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ABSTRACT

DISEASE DIAGNOSIS FROM IMMUNOASSAYS WITH PLATE TO PLATE

VARIABILITY

Oliver Entine

Dylan Small

The standard methods of diagnosing disease based on antibody microtiter plates are

quite crude. Few methods create a rigorous underlying model for the antibody levels of

populations consisting of a mixture of positive and negative subjects, and fewer make

full use of the entirety of the available data for diagnoses. In this paper, we propose

a Bayesian hierarchical model that provides a systematic way of pooling data across

different plates, and accounts for the subtle sources of variations that occur in the

optical densities of typical microtiter data. In addition to our Bayesian method having

good frequentist properties, we find that our method outperforms one of the standard

crude approaches (the ”3SD Rule”) under reasonable assumptions, and provides more

accurate disease diagnoses in terms of both sensitivity and specificity.
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Chapter 1

Introduction and Motivation

In the past two decades, Chagas disease has become an epidemic in rural communities

in South America. Caused by the protozoan parasite Trypanosoma cruzi, Chagas has

become the deadliest parasitic disease in the continent (Levy et al., 2011). More

recently, the disease has also become a major urban problem in the city of Arequipa

Peru (Levy et al., 2011).

Spread primarily by the insect vector Triatoma infestans, transmission of T. cruzi

occurs when contaminated feces of the infected insect enters a person’s bloodstream

through the location of the insect bite, or from mucous membranes (Kirchhoff et al.,

2004; Tustin et al., To appear). The parasite can also be transmitted through food

contamination, blood transfusions, organ transplants, and in 26% of new cases, di-

rectly from a mother to her child during pregnancy (Bern et al., 2009).

Since the disease has only recently been introduced to this city, the debilitating symp-

toms of the disease elsewhere in South America are rarely seen in the hospitals of Are-

quipa (Levy et al., 2011). Most infected people here have the indeterminate form of

1



the disease and may not show symptoms for many years. Thus, various serologic and

immunoassay tests are used to test potentially infected individuals. However, there

are no “gold standards” reference tests for identifying the parasite (Tarleton et al.,

2007). It is vital though that the disease be diagnosed during this asymptomatic stage,

when patients will likely have a good prognosis in response to treatment. Once an in-

dividual reaches the stage where he starts showing physical symptoms, the treatment

prognosis becomes quite poor. Therefore, the accuracy and effectiveness of Chagas

diagnosis methods are of paramount importance.

The current immunoassay methodology for testing Chagas disease (as well as for

various other infections) is often based on analyzing the optical density of patients’

antibody levels, using a series of microtiter plates. However, the classification proce-

dures currently derived from these microtiter plates are surprisingly crude, and do not

make use of a comprehensive model that utilizes the plethora of available microtiter

plate data. In this dissertation, we propose a hierarchical Bayesian model, that under

reasonable assumptions, performs more accurate and reliable classifications of both

negative and positive cases of diseases than the so-called 3-SD rule, one of the most

common methods currently in use.

The structure of this dissertation is as follows. Chapter 2 provides background for the

various Bayesian simulation techniques utilized throughout the thesis. In particular,

we focus on the Metropolis-Hastings algorithm and the Gibbs sampler.

Chapter 3 is where we construct the Bayesian model that allows us to borrow strength

across the different microtiter plates in creating a disease classification scheme. In

addition to detailing the model’s implementation, we use extensive simulations to

demonstrate the improved accuracy of the full hierarchical framework versus the 3-

2



SD rule when our proposed underlying lognormal mixture model is valid. Finally, we

compare the diagnostic results of these two methods on actual microtiter data from a

lab in Peru, where they are currently using the 3-SD rule to test for Chagas disease.

In Chapter 4, we investigate the robustness of our procedure by looking at our model’s

Type I and Type II error rates when specific model assumptions are violated. In

Chapter 5, we test the validity of the lognormal mixture model on this specific Chagas

disease dataset, using both Bayesian posterior predictive checks, and also classical

parametric bootstrap techniques. Finally, the Appendix provides documentation for

an R function that can be used to run many of the MCMC simulations performed in

the dissertation.
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Chapter 2

Background on Markov Chain

Monte Carlo Methods

One of the biggest challenges in Bayesian modeling is that one often needs to simulate

random variables from very complex high-dimensional distributions, whose math-

ematical forms are non standard. These typically involve computing multivariate

integrals that cannot be solved analytically. Markov Chain Monte Carlo (MCMC)

methods are a class of algorithms in which one creates a Markov chain whose long-run

stationary distribution is the complex distribution of interest. By carefully sampling

iteratively from this chain, the eventual long-run samples will converge in distribution

to this target density. The tricky part of performing an MCMC is the construction of

an appropriate Markov Chain. The Bayesian simulation performed in this thesis uses

two related methods of MCMC; The Metropolis Hastings Algorithm, and the Gibbs

Sampler.
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2.1. The Metropolis-Hastings Algorithm

The idea behind the Metropolis Hastings (MH) Algorithm is that by sampling from

a simple, yet carefully chosen proposal density q , one can arrive at our complicated

target distribution, denoted by π, by accepting or rejecting the draw with a certain

probability (Hastings, 1970; Chib and Greenberg, 1996). The only assumptions we

need for π is that the density of π(x) be easy to evaluate up to a normalization

constant for any vector x.

1. Select a reasonable starting value for the parameter vector x(0) that is within

the support of π.

2. For t = 1, 2, . . ., sample x∗ ∼ q(x∗|x(t−1)).

3. Define the acceptance probability r = min{ π(x∗)q(x(t−1)|x∗)
π(x(t−1))q(x∗|x(t−1))

, 1}

4. Sample u ∼ U [0, 1].

5. If u < r, then set x(t) = x∗. Otherwise, set x(t) = x(t−1).

An example of a common jumping proposal is a Normal Kernel, in which x∗ ∼

N(x(t−1), η2), where η2 is a tuning parameter used to determine the size of the iteration

“jumps” (Geweke, 1989). All of the proposal densities in the MH steps used in our

analysis are of this form. This is an example of a symmetric proposal, as q(x∗|x(t−1)) =

q(x(t−1)|x∗). The expression for the acceptance probability then simplifies to r =

min{ π(x∗)

π(x(t−1))
, 1}.

One needs to choose the value of η2 carefully. If η2 is too large, the algorithm will

reject too many draws, and the MCMC chain will tend to get stuck on certain values

5



for a long period of time. If η2 is too small, one will accept a large fraction of

the draws, but the jump sizes will be so small that the sampler will be exploring

the parameter space very slowly, and may take an unreasonable amount of time to

converge to the target distribution. Tierney (1994) and Roberts, Gelman, and Gilks

(1996) describe more sophisticated methods for optimizing the step sizes for various

jumping proposal kernels (Tierney, 1994; Gelman et al., 1996b).

2.2. Detailed Balance and the Intuition behind Metropolis-Hastings

Let π(y) denote the density function of the target distribution that one wish to

simulate from, and let π(x) be the density function of a proposal density for a dis-

tribution from which is easy to simulate. Let p(x, y) denote a transition kernel that

assigns a probability of drawing a certain value y when currently at value x (and

p(x, y) defined likewise). We say that the function p(x, y) satisfies detailed balance

if π(x)p(x, y) = π(y)p(y, x). Detailed balance essentially means that the probability

that one observes a jump from x to y is the same as the probability that one observes

a jump from y to x, assuming the Markov Chain has reached its stationary state.

When detailed balance holds, then this Markov Chain procedure will ultimately lead

to selecting values from the target density π(y) (Chib and Greenberg, 1995).

If detailed balance does not hold, such as if π(x)q(x, y) > π(y)q(y, x) for some x and

y, then the process moves from x to y too often, and from y to x too rarely. To correct

this, we need to reduce the chance of moving from x to y by introducing a probability

α(x, y) < 1 that the move is made in the first place. If the move is not made, the

process returns x again as a value from the target distribution. Thus, transitions

from x to y (x 6= y) are made according to pMH(x, y) ≡ q(x, y)α(x, y), where α(x, y)

is to be determined. It is now the transition kernel pMH(x, y) for which we want to

6



satisfy detailed balance, which is:

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

= π(y)q(y, x)

This implies that α(x, y) = π(y)q(y,x)
π(x)q(x,y)

provided that this value is less than 1. With

this expression for α(x, y), using a transition kernel pMH(x, y) will allow a chain to

converge to the proper target density π. The general logic of the MH algorithm,

though a bit subtle, makes intuitive sense. One is allowed to stay put, and not make

a transition a certain fraction of the time, so that the “net flow” between two states

is in equilibrium.

