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ABSTRACT 

 

 

 

 

WORKING AT WATER’S EDGE: LIFE SCIENCES AT AMERICAN MARINE 

STATIONS, 1880-1930 

 

 

Samantha Kay Muka 

 

 

M. Susan Lindee 

 

 

This dissertation examines the rise of America marine stations between 1880 and 1930, 

and examines the malleable spaces and technologies that facilitated multifaceted 

approaches in these liquid laboratories. I begin by establishing baseline spatial and 

technological requirements for scientific work at the shoreline during this period. In 

subsequent chapters, I analyze four episodes of highly disciplinary work performed in 

these spaces: taxonomic illustration, embryology and morphology, neurophysiology, and 

animal behavior. While historians have pointed to a balkanization of scientific disciplines 

during this period, including reliance on specialized technologies and spaces, this 

dissertation seeks to highlight the continuities of space and technique in marine science 

and sheds light on the impact of these commonalities on the development of a cohesive 

marine science over the remainder of the twentieth century. 
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Introduction 
 

“But what are the special attractions of marine life, that naturalists should so 

eagerly seek the seashore?” is a question sometimes asked. To this we may reply, 

that the ocean is the home of the lowest as well as the oldest forms of life, and it is 

in such forms that the mysteries of life can presumably be most nearly 

approached. Then there are abundance and variety, and certain important groups 

that do not occur in fresh water. To the luxuriance of the fauna and flora of the 

shore, is added that vagrant, pelagic life which is collected by ocean-currents, 

tides, and winds, and laid at one’s feet as freely as if all nature pleaded for 

investigation. Moreover, the study of marine life has long been inadequately 

provided for, its advantages not having been generally recognized until within the 

last fifteen or twenty years. The comparative newness of the field, its infinite 

richness, and its importance in determining the origin, history, and relationships 

of living forms, account for the intense interest recently awaked in marine 

laboratories.
1
  

 

 

In April 1889, Science magazine trumpeted the opening of the Marine Biological 

Laboratory (MBL) as an important step in the study of marine life. A short article 

detailing the opening ceremonies of the station outlined the potential of the MBL: it could 

eventually be the “ideal biological station” by combining consistent workspace with the 

ability to send men out to far-flung locations for special studies. In effect, it combined the 

best characteristics of permanent stations with those of itinerant research from boats and 

temporary stations. The MBL was not the first permanent marine station in the United 

States, but the opening ceremonies trumpeted the turn towards the use and study of the 

marine environment in American biology.  

Beginning in the 1860s, governments, universities, and private natural history 

groups interested in surveying and studying marine resources established permanent 

marine stations throughout the world.  Russia, France, Japan, England, Canada, Germany, 

                                                      
1
 Science 13: 324 (April 19, 1889) 303. 
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Italy, The Netherlands, Sweden, and America all established permanent station locations 

by the end of the nineteenth century. Built by a local scientific society in 1867, the 

marine laboratory of Arcachon on the Bay of Arcachon may be the oldest laboratory of 

this kind, but it was definitely not the last. Russia’s privately funded Sevastopol Station, 

founded in 1871, was quickly followed by the Stazione Zoologica Anton Dohrn (1872) in 

Naples, Italy and the Station Biologique de Roscoff (1872) in Brittany, France.  Others 

swiftly followed and new stations opened in Sweden (Kristiniberg, 1877), Japan (Misaki, 

1887), Scotland (Gatty, 1896), England (Plymouth, 1888), America (Penikese Island, 

1877 and USBF Woods Hole, 1888), Canada (New Brunswick, 1899) and the 

Netherlands (Helder, 1890) throughout the 1880s and 1890s. By the turn of the twentieth 

century most of these countries had established multiple stations.
2
 

Universities, natural history associations, and the United States government all 

established permanent marine stations along each American coastline and into the 

Caribbean. Tufts University’s Mount Dessert Laboratory marked the Northernmost 

station on the East coast; permanent stations pushed south and east as New York 

University and Harvard founded a station in Bermuda, the New York Zoological Society 

settled into British Guiana, and Johns Hopkins established a station in Jamaica. On the 

Gulf Coast, the University of Texas maintained a station in Galveston, Texas. On the 

West Coast, laboratories stretched from the University of Minnesota’s location in the 

Juan de Fuca Straight to the San Diego Marine Biological Association in San Diego, 

                                                      
2
 William Carmichael McIntosh, The Gatty Marine Laboratory and the steps that led to its foundation in 

the University of St. Andrews (Dundee: John Leng & Co. 1896); Jane M. Oppenheimer, “Some Historical 

Backgrounds for the Establishment of the Stazione Zoologica at Naples” in Oceanography: The Past Mary 

Sears and Daniel Merrimen (eds) (New York: Springer, 1980), 179-187.;V.N. Greze “Centennial of the 

Institute of the Southern Seas at Sevastopol” Internationale Revue der Gesamten Hydrobiologie 56:5 

(1971): 811-818.; Charles Atwood Kofoid The Biological fStations of Europe (Washington, D.C.: 

Government Printing Office, 1910)    
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California. Science, the journal for the American Association for the Advancement of 

Science, ran articles announcing the establishment over 25 marine laboratories between 

1880 and 1930.
3
 The United States experienced a swift growth in the number of marine 

stations between 1880 and 1910. This growth is linked to two separate catalysts: fisheries 

concerns and the growth of American biology.  

In the 1870s, American biologists and fisheries experts became aware of the 

rapidly decreasing fish stocks in eastern fisheries. Spencer Fullerton Baird, the assistant 

secretary of the Smithsonian, was asked to investigate the claims by fishermen in both 

Massachusetts and Rhode Island that the use of certain types of nets was decreasing the 

fish stocks in these areas. Baird stated that  

….the supply, which formally greatly exceeded the demand, now, to a certain 

extent at least, and in certain localities, has failed; and the impression has become 

prevalent that the fish themselves, are diminishing, and that in time some kinds, at least, 

will be almost or quite exterminated. This assertion is made with reference to several 

species that formerly constituted an important part of the food supply; and the blame has 

been alternately laid upon one or another of the causes to which this result is ascribed, the 

fact of the decrease being generally considered as established.
4
 

  

Baird was given a limited amount of time and resources to investigate these claims; he 

spoke with local fishermen in both states to gauge stock depletion based on local 

knowledge and presented these findings to both states. Each state ruled differently 

(Rhode Island banning certain nets; Massachusetts seeing no evidence to do so), and the 

outcomes convinced Baird that more systematic investigation was required to make any 

conclusions. According to Baird, “this remarkable contradiction in the results of the two 

commissions showed the necessity of a special scientific investigation on this subject, to 

                                                      
3
 Ralph W. Dexter “History of American Marine Biology and Marine Biology Institutions Introduction: 

Origins of American Marine Biology” American Zoologist  28:1 (1988): 3-6.   
4
 Spencer F. Baird Report of the Condition of the Sea Fisheries of the South Coast of New England in 1871 

and 1872 (Washington, D.C.: Government Printing Office, 1873), vii. 



4 

 

be prosecuted in the way of direct experimentation on the fishes themselves, their feeding 

and their breeding grounds.”
5
  

The resources for expanding his investigations came on Feb. 9, 1871 when a joint 

resolution founded the United States Fish Commission. This resolution made Baird the 

Commissioner of Fishes and formally gave him the resources needed to explore fisheries 

issues.  Baird performed research on fisheries in the Northeast from a house in Woods 

Hole, Massachusetts; he procured government funding to build a permanent marine 

station there in 1885.
6
  While Baird envisioned a wide network of USFC marine stations 

throughout the United States, after his death in 1887, only two more government-run 

marine stations were founded: Beaufort, North Carolina and Key West, Florida. 

However, the USFC and newly realized concerns about diminishing stocks energized 

marine research in the United States by training fisheries personnel and providing 

monetary support for further investigations.  

The United States Fisheries Commission (renamed the US Bureau of Fisheries in 

1902) employed thousands of fisheries investigators throughout the United States. The 

Commission had three divisions: The Division of Inquiry (sometimes referred to as the 

Division of Scientific Inquiry), the Division of Fisheries, and the Division of Fish-

Culture. Each division employed a large amount of young men who gained experience 

working on boats, local and craft knowledge about catching, transporting, and culturing 

fishes, and laboratory techniques required to work with a wide range of marine 

organisms. The Division of Scientific Inquiry was based out of Woods Hole; each 

                                                      
5
 Ibid.,viii. 

6
 Dean Allard, Spencer Fullerton Baird and the U.S. Fish Commission (New York: Arno Press, 1978); 

Dean C. Allard,"Spencer Baird and support for American marine science, 1871-1887." Earth Sciences 

History 19.1 (2000): 44-57. 
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summer, the laboratory invited students and professors from Northeastern universities to 

utilize laboratory space for their research in the hopes that any work on the coast would 

result in useful data on the marine environment in that region.
7
 The men working for the 

USFC eventually migrated from low level work to other duties. These early trainees 

became professional biologists, aquarists, or high level fisheries researchers. This first 

generation of fisheries trained men, including Charles Townsend (Director New York 

Aquarium), David Starr Jordan (President of Stanford and founder of the Hopkins Marine 

Station), and Caswell Grave (Director of the Beaufort Laboratory and Professor at Johns 

Hopkins), energized research on the marine environment and spread interest in fisheries 

research to their students and peers. 

In addition to providing training the space that expanded marine science, the 

USBF also galvanized research by funding other marine stations and surveys throughout 

the United States. The fisheries budget was not inexhaustible and much of it was geared 

towards fish culture and stocking endeavors; to extend the study of the marine 

environment on a shoestring, the USBF fostered relationships with marine stations 

around the United States. For instance, the USBF did not have the budget to operate an 

independent marine station on the West Coast. Instead, they partially funded surveys and 

expeditions in collaboration with Stanford’s Hopkins Marine Station (run by Jordan, a 

former Fisheries employee) and the San Diego Marine Biological Association 

Laboratory. 
8
 They collaborated with the New York Zoological Society to help fund 

                                                      
7
 Samantha Muka, “The Broad Mission of the Division of Scientific Inquiry” The Bigger Picture: 

Exploring Archives and Smithsonian History (Jan. 26, 2012)  http://siarchives.si.edu/blog/broad-mission-

division-inquiry; Henry O’Malley to Director of the Princeton Biological Laboratory, May 11, 1929 Folder 

“Woods Hole 1919-1931” Box 20 RU 22 Records of the US Fish and Wildlife Service National Archives: 

Bethesda, MD.    
8
 William Emerson Ritter to George M. Bowers Nov 7, 1902. Box 1 Folder Correspondence 1902 William 

Emerson Ritter Papers 1893-1944 Scripps Oceanographic Institution: La Jolla, CA. 

http://siarchives.si.edu/blog/broad-mission-division-inquiry
http://siarchives.si.edu/blog/broad-mission-division-inquiry
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William Beebe’s Arcturus voyage; the USBF provided important equipment and two 

investigators (Mary Poland Fish and her husband, Charles J. Fish) in exchange for 

information about fish stocks in the Sargasso Sea.
9
 This injection of trained men and 

federal funding spurred a large range of research into the marine environment and helped 

to jumpstart the founding of marine stations at the turn of the twentieth century.   

In addition to fisheries concerns, the growth of marine stations can also be linked 

to the growth of American experimental biology during this period. Laboratory based 

experimental biology, centered primarily in the German university system, migrated into 

American universities during this period. During this period, it was common for 

American biologists to travel to German institutions to take graduate degrees in science. 

Post-Darwin, German biologists moved to the seashore to examine and experiment upon 

invertebrates in an attempt to understand the evolution of organisms. As these men 

returned to the United States to teach, and European scholars immigrated to the United 

States, the laboratory-based biology practiced in Europe followed.
10

 Two epicenters of 

this new biology emerged: The Johns Hopkins University and Harvard University. Both 

of these universities became, not just epicenters of experimental biology, but petri dishes 

for the burgeoning interest in marine research. 

At Hopkins, W.K. Brooks, who studied with several European-trained biologists 

at Harvard, focused his particular combination of morphology and physiology training on 

researching at marine laboratories. While at Harvard, Brooks trained with Alexander 

Agassiz while working at Penikese Island in Rhode Island. During his tenure at Hopkins, 
                                                      
9
 Henry O’Malley to William Beebe Nov. 13, 1924. Folder “Woods Hole Plankton Studies 1925” Box 5 

RU 22 Records of the Fish and Wildlife Service National Archives: Bethesda, MD. 
10

 Garland Allen, Life Science in the Twentieth Century (Cambridge, UK: Cambridge University Press, 

1978); Jane Maienschein, “Shifting assumptions in American Biology: Embryology, 1890-1910,” Journal 

of the History of Biology 14:1 (Spring, 1981): 89-113. Philip Pauly, Controlling Life: Jacques Loeb & the 

Engineering Ideal in Biology (Oxford: Oxford University Press, 1987). 
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he took students to the Chesapeake Bay, Woods Hole, Beaufort, North Carolina, and the 

Tortugas Laboratory to conduct research.  Brooks trained E.G. Conklin, E.B. Wilson, and 

T.H. Morgan in the new experimental methods and highlighted the importance of marine 

research in this endeavor. In turn, these investigators became professors at universities 

throughout the United States and spread the new experimental method, and strengthened 

the link between this methodology and marine research.
11

 

E.L. Mark, who studied in Leipzig and experienced the German biological link 

with the seashore of the Marine Zoological Laboratory of the Austrian government at 

Trieste, trained a large group of professional biologists at Harvard from 1877 to 1921. 

Many of these experimental biologists shared Mark’s interest in working with marine 

organisms.  

 

 

 

 

 

                                                      
11

 Jane Maienschein Transforming Traditions in American Biology, 1880-1915. (Baltimore: Johns Hopkins 

University Press, 1991); Edward Grant Conklin William Keith Brooks, 1808-1908 (Washington, D.C.: 

National Academy of Sciences, 1913); Keith Benson William Keith Brooks (1848-1908): A Case Study in 

Morphology and the Development of American Biology (PhD Dissertation: Oregon State University, 1979). 
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Figure 2 A photo of some of E.L. Mark's many students. In Charles Davenport "Edward Laurens Marks" 

Bios (May, 1939): 76-77. 

 

Many of his students would go on to become major figures in marine research 

throughout the twentieth century. Alfred Goldsborough Mayer was the first director of 

the Carnegie Institution of Washington’s Tortugas laboratory and William Emerson 

Ritter was the first director of the San Diego Marine Biological Association’s laboratory 

at San Diego (later renamed Scripps). In addition to directors of marine stations, many of 

his students chaired biology departments and sent many of their students to these 

institutions.
12

  Both Harvard and Johns Hopkins strengthened the link between 

                                                      
12

 Charles B. Davenport “Edward Laurens Mark” Bios 10:2 (May,1939): 69-83.  
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experimental biological investigation and marine stations. As Harvard and Johns Hopkins 

trained biologists took positions in science departments throughout the United States, 

more and more universities sent researchers to marine stations, spreading marine science 

from the East Coast to the Midwest and Western United States through the movement of 

these individuals. In effect, the marine station provided an “institutional identity” for 

American biology during this period.
13

  

 While historians have placed these institutions at the center of the early twentieth 

century biological narrative, relatively little attention has been paid to examining the 

entire network of marine stations and the wide range of biological investigation these 

spaces facilitated. The majority of historical literature examines the founding of the 

Marine Biological Laboratory in Woods Hole, Massachusetts and its linkage with the 

Stazione Zoologica Anton Dohrn in Naples, Italy. These spaces greatly resembled each 

other in structure: both ran on a table system that garnered its running budget by renting 

space to researchers. Experimental research, and the laboratory environment, was the 

center of the station. While these two stations have a strong resemblance to each other, 

they are not particularly indicative of the entire network of either American stations or 

their function in the biological community. To understand the importance of these spaces, 

the focus should be widened to include as sites as possible.  

Marine stations formed a large, integrated network of malleable spaces that 

facilitated both broad biological research and became the institutional basis for the 

nascent field of marine biology at the turn of the twentieth century. Researchers and 

                                                      
13

Keith R. Benson “Summer Camp, Seaside Station, and Marine Laboratory: Marine biology and its 

institutional identity” Historical Studies in the Physical and Biological Sciences Vol. 32 no. 1 (2001): 11-

18. 
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information flowed easily throughout the network because each station was placed in a 

carefully chosen location and was outfitted with basic technologies that could be 

modified to serve both observational and experimental research. In addition, these spaces 

were linked through a network of publications that facilitated information exchange and 

the growth of a baseline of knowledge about the ocean environment. Because of the 

malleability of these spaces and the flow of information throughout the network, I call 

these stations liquid laboratories.  

Liquid laboratories served as an institutional base for American biology by 

allowing easy and consistent access to fresh and living organisms for observation and 

experimentation. These researchers were not necessarily interested in studying the marine 

environment, but instead utilized marine organisms to examine a host of biological 

questions. The “engineering ideal” in biology pushed researchers to find organisms that 

had enough natural plasticity to survive and thrive during experimental procedures.
14

 This 

ideal favored specimens that could go on “living, synthesizing proteins, moving, 

reproducing, and so on despite catastrophic interference in their constitution, 

environment, or form” in the laboratory.
15

 Many marine organisms satisfied this form of 

plasticity.  

In addition to the importance to the wider biological community, these stations 

also served as the crucible of American marine science. Keith Benson has pointed out 

that marine biology as a professional group did not exist during this period and therefore 

it would be anachronistic to say that marine stations was part of this profession’s 

                                                      
14

 Pauly, Philip J. Controlling Life: Jacques Loeb & the Engineering Ideal in Biology Oxford University 

Press: New York (1987).  
15

 Hannah Landecker, Culturing Life: How cells became technology (Boston: Harvard University Press, 

2007), 10. 



11 

 

“institutional identity.” While it is true that the term ‘marine biology’ and the profession 

of ‘marine biologist’ were not in use during this period, the stations facilitated the growth 

of knowledge about the marine environment and jumpstarted research that would 

blossom into a full-fledged profession post-WWII. Biological surveying of the area 

surrounding was the largest ongoing project at marine stations; each year, stations 

amassed data on the local flora and fauna available in that area. In addition to surveys, 

specimen collection and observation of organisms in their natural environment was an 

important step in many experiments. These observations contributed to knowledge of the 

marine environment and the construction of major questions about that environment that 

would form the basis of marine biological investigations throughout the twentieth 

century.
16

  

This dissertation attempts to develop a “big-picture” of these liquid laboratories at 

the turn of the twentieth century in order ascertain how these spaces became integral to 

both the larger American biology and burgeoning marine biological communities. In 

particular, I would like to know what were the basic components of these stations, what 

made these spaces so useful to biologists, and how were so many different disciplines 

able to utilize a single space for increasingly specialized research? Robert Kohler has 

called for historians to gather “basic empirical evidence” of laboratories throughout 

history in order to ascertain how these spaces function in the scientific process.
17

 In order 

to develop this “big picture” of marine stations, I have examined archival and printed 

information from a wide range of marine stations including teaching, fisheries, and 
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research oriented spaces. I have analyzed data from the archives of six stations and the 

recently digitized journals and annual reports of over 15 stations. In addition, I have 

mined major academic journals of the period for publications that resulted from work in 

these spaces. By taking the widest view possible, I hope to build a big-picture of the 

structure and function of the liquid laboratory during this period. 

 

The Paradox of Place and Space 

The study of marine stations has often focused on the laboratory space to the 

detriment of examining the full experience of researching in a marine environment. Much 

of the historiography has focused on the experiences of experimental biologists such as 

Jacques Loeb. Loeb did both embryological and animal behavior research at the Marine 

Biological Laboratory (MBL) in Woods Hole at the turn of the twentieth century. By the 

time he started researching at the MBL, he was already relatively established in his 

career. Loeb did not collect his own research subjects, but instead requested specific 

organisms from the collectors at the station. He worked on the most consistently available 

organisms, such as echinoderm eggs, for studies of artificial parthogenesis and 

embryology, effectively decoupling his research from the larger environment. Loeb’s 

work at marine laboratories during this period is well known, but it is not representative 

of all research done at these stations. In extrapolating from Loeb’s work to represent that 

of all researchers’ at all marine stations, historians of science claim that these spaces are 

more laboratory than field and that they approach or actually embody “placelessness.”
18
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Thomas Gieryn theorizes that one way that scientific knowledge goes from 

“place-saturated contingent claims” to “placeless transcendent truths” is through the 

development of truth spots.
19

 Truth spots can be constructed and achieved through a 

variety of means, from claiming nativity (Walden) to welcoming witnesses (Indore 

Institute of Plant Industry) or exchanging a sense of place for space (Lewis Thomas 

Laboratory).  Place, according to Gieryn, contains unique histories and nicknames, 

architectural particulars and idiosyncrasies, whereas space is a featureless geometric 

volume that is indistinguishable from other spaces where scientific discovery may occur. 

The Indore Institute of Plant Industry became a truth spot by acting as a mimetic model, 

inviting witnesses (the public) to view the work, and as a holistic place that included a 

large number of workers including scientists and farmers so that research could be 

performed and enacted that same time. Place was important for the truth claims made at 

Indore. In the Lewis Thomas Laboratory, the creation of a truth spot was achieved 

through the erasure of place markers. By utilizing standardized equipment and model 

organisms that are available throughout the world during any season, modern genetics 

and biology laboratories make the jump from place to space by erasing contingencies of 

place in order to make universal claims.   

Robert Kohler’s work on the lab-field border in biology states that early twentieth 

century biologists sought to infuse laboratory science with field experience in a bid to 

radically alter the traditional laboratory experience. In essence, they sought to infuse 

space with place by creating a permeable boundary between the lab and field. But, 

according to Kohler, this program failed at marine stations. While students often 
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collected materials for courses in these locations, it was a low status job in which upper 

level researcher, (such as Loeb) did not partake (Kohler does point out that William 

Morton Wheeler and Thomas Harrison Montgomery did collect but they were exceptions 

to the rule). Without the need or desire to collect, senior researchers worked primarily at 

the bench, prompting Kohler to state that  

 

Marine stations, despite their seaside location, were essentially extensions of 

campus labs, bound tightly by the web of teaching and supply to laboratory 

culture. In marine labs it was not the natural surroundings but cultural habits and 

customs that shaped practices most powerfully. Morphologists’ desire for fresh 

material was a harbinger of the ideal of a new natural history, but it was just a 

small step across the laboratory threshold. Microscopic morphology was a 

laboratory practice where it was performed, and its cultural geography is visible 

in the siting and spatial customs of marine labs.
20

  

 

There are two problems with Kohler’s allocation of marine stations into modern 

“placeless” laboratories merely relocated at the seaside: the author utilizes a sample size 

of only one marine station (Marine Biological Laboratory) and one biological discipline 

(Experimental Morphology).  

 The MBL is the most studied of the marine stations in the United States and is 

consistently utilized in history of science literature as a synecdoche for the entire 

network. It was founded in 1888 by a board of trustees to serve as a laboratory space for 

teaching and research. Located in Woods Hole in the same area as the United States 

Bureau of Fisheries marine station, the MBL was a private institution maintained by the 

table system (made popular by the Naples Zoological Station) and the fees charged for 

taking classes. While a variety of researchers could visit the MBL, it quickly grew to 

prominence as the place to study invertebrate zoology and experimental morphology and 
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physiology (specifically experimental embryology). This reputation was largely due to 

many of the prominent figures that worked at the MBL, including Jacques Loeb and 

Frank Lillie. One of the most popular classes offered each summer was the invertebrate 

zoology course which concentrated on teaching physiology, morphology, and 

embryology with local invertebrates and was taught by a rotating cast of researchers.
21

 

 Many marine stations contained some elements of the MBL, but none contained 

all of them. The structure of the MBL resembles that of the Naples Zoological Station: it 

was run by a board of researchers and charged fees for the use of facilities. This model 

was popular in many of Europe’s earliest marine stations but it was not as common in the 

United States. The Marine Biological Association of San Diego Station (renamed the 

Scripps Institution of Biological Research in 1912) and The Carnegie Institution of 

Washington’s station in the Dry Tortugas were run by private boards, but they did not 

operate on the table system; instead, they offered space to any researchers that could 

afford to visit. The United States Bureau of Fisheries laboratories, which hosted a wide 

range of researchers, were run by the government and of course, university laboratories 

were overseen by those institutions. The MBL balanced private research with teaching. 

University laboratories had summer courses available (mostly to graduate students) but 

other private laboratories and the USBF stations did not offer courses. Finally, unlike the 

MBL which has become known for its focus on experimental morphology and 

physiology, other marine laboratories maintained an open-door policy that welcomed 

researchers from a wide array of disciplinary groups, ranging from botany to ornithology. 

Kohler’s assertion that marine stations were basically laboratories located at the seashore, 
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and hence that “the natural surroundings” were less important than laboratory culture, 

does not represent the entire marine network. The focus on a single station, and 

particularly the work of a single researcher, that emphasized experiment over observation 

obscures the vast number of disciplines and groups working at these stations and the 

importance of the whole station, and not just the laboratory environment, to their work. In 

fact, marine stations operated within a paradoxical tension: they strove to be both 

extremely localized (places) and also universal (spaces).  

 Specific location was extremely important to the identity of a marine station. 

Administrators sought locations that contained unique specimens and allowed researchers 

access to an underexplored stretch of coastline. Before stations were founded, surveys of 

the area had to show that there was both an abundance of a wide range of species. This 

assured researchers that there would be interesting and also consistently available 

specimens. In addition, the location had to offer a glimpse of a new portion of the ocean 

environment. The growing interest in understanding the marine environment meant that 

investigators wanted to collect data from as many stable locations as possible in order to 

develop a fuller understanding of the ocean.  However, these stations also strove to be 

highly universal and to make their laboratory spaces as interchangeable as possible to 

facilitate the transfer of people, tools, and techniques throughout the network. They did 

this by providing malleable technologies and spaces that were the same regardless of 

location. This tension between the universal and local was meant to facilitate the widest 

range of research and the largest amount of data on the ocean environment possible.  
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Malleable technologies    

Liquid laboratories provided basic spaces that could be manipulated by 

researchers interested in a wide range of disciplinary questions. All marine stations 

contained similar equipment, consisting of basic glassware, aquarium hookups for 

running water, collecting equipment, and baseline chemicals for preserving specimens 

and performing basic chemical experiments. Within the network, there was no specific 

station to visit if you were interested in performing experimentation with specialized 

equipment: marine scientists did not agglomerate based on technological availability. 

Manipulation of these resources required what sociologists of science have identified as 

“tinkering” and “gadget-scientists.”
22

 If their work required specialized technology, 

researchers either brought it with them- an expensive and onerous process- or they 

worked within local contingencies and converted available technologies into useful tools 

by “using what is at hand, making-do, using things for new purposes, patching things 

together, and so on.”
23

 Working within these contingencies meant converting found 

objects and available spaces into the equipment that would serve the required purposes.   

The marine station was able to serve as an institutional basis for both the 

American biological community and the growing marine science community because the 

basic technologies contained therein allowed diverse investigators to take advantage of 

the fresh and live marine organisms. When visiting the marine station, researchers 

encountered highly malleable technologies that allowed them to manipulate both the 

laboratory space and organisms for very specific studies. Of particular value was basic 
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glassware. Marine stations provided basic glassware with which researchers could easily 

construct either balanced or circulating aquaria to meet their research needs.  

 The process of keeping aquatic forms alive for observation in basic glassware is 

extremely old, but the modern forms of aquaria, both balanced and circulating, were 

developed in the middle of the nineteenth century.  The balanced aquarium, in which the 

interaction between flora and fauna creates a “balanced” environment oxygenated enough 

to sustain life without consistent water changes, was developed by Nathanial Bagshaw 

Ward in 1841. Called the ‘aquaviviarium’, the balanced aquarium took off in the mid 

1850s when it was popularized by Philip Gosse. Gosse, a popularizer of natural history 

and especially the natural history of the English coastline, wrote several books detailing 

his naturalist collecting at the English shore and the use of the aquarium to observe and 

display his collections within his home.  The marine collecting craze raced through 

England and the link between marine collecting and the balanced aquarium was born.
24

   

The circulating aquarium was equally important to marine stations.  The origin of 

the circulating aquarium is harder to pin down than that of its balanced counterpart. 

Marine organisms require a constant supply of oxygen. In nature, water is oxygenated by 

diffusion at the surface, through the release of oxygen as a plant bi-product (such as is the 

case in the balanced aquarium) or by aeration and movement of the water over rocks. If 

the aquarium contained a small amount of life, it was possible that the surface of the 

water could be consistently aerated through diffusion, but if one desired to keep several 

organisms in a laboratory aquarium, an alternate system of aeration was required. To 

restore oxygen saturation to deoxygenated water,   
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various plans for aeration were employed by aquarium-keepers. Ingenious pumps 

 were attached to the tanks, by means of which streams of air were forced 

 through the water. Some persons employed syringes filled them with water 

 and squirted the water into the tank with such force as to carry a quantity of 

 air among the inhabitants of the aquarium. Others were content with taking up  

 some of the water and letting it fall back with a splash, so as to produce the 

 same result.
25

  

 

Manually aerating or pumping compressed air into the tank were effective but 

inefficient. Hand aeration is labor intensive and requires constant attention to the tank; 

using compressed air can often over-aerate the water, causing injury or death to the 

inhabitants. In addition, this form of aeration still required that the tank be consistently 

emptied and cleaned and that the water be refreshed due to a buildup of impurities from 

natural waste.  

To solve the problem of water aeration, interested parties developed an aquarium 

that maintained a constant flow of oxygenated water into the aquarium by removing or 

recycling deoxygenated water. The simplest system required hooking up the aquarium to 

a source of constantly running water. Tubing brought fresh water into the tank and 

removed used water; the water level and temperature remained constant by the 

input/output system and the water remained clean due to constant replacement. However, 

this system required a constant supply of running water which smaller laboratories and 

personal homes might lack. On September 24, 1895 G.P. A. Gunther was granted a patent 

for his “Fish-Tank or Aquarium” with a built in filter that recycled water by cleaning and 

oxygenating it. This system alleviated the need for a constant flow of water.  Gunther felt 
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his tank could best serve those keeping home aquaria or for keeping fish that required a 

constant flow of water in their native habitats (such as trout or salmon).
26

  

You could purchase a filter tank from pet stores, but researchers at marine stations 

often tinkered with found materials to modify simple glassware into filtered systems 

similar to Gunther’s.
27

 Louis Murbach, working on the neurophysiology of medusa at 

Woods Hole, published his method for building “an automatic aerating device for 

aquaria” in The American Naturalist in 1907.  Murbach modified a tank with “a glass 

filter pump, two wide-mouth bottles, about 8 X 15 cm., and 6 X 12 cm., a cork stopper to 

fit the larger bottle, a stand with balance beam, glass and rubber tubing.”
28

 Utilizing basic 

glassware components, researchers could construct either a balanced or circulating 

aquarium upon their arrival at marine stations. The malleability of basic technologies and 

spaces meant that marine stations could house a range of researchers with diverse 

scientific goals.  

Aquariums enabled a wide range of research at marine stations. Changes in the 

basic structure allowed investigators from a wide range of disciplines to utilize these 

readily available systems for highly specialized research. Dimensional shifts changed a 

roomy tank into a specialized holding pen for specific specimens.  For easier illustration 

and observation, glass partitions were inserted into larger aquaria to shrink spaces. Their 

light weight made them highly portable. Investigators easily changed locations while 

maintaining a living organism in a semi-permanent environment to examine multiple 

variables on a single system. The aquarium’s simplicity became a building block for 
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more complex systems. Investigators found it easy to add pumps, screens, and lighting 

technologies onto the basic glass structure. These systems could be assembled from 

found objects and, after the need for the system had passed, easily disassembled to 

provide basic building blocks for the next researcher, regardless of their disciplinary 

interests.       

These simplistic systems helped researchers overcome the “milieu threshold” that 

separated investigators from their aquatic subjects.
29

 Researchers could not access aquatic 

subjects in their natural milieu- manned submersibles with visualization capabilities were 

in their infancy and the earliest diving costumes were cumbersome and significantly 

limited the diver’s range of motion. In order to work with live organisms, they 

constructed an artificial environment in which to keep their subjects; during this 

construction they gained valuable feedback about the conditions the organisms needed to 

survive both in captivity and by extension, their natural environments. This feedback loop 

contributed to the rise of ecological thinking in the biological sciences and lead to the use 

of these spaces as mimetic model systems.
30

  

Researchers developed an understanding of the marine environment, and the 

natural milieu of their subjects, through their attempts to keep subjects alive in captivity. 

The ability to maintain living marine organisms in captivity required what James Atz, the 
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former director of the New York Aquarium, referred to as ‘a wet thumb.’ According to 

Atz, the ability to keep aquatic organisms alive in captivity for extended periods required 

craft knowledge that “the vast majority of experimentalists and their technicians simply 

do not possess.”
31

 Admittedly, most researchers lacked the ability to keep a large variety 

of organisms in captivity, but they did cultivate a ‘wet thumb’ when working with their 

specific research subjects.  Investigators combined extensive field research with 

laboratory experimentation to ascertain the exact variables that needed to be present in 

their experimental systems. Successfully maintaining animals in captivity not only 

developed their ‘wet thumb,’ but also advanced researchers’ understanding of the life 

cycle and natural history of their organisms in their native milieu. 

Information Sharing: Publication 

Marine stations shared information on their particular place, and the work that 

was being performed there, by distributing research in specialized journals. Anton Dohrn, 

the founder of the Naples Zoological Station, considered publication integral to the 

mission of his institution. Dohrn established three separate publishing venues for workers 

at the station: The Fauna and Flora of the Gulf of Naples and Bordering Sea Regions, 

Messages etc., and the Zoological Annual Report. The first two publications focused 

specifically upon work at the NZS, but Dohrn stated that the content would “not stand by 

itself without being embedded in connections as it is often the case amongst publications 

of academies and other research groups. Instead, the content of our publications will 

always be connected to zoological, botanical, hydrographic and geological 

relationships...” Finished, illustrated monographs would be published intermittently as 

                                                      
31

 James W. Atz, “Some Principles and Practices of Water Management for Marine Aquariums” in Sea 

Water Systems for Experimental Aquariums John R. Clark and Roberta L. Clark (eds) Research Report 63 

(Washington D.C.: Bureau of Sports Fisheries and Wildlife, 1964), 3. 



23 

 

Fauna and Flora, notes, smaller articles, and station business were published in 

Messages, and the Zoological Annual Report would serve as a reference source for 

researchers to keep up-to-date on the entire field.
32

 Following in Dohrn’s footsteps, 

American stations recognized the importance of publishing and distributing their results 

throughout the network.  

W.K. Brooks believed that there were “too few scientific journals to facilitate 

publication and exchange of scientific information.” To alleviate this problem, Brooks 

published the findings of the students and researchers at Hopkins’ marine stations in a 

series of journals published through the University.
33

 The USBF reserved the right to 

publish materials from its researchers in their Bulletin first. Other stations followed suit, 

publishing research anywhere on the spectrum of polished manuscripts to field notes and 

year end reports.
34

 Most of these publications served a dual purpose of keeping investors, 

governing boards, and University presidents apprised of research in these spaces and as a 

way to circulate information throughout the network.  

Libraries were important spaces in marine stations; even the remotest laboratories 

with rustic living conditions (such as the Carnegie Laboratory in the Dry Tortugas) kept a 

library for research and marine laboratory journals. These publications made up much of 

the library resources at these locations.
35

 By reading these sources, a researcher could 
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ascertain what organisms were available throughout the network, what scientific 

questions were being explored in these locations, new techniques for maintaining captive 

organisms, and new methods for modifying the basic technologies that were found 

throughout the network. While circulation outside of the marine station community 

proved low for these publications, each station sought to include as many publications 

from throughout the network as possible in order to facilitate exchange of information.  

 An American Story  

 This dissertation focuses on American stations between 1880 and 1930. But does 

my focus on American stations make this an American story? The paradoxical tension 

between space and place in these institutions means that the network of marine 

laboratories founded by Americans can be considered as both inherently American but 

also distinctly universal.  

 American marine stations contained similar technologies to their European 

counterparts. The reliance on malleable technologies appears to be similar, as does the 

exchange of individuals with a wide range of research agendas throughout this network. 

In fact, Americans continued to visit European stations long after the establishment of 

American laboratories. Naples, Roscoff in France, and Plymouth Laboratory in England 

were extremely popular with Americans interested expanding their research in new 

locations with new specimens. Traveling to Naples continued to be an important 

pilgrimage for American biologists into the middle of the 19
th

 century. Those Americans 

that traveled to these European locations could be assured that these stations contained 

                                                                                                                                                              
Library catalog also contains nearly every marine station publication. http://www.mblwhoilibrary.org/ 

(accessed 3.11.2014) The inventory at the Tortugas station shows copies of USBF Bulletins, as well as 

journals from the Bermuda station. Folder Tortugas, Lab, Building, Quarters, and Grounds L7/15 Carnegie 

Institutional of Washington Archives: Washington, D.C. 

http://www.mblwhoilibrary.org/


25 

 

similar technologies and laboratory structures to those in America. In this sense, the 

marine station bauplan was similar throughout the world during this period.  

 However, American marine stations were a particular combination of fisheries, 

aquarist, and academic concerns during this period. While many Americans did visit 

European stations, far fewer Europeans visited American stations. Instead, these spaces 

became social and cultural meeting places for American researchers. They allowed these 

investigators to connect and exchange information and ideas, directly linking researchers 

throughout the United States into a principally American system.  Life science research 

was performed at marine stations throughout the world, but life sciences performed at 

these marine stations resulted in a particular form of knowledge that shed light, not only 

on general biology, but on the American marine environment. While each individual 

station functioned as an independent unit, the network connected primarily American 

researchers and produced a large amount of information about America’s water 

resources. In addition, much of the research was at least partially funded or performed in 

connection with the US Bureau of Fisheries.  

 Although the funding and knowledge produced both indicate a national story, 

more work needs to be done on marine stations worldwide to truly understand the 

uniqueness of the American network. The intense exploration of the Naples-MBL link 

did not just eclipse the larger American narrative, but also research on European, Asian, 

Russian, and other North American stations. Ongoing research into marine networks in 

France, the Netherlands, and England will eventually allow a more robust comparison 

with American stations. 
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This dissertation traces the importance of these liquid laboratories in the development of 

four strains of American life sciences: taxonomy, embryology and morphology, 

neurophysiology, and animal behavior. Chapter 1 examines the basic components of 

marine stations that allowed them to function as liquid laboratories. I outline the process 

of choosing a location and the basic technologies that existed in these locations. The 

chapter examines the foundation of marine stations from both an environmental and a 

technological perspective, focusing on the fundamental pieces of these establishments 

and drawing out the similarities that bound these institutions together into a cohesive 

network. Chapter 2 explores the importance of the field work experience on the work 

performed in these spaces. Marine illustrators were an integral part of early marine 

science; field work was an important aspect of the development of their craft. 

