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ABSTRACT
THE STRONG CM LIFTING PROBLEM &
THE RELABELLING ACTION ON THE EQUICHARACTERISTIC
UNIVERSAL DEFORMATION SPACE OF P-DIVISIBLE SMOOTH FORMAL

GROUPS OVER F,

Taisong Jing

Ching-Li Chai

It is known that an abelian variety over a finite field may not admit a lifting
to an abelian variety with complex multiplication in characteristic 0. In the first
part of the thesis, we study the strong CM lifting problem (sCML): can we kill the
obstructions to CM liftings by requiring the whole ring of integers in the CM field
act on the abelian variety? We give counterexamples to question (sSCML), and prove
the answer to question (SCML) is affirmative under the following assumptions on the
CM field L: for every place v above p in the maximal totally real subfield Lg, either
v is inert in L, or v is split in L with absolute ramification index e(v) < p — 1. The
equicharacteristic universal deformation space of a p-divisible smooth formal group
over an algebraic closure of F}, is a smooth formal scheme equipped with a naturally
defined action by the automorphism group of the formal group via “changing the
label on the closed fiber”. In the second part of the thesis, an algorithm to compute
this relabelling action is described, and some asymptotic properties of the action

are obtained as the automorphism of the formal group approaches identity.
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Part 1

The Strong CM Lifting Problem



Chapter 1

Introduction to Part 1

In this article we study the following question concerning lifting abelian varieties

over a finite field to characteristic 0:

Strong CM lifting (sCML): Let (A, O — End(A)) be a g-dimensional
abelian variety over F, with an action by the whole ring of integers
in the CM field L of degree 2g. Does there exist a local domain R
of characteristic 0 with residue field I, an abelian scheme A over R
equipped with a CM structure L — End’(A) := End(A) ®z Q, such

that Ap, is L-linearly isomorphic to A?

We give counterexamples to question (SCML) and show that it has an affirmative
answer under the following additional assumptions on L: for every place v above p
in the maximal totally real subfield Lg, either v is inert in L, or v is split in L with

absolute ramification index e(v) < p — 1.



History. If we drop the assumption that Oy, acts on A and only require End’(A)
contains L, the resulted CM lifting question, denoted by (CML) in [1], was first
addressed by F. Oort in [18] (Thm. B). A sharper version proved in [1] (3.5.6)
said that if ¢ > 2, in any isogeny class of abelian varieties over k with p-rank
at most g — 2, there exists an abelian variety that does not admit a CM lifting to
characteristic 0. Moreover, there are effective controls on the finite fields over which
such examples can be constructed. Therefore (CML) does not hold in general. The
question (sSCML) can be considered as a first step in studying which abelian variety
over [F, admits a CM lifting.

Approach. The question of CM lifting is local and geometric in nature; i.e., it
is equivalent to consider a parallel CM lifting question about the p-divisible groups
attached to the abelian variety over Fp. A p-divisible group is said to be an F-
linear CM p-divisible group if it admits an action by a commutative semisimple
Qp-algebra F' such that [F' : Q] is equal to the height of the p-divisible group;
if moreover O acts on the p-divisible group, then we say it is an Opg-linear CM
p-divisible group. As an analogy to the notion of CM type for a CM abelian variety
over C, an F-linear isogeny invariant called p-adic CM type can be assigned to
an F-linear CM p-divisible group in characteristic 0. The p-adic CM type turns
out to determine the F-linear isogeny class of the CM p-divisible group; if we only
consider Op-linear CM p-divisible groups over a complete discrete valuation ring

of characteristic 0 with residue field F,, then the p-adic CM type even determines



the Op-linear isomorphism class. Similar to the definition of reflex field for a CM
type, we have the notion of reflex field for a p-adic CM type, which is the smallest
possible field over whose ring of integers there exists an Op-linear CM p-divisible
group with the prescribed p-adic CM type.

The question of CM lifting is reduced to the following question on lifting sub-

groups of certain CM p-divisible groups:

Let F := L ®g Q,, ® be a subset of Hom(F,Q,), and F” be the reflex
field of (F,®). Let X3 be the unique Op-linear CM p-divisible group
over Ry := Op,.p, Where B(E,) := W(F,) ® Q. A subgroup of the
closed fiber (Xs)g is said to be potentially liftable, if there exists a
finite extension R/Ry such that the subgroup lifts to a finite locally free
subgroup scheme of (Xp)r. What are the potentially liftable subgroups

of (X‘I’)Fp?

Complete lists of potentially liftable subgroups for all ® running over the subsets
of Hom(F,Q,) that are compatible with the involution ¢ on F induced from the
complex conjugation would allow us to answer the question (CML) completely.
If we content ourselves with Op-stable potential liftable subgroups, then we can
answer the question (sSCML) completely.

Main results. We first point out a constraint on the field of definition of a
potential liftable subgroup. This constraint comes from the residue field of the reflex

field assocated to the p-adic CM type (4.1.1). If the reflex field has a “small” residue



field for all p-adic CM types compatible with ¢, then we obtain counterexamples to
(sCML) (4.1). We also deduce a classification result about when this obstruction
coming from small residue field can happen (4.1.2).

On the other hand, we will show that for a certain class of CM types @, all
Op-stable subgroups of (Xs)g, are potentially liftable; see (6.1.2), (6.1.3), (7.2.1),
and (7.2.3). This leads to a lot of examples of abelian varieties over k with Op-
action such that they admit CM liftings over characteristic 0 with actions by orders
(usually smaller than Op) in L. As a corollary, we prove that the answer to the
question (sCML) is affirmative when every place v of Ly above p is inert in L; see
(6.1.5) and (7.2.5).

A complete answer to the question on potential liftable subgroups of (X(I))Tp
requires us to consider all finite subgroups of the geometric generic fiber of X', and
compute the reductions over Fp of their scheme-theoretic closures. We do not know
any such attempts in the past except for some very special cases, e.g., when dim X
or codim X is 1. In the thesis, we will study an example of Op-linear CM p-divisible
group Xp with dimension 2 and height 4 over a complete discrete valuation ring with
residue field F,, where F is a p-adic local field of degree 4 with inertia degree 2 and
absolute ramification index 2, satisfying in addition that Gal(£/Q,) = Z/4. The
answer is surprising to us: whether a finite subgroup of the geometric generic fiber
of Xp has an Op-stable reduction is completely determined by its order. Namely,

if the order is p*", then the reduction is equal to (Xp)g[77], ie., the kernel of



multiplication on (Xg)g by 7§, where mo is a uniformizer of O if the order is p*'*!,

then the reduction is a certain subgroup G between (Xs)g [7g] and (Xs)g, (ot
and we have a precise description on G; see (Theorem 8.1.1). As a corollary, if L is
a degree 4 CM field such that L, = F', then up to prime-to-p L-linear isogeny over
[, there are only three abelian varieties (A/F,, L < End’(A)) that admit L-linear
CM liftings to characteristic 0.

The computations in the example above indicates that the subgroups of the ge-
ometric generic fiber of Xg seem to “try very hard” to have an Op-stable reduction,
though in characteristic 0 they may be far from being Op-stable. Based on this

observation, we can ask the following question.

Let & be a primitive p-adic CM type for F'. Is there a general condition
on the p-adic CM type ®, such that there exists an integer d(®) (equal
to 1 in the example above) which only depends on ®, satisfying that
for any finite locally free subgroup scheme G of an Opg-linear CM p-
divisible group with p-adic CM type ® over a complete discrete valuation
ring in mixed characteristic, the closed fiber of G contains an Op-stable

subgroup with index uniformly bounded by p®®)?

This is true when #® = 1 or [F' : Q,]—1. In these cases, an Op-linear CM p-divisible
group with p-adic CM type ® in mixed characteristic has dimension or codimension
1, and all finite locally free subgroup schemes have Op-stable reductions; in other

words, d(®) = 0 in these cases. The main example we study in this article is the



first example that does not belong to these cases. We do not know any further
examples or necessary constraints on ® so far.

In the example of the Op-linear CM p-divisible group X3 with dimension 2 and
height 4, as a corollary of the computation on the reductions of its finite locally free
subgroup schemes, we obtain a complete list of the closed fibers of all F-linear CM
p-divisible groups in mixed characteristic with the same p-adic CM type as Xp. This
leads to a counterexample to (SCML). Furthermore, in this new counterexample the
reflex field is equal to F' and hence its residue field is not “small”. Therefore this
counterexample does not fall in the framework of chapter 4. In other words, the
obstruction coming from small residue field of the reflex field does not exhaust all
the obstructions to strong CM liftings.

Tools. The main tool we employ in computations is the theory of Kisin modules
from p-adic Hodge theory. For each p-adic CM type ® for F', we construct via Kisin
modules a class of Op-linear CM p-divisible groups with p-adic CM type ® over the
ring of integers in any finite extension of the reflex field; see (5.1). An important
unresolved problem in integral p-adic Hodge theory is that the theory does not
behave well under base change. However, this base change problem for Opg-linear
CM p-divisible groups has a satisfactory solution; see (3.1.1). We would like to
thank C.-L. Chai for that observation. Therefore we are able to tell whether the
constructions are compatible with base change; see (5.1.8). For each positive integer

m, the p™-torsion points on the geometric generic fiber of the constructed p-divisible



group become rational over a certain finite abelian extension of the base ring. We
can explicitly write down the Kisin module after such a base change with the help of
the theory of Lubin-Tate formal group law. These constructions and computations
serve as the foundation of our approach on the strong CM lifting problem, but they
are interesting in their own right as well.

One advantage of using Kisin modules is that, for a p-divisible group or its
finite locally free subgroup scheme over a complete discrete valuation ring of mixed
characteristic, we can write down the Dieudonne module of the closed fiber in a
direct way from its Kisin module. To be more specific, a Kisin module is a W (k)[[u]]-
module equipped with a Frobenius ¢ satisfying certain additional conditions, where
k is a perfect field of characteristic p. We can associate a p-divisible group or a
finite locally free subgroup scheme in mixed characteristic to a Kisin module, and
roughly speaking the Dieudonne module of the closed fiber is the quotient module
by “modulo u”; for a precise statement, see (3.2) or [1] (B.4.17). The localized
W (k)((u))-module of the Kisin module carries the information on the generic fiber.
For a finite locally free subgroup scheme of X', this localized W (x)((u))-module
is generated by certain “Frobenius eigenvectors” that corresponds to the torsion
points; see (5.2.4). Hence, in order to lift a certain subgroup of (Xp)g , it suffices to
find an appropriate collection of torsion points such that the attached W (k)((u))-
module contains a lifting of the Dieudonne module of the subgroup; see (6.4.3).

This computation is possible because of our knowledge on the torsion points, based



on the explicit information on their coordinates provided by the Lubin-Tate theory;
see (5.3.5). If G is p™-torsion, and M, is the Kisin module after base change to
the extension of Ry over which the p™-torsion points of (Xq>)@p become rational, the
idea described above is shown in the following diagram:

closed fiber generic fiber

GJF, G/R G/Frac R

Dieudonne module N finite Kiiin module 91 localized Kisin .mod.ule no
=9 mod u =90 "My /M =W (k) ((u)) {Frobenius eigenvectors}
Part T of the thesis is organized as follows. We first give a counterexample to
(sCML) in chapter 2. After some preliminaries on CM p-divisible groups and Kisin
modules in chapter 3, the obstruction that causes this counterexample will be ex-
plained and classified in chapter 4. In chapter 5.1, we construct a specific class
of CM p-divisible groups and compute their torsion points via Kisin modules and
Frobenius eigenvectors. In chapter 6 and 7, we establish positive results on (sCML).
In chapter 8, we compute the first complete list of potentially liftable subgroups in
the nontrivial cases, and deduce a new counterexample to (sCML) that does not

fall in the previous framework.



Chapter 2

A Counterexample

Throughout this article, let p be a prime number, ¢ be a power of p, and k := E,.
For a perfect field k of characteristic p, let W (k) be the ring of Witt vectors over &,
and let B(k) := W(Iﬁ)[%] Denote the Frobenius automorphism on B(k) by o. For
a p-adic local field F', we denote its maximal unramified subextension of Q, by F™"",
and its residue field by kg. Let L be a CM field of degree 2¢g, Ly be its maximal
totally real subfield, and ¢ be the complex conjugation.

We first give a counterexample to (sCML). In this subsection, we consider the
example where p = 3, L = Q(v/5,v/—3). The maximal totally real subfield Ly =
Q(v/5), in which p is inert. Denote the completion of L at its unique place above
p by F. Pick and fix an isomorphism of F"* with B(IF,2) in B(k). The degree 4
extension F = F"[r]|/(w? + p) is Galois. The involution on F induced by complex

conjugation on L sends m to —m and acts trivially on B(FF,2); we still denote this

10



involution by ¢. Define 7 : F' — F such that 7|p ,) = o, 7(7) = 7. The Galois
group Gal(F/Q,) = (r]7* = 1) x (¢|* = 1).

Let B be an abelian surface over k with Op-action, such that the Dieudonne
module M attached to B[p™]| with Op-action is as follows: M = W (k)[x]/(7* +
pler @ W (k)[r]/(m* + p)ez, where the Op-action is 7 - ¢; = me;,a - e = aey,a -
es = a’egfora € W(F,2), and the Op-linear Frobenius and Verschiebung maps are
defined by Fey; = Vey = ey, Feg = Ve = pey. See (3.1) for the existence of such an
abelian surface. We claim B does not have an L-linear CM lifting to characteristic
0.

Suppose R is complete discrete valuation ring of characteristic 0 with residue
field k = F,, E is its fraction field, and fix @, to be an algebraic closure of E.
Let A be a CM abelian scheme with sufficiently many complex multiplications by
L over R, and X := A[p™] be the associated p-divisible group. The p-divisible
group X is an F-linear CM p-divisible group; see (3.1) for the definitions and basic
properties. Then there exists a subset ® of Hom(F,Q,) such that Lie(X) ®g Q,

splits into HI)(QJ)Z as an F-module, where the index of (Q,); indicates the action
i€

of F' on @p is given by the embedding i. This ® is called the p-adic CM type of

X, and it is compatible with . in the sense that ® [[® o . = Hom(F,Q,); for more

on its properties, see (3.1). Because of the structure of Gal(£/Q,), ® is invariant

under either 7 or 7¢. Therefore the reflex field F’ for (F, ®) is a ramified quadratic

extension over QQ,, and the residue field kpr = IF),.

11



It has been observed in [1] (3.8) that a “small” residue field of the reflex field
for (F,®) will prevent a CM lifting over characteristic 0 with p-adic CM type ®.
For the convenience of the readers, we include a sketch of their argument and
deduce a constraint on the reduction Xj. Let ) be an Op-linear CM p-divisible
group over Op with p-adic CM type ®; for its existence, see [1] 3.7.3 (1). Let
p: Gal((F")®/F') — Of be the Galois representation associated to ). If another
Galois representation p' : Gal((F')®/F') — O} agrees with p when restricted to
1% then we say p' is an unramified twist of p. An unramified twist of p is also
the Galois representation associated to an Opg-linear CM p-divisible group over O
(see [1] 1.4.3.2). Take a splitting of Gal((F")®*/F") =~ 7Z x 185, where 1% is the

maximal abelian quotient of the inertia subgroup Iz, then after twisting p with the

R N1
unramified character x : Gal((F")*/F') 2% Z bl %, We may assume p carries

I¢% onto its entire image. In particular, this implies for any positive integer m, the
field generated by the p™-torsion points on Xg is a totally ramified finite extension
of F'. We denote this extension by F .

With the same p-adic CM type, V Xspec0,, Spec R and X are F-linearly isoge-
neous, hence there exists a finite locally free subgroup scheme G of Y Xgpec0,, Spec R
such that X is F-linearly isomorphic to (¥ Xgpeco,, Spec R)/G. Suppose G is
of p™-torsion. Without loss of generality we may assume E contains F . Then
there exists a finite locally free subgroup G of Y Xgpeco,, Spec F! such that

G XspecF, Spec B = G Xgpee g Spec E. Take Gy to be the scheme-theoretic clo-

12



sure of Gy in Y Xgpec0,, Spec Opr , and let YV, := (0% X Spec 0, SPEC Op; )/G1. Then
X is F-linearly isomorphic to V) Xgpec Opr Spec R.

Since F}, is totally ramified over I, its residue field kKp; = kg = F,,. Over the
closed fiber, X := X} is F-linearly isomorphic to (V1 Xspec Opr Spec IiF/n) XSpeck
Spec k. Now suppose the closed fiber X := A} has a compatible Op-action. This
implies that G; XSpec Oy Speck is invariant under the Op-action on () X Spec O pr
Spec O Fln) XSpec Oy Spec k, therefore G Xgpec Opr Spec kg is invariant under the Op-
action on (Y Xgpec 0, Spec OFpr ) Xspec Opr Spec K , t00. So Vi Xspec O Spec kg
is an Op-linear CM p-divisible group and its base change to Speck is Op-linearly
isomorphic to X. In other words, X together with its Op-structure descents to IF,,.

Now we claim B[p™] together with its Op-structure does not descent to F,. In
fact, the Lie algebra Lie(B[p*]) = ke; @ kmey, where the actions of Opur /p = F2
on the two summands are both induced from the chosen embedding F"" — B(k).
Such an F2-action does not descent to F,. Thus B does not have an L-linear CM
lifting, and we obtain a counterexample to the question (sCML).

The key point of this counterexample is that the residue field of the reflex field
I’ does not contain the residue field of F. This implies that if B has an L-linear
CM lifting, then B[p™] together with the Op-structure descents to a “small” field,
and there will be an extra symmetry on the representation of Op on Lie(B[p™]).
The importance of the representation Op — End(Lie(B[p>])) was noticed and

studied in §4 of [1] in terms of Lie types. We take the next section to review the
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basic facts from the CM theory of p-divisible groups, and then in §4 we will classify

the counterexamples caused by the extra symmetry described above.
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Chapter 3

Preliminaries

3.1 CM p-divisible groups

In this subsection we review some facts on CM p-divisible groups. Let R be
either a complete discrete valuation ring of mixed characteristic (0, p), or a field of
characteristic p. Let X be a p-divisible group over R, and F' be a commutative
semisimple Q,-algebra of dimension ht(X'), where ht(X) is the height of X. We
say X is a F-linear (resp. Op-linear) CM p-divisible group, if F < End’(X) (resp.
Or — End(X)). If X is an F-linear CM p-divisible group over R, then relative
to the decomposition F' = [[F; as a finite product of p-adic local fields, X is
isogeneous to [ [ X;, where X; is an Fj-linear CM p-divisible group over R.

If F is a p-adic local field, then an F-linear CM p-divisible group X over a field

of characteristic p is isoclinic; see [1] 3.7.1.6.
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Let F' be a finite dimensional commutative semisimple Q,-algebra, and (X, « :
Op — End(X)) be an Op-linear CM p-divisible group over a field  of characteristic
p, then Lie(X) is a finitely generated Or ®7 k-module. Let [Lie(X)] be its class
in the Grothendieck group R, (OF) of the category of finitely generated Op ®g, k-
modules, this class is called the Lie type of the Op-linear CM p-divisible group
X.

When k = k let us look at the structure of the Grothendieck group Ry(Op).
Suppose F' = [ ] F; as a finite product of p-adic local fields, then Rx(Or) = Ri(OF,),
so we may assume F' is a p-adic local field. Let kr be the residue field of F', er be
the ramification index of F//Q,. Then we have Op ®z k = I1 B OF @0 pur i

ieHom(F )
k, and each O ®0,u,i k = k[t]/t". For each i € Hom(F™,Q,) there exists a

canonical isomorphism €;: Rx(Op Q@0 i k) =, 7 that sends each effective class to

its dimension over k. They induce a canonical isomorphism

RuOrwzk) > [[  RuOroomik) 2o [ 2

o)

i€Hom(Fur,Q,) i€Hom(Fur,Q,)
A class § in Ry (Op) is called a Lie type, if for any ¢ € Hom(F™™, @p) the component
9; satisfies 0 < €;(0) < ep. Denote the set of Lie types in Ri(Of) by LT(OF).
Define € : R,(Or) — Z to be the homomorphism

€:0— Z € (9)

i€Hom(Fur,Q,)

We call €(0) the dimension of §, and [;%)p} the slope of §. Two Lie types are said to

be isogeneous if they have the same slope. These definitions naturally generalize to
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the situation when F'is a finite product of p-adic local fields. When 6 = [Lie(X)],
these definitions are all compatible with the corresponding definitions for the p-
divisible group X; see [1] (4.2.6) (i), (ii) and (iii).

For each Lie type 6 € R(OF), up to Op-linear isomorphism there exists a unique
Op-linear CM p-divisible group (X, a : Op — Endy (X)) over k with [Lie(X)] = 0;
see [1] (4.2.6) (iv).

Let F' be a finite dimensional commutative semisimple Q,-algebra. If F' =[] F}
as a finite product of p-adic local fields, then Hom(F,Q,) = [[Hom(F;,Q,). A
p-adic CM type ® for F is a subset of Hom(F,@p), and the reflex field F' of ®
is the p-adic local field fixed by the open subgroup {g € Gal(Q,/Q,)¢g® = @}
of Gal(@p /Q,). Suppose R is a complete discrete valuation ring of characteristic
0 with residue characteristic p, and Frac R is embedded in @p For an F-linear
CM p-divisible group X over R, there exists a p-adic CM type ® for F' such that
Lie(X) ®p Q, = ]_([I)(@p)@ as F ®@g, Q,-modules, where the index of (Q,); indicates

ic
the action of F' on @p is given by i : F' — @p; this ® is called the p-adic CM type of
X. The cardinality of ® is equal to the dimension of X.

The p-adic CM type of F-linear CM p-divisible groups is invariant under isoge-
nies. Conversely, if the residue field of R is algebraically closed and two F'-linear
CM p-divisible groups over R have the same p-adic CM type, then they are F-

linearly isogeneous. There exists an Op-linear CM p-divisible group (X, a : Op —

Endg(&X)) over R with p-adic CM type ® if and only if Frac R contains the re-
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flex field F’. If we assume the residue field of R is algebraically closed, then the
Op-linear CM p-divisible group with p-adic CM type ® over R is unique up to an
Op-linear isomorphism; see [1] (3.7.3) and (3.7.4).

Suppose F'is a p-adic local field. Define a map from the set of p-adic CM types
to Rk(OF):

5 . 2H0m(F,F‘rac R) _ Rk(OF)

such that under the identification Rj(Op) = 11 Ri(OF ®@0pu,i k)
i€Hom(Fu,(Q,)

IT Z, the component €;(£(P)) is equal to #{¢ € | p|pw = i}. If Ris a
i€Hom(Fur,Q,)

I l?

complete discrete valuation ring of characteristic 0 with residue field of characteristic
p, and X is an Op-linear CM p-divisible group over R with p-adic CM type ®, then
its reduction (Xs )y is an Op-linear CM p-divisible group with Lie type &(®); see [1]
(4.2.3). These definitions and properties naturally generalize to the situation when

F' is a finite product of p-adic local fields.

Proposition 3.1.1. Let k be a perfect field of characteristic p, and R be a complete
discrete valuation ring of characteristic 0 with residue field k. Suppose Xy and
Xy are Op-linear CM p-divisible groups over R with the same p-adic CM type ®.
Let X1 and X5 be their closed fibers over k, respectively. Then for any Op-linear
isomorphism v : X1 — Xy, there exists a unique Op-linear isomorphism 7 : X; —

Xy such that 7, = 7.

Proof. Let o; : Op — End(X;) be the Op-structure on X; for i = 1,2. For every
map Spec R’ — Spec R, let (o;)r : O — End((X;)r/) be the induced Op-structure

18



on (X;)g. Let R be the ring of integers in the compositum Frac R - B(R), then
there exists an Op-linear isomorphism 0 : (X;)z — (A)z because they have the
same p-adic CM type ®. We first show any Opg-linear isomorphism between (X)z
and (X3)z over the closed fiber has a unique lifting to an Op-linear isomorphism
between (X); and (&7)p. Let 5 : (Xi)g — (X2)z be an Op-linear isomorphism
over the closed fiber. Then 3o (07!|,) is an Op-linear automorphism of (X5)z. Since
(a0)=(OF) is equal to its own centralizer in End((X3)z), there exists b € O such
that 5062 = (ay)x(b). Then (a)z(b) 08 is a lifting of 4 to R. By the faithfulness
of the specialization functor ) ~~ Y« for p-divisible groups over the Noetherian local
ring R (see [1] (1.4.2.3)), this lifting is unique.

Let I': (X1) 5 — (Ab) 5 be the lifting of vz. We claim I' descents to an Op-linear
isomorphism 74 : X} — X,. In fact, it suffices to check the restriction I';, : X [p"] 5z —
Xs[p™] 5 descents to R for each positive integer n. Since the reduction I'y, | is defined
over a finite extension of , I, is actually defined over a finite Galois étale extension
of R. Again by the faithfulness of the specialization functor for p-divisible groups
over R, it suffices to check the condition of finite Galois descent over the closed

fiber, which is satisfied because 7= over & descends to v over k. O]

Remark 3.1.2. The closed fibers X; and X, are indeed Op-linearly isomorphic be-
cause they have the same Lie type. We would like to thank C.-L. Chai for his

observation on (3.1.1).

Suppose L is a CM field of degree 2g, and Ly is its maximal totally real subfield,
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and ¢ is the complex conjugation. Let Sy and S be the set of places above p in Ly
and L, respectively. Then for each place v € Sy, L, := L ®p, Ly, is a 2-dimensional
commutative L ,-algebra, and the involution in Aut(L,/Ly,) is induced by ¢. For
any field k of characteristic p, the Grothendieck group R, (Op) is naturally isomor-
phic to Hg R.(Opr,). If Ais a g-dimensional abelian variety over x with Op-action,
vESy
then Lie(A) is a finitely generated module over Op ®y k, and we define the class
[Lie(A)] in R.(Op) to be the Lie type of A. The Lie type of the abelian variety A
is equal to the Lie type of its attached p-divisible group A[p>] via the natural iso-
morphism R, (Op) =N R.(Or ®zZ,), and the latter is further naturally isomorphic
to H@ R.(Op,) = HS R..(Opr). When k = k, we define a class in R;(Op,) to be a
vESy we
Lie type, if for each w € S its component in Ry(Op,,) is a Lie type in the sense of
(3.1). Denote the set of Lie types in R(Op) by LT(Oy, p).
Suppose A is a g-dimensional abelian variety over k with complex multiplication
by L. The decomposition L ®g Q, = [[ L, induces an L-linear isogeny A[p>°] ~

vESH

H@ A[v™®], and each A[v™] is an L,-linear CM p-divisible group over . If we
veSo

denote the CM structure L «— End(A) by a°, then the dual abelian variety A"
has an L-action (a®)Y o+ via the composition of the dual action with the complex
multiplication, and (A, a®) is L-linearly isogeneous to (A", (a®)¥ o). If we look at
the attached p-divisible groups, it implies for each place v € Sy, the L,-linear CM

p-divisible group A[v>°] has a symmetric Newton polygon, which is equivalent to

saying dim A[v™] is equal to [Lg, : Q,]. If we know the whole ring of integers Oy,
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operates on A, then A[v™] is an Oy -linear CM p-divisible group with dimension
(Lo = Qp]. Conversely, if for every v € Sy, X, is an O, -linear CM p-divisible group
over k with dimension [Lg, : Q,], then there exists an abelian variety A over k with
Or-action such that A[p™]is O ®yz Z,-linearly isomorphic to [] X,.

vESH

n
Let Fy = ][ Fo; be a finite dimensional commutative semisimple Q,-algebra,
i=1

where each [y ; is a p-adic local field. Let F' := ﬂﬂ, where F; is a 2-dimensional
commutative semisimple Fp;-algebra. Let ¢ be the involution in Aut(F/Fy) such
that ¢|p, is nontrivial for all i = 1,2,--- 'n. We say a p-adic CM type ® for F' is
compatible with ¢, if @ [[® ot = Hom(F,Q,).

Analogous to the question (CML) and (sCML) for abelian varieties (see chapter

for the statement), we can formulate the following questions (CML) and (sCML)

for p-divisible groups:

(CML) (resp. (sCML)) relative to (F, Fy) for (X, F — End’(X) (resp.
(X,0p — End(X)): Let F,Fy,¢ be as above. Let X be an F-linear
CM p-divisible group (resp. Op-linear CM p-divisible group) over k.
Does there exist an F-linear CM p-divisible group X over a complete
discrete valuation ring of characteristic O with residue field k, such that
the p-adic CM type of X is compatible with ¢, and the closed fiber of X

is F-linearly isomorphic to X7

If we drop the requirement that the p-adic CM type is compatible with ¢, then the

answer to (sCML) is trivially affirmative. The compatibility condition with ¢ on
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the p-adic CM type is for the purpose of algebraization; see (3.1.3) below.

Proposition 3.1.3. The answer to question (CML) for (A, L — End’(A)) (resp.
(sCML) for (A, Or — End(A))) is affirmative if and only if the answer to question
(CML) (resp. sCML) relative to (Ly, Lo,) for (Ap™], L, — End’(A[p™]1.)) (resp.

(A[p™®k, OL,p — End(A[p™)))) is affirmative.

Proof. First of all, the question (sCML) for abelian varieties is equivalent to the
apparently weaker version when F, is replaced by k by deformation theory; see [1]
(4.1.9).

Second, in the question (sCML) for abelian varieties over k, we may assume the
base ring of the CM lifting is a complete discrete valuation ring of characteristic 0
with residue field k. To see this, let D be a local domain of characteristic 0 with
residue field k, and A be a CM lifting over D of A. Since A is of finite type over D,
we may assume D is Noetherian. By taking the completion along a minimal prime
of characteristic 0, we may assume D is a complete local Noetherian domain. For
such D, the residue field of every maximal ideal m in D[%] is a finite extension of
B(k) ([9] (7.1.9)), therefore by a base change to Spec D/(mN D) if necessary, we may
assume D is a 1-dimensional complete local Noetherian domain of characteristic 0
with residue field k. Then by a base change to the normalization of Spec D and
restricting to an irreducible component of characteristic 0, we may assume D is a

complete discrete valuation ring R of characteristic 0 with residue field k, and we

have produced a CM lifting over R of A.
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Because of the two facts above, the necessity is obvious. For sufficiency, let A
be an abelian variety over k£ with complex multiplication by Op. Suppose R is a
complete discrete valuation ring of characteristic 0 with residue field k, and X, is
an Ly-linear CM lifting of A[p>] with p-adic CM type compatible with ¢. By Serre-
Tate theorem, there exists a formal abelian scheme A over R to serve as an L-linear
CM lifting of A, and the p-adic CM type ® of A is compatible with the complex
conjugation ¢, i.e., [P o¢ = Hom(L,Q,). By [1] (2.2.3) A is algebraizable, and

the sufficiency direction is proved. ]

At the end of this section we state several questions related to (CML) and

(sCML) for p-divisible groups relative to (F, Fp).

Definition 3.1.4. Let Ry be a local domain of characteristic 0 with residue field kg
of characteristic p. Let X be a p-divisible group over Ry. We say a finite subgroup
G of X, is potentially liftable, it there exists a local domain R that is finite over
Ry with residue field x, and a finite locally free subroup scheme G of Xz, such that

gn = Gn-

Based on this definition, we can ask the following question on potentially liftable
subgroups of CM p-divisible groups:
Let ® be a p-adic CM type for F', and F’ be the reflex field. Define
Ry := Opr.px). Let Xp be an Op-linear CM p-divisible group over Ry
with p-adic CM type ®. What are the potentially liftable subgroups of
(Xop)r?
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A complete list of potentially liftable subgroups for all ® that are compatible with
¢ allows us to answer (CML) for p-divisible groups relative to (F, Fy) completely; if
we content ourselves with all the Op-stable potentially liftable subgroups, then we
can answer (sCML) for p-divisible groups relative to (F, Fy) completely.

Another related question concerns the interaction between the p-adic CM type of
an F-linear CM p-divisible group in characteristic 0 and the Lie type of its reduction

in characteristic p.

Let @ be a p-adic CM type for F. Consider the family of F-linear CM
p-divisible groups X with p-adic CM type ® over a complete discrete
valuation ring of characteristic 0 with residue field k, such that Op
operates on the closed fiber X} via the induced CM structure F' —
End’(X;,). Let LTI(F, ®) be the set of Lie types of X} when X runs over

the family above. What can we say about LTI(F, ®)?

When F' = L,, suppose & = [] @, under the disjoint union Hom(Lp,@p) =

vESH

Hg Hom(L,,Q,). It is clear that Hg LTI(L,, ®,) is contained in the LTI(L,, ®).
vESo veSo

Note that ® is compatible with ¢ if and only if for each v € Sy, ®, is compatible
with ¢. The answer to question (sCML) for (X, O, — End(X)) is affirmative if
for each v € Sy, the v-component [Lie(A[v*>°])] € Ry(Oy,) of [Lie(A)] € Ri(Or)

falls into at least one of the sets LTI(L,, ®,)’s, when ® runs over the p-adic CM

types for L, compatible with ¢.
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3.2 Kisin modules

We take this subsection to review some facts on the theory of Kisin modules, which
will be used extensively in this paper. Let x be a perfect field of characteristic
p. Let & := W(k)[[u]], and let ¢ : & — & be the endomorphism of & such that
P(u) = uP, and @y, = 0. Let % := S[1] = W(k)((u)). For any S-module 9N,
let M? := &° ®s M. Let E/B(k) be a finite (totally ramified) extension, m be a
uniformizer in Og, and FE(u) = u® + ae_1u"! + -+ + aju + ao be the Eisenstein
monimal polynomial of 7 over Og; in particular, e is equal to the ramification index
of E/B(k), pla; for alli =0,1,--- ;e — 1, and ag = pc with ¢ € W(k)*.

Let BT‘/z’6 (resp. (Mod/&) ) be the category of finitely generated G-modules 9
that are free (resp. that are killed by a power of p and have projective dimension
1), and are equipped with a ¢-linear endomorphism ¢gy : 9T — 90, such that the
cokernel of 1 ® ¢op : "M = 6 @y M — M is killed by E(u). The objects in
BT‘;)6 (resp. (Mod/&) ) are called Kisin modules (resp. finite Kisin modules). We
give BT% and (Mod /&) the structure of exact categories (in the sense of Quillen)
induced from the abelian category of &-modules. The conditions in the definition
guarantee that there exists a unique G-homomorphism gy : M — @*I such that

(1 ® pon) 0 Yo = E(u)Id. We say M is connected if when n is sufficiently large,

Ui = " om0 ¢ 4hgp 0+ 0 ¢ hgn 0 Wby : M — @M

has image contained in (u,p)¢™ 9. The full subcategory of connected objects of
BT‘}S6 (resp. (Mod/&) ) are denoted by BT%E (resp. (Mod/&)°).
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Let p-div/Op (resp. p-Gr/Opg) be the category of p-divisible groups (resp. finite
locally free group schemes with order equal to a power of p) over Og, and let
(p-div/Opg)’ (resp. (p-Gr/Og)) be the full subcategory of connected objects. By

[12] (2.2.22), when p > 2 there exists equivalences of exact categories:

p-Diviis BT(;S6 — p-div/Op, p-Grgis : Mod/& — p-Gr/Op

When p = 2, it was proved in [11] (1.2.8) that there exists an equivalence between

the subcategories:
p-Divigs : BT%C — (p-div/Og),  (p-Gris)® : (Mod/&)¢ — (p-Gr/Og)°

For a Kisin module 90t in BT?

/& let X be the associated p-divisible group over Og

under p-Divy;s, then rankgdt = htX', where htX is the height of A’; it is a conse-
quence of the isomorphism (1.2.9) in [11]. The Lie algebra Lie(X) = ¢*9 /1IN, see
1] (B.4.16).

Let X be a p-divisible group over O, and assume it is connected when p = 2.
Let 91 be the attached Kisin module. Let X be the closed fiber of X', and let M
be the attached Dieudonne module. It was proved in [1] B.4 that M is canonically
isomorphic to 9M/uM, with the o-linear Frobenius endomorphism F' : M — M
given by ¢9n mod u, and the Verschiebung homomorphism V' : M — M? given by
%wg;n mod u.

Suppose MY is the Kisin module attached to the Serre dual XV. The de-

scription of MY was given in §3 of [13]. Namely, 91 is naturally isomorphic
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to Homg(M, &), with ¢onv (T) := (1 @ T) o oy for T € MY, and Yonv (T) :=
cT o (1® ¢gn). To be more explicit, let (eq,eq,- -+ ,€,) be an G-basis of 9, and sup-
pose ggn(er, ea, -+ ,e,) = (e1,€2,- -+ ,e,)A, where A is an n X n matrix with entries
in &. Let (ef,ey,---,e)) be the dual G-basis of MY, then ¢onv (e}, €5, -+ ,e) =

(e, ey, - yey) - gE(u)(AT)"

For a Kisin module 9t in (Mod/&)¢, the condition that 91 is killed by a power
of p implies 9P has finite length over &°. If lengthgoM® = d, then the associated
finite locally free group scheme G over Op has order p.

To see this, first by a devissage argument it suffices to prove the case when 90t
is killed by p. The condition that the projective dimension of 9 (as an &-module)
is equal to one then implies that 91 is a free x[[u]]-module of finite rank. Let G
be the associated finite locally free group scheme over Og. It suffices to prove
the order of G is equal to p*®*~a™  Applying (3.2), we are reduced to proving
the order of a finite p-torsion group G over r is equal to p™*<M where M is the
attached Dieudonne module. Without loss of generality, we may and do assume & is
algebraically closed. Therefore G has a filtration with each subquotient isomorphic
to Z/pZ, p,, or a,. Then it becomes clear since each of them has order p and the
rank of the attached Dieudonne module over « is equal to one, too.

If X1 — A, is an isogeny between two p-divisible groups over Op, then the

attached &-module homomorphism 9 — My, is injective, and Coker(9M; — M)

is the Kisin module in (Mod/&)¢ attached to Ker(X; — Xj).
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Let 901 be a finitely generated G-module 9t which is killed by a power of p. The
projective dimension of 9 is equal to 1 if and only if u is regular for 9. In fact,
by a straightforward devissage argument we can show that 9 has finite projective
dimension, then the statement above follows from Auslander-Buchsbaum Theorem.
As a corollary, the projective dimension of a submodule 91 of 91 is also equal to 1,
and the projective dimension of the quotient 2t/ is equal to 1 if and only if M is

saturated in YN in the following sense:

Definition 3.2.1. Let 901 be a finitely generated G-module. A submodule 9T C 9N

is said to be saturated (in M) if 9 = NN M.

In combination with the equivalence between the category of finite Kisin modules

and finite locally free group schemes with order equal to a power of p, we deduce

Corollary 3.2.2. Let 9 be a finite Kisin module, and G be the associated finite
locally free group scheme over Og. Then a finite Kisin submodule Yt C 9 corre-

sponds to a finite locally free subgroup scheme H C G if and only if N is saturated

mn IN.

If we know a submodule of a finite Kisin module is saturated, we can simplify

the condition to check whether it is a Kisin submodule.

Proposition 3.2.3. Let M be a finite Kisin module, and D C M be a saturated

submodule. Then N is a finite Kisin submodule if and only if N is invariant under

Pom.
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Proof. Tt suffices to check under the assumption in the proposition, the cokernel of

1 ® ¢on|prm : @M — N is killed by E(u). Since the cokernel 1 ® ¢gn : ¢* M — M
is killed by E(u), for any x € 91 at least we know there exists a € ¢*0 such that
(1® ¢am)(a) = E(u)z. We need to show a € ¢*MN.

If we base change to &%, (1 ® ¢gp)? : (¢*9N)° — MO is surjective because IMN°
is killed by p™ for some m and E(u) is a unit in &°/p™. On the other hand, both
(¢*9)° and M° are G%-modules of finite length and their lengths are equal, so a
surjective &%-homomorphism between such two modules must be an isomorphism.
In particular, this tells (1Q¢gy)° is injective, and so is its restriction to (¢*91)° — NO.
Again because the two modules have equal lengths, the restriction (1 ® ¢an)?|(p+oo
is an isomorphism. In particular, for any given x € N, there exists b € (¢*N)° such
that (1® go)(b) = E(u)z.

In summary, we have E(u)z = (1 ® ¢on)(a) = (1 @ ¢gn)(b). By the injectivity of

1 ® ¢op, we have a = b € ¢*IM N ¢*N° = ¢* (M NNY) = ¢*N. u
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Chapter 4

An obstruction on the Lie type for
a CM Lifting to a certain p-adic

CM type

4.1 Counterexamples to (sCML)

With the notion of Lie types for Op-linear CM p-divisible groups, it is straightfor-

ward to summarize the argument in §2 into the following proposition.

Proposition 4.1.1. Let F' = [] F; be a finite dimensional commutative semisimple
i=1

Qp-algebra, where each F; is a p-adic local field. Let ® be a p-adic CM type for F,

and F' be the reflex field for (F,®). Let kg, be the residue field of F;, and kg be the

residue field of F'. Suppose R is a complete discrete valuation ring of characteristic
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0 with residue field k, and X is an F-linear CM p-divisible group over R with p-adic
CM type ®. If Xy has a compatible Op-action, then the class of [Lie(Xy)] in the
Grothendieck group Ry (Op) is in the image of homomorphism R, ,(Or) — Ri(OF)
induced by the inclusion kg — k.

In particular, if there exists 1 < ¢ < n such that kg, is not contained in Kpr,
then there exists an Op-linear CM p-divisible group X' over k such that X' does

not admit an F-linear CM lifting over characteristic 0 with p-adic CM type . [

In other words, if ® is a p-adic CM type such that the residue field of the reflex
field is “small”, then there is an extra symmetry on the Lie types when we consider
the reduction of CM p-divisible groups with p-adic CM type ®. In terms of question
(LTT) for p-divisible groups (see (3.1)), the statement of Proposition (4.1.1) can be
written as LTI(®, F') C Im(R,,, (Or) — Ri(OF)).

Let (F, Fy) be a pair as in (3.1). Based on Proposition (4.1.1), if there ex-
ists an Op-linear CM p-divisible group X over k such that [Lie(X)] is not in
Im(Ry,,, (Or) — Rp(Op)) for all p-adic CM types ® for F' that are compatible
with ¢, then X is a counterexample to question (sCML) relative to (F, Fp) for p-
divisible groups. Concerning question (sCML) for abelian varieties, if (L, L) is
equal to one of the following pairs (F, Fp), then the answer to question (sCML) for

abelian varieties is negative.

o ' = B(F,)[r]/(x? — p), Fo = B(F,2). The Grothendieck group Ry(Or)

is naturally isomorphic to zHom(BE2).Q) - For all p-adic CM types @ for F
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compatible with ¢, one can check kg = F, ; kp = Fp. Let X be an Op-
linear CM p-divisible group over k with Lie type equal to (2,0) or (0,2), then
X does not have an F-linear CM lifting over characteristic 0 with p-adic CM

type compatible with ¢.

Suppose p = 3 mod 4, and F' = B(F,2)[r]/(7* — p), F; = B(F,2)(7?) C F.
The Grothendieck group Rj(Op) is naturally isomorphic to gHom(BE,2)Q)
For all p-adic CM types ® for F' compatible with ¢, one can check kpr =), ;
kp = Fp2. Let X be an Op-linear CM p-divisible group over k with Lie type

equal to (4,0), (3,1), (1,3), or (0,4), then X does not have an F-linear CM

lifting over characteristic 0 with p-adic CM type compatible with «.

When p > 2, the following proposition says that the list above gives all the

“essential” counterexamples to question (SCML) caused by the extra symmetry in

Proposition (4.1.1).

Proposition 4.1.2. Suppose p > 2. Let L be a CM field, Ly be its mazximal totally

real subfield. Let v be the complex conjugation on L. Let Sy be the set of places of

Lq above p.

(a) Let v € Sy, and L, :== L @, Lo,. Let k, be the residue field of L, when L,

is a field, or the residue field of Lo, when L, = Lo, X Lo,. Suppose for all p-adic

CM types for L, that are compatible with v, the residue field of the reflex field does

'We have found another counterexample to question (sCML) that does not come from this

extra symmetry. This example will come out in a future article.
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not contain k,, then there are only two possibilities for (L,, Lo.):

(1) F = B(F)[x)/(=* - p), Fo = B(F2).

(2) p=3 mod 4, F = B(E,e)[x)/(x* — p), Fy = B(Ep) ().

(b) Let X = 11 X[v*®] be an Oy ,-linear CM p-divisible group over k, where

vESy

each X[v™®] is an Of,-linear CM p-divisible group. For a p-adic CM type ® for L,
let kg be the residue field of the reflex field Fy. If for all p-adic CM types ® for L,
that are compatible with 1, [Lie(X)] is not contained in Im(R,, (Or) — Ri(OL)),

then there exists a place v € Sy, such that (L, Lo,) and the O, -linear CM p-

divisible group X [v™] are in the list given in (4.1).

