized according to length (n = 

42-55 siRNA myotubes; 23 myotubes GFP-KIF5C tail).  The ends of the myotube are 

marked with a square; circles represent individual nuclei.  (C) Frequency distributions of the 

distance between adjacent nuclei in myotubes treated with siRNA or GFP-KIF5C tail (1 µm 

bin width; less than 8% of the data lies above 50µm so distributions are truncated at 50 µm 

for clarity).  (D) Mean distance between adjacent nuclei (mean ± s.e.m.; ANOVA, ∗∗∗, p 

<0.001).  (E) Histogram depicts the position of nuclei as a percent of the distance along the 

myotube length (bin width = 10%). 	
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IV.  Discussion 

 

Nuclei in developing muscle cells are very mobile (Capers, 1960).  We propose that 

this mobility is necessary to achieve an even distribution of nuclei along the length of mature 

myofibers.  Consistent with this hypothesis, we find that the microtubule motor proteins 

kinesin-1 and dynein are required for normal nuclear dynamics in developing myotubes.  

Depletion or inhibition of these motors leads to nuclear aggregation and abnormal nuclear 

distribution.  The motor proteins localize to the nuclear envelope, likely mediated at least in 

part by interactions with the KASH proteins of the LINC complex, and drive both nuclear 

translocation and rotation along the microtubule network.  

 The nuclear dynamics we observe in C2C12 myotubes are consistent with initial 

observations in primary chick myotubes (Capers, 1960; Cooper and Konigsberg, 1961; 

Cooper, 1958; Englander and Rubin, 1987).  We find that nuclei translocate along the long-

axis of the myotube, rotate in all dimensions and can even pass one another.  Both primary 

and C2C12 myotubes exhibit similar developmental patterns to what has been described in 

vivo, including microtubule arrangement and myofibril assembly (Sanger et al., 2010; 

Warren, 1974).  Thus, the nuclear dynamics described here likely inform on the dynamics 

that occur during vertebrate myotube development.   

 These nuclear dynamics require an intact microtubule network (Fig. 2.5).  Nuclear 

rotation was abolished by microtubule depolymerization.  While translocation was inhibited in 

nocodazole-treated cells, some residual nuclear movement suggests that there could be 

additional forces involved, such as contractions of the myofibril network.  Myofibrils are often 

in close contact with nuclei and their contractions might also influence nuclear movement 

(Video 10).  To investigate this possibility, we inhibited contraction with N-benzyl-ptoluene 

sulphonamide (BTS), a specific inhibitor of skeletal muscle myosin (Cheung et al., 2002), 

and found that the nuclei were still able to translocate and rotate (Video 11).  Thus, myofibril 
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contraction is likely to play only a minor role.  During our phase imaging of myotube 

dynamics, we often observed bulk fluid dynamics within the cell that resemble the 

cytoplasmic streaming described in plants and Drosophila oocytes (Serbus et al., 2005; 

Shimmen, 2007)(Video 1).  This flow may also contribute to nuclear dynamics and organelle 

distribution in myotubes, either directly, or indirectly by influencing the polarity of the 

microtubule network. 

Our observations indicate that kinesin-1 is the primary motor driving nuclear 

dynamics in myotubes (Fig. 2.8), while dynein contributes to a lesser extent.  Though dynein 

is the primary driver of nuclear movement in migrating neurons (Shu et al., 2004; Tsai et al., 

2007; Vallee et al., 2009) and nuclear rotations in fibroblasts (Levy and Holzbaur, 2008), in 

C. elegans hypodermal precursor cells, kinesin-1 activity predominates (Fridolfsson and 

Starr, 2010).  Kinesin has a significantly higher stall force than mammalian dynein (~5-6 pN 

for kinesin vs. 1.1 pN for dynein; see (Hendricks et al., 2010) and references therein).  Thus, 

within the complex cellular environment of the myotube, which is densely packed with 

developing myofibrils, kinesin-1 may be a more effective driver of the motility of this large 

(~10 µm diameter) organelle.  The localization of both kinesin and dynein to the nucleus 

suggests that a population of motors acts from the nuclear surface to drive both nuclear 

translocation and rotation.  Reduced nuclear rotation observed in myotubes expressing 

either the GFP-KIF5C tail or EGFP-nesprin-2α-KASH dominant negative constructs also 

argues for nuclear-based motor activity, since the localization of these constructs to the 

nuclear envelope can displace endogenous motors.   

KIF5B binds to the nuclear envelope in myotubes, at least in part, through 

interactions with nesprins (Fig. 2.7), outer nuclear membrane KASH proteins known to 

connect the nuclear lamina with the cytoskeleton (Starr and Fridolfsson, 2010).  Our data 

confirm the interaction between kinesin-1 and nesprin-2, mediated by binding to kinesin light 

chain (Schneider et al., 2011); however, nesprin-1 may also contribute to kinesin recruitment 
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to the nucleus.  Dynein and dynactin have been shown to precipitate with nesprin-1 and -2 

from mouse brain lysate (Zhang et al., 2009), although dynein did not bind to the nesprin 

construct used here.  The interaction between dynein and nesprins may be mediated through 

a different domain, or may be recruited to the nuclear envelope through other binding 

partners.  Mature skeletal muscle fibers and C2C12 myotubes express both nesprin-1 and 

nesprin-2, with the relative expression of alternatively spliced isoforms modulated over the 

course of muscle development (Apel et al., 2000; Randles et al., 2010; Zhang et al., 2005; 

Zhang et al., 2001).  Evidence from knock-out mice suggests that nesprin-1 and nesprin-2 

are both critical in muscle for nuclear positioning and anchorage (Zhang et al., 2010; Zhang 

et al., 2007b).  Moreover, mutations in both nesprin-1 and nesprin-2 have been found in 

patients with Emery-Dreifuss muscular dystrophy, suggesting that nuclear positioning and/or 

anchorage in skeletal muscle is essential for proper muscle function (Zhang et al., 2007a).  

We propose that nuclear-bound motors influence nuclear dynamics by exerting force 

on the local microtubule network.  The net sum of all forces would dictate the direction and 

speed of nuclear rotation and translocation.  Kinesin distribution at the nuclear envelope 

appears patchy, whereas the GFP-KIF5C tail construct decorates the envelope more evenly, 

suggesting that under normal conditions not all of the kinesin binding sites on the envelope 

are occupied.  A non-uniform distribution of KIF5B on the envelope could create 

asymmetrical areas of force generation that may lead to nuclear rotation.  The dynein motor 

complex also appears to be non-uniformly distributed, best illustrated by the staining for the 

dynactin subunit p150Glued, which shows enhanced accumulation between adjacent nuclei 

(Fig. 2.9).  An uneven distribution of oppositely directed motors is also likely to lead to force 

imbalances that further influence nuclear dynamics.   

The microtubule network in myotubes forms a dynamic bidirectional array along the 

long-axis of the cell, surrounding the centrally located nuclei ((Tassin et al., 1985; Warren, 

1974) and see Fig. 2.5).  However, microtubules are also found between adjacent nuclei and 
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lie within invaginations on the nuclear surface.  Most or all of these microtubules are dynamic 

and therefore the network surrounding a given nucleus is always changing, which will 

significantly influence how the motors on the surface of an individual nucleus contribute to 

nuclear dynamics.  Most myotubes exhibited a slight overall bias in microtubule growth 

directed toward one end of the myotube.  We also noticed that in many myotubes, the net 

direction of nuclear movement was toward one end of the cell.  It is possible that a bias in the 

direction of overall microtubule growth correlates with the net direction of nuclear movement, 

especially given the recent finding that even subtle biases in microtubule polarity are 

sufficient to direct cargo transport (Parton et al., 2011).  Therefore, it is likely that the nuclear 

dynamics are influenced both by motors bound to the nuclear envelope, and by dynamics 

and polarity of the microtubule network (see model, Fig. 2.12). 

The distribution of nuclei along the length of C2C12 myotubes was most severely 

disrupted upon depletion of KIF5B, leading to nuclear aggregation near the midline of the 

myotube (Fig. 2.11).  Similarly, loss of kinesin-1 function in Drosophila embryos also caused 

central aggregation of myonuclei in a recent study (Metzger et al., 2012).  This is in line with 

our observation that loss of KIF5B more substantially inhibited nuclear translocation and 

rotation.  We hypothesize that the rotation of nuclei is essential to fluidize the dynamics of 

these large organelles.  The decreased mobility in KIF5B-deficient myotubes may inhibit 

nuclei from moving around obstacles in their path, including other nuclei, myofibrils, or even 

the dense microtubule network surrounding the nucleus.  In live cell recordings, one or both 

of the nuclei involved in passing events rotated as they moved past one another, consistent 

with this hypothesis.  Thus, loss of nuclear rotation in the kinesin-depleted myotubes may be 

a critical factor leading to nuclear aggregation at the cell center.  Loss of dynein also caused 

aggregation of nuclei, although the nuclei were still able to distribute along the length of the 

myotube.  This suggests that although kinesin may be the primary driver, dynein is also 
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needed for proper nuclear spacing.  Loss of dynein-driven mobility might cause nuclear 

traffic jams, which appear as localized aggregates at discrete sites along the cell length.  

While motor-driven rotation and translocation from the nuclear surface appears to be 

the dominant driver of movement in this system, the process may have a feed-forward 

component.  Microtubules in the myotube are nucleated in part from the surface of nuclei 

(Tassin et al., 1985; Zaal et al., 2011), polymerizing in all directions (Tassin et al., 1985).  

Thus nuclei actively contribute to the development of a bidirectional microtubule array in 

myotubes.  Since loss of kinesin activity would be expected to be most significant at myotube 

ends where microtubules are polarized with plus-ends oriented outward, as kinesin is 

depleted, the nuclei begin to aggregate toward the center of the myotube, and microtubule 

organization in cell areas depleted of nuclei becomes more unipolar and less bipolar (Fig. 

2.8H and Video 9).  Further, the local microtubule network surrounding the aggregated nuclei 

becomes increasingly disordered; we observed a direct correlation between degree of 

nuclear clumping and local disorganization of the microtubule cytoskeleton, consistent with 

this model (Fig. 2.8G and data not shown).  Together, these processes create a 

progressively more complex cytoskeletal network for the nuclei to navigate through, thereby 

further reducing nuclear translocation and rotation and further enhancing aggregation over 

time.       

Thus, we propose that the dynamics of the nuclei in this system are stochastic, 

dictated by the organization and dynamics of the microtubule network surrounding an 

individual nucleus as well as the complement of motors on its surface.  This allows for a fluid 

distribution of nuclei in the myotube; as differentiation continues, the distributed nuclei will 

become anchored in place under the sarcolemma in myofibers.  It has been proposed that 

proper nuclear positioning is necessary to ensure sufficient transcriptional capacity and 

minimize transport distances in the myofiber (Bruusgaard et al., 2003), which likely affects 

muscle function.  Indeed, nesprin-1 null mice, exhibit abnormal distribution of nuclei, which 
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correlates with significantly decreased exercise capacity (Zhang et al., 2010).  Similarly, 

Drosophila mutant larvae expressing mutant MAP7 display nuclear positioning defects during 

muscle development, which correlates with decreased locomotion (Metzger et al., 2012), 

again suggesting that normal nuclear distribution is required for normal muscle function. 

Nuclear dynamics may also contribute to the ability of skeletal muscle fibers to repair 

themselves after injury.  During fiber repair, myogenic cells fuse with the injured fiber, 

contributing a new nucleus (Charge and Rudnicki, 2004).  These nuclei are positioned at the 

periphery of the myofiber (Li et al., 2011; Rich and Lichtman, 1989; Terada et al., 2009), and 

it is likely that both nuclear translocation and rotation are required for this positioning.  In 

diseases like the muscular dystrophies, where mechanically induced muscle damage occurs 

frequently, nuclear dynamics may be essential for proper fiber repair and subsequent muscle 

function. 
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Figure 2.12.  Model depicting the roles of opposing kinesin and dynein motors in 
the nuclear dynamics in developing myotubes.   