Experiencing the marine environment, and viewing organisms close to their original 

habitat, greatly influenced their understandings of their subjects and the final images they 

produced. Chapter 3 looks at the use of the marine station as a space for exploration of 

embryology and morphology at the turn of the twentieth century. While much has been 

written on the history of embryology at the MBL, most of the research has highlighted 

experimental work in the laboratory. This chapter examines how embryological research 

was tethered to the changeable marine environment, forcing researchers to develop 

intimate knowledge of their organisms, change their research habits, and develop new 

laboratory techniques in order to successfully take advantage of working with fresh 

specimens at the seashore. Chapter 4 traces the rise of the use of jellyfish as model 

organisms in neurophysiology research at marine laboratories. At the turn of the 

twentieth century, jellyfish were found to contain a rudimentary nervous system that 
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resembled those in higher mammals. Researchers at marine laboratories sought to utilize 

these extremely delicate organisms in neurophysiological studies.  Through tinkering 

with basic glassware, studying and mimicking the natural history of the organism, and 

finally pinpointing specific species with extreme plasticity in the laboratory environment, 

neurophysiologists succeeded in utilizing these organisms and placing marine station 

research at the center of their field during this period. Chapter 5 highlights the 

malleability of marine stations, and the technologies contained therein, by revisiting the 

Loeb-Jennings debate on phototropism. Both Loeb and Jennings utilized marine 

organisms to defend their position on phototropism but each chose a different 

experimental set up with different organisms to test their theories. By examining the 

differences in these experimental set ups- we can see that the laboratory environment was 

so malleable that researchers interested in the same question chose different organisms 

and tools in their pursuit of knowledge.  

 Taken together, these chapters offer a vision of the broad range of the research, 

and researchers, at American marine stations at the turn of the twentieth century. This 

dissertation will show how the most basic technologies and spaces facilitated a wide 

range of highly disciplinary research and explain how these liquid laboratories became 

the epicenter of a new wave of American biology and the birthplace of American marine 

biology.  
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Chapter 1  

 

A network of liquid laboratories: building an institutional identity for 

American biology and marine science  
 

 

On April 24, 1908 Alfred Goldsborough Mayer called for a change in the way 

that scientific marine exploration was being conducted. In a Science article, Mayer, 

considered one of the earliest marine biologists in America, stated that science was no 

longer being served by the mass collecting of meteorological, tide, and sea depth data or 

by the millions of preserved specimens that were brought back by previous marine 

expeditions, such as the HMS Challenger and the USFC Albatross. Less than a year into 

the Albatross’ longest voyage in the Pacific, Mayer stated that marine science had 

progressed to a point where more work needed to be performed on shore than on ship.  

The collecting of marine specimens should be combined with biological work at 

temporary research stations set up in locations on the expedition route.  According to 

Mayer, “The marine expeditions of the future should…aim to establish well-equipped but 

temporary shore stations at salient points, landing investigators here and there and 

leaving them with servants, food, lodging, apparatus and naphtha launches to avail 

themselves of all the varied advantages afforded by a land laboratory.”
36

 Only by 

combining the collection of specimens and the investigation of these forms in a 

laboratory could scientists learn anything useful about the nature of these creatures and 

their interaction with their environment.  

Mayer’s call came at a time when institutions throughout the United States were 

establishing both temporary and permanent marine stations. Beginning in 1873 with 
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Louis Agassiz’s Penikese Island laboratory, the United States saw a rapid increase in the 

number of marine stations.  Science, the journal for the American Association for the 

Advancement of Science, ran articles announcing over 25 marine laboratories between 

1880 and 1930. While not all of these laboratories were permanent, many continue to 

operate today, including Tufts’ Mt. Desert Marine Laboratory, the Marine Biological 

Laboratory, the United States Bureau of Fisheries laboratories at Woods Hole, MA and 

Beaufort, N.C., The Marine Biological Station at San Diego, Harvard and New York 

University’s Bermuda Biological Station, Hopkins Marine Laboratory of Stanford, and 

Cold Spring Harbor Laboratory. Today, all 21 coastal states host at least one marine 

station.
37

   

A large body of historical literature traces marine stations’ ideological and 

historical growth. The bulk of the work looks at the history of the Marine Biological 

Laboratory and several others in the Northeast founded at the end of the 19
th

 century, and 

focuses on the first 15 years of their existence.
38

  But little historical work analyses these 
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institutions as a coherent group representing a specific type of scientific space. Histories 

of private laboratories such as the Marine Biological Laboratory are often separated from 

those of federal fisheries laboratories at Woods Hole and Beaufort and University based 

institutions such as Stanford’s Hopkins Marine Station or the University of Washington’s 

Friday Harbor Laboratories.  Keith Benson has called for a reexamination of marine 

laboratories to include the larger community of Western and Southern United States and 

to trace the “institutional identity of American biology” through the extensive network of 

marine laboratories.
39

  

 At first glance, this large number of marine laboratories seems to have little in 

common. Public and private universities, federal institutions and private organizations all 

founded stations. Some laboratories focused on teaching, while others focused on 

individual research. Marine laboratories covered a large stretch of American coastline; 

locations varied greatly.  But this image of dissimilarity is misleading.   

Early 20
th

 century marine laboratories shared many commonalities, including 

shared ideas regarding suitable locations for marine work, similar baseline technological 

requirements, and common practices for maintaining a working station that appealed to 

scientists from multiple disciplines who wished to explore both basic biological questions 

and specific marine concerns. Most importantly, they shared a common baseline 

objective:  to provide an environment close enough to the seashore for investigators to 

have access to an abundance of fresh and marine organisms. These spaces became 

lodestones for investigators with differing interests, but a common need to work with 
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living marine organisms, establishing an institutional identity for both mainstream and 

marine biology in America.   

This chapter focuses on the commonalities that linked marine stations into a larger 

network at the turn of the twentieth century. Researchers established stations in 

ecologically and geographically significant locations that they felt offered a glimpse into 

the larger examination of the ocean environment. Each station was highly localized. 

However, each station also contained basic technologies and spaces that allowed them to 

function within the wider network. This chapter will explore the tension between the 

localized and universal aspects of these spaces.  By examining these aspects, we can see 

how these stations became nodes within a larger marine science network. The differences 

in locations facilitated a large body of knowledge about the marine environment; the 

similarities of each location facilitated the easy movement of researchers, technologies, 

and ideas throughout the larger network.  

Location 

The process of choosing a location for permanent marine stations often stretched 

over many years and multiple locations.  The proposed location for the Carnegie Institute 

of Washington marine laboratory was debated in print and private correspondence for a 

year (1902-1903), before the Dry Tortugas was chosen (if not agreed upon) as the 

optimal location. Johns Hopkins University marine laboratory site was especially 

peripatetic, operating in the lower Chesapeake Bay area for two seasons (1878-1879), 

moving to the Beaufort, North Carolina region for seven seasons (1880-1885), and then 
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intermittently shifting to the Bahamas (first in 1890) and different ports in Jamaica (the 

first in 1891), all the while maintaining a large presence at the USBF Beaufort station.
40

  

Historians of science have questioned the importance of the marine station 

location, suggesting that they were merely seaside versions of urban laboratories and not 

necessarily “place-based.”
 41

 In fact, laboratories were founded in locations that met 

exacting standards. Throughout the process of deciding on a permanent location, 

administrators and investigators were searching for locations meeting specific criteria. 

Identifying a location for a permanent or semi-permanent station was a protracted process 

of balancing specimen availability with favorable weather patterns, proximity of shipping 

and train lines, and even projected growth of a given area.  This section will explore the 

variables that were weighed when choosing a location.  

Marine stations were established on nearly every coast of the American continent, 

but certain areas of coastline have attracted a larger contingent of investigators 

(specifically near the Vancouver Islands, Cape Cod, Massachusetts and Beaufort, North 

Carolina).  By examining the reasons for the establishment of laboratories in given 

locations, and the myriad of reasons why one might abandon a location in which an 

institution was financially and emotionally invested, we can start to build a better 
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understanding of the strong similarities evinced by seemingly different marine  locations 

at the turn of the twentieth century.    

Geography 

 

 In the simplest terms, choosing a site can be boiled down to the usual adage about 

buying real estate: location, location, location.  Institutions took several variables into 

account when choosing sites for their laboratories including water access, natural 

geographic formations, weather patterns, and proximity to established towns and shipping 

lines. The importance of the actual land location for a marine station cannot be 

overstated.  To say that a marine station needs to be placed next to a shoreline is a 

statement that merely scratches the surface of the geographic formations desired by 

researchers visiting these places. 

 Water availability was the first major concern. Researchers required both salt and 

fresh water, and most scientific investigation depended on the purity of available water. 

These two variables could be complicated by weather, nearby communities, and seasonal 

differences, but directors and researchers sought locations for permanent stations that 

could provide them with pure water sources.  

 Investigators required large amounts of both salt and fresh water. When 

administrators advertised a newly opened station, or extolled the virtues of a long 

established laboratory to possible investigators, one of the first aspects mentioned was the 

ability to provide a constant flow of both fresh and salt water directly into the laboratory 

aquariums.  More commonly, administrators emphasized that they could provide both 

fresh and salt water to table top aquariums, suggesting that animals could be maintained 

in aquaria for as long as the investigator desired. When the private Brooklyn Institute 
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Biological Laboratory (which would eventually merge with the Carnegie Institute and the 

Eugenics Records office) opened a marine laboratory in 1892, they stated in Science that  

 

Into the Laboratory is conveyed a bountiful supply of the water of the Cold Spring 

for use in the aquaria and troughs. This water is pure, has the same low 

temperature throughout the year, and is the water used so successfully by the New 

York State Fish Commission in hatching and growing salmon, trout, and other 

food fishes. The Laboratory is also supplied with an abundance of salt-water, 

which is pumped up from the harbor into a reservoir, from which it runs into the 

Laboratory.
42

   

 

 The requirement for an abundance of both fresh and salt water was compounded 

by the desire to access relatively pure water sources. Pure water met two requirements:  

experimental and exploratory.  Pure water was the backdrop to successfully maintaining 

living organisms in aquaria and to monitoring the variables of experimental work. In 

Charles Atwood Kofoid’s introduction to his 1910 United States Bureau of Education 

bulletin The Biological Stations of Europe, he states that  

 

Purity of the water supply, as shown in its freedom of admixture with fresh water 

and from contamination by sewage, industrial wastes, or considerable quantities 

of shore detritus due to tidal currents, is a matter of great importance to all 

stations where experimental work…is carried on, or where varied types, 

especially pelagic forms, are kept in aquaria. 

 

Kofoid concedes that water can be filtered and decontaminated with the correct 

equipment, but, “after all is said, purity of water supply is the greatest asset of a marine 

station.”
43

  

In addition to experimental work, water purity often translated into clarity for 

investigators.  Use of diving apparatus and underwater cameras did not become possible 

until the second decade of the twentieth century but for investigators interested in 
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collecting data with the aid of these technologies, water clarity was a large draw. The 

amount of clarity needed for the use of underwater investigations was found at the sub-

tropical and tropical marine stations.  In 1910, E.A. Andrew reported that the water 

clarity was so great at the newly established Johns Hopkins laboratory in Montego Bay, 

Jamaica that “the common water glass or bucket with glass bottom brought the fauna well 

within observing reach at considerable depths, so that little use was made of the Japanese 

diving spectacles that enable the observer to see the bottom fauna very distinctly as long 

as he can hold his head underwater.”
44

 Diving helmets and underwater cameras were 

utilized frequently at the Tortugas laboratory and it was commonly known to have the 

best water clarity for the use of this equipment in the field.
45

  

The ability for investigators to view organisms in their natural surroundings was 

considered an added benefit to working in certain areas. Without using extra 

technologies, a general lack of turbidity meant less separation between the laboratory 

environment and the surrounding waters. In 1912 and 1913, investigators at Beaufort 

repeatedly recorded observations of organisms that were seen off of piers and jetties. 

Lewis Radcliffe wrote a particularly in-depth observation of sharks that appeared in the 

evening on August 31 and September 1, 1912. Radcliffe records the activity of the 

sharks, their general coloring, and states that “These sharks appear to be hypoprion 

brevirostris poey [lemon sharks].  If this is correct, this is a new record for the state of 
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North Carolina.”
46

  Water clarity allowed investigators to explore the surrounding area of 

the marine station without the help of water craft or diving technology and to make 

observations about species outside of the laboratory setting. 

Beyond water purity and clarity, an area with a multiplicity of separate water 

sources and environments was considered ideal.  Most marine stations advertised access 

to both littoral (intertidal/seashore) and pelagic (deep sea) waters.  Investigators could be 

provided with organisms from close to shore, collected either by hand net or by seining 

from a small boat, and also organisms from a greater depth off of the shelf, usually 

collected by a larger research vessel or local fishermen.  The importance of access to 

varying salt water depths was not merely that they existed near the marine station, but 

were easily accessed.  The Beaufort, North Carolina area is a particularly good example 

of the ability to access multiple depths of salt water. Located on the end of a piece of land 

protected by a group of barrier islands, Beaufort investigators had access to collections 

from the Core Sound, including the clams, oysters, crabs, and fish that had made Beaufort 

a populated fishing village from the early 18
th

 century onward.  Beaufort had also risen as 

one of the only Southern whaling villages, and was the only commercial dolphin fishery 

in the America, proving it had particularly good access to pelagic organisms as well. 

When J.A. Holmes of the North Carolina Geological Survey assessed the idea of placing 

a United States Bureau of Fisheries marine laboratory in Beaufort in 1899, he called 

particular attention to the ease of collecting in multiple depths of salt water, as well as the 
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multitude of organisms that were already known to be present in these water sources 

because of previous fishing activities in the area.
47

 

 Finally, one of the most important geographical formations needed for a marine 

laboratory to be built were the existence of natural harbors. Nearby bodies of water, 

littoral or pelagic, salt or fresh, were potentially useless without the ability to keep 

research vessels in the area. Research vessels were required for the work that 

investigators hoped to accomplish at marine stations. The ability to keep multiple kinds, 

including sail boats, small man-powered skiffs, and large steam-powered research vessels 

all had to be kept for research. Difficulties navigating surrounding areas, or an inability to 

keep vessels of a certain size, meant an inability to collect at given depths.  When the 

University of Texas sought to build a Gulf of Mexico laboratory in 1893, they found that 

the “The low Texas coast is bordered by exceedingly shallow bays, from two to ten miles 

wide, cut off from the Gulf of Mexico by a very narrow sand-formation. This almost 

continuous stretch of sand, raised unevenly by innumerable dunes formed by the wind, is 

broken at eight places by narrow channels into seven islands, and at three other points 

partially unites with the mainland to form extended peninsulas.” This coast formation 

made it difficult to find a natural bay for keeping research vessels, and in the end, 

Galveston Bay was chosen over other locations because, while it was not the most 

biologically interesting part of the coast, it was accessible by boat and pelagic waters (10-

fathoms or more) extended 30 miles “directly off the entrance to Galveston Bay.”
48

   

                                                      
47

 J.A. Holmes to George M. Bowers. March 27, 1899. RU 22 Correspondence Concerning Fishery 

Expeditions, Experiments and Research, 1885-1908 Box 1 Folder “Smith Papers- Beaufort Laboratory, 

1899-1904” RU 22 National Archives: Bethesda, MD.; See also Douglas A. Wolfe, A History of the 

Federal Biological Laboratory. 
48

 Charles L. Edwards, “The Marine Biological Station of the University of Texas” Science 21:538 (May 

26, 1893): 284. 



38 

 

Very commonly, directors chose locations known to be commercial fishing areas.  

While the United States Bureau of Fisheries was interested in these areas because of their 

connection to and knowledge of local fish stocks, the locations were also established 

harbors for fishing vessels. Beyond the USBF laboratories, other stations struggled to 

find natural harbors that could be linked to locations with the correct water access for the 

work they wished to accomplish.  But water and land formations were only two variables 

taken into account when seeking the perfect place for a marine laboratory. 

Weather 

 

 Marine stations initially operated on a summer seasonal basis.  There were two 

reasons for this seasonality. The first is that investigators were commonly attached to a 

university system and therefore could not find the time to visit marine laboratories for 

extended periods of time until the summer months when their universities went on break 

for the year. This even held true for USBF investigators, most of whom did field work 

while on summer break from teaching duties. Secondly, in most locations summer 

offered the most consistent weather patterns for collecting the largest diversity of marine 

life, especially larval forms.  Naples, one of the oldest European marine laboratories, was 

held up as the example of perfectly mild weather year-round, making collecting 

important scientific forms possible throughout the year.  While directors and investigators 

envied this perfect weather, they had difficulties finding locations that offered weather 

that would be conducive to work year-round in America.  

 Stations located in the Northeast had mild but sunny weather from mid summer 

into early fall. This was a short window of seasonal availability from July into 

September; the first Marine Biological Laboratory season ran from July 10-Sept 22. As 
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seaside work increased in popularity, the summer season in the Northeast was stretched 

until the Marine Biological Laboratory and the USBF at Woods Hole were both operating 

from late May into late October by 1910.
49

 An investigator was generally assured that 

weather would be amenable for off shore collecting during the summer season and that 

travel to and from the laboratory would not be impeded by weather restrictions.    

 While weather for collecting was important, general comfort was also high on the 

list of weather priorities. Directors of stations established further south in the United 

States sought to reassure potential investigators that their summers were not too hot and 

muggy for comfort.  According to H.V. Wilson, a member of the University of North 

Carolina at Chapel Hill biology department and former USBF investigator, the 

temperatures at Beaufort during the summer hovered between 79 and 81 degrees, “rarely 

going a degree or two above that, and much more frequently dropping several degrees 

below.”  In addition to the importance of comfortable living conditions, researchers 

sought comfortable locations to work and spend a “working vacation.” While 

comfortable weather was important for collecting and work, Wilson also points out that 

the weather in Beaufort and its nearby resort neighbor Morehead City, “contribute much 

to the bien-etre of naturalists who are spending a working vacation.”
50

  

 Beyond the importance of collecting in consistent weather and the need to be 

comfortable, a final weather concern came to the fore work moved further into tropical 

seas. While Northern stations often dealt with the occasional Nor’easter or blizzard, the 

movement into the Caribbean pitted permanent stations against a constant threat: 
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hurricanes.  The threat and damaging potential of hurricanes can be clearly seen in a letter 

from Alfred Goldsborough Mayer to Robert S. Woodward of the CIW.  According to 

Mayer, the specially built research vessel The Physalia weathered a hurricane in 1906, 

after nearly being rammed by an unmoored yacht.  Not able to resist bragging about the 

hardiness of the vessel, Mayer pointed out that “this is the third storm of hurricane 

violence that the Physalia has weathered.”  This statement might have been more 

concerning than uplifting to Woodward:  The Physalia was only two years old at the 

time!
51

 Regardless if a station was built in the Northeast, Northwest, or the tropics, 

administrators had to weigh the weather advantages against the possible loss or damage 

of property that natural disasters and consistently bad weather could inflict.   

Disease Vectors 

 

 Beyond weather disasters, a concern about location of marine laboratories, 

especially of those located in the tropics, was the insalubrious nature of hot weather and 

the fevers and health concerns that abounded in these climates.  Concerns about disease 

was not merely conjecture, but had struck the marine science community already.  In 

1897, The Johns Hopkins University’s first year at their temporary marine laboratory in 

Port Antonio, Jamaica ended in disaster when yellow fever swept through the researchers.  

Among the victims of the fever was Dr. J.E. Humphrey, a botanist and the director of that 

year’s expedition, and Franklin Story Conant, a zoology graduate student finishing his 

dissertation research on cubomedusae (box jellyfish) of the Caribbean.  In Memoirs from 
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the Biological Laboratory of the Johns Hopkins University the story of the quick 

spreading fever, and the personal sacrifice made by Conant was extolled.  

 

After the sudden and alarming death of the director of the expedition, Dr. J.E. 

Humphrey, Conant took the burden of responsibility upon himself, and while he 

fully appreciated his own danger, he devoted himself calmly and methodically to 

the service of others, who, in their afflictions, needed his help, and he fell in the 

path of duty, where he had always walked…
52

 

 

 According to the zoologist J.E. Duerden, these deaths effectively halted preexisting plans 

to build a permanent marine station in Port Antonio, Jamaica- plans that would be taken 

up again in 1903.
53

 

Concerns about malaria and yellow fever took center stage during the debate 

about the location of The Carnegie Institution of Washington’s proposed marine station.  

Alfred Goldsborough Mayer favored the Dry Tortugas heavily because, according to him, 

“The yellow fever quarantine station was abolished at the Tortugas in 1899, and there are 

practically no mosquitoes on Loggerhead or Bird Keys.”
54

  Other scientists involved in 

the debate agreed with Mayer that a smaller island would afford immunity from tropical 

diseases, but that the trade off was a generally uninteresting space in which to work. The 

ornithologist Francis Herrick stated that “The advantages of small islands in affording 

immunity from tropical diseases are no doubt considerable, yet it must be remembered 

that a greater land area and a more diversified coast add intensely to the interest of 

students who go to the tropics for zoological or botanical studies.”
55

 Duerden suggested 

that Jamaica was a better fit for a marine laboratory because it had close medical care and 
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a larger population that could properly explain to laboratory workers how to protect 

themselves from harm.  According to him “To select any locality of which the general 

healthiness or climatic conditions are uncertain, or where proper medical advice and 

attention are not available, would undoubtedly sooner or later result in a sad collapse.”
56

 

Explicit in Herrick’s and Duerden’s statements was that the upsides of an isolated marine 

laboratory did not outweigh the importance of building in an easily accessible and 

already settled area.  But the potentials and pitfalls of building in established 

communities was very different for temperate versus tropical locations.  

Infrastructural support 

 

 Finding the perfect balance between established infrastructure and untouched or at 

least seemingly undisturbed marine surroundings was a constant tightrope walk for 

administrators.  Should one build near an established town or city in the hopes that 

creature comforts and the accessibility of the location would draw more investigators? Or 

should you build in a remote location to ensure that urban growth would not encroach on 

the study of marine organisms and disturb the ascetic quality of a summer spent 

surrounded by the sea? The distinction between the needs of teaching laboratories and 

research laboratories cropped up often in debates about the placement of the Carnegie 

Laboratory. T.H. Morgan suggested Jamaica over the Tortugas because Jamaica was 

more accessible to students.
57

  But this simple equation for plugging in needs and desires 

and coming up with location obscures the complicated process of balancing infrastructure 

with a desire to study untouched nature.  

                                                      
56

 Duerden (May 29, 1903) 863. 
57

 Alfred Goldborough Mayer, “A Tropical Marine Laboratory for Research?” Science 17:434 (Apr. 24, 

1903): 659. 



43 

 

 The earliest stations depended upon pre-existing transportation and industrial 

infrastructures; they were built in established fishing villages and were accessible by 

public roads and railways. Woods Hole, the site of two of the earliest permanent 

laboratories, had been a fishing village for many centuries, had a permanent population 

and preexisting housing, and was accessible by railway.  This easily accessed laboratory 

site allowed scientists to rent their own accommodations, come and go throughout the 

summer months, and to bring multiple graduate student, their own families, and support 

staff with them to have a “working vacation.”
58

   

A lack of infrastuctural support may be pinpointed as one of the reasons that 

southern and sub-tropical laboratories developed more slowly than those in temperate and 

more populated regions.  In 1891 when W.K. Brooks decided that Johns Hopkins 

required a tropical location, he sent several members of his research team to Jamaica to 

find the perfect spot.  E.A. Andrew declared Montego Bay optimal because of water, 

weather, natural harbors, and specimen availability, but there was no railway or 

transportation to that port, so the university chose another location.  By 1910 a railway 

had been built to Montego Bay and it was accessible by steamer directly from 

Philadelphia, New York and Baltimore.  Hopkins immediately relocated to this 

location.
59

  

Some laboratories chose to build in remote locations; the Carnegie Institute of 

Washington’s Tortugas laboratory required up to a week of travel for investigators to 

reach the laboratory. Researchers in the first years at Beaufort, San Diego, and Tortugas 

were housed far off site or in less than desirable conditions during the early years of 
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operations.
60

 This section will examine the arguments for and against building permanent 

laboratories in areas with preexisting infrastructures and populations.   

In established regions, researchers could find suitable housing while waiting for 

the permanent station to be built.  The USBF set up a temporary laboratory in a rented 

Woods Hole house for their first few seasons; Johns Hopkins continuously rented houses 

for temporary research laboratories because they shifted locations yearly.  In addition, 

families often accompanied researchers to partake in a summer by the sea.  At the Marine 

Biological Laboratory and the USBF laboratory at Woods Hole, whole families followed 

researchers, organizing family picnics, sailing trips and other summer revelries. If the 

location did not contain rentable housing for families, researchers were forced to travel 

alone and bunk with everyone else.
61
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Figure 2 Researches and Family at a Picnic in Woods Hole, 1925. Northeastern NOAA historical 

photographs. Northeastern Fisheries Science Center photo archives [available online at 

http://www.nefsc.noaa.gov/cgi-bin/photo.pl] accessed December 15, 2011. 

 

 

Building in remote locations meant that sleeping quarters were often cramped, 

and there was little alternative but to live in the rough quarters provided by the station.  

The lack of a surrounding community meant that families were unable, and most often, 

unwilling to accompany researchers. A commonly expressed drawback of Tortugas was 

the inability for researchers to bring their wives and children. Referred to by researchers 

as “a stag party,” the lack of accommodations for families presented both a personal and 

a financial problem.
62

  Researchers were forced to maintain a household for their families 

while they traveled, causing them to complain to directors about the monetary strains.
63

 

Finally, many women were reluctant to spend summers on a poorly outfitted island with 

poor living conditions.  Caswell Grave reported to Hugh Smith that the Beaufort 

laboratory probably did not need a matron because 
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The island is a very poor place for women. No company has time to give them 

and no one upon whom they feel free to call to row them to and from Beaufort. 

When they come into the laboratory the men immediately begin to draw on their 

coats and the visitor makes her visits far apart.  For these reasons and others Mrs. 

Graves is not with me and has no wish to be here.
64

 

 

In addition to the lack of families, remote laboratories denied access to female 

researchers because of the lack of separate accommodations. When Beaufort opened in 

1902, it was announced that women would not be allowed to work there.  Without a 

matron or a separate dormitory for female investigators, it stayed closed to female 

researchers for almost 5 years.  Tortugas never offered table space to female researchers 

because of its limited facilities.
65

  

 

Figure 3 The Tortugas Laboratory offered little in creature comforts.  Alfred Goldsborough Mayer took this 

photo of his space in 1917. Series 3 Box 7 “Tortugas Folder” Alfred Goldsborough Mayer Papers, Syracuse 

University Archives: Syracuse, New York. 

 

Laboratories such as Beaufort and Tortugas developed many hurdles stemming 

from their remoteness from mainland transportation. When the USBF laboratory at 
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Beaufort was built, the railroad had yet to be extended to the area.  The railroad was 

extended to Morehead city in 1858, but those traveling to Beaufort were ferried by boat 

until 1907. While the Tortugas had access to mainland Key West because of the 

establishment of a United States military presence on the islands, researchers were forced 

to take a circuitous route traveling to the island- boats did not go directly from either New 

York or Philadelphia.
66

 In June 1927, T.H. Morgan and Charles Davenport took the long 

journey together to visit the Dry Tortugas. They met in New York City at Penn station on 

June 16, spending two days and nights sharing a railcar (and sleeping car), and arrived in 

Key West on July 18
th

 to catch the boat to the Tortugas on July 19
th

.  They stayed ten 

days on the island and the total expense for their travel was $306.72 each.
67

 

Transportation issues caused more than minor travel irritations.  Supplies for both 

the laboratory and the dormitories had to be ordered well in advance. If the researchers 

ran out of chemicals or needed specialized equipment, it was often impossible to get it in 

the middle of the season. During the 1902 season, the Beaufort laboratory ran out of 

alcohol to preserve specimens.  Researchers stretched the existing supplies by doubling 

and tripling specimens in jars, but this fix was only for the short term. The inability for 

remote laboratories to receive supplies quickly meant that they either ran the risk of over 

ordering supplies or to go without.
68

 

In addition, laboratories struggled to provide isolated workers with pleasing 

accommodations.  A 1902 letter from Caswell Grave stated that he would write to E.B. 

Wilson and W.K. Brooks that he had hired the services of a cook for Beaufort, because 
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they both stated that their “coming would depend on the mess.”
69

 Concerns about 

creature comforts were felt at Tortugas, where the geologist T. Wayland Vaughan 

explained that he would no longer do work at the station because, among other reasons, 

the food was so horrible that he would “no longer jeopardize my health, perhaps even my 

life.” According to Vaughan, when the cook ran out of ham and eggs during the season, 

he served pickled lamb’s tongues for every meal. The alternative, an abundance of fresh 

fish, had apparently drawn complaints from other workers.
 70

 Regardless of complaints, 

remote laboratories had to order supplies in advance of the season, and were unable to 

cater to the desires of individual workers.  The 1907 grocery order for the Tortugas 

laboratory was finalized and paid in February for a season that started in May. The 

prepackaged foods (including 2 dozen jars of pickled lamb’s tongue) were delivered 

months before the first investigators stepped onto the island.
71

 

Finally, the lack of family, supplies, and the poor diet were compounded by a lack 

of local culture to enliven an endless summer of work.  In the discussion of where to 

place the Carnegie laboratory, many scientists believed that Jamaica or the Bahamas 

would be a better location than the Tortugas because of the vibrant local communities 

that existed on those islands.  Tortugas had very few residents, and all of them were 

involved with the small military outpost. While Mayer admitted that the Bahamas were a 

friendlier place full of English speaking residents who would be great company to 

researchers, he assured visitors that  
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Although the community at the Tortugas is small the social conditions are 

pleasant, for people of culture and education are sure to be found among the naval 

officers and their families, and indeed, the writer recalls with keen pleasure many 

most enjoyable hours spent in company with one of the keepers of the lighthouse. 

The community is sufficiently small not to distract, but yet large enough to render 

pleasant and profitable the few leisure hours which may be enjoyed by one 

engaged in marine research.
72

 

 

While the Spartan lifestyle of researchers at remote stations might seem a 

particularly good reason to not build in those locations, building near established 

communities did have its pitfalls.  Investigators at Naples and Woods Hole noted that the 

water quality, one of the most important components of marine work, had declined over 

the years. Nearby pollutants from growing populations muddied once pristine waters, 

killing marine organisms and making the collecting difficult.  In 1903, the zoologist C.C. 

Nutting stated that  

There being no city or even town in the immediate neighborhood is a decided 

advantage from this standpoint. Even at Naples, which is now probably the best 

station in the world, there are many forms that are not successfully kept for any 

length of time in the aquaria. When the writer was at Plymouth, England, some 

years ago, the water, although apparently pure, was the cause of much perplexity 

and discouragement. At the Woods Hole laboratories the condition is even worse, 

and many problems have to be abandoned that could be solved with the aid of 

such water as could easily be secured at the Tortugas.
73

 

 

Even seemingly remote locations, such as Beaufort, experienced water pollution from 

encroaching industry and populations. During the 1913 season, Beaufort was forced to 

move their water pump into deeper water because the area that the pump was currently 

drawing from had become too polluted to properly perform experiments on embryos in 

the laboratory.
74
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Beyond the issue of water pollution, laboratories built in populated areas ran the 

risk of being squeezed out by encroaching populations and skyrocketing land prices. Both 

the Hopkins Marine Station and the San Diego Marine Biological Laboratory were forced 

to relocate because they inhabited space on a rapidly populating coast; both were unable 

to expand because they were hemmed in by land prices and new developments.  

The San Diego Marine Biological Laboratory was established in La Jolla Park, 

donated to the San Diego Marine Biology Association by the City of San Diego.  As the 

shipping industry took off in this area, water became polluted, collecting became more 

difficult, and a lack of available land made it impossible to stay in their current location. 

The laboratory directors knew that they needed a large swath of coastline in an area 

where coastline was in high value.  A major concern in this move was that in the four 

years that the city had donated the use of La Jolla Park and the time of the move, a law 

was passed that all public lands must be put up for auction before it could be sold.  

Luckily, the city was on the side of the marine laboratory and the Association was the 

only bidder. If this had turned out differently, the San Diego Marine Biological 

Laboratory would have been moved further out of the city of San Diego, to a more 

affordable swath of coastline.    

The Hopkins Marine Station suffered a similar problem when their initial location 

proved to be too small for expansion. After 30 years in one location, they were forced to 

move to a completely new location because they needed the space that a less populated 

portion of the coast would allow. In developed areas such as Florida and California, the 
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cost of land for marine laboratories may have inhibited the establishment of stations in 

highly coveted areas.
75

 

Networks 

 Directors and researchers seeking to establish marine laboratories took one more 

variable into account:  the location of a marine station in relation to those already 

established.  Researchers interested in evolutionary or comparative biology often utilized 

facilities at multiple laboratories in order to compare forms found at various locations.  

For example, Lewis Cary’s 1911 paper on sea anemones highlighted species from three 

separate laboratories:  United States Bureau of Fisheries laboratory at Beaufort, NC. , The 

Carnegie Institute of Washington Tortugas Laboratory, and the New York University and 

Harvard University Bermuda Biological Station.
76

  In 1927 and 1928, the Carnegie 

Institution funded M.W. de Laubenfels to work at the MBL, USBF Station in Beaufort, 

their own Tortugas laboratory, The Plymouth Laboratory in England and even asked the 

Naples Zoological Station to find a space at a table for him while he was in Italy.
77

  

While it was important for laboratories to be founded for easy access for American 

professors and students, researchers expressed the belief that there should be as many 

marine stations in the widest configuration as possible for the sake of knowledge of the 

marine environment.  

 Marine laboratories, regardless of the organizations that founded them, were seen 

by researchers as connected points in a global network of investigation. During the 1902 

debate regarding the placement of the Carnegie laboratory, many researchers called for a 
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tropical laboratory to complete the “chain” of laboratories spanning the American 

coastline of the Atlantic. Charles Davenport suggested that the Tortugas laboratory would 

allow researchers to track and compare species from tropical waters up the Atlantic 

Coast.  His hope was that “marine stations at Jamaica, Porto Rico or another of the 

Antilles may be considered; and while we are planning a chain of marine stations, 

certainly the island of Grand Manan or the coast of Newfoundland and Puget Sound 

should be considered.”
78

 Of course, the idea for a chain of laboratories was not new.  In 

1899, when the North Carolina Geological Survey advised the United States Bureau of 

Fisheries on the establishment of a laboratory at Beaufort, one of the reasons given for 

the location of the station was that  

 

Should the Fish Commission at any future date also establish a marine station on 

the Florida Keys, the three stations then established (the one at Wood’s Hole, this 

one at Beaufort and the third one on the Florida Keys) would give a chain of 

stations for the investigations of the zoologic problems along the Atlantic Coast. 

And these three stations would answer the purpose for the investigation not only 

of local problems connected with the Fish Commission but they would also serve 

for the investigation of such larger problems as the distribution and migration of 

fishes and other marine forms along the coast.
79

 

 

The USBF sought to fulfill this vision, establishing a marine laboratory at Key West in 

1914, but unfortunately, that station ran into financial and logistical problems very early; 

it did not become fully functional for researchers until after WWI. 

 The desire of some researchers to develop a fuller picture of migration and 

distribution of species throughout the ocean led many to travel between marine 

laboratories. William Ritter, the first director of the Marine Biological Association of San 
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Diego’s laboratory, stated that there was an “inescapably interstate and international 

character of the scientific problems of the sea.” Ritter sought to utilize Canadian, 

Japanese and American marine laboratories as a network of locations working towards an 

understanding of a single region: the Northern Pacific.
80

 This movement from laboratory 

to laboratory was common on both coasts. Many of the researchers that worked at the 

Tortugas laboratory visited the Beaufort laboratory on the way down the Eastern Coast of 

the United States.  American scientists continued to patronize international laboratories, 

and to extol the virtues of those laboratories to their fellow researchers, long after marine 

laboratories were established in the United States. American institutions maintained 

tables at the Naples Zoological Station throughout the first half of the 20
th

 century.   

When the Station struggled to rebound after WWI, many American biologists continued 

to work at the laboratory and to pledge their support for maintaining permanent tables. 

This continued support resulted in the American Association for the Advancement of 

Science’s subscription to a table, although there were over 30 marine laboratories 

operating throughout the United States at this point.
81

  

Marine researchers traveled throughout the world to visit marine laboratories 

stationed in locations that gave them access to new regions and allowed them to do 

comparative studies on organisms from multiple locations.  The Naples Zoological 

Station was by far the most popular station for American researchers to visit, but 

throughout the early 20
th

 century, researchers traveled to stations in France, England, 

Norway, Russia, and North Africa.  According to Edward Gardiner, the Marine 
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Biological Laboratory in Plymouth, England provided the perfect place to continue work 

he initiated at Woods Hole the last summer; it had the same temperate water, but was 

blizzard free in winter.
82

 In 1908, J. Playfair McMurrich suggested that his fellow 

researchers join him at the Marine Biological Station at Roscoff, France run by the 

University of Paris.  According to McMurrich, the stations organisms and environment 

complimented the more southerly flora and fauna of the Naples Station.
83

  And “for 

biologists who have an interest in the low temperature relationships of organisms,” there 

was no better place to study than Alexandrovsk Biological Station on the fjord where the 

Kola River entered the Artic Sea.
84

  

Organisms 

Availability of organisms was an important criterion in choosing a laboratory site.  

Both observational and experimental research required easy access to both a wide range 

of species and a large volume of specimens. Experimental disciplines required a large 

volume of similar specimens.
85

  Other disciplines required a large range of specimens, 

including access to as many organismal types as possible, including a wide range of 

developmental forms and species.
86

  

Investigators focused on questions of universal biological development, such as 

embryologists and morphologists, relied on consistency and volume of specimens.  

Common embryological forms used in experimentation, such as the fundulus 

herteroclitus, were not cultured and raised in the laboratory consistently until the 1960s. 
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Before this breakthrough in the cultivation of the species, all fundulus used in 

embryological studies, which was quite a few due to its heartiness and visible 

developmental cycle, were caught near a marine laboratory and experimented upon in 

that location. In 1930, the Supply Department of the Marine Biology Laboratory 

collected fundulus twice daily to supply investigators with enough material with which to 

work.
87

  

Investigators who focused on specific species, or whose work was best performed 

on specific organisms, flocked to specific laboratories for the short period that their 

specimens would be available for study. The Tortugas Laboratory of the Carnegie 

Institute of Washington was well known for its access to sponges and coral.  These 

organisms were unavailable in Northern locations, but they were also sparse in other 

tropical locations.  Tortugas became the epicenter of research on sponges and coral in the 

early 20
th

 century and drew investigators from across the country and around the globe.
88

 

When the Johns Hopkins Laboratory spent its first season in Port Henderson Jamaica, 

W.K. Brooks noted the discovery of Cassiopea Xamacha, the first member of the 

Cassiopea branch of medusae to be found in the Atlantic.  This species became popular 

with experimental physiologists, especially those studying the physiology of nerves, 

because of its hardy nature in the laboratory setting. (See Chapter 4)  Investigators 
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interested in working with this organism traveled to the Johns Hopkins and Tortugas 

laboratories each season.
89

   

 More important than the type or volume of specimens was the emphasis on access 

to living organisms.  Embryologists, physiologists and even taxonomists relied on 

knowledge of organismal availability, especially spawning and migratory cycles, to plan 

their research accordingly.  An investigator went to a marine laboratory, not because an 

organism had once been found in the vicinity, but because the laboratory directors could 

assure them that they would have access at a given time to their organism of choice. 

Investigators could order preserved specimens from marine laboratories throughout the 

year, but traveling to a marine laboratory was undertaken with the explicit purpose of 

working with living organisms.
90

  This section will outline the ways that directors 

pinpointed and advertised specimen availability for researchers, and also how they made 

specimens available to investigators throughout their stay at the marine laboratory. 