2.3. The Gibbs Sampler

The Gibbs sampler is another technique for generating random numbers from non-

standard complex joint-posterior distributions (Geman, 1988; Metropolis et al., 1953;

Casella and George, 1992). The underlying idea is that if one can simulate values

from the full conditional distributions of the individual parameters, then one can use

these conditional distributions to construct a chain that satisfies detailed balance,

and hence converges to the target density. The Gibbs sampler does not require

one to be able to compute the joint density at a given point, in contrast to the

standard Metropolis-Hastings algorithm, where one needed to evaluate π(x) up to a

normalization constant.

Let x(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
n ) and let pi be the full conditional distribution of xi (that

is conditioned on all parameter values except xi). The algorithm is as follows.

1. Select a reasonable starting value for the parameter vector x(0) that is within

7



the support of π.

2. Given a previous iteration x(t− 1), generate the following:

• x(t)1 ∼ p1(x1|x(t−1)2 , x
(t−1)
3 , . . . , x

(t−1)
n ).

• x(t)2 ∼ p2(x2|x(t)1 , x
(t−1)
3 , . . . , x

(t−1)
n ).

• ...

• x(t)n ∼ pn(xn|x(t)1 , x
(t)
2 , . . . , x

(t)
n−1).

3. Repeat for t = 1, 2, . . . N where N is the number of desired iterations(before

thinning and burning).

2.4. Intuition behind the Gibbs Sampler

The Gibbs sampler can actually be thought of a special case of the Metropolis Hastings

algorithm (Gelman, 1992). Suppose that we begin with the vector

x(t−1) = (x(t−1), x
(t−1)
2 , x

(t−1)
3 , . . . , x(t−1)n )

, and we want to now sample x
(t)
1 by considering the “jump” to a proposed vector

x∗ = (x∗1, x
(t−1)
2 , x

(t−1)
3 , . . . , x(t−1)n )

so that x∗ only differs from x(t−1) in the first component. If we use the conditional

density of x1 from the Gibbs procedure as our proposal density, we then have

q(x∗|x(t−1)) = p1(x1|x(t−1)) = p1(x
∗
1|x

(t−1)
−1 )

8



To evaluate the density for the reverse jump move, q(x(t−1)|x∗), note that x∗ and

x(t−1) only differ in that first component. Therefore we have

q(x(t−1)|x∗) = p1(x
(t−1)
1 |x(t−1)−1 )

Plugging these into the acceptance/rejection probability r for the MH given above,

and rearranging a bit, we get

r = min{
π(x∗)

p1(x∗1|x
(t−1)
−1 )

π(x(t−1))

p1(x
(t−1)
1 |x(t−1)

−1 )

, 1}

Noting that x = (x1, x−1) and x∗−1 = x
(t−1)
−1 , the laws of conditional probability give

us

π(x∗)

p1(x∗1|x
(t−1)
−1 )

= p(x
(t−1)
−1 )

π(x(t−1))

p1(x
(t−1)
1 |x(t−1)−1 )

= p(x
(t−1)
−1 )

Therefore, the equation for the ratio r reduces to r = min(1, 1), and hence, the Gibbs

sampler is a special case of the Metropolis-Hastings algorithm where we accept every

draw with probability 1.
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Chapter 3

A Hierarchical Bayesian Approach

for Disease Diagnosis from

Immunoassays with Plate to Plate

Variability

The standard methods of diagnosing disease based on antibody microtiter plates are

quite crude. Few methods create a rigorous underlying model for the antibody levels of

populations consisting of a mixture of positive and negative subjects, and fewer make

full use of the entirety of the available data for diagnoses. In this paper, we propose

a Bayesian hierarchical model that provides a systematic way of pooling data across

different plates, and accounts for the subtle sources of variations that occur in the

optical densities of typical microtiter data. In addition to our Bayesian method having

good frequentist properties, we find that our method outperforms one of the standard
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crude approaches (the ”3SD Rule”) under reasonable assumptions, and provides more

accurate disease diagnoses in terms of both sensitivity and specificity.

3.1. Introduction

The diagnosis of a large number of infectious diseases relies on the detection of anti-

bodies in the sera or saliva of patients. The presence of a high amount of antibodies

specific to a disease agent is a strong indicator of the presence of the disease, as these

antibodies are evidence that the body is trying to fight off an infection, or has fought

off an infection in the recent past. Though these antibody levels are hard to measure

directly, one can measure the optical density of a sample through enzyme linked im-

munosorbent assays (ELISA), comparing these optical densities with those calibrated

to antibody concentrations of known samples (i.e. controls), allows one to estimate

the antibody level of those unknown samples.

ELISAs are typically run on a series of microtiter plates, each containing 96 wells (See

Figure 1) . On each plate, the majority of wells contain samples from the population

of interest, some of whom may be infected with the disease and others who are not.

A portion of the wells on each plate are filled with negative controls (samples from

patients known to be negative), while another portion of the wells contains samples

from positive controls.

When analyzing data from microtiter plates, the standard procedures used to classify

people as positive or negative are surprisingly crude. One such example is what

we informally call ”The 3SD Rule.” For each microtiter plate, the negative control

samples are used to compute an empirical average and standard deviation that is

taken to represent the population of uninfected individuals. For each plate, a cutoff

value is assigned as three SDs above the mean of these negative controls. All of the

11



Figure 1: Example of a 96-Well microtiter plate used for ELISA test.

unknown samples on that plate are classified as positive if their measurements exceed

this cutoff, and are diagnosed as negative otherwise (Irion et al., 2002). This is an

example of an unpooled procedure, as each plate has its own cutoff, determined only by

measurements that are on that specific plate, and makes no use of the data from any of

the other plates in the dataset. Even more sophisticated methods, which utilize serial

dilution curves to better capture nonlinear relationships between optical densities

and antibody concentrations, are unpooled procedures as each plate’s dilution curve

is derived only from measurements on that plate (Higgins et al., 1998; Gelman et al.,

2004).

A more sophisticated method for diagnosis is by directly modeling the antibody levels

of a population through a two-component mixture model, where each component

corresponds to the negative and positive sub-populations, with an unknown fraction

of people belonging to each group. Two-component mixture models have been used

frequently in bioassay analysis (Moulton et al., 2002).

If all of the plates used for diagnostics were identical, one could fit a single two-

component mixture model across all wells and plates. However, even under highly
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controlled conditions, the plates are likely to have small, but noticeable differences

that systematically skew the antibody levels of positive and negative subjects upward

or downward. A second option would be to fit a separate mixture model for each

plate. Such analysis would have limited power due to a relatively small sample size on

each plate. Rather, we propose a compromise between these two extremes. Namely,

we develop a hierarchical Bayesian approach, in which we consider the effects of the

plates to come from a common distribution. This allows us to have distinct models for

each plate, but also lets us “share” information across the plates regarding expected

variation of within-plate antibody levels.

3.2. An Example of Microtiter Plate Data

To motivate the incorporation of plate effects into our model, we first look at a series

of microtiter plates from a lab in Peru. Sera tested on these plates were previously

found to react relatively weakly to a commercially-available ELISA test for Chagas

disease (Delgado et al.). Researchers are therefore developing an ELISA test which

derives antigens from a local strain of T. cruzi. In our exploratory data analysis, we

denote the optical densities of the Chagas data by Yij, where i indexes plates, and j

indexes wells within plates. We focus for now on differences in the logarithm of Yij

across plates i. In the first set of boxplots (Figure 2, top), we plot log(Yij) for all

of our non-control subjects. There are substantial differences in the average response

across the 18 plates. However, this is not necessarily due to plate effects because some

plates will likely have more positive subjects than others (even though we do not have

definitive positive/negative diagnostic results for these subjects), and the difference

between density levels of these two groups is expected to be large (even on the log

scale). However, when we look at the plot of the optical levels for the same 7 negative

controls on each plate, the disparity in the readings from plate-to-plate is also stark.
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Figure 2: Boxplots of Logarithms of Optical Densities for Patients (above) and Neg-
ative Controls (below).

The bottom plot of Figure 2 suggests that the plate effects are substantial.

3.3. The Model

We consider a model in which the optical densities of the population come from

a mixture of log-normal distributions (one component for people infected with the

disease, one component for those not infected), but scaled by a factor corresponding

to the contamination of a particular plate. Again, as introduced before, let Yij be the
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optical density for an observation in the i-th plate and j-th well. βi is the multiplicative

effect from plate i upon the optical densities in its corresponding wells. α is the

mixture plate parameter that indicates the fraction of subjects in the population who

are infected. We augment our data with the latent variables Iij where Iij = 1 if Yij

comes from an infected subject, and 0 otherwise.