Motors are likely bound to the nucleus by connections with nesprin-1 or -2.  The number and 

distribution of opposing motors on a nucleus and the polarity of the local microtubule network 

determine the direction and speed of rotation and translocation.  Depletion of either dynein or 

KIF5B from myotubes causes abnormal aggregation and inappropriate dispersal of nuclei 

along the length of the myotube.   
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CHAPTER 3:  Nesprins Anchor Kinesin-1 Motors to the Nucleus to Drive Nuclear 

Distribution in Developing Muscle Cells 

 
 

 

 

 

 

 

 

 

 

 

A version of this chapter has been submitted for publication as a manuscript entitled:    

Wilson, M.H., and Holzbaur, E.L. Nesprins Anchor Kinesin-1 Motors to the Nucleus to Drive 

Nuclear Distribution in Muscle Cells.  
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I.  Summary 

	
  

During skeletal muscle development, nuclei move dynamically through the cell in a 

microtubule-dependent manner.  The microtubule motor protein kinesin-1 drives nuclear 

dynamics in developing myotubes.  Loss of kinesin-1 leads to improperly positioned nuclei in 

culture and in vivo.  Two models have been proposed to explain how kinesin-1 functions to 

move nuclei in myotubes.  In the cargo model, kinesin-1 acts directly from the surface of the 

nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-

parallel microtubules.  Here, we use two experimental strategies to test the hypothesis that 

an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout 

the length of syncytial myotubes.  First, using an inducible dimerization system, we show that 

controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear 

envelope is sufficient to prevent the nuclear aggregation resulting from depletion of 

endogenous kinesin-1.  Second, we identify a conserved kinesin light chain (KLC) binding 

motif in the nuclear envelope protein nesprin-2 and show that recruitment of the motor 

complex to the nucleus via this LEWD motif is essential for nuclear distribution.  Together, 

our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins 

function as nuclear cargo adaptors.  The importance of achieving and maintaining proper 

nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent 

recruitment of kinesin-1 to the nuclear envelope by binding of the conserved LEWD motif to 

kinesin light chain is a general mechanism for cell-type specific nuclear positioning during 

development. 
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II.  Introduction 

	
  

The position of the nucleus in a cell is dynamically controlled by interactions between 

the nuclear envelope and the cytoskeleton, and defects in nuclear positioning are often 

associated with cellular dysfunction and human disease, including muscular dystrophy, 

cardiomyopathy, lissencephaly, and hearing loss (Gundersen and Worman, 2013; Starr and 

Fridolfsson, 2010).  Proper nuclear positioning is especially critical in skeletal muscle cell.  

Skeletal muscle fibers are large multinucleated cells formed by the fusion of post-mitotic 

myoblasts.  The nuclei in mature muscle fibers are anchored under the sarcolemma at the 

periphery of the cell, and are positioned to maximize internuclear distances, which is 

suggested to minimize transport distances between the nuclei and the cytoplasm 

(Bruusgaard et al., 2003).  Abnormal aggregation or mispositioning of nuclei are noted in a 

number of muscle diseases in humans (Mattioli et al., 2011; Romero, 2010) and correlates 

with muscle weakness and dysfunction in model organisms (Metzger et al., 2012; Wang et 

al., 2013a), suggesting that nuclear positioning may be required for proper muscle cell 

function. 

During skeletal muscle development, nuclei move dynamically through the cell in a 

microtubule-dependent manner (Englander and Rubin, 1987; Wilson and Holzbaur, 2012).  

These dynamics include both translocation and rotation in three dimensions along the long 

axis of the cell and both are attenuated by depolymerization of the microtubule network 

(Capers, 1960; Wilson and Holzbaur, 2012).  Recently it has become clear that the 

microtubule motor proteins kinesin-1 (Kif5B) and cytoplasmic dynein power these nuclear 

dynamics (Cadot et al., 2012; Folker et al., 2012; Folker et al., 2014; Metzger et al., 2012; 

Wilson and Holzbaur, 2012).  Loss of either the plus-end directed kinesin-1 motor or the 

minus-end directed dynein motor leads to reduced rates of translocation and rotation, 

although this effect was more pronounced in myotubes depleted of kinesin-1 (Wilson and 
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Holzbaur, 2012).  Furthermore, loss of Kif5B causes dramatic aggregation of nuclei at the 

mid-line of the cell in culture mouse muscle cells (Metzger et al., 2012; Wilson and Holzbaur, 

2012), as well as in vivo in the muscles of both Drosophila larvae (Metzger et al., 2012) and 

mice (Wang et al., 2013a).   

While it is clear that Kif5B is essential for nuclear dynamics and positioning, two 

models have been proposed to explain how Kif5B functions to move nuclei in myotubes.  In 

the model proposed by Metzger et al., Kif5B interacts with the microtubule-associated protein 

MAP7/ensconsin to slide anti-parallel microtubules, thereby pushing adjacent nuclei apart 

(Metzger et al., 2012)(Fig. 3.1).  Alternatively, we have proposed that Kif5B acts from the 

nuclear surface, moving the nucleus as a giant cargo along the local microtubule network 

(Wilson and Holzbaur, 2012)(Fig. 3.1).  The major evidence for this latter model is 

immunohistochemistry showing accumulation of components of endogenous kinesin-1 on the 

nuclear envelope in cultured C2C12 myotubes (Wilson and Holzbaur, 2012) and more 

recently in primary mouse myotubes (Wang et al., 2013b).   

 

 

 

Figure 3.1.  Proposed models of Kif5B-dependent nuclear movement in myotubes.  

 



103	
  
	
  

The kinesin-1 complex is a heterotetramer, composed of a dimer of Kif5 kinesin 

heavy chains (KHC) and two regulatory kinesin light chains (KLC).  In a number of cell types, 

including C. elegans hypodermal precursor cells (Meyerzon et al., 2009) and mammalian 

epithelial cells (Horn et al., 2013; Roux et al., 2009; Schneider et al., 2011), KLC mediates 

the association of KHC with the nuclear envelope through interactions with members of the 

KASH (Klarsicht ANC-1 and SYNE Homology) family of proteins.  These proteins, including 

the vertebrate nesprins, interact via their KASH domain in the perinuclear space with SUN 

(Sad1, UNC-84) proteins that span the inner nuclear membrane and associate with the 

nuclear lamina (Starr and Fridolfsson, 2010).  Immunocytochemistry in mammalian muscle 

cells shows that KLC is present on the nuclear envelope (Wilson and Holzbaur, 2012), 

whereas KLC mutants in Drosophila do not show defects in nuclear positioning in muscle 

(Metzger et al., 2012).  Therefore, it is still unclear whether KLC interacts with KASH proteins 

to mediate the binding of Kif5B to the nuclear envelope in muscle.  

However, evidence from knock-out mice suggests that nesprin-1 and nesprin-2 are 

critical in both skeletal muscle and cardiomyocytes for nuclear positioning (Banerjee et al., 

2014; Zhang et al., 2010; Zhang et al., 2007b).  Moreover, mutations in both nesprin-1 and 

nesprin-2 have been found in patients with Emery-Dreifuss muscular dystrophy (Zhang et al., 

2007a), which is characterized by progressive skeletal muscle weakness and 

cardiomyopathy.  These findings not only suggest that nuclear positioning in muscle cells is 

essential for proper muscle function, but that an interaction between kinesin-1 and nesprins 

may facilitate the nuclear dynamics that are necessary for proper nuclear positioning. 

In this study, we use two experimental strategies to directly test the cargo model of 

Kif5B-dependent nuclear positioning in myotubes.  First, we show that controlled recruitment 

of a truncated, constitutively active Kif5B motor to the nuclear envelope is sufficient to 

prevent the nuclear aggregation resulting from depletion of endogenous Kif5B.  We identify a 

conserved KLC-binding motif in nesprin-2, and show that this interaction is required for the 
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localization of kinesin-1 motors to the nuclear membrane.  Furthermore, we show that 

specific point mutations in KLC that disrupt the interaction with nesprins are sufficient to 

induce nuclear aggregation, again showing that kinesin-1 is required on the nuclear envelope 

for proper distribution of nuclei in myotubes.  Together, our findings demonstrate that the 

nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo 

adaptors. 
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III.  Results  

 

Recruitment of exogenous Kif5B to the nuclear envelope rescues nuclear distribution 

in myotubes 

Depletion of the Kif5B kinesin heavy chain results in dramatic aggregation of nuclei 

at the mid-line of C2C12 mouse myotubes (Fig. 3.2A,C).  Contrary to the effect of mutant 

KLC in Drosophila muscles (Metzger et al., 2012), nuclear aggregation was also evident in 

myotubes treated with siRNA to both KLC1 and KLC2 (Fig. 3.2B,C).  Immunohistochemistry 

suggests that both Kif5B and KLC accumulate at the nuclear envelope in myotubes (Wilson 

and Holzbaur, 2012)(Fig. 3.2D).  Here we confirm the localization of the kinesin-1 motor 

complex on the nuclear envelope in C2C12 myotubes by expression of Myc-Kif5B-Halo and 

EGFP-KLC2 constructs in live cells (Fig. 3.2E).  Further, we noted loss of Myc-Kif5B-Halo 

signal from the nuclear envelope in myotubes treated with siRNA to KLC1 & 2 (Fig. 3.2E), 

supporting the hypothesis that KLC mediates the recruitment of KHC to the nucleus.  

 To test the hypothesis that Kif5B acts from the nuclear surface to drive nuclear 

movement, we used an inducible cargo trafficking assay (Kapitein et al., 2010a; Kapitein et 

al., 2010b) to recruit a truncated, constitutively active Kif5B motor to the nuclear envelope 

(Fig. 3.3A).  This system takes advantage of ligand-mediated heterodimerization of FKBP 

and FRB protein domains by a cell-permeant non-immunosuppressive analog of rapamycin 

or rapalog (Clackson et al., 1998; Spencer et al., 1993).  By targeting the FKBP domain to a 

cargo of interest and attaching the FRB domain to an active motor construct, ligand 

treatment can be used to control motor recruitment to the cargo.  
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Figure 3.2.  Depletion of Kif5B and KLC results in nuclear aggregation. 
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Figure 3.2.  Depletion of Kif5B and KLC results in nuclear aggregation.   

(A, B) Representative immunoblots of Kif5B and KLC in myotubes treated with siRNA to 

Kif5B (A) or KLC1 and KLC2 (B); GAPDH serves as a loading control.  Levels of kinesin-1 

motor complex components appear to be coordinately regulated, as siRNA to either heavy 

chain or light chain concomitantly reduces both motor components. (C) Representative 

images of C2C12 myotubes treated with siRNA to Kif5B, kinesin light chains 1 & 2 or mock 

transfected.  Nuclei were stained with Hoechst dye (magenta); α-actinin is in green.  Images 

are maximum projections of confocal z-sections.  Scale bar = 50 µm.  (D) Myotubes were 

fixed with MeOH and immunostained for the Kif5B heavy chain (mAb SUK4) or KLC1 & 2 

(mAb 63-90); nuclei are labeled with Hoechst dye.  Scale = 20 µm.  (E) Myotubes were either 

transfected with Myc-Kif5B-Halo & labeled with Halo-TMR ligand, or transfected with EGFP-

KLC2 with or without siRNA to KLC1 & 2. Scale = 20 µm.  
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Figure 3.3.  Design of the Kif5B Recruitment System. 

(A) Depiction of fusion constructs for induced recruitment of truncated Kif5B to the nucleus. 

FKBP-EGFP-KASH targets the nuclear envelope; HA-Kif5B(1-807)-FRB motor constructs 

are cytosolic. Following ligand addition, heterodimerization of FKBP-FRB domains anchors 

constitutively active Kif5B(1-807) to the nuclear envelope. (B) Nuclei in myotubes expressing 

FKBP-EGFP-KASH successfully recruit HA-Kif5B(1-807)-FRB to the nuclear surface with 

ligand treatment, whereas nuclei coated with EGFP-KASH do not recruit the motor construct. 

Ligand was continuous post-transfection at a concentration of 500 nM.  Myotubes were fixed 

~84 hours post-transfection and immunostained for HA and EGFP.  Scale = 10 µm.  
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  We verified the feasibility of this system in C2C12 myotubes by inducing recruitment 

of HA-Kif5B(1-807)-FRB to FKBP-decorated peroxisomes.  Upon ligand addition, these 

peroxisomes exhibited directed motility toward the plus-ends of microtubules and 

accumulated at the ends of the myotube, indicating successful ligand-mediated motor 

recruitment (Fig. 3.4). 

 

 

 

Figure 3.4.  Kif5B is recruited successfully to peroxisomes in myotubes.               

(A) Myotubes were treated with siRNA to Kif5B to deplete endogenous motors from the cell.  

Myotubes were also transfected with HA-Kif5B(1-807)-FRB and PEX3-mRFP-FKBP, which 

targets peroxisomes.  Upon ligand addition (1 µM) labeled peroxisomes exhibit directed 

motility toward the plus-ends of microtubules and begin to accumulate at the ends of the 

myotube, indicating successful ligand-mediated motor recruitment. Scale = 50 µm.  (B) 
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Movement of individual PEX3-mRFP-FKBP decorated peroxisomes was imaged at higher 

magnification and time resolution (20 frames per minute) following 60 minutes of ligand 

treatment.  Peroxisomes were tracked manually and tracks are overlaid on the last frame 

(colored dots).  Tracks shown reflect ~90 seconds of imaging.  Note that the majority of 

peroxisomes move toward the end of the myotube where they accumulate.  Scale = 20 µm. 

