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Maintaining Glucose Homeostasis in Response to Aging and Stress: The
Role of Pcif1, Bmi1, and Pdx1

Abstract
A sufficient number of functioning beta cells is necessary for maintaining glucose homeostasis. Reduction of
beta cell mass or function leads to diabetes. Investigation into the maintenance of both beta cell mass and
function is important for the development of therapies to prevent and/or restore functional beta cells. Here,
the networks surrounding three proteins in the beta cell, Pcif1, Bmi1, and Pdx1, were studied as they relate to
beta cell function and number. The Polycomb protein, Bmi1, has been shown to influence beta cell replication
via epigenetic repression of the Ink4a/Arf locus, resulting in suppression of p16 protein translation. The
adapter protein, Pcif1, facilitates the ubiquitination of Bmi1 and influences beta cell replication, as Pcif1
heterogyzous mice have increased rates of beta cell proliferation. I hypothesized that Pcif1 regulates beta cell
proliferation through a Bmi1-dependent mechanism. Analysis of Pcif1 heterozygous islets revealed that p16
protein levels were indistinguishable from controls, thus making a p16-dependent mechanism unlikely.
Further investigation of Bmi1 targets may reveal another pathway by which Pcif1 and Bmi1 influence beta cell
replication. The role of Bmi1 has not been well-described in adult animals. Analysis of Bmi1 heterozygous
animals revealed increased insulin sensitivity, as compared to wildtype. This was found to be due to an
enhancement of Akt phosphorylation, with the upstream insulin signaling pathway unaffected. Bmi1 also
appears to play a role in the development of insulin resistance, as Bmi1 levels are high in insulin-resistant
animals. I also began to explore the possibility that the action of Pcif1 on Bmi1 is responsible for the role Bmi1
plays in insulin signaling. The transcription factor, Pdx1, regulates numerous processes specific to the beta cell,
including multiple pathways regulating translation. Pdx1 levels have been shown to affect the ability of beta
cells to respond to ER stress. A global analysis of translational efficiencies using the TRAP methodology
indicated that Pdx1 activity may result in repression of translation of some transcripts. Further analysis of
these transcripts will help determine how Pdx1 regulates the translatome of the beta cell and, potentially, how
Pdx1 influences the beta cell stress response.
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ABSTRACT 

MAINTAINING GLUCOSE HOMEOSTASIS IN RESPONSE TO AGING AND STRESS: 

THE ROLE OF PCIF1, BMI1, AND PDX1  

Corey Cannon 

Doris Stoffers, M.D., Ph.D. 

A sufficient number of functioning beta cells is necessary for maintaining glucose 

homeostasis. Reduction of beta cell mass or function leads to diabetes. Investigation 

into the maintenance of both beta cell mass and function is important for the 

development of therapies to prevent and/or restore functional beta cells. Here, the 

networks surrounding three proteins in the beta cell, Pcif1, Bmi1, and Pdx1, were 

studied as they relate to beta cell function and number. The Polycomb protein, Bmi1, 

has been shown to influence beta cell replication via epigenetic repression of the 

Ink4a/Arf locus, resulting in suppression of p16 protein translation. The adapter protein, 

Pcif1, facilitates the ubiquitination of Bmi1 and influences beta cell replication, as Pcif1 

heterogyzous mice have increased rates of beta cell proliferation.  I hypothesized that 

Pcif1 regulates beta cell proliferation through a Bmi1-dependent mechanism. Analysis of 

Pcif1 heterozygous islets revealed that p16 protein levels were indistinguishable from 

controls, thus making a p16-dependent mechanism unlikely. Further investigation of 

Bmi1 targets may reveal another pathway by which Pcif1 and Bmi1 influence beta cell 

replication. The role of Bmi1 has not been well-described in adult animals. Analysis of 

Bmi1 heterozygous animals revealed increased insulin sensitivity, as compared to 

wildtype. This was found to be due to an enhancement of Akt phosphorylation, with the 

upstream insulin signaling pathway unaffected. Bmi1 also appears to play a role in the 

development of insulin resistance, as Bmi1 levels are high in insulin-resistant animals. I 

also began to explore the possibility that the action of Pcif1 on Bmi1 is responsible for 
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the role Bmi1 plays in insulin signaling. The transcription factor, Pdx1, regulates 

numerous processes specific to the beta cell, including multiple pathways regulating 

translation. Pdx1 levels have been shown to affect the ability of beta cells to respond to 

ER stress. A global analysis of translational efficiencies using the TRAP methodology 

indicated that Pdx1 activity may result in repression of translation of some transcripts. 

