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Firm and Industrial Dynamics Over the Business Cycles

Abstract
This dissertation consists of three essays. In Chapter 1, we proposes a dynamic multi-sector production
network model in which firms receive news on the future product-specific demand of a representative
household. Since production takes time and firms in the production sectors are connected via input-output
links, news on the future final demand of an individual product changes firms' forecasts of their future sales,
creating economy-wide effects named as forecast shocks. Forecast shocks are transferred upwards through the
supplier-customer connections in the network, from the buyer of an input good to the producer. The model
explains the asymmetry in the transmission of individual shocks in the network and how shocks to the
expectations generate real, persistent effects. The equilibrium is analytically solved and calibrated to the U.S.
economy. Quantitative analysis then follows to examine the model performance. In Chapter 2, we incorporate
a firm's project choice decision into a firm dynamics model with business cycle features to explain this
empirical finding both qualitatively and quantitatively. In particular, all projects available have the same
expected flow return and differ from one another only in the riskiness level. The endogenous option of exiting
the market and limited funding for new investment jointly play an important role in motivating firms' risk-
taking behavior. The model predicts that relatively small firms are more likely to take risk and that the cross-
sectional productivity dispersion, measured as the variance/standard deviation of firm-level profitability, is
larger in recessions. In Chapter 3, we consider the impact of job rotation in a directed search model in which
firm sizes are endogenously determined, and match quality is initially unknown. In a large firm, job rotation
allows the firm to at least partially ameliorate losses from mismatches of workers to jobs. As a result, in the
unique equilibrium, large firms have higher labor productivity and lower separation rate. In contrast to the
standard directed search model with multi-vacancy firms, this model can generate a positive correlation
between firm size and wage without introducing exogenous productivity shocks or a non-concave production
function.
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ABSTRACT

FIRM AND INDUSTRIAL DYNAMICS OVER THE BUSINESS CYCLES

Can Tian

Dirk Krueger

This dissertation consists of three essays. In Chapter 1, we proposes a dynamic

multi-sector production network model in which firms receive news on the future

product-specific demand of a representative household. Since production takes time

and firms in the production sectors are connected via input-output links, news on

the future final demand of an individual product changes firms’ forecasts of their

future sales, creating economy-wide effects named as forecast shocks. Forecast

shocks are transferred upwards through the supplier-customer connections in the

network, from the buyer of an input good to the producer. The model explains

the asymmetry in the transmission of individual shocks in the network and how

shocks to the expectations generate real, persistent effects. The equilibrium is

analytically solved and calibrated to the U.S. economy. Quantitative analysis then

follows to examine the model performance. In Chapter 2, we incorporate a firm’s

project choice decision into a firm dynamics model with business cycle features to

explain this empirical finding both qualitatively and quantitatively. In particular,

all projects available have the same expected flow return and differ from one another

only in the riskiness level. The endogenous option of exiting the market and limited

funding for new investment jointly play an important role in motivating firms’ risk-

taking behavior. The model predicts that relatively small firms are more likely

to take risk and that the cross-sectional productivity dispersion, measured as the
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variance/standard deviation of firm-level profitability, is larger in recessions. In

Chapter 3, we consider the impact of job rotation in a directed search model in which

firm sizes are endogenously determined, and match quality is initially unknown. In

a large firm, job rotation allows the firm to at least partially ameliorate losses

from mismatches of workers to jobs. As a result, in the unique equilibrium, large

firms have higher labor productivity and lower separation rate. In contrast to the

standard directed search model with multi-vacancy firms, this model can generate

a positive correlation between firm size and wage without introducing exogenous

productivity shocks or a non-concave production function.
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Chapter 1

Forecast Shocks in Production

Networks

1.1 Introduction

A key theme of macroeconomics is the search for the causes of aggregate eco-

nomic fluctuations. While many model the driving force as shocks to aggregate

fundamentals, a large branch of literature, pioneered by Long and Plosser (1983)

and Jovanovic (1987), attributes the observed aggregate fluctuations to a micro

origin. Idiosyncratic shocks at the firm- or industry-level can explain the observed

aggregate economic fluctuation to a large extent. However, this literature typically

overlooks the non-trivial role of the topology of the customer-supplier network in

determining the direction of the transmission of idiosyncratic shocks. For exam-

ple, Shea (2002) and Conley and Dupor (2011) show that, at the sectorial level,

the demand-side linkage is more important. More recently, Kelly, Lustig, and Van

Nieuwerburgh (2013) suggest that firm volatility data favor firm-level shock trans-
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mission in the customer-to-supplier direction over the opposite.

This paper introduces forecast shocks into the dynamic framework of Long and

Plosser (1983) and addresses the paths of shock transmission. In particular, I

assume that in each period, agents in the economy observe a common external

signal (news) on the consumer’s preference for different products in the future.

Firms forecast their sales relative to the total value added in the following period.

Since each sector has to decide its inputs one period ahead, in equilibrium, the

formation of their forecasts has a recursive structure and every current forecast in

fact summarizes future forecasts. Once agents in the economy at period t0 observe

the news and anticipate a change in forecast by sector i in the future at period

t0 + T , such anticipation will immediately show up in the formation of current-

period forecasts by relevant sectors. Specifically, anticipating the change in forecast

by sector i at t0+T , i’s direct upstream sectors (suppliers) will change their forecasts

accordingly at t0 +T −1, which in turn leads the suppliers’ suppliers to adjust their

forecasts at t0 + T − 2, and so forth. Hence, a path of transmission of fluctuation

from the downstream sectors to the upstream sectors is constructed. Notice that

in my model, once external news of the demand arrives, all agents in the economy

receive such information. As a result, there is no heterogenous information issue in

my model.

The input-output network plays a dual role in this model. In the formation of

forecasts, shocks to future forecasts are transferred upwards through the supplier-

customer connections in the network, from the buyer of an input good to the pro-

ducer. The shares of industrial sales then reflect the updated forecasts, which have

real effects on levels of output, consumption, input, etc. There is also a conventional

2



Figure 1.1: Vehicle Buying Conditions (VBC) and Industrial Production (IP) of
NAICS sectors 3361-3. The top panel shows the raw, demeaned data of the two
sequences and the bottom two panels are the HP trends and residuals with monthly
smoother 14400. Red line: monthly VBC from Jan 1985 to Mar 2013. Blue line:
monthly IP 3361-3 from Jan 1986 to Aug 2013.

role in the transmission of real effects. Any shock that changes the current-period

output of a sector will have a prolonged effect on the economy through the one-

period-ahead input choices downwards to its customer sectors. This is also how

productivity shocks are transferred.

This paper treats the news on demand as a source of aggregate volatility. In par-

ticular, I focus on the shocks to the expectation of product-specific demand which

can lead to changes in real economic activities. In general, the future demand of

households depends on many factors such as their income, the price of the product,

their expectations of the prices of the product in the future, and fiscal policy. Con-

sider motor vehicle production as an example. As part of the Survey of Consumers

conducted by University of Michigan, the time series of indices of Buying Condi-

3



Figure 1.2: Cross-Correlogram: VBC(t) versus IP 3361-3 (t − 50, t + 50). The
correlation coefficients achieve their maximum around k=10. This indicates that
the VBC leads the production.

Figure 1.3: Industrial Production: NAICS Sectors 3361-3, 331, and 332 from Jan
1986 to Aug 2013. The top panel shows the raw data of the three sequences and the
bottom two panels are the HP trends and residuals with monthly smoother 14400.
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Figure 1.4: Cross-Correlogram: VBC(t) versus IP 331, IP 332 (t− 50, t + 50) and
IP 3361-3 (t) versus IP 331, IP 332 (t− 50, t+ 50).

tions for Vehicles (henceforth VBC) show the consumers’ willingness to by and/or

the economic conditions of buying household motor vehicles in the following year.1 I

interpret this indicator as the expected demand for motor vehicles. Figure 1.1 plots

the co-movement between the monthly VBC and the monthly index for industrial

production of NAICS sectors 3361-3, producers of motor vehicles. The time series

data of indices for industrial production are part of the G.17 series, calculated and

released by the Board of Governors of the Federal Reserve System. The VBC, or the

expected demand, seems to lead the output of motor vehicles when the data are in

their raw form, HP filtered, or even in the trend. Reporting the cross-correlogram

between these two series, Figure 1.2 confirms the lead/lag relationship. I then turn

to the major suppliers of inputs required by vehicle producers. In fact, around

1In the survey, consumers are asked the following question: ”Speaking now of the automobile
market – do you think the next 12 months or so will be a good time or a bad time to buy a
vehicle, such as a car, pickup, van, or sport utility vehicle?” Among the consumers who feel it
will be a good time to buy a vehicle, low loan interest rates and low price expectation are among
the main reasons cited for buying one.

5



38.8% of the input expenditure of this sector is spent on its own products, 9.3%

on fabricated metal products, and 8.6% on primary metals, which are products of

NAICS sectors 332 and 331, respectively. Not surprisingly, the suppliers’ output

levels comove with that of the customer, as shown by Figure 1.3. Additionally, the

top two panels of Figure 1.4 depict the lead/lag relationship between VBC and the

output of each supplier sector. Figure 1.4 shows a similar pattern to Figure 1.2.

This evidence supports my claim that the expectation regarding the demand for a

certain product, in this example, vehicles, has real impact not only on the producer

but also on the producer’s input suppliers. The bottom two panels of Figure 1.4

show that the outputs of the two supplier sectors also comove with that of the

customer sector. Meanwhile, the positive relationship between the lagged output

of the suppliers and the current output of the customer, albeit weak, suggests a

timing difference between the input purchase and the production, as assumed by

Long and Plosser (1983).

The forecast shocks feature upward transmission direction, contrary to the

downward transmission of productivity shocks in the same model. In reality, one

expects the shock transmission through the supplier-customer links to move in both

directions, instead of uni-directionally. However, recent empirical studies provide

evidence that suggests the upward direction from the customer to the supplier is

more important. Estimating structural equilibrium models, Shea (2002) finds that

demand-side linkage is important in generating output comovement at the sector

level, hence the upward transmission of sector-specific shock is important at the

aggregate level. Conley and Dupor (2003) find the strongest evidence for comple-

mentarity when sectors are ”close” to each other according to a distance measure

6



that captures Shea’s demand-side linkage. At the firm level, Kelly, Lustig and

Van Nieuwerburgh (2013) suggest that upstream shock propagation provides a bet-

ter description of firm volatility data than downstream. Among publicly traded

firms, Cohen and Frazzini (2008) find evidence of ”customer momentum”, that is,

predictable stock return for the supplier firm when there are shocks to its linked

customer firms. Additionally, they show that present customer shocks have signif-

icant predictability over the supplier’s future real activity while the predictability

does not exist without the link.

In the main model, I assume that the source of the forecast fluctuation is driven

by news shocks based on the consumers’ product-specific preference in the future.

The news is received by all agents in the economy, so there is no asymmetric in-

formation across agents. I solve the model analytically and use the U.S. Bureau

of Economic Analysis (BEA) Annual Industrial Accounts to calibrate the model

and quantitatively illustrate the importance of forecast dynamics. Using the cali-

brated model, I compute the sector-specific forecast sequences from the standard

use tables between 1997 and 2012. Under the assumptions that final consumption

shares follow the Dirichlet distribution and that the news follows the multinomial

distribution, I estimate the parameters for the processes and simulate the model.

The quantitative analysis shows that, without any productivity shock, the model

can generate non-trivial fluctuations in the economic activity both at the aggregate

level and at the industry level. The model shows limited success in capturing the

comovement between industries. The news also explains the positive relationship

between the input prices and input uses. Last but not least, the model demon-

strates how volatility in the aggregate productivity measured as Solow residual can

7



be observed even though no productivity shock is present.

1.1.1 Related Literature

First, my paper is directly related to the multi-industry real business cycle

models. There is a longstanding debate: Can idiosyncratic productivity fluctuations

cause business cycles at the aggregate level. To the best of my knowledge, Long

and Plosser (1983) develop the first model to study this issue. Horvath (1998,

2000) and Dupor (1999) introduce capital accumulation into Long and Plosser

(1983). However, this literature ignores that the aggregation of idiosyncratic shock

critically depends on the topology of the input-output network. Hence, there is an

emerging literature that studies the role of the topology of the input-output network

in macroeconomics. Acemoglu et al. (2012) consider a static multi-sector model

and study the role of the input-output network in the aggregation of idiosyncratic

productivity shock in different sectors. They show that independent idiosyncratic

shocks in different sectors cannot offset each other when the network is asymmetric.

In contrast to the previous literature, my paper studies news shock instead of

productivity shock. In Long and Plosser (1983)’s framework, the productivity shock

does not affect the share of sales. However, the share changes over time, which

indicates the existence of another source of fluctuation. I introduce sector-specific

forecast shock. I also study how the network structure determines the transmission

mechanism of sector-specific forecast shocks. Unlike Horvath (1998, 2000) and

Dupor (1999), the dynamics in my model come purely from the information and

time-to-produce mechanism instead of from capital accumulation. In addition, in

my model, the forecast shock is transmitted from the downstream sectors to the

8



upstream sectors, which is consistent with the recent firm-level empirical studies

by Kelly, Lustig and Van Nieuwerburgh (2013).

The comovement between industries is a feature of the business cycles and is in

itself a crucial topic with in the multi-industry literature, e.g., Shea (2002), Conley

and Dupor (2003), Foerster et al. (2011), and recently Atalay (2013). While

most of the papers focus on the importance of the sectoral links in propagating

productivity shocks, I focus on the shocks originating from the demand side. In

fact, the quantitative analysis in this paper shows that positive relationship in

economic activity between industries can come from cross-sectionally negatively

correlated news. Additionally, while Atalay (2013) interprets the fluctuation in an

industry’s input expenditure share and its positive correlation with input prices

as an evidence for non Cobb-Douglas production technology, I demonstrate in the

quantitative analysis that the forecast shocks can be another explanation.

Second, in my paper, shocks come from the demand side, either the consumer’s

contemporaneous preference or the news about future preference. Hence, my paper

is also related to the notion of demand side driven business cycles. Baxter and

King (1991) first introduced demand shocks into a neoclassical framework with a

representative production sector, in which the demand shocks can partially explain

the U.S. business cycles in the presence of increasing returns to scale technology

and/or productivity shocks.

Third, my paper clearly relates to the news literature, see Lorenzoni (2011) for

a detailed survey. In this literature, one assumes that the consumers and firms

receive expectation shock on the technology in the future, and studies how the

news shock affects the demand and output. In my model, however, the functional

9



assumption on the production functions and the utility function prevents the pro-

ductivity news from having any effect, in order to highlight the roles of news about

future preference.

The rest of this paper is organized as follows. In section 1.2, I present the

model and its equilibria. In section 1.3, I discuss the dynamics of forecast in the

equilibrium. In section 1.4, I calibrate the model and quantitatively explore the

importance of forecast shock. Section 1.5 concludes. The appendix contains the

omitted proofs and detailed description of the data and the estimation process.

1.2 Model

1.2.1 Setup

I consider a neoclassical multi-sector model following Long and Plosser (1983).

Time is discrete with infinite horizon, t = 0, 1, 2, .... The economy consists of n

competitive industries denoted by {1, 2, ..., n}, each of which produces a distinct

type of good. Each good can be consumed by consumers or used as an input for

the production of other goods in the following period.

Firms. There is a representative firm in each of the n industries. At time t, the

production of good i by industry i requires labor hired at t and a variety of goods

as inputs, the amount of which is determined in the previous period. Each firm em-

ploys a time-invarying Cobb-Douglas production technology with constant returns

to scale. In addition, the production at each sector is subject to some idiosyncratic

productivity shock. Specifically, the technology of industry i transforms hit units

of labor and xijt−1 units of pre-determined amount of good j, ∀j = 1, ..., n, into yit
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units of output, determined by

yit = zith
1−αi
it

∏
j

x
αiωij
ijt−1

where zit is the realized productivity term. Define the productivity vector at time

t as zt = (z1t, ..., znt)
′, which is drawn from a stationary process,

zt ∼ Ξz (·|zt−1)

with uncoditional mean z = (z1, ..., zn)

E (zt) = z.

αi ∈ (0, 1) is i’s total share of input use and 1 − αi is the labor share. Note that,

in absence of capital, labor is the only value-added input for each industry. Out

of i’s total input use, the share of j’s product as input is ωij ≥ 0, which captures

the importance of good j in producing i. When ωij > 0, industry i is a customer

of good j and industry j is a supplier. The constant returns to sale technologies

require that
∑

j ωij = 1 for each industry i. Define

A =



α1

α2

. . .

αn


,Ω =



ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

...
...

...

ωn1 ωn2 · · · ωnn


Ω determines the production architecture, which is in fact a directed network
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amongst all industries with weighted links, in which the direction is simply that of

the flow of input goods. The importance of a link from industry j to i is captured

by the value of ωij. Generically, Ω is an asymmetric matrix.

In each period t, firm i receives flow profit πit, which is the sales of good i minus

the labor compensation and the input purchase for production in the following

period:

πit = pityit − withit −
∑
j

pjtxijt.

The GDP produced by this industry is equivalent to the value-added generated by

this industry, which consists of the profit πit and the labor compensation withit.

Consumers. In addition to the firms, there is a representative long-lived house-

hold that gains utility from consuming a variety of goods and supplies labor to each

sector. The preference (flow payoff) is modeled as

ηt
∑
i

θitu (cit)−
∑
i

v (hit) ,

where ηt is the aggregate preference parameter, θit governs the good-i-specific pref-

erence, cit is the amount of good i consumed at time t, and hit is the labor supplied

to the firm in industry i at t. Assume the preference parameter ηt > 0 follows a

Markovian process such that

ηt+1 ∼ Ξη (·|ηt) , and E

(
ηt+1

ηt

)
= E

(
ηt+1

ηt
|ηt
)

= 1.

The utility takes the logarithm form, u (c) = ln c, and the disutility of working,

v (h) = h1+ε/ (1 + ε), ε ≥ 0. Let vector θt summarize product-specific preference

parameters at time t such that θt = (θ1t, θ2t, ..., θnt)
′ and

∑n
i=1 θit = 1, θit ≥ 0.
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Assume that nature draws all {θt}+∞
t=0 at the beginning of time while all agents

in the economy share a common prior belief that θt is independent and identically

distributed over time, with the expectation θ = (θ1, ..., θn)′, and
∑n

i=1 θi = 1, θi ≥ 0,

∀i,

θt ∼ Ξθ (·) , and E (θt) = θ

As will be shown later, θit is the equilibrium share of consumption expenditure on

good i at time t. The household receives labor income and all profits and discounts

the future at rate β ∈ (0, 1). To ensure the uniqueness of the equilibrium that is

defined in due course, the following assumption on parameter matrices invertibility

is required.

Assumption 1. (I − βΩ′A) is invertible, where I is the identity matrix. A suffi-

cient condition is that limk→∞ (βΩ′A)k = 0.

Information Structure. Assume that at any time t, all agents share a common

information set It. The economy evolves according to the following timeline. At the

beginning of period t, firms in each sector inherit from the previous period the input

goods, {xijt−1}nj=1 for all sector i. All shocks to fundamentals of the current period

are realized and become observable, including ({zit, θit}ni=1 , ηt). At the same time,

agents in this economy receive a set of signals Mt from an exogenous source and

the information set updates such that It = It−1 ∪ {{zit, θit}ni=1 , ηt;Mt}. I assume

the signals contain information about future product-specific demand. The specific

form of the signals Mt will be discussed with greater detail in due course. However,

it is worth noting that Mt is commonly known by all parties in the economy, so

there is no heterogenous information in my model. Seeing the wages and prices,
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firms of all sectors make employment choices and the household provides labor to

each sector. Production takes place. Firms decide on input purchase for production

in the next period while the household buys the basket of goods for consumption.

1.2.2 Decisions and Equilibrium

Household’s Choice. At each time t, after the realization of ηt and θt, the

household takes wages {wit}i, prices {pit}i, and profits {πit}i as given and chooses

labor supply {hit} and consumption bundle {cit} subject to the budget constraint:

∑
pitcit ≤

∑
withit +

∑
πit. (1.1)

The equality of the constraint holds in equilibrium, equating the total consumption

expenditure on the left hand side to the total value added on the right hand side.

Therefore, under the model specification, the aggregate GDP is the same as the

aggregate consumption expenditure. Let λt be the Lagrangian multiplier of this

constraint, then household maximization yields the following first order conditions:

βthεit = λtwit (1.2)

βtηtθit = λtpitcit. (1.3)

It is convenient to define the consumption index Ct and the ideal price index PC
t

such that PC
t Ct =

∑
i pitcit,

2

Ct =
∏
i

cθitit , P
C
t =

∏
i

(
pit
θit

)θit
.

2See Appendix A1 for the derivation.
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Given price {pit} and wage {wit}, the household’s demand {cit} and labor supply

{hit} can be rewritten as follows.

pitcit = θitP
C
t Ct (1.4)

h1+ε
it = ηt

withit
PC
t Ct

(1.5)

λt = βt
ηt

PC
t Ct

(1.6)

Firms’ Choice. At each time t, after the realization of zit, firm i chooses labor

demand lit for current production and buys inputs {xijt}j for future production to

maximize profit, facing wage wit and prices {pjt}j and expecting a discount factor

Λt,t+1. Define firm i’s sales at time t as

sit = pityit. (1.7)

Firm i’s labor demand is given as follows:

withit = (1− αi) sit.

Firm i also needs to decide on the expenditure on each input good j, xijt, based on

the expectation on its next-period sales,

pjtxijt = αiωijEt (Λt,t+1si,t+1) . (1.8)
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Define the total input expenditure of firm i at time t as uit,

uit =
∑
j

pjtxijt. (1.9)

Firms form expectations based on the common information set at time t, It, which

summarizes all previous signals {Mτ}τ≤t. Denote Et (·) = E (·|It). Given the price

{pjt} and the current information set It, one can rewrite firm i’s input demand

{xijt} as follows:

pjtxijt = ωijuit (1.10)

uit = αiEt (Λt,t+1si,t+1) . (1.11)

At equilibrium, a firm’s discount factor is consistent with the household’s intertem-

poral concern,

Λt,t+1 =
λt+1

λt
= β

ηt+1

ηt

PC
t Ct

PC
t+1Ct+1

. (1.12)

Hence, combining equations (1.11) and (1.12) yields the following Euler equation:

uit
PC
t Ct

= βαiEt

(
ηt+1

ηt

si,t+1

PC
t+1Ct+1

)
. (1.13)

The Euler equation establishes each firm’s inter temporal decision. The left hand

side is the total input expenditure made by industry i at time t relative to the

aggregate value added at that time, where the right hand side is the expected

and discounted gain from next period’s sales by making that expenditure. It is
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convenient to define firm i’s one-period-ahead forecast at t as

f̃it = Et

(
ηt+1

ηt

si,t+1

PC
t+1Ct+1

)
. (1.14)

Notice that firms form their expectations based on a common information set that

includes previous and current news {Mτ}τ≤t, so the arrival of news in each period

affects firms’ decisions by changing their expectations.

Formally, the equilibrium concept is defined as follows.

Definition 1. A Competitive Equilibrium consists of a list of wages and prices

{{wit, pit}ni=1}
∞
t=0, allocations

{{
hit, cit, (xijt)

n
j=1 , yit

}n
i=1

}∞
t=0

, associated with fore-

casts
{{

f̃it

}n
i=1

}∞
t=0

and information sets {It}∞t=0, such that for each period t, (1)

agents form their forecasts
{
f̃it

}n
i=1

based on It, (2) household optimize given prices

and firms optimize given prices and (xijt−1)ni,j=1, (3) wages clear all labor markets,

(4) product prices clear goods markets, cit +
∑

j xjit = yit, ∀i, and (5) information

set evolves based on the realizations of exogenous processes and the law of motions

of forecasts are consistent with agents’ optimal choices and markets-clearing condi-

tions.