 

 

 

Next, we adapted the system for controlled recruitment of the HA-Kif5B(1-807)-FRB 

construct to the nuclear envelope.  We fused the FKBP domain to the C-terminal 

transmembrane and KASH domains of the nuclear envelope protein nesprin-2 (FKBP-EGFP-

KASH)(Fig. 3.3B).  Using this strategy, we found that FKBP-EGFP-KASH and a control 

construct lacking the FKBP domain (EGFP-KASH) both localized to the nuclear envelope in 

myotubes.  However, with ligand treatment, only nuclei decorated with FKBP-EGFP-KASH 

successfully recruited HA-Kif5B-FRB to their surface (Fig. 3.3B).   

To test the hypothesis that kinesin acts from the nuclear surface to properly distribute 

nuclei in myotubes, we decreased levels of endogenous Kif5B with siRNA and used our 

inducible heterodimerization system to selectively restore constitutively active kinesin motors 

to the nuclear envelope.  If Kif5B is required on the nuclear envelope, only nuclei decorated 

with HA-Kif5B-FRB should escape central aggregation and be properly distributed 

throughout the myotube.  

As expected, nuclei in mock siRNA-treated myotubes were distributed throughout the 

length of the cell, whereas nuclei in Kif5B siRNA-treated myotubes aggregated at the midline 

of the cell (Fig. 3.5A,D,F).  Extended treatment with the rapalog ligand did not visibly alter the 

morphology or differentiation of these myotubes (Fig. 3.5A, also see Supplementary Fig. 

3.S1).  When the HA-Kif5B-FRB was co-expressed with the control EGFP-KASH construct 
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that lacks the FKBP domain in Kif5B siRNA-treated myotubes, no recruitment of kinesin to 

the nuclear envelope was noted upon ligand treatment (Fig. 3.5B).  Importantly, the nuclei in 

these myotubes remained aggregated at the cell center (Fig. 3.5B,D,F), indicating that the 

presence of cytosolic HA-Kif5B-FRB was not sufficient to rescue nuclear distribution. 

 

 

 

 

Figure 3.5.  Recruitment of exogenous Kif5B to the nuclear envelope rescues 
nuclear distribution in myotubes.
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Figure 3.5.  Recruitment of exogenous Kif5B to the nuclear envelope rescues 
nuclear distribution in myotubes.   

(A) Representative images showing normal nuclear distribution in mock-treated cells vs. 

nuclear aggregation in Kif5B siRNA-treated myotubes that were also treated with ligand. 

Nuclei were labeled with Hoechst dye (magenta); α-actinin is in green.  Images are 

maximum projections of confocal z-sections.  Scale bar = 50 µm.  (B) Nuclei in Kif5B siRNA-

treated myotubes expressing EGFP-KASH do not recruit HA-Kif5B(1-807)-FRB to the 

nuclear envelope and aggregate at the cell midline, despite ligand treatment.  Fixed 

myotubes were immunostained for EGFP, HA and with Hoechst (not shown); constitutively-

active HA-Kif5B-FRB tends to accumulate near plus-ends of microtubules at myotube ends.  

Scale bar = 50 µm. (C) Examples of Kif5B siRNA-treated myotubes co-expressing FKBP-

EGFP-KASH and HA-Kif5B(1-807)-FRB.  With ligand treatment, in some myotubes all nuclei 

are HA+ (a,a), while in others, only a subset of the nuclei recruit the motor (b,b); only HA+ 

nuclei show normal nuclear distribution.  Lower panels show inverted grayscale images of 

the numbered nuclei in the top panels.  Plus and minus marks indicate the presence or 

absence of visible signal for HA-Kif5B(1-807)-FRB on a particular nucleus. Scale bars = 50 

µm. (D) Distribution of nuclei in treated myotubes.  Each line on the y-axis represents an 

individual myotube, organized according to length (n = 53-56 myotubes).  The ends of the 

myotube are marked by a dark square; data points represent individual nuclei.  HA-Kif5B(1-

807)-FRB-decorated nuclei are magenta.  (E) Frequency distributions of the distance 

between adjacent nuclei in treated myotubes (1 µm bin width; less than 2.5% of all the data 

lies above 105 µm so distributions are truncated for clarity).  (F) Histograms depicting 

nuclear position as a percentage of the distance along the myotube length (bin width = 10%).  

See Supplementary Figure 3.S1 for additional controls. 
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In contrast, in Kif5B siRNA-treated myotubes co-expressing HA-Kif5B-FRB and 

FKBP-EGFP-KASH, treatment with the heterodimerizing ligand induced clear recruitment of 

the motor to the nuclear envelope (Fig. 3.5C).  In over 60% of these myotubes, all nuclei 

successfully recruited visible levels of HA-Kif5B-FRB (Fig. 3.5Ca & a), while in the remaining 

40% only some of the nuclei were decorated (Fig. 3.5Cb & b).  In both populations of 

myotubes, HA-Kif5B-FRB-positive nuclei were distributed throughout the length of the 

myotubes (Fig. 3.5C; magenta circles in 3.5D; 3.5F).  In contrast, nuclei lacking visible HA 

staining remained aggregated at the cell center within these same myotubes (black circles in 

Fig. 3.5D; FKBP-EGFP-KASH plot).    

In myotubes deficient for endogenous Kif5B, the distance between adjacent nuclei 

was significantly smaller than in mock siRNA-treated myotubes (11 ± 13 µm, n = 416 nuclei 

in 56 myotubes vs. 28 ± 30 µm, 402 nuclei in 54 myotubes, respectively, mean ± s.d., 

p<0.001; Kruskal-Wallis with Dunns post-test; also see the frequency distributions in Fig. 

3.5E).  The distance between adjacent nuclei was similarly reduced in Kif5B siRNA-treated 

myotubes co-expressing EGFP-KASH and HA-Kif5B-FRB (10 ± 13 µm, n = 500 nuclei in 53 

myotubes; p<0.001 vs. mock siRNA).  However, the mean distance between adjacent nuclei 

decorated with HA-Kif5B-FRB was 48 ± 46 µm (n = 180 nuclei in 54 myotubes), which was 

significantly higher than the distance between nuclei in the mock siRNA-treated myotubes 

(P<0.001).  Furthermore, we noticed that HA-Kif5B-FRB-positive nuclei were often at the 

extreme ends of the myotubes (Fig. 3.5C, D), an area enriched in microtubule plus-ends 

(Wilson and Holzbaur, 2012).  This is reflected in plots of the position of nuclei as a function 

of distance along the myotube length (Fig. 3.5F, compare mock siRNA to HA-Kif5B-FRB+).  

These findings are consistent with the cargo-model of Kif5B-dependent nuclear movement in 

myotubes and suggest that the constitutively active Kif5B construct is even more effective at 

moving nuclei toward the microtubule plus-ends than the endogenous motor. 
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A conserved tryptophan-acidic motif in nesprin-2 localizes kinesin light chain to the 

nuclear envelope  

The localization of Kif5B to the nucleus in myotubes is most likely mediated by an 

interaction between kinesin light chains and nesprins located on the outer nuclear envelope 

(Wang et al., 2013b; Wilson and Holzbaur, 2012).  In vertebrates, the tetratricopeptide repeat 

(TPR) domain of kinesin light chains has been shown to bind directly to both nesprin-2 

(Schneider et al., 2011; Wilson and Holzbaur, 2012) and to nesprin-4 (Roux et al., 2009).  In 

nesprin-2, this binding occurs within a highly conserved, but unstructured, region located 

between spectrin repeats (SR) 53 and 54 (Schneider et al., 2011)(numbering is according to 

ref (Simpson and Roberts, 2008) and is based on the human nesprin-2 Giant isoform)(Fig. 

3.6A).  This region, which has been termed the ‘adaptive domain’, is predicted to contain a 

high degree of disordered loops and coils (Zhong et al., 2010).  Within this region, there is an 

almost invariant ~20-residue motif that is predicted to be a ‘hot loop’ or area of high mobility 

(Simpson and Roberts, 2008; Zhong et al., 2010).  This adaptive domain and invariant motif 

are also found in nesprin-1 (located between SR71 and 72), though to our knowledge, no 

binding of KLC to nesprin-1 has yet been reported.  In nesprin-4, the kinesin light chain TPR 

domain has been shown to bind to the region between the SR and transmembrane domain 

(Roux et al., 2009)(Fig. 3.6A).  This region of nesprin-4 does not show obvious similarity to 

the adaptive domain of nesprin-2. 

Within the highly conserved ~20-residue motif in nesprin-1 and nesprin-2, we noticed 

a 4-residue tryptophan-acidic (W-acidic) motif near the end of this larger motif (Fig. 3.6B).  

This LEWD motif is similar to binding motifs described in a growing number of other KLC-

binding proteins (Aoyama et al., 2009; Dodding et al., 2011; Konecna et al., 2006; Schmidt et 

al., 2009).  A peptide containing the LEWD motif (TNLEWDDSAI) from one of these proteins, 

SKIP (SifA-kinesin interacting protein), was recently crystallized in complex with the TPR 

domain of KLC2, identifying the binding groove for the LEWD residues (Pernigo et al., 2013).  
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A search of the KLC binding region of nesprin-4 also revealed the presence of the LEWD 

motif, though the flanking sequences were not particularly conserved (Fig. 3.6B).  Moreover, 

this LEWD motif is absent from nesprin-3, which binds plectin (Wilhelmsen et al., 2005), and 

has not been reported to bind KLC.   

To test whether the binding of KLC2 to nesprin-2 is mediated by the LEWD motif, we 

performed co-immunoprecipitation experiments from lysates of COS7 cells co-transfected 

with HA-KLC2 and the EGFP-tagged fragments of nesprin-2 indicated in Figure 3.6C.  While 

HA-KLC2 co-immunoprecipitated wild-type EGFP-nesprin-2 6348-6552 and 6146-6799 

fragments, mutating the WD residues in the nesprin LEWD motif to alanine residues 

(WD/AA) abolished this binding (Fig. 3.6D).  This result strongly suggests that the LEWD 

motif in nesprin-2 is a functional kinesin light chain-binding motif.   

To further verify this interaction, we performed additional co-immunoprecipitation 

experiments with HA-KLC2 constructs harboring point-mutations in the WD-motif binding 

groove that have been shown to abrogate binding of KLC2 to cargo (Pernigo et al., 2013).  

Notably, the R251D mutation in TPR2, and N287L and R312E mutations in TPR3 domains of 

KLC2 significantly reduced light chain binding to wild-type EGFP-nesprin-2 6146-6799 (Fig. 

3.6E, F) and a smaller nesprin-2 construct spanning residues 6348-6552 (Sup. Fig. 3.S2).  

Furthermore, when we expressed these HA-tagged KLC2 constructs in myotubes depleted 

of endogenous KLC1 & KLC2, the wild-type HA-KLC2 showed clear accumulation around 

the nuclei whereas the R251D, N287L and R312E mutations prevented this accumulation 

(Fig. 3.6G).  Quantification of fluorescence intensity along a line spanning the nuclear 

membrane highlights the lack of recruitment of HA-KLC mutants to the nuclear envelope 

compared to wild-type (Fig. 3.6H).   
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Figure 3.6. A conserved W-acidic motif in nesprin-2 localizes kinesin light chain to 
the nuclear envelope.
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Figure 3.6: A conserved W-acidic motif in nesprin-2 localizes kinesin light chain to 
the nuclear envelope.   

(A) Schematic of nesprin-2 Giant and nesprin-4 highlighting the previously mapped KLC 

binding domains in each molecule (Roux et al., 2009; Schneider et al., 2011). (B) Alignment 

of nesprin sequences.  Conserved LEWD motif in nesprin-2, -1 and -4 are highlighted, 

numbering for nesprin-1 and -2 is based on the Giant isoform sequence; Frog sequences are 

currently incomplete and have been left unnumbered; top panel indicates degree of 

conservation.  (C) Schematic of the EGFP-tagged nesprin-2 fragments used in the following 

co-immunoprecipitation assays. (D) COS7 cells were transfected with HA-KLC2 and either 

wild-type EGFP-nesprin-2 fragments or EGFP-nesprin-2 fragments harboring WD/AA 

mutations in the LEWD motif.  IP of EGFP or EGFP-nesprin-2 constructs, followed by 

immunoblot analysis using both anti-EGFP and anti-HA antibodies indicates that binding of 

KLC2 is abolished by mutations in the LEWD motif. (E) Similar co-immunoprecipitation 

experiments were performed using HA-KLC2 constructs with point mutations in the binding 

groove for the W-acidic motif.  (F) Co-immunoprecipitation of HA-KLC2 R251D, N287L and 

R312E with EGFP-nesprin6146-6799  is significantly reduced (mean ± s.e.m.; from N = 3 

independent experiments; ANOVA, *P<0.05, **P<0.01). (G,H) Myotubes were treated with 

siRNA to both KLC1 and KLC2 and transfected with HA-KLC2 WT or mutant constructs. (G) 

Fixed myotubes were stained for HA-KLC2.  Scale = 20 µm.  (H) As depicted, quantification 

of fluorescence intensity along a 100-pixel line centered at the nuclear envelope was 

performed for the HA-KLC2 signal in these treated myotubes. Fluorescence intensity was 

normalized to the mean of the first 10 pixels of each line to account for variation in HA-KLC2 

expression levels between myotubes (mean ± s.e.m.; N = 10 nuclei per condition from 5 

myotubes).  See Supplementary Figure 3.S2 for additional co-immunoprecipitation 

experiments.  
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Mutations in KLC that disrupt binding to nesprins do not rescue nuclear positioning in 

myotubes 

We have shown that Kif5B is displaced from the nuclear envelope in myotubes 

treated with siRNA to KLC1 and KLC2 (Fig. 3.2E), and that the R251D, N287L and R312E 

mutations in the KLC2 TPR domain prevent the localization of KLC to the nuclear envelope 

(Fig. 3.6G).  Therefore, we hypothesized that wild-type but not mutant KLC constructs would 

rescue the localization of Kif5B to the nuclear surface when expressed in myotubes lacking 

endogenous KLC1 and KLC2.  As expected, in myotubes co-expressing EGFP-KLC2 WT 

and Myc-Kif5B-Halo in the absence of endogenous KLC, both of the tagged constructs 

localized to the nuclear envelope (Fig. 3.7A, B).  In contrast, Myc-Kif5B-Halo was not 

recruited to the nucleus in myotubes expressing any one of the three EGFP-KLC2 mutant 

constructs (Fig. 3.7A, B).   