Biological Surveys 

 

 Whether an investigator was visiting a station to have access to a large volume of 

organisms or a specific species, administrators sought to ascertain what specimens would 

be available at that station.  Before or shortly after a marine laboratory was established, a 

biological survey of the surrounding waters and terrain was undertaken to ascertain the 
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species available to researchers, where they are most prevalent, and perhaps most 

importantly, when they were available. Every environment contained a separate host of 

organisms that shaped research in that space. For instance, researchers at Woods Hole did 

not have tide pools and therefore lacked certain cephalopods. The access to deep sea 

cephalopods (such as squid) over littoral species (such as octopus) changed the type of 

research on nerve function performed in these places.
91

  Biological surveys continued at 

these locations and made up the largest continuous project at marine stations during this 

period (See Chapter 2).  

 In 1923, the Mount Desert biological laboratory in Maine shifted from a 

university-based marine laboratory (Tufts) to a private research facility.  In order to draw 

more researchers to the area, the board of trustees suggested that a survey of the 

surrounding area be undertaken to  

 

Gain knowledge of the flora and fauna of the region, principally the marine forms, 

which will be of use to the scientific research workers who contemplate coming to 

work at the laboratory, as well as to present a picture of the ecology of the forms, 

the numbers as to kinds and individuals, their distribution with regard to season 

of year and over periods of years, kinds of water and bottoms that they live in,  

temperature conditions that influence their feeding habits, mating habits and 

 seasons, habits of offense and defense and other ecological relationships.
92

 

 

These surveys served two separate but equally important purposes: to identify new or rare 

species endemic to the area and to identify the general flora and fauna of the region.  
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W.K. Brooks indentified two special organisms available in Port Henderson, Jamaica. 

The first, a hardy species of medusae, Cassiopea Xamacha, was “very abundant and 

conspicuous.”
93

 Not yet identified by Western naturalists, but known by the name 

“Guinea corn blubber” to locals, Brooks felt that the species could greatly contribute to 

knowledge of the jellyfish physiology. The second species, a Lucifer prawn, had 

previously caught Brooks’ attention in the Beaufort region and he wrote a monograph on 

its physiology, but had been too scarce in that region for an extensive life history (See 

Chapter 3).  Brooks noted that he was 

pleased to find Lucifer in abundance, and by going out in a boat and collecting the 

 adults with great care, and taking them carefully home, I was so fortunate as to 

 find some thirty or forty with eggs, and these I kept in aquaria long enough to 

 obtain a tolerably complete series of stages in the embryonic development. I am 

 now engaged in the study of this material, and I hope to have an account of the 

 embryology of Lucifer completed within a year. My success in obtaining these 

 eggs is an ample return for the expedition to Jamaica.
94

   

 

In addition to highlighting specialty organisms, early surveys also highlighted the 

general abundance of materials that could be found in local waters.  When Johns Hopkins 

initially surveyed the waters of Beaufort, North Carolina for their second marine 

laboratory, they highlighted specimens that would interest the “general student” as well 

as the “specialist.” Henry L. Osborn listed the large array of organisms found directly off 

the pier, off the coast, in deeper water, in the shoals surrounding the laboratory, and in the 

channel and sound near the laboratory.  Osborn insisted that there was an abundance of 
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crustacean, starfish, echinoids and opihiurans throughout the area, as well as individual 

species of these groups that were special to the Beaufort region.
95

   

These surveys served the scientific purpose of identifying new flora and fauna not 

previously described by naturalists, and as advertisements for marine laboratories seeking 

to draw more researchers to their establishment.  In 1897-98, the United States Bureau of 

Fisheries was struggling through administrative growing pains. The previous year had 

seen the death of George Brown Goode, and the new administration was contemplating 

keeping the station open year-round.  Starting in the April 1898 issue of Science, H.C. 

Bumpus, A.D. Mead, W.R. Coe, and M.T. Thompson all wrote articles detailing the 

general breeding patterns and specimens found in Woods Hole waters throughout the 

year. Over the course of 12 months, 6 articles gave a laundry list of the organisms caught 

off the coast.  The articles by Bumpus, Mead, and Thompson were divided into sections 

headed by the taxonomic phyla: cnidaria, ctenophora, mollusca, annelida, anthropoda, 

and echinoderma.
96

 Coe’s article expanded on the availability of a single phylum: 

Nemerteans. Coe stated that his paper might “prove of interest to some who may desire to 

carry on researches on the embryology of this neglected group of worms.”
97

  Listing the 

developmental stage (i.e. spawn, young, adult) and the general abundance of each 
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separate species, these articles catalogued experimental organisms that an investigator 

could count on working with if they visited Woods Hole during these seasons.  

Collectors 

 

 A common way that laboratory directors sought to assure investigators that they 

could access the full spectrum of natural resources during their visit was to employ a long 

standing and trusted collector.  The majority of staff at marine laboratories was transient. 

Laboratory technicians often consisted of undergraduate and graduate students brought 

by their professors for the summer.  Other laboratory workers were hired when needed, 

but usually stayed for a short time before returning to school or a regular job.  Cooks and 

engineers were a part of daily and yearly life at marine laboratories, and many stayed for 

years, but they are consistently invisible in laboratory reports. In 1905, the staff of the 

Beaufort station consisted of Caswell Grave (the director), R.E. Coker (the custodian) 

and 2 laborers, 5 special assistants, 13 temporary assistants, 1 engineer, 2 firemen in the 

powerhouse, 3 crewman on the Petrel, a janitor, a cook, a kitchen assistant, and the 

collector, Charles Hatsell.
98

 Against these transient technicians and nearly invisible staff, 

marine laboratory collectors were integral to the daily operations and yearly success of 

the scientific investigations at the laboratories.  

 Collectors’ access to local knowledge and their extended careers inextricably 

linked them with the marine station.  Collectors were rarely trained in the academic 

sciences.  Instead, they were men who grew up in the same area as the marine laboratory 

and who had developed knowledge of the natural surroundings throughout their 
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lifetime.
99

  One of the most memorable collectors was Vinal N. Edwards. Born and raised 

in the Woods Hole region, he returned to his home after a stint in the American Navy and 

was hired in1871 by Spencer Baird to record specimen collections and weather patterns 

in the off season. Edwards’ local knowledge was considered so extensive H.C. Bumpus 

reported it to be the impetus for the original “Biological Survey of the waters of Woods 

Hole and Vicinity” to “incorporate in a permanent form the valuable but unpublished data 

in the possession of this indefatigable collector and observer.”  

 

Figure 4 Vinal Edwards Collector at the United States Bureau of Fisheries laboratory at Woods Hole. 

Northeastern NOAA historical photographs. Northeastern Fisheries Science Center photo archives 

[available online at http://www.nefsc.noaa.gov/cgi-bin/photo.pl] accessed December 15, 2011. 
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 Collectors’ knowledge was continuously incorporated into academic 

understandings of ichthyology by their association with marine stations. Osborn and Cole 

stated in the introduction to “A biological survey of Woods Hole and the Vicinity” that 

the lists of specimens that were utilized by the authors for the survey were provided by 

Edwards from those he collected himself.  Of course, stated Osborn and Cole, “The 

descriptions, and in large measure, the determination of species have, however, been the 

work of others.”
100

  Edwards’ observations and collections were reported yearly to the 

Director of Scientific Inquiry, and the lists of fish and special specimens listed in Science 

articles and Reports of the Commissioner passed from Edwards through an academically 

trained scientist into publication.  In an 1890 letter to Director Richard Rathbun, Tarleton 

Bean states that, “I give below a synopsis of interesting fishes collected and observations 

made by Vinal N. Edwards during the fiscal year ending June 30, 1889.”
101

 This list of 

observations is over 10 pages long and contains information on new species, volume of 

fish caught in a given period, and observations about volume regularity based on 

knowledge of previous seasons.  

Although collectors’ information was tempered by translation, directors and 

investigators acknowledged these men as integral parts of the station staff.  Investigators 

considered both Edwards and the collector at the Beaufort station, Charles Ives Hatsell, 

indispensable to the running of the station.  Investigators often thanked collectors in their 

published work for procuring organisms.
102

 Upon his death in 1919, a scrapbook of 

reminisces of his contribution to science was created “In order that the life and work of 
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Vinal N. Edwards may not become forgotten.” In the work, the leading scientists of the 

day, including T.H. Morgan, E.S. Conklin, Robert Bigelow and E.B. Wilson, catalogued 

the many ways that Edwards had contributed to the scientific environment and work at 

the USBF Woods Hole laboratory. Five copies were made and sent to the libraries of the 

USBF, MBL, The American Museum of Natural History, The Library of Congress and 

the National Museum. The reliance of visiting investigators on the knowledge of the 

collector is made clear in the final sentence of Morgan’s piece. He writes “How the 

young fellows nowadays know when the water is warm enough to go swimming, when 

the tide is at a standstill in the “hole” and whether there will be a storm, I cannot imagine 

without Vinal to ask about such things.”
103

 

Establishing a marine station in an area known to be rich in flora and fauna was 

only the first step in drawing investigators.  Retaining a well-known and trusted long-

term collector demonstrated to investigators that they would be able to obtain the 

organisms that they required and desired each summer when they visited. A thorough and 

ongoing survey of local waters, a printed record of any new developments and species 

found within those waters, and retaining an experienced local collector helped to assure 

investigators that they would not be disappointed by a visit.  While the vast marine 

environment remained largely unexplored, these three variables helped to make the 

organisms around laboratories as known as possible in order to facilitate continuous 

scientific investigations.  
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Technologies 

 

In Charles Atwood Kofoid’s 1910 Biological Stations of Europe, he listed two 

types of technologies that were needed to assure that a station could function:  large 

amounts of aquaria and “ample field equipment.”
104

 Technological requirements far 

exceeded this simple statement, and the equipment required grew exponentially 

throughout the early 20
th

 century. For example, when the Hopkins Marine Laboratory 

was built in 1891, there was a single room dedicated to photographic work.  In 1917, 

when Stanford moved the laboratory north to a larger location, the plans still called for 

only one photographic darkroom, but by 1929 a newly renovated Hopkins announced 

“five dark-rooms, one for general photographic use, three for spectroscopy, polarimetry 

and photometry, and one heliostat room which derives its light directly from the roof of 

the building.”
105

 Photographic techniques and equipment were only one source of 

increase in required technology.  The rising demands of chemistry equipment prompted 

stations to undergo extensive and costly expansions. Specialized equipment for 

physiological and chemical work increased the number of private laboratories and slowly, 

the space of the marine laboratory changed from an open air communal laboratory to a 

warren of specialized spaces, each dedicated to specific equipment and scientific 

investigations in seemingly separate disciplines. 

With the increase in technologies utilized for research, stations lacked the ability 

to provide every technology that a researcher might require.  Instead, they provided a 
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baseline of equipment, including all those required for collecting and storing specimens, 

and advised those needing specialty equipment to send it to the laboratory, either on loan 

from their home institution or purchased with financial assistance. This section 

intertwines the dual needs of space and technology to try to ascertain the base pieces of 

technology that were required for working at marine stations before 1930.   

Nets and Vessels 

 

 Collecting equipment were the most integral technologies to station function. 

They rarely relied on one type of collecting, but utilized varied techniques from hand 

seining to pelagic dredging. In the first few months of operation, the USBF’s Beaufort 

station’s director Caswell Grave requested two skiffs, and stated he would also require a 

sail boat for collecting as soon as funds became available.
106

 By the 1905 season, Grave 

reported that “the equipment for collecting and general field work, which was available to 

all, consisted of a steam launch, a 33-foot sharpy, nine rowboats, a pound net, a fyke net, 

seines, serape nets, tow nets, dredges, a trawl and implements for digging.”
107

  Marine 

stations supplied researchers with a wide range of collecting apparatus. Based on the 

1923 inventory of the equipment of the Carnegie Institute’s laboratory in the Tortugas, 

the laboratory operated six separate collecting boats, including an unnamed 14 foot no 

engine flat bottom boat, the 10 horsepower engine 25 foot Velella, 8 horse power 25 foot 

Darwin, 2 horse power 17 foot long Bull Pup and the 50 horse power 70 foot Anton 

Dohrn.
108

 While steam launches and large research vessels such as the Anton Dohrn were 
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a luxury, and signaled to researchers that they would have access to collecting in a wide 

array of marine environments, many investigators operated only the simplest vessels for 

collecting.   

 The simplest form of boat utilized for collecting was the flat bottom boat or skiff.  

A small number of people could fit comfortably in this boat as it was rowed up and down 

the coast with either small hand nets or seine nets dragging in the water.  W.E. Castle 

described the process at Alexander Agassiz’s Newport laboratory thus: 

 

 About ten o’clock each evening “Thomas” Mr. Agassiz’s faithful man-of-all-

 work, rows slowly up and down the cove skimming the surface of the water with 

 a net. From time to time he lifts the net of fine cheesecloth carefully from the 

 water, turns it inside out and dips it repeatedly in a bucket of water.
109

 

 

Thomas brought these buckets back to the laboratory and emptied them into the main 

sorting aquarium to await the investigators who arrived every morning at 9am.  Castle 

explains that these catches from the rowboat form the basis for most material 

investigators worked with- occasionally supplemented by dredging from steam-launches 

and shore combing at low tide.  
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Figure 5: George Browne Goode (standing in the boat) and Spence Fullerton Baird (nearest to shore) help 

with collecting at the USBF laboratory in Woods Hole. Northeastern NOAA historical photographs. 

Northeastern Fisheries Science Center photo archives [available online at http://www.nefsc.noaa.gov/cgi-

bin/photo.pl] accessed December 15, 2011. 

 

 

 Beyond the simple, human powered flat bottomed skiffs, and the wind powered 

sail boats, larger launches were required for deep water collecting. Steam powered 

collecting boats could go long distances and hold many researchers.  At the Beaufort 

laboratory, the USBF Fish Hawk and Petrel collected directly from the Gulf Stream in 

deeper water off the coast.
110

 At the USBF laboratory at Woods Hole, the investigators 

utilized the Phalarope not only as a collecting vessel but to take visitors and family on 

day cruises. At the Tortugas laboratory, the Anton Dorhn was reserved for longer 

collecting trips and for ferrying investigators to and from Key West:  during the 1923 

season, the laboratory planned several trips on the Anton Dorhn to Jamaica to collect.  

But the expense of large steam launches, along with local laws that required an engineer 

on board while the ship was active, made it a large expense for the stations. John 

Merriam wrote to Asa Schaffer in 1924 that the Tortugas laboratory would be utilizing 

the Anton Dorhn much less than in previous years, but that they hoped to make at least a 
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few trips throughout the season. Similarly, the Fish Commissioner, Henry O’Malley, 

admonished Elmer Higgins for over utilizing the Phalarope.
111

 

Steam launches were expensive for two reasons: fuel and employees. Steam 

launches required large amounts of fuel.  The earliest launches utilized from 5-15 pounds 

of coal per Indicated Horse Power per hour.  Beyond fuel use, American laws required 

that an engineer be present on the launch during voyages, and laboratories also kept 

firemen on launches due to the history of fire on steam launches.
112

 To keep cost of 

collecting down, naphtha launches were more commonly utilized in collecting than full 

sized steam powered boats.  Naptha launch engines resembled small steam engines, but 

ran off of naptha (a by-product of oil refinery techniques).  Naphtha launches were able 

to be taken out without an engineer onboard and they were also commonly smaller and 

took less costly energy to power. The upsides of the naphtha launch were stated thus: 

No steam is used in this motor, therefore no licenses of any sort are required, and 

explosion is practically impossible…An 18 foot launch with a 2-4 horsepower 

engine will carry from six to ten persons…at a speed of 6 to 8 miles an hour, at a 

cost of six cents per hour.
113

 

 

To minimize costs, most day trips for collecting were taken on sail boats or naphtha 

launches.  But, these smaller launches could not hold as many people, nor could they take 

collectors on longer collecting trips, and therefore a steam launch was still desired by 

marine laboratories.  
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Figure 6 The Steam Launch "Anton Dohrn" at the Carnegie Institution of Washington marine laboratory in 

Tortugas, Florida. Series 3 Box 7 “Tortugas Folder” Alfred Goldsborough Mayer Papers, Syracuse 

University Archives: Syracuse, New York. 

 

 Collecting also required many varieties of nets.  In 1905, Beaufort boasted “a 

pound net, seines, serape nets, tow nets, dredges, a trawl and implements for digging” 

that, along with the boats available, put “the entire harbor and adjacent sounds…within 

easy reach and, during calm weather, trips were made outside the inlet, where dredgings 

and towings were frequently made.”
114

 Investigators utilized smaller dip nets, labeled the 

“handiest and most indispensable piece of equipment that can be used for many purposes 

and under a great variety of conditions” on daily collecting trips on foot while wandering 

the shoreline. The dip net had netting that could range from 1 inch mesh to specialized 

netting made from silk for collecting smaller organisms, such as larval forms and 

plankton.
115

 Bigger hauls throughout the season required larger, specialized nets. Not all 

net types were utilized at every station, a pound net was not a common form of 
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technology in tropical waters, but marine laboratories sought to provide basic collecting 

implements so that investigators could have their pick.
116

 

 The pound or fyke is a form of net fishing that is fixed throughout a single season 

in a given location. The nets, which funnel live fishes into an inner chamber to be 

counted and collected at the discretion of the investigator or fisherman, was often utilized 

to get an accurate idea of fish stocks available in a given location, as well as to capture 

new species that might accidentally wander close enough to be trapped within the pound 

net.   In 1913, the Beaufort pound net was fixed at the mouth of the Newport River 

between Morehead City and Beaufort.  Investigators checked it throughout the season, 

the frequency depending on how many fish were being caught throughout the week. The 

first boat trip to check the seine for the 1913 season was on June 19, when 138 fish were 

identified, logged and preserved. By July 12, over 3,000 fish were reported at 9am during 

the check and investigators were checking the pound net twice a day.
117

   

 The pound net served as a point of survey for the station. Fish were caught 

constantly and could give accurate counts of fish without constant effort from staff. 

Another advantage is that it caught living fish and held them until they could be 

processed.  While the majority of fish were either released or preserved, several unknown 

or interesting species were brought back to the laboratory and placed into the aquarium 

for future study. While the pound was not always successful in catching organisms 
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required for experimentation, it served the purpose of constantly updating surveys of the 

waters surrounding laboratories.  

 The seine net was the most widely used net.  Weighted on the bottom and buoyed 

on the top, the seine was a highly flexible collecting technology.  During the 1912 and 

1913 seasons at Beaufort, log entries of fish catches detail the use of at least five different 

seine sizes, ranging from a small 12 foot seine operated completely by hand from shore to 

a 125 foot seine utilized off of the steam launch. Investigators or collectors could utilize 

seines in any body of water and it could be carried to any location they desired to sample.  

On June 28, “one haul was made with the 20 ft. [seine] net in the salt pond west of the 

life saving station. The tide was high and the pond water very muddy.  The catch was 

poor.”
118

 Seines gave all the advantages of the pound net with the added advantages of 

mobility and the ability to be operated by a single individual on foot.  With the seine net, 

investigators could focus their collecting on a particular spot and could personally refresh 

their stock of organisms without the aid of a boat.  

 Finally, the tow or dredge was a larger net for collecting bottom dwelling 

organisms, either by hand in shallow water or by winch and tow on steam launches.  Tow 

nets operate exactly as it sounds; a net was dragged behind a moving vessel for a period 

of time and then collected onto the deck.  The dredge is a heavy net usually lowered by 

winch into the water and dragged behind a steam launch.  Dredge technology could be 

modified to capture specific organisms.  The tangle or mop dredge consists of a mop-like 

grouping of cotton strands attached to an iron bar.  The bar is then dragged from the 

launch for a distance.  The cotton strands capture echinoderms and crustaceans that might 
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otherwise be missed with regular nets.  Another modification is the grapple- which 

consisted of long steel wires bent upward at a 45 degree angle.  When utilized during a 

dredging operation, the grapple dredge could pick up flora, worms, crustaceans and other 

organisms that were commonly missed by the net dredge.
119

  

 

Glassware 

 

 Jars and bottles were the simplest but most versatile glassware in marine stations.  

Jars served multiple purposes: preserving, maintaining living species, and even 

experimenting.  When the Carnegie Institute of Washington’s Tortugas laboratory #2 was 

inventoried in 1923, there were over ten varieties of jars and bottles on the inventory 

sheet, including specimen bottles, museum jars, aquarium jars, water sample bottles, 

experiment jars, specimen bottles, specimen jars, and tincture bottles.  The number of 

empty bottles and jars in each of the laboratory could number in the thousands.   

 

Figure 7 Alpheus Hyatt Mayer standing in front of glass jars at the Tortugas Laboratory, 1912. Series 3 

Box 7 “Tortugas Folder” Alfred Goldsborough Mayer Papers, Syracuse University Archives: Syracuse, 

New York. 
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While these jars were categorized for different purposes, the main difference between 

these pieces of equipment was size.  For instance, in the case of aquarium jars- a jar that 

was utilized to hold a specimen that was either waiting for necropsy or did not need 

running water to be kept alive- researchers had the choice of five different sizes, ranging 

from 1.5 to 5 gallons with the most prevalent being 2 gallons.  Most jars that were meant 

to hold specimens were utilized for short term holding cells- there was no circulation in 

the jars and water quickly became fouled by organisms.  Experiment jars were, again, 

utilized for short term experimentation and were especially useful because they contained 

an organism in a small space, but were highly mobile.  A researcher could carry a jar 

quickly from room to room if an experiment required mobility.
120

    

Aquaria 

 

By the late 1890s, American marine laboratories contained several variations on 

the balanced and circulating aquarium, including table top, portable, and experimental 

aquaria.  Simply stated, aquaria are equipment for maintaining a living organism in its 

natural state for an extended period of time.  The difference between a simple jar and an 

aquarium is the amount of time or room one wishes to give a particular organism.  Time, 

in effect, is purchased through a creation of a stable and livable environment. But 

aquariums were not easily kept. According to Asa Schaeffer, who commonly worked at 

the Tortugas laboratory and hoped to be able to maintain aquaria while teaching: 

A successful aquarium is a very rare object in undergraduate biological 

laboratories. The difficulties to be overcome in running an aquarium are generally 

thought to be so great that few are ever started; and if an animal happens to 

survive, it is usually considered an exceptional or an accidental case.
121
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According to Schaeffer, organisms in aquariums died for two reasons: a lack of food or a 

lack of oxygen. But, Schaeffer suggests that if the oxygen content of the water is 

stabilized, minute organisms will grow and survive in the environment as well, providing 

food for the inhabitants to feed. Therefore, the largest issue in aquarium keeping was 

providing oxygen to organisms in the aquarium while maintaining livable water purity. 

Several forms of aeration were utilized to provide oxygen and fresh water to an 

aquarium.  The simplest form of aeration was either by hand or by a line that pushed 

oxygen directly into the tank.  If a researcher wished to aerate water by hand, they merely 

dipped something into the water of the aquarium, lifted some water up and then let it 

gently drop back down.  This type of aeration was commonly used by collectors who put 

their specimens in buckets to be transported back to a laboratory.  This type of aeration 

works temporarily, but eventually, the water will become soiled by the organism and no 

amount of aeration will keep it alive.  

The oxygen pump delivered air directly to the organism by keeping a steady 

supply of oxygen available.  When Johns Hopkins first moved their laboratory to the 

Beaufort area, they occupied a temporary laboratory in a rented space. Instead of 

establishing and laying down permanent or semi-permanent pumps to introduce a 

constant flow of water to aquarium, Henry L. Osborn states that “In their place was used 

the cheaper and very effective device of aeration by means of a stream of fresh air 

constantly forced through the aquaria by a Sprengel pump.”
122

 This was also a temporary 
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solution for keeping organisms alive in an aquarium; while the water would remain 

oxygen rich, it became filled with the waste of whatever occupied the space, and the 

organism would die. There was also a fear of over- or under- oxygenating an organism 

with this method; without further study it was very difficult to know the oxygen 

requirements of specific organisms.  Both hand aeration and oxygen pumps were 

temporary fixes for keeping organisms alive in aquariums.   

The longer term solution was to continuously pump fresh water through the 

aquarium system. Water lines, made of lead, rubber, wood, or glass, brought fresh or salt 

water directly to an aquarium. Water was brought into the aquarium by hooking the 

aquarium attachment to the water line on either the nearest work table, or in a given room 

(if the aquarium was portable). The aquarium would then have an overflow valve or a 

separate pipe, which funneled water out of the aquarium and into recirculation or filters. 

In this way, the tank was constantly supplied with oxygenated water, and toxins released 

by the living organisms were not able to build up in the tank, keeping the specimens alive 

for a longer period of time.  This system also allowed investigators to feed the organisms 

they needed to be kept alive for extended experimentation. The excess food and waste 

would be washed out of the tank with the old water.  Most laboratories advertised the 

ability to pump fresh water into aquariums, either directly from their water source, or 

from a cistern stored on the laboratory grounds. The ability to supply both fresh water 

and salt water directly to aquariums was also highly coveted by researchers.
123
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Figure 8 Water was transferred from pipes in the ceiling into the aquaria, and evacuated out of the bottom 

through another pipe.  In this photo you can see a large water supply pipe near the beams on the back wall.  

Circa 1920. Northeastern Fisheries Science Center photo archives [available online at 

http://www.nefsc.noaa.gov/cgi-bin/photo.pl] accessed December 15, 2011. 

 

 

 Researchers utilized several types of aquaria in their daily work. The first 

aquarium that they might encounter was a large, free standing aquarium placed in the 

center of the laboratory to hold the specimens caught by the laboratory collector. The 

center salt water tank at the Tortugas laboratory was 25’X 12’X 3’.
124

 This aquarium, 

usually the largest standing aquarium in the laboratory, was hooked up to a constant 

supply of running water.  Throughout the day, organisms could be added to the tank. 

Commonly, organisms that were secured in the field that were either unknown, or that 

investigators desired to further examine while living, were placed into the main tank for 

observation. On July 12, 1930, Lewis Radcliffe found a male felichtys felis (sea catfish) 

with 6 young arranged in his mouth.  The adult was necropsied that day, but the six 

young fish were taken back and kept in the main laboratory aquarium for almost a week 
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when “they died because the water was accidentally turned off overnight.”
125

   If a 

particular specimen was desired by a researcher, they could then transfer that organism 

from this larger tank to a smaller table tank at their particular work station.   

 Another type of aquarium that researchers encountered at the marine laboratory 

was the individual table tank.  Each researcher occupied a table in the laboratory, and 

each table held an aquarium with running water that held whatever organisms that the 

researcher planned to work on that day. These tanks usually contained only the organism 

that one researcher was working on at that time. When T.H. Morgan worked with 

Ilyanassa Obsoleta (Eastern mudsnail) at Woods Hole, he kept 30-40 snails in a “large 

aquarium of running sea water and fed [the snails] daily on 1 or 2 clams broken into 

pieces.”
126

 Morgan needed to keep the snails at his work station to be watched closely for 

the moment when they would deposit their eggs.
127

 By providing investigators with their 

own individual table aquariums, laboratories allowed each researchers space to closely 

observe their organisms or to create their own experimental systems.  

 There were two specialty aquariums that were often utilized in the laboratory 

space.  The first was the portable or movable aquarium.  In 1868, Anton Dohrn and 

David Robertson modified the circulating aquarium (see the introduction) to create a 

portable aquarium. The portable aquarium was mounted on the beach and provided living 

specimens with a constant flow of sea water through tubing extended into the ocean and a 

small pump.
128

  These aquaria were often utilized to take specimens into specialized 
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rooms of the laboratory.  Studies on phosphorescence in fishes often meant taking 

animals in and out of dark environments, either to stimulate different times of day or to 

view organisms’ reactions to light conditions.  Before installing a heliostat in the 

laboratory during a 1929 renovation, the Hopkins Marine Laboratory stated that “from 

the third floor a stairway gives access to the flat, parapeted roof” where movable 

aquariums could be set up as needed.
129

 Utilizing mobile tanks allowed the investigators 

to transfer organisms to different locations within the laboratory without having to take 

them out of water that was a similar temperature and causing them undue distress.  

 The final type of specialty tank that investigators might utilize was not a piece of 

glassware, but was instead known as a floor tank. Floor tanks were constructed out of 

cement, usually on the bottom floor of a laboratory. Not every station had an indoor floor 

tank but many had holding tanks of a similar size located outside of the laboratory. These 

tanks were more prevalent where researchers and collectors were likely to bring in large 

organisms that might still be living.  In Beaufort, the floor tank on the first floor of the 

laboratory building often contained sea turtles or large fishes that researchers wished to 

observe before they preserved the animal. At Hopkins the cement floor tank was 6 by 14 

feet located in the physiology laboratory for observing and maintaining experimental 

organisms.
130

 These tanks often served as a catch-all for larger organisms or for 

experiments that required large amounts of swimming space.  The downside to cement 

tanks was that the contents were only visible from above, meaning that they were often a 

last resort for experiments that required the constant observation of organisms.  
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Visual Apparatus 

 

 One of the most common technologies utilized at marine laboratories, and one of 

the least commonly provided, was the microscope.  Marine laboratories suggested that 

people who would need microscopes for their daily work, especially if they needed 

microscopes that were high powered, should bring their own. When the MBL opened its 

doors in 1888, they stated that “Microscopes will not be provided, but it is believed that 

investigators will find most of their indispensable wants satisfied.”
131

 In 1928, M.W. de 

Laubenfels wrote the Carnegie Institution of Washington to request $250.00 for a 

microscope to take with him to the Beaufort, MBL and Tortugas stations that summer.  

The Carnegie Institution, who had agreed to fund de Laubenfels’ work on sponges 

through a $2,000 fellowship that year, believed that he should utilize an old microscope 

at the laboratories. But de Laubenfels reminded the administrative secretary that neither 

Beaufort nor Tortugas provided adequate amounts of microscopes to investigators and 

those provided were of the meanest sort. In the end, Gilbert granted de Laubenfels the 

$250.00 for a new microscope- a huge expense given that his family was expected to live 

off of $150.00 a month throughout the year.
132

  Microscopic work required specialized 

chemicals to fix specimens and to bring certain structures into view; these chemicals 

were provided and stocked for researchers, but microscopes were not.
133

 

 Another specialized form of equipment was the camera and dark room.  The need 

for multiple types of dark rooms rose in the early twentieth century- progressing from a 

simple darkroom to six separate rooms with four different uses.  Marine laboratories 
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provided darkroom space and camera equipment for visiting researchers. When the 

Tortugas laboratory was inventoried in 1923, the laboratory owned an 8 by 10 century 

view camera, a press graflex camera without lens, four camera tripods, two Eastman 

Kodak trimming boards to edit photos, and an underwater camera apparatus.
134

 If 

researchers wanted unrestricted access to photographic equipment, or required 

specialized equipment for their purposes, they were expected to bring it with them.  

In a combination of the previous two specialized technologies, the 

photomicrographic camera- a camera that could be attached to a microscope to take 

pictures- was not provided by most laboratories.  Asa Schaeffer, who received a grant for 

the Carnegie Institute in 1925, was able to purchase a photomicrographic camera for his 

work on amoebas. While this particular funding was for a trip to Labrador, Schaeffer 

wished to keep the equipment for future work at the Tortugas laboratory.  In all, he spent 

nearly $75.00 of his $700.00 budget on camera equipment.
135

  X-rays, which became 

very popular in marine science in the 1920s, were provided by larger marine laboratories 

but were uncommon at the smaller stations.
136

 Investigators utilizing specialized visual 

equipment, such as microscopes, cameras, and photomicrographic cameras were expected 

to bring their equipment with them, but the space and chemicals to operate these 

technologies was provided by the station.  
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Conclusion  

 

Investigators could shift from one marine laboratory to another with the 

knowledge that each institution provided both a singular experience into a slice of the 

ocean environment and also the baseline equipment required for research with living 

organisms.  Historians of science have continuously called attention to the impact of the 

Naples Zoological Station to the development of the Marine Biological Laboratory at 

Woods Hole. This importance has been examined, but there is no question that 

investigators who sought to found new marine laboratories to explore new coastlines and 

waters were influenced by their work at other institutions.  When Alfred Goldsborough 

Mayer proposed and planned the Tortugas Laboratory, he consulted directors of other 

marine laboratories.   As a student he visited marine laboratories with his mentor Agassiz, 

and even after the opening of Tortugas he continued to visit other locations, including the 

Johns Hopkins laboratory at Port Royal, Jamaica and the New York University-Harvard 

laboratory in Golden Cay, Bahamas. William Ritter worked at the NZS and visited the 

laboratory at Misaki, Japan before planning his own station. He continuously referred to 

Naples and the Johns Hopkins Stations during the construction of the marine station in 

San Diego.
137

  The first cohort of researchers that founded and utilized marine 

laboratories created a coherent network of institutions that served to connect them to 

individual locations and also facilitated study of the larger marine environment.  

The multitude of seemingly disparate marine stations founded in the United States 

shared common goals:  each was committed to finding the optimum location from which 

to observe, collect and maintain living marine organisms for scientific study. Each station 
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maintained baseline technologies and living conditions that allowed researchers to 

perform experiments with similar equipment at each location.  Those founded in the 

United States at the end of the 19
th

 century looked to European and Japanese stations 

such as the Naples Zoological Station (1872), the Marine Biological Station at Misaki 

(1887) and the Plymouth Laboratory in England (1888) to model their facilities.   By 

examining the criteria involved in choosing a location for permanent laboratories, and the 

techniques and technologies for studying the flora and fauna at those locations, we are 

able to view these marine laboratories as pieces of a coherent scientific network.  These 

laboratories, and their similarities in practice if not place, form the institutional basis for 

20
th

 century biology and marine science in America (and internationally) at the turn of 

the twentieth century.  The following chapters will highlight work done at these stations 

and trace the exchange of information and research between these institutions.  
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Chapter 2 

Imagining the Ocean: the importance of field work on marine scientific 

portraiture 

 

 
In the December 1934 issue of National Geographic Magazine readers were 

introduced to startling creatures living over a mile below the ocean’s surface. Eleven 

color plates painted by Else Bostelmann accompanied William Beebe’s description of 

organisms encountered from his Bathysphere on the deepest manned-dive accomplished 

at that time.  Bostelmann’s illustrations depicted newly discovered species in startling 

color and motion. These seemingly alien organisms appeared life-like in their cold and 

lifeless environment.   But these polished illustrations belied their creation-story: the 

images accompanying the article were created through collaboration between Beebe and 

Bostelmann that relied more on memory and imagination than traditional taxonomic tools 

of extensive observation and preserved specimens. Many of the organisms in the 

paintings had yet to be captured through trawling practices and there was no capture 

mechanism on the Bathysphere. The newly described Bathysphaera intacta or 

‘untouchable Bathysphere fish’ was so named because it was only seen by Beebe for 

moments and had yet to be caught in a net.  Beebe explained to the reader that the 

finished images of these organisms were cobbled together using his sketches, 

communications with the boat during dives, and eventually, from Else Bostelmann’s 

imagination.
138
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Bostelmann did not accompany Beebe in the Bathysphere, nor did she personally 

examine many of the creatures she became famous for illustrating. This does not mean 

she had no reference for her work; through extensive training and field work she 

developed the skills required of marine taxonomic illustrators during this period. 

Bostelmann was born in Leipzig and trained as an artist at the Grand-Ducal Academy of 

Fine Arts (renamed Bauhaus in 1919) before immigrating to America in 1909.  She 

accompanied Beebe on four expeditions to the New York Zoological Society’s marine 

station at Castle Harbor, Bermuda between 1929 and 1934.
139

 In the field, Bostelmann 

expanded her understanding of the underwater environment and its inhabitants. During 

Beebe’s 1932 expedition, she donned a bathing suit and diving helmet to paint living 

fishes in their underwater environment. Bostelmann used underwater research to develop 

an understanding of the natural movement of marine animals and sketched impressions of 

their movements with oil paints on slate during her dives.
140

 Her 1934 collaboration with 

Beebe drew upon both her formal artistic training and her time in the field.  
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Figure 9: Photograph of Else Bostelmann working on illustrations at Castle Harbor, Bermuda. Similar to 

portraits of scientists during this period, artists are commonly pictured next to the scientific apparatus they 

utilized in their work. The most common technologies included in these portraits are microscopes and 

aquariums. William Beebe “A Half Mile Down” National Geographic Magazine (Dec. 1934): 686. 

 

 The establishment of stable marine stations allowed scientific illustrators access to 

a new form of natural knowledge that enhanced their craft. Naturalists and collectors had 

long relied on trained draftsmen to transform field notes and hastily preserved specimens, 

or “actual specimens,” into scientifically accurate and artistically striking marine images, 

or “virtual specimens.”
141 

Marine portraits
142

 presented special difficulties; the inability of 

field naturalists to visually access the submarine environment from which their subjects 

originated meant that they relied more heavily on the discretion and imagination of their 

artists in choices of background, coloring, and depictions of movement. Marine field 
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work facilitated a deeper understanding of the inaccessible environment by allowing 

artists to both view organisms for extended periods with aquaria and to work in field 

locations close to the their subjects’ origins.  

Marine stations and the aquarium technologies therein provided space for artists 

to view living marine specimens for extended periods.  Previous marine exploration 

relied primarily on sampling or sounding off a ship or distant shoreline. Specimens 

collected were recorded and preserved, but they often remained the sole example of their 

species and became default type specimens. The specimen was often mangled or partially 

destroyed from seining and dredging methods; preservation in alcohol caused 

discoloration or even dissolution in the case of many ctenophores. Often the specimen 

described by naturalists was the only example of that species available; issues with 

collecting and preservation limited both taxonomic description and the accompanying 

illustrations.
143

 

  Seaside stations were close enough to the source of collection and survey that 

specimens could be transferred from collecting vessel to aquaria for extended viewing. 

This simple extension of lifespan in the laboratory was essential to all of the experimental 

life sciences in these spaces (as we will see in the rest of this dissertation) and it had a 

profound impact on scientific illustration.
144

  Instead of working exclusively with field 

notes and preserved specimens, illustrators could view live subjects for extended periods. 

Increased access to freshly caught living specimens gave illustrators an idea of the 
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movements and habits of marine organisms that informed not only individual portraits 

but their entire oeuvre.  

 In addition to organismal access, artists in these stations experienced and 

constructed conceptions of the natural world. Few illustrators claimed the type of access 

to the marine environment that collectors did during this period; many came from urban 

areas and, if they had ever visited the shore, had done so on vacation in resort locations. 

At the turn of the 20
th

 century, beach visitation was still a limited form of leisure, and 

although it was growing more popular, it was not as culturally pervasive as it is today.
145

   

The ability to spend extended periods of time experiencing the ocean, illustrating from 

shore, and sometimes diving below, allowed artists to form ideas of the natural 

environment from which their subjects had originated. While not every artist used diving 

gear to literally immerse themselves in the experience of the marine environment, other 

artists spent up to 7 years in the field, studying fish both in the laboratory and as they 

swam lazily under docks or wriggled in nets.  

 The experiences afforded artists at marine laboratories impacted their scientific 

illustrations and in turn, the portrayal of scientific knowledge in ichthyology.  Pamela 

Smith has emphasized the importance of natural experiences in the production of 

knowledge of craftsmen and artisans during the scientific revolution. Smith’s work 

highlights the impact on scientific knowledge production by artisans. Historians tend to 

privilege the “theorizer” over the “maker” but the author seeks to place artisans in the 

center of knowledge production to examine their impact on the finished product. Smith 

examines the importance of artists’ own naturalistic understandings and their traditional 
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training in printing techniques to produce some of the most iconic images of the Early 

Modern Period. According to Smith, these illustrations, which highlight collaboration 

between the naturalist and the artisan, conveyed important knowledge claims during this 

period.
146

  Smith’s focus on the experiences of the artisan, and its impact on knowledge 

production, can be applied to illustrators working at marine laboratories at the turn of the 

twentieth century.  

