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ABSTRACT

EMPIRICAL BAYES ESTIMATION IN CROSS-CLASSIFIED GAUSSIAN MODELS

WITH UNBALANCED DESIGN

Asaf Weinstein

Lawrence D. Brown

The James-Stein estimator and its Bayesian interpretation demonstrated the usefulness of

empirical Bayes methods in facilitating competitive shrinkage estimators for multivariate

problems consisting of nonrandom parameters. When transitioning from homoscedastic to

heteroscedastic Gaussian data, empirical “linear Bayes” estimators typically lose attractive

properties such as minimaxity, and are usually justified mainly from Bayesian viewpoints.

Nevertheless, by appealing to frequentist considerations, traditional empirical linear Bayes

estimators can be modified to better accommodate the asymmetry in unequal variance cases.

This work develops empirical Bayes estimators for cross-classified (factorial) data with

unbalanced design that are asymptotically optimal within classes of shrinkage estimators,

and in particular asymptotically dominate traditional parametric empirical Bayes estimators

as well the usual (unbiased) estimator.
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PREFACE

In 1956 Charles Stein published a landmark paper (Stein, 1956) which showed that the

natural estimator of the mean of a normal vector with n ≥ 3 independent components

with a common and known variance is inadmissible under sum of squared errors loss. This

result was strengthened when James and Stein (1961) gave an explicit form of an estimator

whose risk is strictly smaller than that of the usual estimator for any value of the true

parameter. The James-Stein estimator demonstrated a deficiency of the (loss-independent)

classical methods of least squares and maximum likelihood, and revealed serious limitations

of unbiased estimation in multivariate statistical problems. Stein’s original discovery incited

a flurry of work on shrinkage estimation in the thirty years that followed, with the main

focus on developing minimax estimators and admissible estimators under various linear

models and different loss criteria. The long list of references includes Stein (1966, 1973);

Alam and Thompson (1964); Baranchik (1964, 1970); Bhattacharya (1966); Brown (1966);

Thompson (1968); Sclove (1968); Strawderman (1971, 1978); Alam (1973); Bock (1975);

Efron and Morris (1976); Berger (1976); Rolph (1976); Berger et al. (1977); George et al.

(1986); among many others.

The James-Stein estimator was brought into fame first for being a minimax estimator

different than (and hence dominating) the usual estimator. Nevertheless, the actual form

of the estimator was a contribution in itself, uncovering the role of Bayesian procedures

in constructing shrinkage estimators. The Bayesian interpretation of the James-Stein

estimator was recognized already by Stein (1962) as an empirical version of what later

became known as the Best Linear Unbiased Predictor (BLUP) in a random-effects model.

That is, Stein referred to a hierarchical model with Xi ∼ N(θi, 1) independently for

1 ≤ i ≤ n and the unobserved means θi themselves coming from an i.i.d. normal distribution

with mean zero and common, unknown variance τ2. The Bayes estimator (under squared
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loss) based on X = (X1, ..., Xn)> is

θ̂i = Eτ2(θi|X) =
(

1− 1

τ2 + 1

)
Xi (1)

which produces almost exactly the James-Stein estimator when b−1 = τ2 + 1 is replaced by

the unbiased estimate ‖X‖2/n (in fact, if an unbiased estimate is used for b instead of b−1,

the exact form of the James-Stein estimator is recovered; see, e.g. Morris et al., 2012).

The Bayesian point of view was taken up in Lindley’s discussion of Stein’s paper (Lindley,

1962), and developed extensively by Efron and Morris in a sequence of papers (Efron and

Morris, 1972a,b, 1973b) that promoted an empirical Bayes interpretation of the James-Stein

estimator. In Efron and Morris (1973b) they suggested a derivation of Stein-type estimators

for a normal mean vector, which was technically equivalent to that briefly mentioned by

Stein, but offered another perspective. Efron and Morris considered a two-level model given

by

θi
iid∼ G

Xi|θi ∼ N(θi, 1)

(2)

where the distribution G is unknown. Under this setup they targeted the “linear Bayes”

rule, namely, the linear rule in X that minimizes the Bayes risk. If τ2 =
∫
θ2 G(dθ) denotes

the mean of θ21 under G, the minimizer is given by (1), which can be “estimated” by the

James-Stein estimator. Thus, from this point of view, the James-Stein estimator is an

empirical “linear Bayes” rule for the situation described by the hierarchical model above.

(We should remark that the account given above is a somewhat abused version of the source:

Efron and Morris did not assume normality even for the likelihood function — which would

not change the result; They also allowed the variance of Vi = Var(Xi|θi) to be different for

different coordinates, and even to depend on θi; And they considered in fact the optimal

affine, not linear, predictor. Yet the simplification that we made suffices for the current

discussion).
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The pioneering work of Efron and Morris led the way to an empirical Bayes approach

to multivariate problems, where strict “Model-I” (i.e., conditional on µ) minimaxity or

admissibility are not necessarily a primary concern. Since then there has been a lot of

effort, in recent years as well, to develop parametric, semi-parametric and non-parametric

empirical Bayes procedures for homoscedastic and heteroscedastic normal means problems,

some examples being Morris (1983); Edelman (1988); Zhang (1997); Brown and Greenshtein

(2009); Jiang and Zhang (2009, 2010); Xie et al. (2012, 2015); Koenker and Mizera (2014).

The Bayesian derivation of the James-Stein estimator makes the need for shrinkage of

individual components intuitive, but it still does not explain why the resulting empirical

Bayes estimator would have good risk properties conditional on the θi. On the other

hand, an explicit connection between the original frequentist problem and the Bayesian

problem was made by Herbert Robbins. To demonstrate Robbins’s ideas in the normal

mean problem, consider “separable” estimators of the form θ̂i(X) = t(Xi) for some common

function t. If the sum of squares loss is normalized by n, the risk for such an estimator is

1

n
E‖θ̂ − θ‖2 =

n∑
i=1

1

n
Eθi [t(Xi)− θi]2

which is exactly the Bayes risk

E[t(X̃)− θ̃]2

of the estimator θ̃ = t(X̃) where (X̃, θ̃) is a pair of univariate random variables jointly

distributed as (X1, θ1) in (2) with

G(A) = Gn(A) =
1

n

n∑
i=1

I(θi ∈ A), A ⊆ R.

In other words, estimating the best separable rule for the original n−dimensional problem

is equivalent to the problem of estimating the Bayes rule for (2) with G taken to be the

empirical distribution of the (unknown) nonrandom θi, i ≤ n. Robbins called a problem of
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the first kind a compound decision problem. He developed a theory of empirical Bayes to

solve problems of the second kind with arbitrary G, after realizing the equivalence between

the problems when G = Gn. An excellent review of the two intimately related topics is

given in Zhang (2003).

Interestingly, Robbins presented such “shrinkage” ideas already in 1951 (Robbins, 1951).

However, his target was different from Stein’s. Put into the context of the homoscedastic

normal means problem, Robbins’s goal was to design an estimator θ̂n such that for all

sequences {θn} (that satisfy minor conditions),

lim sup
n→∞

{
R(θn, θ̂n)− inf

δ∈Dn
Rn(θn, δn)

}
≤ 0 (3)

where

R(θn, θ̂n) :=
1

n
Eθn‖θ̂ − θn‖2

and

Dn = {δ : δi(X) = t(Xi) for some function tn : R→ R}. (4)

Hence, Robbins aimed at an asymptotic goal — he did not address “finite-n” criteria as

Stein did. In turn, his target was more ambitious, namely, to asymptotically attain the risk

of an oracle who is allowed to base the choice of δ ∈ Dn on the truth θn.

A more modest goal is achieving (3) where Dn of (4) is replaced by a smaller family of

estimators D′n ⊂ Dn, for example this could be some parametric or semi-parametric family.

The discussion in the two previous paragraphs implies that if DLn is taken to be the family of

all estimators for which θ̂i(X) = t(Xi) and t is also required to be linear, then the empirical

Bayes (or parametric empirical Bayes, as it was referred to by Morris, 1983) derivation

of the James-Stein estimator based on (2) will also serve to achieve (3) with Dn replaced
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by DLn (again, some regularity conditions will be needed for the sequence {θn}). In other

words, for X ∼ Nn(θ, I), the goal of asymptotically attaining the performance of the best

separable, linear oracle is aligned with (non-asymptotic) minimaxity. (It can be shown that

the James-Stein estimator also satisfies a non-asymptotic oracle inequality; See Johnstone,

2011, Section 2.7, Corollary 2.6).

Alas, the situation is not as favorable for heteroscedastic data, X ∼ Nn(θ,D) for a known

covariance matrix D = diag(V1, ..., Vn) (with usual sum of squared errors used as the loss

function). The problem is, essentially, that the minimaxity requirement generally limits

considerably the largeness of “sensible” families D′n of linear rules (not necessarily subsets

of (4)) for which (3) can be achieved. The situation is similar when θ is known a-priori to

lie in some linear subspace, for example in a two and higher-way cross-classified model with

unbalanced design.

Nevertheless, if willing to settle for only asymptotic minimaxity, or if non-linear classes D′n

are considered, (3) can be achieved for much more interesting families. This is the main

thrust of our work. We focus on designing empirical Bayes estimators for additive, cross-

classified Gaussian models with unequal cell counts, that asympotically achieve (3) where

Dn is an appropriate class of parametric or semi-parametric shrinkage estimators. As (3)

is a frequentist criterion, we use frequentist considerations to modify standard parametric

empirical Bayes procedures that rely on the usual random-effects Gaussian model to produce

shrinkage estimators.

These considerations are different for the one-way layout and for the higher-way layout. For

the one-way unbalanced layout, Chapter 1 develops empirical Bayes estimators motivated

from a compound-decision perspective. It is shown that, under appropriate conditions, our

estimator achieves asymptotic oracle optimality with respect to the semi-parametric class

DSPn =
{
θ̂i = Yi −

Vi
Vi + g(Vi)

(
Yi −m(Vi)

)
: g ≥ 0, m are any real-valued functions

}
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and at the same time is minimax for all n.

In the two-way unbalanced layout our results apply to the usual parametric family of

Bayes estimators, that arise from using a prior reflecting within-factor exchangeability.

Specifically, in the second chapter we extend the one-way results of (Xie et al., 2012) and

show that for estimating the true cell means, under appropriate conditions, our estimator

achieves asymptotic oracle optimality with respect to this parametric family of Bayes

estimators. The practically important case of missing values is also treated. The approach

immediately extends to the higher-way additive layout, although the computational effort

in implementing the estimator may become serious for even moderately large number of

factors.
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CHAPTER 1 : Group-Linear Empirical Bayes Estimates for a Heteroscedastic

Normal Mean

Joint work with Zhuang Ma, Lawrence D. Brown and Cun-Hui Zhang

1.1. Introduction

Let X = (X1, ..., Xn)>, θ = (θ1, ..., θn)> and V = (V1, ..., Vn)> and suppose that

Xi|(θi, Vi) ∼ N(θi, Vi) (1.1)

independently for 1 ≤ i ≤ n. This includes the case of nonrandom θ and V . In the

heteroscedastic normal mean problem, the goal is to estimate the vector θ based on X and

V . Hence we assume that in addition to the random observations X1, ..., Xn, the variances

V1, ..., Vn are available. For squared loss, L(θ, θ̂) = 1
n‖θ̂ − θ‖

2 = 1
n

∑n
i=1(θ̂i − θi)

2, this

problem has been widely studied for both the special case of equal variances, Vi ≡ σ2, and

the more general case above, and alternative estimators to the usual (Maximum Likelihood)

estimator θ̂
ML

(X) = X have been suggested that perform better, in some sense, in terms of

the risk Rn(θ, θ̂) = E[L(θ, θ̂(X))|θ], regardless of θ. Here and elsewhere, unless otherwise

stated, we suppress in notation the dependence of the risk function on V .

In the homoscedastic case such shrinkage estimators go back, of course, to the James-Stein

estimator,

θ̂
JS

(X) =

(
1− (n− 2)σ2

‖X‖2

)
X (1.2)

which, for n ≥ 3, has strictly smaller risk than θ̂
ML

for any θ. This estimator can be derived

as an empirical Bayes estimator under a model that puts θ ∼ Nn(0, γI), independently of

V , where γ is unspecified and “estimated” from the data X. Equivalently, as observed in

Efron and Morris (1973b), the James-Stein estimator is an empirical version of the linear

1



Bayes rule (that is, the linear estimator with smallest Bayes risk) when θ is only assumed

to have i.i.d. components, not necessarily normally distributed. Therefore, the James-Stein

estimator also performs well with respect to the usual estimator in terms of the Bayes risk

when θ really is random with i.i.d. components. Efron and Morris (1973b, Section 9)

analyze and quantify relative savings in Bayes risk when using the true linear Bayes rule

versus the James-Stein rule.

What is more, the James-Stein estimator has certain attractive asymptotic optimality

properties uniformly in θ. Let DS = {θ̂ : θ̂i(X) = t(Xi) for some t : R → R}. We

say that an estimator is simple if θ̂i(X) = ti(Xi) for functions ti : R→ R. We say that an

estimator is symmetric if θ̂(τ(X)) = τ(θ̂(X)) for all permutation operators τ . Then DS

is the class of simple, symmetric estimators. If D̃S denotes the class of estimators in DS

that are also linear in X, it holds that for all θ (with a mild restriction on the sequence

θi, i = 1, 2, ..),

Rn(θ, θ̂
JS

) = inf{Rn(θ, θ̂) : θ̂ ∈ D̃S}+ o(1) = Rn(θ, θ̂
b∗n

) + o(1) (1.3)

where θ̂
b
(X) = (1−b)X and b∗n = arg minbRn(θ, θ̂

b
). Herbert Robbins was the first to seek

for decision rules that exhibit asymptotic oracle performance of the kind exhibited above,

although Robbins considered the entire family of simple and symmetric rules (Robbins,

1951; Zhang, 2003). As observed by Robbins, the striking fact that the property (1.3) is

possible without knowing θ can be intuitively understood from the connection between the

original n−dimensional estimation problem with fixed θ and a one-dimensional Bayesian

estimation problem. Indeed, as presented in Zhang (2003), for θ̂ ∈ DS with θ̂i(X) = t(Xi),

Rn(θ, θ̂) =
n∑
i=1

1

n
Eθi [t(Xi)− θi]2 = E[t(X)− θ]2 (1.4)

where the expectation in the last term is taken over the pair (θ,X) of random variables

2



jointly distributed according to

θ ∼ G =
1

n

n∑
i=1

I{θi ≤ θ}, X|θ ∼ N(θ, σ2).

As such, the problem is equvalent to a one-dimensional Bayesian estimation problem, and

the optimal rule in D̃S has θ̂∗i (X) = (1− b∗n)Xi where (1− b∗n)X is the best linear predictor

of the random variable θ based on the random variable X, namely b∗n = σ2/Eθ(X2). While

b∗n depends on θ, this dependence is only through 1/Eθ(X2), which for large n is well

approximated by (n − 2)/‖X‖2. This estimator is exactly unbiased for 1/Eθ(X2) under

θ = 0.

In the heteroscedastic case there is no such agreement as in the homoscedastic case between

minimax estimators and existing empirical Bayes estimators regarding how the components

of X should be shrunk relative to their individual variances. Indeed, existing parametric

empirical Bayes estimators, which usually start by putting again an i.i.d. normal prior on

the elements of θ and therefore shrink Xi in proportion to Vi, are in general not minimax.

And vice versa, minimax estimators do not provide substantial reduction in the Bayes risk,

essentially undershrinking on components with larger variances, and in some constructions

(e.g. Berger, 1976) even shrink Xi inversely in proportion to Vi. Nontrivial spherically

symmetric shrinkage estimators have been suggested, that is, estimators that shrink all

components by the same factor regardless of Vi; These exist only when the Vi satisfy certain

conditions that restrict how much they can be spread out. A precise result was given by

Brown (1975). See Tan (2015) for a concise review of some existing estimators and references

therein for related literature.

There have been attempts to moderate the respective disadvantages of estimators resulting

from either of the two approaches. Xie et al. (2012, XKB hereafter) considered empirical

Bayes estimators arising from the hierarchical model

θi
iid∼ N(µ, γ) Xi|θi

ind∼ N(θi, Vi) 1 ≤ i ≤ n (1.5)

3



with unspecified µ and γ. They suggested to plug into the Bayes rule

θ̂µ,γi = Eµ,γ(θi|Xi) = Xi −
Vi

Vi + γ
(Xi − µ) (1.6)

the values

(µ̂, γ̂) = arg min
µ,γ

R(µ, γ;X)

where R(µ, γ;X) is an unbiased estimator of the risk of θ̂µ,γ . This reduces the sensitivity

of the estimator to how appropriate model (1.5) is, as compared to the standard approach

that uses Maximum Likelihood or Method-of-Moments estimates of µ, γ under (1.5). On the

other hand, Berger (1982) suggested a modification of his own minimax estimator (Berger,

1976) inspired by an approximate robust Bayes estimator (Berger, 1980). This improves

Bayesian performance while retaining minimaxity. Tan (2015) recently suggested a minimax

estimator with a simpler form, that has similar properties.

As in (1.3), empirical Bayes rules resulting from an exchangeable prior on θ are well

motivated in the homoscedastic case even when θi are deterministic, owing to the symmetry

of the decision problem with respect to the components 1 ≤ i ≤ n. Indeed, together with

the additivity of the loss function, the fact that

Xi ∼ f(x; θi), 1 ≤ i ≤ n (1.7)

for a common distribution f , allows us to write the risk of θ̂ ∈ D̃S as a Bayes risk, and

hence set the minimum linear Bayes risk as a benchmark for all θ̂ ∈ D̃S . In the unequal

variances case, on the other hand, the problem does not immediately admit a compound

decision structure as before, because instead of (1.7) we now have

Xi ∼ fi(x; θi), 1 ≤ i ≤ n

4



where fi(x; θ) = (2πVi)
−1/2 exp[−(x− θ)2/(2Vi)], violating the symmetry referred to above.

Consequently, if θ̂i(X,V ) = t(Xi, Vi) is allowed to depend on Xi and Vi only, then it is not

immediately evident what oracle rule might set a reasonable benchmark for an empirical

Bayes estimator. This raises some questions, for example: how well can the approach

pursued by any empirical Bayes estimator starting from (1.5) ever expect to perform? Is

there a more ambitious goal that is still asymptotically achievable?

We show that symmetry can be restored in the heteroscedastic case to produce a counterpart

of (1.4), which, in turn, gives rise to a useful benchmark. In essense, our observation comes

from taking a point of view in which the “observed data” associated with the unknown

parameter θi is the pair (Xi, Vi) instead of just Xi. This will lead to a connection between

the risk of an estimator θ̂i(X,V ) = t(Xi, Vi) and the Bayes risk of the estimator t(X,V )

for a random triplet (X, θ, V ), where X|(θ, V ) ∼ N(θ, V ) and the joint distribution of θ and

V is determined by (θi, Vi), 1 ≤ i ≤ n.

We then take a similar approach to Efron and Morris (1973b) in setting out to mimic

the rule t(X,V ) with smallest Bayes risk among all rules that are linear in X, with no

normality assumption on the distribution of θ|V . We suggest an empirical Bayes block-linear

estimator, that groups together observations with similar variances and applies a spherically

symmetric minimax estimator to each group separately. A qualitative desctiption of our

results follows in the next section.

The chapter is organized as follows. In Section 1.2 we present the estimation of a

heteroscedastic mean as a compound decision problem, for simple, symmetric estimators.

Section 1.3 presents a spherically symmetric minimax estimator for a heteroscedastic normal

vector. Our group-linear empirical Bayes estimator is introduced in Section 1.4, where

we discuss its properties and prove two oracle inequalities that establish its asymptotic

optimality within a class in the case where (Xi, θi, Vi), i ≤ n are independent and identically

distributed. In Section 2.6 we present a simulation study, and in Section 1.6 we apply

our estimator to the Baseball data of Brown (2008) and compare it to some of the best-
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performing estimators that have been tested on this dataset. Proofs are generally deferred

to the Appendix.