Importantly, the TPR mutations in KLC2 do not disrupt binding of KLC to the Kif5B 

heavy chain (Supplemental Fig. 3.S3).  This suggests that functional motor complexes are 

still present in these myotubes, even though they are unable to associate with the nuclear 

envelope.  Therefore, if these mutant KLC2 constructs are unable to rescue the nuclear 

aggregation that results from KLC2 deficiency (Fig. 3.7C), it would again support our 

hypothesis that nuclear-based Kif5B is necessary for driving nuclear distribution in myotubes.   

Indeed, when KLC1 & 2 siRNA-treated myotubes were transfected with HA-KLC2 

R251D, N287L or R312E, the nuclei continued to aggregate at the midline of the cell, 

whereas nuclei in cells expressing HA-KLC2 WT were distributed throughout the length of 

the myotube (Fig. 3.7D, E, G).  While expression of HA-KLC2 WT restored the mean 

distance between adjacent nuclei to that of mock siRNA-treated myotubes (mock: 27 ± 

28µm, n = 389 nuclei in 51 myotubes vs. WT: 26 ± 31µm, n = 414 nuclei in 51 myotubes; 

mean ± s.d.)(Fig. 4F), the distance between nuclei in the R312E mutant HA-KLC2 myotubes 
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was not different from that in KLC1 & 2 siRNA-treated myotubes (R312E: 10 ± 13µm, n = 

542 nuclei in 54 myotubes) vs. KLC1 & 2 10 ± 11µm (n = 429 nuclei in 51 myotubes; mean ± 

s.d.; Kruskal-Wallis test)(also see Fig. 3.7F).  These findings again indicate that localization 

of Kif5B to the nuclear envelope is necessary for proper nuclear distribution in developing 

muscle cells.   
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Figure 3.7. Mutations in KLC that disrupt binding to nesprins do not rescue 
nuclear positioning in myotubes.   

(A,B) Myotubes were treated with siRNA to both KLC1 and KLC2 and transfected with 

EGFP-KLC2 WT, R251D, N287L or R312E and Myc-Kif5B-Halo.  (A) The Halo tag was 

labeled with Halo-TMR ligand before image acquisition in live cells.  Scale = 20 µm.   (B) 

Quantification of fluorescence intensity along a 100-pixel line centered at the nuclear 

envelope was performed for the EGFP-KLC2 and Myc-Kif5B-Halo signals in these treated 
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myotubes. Fluorescence intensity was normalized to the mean of the first 10 pixels of each 

line to account for variation in expression levels between myotubes (mean ± s.e.m.; N = 10 

nuclei per condition from 5 myotubes). (C) Representative images showing normal nuclear 

distribution in mock siRNA-treated myotubes compared with nuclear aggregation in KLC1 & 

2 siRNA-treated myotubes. Nuclei were labeled with Hoechst dye (magenta); α-actinin is in 

green.  Images are maximum projections of confocal z-sections.  Scale bar = 50 µm. (D) 

Myotubes were treated with siRNA to both KLC1 and KLC2 and transfected with HA-KLC2 

WT, R251D, N287L or R312E constructs.  Cells were fixed and stained for HA-KLC2 (green), 

KLC1 (see Figure S4) and nuclei (magenta).  Only HA-KLC2 WT rescues the nuclear 

aggregation caused by loss of endogenous KLC1&2. Scale bar = 50 µm. (E) Distribution of 

nuclei in treated myotubes.  Each line on the y-axis represents an individual myotube, 

organized according to length (N = 51-54 myotubes). The ends of the myotube are marked 

by a dark square; data points represent individual nuclei. Only myotubes that lacked 

immunofluorescent staining for KLC1 were included in the analysis.  (F) Frequency 

distributions of the distance between adjacent nuclei in treated myotubes (1µm bin width; 

less than 2% of all the data lies above 105 µm so distributions are truncated for clarity). (G) 

Histograms depicting nuclear position as a percentage of the distance along the myotube 

length (bin width = 10%). (H) Model illustrating that Kif5B motors are anchored at the nuclear 

envelope through an interaction between the TPR domain of KLC with the LEWD motif in 

nesprin-2 (only the short nesprin-2α1 isoform is depicted for clarity).  Kif5B motors exert 

force on the local microtubule network to drive nuclear dynamics, allowing for proper 

distribution of nuclei throughout the developing myotube.  Also see Figure 3.S3 for 

supplemental data. 
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IV.  Discussion 

 

Using two different experimental strategies, we provide evidence supporting the 

cargo-model of Kif5B-dependent nuclear movement in developing myotubes. First, using an 

inducible dimerization system to specifically control the localization of active Kif5B motor 

constructs to the nuclear envelope, we find that only nuclei decorated with the HA-Kif5B-FRB 

motor construct escape the nuclear aggregation resulting from depletion of the endogenous 

motor.  In fact, the mean distance between these HA-Kif5B-FRB-positive nuclei was greater 

than the distance between nuclei in mock-treated myotubes and HA-Kif5B-FRB-positive 

nuclei were often found at the very extreme ends of the myotubes (Fig. 3.5C, D), which are 

enriched in microtubule plus-ends (Wilson and Holzbaur, 2012).  We speculate that this 

exaggerated distribution of HA-Kif5B-FRB-decorated nuclei relative to mock siRNA-treated 

myotubes reflects the constitutive activity of the truncated motor construct compared with the 

endogenous motor, which can exist in an autoinhibited state and may be subject to 

regulation while bound to the nuclear envelope (Verhey and Hammond, 2009).  

We also show that depletion of KLC from the myotube not only displaces Kif5B from 

the nuclear envelope, but also results in nuclear aggregation that is indistinguishable from 

that caused by Kif5B depletion.  This nuclear positioning defect can be rescued by 

expression of EGFP-KLC2 wild-type, which effectively recruits Kif5B to the nuclear envelope.  

However, point mutations in the TPR domain of KLC2 that prevent binding to nesprin-2 do 

not rescue the localization of Kif5B to the nuclear envelope and do not rescue nuclear 

distribution.  The results from both of these approaches strongly argue that Kif5B must be 

localized to the nuclear envelope in order to distribute nuclei throughout the length of the 

myotube, thereby supporting the cargo-model of kinesin-based nuclear movement. 

Other Kif5B cargoes/adaptors in the myotube may contain W-acidic motifs and 

require the KLC TPR binding groove for Kif5B recruitment.  However, many muscle-specific 
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myofibril components and intermediate filaments, such as α-sarcomeric actin and desmin, 

bind directly to the Kif5B tail domain (Wang et al., 2013a), and would not be expected to be 

disrupted by the KLC mutations.  In contrast, these experiments argue against the 

microtubule-sliding model for nuclear movement.  In both experimental paradigms, Kif5B was 

present in the cytoplasm of the myotubes.  Although truncated, HA-Kif5B(1-807)-FRB 

includes the putative MAP7 binding domain (residues 327-536) (Metzger et al., 2012) and 

should still be able to cross-link and slide microtubules, and we have verified that mutations 

in the KLC TPR domain do not affect the binding of MAP7 to Kif5B (Sup. Fig. 3.S3D).  

Though we cannot rule out a role for Kif5B-dependent microtubule sliding in myotube 

development, we have shown that this mechanism on its own is insufficient to drive nuclear 

positioning.  However, it is possible that MAP7 may participate in relieving kinesin-1 

autoinhibition and activating the motor (Barlan et al., 2013), which would account for the 

nuclear positioning defect noted in MAP7 mutant flies (Metzger et al., 2012). 

Our results reveal that the W-acidic LEWD motif in the adaptive domain of nesprin-2 

mediates binding of KLC2 to the nuclear envelope.  We also expect that KLC1 binds the 

nesprin LEWD motif, since the TPR residues that mediate the binding of the W-acidic motif 

are conserved in KLC1 (Pernigo et al., 2013).  Moreover, given the high sequence similarity 

between nesprin-1 and nesprin-2, it is very likely that KLC2 also binds the LEWD in nesprin 

1.  Both nesprin-1 and nesprin-2 have a number of verified and suggested splice-isoforms 

with varied tissue distribution, but the LEWD motif is present in all but the shortest of the 

KASH-domain containing isoforms (Rajgor and Shanahan, 2013).  mRNA for nesprin-2 giant 

and nesprin 2α1 account for ~85% of nesprin-1 & -2 mRNA expressed in adult skeletal 

muscle (Duong et al., 2014), while nesprin-1 has been reported to be more abundant than 

nesprin-2 in developing muscle cells (Randles et al., 2010).  KLC is likely capable of binding 

all LEWD-containing nesprins, but accessibility of this site may be regulated in vivo.  In 

contrast, the shorter nesprin-1 & -2 isoforms can be found on the inner nuclear membrane in 
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association with emerin and lamin A/C (Mislow et al., 2002; Wheeler et al., 2007), which 

likely precludes their binding to kinesin.  Finally, it is tempting to speculate that the LEWD 

motif in nesprin-4, which is predominantly found in secretory epithelial cells (Roux et al., 

2009) and the hair cells of the inner ear (Horn et al., 2013), mediates its known interaction 

with KLC. 

Given that the localization of Kif5B to the nuclear envelope is required for proper 

nuclear positioning, we propose that interaction of nuclear-based motors with the local 

microtubule network drives the nuclear dynamics observed in myotubes, including both 

translocation and rotation in three-dimensions (Wilson and Holzbaur, 2012).  For smaller 

cargoes, teams of kinesin-1 motors do not necessarily enhance velocity or travel distance of 

the organelle (Jamison et al., 2010; Shubeita et al., 2008).  However the large ensemble of 

Kif5B motors recruited to the nucleus by nesprins may be needed to produce the force 

necessary to move such a large organelle.  The dynamics of individual nuclei are variable, 

with stochastic changes in translational and rotational velocities and direction (Wilson and 

Holzbaur, 2012).  This variability likely derives from the organization of the microtubule 

cytoskeleton surrounding the nucleus, which is highly dynamic (Wilson and Holzbaur, 2012), 

as well as the distribution and activity of the Kif5B on the envelope.  Furthermore, dynein is 

also located on the nuclear envelope in myotubes (Cadot et al., 2012; Wilson and Holzbaur, 

2012) and would be expected to oppose the activity of kinesin-1, which may allow for more 

flexibility in moving such a large cargo through the complex cytoskeletal network in the 

developing myotube, similar to observations in C. elegans hypodermal cells (Fridolfsson and 

Starr, 2010).  

Here, we used two independent experimental strategies to show that the ~10 µm-

wide nucleus can be considered a cargo for kinesin-1 in myotubes.  By binding kinesin light 

chain via the LEWD motif, nesprins act as nuclear cargo adaptors for Kif5B, localizing the 

motor to the nuclear surface (Fig. 3.7H).  Achieving and maintaining proper nuclear 
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positioning is not restricted to muscle fibers, but is critical in many diverse cell types, with 

aberrant positioning linked to dysfunction and disease (Gundersen and Worman, 2013).  

Given that the LEWD motif is present in many nesprin-1 and -2 isoforms, as well as in 

nesprin-4, our results suggest that nesprins mediate the localization of kinesin-1 to the 

nuclear envelope in a wide variety of cells.  Therefore it will be important to learn how 

recruitment and activity of kinesin-1 on the nuclear envelope is regulated in both developing 

and mature cells to allow for cell-type specific nuclear positioning.  
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Figure 3.S1.  Additional controls associated with Figure 3.5. 
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Figure 3.S1.  Additional controls associated with Figure 3.5.   

