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Empirical Essays in The Entertainment and Hospitality industries

Abstract
In the first part of the dissertation, we empirically examine the impact of expanded product variety due to the
adoption of the Internet on demand concentration, taking endogeneity into consideration. We analyze two
large data sets from the movie rental industry at both movie-level and consumer-level. We find that product
variety diversifies the demand for niches more significantly than for hits in absolute terms (e.g., the top/
bottom 1,000 titles). However, using relative terms (e.g., the top/bottom 10% of titles) to dynamically adjust
for the changing product variety, we find that product variety increases the demand for the hits and reduces
the demand for the niches. We further find that product variety increases monthly Gini Coefficients, a
measure of demand concentration. We propose that new products appear much faster than consumers
discover them. Finally, we find no evidence that niche titles satisfy consumer tastes any better than popular
titles and that a small number of heavy users are more likely to venture into niches than light users.

In the second part of the dissertation, we analyze a large, detailed operational data set from a restaurant chain
to shed new light on how workload (defined as the hourly average number of diners assigned to a server)
affects servers' performance (measured as hourly sales). We use an exogenous shock - implementation of a
labor scheduling software - to disentangle the endogeneity between demand and supply in this setting. We
find that when the overall workload is low, an increase in the workload leads to higher server performance.
However, there is a saturation point after which any further increase in the workload leads to degradation of
performance. In the focal restaurant chain we find that this saturation point is generally not reached and,
counter-intuitively, the chain can reduce the staffing level and achieve both significantly higher sales (an
estimated 35% increase) and lower labor costs (an estimated 20% decrease).
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ABSTRACT

EMPIRICAL ESSAYS IN THE ENTERTAINMENT AND

HOSPITALITY INDUSTRIES

Fangyun Tom Tan

Lorin Hitt

In the first part of the dissertation, we empirically examine the impact of expanded

product variety due to the adoption of the Internet on demand concentration, taking endo-

geneity into consideration. We analyze two large data sets from the movie rental industry at

both movie-level and consumer-level. We find that product variety diversifies the demand

for niches more significantly than for hits in absolute terms (e.g., the top/bottom 1,000

titles). However, using relative terms (e.g., the top/bottom 10% of titles) to dynamically

adjust for the changing product variety, we find that product variety increases the demand

for the hits and reduces the demand for the niches. We further find that product variety

increases monthly Gini Coefficients, a measure of demand concentration. We propose that

new products appear much faster than consumers discover them. Finally, we find no ev-

idence that niche titles satisfy consumer tastes any better than popular titles and that a

small number of heavy users are more likely to venture into niches than light users.

In the second part of the dissertation, we analyze a large, detailed operational data set

from a restaurant chain to shed new light on how workload (defined as the hourly average

number of diners assigned to a server) affects servers’ performance (measured as hourly

sales). We use an exogenous shock - implementation of a labor scheduling software - to

disentangle the endogeneity between demand and supply in this setting. We find that when

the overall workload is low, an increase in the workload leads to higher server performance.

However, there is a saturation point after which any further increase in the workload leads to

degradation of performance. In the focal restaurant chain we find that this saturation point

is generally not reached and, counter-intuitively, the chain can reduce the staffing level and

achieve both significantly higher sales (an estimated 35% increase) and lower labor costs

(an estimated 20% decrease).
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Chapter 1

Introduction

The Entertainment and Hospitality industries have substantial impact on people’s daily

life. For example, the Entertainment industry in the U.S. contributes to approximately

11.12% of GDP and 8.49% of employment (WIPO, 2003). Restaurants alone, as part of

the hospitality industry, employ approximately 10% of the workforce in the United States,

second only to the military (Hickok and Lazarus, 2003).

Despite of the large economic and social impact of these two industries, they rarely

attract the attention of Operations Management researchers. However, in my opinion,

these two industries offer a number of opportunities for process improvement. For example,

the productivity in restaurants is only half as much as the manufacturing industries (Mill,

2004). Moreover, more operational data from these industries start to become available for

empirical researchers. The goal of this dissertation is to use operational data and advance

our understanding of the new business challenges in today’s Entertainment and Hospitality

industries.

The dissertation is structured as follows. In Chapter 2, we use two novel data sets

from the movie rental industries to understand the impact of expanded product variety on

demand concentration. In Chapter 3 we use a large operational data from a restaurant

chain to shed new light on how workload affects servers’ performance, taking endogeneity

into consideration.

Multiple studies suggested that expanding product variety due to the adoption of the

Internet will satisfy consumers’ increasingly heterogeneous tastes, thus causing the so-called
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Long Tail effect (i.e., increasing demand for niche products). In Chapter 2 we empirically

examine the impact of product variety on demand concentration. We use two large data

sets from the movie rental industry and analyze the data at both movie-level and consumer-

level. We employ multiple measures to understand the changing demand concentration and

incorporate the potential endogeneity of product variety.

Multiple models analyzed in our study consistently suggest that larger product variety

is likely to increase the demand for hits and decrease the demand for niche products. We

propose that new products appear much faster than consumers discover them. Finally, we

find no evidence that niche titles satisfy consumer tastes any better than popular titles and

that a small number of heavy users are more likely to venture into niches than light users.

In order to understand the multi-dimensions of a business, we move from the consumer’s

side in Chapter 2 to the service provider’s side in Chapter 3. Understanding employees’

productivity is an integral part of labor management. Classical Operations Management

studies tended to implicitly assume that servers are homogeneous and independent of their

work environment. In Chapter 3, we examine the effects of workload on employees’ per-

formance, taking endogeneity into consideration. We analyze a large, detailed operational

data from a restaurant chain to shed new light on how workload (defined as the hourly

average number of diners assigned to a server) affects servers’ performance (measured as

hourly sales). We use an exogenous shock - implementation of a labor scheduling soft-

ware - to disentangle the endogeneity between demand and supply in this setting. We find

that when the overall workload is low, an increase in the workload leads to higher server

performance. However, there is a saturation point after which any further increase in the

workload leads to degradation of performance. In the focal restaurant chain we find that

this saturation point is generally not reached and, counter-intuitively, the chain can reduce

the staffing level and achieve both significantly higher sales (an estimated 35% increase)

and lower labor costs (an estimated 20% decrease).
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Chapter 2

Is Tom Cruise Threatened? An

Empirical Study of the Impact of

Product Variety on Demand

Concentration

2.1 Introduction and Related Literature

Chris Anderson, editor-in-chief of Wired Magazine, coined the term “Long Tail effect” (An-

derson, 2004) suggesting that, due to the introduction of the Internet, niche products will

comprise higher and higher market share, while the demand for hit products will continue

to decrease. As a result, he predicted that the old Pareto rule, stating that 20% of all

the products generate 80% of the revenues, will no longer hold: hit movies will constitute

a smaller and smaller proportion of demand. His predictions of the Long Tail effect were

motivated by observations in the media, entertainment and other industries. For example,

Anderson (2006) finds that the top 50 best-selling albums of all time were produced in the

70s and 80s; none of them were recorded in recent years. He also observes that the ratings

of the top TV shows have gradually decreased and that the top show today would not

have ranked among the top ten in 1970. Part of the reason, according to Anderson, is that

3



niche products will better and better satisfy consumer preferences because consumers will

continue to have more and more varying preferences while the Internet will make even the

most obscure products available to the masses.

The potential for the existence of the Long Tail effect is of great importance for product

assortment decisions in a variety of industries, for advertising dollars spent on supporting

this variety, and for supply chain management of these products on the Internet. For

example, Blockbuster stocks 3,000 DVDs per store on average, while 20% of Netflix rental

revenues come from outside the top 3,000 titles (Anderson, 2004). In addition, Ecast, a

digital jukebox company, sold 98% of its 10,000 albums available online at least one track

per album per quarter (Anderson, 2006), while brick-and-mortar music stores only stock a

fraction of this variety. If demand is indeed shifting toward more obscure titles, managers

should ensure that these titles are available and that they are advertised properly. Further,

Anderson explains that the new online recommendation systems help the niche products

quickly find their demand in the market once they are made available. As a result, he

asserts that “the tail of available variety is far longer than we expected”, and that the

combined market share of the niches can outgrow the hits (Anderson, 2006). This comment

about the increasing demand for the niches seems to be consistent with Varian’s opinion

in light of the cheaper technology in the media industry. Specifically, Varian (2006) notes

that this “creative, inexpensive and compelling semiprofessional content available via the

Internet” has an increased demand particularly among young people, so that the salaries of

celebrities, such as Tom Cruise, may decrease. He explains, “It is true that there is only

one Tom Cruise, but it is equally true that there are only 24 hours in a day. The more

time young people spend watching Lonelygirl15, the less time they will have to watch Mr.

Cruise.”

Is popular celebrity Tom Cruise really threatened by Lonelygirl15? Although arguments

and evidence in favor of the Long Tail effect appeared pervasive at first, there are also

indications that hits still drive some markets, and may even become more popular over

time, whereas the rising demand for niches is, at best, overestimated. In particular, some

evidence suggests that new products appear so quickly that consumers have no time to

discover them. Gomes (2006) discloses that at Ecast, the quarterly no-play rate increased

4



from 2% to 12% as product variety has grown. In addition, an even stronger demand for

hits is found in the motion picture industry, where both the number of movies that generate

box-office revenues of over $50 million and their percentage of the total revenues increased

from 14 and 14% in 1998 to 19 and 22% in 2003, respectively (Eliashberg et al., 2006).

Finally, Orlowski (2008) reports on an industry study which discovered that 80% of the

digital song inventory sold no copies at all - and the ‘head’ of the frequency distribution

was far more concentrated than expected. Given this conflicting evidence, whether or not

the Long Tail effect exists remains a hotly debated issue among practitioners.

The Long Tail effect has also recently generated widespread interest in academic circles.

Brynjolfsson et al. (2006, 2010, 2011) present plausible factors that may drive the Long Tail

effect, including both supply-side and the demand-side effects. On the supply side, they

suggest that the Internet reduces the production and distribution costs of niche products,

creating more products available. These products can satisfy consumer’s heterogeneous

needs, thus driving the Long Tail effect. On the demand side, they note that both the

active and the passive search and personalization tools lower the search costs and hence

facilitate finding niche products. Consistent with this view, Cachon et al. (2008) find that

the lowered search costs have market-expansion effect, which encourages firms to enlarge

their assortment. As a result, consumers are more likely to find niche products, thus causing

demand for them to increase. Moreover, Tucker and Zhang (2011) suggest that product

popularity information, such as the number of people who have browsed the product, can

increase the appeal of niche products disproportionately. In addition, Kumar et al. (2011)

find that broadcasting movies on pay-TV can increase the the awareness of unpopular

movies, thus reducing the demand concentration of DVD sales.

However, several studies have shown opposite results of the Long Tail effect. Ghose and

Gu (2006) argue that search costs are even lower for popular products than for niches, which

may limit the Long Tail effect. Hervas-Drane (2009) provides an analytical model to show

that different search processes have mixed impacts on demand concentration. Moreover,

Fleder and Hosanagar (2009) suggest that sales diversity can be reduced by selection-biased

recommendation systems because these systems tend to recommend products with sufficient

historical data (i.e., hits). From a field experiment, Fleder et al. (2009) further find that
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consumers buy a more similar mix of music after receiving recommendations than before.

Dellarocas and Narayan (2007) also find that online consumers are more likely to review

popular products, and therefore, online reviews may exhibit “tall heads” instead of “long

tails”. Bockstedt and Goh (2008) analyze the data of consumer-created custom CDs to

examine whether people tend to bundle the hits or the “ long tail” music and suggest that

managers should sell unbundled information goods to meet the demand from the mainstream

consumer. Elberse and Oberholzer-Gee (2008) find further evidence that online retailing

triggers demand to shift toward the tail of the distribution, although they also find that a

substantive part of demand is concentrated on an even smaller portion of products.

So far, both academic theories and the empirical evidence provide what can probably

be described as conflicting evidence for the existence and the magnitude of the increased

demand for niche products: while there are many anecdotal examples of its presence, there

are fewer than a handful of rigorous and large empirical studies both at the product and

consumer levels. Furthermore, previous research has implicitly assumed that expanding

product variety will satisfy consumer’s increasingly heterogeneous tastes, which causes the

Long Tail (e.g., Brynjolfsson et al. 2006, 2010). Little research has empirically confirmed the

impact of product variety on the demand concentration. For example, the product variety

is the same between online and offline channels in Brynjolfsson et al. (2011), which excludes

the impact of product variety. Tracking weekly video sales from 2000 to 2005, Elberse and

Oberholzer-Gee (2008) define hits as the top percentiles of all the movies across the entire

six years. In other words, they create a static definition of hits for all the movies over a span

of six years, which implicitly excludes the impact of dynamic product variety. In a relevant

study, Hinz et al. (2011) use aggregate video-on-demand data in Germany and study the

effect of product variety on the share of purchased products. Nevertheless, the study does

not examine the demand concentration impact.

Although little research has been done to explicitly examine the impact of product vari-

ety on the demand concentration, whether or not the demand for niche products increases

amid an ever-changing product variety is a fundamental question for decision-makers in

operations, marketing and finance, particularly when they face the prospect of further pen-

etration of the Internet channel, which offers expanding product variety and new recom-
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mendation systems to help manage it.

In this paper we empirically evaluate the impact of product variety on the demand

concentration. We use large data sets from the movie rental industry and report results at

both movie-level and consumer-level. The first data set (Dataset I) contains rental activity

of about 30% of the entire U.S. market from January 2001 to July 2005. The other data

(Dataset II) includes 100 million online ratings of 17,770 movie titles by 480,000 users on

Netflix during the same period of time. The movie rental industry, particularly Netflix, is a

key example in Anderson’s evidence for the Long Tail effect and he primarily refers to the

popularity of products in absolute terms, e.g., the top 100 or the top 1,000 for hits. In his

own words,“number one is still number one, but the sales that go with that are not what they

once were” (Anderson, 2006). Following this example, we first measure movie popularity

in absolute terms. We find that, when movie popularity is measured in absolute terms,

there is only partial evidence to support the Long Tail effect: product variety diversifies the

demand for hits, nevertheless less significantly than for niches .

The above definition of the Long Tail effect and movie popularity is static, which implic-

itly excludes the impact of an increasing product variety. This definition would certainly

reflect product popularity in a channel where product variety is relatively stable and where

all products are consumed, such as in a brick-and-mortar store. However, product vari-

ety has skyrocketed during the Internet age, and more products than ever are not being

discovered by consumers (Brynjolfsson et al., 2003). Such a dramatic increase in product

variety is likely to create demand diversification. For example, given a choice set of only

five movies, people may tend to concentrate their demand on one movie whose popularity

rank is number 1 or equivalently in the top 20%. However, out of a wider choice set of 500

movies, the demand may be concentrated on 100 movies whose popularity ranks in the top

100 or also in the top 20%. This example causes a conflicting definition of hits and niches

amid different sizes of product variety at different points in time. Should we classify the top

20%, which is respectively the top one out of five movies and the top 100 out of 500 movies

as the hits, or should we restrict the label of hits to only the top one movie regardless of

the total variety?