Field work, and the experiences of a place from both a scientific and personal 

perspective, affected the products of naturalists and scientists during this period. Field 

work gave illustrators access to what Anne Larsen has labeled the “content” and 

“context” of their subjects. Content refers to “internal anatomy, its living colors, the 

forms it assumed at different points in its life cycle, whether it was sexually dimorphic 

and what its hunting techniques were, how it selected a mate, and so on.” Field 

experience helped illustrators pair understandings of biology and behavior with context: 

an understanding of the environment where it was collected. Both Larsen and Robert 

Kohler highlight the importance of thinking about “residential science” as a significant 

experience in a scientist’s life that impacted the type of work produced. The process of 

living in and coming to know a given environment was essential in certain types of 

scientific understandings during this period.
147

 According to Larsen, “In order to learn an 

animal’s content and context, one needed to see the living creature—preferably several of 

them—in its natural habitat, and to record one’s observations on the spot.  In addition, the 

zoologist could learn a great deal about an animal from the local people who dealt with it 
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routinely because they ate it, used it for decoration, avoided its poison, and so on.”
148

  

According to Larsen and Kohler, extended work in the field was integral to the 

naturalist’s process. If we shift the focus from naturalists and scientists at marine stations 

to the artisans who were also present, we can see that “residential art” was also important 

and that it impacted the scientific knowledge eventually produced.  

 This chapter will examine the impact of artistic field work, and especially work 

done at marine station, on scientific illustrators during this period. Marine stations 

became a shared space, not just for scientific researchers, but for multiple professional 

groups that worked to make the marine world visible to both the public and scientific 

communities. The new laboratories gave artists access to not just fresh and living 

specimens, but to the larger field experience.  Artisans flocked to these spaces to illustrate 

newfound species for the scientific community. There, they developed visions of the 

marine environment through extensive research and field work, and applied this 

experience to their scientific portraits. By adding artisans into our picture of the 

professional groups who worked at marine stations, and by acknowledging that 

taxonomic portraits were the combined effort of both researchers and individual artisans, 

we can see that permanent stations impacted not just the way that marine science was 

conducted during this period, but also the development of a wider vision of the marine 

environment. 

Survey Work 

 Before examining the impact of field work on scientific illustration, it is important 

to understand the larger scientific endeavor to which these artists were engaged. The 
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proliferation of marine stations at the turn of the twentieth century opened up large 

stretches of previously unexplored shoreline for biological survey and exploration. 

Robert Kohler’s work explores the rise of biological surveys at the end of the twentieth 

century, and finds that the proliferation of field stations facilitated this form of scientific 

knowledge production. The biological survey can be distinguished from previous 

biological exploration and collecting by its methods and goals: they were “methodical, 

systematic, and disciplined” long-term collecting expeditions meant to provide a nearly 

complete inventory of animal life in a given location.
149

  Surveys were socially complex 

scientific endeavors that relied on the expertise or “cosmopolitan knowledge” of 

professional groups such as collectors, taxonomists, artists, and support staff and also the 

“local knowledge” that these individuals gained, both from locals who lived in these 

remote areas and from exposure to a particular locality during the survey.  Kohler’s work 

focuses on terrestrial surveys, and states that the majority of surveys focused on 

vertebrate organisms during this period.
150

 ‘Wet’ specimens, or invertebrates such as 

mollusks, polyps, and medusa that needed to be preserved in an alcohol solution, were 

more difficult to preserve for museum or personal collection displays. For this reason, 

Kohler may have found fewer instances in which marine surveys were undertaken to 

collect specimens for these types of displays.
151

 However, multiple private and 

government agencies sponsored surveys of large swaths of the American coastline during 

this period, the largest being the United States Bureau of Fisheries.  
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The United States Bureau of Fisheries funded major surveys of the American 

coastline throughout the early twentieth century. The U.S. Fish Commission (renamed the 

USBF in 1902) was founded in 1871 to arbitrate fishing disputes between states 

regarding diminishing stocks in the North Atlantic. Investigations of species availability 

and methods of capture integrated research scientists’ academic knowledge with 

understandings of fishes and perceived changes in their habits based on local 

observations by fishermen and residents. Spencer Baird, the head of the Commission, 

deemed this initial survey ineffective and suggested a more extensive and intensive study 

of fish stocks and general aquatic resources in U.S. waters.
152

 Baird’s vision of a more 

complete survey of marine resources lead to the founding of the USFC laboratories at 

Woods Hole, MA,  and Beaufort, NC. Each year, researchers conducted systematic 

surveys along the Atlantic coast of the United States. During off seasons, collectors such 

as Vinal Edwards and Charles Hatsell continued surveying by recording daily catches and 

monitoring the area for changes only visible over the course of the year.
153

  But 

government biological surveys at USFC laboratories accounted for just a slice of marine 

surveys occurring during this period. The USFC in conjunction with local marine stations 

supported a wide array of surveying along the American coastline.  

  Biological surveys were typically performed to ascertain the suitability of a 

location for the establishment of a permanent field laboratory. Locations were scouted for 

specimen availability; a short part of a summer collecting season was usually devoted to 
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surveying a potential area. After a site was chosen, labs commonly published yearly 

surveys that highlighted both the most consistently available specimens in the area and 

the discovery of new species. Throughout the season, graduate students and collectors 

recorded daily catches at stations around the laboratory. In 1904, William E. Ritter, the 

head of the San Diego Marine Biological Association Laboratory, described their long-

term survey plans to Alexander Agassiz. They included dredging and sounding from 500 

to 2000 fathoms, year-round plankton collecting and analyzing, and collecting and 

recording the movements and behaviors of the “simplest pelagic organisms.” After 

outlining their plan for research, Ritter highlighted the expense of extensive surveying, 

stating “You will readily see that our aims are quite comprehensive and that they can be 

carried out only at the expenditure of considerable sums of money, and by the organized 

effort of a rather large number of scientific people.”
154

  

The social complexity of surveying that Kohler describes can be seen on the 

institutional level with multiple groups contributing resources to a single survey.  The 

San Diego Marine Biological Association was comprised of a group of citizens 

bankrolling research on their local marine environment, but their financial support was 

not enough to fully fund the coastal survey that William Ritter wished to perform around 

San Diego. Ritter contacted the US Fish Commissioner George Bowers in 1902 to ask for 

additional funding. The Commission had yet to secure a permanent laboratory location on 

the West Coast and Ritter hoped that there could be a coordinative or cooperative effort 

between them.
155

  Bowers replied that, at the time, there were few funds for a West Coast 
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survey, but by 1904 H.M. Smith, Bowers’ successor, wrote to Ritter to coordinate a 

survey between the Stanford Hopkins Marine Laboratory in Palo Alto, the University of 

California Laboratory in Monterey, and the USFC. The USFC provided the USS 

Albatross to facilitate deep sea dredging and collection, and offered Ritter’s researchers 

onboard accommodations during the survey. In addition, they paid for publication of 

results.
156

  Ritter also sought collaborative work with E.H. Harriman, the wealthy railroad 

magnate and funder of the Harriman Alaska Expedition in 1899 in which Ritter had 

participated.
157

  

But surveys were not merely collaborative on the institutional level; these 

endeavors required a wide range of staff.   Ritter actively recruited researchers to San 

Diego to work on collections taken during the survey. In April, 1904, he invited G.H. 

Parker to spend 6 weeks in San Diego working on copepods collected during the survey. 

In addition to compensation, Ritter promised Parker a capable person to help sort the 

collection and assist in illustrations.
158

 Biological surveys required at least one illustrator; 

many times researchers brought several individuals with different styles (this will be 

explored later in the chapter). Researchers often sought to capture specimens at their 

freshest with crude field drawings or quick photographs, but these forms of imaging were 

inadequate for capturing pertinent information about the specimen and for eventual 
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publication: to do both of these, a professional draftsperson was required.
159

 The 

importance of the artist to the success of a survey cannot be overstated: illustrations that 

were completed quickly and accurately helped maintain costs and ensure that work need 

not be redone.  And although artists could work with preserved specimens and field 

notes, it was optimal if the artist could see live specimens and experience the marine 

environment for themselves. Several variables, including survey location, financial 

compensation, and artistic style, constrained the process of choosing an illustrator.  

Location was a particularly large constraint because of the varied locations and 

extended time of surveys. If the survey was taking place in a particularly remote region, a 

female artist might be unacceptable.  Neither the USBF laboratory at Beaufort, NC nor 

the Carnegie Laboratory in the Tortugas had facilities for women; although a large 

amount of marine illustrators (and scientific artists in general) were female, their sex still 

constrained their career choices and especially access to field work.
160

 This does not 

mean that women were not allowed at marine stations.  The New York Zoological 

Society Station in Bermuda employed Else Bostelmann and Isabel Cooper and David 

Starr Jordan relied heavily on the work of Chloe Lesley Starks at the Hopkins Marine 

Station in Palo Alto, CA.  But the remote nature of much of the field work was time 

consuming and required an artist able to travel for large stretches of the year. In 1914, 

Alfred Goldborough Mayer hired Stanley J. Rowland for a three month survey of aquatic 
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organisms in Jamaica.
161

 Working in the field meant travel to a remote location, time in 

the field, and then travel home. In 1901, Charles Bradford Hudson traveled from 

Washington, D.C. to Hawaii to work on a USBF survey of the newly acquired Hawaiian 

Islands. He left D.C. for California in mid-May, and left California for Hawaii by June 

first. He painted fishes in Hawaii for June and July and then returned to the states in 

August.
162

 Other illustrators relocated to marine stations for years; Isabel Cooper spent 

seven years on various expeditions for the Tropical Research Station of the New York 

Zoological Society, much of that time spent at the Society’s marine station in Kartabo 

Point, Demerara (now Guyana).
163

  

 In addition to location, artists expected different levels of compensation. It is 

difficult to find records of how much illustrators were paid, and the rate and rubric vary. 

A common form of compensation seems have been monthly payment, including room, 

board, and traveling expenses.  Alfred Goldsborough Mayer recorded in his notebooks 

that he “agreed to give him [Rowland] $80 per month and traveling expenses and board 

for 3 months.”
164

 Charles Bradford Hudson was given $60 a month for his work with 

Barton Evermann surveying Golden Trout in the Grand Tetons and also received 

compensation for each finished illustration.
165

 Other artists were paid according to 

finished products. In a 1901 letter from David Starr Jordan to Henry Fowler, Jordan 

invites Fowler to the Hopkins Station, telling him that “there are about 200 species here 
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to be drawn, and the Smithsonian pays fifty cents a square inch, multiplying the greatest 

length by the greatest depth. The drawings are usually made large and then reduced.”
166

 

Another system involved paying for each individual drawing. Later in his career, Hudson 

often received between five and ten dollars for each drawing he completed for the 

USBF.
167

 The variability of payment might suggest that researchers would try to hire the 

cheapest illustrator, but this was not necessarily the case. Certain artists were considered 

more capable than others, and particular styles developed by these individuals contributed 

to the final project. In the next section, we will examine the education of the artist and 

why it was important to match specific artistic visions with scientific researchers.  

The Artist’s Education(s) 

 The process of becoming a scientific illustrator incorporated both traditional 

artistic training and investigation of the natural world through personal exploration and 

field work; this combination of experiences created illustrators that were technically 

accurate and also artistically distinct in their naturalistic depictions. Although there were 

many struggling artists willing to travel into the field, certain individuals were highly 

valued and courted for their specific style. This section will examine how illustrators 

developed their individual perspectives on the marine environment.  

 Most scientific illustrators received some formal artistic training. Isabel Cooper, a 

staff artist for the New York Zoological Society who worked with Beebe in Bermuda, 

attended one year of college at Bryn Mawr and another at Cornell. She eventually shifted 
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her focus to art and studied at an art school in New York before her work with the New 

York Zoological Society. Cooper’s family can recall few details of her early education, 

including the name of the art school in New York City she attended, but their 

recollections parallel those formally reported by other artists.
168

 This mixture of 

educational sources is mirrored in the biographies of Charles R. Knight and Charles 

Bradford Hudson. Knight, best known for his portraits of dinosaurs, was encouraged to 

begin painting by his stepmother and was enrolled in the Metropolitan Art School in the 

basement of the museum. At fifteen he was hired by a stained glass company to illustrate 

commissioned designs for clients, and he chose to extend his art education by attending 

evening classes at the Art Students League (ASL) in Manhattan.
169

 The ASL offered 

evening classes to all ages and sexes in a wide range of techniques, including sketching 

and painting. Charles Bradford Hudson, staff artist at Stanford’s Hopkins Marine Station 

and long -time USBF illustrator, also took advantage of these courses. Hudson graduated 

from Columbian College in Washington, D.C. in 1887 (now Georgetown University) and 

continued his art education outside of the university system. In 1889, Hudson traveled to 

New York to take evening sketch classes at the ASL with George deforest Bush, a 

prominent artist who painted in a romantic but naturalistic style.
170

   

In addition to both formal and informal art education, scientific illustrators relied 

on access to subjects from local aquariums, zoos and museums as subjects for naturalistic 

research. Knight’s autobiography describes his search for subjects throughout New York 

City. While a student at the Metropolitan Art School and during his tenure at the stained 
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glass company, Knight visited the Central Park Zoo to draw live animals. He also visited 

the American Museum of Natural History to draw the taxidermied specimens. Knight 

links the two by saying that the Zoo sent all of their dead specimens to the AMNH to be 

put on display- he was welcomed into the taxidermy studio at the Museum to watch the 

recently deceased animals be prepared for preservation and display. Knight calls his 

study at the CPZ and AMNH a “real anatomy course” and pointed to this portion of his 

study as one of the most important for producing naturalistic drawings later in his career. 

He states that “it’s a very difficult thing even under the best circumstances to make a 

good drawing of a living animal but without this preliminary study it is certainly 

impossible to produce a satisfactory picture.”
171

 Illustrators suggested that viewing all 

animal life, not merely the specimens they were commissioned to illustrate, helped them 

render organisms more naturalistically. Other artists left the cities and public institutions 

to view organisms in their native environment. In an Atlantic Monthly article entitled 

“Artists at Large” Isabel Cooper calls attention to the “peripatetic existence of the 

scientific illustrator.” Cooper stated that she, like Knight, spent her winters sketching and 

painting in exhibition halls and museums, her summers on the shores painting any 

animals that she could find, and seeking out “good models, old-fashioned gardens, and 

rock bound coasts” all the time.
172

 

 Survey work at marine stations allowed artists to immerse themselves in an 

environment filled with foreign and exotic creatures, and in some cases, in the marine 

environment as well. Isabel Cooper described her work in Kartabo Point and Georgetown 

in a 1924 The Atlantic Monthly article entitled “Wild Animal Painting in the Jungle.” In 
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it, Cooper outlined the process of ‘living portraiture’ and the importance of 

environmental immersion to her work, which   

Necessitates travel to some of the most wonderful places in the world, and it has 

used and developed my artistic tendencies…I have had to work out for myself 

many of the details of my profession. For instance, there is no such thing as a 

school of snake artists, so when the problem of making a portrait of a snake 

presented itself I had to think up a technique for myself.
173

  

 

Residency in the field during survey work helped artists develop their own techniques for 

rendering naturalistic images, and they sought experiences that would help them develop 

these techniques. Else Bostelmann took advantage of her time in Bermuda, and the diving 

suits Beebe himself was using for research, to experience as much of the marine 

environment as possible. She donned a diving helmet and took oil paints underwater to 

study the movements of aquatic organisms.
174

 Of course, not every artist could spend 

seven years in the field, nor could they access the submarine environment directly, but 

field work helped artists develop individual techniques and naturalistic visions.  

These separate but intertwined educational paths resulted in artists that claimed 

both technical accuracy and a personalized vision of the natural environment. Each artist 

brought their own imagination of the aquatic environment to a commission, and this 

individual vision was noted by scientists. William Beebe hired Else Bostelmann as his 

resident illustrator after firing two previous artists and finding fault with a third; one 

artist’s style did not fit with Beebe’s vision, another was deemed adequate, and Helen 

Tee-Van (his longtime scientific assistant) was labeled mediocre at best. Bostelmann’s 

work, on the other hand, was technically beautiful and Beebe felt that she was 

particularly gifted at visualizing specimens as living creatures. Bostelmann was entrusted 
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initially with Beebe’s field notes and over 600 photographs from his surveys of Bermuda; 

during his bathysphere dives she worked almost exclusively from his personal 

observations and her own imagination.
175

 Working together, “little by little, each new 

species materialized, refined by the imagination of both scientist and artist, the 

proportion, color, and size exactly right.” While Beebe called upon Isabel Cooper and 

Helen TeeVan to illustrate the Arcturus organisms, he trusted his bathysphere finds only 

to Bostelmann’s skill and “imagination.” 

The marriage of accuracy and a personal vision distinguished individual artists 

and lead some artists to be favored as scientific illustrators. Hashime Murayama, one of 

the most popular and respected marine artists of this period, was recognized as being both 

extremely scientifically accurate and classically artistic. He was known to study 

specimens extremely closely, sometimes spending days at the New York Aquarium 

studying live specimens for illustration, and his bosses at the National Geographic 

believed he “counted scales” for accuracy.
176

  David Starr Jordan and Barton Warren 

Evermann favored Charles Bradford Hudson’s style and Jordan stated that he believed 

Hudson to be one of the top two scientific illustrators in the country.
177

 Through formal 

training, artists developed proficiency in specific mediums- some excelled at watercolors, 

others oil or line drawings. While most of these artists worked with multiple mediums, 

many times a laboratory or researcher required proficiency in all of these modes of 

depiction. For instance, Charles Bradford Hudson worked primarily with paints- oil 

paints with fresh water and water colors for salt water organism. His fellow artist at the 
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Hopkins Marine Station, Chloe Lesley Starks, preferred working with pen and ink for 

line drawings.
178

   

One of the simplest ways to see the expression of style in marine illustration is to 

examine background composition and perspective in these images. Scientists worked 

with the illustrator to assure scientific accuracy, but they often allowed the artist to make 

choices regarding the rest of the image. These choices could be quite small, such as 

background color. Else Bostelmann’s signature was her use of black backgrounds for 

pelagic specimens. Charles Bradford Hudson also favored a dark background behind his 

fish portraits. While this variable seems minor, in reality the artist’s choice of background 

color might change the tenor of the entire portrait.  

 

                           

 

Figure 10: Fish portrait with a white background by A.H. Baldwin. "The Shore Fishes of the Hawaiian 

Islands, with a General Account of the Fish Fauna", by David Starr Jordan and Barton Warren Evermann. 

Bulletin of the United States Fish Commission, Vol. XXIII, (Washington, D.C.: Government Printing 

Office, 1903), 574, Plate LXII. 

 

Figure 11: Fish portrait with a dark background by C.B. Hudson."The Shore Fishes of the Hawaiian 

Islands, with a General Account of the Fish Fauna", by David Starr Jordan and Barton Warren Evermann. 

Bulletin of the United States Fish Commission, Vol. XXIII, (Washington, D.C.: Government Printing 

Office, 1903), 574, Plate LXIII. 
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Larger artistic choices involved the inclusion of extra content or context, such as 

floral details, perspective, and portrayal of movement or family groupings in a single 

portrait.  Charles Townsend chose paintings from four separate illustrators for his 1929 

work Records of Changes in Color Among Fishes. Townsend asked his illustrators to 

portray every color variation of a single species in the same portrait, but it appears he did 

not place any restrictions on the illustration of the background. Each illustrator had a 

different background style: Herbert B. Tschudy highlighted flora, Olive Earle shows a 

slightly naturalistic but non-specific backgrounds, Charles R. Knight presented a  

romantic, dark background to more clearly highlight the fishes and Hashime Murayama’s 

paintings present all his organisms from the perspective of looking up from an ocean 

bottom strewn with legible rocks, pebbles, and technically stunning floral elements.
179

  

All of these portraits were scientifically accurate but stylistically different based on the 

artist’s vision of their subject and the natural world.   
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Figure 12, 13, and 14: These three portraits demonstrate the choices artists made regarding background. 

Charles Knight (left) preferred a dark, romantic background, Helen Tschudy (middle) used a light, blank 

background to highlight color changes and patterns in the fishes, and Hashime Murayama (right) depicted 

flora and ground cover such as pebbles in his portraits. Charles Haskins Townsend Records of Changes in 

Colors Among Fishes (New York: New York Zoological Society, 1929). 

 

Artists utilized traditional art education and personal experience with the natural world, 

in the city and in the field, to develop individual naturalistic style.  This style helped them 

render lifelike illustrations from both preserved and living specimens.  
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Illustration  

 The end result of scientific collection was the description of specimens discovered 

in a geographical area. Collectors, naturalists and taxonomists produced written 

descriptions of their collections, but images were equally important.  Extensive 

descriptions detailing coloring, body shape, and distinctive characteristics helped 

taxonomists differentiate between species, sub species, and sexual maturity and 

dimorphic features; images illuminated these descriptions and operated as both a proxy 

specimen and shorthand for quicker field identification.
180

 Naturalists often developed a 

deft hand at illustration, and many utilized their own drafting skills during field research 

and collection processing, but the eventual publication of research commonly involved 

working with professional draftsmen.
181

 The working relationship between naturalist and 

artist varied depending upon the disciplinary parameters of scientific illustration and the 

personal vision of both individuals involved. The artist worked with sketches, field notes, 
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preserved specimens and open conversation with the collector to produce a usable image.
 

182
 

 Illustrating marine collections presented a very specific set of difficulties. Aquatic 

organisms appear different when submerged, and their coloring changes drastically when 

exposed to air. In addition, death causes rapid color changes. Finally, the most commonly 

used preservation liquids cause further deterioration of color and morphological 

characteristics. The earliest collectors of marine organisms dredged and netted these 

organisms from a dry location; they never saw the specimen alive in its native habitat, 

and only briefly glimpsed its colors before death. These variables placed limitations on 

marine illustration from the outset. But marine stations, and the expansion of biological 

surveys combining stable locations with trawling and traditional boat collecting, made it 

possible for both researchers and the illustrators they depended upon to describe and 

depict these organisms.
183

 Marine laboratories provided a space where both collectors and 

illustrators could view marine specimens alive for extended periods. Both researchers and 

artists took advantage of the stable location and the technologies that extended life in the 

laboratory to lengthen the period in which they could study living specimens; this 

extension of viewing time greatly changed the process of marine illustration.  
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From Type or Specimen: Illustrating from Description 

The captions of scientific illustrations offer clues to the process of image 

production. Images of marine species commonly contain two annotations: “from type or 

specimen” and “from life.” Illustrations “from type or specimen” were produced utilizing 

a combination of field notes, field sketches, and the preserved and accessioned specimen; 

artists working “from life” viewed the specimen in an aquarium or during a dive. The rise 

of marine stations meant that many more illustrations were done “from life,” but working 

in the field also changed the way that illustrators worked “from type or specimen”. This 

section highlights inherent issues in all forms of marine illustration: visibility, access, and 

time limitations all constrained image production. These limitations forced illustrators to 

find alternate means of personally and professionally accessing the marine realm to 

complete their work. 

 Collectors often called upon illustrators to produce scientifically acceptable 

images based exclusively on field notes and preserved specimens.  The process of marine 

exploration meant that new or interesting specimens were accessed in distant locations. 

An organism of interest could be obtained at an outdoor market, fishing dock, or on board 

a scientific vessel in the middle of the ocean. The artist combined the notes of the 

researcher with preserved specimens and their own artistic skill set to produce acceptable 

illustrations. This kind of illustration was termed “drawn from type/specimen” in the 

caption because the artist utilized a first-hand description and preserved specimen, not a 

live model, to create the illustration.  

 Researchers recorded pertinent details about specimens in field notebooks, both 

for easy identification in collections and use by artists. Marine field notebooks contained 
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several integral pieces of information about a specimen. A thorough field note included 

place captured, date, species (if already identifiable), and a tag number. The tag number 

was the number utilized to identify the fish after accession to a collection. The 

importance of this number was especially important to illustrators: it allowed researchers 

to match up preserved specimens with field descriptions- something made incredibly 

difficult because of the problem of color.  Marine field work required rapid recording of 

details; the problem of color required quick work to produce accurate descriptions that 

would later guide both taxonomists and illustrators.
184

  

The Problem of Color 

 Marine organisms quickly lose color after being removed from their native 

habitats.  Organisms that appear one color while submerged take on a completely 

different hue when exposed to air. In addition, stress and tissue death cause color changes 

in fishes. The most common form of specimen preservation, submersion in alcohol, 

caused color to fade further. Isabel Cooper elegantly described the problem of color 

change in fishes in her Atlantic Monthly piece entitled “Artists at Large”: 

But it was a great mistake to spend much time upon reflection, because rage and 

discomfort had a strange effect on their color schemes. Right before my eyes the 

gleaming steel and gunmetal of their visors and armored plates would dim and 

darken and film over with streamers of purple mist, or jagged patterns of 

ultramarine, or shadows of leaden grayness. And I would be left guessing, 

somewhere between the myth of what they had been and the myth of what they 

were rapidly becoming, with nothing remaining of the truth which the scientists 

most earnestly desire.
185

  

 

Artists tasked with rendering lifelike images from preserved specimens required 

additional details for accurate coloring. 
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Rapidly taken field notes worked to combat color change in specimens. 

Commonly, the observer of the specimen would record color in two separate but 

corresponding methods: a written description of the coloration followed by a quick sketch 

of the specimen. The field notebooks from David Starr Jordan and Barton Warren 

Evermann’s 1901 survey of the waters off the newly acquired Hawaiian Islands offers a 

good example of this form of field notation. On June 13, 1901 the notebook records that 

Jordan and Evermann received a Chaetodon lunula (raccoon butterfly fish) from a 

Portuguese fisherman.  The specimen was recorded under the number 03313 and 

described thusly: 

Upper parts of side rich greenish olive, covered by about 9 or 10 reddish brown 

bars; lower part of side rich lemon yellow covered by about 5 reddish orange bars; 

the two under pectoral breaking up into reddish orange spots; tip of snout pale 

rosy, rest of snout pale yellow; a broad black saddle overhead and through eye to 

upper edge sub operculum  about one half broader than orbit. Back of this is a 

broad white saddle of about same width extending to near lower part of 

operculum and enveloping part of the shoulder girdle; back of this is a yellowish-

green space, then a black saddle at anterior (?) of dorsal and extending along (?) 

until the 5
th

 spine; a large oblong black spot beginning on humeral region and 

curving (?) and backwards (?)…a jet black spot on caudal peduncle 
186

 

The description of the coloring and markings of this specimen go on for another half a 

page. 

In addition to written color descriptions, researchers might quickly draw a 

diagram of the specimen. On July 27, collectors observed specimen 035030 alive at the 

Honolulu market. No written description of the specimen was recorded; instead, a 

diagram was drawn. As you can see below, the observer included a rough sketch of the 

fish with indications of color placement. While it is labeled as Pachynautus brusus in the 
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notebook, the fish was later identified in the publication as Balistaupus aculeatus and was 

painted by A.H. Baldwin from the preserved specimen and field notation. 

 

         

 
Figure 15: A quick field coloring of living fish at Honolulu docks. Color Notes on Hawaiian Fishes 

Notebook p. 157 RU7184 US Fish Commission Papers, Smithsonian Institution Archives. Washington, 

D.C. 

 

Figure 16: A.H. Baldwin’s published illustration based on the field sketch in Figure 2."The Shore Fishes of 

the Hawaiian Islands, with a General Account of the Fish Fauna," by David Starr Jordan and Barton 

Warren Evermann. Bulletin of the United States Fish Commission, Vol. XXIII (Washington, D.C.: 

Government Printing Office,1903), 574, Plate LXII. 

 

As the technology developed, these quick field sketches were sometimes replaced by 

field photographs. Although photography could capture the specimen quickly, colored 

photography had yet to be developed so researchers were still required to take extensive 

notes about markings and body color. These images were meant to serve as another form 

of field data that could eventually be turned over to the illustrator for incorporation into 

the final illustration.
187
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“From Life”: Living Portraiture 

The importance of aquariums to aquatic illustration cannot be overstated. Because 

of color changes upon death, and the inability to ascertain those colors from preserved 

specimens, the optimum time for illustrating organisms and capturing their living color 

was for artists to view fresh or living specimens in person. Logistical difficulties and the 

cost of shipping live specimens inland meant artists traveled to marine stations or sailed 

on research vessels to access their subjects. Illustrators utilized aquariums in tandem with 

field work; fishes were kept alive for a very short time in aquaria, long enough for artists 

to paint their portrait. After the artist had finished with the portrait, the organism was 

assigned a number, preserved, and shipped to an institution to be stored as part of a  

collection for future study. But the introduction of aquarium technology did not 

necessarily make illustrating organisms easier; it merely changed the process.  

Illustrators found new difficulties illustrating from life. Just as human portraiture 

is difficult because of the need for proper lighting and the cooperation from the subject, 

so too was fish portraiture difficult for these reasons. Artists in the field set up their 

studios in any location that would afford them enough space for their aquarium and the 

proper lighting.  Charles Bradford Hudson’s studio during his work on the Jordan and 

Evermann Hawaiian expedition was described as 

 

An interesting den. It is not in at [sic] attic or under a eucalyptus tree. He is 

perched on a bench at the outer end of a pier seaward from the Moana hotel. He 

has before him a glass aquarium, full of sea water. Here he poses his models.
188
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Isabel Cooper wrote about a multitude of locations that she used as studios during 

her career, including spaces in the bamboo forest of Guyana and the deck of the Arcturus. 

Cooper describes her floating studio on board the Arcturus as an “exciting, and disturbing 

place to work.” The rolling of the boat made it difficult for her to paint, and waves forced 

her to stabilize both herself and her subject while painting. But she also found the 

experience exhilarating: 

A web of difficulties, indeed, in which to enmesh an artist and her inadequate 

physique! But it was interesting, nevertheless, to work away at my strange job, 

sketching the queer creatures that were fished up from the depths and rushed- 

alive, preferably-to my rolling, rocking studio, to float for an hour or so beneath 

the concentration of a human being’s senses, and the lenses and mirrors which 

make up the sensitive glass eye of civilization.
189

 

 

The illustrator had to be able to work in a multitude of environments and to be able to 

work rapidly. 

 

 
Figure 17: Charles Bradford Hudson painting "from life" in his makeshit studio on the end of the dock in 

Oahu. Photography by John N. Cobb. Springer and Murphy, "Drawn to the Sea," 71. 
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Field illustrators had to work quickly with organisms dumped into temporary 

aquaria. While color faded quickly after death, change of environment elicited fright 

responses from many organisms. Beebe recalled the difficulties of keeping certain 

specimens, especially squid, in temporary aquariums. His stated that he needed to transfer 

the organism three times because it inked up the water so badly from fright. Other fear 

responses included color change or even death, both of which could have serious impact 

on the final coloring depicted in the portrait. Aquariums in the field allowed a new way 

of visualizing aquatic organisms, but it was not sufficient in all cases. 

 

     

Figure 18: Isabel Cooper painting a living fish in an aquarium aboard the Arcturus. Beebe, The Arcturus 

Adventure, 396. 

 

Cooper and other researchers working from live specimens in the field had to work 

quickly to capture the color and mannerisms.  

Long term study of organisms in permanent aquariums added a new depth to the 

artists’ ability to capture color, mannerisms, and other characteristics that might go 

unnoticed during rushed examination in the field. The ability for illustrators to study 

fishes in aquariums actually allowed multiple portraits of the same specimen. Juvenile 

fishes could be captured daily during development to depict juvenile and adult forms 
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through portraits. Mary Fish seined unidentifiable larval forms from the ocean surface as 

the Arcturus traveled through the Sargasso Sea. Fish placed the forms in an aquarium and 

drew them every day, tracking their development through portraits.
190

 In addition, fishes 

that could change color could be studied, and illustrated multiple times before 

preservation. Charles Townsend’s work examined color changes from fright, light, and 

environmental surroundings; the four artists he employed for his work on fish coloration 

painted multiple portraits of the same specimens- each time focusing on a specific color 

change in the organism. The visibility afforded by the aquarium helped taxonomic artists 

depict multiple colorations of the same species in the same portrait, thereby offering a set 

of descriptions for naturalists and collectors who may encounter only one coloration in 

the field at a given moment.
191

 

In addition to capturing coloration of freshly caught organisms and observing the 

life cycle of individual specimens, aquariums could be utilized to enhance an illustrators’ 

knowledge of a species when illustrating “from type or specimen.” Hashime Murayama 

traveled from Washington, D.C. to New York to view living trout for illustrations for The 

National Geographic. Murayama’s illustrations were intended to portray all of the 

scientifically important aspects of trout, and in addition to working with preserved 

specimens he tried to capture their color and movement by viewing living specimens. 

Unfortunately, the trout shipped to the New York Aquarium for this specific purpose died 

almost immediately when introduced to the aquarium water. Murayama stayed in 

residence until more could be shipped and kept alive for an extended period. This story 

illustrates another difficulty, one that is a major theme of this dissertation: it is difficult to 
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keep organisms alive in aquariums- and this difficulty impacted not only researchers but 

also artists working with specimens.
192

  

Separate difficulties arose when illustrating “from specimen/type” and “from 

life.” Optimally, artists could utilize both of these forms- in the field the artist could 

illustrate the living form, but still have the preserved specimen for reference. In less 

optimal circumstances, when the artist worked from hastily assembled field notes or the 

specimen was not immediately preserved (often the case when illustrating at public 

aquaria or if organisms were kept in aquaria for further study), artists relied on personal 

knowledge garnered from extensive study of forms in natural history establishments and 

the field. Even in optimal drawing conditions, with extended access to both living and 

preserved forms, artists utilized personal vision to embellish and enhance scientific 

portraits.   

New Visualization Techniques and Scientific Portraiture 
 

 In the mid nineteenth century, amateur and professional photographers’ subjects 

began to intersect with the scientific community. Photography became a useful medium 

for scientific information gathering and distribution in meteorology, medicine, and other 

fields. Some believed that the mechanical objectivity achieved by the camera outstripped 

the ability of artists to portray natural phenomena.
 193

 One of the earliest proponents of 

photographic illustration was R.W. Shufeldt. His early experiments photographing live 

fishes produced a photo of a large pike that differed from previous taxonomic drawings. 
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This prompted Shufeldt to remark that “In time, with the most suitable subjects taken 

under the most favorable conditions, pictures of fish (as in the case of other animal 

forms) produced by half-toning processes from faultless photographs, will surely 

supersede in biological literature the often inaccurate figures that now illustrate it.”
194

 But 

this goal took longer to accomplish than Shufeldt predicted due to limitations in camera 

technology. Early cameras lacked the ability to accurately capture living organisms 

because of low light and animal movement; color photography was in its infancy. While 

some photographers believed that cameras could enhance taxonomic methods by picking 

up on details overlooked by researchers and artists, artist-rendered illustrations still 

continued to accompany photographic illustrations in taxonomic publications and 

remained the optimal form of presenting scientifically accurate taxonomic images of 

specimens throughout the 20
th

 century. 

 

 
 

Figure 19 and 20: Both of these images appeared side by side in David Starr Jordan and Barton Warren 

Evermann’s seminal work American Food and Game Fishes. Jordan and Evermann were some of the first 

ichthyologists to utilize photographs in taxonomic work, but did not publish them as stand-alone images. 

They still used illustrations to portray scientifically pertinent information. American Food and Game 

Fishes (Garden City, NJ: Doubleday, Page, and Co., 1920), 154-155. 
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Photography did become a useful tool in survey work as a form of short hand 

field notation.   Collectors and researchers photographed specimens in the field in place 

of rough sketching. Until color photography developed, they still made color notations, 

but the convenience of photography allowed researchers to reproduce the image of the 

specimen accurately, and to send that image with preserved specimens to other scientists. 

On July 26, 1912, collectors at the USBF marine laboratory in Beaufort, North Carolina 

found what they believed to be a stranded bottle-nosed whale. Dr. Albert Kuntz, of the 

University of Iowa, working at Beaufort on the embryology of pelagic fishes, recorded 

pertinent information about the specimen, including coloration and measurements, and 

performed a necropsy on the specimen before shipping the bones along with the photo 

and information to Frederick True at the Smithsonian in Washington, D.C.
195

 True 

identified the bones as a new species Mesoplodon mirus, commonly known as True’s 

Beaked Whale, and replicated Kuntz’ field notes and photograph in his paper announcing 

the new species.
196

 The species, and most beaked whales, have never been netted nor are 

they commonly seen in the wild; by 1940 only eight living specimens had been seen in 

the Atlantic 
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Figure 21: This field photograph of a stranded unknown whale species taken by Albert Kuntz at Beaufort, 

NC in 1912. The photograph, along with the skeletal remains and measurements of the organism, were sent 

to Frederick True at the Smithsonian for identification. Frederick W. True “Description of Mesoplodon 

mirum, A Beaked Whale Recently Discovered on the Coast of North Carolina” Proceedings of the United 

States National Museum 45 (Nov. 29, 1913): plate 52. 

 

The scarcity of eye witness accounts and field notes did not stop A. Remington 

Kellogg from commissioning Else Bostelmann to illustrate True’s Beaked Whale for his 

1940 National Geographic article entitled “Whales: Giants of the Sea.”  Neither 

Bostelmann nor Kellogg had ever seen the species alive- they worked together to create 

illustrations that were both life like and scientifically accurate based on the field notes, 

photographs, and information sent to True by Kuntz.
197

 Once again, Bostelmann was 

called to use her imagination and personal experience of the aquatic world to render 

lifelike drawings of animals she herself had never encountered. Bostelmann’s final 

illustration portrayed two beaked whales frolicking in an imagined ocean; while the 

image portrayed vitality and movement, it also focused on pertinent taxonomic details, 

including jaw and fin shape and coloring.
198

 

                                                      
197

 D. Graham Burnett, The Sounding of the Whale: Science and Cetaceans in the Twentieth Century 

(Chicago: University of Chicago Press, 2012), 314-315. 
198

 Remington Kellogg, “Whales: Giants of the Sea” The National Geographic Magazine 77:1 (1940): 35-

90. 



118 

 

 

Figure 22: Else Bostelmann and Remington Kellogg’s combined imagination of the True’s Beaked Whale 

in the wild. “Whales: Giants of the Sea” The National Geographic Magazine 77:1 (1940):  Plate X. 