(A) Representative image showing normal nuclear distribution and myofibril development in a 

ligand-treated C2C12 myotube. Nuclei are labeled with Hoechst dye (magenta); α-actinin is 

in green. (B) Nuclei aggregate at the midline of Kif5B siRNA + ligand treated myotubes 

expressing FKBP-EGFP-KASH.  Nuclei are labeled with Hoechst dye (magenta); EGFP is 

shown in green.  (C) Nuclei aggregate at the midline of Kif5B siRNA + ligand-treated 

myotubes expressing HA-Kif5B(1-807)-FRB.  Nuclei are labeled with Hoechst dye 

(magenta); HA-Kif5B-FRB is in green.  Images in A, B & C are maximum projections of 

confocal z-sections.  Scale bar = 50 µm.  (D) Distribution of nuclei in treated myotubes.  

Each line on the y-axis represents an individual myotube, organized according to length (N = 

50-57 myotubes).  The ends of the myotube are marked by a dark square; data points 

represent individual nuclei. (E) Frequency distributions of the distance between adjacent 

nuclei in treated myotubes (1 µm bin width; less than 1.5% of the data lies above 105 µm so 

distributions are truncated for clarity).  (F) Histogram depicting nuclear position as a 

percentage of the distance along the myotube length (bin width = 10%).  
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Figure 3.S2.  Additional co-immunoprecipitation experiments associated with 
Figure 3.6.   

COS7 cells were transfected with EGFP-nesprin 26348-6552 and HA-KLC2 WT or R251D, 

N287L and R312E mutants.  (A) IP of EGFP-nesprin-2, followed by immunoblot analysis 

using both anti-EGFP and anti-HA antibodies indicates that point mutations in KLC2 reduce 

binding to EGFP-nesprin-2.  (B) The reciprocal IP of HA-KLC2 WT and mutants reveals the 

same reduction in binding between EGFP-nesprin-26348-6552 and KLC2 R251D, N287L and 

R312E mutants.  
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Figure 3.S3. Additional controls associated with Figure 3.7.   

(A) COS7 cells were transfected with Myc-Kif5B-Halo and EGFP-KLC2 WT or mutant 

constructs.  IP of EGFP-KLC2, followed by immunoblot analysis using both anti-EGFP and 

anti-Myc antibodies indicates that point mutations in KLC2 do not prevent binding to Myc-

Kif5B-Halo.  (B) KLC1 immunofluorescence in myotubes treated with Mock siRNA, KLC 1&2 

siRNA and KLC1&2 siRNA + HA-KLC2 WT or R251D, N287L or R312E mutant constructs.  

Images correspond to the myotubes in Figure 4C & D.  Only Mock siRNA-treated myotubes 

show expression of KLC1 in the cytoplasm and on the nuclear envelope. Images are 

maximum projections of confocal z-sections.  Scale bar = 50 µm.  (D) COS7 cells were 
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transfected with Myc-Kif5B-Halo, HA-KLC2 WT or mutant constructs along with EGFP or 

EGFP-MAP7.  Immunoprecipitation of EGFP-MAP7, followed by immunoblot analysis using 

anti-GFP, anti-Myc and anti-HA antibodies indicates that point mutations in KLC2 do not 

disrupt the interaction of MAP7 with Kif5B. 
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CHAPTER 4:  Conclusions and Future Directions 
 

Conclusions 

 Over 50 years ago, observations of nuclear translocation and rotation were first 

reported in developing skeletal muscle cells (Capers, 1960; Cooper and Konigsberg, 1961).    

At the time of these observations, the cellular mechanisms driving these movements were 

vague at best.  However, in the years since these early reports, discovery of the microtubule 

cytoskeleton and microtubule motors has allowed the elucidation of various modes of 

microtubule-dependent nuclear movement in many other cell types.  Though we learned in 

1987 that microtubules are necessary for the movement of nuclei in myotubes (Englander 

and Rubin, 1987), further investigation of the mechanisms driving nuclear dynamics was 

lacking.  In the present work, we demonstrate that the microtubule motor proteins kinesin-1 

and dynein localize to the nuclear envelope in myotubes and drive nuclear translocation and 

rotation.  Furthermore, we show that kinesin-1 binds to the outer nuclear membrane protein 

nesprin-2 and that nuclear-based kinesin-1 motors are essential for proper nuclear 

distribution in developing skeletal muscle cells.    

 Live cell microscopy of cultured C2C12 myotubes reveals complex nuclear 

movements, including translation with or without rotation.  Consistent with previous reports, 

nuclei rotate along the length of the cell in three-dimensions (rotation axis is perpendicular to 

the long axis of the myotube), undergo obvious deformation, and are occasionally noted to 

pass one another as they move through the cell.  We verified that nuclear dynamics are 

dependent on an intact microtubule cytoskeleton, and present evidence that dynamics are 

unaffected by inhibition of myofibril contraction.  We confirmed with immunostaining for 

tubulin and live imaging of GFP-EB3, that microtubules form a bidirectional dynamic network 

that predominantly forms a tube surrounding the centrally located nuclei.  Moreover, we 
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show for the first time that kinesin heavy chain and light chain, as well as components of the 

dynein and dynactin complex localize to the nuclear envelope in myotubes.  Depletion of the 

motors with siRNA not only decreases rates of nuclear translocation and rotation, but also 

causes aggregation of nuclei, either at the midline of the cells in the absence of Kif5B, or 

more focally in cell lacking cytoplasmic dynein.  These findings led us to propose a model in 

which Kif5B and dynein drive nuclear movement from the surface of the nuclear envelope 

and that the variable dynamics of each nucleus are a function of the distribution of opposing 

motors interacting with the bidirectional microtubule cytoskeleton.      

 To test our hypothesis that the Kif5B motors present on the nuclear envelope are 

essential for nuclear distribution in myotubes, we depleted endogenous kinesin heavy chain 

and used an inducible dimerization system to control recruitment of truncated, active Kif5B 

motors to the nucleus.  Nuclei were only distributed throughout myotubes when HA-Kif5B(1-

807)-FRB decorated the nuclear envelope, arguing strongly for the necessity of nuclear-

based kinesin motors.  Furthermore, we show that Kif5B binds to the nuclear envelope 

protein nesprin-2 and that this interaction is mediated by the binding of a conserved LEWD 

motif in nesprin to the TPR domain of kinesin light chain.  Expression of a dominant negative 

nesprin-2α-KASH construct partially displaces Kif5B from the nuclear envelope, and causes 

nuclei to aggregate.  Nuclear aggregation is even more pronounced when KLC expression is 

depleted with siRNA, and although concurrent expression of wild-type KLC2 rescues nuclear 

distribution, expression of KLC mutants that prevent localization to the nuclear envelope fails 

to prevent nuclear aggregation.  Together, these data provide substantial evidence for a 

model in which Kif5B acts from the nuclear surface to move nuclei along the microtubule 

cytoskeleton in developing muscle cells.  In this chapter, I discuss the significance of these 

findings and provide insight into directions for future research.        
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The early observations of nuclear movement in muscle cells were performed in 

primary chick or rat myotubes.  Importantly, the nuclear dynamics that we observe in the 

immortalized C2C12 mouse muscle cell line accurately recapitulate the descriptions provided 

in the earlier works (Capers, 1960; Cooper and Konigsberg, 1961; Englander and Rubin, 

1987).  Yaffe & Saxel originally established the C2 cell line almost 40 years ago, and it was 

subsequently subcloned to yield the rapidly differentiating C2C12 line (Blau et al., 1985; 

Yaffe and Saxel, 1977).  Though these cells do not differentiate into fully mature muscle 

fibers, they do mimic early muscle cell development in many regards and are amenable to 

transfection and drug treatments.  Notably, many of our findings in the C2C12 cells regarding 

microtubule dynamics and nuclear positioning have also been recently reported in primary 

mouse myotubes and in Drosophila embryos (Cadot et al., 2012; Folker et al., 2014; Metzger 

et al., 2012), providing validation of the cells as a model for the study of nuclear dynamics.  

Ideally, these observations of nuclear movement will one day be confirmed in developing 

mammalian muscle cells in vivo.  Current technologies allow live imaging of adult mouse 

muscle fibers (Oddoux et al., 2013), but as imaging technologies advance, we may gain 

better access to dynamic processes occurring during embryonic and postnatal muscle 

development.  Despite this current limitation, the central aggregation of myonuclei found in 

the muscle-specific conditional Kif5B knock-out mouse (Wang et al., 2013a), strongly argues 

for the necessity of kinesin-1 in driving myonuclear positioning in vivo.   

 Aberrant positioning of nuclei in muscle cells is correlated with muscle dysfunction.  

In the ensconsin-null flies, larval crawling is significantly slower (Metzger et al., 2012), and 

the muscle-specific Kif5B-null mice exhibit severe limb dystrophy and do not survive as they 

are unable to move and can not maintain respiration (Wang et al., 2013a).  Nuclei are also 

mispositioned in patients with muscle diseases.  For instance, the centronuclear myopathies, 

as their name suggests, are characterized, in part, by numerous centrally-localized nuclei.  It 

is believed that the congenital X-linked myotubular myopathy is the result of arrested 
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development of muscle cells, and it is not clear whether fibers ever develop to the point 

where peripheral nuclei are observed.  It is unclear whether growth arrest also underlies the 

autosomal forms of centronuclear myopathy, but prominent central localization of nuclei 

remains a hallmark of the diseases (Pierson et al., 2005).  Additionally, aggregates of nuclei 

at the cell periphery have been noted in patients with Emery-Dreifuss muscular dystrophy 

(Mattioli et al., 2011). 

While the absence of synaptic nuclei has clear repercussions for synaptic 

maintenance and transmission (Jevsek et al., 2006; Mejat et al., 2009; Merlie and Sanes, 

1985; Zhang et al., 2007b), the resulting effects of aggregation of extrasynaptic nuclei at the 

myotube periphery or abnormally elevated levels of centrally localized nuclei are less 

obvious.  According to the myonuclear domain theory (Hall and Ralston, 1989; Pavlath et al., 

1989; Ralston and Hall, 1989), aggregation of nuclei might alter the dispersal of mRNA and 

proteins such that certain areas of the fiber are deficient.  Nuclei located in the center of the 

fiber may experience different forces during muscle contraction than those properly anchored 

at the periphery, leading to increased nuclear fragility.  This may have consequences for 

genome stability and/or gene expression that could have downstream effects on muscle fiber 

structure and function.  While the aberrant position of nuclei may simply be a symptom of 

some of these diseases, a growing number of mutations have been found in nuclear 

envelope proteins involved in nuclear movement and positioning (Mejat and Misteli, 2010), 

suggesting that in these instances, mispositioned nuclei may be more directly associated 

with the disease phenotype. 

 As we learn more about the mechanisms of nuclear movement during muscle cell 

development and anchoring of nuclei in mature fibers, the consequences of improperly 

positioned nuclei on muscle function will also become more apparent.  Hopefully, this will 

allow us to improve therapies for muscle diseases by preventing or alleviating the negative 

consequences of mispositioned nuclei.  To this end, the findings described in this 
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dissertation substantially advance our understanding of nuclear dynamics and positioning 

within developing skeletal muscle cells.    

 Furthermore, our work indicates that the mechanisms driving nuclear dynamics in 

myotubes are very similar to those used by other cells.  Our discovery of the conserved 

kinesin light chain-binding motif in nesprin-1 and nesprin-2, has broad implications for 

nuclear positioning in other tissues, as these proteins are widely expressed throughout the 

body.  The more we learn about how kinesin-1 and dynein bind to the nuclear envelope in 

muscle, the more hypotheses we can generate for nuclear movement and positioning in 

other cell types, such as neurons and epithelial cells where nuclear positioning is also 

essential for normal tissue development and cell function.     