1.2. A Compound Decision Problem for the Heteroscedastic Case

Let X,θ and V be as in (1.1). Denote by DS the set of all simple and symmetric estimators

in (X,V ), namely, θ̂i(X,V ) = t(Xi, Vi) for some function t (we reuse the notation DS from

the previous section for simplicity, hoping this will cause no confusion). If θ̂ ∈ DS with

θ̂i(X,V ) = t(Xi, Vi), then

Rn(θ, θ̂) =
n∑
i=1

1

n
Eθi [t(Xi, Vi)− θi]2 = E[t(X,V )− θ]2 (1.8)

where the expectation in the last term is taken over the random vector (X, θ, V, I)>

distributed according to

P(I = i) =
1

n
, (X, θ, V )|(I = i)

d
= (Xi, θi, Vi) 1 ≤ i ≤ n. (1.9)

where
d
= means equal in distribution. We emphasize the distinction throughout between

the vectors X,θ,V and the random variables X, θ, V . In particular, X is a random vector

with random components Xi, 1 ≤ i ≤ n, but θ and V may be nonrandom vectors; whereas

X, θ and V are always random variables, by (1.9).

Again we stress that (1.8) holds also when the pairs (θi, Vi) are deterministic. The identity

(1.8) is easily verified by calculating the expectation on the right hand side when first

conditioning on I, and says that for a simple, symmetric estimator in (X,V ), the risk is

again equivalent to the Bayes risk in a one-dimensional estimation problem. Note that (1.8)

can be interpreted as an application of (1.4) to a compound decision problem as originally

intended by Robbins - consisting of n identical copies of a single decision problem - except

that the data associated with the unknown parameter θi is now the pair (Xi, Vi) with a

distribution given by the conditional distribution of (X,V )|(θ = θi) in (1.9).
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Now consider θ̂ ∈ DS with t linear (affine, in point of fact, but with a slight abuse of

terminology we will use the former word for convenience) in X,

θ̂a,bi (X,V ) = Xi − b(Vi)[Xi − a(Vi)] 1 ≤ i ≤ n. (1.10)

The corresponding Bayes risk in (1.8) is

rn(a, b) , E
{
X − b(V )[X − a(V )]− θ

}2
. (1.11)

Since

X|(θ, V ) ∼ N(θ, V ), (1.12)

the minimizers of

rn(a, b|v) , E
{(
X − b(v)[X − a(v)]− θ

)2∣∣∣V = v
}
, (1.13)

and hence also of (1.11), are

a∗n(v) = E(X|V = v), b∗n(v) =
v

Var(X|V = v)
(1.14)

and the minimum Bayes risk is

Rn(θ, θ̂
a∗n,b

∗
n
) = rn(a∗n, b

∗
n) = E

[
V
{

1− b∗n(V )
}]
. (1.15)

Therefore, (1.15) is a lower bound on the risk achievable by any estimator of the form (1.10),

and θ̂
a∗n,b

∗
n

is the optimal such decision rule. Note that any estimator of the form (1.6) is

also of the form (1.10), but not vice versa.

To highlight the difference between the oracle of the form (1.10) and an oracle of the form

(1.6), the connection to a one-dimensional Bayesian problem in (1.8) allows us to focus on
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a 3-tuple of random variables (X, θ, V ) with the known (since oracle rules are considered

now) joint distribution (1.9). Hence, X and V are observed and an estimator t(X,V ) incurs

loss (t(X,V )− θ)2. The optimal rule linear in X is

t∗(X,V ) = X − V

V + γ∗n(V )
(X − µ∗n(V )) (1.16)

where µ∗n(v) = E(θ|V = v) and γ∗n(v) = Var(θ|V = v); this is just rewriting of (1.14) in

terms of µ∗n(·) and γ∗n(·) instead of a∗n(·) and b∗n(·), which is convenient for the purpose of the

current discussion. In contrast, the oracle rule of the form (1.6) looks for the best constants

γn, µn in (1.16). If θ and V are independent, γ∗n(v) and µ∗n(v) are indeed constant in v, and

the oracle rules coincide. However, if θ and V are not independent, (1.16) might have strictly

smaller risk. The estimator (1.16) allows different shrinkage factor (through γ∗n(v)) and

location (through µ∗(v)) for different values of v, as opposed to using a common shrinkage

factor and location (regardless of v). To conclude, we demonstrate these differences in an

example.

Example 1.2.1 (XKB, Section 7, Example 5). (X, θ, V ) are distributed so that V ∼ 0.5 ·

1{V=0.1}+0.5 ·1{V=0.5}, θ|(V = 0.1) ∼ N(2, 0.1), θ|(V = 0.5) ∼ N(0, 0.5) and X ∼ N(θ, V ).

The best rule t(X,V ) which is linear in X, i.e., the rule of that form with minimum Bayes

risk, is

t∗(X,V ) =


X
2 + 1 V = 0.1

X
2 V = 0.5 .

This is easily seen noting that conditionally on V the usual normal-normal problem (with

only θ random) arises. The corresponding Bayes risk is E[V (1− 1/2)] = 0.15. On the other

hand, the best rule of the form t(X,V ) = X− V
V+γ (X−µ) has γ ≈ 0.83 and µ ≈ 0.15, with

Bayes risk ≈ 0.194, about 30% higher than that of the best linear-in-x rule.

Our results may now be described more precisely. We suggest an estimator which (i) is

minimax for all n and, under some conditions, (ii) asymptotically achieves the oracle risk
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(1.15) when (Xi, θi, Vi), 1 ≤ i ≤ n are i.i.d. from some population with Xi|(θi, Vi) ∼

N(θi, Vi). Note that if (Xi, θi, Vi) are i.i.d., the functions a∗n and b∗n and the corresponding

risk rn(a∗n, b
∗
n) indeed do not depend on n. In the case r(a∗, b∗) = 0, Theorem 1.4.3 also

gives a rate of converges under appropriate smoothness conditions on the functions a∗, b∗.

Although it is not considered in the current work, an analogue of (ii) could be stated for

the nonrandom situation, Xi|(θi, Vi) ∼ N(θi, Vi), 1 ≤ i ≤ n with deterministic θi and Vi. In

this case, to ensure that the limit does not depend on n, suppose that the empirical joint

distribution Gn of {(θi, Vi) : 1 ≤ i ≤ n} has a limiting distribution G. Define the risk for

candidates an, bn to be computed with respect to G. Then Theorem 1.4.3 will say that our

estimator has r(ân, b̂n)→ r(a∗, b∗) under appropriate conditions on a∗, b∗.

Finally, a comment is in place regarding nonparametric estimators. Existing nonparametric

empirical Bayes estimators, such as the semiparametric estimator of XKB and the

nonparametric method of Jiang and Zhang (2010), target the best predictor g(X,V ) of

θ where g is restricted to some nonparametric class of functions. While the optimal g

may indeed be a non-linear function of X, these methods implicitly assume independence

between θ and V . If under the the distribution in (1.9), θ and V are “far” from independent,

these methods can still suffer from the gap between the optimal predictor g(X,V ) assuming

independence, and the true Bayes rule, namely, E(θ|X,V ). Therefore, in some cases the

oracle rule (1.16) might still have smaller expected loss than the oracle choice of g computed

under independence of θ and V .

1.3. A Spherically Symmetric Shrinkage Estimator

In this section suppose that θ,V and X are as in (1.1) where θ is nonrandom and unknown

and V is nonrandom and known. We present a family of spherically symmetric estimators

that shrink toward a data-dependent location. This will serve as a building block for the

group-linear estimator of the following section. The version of our estimator that shrinks

toward the origin, and sufficient conditions for its minimaxity, were given by Brown (1975)

and are reviewed in Tan (2015).
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We will need the following definitions before we state the next result. Suppose that X,θ

and V as in (1.1) with nonrandom θ and V , and where V is known. Let

X =
n∑
i=1

Xi, s2n =
n∑
i=1

(Xi −X)2/(n− 1)

V =
n∑
i=1

Vi/n, Vmax = max
i≤n

Vi.

and

c∗n = {[(n− 3)− 2(Vmax/V − 1)]/(n− 1)}+ = {1− 2(Vmax/V )/(n− 1)}+.

Then define a spherically symmetric estimator θ̂
c

by θ̂ci = Xi if n = 1, and otherwise

θ̂ci = Xi − b̂(Xi −X), b̂ = min
(
1, cnV /s

2
n

)
(1.17)

Lemma 1.3.1. For 0 ≤ cn ≤ 2c∗n,

1

n

n∑
i=1

E
(
θ̂ci − θi

)2
≤ V

[
1− (1− 1/n)E

{
(2c∗n − cn)̂b+ (2− 2c∗n + cn − s2n/V )I{s2n/V≤cn}

}]
≤ V .

(1.18)

Remarks:

1. In (2.16) note that when s2n/V ≥ cn, (2c∗n−cn)̂b = (2c∗n−cn)cnV /s
2
n attains maximum

at cn = c∗n.

2. The main reason for using X is analytical simplicity. When θi are all equal, the MLE of

the common mean is the weighted least squares estimate (
∑n

i=1Xi/Vi)/(
∑n

i=1 1/Vi).

This can be used in place of X in (1.17). However, in the following section we will

use θ̂
c

only on subsets of observations with similar variances; Hence for our use, the
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difference will not be significant, especially under the continuity assumption on a∗(·)

in theorm (1.4.2).

3. In the homoscedastic case Vmax = V and c∗n = (n − 3)/(n − 1) is the usual

constant for the James-Stein estimator that shrinks toward an unknown mean. In

the heteroscedastic case, a sufficient condition for minimaxity of the version of the

estimator above that shrinks toward zero, is reported in Tan (2015) as 0 ≤ cn ≤

2{1− 2(Vmax/V )/n}. This is consistent with Lemma 1.3.1.

Proof of Lemma 1.3.1. To carry out the analysis, it suffices to consider 0 < cn ≤ 2c∗n. Let

b(x) = min(1, cnV /x) so that b̂ = b
(
s2n
)
. Because (∂/∂Xi)s

2
n = 2(Xi −X)/(n− 1), Stein’s

lemma yields

E(Xi − θi)(Xi −X )̂b = Vi E
{

(1− 1/n)b(s2n) + 2(Xi −X)2b′
(
s2n
)
/(n− 1)

}
.

Thus, due to 2Vi/(n− 1) ≤ V (1− c∗n) and xb′(x) = −b(x)I{b(x) < 1},

1

n

n∑
i=1

E
(
Xi − (Xi −X )̂b− θi

)2
=

1

n

n∑
i=1

[
Vi + E(Xi −X)2b2(s2n)− 2ViE

{
(1− 1/n)b(s2n) +

2(Xi −X)2b′
(
s2n
)

n− 1

}]
≤ V + (1− 1/n)E

{
s2nb

2(s2n)− 2V b(s2n) + V (1− c∗n)2b
(
s2n
)
I{s2n>cnV }

}
= V + (1− 1/n)EV b(s2n)

{
min

(
s2n/V , cn

)
− 2 + 2(1− c∗n)I{s2n>cnV }

}
= V − (1− 1/n)EV b(s2n)

{
(2c∗n − cn)I{s2n>cnV }

+ (2− s2n/V )I{s2n≤cnV }

}
= V

[
1− (1− 1/n)E

{
b(s2n)(2c∗n − cn) + (2− 2c∗n + cn − s2n/V )I{s2n/V≤cn}

}]
.

Estimators θ̂
c

in the family described above have a risk function that never exceeds V̄ ,

but its usefulness in the heteroscedastic case is limited because it includes only the usual

estimator θ̂
ML

unless c∗n > 0, i.e., Vmax/V̄ < (n−1)/2. The estimators of θ that we suggest
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in the following sections, however, only use block-wise versions of θ̂
c
, applying it separately

to subsets of observations with similar variances Vi. The magnitude of Vmax/V̄ may be

large when the entire vector V is considered; But when V is partitioned, this ratio is more

or less controlled on each bin. Hence the estimator θ̂
c

is potentially much more useful, and

likely to provide actual shrinkage.

1.4. Group Linear Shrinkage Methods

Sections 1.1 and 1.3 set the stage for introducing an empirical Bayes estimator, which

employs the spherically symmetric estimator to mimic the oracle rule θ̂
a∗,b∗

. When the

number of distinct values Vi is very small compared to n, as in Example 1.2.1, it is natural

to mimic the oracle rule (1.16) by applying a James-Stein estimator separately to each

group of homoscedastic observations. As we will show, under appropriate conditions, this

estimator asymptotically approaches the oracle risk (1.14). Moreover, as long as the size of

any sub-group is bigger than 3, this estimator has risk strictly smaller than the minimax

risk V .

The situation in the general heteroscedastic problem, when the number of distinct values Vi

is not very small compared to n, is not as obvious, but the expression for the optimal function

a∗ and b∗ in (1.14) suggests grouping together observations with similar variances Vi, and

then applying a James-Stein-type estimator separately to each group. The spherically

symmetric estimator of section 1.3 is an appropriate candidate to use for each of the separate

groups, as the variances are only approximately, but not exactly, equal to each other. The

resulting estimator is also minimax, as it is minimax on each group by Lemma 1.3.1 (in

fact, is likely to attain strictly smaller risk than V since c∗n, at least for some intervals, is

likely to be strictly positive).

Before defining our group-linear estimator, we remark that block-linear shrinkage has been

suggested before for the homoscedastic case by Cai (1999) as an alternative to block-

thresholding estimators in the context of wavelet estimation. We mention this approach
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because of the similarity in structure to our heteroscedastic mean estimator; otherwise, the

estimator of Cai (1999) is motivated from an entirely different perspective, and addresses

a very different oracle rule (which is itself a blockwise rule, unlike the oracle associated

with our procedure). On the other hand, Tan (2014) comments briefly that block shrinkage

methods building on his own ”minimax Bayes” estimator can be considered to allow different

shrinkage patterns for observations with different sampling variances. This is very much in

line with the approach we pursue in the current paper.

Definition 1.4.1 (Group-linear Empirical Bayes Estimator for a Heteroscedastic Mean).

Let J1, . . . , Jm be disjoint intervals and denote

Ik = {i : Vi ∈ Jk}, nk = |Ik|, V k =
∑
i∈Ik

Vi
nk
,

Xk =
∑
i∈Ik

Xi

nk
, s2k =

∑
i∈Ik

(Xi −Xk)
2

nk ∨ 2− 1
.

Define a corresponding group-linear estimator θ̂
GL

componentwise by

θ̂GLi =


Xi −min

(
1, ckV k/s

2
k

)
(Xi −Xk), i ∈ Ik

Xi, otherwise

(1.19)

and note that θ̂i = Xi when Vi 6∈ ∪mk=1Jk or Vi ∈ Jk for some k with ck = 0.

Remark. The estimator in definition 1.4.1 is technically not an affine function on a particular

interval, as the shrinkage factor bk = min
(

1, ckV k/s
2
k

)
depends on the data X. In fact

bk is a highly non-linear function of X, involving s2k and a truncation (the estimator is

a “positive-part” estimator on each interval). Nevertheless, we call the estimator “group-

linear” because it is affine up to the dependency of bk on X.

Theorem 1.4.2. Let r(a, b) be as defined in (1.11), a∗ and b∗ as defined in (1.14) and c∗n

as defined in Lemma 1.3.1. For θ̂ = θ̂
GL

in Definition 1.4.1 with cn = c∗n the following

holds.
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1. Under the Gaussian model (1.1) with deterministic (θi, Vi), i ≤ n, the risk of θ̂ is no

greater than that of the naive estimator θ̂
ML

and therefore θ̂ is minimax

1

n

n∑
i=1

E
(
θ̂i − θi

)2
≤ 1

n

n∑
i=1

E
(
Xi − θi

)2
=

1

n

n∑
i=1

Vi = V . (1.20)

2. Let (Xi, θi, Vi), i = 1, . . . , n, be iid vectors from a population (X, θ, V ) satisfying (1.12).

Then

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) + o(1) (1.21)

for any sequence V = (V1, ..., Vn) such that the following conditions hold: With |J |

being the length of interval J ,

max
1≤k≤m

|Jk| → 0, min
1≤k≤m

nk →∞

a∗(v), b∗(v) are uniformly continuous

lim sup
n→∞

∑n
i=1 Vi
n

<∞, lim sup
n→∞

∑n
i=1 ViI{Vi /∈∪mk=1Jk}

n
= 0

(1.22)

Remark 1. The continuity of shrinkage factor and location a∗(v), b∗(v) allows to borrow

strength from neighboring observations with similar variances. To asymptotically mimic the

performance of the oracle rule, max1≤k≤m |Jk| → 0, min1≤k≤m nk →∞ are necessary at the

place where shrinkage is needed. The only intrinsic assumption is lim supn→∞
∑n

i=1 Vi/n <

∞, essentially ‘equivalent’ to bounded expectation of V . It ensures that max1≤k≤m |Jk| →

0, min1≤k≤m nk →∞ is satisfied when ∪mk=1Jk are chosen to cover most of the observations

and at the same time lim supn→∞
∑n

i=1 ViI{Vi /∈∪mk=1Jk}/n = 0, which takes care of the

remaining observations (large or isolated Vi), guaranteeing that their contribution to the

normalized risk is negligible.
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Remark 2. A statement regarding the marginal Bayes risk, when expectation is taken over

V in (1.21), can be obtained in a similar way if replacing the conditions on the individual

sequence V with bounded expectation of the random variable V . We skip this for simplicity.

For the i.i.d. situation of the second part of theorem (1.4.2), the case r(a∗, b∗) = 0

corresponds to θ = a∗(V ), a deterministic function of V (equivalently, b∗(V ) ≡ 1), and

calls for a sharper result than (1.21) regarding the rate of convergence of the excess risk.

Note that, when θ and V are deterministic, θ = a∗(V ) if and only if there are no two

distinct values of θi with the same variance Vi, in which case the oracle rule indeed sets

a∗(Vi) = θi, b
∗(Vi) = 1 and incurs zero loss. The precision in estimating the function a∗,

secondary to that in estimating b∗ when r(a∗, b∗) > 0, is crucial now. Noting that, trivially,

θ = a∗(v) implies E(θ|V = v) = a∗(v),

Xi|Vi ∼ N(a∗(Vi), Vi) (1.23)

is a nonparametric regression model, i.e., θi is a deterministic measurable function of Vi.

In this case, the rate of convergence in (1.21) depends primarily on the smoothness of the

function a∗(v). We will say that a function f : X → R with X ⊂ R is L-Lipschitz continuous

of order α > 0 if |f(x)−f(y)| ≤ L(|x−y|)α. If α = 1, we will simply say that f is L-Lipschitz

continuous.

The following theorem states that our group-linear estimator attains the optimal

convergence rate under a Lipschitz condition, at least when V is bounded. In the

homoscedastic case the smoothing feature of the James-Stein estimator was studied in Li

and Hwang (1984).

Theorem 1.4.3. Let (Xi, θi, Vi), i = 1, . . . , n, be iid vectors from a population (X, θ, V )

satisfying (1.12). If r(a∗, b∗) = 0 and a∗(·) is L-Lipschitz continuous, then the group linear

estimator in Definition 1.4.1 with equal block size |Jk| = |J | =
(11V 2

max
nL

) 1
3 and cn = c∗n
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attains optimal nonparametric rate of convergence

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 2
(11V 2

max

√
L

n

) 2
3
. (1.24)

for any deterministic sequence V = (V1, ..., Vn).

For the asymptotic results in Theorems 1.4.2 and 1.4.3 to hold, it is enough to choose bins

Jk of equal length |J | =
(11V 2

max
nL

) 1
3 . However, in realistic situations, where n is some fixed

number, other strategies for binning observations according to the Vi might be more sensible.

For example, Lemma 1.3.1 and the first remark that follows it, suggest that binning such

that
(

max{Vi : i ∈ Jk}
)
/V k, rather than max{Vi : i ∈ Jk} − min{Vi : i ∈ Jk}, is fixed,

is more appropriate. Hence we propose to bin observations to windows of equal lengths in

log(Vi) instead of Vi.

Furthermore, the constant multiplying n−1/3 in |J | =
(11V 2

max
nL

) 1
3 , is appropriate when the

Vi range between 0 and 1; Otherwise, we suggest to scale the partition to the range of

the Vi by fixing the number of bins to n1/3, i.e., divide log(Vi) to bins of equal length

|range{log(Vi)}|/n1/3. On a finer scale, for a given choice of {Jk}, there is also the question

whether any two groups should be combined together, and the shrinkage factors adjusted

accordingly; This issue arises even in the homoscedastic case (cf. Efron and Morris, 1973a).