Further analysis of these transcripts will help determine how Pdx1 regulates the 

translatome of the beta cell and, potentially, how Pdx1 influences the beta cell stress 

response.  
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CHAPTER 1: INTRODUCTION 

1.1 Diabetes  

Diabetes is one of the top causes of premature death, affecting nearly 350 million people 

worldwide [1]. Overt diabetes results when the body’s need for insulin, a hormone 

synthesized and secreted solely from the beta cells of the pancreas and necessary for 

maintaining glucose homeostasis, exceeds the amount released. The release of insulin 

is stimulated by elevated blood glucose levels and stimulates glucose uptake by 

peripheral tissues, as well as inhibiting lipolysis in adipose tissue and liver glucose 

production. If there is insufficient insulin released, blood glucose levels remain too high, 

leading to vascular, nerve and renal complications, among others.  

Type 2 diabetes is characterized by a relative insulin deficiency and is associated with 

insulin resistance in the peripheral tissues. Hence, more insulin must be released in 

order to elicit the same effect [2]. Distinct from Type 1 diabetes, this insulin deficiency is 

not due to autoimmune destruction of beta cells but rather the failure of beta cells when 

chronically placed under high demand for insulin.  

In the early stages of insulin resistance, the body is able to compensate by releasing 

more insulin, thereby maintaining normal blood glucose levels. As the condition persists 

without intervention, insulin-producing beta cells begin to fail and ultimately results in 

overt diabetes. The point at which beta cell failure and insulin resistance converge, 

resulting in a diabetic state, varies widely from person to person. In most cases, Type 2 

diabetes develops due to a complex combination of environmental factors and multiple 
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genetic predisposing factors. Single gene mutations are only the cause in rare cases [3], 

[4].  

1.2 Insulin-producing and -responsive tissues 

1.2.1 Glucose sensing and insulin release by pancreatic beta cells 

Pancreatic islets are clusters of hormone-producing cells of five types: glucagon-

producing alpha cells and insulin-producing beta cells, that function antagonistically to 

maintain glucose homeostasis, somatostatin-producing delta cells, pancreatic 

polypeptide-producing PP or gamma cells, and ghrelin-producing epsilon cells [5].  

When blood glucose levels are low, glucagon action raises glucose levels by stimulating 

hepatic glucose production. In contrast, when glucose levels are high, insulin action 

lowers glucose levels by halting hepatic glucose production and stimulating uptake and 

storage in peripheral tissues.  

Sensing of blood glucose levels by the beta cells is a key step in the maintenance of 

glucose homeostasis. Beta cells express a glucose transporter, GLUT2 (additionally 

GLUT1 in humans), which brings glucose into the cell. The rate of glycolysis that follows 

is proportional to the glucose concentration in the blood and results in shifting of the 

[ATP]/[]ADP] ratio. As Illustrated in Figure 1.1, when glucose levels are high, the 

resulting high [ATP]/[]ADP] ratio causes the ATP-dependent K+ channels to close and 

results in a depolarization of the cell membrane and subsequent opening of the voltage-

gated Ca2+ channel. Calcium influx stimulates the exocytosis of insulin granules, 

releasing insulin into the bloodstream (reviewed in [6]). Insulin secretion occurs in a 

biphasic manner. The first phase begins quickly but dissipates after a short time, 

whereas the second phase is more sustained [7].  
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1.2.2 Beta cell proliferation  

Beta cell proliferation rates decrease significantly throughout an animal’s lifespan 

[8],[9],[10]. Finegood et al reported a decrease in daily beta cell proliferation rates from 

20% at birth to 2% by adulthood [11] while Teta et al demonstrated an even more 

reduced beta cell proliferation rate in aged adult mice, finding that less than 1% of adult 

beta cells replicate per day by one year of age [8]. However, modest beta cell injury with 

low doses of the beta cell toxin streptozotocin was sufficient to induce beta cell 

proliferation in these aged mice, indicating that the beta cells were not post-mitotic.  