Our model for the unknown data is Yij = βi(X
neg
ij )1−Iij(Xpos

ij )Iij , where

log(Xneg
ij ) ∼ N(µneg, σ

2
neg)

log(Xpos
ij ) ∼ N(µpos, σ

2
pos)

If in conjunction to these unlabeled observations, we include some labeled data,

namely the optical densities of a predetermined number of negative control wells,

one can in theory obtain much better estimates for the parameters of this mixture

model. In the particular dataset we will examine in Section 5, the negative con-

trol subjects are simply a group of 7 people who are known to be free of Chagas

disease. Each plate has seven wells, each corresponding to one of these negative con-

trols. Thus we observe variability both between controls, as indicated by the variation

across these seven optical densities on a given plate, and also variability within the

control subjects, measured by the variation of readings of each individual across the

plates. To fully reflect the nature of these replications, our model should be able to

capture both of these forms of variations. We let Y c
ij be the optical density for the

i-th control subject on the j-th plate (or the j-th replication).

For the negative control data, we have Y c
ij = βi(X

c
ij), and to distinguish the two types
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of variation, we use the following construction.

log(Xc
ij) ∼ N(τj, κ

2)

τj ∼ N(µneg, λ2)

Here, κ2 represents the plate-to-plate variation of a control’s replicated samples, and

λ2 captures the variation between labeled control subjects. The advantage of this

formulation is that the unconditional distribution of log(Xc
ij) is itself normal, with

mean µneg and variance κ2 + λ2, where we naturally set σ2
neg = κ2 + λ2.

Next, since we would like the plate effects to be strictly positive and centered around 1

(corresponding to “neutral” plate effect), we let βi come from a lognormal distribution,

and log(βi) ∼ N(−ν2

2
, ν2). (Since the mean of a log-normal distribution is given by

eµ+
σ2

2 , this parametrization ensures that the mean of βi is 1).

Finally, we impose the following uninformative prior distributions on our parameters:

µneg, µpos ∼ Unif(−∞,∞)

1

σ2
pos

∼ Gamma(0, 0)

λ2, κ2 ∼ Unif(0,∞)

α ∼ Unif(0, 1)

1

ν2
∼ Gamma(5, 5)

.

Our ultimate goal is to simulate draws from the posterior distribution of our unknown
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parameters.

P (µneg, µpos, σ
2
neg, σ

2
pos, α, β, ν

2|Y)

To simplify our notation, let us define yij = log(Yij), y
c
ij = log(Y c

ij) bi = log(βi),

and let θ = (µneg, µpos, σ
2
pos, κ

2, λ2), so that θ represents the set of parameters with

improper flat prior distributions. Taking advantage of the conditional independence

of y and yc, we write out the joint posterior as:

P (I,~b, ~τ , ν2, α, θ|Y) ∝

P (y|I,~b, ~τ , ν2, α, θ)P (yc|I,~b, ~tau, ν2, α, θ)P (I|~b, ~τ , ν2, α, θ)P (~b, ~τ |ν2, α, θ)P (ν2|α, θ)P (α, θ)

The components of this posterior distribution are:

P (y|I,b, ~τ , ν2, α, θ) ∝
∏
i,j

(
1

σneg
e

−(yij−bi−µneg)
2

2σ2neg

)1−Iij (
1

σpos
e

−(yij−bi−µpos)
2

2σ2pos

)Iij

P (yc|I,b, ~τ , ν2, α, θ) ∝
∏
i,j

(
1

κ
e

−(ycij−bi−τj)
2

2κ2

)
P (I|b, ~τ , ν2, α, θ) = α

∑
i,j Iij(1− α)

∑
i,j(1−Iij)

P (b|~τ , ν2, α, θ) ∝
∏
i

1

ν
e

−(bi+
ν2

2 )2

2ν2

P (~τ |ν2, α, θ) ∝
∏
j

1

λ
e

−(τj−µneg)
2

2λ2

P (ν2|α, θ) ∝ 1

(ν)6
e

−5

ν2

P (α, θ) ∝ 1

where Y = (y,yc). We obtain samples from the posterior distribution via a Markov
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Chain Monte Carlo (MCMC) scheme, consisting of Gibbs Sampling and Metropolis-

Hastings steps (Casella and George, 1992; Hastings, 1970).

For each iteration of our MCMC implementation, we obtain a vector of parameters

sampled from the joint posterior distribution. Combined with the optical density

readings, we can calculate the posterior probability that a particular sample comes

from the infected group. We then average these posterior probabilities (on a well-

by-well basis) over all the iterations within that chain. Our classification rule is

based on cutoff values for these posterior probabilities. If a sample’s average posterior

probability is less than the predetermined cutoff, we classify the sample as negative. If

the probability of being positive exceeds the cutoff, we classify that sample as positive.

We then compute usual measure of sensitivity and specificity of our procedure by

determining how many of our classified negatives/positives match up with the actual

negative/positive state of the sample (which we know definitively in this case, since

the data is simulated). A higher probability cutoff will naturally lead to fewer true

positives (and hence a lower sensitivity), and also lead to more true negatives (and

thus higher specificity).

3.4. Details of MCMC Implementation

Due to the conjugacy of our prior distributions with the joint-likelihood function,

many of conditional posterior distributions come from standard distributions, and we

can sample them directly.
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Sampling the Well Indicators

The positive/negative labels for each well come from Bernoulli distributions.

Iij|yij, bi, ν2, α, θ ∼ Bin(1, pij)

pij =
αφ(zposij )

αφ(zposij ) + (1− α)φ(znegij )

where φ is the pdf for a standard normal, zposij =
yij−bi−µpos

σpos
, and znegij =

yij−bi−µneg
σneg

Sampling the Normal-Normal Mixture Parameters

Letting nC be the number of controls on each plate, n0 =
∑

(1 − Iij) and n1 =∑
Iij, the conditional posterior distribution for the disease prevalence α is a beta

distribution:

α|y, I,~b, ν2, θ ∼ Beta(1 + n1, 1 + n0)

Letting dij = yij−bi, the conditional densities of the two means of the mixture model

are the following normal distributions.

µneg|y, I,~b, ~τ , ν2 α, θ−1 ∼ N

∑
dij1Iij=0

σ2
neg

+
∑
τj

λ2

n0

σ2
neg

+ nC
λ2

,
1

n0

σ2
neg

+ nC
λ2



µpos|y, I,~b, ~τ , ν2, α, θ−2 ∼ N(

∑
dij1Iij = 1

n1

,
σ2
pos

n1

)
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Since the inverse-gamma prior distribution for σ2
pos is conjugate to the normal like-

lihood, its posterior distribution is also inverse-gamma. Letting SSpos =
∑

(zposij −

µpos)
2, the conditional posterior distribution of the variance of the positive group is

given by:

σ2
pos|y, I,~b, ~τ , ν2, α, θ−4 ∼ InvGamma(

n1

2
,
SSpos

2
)

Sampling the Plate Effect Parameters

Next, we sample the (log) plate effect parameters, b. If we let zβij = yij − µij, then

zβij ∼ N(bi, σ
2
ij) where µij and σ2

ij correspond to the positive/negative assignment of

observation yij, y
c
ij. This implies that the corresponding conditional posterior distri-

bution for bi is:

bi|yij, Iij, ν2, α, θ ∼ N(mi, s
2
i ) where

mi =

∑
j

zβij
σ2
ij

+ 1
2∑

j
1
σ2
ij

+ 1
τ2

s2i =
1∑

j
1
σ2
ij

+ 1
τ2

Sampling the variance ν2 of the log of the plate effects b is trickier. Since the distri-

bution of b is constrained so that β has mean 1, the modeled distribution of bi has the

form bi ∼ N(−ν2

2
, ν2), which is no longer conjugate to the InvGamma(5, 5) prior dis-

tribution imposed on ν2. Thus, the posterior conditional distribution ν2|yij, Iij, bi, α, θ

is sampled indirectly using a Metropolis-Hastings step.

Sampling the Means of the Negative Controls, ~τ

Letting nP be the total number of plates (and hence number of replications for each

negative control subject), and dcij = ycij − bi, the posterior conditional distributions
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for each τj are normal.