More ambitiously, one might try to choose the common bin length (or bins of unequal

length) with a data-dependent method, for example, by considering a group-linear estimator

θ̂
k

using k equal-length bins on log(Vi), and ultimately setting θ̂ = θ̂
kSURE

with

kSURE = arg minR(k;X)

and where R(k;X) is an unbiased estimator of the risk of θ̂
k
. The disadvantage of such

data-based methods is that the minimaxity of the group-linear estimator is typically lost.

On the other hand, minimaxity is preserved when the values of Vi, but not Xi, are used in

deciding how to bin the observations, and it certainly makes sense to use this information to

16



choose bins Jk of unequal lengths, when it seems appropriate from the empirical distribution

of Vi.

1.5. Simulation Study

In this section we carry out a simulation study using the examples of XKB, and compare

the performance of our group-linear estimator to the methods proposed in their work. In

each example, (Xi, θi, Vi), 1 ≤ i ≤ n are drawn i.i.d. from a joint distribution such that

Xi|(θi, Vi) ∼ N(θi, Vi); various estiamtors are then applied to the data (Xi, Vi), 1 ≤ i ≤ n,

and the normalized sum of sqrared error is computed (the last example is the only exception,

with Xi drawn from a different distribution than N(θi, Vi) given θi and Vi, to assess

sensitivity to departures from the basic model). For each value of n in {20, 40, 60, ..., 500},

this process is repeated N = 10, 000 times to obtain a good estimate of the (Bayes) risk

for each method. Among the empirical Bayes estimators proposed by XKB we conside the

parametric SURE estimator given by

θ̂Mi = Xi −
Vi

Vi + γ̂
(Xi − µ̂), 1 ≤ i ≤ n

where γ̂ and µ̂ mimimize an unbiased estimator of the risk (SURE) for estimators of the

form θ̂µ,γi = Xi − [Vi/(Vi + γ)](Xi − µ) over µ and γ. We also consider the semiparametric

SURE estimator of XKB with shrinkage towards the grand mean, defined by

θ̂SGi = Xi − b̂i(Xi −X), 1 ≤ i ≤ n

where b̂ = (̂b1, ..., b̂n) minimize an unbiased estimator of the risk (SURE) for estimators of

the form θ̂b,µi = Xi− bi(Xi−X) with b = (b1, ..., bn) restricted to satisfy Vi ≤ Vj ⇒ bi ≤ bj .

The group-linear estimator θ̂
GL

of Definition 1.4.1 is applied here with the bins Jk formed

by dividing the range of log(Vi) into n1/3 equal length intervals, as per the discussion

concluding section 1.4.
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As benchmarks, in each example we also compute the two oracle risks

r(µ∗, γ∗) = min
µ,γ∈R 3 γ≥0

E
{[
X − V

γ + V
(X − µ)− θ

]2}
(1.25)

and

r(a∗, b∗) = min
a(·),b(·) 3 a(v)≥0 ∀v

E
{[
X − b(V )

(
X − a(V )

)
− θ
]2}

(1.26)

corresponding to the optimal rule in the parametric family of estimators considered in XKB,

and to the optimal linear-in-x rule of section 1.2, respectively. (µ∗ and γ∗ are numbers

whereas a∗ and b∗ are functions; the notation on the left hand sides of (1.25) and (1.26)

should be understood here simply as the Bayes risk indexed by the appropriate quantities,

and not as defined in (1.11)). In (1.25) and (1.26) the expected value is taken over (X, θ, V )

distributed as (Xi, θi, Vi) in each example. Table 1 displays the oracle shrinkage location

and shrinkage factors corresponding to (1.25) and (1.26): µ∗ and v/(v + λ∗) for the XKB

family of estimators, and a∗(v) and b∗(v) for the family of estimators linear in X.

Figure 1 shows the average loss across the N repetitions for the parametric SURE,

semiparametric SURE and the group-linear estimators, plotted against the different values

of n. The horizontal line corresponds to r(µ∗, γ∗). The general picture arising from

the simulation examples is consistent with our expectation that the limiting risk of the

group-linear estimator is smaller than that of both the parametric SURE estimator, as

r(a∗, b∗) ≤ r(µ∗, γ∗), and the semiparametric SURE estimator, as r(a∗, b∗) ≤ inf{r(a, b) :

b(v) monotone increasing in v}. For moderate n, whenever θ and V are independent, the

SURE estimators are appropriate and achieve smaller risk, and when θ is furthermore

normally distributed, the parametric SURE performs substantially better than the rest due

to increased precision in estimating the shrinkage factor and shrinkage location. In contrast,

the situations where θ and V are dependent are handled best by the group-linear estimator,

and it indeed achieves significantly smaller risk than both SURE estimators.
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Table 1: Oracle shrinkage locations and shrinkage factors, (µ∗, v/(v+γ∗)) and (a∗(v), b∗(v)),
corresponding to the family of estimators of XKB (equation (1.25)) and to the family of
estimators that are linear in X (equation (1.26)). Table columns correspond to simulation
examples (a)- (f). Values of µ∗, γ∗ for each example are from Xie et al. (2012). Table shows
value of γ∗ in v/(v + γ∗).

(a) (b) (c) (d) (e) (f)

µ∗, γ∗ 0, 1 .5, .083 0.6, 0.078 0.13, 0.0032 0.15, 0.84 0.6, 0.078
a∗(v), b∗(v) 0, v

v+1 0, v
v+1 v, 0 v, 0 2I(v = 0.1), 0.5 v, 0
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Figure 1: Estimated risk for various estimators vs. number of observations.
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(a) Example 7.1 of XKB. In this example V ∼ Unif(0.1, 1) and θ ∼ N(0, 1), independently,

and X ∼ N(θ, V ). The parametric form of the estimators used in XKB is appropriate here

as θ and V are independent and θ is normally distributed, and indeed the parametric SURE

estimator performs best among the estimators considered. Still, the grouplinear estimator

does at least as good as the semiparametric SURE across values of n, both estimators having

some nonparametric aspect to them. As n → ∞, the group-linear and the parametric

SURE estimator have the same limiting risk ≈ .3357. The asymptotic performance of the

semiparametric SURE estimatoar is comparable.

(b) Example 7.2 of XKB. In this example V ∼ Unif(0.1, 1) and θ ∼ Unif(0, 1), independently,

and X ∼ N(θ, V ). Similarly to the pervious example, the parametric SURE estimator has

substantially smaller risk than the group-linear estimator because of independence of θ and

V . The semiparametric SURE estimator also performs better in this example. Nevertheless,

the group-linear estimator again has the same asymptotic risk≈ .0697 as the the parametric

SURE estimator, and the semiparametric SURE estimator performs comparably as n tends

to infinity.

(c) Example 7.3 of XKB. This time V ∼ Unif(0.1, 1), θ = V and X ∼ N(θ, V ). θ and V

are strongly dependent here, and indeed the gap between the two oracle risks, r(µ∗, γ∗) ≈

.0540 and r(a∗, b∗) = 0 is material. The advantage of the group-linear estiator over the

SURE estimators is seen already for moderate values of n. Although it is hard to tell from

the figure, the limiting risk of the semiparametric SURE is slightly smaller than that of

the parametric SURE, because of the improved capability of the semiparametric oracle to

accommodate the dependence between θ and V .

(d) Example 7.4 of XKB. Here V ∼ Inv-χ2
10, θ = V and X ∼ N(θ, V ). θ is still a

deterministic function of V , but it takes larger values of n for the group-linear to outperform

the SURE estimators; this is not seen before n = 500. This seems to be cuased because of

the non-uniform distribution of the Vi, and is somewhat mitigated by considering log(Vi)
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when binning the observations, but not completely. For reference, when we used the (oracle

knowledge of the) fact that V ∼ Inv-χ2
10 and applied the group-linear estimator to the

transformed variables F (Vi) where F is the distribution function of a Inv-χ2
10 random

variable, the average loss approached the oracle risk 0 much faster in n. Still, the risk

of the group-linear estimator approaches r(a∗, b∗) = 0 while the risk of the parametric

SURE estimator approaches .0051.

(e) Example 7.5 of XKB. In this example, with probability 0.5 V = 0.1 and with probability

0.5 V = 0.5; θ|(V = 0.1) ∼ N(2, 0.1) and θ|(V = 0.5) ∼ N(0, 0.5); and X ∼ N(θ, V ). In this

”two-groups” case, in each variance group, {i : Vi = 0.1} and {i : Vi = 0.5}, the group-linear

estimator reduces to a (positive-part) James-Stein estimator, and performs significantly

better than the SURE estimators. While not plotted in the figure, the other semiparametric

SURE estimator of XKB, which uses a SURE criterion to choose also the shrinkage location,

achieves significantly smaller risk than the SURE estimators we considered here; still, its

limiting risk is 0.1739, which is about 16% more than that of the group-linear estimator.

The limiting risks of the parametric SURE estimator and of the group-linear estimator are

r(µ∗, γ∗) = 0.1947 and r(a∗, b∗) = 0.15, respectively.

(f) Example 7.6 of XKB. Lastly, V ∼ Unif(0.1, 1), θ = V and X ∼ Unif(θ−
√

3V , θ+
√

3V ),

violating the normality assumption for the data. The group-linear estimator is again seen

to outperform the SURE estimators starting at relatively small values of n, and its risk

still tends to the oracle risk r(a∗, b∗) = 0. By contrast, the risk of the parametric SURE

estimator approaches r(µ∗, γ∗) = 0.054. The semiparametric SURE estimator does just a

little better, with its risk approaching ≈ 0.0423.

1.6. Real Data Example

We now turn to a real data example to test our group-linear methods. We use the popular

baseball data of Brown (2008), which contains batting records for all Major League baseball

players in the 2005 season. As in Brown (2008), the entire season is split into two periods,
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and the task is to predict the batting averages of individual players in the second half-season

based on records from the first half-season only. Denoting by Hji the number of hits and

by Nji the number of at-bats for player i in period j of the season, it is assumed that

Hji ∼ Bin(Nji, pi), j = 1, 2, i = 1, ...,Pj .

As suggested in Brown (2008), a variance-stabilizing transformation is first applied,

Xji = arcsin

√
Hji + 1/4

Nji + 1/2
,

resulting in

Xji
.∼ N(θi,

1

4Nji
), θi = arcsin(pi)

and {(X1i, N1i)} are then used to estimate the means {θi}. To measure the performance of

an estimator θ̂, we use the Total Squared Error,

TSE(θ̂) =
∑
i

[
(X2i − θ̂i)2 − 1/(4N2i)

]
,

suggested by Brown (2008) as an unbiased estimator of the risk of θ̂. Following Brown

(2008), only players with at least 11 at-bats in the first half-season are considered in

the estimation process, and only players with at least 11 at-bats in both half-seasons are

considered in the validation process, namely, when evaluating the TSE.

Table 2 shows TSE for various estimators when applied (i) to all players, (ii) to pitchers only

and (iii) to nonpitchers only. The values in the table are fractions of the TSE for the naive

estimator, which, in each of the cases (i)-(iii), simply predicts X2i by X1i. In the table,

the Grand mean estimator uses the simple average of all X1i; the extended positive-part
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Table 2: Prediction Errors of Batting Averages

All Pitchers Nonpitchers

Naive 1 1 1
Grand mean .852 .127 .378
James-Stein .525 .164 .359
Nonparametric EB .508 .212 .372
Binomial mixture .588 .156 .314
Weighted Least Squares 1.074 .127 .468
Weighted nonparametric MLE .306 .173 .326
Weighted Least Squares (AB) .537 .087 .290
Weighted nonparametric MLE (AB) .301 .141 .261

SURE θ̂M .422 .123 .282

SURE θ̂SG .409 .081 .261
Semi-parametric URE 0.414 0.045 .259

Group-linear θ̂GL .3017 .1784 .3246

James-Stein estimator is given by

θ̂JS+i = µ̂JS+ +
(
1− p− 3∑

i(Xi − µ̂JS+)

)
+

(Xi − µ̂JS+), µ̂JS+ =

∑
iXi/Ai∑
iAi

;

θ̂M is the parametric empirical Bayes estimator of XKB using the SURE criterion to

choose both the shrinkage and the location parameter; θ̂SG is the semiparametric SURE

estimator of XKB that shrinks towards the grand mean. The table also includes values for

various estimators reported in Table 2 of XKB, who surveyed some of the best-performing

parametric and nonparametric estimators that had been previously applied to this dataset:

The nonparametric shrinkage methods of Brown and Greenshtein (2009), the weighted least

squares and nonparametric maximum likelihood estimators of Jiang and Zhang (2009, 2010)

(with and without number of at-bats as covariate) and the binomial mixture estimator of

Muralidharan et al. (2010). Finally, we also included the values for the semiparametric

URE of Xie et al. (2015), applied directly to the binomial averages Hji.

As in the simulations, the group-linear estimator is applied to the data using equal length

bins on log( 1
4N1i

), partitioning the observations into eight groups.

The table shows that the group-linear estimator performs very well in predicting batting
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averages for all players relative to the other estimators. It has virtually the same prediction

error as the nonparametric MLE method, which achieves the minimum error overall,

although the two estimators are derived from very different perspectives. As discussed

in Brown (2008), nonconformity to the hierarchical normal-normal model, on which most

parametric empirical Bayes estimators are based, is evident in the data: First of all, pitchers

tend to have better batting averages than non-pitchers, making it more plausible to believe

that the θi come from a mixture of two normal distributions than from a single normal

distribution. Second, players with higher batting averages tend to play more, suggesting

that there is statistical dependence between the true means, θi, and the sampling variances

of Xi. While the nonparametric MLE method handles well non-normality in the “prior”

distribution of the θi, its derivation still assumes statistical independence between the true

means and the sampling variances. The group-linear estimator, on the other hand, performs

well in this example exactly because it is able to accommodate statistical dependence

between the true means and the sampling variances.

Figure 2, a counterpart of Figure 2 in XKB, plots the coefficient of Xi (one minus the

shrinkage factor) for the parametric SURE estimator θ̂M and the group-linear estimator

when each is applied to all batters; As opposed to the monotone decreasing shrinkage

factor Vi/(γ̂ + Vi), Vi = 1/(4Ni) of θ̂M , the shrinkage factors of group-linear estimator

do not at all exhibit a monotone behavior as a function of Ni. The corresponding

shrinkage location (not shown in figure) is constant for θ̂M , µ̂ = 0.45, while it is

piecewise constant and nondecreasing with Ni for the group-linear estimator: µ̂ =

0.42, 0.43, 0.43, 0.49, 0.52, 0.53, 0.54, 0.56 corresponding to the eight consecutive segments of

Ni in figure 2. Hence the estimates of the grouplinear estimator are in line with the behavior

indicated by Brown (2008): “True” batting average seems to increase with number of at-bats

(or decrease with Vi), and the variances are also not independent of Ni (otherwise, as long

as the binomial model is appropriate, the shrinkage factors are expected to be decreasing

across the segments of Ni).
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Figure 2: Shrinkage vs. number of at-bats. {1 − shrinkage factor} increases with Ni

according to γ̂/(Vi + γ̂), Vi = 1/(4Ni) for the SURE estimator θ̂M ; it is piecewise constant
for the group-linear estimator, and exhibits no monotonicity. The corresponding shrinkage
location is constant with Ni for θ̂M ; for the group linear estimator {1 − shrinkage factor}
is constant on each segment of Ni, and nondecreasing.

Not surprisingly, the group linear estimator is not doing as well on the separate analyses for

pitchers and nonpitchers. The parametric SURE estimator already has substantially smaller

prediction error in both cases, and the semiparametric SURE estimator does even better.

Intuitively, this again confirms that much of the heterogeneity in the data is accounted

for by the type of player, pitcher or nonpitcher; it pays off to presume that independence

holds between θi and Ni conditional on player type, when considering a linear versus a

group-linear estimator.
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1.7. Conclusion and Directions for Further Investigation

For a heteroscedastic mean, empirical Bayes estimators that have been suggested, both

parametric and nonparametric, usually rely on a hierarchical model in which the parameter

θ has a prior distribution unrelated to the observed sampling variance V = Var(X|θ).

Representing the heteroscedastic normal mean estimation problem as a compound decision

problem, reveals that this model is generally inadequate to achieve risk reduction as

compared to the naive estimator, at least asymptotically. Group-linear methods, on the

other hand, are capable of capturing dependency between θ and V , and therefore are more

appropriate for problems where it exists.

There is certainly room for futher investigation and refinement of the results presented in

this paper. We point out a few possible directions for extending Theorems 1.4.2 and 1.4.3,

that are outside the scope of the current paper.

(i) When the distribution of the population (X, θ, V ) is allowed to depend on n, the

asymptotic optimality criterion (1.21) should be strengthened to the asymptotic ratio

optimality criterion

1

n

n∑
i=1

E
(
θ̂i − θi

)2
≤ (1 + o(1))rn(a∗n, b

∗
n) (1.27)

as n → ∞. As (1.27) does not hold uniformly for all (X, θ, V ), the aim is to prove this

ratio optimality when rn(a∗, b∗) ≥ ηn for small ηn under suitable side conditions on the

joint distribution of (X, θ, V ). This theory should include (1.21) as a special case and still

maintain the property (1.20).

(ii) When a∗(v) satisfies an order α smoothness condition with α > 1, a higher-

order estimate of a∗(Vi) needs to be used to achieve the optimal rate n−α/(2α+1) in the

nonparametric regression case, r(a∗, b∗) = 0, e.g. â(Vi) with an estimated polynomial

â(v) for each Jk. We speculate that such a group polynomial estimator might still always
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outperform the naive estimator θ̂i = Xi under a somewhat stronger minimum sample

size requirement. For a strict improvement over the naive estimator, if the number of

observations in a certain block is n, then the requirement on n may depend on the sequence

{Vi} in a more complicated way than the condition n > 1 + 2Vmax/V (i.e., c∗n > 0) in

Lemma 1.3.1.
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CHAPTER 2 : Empirical Bayes Estimates for a Cross-Classified Additive Model

with Unbalanced Design

Joint work with Lawrence D. Brown and Gourab Mukherjee

2.1. Introduction

The James-Stein estimator and its Bayesian interpretation revealed the usefulness of

employing hierarchical models in estimation of a vector parameter with nonrandom

components. As a tool to facilitate shrinkage, hierarchical models are appealing because

they make evident the need for adjusting likelihood-based estimation, and possibly pooling

of information from (conditionally) independent observations.

A great contribution to the understanding of the appropriateness of such models in some

“fixed effects” situations was the work of Herbert Robbins, who drew an explicit connection

between a frequentist compound decision problem - consisting of n symmetric copies to be

solved simultaneously under some additive loss - and a one-dimensional Bayesian problem.

Although not addressing strict minimaxity, ideas that appeared already in Robbins (1951)

demonstrate the shortcomings of unbiased estimation, and are illuminating in the context

of Stein’s solution to the normal mean problem.

The point risk of any Bayes estimator resulting from a hierarchical structure posited for

the data depends, of course, on the actual configuration of the true unknown parameters.

Equivalently, for the homoscedastic normal means example, the Bayes estimator will be

effective as compared to the usual estimator when the hierarchical structure does a good

job in the second (“prior”) level accommodating the empirical distribution of the unknown

parameters. Empirical “linear Bayes” estimators, an example of which is the James-Stein

estimator (see Efron and Morris, 1973b), attempt to mimic an optimal (oracle) linear

estimator by considering a hierarchical model with a normal distribution at the (first and)

second level, specified up to a set of hyperparameters to be estimated from the observed
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data and plugged back into the Bayes rule. Alternatively, a fully Bayes approach can be

taken by considering the hyperparameters as random themselves with some vague prior

distribution.