Proof. We first prove (b) assuming (a). If [Lie(X)] is not contained in the image
of R (Or) — Ri(Or), then there exists v € Sy such that [Lie(X[v>])] is not
contained in Im(R,; (Or,) — Rr(Or,)). Note that ® = U];[go ®, where each @, is a
p-adic CM type for L,. Let g be the residue field of the reflex field of ®,, then
kg, C K. Therefore [Lie(X[v*])] is not contained in Im(R,;, (Or,) — Ri(OL,)),
either. In particular, this implies xg,_ does not contain «,. Note that ® is compatible
with ¢ if and only if each ®, is compatible with . Hence when ® runs over the
p-adic CM types for L, that is compatible with ¢, ®, also runs over the the p-adic
CM types for L, that is compatible with (. Therefore v satisfies the assumptions in
(a), and (b) is proved.

Now we prove (a). Let F' := L,, and Fy := Lo,. Let n = [kp : F], e := [F:

F"]. Fix an embedding of F' in Q,. Let K be the Galois closure of F' in Q,, and
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let K* be the maximal tamely ramified subextension of K, K™ be the maximal
unramified extension of K. Denote d := [K"™ : F"|. Let (. be a fixed primitive
e-th root of unity in Q,. Let G := Gal(K/Q,), I := Gal(K/F"), H := Gal(K/F),
P := Gal(K/K"). The various fields and Galois groups are shown in the following

diagram:

Fur
|a/r

Q
The set Hom(F,Q,) is naturally identified with G/H. If we fix an embedding of

F' = B(F,n) — Q,, then Hompu (F,Q,) is identified with I'/H.
We first show F/Fy must ramify. If F/F, splits, we write F' = Fy; X Foo,

where the second index indicates the two copies of Fy. The set Hom(F ,@p) =

Hom(Fy1,Q,) [T Hom(Fp2,Q,). Take one embedding ¢ € Hom(Fy1,Q,) and let
® := {i} [[(Hom(Fpo, Q,)\{i 0 t}). The reflex field F' = Fp, hence kp = K,
contradiction.

If F'/Fy is inert, then ¢ induces an involution on Hom(F"*, Q,). There is a natural
fiberation Res : Hom(F, Q,) — Hom(F™,@Q,) by restriction. Identify Hom(F™,Q),)
with the Gal(F""/Q,) = Z/n-torsor {1,2,--- ,n}, then ¢ sends i to 7 + § modulo
n. Take ® := {1,2,---,2}, and ® := Res ' (¢’), then ® is compatible with ¢. If

g € G stabilizes ®, g must induce identity on Hom(F™,@,). This implies £z D K,
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contradiction.

Now we may and do assume F/Fj ramifies. Next we show F' is tamely ramified
over F''". Because F' and Fj are completions of a CM field and its maximal totally
real subfield, and the involution ¢ is induced by the complex conjugation, we deduce
that the action of ¢ on G/H commutes with the left action by G. Since Fj* = F'",
¢ induces an involution on I'/ H.

We say a subset A C I'/H is compatible with v if A][[tA =T/H. Define § :=
the set of subsets of I'/H that are compatible with . Then I' acts on S because
the action of I' commutes with (. We claim the action of I' on S is transitive.
Otherwise, let S'[[S” be two disjoint T-orbits on S, and take A’, A” from &', S”
respectively. Let o be the Frobenius automorphism on F', and 6 be a lift of o in
G. Define @ := A [JOANTTO*A"[]---]] 6" A", then @ is compatible with ¢. The
assumption that kp 2 kp implies the existence of g € G\I' such that g® = .
Suppose gI' = 0°T where 1 < s < n — 1, then A’ = ¢g~'0*A”. This contradicts the
fact that A" and A” are in different I'-orbits.

Note that #S = 22. We have assumed p > 2, hence as a normal p-subgroup of
I', P = Gal(K/K") must act trivially on S. In other words, it stablizes each A € S.
We claim this forces P = (1). Otherwise, take g # 1 in P. Because the action of I
on I'/H is faithful, there exists x € I'/H such that gz # x. Therefore there exists
A € S that contains both z and ¢(g(x)). Since g stabilizes A, this implies g(x) and

t(g(z)) are both in A, contradiction. This proves that F' is tamely ramified over
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o,

Now we may and do F' is a tamely ramified extension over F™. There exists
a Teichmuller lift w € W (F,»)* such that F' = B(F,»)[r]/(7® — wp). Under our
assumption, the Galois closure K = B(Fna)*[7]/(7¢ — wp), where d is the smallest
positive integer such that: (a) e|p™ — 1; (b) there exists an e-th root of wP~! in
W (Fpna) ™.

Let 7 be the automorphism on K that fixes B(F,n4) and sends 7 to (.m. Let
o : K — K be the automorphism that induces Frobenius on B(FF,«.«) and sends 7
to yw. Then G = (o, 7|0™ = 1,7° = 1,070~ ! = 7P), and we may identify G/H
with the complete set of representatives {7°67]0 <i <e—1,0 < j <n— 1}. Since
Fm = F"™ and [F : Fy] = 2, we have Fy = B(F,»)(7?), hence the action of + on
G'/H sends 7'07 to 77207, Now the question has turned to a concrete property on

a metacyclic group G with clearly described group structure. It is a routine exercise

to conclude that all the possibilities are what we have stated in the proposition. [
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Chapter 5

The construction of a special class
of Op-linear CM p-divisible groups

and their torsion points

Let F be a p-adic local field, ® C Hom(F,Q,) be a nonempty p-adic CM type for F
valued in Q,, and F” be the reflex field. Let E O F’ be a p-adic local field, and e(E)
be its ramification index over ,. Each uniformizer 7 € O and positive integer m
give a subgroup (1 + 7™mOg) x 72 of E*. Let E(m,r) be the corresponding totally
ramified extension of E via local class field theory. With any pair of (E, 7g) where
E contains F' and mg is a uniformizer in Og, we will construct the Kisin module
of an Op-linear CM p-divisible group X with p-adic CM type ® over O, such that

for any m > 1 the p™-torsion points on Xy are rational over £ (—mg, me(E)).
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5.1 The construction of Kisin modules

We first give a generalized definition of the reflex norm of the p-adic CM type (F, ®)

and some other related notions to serve as the ingredients of the construction.

Definition 5.1.1. Let I" be a commutative ring, N be a finitely generated free
I'-module of rank n. For x € Endr(N), define the determinant det(z) € T" to be the
induced endomorphism on A" N under the natural identification Endp(A™N) =T
If x € N, define the characteristic polynomial P, n(t) to be det(t —z ® 1) for
t—2®1 € Endpy(M ®p T[t]).

Let M be a finitely generated projective ['-module. There exists a finitely gen-
erated free I'-module N such that M is a direct summand of N: N = M & M.
For x € Endp(M), let & be the extension of z to Endr(N) by setting &|y, = Id.
Define the determinant det(x) € T' to be det(z). If © € N, define the characteristic

polynomial Py p(t) to be det(t — 2 ® 1) for t — 2 ® 1 € Endry (M @p I'[t]).

Proposition 5.1.2. ([6] 1.2) The definition of determinant and characteristic poly-
nomial for an endomorphism on a finitely generated projective module does not

depend on the choice of N and M.

In particular, if K is a field and I" is a finite dimensional commutative semi-
simple K-algebra, then every finitely generated I'-module V' is projective, hence we
can define det(x) and P,y (t) for every x € EndrM. The following proposition can

be viewed as an analogy of the fact that the degree of a characteristic polynomial
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for a linear transformation on a vector space is equal to the dimension of the vector

space.

Proposition 5.1.3. Let K be a field, I' be a finite dimensional commutative semi-

simple K-algebra, and V' be a finitely generated I'-module. For any v € EndrV,

Proof. Suppose ' = K1 X Ko X -+ X K, then V =V, Vo ®--- DV, where M, is a
finite dimensional K-vector space. Write the I'-endomorphism x as (xy, za, -+, z,)
under the isomorphism Endr(V) = Endg, (V1) x Endg, (Va) X - - - Endg, (V,). Then

PI,V(t) = (P$17V1 (t)’ Px2,V2 (t)v T 7P337L7V;L (t)) Hence

n

dimg T[[t]]/ Py ( Z dimg K;[[t]]/ Py, v, (t) = Y [K; « K] dimy, V; = dimg V

i=1
[
Definition 5.1.4. Let K be a field, K be a finite dimensional commutative semisim-
ple K-algebra, ® be a subset of Hom(C, K). Let K’ C K be the reflex field. Let £
be a finite extension of K', and A be an intermediate field between E and K. Let
Vo.r be an E ®x K-module such that Ve p @p K = H@(F)W where the subscript
o€

¢ indicates the IC-action on the corresponding component.
For x € E*, define its reflex norm with respect to ® as the determinant of
x viewed as an A @k K-endomorphism on the A ®x K-module Vg g, denoted by
No 5 Ak (7). Define Pp ;. ag k(1) € A®q, F[u] to be the characteristic polynomial

of z.
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Remark 5.1.5. (a) When A = K and K is a finite extension of K, we recover the
usual definition of the reflex norm £* — K*.

(b) If &; [[ P2 = ®3 and E contains the reflex field of ®; and ®,, then Vg, g &
Vo, g = Vo, g as a direct sum as E ®x K-modules. In particular, this implies
Na, 540k (T) Noy, A0k (T) = Noy g sk (T), and Po, o a0k (W) Po, o000 (1) =
Py, »aoxc(u). When @ = Hom(K, K) is the set of all the homomorphisms of
into K, the corresponding reflex norm of z € E* is simply Nmpg/a(x), and its
characteristic polynomial is the characteristic polynomial of x over A.

(c) For a finite extension E'/E, one can check No g Az xc0NMp /g = No 5 azik.

Now let K = Q,, K = F be a p-adic local field, ® be a p-adic CM type for
F, F’ be the reflex field, and E is an extension over F’. Let A = B(kg). Let
g be a uniformizer in Op. Let E(u) be the minimal Eisenstein polynomial of

Nmp,p(ep) (=7

g over B(kg). Define ¢ := - E), then cp is the constant term of E(u).

Let ®¢ be the complement of ¢ in Hom(F,@p), then F(u) = P¢’WE’B(HE)®QPF(U) .

PQC,WE,B(HE)(X)@I,F(U)'
Define 9 to be the rank 1 free W (xg)[[u]] ®z, Op-module W (kg) ®z, Ore.

There is a natural identification
1@ ¢ : 6" = W (kp)[[u]] @ (epa) (W (55 [[u]] @2, Ore) = W (kg)[[u]] @z, Ope

Define the ¢-linear endomorphism ¢gy : I — M by Pon(e) = %P<I>°,7rE,B(nE)®@pF(U)€a
and define the W (kg)[[u]] homomorphism gy : MM — ¢*IM by Yop(e) = (1 ®

0) (P rp,Brp)eg, F(U))e-
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Proposition 5.1.6. The p-divisible group associated to the Kisin module 9 con-
structed above is an Op-linear CM p-divisible group over O with p-adic CM type

.

Proof. Everything is clear from the definition of 91 except for the statement on the

p-adic CM type. The Lie algebra Lie(X) is naturally isomorphic to

@M/ honM % W(kg)|[u]] ®z, Or/(Psxp,Brm)og, (W)
Define a F-linear homomorphism on @p ®z, Op-modules

L:Q,®0, (W(kp)|[ul] @z, Or/(Ponp B(xg)e,r(1) — [1(@,):
L& (f(u) @y) = (f(mE) - i(y))i
Here the index ¢ for @p indicates the F-action is given by 7 : F — @p The
F-linear homomorphism L is well-defined because of Cayley-Hamilton Theorem.
It is surjective because by Dedekind’s theorem the embeddings of F' in @p are
linearly independent. Count the Q,-dimension of the left hand side by (5.1.3):
dimg Q, ®o, (W(ke)|[u]] ®z, Or/(Poxp,Bsp)g,r(v)) = dimp(B(kg)|[u]] ®q,
F/(Porp,B(sp)@g, r(v)) = #©. Hence L is an F-linear isomorphism and the Propo-

sition follows. O]

It is an immediate corollary of (3.2) that

Proposition 5.1.7. The Dieudonné module of the closed fiber X}, of the p-divisible

y4
N@,E,B(KE)(X)QPF(_WE)

group constructed above is given by M := W (kp)®z,0re, Fe = e,

Ve = N@,E,B(KE)(@QPF(_T(E) ®e. -
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The construction is compatible with base change in the following sense.

Proposition 5.1.8. Suppose E' D E D F' are p-adic local fields. Let kg and Kg
be the residue field of E, E', respectively. Let E* := B(kg/) - E. Suppose wg, T are
uniformizers in E', E such that Nmg p-(—7p) = —7mg. Let M, M be the Kisin
modules constructed above with (E,mg) and (E', wg), respectively. If we denote the
p-divisible group associated to I, M by X, X', then X' is Op-linearly isomorphic

to X Xgpecoy Spec Op via a canonical isomorphism.

Proof. Let X and X' be the closed fiber of X and X’ over kg and kg, respec-
tively. By (3.1.1), we only need to show X Xgspecs, Spec kg is Op-linearly isomor-
phic to X’. It suffices to prove in the situations when E’/FE is totally ramified
or unramified. When E'/F is totally ramified, E* = E. Proposition 5.1.7 it suf-
fices to show N¢,E7B(HE)®QPF<—7TE) = N¢7E/,B(HE)®@pF(—7TE/), which follows from
the condition Nmp//p(—7g) = —mg. When E'/E is unramified, 7p = 75 and
E' = B(k’;)- E. One can show for any © € O C Op/, we have Nq),E,B(,QE)@QpF(x) =

N@,B(HSE)-E,B(R’E)®QPF(:E)7 this finishes the proof. O
The following proposition is also a direct application of (3.1.1).

Proposition 5.1.9. Let E be a p-adic local field that contains F', kg be the residue
field of E, and 7 be a uniformizer of Og. Let 9N be the Kisin module constructed
with (E,7g). Let k be an extension of kg, and E* := B(k) - E. Define 9IM* =

M Qw(np) W(k), and ¢pop- to be the natural extension of ¢on. Let X and X* be
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the p-divisible group attached to M and M*. Then X* is Op-linearly isomorphic to

X X specoy, Spec Op+ via a canonical isomorphism.

5.2 Torsion points

Let  be a perfect field of characteristic p, and E be a finite totally ramified extension
over B(k). Let mg be a uniformizer in Og, and E(u) be its minimal Eisenstein
polynomial over B(k). Assume the constant term of E(u) is equal to pe, where
c € W(k)*. Let X be a p-divisible group over Of (connected if p = 2), and let I
be the attached Kisin module. By the theory of Kisin modules, to find a torsion

point on X is equivalent to solve a certain equation on p~>*°Mt/M as follows.

Lemma 5.2.1. Let m > 1 be a positive integer. Then there is a natural one-to-one

correspondence between the p™-torsion points on X and the set
“m 1
& € p "M oun(x) = - B(u)a)

Proof. When p > 2, the equivalence between finite Kisin modules and finite locally
free group schemes killed by a power of p covers the etale group scheme Z/p™.
The attached Kisin module 9(Z/p™) is isomorphic to (&/p™) - e, with ¢,e =
%E (u)e,,e = c ®e. Then the statement follows directly from the identification
between Hom(Z/p™, X[p™]) and Homeg pm (IM(Z/p™), p~ "M /M). When p = 2, we

can take a detour via their Cartier dual by the identification Hom(Z/p™, X [p™]) =

O

Hom (X*[p™], ppym). The details are left as exercises.
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Let X be the p-divisible group over O associated to the Kisin module 9 con-
structed in (5.1). By CM theory we know the p™-torsion points on X@p generate
an abelian extension of E. Let Gal(E*®/E) and I be the abelianized absolute
Galois group of E and its inertia subgroup. If we would expect the Galois repre-
sentation p : Gal(E®*/E) — O} attached to X to bring /2’ onto the image of p,
then there exists a splitting Gal(E/E) 2 Z x I% such that the first component
acts on X[p™] trivially, and the action of the second component is compatible with

N
=5 Op — Op/p™ via local class field theory. In particular,

the reflex norm O
1+ p™O% acts trivially on X'[p™]. This hope guides us to search for the solution to
¢om(z) = 1E(u)z in the Kisin module after a base change to a class field of E.
The theory of Lubin-Tate formal group law provides us with information on the
explicit Eisenstein polynomial of a class field of F. Let us take a brief review on the
set up of Lubin-Tate theory. Let E be a p-adic local field and 7 be a uniformizer.
Let g be the residue field, and N := [kg : F,]. Let h(z) be a degree p” polynomial
in Og[[z]] such that h(z) = mz + terms of degree > 2 and h(z) = 2#" mod 7.
For any positive integer r, let A" (z) := hoho---oh be the r-th iteration of
h(z). Since z|h(z), we deduce h"~Y(x)|h")(x). Define h,(z) = % It is
clear that h,(z) is an Eisenstein polynomial of degree p¥" — p¥"=1) over E. There
exists a unique one dimensional formal group law Fj,(X,Y) over O such that

Fp,oh = ho F),. For any a € Op, there exists a unique element [a], € Og[[z]]

such that [a],(z) = ax + terms of degree > 2 and F}, o [a], = [a], o F},; in particular
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h = [r]n. The p-divisible group A}, attached to F}, is an Og-linear one dimensional
CM p-divisible group over O, and the roots of h(")(x) are the coordinates of 7'-
torsion points on &j. The field E(m,r) generated by these coordinates is an abelian
extension of E with Galois group O /n", and it corresponds to the open subgroup

(1+7"0Op) x 7% of E* via local class field theory.

Lemma 5.2.2. Let r be a positive integer. For any yi,y» € Ogl[z]] such that

y1 = y» mod 7, we have k™) (y,) = A" (y,) mod 7"+,

Proof. Let logp(x) be the logarithm of the Lubin-Tate formal group law F,(X,Y),
it satisfies a functional equation logp(z) = g(x) + %logF(xpN) for some g(z) =
x + terms of degree > 2; see [8] (1.8.3.6). For any a(z) € Ogl[z]] and §(z) € F|[x]]
and any positive integer k, we have log,(a(x)) = logp(3(x)) mod 7* if and only if
a(r) = B(z) mod 7 by [8] (1.2.2). Since logy oh™ = 7" o log, it suffices to check
logp(y1) = logp(y2) mod m. Let v be a valuation on E such that v(r) = 1. It

follows from the functional equation that logx(z) = >_ a;x%, where p™71i if v(a;) =

=0
—7. This guarantees ;) = a;y5 mod 7 when 3, =y, mod 7, and the lemma now

follows. L

Corollary 5.2.3. For any positive integer r, R~ (2?") = K=Y (2)h,(z) mod 7".

OJ

Let X be the p-divisible group over O associated to the Kisin module 90t

constructed in (5.1). Now we are ready to compute the coordinates of the torsion
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points on the geometric generic fiber of X in the sense of Lemma 5.2.1, after a base

change to an abelian extension of F. First let us make some notations:

e Let F’ be the reflex field of the p-adic CM type (F, @), E be a finite extension
of F', g be a uniformizer in Og, and kg be the residue field. Let e(E) be the

absolute ramification index of E. Define n := [kp N kg : Fpl, N 1= [kp : F,).

e Let h(z) be a degree p" polynomial in Ogl[[z]] such that h(z) = —7pr +

terms of degree > 2 and h(z) = 2#" mod 7. Let h)(z) := hoho---oh,

and h,(x) := h(hr(i;l(;a) for all positive integers r.
e Let m be a positive integer, and M := me(FE). Let m, be a root of the

Eisenstein polynomial hy,(z). Let E,, := E(m,,) = E(—ng, M) be the abelian

extension of E given by Lubin-Tate theory.

e Let F(u) and E,,(u) be the minimal Eisenstein polynomial of g and ,, over

B(kg), and let ¢p and ¢,,p be the constant terms of F(u) and E,,(u).

e Let 9 and M, be the Kisin modules constructed as in (5.1) with (F,7g)

and (E,,, m,), and let X and A, be the associated p-divisible groups.

o Define v = (No,p(u)tseroo, ron (KO D(@)" 7+ H00e € s see

(5.1.4) for the definition of A(p,E’B(,{E)@QpF(h(M*I)(u)).

e For any subgroup A of the finite abelian group p~"Or/OF, define NY to be

the &%-module &°{n - v|n € A}, define N4 to be the saturated finite Kisin
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module MY N (p~"M,,,/M,,). Let G4 be the p™-torsion finite locally free

subgroup scheme of &, attached to 4.

e For each 7 € Hom(B(kg) N F,Q,), choose an embedding i, € Hom(F,Q,)
such that i;|gwynr = 7. Let ®; := {i € ®|i[pu)nr = 7}. Define S, =
{a € Gal(Q,/B(rg))/Gal(Q,/E)|a" o i, € ®.}. Define a homomorphism
¢+ OB(sp)i-m) W] = OBspyis(mllull, such that ¢lwiy = o, ¢li,r) =
ior 017, and ¢(u) = wP. Define fﬂm(u) = I (ha)(w), Grm(u) =

T
aES‘r

H (a*h(M—1)>(u)7 and gﬂm(u) = gﬂm(u)¢N*"+¢N72n+,,.+¢n+l‘
aeSr

Proposition 5.2.4. Notations are as above, then:
(a) The element v in M, satisfies don,, (V) = = E,(u)v mod p™. Inp ™M /M,

Cm

all solutions = to ¢en, () = iEm(u)x have the form n - v, where n rTuns over

p " OFr/OF.

(b) There exists an Op-linear isomorphism between X X gpeco, Spec O, and
X, and all the p™-torsion points on X@p are rational over E,,.

(¢) The mapping A — G4 is a one-to-one correspondence from the subgroups
of p™OF/OF to the p™-torsion finite locally free subgroup schemes of X,,, and we
have #G, = #A.

(d) Under the identification of

M, = W (k) ©z, Orllulle D Osemiinllulle

reHom(B(kg)NF,B(kg))
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we have a concrete description of ¢oy,, and v:

¢mm67 = faT,m(u)echu U= Z (H gU_iT,m(u)¢i)eT

T€Hom(B(kg)NF,B(kg)) =0

Remark 5.2.4.1. Tt follows from CM theory and local class field theory that all
the p™-torsion points on X@p are rational over a certain totally ramified abelian
extension of F i.e., the fixed field of the kernel of the associated Galois representa-
tion Gal(Q,/E) — OF = (Or/p™)*. The computation here on torsion points via
Kisin modules allows us to tell this kernel explicitly: it corresponds to the subgroup
(1+ 7¥Og) x (—7p)* C E* via the reciprocity map E* — Gal(Q,/E) in local

class field theory.

Proof. With the element v defined as above, we can compute ¢gn, v =

_ N N—-1_4 ..
(N‘I),E(u),B(fiE)(@QpF(u)(h(M 1)(U)))¢ T e é ’ P‘I)C,WM7B(NE)®QPF(U)€
_ N _ N—-1_,. .
= No 5w, Bsm)o0, @) V(W) (No 5w, Blp)@q, o (B (1))t
i : Pcbc,wm,B(nE)e@QpF(U)@

_ N-1, ..
(u>)(N¢,E(u)7B(ﬁE)®QpF(u)(h(M D ()))$" et

Il
=
5
£
o
3
2
&
=)
<
=
£
—
>
g

1 m
ol Pq>c,ﬂm,B(HE)®QpF(u)e mod p

= No B(w),Brp)eg, Fu) (NME,, @)/ B (U — Tn))-
i : P<I>C,7rm,B(nE)®QpF(u)v
= be,wm,B(nE)(@@pF(u) : i : P@“,Wm,B(HE)(@QpF(U)/U

= imEm(u)v

Since ¢gy,, commutes with the Op-action on 9M,,, (a) now follows. In particular,

we have found #(Or/p™) = m[F : Q,] different p™-torsion points in AX,,. Since
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ht(X,,) = [F' : Q,p), all the p™-torsion points on (Xm)@p are rational over F,,.
By the construction of hy(x) and m,, we can check Nmg, jp(—7,) = —7g. By
Proposition 5.1.8 we know X Xgpec0, Spec Op,, is Op-linearly isomorphic to &,
and (b) is proved.

The correspondence in (c) is obviously bijective. To check #G4 = # A, recall we
have proved in Proposition 3.2 that #G4 = p'"&he0™  and it is clear that #A4 =
prenethz4 If we look at the natural filtration 0 C MY [p] € NY[p?] € --- € NY[p™] =
MY, each subquotient NY[p’]/NY [P~ is equal to k((u)){7 vm|n € Alp']}. TIts

dimension over k((u)) is equal to dimg, A[p’]/A[p'~']. This implies
lengthgeMNY = dimyuy N4 [p'] /M [p ] Z dimg, A[p']/A[p""!] = length, A
i=1

To see (d), with the definition of S;, one can check

No,B(u),B(xg)0g, F( = H a.f

a€eS,

Then (d) follows from a careful examination of the definition of v under the identi-

fication 9M,, — a5 OB ir () [1]] €5 O

reHom(B(kp)NF,B(xkEg))
Remark 5.2.5. Let d be a positive integer and (/m,, be a d-th root of m,. The
minimal Eisenstein polynomial of ¢/, over B(kg) is E,(u?), and its constant
term is equal to pc,,. Let 9, 4 be the Kisin module constructed in (5.1) with
(En(/Tm), /Tm). Its associated p-divisible group is naturally isomorphic to the

base change of X,, to Og|¥m,]. If we replace v with u? in the definition of v
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and denote it by v(u?), then all the solutions = to ¢, ,(z) = imEm(ud)x in

&

P " M0/ M q have the form 7 - v(u?), where 1 runs over p™™Op/OF.

5.3 Some technical lemmas

We establish a few lemmas on properties of the polynomial A*~)(v). The proper-
ties will be stated in terms of Newton polygons.

Let us review the basic notions about Newton polygons: let (F,v) be a discrete
valuation field, Or be the valuation ring. Let f(t) = Zd:aiti € F[t,t7'], where

i=r

ar,aq # 0. The Newton polygon NP(f) of f(t) is the convex hull of Ld) (i, v(a;))+R2,
where R? := {(z,y) € R?|z > 0,y > 0}. We define the slopes of NP(f) as the slopes
of the segments on the boundary of the polygon to the left of x = d. If X is a slope
of NP(f), we define the multiplicity of \ as the length of the projection to x-axis of
the corresponding segment.

If f(t) is a polynomial over F, the valuation v on F uniquely extends to the

splitting field of f. The slopes of a polynomial’s Newton polygon are related with

the valuations of its roots in the following way.

Proposition 5.3.1. Suppose f(t) is a monic polynomial with a nonzero constant
term. If the valuations of all the nonzero roots of f are equal to —\; < —Xy <
oo < =M with multiplicities ay,as, - - - ,ax, respectively, then the slopes of NP(f)

are \y > Ay > -+ > A\ with lengths aq, as, - -+, ay, respectively.
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Recall that the Minkowski sum of two sets S7 and Sy in a vector space is defined

as S1+ Sy := {v; + vs|v; € S;}. We have an immediate corollary from Proposition

5.3.1.

Corollary 5.3.2. The Newton polygon NP(fg) is equal to the Minkowski sum

NP(f)+ NP(g).

Let K be a field. For each formal power series g(t) € K((t)), there exists a
unique integer 7 such that g(t) = x"go(t) and go(t) € K[[t]]*. We define this integer
r to be the order of g(t), denoted by ord,g(t), or simply ord,g for short. The

following lemma will be extensively used in the future computations.

Lemma 5.3.3. Let F be a p-adic local field with residue field kg, and © be a

d
uniformizer in Op. Suppose f(t) = > a;t' € F[t,t7'], where a.,aq # 0. Let

h :=min{v(a;)|r <i<d}. Letc; be theium'que elements in kg fori =r,r+1,--- .d
andl =h,h+1,--- such that a; = iﬂ'j (ca), where (x) is the Teichmuller lift for
x € kp. Define g;(t) == i(cijﬁi. Suppose the slopes of NP(f) are Ay > Xy > -+ Ag
with multiplicities aq,ao, -+, ag, respectively. Then we have the following esti-

mates:

k—1 k—1 k—1 k
ordygr 2 d =3 aj — (i = Y a;), ifh— 3 Njoy <U<h—=73 Aoy, k=12,
i—1 j=1 j=1 7j=1

J

k k
ord,gy =d — Y aj, ifl=h—> Na;,k=0,1,2,---
j=1 j=1

Proof. By the definitions of g;(u) we can write f(t) = > n/g;(¢). For each [ > h,
j=h

k-1 k
there exists a positive integer k such that h — Y N\ja; <1 < h— ) Ao;. First
=1 =1
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k-1 k
suppose h — > Njo; < 1 < h— > Aej. If n = min{i|e;; # 0}, then v(a,) < i.
j=1 Jj=1

Because the point P, = (n,v(a,)) is inside the Newton polygon, we deduce that n

is larger than or equal to the z-coordinate of the intersection of NP(f) with y = .

k=1 k=1
The z-coordinate of the intersection is equal to d — > a; — (i — Y «;) from the
=1 j=1
k=1 k-1
information on the slopes of NP(f). Therefore ord,g; > d— > a; — (i — > «;).
j=1 j=1
k k

Second, suppose | = h— ) «; where k is a non-negative integer. Let ng :=d—)_ «;.
j=1 j=1

k
Because (d— ) ay,1) is a vertex on NP(f), v(ay,) must be equal to [, and any other
=1

k
n such that v(a,) = [ must be larger than d — > a;. This proves the estimates on
j=1

the orders of g;(u). O

Now we study the Newton polygons of the polynomials A=Y (u) and hy(u)

that we have defined over E in (5.2). Choose the valuation v on E such that

virg) = 1.

Proposition 5.3.4. The following statements are true:

(a) The vertices of NP(hys(u)) are (pMN — pM=bN ) (0,1), and the slope of

NP(hp(u)) is —m with multiplicity pMN — p(M=DN

(b) The vertices of NP(R™M=Y(u)) are (p™M=YN 0), (pM=2N 1), ... (1, M —1),

the slopes of NP(hM=1)(u)) are —(p(M_l)Nip(M_Q)N) > —(p(M_Q)Nip(M_g)N) > 0>

pM=DN _ (M=2)N \(M=2)N _ (M=3)N

— ——, with multiplicites oo, =1 re-

(pN-1)’

spectively.

—

(¢) For any positive integer D, there exists M= (u) € Oglu,u™!] such that
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—

h(Mfl)(u)h(/M—\l) (u) =1 mod 72, the vertices of NP(hM=1)(u)) are (—p™ =1V 0),

(=DpM=DN 1 (D — 1)pM=2N D — 1), and the slope of NP(h(/M?) (w)) is equal to

—(p<M,1)Nip(M,2>N) with multiplicity (D — 1)(pM =DV — p(M=2)N)

Proof. From the definition of hy(u) we know it is an Eisenstein polynomial of

degree (1 —p=%)

pM¥N hence all its roots have valuation a

_p+)pMN, this proves
M-1 A

(a) by Proposition 5.3.1. Since h™=D(u) = u [] hs(u), there are exactly p™N
i=1

pE=DN roots of AM=D(y) with valuation m, this proves (b) by Corollary

3

5.3.2. Then apply Lemma 5.3.3 we deduce there exist A;(u) € Oglu,u™']* for

M—-1
i=0,1,---,M — 1 such that A=Y (u) = > 7, A;(u), and ord, A; = pM—1=INd,

=0

Note that (b= (u))~! exists in the p-adic completion of Ox((u)) as

(hM-D ()™t = A +ZA LAyt ZWE oA M4 Ay

= i1tig+-Fir=k
25 >0

If we define h(M=D(u) := Y 7k ( 3 (_1)tAa(t+1)Ai1 .-+ A;,), then R(M-1) ig
k=0 i1+’i2ﬂf;+it:k

defined in Og[u, u™!]. Let us estimate the order of AJ(HI)A-

Zl”

. Ait~ If le > 2, then

after replacing (i1, 49, -+ ,4;) with (1,4y — 1,49, - ,4;), the order will change by
—ord, Ay + ord,A; + ord, A;, 1 — ord,A;, < —pMV(1—2p7) <0

For the same reason, if i; > 1 then after splitting ¢; into 1 and 7; — 1, the order

of Ayt A, -

A,

;, also decreases. Hence, among the indices (1,79, - ,4;) such

that i; 4+ i + -+ + 4, = k, the order of Aa(tH)Ail .-+ A;, is the lowest only when
t =k and iy =iy = --- =i = 1. Therefore ord,( > Aa(tH)Ail Ay =
i1+i2ﬂ-;+it=k
i
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orduAa(kH)A’f = —(k+ 1)pMN 4 kpM=1N (c) now follows. O

Now suppose E is an unramified p-adic local field. Define the endomorphism ¢
on E(u) such that ¢|p = o, and ¢(u) = vP. If i > 0 and f(u) € E(u) can be written
as fo(u?) such that p'|d, then f(u) is contained in the image of ¢' : E(u) — E(u),

therefore f(u)? " is well-defined.

Lemma 5.3.5. Suppose E is an unramified extension over Q, and we take mp =
p. Let d, D be positive integers and suppose D < M. Suppose we have integers
Ty > T > o0 > Ty > Y > Yo > -0 > Yy, such that pYsd is an integer. Let
I < r be the largest integer such that ©; > y; + N; we treat | = 0 if such an
x; does not exist. Then there exists g, € Efu] for k = 0,1,---,D — 1 such that

D—-1
RO ()7t b =g TN e mgTm N mgl —emgts = S kg mod pP with
=0

;

dp(M—l)N((l _p—N)(pk"i‘l 4 .. .pl) PP e T — YL — e pYs)
if 0<k<I-1

dp(M—l)N(pl‘k+1 4+ .- +p$r _ pyl .. _pys)

Ordugk Z
if [<kE<r-—1

dp™M=UN(—(k — p + 1)p¥t — -+ — ps)

if k>

\

o —

Proof. Replace A= (yd)=1 by h(M=1)(yd). Recall that A=Y (4?1 = hy,(u)
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mod p™, we deduce

P () 6714 =1 N et N g
= hM(ud>¢11*N+¢z2*N+..l+¢xl—N h(M—l)(ud>¢Il+1 g }@j)(ud)(byurmwys
mod p?”
By the definition of ¢, for any f(z) € E[u,u '], the slopes of NP(f(u?)?) are equal

to the quotient of the slopes of NP(f) by p'd. Hence by Lemma (5.3.4) the slopes

of

NP(hM(ud)ml_N+¢z2_N+“'+¢wl7Nh(Mfl)(ud)¢>”+1+“'+¢“ h(/M—\l) (ud>¢>y1+...+¢ys)

are:

1
- pTl (p(M—l)N_p(M—Q)N)d

1
P72 (p(M—DN _p(M-2)N g

> — > >

_ 1 > — 1 > ...
por (pOT-DN _p(M—2N)q P (p(M-DN _p(M-2)N)q

The multiplicity of each slope _pwi(p<M71>N17p<M—2>N)d is p®i (pM=DN _p(M=2)Nyq " and

the multiplicity of — o (p<M_1)N1_p(M_2)N)d is (D — 1)p¥ (pM=DN — p(M=2N)g  Then

the statement follows by a direct application of Lemma 5.3.3. O

%)



Chapter 6

Strong CM lifting to a p-adic CM
type induced from an unramified

local field

6.1 Main results of the Chapter

Definition 6.1.1. Let Iy be a complete discrete valuation ring of characteristic
0 and residue characteristic p. Let kg be the residue field of Ry. Let X be a p-
divisible group over I'y. A finite subgroup G of &), is said to be potentially liftable,
if there exists a finite extension I' over I'y with residue field x, and a finite locally

free subgroup scheme G of X'z, such that G, = G...

Let F' be a p-adic local field, 7 be a uniformizer in Op, e be the absolute
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ramification index, kg be the residue field, and let n := [kp : F,]. In this section

we prove the following theorem:

Theorem 6.1.2. Let a be an integer such that 1 < a < n—1. Letiy € Hom(F“”,@p),
' := {ig,ip00, - ,igoo? '} C Hom(F“T,@p), and let ® be the p-adic CM type on
F induced from ®'. Let X be the Op-linear CM p-divisible group over W (k) with

p-adic CM type ®. Then every Op-stable subgroup G of X}, is potentially liftable.
Theorem (6.1.2) has the following consequences:

Corollary 6.1.3. Notations are as in (6.1.2). Then every Op-linear CM p-divisible
group over k with dimension ae admits an F-linear CM lifting to characteristic 0

with p-adic CM type ®.

Proof. Every Opg-linear CM p-divisible group Y over k with dimension ae is L-
linearly isogeneous to X}, hence there exists an Op-stable subgroup G of X} such
that Y is Op-linearly isomorphic to X /G. By Theorem (6.1.2), there exists a finite
totally ramified extension R over W (k) and a finite locally free subgroup scheme G
of Xr, such that G, = G. Then X/G is an F-linear CM lifting of Y with p-adic

CM type . O

Remark 6.1.4. In the context of question (LTI) for p-divisible groups (see (3.1)),
Corollary (6.1.3) implies LTI(F, ®) = {the set of Lie types of dimension ae}. So

the F-linear isogeny constraint is the only constraint on LTI(F, ®); cf. (3.1).

Corollary 6.1.5. We have the following positive results on (sCML):
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(a) Let Ko be a p-adic local field, K be a degree 2 unramified extension of Kj.
Then the answer to question (sCML) relative to (K, Ky) for p-divisible groups is
affirmative.

(b) Let L be a CM field, and Ly be its maximal totally real subfield. If for every
place v of Ly above p, v is inert in L, then for the CM field L the answer to question

(sCML) for abelian varieties is affirmative.

Proof. (b) follows from (a) by Proposition (3.1.3), so it suffices to prove (a). Let ¢ be
the involution in Aut(K/Ky). Let ex be the absolute ramification index of K, nk
be the inertia degree of K. The set of embeddings Hom(K ur,@p) is isomorphic to
{1,2,--- ,nk} as Gal(K™/Q,) = Z/nk-torsors. The involution on {1,2,--- ,ng}
induced by ¢ sends i to i + * mod ng. Take a p-adic CM type for K" to be
" = {1,2,--- , %5}, and let ® be the p-adic CM type for K induced from @'
Then & is compatible with ¢, i.e., P[[P o = Hom(K,@p). Now if Y is an Og-
linear CM p-divisible group with dimension [Kj : Q,] = £ - ek, then by Corollary

(6.1.3) we deduce that Y admits a K-linear CM lifting with p-adic CM type ®

compatible with «. This proves (a). O

Here is the plan to prove Theorem (6.1.2). We have constructed the Kisin
module of X in (5.1). For each m > 1, after a base change to the totally ramified
abelian extension such that the p™-torsion points on X@p are rational, we have also
computed the finite Kisin modules attached to the p™-torsion finite locally free

subgroup schemes in Proposition (5.2.4). If such a finite Kisin module reduces to
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an Op-stable Dieudonné module by (3.2), then the associated finite locally free

subgroup scheme is the lifting of an Og-stable subgroup.

6.2 Examples of potentially liftable subgroups

To illustrate the approach to prove Theorem (6.1.2), in this subsection we consider
the example when F' = B(F,4) is unramified over Q, of degree 4. Take an identifi-
cation of Hom(F, B(k)) with {1,2,3,4} as Gal(F/Q,) = Z/4-torsors. Take a p-adic
CM type ® = {2,3}. The reflex field F” is equal to F. Take h(x) = pr+aP | it satis-
fies the requirement in the theory of Lubin-Tate formal group laws as in (5.2). Follow

the notations in (5.2), the Eisenstein polynomial hy(z) := h:()g) —p+(px 4 27" P!

defines a totally ramified abelian extension Fy over F with Galois group = O /p?.
Note that the constant term of hy(x) is equal to p. Let m be a root of hy(z), and
take R = Op,.p) = W(k)[m2). Let X be the Op-linear CM p-divisible group over
R with p-adic CM type ®, so the p*>-torsion points on X@p are rational over Frac R.
Let X be the closed fiber of X. We will show some examples of liftable Op-stable
subgroups of X.

The Kisin module attached to X is isomorphic to 9t = éW(k:)[[u]]ei, where
Opr acts on the i-th component by the embedding i. For simplicity we identify
Op with its image in W (k) under the first embedding. By (5.2.4 (d)), the ¢-linear
homomorphism ¢gy is defined as ¢ope; = e;11 if i = 1,2, and ¢one; = ho(u)e;yq if

it = 3,4. Here we have identified e; 4 with e;.
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By Proposition (5.2.4(d)), the solutions to ¢gn(z) = ho(u)z in p~29/IN have

the form 7 - v where n € p~20Or/OF, and
vi=h(u)? e + h(u)? ey + h(u)®es + h(u)? e,

where ¢ is the endomorphism on W (k) that induces ¢ on W (k) and sends u to
uP. Note that by our definition, the coefficients of h(u) are in fact integers in Z,
therefore h(u)? = h(uP).

The finite Kisin modules attached to p?-torsion subgroup schemes of X are
given by My = W(k)((u)){n - vln € A} N p~29M/M where A runs over all the
subgroups of p~20Or/Op. The Dieudonné module of the closed fiber is given by
Na/(MaNu(p™20M/M)) = (N4 + u(p™2M/M)) /u(p~2M /M), which we denote by
“Na mod v’ from now on for simplicity.

On the other hand, the Dieudonné module of X := A} is isomorphic to M :=
M/ ud = éMi = éW(lﬁ)ei, where Op acts by the i-th embedding on the i-th
component, Fe; = e; 1 fori = 1,2, Fe; = pe;yq foriv = 3,4, Ve, 1 = pe; fori =1, 2,
and Ve, 1 = e; for i = 3,4. Let us look at a few examples of the Dieudonné modules

attached to Op-stable subgroups of X, and show they are liftable.
Ezample 6.2.1. Let N := p~'M3/Ms, it is an Op-stable Dieudonné module. Con-

sider p~tv =

P (" + pu)PHe; + (U’ 4 pu)? ey + (U + pu)?tles + (U + pu)?toe,)

_ 7 6 _ 7 4 _ 5 4 _ 6 5
=pluP P e +ptuP TP ey + pluP P ey + pluP TP e, mod M
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Therefore =@ ") (p~1v) = p~les mod u. Therefore if we take A := (p~'), then
N4 mod u = N. Since the associated finite group scheme G4 has order p, we
deduce that 914 mod u = N. In fact, the reduction of any cyclic subgroup scheme

of X with order p is equal to the finite subgroup of X associated to V.

Remark 6.2.2. We have actually shown a stronger fact u~®"+7)(p=2p) = ple,

mod w?°~P'9. This fact will be useful later.

Example 6.2.3. Let N := p~*M3/Ms & p~*My/M,, it is an Op-stable Dieudonné

module. For any n; = p~*¢; with ¢; € W(F,x)*, we have
m-v= p_lglup7+p6el + p_leup7+p4eg + p_le2up5+p463 +p_1Cf3up6+p5e4 mod 9N

We have seen N,y /uMy,,y = p~'Ms/M;, so we need another 7, € p~2Op/Op to
produce a lifting of p~ey. If ¢ € W(F1)* is Z,-linearly independent from (i, then
there exists Aj, Aoy € W(F,4) such that A\i(3 + AoCo = 0, ¢ + Ao¢§ = 1. Thus
modulo 9t we have
M (G 0) + 25 (G 0)
= PO QX Qu e +p (T AT G e+ p ey

Therefore uw= @+ (A (p~1¢; - v) + AT (p~'C - v)) = ples modu. If we take
A= (p7i¢1) x (p71¢), then My mod u = p~ ' My /M3 ®p~*My/M, = N.