1.2.3 Equilibrium Analysis

The model equilibrium has analytical solutions. I show in this subsection that on

the equilibrium path, the forecasts shape the decisions of the agents. Importantly,

for each firm representing each industry, the forecasts of its customer industries

crucially determine its action.

Proposition 1. On the equilibrium path, at any time t, given
{
f̃jt

}
j
,
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1. the ratio of industry i’s total input expenditure to the aggregate value added

is determined by

uit
PC
t Ct

= βαif̃it, (1.15)

2. the ratio of industry i’s total sales to the aggregate value added is determined

by

sit
PC
t Ct

= θit + β
∑
j

αjωjif̃jt,∀i. (1.16)

The proof can be found in the appendix. Equation (1.15) is simply the Euler

equation (1.13) for each industry i, which states that the input expenditure depends

on the forecast of sales in the next period. According to equation (1.16), the revenue

of sector i from the sales of its product i depends on two parts: final consumption

of product i by the household and i’s customer sectors’ forecasts of their future

sales. Since production takes time, the forecast of a customer j’s sales in the next

period determines j’s use of product i as input purchased in the current period.

Therefore, for the supplier of a product, the customers’ forecasts matter. For the

purpose of GDP accounting, it is also useful to define the value added vit generated

by each industry i at time t,

vit = sit − uit = πit + withit. (1.17)

Then it is straightforward to see that the total value added Vt is the same as the

total consumption expenditure by the household, Vt =
∑

i vit = PC
t Ct, and that

18



each industry i contributes the following fraction to the aggregate GDP,

vit
PC
t Ct

= θit + β

(∑
j

αjωjif̃jt − αif̃it

)
,∀i. (1.18)

Given the forecasts, the real equilibrium allocations are uniquely pinned down.

The labor hired by sector i is determined by

hit =

[
(1− αi) ηt

(
θit + β

∑
j

αjωjif̃jt

)] 1
1+ε

,

where the forecasts of the customer sectors future sales have a real effect in the

supplier sector’s employment decision. Consequently, the current level of labor

then determines real output of sector i given the inputs purchased in the previous

period

yit = zith
1−αi
it Xαi

it−1,

where the input index Xit−1 is defined as Xit−1 =
∏

j x
ωij
ijt−1. The final consumption

of product i by the household is a fraction of sector i’s output,

cit = yit
θit

θit + β
∑
αjωjif̃jt

,

and i’s customer sector j gets xjit as input,

xjit = yit
βαjωjif̃jt

θit + β
∑
αkωkif̃kt

.

19



The forecasts also determine the cross-sectional distribution of industrial sales:

sit∑
j sjt

=
θit + β

∑
j αjωjif̃jt

1 + β
∑

j αj f̃jt
. (1.19)

The price of good i relative to good j is also set, as pit/pjt = (sit/yit) / (sjt/yjt),

and so is the case for relative wages, w(it)/wjt. To normalize the prices level, the

ideal consumption price index is set to be one in each period, PC
t = 1. Hence, the

real aggregate GDP in each period is actually the total consumption index, Ct.

Now we turn to the forecasts. Define the combined vector of forecasts at time

t as f̃t such that f̃t =
(
f̃1t, ..., f̃nt

)
. The following theorem establishes the recursive

formation of the one-period-ahead forecasts.

Theorem 1. The equilibrium forecast of each sector summarizes the expectation of

its future share in consumption and the future forecasts of its customer sectors:

f̃t = Et (θt+1) + βΩ′AEt

(
f̃t+1

)
. (1.20)

Proof. Combining (1.14) and (1.16) yields:

f̃it = Et

(
ηt+1

ηt

(
θit+1 + β

∑
j

αjωjif̃jt+1

))
= Etθit+1 + β

∑
j

αjωjiEt

(
f̃jt+1

)
. (1.21)

The second equality holds because of the assumption that, conditional on It, the

change in the aggregate preference parameter ηt+1/ηt is independent of both {θiτ}τ>t

and future {ητ+1/ητ}τ>t, and therefore, ηt+1/ηt is also independent of future fore-

casts
{
f̃iτ

}
τ>t

.
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The theorem states that, for any sector i, at any time t, the equilibrium one-

period-ahead forecast f̃it has a recursive feature in that it summarizes sector i’s

beliefs about future forecasts by other sectors. In fact, the impact of j’s future

forecast on i is weighted by the importance of j’s input use of good i, that is,

the production function parameter αjωji. In other words, the more industry j’s

production relies on good i as an input, the more industry i values its belief about

j’s forecasts.

Note that the productivity shocks play no role in the formation of forecasts.

Under the functional-form assumptions of the household’s preference and the pro-

duction technologies, both of which are in the Cobb-Douglas forms, the effects of

productivity shocks on allocations and on prices cancel each other out completely.

Therefore, the forecast of a sector’s future sales summarize only the expectation of

future demands of its product, by the household and by the customer sectors. This

also eliminates the potential room for signals about future productivities.

Comparative Statics. Here I analyze some simple comparative statics with

respect to sector-specific productivity and aggregate demand shock. First of all,

the productivity term of sector i at time t, zit, has a direct impact on its output,

yit, on the consumption of good i, cit, on the price of good i, pit, and on other

industries’ intermediary use of good i, xjit, ∀j. Other conditions held equal, an

increase in zit leads to increases in yit, cit, and xjit, ∀j such that ωji > 0. It also

leads to a decrease in pit. Because of the assumptions on the functional forms of

the household preference and the production technology of the firms, the impacts of

any change in productivity in prices {pit} and in levels
{
yit, cit, {xjit}j

}
completely

cancel each other out. Hence, changes in productivity do not show in the price-
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adjusted terms, that is, sales {sit}, consumption expenditures {pitcit}, and input

purchases {pitxjit}. Moreover, a change in the productivity of a specific sector

propagates to other sectors through the input choices in a downstream direction,

traveling only from the producer of a certain product to its immediate customers

and then to these customers’ customers. Second, while similar in direction to the

productivity term, a change in ηt affects all industries as well as the household.

Furthermore, the scale of the impact differs from industry to industry or good to

good.

1.3 Discussion of Dynamics

1.3.1 Stationary Forecasts

As a benchmark, it is worthwhile to characterize the equilibrium path on which

there is no external signal, Mt = ∅, ∀t. Under the current assumptions on the

stochastic processes, the lack of further information ensures a time-invariant se-

quence of forecasts, f̃t = f̃ , where f̃ =
(
f̃1, ..., f̃n

)′
. The form of the stationary

forecasts is established in the following corollary to Theorem 1.

Corollary 1. The stationary forecasts satisfy the following equation,

f̃ = (I − βΩ′A)
−1
θ

then f̃ is the unique set of time-invariant forecasts on the stationary equilibrium

22



path on which Mt = ∅, ∀t. Equivalently written,

f̃i = θi + β
∑
j

αjωjif̃j.

Note that, because of the assumptions on Cobb-Douglas production technologies

and utility function, any productivity shock that can change zit (which in turn

changes yit) is fully absorbed in prices. The case in which {zit} is the only source of

variation is the one studied by Long and Plosser (1983). In the absence of forecast

shocks, the distribution of sales across sectors {sit} is constant over time regardless

of sector-specific productivity shocks or shocks to the news on future productivity.

A more special case is the steady state of the economy when all processes are

set at the determinant mean levels, namely, zt = mathbfz, ηt = η, and θt = θ, ∀t.

The steady state will serve as the starting point in the quantitative exploration.

Proposition 2. The equilibrium outcome at the steady state of the economy consists

of {hi, yi, ci, {xji}j}i and prices {pi, wi } such that

1. The labor supply at any industry i is hi =
[
(1− αi) ηf̃i

] 1
1+ε

;

2. For any industry i, given the steady state output yi, the consumption of prod-

uct i, ci, and sector j’s use of product i as input, xji, are given by

ci =
θi

f̃i
yi,

xji = βαjωji
f̃j

f̃i
yi;

3. The set of steady state outputs {yi} is the unique solution to the following
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system

yi = zih
1−αi
i

∏
j

(
βαiωij

f̃i

f̃j
yj

)αiωij

,∀i.

4. The relationship between wages and between prices satisfies

wi
wj

=
hj
hi

(1− αi) f̃i
(1− αj) f̃j

,

pi
pj

=
yj
yi

f̃i

f̃j

1.3.2 News about Product-Specific Demand As the Driving

Force

In the introductory example of motor vehicle production, the series of indices for

Vehicle Buying Conditions can be viewed as a measure of the consumers’ expected

buying capacity of household motor vehicles. Under the lens of this model, this

buying capacity of a particular good corresponds to product-specific demand, which

is captured by the expectation of the equilibrium consumption share of this good.

Therefore, in this subsection, I model the external signals as shocks that can change

the expectation of future consumption shares.

Recall the recursive formation of the forecasts

f̃t = Et (θt+1) + βΩ′AEt

(
f̃t+1

)
(1.22)

= Et (θt+1) + βΩ′AEt (θt+2) + β2 (Ω′A)
2
Et (θt+3) + ...

hence for any sector i, the expected sales-value added ratio f̃it summarizes the

expectations of all future consumption distribution, {θt+τ}∞τ=1. The weights depend
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on the input-output structure and the discount factor. To understand the recursive

structure of expectations, consider the decision of a specific sector i whose f̃it is

given by

f̃it = Et (θi,t+1) + β
∑
j

αjωjiEt (θj,t+2) + β2
∑
j

∑
j′

αjωjiαj′ωj′jEt (θj′,t+3) + ...

where the first term Et (θi,t+1) is the one-period-ahead forecast of sector i’s own

consumption share; the second term β
∑

j αjωjiEt (θj,t+2) is the time-discounted

weighted sum of i’s customers’ two-period-ahead forecasts, weighted by the im-

portance of product i in the production of customer j’s output; the third term

β2
∑

j

∑
j′ αjωjiαj′ωj′jEt (θj′,t+3) is the discounted weighted sum of three-period-

ahead forecasts of i’s customers’ customers, twice weighted; and so on for further

terms.

To formalize the process of updating beliefs while preserving the tractability of

the model, consider a specific form of the set of external signals Mt received at time

t such that Mt contains information about future product-specific consumption

demand that arrives T periods ahead, T ≥ 1. Specifically,

Mt =
{
mt

t+1,m
t
t+2, ...,m

t
t+T

}
such that for each τ = 1, ..., T , mt

t+τ is drawn independently from a distribution

determined by θt+τ ,

mt
t+τ ∼ Ξm (·|θt+τ )

All sectors receive the same signals in each period and update their expectations

of θt+τ .
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The structure of the signal set is designed to capture the idea that agents receive

information and form expectations of future demand. The information is allowed

to accumulate over time and the forecasts get more precise as available information

grows. For example, comparing the current forecasts of demand for cars in one

year and demand for cars in five years, one should expect the former to be more

reliable because there are more signals observed. The assumption of multinomial

signals is for technical simplicity. It accompanies the common prior Dirichlet dis-

tribution of product-specific preference vector θt+τ so that the updated posterior of

the preference vector remains a Dirichlet distribution, which allows for simple ex-

plicit expression of the updated expectations. I do not wish to over-emphasize this

functional form assumption on the signals for it merely complements the Dirichlet

distribution in a Bayesian updating process.

At each time t, It contains T − τ + 1 signals of θt+τ , 1 ≤ τ ≤ T , which are

m
t−(T−τ)
t+τ , m

t−(T−τ)+1
t+τ , ..., and mt

t+τ . For example, mt
t+T is the only signal vector

of θt+T at time t, and there are T signal vectors of θt+1, of which the first one

was received T − 1 periods earlier. In fact, the explicit forms of the posterior

expectations are given by:

Et (θt+1) = E
(
θt+1|mt−(T−1)

t+1 ,m
t−(T−2)
t+1 , ...,mt

t+1

)
Et (θt+2) = E

(
θt+2|mt−(T−2)

t+2 ,m
t−(T−3)
t+2 , ...,mt

t+2

)
...

Et (θt+T ) = E
(
θt+T |mt

t+T

)
.

The longer the time horizon, the less precise the available information is. It does
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not contain any additional information on future periods beyond t+ T besides the

prior distribution of consumption shares. Therefore,

f̃t =
T∑
τ=1

βτ−1 (Ω′A)
τ−1

Et (θt+τ ) + βT (Ω′A)
T

f̃ .

I call the changes in the expectations Et (θt+τ ) the result of forecast shocks,

which in turn affect the forecasts and decisions of firms. Under the assumption of a

common information set, I am able to maintain tractability of the model and step

aside from the complexity of extracting information from prices and higher order

beliefs when agents have heterogeneous information. The forecast shocks have

the following features. First, he shocks to expectations have real impact because

agents are forward-looking in making decisions. In particular, the forecasts enter

the input purchase decisions of firms due to the timing restriction that requres the

firms to decide on the amount of inputs without knowing future prices. In principle,

the news on future productivity should affect the current decisions via the same

intertemporal-concern channel. However, under the functional assumptions of this

model, the expected change in productivity and the expected change in price cancel

each other out. Therefore, I can isolate the effect of the novel news-on-demand

shocks. Second, the shocks are transmitted upwards from customers to suppliers

through the input-output links and these are the only upward-transmitting shocks

under the model specifications. In reality, shock transmission in the economy is

more plausibly bi-directional than either downwards only or upwards only and this

should be the case for transmission of productivity shocks, news shocks, or other

shocks. In the static variant of this model studied by Acemoglu et al. (2012), the

productivity shocks have immediate impact on real output of both upstream and
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downstream sectors because of market clearing prices. Third, the shocks affect the

size distribution of the sectors and have decaying and lasting real effects over time.

Compared to productivity shocks and news shocks to productivity, which cannot

generate changes in the distribution of sectors’ sales shares, the effects of forecast

shocks on prices and on quantities do not cancel each other out. Hence they show

in sales, consumption expenditure, input expenditure, etc. Moreover, the effects

on quantities last and decay over time through the firms’ input purchase decisions.

Lastly, in addition to its more conventional role in prolonging and propagating real

effects on outputs, the input-output structure plays an essential role in determining

the scale and direction of a forecast shock. Suppose a signal in favor of sector j′

arrives at time t such that all agents expect that the consumer will spend relatively

more on good j′ at time t + τ , hence Et (θj′,t+τ ) goes up by ∆j′ (and surely the

expectations of consumption shares on other goods will decrease accordingly). The

scale and direction of the impact of this change depends both on the position of

sector j′ in the production network and on how large τ is. Notice that the influence

of the change ∆j′ varies as a result of two simultaneous effects as τ becomes larger:

(1) the change will affect more sectors through the input-output connection in the

upstream direction, while (2) the weight on ∆j′ gets smaller and more heavily

discounted. Furthermore, the shocks to expectations of the future, even the distant

future, have prolonged real effects through the input purchase decisions. The net

effect of such a change is further discussed and demonstrated quantitatively in the

simulation section.

Unlike the demand parameter ηt and the productivity indices {zit}i, both of

which are conventional in the business cycle literature and directly affect the funda-
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mentals, the forecast shocks and the interplay between forecast shocks and input-

output connections are newly introduced in this paper. Moreover, they are not

explicitly related to any of the current fundamental variables in the economy, but

rather reflect the future economic conditions. The formation of forecasts also cap-

tures the second role the supplier-customer network plays in reality: it allows com-

munication of information between a supplier and a customer when trading. In a

very stylized fashion, the forecast formation process shows how a firm or an indus-

try gathers and exploits information from its business activity, and how it makes

production and input purchase decisions based on this information.

Notice that external signals affect the economic activities only by changing

agents’ forecasts, and the change of forecasts is driven by the arrival of external

signals only. Consequently, one can understand how the arrival of external signals

affects the economy by studying how the changes in forecasts affect the economy.

In the following analysis, I show that the sector specific forecast f̃it has a non-trivial

effect both on the distribution of sales and on total output. Not only does f̃it affect

industry i, but it also has a direct impact on other industries that are connected to

i through the input-output link. Sector i’s output is increasing in its own forecast

f̃it. Also, sector j’s output is increasing in i’s forecast if sector i uses product j as

an input. In other words, the impact of one sector’s forecast on the output level

of another sector goes upstream from a customer (i) of a certain product (j) to its

producer (j).

dyit

df̃it
> 0

and
dyjt

df̃it
> 0 if αiωij > 0
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Sector i increases its input expenditure when its own forecast increases. Sector j

decreases its output expenditure when i’s forecast increases.

d
(
PX
it Xit

)
df̃it

= βαiP
C
t Ct

(
1− βαiPC

t Ct
)
> 0

and
d
(
PX
jtXjt

)
df̃it

< 0 if αj > 0

When sector i’s forecast increases, whether its share of total industrial sales in-

creases or not depends on how heavily sector i uses its own product as an input.

In fact, most of the sectors retain a large fraction of their outputs for each period.

dsit

df̃it
= βαiP

C
t Ct (ωii − sit)

 ≥ 0 if ωii ≥ sit

< 0 if ωii < sit

Similarly, in response to the same increase in i’s forecast, sector j’s share of sales

increases only if i is an important customer of product j, that is, out of i’s input

purchases, the fraction spent on product j is larger than sector j’s share of total

industrial sales.

dsjt

df̃it
= βαiP

C
t Ct (ωij − sjt)

 ≥ 0 if ωij ≥ sjt

< 0 if ωij < sjt.

Hence, the change in distribution of shares of industrial sales reflects the impact of

changing forecasts. Such change travels upstream through supplier-customer con-

nections similar to the way the impact of forecasts on output levels does. However,

unlike the case of output levels, whether and how much the sales share will increase

depends on the importance of the seller’s product as an input to the customer.
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1.3.3 Impact Paths of News

As in previous discussion, due to the forward-looking and recursive fashion of

the forecast formation, a change in expected future forecasts shows up immediately

in current forecasts via the supplier-customer connections, which in turn affect the

distribution of sales shares in the present period. The real effect of such change

will last into the following periods because of the dynamic input choices. In this

section, I illustrate the model mechanism by a counterfactual exercise. The param-

eterization of the model is discussed in the calibration and estimation section.

To highlight the effects of changes in forecasts, let the realization of the product-

specific preference vector, i.e., the consumption shares, be fixed at the mean, θt = θ,

while preserving the common prior distribution of θt. Moreover, fix the level of

productivity zt = z and fix the aggregate preference ηt = η. Consider a simplified

version of the posterior updating process, in which only one external signal arrives

so the forecasts are updated once upon its arrival. Let t0 be the time of impact

when an external signal arrives. Before this period, the agents form stationary

forecasts f̃ and expect no change in future consumption shares. Let the signal be

such that the updated expected consumption share of good i in T periods changes

relatively by fraction δ, and the other shares change accordingly:

Et0 (θi,t0+T ) =
θi (1 + δ)

1 + δθi
,

Et0 (θj,t0+T ) =
θj

1 + δθi
,∀j 6= i.

Here T is called the target time and i the target sector. In addition, since there is

no further signal in the following periods, Et (θT ) = Et0 (θT ) for t0 ≤ t ≤ T − 1.
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Figure 1.5: Response of forecasts f̃jt on the selected chain. X axis is time and Y axis
is the ratio between forecasts f̃jt and stationary forecasts f̃j. Solid line: underlining
sector 324; dashed line: direct upstream sector 3; broken line: 2nd-order upstream
sector 532; dotted line: immediate downstream sector 481. Impact time t0 = 1,
i= NAICS 324, change in θi: δ = 0.1, T = 3. All prior uncertainty resolves at
t0 + T = 4.

For the purpose of illustration, consider a specific experiment in which δ = 0.1,

T = 3, and sector i that undertakes the δ change is i = ‘Petroleum and coal

products’ with NAICS code 324. In general, at the industry level, an industry

is connected to several others by the input-output relation. Hence, instead of

production chains, one observes a production network measured by the matrices A

and Ω. I pick a ”chain-like” subset of this network for better demonstration and

the logic holds for more general cases. One of Petroleum and coal products’s major

downstream sectors, namely its customers, is NAICS 481‘Air transportation’. Its

most important immediate supplier is NAICS 3 ‘Oil and gas extraction’ whose

major suppliers include NAICS 532RL ‘Rental and leasing services and lessors of

intangible assets’.

Now, at time t0 = 1, the economy receives the external signal and all agents
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update their expected future consumption shares: The expected consumption share

of i at time t0 +T = 4 increases about 10% and the expected shares of other sectors

adjust accordingly. The updated expectations show up directly in the forecasts

upon impact. This impact then affects the distribution of shares of industrial sales,

and the real terms: output levels, consumption, input purchase, etc. Figure 1.5

shows the changes of forecasts formed by sectors on the ”chain” over time. All

four sequences of forecasts change immediately upon the arrival of the signal at

time 1. However, each spikes at a separate time. For the underlining sector, the

forecast sequence spikes at time 3, one period before the uncertainty is resolved.

For its supplier and the supplier’s supplier, the maximum forecasts occur at time

2 and time 1, respectively. The customer’s forecast does not change significantly.

It is important to notice how the impact of shocks to expectation is transferred in

the upstream direction. Upon impact, the underlining sector anticipates a higher

consumption share of its own product in three periods and its forecasts of future

sales relative to total consumption are adjusted accordingly. Its direct supplier

anticipates the same and the increased expectation of customer sales will drive the

purchase of the supplier’s product as input, which will happen in two periods. The

same logic explains the spike in the forecast of the supplier’s supplier. Therefore,

a shock to the forecasts acts as a demand-side shock and travels upstream through

the supplier-customer connections. In the downstream direction, however, the main

blow of the forecast shock does not directly affect the customer. Once the uncer-

tainty resolves, in this case when the signal is proven to be ”wrong”, the forecasts

instantly adjust back to the stationary levels.

The responses of the employed labor, real output, consumption, and input uses
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(a) (b)

(c) (d)

Figure 1.6: Response of (a) labor, (b) output, (c) consumption, and (d) input uses
on the selected chain. X axis is time and Y axis is the ratio between variable
value in each period and corresponding stationary value. Industry names are in the
caption of Figure 1.5.
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Figure 1.7: Response of aggregate value added. X axis is time and Y axis is the
ratio between log(GDPt) and steady state log(GDP ).

are shown in panels (a) to (d) in Figure 1.6, respectively. Obviously, not only

does the transitory shock to forecasts have real effects but these real effects also

last because of the one-period-ahead input decisions. At each time, the real effects

come from two sources: one is the change in the forecasts formed in that period

and the other is the lasting impact of changes in previous periods through the input

decisions. Since the forecasts return to the stationary levels at time 4, deviation

of output, consumption, and input uses from their steady state levels from time 4

onwards is the cumulated result of the effect from the latter source. This is the

same as the lasting impact of a transitory productivity shock.

At the aggregate level, Figure 1.7 shows how the logarithm of real GDP, de-

noted as log (GDPt), responds to the same shock to forecasts, where log (GDPt) =

log (Ct). With normalized prices, changes in real GDP are in fact changes in the

consumption index and the logarithm of real GDP is equivalent to the utility gained

from consuming the basket of goods. The impact of the shock to forecasts on

log (GDPt) is, in general, not monotonic over time. Similar to the case of consump-
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tion of an individual product, before the uncertainty resolves, log (GDPt) is under

the direct impact of current-period forecasts and the indirect impact from previ-

ous forecasts carried through the input-output links; while after the uncertainty

resolves, the lasting effect is solely due to the inputs.

This section demonstrates the the mechanism of the transmission of news, using

an arbitrary and fixed news process. The quantitative analysis in the following

section takes further steps in examining the effects of both preference shocks and

news shocks with the estimated driving forces.