An advantage of the empirical Bayes approach is that in using the data to estimate the

hyperparameter, one can appeal to frequentist considerations. In other words, use the

Bayesian formalism to obtain a parametric family of estimators, but choose among this

family relying on the likelihood function (and loss criterion) only. The entirely Bayes

approach, by contrast, produces an estimator that is tied to the postulated model, hence

its performance might deteriorate when the model does not reflect well the empirical

distribution of the unknown parameters. In the extension of the normal mean problem to

unequal variances, yi ∼ N(θi, σ
2
i ), σ

2
i known, i ≤ n with sum-of-sqares loss, this motivated

Xie et al. (2012) to suggest a parametric empirical Bayes estimator by minimizing an

unbiased estimator of the (point) risk among Bayes rules with respect to an i.i.d. normal

prior on θ = (θ1, ..., θn)>.

Technically, the ideas above carry over to the Gaussian linear model, y = Xβ + ε where

ε ∼ Nn(0,Σ) and Xn×p is a fixed and known matrix of covariates. Lindley and Smith (1972)

were perhaps the first to employ a conjugate normal prior to obtain Bayes estimates for

nonrandom β. They pursued a fully Bayes approach, considering in general a multilevel

normal model conditional on ‘dispersion’ hyperparameters, which are themselves assigned

a prior distribution meant to allow their estimation from the observed data. Extending the

work of Xie et al. (2012) from the sequence model to the linear model with heteroscedastic

error, Kou and Yang (2015) recently suggested to estimate the hyperparameters by

minimizing an unbiased risk estimate (URE) among the parametric class of Bayes estimators

of Eβ[y] = Xβ indexed by the hyperparameters. Under a set of sufficient conditions, they

prove that the URE estimator is asymptotically optimal uniformly over β in terms of the

point risk. In fact, their URE estimator achieves the performance of the optimal loss oracle

within the class, which can base the choice of the hyperparameters also on y, and hence
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in particular achieves smaller risk than any hierarchical Bayes estimator as suggested in

Lindley and Smith (1972).

The criterion of Kou and Yang (2015) leads to an asymptotically optimal estimator once the

covariance structure of β has been specified up to a scaling hyperparameter: they assume

Cov(β) = λW where W is a known positive definite matrix. However, “empirical” versions

of the Bayes rule, which use data-dependent values for λ and the location of shrinkage, might

be ineffective altogether when W is inadequate for representing the structure of the true

parameters, as discussed before. Lindley and Smith (1972) promote the use of exchangeable

structures in the covariance of β; But they emphasize throughout that exchangeability is

not always reasonable. Indeed, for a typical linear regression problem, it is usually hard

to justify exchangeability between the βj , even after rescaling the columns of X. On the

other hand, in the case of factorial experiments, exchangeability does make sense for the

effects within each factor. Lindley and Smith (1972) considered a two-factor model with

no interactions, where an exchangeable normal prior is used for the row effects and another

exchangeable normal prior is used for the column effects. For the balanced design case, they

proceed to derive the Bayes estimates under a hierarchical model with conjugate priors for

the variance components corresponding to the row effects and column effects.

The two-factor additive model with unbalanced design is the focus of the current paper. We

propose empirical Bayes estimates for the cell means under squared loss, as an alternative

to the standard empirical Best Linear Unbiased Predictors (BLUP) in that we use the

URE minimization criterion to “estimate” the hyperparameters. We emphasize that we

are working in the “fixed effects” setting: The performance of an empirical Bayes (or any

other) estimator is evaluated in terms of the point risk rather than the Bayes risk, which

can explain why it might be desirable to estimate the hyperparameters differently than in

a random effects model.

The complications that arise due to nonorthogonality in unbalanced factorial experiments

are well documented in the literature. The evolution of the theory for the analysis of
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variance (ANOVA) in the unbalanced case is reviewed in Herr (1986) , who credits Yates’s

seminal paper (Yates, 1934) as the origin of the different methods (different sums-of-

squares) used today. As for estimation, the difficulties presented in the classical approach

are computational: the maximum likelihood estimates do not have a closed form as

in the balanced case, and are much more complicated, but they have a familiar exact

characterization (See, e.g., Searle, 2006). When shrinkage estimators are considered,

however, the difficulties are not only computational. For balanced design, Bayes estimators

that put separate i.i.d. priors on the row effects and on the column effects reduce, by

sufficiency, to two separate one-way balanced problems, for which the standard empirical

BLUP (James-Stein, if we want to emphasize that we are estimating nonrandom parameters)

estimates are appropriate. Since this is not the case for unbalanced design, the empirical

Bayes methods developed for the sequence model (i.e., where the mean of y is unrestricted)

need to be extended.

Kou and Yang (2015) consider empirical Bayes estimation where the mean of y may be

restricted to a given linear subspace, referred to in their paper as “Model II”. While this

includes the setup we consider in the current paper, their results do not really cover the

(additive) factorial design because the asymptotics are carried out fixing the dimension of

the linear subspace. The analysis in the current paper produces a counterpart of Xie et al.

(2012) by letting the number of row and the number of column effects grow to infinity.

Another issue that is not addressed in Kou and Yang (2015) is the actual computation

of SURE estimators in “Model II”. Obtaining the actual SURE estimates in this case

is in fact much more computationally intensive because it requires working with matrices

throughout. We offer an implementation of the two-way SURE estimator which (for the

case of no empty cells) is as efficient and fast as the computation of the standard empirical

BLUP in the popular R package lme4. In conclusion, the additive cross-classified setup

with unbalanced design merits a separate consideration.

The Chapter is organized as follows. In Section 2.2 we set up the model and present
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empirical Bayes estimators for the two-way unbalanced layout. Section 2.3 discusses the

computation of the SURE estimator and provides the essential details. The balanced case

is analyzed in Section 2.4. Section 2.5 includes the asymptotic optimality results for the

SURE estimator, which are demonstrated in a simulation study in Section 2.6. The case of

missing values is discussed in Section 2.7.

2.2. Model Setup and Bayes Estimates

Consider a two-way crosse-classified additive model,

yij = ηij + εij ηij = µ+αi + βj εij ∼ N(0, σ2K−1ij ) 1 ≤ i ≤ r, 1 ≤ j ≤ c (2.1)

where σ2 > 0 is known. Above, the nonrandom quantity αi will be referred to as the i-th

“row” effect, and the nonrandom quantity βj as the j-th “column” effect; Kij represents

the number of observation, or the “count”, in the ij cell. As notation suggests, there is no

assumption that the Kij are equal (if the Kij are equal the design is said to be balanced). We

do assume, for now, that Kij ≥ 1 for all i and j; The case of missing values is dealt with in

section 2.7. In the overparametrized model (2.1), µ, α1, ..., αr, β1, ..., βc are not identifiable,

however the cell means ηij always are, and make the object of our inference. Specifically, the

target is to estimate, based on y = (y11, y12, ..., yrc), the vector η = E(y) = (η11, η12, ..., ηrc)
>

under the (normalized) sum-of-squares loss

L(η, η̂) =
1

rc
‖η̂ − η‖2 =

1

rc

r∑
i=1

c∑
j=1

(η̂ij − ηij)2. (2.2)

The risk of an estimator η̂ is then

Rr,c(η, η̂) =
1

rc
E‖η̂ − η‖2 =

1

rc
E
{ r∑
i=1

c∑
j=1

(η̂ij − ηij)2
}
.

The usual estimate of η is the weighted Least Squares (WLS) estimate (this is also

maximum-likelihood under the Gaussian model (2.1)), which is unbiased and minimax.

32



Shrinkage estimators for the general linear model y ∼ Nn(Xθ, σ2I), X ∈ Rn×p, of which

(2.1) is a special case (if considering individual homoscedastic observations yijk instead of

cell averages), have been suggested by extension of the James-Stein estimator (See, e.g.,

Rolph, 1976). Indeed, the general linear model can be reduced to the problem of estimating

the mean of a heteroscedastic normal vector with known variances by applying orthogonal

transformations to θ and y (See also Johnstone, 2011, Section 2.9). From there one can

obtain Stein-type estimators as empirical Bayes rules, putting a prior which is either i.i.d.

on the transformed coordinates or i.i.d. on the original coordinates of θ (Rolph, 1976,

refers to these two choices as “proportional prior” and “constant prior”, resprectively). In

the case of factorial designs, however, neither of these choices is very sensible: A more

reasonable choice of prior, as suggested by Lindley and Smith (1972), is one under which

exhchageablility holds separately for the αis and for the βjs. Hence, A linear shrinkage

estimators for ηij is obtained by adding to (2.1) a second level,

αi ∼ N(0, σ2A), βj ∼ N(0, σ2B). (2.3)

for some parameters σ2A, σ
2
B. In vector form, the Bayesian model under consideration is

thus

y|η ∼ Np(η, σ
2M), η = 1µ+ Zθ, θ ∼ Nq(0, σ

2ΛΛ>) (2.4)

where

θ = (α1, ..., αR, β1, ..., βC)>, Z = [Za Zb], Za = IR ⊗ 1C , Zb = 1R ⊗ IC

M = diag(K−111 ,K
−1
12 , ...,K

−1
rc ), Λ =

λaIR 0

0 λbIC


and where p = rc, q = R + C and λA = σA/σ and λB = σB/σ are the square root of the
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relative variance components of the row and column effects, respectively. Denoting

V = ZΛΛ>Z> +M, (2.5)

we have from (2.4) that

y|η ∼ Nrc(η, σ
2M), y ∼ Nrc(1µ, σ

2V ), (2.6)

which immediately gives the Bayes rule for η as

η̂µ,λa,λb = Eµ,λa,λb(η|y) = y −MV −1(y − 1µ) (2.7)

using Tweedie’s formula (see, e.g. Johnstone, 2011, Section 2.3). Note that we suppressed

in notation the dependency of Λ and V on λa and λb.

The Bayes estimator (2.7) was derived for arbitrary constants µ, λa, λb. Instead of fixing

the values of µ, λa, λb in advance, we may now return to the model (2.1) and consider the

parametric family of estimators

{η̂µ,λa,λb : µ ∈ R, λa > 0, λb > 0} (2.8)

for the nonrandom vector η. An empirical Bayes approach uses the observed data y to

select a candidate from the family to use as the estimate. In other words, an empirical

Bayes estimator corresponding to the family (2.8) takes on the form

η̂µ̂,λ̂a,λ̂b = y −MV̂ −1(y − 1µ̂), V̂ = ZΛ̂Λ̂>Z> +M (2.9)

where Λ̂ = Λ
λ̂a,λ̂b

and where µ̂, λ̂a ≥ 0, λ̂b ≥ 0 depend on y only.

Usual empirical Bayes estimators are derived relying on the random effects model (2.4).

Hence, the fixed effect µ and the relative variance components λ2a and λ2b are treated as
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unknown fixed parameters to be estimated based on the marginal distribution of y and

substituted into (2.7). For any set of estimates substituted for λ2a and λ2b , the general

mean µ is customarily estimated by generalized Least Squares, thereby producing an

empirical version of what is known as the BLUP (best linear unbiased predictor). There is

extensive literature on the estimation of the variance components, with the main methods

being maximum-likelihood (ML), Restricted maximum-likelihood (REML) and the ANOVA

methods (Method-of-Moments), including the three original ANOVA methods of Henderson.

All these methods and some of their properties in the balanced and in the unbalanced

random-effects model are discussed in detail in Chapters 6 and 5 of Searle et al. (2009). We

concentrate on the commonly used maximum-likelihood estimates, which are implemented

(as are the REML estimates) in the popular R package lme4 (Bates et al., 2014). Thus,

if L(µ, λa, λb; y) denotes the (marginal) likelihood of y according to (2.4), the maximum-

likelihood estimates are

(µ̂ML, λ̂ML
a , λ̂ML

b ) = arg max
µ,λa≥0,λb≥0

{L(y;µ, λa, λb)}. (2.10)

and the corresponding empirical Bayes estimator is obtained by plugging (2.10) into (2.7)

η̂ML = η̂µ̂
ML,λ̂ML

a ,λ̂ML
b .

Taking the partial derivatives of the log-likelihood

logL(y;µ, λa, λb) = −rc
2

log(2πσ2)− 1

2
log |V | − 1

2σ2
(y − 1µ)>V −1(y − 1µ) (2.11)

with respect to µ, λ2a and λ2b and observing that

V = λ2aZaZ
>
a + λ2bZbZ

>
b +M (2.12)
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yields, on equating to 0, that the maximum likelihood estimator for µ is

µ̂ = (1>V̂ −1y)/(1>V̂ −11) (2.13)

and that if the maximum likelihood estimates ˆ(λ2a),
ˆ(λ2b) are both strictly positive, they

satisfy

tr(V̂ −1ZaZ
>
a )− 1

σ2
y>(I − P̂ )>V̂ −1ZaZ

>
a V̂
−1(I − P̂ )y = 0

tr(V̂ −1ZbZ
>
b )− 1

σ2
y>(I − P̂ )>V̂ −1ZbZ

>
b V̂
−1(I − P̂ )y = 0

(2.14)

where

P̂ = 1(1>V̂ −11)−11>V̂ −1 (2.15)

and where V̂ is obtained from (2.12) by replacing λ2a, λ
2
b with ˆ(λ2a),

ˆ(λ2b). The derivation

is standard, and we provide details in the Appendix. If the solution to the estimating

equations (2.14) includes a negative component, it needs to be appropriately adjusted to

produce the maximum-likelihood estimates ˆ(λ2a),
ˆ(λ2b).

Designed for the random effects setup, the empirical Bayes estimators described so far

will perform well, at least asymptotically, in terms of the Bayes (or prediction) risk

Eµ,λa,λb‖η̂µ̂,λ̂a,λ̂b − η‖2 associated with the model (2.4). However, as we are interested

in the risk function conditional on η - not the Bayes risk - of an estimator, the methods

described above for choosing data-based substitutes µ̂, λ̂a, λ̂b are not necessarily adequate.

Hence, taking the approach of Xie et al. (2012), we suggest to choose among the estimators

in (2.8) by minimizing an unbiased estimator of the risk. Specifically, invoking a standard

fomula (see, e.g., Berger, 1985, p. 362), we obtain Stein’s unbiased estimator of the risk of

η̂µ,λa,λb as

SURE(y;µ, λa, λb) =
1

rc
{σ2tr(M)− 2σ2tr(V −1M2) + (y − 1µ)>[V −1M2V −1](y − 1µ)}(2.16)
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and set

(µ̂S , λ̂Sa , λ̂
S
b ) = arg min

µ,λa≥0,λb≥0
{SURE(y;µ, λa, λb)}. (2.17)

The corresponding empirical Bayes estimator is obtained by plugging (2.10) into (2.7)

η̂S = η̂µ̂
S ,λ̂Sa ,λ̂

S
b .

As in the case of maximum likelihood estimation, there is no closed-form solution to (2.17),

but we can characterize the solutions by the corresponding estimating equations. Taking

the partial derivatives of SURE(µ, λa, λb; y) with respect to µ, λ2a and λ2b and using again

the representation of V in (2.12), one finds on equating to 0 that the SURE estimate of µ

is given by

µ̂ = (1>[V̂ −1M2V̂ −1]y)/(1>[V̂ −1M2V̂ −1]1) (2.18)

and the SURE estimates ˆ(λ2a),
ˆ(λ2b), if both are strictly positive, satisfy

tr(V̂ −1ZaZ
>
a V̂
−1M2)− 1

σ2
y>(I − P̂ )>V̂ −1ZaZ

>
a V̂
−1M2V̂ −1(I − P̂ )y = 0

tr(V̂ −1ZbZ
>
b V̂
−1M2)− 1

σ2
y>(I − P̂ )>V̂ −1ZbZ

>
b V̂
−1M2V̂ −1(I − P̂ )y = 0

(2.19)

where

P̂ = 1(1>[V̂ −1M2V̂ −1]1)−11>V̂ −1M2V̂ −1 (2.20)

and where V̂ is obtained from (2.12) by replacing λ2a, λ
2
b with ˆ(λ2a),

ˆ(λ2b). Details of the

derivation are provided in the appendix.

Note that the two systems of equations (2.14) and (2.19) can be compared to study the

difference between the estimates of the (relative) variance components produces by the two
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approaches. For this purpose it is perhaps easier to compare the following less explicit forms

of the the first equation of (2.14) and the first equation of (2.19), without substituting the

closed expression for µ,

MLE: tr(V̂ −1ZaZ
>
a )− 1

σ2
(y − 1µ̂)>V̂ −1ZaZ

>
a V̂
−1(y − 1µ̂) = 0 (2.21)

SURE : tr(V̂ −1ZaZ
>
a V̂
−1M2)− 1

σ2
(y − 1µ̂)>V̂ −1ZaZ

>
a V̂
−1M2V̂ −1(y − 1µ̂) = 0. (2.22)

Indeed, it can be seen that the SURE equation involves an extra term V̂ −1M2 in both

summands of the left-hand-side, as compared to the ML equation.

2.3. Computation of the SURE Estimator

To compute the SURE estimator, one could attempt to solve the system of equations (2.19),

which involves only λa and λb as the unknowns (but has no closed-form solution). For

example, one could fix the value of λa to some initial positive value and solve the first

equation in λb; Then plug the solution into the second equation and solve for λa, and keep

iterating between the two equations until convergence. If this approach is taken, a non-

trivial issue to overcome will be obtaining the actual SURE estimates of λa and λb when

one of the solutions to (2.19) is negative.

The main difficulty, in any case, is the occurrence of the (rc) × (rc) matrix Ṽ −1, which

depends on λa and λb: Inverting this matrix can be a prohibitive task for even moderately

large values of r anc c, and it needs to be inverted many times during the numerical

computation.

For the case of no empty cells, we offer a fast and efficient computation that works as fast

as the computation of the EBMLE estimate with the lme4 R-package (Bates et al., 2014).

Our implementation uses an adaptation of some of the key elements from the lme4 package,

which we learned from the excellent documentation in Bates (2010, Sec. 5.4). For the

empty-cells case, the implementation is very similar after using the reduction to quadratic

loss in η described in section 2.7. Unfortunately, up to this point we have not found a way

38



to make the computation work as fast as it does in the case of no empty cells. Indeed,

the presence of the p.s.d. matrix Q of section 2.7 in the expression for SURE imposes

further difficulty to the methods described below. This is not to say that there is no way

to overcome these difficulties, that had not occurred to us at this point. We highlight the

main steps of our implementation for the no-empty-cells case below; More detail is given in

the Appendix.

Using the matrix inverse identity, we show in the Appendix that (2.16) can be written as

SURE = −σ2tr(M) + 2σ2tr{(Λ>Z>M−1ZΛ + Iq)
−1(Λ>Z>ZΛ)}+ ‖MV −1(y − 1µ)‖2.

The expression above is numerically minimized jointly over (λa, λb), where the key step in

evaluating it for a particular pair (λa, λb) is employing a sparse Cholesky decomposition

for the matrix Λ>Z>M−1ZΛ + Iq, as suggested in the documentation of the lme4 package

(for a slightly different matrix). This decomposition takes advantage of the high sparsity of

Λ>Z>M−1ZΛ + Iq; It first determines the locations of non-zero elements in the Cholesky

factor, which do not depend on the values of (λa, λb) and hence this stage is needed only

once during the numerical optimization. This is the costly stage of the decomposition;

Determining the values of the non-zero components is repeated during the numerical

optimization.

2.4. The Balanced Case

Sufficiency arguments suggest that in the balanced case, Kij ≡ K, taking either of the two

approaches, MLE or SURE, leads to solving two separate balanced one-way problems, and

hence to similar estimates for µ, λa, λb. We now turn to show that versions of the MLE and

SURE estimates, which take into account centering of the row and column effects, indeed

coincide when the design is balanced. Interestingly, the analysis will suggest another class of

shrinkage estimators for the general, unbalanced, two-way problem by utilizing the one-way

estimates of Xie et al. (2012).
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Suppose, without loss of generality, that K = 1. We begin with a few definitions. The

grand mean and the row and column main effects in terms of the parameters in the model

(2.1) are

m = µ+ α· + β·, ai = αi − α·, bj = βj − β· . (2.23)

and the corresponding vectors are α = {αi}, a = {ai}, β = {βi}, b = {bi}. Let also

η̂y··,λa,λb := η̂µ,λa,λb ∣∣
µ=y··

(2.24)

be the (Bayes) estimator obtained by substituting the mean of y for µ in (2.7), and define

similarly the estimates α̂y··,λa,λb and β̂y··,λa,λb , so that

η̂y··,λa,λbij = y·· + α̂y··,λa,λbi + β̂y··,λa,λbj .