τj|y, I,~b, ν2, α, θ ∼ N

(
µneg
λ2

+
∑
i d
c
ij

κ2

1
λ2

+ nP
κ2

,
1

1
λ2

+ nP
κ2

)

Sampling the Two Variance Components of σ2
neg

Finally, we need to sample the two components of σ2
neg, κ

2 and λ2. The conditional

posterior distribution for the negative control parameters (conditioned on µneg and

b), where nC is the number of control subjects, and nP is number of plates, is now:

P (τ, κ2, λ2|yc,yneg) ∝ P (τ |λ2)P (yc|τ, κ2)P (yneg|λ2, κ2)

∝ 1

(λ2)
nC
2

e

(
−

∑
i(τj−µneg)

2

2λ2

)
1

(κ2)
nC∗nP

2

e

(
−

∑
i,j(y

c
ij−bi−τj)

2

2κ2

)
1

(λ2 + κ2)
n0
2

e

(
−

∑
i,j(y

neg
ij

−bi−µneg)
2

2(κ2+λ2)

)

Since the resulting conditional distributions for λ2 and κ2 are non-standard, we in-

corporate another Metropolis step to sample from λ2 and then κ2 (Alternatively, one

could also sample these two parameters jointly (Hastings, 1970)).

Implementation

The entire MCMC procedure above can be implemented in R using the Immunoas-

sayMixture(), whose output is a matrix containing the iterations for all the key pa-

rameters in the model. This function also allows one to monitor the chains carefully

to ensure that the sampler is converging to non-degenerate parameters. In particular,

when the two components of the mixture model have too much overlap, the MCMC

can lead to parameter estimates that are poorly identified (Lindsay and Roeder, 1993).

ImmunoassayMixture() and the corresponding documentation file can be found in the
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supplemental materials.

3.5. Simulation Study

In Bayesian models based on noninformative priors, we want the model to produce re-

sults that are consistent with classical frequentist interpretations (Hobert et al., 2011;

Morris, 1983; Rubin, 1984). To assess the frequentist performance of our methodol-

ogy, we will consider the following:

1. The overall coverage rate of our posterior distributions. Do our 95% Bayesian

posterior intervals in fact cover their respective “true” parameter values 95% of

the time (sample-to-sample variation)?

2. Do the posterior means of our parameter estimates accurately capture the true

parameter values, or are they biased upward or downward?

3. Does adding a substantial number of negative controls greatly increase the ac-

curacy of our procedures?

In testing these considerations, we first generated 100 distinct simulated datasets,

setting “true values” for α, µneg, µpos, κ
2,λ2, σ2

pos, and ν2. These values were chosen

to approximately reflect the typical optical measurements in out data. Using these

parameters, we then sampled values for b and τ . For simplicity, we assumed there

were 20 plates, and 40 unlabeled wells on each plate, and that there were 10 negative

controls replicated on each plate. For each dataset, we ran our MCMC sampler for

6,500 iterations (the first 2,000 of which were discarded, after checking that our sam-

pler has converged to the correct joint distribution) and recorded the 95% posterior

intervals for each of these parameters, as well as the posterior means. After running

this procedure for all 50 datasets, we examined each parameter and observed both
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the fraction of times that parameter’s posterior interval contained its true value, and

also the average squared deviation between the posterior mean and the true value.

Table 1 shows our results for simulated datasets with 20 plates, and 10 negative con-

trols per plate. For the parameters of interest, we observed seemingly good coverage

rates. Namely, the fraction of datasets that resulted in intervals that contained each

of the “true” values for these parameters ranged between 90 and 98%, close to the

desired 95% coverage.

Another check as to the accuracy of our procedure is to see how the posterior means

differ from the true underlying parameter. Here, we define bias as the simple mean of

(θ̂ − θ) across the 100 simulations, where θ̂ are the posterior means of the respective

parameters. Here, the biases of these parameters are all positive. However, the

magnitudes of these biases are generally pretty small compared to the true values,

and thus should not be of too much concern.

Though the average squared deviation of a posterior mean and a fixed parameter is

a bit of an awkward metric, it does represent the overall accuracy of this procedure.

These MSE values seem quite low. Most encouraging are the small errors in estimating

κ2, λ2, and σ2
neg, as this is the most subtle part of our model, and most complicated

to implement. The only possible concern is the relatively large bias and MSE for ν2.

This probably just reflects the uncertainty of measuring an effect where we only have

20 plates from which to infer the between-plate variation.

To get a sense as to the effect of number of plates in the accuracy of our results,

we performed another simulation with just 5 plates instead of 20 (each plate still

consisted of 10 negative controls and 40 unknown subjects). The coverage rates for

these parameters are only slightly lower than they were above, except for ν2, which
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Parameter True Value Coverage Rate Mean Squared Error Bias
µneg -1.88 0.94 0.0399 0.0332
µpos 0.20 0.95 0.0480 0.0246
σ2
neg 0.27 0.96 0.0003 0.0027
σ2
pos 0.36 0.94 0.0105 0.0259
α 0.125 0.94 0.0003 0.0052
λ2 0.17 0.93 0.0004 0.0012
κ2 0.10 0.91 0.0001 0.0015
ν2 0.49 0.97 0.0639 0.1285

Table 1: Simulation Results for 20 plates, 10 Negative Controls per plate

has dropped to 87% (Table 2). However, we begin to see drastic differences in the

MSE’s and biases, which are now an order of magnitude larger than they were when

we used more plates. This suggests that our Bayesian procedure is quite sensitive to

the number of plates we incorporate into our model.

Parameter True Value Coverage Rate “Mean Squared Error” “Bias”
µneg -1.88 0.90 0.4369 0.3518
µpos 0.20 0.92 0.4307 0.2888
σ2
neg 0.27 0.94 0.0014 0.0109
σ2
pos 0.36 0.95 0.0563 0.0747
α 0.125 0.96 0.0014 0.0164
λ2 0.17 0.97 0.0013 0.0027
κ2 0.10 0.96 0.0005 0.0082
ν2 0.49 0.87 1.2519 0.7318

Table 2: Simulation Results for 5 plates, 10 Negative Controls per plate

Lastly, we asses the performance of our model when we reduce the number of controls

on each plate. Here, we use 20 plates, but now use just 3 controls (replicated on each

plate) instead of 10. Compared with the 10-control simulation, our biases and MSE’s

seem more extreme. Our coverage rates though are fairly good, except for µneg, whose

coverage rate drops to 89% (Table 3). This could simply be a consequence of the

fact that when we have fewer controls, we have fewer negative data points, so our

estimates for the parameters of the subgroup of negative patients would likely be less
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precise.

Parameter True Value Coverage Rate “Mean Squared Error” “Bias”
µneg -1.88 0.89 0.2121 0.2187
µpos 0.20 0.94 0.2320 0.1787
σ2
neg 0.27 0.98 0.0006 -0.0006
σ2
pos 0.36 0.96 0.0221 0.0362
α 0.125 0.96 0.0008 0.0079
λ2 0.17 0.95 0.0017 -0.0193
κ2 0.10 0.91 0.0013 0.0187
ν2 0.49 0.91 0.5501 0.4301

Table 3: Simulation Results for 20 Plates, 3 Negative Controls per Plate

We also evaluated our classification of positive vs. negative samples via a simulation

study. For the first analysis, we look carefully at the model with 20 plates, but only 3

negative controls. In Figure 3, we plot the sensitivity and specificity of our criterion

as a function of the posterior probability cutoff. For our procedure, the sensitivity

remains fairly high for cutoff probabilities as high as 0.8 (with sensitivity of 0.8), before

dropping off for more stringent tests. The specificity for our procedure is extremely

high for probability cutoffs as low as 0.1. Thus, nearly all true negative samples

have tiny posterior probabilities of being in the positive group. These extremely high

sensitivity and specificity characteristics for our procedure are a consequence of the

fact that the lognormal mixture distribution for the optical densities leads to fairly

high separation between positive and negative values.

Next, we look at the Receiver Operating Characteristic (ROC) for our method, and

compare it to the classification rates using the 3 SD Rule (Figure 4) (Opsteegh et al.,

2010; Greiner et al., 2000). Though this type of analysis was originally developed

as a frequentist technique (Kurkjian et al., 2005), it extends nicely to the Bayesian

framework (Choi et al., 2006; Wang et al., 2007), and has been used previously in

Bayesian analysis of ELISA tests (Limmathurotsakul et al., 2011; Nielsen et al., 2002).
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Figure 3: Sensitivity and Specificity for 20 Plates, 3 Negative Controls. Green curves
represent individual simulations, the black line reflects the average rates for all 1000
simulations.