1.4 Quantitative Explorations

An important feature of the model is that in equilibrium, the evolvement of the

forecasts sequence
{

f̃t

}
relies only on the distributions of future product-specific

preference shocks {θτ}τ>t and the news about future demand. Once the values of

forecasts are given, the rest of the equilibrium components are also determined.

The parameterization of the model goes backwards: I calibrate part of the model

to match the observed variables in the data and then I estimate the distribution of

the news. Using the estimation results, I show the importance of the news about

future demand as a driving force of the aggregate economic volatility.

1.4.1 Calibration

The main data set used to calibrate and estimate the model is taken from the

Annual Industry Accounts at the Bureau of Economic Analysis, which contains

information on the annual production and input usage of 65 private industries from
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Table 1.1: Parameter Values

Predetermined Parameters
β = 0.96 Discount factor
ε = 1 Disutility in labor
z = 10 Productivity

Calibrated Parameters
η = 9.50 Mean aggregate demand s.t. h̄i = 1/3
A Input expenditure shares
Ω Input requirements
θ Mean product-specific demand

1997 and 2012.

In particular, the annual use and make tables set the targets of calibrating the

most important set of parameters, which contains the shares of input goods in

each industry, A = diag (α1, ..., αn); the specific share of each certain good used

as input, Ω with Ω (i, j) = ωij; and the mean of the prior distribution of product-

specific demand parameters, θ = (θ1, ..., θn). The use table of each year is essentially

a matrix that shows the uses of commodities by industries as intermediate inputs

and by final users from 1997 to 2012, while the make table shows the quantity of

each commodity produced by the industries. Both the uses and makes are measured

in terms of dollar expenditures.

The model assumes that the production technologies determined by A and Ω are

constant over time, hence the values are chosen to match the make and use tables

of year 2007. Specifically, at the steady state, each element αi of A, i = 1, ..., n, is

proportional to the fraction of total industrial sales of industry i used to purchase
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input goods from all industries.

αi =
input expenditure by i

β × total sales of i
.

Each row i of matrix Ω determines industry i’s use of all industries’ products as

inputs and every element ωij is the fraction of i’s input expenditure on j’s output.

ωij =
i’s purchase of j’s output

input expenditure by i
.

In equilibrium, the realized product-specific preference parameters θt are the

current-period total consumption expenditure shares of each product. Hence θt

can be chosen such that the equilibrium composition of consumption expenditure

lines up perfectly to the data. The consumption expenditure on each commodity

is measured as the final use of that commodity, including the amount imported.

θit =
Final use on i at t

Total final uses at t
,

and the unconditional mean of the consumption shares θ is set at the simple average

over the 1997 to 2012 period,

θ =

∑
t (Final use of each commodity at t)∑

t (Total final uses at t)
.

The discount factor β is set to be 0.96 to match the annual frequency of the

data set. In addition, I set ε = 1 so that the disutility in labor has a quadratic

form. The unconditional mean of the aggregate preference shock, η, is set at 9.49

which ensures the average labor supply at the steady state is 1/3. Moreover, since
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the process of aggregate preference ηt and that of the sector-specific productivity

{zit}ni=1 do not affect the sequence of
{
f̃it

}
under the assumption of the model,

the uncertainty is shut down such that the aggregate preference is fixed over time,

ηt = η, ∀t and all sectors share the same time-invariant productivity zit = zi = z,

∀i, t. The the productivity z sets the scale of the model solution and is set at 10.

1.4.2 Estimation

The analysis of the forecast formation does not require any specific distributions

of the product-specific preference shocks or of the news process. For the purpose

of estimation and simulation, I impose further assumptions on these distributions,

Ξθ (·) and Ξm (·|θt).

Assume that the independent and identical prior Ξθ (·) of the product-specific

prefence shocks θt is a Dirichlet distribution of order n with concentration param-

eters θ and a scale parameter κ > 0,

θt ∼ Dirichletn (κθ)

hence E (θt) = θ and κ determines the scale of the variance-covariance matrix of θt

such that

(
σθi
)2

= var (θit) =
θi (1− θi)
κ+ 1

,∀i,

σθij = cov (θit, θjt) = − θiθj
κ+ 1

, ∀i 6= j.

The unconditional expectation θ is pinned down in the calibration. Note that the

correlation coefficient between any pair of (θit, θjt) is always negative and has the
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value of −
√

θiθj
(1−θi)(1−θj) , ∀i, j, regardless of the value of κ. To accommodate the

Dirichlet prior, let the news that contains the information on θt be drawn from

a multinomial distribution. Specifically, for each t, the distribution of news mt−τ
t

about θt that arrives in period t− τ is

mt−τ
t ∼Multinomial (N, θt) ,∀τ = 1, ..., T,

where the integer N ≥ 1 is the number of trials and θt represents the probabil-

ity associated with each possible outcome in one trial. Conditional on the news,

the posterior distribution of θt remains Dirichlet. In each period t, the posterior

distributions of future θt+τ have the following expectations,

Et (θt+1) =
κθ+

∑T−1
τ ′=0 mt−τ ′

t+1

κ+ TN

Et (θt+2) =
κθ+

∑T−2
τ ′=0 mt−τ ′

t+2

κ+ (T − 1)N
...

Et (θt+T ) =
κθ + mt

t+T

κ+N
,

hence

f̃t =
T∑
τ=1

βτ−1 (Ω′A)
τ−1 κθ +

∑T−τ
τ ′=0 mt−τ ′

t+τ

κ+ (T + 1− τ)N
+ βT (Ω′A)

T
f̃ .

The specific information structure discussed in the theoretical model is very

stylized, according to which the changes in forecasts solely come from the news

about future product-specific demands. The remaining parameters to be estimated

are κ, N , and T , where κ controls the scale of the variance matrix of the prior

distribution of θt, N determines the precision of news, and T sets how far into the
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Table 1.2: Forecast Process Parameters

Parameters Estimated Values
κ Scale of prior variance of θt 15300
N Precision of news 9100
T Horizon of news 1

future the news can reach.

The estimation consists of two steps. In the first step, κ is picked to minimize

the distance between the model variance of θt and the data counterpart, namely,

var(θit), ∀i = 1, ..., 65. In the second step, (N, T ) is jointly determined with κ

given. Observe that, by Proposition 1, the forecasts enter linearly the expressions

for total sales, input expenditures, and value added of industries divided by ag-

gregate value added. Hence, the variation in these variables reflects that in the

forecasts, which identifies N and T . Then (N, T ) is picked to minimize the differ-

ence between the model and the data variances, that is, var( sit
PCt Ct

), var(
PXit Xit
PCt Ct

), and

var(
sit−PXit Xit
PCt Ct

), ∀i = 1, ..., 65. The detailed description of the estimation procedure

is in the appendix.

According to the estimation result, at the annual frequency, the news that

arrives in each period contains only information on the product-specific preference

in the following period, T = 1. Consequently, in the model language, given the

estimated (κ,N)

f̃t =
κθ + mt

t+1

κ+N
+ βΩ′Af̃ .

The limited horizon of the news (T = 1) is partially due to the relatively low

frequency of the annual data and the modeling assumption that news updates once

in each period.
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1.4.3 Quantitative Results

In this section, I examine the quantitative performance of the model and look

at the aggregate volatility, industry-level volatility, and industry comovement. Ad-

ditionally shown, the positive relationship between input prices and input uses

observed in the data can be explained by the news transmission mechanism. Last

but definitely not least, in the absence of productivity shocks, the model is capa-

ble of generating sizable volatility in the measured Solow residuals, both at the

aggregate level and at the industry-level.

Specifically, I do the following three experiments, each of which starts from the

steady state of the model and evolves under a particular driving force. In the first

experiment (E1), the product-specific preference in each period, θt, is independently

drawn from the Dirichlet distribution with concentration parameters κθ, the news

is informative, mt
t+1 ∼ MN (N, θt+1), and the prior distribution of θt is ”correct”.

The θt sequence in the second experiment (E2) is fixed at its mean, θt = θ, the

news is then iid, mt
t+1 ∼MN (N, θ), while the agents holds the Dirichlet prior. In

the third experiment (E3), the only driving force is the changing θt. In each period

of each simulation, the ideal price index PC
t is normalized to 1.

1.4.3.1 Aggregate Volatility

The aggregate volatility is measured as the standard deviation in the growth rate

of real GDP generated by the private sector. In fact, aggregate GDP is accounted

as the sum of value added across all industries and, equivalently, as the sum of

total final consumptions. During the sample period, between 1997 and 2012, the

standard deviation of private GDP growth rate is 2.18%. The model counterpart
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Table 1.3: Volatility in Aggregate GDP

Data 1997-2012 E1: Both E2: News E3: Preference
Std.Dev.(∆GDP) 2.18 0.90 0.08 0.90

Model/Data 100 41.28 3.67 41.28

is the standard deviation in the growth rate of total consumption index, denoted

as ∆Vt

∆Vt = log
Ct
Ct−1

.

Note that Vt is also the aggregate value added. Table 1.3 reports the simulation

results.

The driving force of the economy in E1 is a mixture of product-specific preference

shocks θt and news mt
t+1 that reflects the changing θt, which is capable of generating

the aggregate volatility 0.90%, which is around 41% percent of the actual volatility

in the growth rate of real GDP. In E2, the news process mt
t+1 is the only source

of shocks. Note that because θt is fixed at θ, the distribution of news is fixed as

well. With all relevant fundamentals fixed at their steady state levels, the iid news

alone generates small fluctuation at the aggregate level, about 3.67% of the scale of

actual fluctuation. E3 illustrates the importance of the product-specific preference

shocks θt, without news arrivals, capable of generating aggregate fluctuation at a

scale very similar to E1.

1.4.3.2 Industry-level Volatility

Now, we zoom in and take a closer look at each of the experiments compared

with the data. For each industry, I compute the time-series standard deviations in
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Table 1.4: Average Industry-level Volatility

Data 1997-2012 E1: Both E2: News E3: Preference

(1) σ∆s/V 0.15 0.12 0.008 0.12

(2) σ∆v/V 0.081 0.13 0.024 0.12

(3) σ∆u/V 0.13 0.033 0.027 0

(4) σ∆s 5.86 6.11 0.33 6.13

(5) σ∆v 8.04 15.85 2.81 14.10

(6) σ∆u 11.23 3.85 2.95 0.90

(7) σ∆u/s 3.20 3.68 1.31 2.84

the year-to-year changes in the following ratios: sales over aggregate value added

or GDP (∆s/V ), value added over aggregate value added (∆v/V ), and input ex-

penditure over aggregate value added (∆u/V ), as well as standard deviations in

the annual growth rates of real gross output or sales (∆s), real value added (∆v),

and real input expenditure (∆u), input expenditure over sales (∆u/s). Table 1.4

summarizes the volatility in these variables averaged across industries.

Rows (1) to (3) of E1 show part of the estimation results. On average, the

estimated parameters capture the volatility in sales to GDP ratio (∆s/V ), while

generating too much volatility in the value added contribution by industry (∆v/V )

and not enough in the input expenditure to GDP ratios (∆u/V ). This is due to

the structure of the model, where both preference shocks and forecasts affect the

sales and value added, while input expenditure depends on forecasts (hence news)

only. Consequently, while preference shocks alone can generate relatively large

volatility in the sales and value added by industry, the news process contributes

the majority of the model-generated volatility in input expenditure. The reason

is that, in the model environment, the time variant forecasts drive the changes

in an industry’s input expenditure decision. Without news arrival, forecasts are
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Table 1.5: Industry-level Comovement

Data 1997-2012 E1: Both E2: News E3: Preference

(1) ρ∆s,∆V 0.56 0.14 0.38 0.14

(2) ρ∆v,∆V 0.36 0.04 0.03 0.05

(3) ρ∆u,∆V 0.44 0.31 0.05 1

(4) ρ∆s
i,j 0.33 0.01 0.15 0.01

(5) ρ∆v
i,j 0.13 -0.01 -0.01 -0.01

(6) ρ∆u
i,j 0.22 0.09 -0.01 1

constant over time, and consequently the input expenditure is proportional to the

aggregate consumption or aggregate value added, which explains the zero in row

(3). Rows (4) to (6) shows similar results to previous rows in terms of growth rates

in sales, value added, and input uses, instead of ratios over GDP. Volatility in row

(7) is a feature of the model in that the fraction of sales that an industry uses to

purchase inputs reflects its forecasts of future sales relative to current sales, hence

this fraction exhibits fluctuation over time. In absence of the preference shocks and

news process, productivity shocks cannot generate such changes.

1.4.3.3 Industry-level Comovement

The assumption on driving forces of the model, either preference shocks or news

process, explicitly imposes negative relationship between industries. Meanwhile, in-

dustries in the model economy are interconnected via supplier-customer links, which

has the potential of creating positive correlation between industries. It is not unam-

biguous which force dominates when it comes to industry comovement. Table 1.5

shows the correlation coefficients that can measure the comovement and compares

the data and the models. In the data, an industry’s economic activity is on average
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positively correlated to that at the aggregate level and industries also comove with

each other, which is the most important feature of business cycles. Rows (1) to (3)

are average correlation coefficients between aggregate real GDP growth rate (∆V )

and an industry’s sales growth rate (∆s), value added growth rate (∆v), and its in-

put expenditure growth rate (∆u). Although shocks are cross-sectionally negatively

correlated and common aggregate shocks are absent, the models can generate pos-

itive correlations between an industry and the whole economy, with various scales.

Rows (4) to (6) show the correlations of growth rates of sales (∆s), value added

(∆v), and input uses (∆u) between a pair of industries, averaged across 65 × 64

pairs. The effect of cross-sectionally negatively correlated shocks dominates in the

pair-wise correlation of industry value added, while the effect of supplier-customer

links between industries dominates in the sales and input uses. Note that, in E3,

an industry’s input expenditure is always a fixed proportion of the aggregate GDP,

therefore we see the perfect correlation in rows (3) and (6).

1.4.3.4 Input Prices and Uses

Another interesting issue is the relationship between the input prices and the

input uses. Each industry needs to buy a bundle of input goods facing the input

prices, which form an industry-specific input price index. The data show that, on

average, the growth rates of input price index faced by an industry (∆pInput) and

the growth rates of this industry’s input quantity (∆x) are positively correlated. In

addition, the input price index and the changes in the industry’s fraction of sales

used towards input purchases (∆u/s) are positively correlated as well. Results in

Table 1.6 show that the model with news process as the only driving force, E2, is
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Table 1.6: Input Prices and Uses

Data 1997-2012 E1: Both E2: News E3: Preference

ρ (∆x,∆pInput) 0.24 -0.08 0.24 -0.60

ρ (∆u/s,∆pInput) 0.34 -0.14 0.29 -0.27

capable of capturing both of the positive correlations.

Intuitively, an industry expecting better sales condition in the following period

is willing to spend more on its inputs, which shows as both higher level and higher

shares of input expenditure, and which drives up the input price index. When

there are preference shocks only, an increase in the final demand for a certain

product drives up its price, and because more of this product is consumed by the

household, less is used as an input purchased by the industries, which decreases the

input quantities of these industries. Note that, if the productivity shocks act as

the pure driving force, the ratio of an industry i’s input expenditure over its sales

remains constant at βαi.

1.4.3.5 Volatility in Measured Solow Residuals

Productivity shocks are omitted from the three experiments, however, using the

Solow residuals as the measure of the productivity shocks, volatility can still be

observed. In fact, this exercise provides a possible explanation for the volatility in

measured productivity in reality.

To illustrate, consider each experiment as the true economy and treat the gener-

ated data as the observed variables. Then, suppose we view this economy through

the lens of a standard neoclassical model and calculate the Solow residuals from

the value added or GDP. To be consistent with the assumption that labor is the
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Table 1.7: Volatility in Aggregate Solow Residuals

Data 1998-2012 E1: Both E2: News E3: Preference
σ∆a 1.08 1.01 0.08 1.01

only value added input, consider a model with a constant returns to scale aggregate

production technology for the value added Vt,

Vt = atHt, (1.23)

where Ht is the total labor input at time t, Ht =
∑

i hit, and at captures the mea-

sured Solow residuals, which in this case is no different from the labor productivity,

log(at) = log(Vt)− log(Ht). (1.24)

The volatility measure is the standard deviation in the growth rate of at, denoted

as ∆ log(at) = log(at/at−1). Table 1.7 contains the results.

In the absence of productivity shocks, each experiment exhibits a significant

amount of fluctuation in the growth rate of aggregate labor productivity compara-

ble to the data counterpart. This mechanism sheds light on the puzzling observa-

tion that the measured productivity fluctuates significantly over time. While it is

conventional to interpret the changes in productivity as evolvement in production

technology, negative productivity growth does not seem to be convincingly justified

as a slide back. Therefore, it is important to explore other explanations. Table

1.7 shows that either shifting the household’s preference or receiving news about

the future preference or both can potentially explain the volatility in the measured
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productivity. The preference shocks in this model change the relative preference

for all products that the representative household consumes, therefore the rela-

tive prices of the products are changed. The labor supplied to each industry is

also affected. Consequently the contribution to the aggregate value added by each

industry changes as well, which is the main channel through which the preference

shocks generate volatility in the measured productivity. The pure preference shocks

have the direct effect on industry i only if there is a shock to θit, and the indirect

effect takes place due to the input requirement through price changes. The news

takes effect through the forecasts, which alter the input expenditure shares and also

the labor supply. It differs from the preference shocks in that when news changes

forecast of industry i in period t, f̃it, it directly affects the input expenditure made

by industry i and, meanwhile, it affects the sales and labor requirement of all the

supplier industries of i. The effect then trickles down in the following periods along

the supplier-customer links. Note that, in the experiment E2, the preferences are

fixed over time and therefore the news are drawn from a fixed distribution, which

results in a relatively small yet non negligible volatility in the measured productivity

compared to the other two experiments.

1.5 Concluding Remarks

The paper develops a dynamic multi-sector production network model in which

firms receive external information on the future demand structure. Since firms are

connected via an input-output network, news on the future demand of an individ-

ual industry has a global effect. Shocks to future forecasts are transferred upwards

through the supplier-customer connections in the network, from the buyer of an
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input good to the producer. The updated forecasts are reflected in the firms’ deci-

sion on input expenditure, as well as the suppliers’ sales, labor input, and the value

added. The effect is shown both at the industry level and at the aggregate level.

The model is designed to capture the asymmetry in the transmission of individual

shocks in the network, especially the customer-to-supplier direction which cannot

be explained by the conventional productivity shocks. The quantitative results

demonstrate the model’s capability of generating the economic volatility at the ag-

gregate level and at the industry level. The news about future demand can also

explain the positive relationship between input prices and input uses observed in

the data. Perhaps more importantly, the model points out a potential explanation

to the volatility in the measured productivity.

There are interesting issues worth addressing in future research and I briefly

discuss some of them here. In terms of modeling, it may be fruitful to consider

capital accumulation and inventory management. In this paper, for simplicity,

I treat all the intermediate inputs equally and assume full depreciation after one

period, and I assume that labor is the only value-added input. In fact, intermediate

inputs have different rates of depreciation, which is how the BEA draws the line

between capital goods and other materials. My conjecture is that considering the

flows of capital goods between industries and allowing capital to accumulate over

time may (1) prolong the effects of both the preference shocks and the news shocks

and (2) help capture the large volatility in the input expenditure shares. The main

mechanism and the news transmission path will remain unchanged. How explicitly

modeling inventory affects the results is not unambiguous. Intuitively, allowing

for output inventory may dampen the price volatility hence reduces the effect of
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preference shocks. On the other hand, input inventory may amplify the effect of

news, especially if the horizon of news is further than one period, because it allows

the suppliers that are higher on the production chain to react to the news even

earlier. While it can be interesting to explore, modeling inventory complicates the

analysis significantly, and the amount of products that goes into the inventory is

small on the aggregate level (for example, in 2007, the changes in private inventory

accounts for less than 0.3% of total value added.) Now turn to the quantitative

exercise. A natural next step is to consider natural experiments and conduct policy

evaluation. For instance, it is useful to see how the industries react to an increase

in military expenditure and/or to the news of that increase. More insights may

be gained by augmenting the model to study international trades and studying the

spill-over effects between countries.
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Chapter 2

Endogenous Productivity

Dispersion over the Business

Cycles

2.1 Introduction

Cross-sectional productivity dispersion tends to rise in bad times. This is the

case for productivity at the plant, firm, and industry level. Recently, this phe-

nomenon has attracted growing attention from economists, with much new evi-

dences from micro-level data sets.1 However, the significantly negative correlation

between uncertainty and aggregate economic conditions is often treated as a cali-

bration discipline, and not much work has been done to explain it.

1Examples are Higson, Holly and Kattuman (2002), Higson, Holly, Kattuman and Platis
(2004), Bloom (2009), Bloom, Floetotto and Jaimovich (2010), Bachmann and Bayer (2011),
Arellano, Bai and Kehoe (2009), Bachmann, Elstner and Sims (2011), Chugh (2010), Kehrig
(2011), to name a few.
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In this paper, I provide a possible mechanism through which the worsened

aggregate economic conditions lead to an increase in the measured dispersion in

firm/plant-level productivity.2 The model employed is close to the standard indus-

try dynamics model with firm entry and exit built in the seminal work of Hopenhayn

(1992), with aggregate fluctuations in ”technology shocks” as the driving force of

business cycles. Meanwhile, it differs from the standard model in that in each pe-

riod, after observing the aggregate ”technology shock realization,” a staying firm

has the option to adopt a risky project, in addition to a standard safe project

whose productivity realization is determined by the aggregate state. Given the

same capital input, the output and productivity associated with the risky project

is a mean-preserving spread of the safe project’s output and productivity. Although

firms are risk neutral and the risky project does not give a higher flow payoff, there

is a positive fraction of firms that strictly prefer to take the risk. This is be-

cause the option of exit provides a lower bound for a firm’s continuation value as

a function of working capital and creates a local convexity in it. Therefore, firms

in this region have the incentive to randomize over their future values by choos-

ing the risky project, and when the uncertain productivity is realized, dispersion

arises. This setup resembles Vereshchagina and Hopenhayn’s (2009) model of occu-

pational choice. In bad times, this risky region gets larger and the fraction of risky

firms rises. Consequently, the average or aggregate riskiness in firms’ production

increases, and so does the realized productivity dispersion. Despite the fact that

the model is fairly standard with one little twist, it is capable of generating pro-

ductivity dispersion negatively correlated with the aggregate state of the economy,

2This paper is not on firm theory. In what follows, the difference between a firm and a plant
is not distinguished. The optimal number of plants/establishments a firm should have, although
an interesting and important question, is not the focus.
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with a correlation coefficient quantitatively in line with the data.

This model’s mechanism is strongly motivated by empirical findings. It has

features and implications that mirror the following micro-observations: (1) business

cycle indicators lead the change in productivity dispersion; and (2) in recessions,

more firms become risky and the exit rate is therefore countercyclical; (3) new firms

are relatively small and small firms have a low survival rate; (4) small and/or young

firms tend to bear more risk and/or show larger productivity dispersion.

The first two points involve the cyclical change. The increase in measured

cross-sectional dispersion of plant- and/or firm-level productivity lags the wors-

ened business cycle indicators, for example, the GDP growth rate, as shown in

Bachmann, Elstner and Sims (2011) and Kehrig (2011) among others. A similar

response is observed in the stock market. The last point relates to the key feature

of the model. Although, unfortunately, I do not have direct observations from the

data, there is indirect evidence that implies that there is a larger fraction of risky

firms in recessions, consisting mainly of small firms. The exit rate rises in bad

times. The findings on the relation between firm size and exit rate show that small

firms and establishments drive the negative correlation between the exit rate and

business cycles. This indicates that small firms are more sensitive to the cyclical

change, as the model predicts. The increased exit rate in bad times is shown in pa-

pers such as Campbell (1998) and Jaimovich and Floetotto (2008) and is discussed

in Section 2.2. Perhaps more direct evidence is found in the cyclical pattern of price

dispersion recently documented in Bachmann and Moscarini (2011) and Berger and

Vavra (2011). Cross-sectional dispersion in price changes is countercyclical, both

within and across sectors. Meanwhile, the dispersion is positively correlated with
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the frequency of adjustments, which is also countercyclical. The higher adjustment

frequency in bad times can be interpreted as a result of firms doing more frequent

risky pricing experiments due to lower experimentation cost, as in Bachmann and

Moscarini (2011).