 

 

Remaining Questions and Future Directions 

Though this work has significantly enhanced our understanding of how nuclei move 

through developing myotubes, there is still a great deal to understand about nuclear positioning in 

muscle.  Going forward, some of the pertinent areas that should be addressed include:  

 

The role of MAP7/Ensconsin in nuclear dynamics 

In the model proposed by Metzger et al. (2012), Kif5B and MAP7 interact to cross-

link and slide anti-parallel microtubules, thereby pushing the attached nuclei apart.  Evidence 

for this model is based on yeast 2-hybrid and co-immunoprecipitation data showing an 

interaction between the two proteins as well as data that a chimera construct including the 

motor domain of Kif5B and the microtubule-binding domain of MAP7 (K560-EMTB) rescue 

the nuclear positioning phenotype caused by MAP7 depletion (Metzger et al., 2012).  While 

other studies have found that ensconsin recruits the motor to microtubules and activates 

kinesin-1 activity, these studies have not been able to find a stable interaction between 
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ensconsin and kinesin-1, suggesting that the two proteins may only interact transiently 

(Barlan et al., 2013; Sung et al., 2008).  While this argues against the MAP7-Kif5B sliding 

mechanism, it is important to note that kinesin-1 has a second microtubule-binding domain in 

the tail region, and it has been reported that kinesin-1 itself can cause sliding of microtubules 

(Barlan et al., 2013; Jolly et al., 2010; Straube et al., 2006; Urrutia et al., 1991; Vale et al., 

1985a).  Therefore, MAP7 may serve to alleviate kinesin-1 auto-inhibition, allowing kinesin-1 

to slide microtubules (Barlan et al., 2013).  Going forward, it will be important to test whether 

Kif5B does slide microtubules in myotubes, and whether this is dependent on the 

microtubule-binding domain of MAP7, or just activation of the motor by the kinesin-binding 

domain of MAP7.  If Kif5B does cross-link and/or slide microtubules in myotubes, does this 

influence nuclear movement?  While our data indicate that Kif5B is necessary on the nuclear 

envelope for proper nuclear distribution, it does not rule out an additional role for kinesin-

dependent microtubule sliding in myotube development.  Possible ways to test whether 

microtubule-microtubule sliding influences nuclear dynamics might include preventing sliding 

by inducing cross-linking of microtubules, or removing the microtubule-binding domain in the 

tail of Kif5B.  Alternatively, sliding activity could be enhanced through ectopic expression of 

the mitotic Eg5 kinesin.        

 While I have shown that the localization of Kif5B to the nuclear envelope is 

necessary for proper nuclear distribution, it is currently unclear whether binding of KLC to 

nesprins on the envelope is sufficient for motor activation.  Though binding of the tryptophan-

acidic motifs in calsyntenin-1 to the TPR domain of KLC activates kinesin-1 (Kawano et al., 

2012), it is unknown whether all WD-containing KLC-binding proteins have the same effect.  

Interestingly, nuclei decorated with the constitutively active HA-Kif5B(1-807)-FRB construct 

can often be found at the extreme ends of the myotubes (Figure 3.5).  This exaggerated 

positioning compared to nuclei in untreated myotubes suggests that endogenous Kif5B may 

not always be active while bound to the nucleus.  This raises the possibility that MAP7 may 
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activate Kif5B on the nucleus; in the absence of MAP7, nuclear-bound Kif5B would be 

autoinhibited and unable to drive nuclear dynamics, explaining the need for both Kif5B and 

MAP7 in developing myotubes.  Furthermore, because MAP7 decorates microtubules, 

activation of motors by MAP7 could occur readily when microtubules are proximal to the 

nuclear envelope, but in their absence the motors are inhibited, reducing futile ATP 

consumption.  Differential activation of motors on one side of the nucleus might also account 

for nuclear rotation.  The question of kinesin-1 activation on the nuclear envelope could be 

addressed by eliminating the need for motor activation through the use of hinge-less, 

unfolded kinesin constructs (Barlan et al., 2013) that retain their targeting to the nuclear 

envelope, and assessing the effects on nuclear dynamics and distribution.  Additionally, the 

use of fluorescence resonance energy transfer (FRET) sensors placed on the kinesin motor 

domain and tail domain may help elucidate the distribution of active and inactive motors on 

the nuclear envelope (Cai et al., 2007).  

  

Are nesprins the only Kif5B cargo adaptors on the nucleus? 

I have shown that kinesin light chain binds to the LEWD motif in nesprin-2 and that 

KLC mutations that disrupt this interaction prevent the localization of Kif5B to the nuclear 

envelope in myotubes.  Additionally, I showed that expression of the dominant negative 

nesprin-2α-KASH construct in myotubes reduces the level of KLC and KHC on the nuclear 

envelope, decreases nuclear rotation and increases nuclear aggregation.  Together these 

data argue that nesprins act as kinesin-1 cargo adaptors for the nucleus.  While the 

incomplete removal of Kif5B from the nuclear envelope with the dominant negative KASH 

construct (Figure 2.7), could simply indicate that we did not fully displace all of the nesprins 

from the envelope (a possibility we were unable to assess due to our lack of reliable nesprin 

antibodies), it could also indicate that there are additional KLC binding proteins on the 

nuclear envelope.  Importantly, this protein or proteins must also bind KLC in the WD-motif 
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binding groove since kinesin-1 was completely absent from the envelope when KLC was 

mutated.   

A possible protein that could serve as an additional cargo adaptor for the nucleus is 

RanBP2.  This protein, which is also known as Nup358, serves as a kinesin-1 cargo adaptor 

for mitochondria (Cho et al., 2007).  However, it is also a part of the nuclear pore complex 

and has already been shown to recruit kinesin to the nuclear surface specifically during G2 of 

the cell cycle (Splinter et al., 2010).  While RanBP2 interacts with the stalk and tail domains 

of Kif5B and Kif5C (Cai et al., 2007), the complex also contains KLC (Cai et al., 2001).  

Interestingly, an examination of the sequence of the mapped kinesin binding domain of 

RanBP2 reveals a LEWD motif, suggesting that KLC may also mediate the binding of 

kinesin-1 to RanBP2.  Furthermore, RanBP2/Nup358 was recently found to be upregulated 

during myogenesis, such that more RanBP2 is found on the nuclear envelope in myotubes 

compared to myoblasts (Asally et al., 2011).  Given these observations, it will be important to 

determine whether Kif5B is not only binding to nesprins on the nuclear envelope in 

developing muscle cells, but whether it is also binding RanBP2.  Currently, we have 

experiments underway to more completely deplete nesprin-1 and nesprin-2 from the nuclear 

envelope using siRNA in conjunction with the dominant negative KASH construct.  Should 

we find that substantial Kif5B levels remain on the nuclear envelope following this treatment, 

the obvious next step is to deplete RanBP2 in order to determine whether it also serves as a 

kinesin-1 cargo adaptor for the nucleus in developing muscle cells.     

 

How does dynein localize to the nuclear envelope?  

The current data indicates that dynein and dynactin also localize to the nuclear 

envelope in myotubes (Cadot et al., 2012; Folker et al., 2014; Wilson and Holzbaur, 2012).  

However, we know very little about the adaptor proteins that recruit dynein to the nuclear 

surface in muscle cells.  In the brain, there is evidence that dynein/dynactin binds to nesprin-
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1 and nesprin-2 and mediates interkinetic nuclear migration as well as nuclear movements 

during neuronal migration (Yu et al., 2011; Zhang et al., 2009b).  Though our GST-binding 

assays showed robust binding of Kif5B to residues 6348-6552 of nesprin-2 (Figure 2.7), 

dynein did not bind to this fragment.  Further binding assays should be performed to verify 

and map the association of dynein/dynactin with nesprins in muscle cells and other tissues.   

 RanBP2 may also indirectly recruit dynein to the nuclear envelope in myotubes.  In 

addition to binding kinesin-1, RanBP2 also binds the motor adaptor protein BICD2 (Splinter 

et al., 2010).  The N-terminus of BICD2 binds to dynein and dynactin and recruits the motor 

complex to organelles, including the nucleus (Hoogenraad et al., 2001; Hu et al., 2013; 

Kapitein et al., 2010b; Splinter et al., 2010).  As noted above, the expression of RanBP2 

increases during muscle cell differentiation (Asally et al., 2011), and thus may aide in 

recruiting the dynein complex to the nuclear envelope in myotubes.  The nuclear pore 

complex protein Nup133 might also anchor dynein to the nuclear envelope in myotubes, as it 

has been previously shown to anchor dynein/dynactin through a complex involving CENP-F 

and NudE/NudEL (Bolhy et al., 2011).  Finally, dynein light intermediate chain 1 binds to the 

centrosomal protein pericentrin (Tynan et al., 2000), which redistributes to the nuclear 

envelope during muscle cell differentiation (Bugnard et al., 2005; Srsen et al., 2009).  

Therefore, pericentrin may recruit dynein to the nuclear envelope in myotubes. 

  

Are microtubule minus ends released from the nuclear envelope? 

In the microtubule sliding model of myonuclear movement proposed by Metzger et al. 

(2012), as well as the dynein-mediated pulling mechanism proposed in their subsequent 

paper (Cadot et al., 2012), it is essential that at least some microtubules remain attached at 

their minus ends to the nuclear envelope.  While microtubule nucleation from the nuclear 

envelope following nocodazole wash-out is readily observed (Tassin et al., 1985) and 

imaging of EB3-GFP comets shows constant nucleation of microtubules at a rate of 1-10 per 
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100 seconds in unperturbed myotubes (Zaal et al., 2011), to the best of my knowledge, there 

has been no examination of whether the microtubule minus-ends remain attached at the 

nuclear surface.  Given that microtubule minus ends are released from the centrosome in 

migrating cells (Abal et al., 2002) and the polarized microtubule array in epithelial cells is 

thought to be derived from microtubules released from the centrosome (Keating et al., 1997; 

Mogensen, 1999), it is very likely that microtubules are also released from the nuclear 

surface in myotubes.  While the high density of microtubules in unperturbed myotubes 

hampers tracing the origin of individual microtubules, it may be possible to begin to address 

this question by manipulating the levels of the microtubule severing protein fidgetin, which 

localizes to the centrosome and controls the number and length of astral microtubules in 

mitotic cells (Mukherjee et al., 2012).   

Additionally, though it is likely that at any given time, a population of microtubule 

minus-ends are still attached to the nuclear envelope, it is probable that these microtubules 

are severed at sites distant from the centrosome by enzymes such as katanin or spastin 

(Evans et al., 2005; McNally et al., 1996).  While short microtubules may extend from one 

nucleus to another in a myotube, it is difficult to imagine how nuclei tens of microns away 

from one another could be connected by nuclear-bound microtubule arrays.  Furthermore, it 

remains unclear how sliding of nuclear-bound microtubules would account for the nuclear 

rotation, deformation, and passing events that we observe in the myotubes.  

 

The contribution of cytoplasmic flow to nuclear dynamics in myotubes 

 During the course of imaging nuclear dynamics, we often observed directed steams 

of cytoplasm around the nuclei (Video 1).  Movement of small phase-dense organelles 

appeared to be swept along in these streams, rapidly moving along the long-axis of the 

myotubes.  Interestingly, the predominant direction of nuclear rotation often coincided with 

the direction of the streaming, suggesting that fluid flow in the myotube may also influence 
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nuclear dynamics.  Additionally, depolymerization of the microtubules with nocodazole 

decreased the rate and changed the visual appearance of the cytoplasmic flow in myotubes.   

 Cytoplasmic flow influences nuclear dynamics and positioning in a number of other 

cell systems.  For example, in the filamentous fungi, Ashbya	
  gossypii, nuclei are not only 

subject to dynein-dependent microtubule-based pulling forces, but are also moved through 

hyphae by bulk cytoplasmic fluid flow driven by osmotic pressure gradients (Lang et al., 

2010).  These fluid flows not only drive colony growth, but physical mixing of the nuclei is 

believed to preserve genetic diversity within the colony (Roper et al., 2013).  In plants, 

including Chara and Arabidopsis, cytoplasmic flow is driven by actin polymerization as well 

the movement of myosin XI motors along bundles of actin filaments.  Active transport of 

organelles by the motors produces hydrodynamic flow that can efficiently transport cytosolic 

molecules and unbound organelles (Blau et al., 1985; Esseling-Ozdoba et al., 2008). 

Motor-driven fluid flow is also important during oogenesis in Drosophila for mixing the 

contents of maturing oocytes.  However, unlike plants, this flow is driven kinesin-1 motor 

activity along the microtubule cytoskeleton (Palacios and St Johnston, 2002; Serbus et al., 

2005).  Loss of kinesin-1 activity slows or blocks streaming (Ganguly et al., 2012; Serbus et 

al., 2005), and results in mispositioning of the nucleus in the oocyte (Williams et al., 2013).  It 

is also interesting to note that ensconsin/MAP7 mutants also block cytoplasmic streaming 

leading to similar defects in nuclear position (Sung et al., 2008). 

 Based on these findings in the fly, it is tempting to speculate that the cytoplasmic flow 

we observe in myotubes might also be driven by the activity of Kif5B, however, we have not 

yet been able to suitably evaluate this possibility.  More careful analysis of streaming in 

myotubes, including the use of tracer particles and current image analysis techniques for 

fluid dynamics should be performed, and the role of Kif5B and MAP7 in streaming should be 

evaluated.  While we have shown that Kif5B motors are essential on the nuclear envelope for 

nuclear distribution, we have not ruled out an additional role for Kif5B in driving fluid flow.  It 
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is also interesting to consider whether the nuclear passing events that occur in myotubes 

may be driven at least in part by cytoplasmic flow, and whether passing serves to spread 

newly incorporated nuclei amongst the earlier incorporated myonuclei, thereby ensuring that 

gene expression patterns do not vary dramatically throughout the myotube as it develops. 

 

How do nuclei stop translocating and become anchored? 