Our method clearly outperforms the 3 SD rule, as the blue X (denoting the average

ROC values of the 3 SD rule across 1000 datasets) and the majority of the red

circles (corresponding to individual simulations) lie to the lower right of the black

line (our procedure). The 3 SD rule results in roughly a 0.94 and 0.89 sensitivity

and specificity respectively. Using our method, if we required 0.94 sensitivity, we

could improve specificity to 0.98. If instead we require a specificity of 0.89, we could

improve our specificity to nearly 0.99. Thus, one could say that when using just 3

controls, our method dominates the industry standard in terms of classification rates.

We perform a similar analysis for a series of microtiter plates with 7 controls, instead

of 3, to more mimic our real optical density data. In Figure 5, the sensitivity

and specificity curves are more ideal including the additional 4 controls. The same

probability cutoffs lead to slightly higher sensitivity and specificity rates than before.

Looking at the ROC curves (Figure 6), we see that the 3SD rule performs much

better now as compared to how it performed in the setting with just 3 controls, as

the red dots hover much closer to the black line. This makes sense, as the 3 standard

deviation cutoff for each plate is now computed using 7 controls, as opposed to just 3.
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Figure 4: Plot of Sensitivity vs. 1-Specificity for the two methods (3 controls). Green
curves represent simulated posterior ROC curves under our method. Black line re-
flects the average ROC curve across all 1000 simulations. Red dots correspond to the
sensitivity/specificities of the individual simulations under the 3SD rule. The blue
”X” is the average sens./spec. of the 3SD rule under all 1000 simulations.
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Figure 5: Sensitivity and Specificity for 20 Plates, 7 Negative Controls. Green curves
represent individual simulations, the black line reflects the average rates for all 1000
simulations.
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However, while better than before, the 3SD classification procedure is still dominated

by our method.
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Figure 6: Plot of Sensitivity vs. 1-Specificity for the two methods (7 controls). Green
curves represent simulated posterior ROC curves under our method. Black line re-
flects the average ROC curve across all 1000 simulations. Red dots correspond to the
sensitivity/specificities of the individual simulations under the 3SD rule. The blue
”X” is the average sens./spec. of the 3SD rule under all 1000 simulations.

3.6. Analysis of Chagas Disease Data

Applying our model to the 18 microtiter plates introduced in Section 2, we obtain

the posterior estimates for our parameters given in Table 4.

Parameter 2.5% Quantile 50% Quantile 97.5% Quantile
µneg -1.614 -1.364 -0.989
µpos 0.019 0.602 0.979
σ2
neg 0.189 0.229 0.261
σ2
pos 0.026 0.064 0.378
α 0.027 0.042 0.086
λ2 0.066 0.110 0.157
κ2 0.089 0.116 0.151
ν2 0.125 0.256 0.609

Table 4: Posterior Intervals for Parameters

Next, we examine the magnitude of the estimated plate effects, as determined by the

median log(β) (Figure 7). Given how we constructed the model for the plate effects,

28



it is not surprising that the 18 parameters are centered around 0. The magnitudes

of these effects is surprisingly strong. These values suggest that if we take a sample

from one plate, and transfer it over to another, the log of the measured optical density

can easily increase by 1.0 units. This is consistent with the parameter values above,

where ν2 is noticeably larger than σ2
neg and σ2

pos, suggesting that a larger amount of

the variation in the optical densities can be attributed to the plate effect than to

the heterogeneity of the actual test subjects. Also somewhat surprising is the nature

in which the magnitudes of the plate effects cluster together, in particular for those

around -0.5.

For this particular application, our method ends up being far more conservative in

terms of classifying patients as having the disease. In Figure 8, we look at 4 rep-

resentative plates, where we overlay our mixture density onto the histogram of the

log of the measurements (using the posterior mean of our parameters to generate

the density curves). The vertical lines represent the plates’ respective cutoffs under

the 3SD rule. For every one of our plates, the 3SD classification threshold is to the

left of the mode of the positive population density in our mixture. Thus, for any

posterior probability cutoff we choose in our method, our procedure will be far more

conservative than the one based on the 3SD rule, for each of the plates in our data.

When we use these two procedures to compare the classifications, there are four

possible regimes;

• Observations classified as positive under both methods.

• Observations classified as negative under both methods.

• Observations classified as positive under the 3SD rule, but negative under our
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Figure 7: Dot plot of the magnitudes of the 18 estimated plate effects, sorted in
increasing order. The lowest dashed line corresponds to the plate with the most
negative effect, the highest dashed line to the most positive of the 18 plates, and so
on.

Bayesian model.

• Observations classified as negative under the 3SD rule, but positive under our

Bayesian model.

Due to the stark differences in the sensitivity of these two tests, there were no in-

dividual subjects in that fell into this last regime (negative under 3SD, but positive

under our model). Figure 9 shows how often observations fell into one of these three

regimes as a function of the posterior probability cutoff in our method.

Under our Bayesian model, the estimated posterior probabilities for particular obser-

vations belonging to the positive group are highly polarized. Small optical densities

lead to posterior probabilities that are often less than 0.001, while those samples

with high antibody concentrations often have posterior probabilities higher than 0.99.

Since there are very few observations whose probabilities are between 0.1 and 0.9, the

curves for the three regimes remain mostly flat in this region.

30



Plate 
12

logY, 3SD= 
−1.71

D
en

si
ty

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

Plate 
14

logY, 3SD= 
−1.4

D
en

si
ty

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

Plate 
17

logY, 3SD= 
−0.89

D
en

si
ty

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

Plate 
18

logY, 3SD= 
−0.53

D
en

si
ty

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 8: Histogram of the log of the optical densities, overlayed with a mixture
density derived from our procedure. For each plate, the leftmost bell curve is the
estimated Gaussian density curve for the negative subjects, the smaller rightmost
bell curve is the density for the positives. The vertical line represents the (plate-
specific) cutoff values derived from the 3SD rule (log(Ȳ + 3sY ))
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3.7. Discussion

Our goal has been to develop a robust model that allows one to perform more accurate

diagnoses for diseases when testing samples on a series of different microtiter plates.

Our classification method, based on computing posterior probabilities from a Bayesian

mixture model, works quite well in simulation settings. In particular, it provides more

plausible results than the conventional 3SD rule, and has improved sensitivity and

specificity. Furthermore, the Bayesian approach has excellent frequentist properties.

One can further improve the utility of this model by increasing the number of negative

controls that are replicated on each plate.
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Chapter 4

Robustness of our Bayesian

Method

4.1. Introduction

While our method has promising results when the underlying data comes from our

specified model, the most useful methodologies are those that produce reasonable

predictions even when the data deviates slightly from the proposed model, or if there

are mild violations of the model assumptions.

One of the model’s key assumptions is that each unknown sample is randomly al-

located to one of the microtiter plates. If unknown samples are put into the plates

in sequential order (that is, filling up plate 1 before adding samples to plate 2, and

so on), then the β parameters might not be valid measures of the underlying plate-

effect, but rather be a measure of the overall antibody levels for that particular batch

of samples, which may all share some confounding factor that systematically affects
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their measured optical densities. For instance, the samples of a particular batch could

all come from a community with a particularly severe outbreak of Chagas disease, or

could all be prepared in the same laboratory. In the presence of such confounding

factors, application of our model may lead to too many false negatives on plates with

patients from highly infected villages, and too many false positives for samples placed

on plates that come from fairly healthy regions. Randomizing samples to plates has

the benefit of enabling us to make unbiased estimates of the plate effects, which in

turn, lets us pool information across plates to make better classifications using our

model.

4.2. Simulations and Model Performance under Model Violations

To assess our method’s robustness, we will investigate both our model’s long-run

frequentist performance and its classification accuracy when one violates the assump-

tion that individual antibody samples are randomly assigned to the various plates.

Here, we consider the particular setting where half of the plates have a normal disease

prevalence αlow, and half the plates come from communities with a somewhat higher

rate of Chagas disease, αhigh. In all these simulations, we will use 7 negative controls

and 20 plates. We will use the same exact true parameters we used for the previous

simulations, with the exception of α, which is now simply defined as the average of

αlow and αhigh (since half the plates are in each group).

Table 5 shows the frequentist behavior of a model in which the disease prevalence in

the last ten plates is only slightly higher than the populations that are represented

on the first ten plates, αlow = 0.125, αhigh = 0.225. Again, we use 100 simulations.

Here, the coverage rates for the various parameters, including the new α, are still very

close to 95%. The magnitudes of the MSE’s and Bias estimates are slightly higher
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Parameter True Value Coverage Rate Mean Squared Error Bias
µneg -1.88 0.93 0.0456 0.0789
µpos 0.20 0.96 0.0842 0.0252
σ2
neg 0.27 0.95 0.0010 0.0046
σ2
pos 0.36 0.94 0.0553 0.0398
α 0.175 0.93 0.0013 0.0113
λ2 0.17 0.95 0.0014 -0.0019
κ2 0.10 0.93 0.0007 0.0065
ν2 0.49 0.94 0.0703 0.1409

Table 5: Simulation Results for 20 plates, 7 Negative Controls, αhigh = 0.225

than they were for the simulation we ran earlier under the true model assuming

homogeneity in α, but not alarmingly so.