The latter two points are closely related, as the exit hazard is a special form of

firm-level risk. The relation between firm size and dynamics is well established and

can be traced back to, for example, Dunne, Roberts, and Samuelson (1988). This is

discussed further in Section 2.2. The findings on firm size and riskiness mainly come

from two directions. First, it is well established in the entrepreneurship literature

that entrepreneurs, especially poorer ones, bear a substantial amount of risk and

tend to hold largely undiversified assets by investing heavily in their own firms,

despite little or no premium in doing so. The risk here is interpreted as either

the dispersion in small firm owners’ personal income or the dispersion in return

to private equity. At the same time, privately owned businesses are, on average,

smaller in scale, measured in terms of either capital stock, number of employees,

or output.3 The second stream of empirical findings, more relevant to my work,

regards the productivity and firm size differential. Gertler and Gilchrist (1994),

using the Quarterly Financial Report for Manufacturing Corporations, find that

smaller firms exhibit a higher standard deviation in sales growth rates than larger

ones do. Dhawan (2001) looks at publicly traded firms in Compustat and finds that

small firms have a higher failure rate and a larger standard deviation in profit rate,

while, conditional on surviving, small firms show a higher average profit rate. The

superior profitability in small firms is reducd if profits are adjusted according to

3Examples of work in this direction are Hamilton (2000), Moskowitz and Vissing-Jorgensen
(2002), and Herranz, Krasa and Villamil (2009). See Quadrini (2009) for a detailed review.
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the failure rates. Here, Dhawan defines the profit rate as operating income per unit

of capital, and he defines the firm-level riskiness or volatility as the variance in the

random realizations of production. Using his definitions, my model generates the

same pattern of profit rate and riskiness differential by size. There is also evidence

from outside the U.S. For example, using a firm-level German data set, USTAN,

that covers the majority of German industries, Bachmann and Bayer (2011) find

decreasing productivity risk in firm size, where the risk is measured as the average

cross-sectional standard deviation in log-differences in firm-level Solow residuals.

The goal of this paper is to complement existing theories on what causes the

negative correlation between business cycles and cross-sectional productivity disper-

sion. It is true that, if measured uncertainty and aggregate economic conditions are

correlated, the cause can be from either direction. The real option literature that

aims to explain such countercyclicality suggests the opposite direction for a causal

relationship, from increased uncertainty to decline in aggregate economic activity.

An influential paper in this area is Bloom (2009), which was later generalized by

Bloom et al. (2010). Bloom shows that increased uncertainty, through the channel

of adjustment costs to capital and labor, leads to a larger option value of waiting

and a pause in investment and employment. A sizable drop in aggregate economic

activity occurs because of this ”wait-and-see” effect. The time-varying uncertainty

is twofold in his model: (1) the time series standard deviation of productivity can

be either high or low, evolving as a Markov process, and (2) the one-step-ahead con-

ditional variance of this Markov process depends on current realization. However,

Bachmann and Bayer (2011) and Bachmann, Elstner and Sims (2011) show that

there is little evidence of sizable ”wait-and-see” effects in the data. In addition, the
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process of entry and exit is neglected. Arellano, Bai and Kehoe (2009) do consider

the entry and exit dynamics that interact with financial constraints, but, again,

the causal direction is from a time series uncertainty shock to a sizable response in

aggregate variables.

It is important to note that the importance of the uncertainty shock is not de-

nied in this paper, and the inverted causality may still be true. But there is an

issue regarding measuring uncertainty, which relates to the lead-lag relationship

between uncertainty and cycles. Time series variances of major business condi-

tion indicators are often interpreted as uncertainty. In addition, a parallel family

of uncertainty measures concerns the realized cross-sectional dispersion in micro-

level performance, which includes, among other things, the cross-sectional vari-

ance in measured firm-level total factor productivities, levels or growth rates, and

sales growth rates. However, realized cross-sectional dispersion is only a proxy for

uncertainty. Besides, increased micro-level cross-sectional dispersion tends to lag

recessions. This suggests a possible causality from an aggregate economic state

to measured uncertainty, in particular, cross-sectional dispersion in productivities.

This paper looks at this interesting issue from an angle different from the one

adopted by the aforementioned literature.

The other paper that entertains the same causal direction as mine is Bachmann

and Moscarini (2011). They build a model in which firms need to run costly exper-

imentation and hence learn about their own market powers. As a result of lower

experimentation costs, the dispersion of productivity measured in sales is larger

during recessions due to more experiments being conducted. My model shares a

similar feature with theirs, in that the option of exiting promotes the risky per-
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formance of firms, while the rest of the mechanism is very different. At the same

time, my model differs from theirs by predicting that smaller firms are the major

contributors to productivity dispersion and entry/exit dynamics.

The rest of the paper is organized as follows. Section 2.2 describes the stylized

facts on the cyclical dispersion of productivity, firm size distribution, and dynamics.

Section 2.3 contains a simple three-period model that illustrates the mechanism and

shows preliminary results. Section 2.4 takes the simple model to an infinite horizon.

Section 2.5 concludes.

2.2 Empirical Facts

Cyclical Productivity Dispersion. Eisfeldt and Rampini (2006) use data

from Compustat and find countercyclical movement of dispersion in Tobin’s q. At

the same time, they show a similar pattern for dispersion of total factor productiv-

ity growth rates at the four-digit SIC level, with a correlation of −0.465. Bloom

(2009) shows that U.S. stock market volatility, as measured by the VXO index,

is positively correlated with the cross-sectional standard deviations of firm profit

growth, firm stock return, and industrial total factor productivity (TFP) growth

at the four-digit SIC level, but its correlation with industrial production is signif-

icantly negative. Moreover, Bloom, Floetotto and Jaimovich (2010) take an even

closer look at this issue and examine the Census of Manufactures. They find that

various measures of uncertainty are significantly countercyclical at all establish-

ment, firm, industry, and aggregate levels. Bachmann and Bayer (2011) use a long

panel of German firm-level micro-data that covers all single-digit industries to show

that the correlation between dispersion in growth rates of firm-level TFP, sale, and
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value added and economic performance is significantly negative. This pattern is

maintained in subsamples divided by sector and by size. Although taken from

a different economy, their USTAN data set has the clear advantage in coverage.

Moreover, by looking at different size quantiles, they document that average time

series productivity dispersion in smaller firms tends to be larger than in bigger

firms. Chugh (2010) explores the profitability series constructed by Cooper and

Haltiwanger (2006) from the Longitudinal Research Database and calculates the

cyclical correlation between average productivity and the dispersion of profitabil-

ity to be −0.97. However, the sample is of relatively short length, covering only

1977-1988, a period that exhibits an unusually large degree of opposite movement.

Kehrig (2011) focuses more on the dispersion of productivity levels rather than

profit rates. He looks at the establishment-level data of the U.S. manufacturing

sector that consists of the Annual Survey of Manufactures, the Census of Man-

ufactures, the Plant Capacity Utilization Survey, and the Longitudinal Business

Database. Although the manufacturing sector as a whole shows a countercyclical

dispersion in establishment-level TFP, the durable goods industries show stronger

cyclicality and it is the firms in the bottom quantile of the productivity distribution

that drive the dispersion dynamics.

In this paper, I study how the aggregate economic state affects the dispersion

in micro-level productivity. To link my model to data, ideally, the aggregate state

is the average productivity measured as the cross-sectional average of plant-level

TFP, and the dispersion is then the variance or inter-quantile range of plant-level

TFP. Lacking the plant-level data, I use industry data at the four-digit SIC level

to approximate the desired measures. The paper is silent on the validity of this
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Figure 2.1: Cyclical Indicators and Variances in TFP. The upper panel plots differ-
ent cyclical indicators, Real GDP (dotted line), Real total manufacturing output
(solid line), Average TFP across industries at the 4-digit SIC level (dashed line).
The lower panel shows the cyclical behavior of TFP dispersion measured as the
variance (solid line with dots), together with Average TFP (dashed line). All series
are HP-filtered. The shaded bars indicate official NBER recessions. Real GDP data
are from FRED; TFP series are from MIPD, as is Manufacturing output measured
as Real Total Shipments.

approximation, but Bloom et al. (2010) show that the countercyclical patterns of

productivity dispersion are similar at the plant, firm, and industry levels.

The upper panel of Figure 2.1 shows the co-movement of different business cycle

indicators. In particular, I claim that the average TFP is a valid aggregate state

indicator for the manufacturing sector. The correlation coefficient between average

TFP (HP filtered) and sectoral output (HP filtered) is 0.86 with a p-value of scale

10−9. The average TFP corresponds to the cyclical indicator used throughout the

model, and the fluctuation in TFP represents a technology or productivity shock,

which drives the dynamics of the model economy. Following Eisfeldt and Rampini
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(2006) and Bloom (2009), I use dispersion in the cross-sectional distribution of the

TFP growth rate at the four-digit SIC level to approximate that at the individual

level, without arguing the validity of the approximation. Note that the desired

distribution is that of the levels of TFP instead of growth rates. The result is the

lower panel of Figure 2.1, which illustrates the countercyclical movement of the

variance in TFP.4 The precise correlation coefficients for the U.S. manufacturing

sector are documented in detail in both Bloom, Floetotto and Jaimovich (2010) and

Kehrig (2011) and are summarized in Table 2.1 together with my own calculations.

Due to the limitations of the data, I use dispersion measures for the TFP growth

rate instead of the TFP level. The corresponding cyclical indicators are then the

GDP growth rate, the sectoral output growth rate, and the average TFP growth

rate. To be comparable to other works, I include only the GDP growth rate and

GDP HP residuals in Table 1.

Firm Dynamics. One important cyclical feature of firm dynamics that mo-

tivates this paper is that the exit rate moves countercyclically. This phenomenon

is well documented in Campbell (1998) who uses ASM data between the second

quarter of 1972 and the last quarter of 1988. In addition, Jaimovich and Floe-

totto (2008) assemble a new annual data set from 1956 to 1996 at the firm level

across a broader range of industries and find that despite the difference in num-

bers, the exit rates of all examined industries are countercyclical. To illustrate firm

dynamics over time, I obtain annual data from 1977 to 2009 in Business Dynamics

Statistics (BDS) at CES, a data set that recently became publicly available. To

4I obtain data from the same sources as the aforementioned two papers, yet with more recent
data up to 2005. I get the same significantly negative correlations as in those two papers if I
use only the same range of data as they do. However, if I include the updated data as shown in
Figure 2.1, I find a negative correlation that is not significant and is much smaller in absolute
scale, which is less than 0.11.
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Table 2.1: Correlations Between Dispersion and Cyclical Indicators

U.S. Manufacturing ∆GDP GDP Avg. ∆TFP
Kehrig (2011): Establishment level TFP Std. Dev.
(1) Durables -0.420 -0.528 –
(2) Non Durables -0.172 – –
Bloom et. al. (2010): Establishment (E) and firm (F) level.
(3) ∆Output, IQR, E -0.364 – –
(4) ∆TFP, Std. Dev., E -0.273 – –
(5) ∆Sales, IQR, F -0.265 – –
(6) Stock Returns, IQR, F -0.339 – –
Calculated from NBER-CES MIPD: Industry level ∆TFP
(7) IQR -0.502 -0.298 -0.184

(0.000) (0.021) (0.108)
(8) Std. Dev. -0.262 -0.241 -0.129

(0.038) (0.051) (0.194)
(9) Var. -0.249 -0.245 -0.123

(0.046) (0.048) (0.206)

The first column of results shows the correlation coefficients (p-value) for real GDP

growth rate, the second for residuals of HP-filtered real GDP, and the last for the

weighted average TFP growth rate in the manufacturing sector. Rows (1) and (2) are

taken from Tables 3 and 4 in Kehrig (2011), in which the micro-level data sources are

mainly ASM/CM/LBD, continuously covering the period of 1972-2005 at an annual fre-

quency. Rows (3) to (6) are from Table 1 in Bloom, Floetotto and Jaimovich (2010).

Establishment-level data are also from ASM/CM/LBD, 1972-2006, while the firm-level

infomation is from Compustat at quarterly frequency, 1967:II-2008:III for sales growth

and 1969:I-2010:III for stock returns. Rows (7) to (9) are TFP dispersions across indus-

tries at the four-digit SIC level and the NBER-CES Manufacturing Industry Productiv-

ity Database is the source, covering 1959-2005 at an annual frequency. Except for the

inter-quantile range (IQR), all other moments of industrial TFP growth are weighted by

the real value of total shipments. Numbers in parentheses are one-sided p-values under

the null of non-negative correlation.
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be consistent with micro-level evidence on countercyclical dispersion, I look only at

establishments in the manufacturing sector.5

Table 2.2 summarizes the establishment entry and exit rates by firm size.6 A

firm is classified as small if it has fewer than 50 registered employees. This is again

not ideal, but subject to data availability. The preferred size classification is by

capital stock. A more detailed illustration of entry and exit rates by year and by

establishment size can be found in the Appendix.

Comparing establishment dynamics in small firms to those of large ones, they

are of a much larger scale, more volatile, and more cyclical. Therefore, in the

quantitative model, I focus only on the dynamics in small firms and treat the entry

and exit of large firms mainly as exogenous, and they happen only with small

probability.

The model I build in the following sections tries to explain the negative correla-

tion between average productivity and cross-sectional productivity dispersion. The

main mechanism emphasizes the different behavior between small and large firms,

5A noteworthy issue here is how to define an entering establishment and an exiting one. Ac-
cording to the official overview of the BDS data set, ”An establishment opening or entrant is an
establishment with positive employment in the current year and zero employment in the prior year.
An establishment closing or exit[ing] is an establishment with zero employment in the current year
and positive employment in the prior year. The vast majority of establishment openings are true
greenfield entrants. Similarly, the vast majority of establishment closings are true establishment
exits (i.e., operations ceased at this physical location). However, there are a small number of
establishments that temporarily shutdown (i.e., have a year with zero employment) and these
are counted in the establishment openings and closings.” Therefore, an inevitable caveat is that
although of relatively small number, an ”idling” establishment can show up in the data first as
an exiting one, and then as an entrant, for potentially many times. However, one clear advantage
especially over firm-level data is that mergers and acquisitions are not reasons for disappearing
units. Therefore, I can safely assume that exiting establishments suffer from low realizations of
productivity.

6The entry and exit rates are indeed calculated using the numbers of newborn establishments,
closed establishments, and existing establishments. However, the size is classified using the number
of employees in a firm, instead of an establishment. One can only argue that large firms tend to
own large establishments, and therefore large establishments exhibit similar dynamics to the ones
owned by large firms. Otherwise, it is not clear whether this is a valid approximation.
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Table 2.2: Entry and Exit Rates in Manufacturing Sector

U.S. Manufacturing 1977-2009
Total Large Small

(1) Avg. Entry Rate (%) 9.36 5.18 31.18
(2) Avg. Exit Rate (%) 9.28 6.00 30.06
(3) Std. Dev. (EntryHP ) (%) 0.52 0.64 1.85
(4) Std. Dev. (ExitHP ) (%) 0.67 0.90 1.56
(5) Corr(EntryHP , (Avg. TFP)HP ) 0.20 0.19 0.21

(0.29) (0.33) (0.29)
(6) Corr(ExitHP , (Avg. TFP)HP ) -0.26 -0.17 -0.23

(0.17) (0.37) (0.24)
(5’) Corr(∆Entry, Avg. ∆TFP ) 0.22 0.13 0.31

(0.26) (0.51) (0.11)
(6’) Corr(∆Exit, Avg. ∆TFP) -0.10 0.06 -0.06

(0.62) (0.76) (0.73)

The data source is still BDS. The binary grouping rule in size can be found

in the caption for Figure 2.2. In Rows (1) and (2), the numbers are simple

time series averages. Rows (3) and (4) are time series standard deviations for

HP residuals. Rows (5) to (6) are correlations for HP residuals, and Rows

(7) and (8) are for changes. Numbers in parenthesis are p-values. I choose to

compute correlation coefficients in this way instead of using original entry/exit

rates because there is a declining trend in both series. This is an interesting

observation for its own sake, but this paper is silent on it.
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Figure 2.2: Cyclical Behavior of Entry and Exit in Manufacturing Sector by Size.
A small firm is classified as one with fewer than 50 registered employees, and a
large one with at least 50. This figure shows the original series of entry (solid lines)
and exit (dashed lines) rates by size. The two thinner lines at the bottom are for
large firms, and the two thicker ones are for small firms. Data on entry and exit
rates are from BDS of CES.

which leads to observed differences in their entry and exit dynamics.

2.3 A Simple Model

To highlight the mechanism, I start from a simplified and tractable three-period

version of the full model. I remove some features of the working model that are

not as crucial and focus only on the incumbents’ problem. The main idea is that

the option to exit promotes risk taking of small firms by creating a local non-

concavity in a firm’s continuation value function, which in turn generates a non-

degenerate dispersion in productivity. Moreover, as is shown in the comparative

statics analysis, such dispersion becomes larger in bad times, due to a larger fraction

of risk-taking firms. The same mechanism drives the infinite horizon model as well.
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2.3.1 Setup

There are 3 periods, t = 0, 1, 2. There is a continuum of risk-neutral firm owners,

each of whom owns a firm with different levels of initial resources w0 ∈ [0, w̄].

Assume that there is only one final good and each firm has only one plant that

produces this good. The c.d.f. of owners’ initial endowment of the single good is

given as G (w0). At period 0, initial wealth w0 can be divided into investment k0

for future payoff and immediate consumption w0−k0. If an owner decides to invest

k0, then she will get w1 = F (Z, k) as period 1 wealth, where

F (Z, k) = Zkα, 0 < α < 1,

and Z represents the realized productivity of the project the firm owner chooses

after the investment decision. A production project is associated with a project.

Assume that production requires full attention of the firm’s owner and uses the full

capacity of the plant; hence, a firm cannot undertake multiple production projects

simultaneously. An owner can choose one and only one out of two available projects:

a safe one and a risky one, differing in the riskiness and realizations of productivity.

For the safe project, Z = A for sure, while for the risky one, with probability

p ∈ (0, 1), Z = z̄ > A, and with probability 1 − p, Z = z = 0. Both projects

give the same expected value of Z, that is, pz̄ + (1− p) 0 = A.7 The risky project

has a variance in productivity as a function of p and z̄, σ2 (p, z̄) = p (1− p) z̄2.

As a result of the linearity of F (Z, k) in Z, the expected flow output of the risky

project is the same as the safe one. Under this setup, A corresponds to the average

7For tractability, I assume only one type of risky technology and binary possible realization of
it. In fact, a risky technology can be represented by a random variable Z with any distribution
that is a mean-preserving spread of A.
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Figure 2.3: Timing of the Simple Model.

establishment-level productivity measured as TFP in the data and plays the role of

economic condition indicator (or cyclical indicator in the full model); the riskiness of

the risky project represents the risk at the establishment level, while its aggregated

counterpart measures the dispersion in productivity.

2.3.2 Analysis

At period 1, after the uncertainty in Z is realized, the agent can decide whether

to close her firm, exit the industry and get an outside option value V 0, or stay.

Conditional on staying, she makes the investment choice k1 and project choice

again based on period 1 wealth w1. In the last period, she simply consumes her

final wealth w2. The objective of an agent with initial wealth w0 is to maximize

her discounted consumption, with discount factor β:

V0 (w0) = max
0≤k0≤w0

{(w0 − k0) + βmax {V1 (Akα0 ) , (1− p)V1 (0) + pV1 (z̄kα0 )}}

where Vt (wt) is the time t value for an agent with wealth wt.
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It is convenient to work backwards. At time t = 2,

V2 (w2) = w2.

At time t = 1, an agent with k1 > 0 will be indifferent between operating a safe

project and a risky one, simply because Akα1 = pz̄kα1 . Assume that all agents will

perform safely in this case, which is consistent with their choice if they were risk

averse. For simplicity, borrowing is not allowed, and the period 1 value for a staying

firm will be:

V 1
1 (w1) = max

0≤k1≤w1

{(w1 − k1) + βAkα1 } .

Let k∗ be the optimal capital choice for this firm, then

k∗ = (αβA)
1

1−α .

The value of a firm with wealth level w1 at the beginning of period 1 will be given

by

V1 (w1) = max
{
V 0, V 1

1 (w1)
}
.

Let w∗1 be such that V 0 = V 1
1 (w∗1) . Note that there is a kink at w∗1 and V1 (w1) is

convex in a neighborhood of w∗1. This gives a firm with relatively low wealth level

an incentive to take a risky project before it enters period 1. At t = 0, a firm makes

the investment decision and chooses a project:

V0 (w0) = max
0≤k0≤w0

{(w0 − k0) + βmax {V1 (Akα0 ) , (1− p)V1 (0) + pV1 (z̄kα0 )}}

= max
0≤k0≤w0

{
(w0 − k0) + βmax

{
V 0, V 1

1 (Akα0 ) , pV 1
1 (z̄kα0 ) + (1− p)V 0

}}
.
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To explicitly characterize a firm’s project choice, it is useful to introduce the

following condition on parameters.

Condition 1. 0 < V 0 < α
2α2

1−α2 β
1+α2

1−α2 z̄
1

1−αp
2α2

1−α2 (p1+α − p2) / (1− p) .

The risky and safe continuation values intersect at most once in the region where

they are both greater than V 0. This condition ensures the existence of the intersec-

tion and makes the analysis tractable as shown in Proposition 3. The intuition is

that given (z̄, p), the option value V 0 of exiting cannot be too high; otherwise, exit

becomes very appealing, and so does the risky project. If the condition is violated,

then all staying firms strictly prefer the risky project. In particular, if V 0 is given,

this happens when A is low enough.

Proposition 3. At t = 0, if Condition 1 holds, then the continuation value func-

tions associated with risky and safe projects intersect only once, and ∃kI0 and kII0

such that 0 < kI0 < kII0 < k∗ and the decision rule of a firm’s owner with initial

wealth w0 will be one of the following:

1. If 0 < w0 ≤ kI0, she consumes all w0 in period 0 and exits in period 1 for sure;

2. If kI0 < w0 < kII0 , she invests all w0 in a risky project in period 0, then with

probability p, w1 = z̄kα0 , she in turn invests all w1 in period 1; with probability

1− p, w1 = 0, she exits in period 1;

3. If kI0 ≤ w0 ≤ kII0 , she invests all w0 in a safe project in period 0;

4. If w0 > k∗, she invests k∗ and consumes the rest in both periods.

Figure 2.4 illustrates the agent’s decision rule specified in Proposition 3. The

interesting region, or the ”risky region,” is the interval
[
kI0, k

II
0

]
. The exiting option
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0 k0

V

V 0

exit, V 0

kIexit kIIrisky tech. k∗safe tech.

safe tech. V 1
1 (Akα0 )

risky tech. pV 1
1 (z̄kα0 ) + (1− p)V 0

Figure 2.4: Continuation Values as Functions of Control Variable k0. Illustration
of Proposition 3. If k0 ≤ kI , the wealth at time 1 is so small that the firm prefers to
exit. If k0 ∈ (kI , kII), the firm chooses risky asset. If Z = z̄, w2 = z̄kα0 , if Z = 0, the
firm exits and get V 0. If k0 ≥ kII , the firm chooses the safe technology and obtains
V 1

1 (Akα0 ) for certain. The highlighted portion is the maximized continuation value
for each k0, max{V 0, V 1

1 (Akα0 ), pV 1
1 (z̄kα0 ) + (1− p)V 0}.
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forms a lower bound in value function that is higher than in the case without

exiting. This new lower bound alters the shape of the continuation value function,

in particular, the continuation value function has a local convexity if safe project

is chosen. This non-concavity region is roughly the same as the interval
[
kI0, k

II
0

]
,

in which firms have a limited amount of capital stock. Firms that fall into this

region have the incentive to smooth out such convexity by entering a lottery and

randomizing over possible outcomes, which is exactly the role that risky project

plays in this model. The fraction of risk-taking firms will then be determined given

the initial distribution G (w0), and each of these firms bears the same risk in terms

of the randomness of productivity.8 As can be seen below, a change in A drives

the changes in the risky region and the fraction of risk-taking firms and leads to a

different productivity dispersion.