As the myotube matures, the nuclei move from the interior of the cell to the 

periphery, and become anchored.  A number of proteins, including nesprins and the 

intermediate filament protein desmin, have been proposed to help anchor nuclei (Chapman 

et al., 2014; Grady et al., 2005; Ralston et al., 2006; Shah et al., 2004; Zhang et al., 2010; 

Zhang et al., 2007b), but we do not yet understand how the nuclei stop moving and achieve 

their final position within the myofiber.   

Examining nuclear clustering at the developing neuromuscular junction is the most 

straightforward place to begin these investigations because work in primary chick myotubes 

has revealed that when translocating nuclei encounter a cluster of acetylcholine receptors on 

the cell membrane, nuclei stop moving (Englander and Rubin, 1987).  If the AChR cluster 

disperses, the nuclei resume movement, suggesting that cytoskeletal rearrangements known 

to be induced by AChR clustering (Brosamle and Kuffler, 1996; Connolly and Graham, 1985; 

Lubit, 1984; Schmidt et al., 2012; Shi et al., 2012; Wu et al., 2010), restrict nuclear mobility 

and trap nuclei at the developing NMJ.  In support of this hypothesis, proteolytic dissociation 

of mature muscle fibers, but not denervation in vivo, results in dispersal of the synaptic 

nuclei, likely through degredation of the extracellular matrix and associated disorganization 

of the underlying postsynaptic cytoskeleton (Brosamle and Kuffler, 1996).  Despite these 

findings, it is not known which cytoskeletal elements are necessary for restricting the moving 

nuclei, and whether the nuclei stop because the cytoskeletal network is so dense it blocks 
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the path, or because there are specific interactions between proteins on the nuclear 

envelope and the cytoskeleton under the developing synapse, or both.   

Initial investigation of these questions may be addressed in cultured cells following 

induction of AChR clustering by defined application of the neural form of the proteoglycan 

agrin to the myotube membrane (Bromann et al., 2004; Godfrey et al., 1984; Schmidt et al., 

2012; Tourovskaia et al., 2008).  However, these experiments should ideally be performed in 

vivo, or at least in a co-culture system with motor neurons, allowing for the formation of a 

synapse (Morimoto et al., 2013).  Examination of the actin, microtubule and desmin 

cytoskeleton at the developing synapse over time, combined with perturbation of these 

networks with various drugs such as nocodozole, phalloidin, or latrunculin, should be 

performed to assess the contribution of these networks on local nuclear dynamics.    

Additionally, a more complete examination of the nesprin isoforms present on the nuclei at 

developing and mature synapses may yield further insight into the mechanisms of nuclear 

anchoring (Apel et al., 2000; Grady et al., 2005; Randles et al., 2010).      

 

Nuclear movement and positioning during muscle regeneration 

 Following significant damage to the muscle, fibers are either repaired, or new 

myotubes are generated.  During fiber repair, the damaged segment is first resealed by the 

sarcolemma, debris is removed by leukocytes, and satellite cells are activated, resulting in 

both proliferation and subsequent fusion of differentiated myoblasts to the damaged fiber 

(Papadimitriou et al., 1990; Yin et al., 2013).  In either newly generated myotubes or repaired 

fibers, incorporated nuclei undergo similar movements as those nuclei in the developing 

muscle, in that the nuclei first move to the center of the myotube or fiber and are then later 

moved out to the cell periphery (Dubowitz and Sewry, 2007; Lash et al., 1957; Li et al., 2011; 

Schmalbruch, 1976).   
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 While it is likely that the mechanisms driving nuclear movements in developing 

myotubes are also responsible for nuclear positioning in regenerating muscle, this remains to 

be tested.  It will be important to determine how the microtubule cytoskeleton is reorganized 

in the myofiber following muscle damage and whether Kif5B and dynein are recruited to the 

surface of newly incorporated nuclei.  It has been noted that the central nuclei in 

regenerating mouse fibers are strongly nesprin-1 positive (Apel et al., 2000), similar to the 

nuclei in immature myotubes, suggesting that motors likely decorate these nuclei as well. 

  Studying fiber regeneration in healthy individuals may help us to understand why 

nuclei are first positioned in the center of the fiber and whether this localization is necessary 

for the subsequent repair of muscle architecture in the damaged region.  It may also provide 

additional insight into the consequences of improperly positioned nuclei on muscle function, 

and help us to better understand the cost of continual rounds of fiber repair in muscle 

disease pathology.  
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CHAPTER 5:  Methods and Materials 
	
    

Reagents 

The following constructs were generously provided: pRFP-Lmna and pGFP-emerin 

(Dr. Howard Worman, Columbia University); mCherry-GPP130 (Dr. Adam Linstedt, Carnegie 

Mellon University); DsRed1-Centrin-2 (Dr. Joseph Gleeson, University of California San 

Diego); GFP-KIF5C tail (Dr. Mitsutoshi Setou, Hamamatsu University School of Medicine), 

EGFP-Nesprin2α-KASH (human, residues 483-542) (Dr. Catherine Shanahan, King’s 

College London); YFP-α-actinin (Dr. Joeseph Sanger, SUNY Upstate Medical University); 

GFP-EB3 (Dr. Anna Akhmanova, University Utrecht); HA-Kif5B(1-807)-FRB (human) and 

PEX3-mRFP-FKBP12 (human PEX3; Casper Hoogenraad, Utrecht University); EGFP-

nesprin-2 constructs (human, residues 6146-6799 and 6348-6552)(Angelika Noegel, 

University of Cologne); HA- and EGFP-tagged mouse KLC2 WT and R251D, N287L, R312E 

mutant constructs (Mark Dodding, King’s College London); pRK5-Myc-KifB and –Kif5C 

(mouse)(Josef Kittler, University College London); EGFP-MAP7 (mouse)(Edgar Gomes, 

Pierre and Marie Curie University Paris).   

The following constructs were generated in the Holzbaur Laboratory by Mariko 

Tokito.  FKBP-EGFP-KASH was generated by polymerase chain reaction using the 

2xFKBP12 fragment from PEX3-mRFP-FKBP and subcloned into the EGFP-nesprin-2α-

KASH vector.  Myc-Kif5B-Halo was generated by first inserting the Halo-tag from the pHTC 

HaloTag CMV-neo vector (Promega) at the C-terminus of pRK5-Myc-Kif5C and then Kif5C 

was replaced with Kif5B from pRK5-Myc-Kif5B.  EGFP-nesprin-26146-6799 and EGFP-nesprin-

26348-6552 WD/AA mutants were generated using the QuikChange Lightning Multi Site-

Directed Mutagenesis Kit with the mutagenic primer                                                             

(5’-CCCCCTGGAGGCGGCCCACACAGGC3-3’).  The mutant fragment was sequenced in 
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its entirety and sub-cloned into EGFP-nesprin-26146-6799 and EGFP-nesprin-26348-6552.  Final 

WD/AA mutagenic constructs were sequenced for accuracy.  

 

All siRNA oligos were from GE Healthcare Dharmacon.   

siRNA oligos used in the experiments in Chapter 2 were directed against mouse 

KIF5B (GenBank NM_008448, EG-ID 16573, 5’-CAACAGACAUGUCGCAGUU-3’, targets 

ORF), scrambled control: (5’-GAACGAAUGUCGCUUACCAUU-3’), and mouse dynein heavy 

chain (GenBank NM_030238, 5’-GAAAUCAACUUGCCCGAUAUU-3’ targets ORF), 

scrambled control: (5’GACCGAUAAUCAAACCUGUUU-3’).   

siRNA oligos used in the experiments in Chapter 3 were directed against mouse 

Kif5B (Gene ID 16573, 5’-GGAGGAGGCUCAUUUGUUC-3’, targets ORF in the tail domain 

of the mouse transcript that is absent from the truncated, human Kif5B(1-807) dimerization 

construct); mouse KLC1 (NM_008450, EG-ID16593, 5’-GAGUAUGGCGGCUGGUAUA-3’, 

targets ORF); mouse KLC2 (NM_008451, EG-ID 16594, 5’-CUGUAGAAAUAAAGACGAU-3’, 

targets 3’UTR).  

Primary antibodies include anti-alpha-tubulin (YL1/2, AdD Serotec), anti-GFP (GFP-

1020, Aves Labs, Inc.), anti-GFP (JL8, Clontech), anti-DHC (R-325, Santa Cruz 

Biotechnology, Inc.), anti- KIF5B (ab15705, Abcam) anti-α-actinin (Clone EA-53, Sigma-

Aldrich), anti-KLC 1/2 (63-90, from Dr. Scott Brady, University of Illinois at Chicago), anti-

KLC1 (ab174273, Abcam), anti-KHC (MAB1614, Clone H2, Millipore), anti-KHC (SUK4, 

Abcam), anti-DIC (MAB1618, Millipore), anti-p150Glued (BD Biosciences), anti-GAPDH (mAb 

9484, Abcam), anti-HA (Covance), and anti-Myc (Abcam Ab 9106).  Alexa fluorophore-

conjugated secondary antibodies and Hoechst 33342 (H21492) were from Molecular Probes 

(Invitrogen).  HRP-conjugated secondary antibodies and Cy2-conjugated goat anti-chicken 
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antibodies were from Jackson ImmunoResearch Laboratories, Inc.  A/C Heterodimerizer 

ligand (0.5 mM) was obtained from Clontech.  

 

C2C12 Cell Culture, transfections and drug treatment 

Mouse C2C12 myoblasts (American Type Culture Collection, Manassas, VA, CRL-

1772) were maintained at 37°C/5% CO2 in growth medium (Dulbecco’s modified Eagle’s 

medium (DMEM) with 2 mM glutamax and 10% fetal bovine serum).  To induce myogenic 

differentiation, myoblasts were grown to ~70% confluence and switched to differentiation 

medium (DMEM with 2 mM glutamax and 10% horse serum) for 3-7 days.  Media was 

replaced every 24 hours.  For live cell imaging, cells were grown on either 35 or 50 mm glass 

bottom dishes (FluorDish, World Precision Instruments) coated with 5ug/cm2 rat tail collagen, 

type 1 (BD Biosciences).  For immunofluoresence analyses, cells were grown on collagen-

coated 1-cm2 squares of ACLAR embedding film (Ted Pella, Inc.).   

DNA transfections were performed with Lipofectamine 2000 (Invitrogen).  For RNAi 

knockdown, cells were transfected with siRNA duplexes (Thermo Scientific Dharmacon) at a 

final concentration of 50nM using Lipofectamine RNAiMax (Invitrogen).  Unless otherwise 

noted, cells were transfected four days after induction of differentiation and imaged 72 hours 

post-transfection.  siRNA knockdown was assessed by lysing cells in HEM lysis buffer with 

1% Triton X-100 and protease inhibitors (Roche);  total protein was measured using the BCA 

protein assay kit (Pierce).  Equal total protein was separated by SDS-PAGE, transferred to 

Immobilon–PVDF membrane (Millipore, Billerica, MA), and subjected to immunoblot 

analysis.  Chemiluminescence was enhanced by SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific) and exposed to film or detected with the G:Box and GeneSys 
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digital imaging system (Syngene).  Densitometry was performed with Image-J (Fiji) (National 

Institutes of Health, Rockville, MD).   

For motor recruitment assays in Chapter 3, cells were transfected with DNA ~84 

hours prior to cell fixation or live imaging and treated with siRNA ~12 hours following DNA 

delivery (72 hour siRNA treatment).  Control conditions were similarly treated with 

Lipofectamine 2000 and RNAiMax.  Unless otherwise noted, cells were treated with 500 nM 

A/C Heterodimerizer ligand (Clontech) continuously starting 1 hr after DNA transfection.  

Assay results were similar when the order of DNA and siRNA addition was reversed, 

however, expression levels of the transfected constructs were less robust.  For kinesin light 

chain assays, cells were concurrently transfected with DNA and siRNA (KLC1 & KLC2 at 1:1 

ratio) 72 hours prior to cell fixation or live imaging.  Labeling of cells transfected with Myc-

Kif5B-Halo was performed with HaloTag TMR Ligand (Promega G8252) according to the 

manufacturer’s instructions. 

Myotubes were treated with nocodazole at 10 or 20 µg/ml (Sigma-Aldrich) or DMSO 

control for 30 min at 37°C.  Myotubes were treated with 50 µM N-benzyl-ptoluene 

sulphonamide (BTS; Tocris Bioscience) in DMSO to inhibit myofibril contraction.   

Immunofluorescence 

Myotubes grown on ACLAR film were fixed with 4% paraformaldehyde (PFA) and 

permeabilized with 0.1% Triton X-100.  Alternatively, myotubes were fixed with ice-cold 

methanol with 1 mM EDTA or 1:1 acetone-methanol as noted.  Fixed cells were incubated 

with primary and secondary antibodies as noted then stained with Hoechst 33342 (0.5 µg/ml) 

and mounted on 40mm glass coverslips with ProLong Gold antifade reagent (Invitrogen).  
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GST-pulldown assays  

GST-Nesprin2 constructs from Angelika Noegel and Iakowos Karakesisoglou 

(Schneider et al. 2011) were expressed in BL21 DE3 E. coli and purified by binding to 

Glutathione-SepharoseTM 4B (Amersham).  C2C12 myotube lysates were prepared using 

HEM lysis buffer (50 mM HEPES, 25 mM NaCl, 1 mM EDTA, 1 mM MgCl2, pH 7.0 plus 0.1% 

Triton X-100 and protease inhibitors (Roche)).  Lysates were incubated overnight at 4°C with 

equal amounts of purified GST fusion proteins coupled to GST-Sepharose beads.  