Next we consider a more egregious violation of this assumption, where the hetero-

geneity of α is more extreme. Here, we keep αlow = 0.125, but now let αhigh = 0.325,

so that the rate of Chagas disease in the second subpopulation is more than double

that of the first (Table 6). Here, the overall population prevalence is now α = 0.225.

Parameter True Value Coverage Rate Mean Squared Error Bias
µneg -1.88 0.91 0.0489 0.0730
µpos 0.20 0.94 0.0876 -0.0258
σ2
neg 0.27 0.96 0.0012 0.0043
σ2
pos 0.36 0.92 0.0433 0.0759
α 0.225 0.91 0.0024 0.0180
λ2 0.17 0.94 0.0019 0.0003
κ2 0.10 0.92 0.0 009 0.0040
ν2 0.49 0.94 0.0707 0.1479

Table 6: Simulation Results for 20 plates, 7 Negative Controls, αhigh = 0.325

Now we see that the our coverage rates dip below 95 for many of our parameters. The

most notable dropoffs are the coverages for σ2
pos and α. Also, the magnitude of the

MSE’s and the biases have increased even more so than they did for the more mild

heterogeneity in α. Thus, while the frequentist behavior of our model is robust to

mild violations of the constant prevalence assumption, its performance suffers when
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the heterogeneity is more severe.

Next, we see what effect the degree of the prevalence heterogeneity has on the per-

formance of both our disease classification procedure, as well as on the 3SD Rule

procedure. Figures 10 and 11 compare the sensitivities and specificities as a func-

tion of posterior probability cutoff in these two scenarios.
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Figure 10: Sensitivity and Specificity for αhigh = 0.225. Green curves represent
individual simulations, the black line reflects the average rates for all 1000 simulations.
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Figure 11: Sensitivity and Specificity for αhigh = 0.325. Green curves represent
individual simulations, the black line reflects the average rates for all 1000 simulations.

For the setting with more extreme heterogeneity (αhigh = 0.325), the specificity at

each probability cutoff seems to be noticeably lower than the corresponding specifici-

ties of both the homogeneous model and the one with αhigh = 0.225. The sensitivity

profiles though appear quite similar for all three settings.
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To compare our procedure to the 3SD rule, we once again analyze the ROC curves.

As we can see in Figures 12 and 13, despite the violations of the model assumptions,

our Bayesian classification procedure still out performs the 3SD Rule, as the blue X

(denoting the average ROC values of the 3 SD rule across 1000 datasets) and the ma-

jority of the red circles (corresponding to individual simulations) lie to the lower right

of the black line (Average Sensitivity and 1-Specificity for our procedure). However,

the gap between the blue X and the black line is notably smaller than it was when

α was in fact heterogeneous for all plates. This resonates with intuition. One of the

main advantages of our Bayesian method over the 3SD rule was that we borrowed

strength across all the plates, and under our model assumption, the distribution of

optical densities (after controlling for the individual plate effects) were equivalent.

When the samples on 50% of the plates come from a different subpopulation of pa-

tients, the advantage of sharing information is somewhat mitigated.

Note that the location of the X in our ROC curves doesn’t noticeably change when we

violate the homogeneity assumption in this manner. This also makes sense, since the

3SD rule, by definition, is an unpooled procedure, and only considers how a patient’s

sample compares to the negative controls on that given plate.
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Figure 12: ROC plot for the two methods when αhigh = 0.225. Green curves rep-
resent simulated posterior ROC curves under our method. Black line reflects the
average ROC curve across all 1000 simulations. Red dots correspond to the sensitiv-
ity/specificities of the individual simulations under the 3SD rule. The blue ”X” is the
average sens./spec. of the 3SD rule under all 1000 simulations.
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Figure 13: Same ROC plot for the two methods, this time for αhigh = 0.325.
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Chapter 5

Validity of the Bayesian Mixture

Model on Chagas Dataset

5.1. Model Checking

5.1.1. Basics of Model Checking

When fitting a complicated model to a dataset, how do we know whether or not the

proposed model is “correct?” One reasonable answer is that a model is reasonably

accurate if when one replicates data under the model’s assumptions via simulation,

these simulated datasets resemble the observed data in several key attributes. The

amount that replicated datasets systematically deviate from what is observed can be

thought of as an indication to the degree in which a model fails to capture underlying

patterns in the true data.

There are two key issues that arise when using simulation to check a model.
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1. How does one generate reference datasets that can be considered alternative

versions of the real data? What do we even mean by a dataset replication?

2. What criteria does one use to compare the simulated and observed data? What

numerical and graphical summaries can be used to measure a model’s goodness

of fit, or lack thereof?

5.1.2. Parametric Bootstrap Methods

In frequentist statistics, there are a plethora of methods used to establish validity of

various models, including non-parametric bootstrap, residual resampling, and cross-

validation technique. A particularly elegant approach involves creating null datasets

by conditioning on minimal sufficient statistics under the null hypothesis, which re-

moves the nuisance parameters, and is an example of an exact test. Langsrud (2005)

demonstrates how to apply this principle of sufficiency to perform exact tests of a

Gaussian linear model (Langsrud, 2005). Unfortunately, in more complicated mod-

els, it is often not possible to find a minimal sufficient statistic.

The classical method for creating null datasets that we will use here is the parametric

bootstrap. The idea is to find a suitable point estimate θ̂ for the parameter vector

θ and repeatedly sample artificial datasets y∗ from P (y∗|θ̂). Unlike the Bayesian

procedures, which look at variation of the parameters given a fixed data set (more on

this in a moment), the parametric bootstrap looks at the variation among different

datasets that have the same underlying model and nuisance parameters (Fushiki et al.,

2004; Buja et al., 2009).

We numerically measure the discrepancy between a model and our observed data

by defining an appropriate test statistic. A classical test statistic, T (y) is a scalar
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summary of the data that can be used as a benchmark when comparing the observed

data to the series of reference datasets (since each y∗ will have its own value of T).

5.1.3. Posterior Predictive Checks

Under the Bayesian scheme of posterior predictive checks, we generate alternate ver-

sions of the data by simulating from the posterior predictive distribution. Let y be

the observed data, θ be the vector of underlying parameters (including the hyper-

parameters that govern the prior distributions of the hierarchical model), and yrep

be the hypothetical new data. Then the posterior predictive distribution of yrep is

defined as

P (yrep|y) =

∫
P (yrep|θ)P (θ|y)dθ

To generate replicate datasets, we first sample several values of θ from its posterior

distribution P (θ|y). Then for each value of θ, we generate a new dataset from the

model, P (yrep|θ). Notice that the reference distributions yrep have two types of un-

certainty built in; sampling uncertainty about the data given a particular value of θ,

and uncertainty in the value of θ itself.

Just as in the parametric bootstrap approach, one then assess the goodness-of-fit of

our model by an appropriate Bayesian test statistic. The Bayesian test statistic is

very much like the frequentist analog described above, except that now, T (yrep, θ)

depends also on the drawn parameter θ in addition to the data.

5.1.4. P-Values

In classical statistics, the P-value is defined as the probability of obtaining a test

statistic T (y) as or more extreme than one observed in the real data, if the underlying
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null hypothesis is true. Mathematically, this can be expressed as

pC = Pr(T (yrep) > T (y)|θ)

Note that in the typical frequentist setting, the value of θ is either assigned a null-

hypothesized value, or is set to a point estimate, such as its maximum likelihood

value.

In a Bayesian model, we compare the observed data to the posterior predictive dis-

tribution (as opposed to the distribution of data under a single value of θ). Since

replicated data sets are generated from different values of θ, the Bayesian test statis-

tics can be functions of both the data and the unknown parameters. In the same

spirit as the classical P-Value, we define the Bayesian predictive P-Value as

pB = Pr(T (yrep, θ) > T (y, θ)|y)

where the probability is taken over the joint distribution of the parameter and the

data, P (θ, yrep|y). One natural advantage of the Bayesian P-Values over their classical

analogues is that the former does not require any special methods to handle nuisance

parameters, as the test statistic is averaged over all possible values of θ (Gelman

et al., 1996a).