Finally, denote by m̂LS, âLS, b̂LS the weighted least squares estimates of m, a, b under (2.1).

Then in the balanced case,

m̂LS = y··, âLSi = yi· − y.., b̂LSi = y·j − y.. (2.25)

and the Bayes estimates are

µ̂y··,λa,λb = m̂LS, α̂y··,λa,λb = cαâ
LS, β̂y··,λa,λb = cβ b̂

LS (2.26)

where cα = cα(λa) and cβ = cβ(λb).
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Therefore,

R(η, η̂y··,λa,λb) =
1

rc
E
{ r∑
i=1

c∑
j=1

(µ̂y··,λa,λb + α̂y··,λa,λb + β̂y··,λa,λb −m− ai − bj)2
}

(2.27)

=
1

rc
E
{ r∑
i=1

c∑
j=1

(m̂LS + cαâ
LS
i + cβ b̂

LS
j −m− ai − bj)2

}
(2.28)

=
1

rc
E
{ r∑
i=1

c∑
j=1

[(m̂LS −m) + (cαâ
LS
i − ai) + (cβ b̂

LS
j − bj)]2

}
(2.29)

=
1

rc
E
{
rc(m̂LS −m)2 + c

r∑
i=1

(cαâ
LS
i − ai)2 + r

c∑
j=1

(cβ b̂
LS
j − bj)2

}
(2.30)

= E
{

(m̂LS −m)2
}

+
1

r
E
{ r∑
i=1

(cαâ
LS
i − ai)2

}
+

1

c
E
{ c∑
j=1

(cβ b̂
LS
j − bj)2

}
(2.31)

where equality (2.30) is due to orthogonality of the vectors corresponding to the three

sums-of-squares. Since, marginally,

m̂LS ∼ N(m,σ2λ2m), âLS ∼ Nr(a, σ
2Λa), b̂LS ∼ Nc(b, σ

2Λb), (2.32)

with known λ2m,Λα,Λβ (and σ2), SURE can be written as the sum of three separate SURE

expressions, one for each of the summands in (2.30). Minimizing SURE for η̂y··,λa,λb jointly

over cα, cβ therefore consists of minimizing separately the “row” term over cα and the

“column” term over cβ. Each of these is a “one-way” Gaussian homoscedastic problem,

except that the covariance matrices Λα,Λβ are singular (because main effects are centered).

This will be taken into account in writing SURE for each, namely, the SURE estimate will

have the “correct” degrees-of-freedom.

The maximum-likelihood estimates for the two-way random-effects, additive model do not

have a closed-form solution even for balanced data (see Searle et al., 2009, Ch. 4.7 d.),

which already rules them out. On the other hand, the REML estimates coincide with the

positive-part Moments method estimates (Searle et al., 2009, Ch. 4.8), which, in turn,
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reduce (for known σ2) to solving separately two one-way problems involving âLS for the

rows and b̂LS for the columns. These have the usual closed-form solutions and are easily

seen to coincide with the SURE solutions (and in particular, have the “correct” degrees-of-

freedom). We conclude that, for balanced data, if SURE is written for the estimator that

shrinks towards the overall mean 1 then minimizing SURE produces the same estimates for

λa, λb as REML.

Note that that independence of m̂LS, âLS, b̂LS (in the balanced case) was not needed for any

of (2.27)-(2.32). Specifically, (2.30) holds because of the side conditions satisfied by a, b and

âLS, b̂LS; and (2.32) holds, with some known covariance matrices, in general for the GLS

estimators. Hence the calculation goes through for unbalanced data as well (importantly,

note that since y is the vector of cell averages, the design matrix is the same for balanced and

unbalanced data), where m̂LS, âLS, b̂LS still denote the GLS estimates. In the unbalanced

case, however, (2.26) no longer holds, i.e., the Bayes estimates for α (β) no longer depend

on âLS (̂bLS) alone. Additionally, Λa adn Λb in (2.32) do not have a constant on their

diagonals, that is, the GLS estimators are heteroscedastic (and have correlated components)

for unbalanced data. Giving up Bayes optimality, we can nevertheless concentrate on

shrinkage estimates of the form (2.26) and look for “optimal” constants cα = cα(λa) and

cβ = cβ(λb) in terms of the risk. By (2.31), the solution for cα must be optimal for the

one-way problem involving only âLS (and similarly for cβ with b̂LS), and is asymptotically

attained by the SURE estimate of Xie et al. (2012). Hence we define

η̂XKB
ij = m̂LS + ĉXKB

α âLSi + ĉXKB
β b̂LSj , 1 ≤ i ≤ r, 1 ≤ j ≤ c (2.33)

with

ĉXKB
α = arg min

cα
SURE

{ r∑
i=1

(cαâ
LS
i − ai)2

}
, ĉXKB

β = arg min
cβ

SURE
{ c∑
j=1

(cβ b̂
LS
j − bj)2

}
(2.34)

1note the difference SURE({η̂µ,λa,λb} ∣∣
µ=y··

) 6= {SURE( η̂µ,λa,λb )}∣∣
µ=y··
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Slight modification of the parametric SURE estimate of Xie et al. (2012) that shrinks

towards 0, will be required to accommodate the covariance structure of the centered random

vectors âLS, b̂LS. As shown in Xie et al. (2012), the estimates of cα and cβ produced

by maximum-likelihood empirical Bayes (EBMLE) and Moments-method empirical Bayes

(EBMOM) are generally different for heteroscedastic observations, and therefore do not

admit the same asymptotic properties.

2.5. Risk Properties of the SURE Estimator

In this section we provide some theoretical results that establish asymptotic optimality

of the SURE estimator within the class (2.9) of empirical Bayes estimators. Attention is

restricted here to the “all-cells-filled” situation, Kij ≥ 1 ∀ i ≤ r and j ≤ c.

For technical reasons, the optimality results in the current section regard the family of

estimators

{η̂µ,λa,λb : |µ| ≤ B, λa > 0, λb > 0} (2.35)

which differs from (2.8) in that the absolute value of µ is restricted to be bounded by some

positive constant B. From a practical viewpoint, if the role of µ̂ is, loosely speaking, to

capture the overall mean, then the restriction above does not seem very limiting because

it is reasonable to assume that the the overall mean is not really affected by the growing

dimensions r and c. Therefore, while the empirical Bayes estimators presented in section 2.2

do not impose that restriction on µ, the concern should not be too serious about the extent

to which the following results are practically applicable to the unrestricted family of EB

estimators.

Theorem 2.5.1. Under the following conditions:

I. lim
r,c→∞

1

rc

r∑
i=1

c∑
j=1

η2ij <∞

II. lim
r,c→∞

1

rc

{max{Kij : i ≤ r, j ≤ c}
min{Kij : i ≤ r, j ≤ c}

}
= 0
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it holds that:

(a) sup
|µ|≤B; λ1,λ2≥0

Er,c

[
SURE(y;µ, λa, λb)−Rr,c(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.

(b) sup
|µ|≤B; λ1,λ2≥0

Er,c

[
L(η, η̂µ,λa,λb)−Rr,c(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.

As an immediate consequence of Theorem 2.5.1, we have

Corollary 2.5.2. Under the conditions of Theorem 2.5.1, it holds that

sup
|µ|≤B; λ1,λ2≥0

Er,c

[
SURE(y;µ, λa, λb)− L(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.

The unbiased risk estimator and the loss have the same expected value for any η;

Corollary 2.5.2 asserts that the these random variables are also close to each other in L1.

Note that the supremum is taken outside the expectation.

As a benchmark for the performance ever achievable by an estimator in the family (2.35)

we consider a loss-oracle, which uses the knowledge of the true value of η to choose the

values of µ, λa, λb for any realization of y. Hence, let

(
µ̃OL, λ̃OLa , λ̃OLb

)
= arg min
|µ|≤B; λa, λb≥0

L(η, η̂µ,λa,λb) = arg min
|µ|≤B; λa, λb≥0

∥∥y −MV −1(y − 1µ)− η
∥∥2

resulting in the rule

η̃OL = η̂µ̃
OL,λ̃OLa ,λ̃OLb . (2.36)

Corollary 2.5.2 provides the basis for the following asymptotic optimality results.

Theorem 2.5.3. Under the conditions of Theorem 2.5.1, it holds that for any ε > 0

lim
r→∞
c→∞

Pr,c
{
L(η, η̂S) ≥ L(η, η̃OL) + ε

}
= 0 as r, c→∞.
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Theorem 2.5.4. Under the conditions of Theorem 2.5.1, it holds that

lim
r→∞
c→∞

{
Rr,c(η, η̂

S)− Er,c[L(η, η̃OL)]
}

= 0 as r, c→∞.

As the loss-oracle performs better than any empirical Bayes estimator of the form

considered, a consequence of Theorems (2.5.3) and (2.5.4) is

Corollary 2.5.5. Under the conditions of Theorem 2.5.1, it holds that for any estimator

η̂µ̂,λ̂a,λ̂b of the form (2.9),

(a) lim
r→∞
c→∞

Pr,c
{
L(η, η̂S) ≥ L(η, η̂µ̂,λ̂a,λ̂b) + ε

}
= 0 as r, c→∞.

(b) lim sup
r→∞, c→∞

{
Rr,c(η, η̂

S)−Rr,c(η, η̂µ̂,λ̂a,λ̂b)
}
≤ 0 as r, c→∞.

2.6. Simulation Study

We now turn to a simulation study to compare the performance of the SURE estimator to

that of different cell-means estimators discussed in the previous sections. As the standard

technique we consider the weighted Least-Squares estimator η̂LS = 1µ̂LS + Zθ̂LS where

(µ̂LS , θ̂LS) is any pair that minimizes

(y − 1µ− Zθ)>M−1(y − 1µ− Zθ).

The shrinkage estimators reported are the maximum-likelihood empirical Bayes (EBMLE)

estimator η̂ML, characterized by equations (A.13)-(2.14), and the SURE empirical Bayes

estimator η̂S , characterized by equations (A.19)-(2.19), as well as versions of these two

estimators that shrinks towards a fixed (prespecified) loacation µ = 0. In addition, we

consider the two-way empirical Bayes estimator η̂XKB derived in section 2.4 by reduction

to a one-way problem and applying the SURE estimator of Xie et al. (2012) which shrinks

towards a general data-driven location. For a benchmark we consider the oracle rule η̂OL
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obtained by plugging into the parametric estimator (2.7) values

(
µ̃, λ̃a, λ̃b

)
= arg min

µ,λa≥0,λb≥0

∥∥y −MV −1(y − 1µ)− η
∥∥2 (2.37)

where in the right hand side V = ZΛΛ>Z>+M and Λ = Λλa,λb . Since for any y the oracle

rule minimizes the loss over all members of the parametric family (2.8), its expected loss

lower bounds the risk achievable by any empirical Bayes estimator of the form (2.9).

Referring to the likelihood model (2.1) and denoting α = (α1, ..., αr)
>, β =

(β1, ..., βc)
>,M−1 = diag(K11,K12, ...,Krc), in each simulation example (a)-(d) we draw

(α, β,M−1) jointly from some distribution such that the cell counts Kij are i.i.d. and

(α, β) are drawn from some conditional distribution given the Kijs. We then draw

yij ∼ N(µ + αi + βj , σ
2Kij) independently, fixing µ = 0 throughout and setting σ2 to

some (known) constant value. This process is repeated for N = 100 time for each pair

(r, c) in a range of values, and the average squared loss over the N rounds is computed

for each of the estimators mentioned above. The SURE estimate is computed using the

implementation described in [], and the oracle “estimate” is computed employing a similar

technique. The EBMLE estimate is computed using the R package lme4 (Bates et al., 2014).

We remark that the relatively small number of repetitions, N = 100, is used due to the

computational effort in obtaining the empirical Bayes estimates above that are of the form

(2.9). Nevertheless, N = 100 is large enough for the standard error of the average loss (for

each estimator) to be at least one order-of-magnitude smaller than the estimated differences

between the risks, hence the differences can be safely considered significant.

Table 3 shows the estimated risk for L = 180 as a fraction of the estimated risk of the Least-

Squares estimator. In all examples except from the first (the only case in which the effects

and the cell counts are drawn from the “correct” model (2.4)), the SURE estimator attains

significantly smaller risk than that of the EBMLE, and comes close to the performance

of the loss-oracle. Perhaps surprisingly, the “one-way” XKB estimator seems to have an
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asymptotically smaller risk than that of the EBMLE in all but the first example. As the

table suggests, in extreme cases of dependency between the effects and the cell counts, even

the Least-Squares estimator is preferable to the EBMLE (even asymptotically).

(a) (b) (c) (d) (e) (f)

LS 1.00 1.00 1.00 1.00 1.00 1.00
EBML 0.31 1.79 0.48 1.37 0.21 0.96
SURE 0.31 0.45 0.19 0.21 0.18 0.58
EBML (fixed µ) 0.31 0.69 0.45 1.42 0.58 0.95
SURE (fixed µ) 0.31 0.46 0.20 0.53 0.57 0.63
XKB 0.31 0.58 0.28 0.44 0.20 -
OL 0.30 0.42 0.16 0.20 0.17 0.56

Table 3: Estimated risks relative to the Least-Squares estimator, L = 180. The columns in
the table correspond to the 6 simulation examples described in section 2.6.

(a) For L ∈ {20, 60, ..., 180} we set r = c = L and σ2 = 25. Kij are independent such

that P (Kij = 1) = 0.9 and P (Kij = 9) = 0.1. For 1 ≤ i, j ≤ L, αi, βj are drawn from

a N(0, σ2/(4L)) distribution independently of the Kijs. The joint distribution of the row

effects, column effects and the Kijs in this example obeys the Bayesian model under which

the parametric estimator (2.7) is derived. Hence the true Bayes rule is of that form, and

the EBMLE is expected to perform well estimating the hyperparameters from the marginal

distribution of y according to (2.6). Indeed, the risk curve of the EBMLE approaches that

of the oracle rule and seems to perform best for relatively small value of L. The risk of the

SURE estimator, however, still converges to the oracle risk as l increases. Interestingly, the

performance of the XKB estimator seems to be comparable to that of SURE and EBMLE

for large values of L.

(b) For L ∈ {20, 60, ..., 180} we set r = c = L and σ2 = 25. In this example the Kij

are no longer independent of the random effects. We take Kij = 1 · (1 − Zi) + 25 · Zi

where Zi ∼ Bin(1, 0.5) independently, so that the cell frequencies are constant in each

row. If Zi = 1, αi is drawn from a N(1, σ2/(100 · 2L)) distribution, and otherwise from a

N(0, σ2/(2·L)) distribution. βj are drawn independently from a N(0, σ2/(2L)) distribution.

The advantage of the SURE estimator over the EBMLE is clear in figure 3; In fact, even the
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Least-Squares estimator seems to do better than the EBMLE for the values of L considered

here, a consequence of the strong dependency between the cell frequencies and the random

effects. Again the XKB estimator performs surprisingly well.

(c) This example is the same as example (b), except that we fix c = 40 throughout and study

the performance of the different estimators as number of row levels r = L ∈ {20, 60, ..., 180}

varies. We remark that this situation is not covered in the theoretical results of section 2.5.

The Least-Squares estimator performs much worse, relatively to the other methods, than

in the previous examples. The risk of the SURE estimator still seems to get closer to that

of the oracle as r = L increases, although we have not studied the behavior of the SURE

estimator when c is fixed and r → ∞ (neither theoretically nor numerically). The risk of

the XKB is significantly higher than that of the SURE estimator for large values of r = L,

but still much lower than that of the EBMLE.

(d) For L ∈ {20, 60, ..., 180} we set r = c = L and σ2 = 25. In this example the row effects

are determined by the Kij . We take Kij = 1 · (1 − Zi) + 25 · Zi where Zi ∼ Bin(1, 0.5)

independently, and set αi = 1 · (1 − Zi) + (1/25) · Zi. βj are drawn independently from

a N(0, σ2/(2L)) distribution. The SURE estimator performs significantly better than the

other estimators for large values of l, with about 50% smaller estimated risk for L = 180 than

that of the XKB estimator, and even much better for the other methods. The LS estimator

again attained smaller estimated risk for the largest two values of L than EBMLE.

(e) For L ∈ {20, 60, ..., 180} we set r = c = L and σ2 = 25. In this example both the row and

the column effects are determined by the Kij . The cell frequencies Klj = max(Tl, 1), 1 ≤

l ≤ L, 1 ≤ j ≤ L, where Tl, 1 ≤ l ≤ L, are drawn independently from a mixture of a

Pois(1) and Pois(5) distributions with weights 0.9 and 0.1, respectively. The row and

column effects are αl, βl = 1/Tl, 1 ≤ l ≤ L. The estimated risk for the SURE estimator is

still smaller than that of EBMLE by 14.7% (ŝd(diff) < 4 · 10−5) for L = 200, but difference

is not as big as in earlier examples. The estimated risk for the XKB estimator is smaller
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by just % than that of EBMLE. The Least Squares estimator performs considerably worse

than the rest.

(f) In the last example we study the performance of the estimators when some cells are

empty. Details of the calculation of the SURE estimator in the case of empty cells are

described in section 2.7. The setting is exactly as in example (b), except that after the

Kij are drawn, each Kij is independently set to 0 (corresponding to an empty cell) with

probability 0.2. In accordance with the theory of sectionr̃efsec:missing, the risk of the SURE

estimator approaches the expected oracle loss, and for L = 180 achieves significantly smaller

risk than that of the EBMLE, although not as significantly smaller as in example (b) with

all cells filled ( 40% vs 75% smaller than EBMLE for examples (f) and (b), respectively).

The performance of the Least Squares estimator is comparable to that of the EBMLE. The

XKB estimator is not considered here as it is not applicable when some data are missing

(the argument made in section 2.4 is invalid since the columns of the design matrix for the

cell averages yij· are not orthogonal when some cells are empty).

2.7. The Case of Missing Values

An important special case of unbalanced data is that of missing values, i.e., the occurrence

of some empty cells in the two-way table. In this section we extend the SURE estimator of

2.2 to the case where some cells may be empty and the target of inference is all estimable

cell means.

Model (2.1) can be extended to accommodate missing values by simply restricting the index

set for the pairs (i, j), namely

yij = ηij + εij ηij = µ+ αi + βj εij ∼ N(0, σ2K−1ij ) (i, j) ∈ S (2.38)

where S = {(i, j) : Kij ≥ 1} ⊆ {1, ..., r}×{1, ..., c} is the set of indices corresponding to the

nonempty cells, and where σ2 is known. Since the no-interaction model is considered, the

means of some empty cells can still be estimable functions of the αi and βj in (2.38), hence
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(c) Kij = 25 ⋅ zi+ (1 − zi),    zi ~ Bin(1,0.5),    c=40

 αi|(zi=1) ~ N(1,σ2/(100 ⋅ 2l) ),  αi|(zi=0) ~ N(0,σ2/(2l) ),  βj ~ N(0,σ2/(2l) )

l= num. row levels

es
tim

at
ed

 ri
sk

LS
XKB
EBML

EB SURE
oracle

50 100 150
0.
0

1.
0

2.
0

3.
0
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(f) Kij = 25 ⋅ zi+ (1 − zi) w.p. 0.8,   Ki = 0 w.p. 0.2,   zi ~ Bin(1,0.5)
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Figure 3: Estimated risk for various estimators vs. number of row/column levels r = c , L.
Example (c) is the only exception, with c = 40 fixed and l representing the number of row
levels r. The versions of EBMLE and SURE estimators that shrink towards a fixed location
µ are not plotted.

we consider the problem of estimating {ηij : ηij is estimable} rather than only the means

of observed cells, {ηij : (i, j) ∈ S}. To simplify matters, we will assume in the remainder

of this section that S is such that all rc cell means are estimable (commonly referred to as

the case of “connected” data), in which case the loss is still given by (2.2).
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To work with vector forms, we introduce new notation to distinguish between the

observed model and “unobserved” model (in which all cell are filled). Define θ =

(µ, α1, ..., αR, β1, ..., βC)> and note the inclusion of µ as the first element. Define M =

diag(K−1ij : (i, j) ∈ S) where the indices of diagonal elements are in lexicographical order.