Naturally, when the product variety is large, the demand for any one product tends to
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be smaller than when the product variety is small. Likewise, when the consumer base is

large, learning about new products is faster than when the consumer base is small. In this

case, two competing effects might be observed: 1) consumers discover the obscure products

as they appear and 2) new products appear, possibly so quickly that most consumers have

no time to discover them. Which effect dominates is an empirical question that we aim to

address in this paper. Therefore, we propose a dynamic definition of product popularity

which adjusts for active product variety. The active product variety excludes the titles

that have no current rentals or ratings and therefore reflects the dynamics of both product

variety and consumer base. As one specific case, we use the A-B-C classification, which

traditionally groups products into three classes in inventory management literature (Silver

et al., 1998). In particular, Class A products, which comprise the most popular 10% of

the product variety, usually contribute to the most of the total demand, thus requiring the

highest priority of managerial attention. Class B items, which comprise the products that

rank between top 10% and top 40% of total products, usually account for the rest of the

total demand. Class C products, which are the largest class including the remaining 60%

of all products. Using A-B-C classification not only allows us to account for the dynamic

product variety, but also provides insights to the demand for the “mid-tail” products, which

are not as easy to identify as the “head” and the “long tail” products (Jiang et al., 2011).

We find that an increase of 1,000 new movies per month in the product variety increased

the demand for Class A movies by about 0.51%, whereas it decreased the demand for Class

B movies by 1.67% and for Class C movies by 0.53%. This finding suggests that product

variety intensifies demand concentration, which is also manifested by changes in monthly

Gini coefficients as product variety changes: 1,000 new movies per month may increase

demand inequality by 0.19%. These results are consistent after we take endogeneity of

product variety into consideration.

In order to explain why product variety intensify the demand concentration, we analyze

the data at both movie and consumer level. At the movie-level, we find that the demand

diversification effect due to expanded product variety is admittedly stronger for a Class A

movie than for either a Class B or Class C movie. Nevertheless, this discrepancy of the

demand diversification effect is not large enough to cause the demand for all the obscure
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movies to increase. Expanded product variety introduces more Class A movies, which

strengthen the demand for the Class A movies altogether. Similarly, at the consumer level,

we find that new products appear so quickly that most consumers have no time to discover

or consume them, causing them to watch more and more hits. Furthermore, while Anderson

(2004; 2006) argued that more and more consumers will choose niche products because they

will tend to satisfy consumer preferences better, we reveal that consumers tend to be less

satisfied with niche and less popular movies that with popular ones. We also find that it is

mostly the heavy users or the “movie buffs”, a small fraction of all consumers, that venture

into niche movies.

To summarize, the contributions of this paper are three-folds. First, we examine the

implicit assumption about the impact of product variety on demand concentration and

provide new counter-evidence against the Long Tail. Second, we propose to delineate two

effects: demand diversification due to expanding product variety and consumers learning

about new products. We suggest that, when measuring product popularity, one has to use

relative measures such as A-B-C classification to adjust for instantaneous active product

variety. With this definition, we find that product variety increases demand concentration on

hits, which is against the Long Tail prediction. Third, we study demand at the consumer

level and find that new movies appear so quickly that most consumers have no time to

discover them, and that niche movies do not satisfy consumer tastes better than hit movies.

The remainder of this paper is organized as follows. We develop our hypothesis in Section

2.2. In Section 2.3, we describe our data sets and variables. We present the results of our

empirical analysis in Section 2.4. We conclude with a discussion of our results, limitations,

and future research opportunities in Section 2.5.

2.2 Hypotheses Development

In this section, we develop our hypotheses about the impact of product variety on demand

concentration. In particular, we discuss how expanded product variety limits the assump-

tions of some conventionally-held drivers that would predict the Long Tail effect.

Previous studies argue that producers and retailers have increasing incentives to pro-
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duce and stock niche products because of lowered production and inventory costs (e.g.,

Brynjolfsson et al. 2006, 2011). This increased product variety is further assumed to better

and better satisfy consumer preferences because consumers will continue to have more and

more varying preferences, thus leading to the Long Tail effect (e.g., Anderson 2006).

While there is little doubt that product variety generally increases and that technology

such as the Internet and drop-shipping techniques allows companies to offer an even wider

variety of products economically, it is less clear that consumers necessarily quickly discover

these products let alone actually consuming these products. Large product variety is likely

to make it more difficult to notice new products. In other words, a change from two to three

options in the choice set can be easily noticed, but it takes a lot more effort to notice a

change from 2,000 to 2,001 options. New products that have limited associated advertising

budgets to create“buzz”, particularly those niche products, may disproportionately emerged

unnoticed, thus jeopardizing their demand.

In addition, although consumers have varying tastes and like to seek variety, they are

less likely to examine all choices to find their “true” fit of tastes when they are faced with

large product variety. Too many choices require more cognitive efforts to evaluate the

attractiveness of alternatives in the large variety (see Kuksov and Villas-Boas 2010 for a

review), thus increasing search cost. When search cost is high, consumers tend to restrict

their choice consideration to the products for which they have ex ante knowledge (Stigler,

1961; Rothschild, 1974). These products tend to be popular products because they are

more likely to have louder buzz from advertising, promotion and word-of-mouth. As a

result, demand is likely to be even more concentrated on those hits.

Furthermore, good-quality products may seem even more attractive in the large product

variety. Simonson and Tversky (1992) suggest that adding extremely low-quality products

into a consideration set can increase the attraction of the higher-quality products. Therefore,

introducing more lower-quality products, which tend to be niches, is likely to make higher-

quality products, which tend to be hits, even more popular. In addition, when product

variety is large, consumers are found to be more discriminating in terms of product quality

(Bertini et al., 2011), which can further increase the demand for the hits.

For these reasons, we hypothesize that
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HYPOTHESIS: Product variety is positively associated with demand for hits and nega-

tively associated with demand for niches.

2.3 Data

2.3.1 Research Setting and Data Collection

To examine our research hypothesis, we gathered data available from a company that leases

and delivers movies to rental retailers. Its clients represent approximately 30% of the entire

U.S. movie rental retailers. This company also collects the related rental information for

the movies on a revenue-sharing basis. The data that we possess consist of the DVD rental

turns and movie characteristics at the movie level from January 2001 to July 2005.

In addition to the movie-level data (Dataset I), we also collected consumer-level data

from Netflix (Dataset II), a major U.S. online movie/TV series1 rental service with annual

revenues in excess of $1 billion in 2008. Dataset II was made available to the public during

the Netflix Prize competition, which offered $1 million to the team that could use the data

to create the most accurate movie recommendation system. The data set consists of the

movie ratings submitted by consumers through the Netflix web site from 2000 to 2005, from

which we gathered the data from January 2001 to July 2005 to match with our movie-level

rental data. Netflix encourages its users to rate the movies that they have watched both

outside and within Netflix to improve its recommendations for them, so users have direct

incentives to provide truthful and complete ratings. As a result, Shih et al. (2007) suggest

that Netflix has the world’s largest collection of movie ratings.

We believe that our data provide rich and strong evidence to study the impact of varying

product variety on market concentration patterns. First, Dataset I is one of the most

extensive source of information on the movie rental industry among all the related studies.

Second, the revenue-sharing contract ensures the accuracy of the reported movie rental

turns through considerable computer monitoring and external verification of the results.

Finally, Dataset II allows us to observe temporal changes in the attraction of the movies

1In the rest of the paper, we refer to the movies and the TV series as well as other DVD content as movies
for simplicity.
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and the evolving customer preference. The combination of the two data sets allows doing

so both at the movie and the consumer level, which is quite rare.

It is important to stipulate here that Dataset II only reflects the number of movies

rated, but not all customers rate all movies that they watch. On the other hand, customers

do not have to watch the movie at Netflix to be able to rate it. Admittedly, using rating

data as proxy for actual rental demand at Netflix can be inconclusive, but the rating data

can provide insights into what movies consumers are aware of and are interested in. First,

previous literature (see Chen et al. 2004) suggested a strong connection between product

demand and the number of consumer reviews. In our own data, we find a correlation of

about 0.5 between the monthly number of ratings and the rental turns among the matched

movies. Second, unlike other review data that are known to have selection bias because

users tend to review items they extremely like or dislike (see Hu et al. 2007; Dellarocas and

Narayan 2007; Dellarocas and Wood 2008 and citations therein), pure ratings may avoid

this bias because giving a rating is much less costly to a user than writing a review. In our

data, we plot the histogram of the rating values on a scale from one to five and find the

rating of four to be the most frequent, followed by the ratings of three, five, two and one

(more on, see Figure 2.3.3). The bell-shaped histogram seems to suggest that Netflix users

may be unbiased toward rating the movies that they extremely like or detest. Third, the

recommendation system of Netflix directly incentivizes and facilitates its users to reveal their

truthful and complete preference for movies to improve their recommendations. Finally, the

movie-level results of the Netflix data endorse the main results of the rental data. For all

these reasons, we proceed with utilizing ratings as proxy for the attraction of a movie and

the consumer preference to complement Dataset I at the consumer-level, although it should

be understood that we imply the number of ratings.

2.3.2 Measures and Controls

In much of our analysis, we first elect to work with monthly (instead of weekly or yearly)

data and therefore aggregate all variables at the monthly level. By doing so, we ensure both

an adequate sample size in each month for each movie and enough observations over time

for statistically significant estimates.
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We are interested in studying varying demand for movies having different popularity

levels. To reflect how popular movie j is at time t within a particular product offering set,

we first rank the rental turns of each movie within each month in a descending order and

use this rank as a proxy for movie popularity. Note that a higher (lower) rank indicates a

less (more) popular movie. Then we propose two measures to categorize whether or not a

movie is a hit. The first measure is the absolute ranking, e.g., the top 100, the top 1,000

movies, which is used in the previous literature including Anderson (2004). In this study,

we define variable Hitjt as a dummy variable, with one referring to movie j that ranks in

the top 1,000 during month t and zero otherwise. Alternatively, we rank movies in relative

terms, e.g., the top 10%, the top 20%, thus adjusting for current product variety (the total

number of movies rented this month). Based on the relative rankings, we follow the A-B-C

classification and classify the movies as follows: the movies that rank in the top 10% of all

the movies rented that month are classified as Class A, i.e., highly popular movies. The

movies that rank between top 10% and top 40% are classified as Class B. Finally, the movies

that rank below top 40% are classified as Class C. For movie j during month t, we define a

categorical variable Classjt, with zero to be a Class A movie, one a Class B movie, and two

a Class C movie.

In addition, we define Varietyt as the total number of different DVD movies that were

rented during month t. Note that this variable reflects the active product variety as many

movies are not rented in a given month. We believe that the active product variety is a

more relevant variable than the total variety that includes DVDs with no rentals because 1)

products that are not discovered by consumers (or that are discovered but forgotten) should

not be taken into account when ranking popularity and 2) it accounts for both the product

offering and consumer demand. Clearly, by using active rather than total product variety,

we are more likely to find evidence of the Long Tail effect. Furthermore, we measure the

demand for individual movies with a proxy Sharejt, which reflects movie j’ s market share of

the rental turns among all the rented movies within month t. This measurement allows us

to adjust for the possible change in the consumer base. To analyze the changing distribution

of the cumulative demand, we also compute the monthly Gini coefficient Gini t, which is

often used in social sciences as a measure of inequality of a distribution (e.g., Yitzhaki 1979;
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Lambert and Aronson 1993). A Ginit of zero indicates total equality during month t, while

a value of one suggests maximal inequality.

In addition to these main variables of interest, we consider the following control variables.

We include a categorical variable Trendt to control for monthly characteristics.

To summarize, all variable definitions at the movie level are presented in Table 2.1.

Table 2.1: Movie-level Analysis Variable Definitions

Variable Definition

Hitjt Categorical variable, with one indicating a movie that ranks

among the top 1,000 during month t , zero otherwise.

Classjt Categorical variable, with zero indicating that movie j is a Class

A movie, one a Class B movie, and two a Class C movie during

month t .

Varietyt Total number of rented movies during time period t.

Sharejt Share of the number of times that movie j is rented among all

the rented movies during time period t.

Ginit The Gini coefficient of demand distribution during month t.

Trendt Categorical variable of the 55 months in study.

In addition to the movie-level variables, we further define variables for our consumer-

level analysis. We define NicheSeeking it as the average absolute ranking of the movies that

consumer i rates in a given month t. In essence, NicheSeeking is a summary statistics of the

movie level popularity. A high value of NicheSeekingit means that this particular consumer

i tends to watch more niche movies. We calculate the mean, the median, the top 10%,

and the bottom 10% of the rankings to obtain more complete information about consumer

choices. Furthermore, we divide these metrics by monthly product variety to obtain relative

measurements. These relative measurements adjust for both the increasing product variety

and the skewness of demand distribution.

In order to control for consumer heterogeneity over time, we define Frequency it as the

number of movies that user i rated in month t. In marketing, certain theoretical constructs

such as the Dirichlet model suggest a strong link between purchase frequency and brand

choice. In particular, it is often found that most consumers of a brand are low-frequency

buyers (Chatfield and Goodhardt, 1975; Goodhardt et al., 1984). These light buyers often

constitute the majority of the customers who purchase the popular brand (McPhee, 1963)
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because of the “super-star” effect (Rosen, 1981). In addition, McPhee (1963) explains that

consumers who are familiar with the alternatives tend to consume the niche products.

Therefore, consumers with high-consumption frequency are likely to consume more niche

products than those with low-consumption frequency because the former may be better

informed of the variety of products than the latter.

Furthermore, we define RatingPropensity it and RatingVarianceit as the average and the

variance of the ratings that user i gives in month t. These two measurements are likely to

reflect people’s tastes and movie acceptance. For example Clemons et al. (2006) demonstrate

the relationship between variance of ratings and demand for products. Further, Hu et al.

(2007) recommend controlling for the standard deviation of ratings as well as for two modes

to overcome consumer under-reporting bias. Since in our case the distribution of ratings is

symmetric, we do not control for the modes. All user-level variables are defined in Table

2.2.

Table 2.2: Consumer-level Analysis Variable Definitions

Variable Definition

NicheSeekingit Popularity of the movies that user i rated in month t, measured

as the mean and the median of the movie rankings, both in

absolute and relative terms.

Frequencyit Number of movies rated by user i in month t .

RatingPropensityit Average rating given by user i in month t .

RatingVarianceit Variance of the ratings given by user i in month t .

2.3.3 Descriptive Statistics

Table 2.3 presents the descriptive statistics of the rentals by year. The product variety,

which is the number of distinct movies available in the market, substantially increased from

7,246 in 2001 to 25,488 in 2005, up approximately two and half times. The total rentals also

increased over twice from 162 million turns in 2001 to 546 million turns in 2004. For each

title, the average turns seems to be stable. The skewness of the turns increased from 5.37 in

2001 to 6.94 in 2005, suggesting that the most popular movies are likely to contribute to an

increasing market share. Furthermore, we observe that the minimum yearly turns per title

dropped from 23 in 2001 to one in the following years, while the maximum yearly turns per
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title seem to be increasing from 728,526 in 2001 to over 1 million in 2004. This difference

may suggest that the popular movies may be even more popular, while the obscure ones

become even more obscure.