5.2. Applying the Bootstrap Methods to Microtiter Data

5.2.1. Mechanics of the Bootstrap Method

In doing our check, our idea is based around creating “alternative” datasets that

one would expect to see if our mixture model is correct. To apply the parametric
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bootstrap, we use a reasonable point estimate for θ from which all subsequent datasets

will be drawn. Here we use ¯θreal, which corresponds to the component-wise posterior

mean of P (θ|Y real). We then generate alternative datasets y∗ from P (y| ¯θreal). Once

we generate these alternate datasets, we use a goodness-of-fit test statistics T (y, θ)

to compare our real data to the hypothetical data under our model. Our procedure

is applied as follows:

1. Apply the MCMC procedure to our Chagas Disease microtiter plates, and use

the output to compute θ̄ and T real = T (yreal, θ̄).

2. Generate N alternative datasets y∗ = (y∗, yc∗), each one created as follows:

(a) Draw indicator variables I∗ij ∼ Bernoulli(ᾱ)

(b) For the plate/well pairs (i, j) where I∗ij = 0, draw y∗ij ∼ N( ¯µneg, ¯σ2
neg).

(c) For the plate/well pairs (i, j) where I∗ij = 1, draw y∗ij ∼ N( ¯µpos, ¯σ2
pos).

(d) For the plate/control pairs (i, j), draw yc∗ij ∼ N(τ̄j, κ̄2).

3. Run the MCMC procedure on each y∗ = (y∗, yc∗), and compute θ̄∗.

4. For each alternative dataset, compute T ∗ = T (y∗, θ̄∗). These values will serve

as a null distribution for this statistic under our model.

5. Compute the bootstrapped P-Value. Since large values of the T imply large

deviations from the model, the P-Value is defined as

P (T ∗ > T real) =
1

N

∑
IT ∗>T real
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5.2.2. Bootstrapping Using the Bayesian Kolmogorov - Smirnov Statistic (BKS)

To define the first of out test statistics T, the Bayesian Kolmogorov-Smirnov Statis-

tic (BKS), let y be the log of the optical measurements for the unknown subjects,

and let θ̄ be the component-wise posterior mean vector of (µneg, σ
2
neg, µpos, σ

2
pos, α,b),

corresponding to the means and variances of the negative and positive subgroups

respectively, the mixing parameter denoting the fraction of the population that is

positive, and the vector of (log) plate effects. Then for n unknown wells, we define

the empirical distribution function F̂ (y) as :

F̂ (y) =
1

n

n∑
i=1

Iyi≤y

The theoretical cumulative distribution function for the normal-normal mixture model,

using the posterior means as plug-in estimates, is:

F (y, θ̄) = (1− α)Φ(
y − ¯µneg − b̄i

¯σneg
) + αΦ(

y − ¯µpos − b̄i
¯σpos

)

In the spirit of the classical Kolmogorov-Smirnov Statistic, we define the BKS as:

BKS(y, θ̄) = sup
y
|F̂ (y)− F (y, θ̄)|

5.2.3. BKS Bootstrap Analysis on Our Chagas Disease Dataset

After fitting the Bayesian mixture model to our microtiter plate data, we used the

posterior distribution of the parameters to create 200 alternative datasets that could

theoretically have arisen under our model, using the bootstrap approach described
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above. The bootstrapped distribution of the BKS statistics B∗ = BKS(y∗, θ̄∗) is

given in Figure 14. The BKS statistic for the actual dataset, B = BKS(y, θ̄), is

0.0321. Of our 200 bootstrapped values of B∗, 20 had values larger than 0.0321.

Thus, the posterior P-Value for our dataset is 0.10. While this is a somewhat low

number, a P-value of 10% is still within the reasonable realm of values one should get

if the true data indeed arises from our proposed mixture model.
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Figure 14: Null Distribution of the Bayesian Kolmogorov-Smirnov statistic. Blue line
corresponds to B=0.0321, the BKS of the observed data. The P-Value is the area of
the curve to the right of this, which is 0.10.

5.2.4. The Bayesian Anderson - Darling Statistic (BAD)

Another common frequentist method for testing the validity of the model is the

Anderson-Darling Test (Anderson and Darling, 1952). It originally arose as a sta-

tistically more powerful procedure for testing departures from normality, by giving

more weight to the tail ends of the distribution than towards the middle, hence better

capturing the model’s fit on the extremities of the data. In contrast to the classical
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Kolmogorov-Smirnov statistic, whose distribution is related to the maximum of a

Brownian bridge process regardless of the model being tested, the distribution of the

Anderson-Darling statistic depends on the underlying distribution of interest.

To incorporate this test into our Bayesian framework, we once again define the the-

oretical CDF functions with our posterior means used as plug-in estimates,F (y, θ̄),

as

F (y, θ̄) = (1− α)Φ(
y − ¯µneg − b̄i

¯σneg
) + αΦ(

y − ¯µpos − b̄i
¯σpos

)

In the spirit of the frequentist test, we define the Bayesian Anderson-Darling statistic

(BAD) as:

BAD(y, θ̄) = −N − S

N = Number of observations

S =
N∑
i=1

(2i− 1)

N

[
log(F (y(i), θ̄)) + log(1− F (y(N+1−i), θ̄))

]
where y(i) corresponds to the ith order statistic of our observed log-densities y. Once

again, large values of BAD denote large deviations from the underlying normal-normal

mixture model.

To compute a bootstrapped P-Value for this new statistic, we follow the same exact

procedure we used in the last section, except that we replace B = BKS(y, θ̄) with

B = BAD(y, θ̄), and B∗ = BKS(y∗, θ̄∗) with B∗ = BAD(y∗, θ̄∗).
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5.2.5. BAD Bootstrap Analysis on Our Chagas Disease Dataset

After fitting the Bayesian mixture model to our microtiter plate data, we again used

the posterior distribution of the parameters to create 200 alternative datasets that

could theoretically have arisen under our model, using the bootstrap approach de-

scribed above. The posterior predictive distribution of the BAD statistics B∗ =

BAD(y∗, θ̄∗) is given in Figure 15. The BAD statistic for the actual dataset,

B = BAD(y, θ̄), is 0.903. Of our 200 bootstrapped values of B∗, 156 had values

larger than 0.903. Thus, the posterior P-Value for our dataset is 0.77, which is even

more encouraging than the P-Value for the BKS. The high P-Value suggests that, for

at least under this particular validation criterion, our dataset seems very plausible

with our proposed model.
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Figure 15: Null Distribution of the Bayesian Anderson-Darling statistic. Blue line
corresponds to B=0.903, the BAD of the observed data. The P-Value is the area of
the curve to the right of this, which is 0.77.
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5.3. Bayesian Posterior Predictive Checks on Microtiter Data

5.3.1. Mechanics of Posterior Predictive Checks for Chagas Data

The recipe for the full Bayesian posterior predictive check is quite similar to the

one used in our earlier bootstrap methods. The differences are subtle, but crucial

(Upadhyay et al., 2000; Gelman, 2004).

1. Apply the MCMC procedure to our Chagas Disease microtiter plates to obtain

draws from the posterior distribution of θ.

2. Sample N vectors of θrep from the posterior distribution P (θ|yreal).

3. For each θrep, generate an alternative dataset yrep as follows:

(a) Draw indicator variables Irepij ∼ Bernoulli(αrep)

(b) For the plate/well pairs (i, j) where Irepij = 0, draw yrepij ∼ N(µrepneg, σ
2rep
neg ).

(c) For the plate/well pairs (i, j) where Irepij = 1, draw yrepij ∼ N(µreppos, σ
2rep
pos ).

(d) For this analysis, we do not need to generate replicate data for the negative

controls.

4. For each value of θrep, use our test statistic to compute T real = T (yreal, θrep)

5. For each value of θrep and corresponding alternate dataset yrep, compute our

test statistic T rep = T (yrep, θrep)

6. Compute the posterior P-Value. Since the test statistics we are using are mea-

sures of discrepancies, an abundance of values of T real that exceed T rep would
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indicate a poorly fitting model. Thus the posterior P-Value is defined as

P (T rep > T real) = P (T rep − T real > 0)

=
1

N

∑
IT rep>T real

5.3.2. Bayesian Inference with BKS

Using the output from our Bayesian mixture model on our microtiter plate data, we

sampled 200 draws of the vector θ from the posterior distribution P (θ|yreal), and

then used our model to generate a replicate dataset for each draw of θ. For draws

k = 1, 2, . . . , 200, we computed BKS(yreal, θk) and BKS(yrep
k , θk), where once again,

BKS(y, θ) = sup
y
|F̂ (y)− F (y, θ)|

The posterior P-Value is the fraction of times BKS(yrep, θ) exceeds BKS(y, θ). In

figure 16, the P-value corresponds to the area of the histogram of T rep−T real that lies

to the right of 0, and equivalently, the fraction of points that lie above the 45-degree

line in the scatterplot of T rep vs T real. For this dataset, the posterior P-Value came

to 0.355, which is a decent result, and is another indication that our Chagas data

does not deviate too severely from our proposed mixture model.