 

Scientific artists remained important collaborators in marine taxonomy throughout 

the twentieth century. Even with the integration of new visualization techniques into field 

work, collectors and researchers continued to rely upon the personal and professional 

skills of illustrators to transform actual into virtual specimens. Marine stations and field 

work provided these illustrators with reference points for content and context and helped 

them depict unknown environments and the movements of newly discovered organisms 

through them; these spaces were integral in the training of marine artists and therefore in 

the creation of marine scientific illustrations. Artists played a significant role in the 

knowledge production of American marine surveys during this period and the 

imagination and skills they developed during their time in the field had an impact on the 

way both scientists and the public came to imagine the ocean.  
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Chapter 3  

 

Crossing the lab-field border: working with embryological materials at 

marine stations 
 

 

 

The spring and summer of 1880 found W.K. Brooks keeping odd laboratory 

hours. At the end of April, 1880, Brooks found a single specimen of Lucifer acestra with 

two eggs attached to its appendage.  After examining the eggs, Brooks believed that the 

development of Lucifer, a small crustacean, could hold the key to the evolutionary history 

of arthropods and sought to trace its developmental stages in the laboratory. Between 

April and the end of August, Brooks sought more embryological material with little 

success, but in the first week of September he collected several advanced larvae and by 

the end of that month had succeeded in not only collecting multiple stages of 

development, but hatching a larval form from a collected egg in the laboratory. Brooks’ 

publication on this research highlighted his limited findings on the tracing of the life 

history of the organism. According to Brooks, new findings would only be accomplished 

when it became possible to rear and maintain the crustaceans in artificial conditions, a 

feat he labored at unsuccessfully throughout the summer.
199

  

Brooks’ embryological research on the crustacean Lucifer required a refinement 

of both field and laboratory techniques. In order to find fresh embryological material, 

Brooks had to ascertain the exact location of the Lucifer spawning ground and visit that 

location at the exact right time to collect fertile females. On clear evenings precisely as 

the tides turned, Brooks set out to trawl the salt marsh near Beaufort, North Carolina to 

collect as many of the tiny creatures as he could in hopes of finding spawning females. 
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The spawning females proved so delicate and rare that Brooks did all the collecting 

himself; he felt he could not trust the job to the station’s paid collector. After hours of 

painstakingly separating the tiny, nearly translucent, fertile females from their non-fertile 

and male breathren, Brooks carefully transferred his few usable specimens to the 

laboratory on Pivers Island and sat down to wait for the release of eggs.  Females 

released fertilized ova between 9 and 10pm and work was started on the eggs 

immediately, as they proved as delicate and perishable as their progenitors. Brooks 

personally followed development in each egg, trying unsuccessfully to rear a mature form 

in the artificial laboratory environment. While he failed to accomplish this goal, his 

extensive collecting and laboratory work resulted in the publication of illustrations of 

normal embryological development and the general physiology and natural history of the 

species.
200
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Figure 23 W.K. Brooks' illustration of Lucifer's development. Lucifer, Plate 2 

 

Marine stations gave researchers interested in embryological problems access to a 

wide variety of local forms. But the mere accessibility of live organisms did not 

guarantee usable specimens for scientific work. While they were granted access to a wide 

variety of species surrounding the environment, few of these were easily incorporated 

into laboratory studies. The species that were most commonly utilized were those that 

were easily collected, reared in artificial conditions, and abundantly available throughout 

the entire summer research season. But these materials, such as those of various species 

of sea urchin, shark, and game fish, were not always the best for studying specific 

embryological questions.
201

 More scientifically interesting materials were difficult to 
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collect and maintain, meaning that few marine species were consistently represented in 

the embryological laboratory.
202

 

Working with and maintaining embryological forms took a wide array of 

knowledge and the growth of skills that required intensive labor both inside laboratory 

walls and throughout the surrounding marine environment.  Researchers developed 

intimate knowledge of the normal life history of their organisms around which they built 

laboratory techniques to maintain them in artificial conditions. The inherent difficulty of 

combining these two skill sets meant that a large majority of embryologists chose to work 

primarily with reliable terrestrial species such as frogs or chickens.
203

  

In spite of the difficulties surrounding collecting and maintenance, the use of 

marine organisms for embryological research rose in popularity at the turn of the 

twentieth century. Researchers consistently sought out new species in the untapped and 

unmapped marine environment and the establishment of stable stations in new locations 

provided new specimens for description.
204

 In addition to descriptive embryology, many 

marine species, including echinoderms (sea urchin), elasmobranches (shark), and teleosts 

(fish) had hard, nearly translucent eggs that facilitated teaching and experimentation on 
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development in the laboratory.
205

 Finally, while aquaculture of fresh-water species had 

been successful for years, researchers were still struggling to understand the development 

and life cycle of edible, and rapidly declining, marine species such as cod and lobster. 

They adopted space in newly established marine stations to work out these stages and to 

experiment with aquaculture techniques for producing bulk fishes for human 

consumption.
206

 Descriptive and experimental embryologists relied on fresh specimens 

and a combination of field and laboratory space in order to achieve their research goals.  

Marine stations provided an outpost that allowed researchers to live close enough 

to the shore to explore the life history of their embryological materials in the field and to 

utilize that information during observation of and experimentation upon fresh specimens 

in the laboratory. Historians of American biology have consistently emphasized the role 

of the marine laboratory in the rise of experimental embryology. Jacques Loeb and other 

experimentalists’ work is often held up as an example of the embryological investigation 

performed at marine laboratories during this period. But these narratives rarely explore 

the techniques, either in the field or the laboratory, which made embryological 

investigation in these spaces possible.
207

 It was not enough to simply be in a location that 

granted access to fresh embryological material. Researchers required in depth 

information on the organisms’ life history, how to collect them, fertilize them, and 

maintain them in the laboratory before any research could be performed.  
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This chapter will examine the common difficulties encountered while working 

with marine embryological material and highlight the choreography balancing field and 

laboratory procedures that investigators developed to stabilize their research programs.  

Investigators working with marine embryological material encountered difficulties during 

each step of the process of collecting, fertilizing, maintaining, and rearing in the liquid 

laboratory. Moving to marine locations allowed continuous access to some form of 

embryological material, but working with specific forms required extensive knowledge of 

life cycles, behavior, normal embryological development, and mature physiology and 

morphology. All of this knowledge was brought to bear when researchers sought to 

transfer organisms from the field to the laboratory.  

The growth of experimental embryological investigations at marine stations has 

long been used an example of the type of laboratory-based experimentation that kept 

researchers removed from the field during this period. While it is true that some advanced 

investigators relied primarily on the station’s official collectors for a consistent supply of 

research specimens, and that they operated primarily from the bench, not the beach,  for 

students and many researchers throughout the liquid laboratory network, working with 

embryological forms bound them inextricably to their surroundings.  Researchers 

desiring to build viable artificial environments in which to house their subjects required 

knowledge of those organisms’ natural milieu; this knowledge could only be built 

through intimate experiences with the marine environment.  These experiences, and the 

consequent knowledge of specific marine surroundings, not only facilitated in-depth 

embryological investigation, but also contributed to the ongoing development of general 

marine biology.   
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Collecting 

 

Historians have emphasized the importance of consistently available material 

when explaining the link between the study of embryology and marine laboratories. 

While it is true that embryological material, including fertilized eggs and spawning 

mature forms, was available at marine stations, the image of an easily accessible 

catalogue of specimens is somewhat misleading. Researchers and teachers often required 

or at least requested specific forms for their needs, but spawning and fertilization is 

dependent on uncontrollable conditions such as local weather, lunar calendars, and 

seasonal and yearly fluctuations. To avoid gaps in specimen availability and to achieve 

optimum productivity during the season, researchers worked with multiple species as 

they became available. This section highlights the process of collecting embryological 

material at marine laboratories. Collecting viable specimens relied on the development of 

specialized knowledge of environmental variables and their interactions with a wide 

variety of species.  

The study of embryological development necessitated access to viable 

reproductive material; this necessity brought researchers to marine stations and it also 

linked them intimately with the surrounding area and the organisms with which they 

worked. Understanding spawning behavior and the lifecycle of an organism was one way 

that investigators were assured that they had access to viable material. While professional 

collectors played a large role in delivering fresh embryological material to the laboratory 

(see Chapter 1), some researchers working with embryological forms felt it was 

important that they collect their own materials in order to both follow natural 

development in nature and to properly handle their material. According to Ernest Everett 
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Just, an experimentalist working with embryological forms at Woods Hole, Naples, and 

Roscoff in the early 20
th

 century, the knowledge gained from collecting your own 

specimens and viewing them in their natural environment was extremely important for 

further research. Just states that “the experimental embryologist should as far as possible 

know his animal personally and directly through work in the field, never resting content 

to become what Kropotkin in another sense denominated a “desk-biologist.””
208

 Students 

in the MBL invertebrate course each summer were strongly urged to do their own 

collecting. According to the course description  

 

The field work is one of the most important aspects of the entire course; even the 

anatomy cannot be clearly understood until the animal has been seen in its native 

haunts. Gross collecting methods are avoided as far as possible and the student is 

urged to observe carefully while collecting where the animals are found and what 

they are doing.
209

 

 

Field work served two purposes for embryological researchers: the collector was able to 

ascertain the normal development of their experimental organism in their natural 

surroundings, and they also pinpointed the exact place and time that viable specimens 

could be taken near the laboratory.  
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Figure 24 Mr Davis digging Balanoglossus circa 1920 Folder Unidentified Pictures 71/3 Carton 14 William 

E. Ritter Papers. Bancroft Library Archives, University of California, Berkeley: Berkeley, CA. 

 

 The importance of recognizing normal development cannot be overstated when 

discussing the study of embryology. Regardless of the ultimate goal of the research, it 

was important to ascertain if the embryo being studied was developing along a “normal” 

path (how a sexually mature specimen would develop in its native environment) or if it 

was developing abnormal characteristics (teratology).  In his 1939 embryological 

laboratory manual, Just suggests that researchers should spend time in the field observing 

their experimental organisms in the wild in order to note their natural behaviors; 

collecting should also be done personally for the same reason. According to Just, the 

basis and the control of any experiment was the perfectly normal egg; the investigator 

needed to be able to recognize abnormalities in developing eggs. “The best source for this 

knowledge lies in the most thorough acquaintance of the normal egg in its normal 

surroundings. Whenever possible the normal development of the egg in nature should be 

followed.” Just believed that if a researcher had never seen their subject in their original 

milieu, they should reconsider working with that organism in the laboratory.
210
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Not all researchers needed extensive field work to pinpoint normal developmental stages 

in their embryos; many could rely on ‘normal plates’ and developmental information 

already worked out by previous embryologists. The MBL invertebrate zoology course 

studied embryological development with several types of echinoderma eggs; they 

referenced Christianna Smith’s previous observations on the normal development of 

these eggs under July conditions.
211

  

 

Figure 25 Christianna Smith's timetable of echnoderm development in Woods Hole in July. Allee,"The 

Invertebrate Course," 121. 

 

In 1937 Jane Oppenheimer worked out the normal developmental stages of fundulus 

heteroclitus, a popular embryo for teaching and experimental purposes. In her 

publication, she explains that she worked out the normal stages of the embryo “to 

facilitate the work of students who may find fundulus eggs favorable experimental 

material for morphological or experimental investigation.”
212

 Publications on normal 

development often included extensive illustrations of the embryonic and larval growth 

entitled ‘normal tables.’ Oppenheimer’s paper contained three photomicrographic plates 
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with 33 figures illustrating the growth of the fundulus embryo from fertilization to larval 

form.  These illustrations served as a reference for researchers as they viewed their 

specimens’ development in the laboratory. While surveys continuously expanded the 

number of normal tables available, many of the most widely available and popular 

species did not have accurate published normal plates. For instance, the dogfish, a species 

of shark with reproductive materials that proved incredibly useful for teaching and 

experimentation, did not have an accurately timed, widely distributed normal table in 

publication until 1993.
213

  Locally specific species available at varying points of the 

season often had no normal table available, forcing researchers to rely on Just’s method 

of field work and extensive observation.
214

  

 

 

Figure 26 The normal table for Fundulus heteroclitus. Oppenheimer,"Normal Stages," Plate 2. 
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There were two ways to collect embryological material at marine stations: as 

naturally fertilized ova or by collecting mature spawning adults and inducing shedding or 

artificially fertilizing the eggs in the laboratory. Often, fertilized embryos were found in 

trawls or net catches by survey collectors during their daily trips. While trawling off of 

the Arcturus, Marie Fish recovered several fertilized eggs which she believed were those 

of the American eel- a species of eel about which little developmental knowledge was 

known at the time. These embryos appeared in the trawl without a mature or even 

intermediate form, making it diffiuclt to ascertain the species to which it belonged. Fish 

was forced to observe her specimens over the course of several days to tentatively 

identify the resulting larva.
215

 Lewis Cary encountered an unknown embryo at the 

Beaufort laboratory over the course of several seasons, and eventually worked out the 

normal development and breeding period of the Epizoanthus Americana in the Beaufort 

region.
216

  

Not all fertilized eggs were free-floating or mysterious. Many researchers hoping 

to examine the earliest developmental stages of arthropods found that they could only 

obtain reproductive materials by collecting adult forms that contained internally fertilized 

ova. D.R. Crawford found that even collecting sexually mature spiny lobsters did not 

assure usable reproductive material. Females had to contain fertilized eggs before 

capture, and in most instances if they were not prepared to spawn within 24 hours of 

capture, they would not do so nor would the embryos be viable if forcibly removed.
217
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William Bateson encountered a similar problem with the acorn worm Balanoglossus. 

Attempts at laboratory fertilization only produced abnormal embryo development but 

naturally fertilized ova were often available in the muddy sand near the laboratory.
218

  

Investigators utilized naturally fertilized embryos collected in the field, but this 

system of collecting contained certain drawbacks. If one wanted to study the earliest 

stages of embryological development, collecting already fertilized materials provided less 

control over the stage that could be observed. Gaps in developmental stages could be 

missed if researchers failed to collect materials in varying stages of development. The 

earliest stages were the most commonly absent, often because development started even 

before fertilized material was actually released into the surrounding waters. Lewis Cary 

lamented the inability to find the earliest stages of certain actinians (sea anemone) he 

wanted to study and eventually chose to manually fertilize eggs in the laboratory in order 

to circumvent this impediment.
219

  If researchers could collect spawning adults to bring 

into the laboratory for artificial fertilization or shedding, this was considered the optimum 

form of collecting. But this process also involved major obstacles.  

Spawning behavior greatly influenced the ability of researchers to consistently 

access the same specimen for research. While marine laboratories called attention to easy 

access to some sort of embryological material available at all times, if a researcher sought 

out a particular species, the window of opportunity for research was often limited to 

specific months, weeks, and even days throughout the summer season. E.E. Just, working 

with Frank Lillie on the embryology and development of various forms of Nereis 
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(polychaete worms) at the MBL, published several articles describing the collecting 

details of these organisms in both Woods Hole and at the Naples Zoological Station. In 

one article, Just outlines the difficulties involved in the process of collecting Nereis 

limbata (Alitta succinea), an organism on which he had been performing fertility 

experiments and embryological investigations for several seasons. According to Just, the 

mature spawning forms appeared after sunset on the “dark of the moon” in the months of 

June, July, August, and September. No individuals swarmed during the “light of the 

moon” meaning that there were four runs in four months corresponding to a lunar 

calendar. The runs had two sub runs that allowed the collector access to spawning males 

and females for about a week each month.
220
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Figure 27 Table 2 for the year 1912; spawning of P. megalops E.E. Just "Habits of the Heteronereis," 204. 

 

In his paper on the spawning behavior of Platynereis megalops, a polychaete 

pelagic worm closely related to N.limbata, Just published data detailing the number of 

mature males and females observed spawning during the 1911-1913 summer research 

periods at Woods Hole.
221

 He found that, similar to N. limbata, P. megalops’ spawning 

was correlated with lunar cycles but had a more pronounced yearly variability. In 

addition to correlations with lunar cycles,  Just and Lillie isolated other factors that 

contributed to differential spawning behaviors, including time of day (spawning only 
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occurred for one to two hours after sunset), weather (inclement weather sometimes 

lessened or completely halted spawning), and overall lighting conditions. Other 

conditions, known to influence spawning behavior, such as tide (high or low) and water 

temperature, seemed to have little or no effect on the spawning of N. limbata.
222

  

 W.K. Brooks outlined the tiny window of opportunity for collecting Lucifer 

acestra, a small prawn found near the Beaufort station. Similar to other anthropoda, 

reproductive materials were collected from mature spawning adults. Brooks found 

females in great numbers near a large marsh “during the first hour of ebb tide, on calm 

evenings when the tide turned between 7 and 8pm.” Three variables-- calm water, a 

turning tide, and sunset--all needed to be in place in order for Brooks to find his 

specimens. This caused Brooks to opine that “owing to this singular limitation there are 

only a very few favourable evenings for procuring the eggs in a single season.”
223

 The 

small window of collecting transferred to a small window for experimentation: 

researchers needed to work with the freshest specimens available in order to assure 

normal development.    

 Collecting usable embryological forms involved more than understandings of 

their spawning periods; quality was also key. In Just’s 1939 laboratory manual Basic 

Methods for Experiments on the Eggs of Marine Animals, he calls attention to the 

importance of using the freshest sperm and eggs available. This corresponds to both a 

collecting and a fertilization issue. According to Just, while many species shed 

reproductive materials throughout the summer research season, there are periods when 

the eggs and sperm are of higher quality, meaning that more fertilized eggs develop into 
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embryos and that those embryos are more robust and follow a normal developmental 

path. For example, Just suggests that a researcher should not work with Arbacia (sea 

urchin) at the end of the season because of low fertilization rates and Echinarachius (sand 

dollar) are in better condition and are more robust in the early season as well.
224

 In 

addition to qualitative changes in reproductive materials and the resulting embryos, 

transferring the mature spawning forms into the laboratory for artificial fertilization 

added additional complications to the process of collecting and utilizing these forms. 

Fertilization 

 

Inducing shedding or artificially fertilizing ova in the laboratory allowed 

researchers to consistently work with earlier developmental stages, but it was not a stress 

free process. Even though organisms were in the laboratory environment, their spawning 

and shedding behaviors still followed a natural cycle and researchers had to work within 

the parameters of these behaviors.  Researchers working with collections of spawning 

adults had to work within these behavioral constraints to have access to embryological 

material. One way to do this was to utilize species from which reproductive material 

could be harvested, artificially fertilized, and reared as normal embryos. But the species 

for which this was simplistic were not guaranteed to be the most scientifically interesting. 

 As shown in the previous section, spawning patterns differed greatly between 

species and these patterns affected the laboratory work built around them. Researchers 

wanted to utilize both the freshest material and also to examine the earliest stages of 

development, and for this they had to bend their work to the timeline of the spawning 

organism. The best example of this is William Keith Brooks’ work with the prawn 
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Lucifer. The organism, which Brooks felt might hold the key to understanding the 

evolution and phylogeny of early arthropods, presented “unusual difficulties” when 

working with its embryological materials. Firstly, Brooks found so few spawning adults 

that he could not even sacrifice one for necropsy to outline its actual reproductive 

physiology. The spawning individuals he did find contained so few eggs, and they were 

so delicate, that he could not work with any one embryo for more than 2 hours. These 

difficulties alone were enough to stall research progress, but a larger concern was 

working around the spawning time of Lucifer. Brooks described the difficulties thus:  

When we add to this that the eggs are laid about 9 o’clock in the evening, and 

must be studied between this time and daylight, after several hours of laborious 

collecting, by eyes that have already been severely taxed when looking over the 

collections and picking out the transparent and almost invisible adults by an 

artificial light, and examining each one of them with a lens to find those which 

carry eggs, the difficulty of the subject will be appreciated.
225

 

 

Brooks’ work with these delicate embryos is outlined in his manuscript, and it 

demonstrates, not just the knowledge that he gained from the organism, but how his work 

schedule was changed in order to accommodate working with it. Brooks collected the 

prawns in the evening, sorted them in the laboratory, and waited for their spawning 

between 9 and 10 pm. After the spawning, Brooks detailed their development through 

9am. E.B. Wilson described a similar time sensitivity while working with Renilla (sea 

pansy): the eggs were laid between 5:30 and 7am (most consistently at 6am) every day 

and Wilson had to be present during this period to view the earliest developmental 

forms.
226
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 Other organisms were not quite so time sensitive, but this did not mean that 

intense concentration and knowledge of spawning behavior were not required. T.H. 

Morgan worked with a common shore snail, Ilyanassa obsoleta, at Woods Hole and in 

his labs at Columbia University.
227

 Unlike Brooks’ Lucifer, Ilyanassa could be kept in 

captivity and relied upon to lay eggs daily between June and August. But even the shore 

snail’s consistent egg laying did not guarantee consistent embryological material without 

additional requirements of time sensitivity and watchfulness. Morgan states that in order 

to obtain examples of early developmental stages, the snails crawling on the glass walls 

of the aquarium were closely watched throughout the day.  

When a capsule is about to be deposited it can be seen at the opening of the 

oviduct. As soon as it is fixed, the snail is gently pulled away or pushed off, 

leaving the capsule attached to the glass. The capsules of newly laid eggs are 

much softer than are those that have been laid some hours and are more easily 

opened.
228

  

 

Time sensitivity was two-fold when working with Ilyanassa: the capsules were easier to 

open without damaging the eggs if harvested right immediately after depositing and 

researchers interested in the earliest moments of development required access to the eggs 

as quickly as possible. According to Morgan, even catching the capsule at the oviduct did 

not guarantee the earliest starting point for developmental events- the egg may have 

already started to develop before it was deposited.
229

  Lucifer and Ilyanassa are examples 

of mature forms that had internally fertilized eggs when brought into the laboratory, but 

mature forms did not always shed fertilized ova in the laboratory. Collecting spawning 
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males and females prepared to release their eggs into the water allowed researchers to 

manually fertilize embryos in the laboratory. 

 Researchers utilized two methods for fertilizing ova in the laboratory: inducing 

shedding or stripping the reproductive material and excising the material from the mature 

forms. Inducing shedding required knowledge of the organism’s spawning behavior. The 

methods employed to induce the shedding of reproductive materials depended upon the 

organism. In his 1913 paper, Just outlines his method for inducing shedding for the worm 

Neiris limbata. After collecting spawning adults at dusk, males and females were placed 

in separate dishes in a cool, dark place overnight. To induce shedding and fertilization, 

the male and female were placed together in a clean tank.  

If a male and female be placed together in a bowl of fresh sea-water they appear 

to stimulate one another very quickly, but it is usually several minutes, at least in 

the case of animals that have been kept in the laboratory overnight, before the 

male begins to shed sperm; and the female never sheds her eggs until after the 

male has begun to shed sperm.
230

 

 

In addition to inducing shedding, researchers working with fishes commonly stripped the 

milt and roe from mature adults and manually fertilized the material in a separate dish.  

 Stripping (or milking) fish for their eggs was a common practice in aquaculture 

during this period. The practice was so common, many researchers state that they 

“stripped” eggs from fishes for artificial fertilization, but it is difficult to find a paper that 

explains the process. To strip the milt (sperm) and roe (eggs) from mature fishes, the 

researcher pressed firmly near the anal fin of the fish; if the fish was a ripe male the milt 

would begin easily flowing and could be caught in a clean, shallow dish. The same 

procedure was repeated with a ripe female and the roe was also transferred to the dish 
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containing the milt. The researcher than gently mixed the milt and roe and placed the now 

fertilized eggs in water until they were ready to work with them.
231

 Embryologists 

exploring fisheries issues perfected the art of stripping milt and roe from common food 

and game fishes such as trout and salmon, but researchers working with newly discovered 

teleosts had to develop reliable techniques to assure viable and normally developing 

embryos for their research.  

 Fundulus heteroclitus (mummichog) were the most commonly utilized teleost 

eggs in embryological study during this period. The fish were abundant on the East coast 

and the eggs were large, nearly translucent, and contained a hard outer coating that 

allowed rough handling without damage.   Because researchers did not develop a way to 

maintain and breed mummichogs in the laboratory until the 1950s, all fishes during this 

period were collected during their spawning period, stripped by hand, and artificially 

fertilized.
232

 Stripping was not a fool-proof process- sometimes stripped eggs developed 

abnormally due to rough handling, so monitoring development was especially important 

after this process.
233

 Stripping milt and roe from fishes did not require destroying the 

mature specimen, but retrieving reproductive materials from other species, such as lobster 

and sea urchin, required cutting open the adult forms to extract the reproductive 

materials.  
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Figure 28 Woodcut of fisheries’ workers stripping roe and milt from fish. Box 21 Folder 17 Bureau of 

Fisheries Records “1877-1948” Smithsonian Institutional Archives: Washington, D.C. 

 

 Extracting reproductive material from mature specimens was a two-step process: 

determining the reproductive readiness of the collected organisms and fertilizing the ripe 

materials in the laboratory. In his laboratory manual Handbook of Invertebrate Zoology 

for Laboratories and Seaside Work, W.K. Brooks outlines these two steps when working 

with Arbacia eggs. These sea urchins proved especially useful for teaching embryology 

at marine stations because their breeding season on the southeastern coast of the United 

States extended from early spring until the end of August. This continuous spawning 

meant that a collector could potentially find a ripe female and male every day during the 

summer, but not every specimen would have usable materials. To find a usable specimen, 

the student collected several adult sea urchins and transferred them to the laboratory. 

Once inside the lab, a strong knife was used to open the shells and ascertain the sex; 

females have brown reproductive organs and males white. The next step was for the 
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student to find reproductive materials ripe for fertilization. The ovaries were cut open and 

the eggs retrieved and placed under a microscope.  

 

If the eggs are of uniform size and color, they are probably ripe, and ready for 

fertilization, but if they vary much in size, and if some are more transparent than 

others, other specimens should be examined until one is found in which the eggs 

are more uniform. Place this specimen on one side, where it can be recognized, 

and keep it until a ripe male is found.
234

 

 

Testes of mature males were then cut up and examined under the microscope for uniform 

and robust sperm. Once located, the sperm and egg were combined in a dish and rinsed 

repeatedly until the water ran clear. The fertilized material was then ready for 

examination under a microscope to teach embryological development, or it could be 

placed in a bright location out of direct sunlight until it matured into larvae (approx. 24 

hours) to teach later stages of physiological development in the mature form.
235

  

 While it might seem as if embryologists would be uninterested in cultivating and 

maintaining the embryo into larval and mature forms in the laboratory, there were 

multiple reasons to try to rear specimens through the mature and spawning stages of their 

lifecycle. Researchers often found embryological forms, especially pelagic forms, 

collected during survey work difficult to taxonomically identify if they could not link the 

embryo and larval forms to the often drastically different mature specimens.   

Understanding the embryological development of specimens was merely the first step in 

establishing a viable fisheries program capable of producing large amounts of fry and 

larvae for restocking. And finally, researchers and teachers interested in specific forms 

attempted to propagate these in the laboratory to shortcut the collecting and fertilizing 
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issues discussed in the last two sections. But rearing marine organisms from their earliest 

developmental stages to maturity in the laboratory was, and still is, one of the most 

delicate and difficult processes.  

Rearing from Embryos in the laboratory 

Of all the difficulties encountered in embryological work at marine stations, 

rearing specimens from their earliest stages into maturity was considered both critical to 

research and extremely difficult for the researcher. Marie Poland Fish’s study of 

mysterious eel eggs taken from a tow on The Arcturus proved difficult to identify because 

they could not be reared past the leptocephalus stage (larval stage). Fish believed that the 

developing embryos were those of the American eel, but her successive attempts at 

extending their life in the laboratory failed and she could only make a tentative 

taxonomic identification. In her subsequent publications, she stated that definitive 

identification of the eggs, and a full description of the developmental cycle of the 

American eel, required the ability to rear the species in the lab. At the time of publication, 

Fish had failed several times to rear additional eggs in artificial conditions.
236

 In addition 

to taxonomic difficulties, fisheries researchers found that a thorough understanding of 

embryological development did not necessarily facilitate the use of that species in the 

laboratory; they needed to know how to rear embryos into mature forms to use them 

consistently.  

 D. R. Crawford had great success in stripping fertilized ova from spiny lobsters 

and rearing them through their earliest developmental stages in the laboratory, but all his 
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larval lobsters eventually died. Crawford knew of no successful attempt at rearing mature 

spiny lobsters in the laboratory, and stated baldly that “it is a very easy to place a spawn 

bearing female in any sort of floating contrivance and allow the eggs to hatch for they 

will hatch readily under such conditions, but there is no gain or improvement over natural 

conditions unless many of the young can be reared beyond the larval stages.”
237

 W.K. 

Brooks also lamented the inability to rear and maintain Lucifer in the laboratory. The 

difficulty in procuring usable reproductive material for study led Brooks to state that 

“until the animals can be made to thrive and multiply in confinement, it must always 

remain an extremely difficult matter to procure the eggs in abundance.”
238

 Without the 

ability to rear and maintain specimens in the lab, researchers were hard pressed to work 

out physiological details and to obtain enough normally developing organisms for 

extensive study.  

 Calibrating the artificial environment to the developing organism’s needs proved 

extremely difficult for marine specimens. Many species inhabited vastly diverse 

environments during their multiple life stages. Pelagic forms often float near the surface 

of the ocean during embryological development and retreat into deeper waters when 

mature. Other organisms, such as the American eel studied by Marie Poland Fish, drift 

thousands of miles in their lives, maturing in wildly different environments and returning 

to warm water estuaries to spawn. Multiple environmental conditions proved difficult to 

recreate in the laboratory, especially at the exact time in the lifecycle needed to maintain 

normal development. Researchers failed to maintain many of these more difficult 

organisms, including eels and Brooks’ Lucifer, but those specimens with more consistent 
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environmental needs might be reared if other considerations, such as water temperature, 

lighting concerns, and feeding schedules, could be overcome.  

 The largest hurdle when rearing embryos in the laboratory involved their feeding. 

A fertilized embryo did not require food immediately; it could survive on its yolk sac for 

much of its developmental period. But researchers were at a loss of when and how to feed 

emerging larvae after the yolk sac had been consumed. Larvae were often too small to 

consume artificial food utilized in the fisheries industry such as liver.
239

 Even small 

copepods proved too large for many larval forms. In addition to figuring out what to feed 

organisms, researchers also ran into the issue of when to feed their specimens: feed a 

larva too early or late in their development and they died or developed abnormally. The 

first step was to find a reliable food source and then to figure out when to dispense it.   

Researchers sought a food source that was cheap, accessible, and easily 

dispensed. In 1902, Caswell Grave published a short article in Science detailing the 

method he developed for feeding larval forms of echinoderms in the laboratory. The 

method, perfected over two years of research at the Beaufort laboratory at North 

Carolina, was fairly simple. After fertilization and waiting for the larvae to swarm to the 

surface of the water, the researcher placed the larvae in a jar of fresh seawater.  

 

At the same time there are also added a dozen or more pipettefls of the surface 

sand from an aquarium containing a culture of diatoms. (Prepared by putting a 

liter or more of sand, dredged from the ocean bottom, in an aquarium of sea water 

and allowing to stand several days.) The jar thus stocked is now covered and set 

before a window, where it is well, but indirectly, lighted.
240
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The addition of the diatoms to the jar performed multiple functions: they kept the water 

pure through natural filtering, provided food for the larvae, and through the balance of the 

aquarium kept the oxygen level consistent so that fewer water changes were needed and 

thus fewer interventions were required by the researcher to maintain a livable 

environment.
241

  

 Grave’s method was quickly adopted by other researchers seeking to rear larval 

forms in the laboratory environment. The method traveled quickly for several reasons: 

diatoms were readily available in multiple locations and because of their size they were 

highly mobile. Initially, the method was utilized by junior researchers working under 

Graves at Beaufort, and they traveled with diatoms cultured from sand at Beaufort. 

Eventually, it was found that diatom cultures collected at other laboratories in the 

network could also be used. In 1926, Benjamin H. Grave reared the larvae of the bivalve 

Cumingia tellinoides at the Marine Biological Laboratory on Nitschia diatoms cultured at 

the Plymouth laboratory in England. According to Benjamin Grave, the diatoms in the 

Woods Hole area were not suitable for feeding to the embryos because of a danger of a 

bacterial infection, but the Plymouth culture worked nicely. Grave also remarks on 

Caswell Grave’s culture 

The Beaufort species first used by Caswell Grave, on the other hand, grows in 

great abundance in aquarium jars and may be fed without difficulty. This diatom 

has the advantage over Nitschia in being relatively short and thick instead of long 

and slender. Both of these species should be propagated at marine laboratories for 

the use of investigators.
242

 

 

In addition to being readily available and extremely compact and mobile, the diatom 

culture worked on a multitude of marine organisms. The method worked, not only for the 
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echinoderm larvae Grave was cultivating, but also a wide variety of species both 

naturally and artificially fertilized. R.P. Cowles used the method to rear “well-developed 

larvae taken from the tow” demonstrating that the method worked for both artificially and 

naturally fertilized larvae.
243

 Lewis Cary reported utilizing the Beaufort diatoms to rear 

separate actinian species in laboratories at Beaufort, the Harvard laboratory in Bermuda, 

the Carnegie Laboratory in the Dry Tortugas.
244

 R.P. Cowles reared the marine worm 

Polygordius appendiculatus at Beaufort and in Baltimore with Grave’s original diatom 

culture as well.
245

 But the uptake of Grave’s method of diatom culture and larval feeding 

did not solve all of the issues inherent in rearing marine organisms in the laboratory; 

researchers still needed to pinpoint the proper time to start feeding and this proved to be a 

substantial hurdle.  

 Grave’s diatom method facilitated the extended development of fertilized 

specimens in the artificial environment, but it also lead to further difficulties in 

maintenance of these advanced forms, including complications with feeding. Rearing 

embryos into sexually mature adults required close observation of the developing 

organism. In 1913, E.E. Just succeeded in rearing sexually mature polychaete marine 

worms (Neiris limbata and Platynereis megalops) in the laboratory utilizing a culture of 

the Beaufort diatoms. His paper concentrates, not on his method for procuring diatoms, 

but instead on establishing precision in feeding his larval forms. At the time of 

fertilization, the embryos contained a large number of “oil drops” which were reduced 

through each successive division of the cell from embryo into larval form. “It is thus 
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possible to follow the history of the oil drops very fully in these creatures that make 

veritable living test tubes in a fat-digestion experiment.”
246

 In addition to understanding 

this process for its own sake, watching fat-digestion was important for knowing the exact 

moment that the developing organisms required feeding. When the larvae gained 

segmentation, they were watched closely; when they reached the three-segmented free 

swimming stage, diatoms could be introduced into the aquarium.   

The criterion for the initial feeding is the complete disappearance of the oil drops 

from the entoderm cells... If food is given the worms before the oil has been 

completely used, they are killed in large numbers. On the other hand, food must 

not be withheld too long after the disappearance of the oil. The first feeding 

consists of ten c.c. of a diatom culture known by previous examination under the 

microscope to be free of metazoa or larvae strained through three thicknesses of 

bolting silk of very fine mesh. As the larvae add segments more food is given.
247

 

 

The “critical period” for feeding marine larvae differs in each species required careful 

observation by the researcher in order to reduce mortality of experimental subjects.
248

 

Whereas the oil drop or yolk sac was readily visible in some species, such as the worms 

utilized by Just, it was not visible in many popular species such as echinoderms and 

required timed experiments to identify the proper time for feeding.
249

  

 By combining knowledge of collecting, fertilizing, and rearing, some species 

were successfully brought into the marine station laboratory- and some even migrated 

into terrestrial laboratories. However, the most popular species continued to be those that 

were abundantly available and required as little extra attention as possible. Sea urchin 

                                                      
246

 E.E. Just, “On Rearing Sexually Mature Platynereis megalops from Eggs” The American Naturalist 

56:646 (Sept-Oct. 1922): 472. 
247

 Ibid., 472-473. 
248

 The term “critical period” was applied to the problem of laboratory rearing by James Atz, “A working 

bibliography on rearing larval marine fishes in the laboratory,” 96. For more information on how the term 

is used in fisheries biology and the debate surrounding the existence of a “critical period” in nature, see 

R.W. Morris,“Some considerations regarding the nutrition of marine fish larvae” ICES Journal of Marine 

Science 20:3 (1955): 255-265; R. C. May, "Larval mortality in marine fishes and the critical period 

concept." The early life history of fish. Ed J.H.S. Blaxter (Berlin-Heidelberg: Springer,1974), 3-19. 
249

Just, Basic Methods, 11.  



148 

 

materials were once so abundant in the Woods Hole region that they became the de facto 

system for studying embryological development in invertebrates. They required a 

minimal amount of knowledge about the environment to collect because the species’ 

reproductive cycle meant that ripe adults were always available during the research 

season. In addition, the eggs were hardy and consistently developed normally, and 

because of the ready supply of materials, researchers did not feel compelled to try to rear 

forms through their entire lifecycle in the lab.  Researchers in the region took this 

availability for granted, and it was remarked that when the Arabicia resources declined 

due to overharvesting, little information could be offered regarding the natural habitat, 

reproductive cycle, or natural history of the species.
250

  

Because of the difficulties associated with rearing and maintaining marine 

embryological specimens in the laboratory, their use declined around mid-century. 

Experimental embryologists turned to more easily accessed subjects, although they did 

continue to work and teach with sea urchin, smooth dogfish, and mummichogs when they 

were available at the seashore. However, fisheries researchers continued working with a 

wide range of embryological materials and the advancement of laboratory techniques in 

the second half of the twentieth century has seen a surge in interest in the field for 

experimental embryologists in genetics laboratories.
251
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Conclusion 

   

 Early twentieth century embryological researchers struggled to find marine 

organisms that were plentiful, useful, and easily maintained in the laboratory. 

Researchers interested in working with marine embryos needed to understand how the 

environment influenced spawning behavior, recognize the normal development of their 

collected specimens, and establish laboratory methods including fertilization and feeding 

techniques that facilitated that development in an artificial environment. This process was 

incredibly difficult and lead to a limited number of embryological forms being regularly 

incorporated into investigations at marine stations. By far the most common species 

utilized for teaching and experimental work were echinoderms: they spawned throughout 

the summer season, had no specialized requirements in collection practices, and could be 

artificially fertilized in the laboratory. The less common and more problematic specimens 

to handle and maintain, such as Brooks’ Lucifer and Fish’s eels, provoked a host of new 

scientific questions and forced researchers to develop knowledge both inside and outside 

the laboratory while seeking answers.   

 Researchers interested in embryological work congregated at marine stations at 

the turn of the twentieth century in order to take advantage of available materials for 

surveys, fisheries and academic experimentation, and teaching. But the image of an easily 

accessed and maintained supply of embryological material is somewhat misleading. 

Embryology at marine stations linked researchers directly with their environment; they 

were forced to work within the confines of spawning hours and seasons, punctuated by 

changes in weather that could derail carefully laid research plans. If materials were 

effectively retrieved, fertilization in the laboratory required an understanding of the 
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organisms’ normal development in their natural milieu and careful observation that 

bound the researcher to the specimen for hours and sometimes days in order to observe 

and facilitate growth of the embryo. Efforts to rear and maintain embryos into sexually 

mature forms lead to the development of special feeding methods and time sensitive 

feeding schedules.  The difficulties encountered by researchers in these locations explains 

why access to an abundant amount of embryological material did not necessarily translate 

into the extended use of marine organisms in all embryological laboratories.   

 The precise choreography between field and laboratory required to collect, 

maintain, and rear these specimens in artificial environments suggests that embryological 

investigation had the ability to generate copious amounts of information about the general 

biology of the immediate marine environment. Contrary to our historical understanding 

of this field as exclusively bench- focused, we can see that embryology directly linked 

the laboratory and field environment and generated information about both of these faces 

of the marine station structure. It is important that historians understand that through the 

process of seeking to maintain organisms in captivity, researchers generated information 

that would serve as the basis for the growing field of marine biology.  
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Chapter 4 

A Bundle of Nerves: Jellyfish and Neurophysiology at Marine Stations, 

1850-1930 

 

 

 

 

 In 1850, Louis Agassiz outlined the reasons that naturalists and scientific 

investigators should pay close attention to medusae.  Jellyfish had a “highly organized 

structure” about which the few investigators who worked with the creatures had 

conflicting opinions.  According to Agassiz, “the structure deserves to fix the attention of 

the physiologists in the highest degree.”
252

 Fifteen years later, his son Alexander Agassiz 

described medusae as “prophetic animals” that were “wonderful links which unite in one 

great whole the different members of the Animal Kingdom.”
253

 Both Louis and 

Alexander regarded the advanced physiological organization of these seemingly simple 

invertebrates as a core reason for scientific investigation.
254

  

Curiosity about their place in the chain of being and, eventually, questions 

regarding their evolutionary history were not solely responsible for the use of these 

creatures in physiological experimentation at the turn of the twentieth century. Jellyfish 

were a common marine catch with a large seasonal availability and a distinctive 

reproductive process that provided researchers with consistent experimental material.  