Table 2.3: Descriptive Statistics of Movie Rentals

Year Product
Variety

Total
Rental
Turns

(in MN)

Avg
Turns

per Title

Skewness
of Turns

Min
Turns

Median
Turns

Max
Turns

2001 7,246 162 22,381.79 5.37 23 895 728,526
2002 10,975 245 22,319.38 5.40 1 845 933,998
2003 15,681 369 23,502.76 5.62 1 1,054 1,122,852
2004 23,255 546 23,459.19 6.02 1 2,461 1,019,122
2005∗ 25,488 352 13,812.03 6.94 1 1,555 682,397

Mean/year 16,529 335 21,095 5.87 5 1,362 897,379
Stdev/year 7,798 145 4,110 0.65 10 676 188,235

* We only observe seven months in 2005.

Figure 2.3.1 shows that the monthly product variety increased exponentially from Jan-

uary 2001 to July 2005 and that the rental turns increased linearly during the same period.

A relevant question to ask is whether the product variety is growing because a lot of brand

new movies are being released or because consumers keep discovering previously released

titles. Our data indicate that the number of brand new titles increased from 1,639 in 2001

to 3,879 in 2004, while the newly rented back catalog titles decreased from 5,607 in 2001

to 3,707 in 2004. These observations suggest that the product variety growth is primarily

due to introduction of brand new products. The more precise answer to this question is

complicated by the fact that many movies are released on DVDs later than in theaters, but

his gap continues to decrease over time. Further, most movies are released in several DVD

versions at different points in time which makes it hard to exactly delineate rentals of “old”

vs. “new” movies.
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Figure 2.3.1: Monthly Product Variety and Rentals
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Figure 2.3.2 illustrates the distribution of the rental turns after pooling all the observa-

tions from 2001 to 2005. The demand is highly concentrated on a few titles, i.e., the hits:

the top 10% of movies constitute close to 80% of the total rental turns; the top 20% of

movies contribute to slightly over 92%.

Figure 2.3.2: Rental Distribution (2001-2005)
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Table 2.4 shows the summary statistics at the consumer level. The number of movies

rated per person every month is highly skewed toward the high percentiles, indicating that a

small group of people rate a large number of movies each month. It is possible that the large

number of movies rated, such as 41 for 90th percentile and 219 for 99th percentile, contain a

large number of ratings given by users to train the recommendation system because a user

can only watch a limited number of movies every month. Ratings submitted during the
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training process can result in a“contamination”of the data because the ratings of previously

watched movies may not reflect the current popularity of a movie. In order to alleviate this

issue and provide a robustness check, we purged the data with the monthly number of

rated movies more than 30. We choose the cutoff point of 30 because watching 30 movies a

month is probably the maximum number of movies that a heavy user is technically allowed

to watch within Netflix rental system. Our results remain qualitatively and quantitatively

similar so in the paper we report results without dropping any ratings.

Furthermore, it does not appear that heavy users have a tendency to give higher or lower

ratings because the frequency of ratings very weakly correlates with the average rating

(correlation = 0.0038) and with the variance of ratings (correlation = 0.1027). Figure

2.3.3 further shows that consumer ratings are almost normally distributed except that the

right tail is censored at the rating of 5 because of the limit of the rating scale. This

nearly normal distribution of consumer ratings provides statistical evidence that the users

at Netflix may be unbiased toward rating the movies that they extremely like or extremely

dislike. Furthermore, from the average variance of ratings (0.7) and the mean average rating

(3.57), we compute that the coefficient of variation is approximately 0.23, suggesting that

consumers tend to be stable in their ratings.

Table 2.4: Monthly Consumer Breakdown (N=4,041,165)

Mean Std Skewness 1% 10% 25% 50% 75% 90% 99%

Number of Movies Rated 19 49 11 1 1 3 7 16 41 219

Average Rating 3.57 0.72 -0.42 1.33 2.75 3.12 3.6 4 4.5 5

Variance of Ratings 0.70 0.64 1.42 0 0 .22 .6 1 1.55 2.88
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Figure 2.3.3: Monthly Rating Distribution

2.4 Estimation and Results

We test our hypothesis about the impact of product variety on demand concentration at

two levels. First at the movie-level, we estimate regression models using three measures to

examine the shift of demand concentration. We then use an instrumental variable approach

to address the potential endogeneity issues. In order to gain insights into the movie-level

analysis, we then turn our attention to examining the impact of product variety at the

consumer-level. We employ fixed-effect models to understand how the propensity of each

consumer to discover niche movies evolves and how the composition of his/her “basket” is

affected by product variety.

2.4.1 Movie-level Analysis

We use three different measures to comprehensively examine the changing demand concen-

tration. These measures include Gini coefficients (Model 2.4.1), the absolute measure, i.e.,

the aggregate market shares of movies having Hitjt = 1 or Nichejt = 1 (Model 2.4.2), and

the relative measure, i.e., the aggregate market shares of Class A, Class B and Class C
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movies, respectively (Model 2.4.3). We specify the models as follows:

Gini t = θ0 + θ1Variety t/1000 + vt (2.4.1)

log(
∑
j∈k

Sharejt) = α0 + α1Variety t/1000 + εkt ∀k ∈ Hit = 1 or Niche=1 (2.4.2)

log(
∑
j∈l

Sharejt) = β0 + β1Variety t/1000 + ξlt ∀l ∈ same Class (2.4.3)

In these three models, we divide Varietyt by 1,000 and logarithmically transformed Sharejt

for interpretation purpose. We also use Huber-White estimation to correct standard errors.

Although these regressions above provide a useful preliminary and exploratory analysis

(Kennedy, 2003), they may be biased by the potential endogeneity of Varietyt. Retailers

tend to adjust product variety based on sales forecast, thus causing Share, Gini and Variety

to be endogenous. In addition, Hausman tests rejects the null that Variety are exogeneous.

Other unobserved confounding factors, such as movie’s intrinsic quality may also cause omit-

ted variable bias in estimating the dependent variables. In order to address these potential

endogeneity and omitted variables issues, we adopt an instrument variable 2SLS approach

(Angrist and Krueger, 1994). The 2SLS instrument estimator can provide consistent esti-

mate of the dependent variables. It is also quite robust in the presence of other estimating

issues such as multicollinearity. In addition to its relative low computation cost, the 2SLS

instrument variable approach is widely used to address the endogeneity issue (Kennedy,

2003).

A valid instrumental variable should satisfy relevance and exclusion restriction assump-

tions (Wooldridge, 2002). In particular, it should be uncorrelated with the error (i.e., ex-

clusion restriction) and correlated with the endogenous regressor (i.e., relevance). In other

words, the instrument should explain the outcome variable only through the endogenous

regressor. Following Bloom and Van Reenen (2007), we propose using the lagged value of

the independent variable as a candidate for valid instrument. In particular, we compute

Varietyt−1 and Varietyt−2, previous two months’ product varieties to use as instrumental

variables for the current month. We expect these lagged Variety ’s are exogenous because

the product variety one month or two months ago should not determine the unobserved
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factors for the demand during the current month. In other words, the lagged variables are

not contemporaneously correlated with the disturbance (Kennedy, 2003), so they should

satisfy the exclusion restriction assumption of a valid instrument. Moreover, we expect that

the lagged Variety ’s are correlated with the current Variety and therefore satisfy the rele-

vance assumption because retailers generally consider their previous product assortments to

assort movies for the current period. We also provide relevant statistics to show the validity

of these instruments after the results.

Table 2.5 shows the results of Models 2.4.1 through 2.4.3. As can be seen, the Gini coef-

ficients increases in product variety (coefficients are 0.0019 in both models). The increasing

Gini coefficients suggest that product variety may intensify demand concentration, support-

ing our hypothesis. In absolute measure, product variety is negatively associated with both

the demand for top 1,000 movies and bottom 1,000 movies (coefficients are -0.0192 and

-0.0188 for top 1,000 movies, -0.2004 and -0.1978 for bottom 1,000 movies). Note that the

demand for bottom 1,000 movies drops approximately 10 times as much as the demand for

top 1,000 movies, suggesting that the hits are more resistant to demand diversification than

the niche movies. Furthermore, in relative measure, the demand for Class A (top 10%)

movies increases in product variety (coefficients are 0.0054 and 0.0051). Product variety is

further negatively associated with the demand for both Class B and Class C movies (coeffi-

cients are -0.0178 and -0.0167 for Class B movies, -0.0049 and -0.0053 for Class C movies).

These results imply that expanded product variety may diversify the demand for hits in

absolute terms, but intensify the demand for hits in relative terms. Moreover, product va-

riety decreases the demand for niches in both absolute and relative terms, confirming our

hypothesis. In particular, interpreting the coefficients of 2SLS results, we find that 1,000

additional products available in the market may increase the demand for Class A movies

by 0.51%, but decrease the demand for Class B and Class C movies by 1.67% and 0.53%

respectively.

Moreover, the 2SLS models show consistent results with the OLS models. To confirm

the validity of the instruments and ensure asymptotic consistence of instrumental variable

estimators, we first check the relevance condition. We find that all the F statistics for the

joint significance of instruments excluded from the structural model over 1,000, much higher
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than the suggested rule of thumb 10 for weak instruments. In addition, we verify that the

estimates of the instruments at the first stage are all statistically significant at 0.001 level.

Hence, we confirm that these instruments have clear expected effects on the endogenous

Variety and therefore satisfy the relevance condition. As for the exclusion restriction as-

sumption, we acknowledge that there is generally no statistical test. Nevertheless, we would

argue that the product variety two months ago should affect the demand only through cur-

rent product variety. Finally, we conduct Sargan tests of overidentifying restrictions, which

are often used as a test of exogenous instruments (Hayashi, 2000). We find that the p-values

are over 0.5 and therefore fail to reject the null hypothesis that the error terms are uncor-

related with the instruments. Hence, we conclude that our instrumental variables are likely

to satisfy the exclusion restriction assumption.

Table 2.5: Demand Concentration Results

Gini Coefficient (Model 1) Absolute Measure (Model 2)

OLS (Gini) 2SLS OLS (Hit) 2SLS OLS (Niche) 2SLS

Variety 0.0019*** 0.0019*** -0.0192*** -0.0188*** -0.2004*** -0.1978***

(0.0002) (0.0001) (0.0005) (0.0005) (0.0048) (0.0044)

Constant 0.8079*** 0.8083*** -0.0644*** -0.0697*** -4.7857*** -4.8240***

(0.0018) (0.0018) (0.0065) (0.0062) (0.0644) (0.0555)

Hypothesis

supported

Yes Yes No No Yes Yes

Observations 55 53 55 53 55 53

R2 0.770 0.766 0.962 0.966 0.975 0.975

1) Standard errors are in parentheses

2) * p-value<0.05, **p-value<0.01, ***p-value<0.001

Relative Measure (Model 3)

OLS (Class A) 2SLS OLS (Class B) 2SLS OLS (Class C) 2SLS

Variety 0.0054*** 0.0051*** -0.0178*** -0.0167*** -0.0049** -0.0053***

(0.0004) (0.0004) (0.0014) (0.0012) (0.0016) (0.0015)

Constant -0.3581*** -0.3528*** -1.3424*** -1.3590*** -3.1568*** -3.1455***

(0.0057) (0.0051) (0.0174) (0.0154) (0.0223) (0.0194)

Hypothesis

supported

Yes Yes Yes Yes Yes Yes

Observations 55 53 55 53 55 53

R2 0.756 0.757 0.780 0.786 0.143 0.227

1) Standard errors are in parentheses

2) * p-value<0.05, **p-value<0.01, ***p-value<0.001
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2.4.2 Consumer-level Analysis

Consistent with the movie-level results of the rental data, the Netflix data show that product

variety is positively associated with the demand for hit movies and negative associated with

niche ones. We now turn to the Netflix data to understand how product variety changes

individual consumers’ preference for movies in order to gain insights into the movie-level

analysis. In particular, we examine how the propensity of each consumer to discover niche

movies evolves, while controlling for observed user heterogeneity, such as rating frequency

and variance of ratings. The data that we have lack other potentially significant consumer

characteristics, such as demographics. In order to cope with this issue, we introduce a

time-invariant preference for each consumer’s movies through the panel data analysis and

we further assume that the preference correlates with the observed characteristics of the

consumer. This correlation is likely to be caused by the recommendation systems, which

can influence an individual’s preference based on his/her observed characteristics. The

Hausman test further provides strong evidence of this correlation. Therefore, we employ

the following fixed-effect regression to predict consumer propensity to rate movies:

log(NicheSeekingit) = β0 + β1Varietyt/1000 + β2Frequency it

+β2RatingPropensity it + β3RatingVarianceit + µi + εit. (2.4.4)

The top of Table 2.6 shows the results of the absolute movie rankings while the bottom

presents the same results of relative movie rankings using Model 2.4.4. As is evident from

the top of the table, all Varietyt coefficients are significantly positive, suggesting that the

absolute popularity rankings of the movies watched by the average consumer consistently

increase except for the very popular movies. In other words, consumers tend to discover more

and more niche movies over time when movies are ranked in absolute terms. In particular,

the Varietyt coefficient for the bottom 10th percentile of the movies that a person rates (i.e.,

the obscure titles) is 0.0519, which is approximately 30 times as much as the same coefficient

for the top 10th percentile of the movies (i.e., the popular titles). This comparison suggests

that consumers are likely to discover niche products much faster than they move away from

the hits (again, if popularity is measured in absolute terms).

However, the picture completely changes when the popularity of the movies is mea-

sured in relative terms. The bottom part of Table 2.6 shows that Varietyt coefficients are

23



consistently negative, suggesting that, relative to the product variety that is available at

that point of time, consumers tend to be interested in more and more popular movies. In

particular, the Varietyt coefficient of the top 10th percentile of movies is -0.0919, which is

over twice as much as the coefficient of the bottom 10th percentile of movies, suggesting

that a consumer’s attention shifts toward more popular hits faster than it shifts away from

less popular niches.