Let Z̃ = [1rc IR⊗1C 1R⊗IC ] ∈ R(rc)×(r+c+1) and let Z ∈ R|S|×(r+c+1) be obtained from Z̃

by deleting the subset of rows corresponding to Sc. Finally, let η̃ = Z̃θ ∈ Rrc be the vector

of all cell means and η = Zθ ∈ R|S| be the vector of cell means for only the observed data.

Since η̃ is assumed to be estimable, it must be a linear function of η. Specifically, it must

hold that

η̃ = Z̃Z†η

where Z† is the Moore-Penrose pseudo-inverse of Z. Any other generalized inverse could be

used in (Z>Z)−Z> to replace Z†; The Moore-Penrose inverse is just a convenient choice.

For a proof that the relation above holds, the reader is referred to Theorem 5 in Searle

(1966). Now consider an estimate of η̃ of the form ˆ̃η = Z̃Z†η̂. Then (2.2) can be written as

L(η̃, ˆ̃η) =
1

rc
‖(ˆ̃η − η̃)‖2 =

1

rc
(η̂ − η)>Q(η̂ − η), Q = (Z̃Z†)>Z̃Z†.

Namely, for estimators of the form ˆ̃η = Z̃Z†η̂, the problem is equivalent to estimating η

under the quadratic loss above. Note that with η̂ = η̂LS this form gives the (Generalized)

Least Squares estimate of η̃; And for a Bayes rule η̂ = η̂B with respect to any prior on θ,

this form gives the Bayes rule for η̃ with respect to the same prior.

Now that the loss is given in terms of η̂ and η, we turn to the Bayes model under the prior

in (2.3). The Bayes estimate is still given by (2.7) as

η̂µ,λa,λb = y −MV −1(y − 1µ)
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where η, M and Z in (2.5) are as defined in the current section. Under (2.38) and the

quadratic loss above, an unbiased estimator of the risk of η̂µ,λa,λb is

SUREQ(y;µ, λa, λb) = σ2tr(QM)− 2σ2tr(V −1MQM)

+ (y − 1µ)>[V −1MQMV −1](y − 1µ).

(2.39)

The corresponding SURE estimator of η is

η̂SQ = η̂µ̂
SQ ,λ̂

SQ
a ,λ̂

SQ
b

where

(µ̂SQ , λ̂
SQ
a , λ̂

SQ
b ) = arg min

µ,λa≥0,λb≥0
{SUREQ(y;µ, λa, λb)}.

Estimating equations analogous to (2.19) can be derived by taking the partial derivatives

with respect to λa, λb and plugging in the closed-form solution for µ̂ (which depends on

λa, λb).

The risk properties of the SURE estimator from section 2.5 can be extended to accommodate

missing values, by replacing the second condition of theorem 2.5.1 with a slightly stronger

one.

Theorem 2.7.1. Denote by λ1(A) the largest eigenvalue of a diagonalizable matrix A.

Under the following conditions:

I. lim
r,c→∞

1

rc

r∑
i=1

c∑
j=1

η2ij <∞

II. lim
r,c→∞

1

rc
λ1(M

−1)λ1(M
1/2QM1/2) = 0 and lim

r,c→∞

1

rc
λ1(M

−1)λ21(M
1/2QM1/2) = 0

it holds that:

(a) sup
|µ|≤B; λ1,λ2≥0

Er,c

[
SUREQ(y;µ, λa, λb)−RQr,c(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.
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(b) sup
|µ|≤B; λ1,λ2≥0

Er,c

[
LQ(η, η̂µ,λa,λb)−RQr,c(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.

where RQ(η, η̂) = E
[
LQ(η, η̂)

]
and LQ(η, η̂) = 1

rc(η̂ − η)>Q(η̂ − η).

Remark. As λ1(M) ≤ 1, for the second condition above to hold it suffices that

λ1(M
−1)[λ1(Q) ∨ λ21(Q)] = max(Kij)[λ1(Q) ∨ λ21(Q)] = o(rc). Note that when there are

no missing values, Q can be replaced by I in the quadratic loss, and the second condition

reduces to that of theorem 2.5.1.

Theorem 2.7.1 is proved in the appendix. By the remark above, it is unnecessary to restate

it in Theorem 2.5.1 for the special case of all-cells-filled. We nevertheless do so and provide

an independent proof for the special case, as both the assumptions and the proof of the

theorem take a simpler form when there are no missing values, which makes the proof easier

to follow.

The following assertions are counterparts of those following Theorem 2.5.1 of section 2.5.

To save space, we do not include the proofs; They follow from Theorem 2.7.1 by exactly

the same arguments of the proofs for section 2.5.

Corollary 2.7.2. Under the conditions of Theorem 2.5.1, it holds that

sup
|µ|≤B; λ1,λ2≥0

Er,c

[
SURE(y;µ, λa, λb)− L(η, η̂µ,λa,λb)

]2
→ 0 as r, c→∞.

Now let the loss-oracle be defined by

(
µ̃OL, λ̃OLa , λ̃OLb

)
= arg min
|µ|≤B; λa, λb≥0

LQ(η, η̂µ,λa,λb)

resulting in the rule

η̃OL = η̂µ̃
OL,λ̃OLa ,λ̃OLb . (2.40)
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Then we have

Theorem 2.7.3. Under the conditions of Theorem 2.7.1, it holds that for any ε > 0

lim
r→∞
c→∞

Pr,c
{
LQ(η, η̂SQ) ≥ LQ(η, η̃OL) + ε

}
= 0 as r, c→∞.

Theorem 2.7.4. Under the conditions of Theorem 2.7.1, it holds that

lim
r→∞
c→∞

{
RQr,c(η, η̂

SQ)− Er,c[LQ(η, η̃OL)]
}

= 0 as r, c→∞.

As the loss-oracle performs better than any empirical Bayes estimator of the form

considered, a consequence of Theorems (2.7.3) and (2.7.4) is

Corollary 2.7.5. Under the conditions of Theorem 2.7.1, it holds that for any estimator

η̂µ̂,λ̂a,λ̂b of the form (2.9),

(a) lim
r→∞
c→∞

Pr,c
{
LQ(η, η̂SQ) ≥ LQ(η, η̂µ̂,λ̂a,λ̂b) + ε

}
= 0 as r, c→∞.

(b) lim sup
r→∞, c→∞

{
RQr,c(η, η̂

SQ)−RQr,c(η, η̂µ̂,λ̂a,λ̂b)
}
≤ 0 as r, c→∞.

2.8. Concluding Remarks

We considered a parametric family of Bayes estimators for the two-way unbalanced layout

that is based on exchangeability. We suggested an empirical Bayes estimator that uses a

criterion directly related to the point risk (conditonal on η) of an estimator, for choosing

data-dependent values to substitute for the hyperparameters. In the unbalanced case, the

resulting estimator differs from standard empirical versions of the so-called Best Linear

Unbiased Predictor (BLUP), and is shown to be asymptotically optimal within the matching

family of empirical Bayes estimators.

The theory developed in section 2.2 can be easily extended for the higher-way additive

layout. The Bayes estimates will be obtained by considering a prior under which the effects
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of the i-th factor are i.i.d. Normal variables with mean zero and variance σ2λ2i . However,

difficulties might be encountered in the actual computation of the SURE estimator. If

there are p factors and the path suggested in section 2.3 is followed, a joint numerical

optimization over p variables is required; And the function evaluated in each round involves

matrices of rapidly growing dimension with p if there are even moderately large number

of levels for each factor. We should mention that the lmer (and blmer) functions for

computing the (ML/REML) EBMLE in the lme4 R-package are able to handle higher-

way situations more efficiently. For example, no inversion of matrices is needed in this

implementation. Unfortunately, we did not find a way to completely avoid inverting the

matrix V when computing the SURE estimator, which may account for a significant part

of the computational burden.

To conclude, we consider estimation under weighted loss. Consider the case where there are

no unobserved cells. We concentrated throughout on the usual (normalized) sum-of-squares

loss. Alternatively, one might be interested in estimation under a weighted loss function,

L(η, η̂) =
1

n
(η̂ − η)>M−1(η̂ − η) =

1

n

r∑
i=1

c∑
j=1

Kij(η̂ij − ηij)2. (2.41)

where n =
∑r

i=1

∑c
j=1Kij . If x is the vector consisting of the individual homoscedastic

observations in the cells xijk (so that yij = 1
Kij

∑Kij
k=1 xijk), this corresponds to the usual

(normalized) squared loss for the mean of x. Under the weighted loss, applying a linear

transformation

ỹ = M−1/2y, η̃ = 1µ̃+ Z̃θ = M−1/2η, Z̃ = M−1/2Z, 1µ̃ = M−1/21µ

the problem is equivalent to estimating η̃ from ỹ ∼ N(η̃, σ2I) under (normalized) sum-of-

squares loss. Assuming the prior in (2.3) with fixed λa, λb,

η̃ ∼ Nrc(1µ̃, σ
2M−1/2ZΛΛ>Z>M−1/2)
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and the corresponding Bayes estimate of η̃ is

ˆ̃η = ỹ − Ṽ −1(ỹ − 1µ̃), Ṽ = M−1/2ZΛΛ>Z>M−1/2 + I.

In this case the second condition of Theorem (2.5.1) may be dropped. Indeed, it can be

checked in the appendix that the proof goes through if

1

r2c2
{

2tr(G>G) + 4η>G>GG>Gη
}
→ 0 as r, c →∞.

where G = Ṽ −1. Since in the current situation G>G− I is positive semi-definite, it suffices

that

1

r2c2
{

2tr(I) + 4η>η
}
→ 0 as r, c →∞.

which is satisfied under the first condition of Theorem (2.5.1).
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APPENDIX

A.1. Supplements to Chapter 1

A.1.1. Connection to Efron and Morris (1973b)

Efron and Morris (1973b, Section 9) consider empirical linear Bayes estimates for θ =

(θ1, ..., θn)> under the hierarchical model

θi ∼ (µi, γi)

Xi|θi ∼ (θi, Vi)

(A.1)

for i = 1, ..., n where the notation z ∼ (m,σ2) is used to indicate that Z is a random variable

with no assumptions on its distribution other than mean equal to m and variance equal to

σ2. The hyperparameters µ = (µ1, ..., µn)>,γ = (γ1, ..., γ
>
n are unknown, and Vi are not

necessarily known either (in fact, in their setup Vi is allowed to be a function of θi, but

we assume here that the Vi are constant). They consider empirical versions of the ”linear

Bayes rule”

θ∗i = µi + (1−Bi)(Xi − µi), Bi = Vi/(γi + Vi) (A.2)

by plugging into (A.2) estimates B̂i(X) and µ̂i(X).

Our empirical Bayes approach to the heteroscedastic normal mean problem fits the

framework (A.3) in that θi is allowed to depend on Vi, hence according to our model,

conditional on Vi

7θi ∼ (µ(Vi), γ(Vi))

Xi|θi ∼ (θi, Vi)

(A.3)

for i = 1, ..., n where Vi are known. As opposed to (A.3), we restrict µi and γi (and, in fact,

the entire distribution of θi) to depend on i only through Vi, and the Vi are also assumed
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to be known. While these assumptions are not necessary for estimators of the form (A.2)

with smaller Bayes risk than θi = Xi to exist, they make achievable the more ambitious

goal that we pursue, namely, mimicking the best rule θi = t(Xi, Vi) that is linear in Xi (if

µi 6= µj even when Vi = Vj , this violates the exchaneability assumed between (Xi, θi, Vi) ).

A.1.2. Proofs

Notations:

1. ε|J |
.
= max

v1,v2∈J

{
|a∗(v1)− a∗(v2)|, |b∗(v1)− b∗(v2)|

}
2. g(v)

.
= V ar(θ|V = v), h(v)

.
= E(θ2|V = v)

3. All the expectations in this section are conditional on V .

Lemma A.1.1 (Analysis within each interval). Let (Xi, θi, Vi)
n
i=1 be iid vectors from a

population satisfying (1.12). If V1, · · · , Vn ∈ J for some interval J and min1≤i≤n b
∗(Vi) ≥

ε, b∗(V ) ≥ ε for some ε > 0. Then the spherically symmetric shrinkage estimator (1.17)

with cn = c∗n satisfies

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
7Vmax

n ∨ 2− 1
+ (V ε|J | + |J |)

ε2 + 1

ε2
+ ε2|J |

+
2

n ∨ 2− 1

{ n∑
i=1

V 2
i + 2

n∑
i=1

(Vi + V )h(Vi) + V
2
} 1

2

(A.4)

where Vmax = max{V1, · · · , Vn} and V =
∑n
i=1 Vi
n .

Proof of Lemma A.1.1 . As in the proof of Lemma 1.3.1 with cn = c∗n,

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] =
1

n

n∑
i=1

E(Xi − (Xi − X̄ )̂b− θi|V )2

≤ V + (1− 1/n)EV b(s2n)
{

min
(
s2n/V , c

∗
n

)
− 2 + 2(1− c∗n)I{s2n>c∗nV }

}

By definition of the oracle rule, r(a∗, b∗|Vi) = Vi(1 − b∗(Vi)) and min
(
s2n/V , c

∗
n

)
≤ c∗n ≤ 1,
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hence

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
1

n

n∑
i=1

b∗(Vi)Vi − (1− 1

n
)V E(̂b) + 2V (1− c∗n)

Notice that 0 ≤ b̂ ≤ 1 and V (1− c∗n) ≤ 2Vmax/(n ∨ 2− 1), therefore

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
4Vmax

n ∨ 2− 1
+
V

n
+

1

n

n∑
i=1

b∗(Vi)Vi − V E(̂b)

≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
5Vmax

n ∨ 2− 1
+

1

n

n∑
i=1

b∗(Vi)Vi − V E(̂b)

≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
5Vmax

n ∨ 2− 1
+ V ( max

1≤i≤n
b∗(Vi)− Eb̂)

=
1

n

n∑
i=1

r(a∗, b∗|Vi) +
5Vmax

n ∨ 2− 1
+ V

{
max
1≤i≤n

b∗(Vi)− b∗(V )
}

+ V (b∗(V )− Eb̂)

≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
5Vmax

n ∨ 2− 1
+ V ε|J | + V (b∗(V )− Eb̂)

where the last inequality is due to the uniform continuity of b∗(v). Then we are going to

bound V (b∗(V )− Eb̂), by definition of b∗(v) and b̂

V (b∗(V )− Eb̂) = V E
{ V

V ar(X|V = V )
−min(1,

c∗nV

s2n
)
}

Notice that V
V ar(X|V=V )

= V
V+V ar(θ|V=V )

≤ 1, then

V (b∗(V )− Eb̂) ≤ V E
{

(
V

V ar(X|V = V )
− c∗nV

s2n
)I{c∗nV≤s2n}

}
=

V

V ar(X|V = V )
E
{V s2n − c∗nV V ar(X|V = V )

s2n
I{c∗nV≤s2n}

}
=

V

V ar(X|V = V )
E
{V s2n − c∗nV s2n + c∗nV s

2
n − c∗nV V ar(X|V = V )

s2n
I{c∗nV≤s2n}

}
=

V

V ar(X|V = V )
E
{
V (1− c∗n)I{c∗nV≤s2n}

+
c∗nV

s2n

[
s2n − V ar(X|V = V )

]
I{c∗nV≤s2n}

}
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Also notice that 1− c∗n ≥ 0 and c∗nV
s2n
I{c∗nV≤s2n}

≤ 1

V (b∗(V )− Eb̂) ≤ V (1− c∗n) + E|s2n − V ar(X|V = V )|

≤ 2Vmax

n ∨ 2− 1
+ E|s2n − Es2n|+ |Es2n − V ar(X|V = V )|

=
2Vmax

n ∨ 2− 1
+ E

{
EV ,θ|s2n − Es2n|

}
+ |Es2n − V ar(X|V = V )|

≤ 2Vmax

n ∨ 2− 1
+ E

√
V ar(s2n|V ,θ) + |Es2n − V ar(X|V = V )|

≤ 2Vmax

n ∨ 2− 1
+
{
E
[
V ar(s2n|V ,θ)

]} 1
2

+ |Es2n − V ar(X|V = V )|

where the last two inequalities are due to Jensen’s inequality. Condition on V =

(V1, · · · , Vn) and θ = (θ1, · · · , θn), X ∼ N(
∑n
i=1 θi
n ,

∑n
i=1 Vi
n2 ). Then simple algebra shows

that

E(s2n) =
1

n ∨ 2− 1
E
{
E(

n∑
i=1

X2
i − nX

2|V ,θ)
}

=
1

n ∨ 2− 1
E
{ n∑

i=1

(Vi + θ2i )−
∑n

i=1 θ
2
i

n
− V

}
= V +

1

n(n ∨ 2− 1)

{
n

n∑
i=1

E(θ2i |V = Vi)−
∑
j 6=k

E(θ|V = Vj)E(θ|V = Vk)
}

= V +
1

n(n ∨ 2− 1)

{
(n− 1)

n∑
i=1

V ar(θ|V = Vi) + n

n∑
i=1

[
E(θ|V = Vi)−

1

n

n∑
j=1

E(θ|V = Vj)
]2}

≤ V +
1

n

n∑
i=1

V ar(θ|V = Vi) +
1

n ∨ 2− 1

n∑
i=1

[
E(θ|V = Vi)−

1

n

n∑
j=1

E(θ|V = Vj)
]2

= V +
1

n

n∑
i=1

g(Vi) +
1

n ∨ 2− 1

n∑
i=1

[
a∗(Vi)−

1

n

n∑
j=1

a∗(Vj)
]2

On the other hand, V ar(X|V = V ) = V + V ar(θ|V = V ) = V + g(V ). Hence,

|E(s2n)− V ar(X|V = V̄ )| ≤ 1

n

n∑
i=1

|g(Vi)− g(V )|+ 1

n ∨ 2− 1

n∑
i=1

[
a∗(Vi)−

1

n

n∑
j=1

a∗(Vj)
]2

By uniform continuity of a∗(v), |a∗(Vi) − 1
n

∑n
j=1 a

∗(Vj)| ≤ n−1
n ε|J |. By definition, b∗(v) =
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v
v+g(v) ; then g(v) = v

b∗(v) − v and therefore

|g(Vi)− g(V )| =
∣∣∣Vib∗(V )− V b∗(Vi)

b∗(Vi)b∗(V )
+ (Vi − V )

∣∣∣
≤
∣∣Vi[b∗(V )− b∗(Vi)

]∣∣
b∗(Vi)b∗(V )

+

∣∣(Vi − V )b∗(Vi)
∣∣

b∗(Vi)b∗(V )
+
∣∣Vi − V ∣∣

≤
Viε|J | + |J |

ε2
+ |J |

where the last inequality is due to the assumption that min1≤i≤n b
∗(Vi) ≥ ε, b∗(V ) ≥ ε.