Suppose that with probability p the risky project is realized to have high pro-

ductivity. The cross-sectional variance in realized productivity in period 0, denoted

as Γ (p, z̄), is a function of p, the probability of good realization of the risky project,

and z̄, the good realization of productivity.

Γ (p, z̄) = Ew0,Z

(
Z2
)
− [Ew0,Z (Z)]2

= σ2 (p, z̄) Λ (p, z̄) ,

where Z represents the productivity of the project a firm chooses, and Λ (p, z̄) :=

G(kII0 )−G(kI0)
1−G(kI0)

in which kI0 and kII0 are functions of p and z̄ as well. σ2 (p, z̄) is

8Once again, the same risk results from the assumption that only one way of randomization is
permitted in the model for simplicity. To relax this restriction, one can assume that each firm can
choose any distribution on productivity so long as the expectation remains A, which results in
a risky region larger than

[
kI0 , k

III
0

]
. However, while making the model much more complicated,

this will not alter the result qualitatively, and neither will it provide more insight into the model.
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simply the variance of the Bernoulli distributed productivity of the risky project,

while Λ (p, z̄) represents the measure of firms in the risky region. Γ (p, z̄) is ex ante

variance and coincides with realized dispersion in productivity, assuming a form of

law of large numbers holds. At the same time, the aggregate or average output in

period 0, O (p, z̄), is:

O (p, z̄) = Ew0,Z (F (Z, k0))

= pz̄

∫ k∗

kI0

wα0 dG (w0|k0 > 0) + pz̄ (k∗)α
1−G (k∗)

1−G (kI0)
.

2.3.3 Comparative Statics

The nature of the simple model does not permit cyclical features. Therefore, I

will instead analyze the comparative statics mimicking different times of business

cycles. In particular, I use A, the average productivity, as the economic condition

indicator, which corresponds to the average TFP in the data. In the model, a

change in A can result from either a change in p, or in z̄, or in both. Provided that

the bad outcome of the risky project is normalized to be zero, z̄ then determines

the range, the variance of the Bernoulli productivity σ2 (p, z̄), and the measure of

the risky region Λ (p, z̄). At the same time, σ2 (p, z̄) and Λ (p, z̄) are also nontrivial

functions of p. When A, p, and/or z̄ changes, the resulting change in the riskiness of

a risky project, that is, variance σ2 (p, z̄) or range z̄, is called the ”riskiness effect,”

as such change directly affects the riskiness of available project; and the change in

the measure of firms in the risky region, Λ (p, z̄), is the ”mean effect,” as the change

in mean A determines the slope of continuation functions, which in turn affects the

width of the risky region. The interesting one is the mean effect, which highlights
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the novel mechanism of the model; therefore, I consider a particular change in A,

such that z̄ is held unchanged and p is controlled for in a certain way to fully

eliminate the riskiness effect, and I examine the resulting mean effect.

Proposition 4. Let V 0 and z̄ remain unchanged and assume Condition 1 always

holds. Let A ∈
{
AH , AL

}
=
{
pH z̄, pLz̄

}
, pH and pL be such that pH > pL > 0.

Suppose the distribution of initial wealth G (·) is Pareto or uniform and the lower

bound of its support is below kI0 when the good outcome of the risky project is w.p.

pH . Then:

1. O
(
pH , z̄

)
> O

(
pL, z̄

)
;

2. Λ
(
pH , z̄

)
< Λ

(
pL, z̄

)
.

To control the riskiness effect, assume pH + pL = 1, then:

3. σ2
(
pH , z̄

)
= σ2

(
pL, z̄

)
= z̄2pHpL;

4. Γ
(
pH , z̄

)
< Γ

(
pL, z̄

)
.

According to this proposition, given z̄ fixed, A (or p) summarizes the aggregate

state; higher A then means good times. When the aggregate state is good, the

total output is high, and this is always the case whether the riskiness effect is

controlled for or not. Meanwhile, the risky region is smaller in good times, which

in turn leads to a smaller fraction of risk-taking firms, regardless of the riskiness

effect. The assumption on Pareto or uniform distribution is not very restrictive. In

fact, it can be any distribution that results in the same pattern of change in the

fraction of risky firms. I choose Pareto distribution to mimic the actually observed
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size distribution of firms, which is only a sufficient but not necessary condition for

the desired change in risky fraction. When the riskiness effect is controlled for,

the riskiness of a risky project remains unchanged; therefore it is the change in

the fraction of risk-taking firms that drives the change in resulting productivity

dispersion, or the average riskiness that firms choose to take, measured as the

variance in productivity.

If z̄ is not fixed or p is not controlled for in such a way, then it is impossible to

disentangle the mean effect from the riskiness effect, and these two effects jointly

determine the resulting change in the cross-sectional dispersion in productivity. In

fact, in the calibrated quantitative model, it turns out that the riskiness effect is

too small to a generate significant difference in simulated results.

Figure 2.5 illustrates what happens to the model if A decreases, as described in

Proposition 4. When A is low, the exiting threshold increases and more firms exit.

At the same time, low A also leads to a larger risky region and a greater fraction of

risk-taking firms; so now there are more firms that strictly prefer the risky project.

As a result, if the change in A is controlled for as specified before, the average risk

that firms choose to take is also larger and so is the realized productivity dispersion.

To summarize, the key step for the model to generate a countercyclical productivity

dispersion is the change in the risky region as the aggregate state changes. And it

is mainly an enlarged fraction of risk-taking firms that causes a larger productivity

dispersion in bad times. This mechanism remains in the quantitative model with

infinite horizon. In fact, if the aggregate state follows a Markov process with only

two possible outcomes of AH and AL controlled for in a similar way, then without

introducing other features, the negative correlation between the aggregate state
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safe (AH).

risky (AH).
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risky (AL).

risky region (AL)

Figure 2.5: Comparative Statics. The continuation functions move downwards
when the average productivity decreases from AH to AL.
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and productivity dispersion is still almost perfect.

2.4 Quantitative Model

The simple three-period model illustrates the main mechanism in a tractable

setting. However, it is only feasible to look at the comparative statics in an es-

sentially static model with three stages. Therefore, a richer model with infinite

horizon is built in this section to include more realistic business cycle features and

to examine the quantitative performance of the mechanism.

2.4.1 Setup

Time is discrete, with infinite horizon. The firms that have survived at least one

period are called incumbents. There is a constant mass M > 0 of potential entrant

firms every period, each of which draws its initial capital k0 from a distribution

G0 (k0). G0 (·) determines the number and size distribution of newly born firms.

Once it has entered, an entrant acts as an incumbent thereafter as long as this firm

stays. The production function is the same as in the simple model, F (Z, k) = Zkα,

with 0 < α < 1 and Z being the realized productivity depending on project choice.

At the beginning of each period, all firms observe average productivity A. An

incumbent firm owner makes the choice between staying and exiting; meanwhile,

all firms also face an exogenous exiting probability η > 0. I allow additional

exogenous exiting to generate the death of large firms, which always choose the

safe project, as in the simple model. If an incumbent exits, the owner closes her

firm and sells all capital stock. Once exiting, the firm cannot re-open for business
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again in the future. A staying firm then decides the amount of the next period’s

working capital k′ and whether to adopt the safe project or the risky one. Again,

assume the full attention of a firm’s owner and complete utilization of plant capacity

as a prerequisite of production. After production, capital depreciates at rate δ.

Under these settings, firms in this economy are heterogeneous in realized produc-

tivity, capital stock, and depreciation rate in each period; provided a realization of

the aggregate state, project choice, investment, and depreciation jointly determine

the incumbent’s next period disposable resource.

The aggregate state for the model economy A evolves as a Markov chain with

A ∈ A = {A1, ..., ANA}, and transition probability πij = Pr (Aj|Ai). In particular,

this Markov chain is a discretized AR(1) process, such that lnAt = ρA lnAt−1+σuut,

where ρA ∈ (0, 1) is the serial correlation, and ut ∼ N (0, 1) is white noise. Following

conventional real business cycles models, I assume time-invariant volatility in A, in

terms of constant σu. This implies that the driving force of this modelled economy

is the traditional ”technology shocks,” that is, the change in the ”first moment”.

This is different from Bloom (2009) and Bloom et al. (2010), who use time-varying

higher moments as the pure source of aggregate fluctuation. Meanwhile, this is also

distinct from, for example, Bachmann and Bayer (2011) and Chugh (2010), who

allow time-varying higher moments in addition to the usual first moment movement

to account for the countercyclical dispersion observed in the data. I do not allow

σu to change over time based on the following considerations: (1) σu is time series

volatility, which is not the same as the observed cross-sectional dispersion, (2) this

model emphasizes a mechanism through which time-varying A generates realized

productivity dispersion, and there is no need to introduce additional variation, and
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Investment

Tech. Choice
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Time t+ 1

Figure 2.6: Timing of the Quantitative Model.

(3) fixed σu implies fixed unconditional mean of A.

Production is costly. In each period, a staying and active firm needs to pay a

fixed operating cost, and if the firm needs to increase or decrease its capital stock,

it pays a capital adjustment cost as well. Mainly following Cooper and Haltiwanger

(2006) and Bloom (2009), I assume the capital adjustment cost consists of two parts:

(1) a non-convex cost, and (2) a transaction cost. The non-convex cost represents

the opportunity cost when a firm is under capital adjustment. Specifically, this

firm forgoes a fraction ck of its production if there is capital adjustment in a given

period. The transaction cost represents the partial irreversibility. When a firm

needs to increase capital, the price paid for every unit of new capital is normalized

to be one, where the price is interpreted as how many units of output are needed

to get one unit of capital. However, if a firm wants to reduce capital, the selling

price for each unit of capital is θ < 1.

Each time period has several stages, which resembles period 1 in the simple

three-period model.
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• Stage 1: Observation of state variables. Aggregate state A is realized. An

incumbent firm observes A and enters this period with remaining capital after

depreciation, (1− δ) k, and together with last period’s production F (Z−1, k),

where Z−1 is the realization of last period’s productivity of this firm. A

potential entrant draws k0 and observes A.

• Stage 2: Entry and exit. An entrant with (k0, A) enters if there is positive

expected profit. An incumbent exits either voluntarily based on continuation

values or exogenously with probability η.

• Stage 3: Investment and project decision. Both staying incumbents and

newborn firms decide how much to invest and then choose between safe and

risky projects. At the same time, the operating cost and capital adjustment

cost are paid.

• Stage 4: Production. Production takes place in the form F (Z, k′), where

k′ is the new working capital, and Z is productivity. If a firm chooses the

safe project, then productivity is deterministic, Z = A. Otherwise, with

probability p (A), the risky project turns out to be a success, Z = z̄, and with

probability 1− p (A), it fails, and Z = 0.

2.4.2 Individual Decision

An Incumbent’s Problem. At the beginning of each period, an incumbent firm

is characterized by (Z−1, k, A), where Z−1 ∈ {A−1, 0, z̄} is the realized productivity

in the last period for a specific firm, which can be the safe productivity A−1, the

bad realization 0, or the good realization z̄; k is the total amount of capital that
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was used in the previous period, and A represents the economic conditions of the

current period.9

The first choice an incumbent firm owner makes is between continuing to operate

and closing the firm and leaving.

V (Z−1, k, A) = max (1− χ)V 1 (Z−1, k, A) + χV 0 (Z−1, k, A) ,

where χ ∈ {η, 1} is the exiting choice, and η is the exogenous exiting hazard. If a

firm with (Z−1, k, A) chooses to exit, the value is:

V 0 (Z−1, k, A) = θ (A) (Z−1k
α + (1− δ) k) ;

where θ (A) < 1 is the fraction of resources a firm owner can take away when

exiting, which is actually a resale price and is potentially a function of A. If this

firm chooses to stay, the owner must then decide on investment, i, and a project

choice, safe or risky. The capital stock evolves as follows

k′ = (1− δ) k + i,

such that k′ ≥ kmin > 0, where kmin is a very small positive number providing a

lower bound of capital stock. The operating cost C (i;Z−1, k, A) of a firm consists

9To avoid computational complexity, I do not consider the price feedback effect in this model.
Therefore, the distribution of firms is not a state variable in this model, because agents do not
need to forecast future prices using information on distribution. Section 2.4.6.2 contains informal
discussion on this matter.
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of a fixed cost cf and a capital adjustment cost:

C (i;Z−1, k, A) = cf + ckF (Z−1, k) 1{i 6=0} + (1− θ (A)) (−i) 1{i<0}.

Apart from the fixed operating cost, there are two forms of capital adjustment costs:

a non-convex adjustment cost and partial irreversibility. Actively adjusting capital

stock and choosing i 6= 0 costs a firm ck fraction of its revenue from the last period’s

production. In addition, if a firm reduces its scale, it can only sell its current capital

possession at price θ (A) < 1. The fixed operating cost is to generate endogenous

exiting behavior, and therefore, it creates a non-concave portion in the lower end of

a firm’s value function. The adjustment cost plays a double role: one is to capture

the observed inaction in investment and slow down the change in firm size, and

the other is to dampen firms’ reaction to changes in aggregate states so that the

correlation between productivity dispersion and the aggregate state is not too close

to -1. Combining these pieces gives the flow profit of this firm D (k′;Z−1, k, A) ,

and

P (i;Z−1, k, A) = F (Z−1, k)− i− C (i;Z−1, k, A) ≥ 0.

I enforce non-negative profit as a constraint. The firm also has to choose between a

safe and a risky project. A safe project produces F (A, k′) for sure; a risky project

results in productivity at z̄ with probability p (A) and 0 with 1− p (A). If the safe

one is chosen, the firm gets:

V 1
safe (i; k,A) = EA′,δ′ [V (A, k′, A′) |A] ,
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and likewise,

V 1
risky (i; k,A) = p (A)EA′ [V (z̄, k′, A′) |A] + (1− p (A))EA′ [V (0, k′, A′) |A] .

Therefore, conditional on staying, an incumbent firm solves the following maxi-

mization problem:

V 1 (Z−1, k, A) = max
i
{P (i;Z−1, k, A)

+ βmax
{
V 1
safe (k′;Z−1, k, A) , V 1

risky (k′;Z−1, k, A)
}
}.

Denote the state variables of an incumbent as ψ = (Z−1, k, A) ∈ Ψ, with Ψ

being the set of all possible states. The solution to an incumbent’s question with

state ψ is a list of policy functions {χ (ψ) , τ (ψ) , ι (ψ)} such that (1) χ (ψ) is the

exiting choice, χ : Ψ→ {η, 1}; and conditional on surviving, (2) τ (ψ) is the project

choice, τ : {ψ ∈ Ψ : χ (ψ) = η} → {0, 1}, where 0 represents the safe project and 1

the risky one, and (3) ι (ψ) is the investment level, ι : {ψ ∈ Ψ : χ (ψ) = η} → R.

A Potential Entrant’s Problem. A potential entrant draws initial capital holding

k0 from a invariant Pareto distribution G0 (k0) with parameter ξ. The value of

staying outside the market is

V 0
0 (k0, A) = θ (A) k0.

To start up a business, one must pay a setup cost ce from initial capital, and

82



thereafter acts as an incumbent with state (Z−1, k, A) being

ψ0 = (0, (k0 − ce) / (1− δ) , A) .

Hence, the payoff of opening a firm will be:

V 1
0 (k0, A) = V 1 (0, (k0 − ce) / (1− δ) , A) .

A new firm will be born if

V 1
0 (k0, A) > V 0

0 (k0, A) .

The solution to this problem is a binomial entry choice ε : Ψ0 ⊂ Ψ→ {0, 1}, where

Ψ0 contains all possible ψ0, and ε (ψ0) = 1 if an entrant enters and 0 otherwise.

2.4.3 Aggregate Dynamics

Given the solutions to the individual problems described before, as a list of

functions, {χ (·) , τ (·) , ι (·) ; ε (·)}, it is straightforward to write down the transition

dynamics for the distribution over ψ = (Z−1, k, A) .

For an arbitrary ψ ∈ Ψ, either ψ ∈ Ψ0 or ψ can only be the state of an

incumbent. I denote φ (ψ) as the measure or density of point ψ = (Z−1, k, A) at

Stage 1 of a typical period with aggregate state A, before entry and exit takes place.

If χ (ψ) = 1, then a firm with this state exits for sure, and no other transition can

happen. If χ (ψ) = η, then with probability η this firm exogenously exits, and with a

complementary probability, it stays. Conditional on staying, if the firm chooses the

83



safe project, τ (ψ) = 0, then its individual state becomes (A, (k + ι (ψ))). On the

other hand, if the firm chooses the risky project, τ (ψ) = 1, then with probability

p (A) its individual state becomes (z̄, (k + ι (ψ))), and with probability (1− p (A)) it

becomes (0, (k + ι (ψ))). Now turn to the newborns. Denote g0 (ψ0) as the entrant’s

measure or density at point ψ0 determined by G0 (·). A newborn with ψ0 enters if

ε (ψ0) = 1. After entering, this firm acts exactly the same as a surviving incumbent

with ψ = ψ0. Finally, the aggregate state becomes A′ with probability Pr (A′|A),

A′ ∈ A. Formally, suppose the aggregate state at Stage 1 of a period is A′ = Aj,

and that of the last period is A = Ai, meaning that the realized productivity Z is

one of {Ai, z̄, 0}. Every state not on the realization path has zero measure, or

φ′ (A, k′, A′) = 0 if A 6= Ai or A′ 6= Aj,

where primed variables are ones realized in the same period as A′. The rest of the

states can then be divided into three groups by realization of Z, all of which come

from both incumbents and newborns. For Z = Ai,

φ′ (Ai, k
′, Aj) =

∫
(1− χ (ψ)) (1− τ (ψ)) 1{ψ:k′=(1−δ)k+ι(ψ)}φ (dψ)

+M

∫
ε (ψ0) (1− τ (ψ0)) 1{ψ0:k′=(1−δ)k0+ι(ψ0)}g

0 (dψ0) ,

where variables with no prime are the ones observed one period back, with ψ =

(Z−1, k, Ai) and ψ0 = (0, (k0 − ce) / (1− δ) , Ai). For Z = z̄ or 0,

φ′ ({z̄, 0} , k′, Aj) =

∫
(1− χ (ψ)) τ (ψ) 1{ψ:k′=(1−δ)k+ι(ψ)}φ (dψ)

+M

∫
ε (ψ0) τ (ψ0) 1{ψ0:k′=(1−δ)k0+ι(ψ0)}g

0 (dψ0) .
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By independence, a fraction p (Ai) has Z = z̄, and the rest gets Z = 0, that is,

φ′ (z̄, k′, Aj) = p (Ai)φ
′ ({z̄, 0} , k′, Aj) ,

φ′ (0, k′, Aj) = (1− p (Ai))φ
′ ({z̄, 0} , k′, Aj) .

Given the distribution measure φ and φ′, the cross-sectional variance in produc-

tivity can be written as

Γ (A, φ) ∝
∫
z̄2φ′ (z̄, dk′, dA′) +

∫
A2φ′ (A, dk′, dA′)

−
[∫

z̄φ′ (z̄, dk′, dA′) +

∫
Aφ′ (A, dk′, dA′)

]2

= z̄2p (A) (1− p (A))

∫
φ′ ({z̄, 0} , dk′, dA′) = σ2 (A) Λ (A, φ) .

The expression of the cross-sectional variance can be simplified in this way due to

the linearity of productivity in production function.

2.4.4 Calibration

Before I describe the calibration procedure, it is worth noting that the mass of

potential entrants M affects only the scale of the economy once other parameters

are determined. Since the absolute scale is not of interest, the choice of M is

irrelevant. For a quantitative exercise, the number of potential entrants is fixed at

50,000 each period. Furthermore, without aggregate fluctuation, starting from zero

incumbents, the economy always converges to a stationary state in the sense that

the exit rate and the entry rate are equal and the scale is neither expanding nor

shrinking, as long as there is positive measure of entrants at the beginning. And this
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is the case with or without agents expecting the aggregate state to be varying over

time. The reason is simple. Since there is no aggregate fluctuation, the measure of

entrants (inflow) is fixed each period. The measure of exiting firms (outflow) is a

fraction of the remaining ones (stock). The outflow gradually increases to the same

level as the inflow, and it is at this point that the scale of stock stops changing.

Consequently, the entry and exit rates are the same. Because of this stationarity

feature, the parameters that need to be internally determined are selected such that

the statistics generated by the model at its stationary state match their empirical

targets.

The setup of the model is very close to that of the standard model; therefore

some of the parameter values are directly taken from the literature. One period is

chosen to be one year. The discount factor is set as β = 0.938 to match the long-

run average for the U.S. firm-level discount rate, as in Bloom (2009). According

to the same paper, capital depreciates at rate δ = 0.1. The production function,

F (Z, k) = Zkα, is the same as the profit function in Cooper and Haltiwanger (2006),

so I follow their estimation and set α to be 0.592. Taken from the same work, the

standard deviation of the aggregate process σA is 0.08, and the serial autocorrelation

ρA is assumed to be 0.8, which is within the range of the autocorrelation of a

common shock 0.76 and that of an idiosyncratic shock 0.885 estimated in that

paper.

The good productivity realization is predetermined as z̄ = 2 so that the proba-

bility of getting z̄ is always around a half. This is to minimize the riskiness effect

by controlling for the uncertainty associated with the binary-outcome risky project.

The exogenous exiting hazard η that affects all firms alike is set to be 2%, which is in
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line with the exiting rate of large plants found by, for example, Lee and Mukoyama

(2008). On the entrant side, it has been mentioned that the choice of M is not

important. The distribution of the initial endowment G0 is Pareto such that, with

slight abuse of notation, G0 (k0) = 1 − (kmin/k0)ξ with ξ > 0. Clearly, ξ gov-

erns the shape of the initial endowment distribution and it in turn determines the

model-generated firm size distribution. Ideally, this generated distribution will also

have a shape close to Pareto; however, the assumption of one common productivity

shock and no idiosyncratic shocks makes this task infeasible. This can be corrected

by introducing heterogeneous productivity, yet this practice will not provide more

economic insight into this model. Therefore, for the numerical results, I set ξ = 1.

The remaining parameters to be internally calibrated are capital resale price

θ, capital adjustment cost as a fraction of profit ck, fixed operating cost cf , and

entry cost ce. The model suggests that I shall look at the statistics of firm dynamics

and the investment rate distribution, and the remaining parameters (θ, ck, cf , ce) are

selected via simulated method of moments. The targets regarding firm dynamics are

taken from Lee and Mukoyama (2008), and those on investment rate distribution

are from Cooper and Haltiwanger (2006). I also compute from the model the

average five-year transition rates between different size classes, and I compare the

generated numbers to the actual rates found by Acemoglu, Akcigit, Bloom, and

Kerr (2011) using census data. The parameters are calibrated without aggregate

fluctuation, and the aggregate state sequence, {At}, is set to be constant at its

mean, but the firms still expect the future states to be changing according to the

transition probability of A, πij.