Unlike crustaceans and fishes, many jellyfish species were available in complete 

                                                      
252

 Louis Agassiz,“Contributions to the natural history of the acalephae of North America, Part 1: on the 

naked-eyed medusae of the shores of Massachusetts, in their perfect state of development,” Memoirs of the 

American Academy of Arts and Sciences 4 (1850): 221–223. 
253

 Alexander Agassiz North American Acalephae (Cambridge, MA: Harvard University Press/Welch, 
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lifecycles in the same locations.  The organisms appeared to suffer little stress from 

continuous and extensive tissue excision and electrification. They had simplistic 

structures easily extrapolated to human organ and nerve function. Finally, they were 

silent creatures that lacked noticeable features, allowing researchers to circumvent 

arguments about vivisection that often accompanied research on live mammals during 

this period.
255

  But these conveniences to physiological experimentation were offset by 

small, but important, inconveniences. 

While medusae were abundant and accessible, they proved difficult to maintain in 

captivity.   Jellyfish survived in laboratory aquaria for highly variable periods depending 

on their species, age, and health when placed in captivity.  Robert T. Browne recorded 

that Obelia nigra lived 24 hours at most; Phialidium bicophurum (now known as Clytia 

lamouroux) survived 3 days.
256

  Jellies also proved difficult to cultivate through 

lifecycles. Although specimens deposited and fertilized eggs and even produced larvae 

and polyps in captivity, rarely did these polyps develop further. Juvenile jellies caught 

and placed in captivity rarely matured, suggesting that jellyfish could be maintained in 

stasis, but the aquarium environment was not conducive to studying development and the 

complete lifecycle in a single specimen.  

Historians and sociologists have called attention to the variables that dictate 

organismal choice in scientific practice. Histories of model organisms and systems have 

                                                      
255
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explored the coupling of tools and technologies to specific research questions.
257

 The use 

of organisms depends upon a variety of variables including availability, preparation and 

maintenance methods, research program and structure, and the investigators’ place in 

“organizational contexts.”
258

 Researchers responded to all of these variables when 

choosing organisms for physiological research. 

 Adele Clark highlights the importance of availability and ease of maintenance in 

choosing organisms for physiological experimentation. According to Clark, physiologists 

utilized “five major means of access”:  exotic specimens (materials foreign to local 

habitats, and/or rare to the experimental environment, or difficult to keep in captivity), 

mundane specimens (local/easily accessed/ easily kept in captivity), medically supplied 

(human cadavers/ovaries/ surgical waste), animals or specimens obtained from biological 

supply companies and onsite research colonies (such as primate groups).
259

  

Clark’s categories appear clear cut, but the use of jellyfish in physiology 

experiments fall into two of these categories.  They were locally available and easily 

accessed at marine stations, suggesting that they were mundane fresh specimens; but they 

                                                      
257

 Karen A. Rader. Making mice: standardizing animals for American biomedical research, 1900- 1955. 

(Princeton: Princeton University Press, 2004); Bonnie Tocher Claus, “The Wistar rat as a right choice: 

Establishing mammalian standards and the ideal of a standardized mammal,” Journal for the History of 

Biology 26: 2 (1993): 329-49. Robert Kohler Lords of the Fly: Drosophila Genetics and the Experimental 

Life (Chicago: University of Chicago Press, 2004). Vassiliki Betty Smocovitis “The “Plant Drosophila”: 

E.B. Babcock, the genus crepis, and the evolution of the genetics research program at Berkeley, 1915-

1947,” Historical Studies in the Natural Sciences 39: 3 (2009): 300-355. Michael Pettit “The Problem of 

Raccoon Intelligence in Behaviorist America,” British Journal of the History of Science 43:3 (Sept. 2010): 

391-421. Adele E. Clarke and Joan H. Fujimura (eds.) The Right Tools for the Job: At work in Twentieth-

Century Life Sciences (Princeton, N.J.: Princeton University Press, 1992). 
258

 Joan H. Fujimura “The Molecular Biological Bandwagon in Cancer Research: Where Social Worlds 

Meet,” Social Problems 35: 3 (June, 1988): 261-283. For an example of the historical arch of an 

experimental organism that went out of favor, see Gregg Mitman and Anne Fausto-Sterling “Whatever 

Happened to Planaria? C.M. Child and the Physiology of Inheritance,” In Clark and Fujimura (eds.) The 

Right Tools for the Job (1992) 172-197 and Michael Pettit “The Problem of Raccoon Intelligence.” 
259

 Adele Clark. “Research Materials and Reproductive Science in the United States, 1910-1940,” in Gerald 

Geison (ed.) Physiology in the American Context 1850-1940.  (Bethesda, MD:American Physiological 

Society, 1987), 323-50. 



154 

 

were difficult to keep alive for extended periods of time, placing them in a category of 

exotic live specimens. Following the Agassizs’ work, debates about jellyfish nerve 

structure grew and the availability of these organisms at marine stations suggested that 

research programs would quickly grow around them, but subsequent difficulties arose in 

trying to maintain specimens in artificial environments. Attempts to utilize jellyfish in 

neurophysiological experimentation lead to the creation of new technologies and the 

adoption of certain species, but the use of these organisms was limited to specific 

locations and experimental programs.  

 This chapter examines the adoption of medusae for neurophysiological 

experimentation at marine stations between 1880 and 1940. Jellyfish could be found at 

nearly every station in the world, but they proved difficult to maintain under laboratory 

conditions. The most common species, including Aurelia aurita (moon jelly) and Sarsia 

tubulosa (clapper jelly), required specialized technology and feeding schedules to thrive 

in captivity. While the earliest research on the nerve structure of jellyfish utilized these 

species, their long-term upkeep required new technologies and advances in laboratory 

methods. Instead, heartier but highly localized species, such as Gonionemus vertens 

(clinging jelly) and Cassiopea xamachana (upside down jelly), were chosen for extended 

experimentation on pulsation and regeneration. Because the most widely distributed 

species were still inconsistently maintained in laboratories and the heartiest species were 

limited to specific locations, the organism was eventually discarded in favor of the giant 

squid axon after WWII.  

 Examination of the rise and fall of the jellyfish in neurophysiological research 

highlights the struggles that physiologists encountered while working in the newly 
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accessible environments of the marine station.  Research on experimental organisms has 

focused on terrestrial species, but the use of marine species expanded along with the 

establishment of these new field locations. Researchers sought to experiment with locally 

abundant organisms, but those deemed useful remained delicate to work with or 

geographically bound. By examining the struggles to utilize these species, and the 

research programs that grew up around them, we can improve our understanding of 

organismal choice in early experimental life sciences, and also broaden our appreciation 

of where and how neurophysiologists worked during this period.
260

  

Mundane Fresh Specimens 

Medusae were plentiful near many marine stations; daily collecting provided both 

juvenile and adult forms throughout the most common research period (June-September).  

Stations listed available species in their publications of biological surveys. W.K. Brooks 

wrote three articles entitled “Notes on the Medusae of Beaufort, North Carolina.” Each 

article described the occurrence of jellyfish in the nearby waters, with special emphasis 

on the most abundant species. Similar surveys of local invertebrate populations were 

published by nearly every marine station in America.
261

  Jellyfish have a distinctive 
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reproductive lifecycle (known as metagenetic): mature medusae produce eggs and sperm, 

the fertilized egg develops into free swimming planulae, and planulae develop into 

immobile polyps.  Polyps can be solitary, or they can asexually multiply to resemble a 

coral community; the polyp form may only last days or can continue for months or years. 

Eventually they bud into new, free swimming, sexually immature ephyrae, which 

resemble the mature jellyfish within a few weeks.  

During the research season, jellyfish commonly release sperm and eggs into the 

water every day, meaning that locations that contain adult forms commonly boast other 

developmental forms in the life cycle.
262

 At Woods Hole, Charles and George Hargitt 

found that all forms of reproductive materials were consistently available. They collected 

throughout the day in various locations and found, for any given species, “embryos in all 

stages of growth.”
263

  Because of the continuous lifecycle available to collectors, they 

were not only able to collect enough material for their investigations, but were able to 

choose particular forms in the lifecycle.  For example, T.H. Morgan specified in his work 

on regeneration that he used Gonionemus between 10 and 20mm diameter with 

somewhere between 40 and 60 tentacles.
264

 The high volume and continuous lifecycle of 

the specimens made this specificity possible and marked the jellyfish as a valuable 

experimental tool.  
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Figure 29 Charles and G.T. Hargitt illustrate the various forms from a lifecycle collected in the same 

location during one season. "Studies in the Development of Scyphomedusae" Journal of Morphology 21 

(1910): Figures 38-48. 

  

Depending on the location, various species in each lifecycle stage, including free 

floating reproductive material, were available for constant collection throughout the 

investigatory season. Sarsia tubulosa and Aurelia aurita were common jellies at northern 

stations, including Woods Hole, Massachusetts and Plymouth, England.  Both species 

reliably occurred in great numbers in the littoral zone and could be collected continuously 

from early spring to late fall.  Found in large groups, accessed close to land, and reliably 

available, these organisms showed up consistently in early experimentation with jellyfish.  

But the fact that certain organisms were accessible does not fully explain why they were 

utilized for research.  

In the late nineteenth century, a debate raged between prominent naturalists from 

multiple disciplines regarding the existence and extent of the nervous system in jellyfish. 

In 1850, Louis Agassiz described nervous tissue in several species he found during 

dredging in Boston Bay, including the abundant Sarsia and Bougainvillia 
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supercilliaris.
265

 Reactions to Agassiz’s findings were rife with denial.  Many prominent 

naturalists-- including George Romanes-- questioned his findings; Agassiz himself came 

to doubt his own conclusions.
266

  Fifteen years later, Ernst Haeckel again described 

nerves in a hydromedusa, although he did not link his findings with Agassiz’s original 

description. Many, including Thomas Huxley, continued to deny these findings. 

Haeckel’s work was quickly followed by others asserting the existence of some type of 

nervous tissue in jellyfish; researchers in Germany, England, Italy, Russia and the United 

States were publishing on the existence of a nervous structure in medusa. However,  

Romanes’ 1887 work eventually settled the matter.
267

  

Georges Romanes’ 1887 book Jelly-fish, Star-fish, and Sea Urchins brought the 

debate over the existence and structure of nervous tissue in medusae to a close.
268

  In the 

years before the publication of his book, both Romanes and Thomas Eimer published 

articles on the subject.  These works utilized similar mutilation experiments to ascertain 

the extent of the nervous structure.  Although these publications were cited by other 

researchers, they did not signal an end to the debate.
269

 The nervous structure of medusae 

was so contested that Romanes stated in Jelly-fish that his earliest experiments were 

merely “to obtain evidence of the very existence of nerve-tissue.”  He suggests that if 

jellyfish had nerve and muscle tissues, they were the lowest level on the “zoological 
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scale” with nervous systems and it was important “to ascertain whether or not the first 

occurrence of this tissue was to be met with in this class.”
270

 If, in fact, medusae 

contained muscle and nervous tissue, they might be utilized to study the evolution and 

function of higher systems.    

Romanes’ experiments on nerve conduction rates had far reaching consequences 

for the use of jellyfish in physiological experiments.  He utilized Aurelia to test the nerve 

conduction in excised sections of the jellyfish umbrella. Romanes excised the manubrium 

(the ‘handle’ of the umbrella that hangs underneath the umbrella) and seven of the eight 

marginal bodies.
 271

  The eighth marginal body was the source of “rhythmical discharges 

to the muscular sheet of the bell, the result being, at each discharge, two contraction 

waves, which start at the same instant, one on each side of the ganglion, and which then 

course with equal rapidity in opposite directions, and so meet at the point of the disc 

which is opposite to the ganglion.”
272

 Romanes used the phenomenon of a single 

discharge creating contraction waves in opposite directions to test the rate of nerve 

conduction in jellyfish.   

Each subsequent experiment required successive excisions of the umbrella, 

forcing the current to travel through a maze-like muscular structure created by the 

investigator.  In each subsequent mutilation, Romanes found that stimulation of the 

nervous tissue eventually traveled throughout the entire structure, as long as the 
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remaining section was linked to a marginal body.
 273

   This lead Romanes to state that “it 

proves that the distinguishing function of nerve, where it first appears upon the scene of 

life, admits of being performed vicariously to almost any extent by all parts of the same 

tissue-mass.”
274

  He likened the nerve network of jellyfish to a sheet of muslin, in which 

nerve structures meet but never coalesce, allowing stimulus to pass throughout the whole 

organism without following a prescribed path; the system resembled a piece of loosely 

woven cloth more than a network of connecting tunnels or streets by which a stimulus 

must pass.
275

  

Romanes’ fundamental experiments effectively settled the question of whether 

jellyfishes possessed nerve and muscle tissue. His work stimulated investigations into the 

nature of this structure and its importance to the general movement and function of the 

organism. In addition, it catapulted the jellyfish into ongoing laboratory analysis of 

neurophysiology, including questions of nerve rate conduction, the link between the 

nervous system and musculature, and the effect of a wide range of variables on the 

function of these systems.
 276
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Figure 30 Three examples of umbrella excisions performed on jellyfish during mutilation experiments by 

George Romanes, Jellyfish, Starfish, and Sea Urchins, 67-70. 

Jellyfish Use in Neurophysiological Experimentation 
 

 The acceptance of fundamental similarities in living organisms permeated 

physiological experimentation post 1900. Jellyfishes were commonly utilized in 

experiments on nerve function of higher organisms.
 277

  George Howard Parker began his 

1919 book The Elementary Nervous System by stating that  

the dependence of human affairs upon the nervous system of man is so absolute 

that it was inevitable, as soon as this relation was understood, that the activities of 

the simpler animals should be interpreted as though these creatures were 

miniature human beings.
278

 

 

In the work, Parker offered three organisms as examples of the elementary nervous 

structure: sponges, sea anemones and jellyfishes. He devoted 25 pages to sponges and 

another 25 to sea anemones, but 75 pages to jellyfishes.  His review of the literature 

reinforced the Romanes/Eimer conception of the nerve-net and he reprinted many of 

Romanes’ experiments.   In addition, he highlighted the large amount of work done on 

nerve conduction rates in medusae.  

 Alfred Goldsborough Mayer performed the majority of experiments testing nerve 

conduction in jellyfishes at the Carnegie Institution of Washington’s Dry Tortugas 
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Laboratory.  Initially known for his taxonomical work on medusae during his tenure as 

Alexander Agassiz’s assistant, he became the leading experimentalist working with the 

organisms as the first director of the Tortugas Laboratory in 1903.  His interest in the 

causation of rhythmical pulsation generated a robust research program in that location. 

Mayer attracted other experimentalists interested in the question of nerve conductivity 

and muscle response, including E. Newton Harvey. Both Mayer and Harvey replicated 

and expanded upon Romanes’ work, changing water chemistry, depth of mutilations, and 

adjusting size and maturity of organisms to analyze the interactions between the nervous 

structure and muscle movement. A commonly cited outcome of these experiments comes 

from Harvey’s research into new cuts:  If the umbrella is mutilated so that there is no end 

point, nerve conduction of a single current will be sustained until the nervous/muscle 

matrix becomes too fatigued and the organism dies. Harvey’s specimens survived for 11 

continuous days of constant nerve conduction before expiring.
279

 These experiments 

created a baseline understanding of nerve conduction in jellyfish which other researchers 

quickly expanded upon.   

Both Jacques Loeb and Alfred Goldsborough Mayer performed extensive 

experiments to ascertain the role of ion diffusion on the interactions between nerve and 

muscle.  In 1900, Loeb published two papers on the influence of water ionization on 

rhythmical pulsations in jellyfish.  The combination of experiments performed suggested 

to Loeb that while a pure NaCl solution was poisonous to marine creatures and killed 

them almost instantly, the addition of only a few more minerals facilitated normal 

pulsation, suggesting that “irritability depends upon the various ions, especially the 
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mineral ions (Na, Ca, K, and Mg) existing in definite proportions in the tissues.” 
280

 

Mayer utilized a kymograph
281

 to record contractions that would indicate the “weak, 

exhausted, or pathological character of conducting tissue.”
282

 He tested nerve conduction 

in untreated and distilled water and found that pulsation declined as conductivity 

declined, suggesting that nerve function depended on the electrical conductivity of the 

surrounding medium.  Both Loeb and Mayer varied the mineral makeup of salt water in 

order to ascertain the effect on jellyfish pulsations.  Much of Mayer’s work sought to 

produce abnormal pulsations in the jellyfish to ascertain the exact point when mineral 

imbalance caused musculature failure.
283

  

Researchers acknowledged regeneration in lower invertebrates, but jellyfish 

contained the nerve/muscle net of somewhat higher organisms.  The hypothesis that 

jellyfish could regenerate not just muscle tissue but the overlaid nerve network, spurred 

investigation. T.H. Morgan at the Marine Biological Laboratory (MBL) and Charles 

Stockard and Lewis Cary at Tortugas each published papers on the phenomenon. The 

majority of work on regeneration was done by G.T. Hargitt, who studied regeneration at 

Naples and the MBL.  A major question in this research was the importance of the extent 

of injury to regeneration. Early theorists posited a positive correlation between size of 

injury and rate of regeneration; the larger the industry the faster the organism started 
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regenerating. Extensive experiments with jellyfish able to withstand multiple excisions 

over a long period of time found mixed results on this question.
284

   

In addition to utilizing jellyfish to research basic neurophysiology, researchers 

extrapolated these results to more complex systems in vertebrates. Jacques Loeb 

considered jellyfish suitable for studying the function of the human heart because of the 

simple structure and the occurrence of rhythmical pulsations.  According to Loeb, 

the swimming bell of the Medusa may be divided into two regions, a marginal 

region containing the double nerve ring and its ganglia, and the central region 

which has no ganglia, but is said to possess scattered ganglion cells. The case is 

similar to that of the heart, which has ganglia in the auricles and sinus vinosus, 

whose ventricle is however free from ganglia but contains scattered ganglion 

cells.
285

 

 

Medical physiologists extrapolated both Loeb and Mayer’s findings. Walter E. Garrey 

cited both in his work on fibrillary contractions in the human heart. S.J. Meltzer and J. 

Auer extrapolated jellyfish pulsation to the peristaltic movements of human intestines.
286

   

 In addition to the extrapolation to human organs, Alfred Goldsborough Mayer 

utilized jellyfish as a proxy for the human nervous system. During WWI, Mayer sought 

to contribute to the American war effort by shifting his experimental focus towards 

determining the root cause of shellshock. To ascertain if shellshock was primarily a 

condition related to the physical impairment of the nervous structure or a psychological 
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condition specific to humans, he subjected jellyfish to repeated dynamite explosions and 

recorded those impacts on their behavior and ability to thrive. Because repeated 

exposures to blasts caused little long-term change in behavior or growth in his specimens 

(provided the jellyfish survived the initial explosion), Mayer concluded that shellshock 

was a psychological condition, but that it was “predominantly a psychic phenomenon, 

and being a hysteria it can be cured by hypnotic suggestion.”
287

 

Because jellyfish were seen as the simplest form of muscle and nervous tissues, 

experiments on nerve regeneration and pulsation could be cited in articles on regeneration 

in higher vertebrates and even organ function in humans. The jellyfish exemplified a free 

floating human heart, intestines, and an advanced nervous system.  But these mundane 

fresh specimens proved to be easier to catch than to work with; to perform the 

experiments highlighted above, investigators had to learn how to keep jellyfish alive in 

captivity. The rest of this chapter will examine this process.  

Preservation Difficulties 
 

The inability to keep specimens fresh impeded the earliest attempts to examine 

nerve structures but trying to preserve them for future studying was equally problematic.  

Salvatore Lo Bianco, the head collector at the Naples Zoological Station and one of the 

earliest experts on preparing and preserving marine specimens for shipping, dedicated a 

section of The Methods Employed at the Naples Zoological Station for the Preservation 

of Marine Animals to the attention required to preserve medusae.   
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The desired outcome when preserving a specimen was the retention of as many 

original characteristics of the organism as possible. Jellyfish contracted or partially 

dissolved during preservation. Bianco recommended narcotizing some specimens by 

either infusing their water with alcohol or tobacco. For other species, he suggested slowly 

boiling them and immediately transferring the specimens to cooled alcohol solutions. 

Regardless of the species, the method for preservation was involved, often extending over 

a period of several days. Pelagic (deep sea) specimens proved especially difficult to 

preserve; Bianco suggested that preservation of intact organisms (a rare occurrence after 

deep sea dredging) should begin immediately onboard ship.
288

  

Closely following these methods of preservation still did not ensure natural 

looking specimens. No preservation technique allowed specimens to retain their natural 

coloring. Drawings and engravings made of medusae were almost always done from a 

living or extremely fresh specimen. Agassiz states in his 1850 work that while the 

copious engravings in his work may seem “rather superfluous,” illustrations from living 

medusae are required because  

these animals are so perishable, that it will hardly ever be possible to preserve 

extensive series of them in our museums, or to procure of those capable of 

preservation a sufficient number to represent them in their different attitudes and 

under various circumstances, so as to fully illustrate all the details of their 

structure.
289

   

 

In addition, even “successful” preservation could not retain all characteristics of the 

organism.  Henry Bryant Bigelow stated that the preservation of jellyfish on board the 

USBF Albatross was “satisfactory both for gross anatomy and histology, its only 
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drawback being that otoliths are frequently dissolved.”
290

  By 1887, physiologists 

identified otoliths, structures located near the marginal bodies, as integral structures to the 

function of the nervous system. The inability to examine these delicate structures in a 

preserved specimen greatly reduced the utility of these specimens to physiologists 

interested in exploring questions surrounding the nervous structure.
291

  Instead, 

investigators searched for ways to fashion laboratory tools and techniques to extend the 

delicate lifecycle of the organisms, and to find organisms hardy enough to thrive in 

laboratory conditions.   

Exotic Live Specimens 
 

One option for extending the experimental lifespan of medusae was to build a 

viable aquarium environment around the organism’s needs.  Researchers noted the 

difficulties in maintaining jellyfish in aquaria, including questions about water quality, 

motion, and feeding habits.  Early investigators interested in jellyfish succeeded in 

keeping individual specimens alive in captivity for varying periods, but these small 

successes did not translate into a systematic understanding of the process required to 

maintain them for extended periods.  W.K. Brooks, interested in the development and 

lifecycle of the medusae, was able to rear several species of jellyfish in the aquaria at the 

Johns Hopkins Laboratory in Beaufort, North Carolina, but he failed to record his method 

for rearing and maintaining them, merely stating that he was able to rear some larvae and 
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medusae in the home aquarium, although he struggled with several species.
292

 In addition 

to Brooks, other investigators succeeded in rearing or maintaining some forms in 

captivity, but consistent methods were still required if physiologists wanted to perform 

extended experimentation. Figuring out the variables needed to create an aquarium that 

could sustain jellyfish life was a key problem for experimentalists.   

Browne’s Plunger Jar 
 

 Researchers seeking to maintain jellyfish alive for extended periods of time in 

captivity recorded similar phenomena. Adult forms collected and placed in the laboratory 

aquaria regained vigorous pulsations within a few minutes, but over the course of hours, 

days or weeks, the specimens slowly lost vitality, grew visibly ill or malformed, and 

eventually settled on the bottom of the tank to die.  In 1902, Charles Hargitt called 

attention to a common phenomenon when working with captive jellyfish.  According to 

Hargitt, larger specimens, used in regeneration experiments, failed to regenerate as 

quickly and were “more likely to deteriorate or utterly collapse.”  Hargitt initially 

believed that these specimens had been weakened by the experimental mutilations 

performed, but after inspecting those on display in the attached public aquarium at the 

Naples Zoological Station, he suggested that the condition was linked to captivity and not 

experimentation.  He described the condition as an 

anomalous pathological phenomenon observed in large specimens both in the 

exhibition aquaria and in the small aquaria during the course of experimentation, 

namely, the appearance of whitish blotches, or patches of disintegrating tissues at 

various places on the exumbrella of the animal which sooner or later affected its 

health and general behavior.
293
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Hargitt was not the only investigator to report this problem.  Jakob von Uexküll, the 

German biologist who theorized the umwelt, encountered these “whitish blotches” while 

working with jellyfish at Naples in 1900.  Uexküll believed that the blotches produced a 

type of nervous stimulation, but Hargitt doubted this, suggesting that they were merely a 

symptom of pathology.
294

  

In addition to Uexküll and Hargitt, Edward T. Browne, a researcher at the Marine 

Biological Association laboratory in Plymouth, England stated that he had limited 

success in maintaining jellyfish in captivity.  According to Browne “when first placed 

into the aquarium it swims actively about” but quickly tired and settled onto the bottom 

of the tank; after several more attempts to swim, the jellyfish settled for the final time at 

the bottom of the tank and died.  Hargitt and Uexküll merely mentioned their troubles as 

an experimental complication; Browne sought a technological fix.  

In 1899, Edward T. Browne introduced his “plunger jar.”  After the death of many 

jellyfish specimens in the laboratory, Browne concluded that the difference between the 

captive and natural environment was the tidal movement in the ocean that bore the 

jellyfish aloft on waves throughout their lifecycle.  

When I have been watching medusae at the surface of the sea, I have noticed that 

they simply float along with the tide without often pulsating the umbrella. In my 

bell-jars the water was perfectly motionless, so that a medusa had to pulsate its 

umbrella in order to keep afloat, and as soon as the pulsations stopped it began to 

sink.
295

    

 

Browne worked with objects found in the laboratory space, and consulted Edgar Johnson 

Allen, the director of the laboratory, to create an automatic system that mimicked marine 
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motion.  His “plunger jar” was a fairly simple apparatus consisting of a large ten-gallon 

bell jar, affixed with a glass plate raised and lowered by a simplistic pulley system to 

create a constant wave movement within the jar.  Through the motion of filling and 

emptying, the bucket raised and lowered a wooden beam, creating a constant motion 

within the jar. Edgar Johnson Allen said in response to the successful creation of this 

automatic “plunger-jar” that he “was not a little pleased to have produced an efficient 

piece of apparatus from just ‘a treacle tin and a stick.’”
296

  

 

Figure 31 E.T. Browne's original plunger jar. You can see the repurposed treacle tin in this picture. E.T. 

Browne “On Keeping Medusae Alive,”176. 

 

Browne’s system proved extremely effective. Browne started the first plunger jar 

in the Plymouth laboratory on Sept. 4
th

, 1899.  He reported that Obelia lived “very well” 

for about 10 days and then began to die off. This was a vast improvement; the species 

previously survived less than 24 hours in captivity. The plunger jar increased Philalidium 

survival time from 3 days to 6 weeks. In addition to boosting the time a specimen could 

survive in captivity, the plunger system allowed some species to thrive.  Browne reported 

that many grew new tentacles. The jar’s water was not changed, but water was added 

when evaporation occurred and fresh copepods were added as a food source.  He states 
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that “these experiments I think show that it is possible to keep medusae alive in 

confinement for several weeks without any change of water, and that they increase in size 

and develop more tentacles.”
297

   

By combining observation and tinkering, Browne successfully simulated tidal 

movement into the laboratory. Some species lived longer than others, prompting Browne 

to wonder if a “slow revolving current” would be more suitable. He suggested adding a 

screw-propeller in the jar to achieve this effect. Continued observation of the needs of 

other organisms resulted in subsequent changes to the system. Researchers building upon 

his system suggested adding a filter so that that larva could be fed continuously but the 

water purity maintained.  Eventually, experimentalists found that jellyfish required 

constantly circulating water, not only because of muscle exhaustion, but also because 

they produce copious amounts of mucous when they come into contact with other 

organisms, especially when they feed. The ‘Plunger Jar’ has gone through several updates 

to make it more efficient for the study of jellyfish and other marine invertebrates onboard 

research vessels.
 298

 The plunger jar advanced the ability to maintain and rear medusa in 

the laboratory, but it was not a perfect device and others tried to pinpoint other variables 

that limited the captive lifespan of jellies. 
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Jellyfish:  The Slimers of the Sea 
 

Many jellyfish species could survive without constantly moving water, but 

required a very specific diet; determining this diet was particularly difficult for 

investigators.  Edward Browne’s success with the plunger jar was achieved without 

concern for the specialized diet of the specimens.  Two years after the publication of 

Browne’s paper, Maude Delap, a naturalist and associate of Browne living on Valencia 

Island in County Kerry, Ireland, published the seminal work “Notes on the Rearing of 

Chrysaora Isosceles in an Aquarium” in The Irish Naturalist. Delap’s paper, still cited as 

a source for information on keeping medusa in the lab, described her process of rearing a 

complete jellyfish lifecycle in her home aquarium.   

In June 1899, Delap found a Chrysaora isosceles (compass jellyfish) on the shore 

of Valencia Harbor.  She took it home and placed it in an aquarium for future study 

before preservation; when she looked in the aquarium the next day, she saw small 

swimming forms, which she believed to be the fertilized planulae.   After two days, these 

forms had attached themselves to the side of the jar and tentacles began to develop, 

signaling the beginning of the polyp stage.  Delap moved several planulae to jars and kept 

the polyps throughout the winter months.  By April 1900, ephyrae budded from the 

polyps; by May they attained a mature form and developed their distinctive brown 

markings radiating from the center of their umbrellas (the reason for their common 

name). In June, the mature forms required larger vessels. By July, the jellyfish began to 

struggle and by August, they were so diminished in vigor Delap narcotized the specimens 
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for immediate preservation.  She believed their deterioration was due to starvation, and 

the majority of her paper focused on the food provided throughout the lifecycle.
299

  

Delap experimented with multiple food sources for each form. Her article 

assiduously recorded the food sources, including those sources that were rejected 

wholesale. During the polyp stage, she initially kept them supplied with copepods, “but 

the Scyphistomae [polyps], I found, preferred to feed upon small medusa, such as Sarsia, 

and little ctenophores-Pleurobrachia.”
300

 Keeping the growing ephyrae and full grown 

jellyfish supplied with food proved difficult in the later summer because of stormy 

weather and warm water conditions.  As the supply of young medusae, especially Sarsia, 

declined, so did the health of the captive jellyfish.  Their death from starvation prompted 

Delap to state definitively that “the chief trouble connected with rearing this medusae 

was to obtain a sufficient supply of food; its appetite was enormous.”
301

 During the 

mature stage of the jelly, Delap reported that specimens were consuming two dozen 

medusae and ctenophores a day. The paper included a helpful list of what food was 

preferred, tolerated, or never consumed.  

It had a great liking for small Anthomedusae and Leptomedusae, such as 

Corymorpha, Margelis, Sarsia, Amphinema, Phialidium, Laodice, Euchilota, &c.; 

also for the siphonophore Agalmopsis, and the ctenophores Pleurobrachia and 

Bolina. It had no objection to Tonzoperis and Sagitta. There were, however, two 

animals it would not touch, even after a few days' starvation-the anthomedusa 

Tiara pileaa, and the ctenophore Beroe ovata.
302

  

 

Delap tried feeding the mature medusae fishes, but they only grasped the fish with their 

tentacles without consuming them.  Her success did not stop at compass jellies.  In the 
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succeeding six years she published accounts of rearing Aurelia, Pelagia perla (mauve 

stinger jelly) and Cyanea lamarcki (bluefire jelly), providing detailed descriptions of food 

sources, life cycles, and water temperatures in each subsequent publication.
303

  

Delap influenced other investigators interested in extending the life of captive 

jellyfish. Mary Lebour, a colleague of Browne at Plymouth, combined Delap’s findings 

on food sources with Browne’s plunger jar to ascertain if certain species actually did 

consume fishes.  Lebour found that many jellyfish do eat fish, especially Aurelia, 

Phialidium, and Obelia. She found medusae in general to be “miscellaneous feeders” but 

that there is “generally some food more frequently taken than the rest,” probably because 

of the abundance of the food sources in the natural environment.
304

  Like Delap, Lebour 

reported that medusae are voracious feeders.  Because of the volume of food consumed, 

only one jelly was allowed to remain alive in each plunger jar.  Lebour notes that one 

jellyfish consumed sixteen small fishes in the course of a half hour. Her work effectively 

combined the use of Browne’s plunger jar to maintain captive jellies with Delap’s focus 

on the importance of understanding the organism’s diet in captive rearing.  Lebour’s 

specimens survived longer and were much healthier throughout their life cycle than 

Browne’s initial specimens, suggesting that a combination of water movement and proper 

feeding could effectively rear and maintain certain species of jellyfish within the 

laboratory for extended periods.  
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Although investigators worked out the process of rearing and maintaining 

medusae in the laboratory, few if any sought to maintain specimens away from the shore. 

The need for specialized vessels and copious live food sources meant that investigators 

continued to utilize live specimens caught throughout the day at marine stations. Only 

one species, Aurelia aurita, was included in Frank E. Lutz et al’s 1937 laboratory manual 

Culture Methods for Invertebrate Animals.  The manual’s main source of information on 

cultivation comes from Maude Delap’s work between 1901 and 1907.
305

  But rearing 

organisms in the laboratory was not the only way to ensure long term survival and 

development in captivity. Other investigators sought jellyfish that seemed particularly 

suited to laboratory environments without onerous requirements of technological fixes 

and specialized food sources.  

Hardy localized species 
 

 An alternative to developing new technologies or following a rigorous feeding 

schedule to sustain delicate medusae in the laboratory was to use species that proved 

more amenable to captivity.  This section will highlight the two most commonly utilized 

medusae in experimental physiology investigations between 1895 and 1930:  

Gonionemus murbachii (clinger jelly) and Cassiopea xamachana (upside down jelly).  

Found in abundance in Woods Hole, MA and the Dry Tortugas (respectively), these 

species lived in an elastic natural environment that made them capable to survive in 

captivity without specialized technology or feeding schedules. Although they were 
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hearty, they were not widely available, and demonstrate the link between location, 

organization, and scientific program in organismal choice. 

Gonionemus Murbachii (hydrozoa) 

Gonionemus murbachii was first described by Louis Murbach at Woods Hole, 

Massachusetts during the summer of 1894.  During that year, a number of small medusae 

were noticed in the inland structure known as the Eel Pond but it was not until the 

summer of 1895 that the mature jellyfish were so abundant that Louis Murbach stated 

that “over 200 were taken in one evening with a tow net.”
306

 Murbach initially described 

the specimen in 1895, identifying it as Gonionemus vertens, a species described by 

Alexander Agassiz in 1862 in the Gulf of Georgia in Washington State. In 1901, Alfred 

Goldsborough Mayer, working with Agassiz along the Atlantic Coast, identified the 

Woods Hole specimen as a separate species to vertens, renaming it Gonionemus 

murbachii. Regardless of name, the species quickly became popular with 

neurophysiologists. The first year the organism appeared in abundance near the MBL and 

the United States Fish Commission’s laboratory, Murbach remarked that “they were so 

much sought after as specimens that it is now difficult to find enough for completing the 

work.”
307

  The popularity of this medusa as an experimental organism was enhanced by 

several variables:  availability, limited dietary requirements, and plasticity of captive 

habitat.  
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Figure 32 Perkins gave one of the robust descriptions of the Woods Hole Gonionemus, reviewing 

development from fertilization to adulthood. Henry Farnham Perkins "The Developement of Gonionema 

Murbachii" Proceedings of the Academy of Natural Sciences of Philadelphia 54:3 (Sept.- Dec. 1902): Plate 

XXXI. 

 

 G. murbachii falls into Clarke’s mundane specimens category. The species was 

locally abundant in the Eel Pond at Woods Hole, MA throughout the summer months.  

Robert Yerkes described the simplicity of collecting viable live specimens:   

Any disturbance in the water, such as stirring the grass with an oar or dip net, 

causes the animals to free themselves from the object to which they are attached,- 

either by the viscid bodies of the tentacles or by the lips of the manubrium, - and 

to swim to the surface. A convenient mode of capturing them is to disturb the 

water and then dip them up as they appear at the surface.
308

 

   

Yerkes also noted that the jelly did not only migrate to the water’s surface nocturnally; 

while many species required collecting at night, g. murbachii was equally available 

during the daylight hours. Though the adult specimen was abundantly available, planula 

and polyp forms were seldom collected from the Eel Pond, leading some investigators to 

speculate if perhaps the these developmental stages took place in deeper waters out to 
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sea. Others believed that these stages were either too quickly cycled through, or the 

intermediate forms too minute, to be collected by dip netting.
309

  

In addition to ease of collection, the species was relatively simple to maintain in 

captivity. Yerkes highlights the general diet of G. murbachii. The jellies consumed 

“small fishes, crustaceans, larvae of various kinds, and such dead organic material as 

comes within its reach.”
310

  According to Yerkes, the Eel Pond received a large amount 

of “refuse” during the spring and summer, possibly explaining the large abundance of 

jellyfish in that location. The ability to survive on a wide range of food sources, and the 

initial habitat of a somewhat turbid water source with minimal water movement, allowed 

Genionemus to adapt to its captive environment easily and made the species useful for 

neurophysiological experimentation.   

Charles Hargitt initially rejected jellyfish for use in his regeneration experiments. 

“Owing to their peculiar delicacy and highly specialized character,” he dismissed their 

practicability as “doubtful.” But “the presence, however, of consider able numbers of 

Gonionemus vertens…the capacity of which to endure confinement in small aquaria was 

rather marked, revived the previous conception, and after reflection it was determined 

upon with some hesitation.”
311

  In his study, Hargitt kept his medusae in a small table 

aquarium and kept twenty individuals alive during successive regeneration experiments. 

Hargitt does not state if he fed his specimens; he merely notes water temperature as a 

cause of high mortality of his specimens.
312
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Researchers published brief sketches of their experimental techniques for 

maintaining these jellies. Yerkes stated that he kept his experimental organisms in 

“shallow dishes” and “jars.”
313

  Murbach retained his in an aquarium, although he did not 

specify if it was a small, table top aquarium with running water or a large jar (he used the 

terms aquarium and jar interchangeably in his publications).
314

 T.H. Morgan, who was 

interested in testing Hargitt’s original assertions about the heartiness of Gonionemus, and 

especially their regenerative abilities, stated that he was able to keep his specimens alive, 

after the vivisection of the original medusae into four separate parts (each regenerated an 

incomplete but functioning medusae), for over two weeks in “excellent condition.”
315

 

Experimentalists listed jars, dishes, and tabletop aquaria as vessels in which the jellies 

thrived.  The small size of Gonionemus allowed researchers to maintain large amounts of 

organisms in small spaces and the natural habitat of the jelly--stagnant, turbid water with 

little tidal movement-- helped it to adapt readily to a variety of glassware in the 

laboratory.  

Ease of collecting, feeding, and caring for G. murbachii made it a popular 

experimental organism. By 1909, Murbach stopped adding murbachii to his methods 

section in publications, stating that “there would seem to be no need of stating that the 

Woods Hole species is the one under consideration.”
316

 Physiologists working at Woods 

Hole utilized Gonionemus for physiological experiments, even though there were at least 
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two other species commonly available. Both Aurelia and Bougainvillea could be 

maintained in a plunger jar after 1899 but they were rarely utilized in neurophysiological 

experimentation after the discovery of the clapper jelly in the area.
317

  Because it required 

little upkeep in the laboratory and was easy to collect, Gonionemus became the organism 

of choice for neurophysiologists at Woods Hole.  