Cellular proliferation rates depend on a balance of both stimulatory and repressive 

signals, illustrated in Figure 1.2. In murine beta cells, the cyclin-dependent kinase 4 

(Cdk4)- cyclin D2 complex phosphorylates retinoblastoma protein (Rb), inactivating it 

Figure 1.1. Glucose sensing and release in beta cells. (1) GLUT2 transports glucose into the cell, 

which shifts the ATP/ADP ratio. (2) ATP-dependent K+ channels close. (3) Membrane depolarization 
opens Ca2+ channels. (4) Calcium stimulates insulin release. (Adapted from [5]) 
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and allowing progression into S phase [12],[13]. Further upstream of the Cdk4/D-cyclin 

complex are products of the Ink4a/Arf locus (Inhibitor of Kinase 4/Alternative Reading 

Frame), including p16ink4a and p19Arf. INKs inhibit the kinase activity of CDKs, eliciting 

cell cycle arrest. It has become clear that INKs also play a role in cell cycle control in the 

beta cell [14]. Evidence for the role of p16 in cdk4 repression was provided by Rane et 

al, who created a constitutively active cdk4 by deleting the residues necessary for 

interaction with p16 [15]. Expression of p16 increases over the lifespan of a murine 

model of aging and is thought to correlate with cellular senescence [16].  

 

Figure 1.2. Regulation of cellular proliferation  

1.2.3 Insulin signaling 

On a molecular level, circulating insulin binding to the insulin receptor (IR) initiates a 

complex cascade of cellular events, illustrated in Fig. 1.3 [17]. Insulin binding stimulates 

the autophosphorylation of IR and subsequence recruitment of scaffolding proteins, 

including the insulin receptor substrate (IRS) proteins 1-6, which are themselves 
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phosphorylated upon recruitment [18–23]. The most well-characterized targets of the 

phosphorylated IRS proteins are the p85 regulatory subunit of phosphatidylinositol 3-

kinase (PI3K) and the adaptor molecule growth factor receptor-bound protein 2 (Grb2) 

[24,25].  

 

 

 

Interaction of the IRS proteins with p85 recruits the catalytic subunit, p110, which 

catalyzes the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to 

phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 recruits PH domain-containing 

proteins, such as 3-phosphoinositide-dependent protein kinases 1 (Pdk1) and Akt (also 

Figure 1.3. Overview of insulin signaling pathway. Insulin binding to receptor initiates insulin 

signaling cascade. Green circles represent phosphorylation events. Yellow pentagons represent 
ADP/ATP.  (adapted from [5])  

 

TSC1 



6 
 

known as protein kinase B). Colocalization of Pdk1 and Akt facilitates phosphorylation of 

Akt, thereby activating it [26]. In turn, Akt phosphorylates glycogen synthase kinase 3 

(Gsk3), AKT substrate 160 (AS160), forkhead box O1 (Foxo1), and tuberous sclerosis 

complex 1 and 2 (Tsc1 and Tsc2) to mediate increased glycogen synthesis, increased 

glucose uptake, decreased gluconeogenesis, and increased protein synthesis, 

respectively [27,28].  

Co-recruitment of Grb2 and son of sevenless (Sos) to phosphorylated IRS initiates the 

ERK arm of the insulin signaling cascade. This results in activation of Erk1 and Erk2, 

whose targets include ribosomal protein S6, involved in protein translation, as well as 

several transcription factors, leading to the mitogenic effects of insulin. (Insulin signaling 

reviewed in [25,29]) 

Shown in Figure 1.4 is the normal insulin signaling pathway throughout the body. 

Circulating insulin signals peripheral tissues to take up glucose and signals, given the 

abundance of available circulating glucose, to repress production of glucose by the liver 

and lipolysis in fat tissue [30]. Figure 1.3 illustrates multiple factors that can contribute to 

the diabetic phenotype, targeting both the beta cells themselves as well as the 

peripheral tissues. Ultimately it is the combination of insulin resistance and beta cell 

failure that lead to overt diabetes.  
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Figure 1.4. Overview of insulin signaling to peripheral tissues and pathophysiological disruptions of 
normal signaling. (Adapted from [30])  

 

1.2.4 Insulin response in metabolic tissues 

One of the primary actions of insulin is to regulate energy storage and production in a 

tissue specific manner.  In the liver, insulin acts to repress glycogenolysis and 

gluconeogenesis, whereas in adipose tissue it results in halting of lipolysis via activation 

of a cAMP-dependent protein kinase (PKA) [31].  