Example 6.2.4. Let N := p~*My/M, ® p~*M3/Ms, it is an Op-stable Dieudonné
module. This time we base change to X' Xgpec w (k)] SPEC W(k’)[{’/ﬂ'_g] to carry out

the computation!, where ¢y is a p-th root of my. Let 9 be the Kisin module

'Note that every p?-torsion subgroup of X’ := X Xgpecw (k)irs) SPeC W (k)[¢/72] is the base
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attached to X' Xgpecw (k)[rs) SPeC W (k)[¢/T2]. By Remark (5.2.5), if we replace u
with w? in the formula for v and denote it by v' := v(u?), then the p*>-torsion points
on X’ correspond to 1 - v', where n € p?Or/Op. Take A := (p~2). By Example
(6.2.1), we already have u~®"+7°)(p~10/) in Ny as a lifting of p~'es, and we need to

find another element in 914 to lift p~te,. Consider
W = p*Z(h(up)&*‘ﬁQel + h(up)¢3+1eg + h(uP)?tley +h(up)¢2+¢e4)
= p2(h(w)?* ey + h(u)? ey + h(u)? TPes 4+ h(u)?"+9 ey)
By Corollary 5.2.3, h(u)? ! = hy(u) mod p?, hence in MY we know h(u)~*~1(p~20)

is equal to

p—z(h(u>¢4+¢3—¢—161 + h2(u)€2 + h(u)¢2_1€3 + h(u)¢3+¢2_¢_1e4)

(p72up8+p7fp5 ' 4l (uptp‘r’ I e e R Y S R . s

up8+p7—2p5—p4+p)>el + <p—2up8—p4 +p (1 — up8—2p4+1))e2 + (p—2up6—p4_|_
p_l(u_p4+p2 _ up6_2p4+1))€3 4 (p_zup7+p6_p5_p4 4 p_1<up6_p5_p4+p3+

7T _ 5 4 2 7 6_ 5 _9n4 7 6_9,5__ 4
uP P PPt g p i —pP=2pt+l g ptp—2p PP))ey

This vector is not yet in p~29%/9M since the coefficient of e3 has a negative order

. . —_ (6 5 _ . L _ . .
in u. However, since u~®"+2")(p~1¢) is a lifting of p~'es, we can use it to “strike

out” the coefficient of p~les. Let w := h(u)"? 1 (p~20') — (u P P" — 2°~2"+1)

change of a p?-torsion subgroup of X, so to lift the associated subgroup of X to a finite locally
free p-torsion subgroup scheme of X X Spec W (k)[ms] SPeC W (k)[¢/m2] is the same as to lift it to a
finite locally free p2-torsion subgroup scheme of X. We make the base change here for the aim of

convenience in computation.
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u~ ") (p=14/), then we have
W= (b)) — p (P — )
(u*p4+p2 _ up6*2p4+l)(uf(p6+p5)(pflvl) — ples)
We have seen the first term in the sum is in p~2991 /901 and it reduces to p~'e; modulo
u, and by Remark (6.2.2) we know the second term is divisible by (T
Therefore we deduce w = p~'es mod u. This proves My mod u = p~ My /My &

p_lMg/Mg = N.

6.3 The correspondence between subgroups and

Lie types

To prove Theorem (6.1.2), we need a description of the Dieudonné modules attached
the Op-stable subgroups of an Op-linear CM p-divisible group. Such a description
also allows us to write down the Lie type of the quotient Op-linear CM p-divisible
group directly from the Op-stable subgroup. We take this subsection to set up some
definitions on such a description.

Let F' be a p-adic local field. Let X be an Opg-linear CM p-divisible group

with Lie type d. In the natural isomorphism Ry(Op) = IT Ri(OF ®0pu .+
T€Hom(Fur,Q,)

k) e, 11 Z (see (3.1)), denote the image of § by (5T)TeHom(F“rﬂ@p)' The
TEHom(F“r7@p)

Dieudonné module attached to Xj is

Ms = @ Ms

TEHom(F,@p)
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where M;, = W(k) ®; 0w Ope; is a free W(k) ®7,0,.. Op-module of rank 1.
The Frobenius and Verschiebung maps satisty F'Ms, = W%_‘S‘” Ms or and VM 5r =

’/T}S;” M +.
If G is an Op-stable subgroup of X, then its attached Dieudonné module is
é W;d* Ms - /M; ., where the d,’s are non-negative integers. This module

TEHom(F‘“,@p)
is stable under F' and V/, this implies

(507' — €fr S da'r - dr S 5(77'7 fOl" aHT € Hom(Fur’QP)

Definition 6.3.1. Let 0 = (0r) ;epyom(rg,) be a Lie type. A vector of non-negative

integers

d = (dT)TEHom(F‘”,@p) < @ NT
reHom(F™,Q,)
is defined to be d-admissible, if 6, — e < d,r — d; < d,, for all 7. It is said to be

0-admissible and reduced, if moreover we have mind, = 0. Two d-admissible d and

d’ are called equivalent, if d, — d, is a constant that does not depend on 7.

If d = (d,) is d0-admissible, we denote Nj(d) := @TeHom(Fur,@p)(WI;dTM&T/M&T)
and let G(d) be the associated finite subgroup scheme of X;. We also denote the
Dieudonné module M (d) := &P 7% M., and let X (d) be the associated

reHom(F™,Q,)
p-divisible group over k. Clearly from the definition we have:

Proposition 6.3.2. The mapping [d] — X(d) is a one-to-one correspondence be-
tween the equivalent classes of d-admissible vectors and the Op-isomorphic classes of
Op-linear p-divisible groups isogeneous to Xs. Moreover, the Lie type [Lie(X(d))] =
(6 —dr + daflT)TeHom(Fuv',@p) € Re(OF).
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6.4 The proof of Theorem (6.1.2)

In this subsection we prove Theorem (6.1.2). Notations are as in the beginning of
the section. We first claim it suffices to prove in the case when F' is unramified over
Q. To see this, recall that ¢ is induced from the p-adic CM type @' for F™*. Let )
be the Opur-linear p-divisible group over W (k) with p-adic CM type @', then X is
Op-linearly isomorphic to the Serre tensor construction Y ®¢,... Or. Now suppose
G is an Op-stable finite subgroup of Xj. The following lemma (6.4.1) reduces the

potential liftablity of G to an Opu-stable finite subgroup of V.

Lemma 6.4.1. Let F'/Fy be a totally ramified finite extension of degree d between p-
adic local fields, and 7 be a uniformizer of F'. LetY be an Op,-linear CM p-divisible
group over k, and X =Y Qop, Or be the Serre tensor construction. Let Y — X
be the canonical embedding, and Y; be the image of Y wunder the endomorphism
7t € End(X) fori = 0,1,---,d — 1. Then for every Op-stable finite subgroup
G C X, there exists an Op,-stable finite subgroup G; C X; fori=10,1,---,d — 1,
d—1

such that G = zl;[() G;.
Proof. The Dieudonné module N attached to Y splits into @TeHom( P g,) N,, where
N; is a free W (k) ®@; 0w Op,-module of rank 1. Let M, := Op ®0y, Nr, then the
Dieudonné module M attached to X is naturally isomorphic to @TeHom( Fg,) M.
Let N,; := Ogm' Qop, N- for ¢ = 0,1,--- ,d — 1, then the Dieudonné module
attached to Y] is @TGHom(Fur@p) N;;.

Since G is Op-stable, there exists a sequence of non-negative integers (a,) such
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that the Dieudonné module attached to G is €D, cyom pugy ™ M- /M. Let m be
a uniformizer of Op,. Note that 7= M, /M, = @?:_01 W(;[GTTH}NW/NM. For each 1,
define P, := @TEHom(Fur,@p) W(;[aTTH]NT,i/NT,i as a submodule in p~*N, ; /N, ;. Since
Y is Op-stable, we know the Frobenius endomorphism F' sends N,; to WSTNM-
for some integer &,, hence on M we know F sends M, to 7% M,.. Therefore
a, — dd, < ay,. This implies [“TT“] -0, < [“"#ﬂ'], hence P; is a finite Dieudonné
module.

Let G; be the finite subgroup of X; that corresponds to F;. Then G; is Op, -

d-1
stable, and G = [] G;. O
i=0

From now on we may and do assume that F'is unramified over QQ,. Take an iden-
tification between the Gal(#'/Q,) = Z/n-torsors Hom(F, B(k)) and {1,2,--- ,n},
such that ® = {2,3,--- ,a + 1}. The reflex field F”’ of (F,®) is equal to F. Take
h(z) = px + 27", and construct h(")(x), h,(x) for all positive integers r as in (5.2).
Let m, be a root of h,(x), and »/m, be a p"-th root of m,,. Define R := W (k)[ »{/7,].
Let 901 be the Kisin module constructed in 85 over R using the uniformizer »/m,,
and let X be the associated p-divisible group. By (5.2.4) all p"-torsion points
on X@p are already rational over Frac R. By Proposition (5.2.4) and Remark
(5.2.4(d)), the p"-torsion points on X are in one-to-one correspondence with {7 -
v|n € p"Or/Or}, where v = ih(”_l)(upn)¢n1+¢n2*“'+¢"a1+i+¢12+¢i3+'“+1ei +

En: h(n1)(Up")¢>i‘2+¢i—3+---+¢i—2“—1e

i=a+1
Let X := &}, be the closed fiber, it is the Op-linear CM p-divisible group over k

7
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with Lie type £(®). From the definition of @, if a vector of integers d = (d;)i=12,... n 18
&(®)-admissible, then 0 < d;,1—d; < 1when1 <i < a,and —1 < d;;1—d; < 0 when
a+1 <i<mn. Define ¢; :== min{i—1,n+1—i,a,n—a} foreachi =1,2,--- ,n. One
can easily check that for a positive integer r, there exists a reduced &(®)-admissible
d € N" such that the i-th component d; is equal to r if and only if 1 <r < g;.
Take a set of Qp-basis {¢;|i = 1,2,--- ,n} of F** = B(F,»), without loss of
generality we may assume (; € W(F,n)*. By Dedekind’s Theorem the matrix
[(fj]0§i7j§n_1 is non-degenerating. Hence we can rearrange the order of the rows
such that for any 1 < [ < n, the submatrix formed by first [ rows and [ columns
is non-degenerating. So there exists a unique vector A\; = (Ao, A1, -+, Ayy) in

(W(k))l+1 SUCh that ()\170, )\171, s ,)\171) . [C-aj]ogingl = (O, O, s ,O, 1)

)

Definition 6.4.2. Suppose (s, r) is a pair of integers such that 1 < s <n,1 <r < g,.

Define

A H;‘jos*aiap*r@), if s>a+1

s

HZ& <p_(a+1_S+T)Q>, if s<a

as subgroups of p7"Or/OF.
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Define integers

pn2 (ps—l - ps+r—a—2 _ ps+7"—a—3 L ps—a—l)
if a+1<s<n,s+r<n
p 2(ps—1_ps—2_ps—3_,___ps—a—1)
if a+1<s<n,s+r=n+1
D(s,r) =<
an (ps—l . pr—l _ pr—2 L ps—a—l)
if 1<s<a,r<n—1-—a
pn2 (psfl . psfz . psf?) L psfafl)
if 1<s<a,r=n-—a

\

From the definition it is clear that D(s,r) > 0.
For an element x € p~"IM°/M° we define ord,x to be the smallest integer d
such that u=%z € p™9M /M and u=% # 0 mod u. If ord,(z; — x2) > D, we write

1 = 2o mod ord, > D.

Proposition 6.4.3. For each pair of (s,r) that satisfies the condition in (6.4.2),

there exists wﬁ” € ‘ﬁA(T) such that wy) =p "es; mod ord, > D(s,r).

Proof. We divide the problem into the case whena+1<s<nand 1<s <a.
(i) First suppose a + 1 < s < n. Prove by induction on r. Suppose 1 < r <

min{s — 1,n + 1 — s,a,n — a} and we have proved for smaller r’s. Define

s+r—a—2
a+2—r _ n.__4s—2__ ... _ss—a—1 _
U* = E : )\g+r—a—2,kh(n 1)(up ) ¢ ¢ (p r<k '/U>
k=0

Then by the choice of Ay, ,_ 2 one can easily check that the coefficient of e; in
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v* — p~"es vanishes for a + 2 — r < i < s. Now we examine the coefficients for e;
withi<a+1—7rori>s+1.
When 1 < 7 < a+ 1 —r, the coefficient of e; is equal to the product of
st+r—a—

2 .
PT( X ML) with
=0

h(nil) (upn)¢n71+._.+¢max{sfl,n7a71+i}7¢min{sf2,n7a72+i}7...7¢max{sfa7l,ifl}+¢min{sfa72,if2}+_“+1

The number of A"~ (uP")¥ -factors with j > 0 is equal to (n — 1) — max{s —1,n —
a—1+i}+1. Because r <min{s—1,n+1—s,a,n—a} implies s —1 < n—r, and
i < a+1—rimpliesn—a—1+4i < n—r, we have (n—1)—max{s—1,n—a—1+i}+1 >
(n—1)— (n—7r)+1=r. Hence by Lemma 5.3.5, we can write this coefficient as

p"(go + pg1 + p?g2 + -+ +p""1g,_1), such that

max{s—1n—a—1+i} _  min{s—2n—a—2+i} _ max{sfafl,ifl})

ord,gr > pnz(p P "

Ifs+r<n,thenn—a—1+1i>n—r2>s, hence the above lower bound is

n2 S S— S—a— T
>pt(pf—p Tt —p ) > p

If s+ 7 = n+ 1, that lower bound is > d(p*~ ' —p* 2 —--- —p*=271) = D(s,7), too.
Similarly, when ¢ > s+ 17+ 1, we can also prove the order of the coefficient of e;
has order > D(s, 7).

When s+ 1 <i < s+ r, by Lemma 5.3.5, the coefficient of e; is equal to
s+r—a—2 a+2—r @ 1 n i—2 s—1 i—a—2 a1
PSS AT G YR ()t gt e
k=0
= p_r(go +pg1 + p2g2 + ... +pr_lgr71>
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with estimates on the order of the g;’s as follows. If £ < ¢ — s — 1, we have
Ordugk > an <p571 _pifan .. _psfa71> > D(S, 7“). Ifi—s < L <r— 17 we deduce
ordygr > p* (= (k — (i — ) + 1)p=@"2 —pima=3 — ... _psmal),

So far we have been able to write v* as

r—1
p"es + Z vie; + Z Z hiip”" e,
i<a+1l—r s+1<i<s+r 7=0
iZs?i-rr-l—l
knowing;:

(a) wheni <a+1—rori>s+r+1, ord,w; > D(s,r).
(bl) when s+1<i<s+randj<i—s—1,ord,h;; > D(s,r).
(b2) when s +1 <i<s+randi—s<j<r—1, ord,h; zpnz(—(j—(i—

S) + 1)pi—a—2 L ps—a—l)'

Now we define

wg’") = U* — Z hiijgrij)

(3,7)as in (b2)
Note that r — j < r —i+s < min{i — 1,n + 1 —4,a,n — a}, so by induction
hypothesis we have constructed w" ™ € ‘R%T_j) =W (k) ((u){p~ D¢ -0 <t <
i+ (r—j)—a—2}. Because i+ (r—j)<i+r—(i—s)<r+s,andr—j <r,

hence we have ‘ﬁgﬁr,j) C ‘ﬂ?w). Thus this w!” is indeed defined in ‘ﬁg‘m. Next we

verify ordu(wgr) —p"es) > D(s,r). Write wl) —pre, =

Dooviet Y hgpe— 3 higlw —pTHe)

i<a+1l—r s+1<i<s+r s+1<i<s+r
T or j<i—s—1 j=i—s
i>s+r+1
We have shown the first two terms in the above formula have orders higher than or

equal to D(s,r). For the last term, by induction hypothesis ordu(wgr_j ) p"e;) >
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D(i,r—j), and we have shown ord,h; ; > d(—(j— (i—s)+1)p"* 2 —p@ 3 —... —

p*~ 1), therefore we are reduced to the inequality which is an easy exercise:

D(iyr — §) + ™ (= — (i — s) + 1)pi™@2 — pi=@=3 — ... p*=971) > D(s,7)

(ii) In the case when 1 < s < a, we prove by a descending induction on s and an
ascending induction on r. Suppose we have proved for a larger s and a smaller 7.

Define
r—1
e AT RO ) e e )
k=0

Note that —a — 1 + s +n > 0 so every factor is well defined. By the definition of

Ar_1, the coefficient of e; vanishes for s —r+1 <17 <s— 1.

The coefficient of e, is equal to p~ (@15t (up™)*~ T+ Qince h,(u) is

n—1)

an Eisenstein polynomial of degree p”2 — p , We can write

a—s—+r
LS R ()H  pre S perisettap
=0
where ord,hs ; > (p*tm —p"*)p s if j < a+1—s, and ord,hs ; > 0ifa+2—s <

j < a—s+r. Note that (p”2+” — p”g)p_“_““s > D(s,r). Apply Lemma 5.3.5 to

study the coefficients of other e;’s, we can write v* as:

a—s+r
-r * —(a+1—=s+r)+j5
p"es + E vie; + E g hijp~t i,
i<s—r s<i<a+r+1 j5=0

or
i>a+r+2
knowing:

(a) when i < s—rori>a+r+2, ord,v; > D(s,7).
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(bl") when ¢ = s and j < a+1—s, ord,hs; > D(s,r).

(b2") wheni=sand a+2—s<j<a—s+r, ord,hs; > 0.

(cl’) when s +1<i<aand j<a-—s,ord,h;; > D(s,r).

(c2)when s+1<i<aanda—s+1<j<a—s+r, ord,h;; anz(—(j—

i—a—2 i—a—3 s—a—1
—p S ).

a+ s)p
(d1") whena+1<i<a+r+1landj<i-—s—1,ord,h;,; > D(s,r).
(d2) whena+1 < i <a+r+landi—s < j <a—s+r ord,h;; >
pn2<_(j — i s+ 1)pi—a—2 _pi—a—?) . _ps—a—l).
Define

wgr) N Z hi,ng(a-i—l—s-f—?")_j)
(4,9)as in(b'2),(c'2),(d’'2)

One can check for the pairs of (i, j) as in (b'2), (¢'2), and (d'2), A\ =477 < 40

and wlg(a—&—l—s)—l-'r)—

7 has been constructed. Hence w!” is indeed defined in ‘ﬁg‘(r). By
a easy exercise similar to that in the case when a +1 < s < n, one can check

ord, (w"” — pre,) > D(s,r). O

Now for any reduced &(®)-admissible vector d = (ds)s € N™, we define a sub-

n

ds
group A(d) C p "Op/OF such that #A(d) = ps; ,and AU C A(d) for all
s=1,2,---,nand r =1,2,--- ,d,. We first make several combinatorical defini-

tions before we actullay define A(d):
e Define a set H(d) :={(s,r)|[1 <s<n,1 <r<d;} C{1,2,--- ,n} x N*,

e Fork=1,2,--- ja,define I'y :=={(n,k),(n—1,k),--- , (a+1,k), (a,k—1), (a—
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Lk—2),- .

o Define hy, := #(H(d)NTy), L:= > hj—1, and m; == kif > h; <i<

j=1 j=k+1

S hy— 1.
j=k

By the definition of the I'y’s, one can check the condition that d is £(®)-admissible

a e—1

and reduced implies H(d) C | U Tk
k=1 t=

Definition 6.4.4. With the above notations, define h(d) := the largest integer k such

that H(d) N Ty # 0, and A(d) := H H( “mg) Cp M DOR/Op.

t=0 [=

n

ds
Proposition 6.4.5. We have #A(d) = psgl ,and AV C A(d) for all s =

1,2,--- . nandr=1,2,--- ,ds.

Proof. To compute #A(d), note that dimg, A(d)[p*]/A(d)[p"] is equal to #{i|m; =
k} = hy. Hence we have lengthy, A(d) = Z =Y H#HNT,) = #H = > _ ds,
k=1 k=1 s=1
ds
and #A(d) = psg1 :
s+r—a—2
Suppose 1 < s <nand1<r <d, Ifs>a+1,then A” = T[] (p"G).
k=0
Note that d, > r implies h, > s+r —a—1, hence ) h; —1>s+r—a—2. Asa

J=r
result, m; > r for any 0 < [ < s+ r — a — 2. This proves AQ) C A(d). Similarly if

r—1
s < a, then A7 = ] (p~(@*1=5%7)¢,). Note that d, > 7 implies Ay 1 sy, > 7, hence

k=0
a

> hj—1>r—1. Asaresult, m; > a+1—s+rforany 0 <! <r—1. This
j=a+1—s+r

proves A A(d). O

By a combination of Proposition (6.4.3) and (6.4.5), we deduce that 4
mod v = N(d), where 9y mod u is short for Muwy/(Ma@ N u - p~"M/M).
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This proves for every reduced &(®)-admissible vector d € N" G(d) lifts to a fi-
nite locally free subgroup scheme G4y of X'. For a general {(®)-admissible vector
d' € N, there exists a reduced &(®)-admissible vector d and a non-negative integer
i, such that d' = d + (i,4,--- ,4). If we compose the isogenies X RN N X /Gaw),
the reduction of Ker(7 o p') is equal to G(d'). This finishes the proof of Theorem

(6.1.2).

Remark 6.4.6. From the definition we can see A(d) is in fact p"@-torsion, where
the integer h(d) is defined in (6.4.4). Therefore in Theorem (6.1.2), for each Op-
stable subgroup G of X}, we can have control on the extension R/W (k) such that
G admits a lifting to a finite locally free subgroup scheme of X’z. Similarly, in
Corollary (6.1.3), we can also have control on the endomorphism ring of the CM

lifting and the ramification of the base ring of the CM lifting.
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Chapter 7

Strong CM lifting to a p-adic CM
type induced from a local field

with small ramification

7.1 Non-potentially-liftable subgroups

Let F' be a p-adic local field. Let n be the inertia degree of F', & be a p-adic
CM type for F, I’ be the reflex field. Let X be the (unique) Op-linear CM p-
divisible group over Op.pxy with p-adic CM type ®. In chapter 6 we considered
the examples where ® is induced from a p-adic CM type &' for F*", such that &’
has the form {ig,igo 0, - ,ig00®} for some iy € Hom(F*",Q,) and 1 <a <n—1.

In these examples, the reflex field F/ = F™. It was proved in (6.1.2) that every
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Op-stable subgroup G of A}, is potentially liftable. As a corollary, every Op-linear
CM p-divisible group Y over k of dimension ae admits an F-linear CM lifting to
characteristic 0 with p-adic CM type ®.

For other p-adic CM types @, this potential liftability result on Op-stable sub-
groups of Xj may fail to hold. We have seen such examples in chapter 2 and 4.
We showed that for a p-adic CM type (F, ®), if we denote the residue field of the
reflex field by kg, then a potentially liftable Op-stable subgroup of X} descends to
an Op-stable subgroup of & ,. As a corollary, if kg is “small”, i.e., K does not
contain kg, then there exist non-potentially-liftable Op-stable subgroups of Xj.

In this subsection we give more examples of p-adic CM types (F, ®), such that
kpr is mot small, but there still exist non-potentially-liftable Og-stable subgroups

of Xk

Ezample 7.1.1. Let F' = B(F,s). Identify Hom(F, B(k)) with {1,2,3,4,5} as
Gal(F/Q,) = Z/5-torsors, and take ® := {2,4}. Let m; be a (p® — 1)-th root of —p
in Q,, and take E := B(k)(m). Let X be the Op-linear CM p-divisible group over
Opg with p-adic CM type ®. By (5), the attached Kisin module 9t = il W (k)[[u]]e;,
on which the action of Op on the i-th component is given by the i-th embedding,
and ¢one; = ;4 for i = 1,3, done; = (p+u?” " Vezyy for i = 2,4,5. By [1] (B.4), the
Dieudonné module of the closed fiber is 0t /udt = il W (k)e;. If we denote W (k)-e;

by Mi7 then FMZ = Mi+1 fOI' 7, = 1,3, FY\JZ = pMi+1 fOI' 7 = 2,4,5, VMl = pMi—l

fori =24, VM; = M;_y for i = 1,3,5. By (5.2) we know all the p-torsion points
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on X@p are rational over E, and the finite Kisin modules attached to finite locally
free subgroup schemes of order p have the form of W (k)((u)){n - v} N p~1M/M,

where n € p~tOp/OF and
4 2 3 4 2 3
v:=yP 1P e + uP +162 4P +pe3 + uP +164 Ny +p€5

By [1] (B.4), it is clear that the Dieudonné module of the closed fiber of every
finite locally free subgroup schemes of order p is equal to p~*My/My. On the other
hand, one can check p~! M, /M, is also Op-stable and stable under F, V. However,
the observation above implies that the corresponding Op-stable subgroup of A} is

non-potentially-liftable.

Ezample 7.1.2. Let F' = B(Fys)[r]/(7° + p), where e > 2 and we assume e|p® —
1, so F/Q, is Galois. Identify Hom(F™, B(k)) with {1,2,3} as Gal(F™/Q,) =
Z/3-torsors. Let Res : Hom(F,Q,) — Hom(F"", B(k)) be the restriction map, let

¢ be an embedding of F in Res™'(3), and define ® := Res *({2,3})\{p}. Let

h() (z)

hz) = —mz + 22, let A (x) be the r-th iteration of h(z), and h,(z) = iG]

for all positive integers r. Let m; be a root of he(x) in Q,, and let E := B(k)(m;).

The minimal polynomial of m over B(k) is E(u) = I (Vehe(x)), its
YEGal(F-B(k)/B(k))
constant term is equal to p. Let Ey(u) := IT (v.heV(z)). Let X

~EGal(F-B(k)/B(k))
be the Op-linear CM p-divisible group over Op with p-adic CM type ®. By (5),
3
the attached Kisin module 9 = > W (k)[rn]|[[u]]/(7¢ — p)e;, where done; = eo,
i=1

dmea = he(u)es, pomes = E(u)ey. By [1] (B.4), the Dieudonné module of the closed
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3
fiber is M /udM = > W (k)[r]/(7¢ + p)e;. If we denote W (k) - e; by M;, then
i=1
FM1 = MQ,FMQ = 7TM3, FM3 = le, VMl = Mg, VM2 = le, VMg = 71'6_1M2

Let ¢ be the endomorphism on W (k)[r][[u]]/(7¢ + p) that induces o on W(k),
fixes 7w, and sends u to u”. Let v := Eo(u)? hD(u)%; 4+ Eo(u)he D (u)* ey +
Eo(u)?h*=V(u)es. By (5.2) we know all the p-torsion points on Xg, are rational
over I/, and the finite Kisin modules attached to finite locally free subgroup schemes
of order p have the form of W (k)((u)){n - v} Np~ 9/, where n € p~'Or/OF.
Note that Epy(u)(resp. h®Y(u)) is a monic polynomial of degree ep®¢=1) (resp.
P2 D) in W(k)[u] (vesp. W(k)[x][[u]]/(7° + p)). So v = u®" "hED(u)be; +

3e—3

u? R (1) ey + u?

3e—2

R~ (u)es mod p. By the definition of h*~")(u), one
e—1

can check that there exist g;(u) € Opu[u], such that AV (u) = 3 7g;(u) mod p,
i=1

gi(u) € Opur((u))*, and ord,g;(u) = p*>*373. When n = 77 with 1 < j < e, we

; ; el W 2 T
have =7 -v = 779 (uP" Y wigi(u)?er+u® S wigi(u)? ea+u® > wigi(u)es)
i=1 i=1 i=1
mod M.

(a) If e > p+ 1, then one can check vy =" (7=

-v) = crtes mod w,
where ¢ € W(k)*. In particular, the Dieudonné module of the closed fiber of the
corresponding finite locally free subgroup scheme is equal to m~!My/M,, which
corresponds to an Op-stable subgroup of X. We denote this subgroup of order p
by Gs. Because for every n € p~'Or/OpF, there exists some 1 < j < e such that n
differs from 7~/ by a unit in O, this proves all finite locally free subgroup schemes

of order p reduce to Gy over k. On the other hand, one can check 7! M3/Mj is
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also stable under F,V and the Og-action. Let G35 be the corresponding subgroup
of Xj. The observation above implies that (G5 is non-potentially-liftable.

(b) If e < p+ 1, then

_.n3e—2_  3e—3 _ _
u P (r ) = erles mod w

and

3e—3 1

w P T (p ) = drley mod u

where ¢, € W(k)*. Thus G5 and G5 are both potentially liftable.

The p-adic CM type in Example (7.1.2) can be viewed as a generalization of
the p-adic CM type we considered in chapter 6. However, the example shows that
a large ramification index of F' increases the subtlety in the CM lifting problem.
Nevertheless, in the next subsection we will show that as long as the ramification
index of F' is small (less than p — 1), we can still prove a result that is similar to

(6.1.2).

7.2 Positive results on question (sCML)

Let I’ be a p-adic local field, © be a uniformizer in O, kr be its residue field.
Let n be the inertia degree of F', e be the ramification index of F. Suppose Fj is
a subextension in F'/F"" such that ey := [Fy : F*"] < p — 1. Define dy := e/ey.
Denote W (k)[x]/(z® — p) by Ry. The fraction field Frac Ry is the unique tamely
ramified extension of B(k) with degree €.
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In this subsection we prove the following theorem:

Theorem 7.2.1. Let a be an integer such that 0 < a <n — 1, and t be an integer
such that 0 < t < ey — 1. Take iy € Hom(Fw",@p), and define " = {ig,ig o
o, ,igo 0o} C Hom(F“T,@p). Let ®* be a set of t embeddings of Fy into @p
that induce igoc® on F". Let ®' C Hom(Fy, Q,) be the union of ®* and the pullback
of ®". Let ® C Hom(F,@p) be pullback of ®'. Let X be the Op-linear CM p-divisible
group over Ry with p-adic CM type ®. Then for every Op-stable subgroup G of X,

there exists a finite extension R over Ry, such that G lifts to a finite locally free

subgroup scheme of Xg.

Remark 7.2.2. Tt suffices to prove Theorem (7.2.1) in the case when t > 1 and
F = Fy. In fact, if t = 0 then we are reduced to (6.1.2). We may assume F' = Fj
because X is Op-linearly isomorphic to a Serre tensor construction from an Op,-
linear CM p-divisible group over R, with p-adic CM type ®'. For details of the

argument, see the beginning of (6.4).
Theorem (7.2.1) has the following consequences:
Corollary 7.2.3. Notations as in (7.2.1). Then every Op-linear CM p-divisible

group over k with dimension ae+tdy admits an F'-linear CM lifting to characteristic

0 with p-adic CM type .

Proof. Every Op-linear CM p-divisible group Y over k with dimension ae + td; is

L-linearly isogeneous to X}, hence there exists an Op-stable subgroup G of &}, such
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that Y is Op-linearly isomorphic to Xy /G. By Theorem (7.2.1), there exists a finite
extension R over W (k) and a finite locally free subgroup scheme G of X, such that

Gr = G. Then Xg/G is an F-linear CM lifting of Y with p-adic CM type ®. O]

Remark 7.2.4. In the context of question (LTI) for p-divisible groups (c.f. 3.1),

Corollary (7.2.3) implies LTI(F, ®) = {the set of Lie types of dimension ae + tdy}.

Corollary 7.2.5. We have the following positive results on (sCML):

(a) Let Ky be a p-adic local field with absolute ramification index e(Ky) < p—1,
let K = Ky x Ky. Then the answer to question (sCML) relative to (K, Ky) for
p-divisible groups is affirmative.

(b) Let L be a CM field, and Lqy be its mazimal totally real subfield. If for every
place v of Lo above p, v is either inert in L, or split in L with absolute ramification
index e(v) < p — 1, then for the CM field L the answer to question (sCML) for

abelian varieties is affirmative.

Proof. (b) follows from (a) and (6.1.5), so it suffices to prove (a). Let n(Kj) be the
inertia degree of K. We mark the two Ky-components of K by Ky ; and Ky 2. Let ¢
be the Ky-involution on K such that ¢ flips the two components. The set of embed-
dings Hom(K, Q,) is naturally isomorphic to Hom(Ko 1, Q,) [ Hom(Ky2,@,), and
the involution ¢ interchanges between Hom(K1,Q,) and Hom(Kjy2,Q,). The set
of embeddings Hom(K%,@Q,) is isomorphic to {1,2, - ,n(Ko)} as Gal(K}*/Q,) =
Z[n-torsors. Take a p-adic CM type for K§ to be @ :={1,2,--- ,a—1}. Take &
to be a set of ¢ embeddings of Ky ; into @p such that they induce the a-th embedding
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on Ky'. Let ® be the p-adic CM type for K such that ® is equal to the union of
®* and the pullback of ®’.

Let Y be an Og-linear CM p-divisible group over k and suppose dimY = [Kj :
Q,] = n(Kp)e(Ky), as in the assumption question (sCML) relative to (K, K,) for
p-divisible groups. The splitting O = O, , X Ok, , induces Y = Y] X Y, where
Y; is an Ok, ,-linear CM p-divisible group over k. The question (sCML) is trivial
if Y7 or Y5 is etale. From now on we assume dim Y7, dim Y5 > 0. Write dimY; as
ae(Ky) +t, where 0 < a <n(Ky) —1and 0 <t < e(Ky) — 1. The dimension of the
Serre dual Y, is also equal to ae(Ky)+t. Therefore by Corollary (7.2.3), ¥; and Yy’
both admit Ky-linear CM liftings with p-adic CM type ®. We denote the liftings
by V1 and ), respectively. Then V) x V5 is a K-linear CM lifting of Y} x Y. The
p-adic CM type ® of Yy x )y is equal to ® := ®[](® o ¢)¢, which is compatible

with ¢ in the sense that ® [[® o = Hom(K,Q,). This proves (a). O

Now we prove Theorem (7.2.1) under the assumption that ¢ > 1 and F = Fy.
There exists a finite extension R; over Ry, such that the p™-torsion points on X@p
are rational over Frac R;. Let us recall from chapter 5 the construction of R; and
the Kisin module of X'r,. Let NV be the smallest integer such that n|N and ed%.
The field B(F,~) - Fy = B(F,~)[mo]/(76° + p) is Galois over Q,, and it contains the
reflex field of (F,®). Let h(x) = —mox + 2", and define h")(z) :== hoho---oh

to be the r-th iteration of h, h.(z) := hm(m)) for all positive integers r as in the

h(r=1) (2

theory of Lubin-Tate formal group laws. Let m, be a root of hy,(x), let /7, be
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a p"-th root of m,. Define Ry := W(k)[ »/m,], and K; := Frac R;. By (5.2.4) all
the p"-torsion geometric points on X@p are rational over K;. We make the remark
that in fact the p"-torsion points are already rational over B(k)(m,), here we take
a further p"-th root of 7, for the convenience in the later computations.
The Eisenstein minimal polynomial of #{/7, over B(k) is
E(u) = [T ehne)@
vEGal(Fy-B(k)/B(k))
The constant term of F(u) is equal to p. Denote the natural restriction map from
Hom(F,Q,) to Hom(F™,Q,) by Res. According to our definition of the p-adic CM
type ® for F', there exists an identification between Hom(F‘”,@p) and {1,2,--- n}
as Gal(F™"/Q,) = Z/n-torsors, such that ® = Res™'({2,3,--- ,a+1}) [] ®*, where
®* is a subset of Res™'(a + 2). Choose an embedding i* € Hom(F,Q,) such that
ias2 induces a + 2 on F*". Define S* := {a € Gal(K;/B(k))|a"! oi* € ®*}. Define
Fw) == TI (vehney) W), f(u) := E(u)/f(u). By (5.2.4), the Kisin module 9

yES*
attached to X, is isomorphic to @@ W (k)[mo][[u]]/(75° + p)e;j, on which ¢on(e;) =

j=1
ei1 if 1 <i<a, pm(ear1) = f(u)eqsa, and dgn(e;) = E(u)ejq if a +2 <i < mn.
The endomorphism ¢ on W (k)|[[u]] extends on W (k)[mo][[u]]/ (75" +p), such that
Plwwy = 0, ¢(m) = 7o, and ¢(u) = uP. Define

fO(u) = H(’Y*h(neo_l))(upn>¢N_n+¢N_2n+“'+¢”+1
vES

neg— n\pN—-n_y gN—2n_4 . in
Ey(u) == 1T (R 10D (" YO TSN 2t
~EGal(Fy-B(k)/B(k))
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Then the p"-torsion points on Xg, are in one-to-one correspondence with {n-v|n €

a+1 n—1 n—2 n—a—1+1 1—2 i—3 1 n—a—2+1
p"Or/Or}, wherev = > Ey(u)?" T¢" T 1¢ TR L ) (1) eit
i=1

Zn: 1 Eo(u)® 0 k0 £ ()¢ e, For a subgroup A of p"Op/Op, define
i=at
NG = W(E)((u){n-vln € A}, Na :=NY Np"MM/IM. Let G4 be the finite locally
free subgroup scheme associated to 914. When A runs over the finite subgroups
of p7"Or/OF, G4 enumerates all finite locally free p"-torsion subgroup schemes

of Xg,. Denote M4/ (M4 Nup™"IM/IM) = (N4 + up "IM/M) /(up™M /M) by N4

mod u, then M4 mod wu is the Dieudonné module of the closed fiber of G 4.

7.3 Technical lemmas

We state a few properties on Fy(u) and fo(u) in terms of their Newton polygons.
For the definition and basic properties of Newton polygons, see (5.3). We take a
valuation v on B(k)[mo]/ (75" + p) such that v(m) = 1. Denote the Newton polygon
of a polynomial g(u) by NP(g(u)). In general suppose K is a field, for each formal
power series g(z) € K((x)), there exists a unique integer ¢ such that g(z) = 2'go(z)
and go(z) € K|[x]]*. We define this integer ¢ to be the order of g(z), denoted by
ord,g(z), or simply ord,g for short. The following proposition is a straightforward

application of Lemma (5.3.3).

Proposition 7.3.1. Let d := pN" (1 +p ™" + - +p~ N,
(a) The vertices of NP(E(u)) are (deo(p™ — 1),0), (0,e0), and the slope of
NP(E(u)) is equal to —m with multiplicity epd(p™ — 1).
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(b) The vertices of NP(FEo(u)) are

N
(d€07 0)7 (deop_na 60)7 ) (deop—N(neo—l)’ 60(]\]@0 - _))
n
the slopes of NP(Ey(u)) are
1 - 1 - - 1
d(l _ pfn) d(pfn _ prn) d(pr(neofl)Jrn _ pr(neofl))
—N(nep—1)+n __

—2n) p

—N(neo—l))7

with multiplicities eqd(1 —p™™), eod(p™™ —p~"), -+ , eod(p

respectively.

(¢) There exists a polynomial E’\o(u) e W(k)[mo][u,u']/(7s® — p) such that
Eo(u)E\o(u) =1 mod p". The vertices of NP(Eo(u)) are (—deg,0), (deg(—n + (n—
Dp~™), (n—1)eq), and the slope of NP(Eo(u)) is equal to —m with multiplicity
eod(n —1)(1 —p™™).

(d) The vertices of NP(fo(u)) are

N
(dt,0), (dtp~™,t), (dtp~2",2t), - - -, (dtp~ N~V t(Ney — —))
n

the slopes of NP(fo(u)) are

1 1 1
_ > — > 0>
d(l _ pfn) d(pfn _ p72n) d(pr(neofl)Jrn _ pr(neofl))

with multiplicities td(1 — p™),td(p™ — p=2"), -+, td(p~Nneo=Din _ p=Nreo=1))

respectively.

Apply Lemma (5.3.3), we can deduce the following propery of Ey(u) and fo(u).

Note that if # > 0 and a polynomial #(u) € F[u] can be written as 6(u?) such that
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p'|d, then 6(u) is contained in the image of ¢/ : F[u] — F[u], therefore 6(u)? ™" is

well defined.

Lemma 7.3.2. Suppose we have integers x1 > To > -+ > X, > Y1 > Yo > -+ > Ys,
such that ys +n > 0 and y; +n > z,.. Let o be an integer such that y; +n > «.
Let | < r —1 be the largest integer such that x; > y; + n; we treat | = 0 if such an

x; does not exist. Then there ezists gr(u) € Opwlu] for k =0,1,--- ney — 1, such

that we can write

neg—1
Ey(u)?™ 44977 =071 gt gt 0% = 3™ kg mod
k=0
with the following estimates on ord,gy:
() If o < ys, then
d((reo — k)p*™ — eo(p”* + -+ p*) + tp%), for k <repg—1

ordy, gy, >
d(—(k —reo + eo)p” — eo(p? + -+ +p*") +1p%),  for k=reg

(b) If ) < a < z,, then
(

d((reo — k)p™ — eo(p™ + -+ p¥*) + 1p®), for k<reg—1

d((reo +t —k)p* —eo(p?” + - + p*))
ordygr >

for reg <k <rey+t—1

d(—(k —reg —t+ eg)p¥ —eg(p¥2 + - -+ p¥)), for k>reg+t

\

(c) If a > x,, then

d((reg +t —k)p™ — eo(p” + - - - + p¥)), for k<rey+t—1
ordygr >

d(—(k —reg —t +eo)p” —eo(p* + - +p*)), for k=>reo+t
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7.4 The proof of Theorem (7.2.1)

The Dieudonné module of &}, is isomorphic to M/uIN = @ M;, where M; is a free
i=1
W (k)[mo]/(7® — p)-module of rank 1. The Frobenius and Verschiebung maps act

by
FM; =M 1forl <i<a, FM,y, = WSO_tMaJrQ, FM; =pM;,fora+2<i<n

VMiJrl = pM,L for1 < 1 < a, VMa+2 = 7T6Ma+1, VMZ'+1 = MZ fora + 2 < 1 <n

If G is an Op-stable subgroup of &}, then the Dieudonné module N attached to G

n
is equal to @ 7y % M;/M;, where the d;’s are non-negative integers satisfying
i=1

0<diy1—d; <eg,forl <i1<a

t—eg <doyo—dap1 <t

—eg < diy1 —d; <0fora+2<i<n
Such a vector d = (d;); € N" is called &(®)-admissible in the sense of (6.3). If
moreover, mind; = 0, then we say d is £(®)-admissible and reduced. For a &£(P)-

n

admissible d, define N(d) to be the Dieudonné module G}l 7o % M;/M;, and let G(d)
be the associated Op-stable subgroup of Xj;. The mapping d — G(d) is a one-to-
one correspondence between £(®)-admissible vectors and Op-stable subgroups of
Xk Define X (d) to be the quotient Xy /G(d), it is also an Op-linear CM p-divisible
group, and we can write down its Lie type directly from d; see (6.3.2). We will first
prove for every &(®)-admissible and reduced vector d € N"| there exists a subgroup

A C p7"Op/Op such that My mod u = N(d).
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(

min{ (i — 1)eg, (n — a)ey — t} if i<a+1

Define g; :== { min{aey +t, (n — a)ey — t} if i=a+2 foreachi=
min{(n + 1 —i)eg, aey + t} if i>a+3
\
1,2,--- ,n. One can easily check that for a positive integer r, there exists reduced

&(®)-admissible d € N such that the i-th component d; is equal to r if and only if
1 <r<yg.

Take a set of Q,-basis {(;[i = 1,2,--- ,n} of F" = B(F,»), such that for any
0 <1 < n—1, the submatrix [(7’]o<ij<; is non-degencrating; c.f. (6.4). Take

7

A= (Nos Aia, oo, Ay) in (W(K)! such that (Ao, Aty 5 Aig) - (67 Jo<ijar =

2

Definition 7.4.1. Suppose (s,r) is a pair of integers such that 1 < s <n,1 <r < g,.

88



Write r = 4,9 — j,, where 0 < j, < ey — 1. Define Aé’") =

( i,+s—a—3ep—1 ir+s—a—3 eg—t—1

[T am)yx I1  II (O DGm)x
=0 j—jn =0 j=0
ir+s—a—4 jr—1

[T (O V¢m)

i=0  j=eq—t

if a+2<s<meg—1t<7 <e—1

irts—a—2eg—t—1 ] . ir+s—a—3 eg—1 ) . ir+s—a—3 jr—1 - .
[T (™ Gmyx II 11 Gm)x I1 T (" VGm)
i=0  j=jr i=0  j=eq—t i=0  j=0

if a+2<s<n,0<j,<e—t—1

ir—1eg—t—1 ir—2 ep—1

[T (=g x T AT =G
i=0 j=j,.—t 1=0 j=eo—t
ir*2jrft71 . .
0 HO (prlettme )G
1= j=

if 1<s<a+1,t<j.<e—1

ir—1  ep—1 . . ir—1leo— .
[T rersscm) T T oG

i=0 j=eo-+ijr—t

’L.,,,—260+j7,7;—1

H <p—(a+1—s+ir)giﬂ.é>

i=0 j=eo—t

if 1<s<a+1,0<j <t—1

\

as subgroups of p7"Or/OF.

Define integers

d(psfl _ eo(psz _}_psf?) 4. _’_psfafl) _ (ireo _ jr)psfa72)
if a+2<s<n
d(ps—l _ eo(ps—Q _|_ps—3 4o _|_ps—a—1> _ (ireO _ j'r + t)ps—a—Q)

if 1<s<a+1

\

By the assumption on (s,7), when a + 2 < s < n we have i,eq — j, < aeg + ¢, and
when 1 < s < a+ 1 we have 1,.eg — J,, < aeg. Note that eg < p — 1, hence in either
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case we have D(s,7) > d(p*™' —eg(p* 2 +p* 3+ +p ) — (aeg + t)p*~*72%) >
d(psfl _ (p _ 2)(p572 +p573 4+ _i_psfafl) _ (a + 1)€0psfa72) > 0.
For an element x € p~"9M°/9M°, we define ord,z as the smallest integer d such

that u=4z € p™"M/M and v~z # 0 mod u.

Proposition 7.4.2. For each pair of (s,r) that satisfies the condition in (7.4.1).
Write r = i.eq — j,, where 0 < 3, < eqg— 1. Then there exists wgr) € ‘J’IAW such that

wgr) = p‘irﬂdres mod ord, > D(s,r).

Proof. When a + 2 < s < n we prove by an increasing induction on r. When
1 < s < a+ 1 we prove by a decreasing induction on s and an increasing induction
on r. By the definition of AS“), the argument will differ depending on the range of
Ir, too. We will prove the case when a +2 < s<nandey—1t <7, <ey—1. The
details for the other cases will be left as exercises.