Taken together, the results of Model 2.4.4 are consistent with the movie-level analysis in

Subsection 2.4.1. They suggest that consumers do venture into more niche movies as product

variety increases, but the growth rate of product variety is substantially higher than the

speed at which consumers discover niche products. We explain that such quickly expanded

product variety may cause consumers to anticipate high search costs and watch those movies

that they are easily aware of. High concentration of advertising expenditures, word-of-

mouth effects and theatrical release allow those popular movies to enjoy more exposure,

thus enhancing their demand at the expense of other niche movies. In addition, this finding

is consistent with the results of Fleder and Hosanagar (2009) that recommendation systems

guide similar consumers to the same products, which does not effectively help consumers

discover products at the tail of the distribution.
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Table 2.6: Fixed-Effect Model of Nicheseeking Behavior

Mean Median Top 10% Bottom 10%

Variety 0.0519*** 0.0432*** 0.0017*** 0.0519***

(0.0002) (0.0002) (0.0003) (0.0002)

Frequency 0.0007*** 0.0009*** 0.0029*** 0.0009***

(0.0000) (0.0000) (0.0000) (0.0000)

RatingPropensity -0.1146*** -0.1563*** -0.2609*** -0.0737***

(0.0010) (0.0011) (0.0014) (0.0011)

RatingVariance 0.2559*** -0.0056*** -0.6601*** 0.5156***

(0.0010) (0.0012) (0.0015) (0.0011)

Overall R2 0.031 0.012 0.048 0.059

Relative Mean Relative Median Relative Top 10% Relative

Bottom 10%

Variety -0.0414*** -0.0504*** -0.0919*** -0.0417***

(0.0002) (0.0003) (0.0003) (0.0003)

Frequency 0.0006*** 0.0009*** 0.0028*** 0.0008***

(0.0000) (0.0000) (0.0000) (0.0000)

RatingPropensity -0.1184*** -0.1544*** -0.2590*** -0.0718***

(0.0010) (0.0011) (0.0014) (0.0011)

RatingVariance 0.2440*** -0.0064*** -0.6609*** 0.5148***

(0.0010) (0.0012) (0.0015) (0.0012)

Overall R2 0.030 0.016 0.064 0.062

Observations 4,740,731 4,740,731 4,740,731 4,740,731

1) Standard errors are in parentheses

2) * p-value<0.05, **p-value<0.01, ***p-value<0.001

Furthermore, the consistently positive and highly significant coefficients of Frequency it

indicate that heavier users tend to discover more niche movies. In particular, the coefficients

for both absolute and relative means are about 0.0006 and for both medians are 0.0009.

In other words, if an average consumer watches five more movies per month, the mean of

his/her propensity for niches is likely to increase by 0.3% on average.Accordingly the median

is likely to increase by 0.45% on average, holding other factors constant. Thus, it appears

that heavy users are the ones that drive toward the demand for niche products, which can

cause Long Tail effect. Nevertheless, these heavy users constitute a relatively small segment

of the entire population: as we demonstrated earlier, heavy users with a monthly frequency

over the mean constitute less than 25% of all users. Although this small group of people

tends to discover more niche movies, it does not seem to shift the entire demand from hits

to niches. A comparison of coefficient for the top 10th percentile (0.0028) and coefficient
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for the bottom 10th percentile (0.0008) suggests that heavier users shift away from the hits

approximately three times as fast as they discover niches. That is, even heavy users are not

as fast in discovering niches as they are in “forgetting” about hits.

Consistently negative and highly significant coefficients of RatingPropensity it suggest

that consumers who, on average, give higher ratings and may therefore be more satisfied

tend to be interested in more popular movies. For example, the coefficients for both absolute

and relative means are around -0.11, which suggests that increasing the average rating by

one unit is associated with a 11% increase in the average movie popularity. In other words,

the more popular movies generally satisfy people better than the obscure titles. Of course,

it is possible that consumers who watch popular movies are systematically different from

consumers who watch niche movies in that the former tend to rate all movies higher than the

latter. Since we are unable to observe characteristics of individual consumers, our finding

is subject to this limitation.

Finally, we note that RatingVarianceit is negatively associated with the median and

the top 10th percentiles, while this variable is positively associated with the mean and the

bottom 10th percentiles (in either absolute or relative terms). We interpret these mixed

signs to imply that consumers having highly disperse rating tend to watch extreme hits

and niches. In other words, the extreme hits and the extreme niches receive more polarized

ratings from those consumers. Further, the popularity of the movies that those consumers

watch trends to skew toward the niches. In other words, consumers having highly disperse

ratings watch a larger quantity of hits than niches, but the niches that they watch are

generally extremely obscure.

2.5 Conclusion and Discussion

Many studies about the Long Tail effect suggested that expanding product variety due

to adoption of the Internet will satisfy consumer’s increasingly heterogeneous tastes, thus

causing the demand for niches to rise. In this paper we empirically examine the impact

of product variety on demand concentration, taking endogeneity into consideration. We

argue that one has to be careful about defining hits and niches in the Internet era. In
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a brick-and-mortar world, where product variety is relatively stable and all products are

consumed at some rate, hits and niches are typically defined in absolute terms (e.g., the

top 100, the bottom 100 movies). However, product variety has been skyrocketing in the

Internet age and therefore more and more products can be left unnoticed by consumers,

or are being discovered very slowly, even though the customer base is also expanding.

To evaluate the consumer propensity to discover niches and to separate this effect from

the entirely different effect of increasing product variety on the Internet, we suggest that

product popularity should be measured in relative terms, thus dynamically adjusting for

the “active” product variety at that point of time. By doing this, we bring the distribution

of demand to a common scale and we analyze how it changes over time.

We use two large data sets from the movie rental industry and analyze the data at both

movie-level and consumer-level. In these large data sets we find that, when the popularity of

a movie is defined dynamically, i.e., in relative terms, product variety increases the demand

for hits, i.e., Class A movies, but it reduces the demand for niches. Additionally, even in the

absolute ranking definition, the Long Tail effect is only partially present: product variety

reduces the demand for niches more significantly than it reduces the demand for hits. We

further find that product variety increases monthly Gini Coefficients, a measure of demand

concentration.

In order to gain insights into those movie-level findings, we further examine changes in

the demand distribution at the consumer level. Once again, we find that product variety

indeed diversified consumers into more niche movies in absolute terms, but we also discover

that the rate at which consumers shift demand from the hits to the niches is considerably

lower than the growth rate of product variety. Therefore, if we normalize demand for

currently active product variety and measure popularity in relative terms, we find that

consumers tend to watch more and more hits as product variety grows. In other words,

expanded product variety may threaten the attraction of one movie by Tom Cruise because

of demand diversification, but it may favor more and more movies by Tom Cruise-like

celebrities.

Figure 2.5.1 visually illustrates the comparison between the absolute and relative pop-

ularity of the movies that consumers watch. In Figure 2.5.1 (left, bottom line), we observe
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the median movie that the average consumer discovers over time, which has a linear up-

ward trend, indicating that consumers increasingly discover niches. In particular, at the

beginning of our study, the median movie rated by an average consumer was ranked slightly

above 350, while at the end of the study the median movie ranking had increased more

than twice to over 850. However, Figure 2.5.1 (left, top line) also indicates that product

variety increased even faster, which creates an impression of the lengthening tail of de-

mand distribution: there are more and more obscure movies over time. However, once we

bring distribution to the common scale through dividing by current product variety, the

claim of the increasing demand for niches disappears. Not surprisingly, Figure 2.5.1 (right)

shows that, when we look at the median popularity in relative terms, the average consumer

gravitates more and more toward hits. In fact, at the beginning of our study the average

consumer are interested in the movies in the 10th percentile of product variety while at

the end of the study the average consumer is interested in the movies in the 6th percentile.

Hence, we conclude that although consumers do venture into niches, new movies appear

more quickly than people can actually discover them.

Figure 2.5.1: Average Median and Relative Average Median Popularity

We make a number of additional observations based on our consumer-level analysis. We

find evidence that the consumers who give high average ratings tend to watch more popular

movies. Hence, we do not find any evidence that niche products satisfy consumer tastes

better and better over time, which is suggested by Anderson (2004; 2006). Furthermore,

we find that the consumers who discovers the niches tend to be heavy users, constituting
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only a small part of the entire user base. Light users, however, tend to focus on the popular

items and since most users are in this category, hits continue to drive the market.

Our findings have a number of managerial implications as they shed new light on the

controversy surrounding the Long Tail effect. First, the promise of the Long Tail effect

became a basis for many new business models and business ideas (Anderson, 2006). Our

findings suggest that caution needs to be used when assessing the potential benefits of

focusing a business on supplying niche products. While it may be true that niche products

are much more profitable for companies (e.g., Anderson 2006 rightfully suggests that niche

movies cost a fraction of hit movies to make), this argument does not account for the fact

that for each niche product that consumers demand, there might be several that are never

discovered, thus potentially adding to the costs but not to the revenues. Irrational expansion

into niche products will also increase operational difficulties, such as maintaining the level

of service (Fisher et al., 1994; Randall and Ulrich, 2001). In fact, to compete against

Netflix-like companies that stock a large product variety of niche movies, companies like

Redbox successfully remain profitable by focusing only on a selected number of hit movies.

In addition, Amazon.com, which is often cited as an example of offering numerous long tail

products on its platform, is found to directly sell only a small percentage of all products

listed on its website, with the most products being sold by third-party sellers because of

insufficient demand for those niche products (Jiang et al., 2011).

Further, a large number of products might take a while to be discovered. This finding

seems to suggest that much more attention needs to be paid to recommendation systems,

review forums and other means of aiding product discovery. Although Netflix employs

what is widely considered to be a sophisticated recommendation system, even this system

does not allow numerous consumers to discover titles as fast as they appear. This raises

an important issue of carefully forecasting how long will it take for a given title, once

it is added to the inventory, to begin accumulating demand. More improvements to the

recommendation systems, such through the Netflix Prize and the algorithm proposed by

Park and Tuzhilin (2008) should be implemented.

Insights from our consumer-level analysis suggest that consumers are generally much

more satisfied by hit products than by niches. This is an important consideration: while
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Netflix currently achieves extremely high customer satisfaction, we do not find any evidence

to suggest that customers watching obscure titles find them more satisfactory than other

movies. We can speculate that many consumers over time will learn that niches are called

niches for a reason and might start ignoring them altogether. Our other observation that

heavy users tend to venture into more obscure movies suggests that the presence of the

Long Tail effect might be moderated by the frequency of service. In the case of Netflix, it

is physically impossible to rent more than a few DVDs per month (due to the time that the

mailing process takes). However, Netflix and other companies (such as Amazon.com and

Hulu.com) have started allowing customers to watch DVDs on their computers at home

right away, which may increase the number of heavy users who discover niches. In this case,

one will have to re-examine the demand concentration.

It is important to remember the limitations of our findings. First, our study does

not directly compare the search costs between brick-and-mortar and Internet companies

(e.g., Brynjolfsson et al. 2011) and therefore we are unable to comment on this aspect of

the Long Tail effect. Rather, our findings need to be interpreted as a study about the

impact of product variety on demand concentration only. Comparing the effects of product

variety across channels would be of considerable interest for research. Second, our study has

focused on the movie rental industry. It is possible and worthwhile to confirm that demand

concentration in other product categories may respond differently to the varying product

variety levels. Third, our consumer-level analysis is restricted to the ratings data. To

address this issue, we confirm that the main results of rental data are consistent with those

of the ratings data and we use the consumer-level rating data to offer additional insights

into the movie-level analysis. Admittedly, the consumer-level results cannot be taken as

exact evidence for individual rental behavior on Netflix.com. Some consumers probably do

not rate the movies that they watched. Nevertheless, consumers also rate movies that they

watched elsewhere, providing a richer picture of demand for movies which reflects interest,

attention and satisfaction. An interesting venue for research, particularly for behavioral

economics, would be to compare ratings data with time-stamped individual-level rental

data to understand possible rating behavior biases. In addition, the data set with the time-

stamped individual-level information may be potentially used to study consumer purchase
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patterns and their life-time value.

Further research opportunities also include linking recommendation system metrics, such

as product ratings, with operations management and marketing strategies (see Netessine

et al. 2006 for some initial work in this direction) is also a fruitful direction. Finally,

incorporating the empirical findings of the product variety effects on demand concentration

and evolving consumer preferences into the analytical models, such as dynamic assortment

(Caro and Gallien, 2007) is highly warranted.
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Chapter 3

When Does the Devil Make Work?

An Empirical Study of the Impact

of Workload on Worker

Productivity

3.1 Introduction and Related Literature

Labor is typically one of the largest cost components of service organizations such as retail

stores, call centers and restaurants, and labor decisions are known to drive operational per-

formance in services. For example, Zenios et al. (2011) find that hospitals could potentially

reduce their staffing costs of nurses by 39% to 49% by deferring staffing decisions until more

information about procedure type is available. In a retail setting, Perdikaki et al. (2011) sug-

gest that store staffing levels influence the conversion of traffic into sales, although the sales

return on labor increases diminishes. In another retail study, Mani et al. (2011) estimate

that an optimal staffing level may improve average store profitability by 3.8% to 5.9%. Not

surprisingly, many service companies are increasingly utilizing computerized staffing tools

(Maher, 2007). In most of these scheduling systems, however, the employee’s productivity

is calculated using “grand averages” of historical data, thus overlooking employees’ adaptive
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behavior towards changing work environments, as reflected, for instance, in a call center

survey (Gans et al., 2003). In another example, Brown et al. (2005) find several anomalies

indicating that some behavioral aspects of labor management may lead to serious staffing

errors.

This simplified view of human productivity is inherited from classical operations man-

agement (OM) models, which often assume that humans in production or service systems

are homogeneous and their productivity is independent from the state of the system, or at

best that productivity has random variations (see Boudreau et al., 2003 and Bendoly et al.,

2006 for comprehensive reviews). Recent efforts have bridged together OM models and

human resource management in order to relax rigid assumptions of the classical OM models

and study the impact of external factors on individuals’ performance (see Boudreau (2004)).

For example, Schultz et al. (1998) challenge the traditional OM assumption that a worker’s

production rate is independent from the environment. In a production line simulation ex-

periment, they find that individuals’ processing times are dependent on the system state,

such as the buffer size as well as on the processing speed of co-workers. The experiment

reveals less idle time and higher output because people tend to speed up and avoid idle time.

Schultz et al. (1999) explain that a low-inventory system improves productivity because it

creates more feedback, stronger group cohesiveness and task norms than a high-inventory

system. Building on this work, Powell and Schultz (2004) further analyze the effect of line

length on the throughput of a serial line. In another lab experiment, Bendoly and Prietula

(2008) ask subjects to solve vehicle routing problems. They find a non-monotonic rela-

tionship between pressure (induced by the length of queue, i.e., workload) and motivation,

which affects performance. They further show that this relationship can change as people

receive training and improve skills. While this stream of research is experimental, real-world

systems are generally more complex and therefore Boudreau et al. (2003) call for empirical

studies to validate the behavioral lab findings in real industrial settings.

A very recent stream of empirical papers have answered this call. For example, Huckman

et al. (2009) use detailed data from an Indian software company to study the impact of

team composition on performance. They find that team familiarity has a positive impact on

performance. In addition, Staats and Gino (2012) analyze data from a Japanese bank’s home
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loan application-processing line to evaluate the impact of task specialization and variety on

operational productivity. They show that specialization boosts short-term productivity;

however, variety improves long-term productivity.

Closer to the question we pose in this study, several researchers have recently turned

to understanding the impact of workload, an integral environmental factor, on individual’s

performance. These studies often use healthcare services as a test-bed. Kc and Terwiesch

(2009) provide a rigorous empirical analysis of the impact of workload on service time

and patient safety using operational data from patient transport services in cardiothoracic

surgery. They show that workers speed up as workload increases, and that this positive effect

of workload may be diminished after long periods of high workload. Kc and Terwiesch

(2011) find further evidence that the occupancy level of a cardiac intensive care unit is

negatively associated with patients’ length of stay because the hospital, faced with high

occupancy, is likely to discharge patients early. In addition, Green et al. (2011) establish

that nurses tend to be intentionally absent from work if they anticipate a high workload.