In addition to halting the production of endogenous energy sources, insulin stimulates 

the uptake and storage of glucose, in a tissue specific manner, through stimulation and 

recruitment of the GLUT4 glucose transporter to the cell surface, thereby enabling 

glucose uptake into the cell. Uptake of glucose by muscle accounts for approximately 

75% of glucose disposal, with the remainder taken up by liver and adipose tissue [6]. In 
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adipose tissue, insulin stimulates activation of enzymes needed for lipid synthesis, and 

signals the storage of incorporated glucose into lipid.   

Insulin receptors are expressed, to varying degrees in all tissues [32]; therefore, in order 

to dissect the distinct roles of insulin signaling has in individual metabolic tissues, tissue-

specific ablation of insulin signaling was induced via Cre/lox-mediated deletion of the 

insulin receptor in liver, muscle, fat, and beta cells [33–36].  

Deletion of IR in the liver (LIRKO mice) highlights the importance of hepatic insulin 

signaling in glucose homeostasis and insulin sensitivity [33]. These mice display severe 

fed hyperglycemia and hyperinsulinemia, as well as an abolishment of insulin-induced 

suppression of hepatic glucose production. Additionally, there is a gene expression 

pattern consistent with fasted state, despite high circulating glucose levels—high 

expression of gluconeogenic enzymes and decreased expression of glycolytic enzymes. 

Circulating levels of free fatty acids and triglycerides are reduced, indicating that the 

response of adipose tissue to insulin is intact. Additionally, these mice have significant 

beta cell hyperplasia due to a compensatory response in order to meet demand for high 

insulin levels. Together, the phenotype of the LIRKO mouse affirms the importance of 

the liver in whole-body insulin sensitivity. However, given the lack of severe fasting 

hyperglycemia, dysregulation of insulin signaling in the liver cannot completely explain 

the development of overt diabetes.  

Mice with a targeted deletion of IR in muscle tissue (MIRKO mice) are phenotypically 

normal, despite almost complete ablation of insulin signaling in muscle on a molecular 

level, as well as a functional deficiency in insulin-stimulated glucose uptake [34]. The 

animals display surprisingly normal responsiveness to glucose and insulin boluses but 

elevated levels of free fatty acids and triglycerides, echoing symptoms of the metabolic 
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syndrome. Although glucose homeostasis is normal in these animals, in the context of 

whole-body reduction of IR expression (IR+/-), deletion of muscle IR results in severe 

hyperglycemia and insulin resistance. This could imply that insulin resistance in muscle 

is not the primary defect in the pathogenesis of diabetes but that it can act to exacerbate 

deficiencies in other tissues.  Additionally, functional inactivation of both IR and insulin-

like growth factor 1 receptor (Igf1r) results in diabetes, suggesting that insulin may be 

functioning through this alternative pathway in MIRKO animals [37].  

Loss of insulin signaling in white and brown adipose tissue via IR deletion (FIRKO mice) 

results in almost complete ablation of insulin-stimulated glucose uptake and lipolysis 

inhibition [35]. Fat mass is reduced and leptin levels lose correlation with adiposity. 

Surprisingly, these mice are protected against age-associated insulin resistance and 

glucose intolerance as well as hyperphagia-associated obesity. These beneficial 

phenotypes highlight the complex role of insulin signaling in different tissues.  

In additional to the role of insulin signaling on peripheral tissues, insulin also affects the 

function of the beta cell itself. Loss of the beta cell IR (BIRKO mice) results in a loss of 

first-phase insulin secretion in response to glucose with no effect on arginine-stimulated 

insulin release [36]. Not surprisingly, these mice have impaired glucose tolerance with 

age. Together, the data from these animals demonstrate the importance of insulin 

signaling for beta cell function that is independent of other metabolic tissues.  

1.2.5 Insulin resistance 

Insulin resistance is one of the hallmarks preceding development of overt diabetes. It is 

generally thought that three main, interrelated physiological disruptions contribute to the 

development of insulin resistance: accumulation of excess lipid, endoplasmic reticulum 

(ER) stress, and inflammation [38].  