Suppose we have proved the statement for smaller r’s. Define

vt = ir+§3 )‘g«a:s:jzr—?,,kEo(U)_wd—m_wiailU_pkaﬂtd(p_irfk”gr - )
k=0
Then by the choice of \;, ;s_,—3 one can check in v* the coefficient of e; vanishes for
a+3—1i, <i<s—1 Now we examine the coefficients for e; with i < a + 2 — 1,
or ¢ > S.
When 1 <i < a+1—1i,, the coefficient of e; is the product of a scalar in W (k)

. . 7, _ S*“*2td n—a—22+1
with p~'rad" - u™? , fo(u)? , and
E (u)qz)n—l+_,,+¢max{s—l,n—a—1+i}_¢min{s—2,n—a—2+i}_m_(z)max{s—a—l,i—1}+¢min{s—a—2,i—2}+---+1
0
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The number of Eo(u)? -factors with j > 0 is equal to n —1 —max{s—1,n—a—1+
it+1=min{n—s+1,a+1—i},and n—s+1 >4, because r < ¢q;, a+1—1i > i,
because of the assumption on the range of 7. Therefore apply Lemma 7.3.2, modulo
ireo—jr—1

9N we can write it as p‘irWdT (91 + mog1 + ngz + -+ my Giveg—jr—1), With

ordugr > d(pmadls-ln—a-l4il g (min{s=2n-a=2+i} 4y pe-a-ly
e hip _ pemas2y)
> D(s,r)
When i = a+ 2 —i,, the coefficient of e; is the product of a scalar in W (k) with

p it and

u_p57a72tdE0 (u)¢n71+...+¢n+17ir_¢572_..._¢max{57a71,a+17ir}+¢min{sfa72,a7ir}+-..+lf,(u)(ﬁnfir

This time n — 4, > s —1 > s—2, and i,eg — j, — 1 < (i, — 1)eg +t — 1 (Note
that here we use the condition that j. > ey — t). Hence by Lemma 7.3.2 (b),
modulo 1 we can write it as p‘“ﬂd’“ (g1 + Tog1 + Taga + -+ + ﬂéTeO_jr_lgireO_jr_l),
with ord,gr > d((t — (eg — 7r) + 1)p" ™ —eo(p* 2 + -+ + p* 471 — tp*=272) >
dp*™t —eo(p** + - + 7)) = (ireg — jr)p* %) = D(s,7)

When i > s +1i, + 1, the coefficient of e; is the product of a scalar in W (k) with

4 ; _s—a—2 i—2 ... max{i—a—1,s—1} _ smin{i—a—2,s—2} _ _ 4s—a—1 i—a—2
p er(J)ru P tdEO(u)¢ +td ¢ ¢ fo(u)¢

, with estimates on the order of the g;’s. The number of Eo(u)? (j > 0)-factors is
i—2—max{s—1,i—a—1}+1=min{i —s,a}. If i, <a, then min{i —s,a} > i,.
Hence by Lemma 7.3.2 (a) (b), modulo 1 we can write this coefficient as p~r 7} (g1 +
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ireg—Jr—1

Tog1 + Taga + - -+ + Ty Gireo—jr—1), With
ordygy > d(pmalslnmasli} o (pmin{s=2n-a-24i} 4
pomam ) g pime2  psma2yp)
> D(s,r)
Ifi,. =a+ 1, then ¢t > s+ 1.+ 1 implies i —a — 2 > s; at the same time,
ireo—Jjr—1 < (i, —1)eg+t—1 (Note that here we use the condition that j, < eq—t).
Hence by Lemma 7.3.2(b), modulo 1 we can write this coefficient as p~ 7} (g1 +

ireg—Jr—1

Trogl + 7T392 + to + 7T0 gir@()_j'r—l)7 Wlth

ord,gr > d((t—(eo—jr) + 1)p"™* 2 —eg(p* 2+ -+ +p %) —tps o7
> dp* —eo(p - ) —tp?)
> D(s,r)

When s+ 1 < i < s+ 1i,, the coefficient of e; is the product of a scalar in W (k)

with

—i ] _ sfa72td i72+m+ max{i—a—1,s—1} _ smin{i—a—2,s—2} _ _ 4s—a—1 i—a—2
prmyu? Eo(u)? ¢ ¢ T folu)?

From the assumption on s and ¢ we know ¢ < s +1,. If i, <aorifi, =a+ 1 and
i < s+a,theni—a—2 < s—2, hence by Lemma 7.3.2 (a), modulo 1 we can write it
as p’“m{ (g1+mog1 +72ga+- - -+7ré’e°_j’"_1gire()_jr_1) with the following estimates on
the order of the gi’s: ord,gr > d(p* ' —eo(p™ 24+ -+p* 1) +1p a2 —tp*~272) >
D(s,r) when k < (i — s)eg — 1, and ord,gs, > d(—(k — (i — s)eg + eg — t)p' ™72 —
eo(p O3+ p* ) — tp*772) when k > (i — s)eg. If i, =a+ 1 and i = s+,

because i —a —2 = s — 1, and i,eq — j, — 1 < ae +t — 1 (Note that here we use
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the condition that j, < ey — t), hence apply Lemma 7.3.2 (c) we can write it as

ireg—Jr—1

p*“?ré* (91 + mog1 + 392 + - - + 7 Gireo—jr—1) With ordy,gr > D(s,7).

When i = s, the coefficient of e, is equal to p~rriru """ f (4)*"*7* Note
that fo(u) is a monic Eisenstein polynomial of degree p*~2~2td. By Proposition
7.3.1(d) and Lemma (5.3.3), we can write it as p~r 7 (go + mog1 + Toga + - -+ +
T g o jr1) With go = 1, and ord,g, > —kp*~*%d.

Now let us summarize the estimates above and write down a representation of

v*. The formula will differ slightly according to whether 7, < a or i, = a + 1.

(i) First suppose i, < a, then we can write

,U* — p—’Lrﬂ-éres _'_ Z 'U*<'l)€l+
1<a+2—ip, or 12>2s5+ir+1
ireo—jr—1 i ireo—jr—1 o
—1 —1
> > higpTrmy e+ Y0 hsgpTmy es
s+1<i<stiy =0 j=1
knowing:

(a) wheni <a+2—rori>s+i,+ 1, ord,v*(2) > D(s,r).

(bl) when s +1 <i<s+14, and j < (i — s)eg — 1, ord,h; ; > D(s,r).

(b2) when s +1 < i < s+, and j > (i — s)eg, ordyh;; > d(—(j — (1 — s)eg +
o — 1)pi=72 — eg(p O3 4 -+ 4 ptOL) — tpia2),

(c) when i = s and 1 < j <i.e9 — j1 — 1, ord,h;j > —jp* 2.

For each j satisfying 0 < j < i,eq — j,, there exists a unique pair of (i,, j.) with
0 < jl <ey—1such that iley — j. =ieq —j, —j =7 —j. Foreach 1 <i <mn, let

€j be the unit in W (k) such that egj-lp_irﬂjTJrj -e; = p~irmir - ¢;. Now we define

wgr) — oy — Z hi,j‘fi,ngr_jd())
(3,7)as in (b2) and (c)
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r—jdo

By induction hypothesis we have already constructed wg ) in M -5~ One can

check that under the conditions on the range of i, j, we indeed have AETﬁj VAP,

Next we verify ord, (w!” — p~irmire,) > D(s,i,). Write w'” — p~irri e, as

* (7 —ip o jrt] (r—jdo)
> v(eit+ > hgpTtmi e — 30 hige(wp Y-
i<a+2—iy, s+1<i<s+ir s+1<i<s+iy
or < (i—g)e— Nyt
st j<(i—s)e—1 j>(i—s)e
=1, —ip _jrtj (r—jdo) —1—ir _jrti
€ ;p T Te;) — > he j(ws — &P T te)

1<j<ireo—jr—1
We have shown the first two terms in the formula have orders higher than or equal
to D(s,r). For the third term, by the induction hypothesis and the choice of €; ;
(Tﬁj) ,7.1

— €

) P He) > D(i,r — j), and we have shown ord,h; ; >

we know ord, (w
d(—(j—(i—8)eg+eg—t)p 2 —eo(p P+ -+ p* 1) — tp*~2), therefore we

are reduced to the inequality which is an easy exercise:

i—a—2

Pt —eo(pE A p ) = (iveo — e — )P
(= (i — 8)eq + e — )2 — eo(pO3 4 oo g pomal) —gprma
> ol ep(p 2 A e 4 pah) — ppa
For the fourth term, since ordu(wgrfj) - e;;p_irﬂj”+j€¢) > D(s,r — jdo), and
ord,hs; > —Jp*~%2d, hence its order is greater than or equal to D(s,7 — j) —
Jp*~2d = D(s, 7).

(ii) If ¢, = a + 1, then according to the estimates on the cofficient of each e;, we

can write
U* — p—lrﬂ-éres + Z 'U*(Z)ez_F
i<a+2—ip, Or 1>5+ip
ireo—jr—1 i ireo—jr—1 .
—r —1
Yo higpTrmy e+ Y0 hegpTtmy s
s+1<i<s+ir—1  j=0 Jj=1
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knowing:
(') wheni <a+2—rori>s+i,. ord,v*(i) > D(s,r).
(bl") when s +1 <i<s+1i,—1and j < (i — s)eg — 1, ord,h; j > D(s,r).
(b2') when s +1 <i < s+i, —1and j > (i — s)eg, ord,h;; > d(—(j — (i —
s)eo +eo — D)2 — ep(piE 4 - 4 e L) — gpra?),
(¢') when i = s and 1 < j <i,eq — ji; — 1, ord,h;j > —jp* *2d.
Define w” := v* — > hi’jei,jwa_de), by the same argument as in
(irj)as in (b2') and (c')

the case when i, < a we can prove ord,(w” — p~irzi"e,) > D(s,i,), too.

This finishes the inductive proof of the proposition. n

Now for any reduced &(®)-admissible vector d = (ds)s € N™, we define a sub-

ds
group A(d) C p"Op/Op such that #A(d) = psgl ,and AV C A(d) for all

s=1,2,--- ,nand r =1,2,--- ,d,. We first make a few combinatorical definitions:

e Define a subset H(d) C {1,2,--- ,n} x N* as H(d) :={(s,7)[1 <s<n,1 <

r <ds}.

eFork=1,2---,a+1,1=0,1,--- e — 1, define I'y; := {(n, key — 1), (n —
Lkeg—1), -, (a+2,keg —1),(a+1,keg — 1l —1t),(a,(k—1)eg — 1 —t),(a —

1, (k—2)eg—1—1t),--}.

a+1 a+1
e Define hk,l = #(H(C_i) N FkJ), d; = Z hlc,l - 17 and mg;; = k if Z th S
Jj=1 j=k+1
a+1
i< S hiy— 1.
j=k

95



By the definition of the I'x;’s, one can check that if d is £(®)-admissible and reduced,

a+1ep—1
then H(d) C |J U Tk, and one can also prove the following chain of inequality:
k=1 1=0

Pikeo—1 = Pieg—2 = =+ > hieg—t = Peg—t—1 —1 > Apeg—p—2— 12>+ > hgo—12>

Rit1,e9-1 —1 2> Agyreg—2 —1 2> -+

Definition 7.4.3. With the above notations, define h(d) := the largest integer k such

ep—1 d;

that H(d) NTy; # 0 for some 0 <1 < ey — 1. Define A(d) := [] [[{(p ™wi¢;) C
I=0 j=0

p_h@OF/OF.

n

ds
Proposition 7.4.4. We have #A(d) = ps;1 and A C A(d) foralls =1,2,--- ,n
andr=1,2,---  d;.

a+1eg—1
Proof. The first statement is a direct corollary of the fact that H(d) C J U Tk,
k=1 1=0

For the second statement, we can write r = i,¢g — j, with 0 < 5, < ¢y — 1.
The definition of A differs according to the range of s and j,.. Similarly as in
Proposition 7.4.2, we give a proof when a+2 < s<nandey—t < j. <ey—1, and
the details for the other cases will be left as exercises.

The fact that (s,i,eq —j,) € H and s > a+ 2, j, > ey — t implies h;_; >

s + 4, —a — 2. Moreover, for any j > j., h;,j > h;, j, > s+ i, —a — 2; hence
a+1
Z hi7j—1 Z s—l—z’r—a—3. For anyj S eo—t—l, hir—Lj Z hir—LO Z hir,eo—l 2 hi'mjr;
i=iy
a+1
hence Z hi’j—l Z s+ir—a—3. For any 60—t S j S jr—l, hi,«—l,j Z hi,«—l,O_l Z
il
1=1 - "
co—1 — 1 >h; ;. —1; hence > h;; —1> s+1i, —a—4. This proves A7 is

i=1tp—1

h

ir‘»

contained in A(d). O

96



By a combination of Proposition (7.4.2) and (7.4.4), we deduce that D4
mod u = N(d). This proves for every reduced &(®)-admissible vector d € N,
G/(d) lifts to a finite locally free subgroup scheme G4(q) of Xg,. For a general {(®)-
admissible vector d € N"| there exists a reduced &(®)-admissible vector d and a
non-negative integer 4, such that &' = d + (,4,--- ,4). If we compose the isogenies
Xr, 2, Xr, 5 XRI/QA@, where 7 : X, — XRI/QA@ is the quotient isogeny, then
the reduction of Ker(w o p') is equal to G(d'). This finishes the proof of Theorem
(7.2.1).

h(d)—torsion,

Remark 7.4.5. From the definition of A(d) we can see it is in fact p
where the integer h(d) is defined in (7.4.3). Therefore in Theorem (7.2.1), for each
Op-stable subgroup G of A}, we can have control on the extension R/W (k) such
that G admits a lifting to a finite locally free subgroup scheme of Xz. Similarly, in

Corollary (7.2.3), we can also have control on the endomorphism ring of the CM

lifting and the ramification of the base ring of the CM lifting.
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Chapter 8

A first complete list of potentially

liftable subgroups

Let F' be a p-adic local field, ® be a primitive p-adic CM type for F, I’ be the reflex
field. Let X be the (unique) Op-linear CM p-divisible group over Ry := Opr.pax
with p-adic CM type ®. A subgroup G of X := A}, is said to be potentially liftable,
if there exists a finite extension R over R, and a finite locally free subgroup scheme
G of X such that G, = G. A complete list of potentially liftable subgroups of X}
would allow us to identify which F-linear CM p-divisible groups admit an F-linear
CM lifting with p-adic CM type ®. In (6.1.2), for a class of p-adic CM types ®, we
proved that every Op-stable subgroup of &}, is potentially liftable. We will prove the
same property for a broader class of p-adic CM types in (7.2), and give examples of

other p-adic CM types such that not every Op-stable subgroup of A}, is potentially
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liftable in (7.1).

In general to give a complete list of potentially liftable subgroups of X}, we need
to let R run over all the finite extensions of Ry, and compute the reductions of all
finite locally free subgroup schemes of Xz. When dimX = 1 or codimX = 1, as
we will explain in (8.1.5 (b)), the computation is trivial simply because the closed
fiber X} “does not have many subgroups”. In this chapter, we will compute a first

non-trivial example.

8.1 The main theorem

we first set up the example and make some definitions to state the main theorem
and its corollaries. Let p > 2, F' = B(F,2)[mo]/(73 — ep), where € € W(F,2)* is a
Teichmuller lift and is not a square. The degree 4 extension F/Q, is Galois, and
Gal(F'/Q,) is a cyclic group of order 4 generated by the automorphism 7 : F' — F,
such that 7|pr ,) = 0, and 7(m) = "z my. Throughout this section, we denote
T by A for simplicity.

A primitive p-adic CM type for F' has the form of {ig,io o 7}, where iy is an
embedding of F' into @p We identify F' with its image in @p by i when there is
no danger of confusion. Take an identification between Hom(F"",Q,) and {1,2} as
Gal(F"™/Q,) = Z/2-torsors such that ig|pur = 1.

The reflex field F’ of (F, ®) is equal to F. Let X be the Op-linear CM p-divisible

group over Ry = W (k)[mo|/(72 — ep). The closed fiber X := X} is an Op-linear CM
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p-divisible group over k. The Grothendieck group R (OF) of the category of finitely
generated Op ®z k-modules is isomorphic to Rg(Op @0 w1 k) X Ri(Op @0 2 k) =
Z x 7. The Lie type of X is defined to be [Lie(X)] = (1,1) in Rx(OF). Define a
Dieudonné module M as follows: (a) M = W (k)[r]/(7* — ep)es & W (k)[r]/(x* —
€’p)es; (b) there is an Op-action on M defined by: «a - e; = aey, a - ey = a’ey for
a € W(F,2), and 7 - €; = me;; (c) the Op-linear Frobenius and Verschiebung maps

on M are defined by:
F€1 = —671>\717T€2, F€2 = —67171'61, V61 = —Teq, V€2 = —)\7071'61

The p-divisible group attached to M is Op-linear with Lie type (1,1), hence is Op-
linearly isomorphic to X. Therefore M is Op-linearly isomorphic to the Dieudonné
module attached to X. We say an Op-basis e, e; of M is “good”, if the conditions
(a), (b), (c) above are satisfied. If €}, ¢} is another good Op-basis of M, then there
exists ¢ € O such that €] = (ey, €, = (7es.

One can check dimy M/(FM + VM) = 2, so the a-number of X is equal to 2.
The set of o, embedded in X is in bijective correspondence with P!(k), i.e., the set
of lines in ;' M /M =2 ke, +ke,. Define the following equivalent relation ~ on P!(k):
[a1,b1] ~ [as, o] if and only if there exists ¢ € F, such that [aic, bic?] = [as, bo] in
P'(k). Denote the equivalent classes on P!(k) by £. The set £ can be naturally
identified with {0, co} ]_[{kx/(IF;)pfl} by considering a/b for [a,b] € P*(k). For
each subgroup G of X with order p, as an o, embedded in X, we can associate to
G an element 0y(G) in £. By our definition, 6y(G) does not depend on the choice
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of the good Op-basis eq, es in M, so it is a well-defined invariant for subgroups G
of X with order p. Similarly, suppose G is a subgroup of X such that X[r{] C G
for some integer n, and [G : X[n}]] = p, then the Dieudonné module N attached to
G is between 7w, "M /M and m, () g /M. Thus we can also associate to G a well-
defined invariant 6, (G) € £ by looking at the direction of the k-line N/(mw," M /M)
in 7y "V M /75 M.

Now we are ready to state the main results of this section:

Theorem 8.1.1. Notations are as above.

(1) Suppose R is a finite extension of Ry and G is a finite locally free subgroup
scheme of Xg with order p', where t is an integer. Then we have the following
descriptions on the closed fiber G := Gy as a subgroup of X :

(a) If t = 2n is even, then G = X|[n{].

(b) If t = 2n+ 1 is odd, then X|[r}] is contained in G with index p, and the
invariant 8, (G) is equal to either [1] or [\ in £.

(2) Conversely, for each subgroup H of X such that X[p"] C H with index p
and 6,(H) = [1] or [\, there exists a finite extension R of Ry and a finite locally
free subgroup scheme H of Xr such that H; = H.

In particular, the closed fiber G is Op-stable if and only if the order of G is an

even power of p.

Theorem (8.1.1) has the following consequences:
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Corollary 8.1.2. Let X be the Op-linear CM p-divisible group over k with Lie type
(1,1). If Y is an F-linear CM p-divisible group over k, then'Y admits an F-linear
CM lifting with p-adic CM type compatible with 72 if and only if:

either (a) Y is F-linearly isomorphic to X ;

or (b)Y is F-linearly isomorphic to X/G, where G is a subgroup of X with
order p, and 6y(G) = [1] or [A].

In particular, if Y is Op-linear, then Y admits an F-linear CM lifting with

p-adic CM type compatible with 7> if and only if [Lie(Y)] = (1,1) in Ri(OF).

Proof. Saying a p-adic CM type ® for F' is compatible with ¢ is equivalent to saying
® has the form {io, igo7} for some iy € Hom(F,Q,). Sufficiency follows immediately
from Theorem (8.1.1 (2)). For necessity, suppose R a complete discrete valuation
ring of characteristic 0 and residue field k, ) is an F-linear CM p-divisible group
over R lifting Y with p-adic CM type ® compatible with 72. Then ® must be
primitive. Let F’ be the reflex field, Ry := Op/.pw), and X be the Op-linear CM
p-divisible group over Ry with p-adic CM type ®. Then ) is F-linearly isogeneous
to X, and the necessity of the statement also follows from Theorem (8.1.1 (1)). For
the last statement, we need to show that if Y is Op-linear and the Lie type of Y is
equal to (2,0) or (0,2), then Y does not admit an F-linear CM lifting with p-adic
CM type compatible with 72. It is easy to check that under such conditions, there
exists an F-linear isogeny X — Y such that the Dieudonné module attached to Y

is equal to WalMl @® My or My & ngMz. Therefore Y is isomorphic to X/G, where
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G is a subgroup of X with order p and dy(G) = 0 or co. This G is not potentially

liftable by (b). O

Remark 8.1.3. As a corollary, the answer to question (SCML) relative to (F, F™"")
for p-divisible groups is negative. Note that the reflex field F” of ® is equal to F,
so the residue field kg is not “small” in the sense of (4.1.1). Thus we obtain a new

counterexample to question (sSCML) that does not fall in the framework in chapter

4.

Corollary 8.1.4. Suppose p > 2, L is a CM field and Lq is its mazimal totally real
subfield. If there exists a place v of Lo above p such that the inertia degree of v is
2 and v ramifies in L, then the answer to question (sCML) for abelian varieties is

negative. [

Proof. The completion Ly, is a degree 2 unramified extension over Q,, and L, is
a degree 2 ramified extension over Lg,. It is an easy exercise in number theory to
show that when p > 2, L, = B(F,2)[m]/(7§ — p) or B(F,z2)[mo]/ (7§ — ep), where €
is a Teichmuller lift in W(F,2)* and is not a square. Then the statement follows

from (8.1.3) and (4.1.1). O

The most interesting phenomenon revealed by Theorem (8.1.1) is that, no matter
how arbitrary the subgroup scheme G in characteristic is, its reduction G seems to

“try very hard” to be Opg-stable. It is natural to ask the following question:

Let F be a p-adic local field, ® be a primitive p-adic CM type for F'. Let
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F’ be the reflex field of ®. Let X be the Op-linear CM p-divisible group
with p-adic CM type ® over Ry := Opr.p). Is there a general condition
on the p-adic CM type @, such that there exists an integer d(®) which
only depends on @, satisfying that for any finite extension R/R, and
any finite locally free subgroup scheme G of X'z, the closed fiber G := G

contains an OQp-stable subgroup with index uniformly bounded by p“®)?

Remark 8.1.5. (a) If we drop the assumption that ¢ is primitive, we can easily
produce a class of finite locally free subgroup schemes G with arbitrarily large order,
such that G does not contain any nontrivial Op-stable subgroups. In fact, suppose
® is induced from a p-adic CM type ®; for F} ; F. Let X; be the Op,-linear CM p-
divisible group with p-adic CM type ®; over Ry. Then X is Op-linearly isomorphic
to the Serre tensor construction &) ®o,, Op. For any finite locally free subgroup
scheme G; of X}, when we embed it into X’ via the natural homomorphism X; — X,
the closed fiber of G; does not contain any Opg-stable subgroups of X.

(b) When #® = 1 or [F': Q,] — 1, we can take d(®) = 0. In fact, if G C X
is a subgroup, take a filtration 0 = Gy C G; C Gy C --- C G5 = G, such that
the index of G; in G4 is equal to p for e = 0,1,--- ;s — 1. The a-number of each
X/G; is equal to 1 since either the dimension or the codimension is equal to 1.
Hence G,41/G; is the unique subgroup of X/G; with order p and G;1;/G; must be
Op-stable. This proves every subgroup G of X is Op-stable.

(c) In the example we compute in this section, #® = 2 and [F : Q,] = 4. This

104



is a first nontrivial example concerning this question. As a corollary of Theorem

(8.1.1), we can say d(®) = 1 in our example.

In the rest of the section we prove Theorem (8.1.1). The proof is organized as
follows. For each positive integer m, there exists a finite extension E,,/Frac Ry
such that the p™-torsion points on X@p are rational over F,,. In (8.2), we recall the
constructions from chapter 5 on the Kisin module 9,, attached to Xo, . Asm runs
over all the positive integers, we compute the closed fibers of the p™-torsion finite
locally free subgroup schemes G of Xp, . The finite Kisin module 91 attached
to G is a W(k)[[u]]-module, and the Dieudonné module of the closed fiber G is
N/(N N (up™™ M, /M) = (N + up™ "M, /M) / (up™ ™M, /IMN,,,), which we will
denote by 91 mod u in the future. At the end of subsection (8.2), we reduce the
statements in Theorem (8.1.1) about the closed fiber G to the existence of certain
special elements in 91; see (8.2)(a), (b), and (c). On the other hand, the generators
of the localization M° := W(k)((u)) @w @) N have been computed in (5.2). In
(8.3) we write these generators into explicit forms. In order to compute 9 mod wu,
we need to find a W (k)[[u]]-basis of 91 before the localization. This can be viewed
as an analogy of finding a lattice in a vector space. We show several examples in
(8.4), and then summarize a general linear algebra approach in (8.5). This approach
successfully computes the closed fiber G in the case when the geometric generic
fiber of G is generated by at most two elements; see (8.6). The remaining essential

case is when the geometric generic fiber of G is generated by three elements. In
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that case, it is difficult to apply directly the linear algebra approach in (8.5); see
the example (8.6.3) at the end of (8.6). In (8.7), we explain how the Serre dual of
Xog,, comes to rescue for the problem. Finally in (8.8) we compute the closed fiber
Gr via a detour by Serre dual in the case when the geometric generic fiber of G is
generated by three elements, and complete the proof of Theorem (8.1.1).

If M is a Kisin module (or a finite Kisin module), and x is an element in

M = W(k)((v) Qwpg M, then we define ord,z to be the smallest integer d

such that =% € M. If ord,(x, — z2) > D, we also write 1 = x5 mod ord, > D.

8.2 The Kisin modules attached to X and its base

changes

Now we prepare to prove Theorem (8.1.1). We first recall the constructions from
chapter 5 on the Kisin module attached to X, and its base changes to finite exten-
sions of Ry.

Take h(z) = —moz+*". For all positive integer r, define h(")(x) := hoho---oh

R (z)

to be the r-th iteration of h, h,(x) := PGS

. For all positive integers m, Let m,,
be a root of hyy(z) in Q,, and define E,, := F(m,,). Let E,(u) be the minimal
Eisenstein polynomial of 7, over B(k); 50 Ep (1) = hom(u)hom(u), where hg,, (u)

is the conjugate of hg,,(u) under my — —m. One can check the constant term of

E(u) is equal to —ep. Let M, be the Kisin module constructed as in chapter 5
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with (E,,, m,), and let X, be the associated p-divisible group over Op,,. By (5.2.4),
X, is the Op-linear CM p-divisible group over O, with p-adic CM type ®, and all
the p™-torsion points on its geometric generic fiber are rational over E,,. By (3.1.1)
and (5.1.8), &), is isomorphic to Xp, , and the isomorphism induces identity over
the closed fiber. Thus to prove Theorem (8.1.1), it suffices to compute the closed
fibers of p™-torsion finite locally free subgroup schemes of &,, when m runs over all
positive integers.

By (5.1), the Kisin module 9M,, = W(k)[[u]] ®z, Ope with the natural Op-
action, and the (¢, Or)-linear endomorphism ¢gy, , (which we will abbreviate as ¢,,
in the future) is defined as ¢,e = Por,,, B(k)&g, r(u), the characteristic polynomial
of the natural action of m,, on the W (k) ®q, F-module (E,,)i, ® (Epn)ipor, Where
the index indicates the F-structure. For the convenience of computation, we iden-
tify W(k)[[u]] ®z, Ope with W (k) ®1,0a Orlu]ler @ W(k) @200 Orl[u]les =
W (k)[r][[u]]/ (72 — ep)er & W (k) [x][[u]]/(7? — €“p)es. Under such an identification,
one can check that a-e; = aeq, a-ey = a%ey for a € Opuwr, and mg - ¢; = we;. The
(¢, Op)-linear endomorphism ¢, is defined by ¢, (e1) = To(hom(u))ez, dm(ea) =
71 (ham(u))e1, where 71 (resp. 73) is the W (k)[[u]]-isomorphism from F - B(k)[[u]] =
B(k)[mo]/(m5 — ep)[[u]] to W (k)[m]/(m* —ep)|[u]] (resp. W (k)[r]/(7* —€7p)[[u]]) that
sends 7o to 7 (resp. A7'w).

Let X, be the closed fiber of X, let M (X,,) be the attached Dieudonné module;

by [1] (B.4) M(X,,) = M, /ud,,. If we still use e; to stand for the image of e; in
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M (X,,), one can check that e, e is a “good” Op-basis of M (X,,) (see the beginning
of the section for the definition of a “good” Op-basis of M(X,,)). Now suppose G
is a p™-torsion finite locally free subgroup scheme of X,,, #G = p'. Let 91 be the
attached finite Kisin submodule. To prove Theorem (8.1.1(1)), it suffices to show:

(8.2.a) When t = 2n is even, there exists w™ € N for s = 1,2, such that
w™ = z,m ", mod u, where z, € W(k)*.

(8.2.b) When t = 2n+1 is odd, there exists w € M such that w = ;7= "+e; +
zom~ e, mod u, where x1, 20 € W(k)*, and T,/7, € (F>)r=! or X(IF;Q)”_I.
Here T; means the image of x; in £* modulo p.

Conversely, to prove Theorem (8.1.1(2)) it suffices to show:

(8.2.c) for every xy, x5 € W(k)* such that 7, /7, € (F;Q)p_l or X(IF;)”*, there
exists a positive integer m and a p™-torsion finite locally free subgroup scheme

G of X, such that #G = p?"*! and we can find an element w in N satisfying

w =z ey + 2o~ e, mod w.

8.3 The finite Kisin modules attached to finite

locally free subgroup schemes

To achieve the goals in 8.2, we need a precise description on the finite Kisin modules

attached to p™-torsion finite locally free subgroup schemes of X,,.

The endomorphism ¢ on W (k)[[u]] extends to ¢ : W (k)[x][[u]]/(7* — ep) —
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W (k) [r][[u]]/ (7 — €"p), such that ¢|ww) = o, ¢(7) = 7, and ¢(u) = uP. Similarly
we can define ¢ : W (k)[x][[u]]/(7* — €"p) — W (k)[x][[u]]/(7* — €p) in the same way.

According to (5.2.4), if we define
vi= Tg(h@m’l)(u))‘ﬁﬁ(h@m’l)(u))61 + 7'1(h(mel)(u))‘f’Tg(h(Qm’l)(u))62

then all the solutions x € p~™M,,, /M., to ¢z = }eEm(u)x have the form of 7 - v
with n € p™Or/OF. For any subgroup A of p~"Or/OF, let MY := W (k)((uw)){n-
vln € p7™Or/OFr}, and Ny = NG N p ™IM,,/M,,. Let Ga be the associated
finite locally free subgroup scheme. When A runs over subgroups of p~"Or/Op,
G4 enumerates all p™-torsion finite locally free subgroup schemes of A,,. Denote
Ma/(Ma Nup™™IM/M) = (N4 + up™ "My, /M) / (up™ "M, /M) by N4 mod w,
then 914 mod u is the Dieudonné module of the closed fiber of G 4.

Now we derive a more precise formula for 7 - v. By the definition of h(?™~1)(u),

2m—1
we can write h®mD(u) = Y 7 A;(v) mod p™, such that A;(u) € W (F,2)((u))*

i=0
and ord,A; = p?@"~1-9_ Therefore

v = (R ) (D w)er + 7 (D () Pro () ()

2m—1 2m—1

= (nZ::O A (u)( XN r)m)9( nZ::O A, (u)m™)er+

( ;0 An(u)(AH)")( ;0 A (u)T") e

= > w”(éAk(u)ﬂﬁAnk(u))\—kv)ehL D ﬂ"(léAk(u)¢Ank(u))\—(”—’f))eQ

n=0 n=0
_ 2_
Recall that A = €= and € is a Teichmuller lift, so A1t = ¢"2 . Because e ¢

21
W (F,2)*\(W(F,2)*)?, we deduce ¢ =~ = —1. Hence we have A™7 = —\ and we
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can then rewrite the above formula for v as:

2m—1 n 2m—1 n
S (3 A A k() (~A) e + 3 ) (S () A (W)X )es
n=0 k=0 n=0 k=0
Definition 8.3.1. Define
T =T Ty =TT = A"

by = 20 N Agi(u)? Angi(u), ¢ = D N Agiy (u)? An_gi1 (u)

yj = bj—Cj7 Zj = bj+cj
2m—1 2m—1
Under the notations above, v = > wly,e; + >, 7hz,es.

Now we derive a more precise formula of - v for n € p™™Op/OpF. Let v be the

valuation on F such that v(r) = 1.

Definition 8.3.2. Suppose n € p~"Op/OF and k is the smallest integer such that
n € p*Op/OF. Let a € W(F,2)* and 8 € W(F,2) be the unique elements such
that n = p~*(a + mfB) (resp. n = p*mo(a + mB)) when v(n) = —2k (resp.

v(n) = —2k + 1). Define

U[Ua r, 1] = ek(ay—u(n)—r + ﬁy—u(n)—r—l)
0[77, r 2] — ek(A2k+”(")agz,V(n),r + ﬁa/\2k+u(n)+1z—u(n)—r—l)
2 2m
Under such notations, one can check n-v = >~ >~ 7. "v[n, r, sles; when r > —v(n)
s=1r=1

we treat v[n, 7, s] as zero. This formula will be refered to as the presentation of n-v
in the future.

Before we dive into the computations, let us look into the definitions of the
yi, z’s and v[n, r, s|’s, and derive some properties of them.
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Proposition 8.3.3. Define d := 1+ p. The following statements about b;, c;, y;, z;

are true:

(1) b, c; are both units in W(k)((u)), and
min{ ord,b;, ord,c;} = p*™ 2~ d, max{ord,b;, ord,c;} = p*™ (1 —pt +p?)d

(2) If min{ ord,b;, ord,c;} = ord,b; (resp. ord,c;), then min{ ord,b; o, ord,c;1o} =
ord,Ciyo(Tesp. ord,b;is).

(3) i, z; are both units in W(k)((u)), and ord,y; = ord,z; = p*™ 7.

(4) w7y, = (=) " T T, mod .

(5) vln,r, s] is a unit in W (k)((u)), and ord,v[n,r, s] = p™=2+v+7q: in partic-
ular, it is independent of s and increasing in 7.

(6) For any 2 < i <2m, y;zi_2— zYi—2 is a unit in W(k)((w)), and ord,(y;zi—2—
2¥i2) = ordyy; + ord,z; o = ordyz; + ordyy;_o = d(p*™ ¢ + ptmT27).

(7) Let i, j be different integers between 0 and 2m—1, and suppose v € W (F2)*.
Then vy y; £7° Aziz;, 122, £ A\yiy;, and vy z;£7° A2y, are all units in W (k)((w)),

and their orders are all equal to d(p*™=2=% + pim=—2-7).

Proof. (1) and (2) are clear by a direct examination of each summand in the defi-
nition of b;, ¢; and using the elementary lemma (8.3.4) below. (3) is because of (1),
and (4) follows from (2). (5) is clear by the definition of v[n,r, s].

To see (6), note that y;z;_o—z;y;i—2 = (bj—¢;)(bi—a+¢i—2) — (bi+¢;) (bi—a—c¢i—a) =

2b;c;_o — 2b;_s¢;, then the statement follows from (1) and (2).

111



To see (7), when we expand them based on b;,¢;,b;, ¢, the coefficient of b;b;,

bicj, ¢ib;, and ¢;c; is v £\, If p|y £47\, it implies that A7 = 7 =1 mod p,

2_
contradiction to the fact that A°*! = ¢"2° = —1. Moreover, by (1) there is a

unique term among b;b;, b;c;, ¢;b;, and ¢;c; that has the lowest order, and this order

is equal to d(p*™~27" + p*m=2-7). This proves the statement. O

Lemma 8.3.4. Let v =y + 2z, z,y,z € W(k)((v)). Ify is a unit in W(k)((u)) and

ordyz > ordyy, then x is also a unit in W (k)((u)) and ord,x = ord,y. O

8.4 Examples of reductions of finite locally free

subgroup schemes

We take this subsection to compute a few examples of D4 and D4 mod wu.

Example 8.4.1. Let m > 1, n € p~'Or/Op, and A = (n) = Z/p. Then Ny =

2 2

W(k)((w){n - v} Np 19/M. In the presentation n-v = > > m v[n, 7, ile;, we
i=1j=1

know v[n, j, 1] and v[n, 7, 2] are both units in W(k)((u)), and their orders are both

. 2
equal to p*™2Mtid Let w = "y ) then w = 3 2w e; mod u
i=1

for x1, 29 € W(k)*, and the goal of (8.2.b) is achieved.

Ezample 8.4.2. Let m > 2, n € (p2Op/Op)\(p~'OrOF), A = (n) = Z/p*. Let
2 4 2 2

vy Z ; [, jyiles, and vy = (pn) - v = Z Z Tulpn, j,ilei. We

want to produce w ( and w by a linear combination of vy, vy with coefficients

in W(k)((u)), such that wgl) = 7, '¢; mod u. A natural candidate for wi s
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given by (U[p"h 17 2],0[777 17 1] - v[n7 17 2]1)[]9']77 17 1]>_1(U[p777 17 2]1}1 - U[na 17 2]U2)' By

the construction of w%l)

, we have
wi —mter = (vlpn, 1,20, 1,1] = vn, 1, 2Jvlpy, 1,1])

i i(v[p% 17 2]”[777 T, S] - U[Th 17 2]1}[])77, T, S})es

s=1r=2

It suffices to:
(8.4.2.a) Show v[n, 1, 1Jv[pn, 1,2] —v[n, 1, 2]v[pn, 1,1] is a unit in W (k)((u)) and
estimate its order (in u);
(8.4.2.b) For s = 1,2 and r > 1, show ord, (v[pn, 1, 2|v[n, r, s|—vn, 1, 2]v[pn, r, s])
is greater than ord,(v[pn, 1,2Jv[n, 1,1] — v[n, 1, 2]v[pn, 1,1]).
Write n = p~2?(a+ m3) or p~2mo(a+ m3) according to v(n) = —4 or —3, where
a € W(F,2)*, 8 € W(F,2). By the definition of v[n,r, s] and v[pn,r, ],
vlpn, 1,2Jv[n, 1,1] = v[n, 1, 2Jv[pn, 1,1]
= E(ay-vm-1 + BY-vin-2) (@ Nz g+ BNz o) =
(TN 2oy 1+ BOND 2oy ) QW sipny 1 + BY-von)—2)
= Saa’ W (y o012 -3 — Z-w(n)—1Y-v(n)—3) + Higher order terms

By Proposition (8.3.3)(6) and Lemma 8.3.4, it is a unit with order equal to

d(p4m+1+u(17) +p4m—1+y(n)>
Now for s = 1,2 and r > 2,
ord,v[n, r, s| > dp*m=FEr > gpimtvm)

and
ord,v[pn, r, 8] > dp*mEVENET > gptmt2rn)
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Hence ord, (v[pn, 1, 2]v[n, v, s] — v[n, 1, 20v[pn, r, s]) > d(pPmti+v) 4 pimtvin),

Based on the estimates above, we deduce that ord, (w!” — 7y e;) > d(p*m+v(m —

)

p*m =1+ - In particular we have found wgl such that it reduces to 7, *e; modulo u.

The desired wgl) can be constructed similarly. Thus the goal of (8.2.a) is achieved.

Ezample 8.4.3. Let m > 3,n € (p2OrOp)\(p?OrOF), and A = (n) = Z/p3. Take
Ay := (pn) = Z/p*. By Example (8.4.2), we have constructed wt” in Ma, C Ny

such that ord, (wl" — 7w le,) > d(p*m+rem — ptm=1+uGm)  Define w := u=®"" """ (.

2
v— > v[n, 1, sjwlM), then we have
s=1

6 2
w=3" 3w ol sla e, — Yl 1 sl (wl!) - 7 le)

s=1 r=2 s=1

The order of the second term is > d(p*™®n — pim=1+v(en)) _ gpim+v - 0. Note

dp47n+1/(7])

that ord,v[n, r, s| is increasing in 7 and does not depend on s, so u~ v[n, 2, s

amtv(n)

are units in W (k)[[u]] and ord,u=% v[n,r,s] > 0 when r > 2. Thus we deduce

2
w= Yz, %, mod u, where z, € W (k)*. This achieves the goal of (8.2.b).
s=1

Ezample 8.4.4. Let m > 1, n1,m2 € p*Op/Op, and A = () x (n2) 2 Z/p x Z/p.
Let o; € W(F,2)* and 3; € W (FF,2) be the unique elements such that w; = p~'(a; +
703;) or p~tmo(ay + me3;) depending on v(n;) = —2 or —1. We may further assume
that if v(n1) = v(n2), then oy mod p,as mod p are F,-linearly independent. In
fact, if otherwise, there exists v € Z, such that as = ya; mod p, then we can
replace 1o with 79 — 11, to reduce to the situation when v(n,) # v(n2). Without

of loss of generality we assume v(n;) < v(ns).
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Define wgl) = (v[ny, 1,1v[ne, 1,2] — vne, 1, 1v[ng, 1,2])) 1 (v[ne, 1, 2] (m - v) —

v[n, 1,2](n2 - v)). Then wgl) — 7 tep is equal to

(U[nla L, 1]U[7727 L 2]_U[7727 L, 1]”[771a L, 2])_1 Z(U[U% L, Q]U[nlv 2, 3]—U[771= L, 2]“[7727 2, S])

s=1

We claim v[ny, 1, 1]v[na, 1, 2] — v]ng, 1, 1vm, 1, 2] is a unit in W (k)((w)), with order
equal to d(p*m1Hvm) 4 pim=1+v(n2))  Tg verify this, we divide the situation into the
case when v(n;) < v(n2) and the case when v(n;) = v(n).

When v(n) < v(ng), then v(n) = =2, v(ne) = —1. So v[m, 1, 1]v[ne, 1,2] —
v[ng, 1, v, 1,2] = e(aays + Bryo)ag Azo — € (afys + B Ayo) aayo = €*(a1ag Ayr120 —
af asyoz1) + Higher order terms. By Proposition 8.3.3 (7), we see the claim is true.

When v(m) = v(n),

v[m, 1, 1jv[ng, 1, 2] = vlne, 1, 1Jv[m, 1, 2]
= (ay—vim)-1 + BrY-vim)—2)05 2—y(p)—1—
(Y —v(m)-1 + BT NY—v(m)—2) 02Y ()1
= (@103 — @) Y—v(m)—17—v(m)—1 + Higher order terms
Since we have assumed a; mod p, as mod p are F,-linearly independent, (a;a§ —
afaz) is a unit in W(F,2), and the claim follows.
So for s = 1,2, we have
ord, (v[n, 1, 2]v[m, 2, s| — v[m, 1, 2]v[ne, 2, s])

_Ordu(v[nb 17 1]U[7]27 17 2] - U[U% ]-7 ].]U[Th, 17 2])

v

d(p4m+u(n1) +p4m71+u(n2)) _ d(p4m71+u(m) +p4m71+u(ng))

_ d(p4m+u(n1) _ p4m—1+y(n1))
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(1)
1

In particular, this implies w;"’ reduces to 7, 'e; modulo u. Similarly we can find

wél) that reduces to m; 'e; modulo u, and the goal of (8.2.a) is achieved.

8.5 Linear algebra lemmas

Now we summarize a linear algebra approach from the examples we computed
above. For a square matrix C', we denote the entry on the i-th row, j-th column by

Cli, j], and its cofactor by C; ;.

Lemma 8.5.1. Suppose A C p~"Or/OF, vi,vy, -+ , v, are elements in NY, and

2 2m
for each 1 < i < 2n we have a presentation v; = Y > Vi, sT, €5, where v, s €

s=1r=1
W(k)((w)). Define an 2n x 2n matriz
V1n,1 Vo.n,1 Tt Von,n,1
V1,n,2 Von2 Von,n,2
Vin-11 V2n—1,1 °°° Vapn-11
= Vin-1,1 V2n-12 *°° Upp_12
V1,11 V2,1,1 Tt Von,1,1
V1,1,2 V2,1,2 ce Von,1,2

Suppose det C' € W (k)((u))*, and there exists a positive integer D such that
2n

ordu(z v,4,;Cs1) — ord, det C' > D

=1
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2n
fori,s =1,2, and j > n+ 1. Define w'™ = S (det C)'Cy vy for s = 1,2. Then
=1

w™ € N4 and w™ = 7, "es mod ord, > D.