Powell et al. (2012) find that overworked physicians generate less revenue per patient from

reimbursement because of their workload-induced reduction in diligence of paper execution.

Most of these observational studies find linear impacts of workload on performance.

Kuntz et al. (2011), as an exception, suggest a non-linear relationship between hospital

workload and mortality rates. We contribute to this stream of work by first proposing an

inverted U-shaped relationship between workload and performance and testing it using a

set of unique and very detailed transaction-level data from a restaurant chain’s point-of-

sales system that contains 195,311 check-level observations for five restaurants from August

2010 to June 2011. Furthermore, unlike other studies on this topic which focus on the total

effect of the workload, we provide a mechanism of direct and indirect effects of workload

on performance in a complex operational setting. We go further and demonstrate how to

leverage staffing capacity to optimize the workload. After disentangling the endogeneity of

demand and supply in this setting using a natural experiment (labor management software

implementation) and other instruments, we find that servers react to the workload in the

following way. Surprisingly, when overall workload is small, sales increase with the workload.

However, after a certain threshold (around 5.76 diners per server) sales start decreasing
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with the workload. On average, the restaurant chain in our study has about 4.3 diners per

server, so we conclude that it is largely overstaffed and, surprisingly, reducing the number

of waiters can both significantly increase sales and reduce costs. While papers on restaurant

management have analyzed the impact of pricing, table mix, table characteristics, food,

atmosphere, fairness of wait and staff training on financial performance (see Kimes et al.

1998, 1999; Kimes and Robson 2004; Robson 1999; Kimes and Thompson 2004; Sulek and

Hensley 2004), we contribute by showing that staff workload has a major impact on revenue

generation.

3.2 Wait Staff Activities and Hypothesis Development

In the USA alone, the restaurant industry employs about 13 million workers, who have to

be managed to provide over $500 billion in meals, yet we are not aware of any rigorous

empirical studies of operations in this industry. For our analysis we select the restaurant

setting because 1) workload in restaurants tends to be highly variable, which provides a

great opportunity to study how changes in the workload affect servers’ performance; 2) the

restaurant industry is labor-intensive, employing approximately 10% of the total workforce

in the United States; 3) its productivity is only half of the manufacturing industries, creating

many opportunities for productivity improvement (Mill, 2004).

3.2.1 Wait Staff Activities

Waiters and waitresses, also known as servers, are restaurant employees who serve diners

when they are seated. In a typical work scenario (Fields, 2007), servers first greet diners

shortly after they are seated. They should instantaneously fill water glasses, present the

menu and ask diners whether or not they would like anything from the bar. Then they

should return to the table to present the specials and take the order. After presenting the

food, servers should check on the table during the meal for any special requests or additional

drink orders. Finally, they present checks and change on tips trays, thanking diners on their

way out of the restaurant. In addition to these typical work activities, high-performance

service tends to go beyond: good servers pay attention to diners’ requests without being
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intrusive or letting them wait for too long, they anticipate diners’ needs, and might suggest

dishes and drinks without appearing aggressive. In sum, servers are an integral part of

restaurant service operation. In particular, their performance affects meal duration, sales

and guest satisfaction. According to a study by the National Restaurant Association (Mill,

2004), complaints about restaurant service far exceed complaints about food or atmosphere.

The biggest complaints are about service speed and inattentive waiters, for example long

waits to settle the bill and impatience with answering menu questions.

3.2.2 Hypotheses Development

Hourly sales are of great importance to restaurants which, on average, generate a very

small pre-tax profit margin averaging just 4%. In order to increase hourly sales, restaurants

typically train their servers to sell as much as possible to diners. Hourly sales clearly depend

on meal duration. Controlling for demand, longer meal duration should create more sales

opportunity because diners are unable to consume after leaving the restaurant . In this

subsection we develop hypotheses about the impact of workload (defined as the number of

diners assigned to a server) on servers’ performance, which we measure using meal duration

and sales. Previous research suggests that employees tend to adapt to the work environment

(e.g., Schultz et al., 1998, 1999; Kc and Terwiesch, 2009) and our hypotheses are built on

the premise that workload is an important external factor that may influence a server’s

performance in meal duration and sales as previous literature suggests Furthermore, we

wish to distinguish two mechanisms by which servers affect sales: one is the indirect effect

through meal duration and the other is the direct effect on sales.

3.2.2.1 Effect on Meal Duration

Naturally, diners’ speed of eating primarily determines the meal duration. Nevertheless,

one would expect a server’s effort and attitude to significantly affect meal duration too: for

example, an efficient server tends to quickly present menu and later the bill to expedite the

order and check settlement procedures. Occasionally, a server may implicitly rush diners

by presenting the check without being asked for it. In addition, s/he may choose to be

quick when transporting food from the kitchen to the table. A diligent server may also be
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more attentive to answer diners’ requests without leaving the diner to spend additional time

waiting. Furthermore, a server may prolong a meal duration by offering more menu items,

such as wine.

We argue that, when the workload is low, a higher level of workload will prolong meal

duration. Operationally, when a server serves more diners, his/her attention is divided

into smaller portions because of process sharing. Consequently, he/she may not address

diners’ needs promptly, thus extending meal duration. For example, diner i may need some

assistance from his/her server, who is busy serving other diners. Therefore, diner i has

to wait to get the server’s attention. Furthermore, workload can be seen as a challenge

and therefore a motivation stimulus (Deci et al., 1989). As workload increases, motivation

also increases, which is shown to improve effort (Locke et al., 1978; Yeo and Neal, 2004).

The server may be more motivated to make recommendations and suggest additional menu

items. As a result, diners order extra food, which extends the meal.

However, when workload becomes too high, a higher level of workload may encourage

servers to speed up. One reason is that servers may want to reduce the costs of customer

waiting (e.g., waiting to settle the check) by accelerating service. Kc and Terwiesch(2009;

2011) find empirical evidence in the hospital setting that the higher workload reduces the

service time. Moreover, when servers are overworked, they may cut corners, thus reducing

service time (Oliva and Sterman, 2001). From a psychological perspective, a high workload

may cause servers to become frustrated. Consequently, they may implicitly rush diners

by presenting the checks without being asked for it. Similarly, Brown et al. (2005) show

that call center agents intentionally hang up on callers to reduce their workload and obtain

extra rest time. In sum, based on the arguments above, we propose an inverted U-shaped

relationship between workload and meal duration.

HYPOTHESIS 1 (H1): As workload increases, the meal duration first increases and then

decreases.

3.2.2.2 Effect on Sales

We expect that the diner’s preference for items on the menu is the key factor that deter-

mines the sales per check. However, these preferences can be influenced by servers who
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make suggestive selling efforts which can increase restaurant sales (Fitzsimmons and Mau-

rer, 1991). Such efforts include up-selling low-price menu items and cross-selling items that

diners would otherwise not order. Research shows that diners are more likely to purchase

a dessert or after-meal drinks if a server makes such suggestions when he/she is clearing

the plates of the main course. In addition, servers’ suggestions for appetizers, soup, wine

and high-margin items are also known to stimulate demand that would otherwise be unex-

pressed. Thus, when the workload is low, an increasing workload may motivate servers to

exert a more suggestive selling effort for psychological reasons similar to those stated above.

Similarly, cognitive psychology suggests that workload may trigger the cortex to release

hormones that improve cognitive performance (Lupien et al., 2007). Moreover, Parkinson’s

Law (Parkinson, 1958) suggests that employees tend to fill in the idle time with irrelevant ac-

tivities, creating inefficiency, such as smoking outside, chatting with each other and folding

napkins, as opposed to making effort in selling more items. Hence, increasing the work-

load may reduce servers’ idle time, thus increasing selling effort. However, when workload

surpasses a critical level and becomes too high, it is likely to limit sales per check: servers

may become so occupied with carrying food that they have no time to conduct suggestive

selling. In addition, they may be distracted by other diners, reducing their sales service

effectiveness. Fatigue caused by heavy workload may also lead to reduced effort (Cakir

et al., 1980; Setyawati, 1995). Servers may also suffer from “contact overload”, which refers

to the emotional drain from handling too many customers over a prolonged period of time

(Mill, 2004). The results of the contact overload can be emotional burnout, which reduces

a server’s sales effort and effectiveness. For these reasons, we hypothesize that:

HYPOTHESIS 2 (H2): As workload increases, hourly sales first increases and then

decreases.

Figure 3.2.1 summarizes the mechanism of how workload affects hourly sales. We de-

compose the effects of workload on hourly sales to an indirect effect via meal duration (i.e.,

H1) and a direct effect (i.e., H2). As previously hypothesized, both direct and indirect

effects are inverted U-shaped. Adding these effects together, the total effect of workload on

hourly sales is still inverted U-shaped.
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Figure 3.2.1: Summary of Hypothesis Development

3.3 Data

3.3.1 Research Setting and Data Collection

To examine our research hypotheses, we worked closely with a restaurant chain manage-

ment to collect point-of-sales (POS) data from five restaurants owned and operated by

Alpha (the real name is disguised for confidentiality reasons), a restaurant chain that offers

family-style casual dining service in the Boston suburbs. We gained access to their sales

data as part of implementing a new server scheduling system, which is later used for iden-

tification purposes in Subsection 3.4.2. The restaurants are open from 11:30 am to 10:00

pm from Monday to Thursday, and 11:30 am to 11:00 pm from Friday to Sunday. Diners

include couples, families, students and their friends. The restaurants have a full-service bar

and offer internationally-inspired fusion food. Our study focuses on the main dining room

because the bar and the take-out services operate according to a different business model

and they would require different operationalization of variables. The data that we possess

consists of 11 months of transactions from August 2010 to June 2011. The transaction

data includes information about sales, gratuities, party size, when each service started and

ended, and who was the server. In order to reduce the influence of the outliers (e.g., very

large parties and private events), we drop those transactions which include the day’s top
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and bottom 7.5% of checks. Our final data set includes 195,311 check-level observations. We

believe that our restaurant sample represents an appropriate data set to study the impact of

workload on restaurant performance because we possess comprehensive temporal and mon-

etary information for each meal service that occurred during both busy and non-busy hours,

allowing us to systematically quantify the impact of workload on servers’ performance. At

the same time, the data set we possess is among the largest and most granular in the extant

literature.

3.3.2 Measures and Controls

Restaurants tend to schedule servers on an hourly basis so in our analysis we elect to focus

on hourly (instead of check-level or daily) data and therefore we aggregate all variables

at the hourly level (comprehensive analysis of this and other assumptions is presented in

Subsection 3.4.6). We are interested in studying restaurant performance and therefore we

operationalize dependent variables AvgMealDurationtk and HRsalestk to reflect the length

of the average meal and how much in total was spent in restaurant k during hour t. We

first infer the meal duration of each check from check opening and closing times recorded

in our POS data. Naturally, this inferred duration could be slightly inaccurate because

diners could arrive before the check was opened and they could leave after the check was

closed. Nevertheless, our meal duration measure directly captures server’s involvement

with the customer (rather than, say, host’s involvement before check is open) and it is also

consistent with previous literature (Kimes, 2004). We next average each meal duration over

the number of checks that were started in hour t.

Furthermore, we define the key independent variable HRLoadtk as the workload during

hour t at restaurant k. It is computed as the number of diners who started meals during

hour t divided by the number of servers who processed at least one check in the same hour.

We provide alternative definitions of workload using the number of tables and menu items

in Subsection 3.4.6. Our data only captures how many servers handled checks in an hour,

which may be fewer than the actual number of servers available. Thus our workload metric

should be understood as“conditional on the server being busy”. In addition, different servers

may sometimes accommodate a different number of diners in the same hour. This effect,
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however, is small, since servers are on average assigned a similar number of diners in an

hour because the host/hostess is instructed to evenly assign diners to balance workload and

potential tips for servers. To verify this, we further check that the coefficient of variation of

the hourly number of diners assigned to each server suggests a low variation of about 0.33.

Furthermore, we provide a server-level analysis in Subsection 3.4.6.2 as a robustness check.

In addition to these main variables of interest, we consider the following control variables.

Variable HRDinerstk is the number of diners who started their meals at restaurant k during

hour t. It controls for the demand, which we expect to be positively associated with hourly

sales. Variable HRDiners helps account for the load on the kitchen and other functions in

the restaurants, which affect the average meal duration. Similarly, variable HRItemstk is

the number of menu items sold in those meals that started at restaurant k during hour t.

These items sold increase the general workload on the kitchen, thus affecting average meal

duration during hour t. Finally, we also control for the date/shift/location of hour t. Night

shifts usually generate more sales than lunch shifts so we include control variable Shiftt.

In addition, weekends (from Friday dinner to Sunday lunch) are usually busy hours of the

week so we include a day of the week control, DayWeekt. Furthermore, business during

summer months is usually slower than during winter months because many residents go

on vacation, so we include Montht as a control. Finally, we account for economic trends

using the variable Trendt and we control for store fixed effects using the variable Storetk.

To summarize, Table 3.1 presents a list of variable definitions. These data allow us to test

our hypotheses while controlling for factors that can affect a restaurant’s performance.
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Table 3.1: Hourly-level Analysis Variable Definition

Variable Definition

AvgMealDurationtk Average duration of the meals that started during hour t at

restaurant k.

HRSalestk Total sales of the meal services started during hour t at

restaurant k.

HRLoadtk Average load of diners on servers during hour t at restaurant k ,

measured as the division of hourly number of diners and servers.

HRTableLoadtk Average load of tables on servers during hour t at restaurant k ,

measured as the division of hourly number of tables occupied

and servers.

HRItemLoadtk Average load of items on servers during hour t at restaurant k ,

measured as the division of hourly number of menu items sold

and servers.

HRDinerstk Number of diners started meal service at restaurant k during

hour t.

HRItemstk Number of menu items sold during the meals started at

restaurant k during hour t.

DayWeekt Categorical variable indicating the day of week of hour t .

Shiftt Categorical variable indicating whether hour t was during lunch

or dinner shift.

Montht Categorical variable indicating the month of hour t .

Trendt Continuous variable controlling for daily trend.

Storetk Categorical variable indicating store k during hour t.

3.3.3 Descriptive Statistics

Table 3.2 shows the summary statistics of hourly variables. On average, each meal lasts

approximately 47 minutes, generating hourly sales of $452.47 for each restaurant. About

26 diners enter a restaurant during an average hour. In addition, each restaurant staffs on

average close to six servers per hour, which results in an hourly workload of 4.3 diners per

server.
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Table 3.2: Summary Statistics of Hourly Variables

AvgMealDuration HRSales HRDiners Number of

Servers per

Hour

HRLoad

N 17,432 17,432 17,432 17,432 17,432

Mean 47.03 442.93 26.23 5.63 4.30

Stdev 8.09 335.10 19.43 3.20 1.66

Min 21.85 9.98 1 1 1

P5 34.95 44.17 3 1 2

P25 41.94 154.47 9 3 3

P50 46.69 367.13 22 6 4.14

P75 51.55 681.66 40 8 5.33

P95 59.99 1,068.30 62 11 7.20

Max 109.23 2,045.69 117 18 15.50

Table 3.3 provides the averages of HRDiners, AvgMealDuration and HRSales by day of

week and by shift across the five restaurants in our study. In terms of traffic measured in

HRDiners, Saturday has the highest hourly number of diners across stores during both lunch

shift (the mean is approximately 31 diners) and dinner shift (the mean is close to 38 diners).