Cassiopea Xamachana (scyphozoan) 

 In 1892, W.K. Brooks reported the summer work of the Marine Zoological 

Laboratory of Johns Hopkins at Port Henderson, Jamaica to the president of the 

university.  Brooks identified a new jellyfish species found near the station, which he 

named Cassiopea xamachana (referred to by locals as the Guinea Corn Blubber). The 

species, now known as the “upside down jelly,” was found sitting umbrella-side down in 

the semi-stagnant, brackish waters of mangrove swamps and lagoons. Brooks found that 

it not only survived, but also reproduced in the temporary aquaria of the new station. 

Unfortunately, any work planned on the upside down jelly of Jamaica eventually stalled 

after Johns Hopkins relocated their laboratory to another portion of the island due to a 

yellow fever epidemic. However, Alfred Goldsborough Mayer reported the presence of 

the same species in the large “moat” bordering the Carnegie Institution of Washington’s 

Tortugas Laboratory near the Florida Keys. Physiologists at the laboratory quickly took 

advantage of this hardy specimen for live experimentation.
318

  Similar to Gonionemus, 

Cassiopea xamachana was easy to collect, had a simple diet, and could survive in a wide 

range of laboratory environments.   

                                                      
317

 For an overview of the jellyfish available during the season at Woods Hole, see Box F Folder 2 Merkel 

Jacob Collection. Marine Biological Laboratory Archives: Woods Hole, MA.  
318

 W.K. Brooks “Johns Hopkins Marine Laboratory” Science 19: 465 (Jan. 1892): 10-11 



181 

 

 
Figure 33 The "moat" from shore. The photographed is captioned by Mayer as "where Cassiopea lives." 

Mayer,"The Cause of Pulsation," 486. 

 

 Collecting Cassiopea was an easy process. The species thrived in the shallow 

waters surrounding the main island of the Dry Tortugas. Unlike Gonionemus, individual 

upside down jellies were visible from the surface of the water.  Cary states that “the 

medusae can be procured in great numbers from the moat at Fort Jefferson at Dry 

Tortugas, Florida, so that specimens of any desired size can be selected for 

experimentation.”
319

 Collectors need only choose their desired specimens, and then 

utilize a dip net to gently pick them out of the water for transport to the laboratory. 

Upside down jellies were so plentifully available and easily captured that Alfred 

Goldborough Mayer eventually skipped the process of transferring the organisms to the 

laboratory.  During his experiments on shellshock, Mayer built lath cages in the moat to 

hold developing jellies. He recorded growth in these specimens, and eventually utilized 

them for his research on dynamite and nerve structure. Cassiopea were reliably available 

in all sizes in the moat, meaning that investigators had direct access to the organism and 

could collect with specificity.
320
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Figure 34 A photograh of Cassiopea xamachana umbrella side up (edges) and manubrium side up (center). 

These jellyfish are photographed in a tank with a sandy bottom and appear similar to the way they might 

look to the collector from the boat. Mayer “The Cause of Pulsation,” The Popular Science Monthly (Dec. 

1908): 482. 

 

  

 In addition to ease in collecting, Cassiopea’s diet was well suited to captivity.  

When researchers took them into the laboratory, they discovered that the jellies could 

survive for long periods without any apparent food source.  After working with the 

species for over 10 years, Mayer wrote a to-do list of experiments in his daily research 

notebook: “Starve Cassiopea in artificial seawater made from cistern water at Tortugas 

and compare the rate with filtered natural seawater.  Also, try to feed Cassiopea and see 

what it actually does eat!”
321

  It appears that most researchers took for granted that 

Cassiopea thrived without an apparent food source; it was not until much later that 

researchers found that the species hosts zooxanthelle in its subumbrella structure. The 

jelly exposes its subumbrella to the sunlight, allowing the zooxanthelle to 

photosynthesize, providing a constant food source for the jellyfish.  Cary, Mayer, 

Stockard, and Hargitt mention weight loss in their experimental organisms but did not 
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have to deal with a loss of vitality or the byproducts of feeding such as excess of mucous 

or detritus in the laboratory aquarium.
322

 

 Similar to Gonionemus, Cassiopea thrived in a wide range of captive 

environments. The species’ original habitat of stagnant water meant that constantly 

moving water was not required for maintenance.   Cary and Stockard both found that 

Cassiopea did not require daily changes of water. Cary states that a 

daily change of water was more than offset by the harmful effects of the agitation 

attendant upon the changing of the disks from one jar to another. Since my 

experiments necessitated the daily measuring of the regenerated tissue which 

could be done only by removing the disks from the jars and placing them upon a 

background of colored glass, the water was changed daily.
323

 

  

In addition to not needing water changes, Mayer felt that Cassiopea was the best 

organism on which to study temperature and mineral interactions with nerve conduction.  

Unlike Aurelia, a jelly found throughout temperate and tropical oceans, Cassiopea had a 

smaller window of optimal temperature survivability.  It only lived in water within a 15 

degree range of the highest and lowest temperature the organism could survive.  Mayer 

reported it was actually more sensitive to temperature, ceasing its motions and becoming 

completely paralyzed at around 9 degrees in either direction.  The combination of an 

easily maintained organism with the ability to narrow the parameters at which nerve 

conduction functioned helped Mayer narrow the variables regarding temperature in his 

experiments.
324

  With no need to feed the organisms, no reason to change the water 

consistently, and the ability to narrow variables about temperature requirements, 
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Cassiopea became a useful species for physiologists who braved the long journey to the 

Dry Tortugas.  

In addition to their ability to survive in captivity, both Gonionemus and Cassiopea 

shared another important trait:  They quickly recovered and regenerated vigorously 

throughout multiple mutilation experiments. Both clinger and upside down jellies could 

survive and thrive after multiple mutilation experiments.  Loeb and Morgan both 

performed experiments on Gonionemus cut into four parts, Morgan keeping those 

mutilated sections for up to three weeks in captivity.
325

  Hargitt states that he knows of no 

other organism 

which affords so good a type for this sort of observation and experimentation. It 

was not unusual to have specimens under direct observation in the ordinary 

aquaria of the laboratory rooms for from four to six weeks and without apparent 

deterioration, even in some cases under the severe tax of extensive mutilation 

made necessary by the experiments to which they were subjected.
326

 

 

Cassiopea was equally capable of surviving extensive excisions. Mayer found that 

complete removal of the manubrium, sub umbrella, and part of the umbrella left a 

completely functioning “disk” of muscle and nerve tissue that could survive for months. 

Extensive experiments were performed on these free swimming “disks” and results were 

extrapolated to organ, and especially, heart function in higher vertebrates.
327

 In addition 

to skipping feedings and water changes, investigators could quite literally excise 

unneeded parts of the organism, effectively creating a free swimming, responsive disk of 

muscle and nerve tissue.   
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Figure 35 These three figures appear in T.H. Morgan's paper on regeneration in Gonionemus. The first two 

images show the cuts made by Morgan, and the third is a drawing of the "regenerated" organism from 1/4 

of the original specimen. Its tentacles were malformed, but the organism continued to pulsate normally for 

almost 1 month. Morgan, “Regeneration,” 944-945. 

 

Major research programs grew up around these two organisms at their respective 

marine laboratories. Neurophysiological experimentation at Woods Hole revolved around 

Gonionemus and its regenerative abilities. The MBL table system meant that those 

interested in jellyfish had to apply for research space, but the Tortugas Laboratory 

worked by invitation. Mayer courted young physiologists interested in nerve research.  

Mayer made a yearly list of researchers to invite to the laboratory; he actively recruited 

physiologists Lewis Cary from Princeton in 1913 and C.R. Stockard from the Cornell 

Medical School in 1914, both of whom did substantial work on pulsation and 

regeneration with Cassiopea.
328

 He also sought to bring medusae experts such as E. T. 

Browne from Plymouth to work with Cassiopea. The MBL and the Carnegie Institution 

Tortugas Laboratory became centers of neurophysiological research centered around the 

jellyfish species available in those locations.  

However, the inability to transfer these species from the seashore to the university 

laboratory limited their overall usefulness to physiologists during this period. By the end 

of WWII, jellyfish had almost disappeared as research organisms in neurophysiology. 
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Two factors lead to this decline: the uptake of the squid giant axon throughout the marine 

station network and the closure of the Tortugas station. 

In the mid-1930s, experimentalists interested in nerve structure at the MBL turned 

to the newly discovered squid giant axon.  Work on Gonionemus fell precipitously after 

Howard J. Curtis and Kenneth S. Cole started their research in Woods Hole. The 

maintenance of squid in the laboratory proved equally difficult to that of jellyfish, but the 

eventual success of laboratory methods for rearing squid and extracting usable axons lead 

to the uptake of the experimental system in neurophysiological experiments. Post WWII, 

other laboratories learned how to maintain and rear squid in the laboratory and the use of 

the squid giant axon spread throughout the marine station network, displacing jellyfish in 

neurophysiology experiments at the water’s edge.
329

     

Research with jellyfish also suffered from the loss of the Tortugas marine station 

and easy access to Cassiopea. In 1922, Alfred Goldsborough Mayer died at the Tortugas 

station from complications of tuberculosis.  Mayer was the driving force behind the 

placement of the laboratory and especially of the neurophysiology research program that 

developed around Cassiopea. Each year, he sought out researchers interested in nerve 

studies to invite to the stations. Without Mayer, work on Cassiopea faltered and support 

for the station in the Carnegie Institution and the larger biological community waned. 

While the laboratory remained open throughout the 1930s for, it was closed in 1939.
330
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After WWII, the majority of neurophysiological research at marine stations was being 

performed with squid giant axons and jellyfish had largely disappeared from the literature 

on nerve function.  

 

 
Figure 36 These are only some of the disks Mayer excised from the umbrellas of the Cassiopea. The arrows 

indicate the direction of nerve conduction through the tissue. Mayer, "Rhythmical Pulsation of the 

Scyphomedusae," 25. 

 

Conclusion 

 Through the efforts of neurophysiologists at marine laboratories, several species 

of jellyfish became truly mundane organisms for experimental work in the early years of 

the twentieth century.  Widely available species such as Aurelia aurita were maintained 

in captivity with proper feeding schedules and simple technological fixes to basic 

glassware. Highly localized species such as Gonionemus vertens and Cassiopea 

xamachana allowed scientists to create generalizable experimental tools out of these 

highly malleable organisms.  For a quarter of a century, jellyfish were consistently 

utilized experimental organisms in neurophysiology research at marine stations. 

 Permanent marine stations, and the basic technologies contained therein, allowed 

researchers from multiple disciplines to adapt abundant local specimens for specific 
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research purposes. Scientists expressed an interest in the neurophysiology of jellyfish by 

the mid 19
th

 century, but their position as a mundane fresh specimen belied their 

difficulty to maintain in captivity.  The expansion of marine stations resulted in the 

adaptation of certain species to laboratory conditions and helped researchers transition 

these exotic live specimens into truly mundane materials.   
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Chapter 5  

 

Illuminating Animal Behavior: The impact of malleable marine stations on 

tropism research 

 
 

On October 20, 1930, a representative of General Electric’s educational sales 

division sent a letter to Winterton C. Curtis at the Marine Biological Laboratory in 

Woods Hole, Massachusetts inquiring after two sunlamps sent to the laboratory several 

months before. “I have been asked by the Sunlamp Sales Division” wrote A.C. Stevens 

“whether or not these have yet been put into service. If so, we should like very much to 

know in what way they will be used and something of the results obtained or 

expected.”
331

 It is clear from the letter that Stevens has no understanding of the possible 

uses of a sun lamp at a marine station, stating merely that the lamps were sent on the 

recommendation of Dr. W.R. Whitney, the director of the research laboratory of General 

Electric. But, then, why would Whitney believe that a marine station required, or at least 

could find some use for, a set of sun lamps?  

Marine stations, located at water’s edge, might seem like a counterintuitive place 

to send artificial sunlight, but beginning in the late 19
th

 century, the rise of tropism 

studies on aquatic invertebrates brought new lighting technologies and spaces into 

aquatic laboratory spaces. Identification of UV in sunlight, and the link between UV and 

medical properties (including disinfectant and overall health), made sunlamps and their 

artificial lighting precursors prominent in physiology laboratories.
332

 But these 

instruments were also being utilized in animal behavior studies. Animal behavior 
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researchers brought gas burners, carbon arc-lamps, incandescent bulbs and Nernst 

glowers into marine laboratories in a bid to create a controlled research environment for 

the study of phototropism behavior (animal reaction to light stimuli). Tropism research 

combined available invertebrates, new lighting technologies, specially crafted glass 

enclosures, and specialized dark rooms to study tropism behavior in these spaces.  

 In Philip Pauly’s 1987 biography of Jacques Loeb, he dedicates an entire chapter 

to the tropism debate in animal behavior between Loeb and Herbert Spencer Jennings. 

Loeb advanced research in the mechanistic reactions of animals to light and sought to 

establish a mathematical law to predict and therefore manipulate these tropisms. Jennings 

disagreed with Pauly’s mechanistic and highly quantified thesis of tropic behaviors, and 

theorized that organisms followed a “trial and error” form of movement based on “fright” 

response in light reactions. According to Jennings, each individual reacted differently 

depending on their internal physiology at the moment of stimulus.
333

   

As shorthand, the Loeb-Jennings debate nicely encompasses many of the 

ideological issues in phototropism studies during this period. Loeb and Jennings each 

give voice to opposing theories about phototropic behavior.
334

 While historians have 

focused on the ideological differences between the two- Loeb was uninterested in 

theoretical concepts such as the evolution of thought, behavior, or consciousness while 

Jennings sought to link his studies with those exploring these larger concepts- I believe a 
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more fruitful approach to examining this debate, and its impact on the field of tropism 

studies in animal behavior , and animal behavior studies in general, is by identifying the 

changes in the experimental process enacted by these opposing theoretical beliefs.  In 

conjunction with their theoretical differences, Loeb and Jennings focused on separate 

experimental variables and thereby developed different experimental methods. 

Loeb and Jennings each concentrated on experimental variables that mirrored 

their theoretical convictions. Loeb favored a highly quantified approach, focusing on 

experimental variables such as light intensity and technological readings while paying 

little attention to individual specimen behavior and less attention to alternate forms of 

experimental organisms or species. Jennings published highly qualified work that 

examined individual test subjects’ tropic reactions, paying close attention to 

physiological understandings of the organisms and their natural behavior patterns.  

Although Pauly suggests that the “fitful and inconclusive” debate ended when Jennings 

prevailed and interest in invertebrate behavior waned, researchers retained interest in the 

subject of tropisms and examinations of phototropic behavior expanded into general 

animal behavior studies.
335

 Disciples of each man continued to test their respective 

mentors’ theories and refine their experimental techniques.
336

  These methods, including 

advanced lighting technologies, advanced glassware, animal prep techniques, and the 

process of reporting findings, developed throughout the Loeb-Jennings debate and 

researchers integrated them into the study of tropisms.   
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This paper will examine the impact of the Loeb-Jennings debate on laboratory-

based experimental practice.  First, I will look at the development of the tropism debate, 

tracing the roots of the debate and the movement of tropism studies from botanical to 

animal physiology laboratories. Next, I will look at the evolution of experimental practice 

throughout the Loeb-Jennings debate, concentrating on changes in organism choice, 

technologies, and spaces. Finally, I will analyze the impacts of these changes for tropism 

studies post-debate. Investigators interested in tropism studies after 1915 integrated 

experimental processes forwarded by both scientists into their research, establishing a 

method acceptable for proponents of both quantitative and qualitative studies of animal 

behavior.  

It is not a coincidence that this debate took place at marine stations. The 

malleability of the spaces combined with the accessibility of a wide range of living 

organisms meant that two researchers examining the same behavior could potentially 

develop conflicting experimental designs working next to each other. The marine station 

design placed little constraint on experimental procedure, but instead facilitated multiple 

approaches to the same questions. This debate played out in marine stations precisely 

because the plastic environment allowed two researchers interested in the same questions 

to create a system that examined a wide range of variables. 

 

The Origins of Tropism Research 

 S.O. Mast’s 1911 book Light and the Behavior of Lower Organisms traces the 

history of tropism studies and explores the introduction of the term “tropism” into 

theories of animal behavior.  Mast’s historical tracing of the term begins with Augustin 



193 

 

Pyramus de Candolle. De Candolle recorded observations of plant movement (opening 

and closing of petals and leaves) based on the time of day. In 1835, he coined the term 

“heliotropism” to describe what he perceived as plant movement in reaction to lighting 

changes. In 1863, Wilhelm Hofmeister added to the theory by introducing the concept of 

negative and positive heliotropism to describe behavior of turning toward or away from a 

light source.  Mast explains that Hofmeister’s addition meant “the term tropism then 

gradually came to signify not merely turning, but turning due to the direct effect of the 

stimulating agent on the tissue producing the movement, and this signification it has 

retained to some extent to the present time.”
337

  In the twenty years after Hofmeister, two 

experimental groups, Julius von Sachs in Germany and the Darwins in England, would 

advance and complicated theories of tropism, and set the stage for tropism studies in 

animals.
338

 

 Debates regarding the proper experimental process of studying tropism emerged 

between Julius von Sachs and the Darwins.  In 1880, Charles and Francis Darwin 

published a co-written book The Power of Movement in Plants, an addition and 

experimental follow-up to Charles Darwin’s 1875 The Movement and Habits of Climbing 

Plants. The Power advanced several theories, including the concept that specific areas of 

a plant were sensitive to stimulus, the root tips were sensitive to gravity and coleoptile 

(the protective tip of emerging seedlings) were positively heliotropic.
339

   Francis Darwin 

greatly influenced The Power (the third son and seventh child of Emma and Charles). 

Francis, who spoke German, spent time in Julius von Sach’s physiology laboratory in 
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Germany before becoming his father’s secretary and research companion.  Von Sachs, an 

established botanist whose 1868 Lehrbuch der Botanik cemented his place as the 

preeminent plant physiologist in the world,  pioneered methods in water culture as well as 

the role of starch in plant physiology. More importantly for this discussion, he studied the 

effects of light and temperature on germination, flower opening, and transpiration and 

invented laboratory apparatuses, the klinostat and the auxanomieter, to study these 

phenomena.
340

  

Although The Power contained up-to-date references to recent experimental work 

on tropic behavior and outlined the Darwins’ experimental process, von Sachs found it 

lacking in experimental finesse and used his disagreement with the Darwin’s 

experimental procedures to deny their conclusions.  Von Sachs disagreed with the 

Darwin’s conclusion that root tips sense gravity instead of the entire root. In addition, he 

denied the Darwin’s conclusions that coleoptiles (seedling tips) sensed light, and that 

light intensity, in addition to directionality, played a role in plant curvature and 

movement.
341

 The form of his objections is interesting considering that similar research 

on root tips and geotropism had been proposed by Thodor Ciesielski only ten years 

before.  Von Sachs denied Ciesielski’s theory of geotropism, but praised his experimental 

method. In contrast, von Sachs denied the Darwins’ theory of geotropism and also called 

their experimental procedure into question. In reaction to the Darwins’ root tip theory, 

von Sachs harshly stated  
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In such experiments with roots not only is great precaution necessary, but also the 

experience of years and extensive knowledge of vegetable physiology, to avoid 

falling into errors, as did Charles Darwin and his son Francis, who, on the basis of 

experiments which were unskillfully made and improperly explained, came to the 

conclusion, as wonderful as it was sensational, that the growing point of the root, 

like the brain of an animal, dominated the various movements of the root.
342

  

 

According to von Sachs, the Darwins’ work was unreliable because it was performed, not 

in a laboratory, but in the Darwin family country home. The lack of experimental finesse, 

including a distinct lack of technology to perform intense quantifiable research, pushed 

von Sachs to deny, not only The Power’s conclusions, but also the entire method of 

experimentation. In contrast to von Sachs’ highly technologized work, the Darwins’ 

access to advanced instrumentation was limited.
343

 Von Sachs’ reputation in plant 

physiology meant that fellow experimentalists agreed with him and rejected the Darwins’ 

conclusions. But, this debate was only the first of many revolving around the study of 

tropisms, and the next battle would be fought in marine laboratories over the behavior of 

aquatic organisms.  

The expansion of tropism research from plants to animals came as a result of new 

mechanical and evolutionary understandings of life. Judy Johns Schloegel and Henning 

Schmidgen outline the importance of cell theory and the impact of Darwinism in 

establishing a ““general physiology” that sought to discern properties of life common to 

all living beings.”
344

 Instead of focusing on vertebrates such as frogs, rabbits, and dogs, 

investigators focused on the cell as the most elemental form of life.  Protozoa became 

popular experimental organisms in psychophysiological laboratories, and were 
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particularly popular in tropism studies because of their obvious reactions to light, their 

ease in handling, and their accessibility. Jacques Loeb, after studying with von Sachs, 

took up the study of tropisms in protozoa, particularly algae. Both von Sachs and Loeb 

relied heavily on a mechanical understanding of organismal behavior, suggesting that 

homologous parts equaled homologous behaviors.  Because both plants and animals were 

made up of cells, their orientation to light was similar to Loeb:  phototropism in both 

groups was a reaction of light on the protoplasm of the cell.
345

  

Herbert Spencer Jennings approached tropism studies with protozoa from a 

different angle. He studied in Jena with Max Verworn, a Haeckelian seeking to develop a 

physiology of both individual and species behavioral development (a theory of 

recapitulation for behavior). Verworn succeeded in interesting Jennings in behavior as a 

problem, and Jennings started research on protozoa to ascertain the evolution of behavior 

at its lowest level. The combination of the cell theory and the theory of evolution 

suggested to Jennings that studying lower organismal behavior would shed light on the 

evolution of behavior. Especially interesting to Jennings was his belief that, because of 

their quick life cycles and generally simple structure, the experimentalist would be able to 

view the evolution of animal behavior in succeeding generations of single celled 

organisms.
346

   

The study of tropisms continuously linked plant and animal behavioral studies. In 

Charles Davenport’s 1896 work on chemical and physical variables on protoplasm 

(including a hefty section on the effect of light on behavior), he states that his scientific 

interest is in the response of “living organisms” and “accordingly, no distinction should 
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be made between animals and plants.”
347

  E.B. Wilson compares hydroid reactions to 

those of green plants.
348

 Jacques Loeb continued to analyze plants and animal behavior 

together in his 1918 Forced Movements stating, “The writer was able to show that sessile 

animals behave toward light exactly as do sessile plants; and motile animals like motile 

plants” and S.O. Mast included several sections to testing previous theories of plant 

behavior in his 1911 work Light and the Behavior of Organisms.
349

Other investigators 

took notes from plant physiologists: Elizabeth Towle (working with T.H. Morgan at Bryn 

Mawr) reproduced F. Oltmann’s 1892 experiment with Volvox (green algae) during her 

experiments with Cypridopsis vidua obesa and Daphnia.
350

 

  As behaviorists transferred concepts regarding heliotropism from plants to 

protozoa and lower metazoa, the terminology shifted and expanded. Investigators 

commonly applied the term phototaxis when speaking about animals that both orient 

towards light and move towards that light. Phototropic referred to those organisms that 

orient towards light but do not move towards that source and photopathic referred to 

organisms that neither orient nor move toward light, but have some reaction to changes in 

light intensity.
351

 However, the simple uses of positive and negative phototropism 

remained in use throughout the first half of the twentieth century. Arnold E.S. Gussin has 

stated that “the word [tropism] was originally reserved for plant movement; it should 
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never have been applied to animal, even less to human, behavior,” but this analysis of the 

word usage is shortsighted.
352

 Physiologists and behaviorists in a post Darwin, post-cell-

theory scientific community applied tropism to animal behavior as they continuously 

redrew or, in some sense, erased the plant/animal boundary. But the arguments regarding 

the optimum experimental process for studying behavior between von Sachs and the 

Darwins would not disappear, but become entrenched during the Loeb-Jennings debate.  

Organisms 

 Animal behaviorists utilized a wide range of organisms at the turn of the twentieth 

century. American-based behavioral studies most commonly used rats and pigeons during 

this period, but experimentalists often stepped outside of this diptych for examinations of 

specific behavioral questions.
353

  One such group of questions involved tropism studies. 

Tropism researchers commonly worked with single celled aquatic organisms, such as the 

planktonic crustacean Euglena. However, a large portion of the Loeb-Jennings debate 

revolved around the variety of species chosen and the condition of the individual 

organism at the time of experimentation. This section will highlight the portion of the 

Loeb-Jennings debate concerning organismal choice and use, the reason that aquatic 

organisms took a prominent place in these studies, and the changes made regarding 

experimentation with and reporting about organisms utilized.  

 Herbert Spencer Jennings and Jacques Loeb had differing views on the 

importance of the experimental organism in tropism studies. Loeb believed that tropist 

behavior could be quantitatively analyzed and predicted; the key to the quantitative 
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approach was symmetry- radial symmetry in the case of plants and cnidaria and lateral 

symmetry in the case of higher organisms such as mammals. Loeb believed his emphasis 

on symmetry provided a key to understanding most tropic phenomena: that most 

organisms contained this symmetry meant that any conclusions Loeb drew from 

experimentation from a single group of organisms should hold true for others with 

matching symmetry.
354

 His research focused on data drawn from group reactions to light. 

He based his conclusions regarding the Bunsen-Roscoe Law from “the average of from 

40 to 60 individual observations, each being the average of the path of many thousands of 

animals.”
355

 This focus on the aggregate allowed Loeb to draw sweeping conclusions 

from his data, and to statistically fit thousands of individual reactions into what he 

believed to be universal numbers attached to behavior. Though Loeb sought a universal 

theory of tropic behaviors, he did not see the need to greatly vary his experimental 

organisms. To test the Bunsen-Roscoe Law
356

 on organisms, Loeb and Northrop chose to 

work with barnacle larvae, an organism Loeb had previously worked with and found 

particularly reactive to light.
 357

 Arnold Gussin states that Loeb had an “uncanny knack 

for choosing organisms that would “fit” his hypothesis.” Regardless of his “uncanny 

knack,” Loeb placed less emphasis on organismal choice, individual actions, and internal 

conditions than Herbert Spencer Jennings. 
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 In direct opposition to Loeb, Herbert Spencer Jennings believed that the way to 

understand tropic  behavior was to more thoroughly understand your experimental 

organisms.  In the first pages of Jennings’ work on the behavior of starfish, he states that  

It is of the utmost importance, if we are to understand the behavior of organisms, 

that we think of them as dynamic — as processes, rather than as structures. The 

animal is something happening. In connection with these internal processes, we 

find that most organisms have a system of movements, of the body as a whole or 

of its external parts. This system of movements we call behavior. It is closely 

bound up with the internal processes; indeed, the two sets of activities are really 

one, and we shall be led far astray if we try to think of the behavior separately 

from the internal processes.
358

  

 

In a more succinct definition of his stance on the next page, he asserts that “The general 

problem of physiology is: How are the bodily processes kept going? The general problem 

of behavior is: How are the bodily processes kept going by the aid of movements?”
359

 

This focus on the internal condition of the organism influencing behavior led Jennings to 

report that behavior was variable based on the amount of time a specimen had lived in 

captivity, their feeding schedule, and sometimes, their natural disposition.
360

 Researchers 

needed to pay close attention to these variables when recording behaviors.  In addition to 

calling for greater attention paid to the condition of experimental organisms, Jennings felt 

that an individual’s behavior could tell the experimenter more about tropic reactions than 

could group aggregation.  Where Loeb sought universal laws with aggregate data from 

large groups, Jennings focused on individual paramecium (stentor), positing a theory that 

light reactions were largely “trial and error” in organisms.
361

 This focus on the individual 

reaction, as opposed to watching the reaction of thousands of minute organisms as a 
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single group, opened the door to a wider species for research, as well as more extensive 

experiments with individual specimens.   

The choice of experimental organisms is made based on multiple variables, 

including the experimental model, accessibility of organisms, ease of working with a 

given species in the laboratory, and a scientific understanding of that organism 

(physiology, morphology, taxonomy and general behavior) before the work begins.
362

 

Tropism experiments were performed on a wide range of animals including insects, 

protozoa, and lower (invertebrate) forms of metazoa.
363

 The largest group experimented 

upon were aquatic organisms, ranging from large numbers of protozoa to starfish, 

jellyfish, crabs and hydra.
364

 Researchers chose aquatic organisms for multiple reasons 

including the availability of large quantities of a single species, the availability of 

multiple categories of organisms in a given location, and the relatively easy handling of 

certain groups. Marine stations became the epicenters of tropism research, and work 

performed at these locations highlights a larger shift in experimental procedure in the 

behavioral sciences.  

Investigators performing tropism work congregated at marine stations
365

 to work 

with protozoa or invertebrate metazoa. Protozoa and infusoria are prevalent in water 
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environments; thousands of experimental organisms can be collected.
366

 They were 

generally easy to maintain in the laboratory due to their elastic diet and the plasticity of 

the environment in which they fourished. In the “material and apparatus” section of 

Mast’s work with the fresh water protozoa stentor coeruleus, he states that “the animals 

used in the following experiments were obtained by letting aquatic plants collected in a 

pond known to contain Stentor, decay in battery jars nearly filled with water.”
367

  In 

addition to the ease of collecting and maintaining protozoa, researchers also used 

“higher” organisms. Lower metazoa, including echinoderma, anthropoda, and cnidaria, 

were easily accessed in the littoral zone close to shore. Although many of these 

organisms proved more difficult to maintain in the laboratory (see Chapter 3), they still 

proved popular.  

Researchers selected organisms for tropic experiments based on experimental 

goals.  Jacques Loeb and experimentalists interested in studying aggregate movements of 

specimens often chose colonly dwellers that could be analyzed as a unit. Loeb was 

particularly fond of both protozoa and hydroids. His work on the hydroid Eudendrium 

displays his typical process. In a paper seeking to establish the efficiency of different 

lights spectrums on curvature production in hydroids, Loeb and Hardolph Wasteneys 

exposed Eudendrium “with a number of newly regenerated polyps” in a glass container to 
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a light spectrum. Little beyond the newly regenerated form of the organisms is 

mentioned, although the authors highlight the difficulty of working with young hydroids 

due to their delicate forms.
368

   Three separate experiments were performed on the same 

group of hydroids by varying the color spectrum to which they were exposed. Wasteneys 

and Loeb concluded that the spectrum required for curvature production in Eudendrium is 

similar to those of Avena Sativa (wheat).  

 

Figure 37 Jacques Loeb illustrates his work with hydroids, an organism Loeb utilized for aggregate data 

about tropic responses. Forced Movements, 66. 

 

While Loeb’s experimental structure and particularly his choice of colonial organisms 

was taken up by other tropism researchers, including Charles Davenport. Others more 

sympathetic towards Jennings’ theory chose very different organisms upon which to 

experiment.
369
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 Herbert Spencer Jennings’ emphasis on the internal basis of behavior, and the 

importance of comparative studies and examining the movements of individual 

specimens, resulted in a varied set of organisms employed in tropism studies. In Behavior 

of Lower Organisms, Jennings dedicated over half of his work to protozoa, but unlike 

Loeb, concentrated on the movements of individuals as opposed to the group. Jennings 

uses the same species of protozoa as Loeb to analyze individual courses of movement. In 

his 1904 Contributions to the Study of the Behavior of Lower Organisms, Jennings states 

that, “The light reaction is thus somewhat inconstant, and varies among different 

individuals. It varies considerably with Stentors of different cultures; from some cultures 

almost all the individuals show it, while from others it is barely noticeable. This 

variability and inconstancy run through all manifestations of the light reaction in 

Stentor.”
370

  

 

Figure 38 The original caption reads: "Diagram to illustrate the reactions of Euglena when illumination is 

decreased." Most of Jennings' illustrations highlighted individual actions of organisms. Contributions, 53. 
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The second section of Behavior is dedicated to invertebrate metazoa. In this 

section, Jennings compared the behavior of hydra, jellyfish, sea cucumbers, and starfish. 

Tropism research was only one aspect of Jennings’ work and it becomes clear that 

Jennings believed that the study of reactions to light was only part of a larger study of the 

general behavior of an organism.  A researcher could not merely study light reactions 

without also understanding general behaviors in terms of reproduction, feeding, and fear 

responses.   Jennings, and researchers interested in a wide comparative analysis of 

behavior, chose to research trophic behavior on a wide variety of organisms. Raymond 

Pearl and Leon J. Cole compared light reactions of a diverse group of lower organisms 

including crustaceans, leeches, nemertean, and snails in the same paper.
371

 In one of the 

most diverse experiments performed, Victor Shelford compared light behaviors in a large 

group of organisms collected from the same niches (rapids and pool areas in Lake 

Michigan).
372

 Others chose to only slightly vary their organismal use by choosing 

different subspecies. E.B. Wilson compared two subspecies of hydra: h. Fusca and h. 

viridis.
373

 S.O. Mast also chose to vary his subspecies, comparing light reactions in the 

larvae of the ascidians Amaroucium Constellatum and Amaroucium Pellucidum.
374

  

 One important variable for choosing tropism test organisms was the ability to 

closely follow their movements. The size and speed of organisms influenced investigators 

use of certain species. In S.J. Holmes’ work on Ranatra (water stick-insects), he 

explained his choice of stick-insects by comparing difficulties found working with a 
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variety of other organisms. “Animals vary greatly as regards both the definiteness of their 

reactions to light and the ease with which their movements can be followed.” According 

to Holmes, copepods, cladocera, and ostrapoda react noticeably to light, but are difficult 

to follow individually while larger invertebrates are easier to follow but have sometimes 

indefinite reactions to lighting changes making it difficult to draw robust conclusions.
375

 

Concerns about the difficulty of following individual ostrapoda were circumvented by 

Elizabeth Towle by choosing a subspecies that was both more sensitive to light and large 

enough to isolate and examine individual courses of movement.
376

 W.J. Crozier and 

Leslie B. Arey chose to work with chiton (a mollusk) because the “behavior of very 

slowly moving animals in an illuminated field” proved easy to follow and map for clearer 

results. The authors bemoan the inability to utilize multiple organisms at the same time 

because of their large size, but state that the ability to follow a slow moving organism 

over a superimposed grid drawn onto the aquarium far outweighed these concerns. E.B. 

Wilson also expressed his delight at working with a slow organism: hydras were easy to 

follow and record “on account of their slowness.”
377

   

Experimentalists seeking to test previous findings regarding tropism behavior 

greatly expanded the organisms preferred for tropism research. S.J. Holmes tested body 

axis orientation conclusions in Loeb’s tropism theory by experimenting with fiddler 

crabs, which orients “sidewise.”
378

 W.J. Crozier, when testing Loeb and Wasteneys’ 

conclusions regarding the Bunsen-Roscoe theory, utilized available organisms while 

teaching at the Bermuda Biological Station for Research (Harvard and NYU’s marine 
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station). He looked at light reactions in Balanoglossus (sea worms) and Chiton (marine 

molluscs).
379

  The number of organisms employed in tropism research continued to 

expand due to reactions to the Loeb-Jennings debate. Philip B. Hadley included a paper 

on heliotropic reactions in the American lobster larvae within his other larger work on the 

species’ behavior.
380

 Louis Murbach’s extensive research on the behavior of Gonionemus 

also included research on phototactic responses. Crozier’s general research on nudibranch 

behavior included a section on phototropic responses.
381

 The Loeb-Jennings debate did 

not merely influence the choice of organisms, but also influenced the variables 

researchers recorded regarding the handing and maintenance of the organisms in the 

laboratory.  

Researchers testing the theory that behavior stemmed from internal conditions 

paid close attention to, and in turn reported in official papers, a multitude of variables, 

including age, time in captivity, and time of rest before experimentation that they 

theorized influenced the behavior of individual organisms.  One of the most common 

variables to report was that of age. Both Loeb and Jennings came to the conclusion that 

the age of the organism mattered when studying phototropism. Young or newly hatched 

specimens commonly proved to be positively phototropic, whereas the mature form was 

negatively phototropic.  Crozier and Arey found that young chitons are the opposite: the 

young are negatively phototropic. Analyzing the age difference in tropic responses 
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required researchers to include information about the collection and maintenance of these 

organisms in the laboratory. The experimentalists often utilized two specimens collected 

in separate locations to compare light reactions.
 382

 In addition, Jennings and other 

researchers made observations that certain organisms were only positively phototropic if 

they were underfed. If they had been fed sufficiently, they were continuously negatively 

phototropic, suggesting that light reactions might be tied to feeding reactions. Testing 

these hypotheses involved the recording of maintenance procedures in the laboratory.  In 

Wilson’s research on the tropic responses of hydra, he starved the organisms and then 

recorded their tropic responses. Wilson came to the conclusion that hydra become 

positively phototropic (or more so than “normally”) to place themselves “in the position 

of maximum food supply.” Wilson notes that the common food sources of the hydra are 

all positively tropic, therefore the organism may have evolved a response mechanism of 

positive tropism.
383

  

Researchers also included handling details to explain the organisms’ condition at 

the beginning of an experiment. Depending on organismal choice, researchers interested 

in the impact of internal conditions on behavior tweaked variables such as feeding, 

illumination, water temperature, and even the amount of organisms placed in the 

experimental system at a given moment.  Experimentalists studying animal behavior 

often noticed a marked shift in behavior after animals “recovered from handling.”  Cora 

Reeves emphasizes the need to maintain “natural” and “normal” conditions for the fishes 

“otherwise response is often inhibited by unnatural conditions of by manipulations that 

induce fright.” Proper maintenance involved water temperature, food, illumination until 
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experimentation, and little handling.
384

 In addition, Crozier noted differences in light 

sensitivity between balanoglossus in “bad condition” from handling and those “in 

physiologically good condition.”
385

 Working with protozoa was often simpler, but 

experimentalists still recorded the amount of time that organisms were allowed to “rest” 

after being transferred from the general aquarium to the experimental apparatus. William 

Tower allowed his organisms 12 to 18 hours of rest after transfer from the main aquarium 

to the experimental aquarium. Wilson experimented on hydras that were maintained in 

the aquarium for two months before the experiment began. The time allotment for settling 

ranged from thirty minutes for protozoa to hours or days for organisms such as medusa 

and echinoderma.
386

  

Close attention to organismal choice, and an emphasis on the condition of 

experimental subjects, was an important experimental process for researchers seeking to 

expand on the hypothesis commonly associated with Jennings that individual behavior 

was as, or more, important than group behavior.  But Jennings’ emphasis on organismal 

variables does not mean that Loeb was not interested in controlling aspects of the 

experimental process. Loeb’s thesis, that phototropic reactions were universal and 

quantifiable, pushed him to make his experimental procedure as universally applicable as 

possible. His answer was a reliance on technology and the newest research coming out of 

photochemistry and photobiology.  
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Technology 

 In a 1904 report submitted by Herbert Spencer Jennings to the Carnegie 

Institution following his stay at the Statzione Zoologique in Naples on a Carnegie 

Research Grant (No. 83), he outlined the future of his animal behavior research.  

According to Jennings 

 

This line of work does not primarily require extensive or novel apparatus, nor 

great laboratories. While new apparatus may be needed from time to time as the 

work develops, ordinary well-equipped laboratories, such as are found in the 

zoological and physiological departments of many of our universities, amply 

suffice for most of the work.
387

  

 

Instead of technological requirements, Jennings highlights time requirements-animals 

must be watched extensively and this watching takes uninterrupted stretches of time. 

Jennings’ report makes animal behavior studies appear non-technologically bound but 

this is a shallow reading. Jennings states that little new technology was needed for animal 

behavior studies, but he does say that an “ordinary well-equipped laboratory” at a 

university would suffice.   