Proof. By the definition of C one can check

2 2n
wgn) =m, "es + Z Z Z(det C’)_lc’svlvm’jﬂi_jei

i=1 j>n+1 I=1

2n
then it follows from the assumption on the order of (det C)~* > Cs vy O
=1

To apply Lemma (8.5.1), the key step is to show det C' is a unit in W(k)((u)),
and estimate ord, det C. With this aim, now we make some definitions for matrices
of special types that will show up in our computations, and establish a few technical
lemmas.

Let R be a commutative ring with 1, and ord, : R* — Z be a discrete valuation
on R; here we are not assuming that R is the valuation ring with respect to ord,.
Let k£ be a positive integer, and C' be a k X k matrix with entries in R. We denote

the set of permutations on {1,2,---  k} by P;.

Definition 8.5.2. We say C' is dominated by the diagonals, if for any permutation
o € Py, ilordu(C[a(j),j]) > ilordu(C’[j,j]); if the inequality is strict, then we
= =
say C'is strictly dominated by the diagonals. We say C'is faithfully dominated by the
diagonals, if C' is dominated by the diagonals, and ord, det C' = Zk:lordu(C’ [7,7])-
=
We say C'is in pairwise order, if for any pair of (i1, 71 ), (i2, j2) with i1 < ia, j1 < Jo,
ord,Cliy, 1] + ord,Clia, jo] < ord,Cliy, jo] + ord,Cliz, ji1]; if the inequality is strict,

then we say C'is strictly in pairwise order.
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In general, let J; [[ Jo ][ ---]] J: be a partition of {1,2,--- |k}, we say C'is dom-
inated by the diagonal blocks (J1|Jo| - - - |J¢), if for any permutation o € Py, there ex-
ists a permutation 7 such that 7(J;) = J; fori =1,2,--- ¢, and Zk:lordu(C[o(j),j])

j=
is > zkjlordu(C’[T(j), 7]); if the inequality is strict, then we say C'is strictly dominated
=
by the diagonal blocks (J1|Jo| - - |J;). We say C'is in pairwise order relative to parti-
tion (Ji|Jo| - - - |Jy), if for any pair of (i1, 71), (i2, j2) such that i1, j; € J,,, 2, j2 € Jp
with 7 < 79, we have ord,Cliy, j1] + ord,Clis, jo] < ord,Cliy, j2] + ord,Clis, 71]; if

the inequality is strict, then we say C'is strictly in pairwise order relative to partition

(J1]Jo| -+ - 1)

The following lemma is straightforward by the formula

det C = > (1= T Clo()), J]

o€P; j=1
Lemma 8.5.3. Notations as in Definition (8.5.2). Then:

(a) If C is (strictly) in pairwise order, then C' is (strictly) dominated by the
diagonals.

(b) If C is strictly dominated by the diagonals, then C' is faithfully dominated
by the diagonals.

(c) If C is (strictly) in pairwise order relative to partition (Jy|Ja|---|J¢), then
C' is (strictly) dominated by the diagonal blocks (Jy|J2| - - |J).

(d) If C is strictly dominated by the diagonal blocks (Ji|Jo|---|J;), and each
block that consists of the rows and columns in J; is faithfully dominated by the

diagonals, then C' is faithfully dominated by the diagonals.
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8.6 The proof of Theorem (8.1.1) in the special

case

Let A be a finite abelian p-group. Let r(A) be the largest positive integer r such
that (Z/p)" can be embedded in A; this r(A) is called the p-rank of the A. The p-
rank of A is also the smallest integer k such that A can be generated by k elements.
Suppose A is a subgroup of p~"Or/OpF, then we have r(A) < r(p~™Or/OF) = 4.
Let G := G4 be the associated p™-torsion finite locally free subgroup scheme of
X It r(A) = 4, then p'Op/Op C A, hence X[p] C G. This implies the isogeny
X — X /G factors through X 2, X, and the problem is reduced to another finitely
locally free subgroup scheme with a smaller order. So we may assume r(A) < 3.
In this subsection we prove Theorem 8.1.1 in the case when G = G4 such that
r(A) < 2. Suppose A = (1) x(n2), mi € (P Or/Or)\(p~™ ' Or/OF) fori = 1,2.
Suppose #A = p', then m; + my = t. Without loss of generality we assume
v(m) < v(n2). Let oy € W(F,2)* and ; € W(F,2) be the elements such that
n; = p~ " (ay + moB;) or p~™img(cy; + o), depending on whether v(n;) = —2m; or

—2m; + 1. Define the following integer associated to A:

L(A) :=4m —2+4v(m) + (%1

Proposition 8.6.1. Notations and assumptions as above. Then:
(a) Ift = 2n, then for s =1,2 and r = 1,2,--- ,n, there exists wl” e My such
that ordu(wgr) —7;Tes) > d(ptAFL — plA)),
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(b) If t = 2n + 1, then there exists w € My, such that w = 7r1_(n+1)04161 +

(_1)CW;(H+1)QTA2m1+V(n1)€2 mod ord, > d(pL(A)—H _pL(A))7 where ¢ = [—V(7721)—n].

Before proving Proposition (8.6.1), we show that it implies Theorem (8.1.1)(1)
in the case when G = G4 such that r(A) < 2, and also implies Theorem (8.1.1)(2).
It suffices to show the goals (8.2) (a), (b), and (c) are achieved. (8.6.1)(a) obviously
implies (8.2)(a). Recall that m = 7, my = A7!7, so the element w in (8.6.1)(b)
can be written as w = aym~("Hey + (—1)NZmtvi)dntlaor—(ntle, et 1y := ay,
2y 1= (—1)NZmHvm+n+lae  Because —1 and A = @ are both in (Fro)rt,
it is then clear that T)/Tp € ()P~ or A(F%5)P~!. Thus (8.2) (b) is achieved.
Concerning (8.2) (c), if we let gy = 0, 1 = p~?" "'y or p~?""'my; where n runs
over non-negative integers and a; runs over W(F,2)*, then Proposition (8.6.1)(b)
implies that for each [c1, ¢5] € P'(k) such that &7 /c; € (F3)7~" or A(F;,)P~", there
exists a finite locally free subgroup scheme G satisfying 9,(Gy) = [¢i/é] in £.
Therefore Theorem (8.1.1)(2) is proved once we prove Proposition (8.6.1).

The plan to prove Proposition 8.6.1 is as follows: we apply Lemma (8.5.1) to
prove (a). For (b), we “knock out” the unwanted entries in the presentation of 7, - v
by using the constructed lifts of 7;"es, where s =1,2 and r =1,2,--- ,n.

First suppose t = 2n. Define an order < on {p’n;-v|i =1,2,5 =0,1,--+ ,m;—1}
such that p/n; - v < p/'ny - v when: (a) v(p/n;) < v(p/ng); or (b) v(p/m) = v(p/ nw)

and i < 7. Let v; = p”ml - v be the [-th element in the set under this order. Then
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define a matrix (cf. Lemma 8.5.1)

vl iy, m, 1 v[pPniy,n, 1] u[pry,, n, ]
v[p iy, m, 2] v[pRni,. 2] e [y, n, 2
vlpni,n — 1,1 v[pPn,,n —1,1] - w[pr,,,n —1,1]
C=| o, n—1,20 vpPn,,n—1,21 - v[pPn, .n—1,2]
ol iy, 1, 1] v[pPmiy, L1 u[pry,, 1,1
v[p" 0y, 1,2 o[pni,, 1,21 v[pry,,, 1,2

If we delete the first row of C' and add the row of

(U[pjlni1’r7 S]av[pjzniwrv S]’ e 7U[pj2nni2n7T7 S])

on top of the remaining (2n — 1) x 2n matrix for s = 1,2 and r > n+ 1, we denote
the new 2n x 2n matrix by C(1,r,s). Similarly, we can delete the second row of
C and add (v[p'n;,,r, 8], v[p™n;,, 7, 8], -, v[p™>n;,,, 7, s]) on the top to get a new

2n x 2n matrix; we denote it by C(2,r,s).

Proposition 8.6.2. Notations as above, then the 2n x 2n matrices C,C(1,r,s),
and C(2,r,s) are all faithfully dominated by the diagonals, for s = 1,2, r > n+ 1.

In particular, their determinants are all units in W(k)((u)).

Proof. Define a partition of {1,2,--- ,2n} = Ji [[ ][ -] Jn. where J; := {2i —
1,2i}. By the definition of the matrices and the estimates on the orders of their
entries by Proposition 8.3.3 (5), one can check all the matrices considered in the
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Proposition are strictly dominated by the diagonal blocks (Ji|J2| - - - |J,,). Each 2x2

diagonal block of C' has the form

U[pjnh{ra 1] U[pﬂ_lnlﬂ’; 1] U[pjn17r7 1] U[pjn%'ra 1]

U[pjTIhTJ 2] U[ijrl’r/lvT? 2] U[pjnl)rv 2] U[pjTI%TJ 2]
or

U[pj77277“7 1] U[pjnlurv 1]

U[P”ha T, 2] U[ija T, 2]

By computations similar to those in Example 8.4.2 and Example 8.4.4, it is straight-
forward to check that these blocks are all faithfully dominated by the diagonals.
Therefore by Lemma 8.5.3 (d), the matrix C' is faithfully dominated by the diago-
nals. For C(k,r,s) where k = 1,2, s = 1,2, and r > n + 1, all the diagonal blocks
are the same as those of C' except for the first 2 x 2 block on the upper left corner,
and a direct examination of that block will prove they are faithfully dominated by
the diagonals, too.

For the last statement, note that the matrices are strictly dominated by their
diagonal blocks (Ji|Ja| -+ |J,), and the determinants of all the blocks are units in
W (k)((u)), by Lemma 8.3.4 we deduce that the determinants of the 2n x 2n matrices

C,C(1,r,s),C(2,r,s) are all units in W (k)((u)). O

Now we are ready to prove Proposition 8.6.1.

Proof of Proposition 8.6.1:

(a) In this case m; + my = 2n. Prove by induction on n. Suppose we have
proved for all the subgroups A C p~"Op/Op with order equal to p** and n’ < n.
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Let Ay = {(pm) x {pny) if my > 0, and (p?*n;) if mo = 0. Then #A4, = p*~Y

and L(A;) > L(A). By the induction hypothesis we have already produced wl”

for s = 1,2 and r = 1,2,--- ,n — 1. Now it suffices to produce wé”). With

v = pin;, v for 1 = 1,2,--+  2n and matrix C defined before Proposition (8.6.2),

we have shown detC € W(k)((u))*, so to apply Lemma (8.5.1) it remains to

2n

prove ord, (Y. v[p/tn;,, 1, s]Cx;) > ord,detC for k,s = 1,2 and r > n + 1. But
=1

2n

S wl[ptn,, r, s|C, is equal to det C(k,r,s), and by Proposition (8.6.2) ord, det C'
=1

and ord, det C(k,r, s) are equal to the sum of the orders of their diagonal entries,

respectively. By their definition one can check ord, det C'(k,r,s) — ord, det C' >

d<p4m—2+1/(173)+r _ p4m—2+1/(171)+n) > d(p4m—1+l/(m)+n _ p4m—2+u(m)+n) — d(pL(A)+1 _

p“@). By Lemma (8.6.2), we deduce the existence of w{™ in M, such that
ord, (wi™ — T "es) > d(ptAH — pEA)),

(b) In this case m;+msq = 2n+1. By our assumption v(n;) < v(ny), so my > ma.
Let Ay := (pm) x (o), then #A = p> hence by (a) we can produce w" e

NMag, TNy for s =1,2and r = 1,2,--- ,n, such that W = 7, "es mod ord, >

2 n
d(pLA+! — pL(A)) | Define w := u= %" (i, -v — Z Z [, 7, s]w”), then we have
)

2m1
w = Zl 21 w oy, sl ey — ZIZ w "o, v, s)(w” — 77e,). The
s r=n-+ s r=

order of the second term is > d(p™“A1)+1 —pl(A) _pL(A)y > g(plA)+1 _plA)) hecause
L(A;) > L(A) + 1. In the first term, note that ord,v[n:,r,s] > dp"™+! when
r>n+2, and v[n,n+1,1] = a1y_y(p)—n—1 mod ord, > dp" Ay, n+1,2] =

ag\Zmitvim)y oy o1 mod ord, > dpt™*l. Therefore the proposition follows
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from Proposition (8.3.3)(4). O

Therefore to complete the proof of Theorem 8.1.1(1), the remaining situation
is when r(A) = 3. In that case, we will meet difficulties if we still try to apply
Lemma (8.5.1) directly, since the crucial proposition (8.6.2) may no longer hold.

This phenomenon is reflected by the following example.

Ezample 8.6.3. Let m > 2, take a € W(F,)\Zy. Let g = p~2, n = p 20,

and 73 = p~2m, and take A = (1) x (ny) x (n3). The presentations of 7; - v are:

4 4 4 4
—r —r —r —r
MU= 3 YayTy €1+ Y 24 pTy €2, 1V = D, Qs Ty €1+ Y Q724 ,Ty €y, and
r=1 r=1 r=1 r=1
3 3
N3 V=Y Ys_p7y €1+ >, Azz_,my €. If we follow the linear algebra approach in
r=1 r=1

(8.5) and form the 6 x 6 matrix:

o oayr Yo
21 a%z1 Az
Y2 ay2 Y1 Yo Yo
29 %29 Az zp a2z

Ys Qays Yz Y1 ayir Yo

z3 a%z3 Az z1 a%z1 Az

One can check that
det C = —Na — a”)*y121(yizs — ziys) mod ord, > d(2p*™ 2 + 4p*™~?)

However, yiz2 — 23y = (b1 — ¢1)?02 — (b1 + ¢1)%03 = —4bic1b has order equal to

d(3p*™=2 + pt™m=1) hence ord, (y;21(y322 — 23y2)) = d(3p*™~2 4 2pim3 4 pim—1) >
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6
d(2p*™=2 4 4p?™=3). So ord, det C' > d(2p*™2% + 4p™™~3) = 3~ ord,C[j, j], in par-

j=1
ticular the matrix C' is not faithfully dominated by the diagonals.

However, a look into the Serre dual of X, will come to rescue for this example.
Recall that 72 € Gal(F/Q,) is the involution on F', and the p-adic CM type ®
satisfies ® [[® o 72 = Hom(F,Q,). Let p: Op — End(X,,) be the Op-structure on
X, if we define the Op-linear structure p* : Op — End(X,)) on the Serre dual X’
by p*(z) = p(t(z))Y, then A, and X are both Op-linear with the same p-adic CM
type. Since the Op-isomorphism class of Op-linear CM p-divisible groups over R
is uniquely determined by the p-adic CM type (see 3.1), we know X,,, and X are
Op-linearly isomorphic.

For a finite locally free p™-torsion subgroup scheme G of X,,,, denote the Cartier
dual (X,,[p™]/G)" by GH™; it is a finite locally free p™-subgroup scheme of X.
In our example 8.6.3, take m = 2, let G = G4 be the finite locally free p*-torsion
subgroup scheme associated to A, then one can check G+ is a cyclic group of order
p?; in particular, it is associated with a subgroup A’ with p-rank 1. Hence we can
apply Theorem 8.1.1 to G52 in XV, and deduce that (]kL;Q is not Op-stable. That
implies G;, is not Op-stable, too. Thus, we can take a detour via the Serre dual X'V
and reduce to the solved case. To prove Theorem 8.1.1 in the general case when

G = G4 where the p-rank of A is equal to 3, we need more explicit information on

GL+™. This will constitute the next subsection.
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8.7 The Serre dual

Recall from (8.2) that the Kisin module 9%, attached to X,, is = W (k)[[u]][x]/ (7> —
ep)er®W (k)[[ul][7]/ (7* —e"p)ez, and ¢, (e1) = To(hom(u))ez, ,,(e2) = Ti(ham(u))er,
where 71 (resp. 72) is the W (k)|[u]]-isomorphism from F-B(k)|[[u]] = B(k)[m] /(72—
ep)[[u]] to B(k)[x]/(7* — ep)|[u]] (vesp. B(k)[x]/(7* — €"p)[[u]]) by sending mo to 7
(resp. A7'm). Let g1(u), g2(u) be the polynomial in W (k)[u] such that hop,(u) =

g1(u) + mpga(u). Then in matrix form we can write

o, (e1,me1, €9, TEy) = (€1, ey, €9, Te3)-:
g1(u)  —epga(u)
—g2(u)  g1(u)
gi(u)  —€"pA7ga(u)
—A"1g(u) g1(u)

The Kisin module attached to XV is My, = Homw ) (M, W (E)[[u]]). If we

denote the dual basis of {e1, e, ea, mea} by {eY, (mwe1)Y, ey, (mea)¥}, then

¢im%(e\1/a (71—61)\/7 6;/7 (WGQ)V)
is given by

g1(u)  ga(u)

(€1v7 (7T€1)V, eg, (W@Q)V) . i epga(u)  g1(u)
g1(u) A 1go(u)

pA T ga(u)  gi(u)

126



Here recall that —ep is the constant term of the Eisenstein polynomial E,,(u). Take

p € W(k)* such that 7! = —e~!. Define
e1 = p(mey)Y, méy := —pey, é = p(mey)V, wéy == —pey

then MY = W(k)[[u]][x]/(7* — ep)ér & W (k)[[u]][x]/(7* — €"p)és, with doné1 =
To(ham (1)) €3, donv €3 = T1(ham(u))éy. If we twist the natural Op-structure on 90",
by ¢, i.e., define a - ey = aey, a - ey = a’ey for a € W(F,2), and 7y - ¢; = —me;
for i = 1,2, then the mapping that sends e; to ¢; is an Op-linear isomorphism of
Kisin modules from 9, to 9M,. The natural W (k)[[u]]-bilinear pairing (,) : M., x
M — W(k)[[u]] is a perfect pairing that is compatible with the Op-structures,
ie., (z-v,w) = (v,x-w) for x € Op, v € M,,, and w € M.

The pairing (,) : M, x MY, — W(k)[[u]] naturally extends to (Q ®z M,,) x
(Q ®z M,,) — B(k)[[u]]. For any positive integer n, it induces a pairing (, ), :
P M /My X p~ "M /M — p "W (R)[[u]] /W (F)[[u]], by defining (v, w), :=
p™(v,w). If N is the finite Kisin module attached to a finite locally free p"-torsion
subgroup scheme G of X, then its orthogonal complement M+ is the finite Kisin
module attached to G (see the end of Example (8.6.3) for the definition of G+m).
The following lemma allows us to extract the information of 9" from N, and vice

versa.

Lemma 8.7.1. Let D be a positive integer, and | be an integer between 1 and 2n.

Assumptions and notations on N and NE" are as above.
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(a) If N = 7~'9M,,/M,,, mod ord, > D, then
b = 7= Cr=OgnY /MY mod ord, > D

and vice versa.
2
(b) If M= 7790, /My, + WE)[[u] - 3 e, “Te; mod ord, > D with p; €
i=1
2
W (k)[[u]]*, then " = g=Cn=1=Dgnv /onv 4 Z[L\m;(%_l)é} mod ord, > D,
i=1

where j1; € W (k)[[u]]* satisfy A fi1 + pofia =0 mod u; and vice versa.

Proof. First look at (a). Let M,, be the Dieudonné module attached to X = (&X;,)p.
The Dieudonné module attached to G is 7'M, /M,,, so the Dieudonné module
associated to le " is the orthogonal complement of 7=!M,,/M,, under the induced
pairing p~"M,,/M,, X p~" M, /M — p~ "W (k)/W (k), which is easily seen to be
7= Cn=OMY /MY . Therefore for W;jé\i with i = 1,2 and j = 1,2,---,2n — [, there
exist their lifts in 915" in the forms of v; ; = Wi_jé\i + il 2an hi j.s»T; €5, Where
s=1r=2n—I+1
hijsr € uW (k)[[u]]. Because they are orthogonal to 9, for each i = 1,2 and j' =
1,2,--- .1, the pairing (W;j/ei/,vi’j% =0 mod ord, > D. Take j' = 1, this implies
ord,hi json > D. Take j' = 2,3,--- 1 inductively, we deduce that ord,h; js, >
D for all i,j,s,r. This proves (a). (b) can be proved in the same way, only to

. o . . —(+1 —(2n—1) ~
notice that under our definitions of é; and é;, we have <7T1(+ )61,7'('1 (2n )€1> =

My ey, my ®08) £ 0. O

Proposition (8.7.1) has the following immediate corollary:
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Corollary 8.7.2. If X[r'] is contained in Gy with index p, then X[r?" 17 is con-
tained n QkLm with index p, and vice versa. If that is the case, let 6;(Gx) and
5271_1_1-(9;%”) be the classes of Gi and QkL;” in £, then §;(Gr) = Man_1_i( kL”) In

particular, 5,(Gr) = [1] or [A] if and only if dgn_1-(Gr™) = [1] or [A]. O
If we define
0 = (AP0 ()P (WD (w))ér + 7 (R (w) P (70 (w) &

then all the solutions z € p™™MY, /MY, to ¢ony (¥) = - Ep,(u)z have the form
n-0,n€p ™Op/OF. For any subgroup A of p"Op/OF, define ‘J/I:;O =W(k){n-
Oln € A}, and Ny = ‘T/I\AO Np ™M /9. Let G be the associated finite locally
free subgroup scheme of XY, then they enumerate all p™-torsion finite locally free
subgroup schemes when A runs over subgroups of p~"Or/Op. Now supppose
n < m, A is a subgroup of p7"Or/OF, and M4,G4 are the corresponding p"-
torsion finite Kisin modules and finite locally free subgroup schemes of &,,. The

definition below provides a direct and concrete way to write down the subgroup

p "Or/Op attached to 9M-" and G+".
Definition 8.7.3. Define a symmetric Q,-pairing on F' as follows:
(a+br,c+ dr) = (ad + be) + (ad + be)?, a,b,c,d € B(F,)
It induces a symmetric pairing p~"Op/Op X p "Op/Op — p "Z/Z:
(a+br,c+dn), == p"((ad + be) + (ad + be)”)

For any subgroup A C p~"Or/Op, let AL" be its orthogonal complement.
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Under the definitions above, when n < m one can check (9M4)t" = MNy1m, and
hence Q’jm = Q/A?L Moreover, the following proposition illustrates the relation

between the structure of A and A+"; we leave the details to readers.

Definition 8.7.4. Suppose A C p~"Op/OF is a subgroup. for all positive integers i,

denote the kernel of A = A by A[r']. For i =1,2,---,2n, define
R;i(A) := dimg, A[r]/A[r" Y]

Since dimp, ngOF/WO_(i_I)OF = 2, we know R;(A) can only take value 0,1, or

Proposition 8.7.5. Suppose A is a subgroup of p~"Op/Op. Then we have:

(a) If A= ﬁlZ/p”i with 0 < n; <n, then AL" = ﬁlZ/p"_"i.

(b) R;(AY™) + Ropi1i(A) =2 for alli =1,2,--- ,2n. O

Now we can prove Theorem 8.1.1 for G4 in the case when A = Z/p' x Z/p' x
Z)p" C p~™Op/Op, where i > j. In fact, by Proposition 8.7.5 we know AL =
Z/p' x Z/p"™7 has p-rank at most 2, hence Theorem (8.1.1) for G4 follows from
Proposition (8.6.1) and Corollary (8.7.2). Explore this idea further we will be able

to prove Theorem 8.1.1 for G4 in the general case when the p-rank of A is equal to

3 in the next subsection.
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8.8 The proof of Theorem (8.1.1) in the general

case

Suppose G = G4 is a finite locally free p™-torsion subgroup scheme of X', and
4= ﬁlm’ where 15; € (p7™ Op/Op)\(p~ "~V Op/OF) with my > my > ms > 1.
Suppose #A = p', so t = my +me + m3. Let a; € W(F,2)* and §; € W(F,2) be
the elements such that n; = p~™(ay + m ;) or p~™img(cy; + mo5;), depending on
whether v(n;) = —2m; or —2m; + 1.

By the argument at the end of the previous subsection, we may assume m; > ms.
We may also assume that X[r] ¢ G, otherwise the isogeny X — X /G factors
through X = X and we may reduce to a subgroup scheme with a smaller order.
This assumption translates into Ry(A) < 2. Because we have assumed the p-rank
of A is 3 and the p-rank is equal to Ry(A) 4+ Ry(A), we deduce that Ry(A) =1 and

Ry(A) = 2.
Definition 8.8.1. Assumptions on A are as above. Define

L(A) :=4m —2+v(m) + | 1

t+1
2

and
d(pt™) — pLA=1) ify(ny) = —2my + Land m; = mg + m3
D(A) =
d(ptA+t — pEA)) - otherwise
Proposition 8.8.2. Assumptions on A are as in the beginning of the subsection.

Then:
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(a) If t = 2n, then there exists wl” e My fors=1,2 andr =1,2,--- ,n, such
that ord,(wS” — 777¢;) > D(A).
(n+1)

(b) If t = 2n + 1, then there exists w € M4 such that w = m aje; +

(—1)C7T2_("+1)04‘1’)\2m1+”(’71)62 mod ord, > d(p"+1 — pA)) where ¢ = [—_”("21)_"].

Before we prove Proposition 8.8.2, we first explain how to deduce Theorem
8.1.1(1) from it under the assumption on A as in the beginning of the subsection.
It suffices to prove (8.2)(a) and (b). When m; > mg +mg, they follow immediately
from Proposition 8.8.2; see the argument after Proposition (8.6.1). In general we
prove by induction on mgz. When mg = 1, since we have assumed m; > msy, we
always have m; > msy + 1 = mgy + mg. Suppose ms > 2 and we have proved the
theorem for smaller ms. We may assume m; < ms + mg — 1. Then AL™ =
Z/p™ X Z[p™~™s x Z/p™~™2 by Proposition 8.7.5. But now m; — my < mg,
hence (8.2)(a) and (b) follows from induction hypothesis and Corollary (8.7.2), and
Theorem 8.1.1 is proved.

In the rest of this subsection we prove Proposition 8.8.2. Once (a) is proved, for
(b) one can construct w by knocking out the unwanted entries in the presentation
of 11 - v by using the constructed lifts of 7;"es, where s =1,2 and r =1,2,--- | n.
The argument is similar to that in the proof of Proposition 8.6.1 (b) and is left as
an exercise.

Now we look at Proposition 8.8.2 (a). We point out that it suffices to prove

the case when m; = mo + mg3. In fact, suppose m; — 2 > my + m3 and we have
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proved the claim for (m; — 2,my,m3). Let A" := (p?m1) X (ne) x (n3), then we

have already produced wzm €Ny CNyfore=1,2andr =1,2,---,n—1 by

2 n—1

induction hypothesis. Define vf = 1y - v — S 3. v[ni, 7, sjw”, v} == pmy - v —
s=1r=1

2 n—1 ) 1

ST ST wlpm, ry sjws”, then vf, vy € My and

s=1r=1
2 2my 2 2mi—2

vy = Z vl 1, sl e, vy = Z Z v[pm, r, s]m;"es mod ord, > D(A")

s=1 r=n s=1 r=n

wgl) = (U[pnlv n, 2]”[771» n, 1] B U[nla n, Q]U[Pﬁb n, 1])_1(0[]9771, n, Q]UT - U[nh n, 2]1};)

One can check that v[pny, n, 2|v[ny, n, 1| — v, n, 2lv[pn, n, 1] is a unit in W(k)((u))

and has order d(ptm=2Fv(m)+n 4 pdmtvin)+n) - Gince
ord,v[pny, n, 2] > ord,[n, n, 2] > dp*m-2trimtn
and
(d(ptm e | e n) gy | gdm=2vim)in DAY > D(A)

we deduce that

w) = (lpm,n, 2vln,n, 1] = ol n, 2ol n, 1) olpm, n, 2]

2 2mg 2 2mi-—2
> 2 v sinTes — ol n, 2] 30 Y0 vlpm,rs|miTes)
s=1r=n s=1 r=n

mod ord, > D(A)

and it is routine to check that the right hand side is further congruent to m; "e;

)

modulo ord,, > D(A). Similarly we can construct wé") € Ny such that wl” = 75 "e,
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mod ord, > D(A), too. Thus the claim in Proposition 8.8.2 (a) for (my,ms, ms)
will be proved.

Therefore now we are reduced to the case when m; = mo + ms. We divide the
situation into the case when v(n;) = —2my and v (1) = —2m; + 1. We first assume
v(m) = —2m,.

Prove by induction on mgs. First suppose ms = 1, so m; = my + 1. Define
Aq = (pm1) X (n2) x (n3) and As := (m1) X (n2). They are both subgroups of index
pin A. We will produce two vectors v} and v} from 94, and Na,, respectively, and
then produce the desired w§”) and wé") by a linear combination of v{ and v}.

By Proposition 8.7.5 (1), A7 = (1) x (i), with

M€ (p™0p/Op)\(p~ "™ VOp/OF)

and
€ (p ™ VOR/Op)\(p™ ™2 OF/OF)

Moreover, by Proposition 8.7.5 (2) we know Rom,(A;"") = 2 — Ry(A;) = 1, so

V(1) = —2m,. Write 7 = p~™2 (a1 + 70/31), where @y € W(F,2)*, B e W (F,2).
Since the p-rank of Afm is 2, by Proposition 8.6.1, we deduce that @2 =

a=(mm DM+ W (K)[[u]] - (7™ a5é + (—1) w5 "*a17é) mod ord, > D(A;™?),

where ¢; = [M] By Lemma 8.7.1 we deduce there exists

2
vy = Z:cm;(mﬁl)ei mod ord, > D(A;7™)
i=1

where x; € W(k)[[u]]* such that Az1a7 + (—1)“220:” =0 mod u.
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On the other hand, since the p-rank of A, is 2, by Proposition 8.6.1 we deduce

_ _—(ma+1)

there exists vh = aje; + (—1)627r2_(m2+1)04‘{62 mod ord, > D(A;), where

cy = [ZA1=m2] - Note that L(A) = L(As) = 4m — 3 —my = L(A™) — 1, so

I )
D(A,), D(A7"™) > D(A). One can check the determinant of

ap (=1)%2af

is a unit in W (k)[[u]], therefore by a linear combination of v}, v}, we can produce
w) and wj in M4 such that w) =, (m+le. mod ord, > D(A). This finishes the
proof when ms = 1.

Now suppose my > 2, m; = ms + m3 and we have proved Proposition 8.8.2 for
a smaller m3. Define A; := (p*n) x (ns) X (n3), by Proposition 8.7.5 (a) we know
AF™E () (75) % (75), and if we assume 7 € (5™ Op /Op)\ (- D Op /Op),
then m} = mg + mg — 2, my = my — 2, mj = my — 2. By Proposition 8.7.5 (b)
we know v(7;) = —2(mg + mg — 2) = —2(n — 2). By the induction hypothesis,
we know ‘ﬁj;;(m\l_z) reduces to 7~ ™) MY @ 7~ My modulo u, hence as its or-
thogonal complement under the Weil pairing p~™=29,,, /9, x p~ =29V /MY —
AW (k) [[u]] /W (k)[[u]], there exists w'” € My, fors =1,2andr =1,2,--- ,n—
1, such that w{” = . il nZ hi jrs€i, With h; ;. s € uW (k)[[u]].

Define A, == (p*71) x () x (73) € A7"™ 2. Then by induction hypothesis
we know there exists w,(c) € ’J/IA: for k = 1,2 and [ = 1,2,...,n — 4 such that
w,g) = m.'¢;, mod ord, > D(Ay). Since the w,(c)’s are orthogonal to the w’s,
by computing (ng),w,(c))ml,g inductively for [ = 1,2,--- ,n — 4, we can deduce

ordyh; ;s > D(Ag) = d(p*™ 3" — p*™T27) for n +1 < j < 2n —4 and all 4,7, s.
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2 2n—4
Since -0 = > > 7, 'v[n, J,i]é; is also orthogonal to wé’"), and ord,v[ny, j, 1] >
i=1 j=1

dp*™*1=" when j > n — 1, so when r < n — 2 we can deduce

v Al,?’L - 37Z 71.'_(”_3)@, hinrsﬂ-‘_nei me—2 = 0 mod Ordu > dp4m+1in
n i s )

Mm

=1

)

Similarly if we consider the pairing between prn; - 0 and w!” when r <n-—2, we get

2

Z<U[pﬁ\17 n— 37 i]ﬁ;(n_g)é\zﬁ hi,n,r,sﬂ-z‘_nei>m2—2 = 0
i=1

mod ordu Z d(p4m+3—n o p4m+2—n)

(n 3)

—(n—3) ~ _ —(n—3) ~ _ .
Because (7, e, T rer) = A(m, "3, T4 e3), if we denote

Av[m,n—3,1]  v[np,n—3,2]
T :=

)‘U[pﬁ\lvn - 37 1] U[pﬁ\l?n - 372]

then we can write the equations in matrix form as

hl,n,r,l hl,n,r,2 T11 T2
T =

hQ,n,r,l hz,n,r,2 To1 22

with ord,z11,ord,@12 > dp* 7", and ord, @y, ord,zey > d(pm T — ptrrRT),

Then by a direct computation of 7! one can deduce that ord,h; s > d(p*™H1—"—

p*™= 1= for all 4, s, and r < n — 2.

When r = n — 1, we will have

Mpn-11 Minn-12 g M[n,n—21]  v[p,n—2,2]
homn-11 honn—12 Mv[pni,n—2,1] v[pm,n —2,2]

mod ord,, > d(p4m+1—n _ p4m—1—n)
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Now we consider the following elements in 914, :
—k _
Ul:771'U>U2:p771'v,112k+1=w§" ) vzk+2—w2 fork:—l,2,---

If we follow the linear algebra approach in 8.5 with the presentations

2 2n
_ E § —r
- Ui,r,sﬂ-s €s

s=1 r=1
2n 2 2n—2
Ul:zzvnl’j’ 7T 65702_22 7717.]7 €s
s=1 j=1 s=1 j=1
2 2n—4
ry _ _—r § § —7
w( ) - 7TS es + ﬂ-l hi,j,r,sei
=1 j=n

we will form the 2n X 2n matrix:

U[Uh n, 1] v[pm, n, 1] hl,n,n—m hl,n,n—l,z 0
v[m,n, 2] v[pm, n, 2] hann-11 hopn-12 0
vln,n —1,1] vlpm,n—1,1] 1
¢ = vn,n —1,2] vlpm,n—1,2] 1
1
vlm, 1,1] vlpm, 1,1]
v, 1,2] vlpm, 1,2]

mod ordu 2 d<p4m+1—n _ p4m—1—n)

By Lemma (8.5.1), it suffices to show det C' is a unit in W (k)((u)), and
ord,, (det C’)_IC’kvlvlms > D(A) = d(p*™ " — ptm2)

fork=1,2,1=1,2,--- 2n,r=n+1,n+2,---,2n,and s =1, 2.
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With the given form for the matrix C, det C' is equal to the determinant of the

following 2 x 2 matrix:

0[77177%1] U[I”?lana 1] hl,n,n—l,l hl,n,n—1,2
Co = —

U[nb n, 2] U[pnla n, 2] h?,n,n—Ll h’2,n7n—1,2

U[nbn_l’l] U[pnlan_171]

U[nlan - 172] U[pnlan - 172]

One can check

detC = AN Yn-120-3 — Zn-1Yn-3)) - (A101Yn—3Yn—2 + {4 2 _32,—2)"
(A1G1Yn-1Yn + 074 2p-12,) mod ord, > do(p~ " +p7")

By Proposition 8.3.3, the three factors above

-1 — o0
(Yn—12n—-3 — Zn-1Yn-3) » (A100Yn—3Yn—2 + a7 1" 2p_32n_2)

and

— o-—~0
(101 Yn—1Yn + aJ01° 2p—12p)

are all units in W (k)((u)), with orders equal to —d(p*™m 17" 4 pim=1=n) q(pim+i-n
pim=) and do(p*™ 17" 4 p!™=27"), respectively. So we have proved det C' is a unit
in W(k)((u)) with order equal to do(p*™™" + pim=2-").

The cofactors Cy; for k = 1,2 and [ = 1, 2 are equal to the four entries of the 2x2
matrix Cy. One can check by a direct computation of Cj to see ord,C 1, 0rd,Csq >
dp*™=", and ord, (' 2, 0rd,Co 9 > dpim—2-—n,

Am—1—n

Now suppose k = 1,2, r > n+ 1 and s = 1,2, we have ord,v;,s > dp
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and ord, vy, ¢ > dp*™ 17" from the definition of the presentations, then
ord, (det )~ Cpv1s > d(p*™ 7" — pt )

ordu(det C)_lck,2U2,r,s > d(p4m+1—n . p4m—n>

On the other hand, when [ > 3, ord,v,, > d(p*“A2)+! — pLid2)) = g(pim+3-—n _
p*™+2m) “hence ord, (det C)"*Cy jvy,.s > do(pm 37" — pimA2mn _ pimen _ pdm=2mn)
Thus in total we have ord, (det C)~'Cy vy, > d(p*™ 17" —p*™=27") for all k = 1, 2,
Il =12---2n,r =n+1n+2---,2n, and s = 1,2. This means w,gn) =
;i(det C)LCpvy € Ny satisfies ord, (w!™” — 7y ) > d(pt™=1-m — ptm=2-n) by
-1

Lemma (8.5.1). That lower bound is exactly equal to D(A), thus Proposition 8.8.2
is proved in the case when v(n) = —2m;.

Finally we are left with the case when v(n;) = —2my + 1. We still prove by
induction on ms. Now mj + mg + mgz = 2n is even, and m; = my + m3. Since we
have assumed R;(A) = 1, this means we may assume v(n;) = —2m, for i = 2,3.
Pick nf € p7™Or/OF such that 7 = n; and define A* = (n7) x (95) x (N3);
the orders of the three factors are equal to mq, mos + 1, m3 + 1, respectively. By
Proposition 8.7.5 we know (A*)Lm = () x (i3) x (%) with the orders of the three

factors equal to my,m; —mz —1=msy — 1, and m; — my — 1 = mg — 1. Moreover,

since Rop, ((A*)1m) = 2 — Ry (A*) = 0, we deduce that v(}) = —2my + 1.

—

When mg > 2, the induction hypothesis guarantees the existence of wi™ e
‘ﬁ@ml for s = 1,2 and r = 1,2,--- ,n — 1. such that ordu(w:(r) —m; "e;) >

D((A*)5™). Note that m; > (ma—1)+(my—1)+2, so D((A*)=m) = do(p*m=1-7—
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p'™=27") = D(A). When m3 = 1, the p-rank of (A*)=™ is equal to 2 and Propo-
sition 8.6.1 also implies the existence of such w; ") Then by Lemma 8.7.1 there

exists wi") € Ny« for s = 1,2 and 7 = 1,2,--- ,n + 1, such that w;” = T, e,

mod ord, > D(A). Since M4 = 7-N 4+, the proof of Proposition 8.8.2 is completed.

8.9 A final remark

Let R runs over the finite extensions of Ry, it is unexpected from Theorem (8.1.1)
that whether the reduction of a finite locally free subgroup scheme G in Xg is Op-
stable is completely determined by its order. We finally comment that if we have
known Theorem (8.1.1)(1)(b) for all odd positive integers ¢, then there is in fact a
simple proof to deduce Theorem (8.1.1)(1)(a) for all even positive integers t.

Since the reflex field of the p-adic CM type (F,®) is F' = B(F,2)[mo]/ (7§ — €p)
itself, there exists an Op-linear CM p-divisible group ) over Op with p-adic CM
type @, such that the associated Galois representation p : Gal(F®/F) — O} carries
1% onto the image of p; see [1](3.7.3). This implies any p'-torsion geometric point on
Y is rational over a totally ramified extension F; over F. Let Y := Vg ,. Since Vg,
is Op-linearly isomorphic to &, it suffices to prove for every finite totally ramified
extension E of F' and every finite locally free subgroup scheme G of Yy, such that
#G = p*", the closed fiber G := Gy, is equal to Y [r"].

We prove by induction on n. Suppose we have proved for all smaller n’s. Take

a filtration Go C G C G such that the rank of G/G; and G; /G, are both equal to p.
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Denote G; as the closed fiber of G;. By induction hypothesis we may assume Gy =
Y [r~("=D]. Note that Y/Gy is Op-linearly isomorphic to Y. The subgroup G /Gy C
Y /G5 has order p, and since /Gy = Y is local-to-local type we know G1/G3 = ay,.
We have seen the Dieudonné module attached to Y/Gy is Op-linearly isomorphic
to M = W (F,2)[r]/(7* — ep)er @ W (F,2)[x] /(7 — €7p)es, where the Op-structure is
defined by a-e; := aeq, a-e; := a’ey fora € W(F2), and mg-¢; := me;. The Op-linear
Frobenius and Verschiebung maps are defined by Fe; = —e A "'7ey, Ve, = —mes,
and Fey = —e'mey, Vey = —A"9me;. The Dieudonné module M’ attached to X/G,
is equal to M + W (k) - x, where x € p~*M/M. 1t is easy to check a(M) = 2. We
claim the Dieudonné module M’ is Op-stable if and only if a(M’) = 2. In fact, to

make Fz € M’ we must have z = 7! (2161 + x9€5) mod M with z1, x5 € Fje, then

Fo=—(e'age; +e "N 1afey), Vo= —(N725%; + 27 %) mod mM, & 7M,

It is clear that a(M') = 2 if and only if Fz and Vz mod p are linearly depen-

dent over > modulo wM; @ 7M. This is further equivalent to the degeneracy of

[ D W

the 2 x 2 matrix . Note that z; € Fp2, hence 2§ = x;°.
A %257 x,°

The determinant is therefore equal to e ! (x129)7(1 — A7) = 267 (z122)7, since

p2-1

ANt =¢"2 = —1. Thus a(M’') = 2 if and only if z; = 0 or zo = 0, which is

clearly equivalent to saying M’ is Op-stable.
As a result, since the order of G is an odd power of p, by our assumption

we have known G, is not Op-stable. Hence a(M’) = 1. As a result, there is a
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unique Dieudonné module M” D M’ with lengthM"” /M' = p, which is necessarily
the Diedonne module attached to Y/Gy. But M” := 7~'M = M obviously satisfies

that condition, hence G/Gy = (Y/Gq)[n], G =Y [r"].
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Part 11

The Relabelling Action On The
Equicharacteristic Universal
Deformation Space of p-divisible

Smooth Formal Groups over Fp
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Chapter 9

Introduction to Part 11

Let X be a connected p-divisible group over Fp. The universal deformation space
of X is a smooth formal scheme SpfR over W(F,). There is a natural action by
Aut(X) on SpfR by “changing the label on the closed fiber”, which we will refer
to as the relabelling action throughout this paper. The equacharacteristic univer-
sal deformation space of X is SpfR/pR, and the action by Aut(X) induced from
the relabelling action will be referred to as the equicharacteristic relabelling ac-
tion. On the other hand, let G be the formal group associated to X, then the
universal deformation space and the equicharacteristic deformation space of G are
naturally isomorphic to those defined for X. The relabelling action and equichar-
acteristic relabelling action can be defined in the same way, and these definitions
are compatible with the corresponding notions for X. The relabelling action and

the equicharacteristic relabelling action by p € Aut(X) will be denoted by R, and
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R,, respectively.

The relabelling action was first studied by Lubin and Tate in [14] in the one-
dimensional case. In this second part of the thesis, we study the relabelling action,
especially the equicharacteristic relabelling action, for X in general dimensions. For
p € Aut(X), an algorithm of computing Ep is given, and some asymptotic properties
of R, in Aut(R/pR) as p — 1 in Aut(X) are obtained.

The relabelling action is interesting mainly due to the following two applications:

Stable homotopy theory. Since Quillen’s discovery in [19], the connection be-
tween formal groups and stable homotopy theory have been heavily studied by
algebraic topologists. In the case when G is one-dimensional with height h, the au-
tomorphism group Aut(G) is also known as the Morava group in stable homotopy
theory ([15] Lec. 19). The relabelling action induces an action by Aut(G) on a
cohomology theory Ej, which is called the Morava E-theory ([15] Lec. 22). For a
finite complex X, there exist spectral sequences whose Fy terms are group coho-
mologies of the Morava group with coefficients in E}(X), such that £** converges
to an approximation of the homotopy group m,.X, and the accuracy increases as h
increases (c.f. [4] and [16]).

The Hecke orbit problem. Let A, be the moduli stack over E; that classifies
principally polarized abelian varieties of dimension g over F,. A point x € A,(F,)

corresponds to an principally polarized abelian variety (A,, \;) over F,. The Hecke
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orbit conjecture in the Siegel case asks whether G (z) :=

{y € A,(F,)|3 an isogeny ¢ : A, — A, m € N such that (m,p) = 1,¢" A\, = mA,}

is Zariski dense in A, if = is ordinary.