In contrast, Tuesday is the slowest day for lunch (the mean is slightly below 18 diners), and

Monday is the slowest day for dinner (the mean is 23 diners). In terms of average meal

duration, dinner duration is typically longer than lunch duration by approximately three

minutes. In addition, during each shift, the difference between average meal duration on

each day of the week is less than four minutes. Furthermore, Sunday generates highest sales

across lunch shifts, while Saturday creates highest sales across dinner shifts.

Table 3.3: Average Statistics of Performance by Day of Week and Shift

Lunch Dinner

HRDiners AvgMealDuration HRSales HRDiners AvgMealDuration HRSales

Sunday 29.97 46.87 489.91 29.43 47.77 533.79

Monday 18.27 44.94 264.89 23.02 48.80 409.01

Tuesday 17.86 45.72 257.31 25.46 48.83 462.26

Wednesday 19.40 45.74 284.35 26.61 48.76 488.53

Thursday 20.24 45.00 295.40 29.29 47.96 541.23

Friday 23.42 46.45 350.42 36.40 48.70 684.17

Saturday 30.69 45.31 466.48 37.97 48.61 715.67

Total 22.79 45.71 343.13 30.07 48.50 554.64

Figure 3.3.1 shows the scatter plot of hourly sales vs. workload. The y-axis is the average
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hourly sales for each value of hourly workload. Even visually, it appears that hourly sales is

a concave function of the hourly workload, which is already suggestive, but since the graph

does not consider other potential confounding factors, we proceed with statistical analysis

to identify the effect of workload on hourly sales.

Figure 3.3.1: Scatter Plot of Hourly Sales vs. Load

Before testing our hypotheses, we transform HRSales, and AvgMealDuration into their

natural logarithms in order to linearize the regression model (Kleinbaum et al., 2007). These

variables have large standard deviations relative to their means so transforming them is rec-

ommended to increase normality prior to model estimation (Afifi et al., 2004). Transforming

the monetary variable normalizes the scale to percentages for easier interpretation. We fur-

ther center HRLoad and HRLoad2 at the mean for interpretation purposes.

Table 3.4 shows the correlations of the hourly-level variables. We observe that HRLoad is

positively associated with log(HRSales) (correlation = 0.647), log(AvgMealDuration) (cor-

relation = 0.144) and HRDiners (correlation = 0.679). In addition, log(HRSales) and

HRDiners are highly correlated (correlation = 0.887), which is not surprising. log(AvgMealDuration)

and log(HRSales) are also positively associated (correlation = 0.306), which is expected.

Further, we do not observe systematic trend effects in log(HRSales), HRLoad and HRDiners

because the correlations are low and insignificant.
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Table 3.4: Correlation Matrix of Hourly-level Variables

log (HRSales) log(AvgMealDuration) HRLoad HRDiners Trend

log (HRSales) 1

log(AvgMealDuration) 0.3055* 1

HRLoad 0.6471* 0.1443* 1

HRDiners 0.8870* 0.2179* 0.6785* 1

Trend 0.0127 0.0810* -0.0037 0.0182 1

*: Significant at 0.01 level.

3.4 Estimation and Results

First, we estimate a set of multivariate regression models to provide a preliminary and

exploratory analysis. Second, we use an instrumental variable approach to address the

potential endogeneity issues. Finally, we utilize simultaneous equation modeling to address

both the endogeneity and correlated errors issues.

3.4.1 Multivariate Regression

We first specify the following multivariate regression model to provide a preliminary analysis

of the relationship between workload and servers’ performance:

log(AvgMealDurationtk) = α0 + α1HRLoad tk + α2HRLoad2
tk + α3HRDinerstk +

α4HRItemstk + α5Controlstk + εtk, (3.4.1)

log(HRSales)tk = β0 + β1HRLoad tk + β2HRLoad2
tk + β3 log(AvgMealDurationtk)

+β4HRDinerstk + β5Controlstk + µtk. (3.4.2)

In this model, Controlstk include Shifttk×DayWeek tk, Monthtk, Trendtk and Storetk to ad-

just for the time/date and location factors which is equivalent to a store fixed-effect model

because we include store-specific time-invariant factors among controls which help control

for unobserved heterogeneity among stores, such as the income level of the neighborhood and

other time-invariant omitted variables. Note that the quadratic specification of HRLoadtk

allows us to compute the critical points in the regression models. In particular, since the

critical point of a quadratic function of the form f(x) = ax2 + bx+ c is −b/(2a), the critical

point of, e.g., log(HRSalestk) is expected to be −β2/(2β3).
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Models 3.4.1 and 3.4.2 are essentially a set of mediation models which have been widely

used in behavioral and social science to understand the implicit nature of the relationship

between dependent and independent variables (Baron and Kenny, 1986; Amenta et al., 1992;

Preacher and Hayes, 2008). In particular, they allow us to identify the direct and indirect

effects of HRLoad on log(HRSales) via AvgMealDuration. In the mediation models, the indi-

rect effect is approximately the coefficients between the independent variables (i.e., HRLoad

and HRLoad2) and the mediator (i.e., MealDuration). For example, the indirect effect of

HRLoad on log(HRSales) is approximately α1·β4, while the indirect effect of HRLoad2 is

approximately α2·β4. Coefficients β1 and β2 are the direct effects. The sum of the direct

and the indirect effects are referred to as the total effects. In other words, (α1 · β4 + β1) is

the total effect of HRSales, while (α2 · β4 + β2) is the total effect of HRSales2.

Although these regression models are useful as a preliminary estimator (Kennedy, 2003),

they may not address two potential issues:

1. Endogeneity: Restaurants tend to schedule servers based on sales and traffic forecast at

the hourly level, thus causing HRLoad, HRLoad2, log(HRSales), and log(AvgMealDuration)

to be endogenously determined. Other unobserved confounding factors, such as cus-

tomer demographic information, may also cause omitted variable bias in estimating

the dependent variables. In order to address these potential endogeneity and omit-

ted variables issues, we first adopt an instrumental variable 2SLS approach (Angrist

and Krueger, 1994) and then a 3SLS approach (Zellner and Theil, 1962), which are

elaborated in subsections 3.4.2 and 3.4.3.

2. Correlated Errors: Meal duration and sales are two performance metrics. They may

be simultaneously affected by an unobserved exogenous demand shock, such as a

celebration of a baseball game, but Models 3.4.1 and 3.4.2 assume that errors εtk

and µtk are uncorrelated, thus eliminating the connection of these two measures via a

contemporaneous shock. We propose a simultaneous approach using 3SLS models to

allow the errors εtk and µtk to be correlated with each other (see subsection 3.4.3).
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3.4.2 2SLS Model

We adopt an instrumental variable 2SLS approach (Angrist and Krueger, 1994) to address

the endogeneity issue for the following reason. First, the 2SLS instrument estimator can

provide consistent estimates of the dependent variables using a large sample. It is also

quite robust in the presence of other estimation issues such as multicollinearity. For these

reasons, the 2SLS instrument variable approach is widely used to address the endogeneity

issues (Kennedy, 2003). A valid instrumental variable should satisfy relevance and exclusion

restriction assumptions (Wooldridge, 2002). In particular, it should be uncorrelated with

the error (i.e., exclusion restriction) and correlated with the endogenous regressor (i.e.,

relevance). In other words, the instrument should explain the outcome variable only through

the endogenous regressor.

We propose two types of instruments. First, we utilize an exogenous shock in our study

period: the implementation of a new staffing system at one of the restaurants. On March

21st, 2011, one of the restaurants adopted a new computer-based scheduling system, while

the other four restaurants continued to rely on managers to make demand forecasts and

make staffing level decisions. The management chose this particular restaurant as a pilot

project to subsequently implement the software chain-wide. The sales performance of this

restaurant is similar to the other four restaurants in that they all show stable sales, thus

reducing the concern of selection bias. Using historical sales data, the new software forecasts

the need for servers. It is reasonable to assume that the system will prescribe different

staffing levels from those that managers might suggest because it uses more historical sales

data than a manager can handle. In other words, this system should have affected staffing

levels after its implementation, thus satisfying the relevance condition. In addition, we

expect the implementation of the software to affect meal duration and sales only through the

staffing level because the system simply provides a user-friendly interface to schedule servers,

perhaps with a different forecast for demand. Diners do not observe the implementation of

this labor scheduling system. For these reasons, the implementation of the system should

satisfy the exclusion restriction condition.

Admittedly, both managers and servers in that particular restaurant may have antic-
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ipated the implementation of the new software. They may also have different emotional

responses to a computerized scheduling system. For these reasons, they might have re-

adjusted their productivity, which could invalidate using the software implementation as an

instrument. In order to address this potential issue, following Bloom and Van Reenen (2007)

and Siebert and Zubanov (2010), we supplement our analysis using another type of instru-

mental variables, the lagged values of the endogenous independent variables. In particular,

we compute the HRLoad and HRLoad2 of the same restaurant during the same hour of the

previous week to use as instruments for the current week. For example, if the observation

tk happened at 8:00 pm on 8/8/2010 at restaurant k, its instrument is the hourly load of

the 8:00 pm slot on 8/1/2010 at restaurant k. We then mean-center these instruments for

interpretation purposes. We expect that the weekly lagged variables are correlated with the

current terms and therefore satisfy the relevance assumption because the restaurants in our

study usually consider the load from a week ago to generate staff schedules for the current

week. Moreover, we expect these lagged values of the endogenous variables to be exogenous

because the staffing decisions from a week ago should not determine the unobserved factors

for the average meal duration and sales during the current week, i.e., contemporaneous

shocks. In other words, the lagged variables are not contemporaneously correlated with the

disturbance (Kennedy, 2003), so they should satisfy the exclusion restriction assumption

of a valid instrument. Admittedly, the lagged workload may not be ideal in the event of

common demand shocks that are correlated over time. However, these common demand

shocks are basically trends (Villas-Boas and Winer, 1999). Trends are controlled for in

our models, thus lessening this potential concern. We further provide relevant statistics to

show the validity of these instruments in subsection 3.4.5. With both types of instrumental

variables, we employ the following 2SLS estimation procedure:

Stage 1: Estimate endogenous independent variables, namely HRLoad and HRLoad2

using OLS and utilizing instrumental variables (i.e., the implementation of the scheduling

system and the lagged values) and other exogenous controls (specified in Models 3.4.1 and

3.4.2); compute predicted values of the endogenous independent variables ̂HRLoad , and̂HRLoad2.

Stage 2: Use the predicted values of the endogenous independent variables, namely
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̂HRLoad and ̂HRLoad2 to estimate the coefficients of each equation in the system (Models

3.4.1 and 3.4.2) using OLS.

3.4.3 Simultaneous Equations

The OLS models 3.4.1 and 3.4.2 assume that the unobserved errors of log(HRSales) and

log(AvgMealDuration) are uncorrelated with each other. In order to allow for correlated

errors between the number of checks and sales, in addition to addressing the potential endo-

geneity issues, we adopt a system of simultaneous equations using a three-stage least squares

(3SLS) estimation method (Zellner and Theil, 1962) for the following reasons. First, the

3SLS instrument estimation can provide consistent estimates of HRLoad and HRLoad2. It

is also quite robust in the presence of other estimating issues such as multicollinearity. Fur-

thermore, the system of simultaneous equations approach utilizes all available information

in the estimates and is, therefore, more efficient than a single equation (Kennedy, 2003).

We use the same instruments as described in subsection 3.4.2 and propose the following

estimation procedure.

Stage 1: Same as the first stage in the 2SLS approach.

Stage 2: After using the predicted values from Stage 1 to estimate the coefficients of

each equation, we use these 2SLS estimates to predict errors in the system of simultaneous

equations, i.e., structural equation’s errors. These predicted errors are further used to com-

pute the contemporaneous variance-covariance matrix of the structural equation’s errors.

In other words,

Stage 2: log(AvgMealDurationtk) = α0 + α1
̂HRload tk + α2

̂HRload2
tk + α3HRDinerstk (3.4.3)

+α4 log(HRItemstk) + α5Controlstk + εtk,

log(HRSales)tk = β0 + β1 ̂HRload tk + β2
̂HRload2

tk + β3 log(AvgMealDurationtk)

+β4HRDinerstk + β5Controlstk + µtk.

where εtk and µtk are structural equation’s errors.

Stage 3: Compute the General Least Squares (GLS) estimators of the system of Equa-

tions 3.4.3.
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3.4.4 Results

Table 3.5 shows the results of the impact of HRLoad on log(AvgMealDuration). The co-

efficients of HRLoad2 are consistently negative (-0.0025, -0.0117, -0.0116), suggesting that

HRLoad initially concavely increases the average meal duration of each check and then

concavely decreases the meal duration, consistent with H1. The OLS model predicts that

the critical point is above the current sample mean, while 2SLS and 3SLS models suggest

that the critical point should be below the current sample mean. We acknowledge that

the point estimates of HRLoad are statistically insignificant at 0.05 level in both 2SLS and

3SLS models. We expect that the instruments will increase standard errors of the estimates

because they reduce the variation of the ̂HRDinerstk. We also observe that the estimates of

HRLoad and HRLoad2 by 2SLS and 3SLS are over twice as small as those by OLS, which

may indicate weak instruments. We explain why our instruments are not weak instruments

in subsection 3.4.5.

Table 3.5: Impact of HRLoad on log(AvgMealDuration)

OLS 2SLS 3SLS

HRLoad 0.0110*** -0.0259 -0.0259

(0.0014) (0.0221) (0.0221)

HRLoad2 -0.0025*** -0.0117* -0.0116*

(0.0004) (0.0051) (0.0051)

HRDiners -0.0079*** -0.0027 -0.0027

(0.0003) (0.0016) (0.0016)

HRItems 0.0043*** 0.0030*** 0.0030***

(0.0001) (0.0003) (0.0003)

Controls Yes Yes Yes

Hypothesis Supported H1 H1 H1

Observations 17,428 16,389 16,389

Prob>Chi-Sq <0.001 <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

Table 3.6 presents the results of the effects of HRLoad on hourly sales, controlling for

the demand, i.e., HRDiners. As can be seen, the coefficients of HRLoad are consistently

positive (0.1361, 0.419 and 0.4846). The coefficients of HRLoad2 are consistently negative (-

0.0412, -0.1677, -0.1363). Supporting H2, these results suggest that HRLoad first concavely

increases sales and then concavely decreases sales. In other words, when workload is small,
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sales increase in the workload because servers exert more selling effort. However, after a

certain threshold, workload limits servers’ sales effectiveness. Furthermore, as expected, a

long average meal duration and the number of diners are both positively associated with

higher hourly sales.