Hence,

|E(s2n)− V ar(X|V = V̄ )| ≤
V ε|J | + |J |

ε2
+ |J |+ ε2|J |

Finally, we are going to control E
{
V ar(s2n|V ,θ)

}
. Agin, use the fact that X|V ,θ ∼

N(
∑n
i=1 θi
n ,

∑n
i=1 Vi
n2 )

E
{
V ar(s2n|V ,θ)

}
=

1

(n ∨ 2− 1)2
E
{
V ar

( n∑
i=1

X2
i − nX

2|V ,θ
)}

≤ 2

(n ∨ 2− 1)2
E
{
V ar

( n∑
i=1

X2
i |V ,θ

)
+ V ar

(
nX

2|V ,θ
)}

=
2

(n ∨ 2− 1)2
E
{ n∑
i=1

(2V 2
i + 4θ2i Vi) + n2(

2V
2

n2
+ 4θ

2V

n
)
}

By the definition that h(v) = V ar(θ2|V = v) and the fact that nθ
2 ≤

∑n
i=1 θ

2
i

E
{
V ar(s2n|V ,θ)

}
≤ 4

(n ∨ 2− 1)2

{ n∑
i=1

V 2
i + 2

n∑
i=1

Vih(Vi) + V
2

+ 2V
n∑
i=1

h(Vi)
}

≤ 4

(n ∨ 2− 1)2

{ n∑
i=1

V 2
i + 2

n∑
i=1

(Vi + V )h(Vi) + V
2
}

Combining all the inequalities, we have

V̄ (b∗(V )−Eb̂) ≤ 2Vmax

n ∨ 2− 1
+
V ε|J| + |J |

ε2
+ |J |+ε2|J|+

2

n ∨ 2− 1

{ n∑
i=1

V 2
i +2

n∑
i=1

(Vi+V )h(Vi)+V
2
} 1

2

61



and therefore,

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) +
7Vmax

n ∨ 2− 1
+ (V ε|J | + |J |)

ε2 + 1

ε2
+ ε2|J |

+
2

n ∨ 2− 1

{ n∑
i=1

V 2
i + 2

n∑
i=1

(Vi + V )h(Vi) + V
2
} 1

2

Proof of Theorem 1.4.2. The first part of Theorem 1.4.2 is direct consequence of

Lemma 1.3.1. For the second part, it suffices to prove that ∀ ε > 0, the risk is O(ε)

for large enough n. Noticing that the contribution to the risk for observations outside

∪mk=1Jk is
∑n

i=1 ViI{Vi /∈∪mk=1Jk}/n = o(1), then we only need to consider the case where

∀1 ≤ i ≤ n, Vi ∈ ∪mk=1Jk. WLOG, we can assume ∀ 1 ≤ k ≤ m, either Jk ⊂ [0, ε)

or Jk ⊂ (ε,+∞) because we can always reduce ε such that this happens. Due to

the assumption that lim supn→∞
∑n

i=1 Vi/n < ∞, we can always choose Mε such that∑n
i=1 ViI{Vi≥Mε}/n ≤ ε and ∀ k with Jk ⊂ (ε,+∞), either Jk ⊂ (ε,Mε) or Jk ⊂ (Mε,+∞).

Let V
k

=
∑

i∈Ik Vi/nk and define S1 = {k|1 ≤ k ≤ n, Jk ⊂ (0, ε)}, S2 = {k|1 ≤

k ≤ n, Jk ⊂ (ε,Mε),minVi∈Jk b
∗(Vi) ≥ ε, b∗(V

k
) ≥ ε}, S3 = {k|1 ≤ k ≤ n, Jk ⊂

(ε,Mε),minVi∈Jk b
∗(Vi) < ε or b∗(V

k
) ≤ ε}, S4 = {k|1 ≤ k ≤ n, Jk ⊂ (Mε,+∞)}. Then we

divide all the observations into four disjoint groups S1, S2, S3, S4 and now we are going to

handle them separately.

Case i) For low variance part, Vi ∈ (0, ε), the contribution to the risk is negligible. Because

the group linear shrinkage estimator dominate the MLE in each interval, then

1

n

∑
k∈S1

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S1

∑
i∈Ik

Vi ≤
1

n

∑
k∈S1

∑
i∈Ik

ε ≤ ε

Case ii) For moderate variance with large shrinkage factor, Vi ∈ (ε,Mε) and b∗(Vi), b
∗(V ) ≥

ε, shrinkage is necessary to mimic the performance of the oracle rule. Apply Lemma A.1.1
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to each interval Jk such that k ∈ S2,

1

n

∑
k∈S2

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S2

∑
i∈Ik

r(a∗, b∗|Vi) +
1

n

∑
k∈S2

nk

{ 7

nk ∨ 2− 1
(V

k
+ |Jk|)

+ (V
k
ε|Jk| + |Jk|)

ε2 + 1

ε2
+ ε2|Jk| +

2

nk ∨ 2− 1

(∑
i∈Ik

V 2
i + 2

∑
i∈Ik

(Vi + V
k
)h(Vi) + (V

k
)2
) 1

2
}

Let |J |max
.
= max

1≤k≤m
|Jk|, εmax

.
= max

1≤k≤m
ε|Jk| and notice that max

1≤k≤m
nk

nk∨2−1 ≤ 2

1

n

∑
k∈S2

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S2

∑
i∈Ik

r(a∗, b∗|Vi) +
1

n

∑
k∈S2

{
14(V

k
+ |J |max) + nkε

2
max

+ nk(V
k
εmax + |J |max)

ε2 + 1

ε2
+ 4
(∑
i∈Ik

V 2
i + 2

∑
i∈Ik

(Vi + V
k
)h(Vi) + (V

k
)2
) 1

2
}

Notice that ∀k ∈ S2, i ∈ Ik, V
k
, Vi ≤ Mε. Since a∗(v) is uniform continuous on [0,Mε],

there exists constant Cε only depending on ε such that a∗(Vi) ≤ Cε. Then,

h(Vi) = V ar(θ|V = Vi) + (E(θ|V = Vi))
2 ≤ Vi

b∗(Vi)
− Vi + (a∗(Vi))

2 ≤ Mε

ε
+ C2

ε

Therefore,

1

n

∑
k∈S2

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S2

∑
i∈Ik

r(a∗, b∗|Vi) +
14|S2|
n

(
Mε + |J |max

)
+ ε2max

+ (Mεεmax + |J |max)
ε2 + 1

ε2
+

4

n

√
2M2

ε (1 + ε−1) + 2MεCε
∑
k∈S2

n
1
2
k

By Cauthy Schwarz inequality:
∑

k∈S2
n

1
2
k ≤

√
|S2|

∑
k∈S2

nk ≤
√
|S2|n. Also notice that

|S2| ≤ m ≤ n
min

1≤k≤m
nk

, then

1

n

∑
k∈S2

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S2

∑
i∈Ik

r(a∗, b∗|Vi) +
14

min
1≤k≤m

nk

(
Mε + |J |max

)
+ ε2max

+ (Mεεmax + |J |max)
ε2 + 1

ε2
+

4√
min

1≤k≤m
nk

√
2M2

ε (1 + ε−1) + 2MεCε
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Since |J |max, εmax → 0 and min
1≤k≤m

nk → +∞, we obtain

1

n

∑
k∈S2

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S2

∑
i∈Ik

r(a∗, b∗|Vi) + o(ε)

Case iii) For moderate variance with negligible shrinkage factor, Vi ∈ (ε,Mε) and

mini∈Ik b
∗(Vi) or b

∗(V ) < ε. By uniform continuity of b∗(·), ∀i ∈ Ik, b∗(Vi) ≤ ε + εmax.

Notice that r(a∗, b∗|Vi) = Vi(1− b∗(Vi)), then

1

n

∑
k∈S3

∑
i∈Ik

r(a∗, b∗|Vi) =
1

n

∑
k∈S3

∑
i∈Ik

Vi(1− b∗(Vi)) ≥
1

n

∑
k∈S3

∑
i∈Ik

Vi − V (ε+ εmax)

Since the proposed group linear shrinkage estimator dominates MLE in each block,

1

n

∑
k∈S3

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S3

∑
i∈Ik

r(a∗, b∗|Vi) + V (ε+ εmax)

Case iv) For high variance part, Vi ∈ (Mε,+∞), the contribution to the risk is also

negligible. By definition of Mε,

1

n

∑
k∈S4

∑
i∈Ik

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

∑
k∈S4

∑
i∈Ik

Vi =

∑n
i=1 ViI{Vi≥Mε}

n
≤ ε

Sum the inequalities of all four cases

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

n∑
i=1

r(a∗, b∗|Vi) + (V + 2)ε+ o(ε) (A.5)

which finishes the proof by the assumption that lim sup
n→∞

∑n
i=1 Vi
n ≤ ∞

Lemma A.1.2 (Analysis within each interval). Given V1, · · · , Vn ∈ J and θ is a

deterministic function of V with a∗(·) L-Lipschitz continuous. Under the normal model

Xi|θi, Vi ∼ N(θi, Vi), the spherically symmetric shrinkage (1.17) with cn = c∗n satisfies

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ L|J |2 +
3V

n
+

4Vmax

n ∨ 2− 1
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Proof of Lemma A.1.2. As in the proof of Lemma 1.3.1 and substitue cn with c∗n

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] =
1

n

n∑
i=1

E(Xi − (Xi − X̄ )̂b− θi|V )2

≤ V
[
1−

(
1− 1

n

)
E
{
b̂(2c∗n − cn) + (2− 2c∗n + cn − s2n/V )I{s2n/V≤cn}

}]
= V

[
1−

(
1− 1

n

)
E
{
b̂c∗n + (2− c∗n − s2n/V )I{s2n/V≤c∗n}

}]
= V E

{
(1− b̂c∗n)− (2− 2c∗n)I{s2n/V≤c∗n}

− (c∗n − s2n/V )I{s2n/V≤c∗n}

}
+

1

n
E
{
b̂c∗n + (2− c∗n − s2n/V )I{s2n/V≤c∗n}

}

Notice that 2− 2c∗n > 0 and b̂c∗n + (2− c∗n − s2n/V )I{s2n/V≤c∗n}
≤ 3, therefore

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ V E
{

(1− b̂c∗n)− (c∗n − s2n/V )I{s2n/V≤c∗n}

}
+

3

n
V

≤ V E
{
c∗n(1− b̂)− (c∗n − s2n/V )I{s2n/V≤c∗n}

}
+

3V

n
+ (1− c∗n)V

≤ E
{
c∗nV

(s2n − c∗nV
s2n

)
+
−
(
c∗nV − s2n

)
+

}
+

3V

n
+ (1− c∗n)V

≤ E
{(
s2n − c∗nV

)
+
−
(
c∗nV − s2n

)
+

}
+

3V

n
+ (1− c∗n)V

= E(s2n − c∗nV ) +
3V

n
+ (1− c∗n)V

Recall that

Es2n = V +
1

n

n∑
i=1

V ar(θ|V = Vi) +
1

n ∨ 2− 1

n∑
i=1

[E(θ|V = Vi)−
1

n

n∑
j=1

E(θ|V = Vj)
]2

In the case that θ(V ) = a∗(V ), Es2n = V̄ + 1
n∨2−1

∑n
i=1[a(Vi)− 1

n

∑n
j=1 a(Vj)

]2
. Therefore,

R(â, b̂|V ) ≤ (1− c∗n)V +
1

n ∨ 2− 1

n∑
i=1

[a(Vi)−
1

n

n∑
j=1

a(Vj)
]2

+
3V

n
+ (1− c∗n)V

≤ L|J |2 +
3V

n
+ 2(1− c∗n)V

≤ L|J |2 +
3V

n
+

4Vmax

n ∨ 2− 1

65



Proof of Theorem 2. Apply Lemma A.1.2 to each interval and use the fact that nk
nk∨2−1 ≤

2

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 1

n

m∑
k=1

(
nkL|Jk|2 + 3V

k
+ 4Vmax

nk
nk ∨ 2− 1

)
≤ L|J |2 +

3mVmax

n
+

8mVmax

n

= L|J |2 +
11V 2

max

n|J |

Let |J | =
(11V 2

max
nL

) 1
3 ,

1

n

n∑
i=1

E
[(
θ̂i − θi

)2∣∣∣V ] ≤ 2
(11V 2

max

√
L

n

) 2
3

A.2. Supplements to Chapter 2

A.2.1. Proofs

Denote γr,c =
max{Kij :i≤r, j≤c}
min{Kij :i≤r, j≤c} . Denote G = MV −1 and G2 = G>G. We use the notation

σ1(A) to denote the k-th largest singular value of a matrix A. We use the notation λk(B)

to denote the k-th largest eigenvalue of a square diagonalizable matrix B.

Proof of Theorem 2.5.1. (a) Fix λa, λb ≥ 0. We consider first the case µ = 0 and show

that

E[SURE(y; 0, λa, λb)−Rr,c(η; η̂0,λa,λb)]2 →∞ as r, c→∞.
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We have

E[SURE(y; 0, λa, λb)−Rr,c(η; η̂µ,λa,λb)]2 = Var[SURE(y; 0, λa, λb)] =
1

r2c2
Var(y>G2y)

=
1

r2c2
{2tr(G2MG2M) + 4η>G2MG2η}

(A.6)

Letting W = M
1
2V −1M

1
2 and noting that W ≤ I,

λ1(G
2MG2) = λ1(V

−1M2V −1MV −1M2V −1) = λ1(V
−1M

3
2W 2M

3
2V −1)

≤ λ1(V −1M3V −1) = λ1(M
− 1

2WM2WM−
1
2 ) = σ21(M−

1
2WM)

≤ {σ1(M−
1
2 )σ1(W )σ1(M)}2 = {λ1/21 (M−1)λ1(W )λ1(M)}2

≤ λ21(M)λ1(M
−1) = (maxKij)/(minKij)

2 ≤ γr,c

Since η>G2MG2η ≤ λ1(G2MG2)‖η‖2, it follows that

η>G2MG2η ≤ γr,c‖η‖2.

Also,

tr(G2MG2M) = tr(M
1
2G2MG2M

1
2 ) = tr(M

1
2V −1M2V −1MV −1M2V −1M

1
2 )

= tr(M
1
2V −1M

3
2W 2M

3
2V −1M

1
2 ) ≤ tr(M

1
2V −1M3V −1M

1
2 )

= tr(WM2W ) = tr(MW 2M) ≤ tr(M2)

Hence the RHS of (A.6) is no more than 1
r2c2
{2tr(M2) + 4γr,c‖η‖2} → 0 as r, c → ∞

by the assumptions of the theorem.
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Now, for arbitrary µ ∈ R, we have

SURE(y;µ, λa, λb) = SURE(y; 0, λa, λb) +
1

rc
µ21>G21− 1

rc
2µy>G21,

hence

E[SURE(y;µ, λa, λb)−Rr,c(η; η̂µ,λa,λb)]2 = Var[SURE(y;µ, λa, λb)]

≤ 4{Var[SURE(y; 0, λa, λb)] + 4
1

rc
µ2Var(y>G21)}.

The first term on the RHS was shown above to tend to 0. As for the second term, we

need to show that 4µ2

r2c2
1>G2MG21→ 0 as r, c→∞.

Since λ1(G
2MG2) ≤ γr,c as was shown above, it follows that

1

r2c2
1>G2MG21 ≤ 1

r2c2
rcγr,c ≤

1

rc
γr,c → 0 as r, c→∞

implying that 4µ2

r2c2
1>G2MG21→ 0 as r, c→∞ for any µ.

As µ is bounded, and since all bounds above on terms in (A.6) are indpendent of λa or

λb, it follwos that sup
λa,λb≥0

Var[SURE(y;µ, λa, λb)] also tends to zero as r, c→∞.

(b) Fix λa, λb ≥ 0. We consider first the case µ = 0 and show that

E
{
|L(η, η̂0,λa,λb)−Rr,c(η; η̂0,λa,λb)|

}
→ 0 as r, c→∞.

For η̂ = η̂0,λa,λb we have

L(η, η̂) =
1

rc
(η̂ − η)>(η̂ − η) =

1

rc
(y − η −Gy)>(y − η −Gy)

=
1

rc

{
(y − η)>(y − η) + y>G2y − 2(y − η)>Gy

}
=

1

rc

{
(y − η)>(y − η)︸ ︷︷ ︸

Q1

+ y>G2y︸ ︷︷ ︸
Q2

− 2y>Gy︸ ︷︷ ︸
Q3

+ 2η>Gy︸ ︷︷ ︸
Q4

}
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hence it suffices to show that for each of the four terms above E| 1rcQi−E( 1
rcQi)| → ∞

as r, c→∞, which in turn will follow if we show that Var( 1
rcQi)→ 0 as r, c→∞.

Q1:
1
rcVar[(y − η)>(y − η)] = 1

rc2tr(M2)→ 0 as r, c→∞.

Q2:
1
rcVar(y>G2y)→ 0 as r, c→∞ was already shown in the proof of part (a).

Q3: 4Var(y>Gy) = 2tr(G̃MG̃M) + 4η>G̃MG̃η, G̃ = G+G>.

For the second of the two terms on the RHS, as G̃ = G+G> = MV −1 + V −1M ,

G̃MG̃ = MV −1MMV −1︸ ︷︷ ︸
Q31

+MV −1MV −1M︸ ︷︷ ︸
Q32

+V −1MMMV −1︸ ︷︷ ︸
Q33

+V −1MMV −1M︸ ︷︷ ︸
Q34

.

We show that 1
r2c2
|η>Q3iη| → 0 as r, c → ∞ for i = 1, ..., 4. Under the assumption of

the theorem,

λ1(G
2) = λ1(V

−1M2V −1) = λ1(M
− 1

2WMWM−
1
2 ) = σ21{M−

1
2WM

1
2 }

≤ {σ1(M−
1
2 )σ1(W )σ1(M

1
2 )}2

≤ {σ1(M−
1
2 )σ1(M

1
2 )}2 = γr,c

hence

λ1(MV −1MMV −1) ≤ λ1(M)λ1(V
−1M2V −1) = λ1(M)λ1(G

2) ≤ λ1(G2) ≤ γr,c

and we note that MV −1MMV −1 is indeed diagonalizable as a product of two p.s.d.

matrices. Therefore,

1

r2c2
|η>(MV −1MMV −1)η| ≤ 1

r2c2
λ1(MV −1MMV −1)‖η‖2 ≤ 1

r2c2
γr,c‖η‖2 → 0

as r, c→∞.
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Since η>(V −1MMV −1M)η = η>(MV −1MMV −1)η, it follows that

1
r2c2
|η>(V −1MMV −1M)η| → 0 as well.

Also,

λ1(MV −1MV −1M) ≤ λ1(MV −2M)

= λ1{M
1
2 (M

1
2V −2M

1
2 )M

1
2 }

≤ λ1(M−1)λ1(M) = γr,c

where the last inequality follows from

M
1
2V −2M

1
2 = (M

1
2V −2M

1
2 )M−1(M

1
2V −2M

1
2 ) ≤ λ1(M−1)I.

Hence, 1
r2c2

η>(MV −1MV −1M)η ≤ 1
r2c2

γr,c‖η‖2 → 0 as r, c→∞.

Finally, λ1(V
−1M3V −1) ≤ γr,c was shown in the proof of part (a) of the theorem,

implying

1

r2c2
η>V −1M3V −1η ≤ 1

r2c2
γr,c‖η‖2 → 0

as r, c→∞.

Now, as for tr(G̃MG̃M) we have

G̃MG̃M = GMGM +GMG>M +G>MGM +G>MG>M

hence

tr(G̃MG̃M) = 2tr(GMGM) + 2tr(GMG>M).
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Since

tr(GMGM) = tr(MV −1M2V −1M) = tr(MG2M) ≤ tr{M [λ1(G
2)I]M}

= λ1(G
2)tr(M2) = γr,ctr(M

2),

then

1

r2c2
tr(GMGM) ≤ 1

r2c2
γr,ctr(M

2)→ 0

as r, c→∞.

Also,

tr(GMG>M) = tr(MV −1MV −1MM) = tr(MM
1
2V −1MV −1M

1
2M)

= tr(MW 2M) ≤ tr(M2)

and so

1

r2c2
tr(GMG>M) ≤ 1

r2c2
tr(M2)→ 0

as r, c→∞.

Together, we have

1

r2c2
tr(G̃MG̃M)→ 0

as r, c→∞

We conclude that 1
r2c2

Var(y>Gy)→ 0 as r, c→∞.

Q4: Var(η>Gy) = η>GMG>η.
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Since

λ1(GMG>) = λ1(MV −1MV −1M) = λ1(M
1
2W 2M

1
2 ) ≤ λ1(M) ≤ 1

we have

1

r2c2
η>GMG>η ≤ 1

r2c2
λ1(GMG>)‖η‖2 → 0

as r, c→∞.

Turning to the case of arbitrary µ ∈ R, we first note that

(η̂µ,λa,λb − η)>(η̂µ,λa,λb − η) =(η̂0,λa,λb − η)>(η̂0,λa,λb − η) + µ1>G>G1

+ 2µ1>G>(I −G)y − 2µ1>Gη.

(A.7)

For fixed µ, to prove that

E
{ 1

rc
|(η̂µ,λa,λb − η)>(η̂µ,λa,λb − η)|

}
→ 0

it is enough to show that the variance of each random term in (A.7) is o((rc)2). The

first term in (A.7) has been just dealt with in the µ = 0 case. Therefore, it remains to

show that

µ2
1

r2c2
Var(1>G>(I −G)y)→ 0

as r, c→∞. Now,

Var(1>G>(I −G)y) = 1>G>(I −G)M(I −G)>G1 ≤ λ1(G>(I −G)M(I −G)>G)1>1

= rc · λ1(G>(I −G)M(I −G)>G).