It was Chai who introduced the idea that the equicharacteristic relabelling action
plays an important role in studying the Hecke orbit problem in [2]. We briefly
explain the so-called local stabilizer principle as follows. The group Gszg(Agcp ) )
operates on A, as algebraic correspondences. Let Z be the Zariski closure of G (p) (x),
and y € Z(F,). The principally polarized abelian variety (A,,\,) is stable under
Aut(4,,),). On the other hand, the formal completion Z/¥ embedded in .Aéy is
invariant under Aut((A,, A\,)[p™]), the so-called stabilizer subgroup. When y has
a large stabilizer subgroup, if we can have enough information on the relabelling
action to identify the invariant formal subvarieties of Aéy, then we would have better
understanding on Z.

The Hecke orbit conjecture for the Siegel case was proved in [2] using the “Hilbert
trick”, which is special phenomenon that no longer comes for rescue on general
Shimura varieties of PEL type. To approach the Hecke orbit conjecture in general,
the local stabilizer principle seems the only known method at this time to get
information about Z. In the case of Shimura varieties of unitary (m,n) type, the
equicharacteristic relabelling action Rp on SpfR/pR naturally arises.

In the case when X has dimension 1 and height A, Gross and Hopkins used in
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[7] the p-adic period map

Spf (R @y, B(E,)) — PZ&))

to compute the relabelling action. Here R®ww,)B (Fp) is a rigid analytic space over
B(F,) that is isomorphic to the open unit ball of dimension h — 1, and PZ}%I,) is the
projective space of one-dimensional quotients of the covariant crystal attached to
X. The p-adic period map is Aut(X)-invariant, hence “linearizes” the relabelling
action on the “generic fiber” of SpfR. However, the period map is not defined
over W(F,), hence does not provide much information on the equicharacteristic
relabelling action R, on Spf R/pR.

Working with the Cartier-Dieudonné theory in [3], Chai obtained information in
the one-dimensional case on the leading terms of the equicharacteristic relabelling
action under an appropriate filtration on R/pR. Recently, Chai discovered a new
approach via formal group laws to compute the equicharacteristic relabelling action
in the one-dimensional case. This approach can provide more information on the
asymptotic behavior of Ep as p — 1. In this second part of the thesis, we generalize
his approach to arbitrary dimensions.

The main tool employed in this approach is the theory of p-typical formal group
laws. A formal group law F' = F(z,y) over R is said to be p-typical, if fiy = 0
for every formal curve v(¢) and (I,p) = 1, where f; is the [-th Frobenius operator
on formal curves in F; see (10.3 and 10.5) for details of the definition. Over a

Zp)-algebra, every smooth formal group can be assigned a coordinate such that the
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corresponding formal group law is p-typical. If we choose a p-typical formal group
law F' on the given formal group G /Fp, the universal deformation space can be
interpreted as classifying the p-typical liftings of F' up to isomorphisms that reduce
to identity over E,; (see 13.1.6).

Let F be a universal p-typical lifting of F' over R. A natural approach to
compute the relabelling action R, on R is to first find another p-typical lifting F
over R equipped with an isomorphism «, : F — F such that a, reduces to p over
Fp. If we can modify F by an isomorphism, which reduces to identity over Fp, into
a p-typical formal group law F’ that is equal to the pushforward of F via some
W(Fp)—endomorphism R — R, then this endomorphism is the desired relabelling
action R,.

The advantage of working with p-typical formal group laws is that not only the
p-typical formal group laws themselves but also the isomorphisms between them
can be parametrized by an infinite sequence of parameters. More importantly, the
transition formulas on the parameters to describe isomorphic p-typical formal group
laws can be made into integral recursive formulas in the sense that every term in
the formulas is defined over W (IF,). This allows us to find a pattern of the equichar-
acteristic relabelling action }_%p on SpfR/pR. Since R/pR is a power series ring
over I, there exists a natural subgroup filtration Fil (Aut(R/pR)) on Aut(R/pR)
such that Fil'(Aut(R/pR)) consists of automorphisms that are congruent to iden-

tity modulo order > . On the other hand, there exists a natural subgroup filtration
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Fil (Aut(X)) on Aut(X) such that Fil'(Aut(X)) = 1 + p’End(X). We prove that
when p € Fil (Aut(X)), R, € Fil*" (Aut(R/pR)). For fixed p € Aut(X) and order
N, we describe the process of computing Ep modulo order > N.

The structure of this second part of the thesis is as follows. In chapter 10, we
introduce some preliminary facts on formal groups and formal group laws, including
the definition of p-typical formal group laws and the various ways to parametrize
them. In chapter 11, we derive some integral recursive formulas between the differ-
ent ways in parametrizing the same or isomorphic p-typical formal group laws are
derived. In 12, we develop some technical lemmas on solving systems of infinitely
many formal power series equations in infinitely many indeterminates over an adic
ring. In 13, we first show that under a specific choice of the p-typical formal group
law F associated to G/F,, the computation of the relabelling action R, (as well as
the equicharacteristic relabelling action }_%p) is largely simplified. Then we obtain
asymptotic properties of the equicharacteristic relabelling action Ep in Aut(R/pR)
as p — 1 in Aut(X), and describe the algorithm of computing approximations to

Ep with any desired accuracy.
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Chapter 10

Formal groups and formal group

laws

Throughout this second part of the thesis, p is a prime number that is greater than
2. All the rings mentioned have 1. If R is a ring, we denote the R-algebra of m xn
matrices by R™*". In this section, we review some facts on formal groups and

formal group laws.

10.1 Basic definitions

Let R be a commutative ring with 1. Denote by Milg the category of nilpotent
R-algebras, and by PBroNil, the category of filtered projective limits of nilpotent
R-algebras. Denote by Gets the category of sets, and 2Ab the category of abelian

groups. Note that every functor G : Milg — Gets uniquely extends to a functor
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ProNil, — Gets which commutes filtered projective limits. The similar property
on extensions holds for functors from il to Ab.
We say a functor G from MNilg to Ab is exact if it sends a short exact sequence

to a short exact sequence.

Definition 10.1.1. A functor G : Milp — Ab is said to be a (commutative) formal

group, if G is exact and commutes with arbitrary direct sums.

Let 9Mo0r be the category of R-modules. There is a natural embedding from
Mooy to ProMNil, by endowing the algebra structure on M € Modr as M - M = 0.
For a smooth formal group functor G, define its tangent functor tg : 9Modg — Modg
by restricting G to the subcategory 9Mo0r of ProNily,, and endowing G(M) with

the natural R-module structure induced from that on M € 9Modx.

Proposition 10.1.2. ([24]) Let G be a formal group functor. If t(R) is a finitely
generated projective R-module, then G is propresentable. If moreover t5(R) is a

free R-module of rank m, then G is propresentable by SpfR[[ X1, Xo, -+, Xpn]].

In the latter case of the statement in the property, we say G is an m-dimenstonal
smooth formal group and the integer m is called the dimension of G. In the future,
if the dimension is known, we write the coordinate ring R[[X, Xo, -+, Xp]] of G
as R[[X]] in abbreviation. The group structure on G induces a homomorphism
i R[[X]] = R[[X]] ®r R[[Y]]. The following notion of formal group laws provides

a concrete way to describe pu:
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Definition 10.1.3. An (m-dimensional) formal group law is an m-tuple of formal
power series FI(X,Y) = (F1(X,Y), F5(X,Y), -+ , F,(X,Y)) satisfying the follow-
ing conditions:

(a) (identity) F(X,0) = X, F(0,Y) =Y

(b) (commutativity) F(X,Y) = F(Y, X);

(c) (associativity) F(F(X,Y),Z) = F(X,F(Y, Z2)).

Remark 10.1.4. In general, for any index set I, we can define a formal group law
with index set I to be a set of formal power series {F;(X,Y)|i € I} where each
F,(X,Y) € R[[X;,Y;|i € I]], such that the three conditions above are satisfied, plus

the following finiteness condition when [ is infinite:

if Fi(X,Y)= ) cup X™V"

m,ne/

then for every m, n there are only finitely many ¢ € I such that cypn,; # 0
This additional condition in the case when [ is infinite is necessary such that the
condition F(F(X,Y),Z) = F(X, F(Y, Z)) makes sense.

A homomorphism « : F — G from an m-dimensional formal group law F to

an n-dimensional formal group law G is an n-tuple of formal power series in m-

variables: a(X) = (a1(X),a2(X), -+, a;n(X)) such that
G(a(X),a(Y)) = a(F(X,Y))

A homomorphism « : F — G is said to be an isomorphism if m = n and there
exists a homomorphism § : G — F such that a(8(X)) = X = f(a(X)). A
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homomorphism is an isomorphism if and only if m = n and the evaluation of its
Jacobian at X = 0 is an invertible matrix in R™*™. We say an isomorphism is a
strict isomorphism, if the evaluation of its Jacobian at X = 0 is the identity matrix.
An isomorphism a(X) between formal group laws decompose into a composition
of a strict isomorphism and the scalar multiplication X +— JX, where J is the
evaluation of the Jacobian of a(X) at X = 0.

If we fix a rigidification G = Spf R[[X]] for an m-dimensional formal group G,
the homomorphism p : R[[X]] — R[[X]] ®& R[[Y]] induced by the group structure
gives rise to an m-dimensional formal group law. Different rigidifications of G
produce isomorphic formal group laws. Conversely, an m-dimensional formal group
law defines an m-dimensional smooth formal group over R, by assigning N™ to
any nilpotent R-algebra N, with the abelian group structure on N™ defined by the
formal group law. If F'(X,Y) is an infinite dimensional formal group law with index
set I, where I is an infinite set, then the associated formal group is the functor G

from Milg to Ab, such that G(N) = @,.; N»)', equipped with the abelian group

i€l

structure defined by F(X,Y).

Ezample 10.1.5. (a) The additive formal group law is éa(X, Y)=X+Y.

(b) The multiplicative formal group law is G, (X,Y) =X +Y + XY

Proposition 10.1.6. ([8] 1.6.2, 11.1.6) If R is a Q-algebra, then every formal group

Here we use @ Ny instead of [],.; N to ensure that G commutes with arbitrary direct

icl

sums.
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law 1is strictly isomorphic to the additive formal group law.

Therefore if char R = 0, i.e., all integers n are nonzero in R, a formal group law
over R is isomorphic to the additive formal group law after a base change to R® Q.

This motivates the following definition:

Definition 10.1.7. If char R = 0, F' is a formal group law over R, then the logarithm
of F' is the m-tuple of formal power series f(X) over R ® Q that induces a strict

isomorphism from F' to éa after base change to R ® Q.

In particular, if f(X) is the logarithm of F(X,Y), then F(X,Y) = f~1(f(X)+

f(Y)). We often denote the logarithm of F' by log.

10.2 Functional equation lemma

Throughout this subsection we assume char R = 0, and denote K := R® Q. In §1.2
and §I1.10 of [8], Hazewinkel gave a systematic construction of m-tuple of formal

power series f(X) over K that are logarithms of formal group laws over R, i.e., the

coefficients of f~*(f(X)+ f(Y)) are all in R.

Definition 10.2.1. A Honda ring is a triple (R, a,0), where a is an ideal of R,
o : K — K is an endomorphism that sends R to R, satisfying (1) p € a; (2)
o(a) = @ mod a for each a € R; (3) for every positive integer r and b € K,

a’b Ca=dao(b) Ca.
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Note that this condition is automatically satisfied if a = (a) is principal, and

@ € R*. The endomorphism naturally extends to K™*™ for any m, n.

Ezample 10.2.2. (a) Let R = W(Fn), K = B(F;n), a = (p), and o be the Frobenius
automorphism on K. Then (W (F,), (p), o) is a Honda ring.

(b) Suppose (R, a,0) is a Honda ring, and assume p € a. Let I be a countable
index set, R := R[X;;i € 1, K:=R®Q, and & :=aR. Extend 6 to 5 : R — R by

defining o(X;) := X? for i € I. Then (R, &,) is also a Honda ring.

Definition 10.2.3. (a) The Honda’s twisted formal power series ring KJ**™[[0]] is
the non-commutative formal power series ring in one indeterminate 0 with the
multiplication rule da = o(a)d for all a € K™ ™. Similarly, R7**™[[0]] is the
subring of K**™[[0]] that consists of formal power series in 0 with coefficients in
Rm>m,

(b) Define the action of K™*™[[d]] on K[[X]]™*! by a *x ¢(X) = ¢(aX) for
a € K™ and (0 * f)(X) := (0.f)(X?), where X is the m x 1 column vector

(X1, Xo,- -+, X))t and X? stands for (X7, X5, -+, XP)*.

Proposition 10.2.4. (Functional equation lemma) Let sy, 89,--- € K™ whose
entries si(i,7) satisfies sp(i,j)a C R. Letn:=1— 3 5,0, g(X) € R[[X]]™*! with
n=1

invertible Jacobian matriz, and fy(X) :=n"'* g(X) € K[[X]™*".

(a) Fy(X,Y) = [ (fo(X) + f,(Y)) is an m-dimensional formal group law over

(b) For every g(X) € R[[X]|™*, if we define fz(X) := pn~t x g(X), then
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71 (f5(X)) € RIIX]™1.
(¢) (converse to (b)) For every h(X) € R[[X]]™! such that h(0) = 0, there
ezists h(X) € R[[X]]™ such that h(X) = f; '(f;(X)), where f;,(X) = n"txh(X).
(d) If (X)), B(X) € K[[X]]™", and at least one of them is in R[[X]|™, then
for every positive integer v, fy(a(X)) = f,(3(X)) mod o if and only if o(X) =

B(X) mod a’.

Remark 10.2.5. If the triple (R, a, o) does not satisfy the condition (3) in the defini-
tion of Honda ring (10.2.1), but sy, s9, - - - € K™ ™ satisfies 0" (s (4, j))a C R for all
rk=1,2,--- and 7,5 = 1,2,--- ,m, then the functional equation lemma (10.2.4)

still holds; see [8] (2.4.15).

The formal group law F, over R defined in (a) of the proposition will be called of
functional equation type, due to the fact that f,(X) satisfies the following functional
equation:

fg(X) =g(X) + Zsigifg(X>

Proposition 10.2.6. ([8]20.1.3) If R is a Z)-algebra a = (p) in a Honda ring

(R,a,0), then every formal group law over R is of functional equation type.

10.3 Universal formal group laws

If F' is an m-dimensional formal group law over R, and ¢ : R — R’ is a ring

homomorphism, then the pushforward of F' via ¢ is a formal group law over R/,

156



and we denote it by ¢,F. It is a trivial matter to see the existence of a uni-
versal (m-dimensional) formal group law over some ring L, such that for every
ring R and every m-dimensional formal group law F' over R, there exists a unique
homomorphism ¢ : L — R making F' the pushforward of the universal formal
group law via ¢. We sketch the argument here. Let L := Z]--- ,Ciap, -+ 31 =
1,2,--- ,m,a,b € N™| where C;,p are indeterminates. Consider the m-tuple of
formal power series Fo(X,Y) = (Fo1(X,Y), -, Fom(X,Y)) where F;(X,Y) =
Xi+Yi+> CiapX 2yb then the identities in the definition of formal group laws
yield infinitely many equations among the indeterminates Cj;. Let a be the ideal of
L generated by these equations, then the induced formal group law from Fo over
L:=1L /a is a universal formal group law. However, it was Lazard who first proved

in the one-dimensional case that the structure of the ring L is incredibly simple:

Theorem 10.3.1. (Lazard) When m = 1, L is isomorphic to the polynomial ring

Z[ZE17$2,"'].

Making use of the functional equation lemma, Hazewinkel gave explicit con-
structions of m-dimensional universal formal group laws Hy (X, Y) over polynomial
rings with countably infinitely many indeterminates. We first make some notations

that will be used in the definition of Hy (see [8] §11):

e For each sequence (g1, - ,q), t € N*, of powers of prime numbers, ¢; = p;,

s; € N, p; a prime number, choose an integer n(qi,---,q;) such that the
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following congruences are satisfied:
n(g, - @) =1 modpy  ifpr=py=---=p Fpe, 17 <t

n(qr, - ,q) =1 modpy ' fp#pr=-=p #£py1, 2<r<t

If r = t, then the coniditon p, # p,,1 is supposed to be vacuously satisfied.
We further require that n(qy, -+ ,q) = 1if py = po = - -+ = p;; note that this

definition satisfies the congruences above.
e Denote by n the m-tuple of natural numbers n = (ny,--- ,n,,), n; € N.
e Define |n| :=ny + -+ +ny, forn = (ny, -, ny).

e Define 0 := (0,0,---,0), e(i) = (0,---,0,1,0,---,0) with the only 1 in the

1-th place.

e If n is an m-tuple of natural numbers and ¢ € N, then in is defined to be

(inq, -+ inm,).

e Denote by I the set of all m-tuple of natural numbers n, by D the set of all
m-tuples of natural numbers n for which n # 0 and n # p”e(i) for all prime
numbers p and r > 1. Note that the indices e(i) themselves, i = 1,2,---  m,

are in D.

e Ifn=(ny, - ,ny,) €I, denote X7 -+ X by X™. If a = (as, - ,a,)" is a

column vector, then aX™ is short for the vector (a; X™, -+, a,p, X™)".

e Denote by X the column vector (X1, Xy, -+, X,,), by X?" the column vector

(an,an, . 7Xp")t'

m
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e If A is a matrix, we denote the matrix obtained by raising each entry to its
p"-th power by A®") to distinguish from AP", the p"-th power in the usual

sense of matrix multiplications.

e Let R*® := Z[U] be short for Z[U(i,n)|n € I,|n| > 2,7 = 1,--- ,m]. Define

U(i,e(j)) =0if i # j and U(i,e(i)) =1 fori,j =1,2,--- m.

e Define o : R® — R™ by fixing Z and sending U(i,n) to U(i,n)?. The triple

(R, (p),0) is a Honda ring.

o If ¢ =p° s €N, pis a prime number, then denote by U, the m x m matrix
U(Z7 qe(]))ZJ
e If d € I\{0}, denote by Uy the column vector (U(1,d),---,U(m,d)).

Definition 10.3.2. For each n € I with |n| > 1, define a column vector a,, with

entries in Q[U] = Q ® Z[U] by means of the formula

an(U) _ Z n(Q1, - ,(It) o n(Qt—la Qt) n((lt) U U ... U(ql"'q“l)U‘g‘“"'Qt)

a1~ g2 qt
h Pe—1 Dt
(g1, ,qt,d)

where the sum is over all ¢i,¢qo, -+ ,q which are powers of prime numbers and
d € D such that n = ¢1q5 - - - ¢,d.

Define hy(X) = 3 an(U)X™, Hy(X,Y) = hi' (hy(X) + hy(Y)).

[n|>1

Proposition 10.3.3. ([8] 11.2.4) The m-tuple of formal power series hy(X,Y)

satisfies a functional equation of the form
ho(X) = gp(X) + Y p U (XP)
i=1
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with g,(X) € Z [U)[[X]]™ and g,(X) = X mod deg > 2 for every prime p.
As a corollary of (10.2.4), Hy(X,Y) is a formal group law over R™.

Proposition 10.3.4. ([8]11.1.5) Hy(X,Y) is a universal m-dimensional formal
group law over R™, i.e., for every ring R and every m-dimensional formal group
law F(X,Y) over R, there exists a unique homomorphism ¢ : R>® — R such that

F=¢.Hy.

In §10, Hazewinkel also constructed another formal group law which is important
in studying formal group laws over Z,)-algebras. Let R*> := Z[V| be short for
ZVi(j, k)t = 1,2,--- 54,k = 1,2,--+ ,m], and let K> := Q[V]. Write V; for the
m X m matrix (V;(j,k)). Define o : R™® — R> by sending V;(j, k) to V;(j, k)P
and fixing Z. The triple (R*, (p), o) is a Honda ring. Define ny :=p — i%@i €

KXIX™ ™, fr(X) = pny' * X, and Fy(X,Y) = i (fv(X) + fv(Y)). By

(10.2.4), Fy is an m~dimensional formal group law over R*°.

Definition 10.3.5. We call Fy the (m-dimensional) universal p-typical formal group
law. In general, a formal group law F' over R is called p-typical, if there exists a
homomorphism ¢ : R* — R such that F' = ¢, Fy; the infinite sequence of matrices
d(V1), ¢(Va), - -+ is called the p-typical coordinate of F.

It can be easily computed that:
Proposition 10.3.6. ([8]§10.4) If we denote fy(X) =Y. a,(V)X?", then:

n=0

> i (V)VE
=1

D =

() au(V) = L 3 Via, (V) =
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(b) an(V) = Z pftv;'l‘/igpn) o V(pz'1+“.+i7.71)

r
t1+i2+-+ir=n

Proposition 10.3.7. (a) The unique homomorphism ¢ : R™® — R such that
o Hy = Fy is defined by o(U(i,n)) = Vi(i.j) if n = pe(j), and p(U(i,n)) = 0
otherwise.

(b) Let K : R™ — R>® be the homomorphism such that x(V,(i, 7)) := U(i, p*e(4)).
For every p-typical formal group law F over a ring R, if ¢ : R™® — R and

®: R>® — R are the homomorphisms such that ¢, Fyy = ¢, Hy = F, then ¢ = ¢ o k.

Proof. Part (a) can be easily seen by (10.3.2) and (10.3.6), since ¢(an(U)) =
as(V(-,7)) if n = p°e(j), and (0,0,---,0)" if otherwise. Part (b) follows from

the fact that ¢ o k = Id. m

Proposition 10.3.8. Let 7@2’;’) be the localization of R* at p. There exists a strict
isomorphism < : Hy — k. Fy over 722’;). Moreover, ¢(X) = X mod a, where a is
the ideal of 7%‘5;) generated by U(i,n) with n running over all m-tuple of natural

integers that are not of the form p°e(j).

Proof. The logarithm of Hy is hy(X) = (png') * g,(X), where gy = p — io:lUpi@i,
and ¢,(U) € 7%?;) as in (10.3.3). The logarithm of k., Fy is k. fy (X) = (pny) 1) * X,
hence ¢(X) = k.f;;' (hy(X)) is a strict isomorphism between Hy and s, [Fy over
ﬁf;) by (10.3.3 (b)). For the second statement, note that s, fy(X) and hy(X)
are formal power series over 7~€°°[§] Their pushforwards over the quotient ring
(R>/ &)[%] satisfy the same functional equation, hence are equal to each other.
Therefore ¢(X) is congruent to X modulo a. O
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Note that fi/(X) = > a,(V)X?" is obtained from hy(X) = > an(U)X™ by
n=0 nl>1
striking out all terms that should not occur in the logarithm of a p-typical formal

group law. Because of the universality of Fy, and Hy, it provides a universal way

to “p-typify” a formal group law.

Definition 10.3.9. Let R be a Z)-algebra, F' be an m-dimensional formal group
law over R. Let ¢ : 7@?;3 — R be the homomorphism such that F = ¢,Fj;. Let
Kp) t Ry — 7@?;) be the homomorphism induced by x after localizing at p. Define
the p-typification of F to be ¢, Fy, where ¢ = ¢ o K(p) : Ra‘j) — R.
Corollary 10.3.10. Every formal group law over a Zy)-algebra is strictly isomor-
phic to its p-typification, which in particular is a p-typical formal group law.

In the case when char R = 0, we can have an equivalent characterization of

p-typical formal group laws via logarithm:

Proposition 10.3.11. ([8]15.2.6) If char R = 0, a formal group law F over R
is p-typical if and only logr(X) is of the form logp(X) = 3 a,X?", where a, €
n=0

10.4 Isomorphisms and homomorphisms between

p-typical formal group laws

Not only the p-typical formal group laws themselves are parametrized by infinitely
many free indeterminates, but so are the strict isomorphisms between them, too.
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Let R := Z[V, T| be short for Z[V;(j, k), T;(4,k);i = 1,2,--- ; j,k =1,2,--- ;m],
and K> := Q[V,T]. Similar to the previous notation of V;, let T; stand for the
m x m matrix (T;(j,k)). Extend o : K — K> to R°*>* — R°* by defining
o(Ti(j,k)) := T;(j,k)P. The triple (R, (p), o) is a Honda ring, and the natural
inclusion R*® — R°>* is an embedding between Honda rings. Define ny := p —
> Vo' € KE[XI™™, fur(X) = popt s« (X + S TXY). and Fyr(X.Y) =

1= =1

fob(frr(X) + fur(Y)). Define ayr(X) = fyh(fr(X)). By (10.2.4), Fyr is an
m-dimensional formal group law over R°>*, and ay 7 is a strict isomorphism from

FV to FV,T-

Proposition 10.4.1. ([8]19.2.6) The triple (Fy(X,Y),avr(X), Fvr(X,Y)) over
R s universal for triples (F(X,Y),a(X),G(X,Y)) consisting of two p-typical
(m-dimensional) formal group laws F(X,Y), G(X,Y), and a strict isomorphism
a(X): F(X,)Y) = G(X,Y) over Zgy-algebras or characteristic zero rings .

In other words, if a(X) : F(X,Y) — G(X,Y) is a strict isomorphism between
p-typical formal group laws over a ring R, which is a Zy)-algebra or characteristic

zero ring, then there is a unique homomorphism ¢ : R°* — R such that ¢, Fy =

F,¢.Fyr =G, and ¢.ayr = a.
In the rest of this section we describe formulas of the logarithms of Fy .

Proposition 10.4.2. ([8]§10.4) Denote

fo(X) == an(V)X?", frn(X) == an(V,T) X"

n=0
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Then

pan(V.T) =Ty + Y Vian (V. 1)) =T, + 3 a, (V. TV,

i=1 =1
By the definition of fy 7 and (10.3.11), Fyr is also a p-typical formal group
law. Due to the universality of Fy,, there exists a unique homomorphism &£ : R* —
R such that Fyr = & Fy. Denote the image of V,, under & by V,,; there exist
polynomials @%T’S)(xi(j, k),y:(j, k);1 <i<m,1<jk<m)forl<rs<msuch
that V,(r,s) = (ng’s)(vi(j, k), Ti(5,k);1 <i<n,1 <j,k<m). For simplicity we
write V,, = ®,(V;, Tj; 1 < i < n).

By the definition of V,, we have the following equation:

n

pa,(V.T) = a, (V. TV

=1

There exists a recursive formula for V; based on V and T

Proposition 10.4.3. ([8]19.3.7)

Vi = Vatol, v — 17 % (V) 7
n n+pn+2(z] iV )—f—Zan_k( )(k X )
P =1
S ") p(" ) (P )77 (P"7)
S e VL X T )
ij>1

Remark 10.4.4. This recursive formula is not directly applicable if we want a formula

of V,, modulo p, since the formula of a;(V') involves a high power of p in denominator

(10.3.6(b)).

For the rest of the subsection, we suppose (R, a,0) is a Honda ring where a = (p)
is the principal ideal generated by p. Under such assumptions on R, all p-typical
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formal group laws over R are of functional equation type in the following form (c.f.

10.2.6):

Proposition 10.4.5. ([8]20.1.5) Let F(X,Y) be a p-typical formal group law over
R, then there exist unique matrices vy, vy, -+ € R™™ such that logp(X) = pn~1x X,
where n = p — > v;0". In other words, the logarithm of F(X,Y) satisfies the

=1

functional equation

logp(X) =X+ %a:; log - (X)

=1

Remark 10.4.6. Comparing to (10.2.6), we are not requiring R to be a Z)-algebra
in (10.4.5) and we have stronger conclusion on the functional equation that F/(X,Y)

satisfies; this is due to the stronger assumption that F'(X,Y) is p-typical.

Definition 10.4.7. Suppose (R, a,0) is a Honda ring where a = (p) is the principal
ideal generated by p. Let F' be an m-dimensional p-typical formal group law over
R. The sequence of matrices vy, vy, -+ € R™*™ determined by (10.4.5) is called the

Honda coordinate of F'.

It is easy to see that if vy, vy, -+ € R™ ™ is the Honda coordinate of F, then
S N _ i i1 P
logp(X) = > a, X?", where a,, = > p g vl vy , satisfying
n=0 i1+io+-+ir=n

n . n .
. . . 1 O.Z . 1 O.TL*Z
the recursive relation a, = > viaj_; = o > an—jvf  (c.f. 10.3.6).
i=1 =1
Under our assumption on R, there exist concrete descriptions on the homomor-

phisms between p-typical formal group laws in terms of their Honda coordinates.

Proposition 10.4.8. ([8]20.3.9, 20.3.10, 20.4.4) Let u = (uy, us,---) be a sequence
of elements in R™*™ and v = (vy, vy, -+ ) be a sequence of elements in R"*"™. Denote
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p— > u;0" and p— > v;0° by n, and n,, respectively. Let F(X,Y) and G(X,Y) be

formal group laws with logarithms
F(X) =pn "+ X, g(X) = pi, "+ X

(a) There exists a homomorphism « : F — G over R if and only if there ezists
c € R™™ and 0, € R, [[0]]"*™ such that n,c = 0.n,.

(b) F and G are strictly isomorphic if and only if m = n and there exists an
element £ € R,[[0]]™*™ such that n,§ = 0,.

(c) For an arbitrary 0 € R,[[0]]"*™, set ag(X) = g~ ((0xf)(X)). Then ay(X) €
R[[X]]™ if and only if there exists an ng € R,[[0]] such that ngn, = n,0. If ap(X) €
R[[X]]™, then @ : F — G is a homomorphism after modulo p, where F,G stand
for the induced formal group laws over R/pR.

(d) When m =n and F = G, we have the following ring isomorphism:

1-1 -

{6 € R[[O]™ ™ [mubn, " € Ro[[0]™ ™}/ Ro[[0]™ ™0 —  End(F)

0 — f7HOxf(X))
10.5 Cartier theory

Let R be a commutative ring with 1.

Definition 10.5.1. (a) Let G be a formal group over R. A curve in G is an element
in G(XR[[X]]), where X R[[X]] is viewed as a pro-nilpotent R-algebra. The set of

curves in G form an abelian group, which is denoted by C(G; R).
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(b) Let F(X,Y) be an m-dimensional (resp. countably infinite dimensional)
formal group law over R. A curve in F is an m-tuple (resp. countably infinite
tuple) of power series (t) in one variable ¢ with coefficients in R such that ~v(0) = 0.
Under the addition defined by 71 (t) +p 72(t) := F(71(t), 12(t)), the set of curves in
F becomes an abelian group, which is denoted by C(F; R). Let 6;(t) be the curve

(0,---,0,¢,0,---) which is ¢ on the i-th component and zero elsewhere.

Remark 10.5.2. If G = Spf R[[ X1, Xo, -+, X,,]], and the group structure on G is
induced from the formal group law F(X,Y), then C(G; R) is isomorphic to C(F’; R)

as abelian groups.

The curves C(G; R) (resp. C(F'; R)) can be identified as homomorphisms form a
free generator of the category of formal groups (resp. formal group laws) to G, as

follows:

Definition 10.5.3. Define A = Ay : Mip — Ab such that for every nipotent R-algebra
N, A(N) =1+tR[t]@r N C (R& NJt])*, equipped with the group structure as

multiplication in (R & N|[t])*.

Definition 10.5.4. For n = 1,2, -+, define a series of polynomials
Wy (X) = w, (X, Xo, -+, X5)

with coefficients in Z as w,(X) := > dXd%.

dn

The following proposition is classical.
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Proposition 10.5.5. There exist polynomials with coefficients in Z as 31,39, - ;

II,, 115 ta, 2, such that
Wy (2) = wy(X) + w,p(Y), wn(H) = wp(X)w,(Y), w,(t) = —w,(X)

Definition 10.5.6. (a) Define W = WR(X, Y) be the infinite dimensional formal
group law over R via the sequence of power series 1, >, - - -. We abuse the notation
to denote the formal group associated to the formal group law /WR(X ,Y) by /V[7,
too.

(b) Define the curve 7, in W by Yw(t) = 01(t). Define (£,7,)(t) = 9,(1),
(VY ) (1) := 70 (t™), and (cy,,)(t) := v (ct) for ¢ € R.

The following proposition is left as an exercise.

Proposition 10.5.7. The formal group W is isomorphic to A via
Eyx: W(N) — A(N)
(ai,a9, ) — (1 —at)(1— ast?)---
where all but finitely many a; = 0 for every N € ProMNilj.
Proposition 10.5.8. (Cartier-Dieudonné) Let G be an m-dimensional smooth for-
mal group over R, and F(X,Y) be a formal group law attached to G. There ezists

the following commutative diagrams

Yo

Hom(A,G) ——C(G; R)

1%

1R
1%

Hom(/W,F) 4>Z C(F;R)
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where Yg(a) == a(l — Xt) for « € Hom(A,G), and Yr(B) = B(vw) for B €
Hom(w, F).
Definition 10.5.9. Define the Cartier ring over R as Cart(R) := End(A)PP =

End(WW)°PP. We define some special elements in the Cartier ring Cart(R) via the

isomorphisms Y, and Y3 defined in (10.5.8):
Vo= Y (1= X7 = Yo (V) B = Y (1= X#7) = Y (Fo)

[c] ==Y (1 —ceXt) = Y#l(c%u)
where ¢ € R.

In the explicit terms of curves in a formal group law F(X,Y") of G, the V,,, F,, [¢]
defined above can be viewed as operators on C(F(X,Y); R) in the following way.
The operator V,, sends a curve () to y(t"), and [c] sends a curve () to y(ct). The
definition of F,, is slightly complicated: Denote by R[¢,] the R-algebra R[U|/(U™ —
1), and let £ = &, be the image of U in R[U]/(U" — 1). Denote by R[¢][[t=]] the
R-algebra R[€][[T]]/(T™ — t), and let ¢x be the image of T in R[£][[T]]/(T™ — t).
Then F,(v(t)) can be defined as y(tx) +p (Etn) +p Y(E27) +5 -+ +p (€1 tw),

and one can show that F,(y(t)) € R[[t]]™' c R[¢][[tn]]™".

Proposition 10.5.10. ([24] 3.13) (The structure of Cartier ring)
The elements in Cart(R) can be uniquely written in the form '2;1 Vileii | Fs, cij €
ij>
R. The following identities hold in Cart(R):
() Vi=F =1,EV,=i.
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(2) [a][b] = [ab], for a,b € R.

(3) [c]V; = Vi[¢Y], Filc| = [¢']F;, for allc € R, i > 1.

(4) ViVi = ViV = Vs, F;F, = FiF; = Fy, for all i,j > 1.
(5) FyVi = ViFy, i (i) = 1.

(6) (Vi[a)F)(V3[b)Fy) = Vi [arb*)Fu, v = (i, 5), for alli,j > 1, a,b € R.

The curves C(G; R) (resp. C(F, R)) thus become a left Cart(R)-module, which

will be called as the Cartier module of formal group G (resp. formal group law F').

Definition 10.5.11. A V-reduced Cart(R)-module is a left Cart(R)-module M that

is equipped with a decreasing filtration:
M =Fil'M DFi’M >--- DFilI"M D Fil""'M > - -

such that each Fil"M is an abelian group, and:
(1) (M, Fil*M) is separated and complete with respect to the topology defined
by the filtration Fil* M. In other words, the natural map Fil"M — lim Fil" M /Fil' M

>n

is an isomorphism.
(2) V;Fil"M C Fil"™ M.
(3) The map V; induces a bijection V; : M/Fil?M = Fil’/Fil"™ M for all n > 1.
(4) [¢JFil"M C Fil"M for all c€ R, n > 1.
(5) For every 7,5 > 1, there exists an r > 1 such that F;Fil"M C Fil" M.
The tangent space of a V-reduced Cart(R)-module M is defined to be the R-

module M/Fil' M, denoted by ¢y;.

170



Remark 10.5.12. (a) As an example, the rank 1 free left Cart(R)-module Cart(R)
has a filtration with Fil"Cart(R) = { >, Vi[ci;]Fj|cij € R}, and all the conditions
i>nj>1

above are satisfied.
(b) If a V-reduced Cart(R)-module M is finitely generated, then Fil"M =

Fil"Cart(R) - M.

Definition 10.5.13. A V-reduced Cart(R)-module M is said to be V-flat, if t5 is a

flat R-module.

Proposition 10.5.14. (The Main Theorem of Cartier Theory)
(a) There is a canonical equivalence between the category of formal groups over

R and the category of V -flat V -reduced left Cart(R)-modules, defined as follows:

{formal groups over R} = {V-flat V-reduced Cart(R)-modules}
G — C(G;R)
where the filtration on C(G; R) = XRI[[X]] is induced from the natural filtration
XR[[X]] D X*R[[X]] D ---

(b) Under the equivalence in (a), the full subcategory of m-dimensional smooth
formal groups over R is equivalent to the full subcategory of V -flat V -reduced left
Cart(R)-modules M such that M/FiP M = R™.

(¢) The category of m-dimensional formal group laws over R is equivalent to
the category of V -flat V -reduced left Cart(R)-modules M equipped with an isomor-
phism M | Fil> M = R™, via F(X,Y) — C(F; R), where the filtration FilC(F'; R) on
C(F; R) is defined such that Fil'C(F'; R) consists of curves (y1(t),v2(t), -+, Ym(t))
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with ordyy; > n for i =1,2,--- m, and the isomorphism C(F; R)/FilPC(F; R) =R

R™ is defined by sending J;(t) to the standard basis e; of R™.
In the rest of the subsection, we assume R is a commutative Z,)-algebra.

Definition 10.5.15. The p-typical elements in a left Cart(R)-module M are the
elements x such that F,x = 0 for all (n,p) = 1. A curve 7(¢) in a formal group
G (resp. formal group law F) is said to be a p-typical curve if (t) is a p-typical
element in C(G; R) (resp. C(F'; R)). Denote the p-typical curves in G by C,(G; R),

and the p-typical curves in a formal group law F(X,Y) by C,(F(X,Y); R).

Definition 10.5.16. Define the element ¢, in Cart(R) by ¢, := [[ (1 — ViF).
I#p

 prime
Proposition 10.5.17. The following properties hold:
(a) €y is an idempotent, i.c., € = €.

(b) €V, = Fhe, =0 for all (n,p) = 1.

(c) eplc] = [c|ep for all ¢ € R.

Definition 10.5.18. Define the local Cartier ring Cart,(R) := ¢,Cart(R)e,. Define

F :=F, and V := V), in Cart,(R). Define (c) := ¢,[c]e, € Cart,(R).

Proposition 10.5.19. The set of p-typical elements in a left Cart(R)-module M is

equal to €,M, and is a left Cart,(R)-module.

The definition of V-reducedness and V-flatness can be naturally generalized to

Cart,(R)-modules:

172



Definition 10.5.20. A left Cart,(R)-module M is said to be V-reduced it V. : M — M
is injective and the natural map M — @1 M /V™M is an isomorphism. A V-reduced

n>1

left Cart,(R)-module M is said to be V-flat if M/V M is a flat R-module.

Proposition 10.5.21. Let R be a Zy,)-algebra. There is an equivalence between
the category of V -reduced Cart(R)-modules and the category of V -reduced Cart,(R)-

modules, defined as follows:

{V-reduced Cart(R)-modules} — {V-reduced Cart,(R)-modules}
M — M, = e,M
Moreover, M/ Fil>M is canonically isomorphic to M,/V M,, and M is V-flat if and

only if M, is V -flat.

As a corollary, one can easily obtain the counterpart of (10.5.14) via an appli-

cation of (10.5.21):

Proposition 10.5.22. (The Main Theorem of Local Cartier Theory)
(a) Let R be a Zy)-algebra. There is a canonical equivalence between the category

of commutative smooth formal groups over R and the category of V-flat V -reduced

left Cart,(R)-modules, defined as follows:

{formal groups over R} = {V-flat V-reduced Cart(R)-modules}
G — C,(G; R)
(b) Under the equivalence in (a), the full subcategory of m-dimensional smooth
formal groups over R is equivalent to the full subcategory of V-flat V -reduced left

Cart,(R)-modules M such that MV M = R™.
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(¢) The category of m-dimensional formal group laws over R is equivalent to the
category of V -flat V-reduced left Cart(R)-modules M equipped with an isomorphism

M/VM = R™, via F(X,Y) — C,(F;R).

Definition 10.5.23. Let M be a V-flat V-reduced left Cart,(R)-module such that
M/VM = R™ We say a set of elements {e;|i = 1,2,--- ,m} in M is a V-basis, if

{&li=1,2,--- ,m} is a basis of the free R-module M/V M.

If {e;li = 1,2,--- ,m} is a V-basis of M, then every element in M can be
uniquely written in the form of Y > V"™(a,;)e;, where a;, € R. In particular, we
i=1n>0

find the identities

Fe;, = Zm: Z Vn<Cn7i7j>6j, Cnyj € R

j=1 n>0

We call these identities the structure equations of M, and the elements {c,; |i,j =
1,2,-+- ;m,n =1,2,---} the structure coefficients of M. Obviously the structure
equations (or equivalently speaking, the structure coefficients) determines the iso-
morphism class of the V-flat V-reduced left Cart,(R)-module equipped with the
isomorphism M/V M = R™,

Example 10.5.24. We describe the local Cartier module of the m-dimensional uni-
versal p-typical formal group law Fy (X, Y) over Z[V](10.3.5). Let Z)[V] be the
localization of Z[V]. We still denote by Fy (X,Y’) the base change to Z,)[V] when
there is no danger of confusion. Then 07,09, -+ ,0,, (see 10.5.1 for their defini-

tions) is a V-basis of the local Cartier module Cart,(Fyv; Z,)[V]), and the structure
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equations are

=2 2 Va5,
=l n

>0

In particular, the structure coefficients of Cart,(Fy(X,Y);Z) are the free in-
determinates of Z[V]. This allows us to write down the p-typical coordinate for
every p-typical formal group law F(X,Y’) over a Zy)-algebra from the structure

coefficients of the local Cartier module C,(F’; R).

Proposition 10.5.25. Let R be a Zy)-algebra, F(X,Y) be an m-dimensional for-
mal group law over R. Let ¢,;; € R for 1 < 4,5 < m andn = 1,2,--- be the
structure coefficents of C,(F(X,Y);R). Then F = «a.Fy, where ¢ : Z[V] — R

10.6 The relation between formal groups and p-
divisible groups

Throughout this subsection, we assume R is a Noetherian complete local ring with
residue field k of characteristic p.

Let F' = F(X,Y) be an m-dimensional formal group law over R. For every
positive integer n, we inductively define [1]z(X) := X, and [n]p(X) := F(X,[n —
1p(X)) for n > 2; it is clear that [ning|p(X) = [n1]r([n2]r(X)). Denote the

induced R-endomorphism on R[[X]] = R[[X1, Xa, -+, Xiu]] by [n]F.
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Definition 10.6.1. We say a formal group law F' over R is p-divisible, if R[[X]] is a

free module of finite rank over itself via [p|r : R[[X]] — R[[X]].

If F'is p-divisible, the rank of R[[X]] over [p]r(R[[X]]) is necessarily equal to p"
for some non-negative integer r; this r is defined to be the height of F'. Let 7, be the
ideal of R[[X]] generated by [p"]r(X R[[X]]); it is clear that J,, C T, if n; > na.

Define T, := Spec R[[X]]/TJn. Let i, : I';, — I',41 be the natural embedding.

Proposition 10.6.2. ([23] §2.2, [17] II, 3.3.18, 4.5) The inductive system (I'y,, i,
[, — Thiq) is a connected p-divisible group over R, and the functor F' ~ (T, i,) is
an equivalence between the category of p-divisible formal group laws and the category
of connected p-divisible groups over R. The quasi-inverse functor is G = (G, i) ~>
liLnO(Gn). Under such correspondence, the height of I is equal to the height of the

n

associated p-divisible group.
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Chapter 11

Integral recursive formulas

Throughout this section, (R,a,o) is a Honda ring (10.2) where a = (p) is the
principal ideal generated by p. From the last section we have seen two ways to
describe a m-dimensional p-typical formal group law F' over R: using the unique
homomorphism « : R*® — R such that a,.Fy = F (10.3), or using the functional
equation that log F' satisfies: logp(X) = pn~' * X for some 7 € R,[[]]™™ (10.2).
These two descriptions give rise to two infinite sequences of m x m matrices over R,
which are called the p-typical coordinate (10.3.5) and the Honda coordinate (10.4.7)
of I, respectively. Note that different p-typical coordinates can give isomorphic p-
typical formal group laws (10.4.1); so do different Honda coordinates (10.4.8).

In this section we derive some formulas to relate the various coordinates of
isomorphic p-typical formal group laws over R. The formulas are recursive based

on the p-typical or Honda coordinates, and are integral (see 11.1.2 for its meaning)
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so that they are applicable to trace the change of coordinates after modulo p.

11.1 An integral recursive formula between the
p-typical coordinate and the Honda coordi-

nate

We start with the relation between the p-typical and Honda coordinates of an m-

dimensional formal group law F over R. Let logp(X) = > a, X?". Let wy, wo, - -
n=0

and vy, vq, - - - be the p-typical coordinate and the Honda coordinate for F', respec-

tively. By (10.3.6) and (10.4.7), we have the following different formulas of a,,:

n n n

_ 1 oy 1 e ] e 1 pnei
a, = — wia, = — AW, = - viag_, = — Ay VS
p =1 p =1 p =1 p =1
— —t (p'1) (prrttie-1y ¢ ol P A
a, = E plwiwg - wg! = p o vl
11 +i2++ir=n i1+io+ - +ir=n

Proposition 11.1.1 (Integral recursive formula (I)).