5.3.3. Bayesian Inference with BAD

We apply an analogous procedure in using the Anderson-Darling statistic as the

discrepancy measure for our posterior predictive check. We once again sampled 200

draws of the vector θ from the posterior distribution P (θ|yreal), and then generate

respective alternative datasets for each draw of θ. For draws k = 1, 2, . . . , 200, we

49



Difference in BKS for Real and Replicate Datasets

BKS−Replicate − BKS−Real 
 P−Value=0.355
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Figure 16: Top figure shows a histogram of T rep−T real. The area of the graph to the
right of 0 (shaded in red) corresponds to a P-Value of 0.355. Bottom figure shows
the scatterplot of T rep vs T real for the 200 draws of θ. The fraction of dots above the
red 45-degree line corresponds to this same P-Value.
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computed BAD(yreal, θk) and BAD(yrep
k , θk), using the same formula as before, only

replacing the posterior mean θ̄ with the individual posterior draws of θ. The posterior

P-Value is again the fraction of times BAD(yrep, θ) exceeds BAD(y, θ), and this can

be seen graphically in both the histogram of T rep−T real, and the scatterplot of these

two sets of statistics (Figure 17). For the BAD posterior predictive check, the P-value

comes out to 0.275, another encouraging sign that our model is performing well for

the Chagas disease data.

Difference in BAD for Real and Replicate Datasets

BAD−Replicate − BAD−Real 
 P−Value=0.275
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Figure 17: Top figure shows a histogram of T rep−T real. The area of the graph to the
right of 0 (shaded in red) corresponds to a P-Value of 0.275. Bottom figure shows
the scatterplot of T rep vs T real for the 200 draws of θ. The fraction of dots above the
red 45-degree line corresponds to this same P-Value.
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Chapter 6

Conclusions and Further Directions

In this dissertation, we have developed a Bayesian hierarchical model that allows one

to perform more accurate diagnoses for diseases when testing samples on a series of

different microtiter plates. Our classification method, based on computing posterior

probabilities from a Bayesian mixture model, works quite well in simulation settings.

In particular, it provides more plausible results than the conventional 3SD rule, and

has improved sensitivity and specificity. Furthermore, the Bayesian approach has

excellent frequentist properties, and for this particular data set, provides an estimate

of the overall prevalence rate of Chagas disease that is consistent with other studies.

Our method is fairly robust to certain violations of our model’s assumptions. Namely,

if there are systematic differences in the underlying patients that are assigned to

each plate, this Bayesian approach still outperforms the current crude classification

procedures. Finally, we demonstrate how our procedure can be applied to a real life

example involving the diagnosis of Chagas disease.

There are several avenues one could pursue to expand on our research. For one, we’ve
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only tested our model’s robustness with regards to prevalence heterogeneity. One

could consider testing our method under other assumption violations. For instance,

we have assumed that the optical densities of a samples are conditionally independent,

once one controls for the plate effect. However, depending on the opaqueness or

heterogeneity in the glass of the microtiter plates, it is plausible that there are spacial

correlations between optical densities in wells that are in the same row or column.

One might also want to consider our model’s performance when the optical densities

are not lognormal, but rather come from another skewed distribution. The Box-

Cox transformations (of which our lognormal setting is a special case) provide a

whole family of distributions that could plausibly describe a mixture of positive and

negative patients. If our model is not robust to this discrepancy, one solution would

be to incorporate the Box-Cox transformation parameter λ directly into our Bayesian

model, instead of fixing its value at λ = 1 as we do now (Sweeting, 1984; Lee et al.,

2005).

Another extension would be to subject our Chagas dataset to more rigorous model

checking. Here, the BKS and BAD statistics introduced in the thesis only check one

particular facet of the data, namely the appropriateness of the lognormal mixture

assumption. This does not, however test some of the more complex features of our

model, such as the interrelationship between the negative controls and the unknown

samples on a particular plate. Finally, one may want to make use of the optical

densities for the positive controls that are used on each plate, but not included in our

current analysis.
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Appendix A

R Package for Running MCMC

Mixture Model

The main function of our package, ImmunoassayMixture, runs the MCMC procedure

above, and produces draws from the joint posterior distribution of all the relevant

parameters of our model.

A.1. Usage

ImmunoassayMixture(Y,Plate,YcontrolMat,withControls=F,...)

A.2. Arguments

• Y: A numerical vector of the raw (unlogged) optical densities of all the unknown

samples.

• Plate: An integer-valued vector of same length of Y denoting the plate index

on which each observation is located.
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• YcontrolMat: A numerical matrix denoting the raw optical densities of the

negative controls. For instance, YcontrolMat[2,3] corresponds to the mea-

surement on the second plate, of the third negative control subject. Only used

if withControls=T.

• withControls: A boolean input denoting whether or not your model makes

use of negative control data. By default, this equals False (F).

• NUMITERS: An integer, corresponding to the number of iterations one would

like to carry out in the simulation. Default is set to 6,500.

• BURN: Integer denoting the number of preliminary iterations to be discarded

from the output matrix. Default is 0.

• THIN: Integer denoting the “thinning factor” of the output matrix. For ex-

ample, if THIN=5, we keep only every fifth iteration post burn-in. Default is

1, meaning we keep all the iterations.

• CountFrequency: An integer denoting how often to print the “status” of

the MCMC chain. If CountFrequency=20, then at every 20th iteration, the

function will print out the iteration number, and the total cumulative time (in

seconds) that has elapsed. By default, this is set to 100.

• Init.mu: Two-component numerical vector corresponding to the initial values

of µneg, µpos, the means of the logged optical densities of the negative and

positive subgroups respectively. By default, this is set to (0,0).

• Init.sigSq: Two-component numerical vector corresponding to the initial val-

ues of σ2
neg, σ

2
pos, the means of the logged optical densities of the negative and
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positive subgroups respectively. By default, this is set to (1,0.5). Note that

when withContols=T, σ2
neg = λ2 + κ2, so the initial values for these three

parameters must have this relationship.

• Init.alpha: Initial value of α, the fraction of the underlying population that is

positive. Default is 0.06.

• Init.Beta: Vector of length NumPlates, corresponding to initial values for the

multiplicative plate effects β(unlogged). By default, the initial plate effects are

set to 1 (and hence log(βi) = 0 for all plates).

• Init.nusq: Initial value of ν2, the variance of the log of the plate effects. Default

value is 0.25

• Init.lambdasq: Initial value for λ2, the variance of the means of the log-

measurements of the negative control subjects. Should follow the constraint

σ2
neg = λ2 + κ2. Initial value is 1.2.

• Init.kappasq: Initial value for κ2, the within-person variance of the repeated

logged measurements of the control subjects, after controlling for the plate

effects. Should follow the constraint σ2
neg = λ2 + κ2. Initial value is 0.8.

• Init.nusq: Initial value for ν2, the variance of the (logged) plate effects. Initial

value is 0.25.

• Prior.Nusq: A two-component vector corresponding to the shape and rate

hyperparameters of the inverse-gamma prior distribution of ν2. By default, this

is set to (0,0), corresponding to a flat (uninformative) prior distribution.
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A.3. Output

• Output.Params: The full matrix of outputs corresponding the posterior draws

of all the key parameters of the model. The number of rows depends on NU-

MITERS,BURN, and THIN. The number of columns depends on the number

of plates, and if applicable, the number of negative controls. A few caveats:

– The output variable Output.Params is global. Thus, it is recommended

that at the conclusion of each run of the MCMC, one saves Output.Params

under a new name (or in a separate file), since any subsequent usage of

the function will ultimately overwrite Output.Params.

– This variable is only defined/redefined at the very end of the MCMC pro-

cedure. If one interrupts the function, Output.Params will simply be

the last output matrix (or undefined, if the function has never run to

completion).

• Output.Params.Temp This is a globally defined matrix similar to Out-

put.Params, with the main differences being that it is redefined at each iter-

ation, and that no iterations are discarded via burning or thinning. Thus, if

one interrupts the MCMC part way through (or if it crashes), one can look at

Output.Params.Temp to observe the current progress of the chains at the

time of the interruption. Output.Params.Temp can therefore be used as a

debugging tool.
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