 Jacques Loeb frequently stated that he wanted to replace a heavily 

anthropomorphized method of animal behavior research with the objective and 

quantitative methods of the chemist and physicist. Loeb sought to do this by stringently 

controlling and reporting the exact stimuli to which his subjects reacted.  In parallel to 

Jennings’ arguments for a more diverse experimental specimen roster, Loeb advanced 

cutting edge artificial lighting technologies with experimental instrumentation to specify 

and quantify his experimental process and results. In his earliest experiments, Loeb 

                                                      
387

 Herbert Spencer Jennings to Carnegie Institution of Washington, March 25, 1904, Carnegie Institution 

of Washington Folder, Herbert Spencer Jennings Papers American Philosophical Society: Philadelphia, PA. 



211 

 

employed a very simplistic experimental set-up: protozoa were placed in a beaker and 

exposed to sunlight through a window in the laboratory.  

 

Figure 49 This relatively simplistic experimental set-up uses a beaker full of organisms and direct and 

shaded sunlight. Loeb, Forced Movements, 50. 

 

Each successive experiment brought more technological interventions, including multiple 

lighting sources, enclosures built to test reactions to differing colors of light and to 

minimize reflection, and heat reduction solutions. The introduction of these technologies 

allowed researchers to quantify the stimuli in tropism experiments, but also raised 

questions about the quality and applicability of the data. This section will highlight the 

technology increasingly utilized by Loeb and other researchers interested in controlling 

the external stimuli in tropism studies. For simplicity, we will first examine specialty 

enclosures and move to lighting technology. It should become apparent that both 

specialty enclosures and lighting technologies were utilized in tandem to create a 

controlled experimental process.  
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Enclosures 

 In addition to the abundance of organisms, another draw for tropism researchers 

to work with aquatic species was the ability to view behavior three dimensionally. 

Behaviorists working with aquatic species could view the organism from a multitude of 

angles and easily introduce stimuli from multiple directions. Marine stations contained 

hundreds of glass containers that could be utilized for tropism experiments (see Chapter 

1), but tropism researchers eventually settled on several prominent variations on the 

glass-sided aquarium for experimentation. A prominent technology, a slide or stage-

aquarium, helped researchers interested in following the movements of protozoa under 

the microscope.  In addition to this invention, researchers built or modified traditional 

aquariums with paint, colored glass, and fabric to control stimuli without continuously 

shifting organisms to new containers.  These aquarium variations were created de novo 

with found materials in the laboratory setting. Often included in publications were the 

schematics or directions for creation of the apparatus so the result could properly be 

retested.  

 Researchers studying the impact of light stimuli on small aquatic protozoa often 

built an aquarium that fit onto the stage of their microscope: the stage or slide aquarium. 

In 1893, C.J. Cori first described a modification to the microscopic slide that would allow 

researchers to view minute organisms in a liquid solution. He called this modification a 

“stage aquarium.” The original design included a glass aquarium made from a strip of 

glass bent in a U formation to serve as the side and bottom of the structure. The object 

holder (5 x 10cm) formed the back wall and a small cover (30 x 40mm) formed the front. 

While easy to construct in the laboratory, this design allowed limited visibility and was 



213 

 

difficult to load.  In 1894, he modified his invention to increase the visibility of the 

organism within the enclosure, and to allow the removal of the enclosure from the 

microscope stage.
388

  

 

 

Figure 50 C.J. Cori's modified stage aquarium. The aquarium had a glass front and back and was removable 

from the stage. This apparatus would eventually become indispensible to tropism research. Journal of the 

Microscopical Society, 121. 

 

William Tower first mentioned the stage aquarium in tropism studies in his treatise on 

hydra viridis (freshwater green hydra).  Tower placed the hydra in a stage aquarium for 

12 to 16 hours, and then “carefully placed [the aquarium] upon the stage of the projection 

microscope.”
389

 S.O. Mast recorded the use of a “slide aquarium,” so named because he 

made his out of microscope slides glued together with balsam boiled in linseed oil.
390

  He 

employed the slide aquarium when analyzing the movements of amoeba, but the set up 

would have worked for any organism that could fit in the relatively small enclosure.
391
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Pearl and Cole also placed their specimens in slide aquaria.
392

  The combination of a 

stage aquarium and a projection microscope allowed researchers interested in the 

individual movements of specific specimens to use a wide variety of species, not merely 

those large enough to be tracked easily by the human eye.   

 Although early tropism studies were performed in a variety of glassware,
393

 most 

experimentalists employed similar apparatuses for their research.  Tropism researchers 

were interested in reactions to both light and dark, and their experimental equipment 

required strict control over these variables. Experimental setups mandated an enclosure 

that permitted light to be systematically introduced to subjects and minimized unwanted 

light or shadow.
394

 The structure settled upon was rectangular in shape to reduce the 

possibility of light distortion, commonly in the form of a traditional aquarium (all glass) 

or a specially built tin trough. The experimental tin trough (the bottom and sides were tin 

and the ends were glass) was utilized in experiments that looked at movement toward or 

away from a light source. The inside of the trough was painted black and organisms 

received photo stimuli from only two directions. Robert Yerkes set up a tin trough for his 

study on Daphnia and Elizabeth Towle used a similar set-up for her work with 

Cypridopsis.  
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Figure 41 Robert Yerkes included this diagram of his tin trough in his 1900. Many investigators imitated 

this experimental set-up. Yerkes,"Reaction of Entomostraca," 408. 

 

Other researchers modified readily available glass aquaria. Davenport and Cannon built a 

glass enclosure painted “dead black” inside and out for their 1897 study.
395

 Jacques Loeb 

also fashioned a glass enclosure, but instead of painting the aquarium completely black, 

he surrounded it with black paper.
396

  

The common modification of using black paper or fabric to reduce reflection 

allowed researchers to continually modify the aquarium throughout the study. This 

proved important when studying reaction to light directionality; light could be directed 

into the enclosure through a given set of openings, and then a new set could be cut into 

the paper.  In addition, organismal reaction to specific colors of light was a major 

research agenda during this period. If researchers utilized an all-glass aquarium, they 

could easily replace the dark paper with a plate of colored glass. This ability to change 

multiple areas of the aquarium easily by removing paper is beautifully evidenced in Paul 

Bert’s experiments with colored light reactions in multicellular organisms. Bert initially 

exposed subjects to a prism of light through a small vertical cut in the opaque screen. The 

subjects were exposed to different colors of light separately through the cut. Then, Bert 
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removed the opaque screen on one side of the aquarium, exposing the organisms to the 

whole spectrum at once.
397

 E.B. Wilson utilized the aquarium to test hydra light 

sensitivity. He covered one side with yellow, opaque, and blue glass and left the fourth 

area uncovered (white light); the top and other three sides of the aquarium were covered 

with black paper.
398

The use of opaque screens with a traditional aquarium allowed 

experimenters to modify their enclosure easily, maintaining a consistent environment 

while changing lighting variables.  The stage aquarium, tin trough, and modified 

aquarium were the most common apparatuses used in tropism research. These enclosures 

became the standard equipment for tropism studies. Simple but effective enclosures were 

important for controlling research conditions, but by far the most closely monitored, and 

most frequently shifting experimental technology was the light source utilized to produce 

experimental stimuli.    

Lighting Technology  

 The use of artificial lighting technologies expanded rapidly in the first decade of 

the twentieth century.  Researchers incorporated new lighting technologies that allowed 

them to vary light intensity, more tightly control lighting conditions, and to research any 

time of day (or night). A wide variety of artificial lighting caused many investigators to 

worry that light sources were not being reported correctly and that experiments could not 

be repeated with similar results. But new tools that measured UV spectrums, heat, and 

light intensity allowed experimentalists to quantify lighting for standardization and 

experimental replication. With the introduction of new lighting technologies, researchers 

were also forced to question the “natural” reactions of their subjects under experimental 
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conditions which they would not commonly encounter in their initial aquatic 

environments. Concerns about calibrating stimuli for experimental purposes and the 

“naturalness” of technologically became built into the experimental process. 

Tropism researchers most commonly experimented with gas burners, carbon-arc 

lamps, and Nernst glowers. The gas burner, specifically the Welsbach burner, was one of 

the first artificial lighting technologies used in tropism studies.  Baron Carl von Auer 

Welsbach invented the Welsbach burner in 1885 and slowly perfected the design to emit 

brighter, whiter light over the course of the next four years.
399

  The Franklin Institute 

praised Baron Welsbach and the Welsbach Light Company for “putting a thoroughly 

practicable mantle on the market.”
400

 Davenport and Cannon, Yerkes, and Towle all 

worked with Welsbach burners. Yerkes explained that different intensities of light could 

be obtained by either reducing the gas or moving the instrument (he chose to move the 

burner).
401

 The Welsbach was a convenient light source, but it did not produce a high 

intensity light, nor was it particularly similar to sunlight. While the burner consistently 

produced light and was easily operated, by 1905 tropism researchers had decidedly 

turned away from them in favor of carbon- arc lamps and Nernst glowers.  

The carbon arc-lamp was a popular choice for researchers investigating the effect 

of intense light on behavior.  While the carbon arc-lamp was invented long before the 

Welsbach burner, it was not until 1890 that a more efficient and cost-effective design was 

produced in the United States. They produced light through the application of an electric 

arc between two carbon electrodes. Arc-lamps produced a large amount of UV light, 
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especially useful for the study of spectrum differences in phototropism. Loeb and 

Wasteneys used them to test the effects of different spectrums on Eudendrium.
402

 Pearl 

and Cole studied the effects of intense light on phototropic responses in a multitude of 

organisms with arc-lamps.
403

 But these lighting sources also had drawbacks- they were so 

bright that they could cause eye problems in people operating them, and extremely 

intense arc lamps could give users sun burns.
404

 In addition, they proved costly because 

of a short life span (8-16 hours). Another light source, the Nernst glower, had more 

power than the Welsbach burner and a longer lifespan than the arc lamp; it was to this 

lighting source that many researchers eventually turned.  

Nernst glowers came upon the American research community later than burners 

and arc lamps; they were not introduced to the United States until 1898 and production 

stabilized in 1901. The light source worked similarly to an arc lamp or incandescent bulb, 

but it did not require a vacuum to produce light. Instead, electricity was conducted 

through a ceramic mixture of zirconium oxide heated to incandescence. The light 

produced was softer than the arc-lamp and was thought to be closer to natural sunlight. 

Loeb chose Nernst glowers for several experiments and S.O. Mast stated that of all 

artificial light sources, he found that “The Nernst single glower lamp was the… most 

satisfactory source of light for all experiments, both quantitative and qualitative, 

providing the intensity required was not great.”
405

 The ceramic glower was long lasting 

and provided softer light, but it had a downside: it required a separate heating filament to 
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prepare the ceramic to conduct electricity on its own. Even with this downside, the Nernst 

glower became very popular in tropism studies.  

Artificial lighting technologies did not immediately produce lighting conditions 

perfect for studying tropic behaviors; they often required additional technological fixes to 

focus and temper their rays.  The most common of these technologies was a maze of 

mirrors meant to fix the point of the light toward a specific location.  

 

 

Figure 42 Jacques Loeb's diagram of his experimental aquarium. A and B represent the initial light, M 

represent mirrors and R and R1 represent the openings in black paper through which the light is directed. 

Forced Movements, 107. 

 

 In addition to mirrors, researchers tried to lessen the impact of the heat given off by 

artificial lights.  When using artificial light (and especially the intense carbon-arc lamps), 

experimenters placed a thin aquarium filled with alum between the light source and the 

experimental enclosure to absorb electrical heat. In many experiments, researchers sought 

to ascertain behavioral differences to multiple light intensities, but attaining and 

maintaining consistently graded light intensities, both in a single experiment and through 
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the course of multiple studies, proved difficult. For this purpose, Robert Yerkes built his 

“light grader.”  

Yerkes first described his light grader, built to provide researchers with “a band of 

light regularly graded,” in his 1902 work on light and heat reactions of Daphnia pulex. 

The grader was comprised of two light sources passed through alum aquariums, 

contained by black fabric, and reflected by mirrors, to produce a graded light band 

focused directly onto the experimental enclosure, usually located on a stage in a stage 

aquarium.  

 

 

Figure 43 Yerkes’ original light grader. The two light sources are at the top of the diagram. You can see all 

of the implements utilized to alter artificial light, including mirrors (m), alum (a), and black cloth (d). The 

Mark Anniversary Volume, 363. 

 

S.O. Mast utilized a light grader modified to suit the conditions of the experiments” in his 

experiment with plants in 1911.
406

 Victor Shelford and C.F. Phipps created self-built light 
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graders for their work, both pointing to Yerkes and Mast’s designs as inspiration and 

blueprint. 

Jacques Loeb’s insistence on a heavily quantified study of behavior led to his 

uptake of artificial lighting technologies.  Although Loeb performed his earliest and 

seemingly rudest experiments with direct and diffused sunlight, he quickly switched to 

technologically produced stimuli from multiple sources, including gas burners, carbon arc 

lamps, and Nernst glowers. Loeb led the way in quantifying light intensity in the 

experimental process. He did this by bringing in photometers to measure the intensity of 

his lighting sources, utilizing thermopiles to measure the heat given off by them, and 

spectroscopes to measure wavelengths and therefore the exact “color” of glass being 

utilized in preference experiments. In Mast’s Light and Lower Organisms he highlights 

the importance of quantifying stimuli because “in experiments on the effect of colored 

light on organisms it is therefore essential to know what sort of light is being used as a 

stimulating agent; many results are unreliable because this was not known, or at least is 

not recorded.”
407

  

As Loeb and other researchers focused on external stimuli analysis increasingly 

relied on testing technologies to quantify stimuli, their results took a similar turn. Loeb’s 

results pages became increasingly graph based. [Figure 7] Large tables outlined light 

intensity, water temperature, chemical makeup of the water, and duration of stimulus 

exposure. His results became increasingly numerical in nature; researchers seeking to 

replicate his work could duplicate the experimental variables via these tables. Regardless 

of the experimental organism, the exact experimental set-up could be reproduced with the 

quantified information in Loebs’ results tables.  While Jennings focused on the internal 
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workings of individual specimens, Loeb’s work reflected his reliance on aggregate data 

and quantifying external stimuli.  Loeb’s uptake of lighting technologies helped him 

realize his ultimate goal of quantifying the study of animal behavior. 

Architecture 

The use of natural sunlight in tropism research initially declined with the 

introduction of artificial lighting technologies.  Researchers quantifying stimuli found it 

difficult to work with direct sunlight for more than a few hours a day. The shifting angles 

of the sun’s rays, the inability to work on overcast days, and the possibility that other 

factors were creating uncontrollable variables made natural sunlight an unreliable light 

source. Davenport and Cannon criticized J. Oltmann’s conclusions because he failed to 

properly record the angle of the sun. Davenport and Cannon claimed that Oltmann’s 

findings were insufficient because, “so far as the data go, there might well have been, in 

this case, a movement in the direction of the sun's rays.”
408

 After Loeb began 

experimenting with artificial light sources in the laboratory, he rarely used sunlight again 

in his research, instead choosing to work with quantifiable and universally reproducible 

light sources. But the introduction of artificial lighting in the laboratory did not make 

natural light obsolete. In fact, natural sunlight became a sort of control for testing animal 

behavior in the laboratory.  

 The use of artificial lighting technologies to study animal behavior caused some 

researchers to question the results as artificial and the behavior as merely laboratory 

based. In1918, W.J. Crozier, Loeb’s student and a researcher at the Bermuda Biological 

Station, enumerated arguments against Loeb’s universal understanding of tropisms.  

Crozier states that one argument against Loeb was that his results were “laboratory 
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product[s].” Crozier immediately counters this argument by stating it is “quite beside the 

point.”
409

 It is true that to Loeb, this criticism was “beside the point”; Loeb was interested 

in understanding and controlling the tropic responses of organisms, but he was not 

invested in the finding the deep seated causes of these reactions. But other researchers, 

including Crozier, might have taken this argument seriously.  Although some might see 

Crozier’s “beside the point” comment as indicating his disinterest in pursuing questions 

of laboratory production of behavior, his process of testing Loeb’s findings suggests 

something different. Unlike other researchers that tested results by closely following the 

original experimental procedure, Crozier changed one thing about Loeb’s research: he 

tested them with direct and diffused sunlight.
410

   

After the introduction of artificial lighting technologies, researchers mostly used 

natural sunlight in tropism studies in a comparative capacity. Crozier was not the only 

researcher to turn to natural sunlight when testing tropic results. S.O. Mast often exposed 

organisms to multiple sources of light, including sunlight. In his research on the 

paramecium stentor, he worked with a gas burner, incandescent bulbs, a carbon arc lamp, 

sunlight (direct and diffused), and a Nernst glower.
411

 Elizabeth Towle compared 

reactions of organisms to light from a Welsbach burner and both diffused and direct 

sunlight. Crozier placed organisms in “diffused light from a north window” at the 

                                                      
409

 Crozier and Arey, “On the Significance of the reaction,” 487. 
410

 The exception is his use of natural light is his challenge of the Bunsen-Roscoe law while studying 

holothurians (sea cucumbers). The experiment requires two beams of varying intensities. For this 

experiment, Crozier utilized incandescent bulbs. W. J. Crozier, “The behavior of holothurians in balanced 

illumination” American Journal of Physiology 43:4 (July 1917): 512. In another experiment with 

holothurians, Crozier utilizes both sunlight and a tungsten bulb. He only utilized low-intensity bulbs with 

sea cucumbers because they are incredibly sensitive to illumination and quickly expire is overly exposed to 

light. W.J. Crozier, “The illumination of a holothurian by light” American Journal of Physiology 36:1 

(Dec. 1914): 8-21. 
411

 Mast, “Light reactions in lower organisms,”362. Mast utilized direct and diffused sunlight in many 

studies. See  Mast, “Reactions of the light of larval ascidians,” 154; Mast, Light and the Behavior of 

Organisms, 150.  



224 

 

Bermuda Biological Station.
412

  Mast, Crozier, and Towle all included sunlight in their 

experiments without sacrificing quantitative methods; instead, they fit the use of natural 

sunlight into the growing technologized field with architectural and technological 

changes.  

As tropism studies became consistently technologized, most researchers moved 

their studies to dark rooms.  Researchers that sought to control and quantify external 

stimuli sought, not only to quantify their light sources, but to eliminate ambient light 

contamination during the experimental process. Some researchers placed one layer of 

black paper around their enclosures, and another layer of black fabric around the entire 

experimental system to block ambient light, but this process was time, energy, and 

material consuming with mixed results.  The more popular option was the movement of 

tropism studies from the open lab rooms to dark rooms.  Photographic darkrooms allowed 

researchers to diminish ambient light, while using mirrors and minimal black fabric 

scrims to direct light stimuli. Crozier utilized dark rooms in his research with sea 

cucumbers, an organism with such intense light responses that he kept them in the dark -

room to prevent ill effects from low level ambient light. Crozier exposed the cucumbers 

to light “by admitting sunlight, or light from a 40 c.p. tungsten filament, through a 

diaphram into a blackened box containing the holothurians in a flat-sided glass 

aquarium.”
413

 Researchers did not have to give up the use of sunlight if they moved into 

dark rooms. Many dark rooms were set up with heliostats to direct sunlight into the room. 

The heliostat could go unused until needed. If a researcher chose to work with sunlight in 
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a comparative study, they could easily direct the light into the required area without 

losing effectiveness because of light saturation.  

Marine stations expanded dark rooms in the first decades of the twentieth century. 

Photographic use of these rooms rose during these decades, as well as tropic and 

bioluminescent experimentation. Between 1917 and 1929, The Hopkins Marine 

Laboratory at Stanford University expanded to include six specialty darkrooms: a 

photographic darkroom, three for spectroscopy, one reserved for polarimetry and 

photometry, and one darkroom with a heliostat that drew its light directly from the roof of 

the building.
414

 Most aquatic invertebrates exhibit some tropic behavior, either during the 

first moments of their life or as an evolved feeding response.  The focus on these 

behaviors at marine stations meant a physical change to the laboratory structure: as 

behaviorists began to routinely test tropic responses and animal behavior became more 

established at these laboratories, more dark rooms were required. 

The Loeb-Jennings Legacy 

The Loeb-Jennings debate was as much about experimental procedure as 

theoretical beliefs regarding tropic animal behavior. Jacques Loeb and Herbert Spencer 

Jennings each approached the study of animal behavior with a particular theoretical 

agenda. Loeb ascribed to the mechanical understanding of animal behavior and scorned 

what he believed were anthropomorphized descriptions of tropism; Jennings approached 

it from an evolutionary belief in behavior, placing particular emphasis on an individual 

organism’s adaptive mechanisms in a given situation, of which light exposure was only 

one of many at any given moment. Yet these two seemingly conflicting theoretical 
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outlooks need not have created the enmity between Loeb and Jennings that was evinced 

as late as 1917 in Loeb’s writings.  In describing Jennings’ view on “trial and error,” 

Loeb states  

Jennings has maintained that all reactions of unicellular organisms are due to 

"fright" or "avoiding reactions” and it seems as if at one time he even intended to 

deny the existence of tropisms and to maintain that all animals were influenced 

only by rapidly changing intensities of light. It is needless to discuss such an idea 

(which he probably no longer holds) in view of the contents of the preceding 

chapters. He seems, however, to cling to it as far as asymmetrical unicellular 

organisms are concerned. 

 

Loeb’s language in discussing Jennings’ theories is that of dismissal. The use of the term 

“cling” in the final sentence portrays Jennings as childishly stubborn and highlights 

Loeb’s annoyance at this continued argument. In a footnote, Loeb explains that the use of 

“fright reaction” by “an anthropomorphic biologist” is “a term that not only assumes the 

existence of sensations without any adequate proof, but removes the problem from the 

field of quantitative experimentation.”
415

 But Loeb does not disagree with Jennings only 

because of his “anthropomorphic” theories; instead, theoretical concerns were mirrored 

by different experimental procedures. It was this that fed the “debate” between Loeb and 

Jennings. 

 In Loeb’s Forced Movements, he discredits Jennings’ results based on flawed 

experimental process. Jennings’ “trial and error” theory of animal behavior is accepted by 

Loeb in respect to paramecium, which Loeb admits have asymmetrical cilia and therefore 

may not fit his theory. But, Loeb states that when Jennings sought to expand this theory 

to Euglena he “goes too far.” Loeb’s tropism theory had been tested on Euglena and he 

sought to find the reason that Jennings’ results disagree strongly with his own. He decried 
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Jennings’ lighting set up when testing phototropic reactions in Euglena.
416

 Loeb denied 

Jennings and Mast’s previous work on the relative efficiency of the spectrum on causing 

phototropic responses. He credited Mast with remedying their mistakes with a more 

effective experimental procedure and states that “Mast’s results with this [new] method” 

coincide with Loeb and Wasterney’s and therefore may be taken as support for the 

applicability of the Bunsen-Roscoe law to tropism behavior.
417

  

More interesting than his disagreement with Jennings’ results is when he actually 

agrees with them. One might be tempted to think that Loeb’s dismissal of Jennings as 

“anthropomorphic” would allow him to dismiss all of his scientific claims on principal, 

but this was not the case. Loeb occasionally found Jennings’ research acceptable 

(although never in direct opposition to his own findings). In the case of chemical 

exposure changing phototropic responses, Loeb sides with Jennings’ finding against 

Pfeffer after Lillie, saying pronounced that Jennings’ process gave “incomparably more 

delicate results than Pfeffer’s.”
418

  Loeb also utilized Jennings’ findings on paramecium 

and geotropism.
419

 So, what are we to make of the debate between Loeb and Jennings? 

How and why did Loeb so vehemently disagree with Jennings on some findings but not 

others?  

The different experimental systems of Loeb and Jennings allowed Loeb to 

disagree with Jennings on the basis of experimental procedure. In her discussion of the 

von Sachs-Darwin debate, Soraya de Chadarevian states that, “arguments about the 

quality of experiments and the skill of experimenters are characteristic of scientific 
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controversies.”
420

 In the case of the Loeb-Jennings debate, separate theoretical beliefs 

about animal behavior lead to differing emphases on experimental variables; these 

different experimental variables made it easy to attack each result and sustain a “debate.” 

Jennings concentrated on internal conditions of the experimental organism. When he 

bothered to record the external stimuli he utilized in his experiments, he referred to them 

as basic components, stating he used “incandescent bulbs” with no indications of candle 

power or type of bulb. Loeb increasingly quantified his external stimuli, highlighting 

different sources of light and intensities. He was less concerned with the internal 

conditions of his experimental subjects, rarely explaining where they were collected, their 

age, or their condition after collection. The differences in experimental procedure 

allowed Loeb to openly, and vehemently disagree with Jennings’ conclusions. Differing 

theoretical theories regarding tropism findings lasted long after Jennings left the field to 

take up the study of protozoan genetics, but the open debate between these two 

theoretical sides did not continue.  

The next generation of tropism studies were performed by a group of researchers 

with similar theoretical convictions as their mentors, but who melded experimental 

procedures in a bid to form a more cohesive experimental process for the field.  The two 

most prominent tropism researchers after Loeb and Jennings were W.J. Crozier and S.O. 

Mast. W.J. Crozier studied under Loeb and is credited as a “devoted follower” of Loeb. 

Historians have called attention to Crozier’s role in carrying Loeb’s mechanical 

understandings of psychological phenomenon to his most famous student, B.F. 
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Skinner.
421

  S.O. Mast was Jennings’ student and his earliest tropism experiments were 

performed in tandem with Jennings. In Mast’s 1911 work Light and the Behavior of 

Lower Organisms, Mast clearly uses Jennings research as a starting point for 

investigating tropic behavior, and challenges research that disagrees with those results. In 

most instances, Mast finds that his “observations confirm the conclusions of Jennings.”
422

 

Both Mast and Crozier continued the tropism research of their mentors, but did not 

continue the debate named for them.  

 Unlike their mentors, Crozier and Mast utilized a similar experimental set-up that 

combined both quantitative and qualitative methods in the study of animal behavior.  

Mast recorded the internal conditions of his subjects, comparing multiple species and 

highlighting handling and maintenance conditions in his research.  In addition to this, he 

adopted artificial lighting technologies and the technological additions required for highly 

quantifiable work. Crozier remained concerned with the quantifiable external stimuli his 

mentor considered important, but paid extensive attention to varying experimental 

specimens, reporting capture and maintenance information, and varying lighting sources. 

Both men found reasons to agree with their mentors’ results, but they also sought to add 

nuance to their experiments and sometimes challenged the results of those researchers. 

Mast’s later research challenged previous work performed with Jennings, and Crozier 

reported tropism reactions in sea cucumbers that added nuance to Loeb’s most pet theory: 

the application of the Bunsen-Roscoe law of tropism responses.
423

  Interestingly, Loeb 

finds little fault with Mast and barely mentions Crozier in his 1917 Forced Movements. 
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Loeb only questions Mast’s previous work with Jennings, work that was decidedly less 

quantitative. Instead, Loeb was still attacking Jennings’ earlier research but finding little 

fault with those continuing his research with new experimental tools.  

 The research methods utilized by Crozier and Mast, with attention to both internal 

conditions and external stimuli, were widespread by 1917. While it did not erase the 

theoretical differences in those studying tropism behaviors, it did minimize the type of 

easy dismissal of results inherent in the Loeb-Jennings debate. Tropism experiments, like 

the one set up by Cora Reeves to analyze wave length discrimination in fish in 1919, 

demonstrate the multiple experimental variables tropism researchers considered 

important following the Loeb-Jennings debate. Reeves outlined six requirements for the 

optimum experimental set-up for a study of light reactions: 1. An experimental aquarium 

that the fish could continuously live in so they would not have to be moved and risk 

mishandling or fear response 2. An experimental procedure that wouldn’t arose fear 3. 

Two large stimulus patches of mixed light intensity of “restricted and known wave-

length.” 4. Patches for offering stimuli 5. Constant conditions for the aqueous 

environment of the fishes and 6. An experimental procedure that could allow for equation 

of light to behavior.
424

 Reeves’ final experimental system is a perfect example of the 

combination of the experimental concerns put forward by both Loeb and Jennings.  
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Figure 44 Cora Reeves' experimental aquarium combined concerns about internal conditions and external 

stimuli in one system. Reeves, "Discrimination of Light," 6. 

 

 Reeves was part of a larger generation of animal behavior researchers that combined 

Loeb and Jennings’ concerns to create a basic experimental structure for tropism studies 

that took both internal conditions and external stimuli into account.  

 We can see a parallel between the von Sachs-Darwin and Loeb-Jennings debates.  

Variations in the experimental process fueled theoretical debates. But unlike the von 

Sachs-Darwin debate, which ended when laboratory work overcame that of country 

house experimentation in scientific credibility, the Loeb-Jennings debate did not end with 

a clear winner. Philip Pauly suggests that Jennings “won” the debate regarding tropism 
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research, but that interest in invertebrate behavior dropped off after 1915, and therefore it 

was an empty victory. Skinner, in turn, revitalized Loeb’s mechanistic theories for 

behavior later in the century.
425

  Pauly’s tracing of outcomes is technically correct, but 

fails to highlight the lasting effects of the debate on biology and work at marine stations.  

Reductionist studies of invertebrate animal behavior did decrease in the second quarter of 

the twentieth century, but this does not mean that the experimental process honed during 

the Loeb- Jennings debate was forgotten. While tropic reactions in invertebrates no 

longer stood at the center of a large debate regarding the nature of all animal behavior, all 

research on invertebrates did not cease. Detailing a newly identified organism’s 

behavioral responses to light became route. The post-cell theory, post-Darwin biology 

community that easily transferred tropism theory from plants to invertebrates did the 

same to vertebrates. Cora Reeves and Gertrude Marean White cited research on plants 

and protozoa in their studies on light reactions in fishes.
426

 Investigators continued to pay 

attention to phototropic reactions in aquatic organisms (both vertebrate and invertebrate), 

and the experimental systems developed during the Loeb-Jennings debate remained an 

integral part of phototropism studies.    

 Researchers at marine stations utilized multiple artificial lighting technologies by 

1930, when the Marine Biological Laboratory received complimentary sun lamps from 

General Electric. Tropism researchers consistently brought new light technologies into 

the laboratory. The new sun lamp was merely the most recent in a long line of artificial 

lighting technologies investigators deemed useful for physiology and behavior studies. 

The experimental process that emerged from the Loeb-Jennings debate was both 
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technologically dependent and equally technologically malleable.  As long as an 

investigator utilized supplemental technology, such as photometers, black paper, mirrors, 

and light graders, and reported handling and maintenance procedures for experimental 

organisms, they could assure a scientific conversation regardless of theoretical leanings.  

 Marine stations were the optimal environment for the Loeb-Jennings debate to 

play out. Researchers were not confined by rigid architecture and organismal availability- 

the wide range of organisms and the malleability of the spaces allowed the debate to 

flourish. Unlike the original Von Sachs- Darwin debate, the argument did not center on 

the difference between modern laboratory versus home experimentation, but instead on 

experimental design. Loeb and Jennings worked in the same laboratory spaces, but 

developed significantly different procedures for testing trophic reactions.  
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Conclusion 

 On July 16, 1927 at 2pm, Charles Benedict Davenport and Thomas Hunt Morgan 

met at Penn Station in New York City to board a train. At 3:20pm they boarded the train 

that would take them down the Eastern seaboard to Key West, where they would board 

the Anton Dorhn to be ferried to Loggerhead Key in the Dry Tortugas. On the way, these 

two well-known figures in American biology shared meals, a sleeping car, and 

conversations. Davenport and Morgan spent 10 days collecting, observing, and 

researching at the Carnegie Institution of Washington’s Tortugas marine station and 

returned to Key West on July 30
th

 to make the long trip back to New York.
427

 In total, 

they spent nearly three weeks together and after the excursion, Davenport made plans to 

go to Woods Hole to do research and to stay with Morgan and his family for a night on 

the way.
428

  

 At the time, both Davenport and Morgan were well-established keystones of the 

American biological community and had a long history with marine stations. Charles 

Davenport studied with E.L. Mark at Harvard University and visited marine stations to do 

research throughout his graduate work (see Chapter 5). After he earned his doctorate, he 

established his own research station, The Cold Spring Harbor Laboratory in New York. 

Davenport’s station is perhaps best-known during this period for its emphasis on 

eugenics, but it facilitated a wide-range of life science research.
429

 T.H. Morgan, who 

studied with W.K. Brooks at Johns Hopkins, also did research at marine stations 
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throughout his graduate and professional career (See Chapters 3, 4, and 5). In addition to 

working there himself, as a professor of biology, first at Bryn Mawr and then at 

Columbia, Morgan brought his students to study at these institutions as well (See 

Elizabeth Towle’s work in Chapter 5).
430

 Both Davenport and Morgan weighed in during 

the debate about the placement of the Tortugas laboratory; Davenport wanted a 

laboratory that gave access to a fuller picture of the American Atlantic and organismal 

migration along the coast- Morgan wanted a station that facilitated teaching and the easy 

movement of both teachers and students.   

 Davenport and Morgan’s visit to the Tortugas station highlights the strength and 

importance of the liquid laboratory network to both American and marine biology at the 

turn of the twentieth century.  While there were certainly overlaps in their work, by 1927, 

Davenport and Morgan were interested in different areas of the life sciences. Davenport 

often provided Morgan with research materials from Cold Spring Harbor, but they were 

colleagues and not collaborators.
431

 As stated above, they also believed that marine 

stations were important for different reasons.  However, liquid laboratories functioned as 

nodes that brought together biologists from diverse areas of the life sciences. Traveling to 

the Tortugas allowed these colleagues to interact over a substantial period of time both in 

and out of the laboratory.  The ability to perform individual experimentation and 

observation in a collective environment allowed researchers with dissimilar goals to 

interact and exchange information. These interactions strengthened the identity of 

American biology and centered that identity in these marine locations.  
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 The journey to the Tortugas station was an important episode in American 

biology, but it also represents a turning point in the history of marine stations. Alfred 

Goldsborough Mayer died in 1922, and by 1927 the Carnegie Institution was questioning 

the importance of maintaining the Tortugas station. The Institution provided funding for 

researchers interested in visiting any station in the United States or Europe, and they 

maintained the Cold Spring Harbor laboratory as well. Within the guiding hand of Mayer, 

and his vision of the station, it foundered. Carnegie asked major figures in American 

biology to visit the station and report on its importance to the biological community.
432

 

While no invitation or response survives from Morgan or Davenport, it is possible that 

this was the impetus for their trip.  

 By the late 20s and early 1930s, the marine station network was changing. These 

changes can be traced to two sources: WWI and the growth of biochemistry. During the 

First World War, all marine stations turned their attention to producing information that 

would support the American war effort. The American navy conscripted the boats from 

each station and researchers worked for the war effort on land. Alfred Goldsborough 

Mayer sought to contribute by finding the cause of shell shock;
433

 the Puget Sound 

Biological Laboratory in Washington began studying and harvesting sphagnum moss, 

which the Red Cross used for bandages throughout the war.
434

 The change to private and 

university stations during the war was marked, but there was a larger shift at fisheries 

stations that lasted long after the war concluded.  
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 During the war, the government began to slowly shift the research at their marine 

stations from the general life sciences to a more distinct focus on experimenting on fish 

stocks and gathering statistical information on them. In 1917, Hugh Smith, the 

Commissioner of Fishes, stated in his yearly report that 

 In biological work the year has been marked by substantial readjustments. These 

 have arisen partially from enlarged responsibilities and opportunities coming 

 from an increase in personnel, partly from the fact that some of the investigations 

 have progressed to a stage justifying or requiring a rearrangement of plans, and 

 partly from the conditions of national exigency. On the whole, the changes and 

 the new undertakings have the effect of concentrating the efforts of the Bureau 

 upon problems of most immediate practical importance.
435

 

 

Woods Hole began to focus on rearing and stocking lobster throughout the Northeast and 

Beaufort turned its attention more fully to farming black terrapin and understanding 

wood-boring marine worms in order to protect American ships from destruction. No 

longer did they send open invitations to universities and researchers, but instead started to 

train their own researchers in specific fisheries methods. In 1926, the Bureau of Fisheries 

announced that, “A review of the progress made in fishery investigations during recent 

years indicates that a distinct branch of scientific study that may be termed “fishery 

science” has been developed.” The Fish Commissioner described it as a hybrid science, 

combining zoology, geography, ichthyology, marine ecology, and oceanography with the 

methods of biometrics and vital statistics.
436

 The Bureau of Fisheries diverted much of its 

funding to this new scientific discipline and closed its laboratories to researchers not 

performing specific work on fisheries concerns, effectively breaking ties with much of 

the rest of the network. 
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 In addition to the impact of WWI, the growth of new life science disciplines, 

especially chemistry, also changed the structure of liquid laboratories. Around 1920, 

chemists began to flock to marine stations for the same reasons that other life scientists 

had done so before them. But unlike the previous group, chemists required built in 

laboratory equipment to keep themselves, and other researchers, safe. Fume hoods and 

shake-resistant tables, and emergency showers and sinks were common in chemistry 

laboratories, and these were required at marine stations if chemists became regular 

visitors.
437

  Laboratories with the budget and space to make these changes restructured 

their spaces; specialty chemistry laboratories were added at stations from Hopkins 

Marine Station to the Marine Biological Laboratory. The open, non-specific laboratory 

space that had made these stations so versatile gave way to more specialized structures. 

While each laboratory continued to cater to a wide variety of researchers, they shared 

research space only with others interested in the same scientific questions; 

interdisciplinary interactions only occurred in shared spaces such as dining halls and 

dorms. The Tortugas station had the most open architectural structure of any marine 

station and was still located in difficult location. Unable to make the shift to this more 

modern type of marine station, the Carnegie Institution decided to close it in 1932 and 

use its resources to support research at other locations.
438

  

 The network of liquid laboratories changed significantly in the 1930s; research at 

stations became highly specific and centered around disciplinary studies. Marine stations 

are no longer at the center of American biology. Most scientists now build their research 

programs around model organisms that are easily reared and maintained in terrestrial 
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laboratories; the majority of biological researchers are no longer expected to visit marine 

stations yearly to work with available specimens. Some marine species have continued to 

be useful to mainstream biological investigation. The zebrafish and platyfish are both 

used in cancer research; dogfish, sea urchin, and mummichogs are still considered 

integral to studying embryological development.
439

  Other species, such as jellyfish, have 

been replaced by systems that have proved easier to rear and maintain in the laboratory. 

Neurophysiological experimentation with the squid giant axon has overtaken that with 

jellyfish, not because it is easier to keep squid alive in captivity (it is actually as difficult 

or harder), but because squid are plentiful in many locations and the axon can be excised 

and kept fresh for shipping, meaning that researchers need not worry about building an 

artificial environment in which to keep their subjects.
440

  

 However, marine stations have become integral to the identity of marine biology. 

In the 1950s, scientists sought to clearly define marine biology to capitalize on the large 

influx of research money from the government. Instead of focusing on consistent 

methodologies, the field became defined by “a geographic space and one that explicitly 

espoused a pluralistic methodological approach that could satisfy the diverse group of 

scientists that found their identity through the study of marine life.”
441

 Marine stations 

allow multiple disciplines to perform research on a variety of marine environments; 
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together with ship-based activities they make up the core of marine biological research 

today.
442

  

 More research into marine stations can shed light on the transition from general 

life sciences to the rise of marine biology at these stations from the 1930s to the present. 

While the nature of the network changed throughout this period, marine stations still 

continue to operate as a large information-sharing network. There are over 120 

laboratories in the National Association of Marine Laboratories. Organized in the 1980s, 

the Association strives to promote research, conservation, public outreach, and “the 

efficient exchange of information, constructive cooperation, and productive coordination 

among NAML member institutions and across regional associations.”
443

  The NAML 

continues the long tradition of linking the marine network through open information 

sharing. Working at the water’s edge continues to be important to the process of 

biological research and to the growth of our scientific and cultural construction of the 

marine environment.
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