Table 3.6: Impact of HRLoad on log(HRSales)

OLS 2SLS 3SLS

HRLoad 0.1361*** 0.4190*** 0.4846***

(0.0035) (0.0820) (0.0916)

HRLoad2 -0.0412*** -0.1677*** -0.1363***

(0.0025) (0.0195) (0.0231)

log(AvgMealDuration) 0.4934*** 0.2212*** 2.4810***

(0.0264) (0.0511) (0.4142)

HRDiners 0.0358*** 0.0225*** 0.0139*

(0.0003) (0.0046) (0.0058)

Controls Yes Yes Yes

Hypothesis Supported H2 H2 H2

Observations 17,428 16,389 16,389

Prob>Chi-Sq <0.001 <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

In sum, Table 3.6 suggests that HRLoad has a direct concave effect on log(HRSales).

Moreover, it has a possible indirect concave effect via log(AvgMealDuration). In particular,

using the estimates from 3SLS, we find the indirect effect of HRLoad2 is approximately

-0.0288 (-0.0116×2.481≈ −0.0288). The indirect effect of HRLoad is zero because the

estimate is insignificant at 0.05 level. Adding both direct and indirect effects, the total

effect of HRLoad is approximately 0.4846; the total effect of HRLoad2 is approximately

-0.165, which suggests that the total optimal workload is 1.46 diners/server (0.4846
0.33 ≈ 1.46)

above the current sample mean. These results allow us to conclude that workload affects

hourly sales non-linearly. When workload is small, sales increase in the workload: “The

Devil makes work for idle hands”; however, after a certain threshold sales start decreasing

in the workload: “Many hands make light work”.
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3.4.5 Validity of Instrumental Variables

To confirm the validity of the instruments and ensure asymptotic consistence of instrumen-

tal variable estimators, we first check the relevance condition. In the 2SLS estimations of

the log(AvgMealDuration) and log (HRSales), the adjusted R2’s from the first-stage regres-

sions of HRLoad are around 0.5. The adjusted R2’s from the regressions of HRLoad2 are

0.08 and 0.06 respectively, which may indicate considerable loss of precision but not so low

as to cause a weak-instruments issue. We find that all the F statistics for the joint signifi-

cance of instruments excluded from the structural model are over 10, the suggested rule of

thumb of weak instruments (Staiger and Stock, 1994). In addition, we find that the soft-

ware implementation is negatively associated with HRLoad due to increased staffing levels

after implementation. One-week lagged hourly staffing is also negatively associated with

the workload in the current week, suggesting that the management adjusted the staffing

decisions. Hence, we confirm that these instruments have clear expected effects on the

endogenous variables and therefore satisfy the relevance condition.

Unfortunately, there is no generally accepted statistical test for the exclusion restriction

assumption. Nevertheless, we would argue that the implementation of the software should

affect the restaurant performance only through staffing levels, without affecting demand

factors or the service quality of individual servers. Moreover, from our interviews with

restaurant managers and industry knowledge, we believe that that hourly staffing levels

from one week ago should be independent from the contemporaneous shock to the meal

duration and sales of the current week, after controlling for both time varying and time

invariant effects. Finally, we conduct Sargan tests of over-identifying restrictions, which are

often used as a test of exogenous instruments. We find that the p-values are over 0.05 and

therefore fail to reject the null hypothesis that the error terms are uncorrelated with the

instruments. Hence, we conclude that our instrumental variables are likely to satisfy the

exclusion restriction assumption.
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3.4.6 Robustness Check

3.4.6.1 Alternative Definitions of Workload

In addition to the number of diners that a server serves, his/her workload may be measured

differently. One alternative measure is the number of tables that a server waits on. Servers

tend to perform a set of procedures, such as taking orders and settling bills, one table at a

time. In addition, restaurants generally assign a section of tables to a server, so servers are

aware of how many tables that they are responsible for. For these reasons, the number of

tables served could reflect a server’s workload. Another alternative measure is the number

of menu items sold. Additional items sold will increase a server’s workload because the

server needs to carry the item from the kitchen or the bar to the table. We use variables

HRTableLoad and HRItemLoad defined in Table 3.1 to reflect the workload in terms of

tables and items. Following the estimation procedures described from Subsection 3.4.1 to

3.4.3, we substitute HRLoad with HRTableLoad and HRItemLoad, respectively, to provide

robustness checks of our main results.

Table 3.7 shows the 3SLS estimation results using the alternative workload definitions.

These results are largely consistent with our main results using diners as a proxy for work-

load. In estimating log(AvgMealDuration), the coefficient of HRTableLoad2 is -0.0917, sug-

gesting that workload measured in tables initially concavely increases the average meal

duration of each check and then concavely decreases the meal duration. The coefficient of

HRItemLoad2 is also negative (= −0.0013), although it is insignificant at 0.05 level. The

average meal duration may not be particularly sensitive to the number of items possibly

because it sometimes take a server the same amount of time to carry one or two items

during one trip from the kitchen.

In estimating log(HRSales), the coefficients of HRTableLoad and HRItemLoad are both

significant and positive (0.8083 and 0.1244). The coefficients of HRTableLoad2 and HRItemLoad2

are both significant and negative (-0.6567 and -0.0265), consistent with H2 and our main

results. In addition, as expected, the average meal duration has a positive impact on hourly

sales. Using these 3SLS estimates, we compute that the optimal HRTableLoad is about 0.5

table/server above the current sample mean (1.84 tables/server). The optimal HRItemLoad
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is 2.35 items/server above the current sample mean (9.44 items/server). These optimal

workload levels using alternative measures suggest that the optimal workload level in din-

ers, i.e., 1.46 diners/server,is quite robust because 2.6 diners on average sit at one table and

order about two items per diner in our sample.

Table 3.7: 3SLS Results of Alternative Definitions of Workload

Table Load Item Load

log(AvgMealDuration)log(HRSales) log(AvgMealDuration)log(HRSales)

HRTableLoad -0.0098 0.8083***

(0.0328) (0.0991)

HRTableLoad2 -0.0917** -0.6567***

(0.0290) (0.1079)

HRItemLoad -0.0163 0.1244***

(0.0085) (0.0226)

HRItemLoad2 -0.0013 -0.0265***

(0.0011) (0.0037)

HRDiners -0.0052*** 0.0271*** -0.0102*** 0.0257***

(0.0006) (0.0012) (0.0013) (0.0020)

HRItems 0.0034*** 0.0065***

(0.0003) (0.0011)

log(AvgMealDuration) 1.5968*** 2.0959***

(0.2500) (0.5811)

Controls Yes Yes Yes Yes

Hypothesis Supported H1 H2 - H2

Observations 16,389 16,389 16,389 16,389

Prob>Chi-Sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

3.4.6.2 Heterogeneous Servers

Servers usually possess idiosyncratic sales skills. These heterogeneous servers form differ-

ent team compositions during each business hour, which may affect hourly sales. In this

subsection, we account for such heterogeneous sales skills to reduce the potential omitted

variable bias in estimating the effects of workload. Furthermore, we examine the moderat-

ing effects of sales skills to provide insights for scheduling the heterogeneous servers under

various workload levels.
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Hourly Team Composition

In order to address these issues, we first use the following fixed-effect model to estimate

servers’ intrinsic sales abilities:

Salesjt = α0 + α1MyDinersjt + α2Controlsjt + µj + εjt.

In this model, Salesjt is the total sales that server j generates during hour t. MyDinersjt

is the total number of diners that server j starts to serve during hour t. In other words,

MyDinersjt spend Salesjt with server j during hour t. In addition, similar to previous

models, Controlsjt include Shiftjt×DayWeek jt, Monthjt, Trendjt and Storejt to adjust for

the the time/date and location factors. The fixed effects µj is server j ’s time-invariant

intrinsic sales ability. We use such a fixed-effect model instead of a random-effect model

because the intrinsic sales ability µj may be correlated with MyDinersjt.

Figure 3.4.1 shows the distribution of the intrinsic sales ability µj . The distribution of

µj seems to be symmetrically dispersed around the mean, which is approximately $-1.81.

Figure 3.4.1: Distribution of Servers’ Intrinsic Sales Abilities µj

We average the intrinsic sales ability µj ’s of the servers working in the same hour t

at restaurant k to create a variable HRAvgSkilltk. We then include HRAvgSkilltk in our

previous 3SLS Model 3.4.3. Table 3.8 shows the results of the robustness check including

hourly team composition. The coefficient estimates of HRLoad and HRLoad2 are consistent

with the main results shown in Tables 3.5 and 3.6 in terms of both signs and magnitudes.

Therefore, H1 and H2 are supported. Note that the HRAvgSkill estimates are insignificant
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in both log (AvgMealDuration) and log (HRSales) models. In this study, we do not interpret

the effect of HRAvgSkill and use it primarily as a control variable of the team composition.

Understanding the causal effect of team composition warrants careful future research.

Table 3.8: Robustness Check of Hourly Team Composition Using 3SLS

log(AvgMealDuration) log(HRSales)

HRLoad -0.0267 0.4897***

(0.0223) (0.0932)

HRLoad2 -0.0116* -0.1342***

(0.0052) (0.0240)

HRDiners -0.0027 0.0133*

(0.0017) (0.0061)

HRItems 0.0030***

(0.0003)

log(AvgMealDuration) 2.5397***

(0.4486)

HRSalesPerc -0.0008 -0.0028

(0.0010) (0.0037)

Controls Yes Yes

Hypothesis Supported H1 H2

Observations 16,389 16,389

Prob>Chi-Sq <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

Moderating Effects of Sales Abilities

We further conduct a server-level analysis to understand the moderating effects of sales skills

with respect to workload. A server-level analysis also provides a robustness check to our

previous assumption that servers are assigned similar number of diners every hour. Using

the previously-estimated intrinsic sales ability µj ’s, we categorize servers into two groups –

those servers having µj ≥ −1.81 (sample mean) are coded as the “high” type and are given

a dummy variable Highsalesj = 1. Accordingly, those servers having µj < −1.81 are the

“low” type and are given Highsalesj = 0. We can alternatively categorize servers according

to different quantiles of the µj , which yields similar results. Therefore we only report the

categorization based on the sample mean. We include the categorical variable HighSalesj
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in the following two multivariate regression models:

log(AvgMealDurationjt) = α0 + α1HighSalesj + α2HighSalesj ×MyDinersjt +

α3HighSalesj ×MyDiners2jt + α4Tenurejt +

α5SystemLoadtk + α6Controlsjt + ξjt (3.4.4)

log(HRSalesjt) = β0 + β1HighSesj + β2HighSalesj ×MyDinersjt +

β3HighSalesj ×MyDiners2jt + β4 log(AvgMealDurationjt) +

β5Tenurejt + β6SystemLoadtk + β7Controlsjt + εjt. (3.4.5)

In these models, MyDinersjt, the total number of diners that server j served during hour

t, measures the server-level workload. Variable Tenurejt , which is the number of days

that server j has worked by hour t, controls for servers’ learning effect. SystemLoadtk

include HRDinerstk and HRItemstk defined in Table 3.1. Controlsjt include all the previous

time/date and location controls.

Table 3.9 shows the results of Models 3.4.4 and 3.4.5. Figure 3.4.2 graphically summa-

rizes the moderating effects of sales abilities. First, the coefficient of HighSales is -0.0297

in Model 3.4.4 and 0.0776 in Model 3.4.5, suggesting that the “high”-type servers are on

average associated with 3% shorter meal duration and 8% higher hourly sales than the

“low”-type ones. This result implies that managers might benefit from scheduling more

“high”-type servers to work during such high-traffic shifts as Friday dinners or weekends in

order to ensure prompt service levels and generate higher total sales.

Second, the coefficients of MyDiners2 are significant and negative (-0.001 and -0.0141)

in both models and they are indistinguishable between the “high”-type and the “low”-type

servers. These results support both H1 and H2, suggesting that workload has an inverted-U

shaped relationship with the meal duration and the hourly sales regardless of servers’ sales

abilities. Furthermore, using the coefficient estimates of the linear term MyDiners and its

corresponding interactive term, we find that the “high”-type servers seem to start speeding

up under a smaller workload than the “low”-type ones. The sales of the “high”-type servers

also seem to start decreasing under a lower workload than the “low”-type ones probably

because the diners’ food consumption constraints limit “high”-type servers’ highest sales.
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Table 3.9: Server-level Analysis: Moderating Effects of Sales Abilities

log(AvgMealDuration)

Model 3.4.4

log(HRSales)

Model 3.4.5

HighSales = 1 -0.0297*** 0.0776***

(0.0025) (0.0028)

MyDiners 0.0131*** 0.2252***

(0.0007) (0.0007)

MyDiners×HighSales = 1 -0.0050*** -0.0019*

(0.0008) (0.0009)

MyDiners2 -0.0010*** -0.0141***
(0.0001) (0.0002)

MyDiners2×HighSales=1 0.0002 0.0004
(0.0002) (0.0002)

Tenure -0.0007* 0.0013***

(0.0003) (0.0003)

log(AvgMealDuration) 0.2117***

(0.0035)

SystemLoad Yes Yes

Controls Yes Yes

Hypothesis Supported H1 H2

Observations 98,018 98,018

Prob>Chi-Sq <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

Figure 3.4.2: Summary Plots: Moderating Effects of Sales Abilities

3.4.6.3 Spline Regressions

Previous studies examined linear effects of workload on performance. While we are one of the

first studies suggesting a non-linear effect of workload and propose a quadratic function form
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of HRLoad, we are limited to the“non-local”assumption of a quadratic regression. The“non-

local”assumption implies that the the fitted dependent variables, i.e., log( ̂AvgMealDuration)

and log( ̂HRSales), at a given HRLoad = HRLoad0 depends heavily on HRSales values far

from HRLoad0. In order to address this issue, we apply spline regressions, choosing n knots

that split HRLoad into n+ 1 equal-sized groups. In particular, we choose n to be 2 and 3,

respectively. Spline regressions then fit piecewise linear functions of HRLoad.