Uk n—k—1 n—I
AT(C 40 A LA

Remark 11.1.2. Before proving this formula, we first explain why it is called an
“Integral” recursive formula. Due to the elementary lemma below (11.1.4) and its
corollary (11.1.5), we know that p"F=H1|(wg")@" " — wl(pn_l). Note that a, €
p "R by its explicit formula, therefore each term ivkagikfl((wfk)(p%kil) - wl(pnil))
is in R. This integral property allows us to apply the formula after modulo p in the

future.
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Definition 11.1.3. Let p be a prime, and n be an integer. We say n is ezactly divisible

by p*, denoted by p*||n, if p*|n but p*** { n.
Lemma 11.1.4. Suppose p®|z, p°||y, and o > 3. Then pa_ﬂ|(§)‘

Proof. By the explicit formula of (z), we have (g) = (“”_1) — pa—ﬁﬂ(l’_l), Since

z
y \y—1 p~Py \y—1

%(g:i) is in Z,), we deduce that p*~| (z) O

Corollary 11.1.5. Let T" be a ring, a,b € I' such that a = b mod (p°) for some

integer ¢ > 1. Then a?" =" mod petk for all integers k > 0.

k

Proof. Write a = b+ p°z, then a?" = (b+ pex)?" = " + " )bp “ipixt. Suppose
1

iS]

<.
I

p*@||i where (i) is a non-negative integer, then by Lemma (11.1.4), pk_o‘(i)|(pik),

therefore (pl.k)bp ~ipcizt is divisible by pF~*®*¢  When a(i) = 0, k — a(i) + ci =

v

k+ci>k+4+c When a(i) > 1, k—a(i) +ci > k+c— ali) + c(p*® — 1)

k+ ¢ — a(i) + ca(i) > k + ¢.This proves a” = o** mod p¢* O
Now we prove (11.1.1).

-1 n—k
Proof. By the recursive formula for a,, we have w,, = pa, — > an_kw,(f ). Use

the recursive formula for a,_; based on the Honda coordinate, we deduce

n—1

w, = zvjazij—m ngnk]) wy?

k=1

7j=1
1n7n7 (p
:Un_‘_zvjnj_:;zz TLk_]k’

j= k=1 j=1

n—k)

nk)
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n—j

. 11 (pn=i7h
Replace the a,_; in the second term with ; IZ A j W, , we get
-1

n—1 n—j ) ) n—1n—k—1 Lk

— 1 o’ al\(prTIiThy 1 ot (")
Wp = Up+ Uy(p ap_j(wi”) ) P U1y, - Wy,
j=1 =1 k=1 I=1
-1 n—k

_ 1 k ok (pr—k—h) (™Y
= Unt, ; U ; ap_p— ((wf) L)

Remark 11.1.6. In particular, if wy = w?, then v; = wy, i.e., the p-typical coordinate

and the Honda coordinate coincide with each other.

11.2 A formula between the Honda coordinates

of isomorphic formal group laws

Let F,F" be two p-typical formal group laws over R, with Honda coordinates
vy, Vg, -+ - and v, vh, - -, respectively; i.e., if we define n := p — iviai and 7 :=
p— ivz’ﬁi in R,[[0]]™™, then logr(X) = (pn)~! x X and logp (X) := (pn/) ' x X.
By (10.4.8), we know F' and F’ are isomorphic if and only if there exists 7. :=
iocn(()” € R,[[0]]™™ with ¢y € (R™*™)*, such that ncy = n.n'. By the definition

of n and 7’ using the Honda coordinates, it is easy to deduce the following relation

between vy, v, - -+ and Ui,Uéa T

Proposition 11.2.1.

i
L

n n

Ci(véfi)"ica"

—0
- anCO

Un

I
o
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We also have a similar relation between the coefficients of logp(X) = >~ a, X?"
n=0

and log (X) = > a/, XP":
n=0

Proposition 11.2.2.

Proof. Prove by induction on n. Whenn =0, ay =ap=1= cglaoco. Suppose this
is true for smaller n. Since logp(X) = p() ™' * X = (¢ (pn~")n.) * X, we have
(p~n) * co * logp (X) = n. * X. Compare the coefficients of X?" on both sides we
deduce that
/ 1 v ko o
codly = 15 wief )" = e
! —1 “ —1wv, ok 1 ok
ap, = Co Cnt I;ICO 5 €0 (ar, k)
-1 = —1lvg ok —1 nd o'l ok
= o et )G e (co Do aich ;)
k=1 i=0
—1 LI s
= G et Y G D al
k=1 i=0
1

n l
= ¢lent+ 26 (X Zaft e, (letl =i+ k)
=1 k=1

n
_ -1 -1 ol
= ¢y Cnt Y. o acd
=1

(by the recursive relation for a,)

n 1 .

_ — o

- Z Co ACph_yg
=0
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11.3 An integral recursive formula between the
p-typical coordinate and the Honda coordi-

nate of isomorphic formal group laws

Notations of F, F’ and their Honda coordinates are the same as the previous subsec-
tion. The following formula relates the p-typical coordinate wj, ws,--- of F’ with
the Honda coordinate vy, vy, -+ of F' in terms of cg,cq,---. It is also an integral

recursive formula in the sense of (11.1.2).

Proposition 11.3.1 (Integral recursive formula (II)).

W, = Gl = 3 cocumi(w)" )+ peylent
n—1ln—Fk _ & K k (on—k—1 n—1
L e (™)) — () )

where al, € R™™ such that logp (X) = Y a/, X?".
n=0

Proof. By (11.1.1),

n—1 n—k
1 ok ok n—k—l n—I
wy = v+ = vy (@) ((w))7 ) = (wp) @)
Pio 4
By (11.2.1), replace v/, with ¢5v,¢" — . ¢gtei(v), ;)" , where we define v} := —p
i=1

for simplicity in notations. From the equation above, we deduce



In the second term on the first line, when ¢ < n we replace v/,_, with w]_, —

iy vé(a;)"t(((w;)"t)(ps) — (w;)(ps+t)) by (11.1.1); when ¢ = n then vj, = —p

P t+s+r=n—1i
t,r>1,s>0

according to our convention. We deduce

n—1
/ _ -1 loald —1 -1 / ot
wh = ¢y unc] +peg en— Y, ¢y cilwl_;)
i=1

+1 > Calci(vé)gi(a;)gi+t(((w;)ai+t)(ps) B ((w;)o.i)(ps-t,-t))

P ift+s+¢:n
i,t,r>1,5>0
=k nk ok Mok (pr—k-l) NG
+5];100 Ukl l;(an—k—l) (((wp)™) — (wy) )
1 N -1 / ot =y / ok ok (pr—rTh Nt
_;k 1200 ¢i(Vg—;) lzl<an—k—z) (((wp)™) — (wy) )
=1 1= =

Note that the second line does not change if we add t = 0 to the index of the sum.

Combine the second and the fourth lines we obtain

The sum of the second and fourth lines =

_1 Z C(;lci (U;)Ui (a;)gi+t (((w;)oi)(ps-&-t) . (w;)(pi+s+t))

i+t+s+r=n
1,r>1,t,s>0

Separate the term with ¢ = 0 from the others, we get

The sum of the second and fourth lines =

> egtelal )7 (@)™ — () )~

i+r=2
ir>1
n—1
— t 7 7 n—i—1 n—r
> ocotely X ()(a)”)T (((w)) ) = (w)) @)
i+r=2 t+s=n—i—r
i,r>1 t>1,s>0
Since 1 > (v))(al)” =d!,_;_,, only the terms whose indices satisfy i +r = n

t+s=n—i—r
t>1,s>0
in the first line survive. The sum of the second and fourth lines thus simplifies into
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n—1 ) )
S epte((w!, ;)7 — (w')®)). Plug this into the formula of w/, we deduce

wh = cglvncd” 4 pegten, — Z cytei(w! ;)" g 21 cytei((w! )”i — (w;)(”i))
n—l _ ok ok ok (pn—k—1 n—l
5 2 0 ket z (o) () ) @™ — (wp) @)

n—1
1 n -1 —1 / g
= ¢y UpnCy +pcy Cn — Z Co ci(wn_i)(p )+

S S ) ()0 o)

11.4 Universal p-typical twist of p-typical formal

group laws

Let I' be a ring. An isomorphism between m-dimensional formal group laws over I'
decomposes into a strict isomorphism and a scalar multiplication X +— u X, where
u € (I'"™*™)* is the Jacobian matrix. Let F' be an m-dimensional formal group law
over I'. Define the twist of F' by u defined by F,(X,Y) := uF(u' X, u™1Y).

Let us have a closer look at F,, in the special case when I' is of characteristic 0 and
F is p-typical. Write the logarithm of F' as f(X) = iojoanXpn, then the logarithm
of F, is fu(X) :==uf(u'X)=u i an(u™tX)P". If m = 1, then F, is again a p-

n=0

typical formal group law. This can be seen by (10.3.11) and a direct computation:

fuX) =u Y ap(uX)P" = 3 (ua,u?")XP". However, in the higher dimensional
n=0 n=0

cases, F;, may no longer be p-typical due to the fact that (v~='X)P" may introduce
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mixed products between the X;’s, hence f,(X) may not have the form of Y b, X?"
n=0

with b, € R™*™.

To fix this unsatisfactory defect, we make the following definition:

Definition 11.4.1. Suppose I' is a ring of characteristic 0. Let F' be a p-typical

o0

formal group law over I' with logarithm f(X) = > a,X?". For u € (I™*™)*,

n=0
define f,(X) = 3 @, X?", where a, := ua,(u™")®"). The p-typical twist of F by u
n=0

is the p-typical formal group law F,(X,Y) := fi'(fu(X) + fu(Y)).

By (10.3.11), F, is a p-typical formal group law over I'. If moreover I' is a Zp)-
algebra of characteristic 0, then F, is strictly isomorphic to F, thanks to (10.3.8),
hence also isomorphic to F'. We mimic the definition of universal strict isomorphism
between p-typical formal group laws to understand the isomorphism between a p-

typical formal group law and its p-typical twist by w.
Definition 11.4.2. Let R>V := Z[V, U, det(U) '] be short for
Z[‘/z(.% k)’ U(]7 k‘),det(U)_l,z = 17 2a Ty 1 S j7 k S m]

where det(U) is the determinant of the m x m matrix (U(j,k))1<jk<m. Denote

Q[V, U, det(U)~!] by K>V. Define
fou(X) = a,(V,U)X""
n=0

where a,,(V,U) := Ua,(V)(UHPIXP" € L=[X]]™, and a,(V) is defined in

(10.3.6). Let Fyy(X,Y) == fi [ (fvo(X) + fro(Y)). Let avu(X) == fi 1, (fv(X)),
where fi/(X) is the logarithm of the universal p-typical formal group law Fy .

185



By the same reason as before, Fyy(X,Y) is a p-typical formal group law over
Reo1. If we embed R® = Z[V] — RV = Z[V,U,det(U)~'] in the obvious way,
then oy is an isomorphism from Fy to Fyy over the localization R?;)’U. However,
by the definition of fy (X) and fy(X), it is obvious that ayy(X) € ROO’U[%]. Since
ROO’U[%] N R?;)’U = RV we deduce that ayp is an isomorphism from Fy to Fy
over R*Y. We call Fyy the universal p-typical twist formal group law. This allows

us to generalize the definition of p-typical twist (see 11.4.1) of a formal group law

over an arbitrary ring (not necessarily of characteristic 0).

Definition 11.4.3. Let I be an arbitrary ring, and F' be an m-dimensional formal
group law over I'. A formal group law F over I is said to be a p-typical twist of
F by u, where u € (I'™*™)* | if there exists a homomorphism ¢ : R°Y — T, such

that ¢, Fy = F, ¢.Fyy = F, and ¢(U) = u.

It is easy to see that in the case when I' is of characteristic 0, the definition
(11.4.3) is equivalent to the definition (11.4.1).

By the universality of I/, there exists a unique homomorphism 77 : R® — RV
such that (7y).Fy = Fyy. Let VU,n =1y (Vy).

We are particularly interested in the case when I' is an J-adic ring, where J is
an ideal of I', and u € (I'"*™)* can be written as I + A with the entries of A in
J. In this case, the homomorphism ¢ : R>Y — T', which induces F, from Fyp,

factors through the following ring:
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Definition 11.4.4. Define R>! := Z[V][[D]] be short for

Z[‘/Z (]7 k)] [[D(j7 k)”Z:LQ, 1<j,k<m

Define 6 : RV — R by 6(V,,) := V,,, 8(U(4,7)) := 1+ D(j,j) for 1 < j < m,

and 0(U(j,k)) :== D(j, k) for 1 < j #k < m.

Under the definition above, ¢ : R®Y — T factors through § : R™V — R>1L

Let Fyp := 0. Fyvy. If we denote a,(V, D) := 6(a,(V,U)), the logarithm of Fy,p is

o0

fva = Z an(V, D)Xpn

n=0

By the universality of Fy, there exists a unique homomorphism 7 : R® — R°!

such that 7,Fyy = Fy.p. Let V,, := 7(V,,). It follows directly from (10.3.6) that

n—1 )
Vi = pan(V,D) = > a;(V, D)V,
i=1
Definition 11.4.5. Let I' be a ring, and A = (a;;), B = (b;;) € I'"*® be two matrices

over I' with the same dimensions. The Hadamard product of A and B is defined to

be (a,»jb,»j), denoted by Ax B.

Proposition 11.4.6 (first order recursive formula for V,, in char. p).

vV, = V,+DV, + >

sits2t-tsr+j=n
r>1

Sr Sr spr—1
()" (((DVy) « VLD~ DV (v v )

ce—Sp j

Sp_1_ Sp—1—1 S1 S1 —

Vi) R ) e V) (R YY)
mod (p)(D) + (D)?*

where (D) is the ideal generated by D(j,k), 1 < j, k <m.
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Proof. We prove by induction. When n =1, V; = pay(V, D) = (1+ D)ay(V)(p((1+
DY )®). Since 14+ D)t =1—-D+D?—=D3+ - p((1+D)"H® = p
mod (p?)(D) + (D)?, and (1 + D) 'a;(V) € p~'R. Note that if z € R°>! and

px € (D), then x € (D). This proves

Vi=(1+D)ai(V)-p=Vi+DV; mod (p)(D)+ (D)

The case when n = 1 is thus proved. Suppose we have proved for smaller n’s. In
~ n—1 -
the recursive formula V,, = pa,(V,D) — > a;(V, D)Vn(f Z»), note that pa,(V,D) =
i=1
(1+D)a,(V)(p((1+D)~")®"), and p((1+D)"")¥") —p € (p*™)(D) + (D)?, while

a,(V) € p7™R°>!, this implies

pan(V. D) = (14 D)a,(V) - p = (1 + D)(pan(V)) mod (p)(D) + (D)*

(!

; (p)
For 1 <i<n—1,a(V,D) = (1+ D)a;(V)((1+ D)) qv) =80

p

mod p~~DR>! and ((1+ D)! ®) =1 —p'D mod (D 2 therefore a;,(V,D) =
p p
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- n—1 - n—1 -
V, = (14+D)pan(V) = ¥ a;(V)VE) + S mv® ... v@ D py)
=1 =1
n—1 i
= (1+D)(pa,(V) — X a;(V)VE))+
=1
) O ) e (1)
Z ‘/’1‘/'11) V P Dvnl—)z - a’b(v){pzvnliz * (DV’VL—’L_’_
=1 =1
5 (—1)7 ((DVy — DVI™ )y @20y oy iy
s'1+s'2+~--+s;,+j’:n—i ! ' !
r’'>1
(V1V1(p) . ‘/1(1951_1)»
n—1 i—1 ( 1 ( 1)
= (1+ D)V, — S ViV v (V) « VT — DV 4
=1
S (U(DV) « VLY~ DV,
s1t+s2+Asr+j=n
r>2
(/A ZAZ TR A ) ICRPPRR 7A i) B A /A TALRERS (A )
= 1+D)Vut+ X (1(((DV)xVEI_ — DY),
sits2++srt+j=n
sp_1—1 S1_ s1—1
ViV v s Dy (P T )
mod (p)(D) + (D)?
This finishes the induction. ]

Remark 11.4.7. In particular, when m = 1 we have (DVj)*Vn(gssrl_,l..).,sr—DVj(psr) =0,
hence the formula simplifies into V,, = V;, + DV;,, mod (p)(D) + (D)?. This agrees
with the fact that a,(V, D) = (I+D)a,(V)(I+ D)™, and V,, = (I+ D)V, (I + D)

in the one-dimensional case.
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11.5 Integral recursive formulas for strictly iso-

morphic p-typical formal group laws

After studying the p-typical twists, in this subsection we look at strict isomorphisms
between p-typical formal group laws. Recall that Fy is the (m-dimensional) uni-
versal p-typical formal group law over R*> = Z[V], which is short for Z[V;(j, k)|i =
1,2,---,5,k=1,2,--- ,m]. Thereis a p-typical formal group law Fy.1 over R :=

Z[V,T], which is short for
ZIVi(G, k), Ty(j, k)i =1,2,--- ,j,k=1,2,--- ,m)]

If we embed R>® = Z[V] C R = Z[V,T] in the obvious way, the formal group
law Fyr is strictly isomorphic to £y over R°*°. The isomorphism oy p : Fyy — Fyr
is universal in the sense of (10.4.1).

By the universality of Fy, there exists a ungiue homomorphism & : R* — R

such that &, Fy = Fyp. If we denote £(V;) by V;, then
V@' = (I)Z<‘/17‘/27 JVn7T17T27'” 7Tn)

is a polynomial in the entries of Vi, V5, -+ |V, and Ty, Ts, - -+ ,T,. There is a recur-
sive formula (10.4.3) for V; based on T and V.

We derive a variation of (10.4.3), with the advantage of being “integral” in the
sense of (11.1.2). Let a,(V') be the coeflicients of logy,, defined in (10.3.6), and recall

that the endomorphism o : R — R sends V;, T} to Vi(p ), Tl-(p ). vespectively.
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Proposition 11.5.1 (Integral recursive formula (III)).

Ve = Vatplh— Y TV 4TV

i+j=n,i,7>1 =1 k=1

SR EID VI i (e L B (40 L))

i+j=kyi,j>1

n—1 1 1 1 . 1 .
—0 (") ! T7ON () (PN (pi
FSVRTL =T+ TR - @)

Proof. From (10.4.3), if we make the convention that 7 := 1, then the recursive

formula for V,, can be written as

i
j n—=k _( n—i)
+z%m><z<wphﬁ>—ﬂp%7 )

l

n—k
Let S be the second line in this equation. Replace a, (V') with > %Vlan,k,l(V)"
=1

(10.3.6), we obtain

— — n—k pn— j n—k\—(pn—1
S = z Z ]19 Gn—k—l(v)gl | Ek (V(P )T]( N _ Tj(p )VZ(P ))
o 21720

On the other hand, from the (non-integral) recursive formula for V,,_; we deduce

that

n—k—l n—j—1 n—k—ly—(pn—i—1l
Ejankz ST ) =

i+j=k
1>1,72>0

Note that when k£ = 1 the index “i + j = k,4,5 > 17 is empty; in this way we have
combined all the terms in formula (10.4.3). If we apply the ¢! operation to both

sides, we get:
n il n—k —g! e ek —
P A (A U L E D DI LA P

i+j=ki,j>1

n—Fk _O'l n—1i— !
V) = —pT

)
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Compare with the formula for S we deduce

n—1 n—1n—I .

A
S = ¥ Wi(—pr¥)) + > X PVianoa (V)7

=1

n— —g—l n—1l—i —(p! n—Il—i
ST - (1))
i+j=k
i>1,j>0
Plug S into the formula for V,, and the integral recursive formula follows. O]

We are mainly interested in tracking the change of coordinates after modulo
p. The following lemma is a finer result comparing to (11.1.5). Recall that the
Hadamard product A * B for two matrices A = (a;;) and B = (b;;) with the same

dimensions is defined to be the entry-wise product (a;;b;;).

Lemma 11.5.2. For A€ R™* and i,7 > 0,

Ao — AW)

(AT)@) — A@™) = i+l g 1))y
p

)P mod pt?

Proof. Write

)P) — (Aai*Q)(pQ)) o (AP = A(pi))
By (11.1.5), all but the first term on the right hand side is divisible by p?. Hence

A7 — AWD) A7 — A
S p(—————)*") mod p’

p p

i

AT — AP = A7 (A7) = g

)o.i—l

This proves the case when j = 0. Now in general we consider

(A7) ) — AF™) = (AP 4 (47" — A@D))) — AG™)

= 3 () AP k(A7 AGD)E)
k=1
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Suppose p®||k (see 11.1.3 for this notation), then pj*"‘|(z:) by (11.1.4). Since
PFl(A7 — AP R we deduce that pi— a+k](p])Ap @ =F) % (A7 — AP)YF) . When
k > 2, p®||k implies k > « + 2 (note that we have assumed p > 2). When k = 1,

we have « =0, and j — a + k = j 4+ 1. Therefore
o (pd i+ . i(d_ ot _AH Qg o _ A\ (pi—1
(A )(pj) — AP = il AP 1) % = p AP P -1) 4 (%)(? )

mod p?+?

Proposition 11.5.3 (Recursive formula for V,,modpT,,).

nfkfl)

V. = i ””+zvzv1 LRETR 7

ol fon—k—1_ 7 (®) —
(Vép (p D), (%)( P mod (p)%,

p

where T, stands for the ideal of R = Z[V,T] generated by T;(j, k) for all 1 <

1<nandl < g k<m.
Proof. In the integral recursive formula (11.5.1), the term

—50 n—Il—1i —( l) n—Il—i
((V~ )(p ) _ (VAP )(p ))

(2

n=l=i+1 according to (11.1.5). Because of the range of the indices,

is divisible by p
n—Il—i+1>n—1—k+2. On the other hand, %an_k_l(V)(”l) € p-(nrl=k) R0 —

Z[V,T] by (10.3.6). This proves

1 n—ky , —gl  n—i—i —(p! n—l—i
St (V)W) = (7)) € )T,

(2

Similarly, the term T(p )( ((V?l)(pj) — (Vﬁpl))@j)) € (p)%,, too.
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—o! n—Il— —(p! n—l— — (pl(pn—l—k _ 70_7() _
(V)0 ™ — (TN =) = otk @00 (Vi

mod pn—l—k+2

1) ce ‘/1(pn_k+1) by (1036),

On the other hand, %an,k,l(V)(pl) = Iﬁvl@l)vl(p

therefore

ol 77N (pn—l—k (PN (pr—1—k)y
Loy (V)7 (V)00 — (7)) =
P (ol (pn—l—k_ o 7 (p) _
‘/1(17[)‘/(1#'1) L V(P k+1)(vl(€p (v D) % (%)(FZ 1)) mod p

At the same time, by (10.4.3) V,, =V,, mod ¥,,. Therefore

— !

o (")
Vn—l B Vn—l

(Vo™ — @)™,
p

are both in ¥, too. Since (p) N %, = (p)%,, in Z[V,T], we deduce that

_O'l n—Il—k (] .
La, (V) (V)00 — (7))

I+1) . ‘/1(pn7k:+1)(V(pl(pn—l—kil)) . (VZ_VECP) )(p171)> mod (p)‘zn

I
= V'l(P )‘/1(1) h .

Similarly we can deduce

o' ") Svad 7(P)
Vo=V Vo=V _
v n—l n—l _ VE( n—l nfl)(pl ) mod (p)zn
p p
The proposition now follows. m

Proposition 11.5.4 (First order recursive formula for V,, mod PZn).

n—1

Vi = Vim STV 4+ STV ) e G2
sp—1 Sp—1__ Sp_1—1
A0 TR AL ) IR VAL D BN A ) 7L AR ) B

Vn(psun) , (V1V1(p) . Vl(?’s“l))) mod (p)%, +%2_,
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where in the second line, the sum is over all sy + so + -+ 8. +1+ J = n with

1,7,7,81,82, ", Sr > 1.

Proof. Prove by induction. When n = 1 this is obviously true. Now suppose it is

true for smaller n'’s.

170

7o () _ _® _
In the formula of (11.5.3), (w)(pl D and (L2="Yast) @' are in T2, when
p p
[ > 1. Therefore only the terms with = 1 survive modulo (p)%,, + T2_;:

nfk;fl)

n—1 _ n—1 7o 7P
— — SN VA v
Vo=V, = S TV 41, S vy Ly e (e Tk
Jj=1

k=1 p

By the inductive hypothesis,

-/

k—1 . 1
— rl U St —1 1 -1
Vi = Vi= LGV 4 D (T ) s VT ) s (V)
J:
sh—1
(m‘/l(P) . ‘/'1(17 1 ))
where the sum is over s} +s4 +---sl, +i' + 75 =k, ¢, j',r' s}, s4,---,s, > 1. So

V. = Vk(p ) mod ¥2_. and

n—1
_( ) _ —1 k-l J r! i/ 1
v = Vk(p) _pvk(l’ ) 4 (Zlijk(fj) +3(-1) +1(((_E,V;(/p )) « P /1 ) ).
J= :

(VDY VPP mod (p)*T, + T2

!
51
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Thus

n—1 2 n—k—1 n—k _ Va'iv(lﬂ
V'l ’;1 ‘/1(19)‘/1(17 ) . ‘/1(1’3 )(Vk(p P) ( k - k ))
n—1 e —— _ k—1 .
=V Z ‘/1(1))‘/1(1)2) . ‘/1(17 k 1)(V]€(P k—p) 5 (Vk(p 1) * (Z ijn(lijj)_'_
k=1 j=1
' iV st—1 1 o1
STV )+ VT )+ (VR - i)

nfkrfl)

n— k-1 J
VT (ST

J=1

V'l niQ ‘/1(17)‘/1(172) . ‘/1(19
k=1
, il 82/7 sh st —1
STV ) e T ) (VD) - (AR )

s k—s

mod (p)%, +T2_,

If we take s; := n — k, and s, := s;_; for [ > 2, this sum is exactly equal to

Z(_]‘)r(((_ﬂ‘/j(pi)) * Vk(fsr_l) ) (‘/k(fSl_l)) : (V1V1(p) e Vl(psﬁl)) with the sum

81— —Sp S1
over sy +Sg + -+ 8, +1+ 7 = n with ¢,5,7,51,59,---,5. > 1. The proposition

now follows by induction. m

11.6 The universal isomorphism between p-typical

formal group laws

Combine the results of the previous two subsections, we now define a universal (not
necessarily strict) isomorphism between p-typical formal group laws. Recall that

®,, is the polynomial such that Fy p is induced from Fy via
f : Vn = q)n(‘/lu‘/% 7Vn7T17T27"' aTn)
Definition 11.6.1. (a) Let R™Y := Z[V, T, U, det(U)~!] be short for

Z[‘/l(]7 k>7ﬂ(]7 k)? U(j? k)7det<U)_17@ - 1727 e 71 S jvk S TTL]
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where det(U) is the determinant of the m x m matrix (U(j, k))i<jr<m. Denote
Q[V, T, U,det(U)~!] by K™, Define Vf,, = (V1. -, Vi, T1,- -+, Tp), and
pu : R® — R™ by py(V,) = V. Let Fyry = (pu).Fv, and denote its

[&.°]

logarithm by fyru(X) = 3 a,(V,T,U)X?". Let ayry(X) := f;}T,U( fvro(X) +
n=0

fvro(Y)).

(b) Let Ruv:! := Z[V, T|[[D]] be short for

Denote Q[V,T][[D]] by K"™!. Define V! := &, (Vi,---,V,, Ty, ,T,), and p :

R> — RV by p(V,,) := V. Let Fyrp := p.Fy, and denote its logarithm by

n

[e.e]

fvrp(X) = Z—:o an(V, T, D)X?". Let av.r,p(X) 1= f‘Z%,D(fV,T,D(X) + furp(Y)).

(c) (c.f. 11.4.4) Let § : R™Y — RVl he the homomorphism such that §(V;) =

Vi, 8(T;) = T;, and 6(U) = 1+ D.

Remark 11.6.2. For the definition of ®,,, see the paragraph below 10.3.6. For the
definitions of Vi, and V,, see the paragraphs below (11.4.1) and (11.4.4). The
definition of Vf;, and V| amounts to replacing the V; in the definition of V,, with

VU,Z' and V;, respectively.

The relations of the various polynomial rings over Z with countably infinitely
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many variables are shown in the following diagram:

P
g Roo,lC—> Runiv,l
- §&Fy = Fyr
5 5
(tv)«Fv = Fvyu
7_
Rw% ROO Ve Runiv (pv)«Fv = Fyvry
7.fv = Fyp
P*FV = FV,T,D
ROO ,O0

Note that the homomorphisms &, 7y, pu, 7, p do not commute with the arrows in the

diagram.

Proposition 11.6.3. Let T" be a ring, F, F’ be (m-dimensional) p-typical formal
group laws over I, and o : F' — F' be an isomorphism. Let u € (I'"™*™)* be the
Jacobian of a. Then:

(a) There exists a unique homomorphism ¢ : R*"" — T, such that ¢.Fy = F,
¢*FV,T,U = I, ¢(U) = u, and ¢*04V,T,U = .

(b) If moreover, T is an J-adic ring where J is an ideal of T', and u € 1473™*™,
then the homomorphism ¢ : R*™ — T' factors through R*“! via 6 : R*™" —

Runiv, 1

Proof. Recall that we have the chain of natural inclusions R® = Z[V] ¢ R®V =

Z|V,U] C R™Y = Z[V, T, U], and we have defined 7y : R® — RV, py : R® —
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R such that (17).Fv = Fvy, (pv)«Fv = Fyry. Let ¢g : R® — T be the
homomorphism such that F' = (¢g) * Fyy. Extend ¢y over R°>Y by defining ¢o(U) :=
u. Denote (¢g o 7). Fy by F, then F is the p-typical twist of F by u (11.4.3).
The isomorphism oy : Fy — Fyy over RV pushes forward to an isomorphism
ap = (¢o)svy : F — F over T, and the Jacobian of ag is u. Since a : F — F' is
an isomorphism between p-typical formal group laws with the same Jacobian, we
deduce that F is strictly isomorphic to F” via a o ag'. By (10.4.1), there exists a
unique homomorphism ¢; : R — I such that (¢).Fy = F, (1) Fyr = F,
and (¢y).ayr = aoag .

Define ¢ : R™™ — T by ¢(V;) := ¢o(Vi), ¢(Ti) := ¢1(T;), and ¢(U) := ¢o(U) =
u. By the definition of ¢g we have ¢.Fy = (¢o)Fy = F. Now it suffices to
check ¢ Fyry = F'. Recall that Fyry = (pu)«Fv, and F' = (é1)Fvr =
(91 0 £).Fy, hence we are reduced to showing ¢ o py = ¢; o & over R>®. For
every Vi, (¢ 0 pu)(Vi) = ¢(®:(Vu, T)) = @i(¢o(V), 61(T)), and (¢ 0 €)(V;) =
01(D(V,T)) = ®i(1(V), d1(T)), therefore it suffices to show ¢1(V) = ¢o(Viy).
Since F' = (¢1).Fy = (¢o 0 70 ) Fy, we deduce that ¢, (V) = ¢o(10(V)) = do(Vi).
This proves part (a). Part (b) follows directly due to the act that ¢(U) = u in part

(a) and the assumption on u in part (b). O

Definition 11.6.4. Denote the composition of polynomial ®,,(Vi,-- -, V,, Ty, --- ,T},)

and V, = 7(V4,--- ,V,,) € R™! by

@n(Da‘/la 7Vn7T17”' 7Tn)
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denote its (7, j)-th entry by ©,,, (D, Vi,--- V., 11, -+, T,).

Let (D, %), be the ideal of R"™¥! that is generated by D(4, j) and T(i, j), where
1<i,j<mandl=1,2,---,n Combine (11.4.6) and (11.5.4), we can have the

following first order recursive formula of ©,, after modulo p(D,T):

Proposition 11.6.5.

@n(l)7 Vh e ’Vm Tl, .. 7Tn) = Vn + Dvn _ T1Vn@1 . TQVn(gZz) . Tn_lv'l(pn—l)
—1r DV, V(pwfl) o Dv(pw) . Tv(pz) ) Vv(p) o V(psr—l)
+Z( ) ((( k) * Vs —msy k Zk iV ) ( 11 1 ))*
1+j=
AL B A TS LD ) RRRE T RN AL () )
mod (p)(D, %), + (D, Tn-1)?
where in the second line, the sum s over all s1 + so + -+ + s, + k = n with

2.7]7717317527"' y Sr 2 1.
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Chapter 12

Infinite dimensional matrices Over

an a-adic ring

We have seen the p-typical coordinate of a p-typical formal group law involves in-
finitely many variables, and the p-typical coordinates of isomorphic p-typical formal
group laws are connected by infinitely many polynomial equations. In this section
we introduce some basic properties about infinite dimensional matrices over an a-
adic ring R, where a is an ideal. The case when R is equipped with the discrete
topology can be treated as taking a = 0. For z € R, let v(z) be the integer v such

that = € a*\a"™! if z # 0, and define v(0) := oo.
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12.1 Definitions and basic properties

We start with some definitions and properties of (countably) infinite dimensional

matrices over a-adic rings.

Definition 12.1.1. Let R be an a-adic ring. Let A = (a; ;)i jen, B = (bij)ijen be
infinite dimensional matrices over R. The product AB is defined when for any
pair of 7,57 € N, > a;;b; converges. We say A is row-converging (resp. column-
=1
converging), if for every i, the sequence (a; ;);jen converges in R.
Note that when a = 0, hence R is equipped with the discrete topology, being

row-converging (resp. column-converging) just means there are only finitely many

nonzero entries on every row (resp. column).

Proposition 12.1.2. Let R be an a-adic ring. The matrices here are all infinite

dimensional matrices over SR.

(a) Let ny := the smallest integer n such that the entries of A; are all in a™. If
llim n; = 0o, then Ay + Ay + - -+ converges. If moreover, each A; is row-converging
(resp. column-converging) for | = 1,2,---. | then Ay + Ay + -+ s also row-

converging (resp. column-converging).

(b) If A is row-converging (resp. column-converging), then AB (resp. BA) is de-
fined for every B. If moreover, B is also row-converging (resp. column-converging),
then AB is row-converging (resp. column-converging), too.

(¢) If BC is defined and A is row-converging, then A(BC),(AB)C are both
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defined and they are equal. If BC' is defined and A is column-converging, then

(BC)A, B(CA) are both defined and they are equal.

Proof. We only prove in the row-converging case, since the column-converging case

follows similarly. In (a), let A; = (a; ;1) i=12... Note that v(a;;;) > n; by the

o)

definition of n;. The sum ) a;;; converges since llim v(a; ;1) = oo. To prove
=1 —00
Ay + Ay + -+ is row-converging when Aj, Ay, --- are row-converging, we fix an

1. For every N > 0, there exists Ky such that n;, > N when [ > K;. There
also exists Ky such that a;;; > N when [ = 1,2,--- ,K; and j > K,. Therefore
v(li a; ;1) > N when j > K,. This proves (a).

=1

The only nontrivial part of (b) is to show AB is also row-converging when A, B
are both row-converging. Let A = (a;;), B = (b;;). Fix an integer i. Since A is
row-converging, for any N, there exists Ly such that v(a;;) > N when [ > L. Since
B is row-converging, there exists Lo such that v(b, ;) > N when [ = 1,2,--- | L;
and j > Ly. Therefore v(; a; b ;) > N when j > Ls.

The only nontrivial part of (c¢) is to show (AB)C is defined. Let C' = (¢;;),
respectively. Fix a pair of index 4, j. Since A is row-converging, zliglo v(a;;) = oo.
Thus for any N, there exists M; such that v(a;;) > N when [ > M;. Therefore for
any r, U(Zl: a; b)) > min{N,v(a;;)+v(b,)|l =1,2,---, M;}. Since BC is defined,

there exists M, such that v(b,) + v(¢.;) > N when [ =1,2,--- | M; and r > M.

As aresult, v((>_ aiibiy)crj) > N when r > M. This proves (AB)C' is defined. [
]

Definition 12.1.3. Let I' be an arbitrary ring, and A be an infinite dimensional
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matrix over . An infinite dimensional matrix B is said to be a right (resp. left)
inverse of A, ift AB = I (resp. BA = I). If B is both a right inverse and a left

inverse, then we simply say B is the inverse of A, denoted by A~!.

Remark 12.1.4. A right or left inverse of an infinite dimensional matrix may not be
unique. However, the inverse of an infinite dimensional matrix, if exists, must be

unique.

Definition 12.1.5. Let R be an a-adic ring. An infinite dimensional matrix A =
(@;;)ij=12. is said to be blockwise lower triangular (resp. blockwise upper triangu-
lar), if there exists k; :=1 < ky < k3 < --- such that a; ; = 0 whenever there exists
n such that i < k, < j (resp. j < k, < i). A blockwise lower (resp. upper) tri-
angular infinite dimensional matrix A = (a;;); j=12,.. is said to be regular, if for all
n > 1, the finite square matrix (a; )k, <i j<k,., is in (R*+175)*_ In the special case
when k; = i, the corresponding matrices are called lower (resp. upper) triangular

matrices and reqular lower (resp. upper) triangular matrices.

Lemma 12.1.6. The matrices here are all assumed to be infinite dimensional.

(a) Let T be a ring. A regular blockwise lower (resp. upper) triangular matriz
A over I' has a unique right (resp. left) inverse, which is also a left (resp. inverse).
The inverse A~' is blockwise lower (resp. upper) triangular, and is the unique left
(resp. right) inverse that is blockwise lower (resp. upper) triangular.

(b) Let R be an a-adic ring, and A be a row-converging matriz (resp. column-
converging) over R with a row-converging (resp. column-converging) right (resp.
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left) inverse. Let N be a row-converging (resp. column-converging) matriz with
entries in a. Then A+ N is row-converging (resp. column-converging), and it has
a unique right (resp. left) inverse, which is also a left (resp. right) inverse. The
inverse is also row-converging (resp. column-converging), and is the unique left

(resp. right) inverse that is row-converging (resp. column-converging).

Proof. We only prove the case when k, = n for n = 1,2,--- in the definition of
blockwise lower or upper triangular matrices, i.e., the lower or upper triangular
matrices in the usual sense. The proof to the general blockwise case is similar.

We only prove for the regular lower triangular case, since the regular upper
triangular case follows similarly. Let us first look at (a). For every column vector

y = (y1,y2, -+ )", there exists a unique solution x = (x1,zs,---)" to Az = y by

1

QAn,n

setting z¢ := 2, and z, =

n—1
s (Yn — z=21 an;x;). Take the column vector to be

(1,0,0,---), (0,1,0,--+), - -- in order, we deduce that A has a unique right inverse,
which we denote by B. It is easy to see that for y = (y1,9s,---)" whose i-th
component is 1 and other components are 0, the solution = = (1,22, --)" has 0
on the 1,2,--- ,7 — 1 components. This proves B is also lower triangular. Since
a lower-triangular matrix is row-converging, we have A(BA) = (AB)A = A by
(12.1.2). Again by the uniqueness of the solutions to AX = A, we deduce that B
is also a left inverse. Hence B is the unique inverse, which will be denoted by A1
If C' is another lower triangular left inverse, then C'= C(AB) = (CA)B = B.

To prove (b), note that A~! and N are both row-converging by the assumption,
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hence A™1N is also row-converging. Thus (A~1N)* is defined for any non-negative
integer [. consider X := [ — AN + (A7'N)? — (A7'N)3 + .- which is con-
vergent and row-converging by (12.1.2). It is easy to see that X (I + A™IN) =
(I + A7IN)X = I, hence X = (I + A"'N)~L. Therefore (A + N)™' = (A(I +
ATIN))™t = X A1 exists, too. To see the uniqueness of the right inverse of A+ N,
it suffices to prove if z = (21, 22, - - )" is an infinite dimensional column vector over
R and (A + N)z = 0, then z = 0. Otherwise, let d be the first integer such that
v(zq) = min{v(z)|i = 1,2,---}, then the valuation of the d-th row of (A + N)z
should be equal to d, contradiction. The other statements in (b) can be proved in

the same way as in the proof of (a). O

12.2 Infinite system of power series equations over
an a-adic ring

Let 2R be an a-adic ring, where a is an ideal. For every a € fR, let v(a) be the smallest
non-negative integer d such that a € a®\a?*l. Let N> be the set of {(i1,i2,---)}
with all but finitely many i; = 0. For I = (i, 14s,---) € N*°, let d(/) := the number

of i; > 0, max [ := max{ix|k =1,2,--- }.

Definition 12.2.1. Define R(X) to be the set of > arz! where I € N, a; € R such
T

that for fixed d(I) = d, v(ay) — 00 as max [ — 0.

The following proposition is an easy exercise:
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Proposition 12.2.2. (a) Under the usual addition and multiplication, R(X) is a
commutative ring.

(b) For each f = leafwl e RX) andi=1,2,---, g—ai € R(X), too.

(c) Let ¢ be the ideal of R(X) generated by x1,xs,---. Then for every positive
integer r, t" consists of ; arz’ in R(X) such that a; = 0 when d(I) < r.

(d) R(X) is separated and complete with respect to the g-topology.
Definition 12.2.3. For a sequence of (countably) infinitely many elements P =
Py, Py, -+ in R(X), the Jacobian of P is defined as the infinite dimensional matrix
(gTP;)iJ:LQw- over R(X), denoted by J(P). The evaluation of J(P) at 1 = x5 =

.-~ =0 is denoted by Jo(P).

If P is a sequence of (countably) infinitely many elements Pj, Py, - -+ in S3(X)
and 'y = (y1,y2,--)" is an infinite dimensional column vector over R(X), we denote

the infinite dimensional column vector (Py(y), P2(y),---)" by P(y).

Proposition 12.2.4. Suppose Q = {Q1,Q2, -} is a sequence of (countably) in-
finitely many elements in R(X), satisfying:

(1) Q(0) =0.

(2) J := J(Q) is row-converging with respect to the p-adic topology on R(X),
and there exists a row-converging right inverse L of J.

(3) Jo := Jo(Q) is row-converging with respect to the a-adic topology on R, and

there exists a row-converging right inverse Lo of Jy.
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(4) Write Q, = >.Quix’, then for a fized I € {1,2,---}, v(Q11) — oo as
T
max [ — oo.
Then there exists a unique solution z = (21, 22, -+ )' over R(X) with z; € ¢ such

that Q(z) = x := (w1, 29, +)t. Moreover, we have z = Lox mod .

Proof. Define z(1) := Lox, which is an infinite dimensional vector in 8(X) due to

the assumption that Lg is row-converging. Then

Q(z(1)) = 9(z(1)) — Q(0) = Jyz(1) =x mod ¢

Suppose now n > 1, we have constructed z(n) and shown Q(z(n)) = x mod "'

Define z(n + 1) := z(n) — Lo(Q(z(n)) — x), which is well defined since Ly is row-

converging. Then

Qz(n+1)) = (Qz(n+1)) - Qz(n))) + Qz(n))

Jo(z(n +1) —z(n)) + Q(z(n)) mod "2

= —JoLo(Qa(n) — %) + Q(z(n)
= X
The matrix products in the formulas above are well defined because Jy, Ly are
row-converging. Therefore the inductively defined z(n) converge to a solution z €
R([z1, 29, -+]] to P(x) =0, and z = z(1) = Lox mod >
Write z = (21,29, -+)" with z; = Y 2 k2. By the construction we know
K
zip = 0. To prove z is an infinite dimensional column vector over 58(X), it remains

to prove for every fixed i = 1,2,--- and fixed d(K) = d, we have v(z; k) — o0 as
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max K — oo. Since z(n + 1) — z(n) € "™, it suffices to prove for j = 1,2,--- ,d,
we have v(z(j);x) — o0 as max K — oo. We start with j = 1. By definition
the components of z(1); are linear in x, so it suffices to check in the d = 1 case,
which follows directly from the assumption that Lg is row-converging. Suppose now

2 < j < d and we have proved for 7 — 1. One can compute

2(f)ix =207 = Vi — > > LisQura(j — Vi
=1 1

where L;; is the (i,1)-th entry of L.

Now we fix an arbitrary N > 0. Since L is row-converging, there exists M; such
that v(L;;) > N when [ > M;. By the condition (4), there exists My such that
v(Qrr) > N when | = 1,2,--- M, and max] > M,. Without loss of generality
we assume M > i. By the inductive hypothesis, there exists M3 such that v(z(j —
sk) > Nforals=1,2,---, My and max K > M;.