Calibrated parameter values are summarized in Table 2.3, 10 and simulated

10 Several other sets of parameters are also used to check the robustness. The negative sign

87



Table 2.3: Parameter Values and Rationale

Parameters Description Notes

Aggregate Fluctuation
z̄ = 2 Good realization. Predetermined. Normalization.
ρA = 0.8 Autocorrelation. Cooper and Haltiwanger (2006)
σu = 0.048 Innovation var. (σA = 0.08.) Cooper and Haltiwanger (2006)
Production
α = 0.592 Production function. Cooper and Haltiwanger (2006)
β = 0.938 Discount factor. Bloom (2009)
δ = 0.1 Capital depreciation rate. Bloom (2009)
η = 0.02 Exog. exiting prob. Lee and Mukoyama (2008)
θ = 0.84 Capital resale price. Internally determined.
cf = 1.62 Fixed operating cost. Internally determined.
ck = 0.165 Capital adjustment cost. Internally determined.
Entrants
ce = 0.1 Entry cost. Internally determined.
ξ = 1 Shape of G0. Predetermined.

moments are compared with their empirical counterparts in Table 2.4. Cooper and

Haltiwanger (2006) compute a thorough set of investment moments using a balanced

panel from the LRD from 1972 to 1988. The model-generated moments are close

to their target with expected exceptions. The standard deviation in investment

rates is much lower than in the data, because when the aggregate fluctuations

are shut down, there is no idiosyncratic uncertainty other than the amount of

risk a firm chooses to take. With a constant aggregate state and no growth, the

model-generated mean level of the investment rate, together with the fraction of

of the correlations between aggregate state and dispersion measures is robust, which is not sur-
prising because the mechanism works under mild restrictions of parameter space. However, it
is true that the fraction of risky firms is sensitive to the shape of the value function. In par-
ticular, when β is high, future profit flows are important, and the risky fraction declines and
so does the exit rate. The realizations of δ are set to be {0.05, 0.1, 0.2, 0.5, 1} with probabilities
{0.69, 0.155, 0.1, 0.05, 0.005}, respectively.
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large and positive investment rates, is below the target as well. The other set of

targets concerns the entry and exit dynamics of firms, which are taken from Lee

and Mukoyama (2008).11 They use the ASM portion of the LRD from 1972 to

1997 to analyze the behavior of plants. At the same time, I look at the five-year

transition rates between different size classes obtained by Acemoglu et al. (2011)

using the CM portion. Firms are divided into two size classes, small and large,

by median shipments, and the third class is ”not-in-business.” For example, the

transition rate from the small class to the large class is computed as the fraction

of originally small firms that became large ones in the next census. Since the

census data are only available every five years, I let the model produce the same

transition rates for every five periods. Due to different sources of data, I choose

to hit a number within the range of empirically computed entry and exit rates.

The model failed to reproduce the eight transition rates, although it managed to

capture the fact that small firms have higher exiting rates than large ones. Without

assuming idiosyncratic shocks, the model cannot generate a highly right-skewed

size distribution with a relatively small median; therefore, the simulated exit rate

is lower. At the same time, no further heterogeneity causes the large transition

rates between large and small classes.

2.4.5 Quantitative Results

The mechanism explained in the illustrative three-period model remains at work

in the quantitative model with infinite horizon. The option to exit forms a lower

bound for an incumbent’s continuation value function, and in a conventional model

11Lee and Mukoyama (2008) calculate the relative sizes of entering and exiting firms based on
the number of employees.
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Table 2.4: Moments Generated from Model and Targets

Model Data

Investment
Mean of investment rate 0.097 0.122
Std. Dev. of investment rate 0.157 0.337
Fraction of inaction 0.059 0.081
Fraction w. positive investment 0.889 0.815
Fraction w. positive investment burst 0.064 0.186
Fraction w. negative investment burst 0.033 0.018

Data Source: Cooper and Haltiwanger (2006)
Entry and Exit
Mean entry rate 0.070 0.062
Mean exit rate 0.070 0.055
Relative size, entering 0.75 0.60
Relative size, exiting 0.58 0.49

Data Source: Lee and Mukoyama (2008)

without the additional choice of risky project, this lower bound in turn creates a

non-concave portion on the continuation value at the lower end with low capital

levels. When the choice of risky project is allowed as in this model, firms with

capital levels in this portion have an incentive to smooth out the non-concavity

by taking the risk. Of course, anticipating the future option of the risky project,

the continuation value function associated with the safe one becomes less convex

compared to the conventional case.

The business cycle features can now be introduced in a more realistic fashion

than comparative statics. Without recalibrating, I add the aggregate fluctuation

by simulating a sequence of realizations of productivity level A, and let the model

evolve accordingly. As the aggregate state changes, the reaction of firms is still

very similar to the comparative statics in the simple model. If A drops, the slopes
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of both risky and safe continuation value functions decrease, which forms a larger

portion where the risky project is strictly better. Consequently, a larger fraction

of firms opt to take the risk, which results in a larger cross-sectional standard

deviation in productivity. The opposite happens when A increases. Nonetheless,

given the frictions and the law of motion of the aggregate state, the magnitude

of the changes in the fraction of risk taking firms and in the resulting standard

deviation in productivity is history dependent.

The main goal of this numerical exercise is to show that changes in the level of

At alone can generate countercyclical firm-level productivity dispersion as a result

of a firm’s risk-taking behavior, without introducing any time-varying volatility in

the driving force, At. The fluctuation in productivity A follows the Markov process

specified in Table 3, and not surprisingly, it is positively correlated with total

output with correlation coefficient 0.4030 (p-value = 0.0000). Therefore, the cross-

sectionally averaged productivity can serve as an alternative cyclical indicator. The

measures for productivity dispersion are chosen to be (1) the standard deviation of

cross-sectional distribution of realized Z, productivity, (2) the fraction of firms that

prefer the risky project, and (3) the 95% to 5% inter-percentile range of realized

Z, which is the value of Z at the 95th percentile minus the value of Z at the 5th

percentile.

Table 2.5 shows that the correlation coefficients between productivity disper-

sion and cyclical indicators are significantly negative, and the absolute values are

in line with the data counterparts. In fact, the correlation between productivity

dispersion and total output is even larger in scale. Moreover, the cyclicality of

productivity dispersion measured is on a scale comparable to that of the fraction of
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Table 2.5: Generated Cyclicality

Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators
Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion σ (Z) -0.4450 (0.0000) -0.6969 (0.0000)
Frac. of Risky Firms Λ -0.4544 (0.0000) -0.6063 (0.0000)
IPR (95%-5%) IPR95

5 -0.2089 (0.0000) -0.6860 (0.0000)
Entry Rate rEN 0.0314 (0.4830) -0.7679 (0.0000)
Exit Rate rEX -0.4774 (0.0000) -0.5649 (0.0000)

firms that choose the risky project, and the movements show patterns very similar

to those seen in Figure 2.8. This illustrates the mechanism that it is the change in

the fraction of risk-taking firms that drives the cyclical movement of productivity

dispersion. In bad times, more firms are willing to take the risk and randomize

their future values. Consequently, the resulting dispersion, measured as the stan-

dard deviation of cross-sectional productivity distribution, is larger and so is the

inter-percentile range.12 The assumed binomial outcome of a risky project has the

potential to impact the behavior of the dispersion; however, such impact is con-

trolled for at a much smaller scale by the choice of µA and z̄ and does not alter the

main pattern. A somewhat unusual result is the significantly negative correlation

between total output and entry rates. This is a result of modeling technique. The

entry decision of potential entrants depends largely on the discounted and expected

12Due to the model assumption, cross-sectional IPR in productivity can only be either z̄, z̄−At,
or At, and does not have very interesting dynamics, although it is still countercyclical. This can be
overcome by allowing a richer set of productivity lotteries and keeping the expected productivity
to be A. For example, in addition to (p (A) , z̄), firms can also choose any (p, z̄A) pair with binary
outcomes such that pz̄A = A. Intuitively, the IPR measure in this case will again be negatively
correlated with At because smaller firms have the incentive to take even more risk in bad times
than in the original case. Therefore, the range of realized productivities is wider, and potentially
the IPR is larger and has more possible values.
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Figure 2.7: Simulated Sequences of Entry and Exit Rates. The solid line represents
exit rates, and the dashed line records entry rates. Grey bars indicate the value of
A as in the previous figure.

future payoff, so the impact of the current aggregate state is minimal. At the same

time, entry rates increase when the number of existing firms is smaller. However,

the total output is not only a function of the current state A, but it also positively

depends on the number of existing firms. These two forces drive the entry rate

series to move in the opposite direction to total output.

Figure 2.7 plots the truncated series of entry and exit rates from the model

simulation. The sequence of exit rates remains mostly in a reasonable scale between

3% and 12%. On the contrary, there are quite a few episodes in which exit rates

are really high. Extraordinarily high exit rates happen after a succession of bad

realizations of the aggregate state A, when the number of remaining firms is small.

This is not surprising under the model assumptions that (1) all firms share the same

serially correlated A with no idiosyncratic shocks, and (2) given each realization

of A, there is only one alternative risky project allowed. Figure 2.8 shows the

truncated sequences of the countercyclical cross-sectional standard deviation in
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Figure 2.8: Simulated Sequences. The figure shows simulated sequences of (1) cross-
sectional productivity dispersion measured as the standard deviation of realized
productivity Z (solid line, left axis), and (2) the fraction of firms that choose the
risky technology (dotted line, right axis, in %). The grey bars indicate the economic
conditions as a value of A. In particular, darker bars represent lower values of A.

productivity and the fraction of risk-taking firms in each period. The realized

standard deviation in productivity mostly ranges from 0.25 to 0.65, and the fraction

of firms choosing the risky project is mostly between 10% and 55%. The peaks of

productivity dispersion and the risky fraction are associated with excessive exit

rates, as the mechanism suggests.

Figure 2.9 shows how the productivity dispersion and fraction of risk-taking

firms will react to a drop in A from its mean level. Originally, the model is simulated

in the same way as it is for calibration: the aggregate fluctuation is shut down by

fixing A at its mean level µA, while the firms behave under the belief that A evolves

according to πij. Then, the value of A suddenly and permanently switches to one

standard deviation lower, µA − σA, and the firms’ belief remains unchanged. The

risky fraction and productivity dispersion increase immediately upon impulse, then

oscillate with an ascending trend, and eventually settle at a higher level. The two
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Figure 2.9: Impulse Responses. The figure shows impluse responses to a permanent
(and expected) one-standard-deviation drop in the aggregate state. The left panel
is the response of cross-sectional productivity dispersion, measured as the standard
deviation in realized productivity. The right panel plots the response of the fraction
of firms choosing the risky technology.

paths may seem unusual at first glance, but it is the joint work of (1) project choice

and (2) capital adjustment costs. Upon the bad shock, as the result of a higher

entering threshold, the number of entrants immediately drops to a lower level and

then remains constant, and the scale of the economy, measured as the total number

of remaining firms, decreases gradually to a new stable level. If capital adjustment

costs are shut down, then both the absolute number and the fraction of risk-taking

firms jump up upon impulse and drop in the following period. The reason for this

sudden jump and drop is that the risky project becomes more appealing to firms

with a wider range of capital stock when the shock hits, even though there is a

higher probability of bad outcome. Consequently, a large number of firms exit due

to their choice of the risky project, which leaves fewer firms remaining in the risky

region and this causes the following drop. The absolute number of risky firms then

gradually decreases while the fraction increases to a higher level because of the
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decreasing scale. This up-and-down trend is in line with what is shown in Figure

2.9, which is driven by the project choice. On the other hand, the oscillation is

due to the capital adjustment costs, which create firms’ inaction in investment

and prevent firms from freely changing their capital stocks. Therefore, firms that

should be in the risky region in the free adjustment case may now be outside, and

vice versa. Note that the fraction of risky firms is around 14% when A is kept at

its mean, corresponding to the standard deviation in productivity at about 0.37.

Cooper and Haltiwanger (2006) find that the plant-specific idiosyncratic shock has

a standard deviation of 0.64. Without assuming idiosyncratic risk, the calibrated

stationary version of this model is capable of reproducing at least half of the micro-

level standard deviation.

2.4.6 Discussion

2.4.6.1 Firm Size Rotation

The comparison between the model-generated moments and their empirical

counterparts suggests that this is not the whole story and that there are some

possible extensions for future work. The additional moments in Table 2.6 indicate

that the shape of the firm size distribution generated from the model is consid-

erably different from the true one. Without altering the mechanism, introducing

further heterogeneity in productivity can at least partly overcome this issue. In

addition to that, adding more shocks, such as micro-level idiosyncratic shocks, and

allowing for a richer set of risky projects can improve the fit of calibration targets,

especially the standard deviation in investment rates. This can also help reduce the

extraordinarily high exit rate under aggregate fluctuation. Again, these extensions
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Table 2.6: Additional Moments: Transition Rates

5-Year Transition Rates Model Data

Small → Exit 0.3491 0.5032
Small → Small 0.2900 0.4203
Small → Large 0.3609 0.0764
Large → Exit 0.2755 0.1803
Large → Small 0.3228 0.0564
Large → Large 0.4017 0.7633
Entry → Small 0.5070 0.7483
Entry → Large 0.4930 0.2517

Data Source: Acemoglu et al. (2011)

will not alter the mechanism at work.

2.4.6.2 Price Feedback Effect

To avoid computational complexity, the model does not consider the market

clearing conditions for either the final good market or the capital market. Appar-

ently, the price feedback effect may erode the quantitative significance of the model.

However, with the magnitude reduced, the mechanism remains intact.

In fact, on the final good market, F (Z, k) = Zkα can be interpreted as a firm’s

profit function, that is, the revenue net of the cost for variable factors, for example,

labor and materials. Specifically, assume that a plant faces an inverse demand

function P (y) = By−b, and therefore its revenue becomes R (y) = By1−b. Suppose

the actual production function is y = Ãkα̃lφ̃, and the price for other factors is ω.

Then after optimization of l, the revenue function becomes

R =
(
BÃ1−b

)1/(φ̃(1−b)) [
φ̃ (1− b) /ω

]φ̃(1−b)/(φ̃(1−b)−1)
kα̃(1−b)/(φ̃(1−b)−1),
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and profit function

π =
(

1− φ̃ (1− b)
)
R.

Redefining variables gives the form of Zkα. Therefore, Z in the model is more ap-

propriately interpreted as measured revenue total factor productivity that includes

information from the demand side, instead of the actual production technology. For

the same reason, parameter A, shown later in the model, will also be interpreted

as the aggregate state of the model economy, and a change in A is more than just

a ”technology shock.” Under this specification, it is easier to link the model to the

data because only TFPR (TFP calculated using revenue data) is required for this

model, but not TFPQ (actual TFP). Admittedly, TFPR is much easier to compute.

A potentially more interesting extension is to generalize the model in a general

equilibrium framework and consider the clearing condition for the capital market.

One way to do so is to endogenize the capital market in which exiting firms and

shrinking firm can sell their capital holdings to growing ones. In this way, there is

an endogenous series of capital prices θt, instead of a fixed capital resale price θ.

Naturally, θt is lower in bad times as more firms reduce their capital stocks, and it

is higher in good times as more firms expand. But assuming that firms can employ

a one-to-one capital production technique, θt will not exceed 1. As a robustness

check, I let θt be a linear and increasing function of the aggregate state At such

that θt = θ + bθ (At − µA) with bθ = 0.513. The results are presented in Table 2.7.

The similarity to the main result is not surprising, because the mechanism remains

unchanged.

13I also tried bθ = 1, 1.5, 2 with θt constrained to be no higher than 1. The results are very
similar.
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Table 2.7: Robustness Check: Time Varying θt

Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators
Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion σ (Z) -0.4154 (0.0000) -0.7622 (0.0000)
Frac. of Risky Firms Λ -0.4296 (0.0000) -0.6992 (0.0000)
IPR (95%-5%) IPR95

5 -0.2483 (0.0000) -0.7424 (0.0000)
Entry Rate rEN -0.0581 (0.1943) -0.8128 (0.0000)
Exit Rate rEX -0.4679 (0.0000) -0.6606 (0.0000)

2.5 Conclusion

Productivity dispersion tends to be larger during recessions. The prevailing

view is that increased uncertainty causes a decline in aggregate economic activi-

ties. However, although uncertainty matters, this story seems to contradict the

observation that recessions lead an increase in productivity dispersion. To com-

plement existing theories, I explore a simple mechanism through which aggregate

fluctuations due to standard ”technology shocks” can endogenously generate coun-

tercyclical dispersion in plant/firm-level productivity. I alter the standard industry

dynamics model with business cycle features by incorporating project choice as part

of the individual decision problem. By this feature, a firm in this model can then

decide the riskiness of its production. The resulting productivity distribution is

non-degenerate even if no other heterogeneity is modeled. The model provides the

following predictions: small firms are more likely to take risks and have lower sur-

vival rates, but conditional on surviving, they exhibit higher productivity; a larger

fraction of firms become risky in bad times, which also leads to higher exit rates;

and realized micro-level productivity dispersion is larger in recessions.
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Chapter 3

Directed Search and Job Rotation

This is paper joint with Fei Li, and it is published on the Journal of Economic

Theory 148.3 (2013): 1268-1281. 1

3.1 Introduction

The practice of job rotation is commonly observed in large firms. In the litera-

ture, it is well known that a job rotation policy mainly results from learning of the

pair-wise match quality between workers and jobs. However, little work has been

done to address the impact of job rotation within firms on the labor market. One

reason is that the study of job rotation requires a framework that simultaneously

considers the internal labor market of a firm and the external labor market. Yet,

in the canonical job search model, labor economists’ favorite work horse, a firm is

treated as a single job vacancy, and therefore it is impossible to distinguish between

the internal and external labor market. Recently, many job search papers, includ-

1Copyright c©2013 Elsevier Inc. All rights reserved. The URL for the published version:
http://www.sciencedirect.com/science/article/pii/S0022053113000264

100



ing Hawkins (2011), Kaas and Kircher (2011), Lester (2010) and Tan (2012), have

shed light on the endogenous determination of firm size, which has the potential to

study the interaction between a firm’s internal and external labor market.

In this paper, we employ a directed search model with multi-vacancy firms to

examine the role of job rotation in the labor market. In particular, we assume that

a firm can choose its size by determining the number of job vacancies. A large

firm can hire more workers, which requires a higher fixed cost. All workers are ex

ante identical, but they may be good at different jobs, which is initially unknown.

The match quality between a worker and a job is uncertain when the worker is

hired but can be learned afterwards through a process of job rotation. Firms can

reassign workers to different positions to partially overcome the loss of mismatch,

and larger firms have a higher degree of freedom of reallocation and, therefore, can

expect higher revenue per match.

Our main result highlights the impact of job rotation on the labor market. In

the unique symmetric equilibrium, we obtain a positive correlation between firm

size, labor productivity and wage, which is consistent with the stylized facts sum-

marized by Oi and Idson (1999). Without the opportunity of job rotation, however,

the correlation between firm size, labor productivity and wage is negative for all

parameters, which is the result of a standard directed search model with multi-

vacancy firms. In addition, in line with recent empirical findings by Papageorgiou

(2011), the model successfully implies a negative correlation between firm size and

the separation rate.

Our paper is related to the literature in two ways. First, Meyer (1994) and

Ortega (2001) point out the learning role of job rotation in firms. They provide
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a justification for job rotation, but both authors narrow their studies within the

boundary of a single firm. As a step further, we apply their insight in a competitive

labor market model to study the effect of within-firm job rotation on the external

labor market. Papageorgiou (2011) is the only paper that studies the impact of job

rotation on the labor market but with a different focus. He pays more attention

to the interaction between learning and job reallocation within a firm, while, in

contrast, we focus on how the internal labor market in the presence of job rotation

affects job allocation in the external labor market. In his model, firm sizes are

exogenous rather than endogenously determined as in ours. In our model, the

job rotation inside firms (internal) has a feedback effect on firms’ contract posting

behavior and workers’ application behavior (external), observed as variables such as

firms’ growth rates and size distribution. This feedback is absent in Papageorgiou

(2011). In addition, in Papageorgiou’s model, the belief of current match quality

measuring a worker’s performance pins down the wage, which is independent of the

firm size once the belief is controlled for. The wage premium in size is then obtained

via a comparison of average wages in firms of different sizes. In our model, however,

the wage differential in firm size exists conditional on a worker’s performance. This

provides a testable implication that can distinguish our model from his.

Second, the directed search model we employ follows Montgomery (1991), Pe-

ters (1991), Burdett, Shi and Wright (2001), and their later extension by Lester

(2010) to the multi-vacancy case. Kaas and Kircher (2011) also study a directed

search model with multi-vacancy firms. However, none of these papers can generate

a positive relationship between firm size, wage and labor productivity that is in line

with observations without introducing ex ante exogenously dispersed random pro-
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ductivity;2 whereas in our model, the presence of learning and job rotation creates

an ex post heterogeneity among firms and, therefore, can imply a positive relation

between labor productivity, wage and firm size. Alternatively, Shi (2002) introduces

a frictional product market where large firms pay higher wages to attract workers

so that they can produce enough output to fulfill their bigger market share. Tan

(2012) allows for local convexity in the production function to generate a positive

size-wage differential. Yet, in our model, the production function is concave.

The rest of this paper is organized as follows. We first set up the model and

characterize the unique symmetric equilibrium. Next, we derive the implications of

our model and discuss the result and compare them to the empirical evidence.

3.2 The Model

3.2.1 Setup

There are N workers and M firms on the market, both of which are ex ante iden-

tical. A firm can choose to have multiple vacant positions, each of which requires

a worker to form an active match. Denote λ = M/N as the firm-worker ratio,

which does not represent the labor market tightness due to endogenous vacancy

numbers. Following the literature, we first consider the individual decision problem

given finite N and M , then we fix λ and take N,M to infinity to approximate the

equilibrium in a large labor market.

The quality of a worker-job pair follows a Bernoulli distribution, which is initially

unknown upon match but can be perfectly learned later. With probability ρ ∈ (0, 1],

2In both Lester (2010) and Kaas and Kircher (2011), if firms have homogeneous productivity,
the relation between wage and firm size is negative.
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a match is good and produces 1 unit of output; the match is bad with probability

1− ρ and results in 0 output.3 We assume the match quality is independent across

jobs and workers, even within a multi-job firm.

The game has four stages: offer posting stage (I), job searching stage (II),

learning and rotation stage (III), and production stage (IV). At Stage I, each firm

decides how many vacancies to post, k, and at what wage level, w, where w is

potentially a function of k. Firms also announce the firing policy. For simplicity,

we assume that they can create k ∈ {1, 2} vacancies with cost C(k), thus the market

tightness, defined as the ratio of vacancies to workers, is θ ∈ [λ, 2λ]. Without loss of

generality, we assume a convex cost function with C(1) = 0, C(2) = C, 0 < C < ρ.

We assume that wage, w ∈ [0, 1], does not depend on any further information

such as the realized number of applicants and revealed match quality in Stage III.

We assume that a firm can commit to the verifiable wage it posts, and the firing

strategy, which may depend on the result of learning.4 Consequently, firms pay the

first round of wages to all employees at Stage III and pay the second round only to

the remaining ones at Stage IV.

At Stage II, the job searching stage, each worker observes (k, wk) and the firing

rule of every firm and applies to the firms that offer the highest expected payoff.

We assume that workers can only apply to a firm, but not to a specific position in

3Zero output for a bad match is a strong assumption. However, we assume Bernoulli match
qualities to ensure simplicity of the separation rules: separation happens at the zero realization
only. In the continuous case, however, the separation follows a cutoff rule such that separation
happens for quality below a threshold.