Table 3.10 shows the results of the spline regressions. In all models, the coefficients of

HRLoad1 are significant and positive (0.0169, 0.2369, 0.0224 and 0.3590), suggesting that as

workload increases, both average meal duration and hourly sales first increase. However, the

coefficients of HRLoad2 are all significant and negative (-0.0046, -0.1232, -0.0074, -0.2595),

implying that as workload further rises, both average meal duration and hourly sales then

drop. Note that the absolute values of HRLoad1 coefficients are all larger than the absolute

values of HRLoad2 coefficients, which suggest that the incremental effect of workload may

be stronger than the decremental effect of workload on both average meal duration and

hourly sales. Furthermore, the coefficient of HRLoad3 is indistinguishable from zero in

estimating log(AvgMealDuration). In estimating log(HRSales), the coefficient of HRLoad3

is significant and negative (-0.0242), but its absolute value is approximately one tenth of

the absolute value of HRLoad2 coefficient (-0.2592). These HRLoad3 coefficient estimates

seem to suggest that the decremental effects of HRLoad may be diminishing as workload

further increases. All in all, these results from spline regressions further support our H1

and H2, suggesting that as workload increases, both average meal duration and hourly sales

first increase and then decrease.
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Table 3.10: Robustness Check Using Spline Regressions

log(AvgMealDuration)

n = 2

log(HRSales)

n = 2

log(AvgMealDuration)

n = 3

log(HRSales)

n = 3

HRLoad1 0.0169*** 0.2369*** 0.0224*** 0.3590***

(0.0019) (0.0049) (0.0026) (0.0060)

HRLoad2 -0.0046** -0.1232*** -0.0074* -0.2595***

(0.0015) (0.0049) (0.0031) (0.0066)

HRLoad3 -0.0005 -0.0242***

(0.0018) (0.0047)

HRDiners -0.0078*** 0.0363*** -0.0078*** 0.0375***

(0.0003) (0.0003) (0.0003) (0.0003)

HRItems 0.0042*** 0.0042***

(0.0001) (0.0001)

log(AvgMealDuration) 0.4862*** 0.4618***

(0.0262) (0.0246)

Controls Yes Yes Yes Yes

Hypothesis

Supported

H1 H2 H1 H2

Observations 17,428 17,428 17,428 17,428

Prob>Chi-Sq <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

3.4.6.4 Quantile Regressions

As an additional robustness check, we adopt quantile regression models, which have been

used in the applied economics (Koenker and Bassett Jr, 1978; Buchinsky, 1994). Unlike

the OLS Models 3.4.1 and 3.4.2, which estimate the average effects of HRLoad, a quantile

regression estimates the effect of HRLoad on conditional quantiles of AvgMealDuration and

HRSales. Analyzing these quantiles allows us to understand how the covariates including

HRLoad affects the average meal duration and hourly sales of different levels. In addition,

using a quantile regression to estimate the median is more robust to large outliers than

using an OLS prediction. We employ the following quantile regression models:

log(AvgMealDurationtk) = A′
tkαθ + uθtk with Quantileθ(log(AvgMealDurationtk|Atk)) = A′

tkαθ,

log(HRSalestk) = B′
tkβθ + vθtk with Quantileθ(log(HRSalestk|Btk)) = B′

tkβθ,

where A′tk and B′tk are the same group of independent variables as in Models 3.4.1 and 3.4.2.

In addition, Quantileθ(log(AvgMealDurationtk|Atk) and Quantileθ(log(HRSalestk|Btk) are
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the θth conditional quantiles of log(AvgMealDurationtk) and log(HRSalestk).

Table 3.11 shows the results of the quantile regressions at 25%, 50% and 75% quantiles.

The left three columns present the results of log(AvgMealDuration). The coefficients of

HRLoad2 are significant and negative (-0.0052 and -0.0028) for the 25% and 50% quantiles,

supporting our H1. For the 75% quantile, the inverted-U shaped relationship is inconclusive

. The right three columns show the results of log(HRSales). The coefficients of HRLoad2

are consistently significant and negative (-0.0833, -0.0516 and -0.0231) across quantiles,

supporting our H2. In addition, the coefficients of HRLoad are consistently positive (0.1720,

0.1083 and 0.0562), consistent with our primary results as shown in Table 3.6.

Table 3.11: Robustness Checks Using Quantile Regressions

log(AvgMealDuration) log(HRSales)

25 %

Quantile

50%

Quantile

75%

Quantile

25%

Quantile

50%

Quantile

75%

Quantile

HRLoad 0.0177*** 0.0111*** 0.0053*** 0.1720*** 0.1083*** 0.0562***

(0.0012) (0.0016) (0.0014) (0.0032) (0.0037) (0.0039)

HRLoad2 -0.0052*** -0.0028*** -0.0005 -0.0833*** -0.0516*** -0.0231***

(0.0005) (0.0006) (0.0003) (0.0023) (0.0019) (0.0026)

HRDiners -0.0056*** -0.0065*** -0.0073*** 0.0354*** 0.0348*** 0.0340***

(0.0003) (0.0003) (0.0004) (0.0002) (0.0003) (0.0003)

HRItems 0.0036*** 0.0035*** 0.0034***

(0.0002) (0.0002) (0.0002)

log(AvgMealDuration) 0.4802*** 0.4339*** 0.3608***

(0.0326) (0.0226) (0.0140)

Controls Yes Yes Yes Yes Yes Yes

Hypothesis Supported H1 H1 not

supported

H2 H2 H2

Observations 17,428 17,428 17,428 17,428 17,428 17,428

Prob>Chi-Sq <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

3.4.6.5 Duration Analysis Models

Finally, we conduct a duration analysis of the average meal duration to estimate how work-

load affects the hazard rate of ending a meal. The hazard rate of a meal may depend on how

long a meal has already elapsed, i.e., time-dependence, exhibiting increasing, decreasing or

bell-shaped distributions. We fit a variety of commonly used distributions and check the
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robustness of the results. In particular, we use the same model specification as in Model

3.4.1 and assume that AvgMealDuration follows a Gompertz, a Weibull, a Log-logistic and a

Log-normal distribution, respectively. The duration analysis results can be interpreted from

a causal perspective (Blossfeld et al., 2007). Nevertheless, unobserved heterogeneity may

make the results spurious. In order to address this issue, we include a Gamma-distributed

error term in the hazard function, i.e., Gamma mixture. Finally, we also consider a Cox

semi-parametric hazard model, but its results violate the proportional hazards assumption.

Therefore we elect not to report its results.

Table 3.12 presents the results of the duration analysis models. Note we report the

accelerated failure time results of Weibull, Log-logistic and Log-normal distributions, so the

signs of the coefficients are consistent with the meal duration. However, we report the log

relative-hazard results of Gompertz distribution because Gompertz distribution assumes

linear monotonicity in duration. Therefore, a positive coefficient implies a higher hazard

rate and a shorter duration.

As can be seen, the coefficient of HRLoad2 is positive in the Gompertz model (0.0426),

and negative in the three accelerated failure time models (-0.0008, -0.0008 and -0.0011,

respectively). In addition, the coefficient of HRLoad is negative in the Gompertz model

(-0.1723), and positive in the other three models (0.0032, 0.0033, 0.0042, respectively).

These results are all significant and consistent, supporting our H1 that workload has an

inverted-U-shaped relationship with meal duration. In addition, the signs of the HRDiners

and HRItems coefficients are the same as our main results shown in Table 3.5. Moreover,

the shape parameters of the Gompertz and the Weibull models are both positive (13.3710

and 3.8670), suggesting an increasing hazard rate over time. In the Log-logistic and the

Log-normal models, the shape parameters are both negative, suggesting an increasing and

then decreasing rate of finishing a meal, namely a bell-shaped hazard rate. In terms of

the goodness-of-fit of the four models, the Gompertz model yields the highest log-likelihood

(31,546), which suggests that the baseline hazard rate is likely to be linearly increasing.
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Table 3.12: Robustness Check Using Duration Analysis

Gompertz Weibull Log-logistic Log-normal

HRLoad -0.1723*** 0.0032*** 0.0033*** 0.0042***

(0.0152) (0.0003) (0.0003) (0.0003)

HRLoad2 0.0426*** -0.0008*** -0.0008*** -0.0011***

(0.0042) (0.0001) (0.0001) (0.0001)

HRDiners 0.0915*** -0.0018*** -0.0018*** -0.0019***

(0.0040) (0.0001) (0.0001) (0.0001)

HRItems -0.0515*** 0.0010*** 0.0010*** 0.0011***

(0.0019) (0.0000) (0.0000) (0.0000)

Shape Parameter 13.3710*** 3.8670*** -3.8689*** -3.3020***

(0.1710) (0.0124) (0.0088) (0.0080)

Controls Yes Yes Yes Yes

Hypothesis Supported H1 H1 H1 H1

Observations 17,428 17,428 17,428 17,428

Prob>Chi-Sq <0.001 <0.001 <0.001 <0.001

Log-likelihood 31,546 31,425 31,453 30,943

1. Standard errors are shown in the parentheses.

2. *: p-value<=0.05, **: p-value<=0.01, ***: p-value<=0.001

3. Gompertz is interpreted in a log relative-hazard form. A positive sign implies a higher

hazard and a shorter duration. Other three models are interpreted in an accelerated failure

time form. A positive sign implies a longer duration.

3.5 Managerial Insights and Concluding Remarks

3.5.1 Managerial Insights

Our study underscores several insights for restaurant managers facing the increasing chal-

lenges and pressures of managing a diverse workforce in a highly demanding work environ-

ment. Making optimal staffing decisions is critical for restaurants to achieve better perfor-

mance. Perhaps the most counter-intuitive finding of our study is that reducing the staffing

level might be necessary to improve sales. We find that the optimal workload for hourly

sales is approximately 1.46 diners per server above the current sample mean, controlling for

the demand. The hourly diners/server ratio in our sample stores is currently on average

equals to 4.3, with a standard deviation of 1.66. Our findings indicate that the optimal

staffing of 5.76 diners per server may simultaneously increase sales and reduce labor costs.

Using the estimates in the 3SLS estimation of log(HRSales), we project that the optimal

staffing will directly increase the average hourly sales by approximately 41%, controlling for
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the demand and average meal duration. A sanity check suggests that selling one additional

starter or dessert or a good glass of wine through effective up-selling or cross-selling may be

worth about 40% of the price of an entree, which makes this estimated sales lift reasonable.

In addition, we re-estimate the sales impact after controlling for HRItems using 3SLS esti-

mation in Model 3.4.3 to categorize the sales lift into up-selling and cross-selling. It seems

reasonable to assume that controlling for HRItems leads to isolating the cross-selling effect.

We find that the optimal staffing level may result in 12% sales lift in terms of up-selling. In

other words, remaining 29% of the sales lift ascribes to the cross-selling. Similar to other

restaurants, our focal restaurants offer plenty of add-on options, making 12% up-selling

sales lift plausible.

Nevertheless, increasing hourly workload may lead to a trade-off of lost sales due to

shortened average meal duration. Using the estimates in the 3SLS models, we calculate

that increasing hourly workload from 4.3 to 5.76 may reduce average meal duration by

2.5%, which may incur a marginal loss of 6% of total sales. Note that the marginal loss of

sales via shortened meal duration is about one seventh of the marginal gain of sales via direct

sales effort, which emphasizes the importance of effective sales training. On aggregate, the

total effect of optimal staffing may lift sales by about 35%, controlling for everything else.

In other words,

35% Sales lift = 12% Upselling + 29% Cross selling−6% Loss from reduced meal duration.

Additionally, we find that over 75% of the time, restaurants tend to over-staff by on

average 1.14 servers per hour. Assuming the waiter is paid the minimum hourly wage

for tipped workers ($2.63 in Massachusetts), we expect that optimal staffing may save the

restaurants about 0.7% of total sales in labor. Moreover, reducing the staffing level by 1.14

servers each hour can save about 20% of current labor costs (the current average hourly

staffing level is 5.63 servers). Of course, our model does not allow us to make an entirely

accurate estimate of the potential improvement from optimal staffing (e.g., further labor-

related non-wage costs), nor can the restaurants perfectly forecast demand. We nevertheless

anticipate a significant sales lift and cost saving from optimal staffing because of the benefits
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from correcting both under-staffing and over-staffing misses.

3.5.2 Concluding Remarks

Most studies on staffing decisions in services tend to overlook employees’ adaptive behavior

to work environments. In this paper we use detailed operational data gathered from a

restaurant chain to study the effects of workload, an environmental variable, on servers’

performance, taking endogeneity into consideration. We find that, as workload increases,

the meal duration first increases and then decreases. We also find that, when the overall

workload is low, increasing the workload may motivate servers to generate more sales. When

the workload is high, increasing the workload may limit servers’ effective sales. Our empirical

findings contribute to the existing analytical models on staffing in two aspects. First, the

non-linearity of the meal duration impact enriches the analytical papers on staffing that

considers workload-dependent productivity. Hasija et al. (2010) have written an important

and timely paper on the linearly speeding-up behavior induced by workload to estimate a call

center’s capacity. Future research in this stream may further assume non-linear productivity

induced by workload. In their paper, less adequate is their assumption that the workload

does not affect service quality. Our finding further provides empirical evidence to existing

research studying the effect of workload on service quality (see e.g., Anand et al. 2011).

Higher sales not only benefit the restaurant’s bottom line but also may arguably reflect

higher service quality. Understanding the trade-off of productivity and quality induced by

workload may strengthen the analytical models on staffing.

The drivers of workload effects are initially unclear. On the one hand, a high workload

may indicate high demand, which will increase the hourly performance. On the other

hand, a high workload may indicate under-staffing, which may result in overloaded servers

and diminished performance. We show that optimal staffing decisions, i.e., supply factors,

mainly drive the results of our analysis. In particular, optimal staffing can improve sales

generation and save labor costs.

Figure 3.5.1 illustrates the relationship between workload and predicted hourly perfor-

mance. On the left we observe that workload initially slows down servers. After a critical

point, servers start to speed up and thus reduce the average meal duration. As shown on the

65



right of Figure 3.5.1, surprisingly, when the workload is small, sales increase with the work-

load: “The Devil makes work for idle hands”. However, after a certain threshold (between

five and six diners per server) is reached, sales start to decrease with the workload: “Many

hands make light work”. We make a seemingly counter-intuitive suggestion that reducing

staffing is sometimes necessary to achieve higher sales and lower costs in a situation when

restaurants are overstaffed. This is contrary to what most research into retail stores finds,

which is significant under-staffing.

Figure 3.5.1: Predicted Hourly Performance

It is important to take into account the limitations of our findings. Although our data

set is among the largest in the existing literature on worker performance response to external

factors, it misses a few interesting variables. For example, we do not observe exact duration

of each service procedure, such as taking the order and settling the bill . An interesting

avenue for future research would be to examine the impact of workload on each specific

service procedure. In addition, we lacked data about complete tipping information because

we only observed tips paid through credit cards. We analyzed tips data that was available to

us and found that tips showed very little variation; therefore we did not find robust impact

of workload on tips. However, other types of customer satisfaction data, such as customer

surveys, would be desirable to study the impact of workload on guest satisfaction. Further-

more, due to data limitations, our study does not examine the impact of other factors, such

as kitchen capacity and diner heterogeneity. Although we employed instrumental variables

to address this omitted variable issue, these factors would be worthwhile studying in fu-
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ture research. Additionally, our data only shows the number of servers who receive checks,

which should cause a downward bias relative to the actual staffing decisions. Nevertheless,

we find that the restaurant is already overstaffed so including more precise information in

this case would only strengthen our findings. Further research opportunities in this set-

ting include studying other OM/Human Resources interface issues, such as the “chemistry”

among team members and team composition. Using our findings about server’s adaptive

behavior to environmental constrains to design new workforce scheduling algorithm would

offer an interesting and fruitful direction, too. Finally, in our models, in order to separate

the supply-side driver of workload effect, we assume exogenous demand, namely the number

of diners starting service every hour. In practice, arriving diners may choose to enter the

restaurants or leave, depending on the occupancy of the restaurant. For example, when the

restaurant is too empty, diners may interpret it as a sign of low restaurant quality, thus

deciding to leave. However, when the restaurant is too full, diners may anticipate a long

wait, thus balking at the door. It will be very interesting to empirically test how occupancy

affects demand.
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