We now claim that v(z(j); x) > N when max K > M;. By the choice of M3, we
have v(z(j —1); k) > N. By the choice of M; and M, it suffices to consider | < M;
and max I < My in the sum ?31 LiiQurz(j—1)%. By the definition of z(j —1)%, if I =
(i1, 2, i), we can write z(j — 1) =3 z2(j — 1)i, 1, 2( — Vig.icy - - 2(J — )i, K.,
where the sum is over all the partitions K = K [[ Ko [[--- ][ K,. Since max K >
Ms, there exists s € {1,2,--- ,7} such that max Ky > Mj3. Since iy < max [ < My,
by the choice of M5 we have v(z(j — 1);, x,) > N. This proves the claim as well as
the fact that z is a column vector over R(X).

For the uniqueness of z as a solution to Q(z) = x, suppose z + 6 = (z; +
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01,22 + 0g,-+-)" is another solution with §; € ¢ such that Q(z + 0) = x. Then
Q(z + 0) — Q(z) = 0. By the Taylor expansion of the left hand side based on
01,02, -+, we derive a system of polynomial equations whose linear part in 0 is
J := J(Q). Using the row-converging right inverse L (which is also a left inverse)
evaluated at z, we can put the system into the form of §; = g;(d1,09, ) for
i =1,2,--- such that g;'s are formal power series over R(X) with degree > 2 in
81,09, . For y € R(X), let ord,(y) be the smallest integer d such that y € . If
d # 0, let k be the integer such that ord, () = min{ord,(é;)]i = 1,2,---}. By our
assumption ord,(d;) > 1. However, ord,(gx(01,09,--)) > 20rd,(dx) > ord,(dx),
this is a contradiction to d; = g(d1, 2, -+ ). Therefore 6 = 0 and the uniqueness is

proved. O

Corollary 12.2.5. Suppose R s an a-adic ring, where a is an ideal. Let P; €
R(X) fori=1,2,---. If J(P) is row-converging over R(X) with a row-converging
inverse L, Jo(P) is row-converging over R with a row-converging right inverse Ly
of Jo(P), then for every ¢ = (c1,ca, -+ )" with ¢; € a, there exists a unique solution
z:= (21,22, -+ )" to the system of equations P(z) = c¢. Moreover, we have z = Lgc

mod a2.

Remark 12.2.6. In particular, if J(P) and Jy(P) can be written as the sum of a
regular blockwise lower triangular matrix and a row-converging matrix with entries

in a, then the conditions on the Jacobians and their inverses in (12.2.5) are satisfied

by (12.1.6).
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Proof. Define ¢ : R(X) — R by ¢(x;) := ¢;. It is an easy exercise to see that for
S arx! in R(X), its image > a;c’ under ¢ converges in R; hence ¢ is a well-defined
T T

homomorphism. Then the existence of z follows from (12.2.4) immediately. The

uniqueness of z can be proved in the same way as we did in (12.2.4). O

Remark 12.2.7. Corollary (12.2.5) also covers the situation when there are only
finitely many polynomials Py, P, --- , P, in x1,xs,- -+ , x,, such that the Jacobian’s
evaluation Jy(P) at 0 is an invertible n X n matrix. One can realize this situation
as a special case of (12.2.5) by introducing auxiliary indeterminates 1, T,12, - -
and defining P; ;= z; fori = n+1,n+2,---. Then the conditions on the Jacobians

are automatically satisfied. Consider the equations
Pl(X) = (i1, PZ(X) = Cg, " 7PH(X) = Cn, Pn+1<x) = O7Pn+2(x) = 07 U

we deduce that there exists a unique solution z := (21, 29, - - - , 2,,)" such that P;(z) =
¢;. If we define L to be the Jacobian of Py, P,,--- , P, evaluated at x1 = 29 = -- - =

0, then we have z = Lyc mod a?.
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Chapter 13

Algorithm

13.1 The deformation of p-divisible Groups

From now on let k := E,. Let X be a connected p-divisible group over k with
dimension m and codimension n. Denote the category of artinian local W (k)-

algebras by Artyy(y).

Definition 13.1.1. The deformation functor Def(X/W (k)) is a functor from Artyy ()
to the category of sets defined as follows: for every artinian local W (k)-algebra R,
Def(X/W (k))(R) is the set of isomorphism classes of pairs (X /R, €), where X is a
p-divisible group over R, and ¢ : X, — X is an isomorphism of p-divisible groups;
(X/R,€) and ()'/R,€) are said to be isomorphic, if there exists an isomorphism

a: X = X' such that € o ay = €.
Theorem 13.1.2 (Grothendieck-Messing). The functor Def(X/W (k)) is repre-
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sentable by a smooth formal scheme SpfR over W (k) of relative dimension mn.

There exists a p-divisible group X over SpfR and an isomorphism €,,;, : X —
X, satisfying the following universal property: for every artinian local W (k)-algebra
R, if (X/R,e: X; = X) is a lifting of X, then there exists a unique map of W (k)-
schemes: s : Spec R — SpfR, such that (X, ) is the pull back of (X, €umiy) via s.
The p-divisible group X /R is called the universal lifting of X.

The automorphism group Aut(X) of X has a natural action on Def(X/W (k))

by relabelling:
Definition 13.1.3 (Relabelling action). Suppose p € Aut(X), we define
R, : Def(X/W (k)) — Def(X/W (k))
as follows: for every artinian local W (k)-algebra R and an isomorphism class of
lifting [(X/R, € : X, — X)] of X, we define R,[(X/R, )] to be [(X/R,poe)].

By the universality of X', we can also define R, as the unique map R — R, such
that there exists an isomorphism puniy : & — R;X making the following diagram
commute:

Xk €univ X

(puniv)k P
(R:X) i €univ X

On the other hand, let F' be an m-dimensional formal group law over k. If R is an
artinian local W (k)-algebra and F is a formal group law over R, we denote by F,
the pushforward of F under the natural residue homomorphism R — k.
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Definition 13.1.4. The deformation functor Def(F/W (k)) is a functor from Artyy ()
to the category of sets defined as follows: for every artinian local W (k)-algebra R,
Def(F/W (k))(R) is the set of isomorphism classes of pairs (F'/R, €), where F is a
formal group law over R, and ¢ : F}, — F is an isomorphism of formal group laws;
(F'/R,€) and (F'/R,€) are said to be isomorphic, if there exists an isomorphism

a: F 2 ' such that €oa, =ce¢.

By (10.6.2), there exists an m-dimensional formal group law F' over k such that
the associated p-divisible group is isomorphic to X, and Def(F/W (k)) is naturally
isomorphic to Def(X/W (k)). For every p € Aut(F) = Aut(X), the relabelling
action R, on Def(F'/W (k)) can be defined in the same way, and is compatible with
the relabelling action on Def(X/W (k)) under the isomorphism Def(F/W (k)) =
Def(X/W (k)).

The following alternative definition of Def(F/W (k)) is often easier to use:

Definition 13.1.5 (An alternative definition of Def(F/W (k))). A formal group law
F over R is said to be a lifting of F, if F, = F. An isomorphism o : ' — G between
formal group laws over R is said to be a x-isomorphism, if ag, = Id. The deformation
functor Def(F/W (k)) is a functor from Arty () to the category of sets that assigns
each artinian local W (k)-algebra R the set of equivalent classes of liftings of F' over

R modulo x-isomorphisms.

The two definitions of Def(F /W (k)) in (13.1.4) and (13.1.5) are easily seen to
be equivalent, since every isomorphism a between formal group laws F}, and F over
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k lifts to an m-tuple of formal power series & in m indeterminates with invertible
Jacobian, hence a( F(a'(X) 4+ a~1(Y))) is a lifting of F.
By (10.3.10), we could choose F' to be a p-typical formal group law. The fol-

lowing proposition says that it suffices to consider p-typical liftings of F' in the

definition of Def(F/W (k)):

Proposition 13.1.6. Suppose F is p-typical. Then for every artinian local W (k)-
algebra R, Def(F/W (k))(R) is equal to the set of p-typical formal group laws E over

R such that Fy = F, modulo x-isomorphisms between p-typical formal group laws.

Proof. Tt suffices to show that every lifting G of F' is x-isomorphic to a p-typical
lifting. Let m be the maximal ideal of R. Let ¢ : R*® — R be the homomorphism
such that ¢,Hy = G. Define F := (¢ o k), Fy. By (10.3.8), Hy and k,Fy are
strictly isomorphic via ¢ : Hy = ko Fy, and ¢(X) = X mod a, where a is the
ideal of 7~2‘(’;’) generated by p, U(i,n) with n running over all multi-indices that are
not of the form p°e(j). Since F' is p-typical, by (10.3.7) (a) C m. As a result,

¥.¢(X) =X mod m and hence is a strict x-isomorphism between G and F. O]

Let F be a universal p-typical lifting of F' over R, i.e., for every artinian local
W (k)-algebra R and a p-typical lifting F of F over R, there exists a unique W (k)-
homomorphism s : R — R such that s,F = EF. For p € Aut(F), the relabelling
action R, : R — R is the unique W (k)-endomorphism such that there exists an
isomorphism pyniv : F — (R,).F making the reduction of pu,, over k equal to
p: F— F.

215



A natural approach to compute R, is to first find another p-typical lifting F of
F over R satisfying: (a) there exists an isomorphism «, : F — F such that the
reduction of o, over k is equal to p : F' — F'; (b) there exists a W (k)-endomorphism
R — R such that the pushforward of F is x-isomorphic to F. Then the W (k)-
endomorphism in (b) is the desired relabelling action R,.

A p-typical lifting F that satisfies (a) can be constructed by (10.4.8) via Honda,
coordinates (see 10.4.7). The formal group laws over R that are isomorphic to F can
be parametrized by the countably infinitely many indeterminates 77,75, - - - valued
in R™™ and U valued in (R™*™)* (see 11.6.3), and to make them x-isomorphic to
Fis equivalent to take the entries of 77,75, --- and U — I in the maximal ideal mz
of R. We need an appropriate choice of F' and F at the beginning such that the
p-typical coordinates of F are simple enough to compute the relabelling action R,
explicitly as in (b). In this process, we need the translation formulas developed in
chapter 11 between the various coordinates of p-typical formal group laws over R.
These recursive formulas are integral so that the information after modulo p can be

read off.
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13.2 The choice of formal group law and its uni-

versal p-typical lifting

Let X be a connected p-divisible group over k with dimension m and codimension
n. In this subsection we prove that we could choose F' and a universal lifting of F’
over R with a simple p-typical coordinate. The main result of this subsection is as

follows:

Theorem 13.2.1. (a) There exists over k a p-typical formal group law F whose as-
soctated p-divisible group is isomorphic to X, and the p-typical coordinate aq, as, - - -
of F satisfy the following property: there exist a non-negative integer d; for j =
1,2,---,m, such that a;(i,j) =0 for alll <d; —1 and i =1,2,--- ,m, the matriz
W= (aq,(4,7))ij=12m € (K™™)%, and dy +dy + - - - + dpyy = 0+ m.

(b) Let Ai(i,j) be the Teichmuller lift of a;(i,j) in W(k) fori,j =1,2,---,m
and | = 1,2,---, where ai(i,7) is the (i,j)-th entry in the I-th p-typical coordi-
nate of F as in (a). Let Si(i,7) be an indeterminate for i = 1,2,--+- ,m, j =
1,2,--- m, Il = 1,2,---,d; — 1. Let F be the p-typical formal group law over
W(K)[[S]] == W(K)[[Si(¢,7);7 =1,2,--- ,m,i =1,2,--- ,d; — 1]] with p-typical co-
ordinate Wi(i,7) == Si(i,j) if l < d;j — 1, and Wi(i,7) = Ai(i,j) otherwise. Then
F is a lifting of F', and the corresponding homomorphism ¥ : R — W (k)[[S]] is an

1somorphism.

The idea to prove (a) is to find a special V-basis of the Cartier module attached
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to X (see 10.5 for the definition and basic properties of Cartier theory), such that
under the correspondence between Cartier modules equipped with a V-basis and
formal group laws (10.5.25), the p-typical coordinate has the desired forms in (a).
To prove (b), we apply (11.6.3) to modify any first order deformation of the chosen
formal group law in (a) into special forms. This allows us to construct the homo-
morphism ¥ in (13.2.1(b)); a computation of the Kodaira-Spencer map shows that

¥ is an isomorphism.

Proposition 13.2.2. Let M be the Cart,(k)-module of the formal group attached
to X. Then there ezists a set of V-basis {e1, -+ ,en} of M, such that for j =
1,2,---,m, there exist v; € M and a non-negative integer d;, satisfying F(e;) =
V%z;, and {xy, 22, - ,xm} is a set of V-basis of M. Moreover, dy+dy+--++dp, =

n-+m.

Proof. Let {e11,€e12,---,e1m} beaV-basis of M. Since the topology on M induced
by filtration M D VM D V2M D --- is separated and F is injective, there exists

integers dy 1,d1 2, -+ and x11,%12, - ,Z1,m € M such that

Fe,; = le,jl‘Ljaij #0e€ M/VM, for j =1,2,---,m

Without loss of generality, we may and do assume d; ; = min{d; j|j =1,2,--- ,m}.
For j =2,3,--- ,m, if T1 ; = A1 € span,Z;, for some X\ € k, then we can replace
e1,; with 6’17], = ey, — leva’*dl,l</\0717d1’1>6171. Thus Fe’l,j = Vai(zy; — (Na11),

which can be written as lel,jx’ld- for some d ; > dy; and 7} ; € M. If 7 ; is still
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in span,; 1, repeat this procedure. The procedure must stop at some point, since

otherwise we would get
F(el,j — Z Vi<0i7j>€1,1) =0
i=0

oo
where ¢;; € k. By the injectivity of F, e;; = > V*(¢;j)e11, which contra-

=0
dicts the fact that {ej1,e12, -+ ,e1m} is a V-basis. Therefore we can modify
the V-basis {e11,e12, - ,€1,,} into a new V-basis {es1,€29, - ,€2,,} such that
Fey; = V%izy; where dy; = min{da|j = 1,2,--- ,m} and ZTo 1, To; are k-linearly

independent in M/V M for j =2,3,--- ,m.

In general, suppose we have obtained a V-basis {e,1,€,2, -, €., } such that
Fe,; = Vd’"’j:cm, whered,; < d, o <--- <d,,_1 <min{d,;|j =r,r+1,--- ,m} and
Tp1, Tr2,* , Trp—1, Tp; are k-linearly independent in M/V M for j = r,r+1,--- ,m.
Without loss of generality, we may and do assume d,, = min{d,;|j = r,r +
1,---,m}. We can modify e, ; as above if 7, ; is not in span, {71 1, -+ , T1,—1}. Thus
we can modify {e,,e.2, -+, €.} into a new V-basis {e,111,€412, * €rt1m}

such that Fe,; = VdHLJ’:cTH’j, where

drj1g <dpy12 < - <dpp1, <min{d,1;|j =r+1,r+2,--- ,m}
and Ty411, Tr412, > Trtl, Trt1,; are k-linearly independent in M/VM for j =
r+1,7+2,--- ,m. In particular, when we reach r = m, we can take e; := e, j,

d; == d,, j, and x; := x,, ; in the proposition.
It remains to prove dy + dy + -+ + d,, = n + m. It suffices to notice that
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{(Viz;lj =1,2,--- ,m,i=1,2,--- ,d; — 1} is a k-basis of M/F M, whose dimension

over k is equal to n. O

The proof of (13.2.1):

We first prove (a). Let F' be the formal group law associated to the Cart,(k)-
module M equipped with the V-basis {e;, -+, ey} as in (13.2.2). Assume 7, =
ixi’jéi in M/VM, where a;; € k. Let aj,as,--- be the p-typical coordinate of
F. By (10.5.25), a(i,j) = 0 if [ < d;, and ay,(i,j) = x;;. The matrix W :=
(wa, (@, 7))i,j=1,2,~m is invertible because 71, -- ,T,, are linearly independent over
k. Thus (a) is proved.

To prove (b), note that the p-typical coordinate defined for F reduces to the
p-typical coordinate of F' over k, hence F is a lifting of F. Let U : R — W (k)[[S]]
be the homomorphism that induces F from the universal lifting. Since R is smooth
by (13.1.2), to prove ¥ is an isomorphism it suffices to check the Kodaira-Spencer
map induced by ¥ between the tangent spaces is an isomorphism. By (13.1.2) and
(13.2.2), the dimensions of the two tangent spaces are both equal to mn. Therefore it
suffices to prove that for every lifting G of F over k[¢]/(¢?) with p-typical coordinates
vy, Vg, - - -, there exists a lifting G’ of F over k[e]/(?) such that G’ is x-isomorphic
to G, and the p-typical coordinate vf, v}, -+ of G’ has the form v/(i, j) € ek[e]/(?)
when | <d; — 1, and v}(4, j) = a;(4,5) when | > d;.

By (11.6.3), it suffices to find 6 € k™ ™e and t1,ts, - - - in (K™*™)* such that v}, =

On(0,v1,+ ,vp,t1, -+, t,) (see 11.6.4 for the definition of ©,,) has the above desired
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properties. Let us consider the entries vj(4, j) with [ > d; first. With vy, -- -, v; fixed,
we can view the (4, j)-entry of ©;(0, vy, -+ , v, t1,- -+ , 1) —@ as a polynomial P, ;; in
8,t1,ta, -+ ,t;, with the constant term equal to v;(i,7) — a;(i,j) € ekle]/(g?), since
vi(, 7) reduces to a;(i, j) after modulo €. Consider the infinite system of polynomial

equations in the order of

Piia, Prods, s Prmdm, Poad, P22.dss 5 Promadons Pi1,dv+1, Prodo+1s 0

Put the indeterminates of these equations in the order:

0(1,1),6(1,2),---,6(1,m),0(2,1),--- ,5(m,m),t1(1,1),¢1(1,2),- -, t1(m, m),
t2(1’ 1)’ o
The Jacobian matrix Jy of the system of equations (see 12.2.3 for the definition of
Jacobian) is a blockwise lower triangular matrix (see 12.1.5 for definition) whose

diagonal blocks are (7,5 =1,2,--- ,m):

\(Udj(ivj»? T (Udj (i,j))/,\(vdj(i,j)p), T (Udj (ivj)pzvgvdj(iaj)(p2))7 T (Udj (i7j)(p2))j

TV '
m times m times m times

and so on.

Since v; reduces to w; over k, the diagonal blocks are all invertible m xm matrices
over k due to (a). Therefore Jy is a regular lower triangular matrix. According to
(12.2.5), the system of equations has a unique solution (0,1, s, -+ ) whose entries
are in ek[e]/(?).

Let v/, := ©,(0, vy, ,vp, 1, ,t,) for all n. We have proved v(, ) = a;(1, j)
when [ > d;. When | < d; — 1, the constant term of the (4, j)-th entry of ©,

221



is equal to v;(7,7), which reduces to w;(i,j) = 0 over k. Since we have known
the entries of all the parameters §,t,to,--- ,t, are in ek[e]/(¢?), we deduce that
v](i,7) € ek[e]/(g®) when [ < d; — 1. This verifies our claim that every lifting of
F over kle]/(e?) is %-isomorphic to a lifting whose p-typical coordinate v}, v}, -
satisfies the property that v(¢, j) € ek[e]/(¢?) when | < d; —1, and v}(i, ) = a;(i, j)
when [ > d;. This proves ¥ : R — W (k)[[S]] is an isomorphism, and the theorem

is proved.

13.3 The algorithm of computing the relabelling

action

Thanks to (13.2.1), we may and do identify R and the universal lifting of F' with
W (k)[[S]] and F from now on. Let R := (p, S) be the ideal of R. Defineo : R — R
by o|wu) =the Frobenius automorphism, and o(S;) = Sl(p). This makes (R, a,0)
into a Honda ring. Let W, W, --- be the p-typical coordinate of F. By (13.2.1),
W7 = VVl(p) forall { =1,2,---. According to (11.1.6), the Honda coordinate and
the p-typical coordinate of F coincide with each other.

Define n :=p — W10 — Wed* — -+ € R,[[9]]™*™, then log F(X) = (pn ') x X
by the definition of Honda coordinate (see 10.4.5 and 10.4.7). Let h : R — W (k)
be the homomorphism that sends S;(4, j) to 0. If we equip W (k) with the obvious

structure of Honda ring (W (k), (p), o), h is a homomorphism between Honda rings.
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The image of Wi(i,7) under h is equal to A;(i,7). Let A; := the m x m matrix
(Ai(i, §))1<ij<m over R, then h.(n) = p— A10 — A20* — - - € W(k),[[0]]™ ™, which
we will denote by 14 from now on. By (10.4.8), we have the following description

of End(X) = End(F) in terms of Honda’s non-commutative formal power series:

{0 € W) ([0 ™ nabns" € W (K)o ([0} /W (k), ([0 ™™ s = End(F)

by sending ¢ + n4 to (log F)~1(c * log F(X)).

For p € Aut(X) = End(X)*, let ¢ = ¢(p) be a twisted formal power series in

[ee]

W (k) [[0]]™*™ such that (log F)~1(c*log F(X)) = p. Write ¢ = >_ ¢,0", where

n=0

cn € W(k)™ ™ for all n, and ¢y € (W (k)™ ™)*. The algorithm of computing the
relabelling action R, : R — R is as follows:

Step 1. Construct a formal group law F over R such that there exists a homo-
morphism from F to F that induces p over k. The p-typical coordinate Wy, Wy, - - -
of F can be computed based on ¢y, ¢y, - - - and the p-typical coordinate Wy, Ws, - --

by an integral recursive formula (see 11.3.1):

A

n—1 .
-1 n (" -1
W = cg'Waeg" — 3 coca W) 4+ pegle,+
=1

¢y Wieg @, (W) — (W) @"™)

TS S BT ST CU RS
N 1 74

where a,, = > ptw, WP € p~"R™™ such that

Step 2. Compute the formal group law F’ over R which is x-isomorphic to F over
R such that F’ could be realized as the pushforward of F under an appropriate
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endomorphism of R. If we denote the p-typical coordinate of 7" by W7, W5, - - -, then
by our knowledge on the p-typical coordinate of F (see 13.2.1) the latter requirement
is equivalent to saying for all i = 1,2,--- ,m, we have W/(i,5) = W(i,5) if | > d;,
and W/ (4,7) = W/(i,j) mod mg if{ < d;—1. By (11.6.3), the p-typical coordinates
of the x-isomorphic p-typical formal group laws F” and F are connected via a system
of infinitely many polynomial equations in the parameters D, Ty, T5, - - - and W} (i, j)

Wlthl?j:1727 7m)l:1727 7d]_].
Vi/l(zaj) :@l,i,j(D>W1/a"' 7I/Vl/aT17"' 77—})77;7j = 1727"' 7m7l: 1727"' (1333)

Proposition 13.3.1. (a) Fori,j=1,2,--- ;mandl=1,2,--- ,d;—1, there exists
a unique formal power series Py; ;(D, Ty, Ts,--- ,1;) in D, Ty, Ty, --- T}, such that
I/T/z(’i,j) =0,,,(D, A+ P, A+ B, T, ,T1), where P, = (P )i j=12,m>
and P;;:=0if l > d;.

(b) Let ©1;5(D, Ty, -+, Ti) := O j(D, Ay + Py,-+- A+ P, Ty, -+, Th), then
the system of equations

A

M/Z(Z)J) :él,i7j(D7T17"' airl)aiaj: 172a"' 7m7l:d]7dj+17

xXm

has a unique solution (D, Ty, Ts,---) = (0,t1,t2,--+) in mp
(c) Let W} := P/(0,t1,--- ,t;), then W/ = W, =W, mod mg foralll =1,2,---.
In particular, the p-typical formal group law F' with p-typical coordinate W{, W3, - - -

18 x-1somorphic to F.

Corollary 13.3.2. The relabelling action R, : R = W(k)[[S]] = R = W (k)[[S]] is
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the W (k)-endomorphism that sends S;(i,7) to P, ;(0,t1,ta,--+).

Proof of 13.3.1:

We first prove (a). By the definition of ©;; ;, if we evaluate W. = A, then
O©i;(D, Ay, AT, -, Th) = Ay(i,§) mod (p, D,T), where (D, T) is the ideal
generated by the D(i,) and Tj(i,j)’s. On the other hand, since F reduces to F
over k, we have Wi(i,5) = Wi(i,5) = A;(i,j) mod mg. Therefore if we write the

equation as

OLij(D, Ay + Py A+ BT T — O5(D, Ay oo AT - T)
= Wi(i,j) — Onij(D, Ar, -+ AL Ty T))
the right hand side is in myz. View this as a system © of mn polynomial equations in
P(i,j)withi,j =1,2,--- ;mandl=1,2,--- ,d;—1, its Jacobian J(O)’s evaluation
at P, = P, = --- = 0 is congruent to the identity matrix modulo (p, D,T) (see

11.6.5). Now (a) follows from (12.2.7).
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To prove (b), put the equations in the order of

édl,l,l - Wd1(17 1) = Wd1(17 1) - Wd1(17 1)

édQ,LQ - Wd2(17 2) = Wdz(L 2) - Wd2(17 2)

Odptm — Wa, (1,m) = Wy, (1,m) — Wy, (1,m)

éd1,271 - Wdl (27 1) = Wd1 (27 1) - Wd1 (27 1)

Od,,.mam — Wa,,(m,m) = Wy, (m,m) — Wy, (m,m)
Ou+111 — War1(1,1) = Wy 1 (1,1) = W1 (1,1)

éd2+1,1,2 - Wd2+1(17 2) = Wd2+1(17 2) - Wd2+1(17 2)

The left hand sides are all polynomials in finitely many indeterminates among
D(i,5),Ti(7, 7) and do not have constant terms since W} (i, j) = W;(4, j) when [ > d;.
The right hand sides are all in mz. Denote by Q the m? x m? block matrix whose
diagonal m x m blocks are (Wy, (i, j))1<i j<m and zero elsewhere. For every positive
integer d, denote by Q[—d] the m? x m? block matrix whose diagonal m x m blocks
are (Sg;—a(i,7))1<ij<m and zero elsewhere. If d > d;, we treat Sy, _4(i,j) = 0. Let
Jo(©) be the Jacobian J(O)’s evaluation at 0, then Jo(©) = J, + Ny, where J; a

blockwise lower triangular matrix with diagonal blocks equal to €, Q®, Q(pz), cee
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and N is a blockwise upper triangular matrix in the form

0 Q[-1]® Q[_Q](p2) Q[_3](P3)

By (13.2.1) Jy is regular. Since Q[—d| = 0 if d > max{d;[j = 1,2,--- ,m}, Ny
is row-converging. Therefore by (12.1.6) the Jacobian J(©)’s evaluation at 0 is
row-converging with a row-converging right inverse. Note that each equation only
involves finitely many indeterminates, hence the Jacobian J(©) is equal to Jo(©) +
No, where Ny’s entries are in ¢ C R(X) and each row of Ny only contains finitely
many nonzero entries. By (12.2.5) and (12.2.6), (b) is proved.

To prove (c), it suffices to notice that P, ;’s evaluationat D =Ty =T, =--- =0
is equal to W;(4, j). Therefore W} (i,5) = Wi(4,j) mod mg when [ < d; — 1, while
W, = W, mod mg follows from the construction of F. When [ > d;, W (i,j) was

set to be equal to W(i, j). This concludes the proof.
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13.4 Asymptotic expansions of the relabelling ac-

tion over the characteristic p fiber

We are interested in the endomorphism }_%p of R/pR induced by the relabelling
action R,. For the simplicity of notations, we use capital letter to implicate the
p-typical coordinate of a p-typical formal group law over R, and the regular letter
to stand for its reduction modulo p. Since R = W (k)[[S]] := W (k)[[Si(4,7);4,] =
,2,--- ,m,l=1,2,---,d;—1]] by (13.2.1), we are reduced to computing R,(S;(z, j))

? ?

mod p in k[[S]]. In terms of the notations in (13.3), we want to compute w] — w;(=

W/ =W, mod p).

Definition 13.4.1. For x € k[[S]] (resp. W (k)[[S]]), let ord,(x) be the largest integer
d such that z € m? (resp. m%). For z = (x,;) € k[[S]]™™ (vesp. W (k)[[S]]™*™),

let ord,(x) := min{ord,(z; ;)|1 < i,7 < m}.

There exist natural filtrations for p € Aut(X) and R, € Aut(R/pR) as analogies

of ramification groups:
Aut(X) D1+ pEnd(X) D1+ p’End(X) D -

and
Aut(R/pR) D Fil>(Aut(R/pR)) D Fil*(Aut(R/pR)) D - - -
where Fil"(Aut(R/pR)) is defined to be

{ € Aut(k[[S])|e(Si(i, 7)) = Si(i, j)modord, > 74,5 =1,--- ,m,l=1,2,---}
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Note that Fil"(Aut(R/pR)) does not depend on the choice of the coordinates
Si(i, 7). In fact, if f: k[[S]] — k[[S]] is an isomorphism and ¢(S) =S mod ord, >
r, then we also have f~' oo f(S) = f~1(f(S) +ord, > r) =S mod ord, > r by
Taylor expansion.

We would like to study the asymptotic behaviour of }_%p as p — 1, with respect
to these two filtrations. Moreover, for fixed p € Aut(X) and order N, we describe

the process of computing R,(S;(i,)) mod ord, > N.

Theorem 13.4.2. If M > max{d;|j = 1,2,--- ,m} — 1 and p € 1 + pMEnd(X),

then R, € FilpMAut(X).

Theorem 13.4.3. Let M, N be given integers. There exists an integer K = K (M, N)
that only depends on M, N, and a polynomial Sy, j(x1,22,- -+ ,xk) (here x4 is short
for m? indeterminates x,(1,1), z4(1,2),- - ,xs(m,m)) with degree < Np= owver

k[[S]] that only depends on M, N and X, such that

R,(51(4,7)) = Si(4,7) = Siij(War41 — Warg1, Waig2 — Warg2, -+ > WM+ K — WAM+K)
mod ord, > N

Before proving the theorems, we first make some notations.

o Let ¢ =co+ 10+ 0>+ -+ be a twisted formal power series in R, [[9]]™*™

that corresponds to p € Aut(X).

e Let Z:= Map({({,4,))]1 <4,5 <m,1<1<d;—1},N). If I € Z, let ST be

short for [T S;(i, §) ¢4,
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o Write W,(i,j) — Wo(i,5) in R = W(k)[[S] as 3 a;ST where a; € W (k),

1€l

define A(n,r;i,7) == So a8t and X(n,r;i,5) = > A(n,l). Define
i=0

Trordy (ar)=r
A(n,r) = (A(n,r;z‘,j))lq,j:m, and Y(n,r) := (X(n,7;4,7))1<ij<m-
By these definitions we know that Y(n,r) = S(n,r — 1) + A(n,r), W, — W, =
iA(n,T), and p"|A(n,r).
Proposition 13.4.4. Suppose co = 1 + pMry, ¢; = pMy; fori = 1,2,---. If

r< M —1, then

i
—
3
|
<
=

7 n—i—1 _is S
E(nﬂ’) = %,71 = Wlag_i_l(P . )(VVl(p pts) (E(l 7‘) )( .
(S n—_zpnil i n—Il n—1
% WzaZ,H(ps )( l(p (1 7‘)(3 )
=1 =1 s=1 l
n—ln—ip" " "—1 i i i n—i—
+ 2 2 > %(p . l—l)WiWI(p )Wl(p +1) o Wl(p )

(WP s (2(1,r)7)0" =D 5 Al,r +1)7") mod pr*!

Proof. Recall from (see 11.3.1) that

Wn = ¢ wr Co Z CoCn—iW. P —I—pcalcn—l—

. B O'k ,\a-i Ui n—i—1 ~ e
% > 1—21 co ' Wic§ anﬂ.fl((l/vl ) ) (W)®" )
i n—i—l o |
j=0

p"*"*l“|((ﬁ/l"i)(pn_i_l) — (W)®" ). Since r +1 < M, if we are only interested
in W, modulo p"*!, we could replace cgkdgi_i_l with a;‘-i in the formula. Based on

similar reasons, we can simplify other terms in the formula into the following after

modulo p"t?

n—1 n—t
1 i A i (n—ie _ .
X(n,r) = EZE  Wiag_, (W) D — (W) Y) mod prt!
i=1 [=1
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By (11.1.5), the right hand side modulo p"! is further congruent to

7
—
3
|

~

T () 5 (0r 4+ 170" — (W 5(1,) ")

n—i—I

SR
T
—
=
S

3 .
|
—_ =
3
|
<.

Wa (W) 4 51, 7)7 )"0 — (W, + 5(1, 1)@ D)+

n—i—l

|
S B
‘ ~
|
3‘»—1
@FM

1 l+1 WWI W s N Wl(pnflfl)((VVl(pi) n 2(17 ey 1)O_i)(pn—i—l)

p

@
Il
—
o~
Il
< b

) gl ) )

|
%

Note that

(W + 231+ 1)7)0 ) — (W) 4+ 51, 7)7) e

- wi;%“lﬁwﬂs (B r+1)7)0" 9 = (2(1,7)7)0" ')
_ P Zl 1W(ps (n_i_s (p";"*l)(p"*i]f’—s)@(l’,,,)oi)(p"*i*’—s—j)
P
(Al +1)7)9)
In the last line, if we assume p°[|j, then (") (""" =) = (") (") ks

divisible by n—i—1—a by (11.1.4). Thus the last line is divisible by p?(r+D+n—i=i-a,
Since j(r+1)+n—i—l—a > (r+1)+(n—i—l+j—a—1) > (r+1)+(n—i—l+p*—a—1),

+1

it would have no contribution to ¥(n,r) mod p"*! unless j = p® = a + 1, which

forces j = 1 (here we have used the assumption that p > 2). This proves

i
—
3
|

-

(WP 1+ 1)) E T — (W 4 B(1 ) )

D=
-
Il
_ =
-
Il
- .

3
|
@

3
|

Il
M \

W%lu(””xww (21T —

s

3
[
—_
3 o~
L
~, =
S|
3w
Ll

n—1

i () e B, r) )+

n—i—l

N
Il
—
-
Il
—

D=
W
M

7
AN
3
J
=
3
.
i
|
AN

Il)(p” il 1)WW1(p W s N Wl(p”*“l)

s
Il
—
o~
o
—
V)
I
=)

sk (L)) P D W AL +1)77) mod prt!

—~
=
w0

This concludes the proof. n
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Corollary 13.4.5. Suppose co = 1+ p™vy, ¢; = pMry; fori=1,2,---.
(a) If n < M, then W,, = W,, mod pM+1-7".

(b) Warsr — Wapsr = WiW® . w® DA, m)e™

Proof. We claim that X(n,r) =0 forn+r < M, and A(n, M +1—n) = W1 A(n —
1I,M +2—mn)? for 2<n < M+ 1. Prove the first claim by induction on n. When
n =1, W, = cglVVlcg = W, mod pM, hence X(1,7) = 0 for r < M — 1. The
induction step follows immediately from the formula in (13.4.4). As for the second
claim, note that in the formula in (13.4.4), if r = M + 1 — n, then every X(n/, 1)
or A(n/,r") that shows up in the formula satisfies n’ + 1" < M + 1, and the equality
holds only in the term Wi;A(n — 1, M + 2 — n)?. This proves our claim, and the

corollary follows immediately from the claim. O]

Proof of 13.4.2:

We prove by induction on n and (decreasing) induction in r that ord,A(n,r) >
pM=" for r = 0,1,---,M and n = 1,2,---. When r = M, it follows from the
fact that Wn = W,, mod mg. Suppose now 0 < r < M — 1, n > 1 and we have
proved for 7 + 1 and smaller n. In the formula in (13.4.4), each term either has
a factor of Y(n/,r) with n’ < n, or has a factor of A(n/,r + 1) with n’ < n and
i > 1. By the induction hypothesis, their orders are both at least p»~". This
proves ord,A(n,r) > pM=" for r = 0,1,--- ,M and n = 1,2,---. In particular,
since W, — W, = A(n,0) mod p, we deduce that ord, (i, — w,) > p™.

Follow the notations in (13.3.1), apply (12.2.5) we have ord,(§) > p™ and
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ord,(t;) > pM fori=1,2,---. When [ < d; — 1,
Wi (i,7) = Wi(i,J) + Prij (6, t1, ta, -+ . 1y)

and P,;;(0,0,---,0) = Wi(i,j) — Wi(i,7). The condition that M > max{d;|j =

1,2,-+- ,;m} — 1 implies V[G(z',j) = W,(4,7) mod p by (13.4.5). This proves

ord, (wi(i, j) — wi(, §)) > p™

when | < d; —1. When [ > d;, w(¢,j) = wi(i,7). This concludes the proof of
(13.4.2).

Proof of 13.4.3:

By (13.3.1),there exist A, T3, T5,--- € W(k)[[S]](X), and formal power series
P, ; j over W(k)[[S]] for each | < d; — 1 such that R,(S,(, 7)) — Si(4,7) = W/(i,7) —
Wi(i, ) is equal to P, ;(6,t1,te, - ,;), where 0 = A(V%(i,j) — Wi(i,5);i,7 =
1,2, m,l > dy), t, = T (Wi(i,§) — Wi(i,5);4,5 = 1,2,--- ,m, 1 > d;) are solu-
tions to infinitely many polynomial equations as in (13.3.1 (b)). Replace 9, t1,ts, - - -
with A, Ty, T5, -+ - in P, ;, we write

Ry(Si(i.1)) = 5i(i,) = Quag(Wili, j) = Wili.j)si. 5 = 1,2, ,m. 1 > d;)

as formal power series in I/T/l(z, j) — Wi(i, 7). Note that A, Ty, Ts,--- do not depend
on p. Since M > max{d,|j = 1,2,--- ,m} — 1, by (13.4.5) Wi(4,j) = Wi(4, j) for
[ < d; — 1. Therefore after modulo p, ﬁlm does not depend on p, either. As a
result, R,(S;(,7)) = @l,i’j(uﬁl(i,j) —wy(4,4);4,5 =1,2,--- ,m,l > d;) only depends
on X.
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Let 7' := {(i, j,0)|i,j = 1,2,--- ,m,l > d;}. Write Q,(i,§)(X,(4,5); (i,4,1) € T')
in the form of ;GJXJ, where a; € k[[S]] and J runs over all the maps from Z’
to N sending all but finitely many triples (i, 7,1) to zero. Let d(J) be the number
of triples (7, j,!) whose images under J are non-zero. By (13.4.2), ord, (w;(i,7) —
wy(i,7)) > p™. Therefore when d(J) > Np~™ ord,(a;X?) > N when we evaluate
at X(i, ) = (i, j) —wi(i, j). Since @, ; € k[[S]](X), there are only finitely many
J satisfying d(J) < Np~™ and ord,a; < N. Let J be the set of J that satisfies
d(J) < Np™ and ord,a; < N. Define S;;;(X;(i,5); (i,5,1) € T') := JZJ(LJXJ,

€

then R,(5)(4,5)) — Si(i, §) = Suij(ili, j) — wi(i,5); (4,5,1) € T') mod ord, > N.
By (13.4.5) w;(4,5) —wi(i,5) = 0if { < M. Therefore S;; ; is in fact a polynomial of

W41 — W1, Wirpe — Wara2, - Wasx — Wk with degree < Np=*. The proof

is now completed.

234



Bibliography

1]

C-L. Chai, B. Conrad & F. Oort, Complex multiplication and lifting
problems, Mathematical Surveys and Monographs, volume 195, American

Mathematical Society, 2013.

C.-L. Chai, Fvery ordinary symplectic isogeny class in positive charac-
teristic is dense in the moduli, Inventiones mathematicae 121.1 (1995):

439-479.

C.-L. Chai, The group action on the closed fiber of the Lubin-Tate moduli

space, vol. 82, no. 3. Duke Mathematical Journal (C), 1996.

E. Devinatz, Morava’s change of rings theorem, in: The Cech centennial
(Boston, MA, 1993), Contemp. Math. 181, Amer. Math. Soc. (1995): 83-

118.

G. Faltings & C-L. Chai, Degeneration of abelian varieties. Ergebnisse der

Mathematik 22, Springer-Verlag, New York, 1990.

235



[6]

[10]

[11]

[12]

[13]

[15]

O. Goldman, Determinants in projective modules, Nagoya Mathematical

Journal 18 (1961): 27-36.

M. Hopkins and B. Gross, Equivariant vector bundles on the Lubin-Tate

moduli space, Contemporary Mathematics 158 (1994): 23-88.

M. Hazewinkel, Formal groups and applications, Academic Press, 1978.

A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid

geometry. Publ. Math. IHES 82 (1995): 5-96.

N. Katz, Serre-Tate local moduli, Lect. Notes Math. 868, Springer-Verlag

(1981): 138-202.

M. Kisin, Modularity of 2-adic Barsotti-Tate representations, Invent.

Math. (2009): 587-634.

M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of

Math.(2) 170, no. 3 (2009): 1085-1180.

T. Liu, Torsion p-adic Galois Representation and a Conjecture of

Fontaine, Ann. Scient. de 'E.N.S., vol. 40, no. 4 (2007): 633-674.

J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups,

Bulletin de la Socit Mathmatique de France 94 (1966): 49-59.

J. Lurie, Chromatic homotopy theory, Lecture notes online.

236



[16]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

J. Morava, Noetherian localisations of categories of cobordism comodules,

Ann. of Math. 121 (1985): 1-39.

W. Messing, The crystals associated to Barsotti-Tate groups, Springer

Berlin Heidelberg, 1972.

F. Oort, CM-liftings of abelian varieties, Journ. Alg. Geom. 1 (1992): 131-

146.

D. Quillen, On the formal group laws of oriented and unoriented cobordism

theory, Bull. Amer. Math. Soc. 75 (1969): 1293-1298.

J. P. Serre & J. Tate, Good reduction of abelian varieties, Ann. Math.

88(1965): 492-517.

S. Shatz, Group schemes, formal groups, and p-divisible groups. In Arith-
metic geometry(G. Cornell & J. Silverman, ed.), Springer-Verlag, New

York, 1986.

G. Shimura & Y. Taniyama, Complex Multiplication of Abelian Varieties

and Its Application to Number Theory, Math. Soc. Japan, 1961.

J. Tate, p-divisible groups. In Proc. conference on local fields (T.Springer

ed.), Springer-Verlag (1967): 158-183.

T. Zink, Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte

zur Mathematik 68.

237



	University of Pennsylvania
	ScholarlyCommons
	1-1-2014

	The Strong Cm Lifting Problem & The Relabelling Action on The Equicharacteristic Universal Deformation Space of A P-Divisible Smooth Formal Groups Over an Algebraic Closure of a Field With P Elements
	Taisong Jing
	Recommended Citation

	The Strong Cm Lifting Problem & The Relabelling Action on The Equicharacteristic Universal Deformation Space of A P-Divisible Smooth Formal Groups Over an Algebraic Closure of a Field With P Elements
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Introduction to Part I
	A Counterexample
	Preliminaries
	CM p-divisible groups
	Kisin modules

	An obstruction on the Lie type for a CM Lifting to a certain p-adic CM type
	Counterexamples to (sCML)

	The construction of a special class of OF-linear CM p-divisible groups and their torsion points
	The construction of Kisin modules
	Torsion points
	Some technical lemmas

	Strong CM lifting to a p-adic CM type induced from an unramified local field
	Main results of the Chapter
	Examples of potentially liftable subgroups
	The correspondence between subgroups and Lie types
	The proof of Theorem ([UnMainTheorem]6.1.2)

	Strong CM lifting to a p-adic CM type induced from a local field with small ramification
	Non-potentially-liftable subgroups
	Positive results on question (sCML)
	Technical lemmas
	The proof of Theorem ([RamifyMainTheorem]7.2.1)

	A first complete list of potentially liftable subgroups
	The main theorem
	The Kisin modules attached to X and its base changes
	The finite Kisin modules attached to finite locally free subgroup schemes
	Examples of reductions of finite locally free subgroup schemes
	Linear algebra lemmas
	The proof of Theorem ([CompleteMainTheorem]8.1.1) in the special case
	The Serre dual
	The proof of Theorem ([CompleteMainTheorem]8.1.1) in the general case
	A final remark

	Introduction to Part II
	Formal groups and formal group laws
	Basic definitions
	Functional equation lemma
	Universal formal group laws
	Isomorphisms and homomorphisms between p-typical formal group laws
	Cartier theory
	The relation between formal groups and p-divisible groups

	Integral recursive formulas
	An integral recursive formula between the p-typical coordinate and the Honda coordinate
	A formula between the Honda coordinates of isomorphic formal group laws
	An integral recursive formula between the p-typical coordinate and the Honda coordinate of isomorphic formal group laws
	Universal p-typical twist of p-typical formal group laws
	Integral recursive formulas for strictly isomorphic p-typical formal group laws
	The universal isomorphism between p-typical formal group laws

	Infinite dimensional matrices Over an a-adic ring
	Definitions and basic properties
	Infinite system of power series equations over an a-adic ring

	Algorithm
	The deformation of p-divisible Groups
	The choice of formal group law and its universal p-typical lifting
	The algorithm of computing the relabelling action
	Asymptotic expansions of the relabelling action over the characteristic p fiber