4The contract specifies the wage and the firing rule. Without loss of generality, we focus
on time-invariant wage contracts. The restricted optimal contract remains optimal in a larger
contract space where time-varying wages are permitted because firms and their workers have the
same intertemporal rate of substitution of wages. This identical rate of substitution, which is
related to the probability of a worker not being fired, stems from the assumptions that (i) there
is no discount on the future, (ii) all workers and firms are risk neutral, and (iii) both parties earn
zero upon separation.
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that firm. If the number of workers that apply for a particular firm exceeds the

number of vacancies posted, the firm randomly hires just enough workers; otherwise

the firm hires all applicants. Hence, a worker’s expected payoff from applying to a

firm is determined jointly by both the posted wage and the probability of getting

a job.

At Stage III, the learning and rotation stage, a firm randomly assigns hired

worker(s) to its position(s) and pays the first round of wage. The firm then learns

the match qualities of all job-worker pairs by switching workers to different working

positions.5 In particular, a firm with k jobs and h employees, 1 ≤ h ≤ k, learns

about the match qualities of all P k
h = k!/ (k − h)! possible worker-job pairs. No

production happens at this stage.

At Stage IV, the production stage, a firm is given the option of firing its em-

ployee(s) and can reassign remaining ones to specific positions, and then production

takes place. An employee gets zero payment once she is fired. After the reallocation

of remaining workers, each worker-job pair produces output according to its real-

ized quality. The firm then pays its remaining workers the second round of wage

and takes away the rest of total output.

3.2.2 Analysis

The solution concept we adopt is a symmetric rational expectations equilibrium

(henceforth, equilibrium), in which each firm chooses to be a large one with the

same probability and posts the same contracts, and each worker applies to a large

firm with the same probability. The reason for this equilibrium selection is twofold:

5We assume that the rotating and learning process serves only to reveal the match qualities
but does not generate any production.
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first, it delivers a limiting matching technology that has all of the properties required

by the competitive model; second, it ensures the nice informational properties of

anonymous equilibria in the sense that agents can compute their best replies from

aggregate information about the market. We will solve the game backwards. Given

any history of Stage II, which will be defined later, a firm learns about the match

qualities of all possible worker-job pairs in Stage III, and then, if possible, it assigns

jobs to workers to yield the highest revenue. Then we step back to Stage II and

characterize the equilibrium in this subgame for any given history in which firms

play symmetric strategies. Then, we will characterize each firm’s offer posting

strategy given the strategies of workers.

Stage IV: Production Stage. At the last stage, firms fire workers when necessary,

reallocate remaining ones, and make payments w as promised. It is easy to see that,

given any promised w ≥ 0, the optimal firing happens in one of the two following

situations: (1) the worker is unqualified for any position in the firm, or (2) two

workers in a large firm are both qualified for one position and not for the other.

In the latter case, one worker is enough to produce 1 unit of output and the firm

will randomly fire one of the two. The firm then assigns the remaining worker(s), if

any, to job(s) in such a way that each worker-job pair is good and produces 1 unit

of output.

A small firm fires the employee in case (1) only, so the match is destroyed with

probability

φ11 (ρ) = 1− ρ,

where φkh (ρ) represents the probability of a worker getting fired in a firm with k

jobs and h employees; moreover, it is also the separation rate per filled vacancy
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from the firm’s point of view. Hence, with probability 1− φ11 (ρ), the final output

is 1 and the worker gets paid w. Similarly, a large firm with one position filled fires

the employee also in case (1) only, and the probability of this employee getting fired

is

φ21 (ρ) = (1− ρ)2 < φ11 (ρ) ,

which is also associated with 0 earnings to both the employee and the firm. With

probability 1−φ21 (ρ), 1 unit is produced and the worker gets paid w. Alternatively,

workers in a large firm at full capacity may face either of the two cases. From a

worker’s point of view, case (1) happens with probability (1− ρ)2 and then she

is certainly fired, while case (2) means that she is good at only one position and

her co-worker has the same ability, so the probability is 2 [ρ (1− ρ)]2, but she may

survive this situation with 1/2 probability. Combined, the overall probability that

either one of the two workers will lose her job is

φ22 (ρ) = (1− ρ)2 + ρ2 (1− ρ)2 < φ11 (ρ) .

This is also the probability that either one of the two positions will result in 0

output. Obviously, the output is 2 if neither case is realized, 0 if case (1) happens

to both workers, and 1 for the rest of the possibilities.

Stage III: Learning and Rotation Stage. A firm learns about the match qualities

of all possible worker-job pairs in this stage through the practice of job rotation

and pays the promised wage w to employees regardless of the learning results. At

the beginning of this stage, the expected output in a firm with k positions and h

matched employees, denoted as Fkh (ρ), can be computed based on the analysis of
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Stage IV, and so can the expected payoff Vkh (ρ;w) to its worker(s). In a small firm

matched to a worker,

F11 (ρ) = 1− φ11 (ρ) = ρ,

V11 (ρ;w) = (1 + (1− φ11 (ρ)))w = (1 + ρ)w.

The worker receives w at this stage for sure and gets another w if not fired at the

next stage, with probability 1 − φ11 (ρ). Hence the small firm takes away the rest

of the output, F11 (ρ)− V1 (ρ;w) .

In a large firm, the loss from the mismatch between workers and positions can

be partially overcome through job rotation, which results in higher expected labor

productivity and a lower separation rate. Specifically, if the firm promises to pay

wage w and is only matched to one worker, then

F21 (ρ) = 1− φ21 (ρ) = 2ρ− ρ2 > F11 (ρ) ,

V21 (ρ;w) = (1 + (1− φ21 (ρ)))w =
(
1 + 2ρ− ρ2

)
w.

The firm gets F21 (ρ)− V21 (ρ;w). If the large firm has two employees and runs at

full capacity, each position is expected to produce 1 unit of output with probability

1− φ22 (ρ), so the expected total output from the two positions is:

F22 (ρ) = 2 (1− φ22 (ρ)) = 4ρ− 4ρ2 + 4ρ3 − 2ρ4 > 2F11 (ρ) .

Observe that F22 (ρ) < 2F21 (ρ), so the marginal labor productivity in a large firm

is decreasing in the number of employees. The payoff to each worker is similar to
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earlier cases, where both current-stage wage and possible future wage are taken

into consideration:

V22 (ρ;w) = (1 + (1− φ22 (ρ)))w =
(
1 + 2ρ− 2ρ2 + 2ρ3 − ρ4

)
w,

and the firm gains an expected profit F22 (ρ) − 2V22 (ρ;w) now that there are two

workers.

Given the ex post incentive compatible separation and job rotation rule, and

since there is no strategic interaction at Stages III and IV, matched workers’ and

firms’ payoffs are uniquely pinned down by the contracts they signed. Hence, an

equilibrium in our four-stage game is consistent with an equilibrium in a reduced-

form two-stage game that includes Stages I and II in the original game, and the

payoff is specified as follows: in a firm of k jobs and h workers, a worker’s payoff is

Vkh (ρ;w), and the firm’s is Fkh (ρ)− hVkh (ρ;w), where 1 ≤ h ≤ k ≤ 2. In the rest

of this paper, we directly solve equilibria of this reduced-form game as those of the

whole game.

Stage II: Job Searching Stage. The realization of firms’ job posting at Stage

I can be summarized by a history vector H = ((kj, wj)
M
j=1) listing the number of

vacancies and the wages of all M firms. Let H be the set of all possible H’s. In

principle, a worker’s strategy is defined as γ : H → [0, 1]M . Given a history H, a

worker chooses a vector γ such that (1) γj is the probability that he applies to firm

j ∈ {1, 2, ..M} and (2)
∑M

j=1 γ
j = 1.

Consider the problem of worker i who is deciding whether and to which firm

to apply. Firm j posts kj positions and wage wj, for j ∈ {1, 2, ..M}. If kj = 1,

firm j promises its prospective worker the expected payoff V1 (ρ;wj); if kj = 2, the
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expected payoff depends on how many workers firm j eventually gets, and it is either

V21 (ρ;wj) or V22 (ρ;wj). When the rest N − 1 workers play identical strategies γ,

this worker i chooses strategy γ̂ to maximize her expected utility


∑

j s.t. kj=1 γ̂
jΩ1(γj)V1 (ρ;wj)

+
∑

j s.t. kj=2 γ̂
j [Ω21(γj)V21 (ρ;wj) + Ω22(γj)V22 (ρ;wj)]

 (3.1)

where Ω1 (γj) stands for the probability that this worker is hired if she applies to

firm j which posts kj = 1 positions, that is,

Ω1(γj) =
(
1− γj

)N−1
+

N−1∑
n=1

[
(N − 1)!

n!(N − 1− n)!

] (
γj
)n

(1− γj)N−1−n 1

n+ 1
(3.2)

=
1

Nγj
[
1− (1− γj)N

]
,

if she is the only applicant, she gets the job for sure; otherwise all applicants get

the job with equal probability. The number of applicants at firm j has a binomial

distribution. Similarly, Ω21 (γj) is the probability that this worker is the only

applicant at the large firm j and gets a job for sure,

Ω21(γj) = (1− γj)N−1, (3.3)

and Ω22 (γj) is the probability that this worker needs to work with someone else in

the large firm j,

Ω22(γj) =
N−1∑
n=1

[
(N − 1)!

n!(N − 1− n)!

] (
γj
)n

(1− γj)N−1−n 2

n+ 1
(3.4)

=
2

Nγj
[1− (1− γj)N ]− 2(1− γj)N−1.
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A symmetric equilibrium at this stage is such that every worker chooses the same

application probability vector γ, and moreover, a worker applies to firms of the same

size and wage with equal probabilities. Given any historyH =
(

(kj, wj)
M
j=1

)
, γ∗ (H)

is the symmetric solution if γ∗ (H) is a solution to (3.1) and γ∗j (H) = γ∗l (H) if

(kj, wj) =
(
kl, wl

)
, j 6= l. As mentioned before, we require symmetry across all

workers’ behavior to ensure an equilibrium that consists of only mixed strategies.

In a large market, it is impossible for an individual worker to be fully informed

about other workers’ job application choices; therefore, modeling it by a mixed-

strategy equilibrium is more plausible. More importantly, we assume that a worker

applies to firms with identical (k, w) to ensure the anonymity of firms in that

workers distinguish between firms only by their sizes and posted wages instead of

their names, j. This plays the role of search friction in our model. The symmetry

is preserved when we take M and N to infinity.

To model a large market, we will follow the literature and let M → ∞ and N

→∞ such that λ = M/N remains constant. Define

µ (k, w) = lim
M→∞

(
M∑
j=1

1{(kj ,wj)=(k,w)}

)
/M.

At the limit, a history is described by an offer distribution µ. Define the queue

length at firm j as qj = limN→∞ γ
jN . Using (3.2), (3.3) and (3.4), it is straightfor-

ward to establish the hiring probabilities as functions of queue lengths at the limit.

If firm j posts one vacancy, then

Ω1(qj) =
1

qj

(
1− e−qj

)
;
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otherwise, firm j decides to become a large firm and posts two job openings,

Ω21(qj) = e−q
j

,

Ω22(qj) =
2

qj

(
1− e−qj − qje−qj

)
.

In a symmetric equilibrium, given µ (k, w), all workers play an identical strategy

and receive the same and highest utility level denoted as U . Specifically, a worker

applies to a small firm j with positive probability only if

Ω1(qj)V1

(
ρ;wj

)
= U ; (3.5)

similarly, a worker applies to a large firm j with positive probability only if

Ω21(qj)V21

(
ρ;wj

)
+ Ω22(qj)V22

(
ρ;wj

)
= U. (3.6)

Here, U is referred to as the market utility level in the literature. Solving these

two equations gives qj’s as functions of wj and U . Dropping ρ, define Q1 (U,wj)

as the greater value between the unique qj as the solution to (3.5) and zero; define

Q2 (U,wj) by doing the same to (3.6). Combined, we have Qkj (U,wj), which

determines the equilibrium queue length at firm j with (kj, wj), when the market

utility is U .

Definition 2. Given an offer distribution µ (kj, wj), a symmetric equilibrium of

the Stage II game is characterized by (qj, U) such that

1. qj = Qkj (U,wj) for all j, and

2.
∫
Qkj (U,wj) dµ (kj, wj) = 1/λ.
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Hence, workers are indifferent between applying to any firm j as long as qj > 0.

At the same time, zero queue length implies that this firm cannot provide the

market utility level to workers.

Stage I: Offer Posting Stage. Now take one step back and consider a firm’s

problem at the limit. Expecting the form of Qk (U,w) and U , firm j’s strategy

is to choose a probability distribution µj over {1, 2} × R+, where µj (k, w) is the

probability that firm j posts k vacancies and a wage w. If the firm posts a single

vacancy, it chooses w1 to maximize the expected profit,

π∗1 (U) = max
w1

{π1 (U,w1) = Φ1 (Q1 (U,w1)) (F11 (ρ)− V1 (ρ;w1))} , (3.7)

where Φ1 (q1) = q1Ω1 (q1) = 1 − e−q1 is the limiting probability that a small firm

successfully hires a worker. The market utility level U is taken as given, and the

firm can attract applicants only if it can provide U level of expected utility to its

potential worker(s). At the same time, the representative firm solves the problem

associated with a large one,

π∗2 (U) = max
w2

π2 (U,w2) =

 Φ21 (Q2 (U,w2)) [F21 (ρ)− V21 (ρ;w2)]

+Φ22 (Q2 (U,w2)) [F22 (ρ)− 2V22 (ρ;w2)]− C




(3.8)

where Φ21 (q2) = q2Ω21 (q2) = q2e
−q2 is the probability that a large firm gets only

one applicant, and Φ22 (q2) = (q2/2) Ω22 (q2) = 1 − e−q2 − q2e
−q2 is the probability

it gets at least two applicants and therefore two employees. Define

π∗ (U) = max {π∗1 (U) , π∗2 (U)} . (3.9)
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Naturally, to get the coexistence of both small and large firms, it requires that

π∗ = π∗1 = π∗2, which is feasible in certain parameter subspaces.

Definition 3. A symmetric equilibrium of the Stage I game consists of a distribu-

tion µ∗ (k, w), a market utility level U∗, and queue lengths qj, satisfying

1. µj (k, w) = µ∗ (k, w),

2. πkj (U∗, wj) = π∗ (U∗) if dµ∗ (kj, wj) > 0,

3. πkj (U∗, wj) ≤ π∗ (U∗) if dµ∗ (kj, wj) = 0,

4. (qj, U∗) is the equilibrium of the job application game.

Equilibrium Characterization. In the following proposition, we show that in the

unique equilibrium, the only realized history contains identical small firms and/or

identical large ones: in a small firm’s contract, the proposed wage is w∗1; in a large

firm’s contract, it is w∗2; and the associated equilibrium queue lengths in small and

large firms are q∗1 and q∗2, respectively. Let φ∗ be the equilibrium probability of

becoming a small firm. As a result, the proportion of small firms is µ (1, w∗1) = φ∗,

and µ (2, w∗2) = 1−φ∗ for large ones. Since workers play a symmetric strategy, they

will ignore firms’ identity if they proposed the same contract. Hence, we can use σ∗

as the probability of applying to the group of small firms, and 1 − σ∗ to the large

firms. Immediately, we have

σ∗ = λφ∗q∗1, and 1− σ∗ = λ (1− φ∗) q∗2,

where φ∗ is the equilibrium probability that a firm becomes a small firm. Given

the equilibrium queue lengths q∗1 and q∗2, (φ∗, σ∗) can be uniquely pinned down.
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Combining all of the four stages, we can characterize the equilibrium in the following

proposition.

Proposition 5. There exists a list of functions: c (ρ) ∈ (0, ρ), λ (C, ρ) > 0,

and λ̄ (C, ρ) > 0. Fix a set of parameters (λ,C, ρ) such that C ∈ (c (ρ) , ρ) and

λ ∈
(
λ (C, ρ) , λ̄ (C, ρ)

)
. There exists a unique symmetric equilibrium in which

large firms and small ones coexist. The equilibrium can be characterized by a list

of functions (φ∗, w∗1, w
∗
2, σ

∗) satisfying the following: there exists a unique pair of

(q∗1, q
∗
2), and a pair of (φ∗, σ∗) ∈ (0, 1)× (0, 1) such that

φ∗ =
q∗2 − 1/λ

q∗2 − q∗1
, σ∗ = λq∗1φ

∗ =
λq∗1 (q∗2 − 1/λ)

q∗2 − q∗1
, q∗2 > q∗1 > 0,

and the wages in small and large firm markets are given by

w∗1 =
F11 (ρ) q∗1e

−q∗1

(1 + F11 (ρ)) (1− e−q∗1 )
,

w∗2 =
F21 (ρ) + q∗2 [F22 (ρ)− F21 (ρ)]

1 + F21 (ρ) + (eq
∗
2 − 1− q∗2) (F22 (ρ) + 2) /q∗2

.

If C, ρ and/or λ lie outside the specified region, which can be decomposed into

three regions, there is no heterogeneity in realized firm sizes. The intuition behind

these three situations is simple. If C ∈ (c (ρ) , ρ) and λ is either too small or too

large, firms are also the same size. When λ is too small, there are so few firms

in the market relative to workers that it is easy to hire two workers and to take

advantage of job rotation. In equilibrium, no firm chooses to become a small one.

Similarly, when λ is too large, there are so many firms and vacancies that it is

not only costly to post an extra vacancy, but it is also hard to fill both of them

in a large firm. In equilibrium, no firm wants to be a large one. The coexistence
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of small and large firms is only possible when C is high enough compared to ρ,

and λ ∈
(
λ (C, ρ) , λ̄ (C, ρ)

)
. The region in which C ≤ c (ρ) corresponds to the

case of U∗ ≥ ρ = F11 (ρ), and the market utility is so high that a small firm

cannot earn a positive profit. As a result, in this region, all firms are the same size.

There are two possible cases here: either all firms choose to randomize between

being large and not entering by paying an unacceptable wage, or all firms choose to

randomize between being small and not entering. The outcome relies on the value

of λ. Neither of these two possibilities is of interest. In the following subsection, we

focus on the coexistence case and characterize the impact of job rotation on labor

market variables.

3.2.3 Implications

In this subsection, we look at the implications of the unique symmetric equi-

librium. The model simultaneously gives predictions on relationships between firm

size and productivity, separation rate, and wage, which are roughly in line with

empirical findings.

Size and Job Rotation Rate. In our model, the job rotation rate is trivially

increasing in firm size. We can generalize our model one step further and allow firms

to post 1, 2, .., K vacancies. Now that a larger firm can overcome the mismatch loss

even more via reassignment of jobs, a higher rotation rate will appear. This is

consistent with the empirical finding of Papageorgiou (2011). We will see how this

higher job rotation benefit of larger firms affects the labor market.

Size and Labor Productivity. The average labor productivity of a small firm is

simply F11 (ρ) = ρ, and that of a large firm is a convex combination Φ22F (ρ; 2, 2)/2+
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Φ21F (ρ; 2, 1), which is greater than ρ since F (ρ; 2, 2) > 2ρ and F (ρ; 2, 1) > ρ for

any ρ ∈ (0, 1). As stated before, the marginal labor productivity of a large firm is

decreasing in size measured as the number of employees, F (ρ; 2, 2) < 2F (ρ; 2, 1),

and therefore the production function of a large firm is concave in labor.

Size and Separation Rate. In a recent empirical work, Papageorgiou (2011) ana-

lyzes the Survey of Income and Program Participation data and finds that workers

in larger firms are less likely to be separated from their firms even conditional on

workers’ wages. In our paper, for tractability, we assume that after a firm learns the

quality of all possible matches between its workers and positions, it has the option

to fire incapable employees and create separations. Due to the job rotation feature,

large firms have a lower overall separation rate than small firms in our model. In

particular, given the specific form of contract, as discussed in the previous section,

workers in small firms suffer a separation rate at φ11 (ρ) in Stage IV, and those in

large firms working without or with co-workers face the separation rate at φ21 (ρ) or

φ22 (ρ). It is obvious that φ21 (ρ) < φ22 (ρ) < φ11 (ρ) for any ρ ∈ (0, 1). Therefore,

we have the following result established.

Proposition 6. The separation rate in a large firm is smaller than that in a small

firm.

Size and Wage Differential. In standard directed search models with multi-

vacancy firms, it is well known that small firms always post higher wages in the

unique equilibrium.6 However, this contradicts the observations on the labor mar-

ket;7 it is the large firms that pay higher wages to workers. In our model, large

6See the discussion in Shi (2002) and Tan (2012).
7For example, Brown and Medoff (1989) and Oi and Idson (1999) point out that there exists

a positive size-wage differential in the labor market.
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firms have the opportunity to reallocate workers over jobs and partially overcome

the mismatch between workers and jobs. This job rotation feature creates two si-

multaneous forces that drive the size-wage differential in different directions. The

first effect lies in the increased expected productivity of large firms. When their ex-

pected productivity is higher, large firms may be able and willing to pay higher

wages to their workers, which makes their job offers more attractive to work-

ers. The second effect is due to the reduced job separation rate in large firms.

Lower unemployment risk in large firms works together with the first effect to

pull up the expected utility that large firms promise to their applicants, that is,

V2 = (Ω21V21 + Ω22V22) / (Ω21 + Ω22) > V1. However, the smaller separation rate

can potentially push wages down. Taking both effects into consideration, we claim

that, when the mismatch risk is high compared to the extra cost of becoming a

large firm, large firms can provide higher promised utility; and when the mismatch

risk is even higher so that the first effect dominates, large firms pay higher wages.

Result 2. Large firms offer lower wages than small firms if there is no mismatch,

ρ = 1. For any ρ ∈ (0, 1), there exists a c̄ (ρ) ∈ (c (ρ) , ρ] such that for any

C ∈ (c (ρ) , c̄ (ρ)), V2 > V1. Furthermore, when ρ and C are small enough, there

exist a set of (ρ, C) such that w∗2 > w∗1.

We provide a numerical illustration of this result due to the difficult derivation

of an analytical proof. In Figure 3.1, we illustrate how w1/w2 and V1/V2 depend

on C and ρ. When ρ = 1, we replicate the result of a standard directed search

model with multi-vacancy firms, simply because there is no risk of mismatch. In

this case, large firms offer lower wages for any positive C. When ρ is small, it is

possible to obtain the wage premium of large firms. The intuition is as follows.
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Figure 3.1: Decomposition of (ρ, C)-space. I: C ≤ c (ρ), no co-existence of firms of
two sizes. II V1 > V2 and w1 > w2. III V1 < V2 and w1 > w2. IV V1 < V2 and
w1 < w2.

Smaller ρ implies a higher probability of mismatch and, consequently, a greater job

rotation benefit and a higher wage premium; thus the wage premium is decreasing

in ρ. There are four relevant regions. Region I corresponds to the case of C ≤ c (ρ) ,

which is not of interest. In region II, C is relatively high so becoming a large firm

is costly, and ρ is large and the advantage of rotation is limited; thus, small firms

provide more promising offers in the equilibrium, V1 > V2. In region III, (ρ, C) is

moderate and the advantage of rotation raises large firms’ expected productivity

so that their offer becomes more attractive than those of small firms, and V2 > V1.

However, since workers in large firms face a smaller unemployment risk, when (ρ, C)

belongs to this region, to provide higher expected utility, large firms do not need to

pay high wages, so w∗2 < w∗1. In region IV, (ρ, C) is small enough, and the difference

in unemployment risk is limited, hence w∗2 > w∗1.

Decomposition of (ρ, C)-space. I: C ≤ c (ρ), no co-existence of firms of two
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sizes. II V1 > V2 and w1 > w2. III V1 < V2 and w1 > w2. IV V1 < V2 and w1 < w2.