Interacting proteins were eluted with 40 mM Glutathione, pH 7.5, and analyzed by western 

blot.   

Co-Immunoprecipitation  

COS7 cells (American Type Culture Collection, CRL-1651) were transfected using 

Fugene6 (Roche) according to the manufacturer’s instructions and harvested 15-16 hours 

after transfection.  Two 10-cm plates of cells per condition were lysed with 300 µl ice-cold 

HEM (50 mM HEPES, 25 mM NaCl, 1 mM EDTA, 1 mM MgCl2, pH 7.0) buffer with 0.1% 

Triton X-100 and protease inhibitor cocktail (Roche).  Cells were sheared by 5 passages 

through a 20-gauge needle and incubated on ice for 30 minutes, followed by centrifugation at 

13,000 g for 15 minutes at 4°C.  The resulting supernatant was incubated for 60 minutes with 

Protein- G Dynabeads that were pre-incubated with either anti-HA (Covance) or anti-EGFP 

(JL8, Clontech) antibodies.  Beads were washed and boiled in 50 µl SDS-loading buffer.  

Samples were analyzed by western blot.  EGFP was detected on immunoblots using anti-

EGFP raised in chicken (Aves Lab, Inc.) to avoid detection of the mouse anti-EGFP IgG 

bands. 
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Microscopy 

All live cell imaging was performed in an environmental chamber set to 37°C; cells 

were imaged in phenol red-free DMEM with 25 mM HEPES (Gibco), 10% horse serum, and 

2mM Glutamax, overlaid with mineral oil (Sigma-Aldrich).  Where noted, DNA was labeled 

with Hoechst 3342 (0.5 µg/ml) for 20 minutes prior to imaging.   

For nuclear translocation analyses in Chapter 2, imaging was performed on a Leica 

DMI6000B inverted epifluorescence microscope using an Apochromatic 63x 1.4 NA oil-

immersion objective with 1.6x magnifier (Leica Microsystems).  Digital images were acquired 

with a Hamamatsu ORCA-R2 charge-coupled device camera using LAS-AF software (Leica 

Microsystems).  Phase images were taken every 30 sec for 60 or 180 min.   

All fluorescence imaging was performed on a Perkin Elmer UltraView Vox Spinning 

Disk Confocal with a Nikon Ti Microscope equipped with PFS, a motorized stage, and 

40x/1.30 NA, 60x/1.49 NA, and 100x/1.49 NA oil-immersion apochromatic objectives (Nikon).  

Digital images were acquired with a Hamamatsu EMCCD C9100-50 camera and Volocity 3D 

Image Analysis Software (Improvision/Perkin Elmer).   

For nuclear rotation analyses in Chapter 2, Z-series encompassing the depth of each 

myotube (~15-30 µm) were obtained with a 0.5 µm step size.  Images were taken at a rate of 

1 z-series per minute for 15 minutes.  For dual-color movies, z-series of each fluorophore 

were taken consecutively to minimize exposure times.   

GFP-EB3 analyses in Chapter 2 were performed using an Apochromatic 100x 1.49 

NA oil-immersion objective (Nikon).  Images were taken in a single z-plane at a rate of 1 

frame every 3 seconds.   

In Chapter 3, long-term imaging of PEX3-mRFP-FKBP in whole myotubes was 

performed at 40x, z-series encompassing the entire depth of each myotube (~20-30 µm, 1 
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µm z-step), were obtained every 15 minutes with from adjacent areas with 10% overlap 

using the motorized stage.  Images were stitched together digitally in Volocity to obtain 

composite images.  Fast imaging of PEX3-mRFP-FKBP was performed 60x in a single z-

plane at a rate of 20 frames/minute.  Following labeling of the Halo-tag with TMR ligand, 

single z-plane images of EGFP-KLC2 and Myc-Kif5B-Halo-TMR were obtained in live cells at 

60x. 

Images of fixed myotubes were acquired at 40x, 60x, or 100x.  Z-series 

encompassing the entire depth of each myotube (~15-30 µm) were taken at a step-size of 

0.5 µm.  For analysis of nuclear distribution in Chapter 2, z-series (1 µm z-step) of adjacent 

areas were obtained at 40x with 20% overlap using the motorized stage.  Images were 

stitched together digitally in Volocity to obtain composite images of ~1000 x 1000 µm.  

Similar imaging parameters were used for the nuclear distribution analyses in Chapter 3, 

however, for induced motor recruitment assays in Figure 3.2, images were acquired at 60x 

for better visualization of the presence or absence of HA signal on the nuclear envelope. 

Image analysis 

To assess nuclear translocation, the centroid of each nucleus was manually tracked 

using LAS-AF software (Leica Microsystems); mean velocity reported reflects both 

translocating and non-moving nuclei.  To quantify nuclear rotation, bright Hoechst-dye-

positive chromocenters in individual nuclei were automatically tracked in XYZ over time using 

Volocity 3D Image Analysis Software (Improvision/Perkin Elmer).  Principal component 

analysis was used to find the angular velocity and translational speed from the tracked 

chromocenter positions.  Analysis routines were implemented in Matlab.  For analyses of 

nuclear rotation in treated myotubes, angular velocity was first quantified in a subset of nuclei 

exhibiting a wide range of rotation.  These nuclei then served as standards for comparison 
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as rotation of the remaining nuclei was visually assessed and binned into 30° categories.  

The direction of GFP-EB3 comets was quantified from the resulting overlay images of three 

sequential pseudo-colored frames (Image-J).  Comet direction was evaluated with regard to 

the long-axis of the myotubes.   

Nuclear distribution was assessed in stitched images of fixed myotubes using 

Volocity 3D Image Analysis software.  The position of the ends of the myotube and the 

centroid of each nucleus in the myotube was defined XY; only unbranched myotubes (<800 

µm in length, Chapter 2; <600 µm in length, Chapter 3) were included in the analysis.  

Nuclear position was linearized along the myotube length and distance between adjacent 

nuclei was calculated.  Nuclear position as a percent of the distance along the myotube 

length was also determined.   

Movement of peroxisomes was tracked using the manual tracking function in Fiji.  Line scan 

analysis was also performed using Fiji; a 100-pixel line was drawn from the cytoplasm into a 

nucleus at a right angle, such that the center of the line coincided with the edge of the 

nucleus, as demarcated by the Hoechst dye signal.  The fluorescence intensity along this 

line was obtained in all pertinent channels for each nucleus.  Data was normalized to the first 

10 points of each line to account for variation in the cytoplasmic signal.   

All graphs and statistical analyses were performed using GraphPad Prism V5.0 

(GraphPad Software, Inc.).  Figures were assembled using Fiji and the Adobe Photoshop 

and Illustrator packages (Adobe, CA, USA).  

Sequence Alignments 

Sequence alignments were performed in Geneious Basic 4.8.3 (Biomatters, Ltd.). 
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APPENDIX:  Supplemental Video Legends 
 

 

Video 1.  Nuclei translocate and rotate in developing myotubes.  Time-lapse phase 

microscopy of nuclear migration in a D7 C2C12 myotube.  Frames were taken once every 30 

seconds for 3 hours, movie plays at 20 frames per second.  Scale = 10 µm.  Still images 

from this movie are shown in Figure 1F. 

 

Video 2.  Nuclei rotate in three dimensions in myotubes.  Representative examples of 

rotating nuclei stained with Hoechst 33342 to label DNA (blue).  Images were acquired by 

time-lapse microscopy using a spinning-disk confocal microscope.  Maximum projections of 

z-stacks are shown.  Frames were taken once a minute for 15 minutes, movies play at 5 

frames per second.  Scale = 2 µm.  Still images from the left two movies are shown in Figure 

2A.      

 

Video 3.  Nuclei rotate as intact structures in myotubes.  Representative examples of 

rotating nuclei in myotubes transfected with RFP-laminA (red), GFP-Emerin (green), DsRed-

Centrin-2 (red) or mCherry-GPP130 (red).  DNA was labeled with Hoechst 33342 (blue).  

Images were acquired by time-lapse microscopy using a spinning disk confocal microscope.  

Maximum projections of z-stacks are shown.  Frames were taken once a minute for 15 

minutes, movies play at 5 frames per second. Scale = 2 µm.  Still images from these movies 

are shown in Figure 2B. 
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Video 4.  Microtubules grow bidirectionally in the center of myotubes and are 

polarized at myotube ends.  Myotubes were transfected with GFP-EB3 (green).  DNA was 

labeled with Hoechst 33342 (blue).  Images were acquired by time-lapse microscopy using a 

spinning disk confocal microscope.  Frames were taken once every 3 seconds for 2 minutes, 

movies play at 5 frames per second.  Left: center of myotube, scale = 10 µm.  Right:  end of 

myotube, scale = 5 µm.  Still images from these movies are shown in Figure 3C(1,2).  

 

Video 5.  Microtubules are dynamic between nuclei and across the nuclear surface.  

Myotubes were transfected with GFP-EB3 (green).  DNA was labeled with Hoechst 33342 

(blue).  Images were acquired by time-lapse microscopy using a spinning disk confocal 

microscope.  Frames were taken once every 3 seconds for 2 minutes, movies play at 5 

frames per second.  Left scale = 10 µm, right scale = 2 µm.  Still images from these movies 

are shown in Figure 3C(3,4).  

 

Video 6.  Microtubules are necessary for nuclear rotation in myotubes.  Myotubes were 

treated with DMSO or with nocodazole (10µg/ml) at 37°C for at least 30 minutes prior to 

imaging.  DNA was labeled with Hoechst 33342 (blue). Images were acquired by time-lapse 

microscopy using a spinning-disk confocal microscope.  Maximum projections of z-stacks are 

shown.  Frames were taken once a minute for 15 minutes, movies play at 5 frames per 

second.  Scale = 10 µm.  Still images from these movies are shown in Figure 4C.  
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Video 7:  Nuclei still translocate and rotate when microtubule dynamics are reduced.  

Myotubes were transfected with GFP-EB3 (green).  DNA was labeled with Hoechst 33342 

(blue).  Images were acquired by time-lapse microscopy using a spinning disk confocal 

microscope.  After initially imaging EB3 dynamics in an untreated myotube (left), a low-dose 

(100ng/ml) of nocodazole was added to the plate to inhibit microtubule growth (center & 

right). In the left two panels, frames were taken once every 3 seconds for 45 seconds.  In the 

right panel, z-series were taken once a minute for 15 minutes, maximum projections of the z-

stacks are shown.  All movies play at 5 frames per second.  Scale = 10 µm. 

 

Video 8.  Nuclear rotation is abolished in KIF5B-deficient myotubes.  Myotubes were 

treated with siRNA against KIF5B or a scrambled control (SCR) for 72 hours.  DNA was 

labeled with Hoechst 33324 (blue).  Images were acquired by time-lapse microscopy using a 

spinning-disk confocal microscope.  Maximum projections of z-stacks are shown.  Frames 

were taken once a minute for 15 minutes, movies play at 5 frames per second.  Scale = 10 

µm.  Still images from these movies are shown in Figure 6C.      

 

Video 9.  Microtubules grow off-axis around the nuclei aggregated in the center of 

myotubes treated with KIF5B siRNA but are still polarized at myotube ends.  Myotubes 

were transfected with siRNA against KIF5B and with GFP-EB3 (green).  DNA was labeled 

with Hoechst 33342 (blue).  Images were acquired by time-lapse microscopy using a 

spinning disk confocal microscope.  Frames were taken once every 3 seconds for 2 minutes, 

movies play at 5 frames per second.  Left: center of myotube.  Right:  end of myotube.  Scale 

= 10 µm.   
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Video 10.  Myofibrils contract in D7 myotubes.  Myotubes were transfected with YFP-α-

actinin (green) to label z-disks of myofibrils.  DNA was labeled with Hoechst 33342 (blue).  

Images were acquired by time-lapse microscopy using a spinning disk confocal microscope.  

Frames were taken once a second for 1 minute, movie plays at 5 frames per second.  Scale 

= 10 µm. 

 

Video 11.  Nuclei still translocate and rotate when myofibril contraction is inhibited.    

A myotube was imaged by time-lapse phase microscopy in the presence of BTS (50 µM) to 

inhibit the activity of skeletal muscle myosin. Frames were taken once every 30 seconds for 

1 hour, movie plays at 20 frames per second.  Scale = 10 µm.   
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