Let L = M−
1
2 (M −GM)M−1(M −GM)M−

1
2 (note: (M −GM) is symmetric). Since
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M −GM ≤M , then M−
1
2 ((M −GM))M−

1
2 ≤ I, and by squaring we get that L ≤ I.

Hence,

G>(I −G)M(I −G)>G = G>(M −GM)M−1(M −GM)>G = G>M
1
2LM

1
2G

≤ G>MG

≤ G2

and so

λ1(G
>(I −G)M(I −G)>G) ≤ λ1(G2) ≤ γr,c.

In conclusion,

1

r2c2
Var(1>G>(I −G)y) ≤ 1

r2c2
γr,c · rc =

1

rc
γr,c → 0

as r, c→∞.

Now, µ is bounded by assumption, while all bounds derived above are independent of

λa and λb, therefore sup
λa,λb≥0

{ 1

r2c2
Var[lr,c(η; η̂µ,λa,λb)]

}
also tends to zero as r, c → ∞,

and (b) is proved.

Proof of Theorem 2.5.3. By definition, SURE(y; µ̂SURE , λ̂SUREa , λ̂SUREb ) ≤

SURE(y; µ̃OL, λ̃OLa , λ̃OLb ), hence

Pr,c
{
L(η, η̂SURE) ≥ L(η, η̃OL) + ε

}
≤ Pr,c

{
A(y; η) ≥ B(y; η) + ε

}
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where

A(y; η) = L(η, η̂SURE)− SURE(y; µ̂SURE , λ̂SUREa , λ̂SUREb )

B(y; η) = L(η, η̃OL)− SURE(y; µ̃OL, λ̃OLa , λ̃OLb ).

Using Markov’s inequality and the fact that A(y; η)−B(y; η) ≥ 0,

Pr,c
{
A(y; η) ≥ B(y; η) + ε

}
≤ ε−1Er,c{A(y; η)−B(y; η)}

≤ 2ε−1 sup
|µ|≤B; λ1,λ2≥0

Er,c|L(η, η̂µ,λa,λb)− SURE(y;µ, λa, λb)|.

Incorporating corollary (2.5.2), the last term tends to zero as r, c→∞.

Proof of Theorem 2.5.4. Write

L(η, η̃SURE)− L(η, η̃OL) ={L(η, η̃SURE)− SURE(y; µ̂SURE , λ̂SUREa , λ̂SUREb )}

− {L(η, η̃OL)− SURE(y; µ̃OL, λ̃OLa , λ̃OLb )}

+ {SURE(y; µ̂SURE , λ̂SUREa , λ̂SUREb )− SURE(y; µ̃OL, λ̃OLa , λ̃OLb )}.

By definition of (µ̂SURE , λ̂SUREa , λ̂SUREb ), the last term is nonpositive, therefore

Er,c{L(η, η̃SURE)− L(η, η̃OL)} ≤ 2 sup
|µ|≤B; λ1,λ2≥0

Er,c|L(η, η̂µ,λa,λb)− SURE(y;µ, λa, λb)|

which tends to zero as r, c→∞ by Corollary 2.5.2.

Proof of Corollary 2.5.5. (a) and (b) are direct consequences, respectively, of Theorems

2.5.3 and 2.5.4, since L(η, η̂µ̂,λ̂a,λ̂b) ≥ L(η, η̃OL) and, hence, also Er,cL(η, η̂µ̂,λ̂a,λ̂b) ≥

Er,cL(η, η̃OL).
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A.2.2. Details for Section 2.2

The following facts about derivatives involving matrix expressions are used below.

(i) ∂
∂x{x

>Ax} = x>(A+A>)

(ii) ∂
∂α log |A| = tr(A−1 ∂A∂α )

(iii) ∂
∂αA

−1 = −A−1 ∂A∂αA
−1

(iv) ∂
∂α{UBV } = ∂U

∂αBV + UB ∂V
∂α for matrices U,B, V where B is constant w.r.t. α

ML estimates are computed based on the likelihood of y in the hierarchical model (2.4).

Our derivation is very similar to Searle and McCulloch (2001, ch. 6.3, 6.4, 6.8 and 6.12)

but with slightly different notation. Since y ∼ Nrc(1µ, σ
2V ),

f =
1

(2πσ2)rc/2|V |1/2
exp

{
− 1

2σ2
(y − 1µ)>V −1(y − 1µ)

}
(A.8)

and the log-likelihood is

l(µ,θ) = −(rc)/2 · log(2πσ2)− 1

2
log |V | − 1

2σ2
(y − 1µ)>V −1(y − 1µ) (A.9)

Using chain rule,

∂l

∂µ

(i)
= − 1

σ2
(y − 1µ)>V −1

∂{y − 1µ}
∂µ

=
1

σ2
(y − 1µ)>V −11 (A.10)
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Also,

∂l

∂λ2a

(ii)
= −1

2
tr

(
V −1

∂V

∂λ2a

)
− 1

2σ2
(y − 1µ)>

[
∂V −1

∂λ2a

]
(y − 1µ)

= −1

2

{
tr

(
V −1

∂V

∂λ2a

)
+

1

σ2
(y − 1µ)>

[
∂V −1

∂λ2a

]
(y − 1µ)

}
(iii)
= −1

2

{
tr

(
V −1

∂V

∂λ2a

)
− 1

σ2
(y − 1µ)>V −1

[
∂V

∂λ2a

]
V −1(y − 1µ)

}
= −1

2

{
tr
(
V −1ZaZ

>
a

)
− 1

σ2
(y − µ)>V −1ZaZ

>
a V
−1(y − µ)

}
(A.11)

where in the last equality we use the fact that

V = λ2aZaZ
>
a + λ2bZbZ

>
b + σ2M. (A.12)

On equating to zero, we get from (A.10)

µ =
1>V −1y

1>V −11
, (A.13)

the GLS estimate of µ. From (A.11),

tr
(
V −1ZaZ

>
a

)
− 1

σ2
(y − 1µ)>V −1ZaZ

>
a V
−1(y − 1µ) = 0. (A.14)

By symmetry, taking the partial derivative w.r.t. λ2b gives

tr
(
V −1ZbZ

>
b

)
− 1

σ2
(y − 1µ)>V −1ZbZ

>
b V
−1(y − 1µ) = 0. (A.15)

Plugging (A.13) into (A.14) and (A.15) gives the estimating equations for λ2a and λ2b as

tr
(
V −1ZaZ

>
a

)
− 1

σ2
y>(I − P )>V −1ZaZ

>
a V
−1(I − P )y = 0 (A.16)

tr
(
V −1ZbZ

>
b

)
− 1

σ2
y>(I − P )>V −1ZbZ

>
b V
−1(I − P )y = 0 (A.17)
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where

P = 1(1>V −11)−11>V −1 (A.18)

is the GLS projection matrix.

2.1.SURE. Noting that in (2.16), in comparison to (A.9), V −1M2V −1 replaces V −1, hence

the partial derivative w.r.t. µ vanishes for

µ =
1>[V −1M2V −1]y

1>[V −1M2V −1]1
. (A.19)

Furthermore,

∂

∂λ2a
SURE =

(iv)
= −2σ2tr

(
∂V −1

∂λ2a
M2

)
+ (y − 1µ)>

{
∂V −1

∂λ2a
M2V −1 + V −1M2∂V

−1

∂λ2a

}
(y − 1µ)

= −2σ2tr

(
∂V −1

∂λ2a
M2

)
+ 2(y − 1µ)>

[
∂V −1

∂λ2a
M2V −1

]
(y − 1µ)

(iii)
= 2σ2tr

(
V −1

∂V

∂λ2a
V −1M2

)
− 2(y − 1µ)>

[
V −1

∂V

∂λ2a
V −1M2V −1

]
(y − 1µ)

= 2σ2tr(V −1ZaZ
>
a V
−1M2)− 2(y − 1µ)>[V −1ZaZ

>
a V
−1M2V −1](y − 1µ) (A.20)

Hence, on equating (A.11) to zero we obtain

tr(V −1ZaZ
>
a V
−1M2)− 1

σ2
(y − 1µ)>[V −1ZaZ

>
a V
−1M2V −1](y − 1µ) = 0 (A.21)

By symmetry, equating the partial derivative w.r.t. λ2b to zero gives

tr(V −1ZbZ
>
b V
−1M2)− 1

σ2
(y − 1µ)>[V −1ZbZ

>
b V
−1M2V −1](y − 1µ) = 0 (A.22)
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Plugging (A.19) into (A.21) and (A.22) gives the estimating equations for λ2a, λ
2
b as

tr
(
V −1ZaZ

>
a V
−1M2

)
− 1

σ2
y>(I − P̃ )>V −1ZaZ

>
a V
−1M2V −1(I − P̃ )y = 0 (A.23)

tr
(
V −1ZbZ

>
b V
−1M2

)
− 1

σ2
y>(I − P̃ )>V −1ZbZ

>
b V
−1M2V −1(I − P̃ )y = 0 (A.24)

where

P̃ = 1(1>V −1M2V −11)−11>V −1M2V −1. (A.25)

A.2.3. Details for Section 2.3

By definition, V = ZΛΛ>Z> +M . We apply the matrix inverse identity to get

V −1 = M−1 −M−1ZΛ(Λ>Z>M−1ZΛ + Iq)
−1Λ>Z>M−1. (A.26)

Hence, also

MV −1 = Irc − ZΛ(Λ>Z>M−1ZΛ + Iq)
−1Λ>Z>M−1 (A.27)

and

MV −1M = M − ZΛ(Λ>Z>M−1ZΛ + Iq)
−1Λ>Z>. (A.28)

From (A.28),

tr(V −1M2) = tr(MV −1M)

= tr(M)− tr(ZΛ(Λ>Z>M−1ZΛ + Iq)
−1Λ>Z>).

(A.29)
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Therefore, (2.16) can be written as

SURE = −σ2tr(M) + 2σ2tr{(Λ>Z>M−1ZΛ + Iq)
−1(Λ>Z>ZΛ)}+ ‖MV −1(y − 1µ)‖2.(A.30)

In computing (A.30):

1. The middle term is computed as the sum of the elementwise product of

(Λ>Z>M−1ZΛ + Iq)
−1 and Λ>Z>ZΛ, using the property tr(A>B) =

∑
i,j AijBij

2. (Λ>Z>M−1ZΛ + Iq)
−1 is computed efficiently employing a sparse Cholesky

factorization of Λ>Z>M−1ZΛ+Iq similarly to the implementation in the lme4 package

in R.

3. The quantity minµ ‖MV −1(y−1µ)‖2 is computed by regressing MV −1y on MV −11rc

using the lm function in R. In doing that, the vector MV −1x (for x = y and x = 1rc)

is computed as (using (A.27))

MV −1x = x− ZΛ(Λ>Z>M−1ZΛ + Iq)
−1Λ>Z>(M−1x) (A.31)

where (A.31) is implemented proceeding ”from right to left” to always compute a

product of a matrix and a vector, instead of two matrices: First find M−1x, then find

(Λ>Z>)(M−1x), and so on.

79



BIBLIOGRAPHY

K. Alam. A family of admissible minimax estimators of the mean of a multivariate normal
distribution. The Annals of Statistics, pages 517–525, 1973.

K. Alam and J. R. Thompson. Estimation of the mean of a multivariate normal distribution.
Technical Report BU-213-M, Indiana University, 1964.

A. J. Baranchik. Multiple regression and estimation of the mean of a multivariate normal
distribution. PhD thesis, Dept. of Statistics, Stanford University., 1964.

A. J. Baranchik. A family of minimax estimators of the mean of a multivariate normal
distribution. The Annals of Mathematical Statistics, 41(2):642–645, 1970.

D. Bates, M. Maechler, B. Bolker, and S. Walker. lme4: Linear mixed-effects models using
Eigen and S4, 2014. URL http://CRAN.R-project.org/package=lme4. R package
version 1.1-7.

D. M. Bates. lme4: Mixed-effects modeling with r. http://lme4.r-forge.r-project.

org/book, 2010.

J. Berger. A robust generalized bayes estimator and confidence region for a multivariate
normal mean. The Annals of Statistics, pages 716–761, 1980.

J. Berger, M. Bock, L. Brown, G. Casella, and L. Gleser. Minimax estimation of a normal
mean vector for arbitrary quadratic loss and unknown covariance matrix. The Annals of
Statistics, pages 763–771, 1977.

J. O. Berger. Admissible minimax estimation of a multivariate normal mean with arbitrary
quadratic loss. The Annals of Statistics, pages 223–226, 1976.

J. O. Berger. Selecting a minimax estimator of a multivariate normal mean. The Annals of
Statistics, 10(1):81–92, 1982.

J. O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

P. Bhattacharya. Estimating the mean of a multivariate normal population with general
quadratic loss function. The Annals of Mathematical Statistics, pages 1819–1824, 1966.

M. E. Bock. Minimax estimators of the mean of a multivariate normal distribution. The
Annals of Statistics, pages 209–218, 1975.

L. D. Brown. On the admissibility of invariant estimators of one or more location
parameters. The Annals of Mathematical Statistics, pages 1087–1136, 1966.

L. D. Brown. Estimation with incompletely specified loss functions (the case of several
location parameters). Journal of the American Statistical Association, 70(350):417–427,
1975.

80



L. D. Brown. In-season prediction of batting averages: A field test of empirical bayes and
bayes methodologies. The Annals of Applied Statistics, pages 113–152, 2008.

L. D. Brown and E. Greenshtein. Nonparametric empirical bayes and compound decision
approaches to estimation of a high-dimensional vector of normal means. The Annals of
Statistics, pages 1685–1704, 2009.

T. T. Cai. Adaptive wavelet estimation: a block thresholding and oracle inequality
approach. Annals of statistics, pages 898–924, 1999.

D. Edelman. Estimation of the mixing distribution for a normal mean with applications to
the compound decision problem. The Annals of Statistics, 16(4):1609–1622, 1988.

B. Efron and C. Morris. Empirical bayes on vector observations: An extension of stein’s
method. Biometrika, 59(2):335–347, 1972a.

B. Efron and C. Morris. Limiting the risk of bayes and empirical bayes estimatorspart
ii: The empirical bayes case. Journal of the American Statistical Association, 67(337):
130–139, 1972b.

B. Efron and C. Morris. Combining possibly related estimation problems. Journal of the
Royal Statistical Society. Series B (Methodological), pages 379–421, 1973a.

B. Efron and C. Morris. Stein’s estimation rule and its competitorsan empirical bayes
approach. Journal of the American Statistical Association, 68(341):117–130, 1973b.

B. Efron and C. Morris. Families of minimax estimators of the mean of a multivariate
normal distribution. The Annals of Statistics, pages 11–21, 1976.

E. I. George et al. Minimax multiple shrinkage estimation. The Annals of Statistics, 14(1):
188–205, 1986.

D. G. Herr. On the history of anova in unbalanced, factorial designs: The first 30 years.
The American Statistician, 40(4):265–270, 1986.

W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the fourth
Berkeley symposium on mathematical statistics and probability, volume 1, pages 361–379,
1961.

W. Jiang and C.-H. Zhang. General maximum likelihood empirical bayes estimation of
normal means. The Annals of Statistics, 37(4):1647–1684, 2009.

W. Jiang and C.-H. Zhang. Empirical bayes in-season prediction of baseball batting
averages. In Borrowing Strength: Theory Powering Applications–A Festschrift for
Lawrence D. Brown, pages 263–273. Institute of Mathematical Statistics, 2010.

I. M. Johnstone. Gaussian estimation: Sequence and wavelet models. Unpublished
manuscript, 2011.

81



R. Koenker and I. Mizera. Convex optimization, shape constraints, compound decisions,
and empirical bayes rules. Journal of the American Statistical Association, 109(506):
674–685, 2014.

S. Kou and J. J. Yang. Optimal shrinkage estimation in heteroscedastic hierarchical linear
models. arXiv preprint arXiv:1503.06262, 2015.

K.-C. Li and J. T. Hwang. The data-smoothing aspect of stein estimates. The Annals of
Statistics, pages 887–897, 1984.

D. Lindley. Discussion of the paper by stein. J. Roy. Statist. Soc. Ser. B, 24:265–296, 1962.

D. V. Lindley and A. F. Smith. Bayes estimates for the linear model. Journal of the Royal
Statistical Society. Series B (Methodological), pages 1–41, 1972.

C. N. Morris. Parametric empirical bayes inference: theory and applications. Journal of
the American Statistical Association, 78(381):47–55, 1983.

C. N. Morris, M. Lysy, et al. Shrinkage estimation in multilevel normal models. Statistical
Science, 27(1):115–134, 2012.

O. Muralidharan et al. An empirical bayes mixture method for effect size and false discovery
rate estimation. The Annals of Applied Statistics, 4(1):422–438, 2010.

H. Robbins. Asymptotically subminimax solutions of compound statistical decision
problems, 1951. URL http://projecteuclid.org/euclid.bsmsp/1200500224.

J. E. Rolph. Choosing shrinkage estimators for regression problems. Communications in
Statistics-Theory and Methods, 5(9):789–802, 1976.

S. L. Sclove. Improved estimators for coefficients in linear regression. Journal of the
American Statistical Association, 63(322):596–606, 1968.

S. Searle. Estimable functions and testable hypotheses in linear models. Technical Report
BU-213-M, Cornell University, Biometrics Unit, April 1966.

S. Searle. Linear Models for Unbalanced Data. Wiley Series in Probability and Statistics.
Wiley, 2006. ISBN 9780470040041. URL http://books.google.com/books?id=

PmhUAAAACAAJ.

S. R. Searle and C. E. McCulloch. Generalized, linear and mixed models. Wiley, 2001.

S. R. Searle, G. Casella, and C. E. McCulloch. Variance components, volume 391. John
Wiley & Sons, 2009.

C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In Proceedings of the Third Berkeley symposium on mathematical statistics
and probability, volume 1, pages 197–206, 1956.

82



C. Stein. An approach to the recovery of interblock information in balanced incomplete
block designs. Research paper in statistics: Festschrift for J. Neyman, pages 351–366,
1966.

C. M. Stein. Confidence sets for the mean of a multivariate normal distribution. Journal
of the Royal Statistical Society. Series B (Methodological), pages 265–296, 1962.

C. M. Stein. Estimation of the mean of a multivariate normal distribution. Proceedings of
the Prague Symposium Asymptotic Statistics, page 345381, 1973.

W. E. Strawderman. Proper bayes minimax estimators of the multivariate normal mean.
The Annals of Mathematical Statistics, pages 385–388, 1971.

W. E. Strawderman. Minimax adaptive generalized ridge regression estimators. Journal of
the American Statistical Association, 73(363):623–627, 1978.

Z. Tan. Steinized empirical bayes estimation for heteroscedastic data. Preprint, 2014.

Z. Tan. Improved minimax estimation of a multivariate normal mean under
heteroscedasticity. Bernoulli, 21(1):574–603, 02 2015. doi: 10.3150/13-BEJ580. URL
http://dx.doi.org/10.3150/13-BEJ580.

J. R. Thompson. Some shrinkage techniques for estimating the mean. Journal of the
American Statistical Association, 63(321):113–122, 1968.

X. Xie, S. Kou, and L. D. Brown. Sure estimates for a heteroscedastic hierarchical model.
Journal of the American Statistical Association, 107(500):1465–1479, 2012.

X. Xie, S. Kou, and L. D. Brown. Optimal shrinkage estimation of mean parameters in
family of distributions with quadratic variance. Preprint, 2015.

F. Yates. The analysis of multiple classifications with unequal numbers in the different
classes. Journal of the American Statistical Association, 29(185):51–66, 1934.

C.-H. Zhang. Empirical bayes and compound estimation of normal means. Statistica Sinica,
7(1):181–193, 1997.

C.-H. Zhang. Compound decision theory and empirical bayes methods: invited paper. The
Annals of Statistics, 31(2):379–390, 2003.

83


	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	Empirical Bayes Estimation in Cross-Classified Gaussian Models With Unbalanced Design
	Asaf Weinstein
	Recommended Citation

	Empirical Bayes Estimation in Cross-Classified Gaussian Models With Unbalanced Design
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	tmp.1480453208.pdf.00jZE