For standard directed search models to generate a positive correlation between

firm size and wage, an exogenous productivity difference is required. In particular,

Kaas and Kircher (2011) and Lester (2010) assume that firms randomly draw their

productivity levels from a pre-determined distribution before they enter the labor

market, and high productivity firms decide to be large and low productivity firms

choose otherwise. If the ex ante distribution of productivity is dispersed enough,

this technology difference can overcome the frictional effect of coordination failure

and can generate a reasonable size-wage differential. In their models, large firm

size and a wage premium are the consequence of high productivity. Our model

suggests a somewhat reversed direction of such a relationship: even with ex ante

homogeneity assumed, large firms may emerge, taking advantage of the opportunity

of job rotation, which in turn induces high productivity and a wage premium.

3.3 Vacancy Yield and Informative Interview

In this section, we study the vacancy yield8. In our baseline model, we assume

vacancies are ex ante homogeneous across firms. Let vk be the equilibrium vacancy

yield of firms posting k vacancies in our benchmark model, which is the probability

of filling a position in these firms, then we have v1 = Φ1 (q∗1). In a large firm,

it is straightforward to see that Φ21 (q∗2) = 2v2 (1− v2) and Φ22 (q∗2) = (v2)2, so

v2 = Φ22 (q∗2) + Φ21 (q∗2) /2. Our simulation shows v1 < v2 for any ρ ∈ (0, 1] and

C ∈ (c (ρ) , ρ), but it is inconsistent with the empirical relation between vacancy

yield and firm size, which is negative. This inconsistency is a typical result in

8We thank an associate editor for encouraging us to investigate this issue in our framework.
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directed search models, for example, Lester (2010), because wages play an allocative

role in the workers’ application decision. Nonetheless, in comparison to a model

without the opportunity of job rotation, ρ = 1, our model here predicts a greater

disparity between the vacancy yields of firms with one vacancy and those with

multiple vacancies, i.e., the difference between v2 and v1 is amplified as ρ becomes

smaller.

An important factor, however, is missing in our main model, as well as in most

directed search models. As argued by Davis, Faberman, and Haltiwanger(2010),

firms of different sizes have heterogeneous job recruiting standards due to the pre-

existing heterogeneity on both sides of the labor market. Acknowledging this, we

now extend our main model to investigate the possibility that large firms have a

different job recruiting standard from small firms.

Suppose a large firm, by paying the extra cost C, can afford a more sophisticated

human resources department and, therefore, can draw an informative but noisy sig-

nal about the match quality between potential employees and their positions.9 We

introduce a heterogeneity of interview technology among firms of different sizes to

capture the idea that large firms have higher job recruiting standards than small

firms. To simplify the analysis, we focus on the following signal-generating technol-

ogy. If a worker is good at neither position, a bad signal is realized with probability

1−δ, where δ ∈ (0, 1) .10 Hence, conditional on being matched with a large firm, the

probability that a worker passes the interview is η = 1 − (1− ρ)2 (1− δ) which is

9We fold the cost of the additional screening technology into the second vacancy posting cost.
Hence, large firms are equipped with this technology automatically. It is, however, possible to
endogenize this decision; see, for example, Galenianos (2012).

10We assume that large firms cannot acquire workers’ match quality information position by
position, which implies that firms will randomly allocate a qualified employee over positions. Since
our interest is not in studying the effect of interviews on firms’ job assignment to new workers,
we believe this assumption does not lose any generality.
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close to zero when ρ, δ → 0. If a worker passes the interview, his posterior of being

good at each position is given by ρ̄ = ρ
ρ+(1−ρ)(δ+ρ(1−δ)) ∈ (ρ, 1). Similar analysis

yields the equilibrium wages w∗1 in small firms and w∗2 (ρ̄)11 in large ones, and va-

cancy yields in small and large firms are given by v1 = Φ1 and v2 = η (Φ22 + Φ21/2).

When δ is small (the signal is precise), large firms are very selective, and therefore,

the vacancy yield in large firms can be smaller than that in small firms. Figure 2

shows some numerical examples. For small ρ and C, when δ is small, v1 < v2, and

w∗1 < w∗2. Since a match is good with probability ρ̄ > ρ in large firms, both the

productivity difference and the separation rate difference between large firms and

small firms are amplified. On the other hand, the interview effect will decrease the

possibility of job rotation. However, in our model, since the job rotation rate in

small firms is always zero, our prediction on the relation between job rotation rate

and firm size still holds.

We assume that large firms can only draw signals from matched workers. What if

they could draw signals from all applicants? The result will not change qualitatively.

The reason is as follows. In equilibrium, a large firm faces finitely many applicants.

Even though there are more than 2 applicants, the probability that the firm cannot

hire enough workers is always positive if δ ∈ (0, 1). When both ρ and δ are small,

the vacancy yield can be arbitrarily small. Hence, our prediction on the relation

between vacancy yield and firm size still holds.

11The wage in large firms, w∗
2 (ρ̄) is obtained by replacing ρ by ρ̄ in the expression of w∗

2 in
Proposition 1.
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Figure 3.2: Vacancy Yield and Wage Ratio at Different ρ, C, and δ.

3.4 Conclusion

We modified a standard directed search model to explain the size-wage differ-

ential observed in the labor market, highlighting the effect of the practice of job

rotation. However, in contrast to the standard directed search model with multi-

vacancy firms, our modified model can generate a positive correlation between firm

size and wage without introducing any ex ante exogenous productivity heterogene-

ity or imposing any non-concave production function assumptions. We assume ex

ante homogeneous firms and workers and initially unknown match quality that de-

termines labor productivity. Firm sizes are endogenously determined. By paying

an extra cost, a large firm benefits from the opportunity to rotate workers so as

to partially overcome the loss of mismatch. As a result, in the unique symmetric

equilibrium, large firms have higher labor productivity and wages, and a lower sep-
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aration rate. In future research, we would like to study the interaction between

internal labor markets and external labor markets in a fully dynamic model.
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Appendix A

Appendix for Chapter 1

A.1 Appendix: Omitted Proofs

This part of the appendix contains the proofs that are omitted from the main

context.

A.1.1 Derivation of Price Indices

Household’s FOC

βtηtθit = λtpitcit.

So

pitcit
θit

=
∑

pitcit

since
∑
θit = 1,

∑
pitcit =

∏(∑
pitcit

)θit
=
∏(

pitcit
θit

)θit
= PC

t Ct.
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Plugging the indices back into the household’s FOC’s yields equations (1.4), (1.5),

and (1.6).

Similarly, firm i’s FOC:

pjtxijt = αiωijEt (Λt,t+1si,t+1)

so

pjtxijt
ωij

=
∑
j

pjtxijt

and since
∑
ωij = 1

∑
j

pjtxijt =
∏(∑

j

pjtxijt

)ωij

=
∏(

pjtxijt
ωij

)ωij
= PX

it Xit.

A.1.2 Proof of Proposition 1

Proof. Firm i’s FOC for labor demand

withit = (1− αi) sit.

HH’s budget constraint

∑
pitcit =

∑
(1− αi) sit +

∑
πit.

Market clearing

pitcit +
∑
j

pitxjit = θitP
C
t Ct +

∑
j

αjωjif̃jtP
C
t Ct = sit
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So

sit
PC
t Ct

= θit +
∑
j

αjωjif̃jt∑
sit

PC
t Ct

= 1 +
∑
j

αj f̃jt.

Note that the proof also implies

cit
yit

=
θit

θit +
∑

j αjωjif̃jt

xjit
yit

=
αjωjif̃jt

θit +
∑

j αjωjif̃jt
.

and HH labor supply condition

hεit = ηt
wit
PC
t Ct

h1+ε
it = ηt

(1− αi) sit
PC
t Ct

= ηt (1− αi)

(
θit +

∑
j

αjωjif̃jt

)
.

A.2 Appendix: Data and Estimation

A.2.1 Data Description and Transformation

The U.S. data used in this paper are from the Industry Economic Accounts

of the Bureau of Economic Analysis. Specifically, I take the Use tables and Make

tables (before redefinition) between 1997 and 2012, also the GDP by industry tables

of the same time. I exploit the information on 65 private industries in each table.
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Industries are defined according to the 2007 NAICS, roughly at the three digit level.

The detailed information on these industries is included in subsection A.2.3.

The GDP by industry (value added) tables contain value added, gross output,

intermediate inputs expenditure by industry data, as well as corresponding price

indices, for 69 industries (65 private and 4 non-private). The Make table of a given

year documents the production of each commodity by each industry, measured in

millions of dollars. A Make table is a 69 industries by 71 commodities matrix

(Make). The Use table of a given year records the expenditure made by each

industry on each commodity used as input, measured in millions of dollars, while

it also records the final demand of each commodity. A Use table consists of a 71

commodities by 69 industries matrix (Use) and 71 commodities by 11 groups of

final users matrix.

To get consistent industry-by-industry data on value added, gross output, de-

tailed input uses, and final demand for 65 private industries, the Make table of year

2007 is used to transform the commodity-by-industry/final-user Use tables into

industry-by-industry/final-user tables. Let Make2007 be the original 2007 Make

table and define MakeI2007 such that each (i, j) element is given by

MakeI2007 (i, j) =
Make2007 (i, j)∑
kMake2007 (k, j)

=
Industry i’s production of Commodity j

Total output of Commodity j
.

Therefore each column of MakeI2007 sums up to 1. The Use table of the year 2007

are used to calibrate the production technoloy parameters, Ω. Let Use2007 be the

origianl 2007 Use table (71 commodities by 69 industries) and define UseIxI2007 such
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that

UseIxI2007 = MakeI2007 × Use2007,

then each element UseIxI2007 (i, j) is industry j’s use of industry i’s output. Then

each (i, j) element of Ω is simply

Ω (i, j) =
UseIxI, Private

2007 (j, i)∑
k Use

IxI, Private
2007 (k, i)

where UseIxI, Private
2007 is the transformed Use table for the private industries, first

65-by-65 block of UseIxI2007.

For each year, the final demand for each commodity is a 71-by-1 vector, calcu-

lated as the total final use for each commodity adding back the imports. Adjusting

each vector with MakeI2007 yields the final demand for each industry’s output in

every year, the first 65 elements of which are the private sector. Normalizing each

year’s total final demand to be 1 gives the consumption shares, θt, from 1997 to

2012. Similarly, θ is obtained averaging the final demand over the sample period.

A.2.2 Estimation of (κ,N, T )

Denote the unconditional variance-covariance matrix of θt as Σθ (κ), such that:

Σθ (κ) = V ar (θt;κ) ,

Σθ
ii (κ) = V ar (θit;κ) =

θi (1− θi)
κ+ 1

,∀i

Σθ
ij (κ) = Cov (θit, θjt;κ) = − θiθj

κ+ 1
, ∀i 6= j.
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By the independence assumption,

Σ∆θ (κ) = V ar (∆θt) = V ar (θt − θt−1) = 2Σθ (κ) .

The news about θt received in period s, ∀s < t, is independently drawn from

the multinomial distribution wiht N trials,

ms
t := (ms

1t, ...,m
s
nt)
′ ∼Multinomial (N, θt) .

Conditional on θt, the moments of the news satisfies

E (ms
t |θt) = Nθt

V ar (ms
it|θt) = Nθit (1− θit) ,∀i,∀s

Cov
(
ms
it,m

s
jt|θt

)
= −Nθitθjt,∀i 6= j,∀s.

Therefore, the unconditional variance-covariance matrix of the news, denoted as

Σm, is such that

Σm (κ,N) = E (E (ms
tm

s′
t |θt))− E (E (ms

t |θt))E (E (ms′
t |θt))

= N (N + κ) Σθ (κ) ,∀t,∀s < t.

Note that, for each piece of news, the unconditional variance-covariance matrix

Σm (κ,N) is the same, namely, Σm (κ,N) depends neither on the target time t nor

on the news arrival time s < t. In fact, Σm (κ,N) remains the same for any T .
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For a given T , the forecast vector at each time t can be written as

f̃t = Const+
T∑
τ=1

βτ−1 (Ω′A)
τ−1

∑T−τ
τ ′=0 mt−τ ′

t+τ

κ+ (T + 1− τ)N
,

where Const is a time-invariant constant vector. Consequently, due to the inde-

pendence assumption on the news, the unconditional variance-covariance matrix of

f̃t, Σf (κ,N, T ), has the following form

Σf (κ,N, T ) = V ar
(
f̃t;κ,N, T

)
= N (N + κ)

T∑
τ=1

β2(τ−1) (T − τ + 1)

(κ+ (T + 1− τ)N)2 (Ω′A)
τ−1

Σθ (κ) (AΩ)τ−1 .

Now I look at the observable variables. Denote the input use by industry i at

time t as uit, uit = PX
it Xit, and ut = (u1t, ..., unt)

′. Hence industry i’s value added

at t is vit := sit − uit, vt = (v1t, ..., vnt)
′, and the aggregate value added, namely

GDP, is Vt = PC
t Ct =

∑
i vit. By Proposition 1, we have the following ratios,

st
Vt

= θt + βΩ′Af̃t = θt + Ω′
ut
Vt

ut
Vt

= βAf̃t

vt
Vt

= θt + βΩ′Af̃t − βAf̃t = θt + β (Ω′ − I)Af̃t.
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Table A1. Goodness of Fit
Data (×10−4) Estimated (×10−4)

Step 1 σθi 5.29 8.44
std
(
σθi
)

6.59 5.07

Step 2 σu/V 12.76 3.36
std
(
σu/V

)
13.76 2.11

σs/V 14.74 11.89
std
(
σs/V

)
15.91 7.08

σv/V 8.13 13.19
std
(
σv/V

)
7.63 7.77

The variation in each variable over time is then

Σs/V (κ,N, T ) = V ar

(
st
Vt

)
= Σθ + β2Ω′AΣfAΩ

Σu/V (κ,N, T ) = V ar

(
ut
Vt

)
= β2AΣfA

Σv/V (κ,N, T ) = V ar

(
vt
Vt

)
= Σθ + β2 (Ω′ − I)AΣfA (Ω− I) .

All the variables, st/Vt, ut/Vt, and vt/Vt, can be directly calculated from data,

so are the variances. However, in order to eliminate the time trend, I use the

changes instead: ∆st/Vt = st/Vt−st−1/Vt−1, ∆ut/Vt, and ∆vt/Vt similarly defined.

Starting from Σ∆u/V ,

Σ∆u/V = β2AΣ∆fA

where

Σ∆f = V ar
(
f̃t − f̃t−1

)
= 2Σf − Cov

(
f̃t, f̃t−1

)
− Cov

(
f̃t−1, f̃t

)
= 2Σf − Γf −

(
Γf
)′
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with Γf = Cov
(
f̃t, f̃t−1

)
=
[
Cov

(
f̃t−1, f̃t

)]′
being the (t, t− 1) covariance matrix.

Note that, when T = 1, f̃t and f̃t−1 are independent, so Σ∆f (T = 1) = 2Σf . For

other T ,

Γf = Cov
(
f̃t, f̃t−1

)
=

T − 1

(κ+ TN) (κ+ (T − 1)N)
ΣmβAΩ

+
T − 2

(κ+ (T − 1)N) (κ+ (T − 2)N)
βΩ′AΣm (βAΩ)2

+...+
1

(κ+ 2N) (κ+N)
(βΩ′A)

T−2
Σm (βAΩ)T−1 .

Next, the other two variances.

Σ∆s/V = V ar
(
θt − θt−1 + βΩ′Af̃t − βΩ′Af̃t−1

)
= V ar (∆θt) + V ar

(
βΩ′A∆f̃t

)
− Cov

(
θt, βΩ′Af̃t−1

)
− Cov

(
βΩ′Af̃t−1, θt

)
= 2Σθ + β2Ω′AΣ∆fAΩ− βΓθ,fAΩ− βΩ′A

(
Γθ,f

)′
Σ∆v/V = V ar

(
θt − θt−1 + β (Ω′ − I)A

(
f̃t − f̃t−1

))
= 2Σθ + β2 (Ω′ − I)AΣ∆fA (Ω− I)− βΓθ,fA (Ω− I)

+ β (Ω′ − I)A
(
Γθ,f

)′
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where Γθ,f = Cov
(
θt, f̃t−1

)
is the covariance matrix between θt and f̃t−1,

Γθ,f = Cov
(
θt, f̃t−1

)
= Cov

(
θt,

∑T
s=1 mt

t−s

κ+ TN

)
=

T

κ+ TN
Cov

(
θt,m

t
t−s
)

=
TN

κ+ TN
Σθ =

(
Γθ,f

)′
.

Therefore,

Σ∆s/V = 2Σθ + β2Ω′AΣ∆fAΩ− βTN

κ+ TN

(
ΣθAΩ + Ω′AΣθ

)
Σ∆v/V = 2Σθ + β2 (Ω′ − I)AΣ∆fA (Ω− I)

− βTN

κ+ TN

(
ΣθA (Ω− I) + (Ω′ − I)AΣθ

)
.

The data counterparts of the unconditional variance-covariance matrices Σ∆s/V ,

Σ∆u/V , Σ∆v/V can be directly calculated. Similarly, the unconditional variance-

covariance matrix of changes in the product-specific preference Σ∆θ can also be

calculated using the realized θt. The estimation strategy consists of two steps and

picks κ and (N, T ) sequentially. Step one picks κ to minimize the distance between

model and data variables Σ∆θ, specifically,

κ̂ = arg min
κ

n∑
i=1

(
Σ∆θ,Model
i,i (κ)− Σ∆θ,Data

i,i

)2

where Σ∆θ
i,i = V ar (∆θit), the i-th element on the diagnal. And the second step
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finds (N, T ) in an analogous way with κ̂ given,

(
N̂ , T̂

)
= arg min

N,T

n∑
i=1


(

Σ
∆s/V,Model
i,i (N, T ; κ̂)− Σ

∆s/V,Data
i,i

)2

+
(

Σ
∆u/V,Model
i,i (N, T ; κ̂)− Σ

∆u/V,Data
i,i

)2

+
(

Σ
∆v/V,Model
i,i (N, T ; κ̂)− Σ

∆v/V,Data
i,i

)2

 .

The results, as shown in Table 2, are κ = 15300, N = 9100, and T = 1. Table A1

summarizes the goodness of fit.

A.2.3 NAICS Code and Industry Description

The 2007 NAICS code and description of each of the 65 private industries are

listed in the following table.

NAICS Code Industry Description

111CA Farms

113FF Forestry, fishing, and related activities

211 Oil and gas extraction

212 Mining, except oil and gas

213 Support activities for mining

22 Utilities

23 Construction

321 Wood products

327 Nonmetallic mineral products

331 Primary metals

332 Fabricated metal products

333 Machinery
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NAICS Code Industry Description

334 Computer and electronic products

335 Electrical equipment, appliances, and components

3361MV Motor vehicles, bodies and trailers, and parts

3364OT Other transportation equipment

337 Furniture and related products

339 Miscellaneous manufacturing

311FT Food and beverage and tobacco products

313TT Textile mills and textile product mills

315AL Apparel and leather and allied products

322 Paper products

323 Printing and related support activities

324 Petroleum and coal products

325 Chemical products

326 Plastics and rubber products

42 Wholesale trade

441 Motor Vehicle and Parts Dealers

445 Food and Beverage Stores

452 General Merchandise Stores

4A0 Other Retail

481 Air transportation

482 Rail transportation

483 Water transportation

484 Truck transportation
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NAICS Code Industry Description

485 Transit and ground passenger transportation

486 Pipeline transportation

487OS Other transportation and support activities

493 Warehousing and storage

511 Publishing industries (includes software)

512 Motion picture and sound recording industries

513 Broadcasting and telecommunications

514 Information and data processing services

521CI Federal Reserve banks, credit intermediation,

and related activities

523 Securities, commodity contracts, and investments

524 Insurance carriers and related activities

525 Funds, trusts, and other financial vehicles

531 Real estate

532RL Rental and leasing services and lessors of intangible assets

5411 Legal services

5415 Computer systems design and related services

5412OP Miscellaneous professional, scientific, and technical services

55 Management of companies and enterprises

561 Administrative and support services

562 Waste management and remediation services

61 Educational services

621 Ambulatory health care services
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NAICS Code Industry Description

622 Hospitals

623 Nursing and residential care facilities

624 Social assistance

711AS Performing arts, spectator sports, museums,

and related activities

713 Amusements, gambling, and recreation industries

721 Accommodation

722 Food services and drinking places

81 Other services, except government
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Appendix B

Appendix for Chapter 2

Proof of Proposition 3

Let kA0 be such that A
(
kA0
)α

= k∗, where k∗ = (αβA)1/(1−α), then,

kA0 = (αβ)
1

α(1−α) A
1

1−α < k∗.

Similarly, let kz̄0 be such that z̄ (kz̄0)α = k∗, that is

kz̄0 = (αβp)
1

α(1−α) z̄
1

1−α < kA0 .

When k0 < kz̄0, the firm that stays in period 1 will further invest all w1 in a safe

project since w1 < k∗. Let kII0 be the investment level at which a firm is indif-

ferent between investing in a safe project and a risky one, meaning V 1
1

(
AkIIα0

)
=

pV 1
1

(
z̄kIIα0

)
+ (1− p)V 0. When Condition 1 holds, it is straightforward to show
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that

kII0 =

[
(1− p)V 0

βz̄1+α (p1+α − p2)

] 1
α2

< kz̄0.

Let kI0 be the investment level at which a firm is indifferent between exiting and

investing in a risky project, that is, V 0 = pV 1
1

(
z̄kIα0

)
+ (1− p)V 0, then

kI0 =

[
V 0

βAz̄α

] 1
α2

< kII0 .
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Appendix C

Appendix for Chapter 3

Proof of Proposition 1. By (3.5), we have

w1 =
q1U

∗

(1 + ρ) (1− e−q1)
for q1 > 0,

and w1 is not well-defined when q1 = 0. So there is a one-to-one and negative

relation between w1 and q1 when q1 > 0. The maximization problem (3.7) is

therefore equivalent to the following,

π∗1 = max
q1>0
{ρΦ1 (q1)− q1U

∗} (C.1)

Similarly, by (3.6), we have

w2 = U∗
[
e−q2 (F21 (ρ) + 1) +

1

q2

(
1− e−q2 − q2e

−q2
)

(F22 (ρ) + 2)

]−1

for q2 > 0
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So the problem of (3.8) can also be re-written so that q2 is the control variable,

π∗2 = max
q2>0
{Φ21 (q2)F21 (ρ) + Φ22 (q2)F22 (ρ)− q2U

∗ − C} . (C.2)

The first-order conditions to (C.1) and (C.2) are

U∗ ≥ ρe−q1 , (C.3)

U∗ ≥ e−q2F21 (ρ) + q2e
−q2 (F22 (ρ)− F21 (ρ)) , (C.4)

where the equalities hold when q1, q2 > 0. We focus on the situation where both

small and large firms coexist, so we combine (C.3) and (C.4) at equalities and

obtain the necessary condition for interior solutions (q∗1, q
∗
2) ,

q∗1 = q∗2 − ln

(
1

ρ
[F21 (ρ) + q∗2 (F22 (ρ)− F21 (ρ))]

)
, and q∗1 > 0. (C.5)

This also implies that q∗2 > q∗1. Moreover, the necessary condition for coexistence

requires π∗ = π∗1 = π∗2, which implies

ρ
(
1− e−q∗1 − q∗1e−q

∗
1
)

=
(
1− e−q∗2 − q∗2e−q

∗
2
)
F22 (ρ)− (q∗2)2 e−q

∗
2 (F22 (ρ)− F21 (ρ))− C. (C.6)

These two equations give the unique solution (q∗1, q
∗
2) when it exists. Then (w∗1, w

∗
2)

can be expressed as functions of (q∗1, q
∗
2) by using (3.5), (3.6), (C.3) and (C.4).

Q.E.D.
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