10 
 

Excess adiposity has long been associated with insulin resistance and diabetes. In 

addition to accumulation of adipose tissue, lipid can also deposit in other metabolic 

tissues, such as liver and muscle. Further, excess lipid will result in higher than normal 

levels of circulating lipids. Ectopic accumulation of lipids in muscle has been shown to 

impair glucose uptake. Lipid accumulation in the liver, hepatic steatosis, typically results 

specifically in hepatic insulin resistance. Reversal of steatosis improves hepatic insulin 

sensitivity [38].  

As the impairment to insulin responsiveness progresses, glucose levels remain high, 

thereby stimulating the release of more insulin in order to maintain glucose homeostasis. 

Given that far less insulin is required to stimulate lipid storage than glucose uptake, this 

differential response of different arms of the insulin signaling pathway further 

exacerbates the condition. Therefore, stimulation of lipogenesis is typically preserved 

much longer and results in continued expansion of adiposity [39]. 

ER stress is also related to excess adiposity, as an increase in circulating fatty acids can 

cause ER stress in metabolic tissues. However, the mechanism behind this connection 

is at this point unclear. ER stress has also been connected to lipid accumulation and 

energy storage. Activation of the transcription factor X-box binding protein 1 (XBP-1) by 

ER stress results in upregulation of transcription of target genes involved in lipid 

synthesis and gluconeogenesis. Thus, activation of ER stress pathways by stimuli such 

as high glucose results in increased energy storage in tissues. This is especially 

problematic in tissues such as liver which do not normally store lipid. (Reviewed in [40]) 

Inflammation results in impaired insulin signaling on a molecular level. The eIF2α kinase 

protein kinase R (PKR) is activated in response to excess lipid and signals to activate 
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the inflammatory c-Jun N-terminal kinase (JNK) pathway [41]. Additionally, PKR also 

inhibits IRS1 activity, thereby directly interfering with insulin signaling.  

ER stress and inflammation are connected pathways and activation of one can influence 

the other, both of which negatively alter insulin sensitivity. For example, activation of the 

unfolded protein response (UPR) results in production of reactive oxygen species 

(ROS). Although the UPR has mechanisms in place to negate this, such as upregulation 

of nuclear factor-like 2 (Nrf2), the cell is often overwhelmed and ROS accumulate. High 

levels of ROS then elicit inflammatory responses [42]. Additionally, through the IRE1α 

arm, the UPR activates JNK, which is upstream of many inflammatory genes [43]. 

Inositol-requiring 1 alpha (IRE1α), activating transcription factor 6 (ATF6), and PKR-like 

ER kinase (PERK) activation have all been implicated in the activation of the 

inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

pathway [44–46].  

1.2.6 ER stress and diabetes  

ER stress and the UPR 

The ER is the site of protein translation and folding in the cell. Newly-translated proteins 

must fold into their final conformations in order to function properly once exiting the ER. 

Sometimes, proteins are unable to mature properly and unfolded proteins accumulate in 

the ER. When this happens, a process known as the unfolded protein response (UPR) is 

activated. The goal of the UPR is to restore ER homeostasis or, if this is not possible, 

initiate apoptosis of the cell, thereby removing damaged cells from the organism. The 

UPR first attempts to resolve ER stress by upregulating production of chaperone 

proteins to aid in protein folding, expanding the ER membrane, and downregulating 

protein synthesis until homeostasis can be restored. Together these actions make up the 
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adaptive response phase of the UPR. It is only after these attempts fail that apoptosis is 

initiated (reviewed in [47–49]).  

 

 

 

There are three transmembrane proteins that serve as sensors of ER stress in the cell: 

inositol-requiring 1 alpha (IRE1α), activating transcription factor 6 (ATF6), and PKR-like 

ER kinase (PERK). Normally, these sensors are bound by the chaperone 

immunoglobulin heavy chain binding protein (BiP). However, BiP preferentially binds 

misfolded proteins, thereby releasing the ER stress sensors and activating them [47]. 

More recently, it has been shown that misfolded proteins themselves can bind IRE1α, 

acting as activating ligands in the absence of BiP [48,50].  

Figure 1.5. Canonical ER stress and UPR pathways. PERK, IRE1α, and ATF6 shown in inactive (top 

of diagram) and active forms (bottom of diagram). Misfolded proteins (red) are degraded via ERAD and 
activate UPR pathways. From [46]. 
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Once active, each arm of the UPR acts on independent downstream targets, all with the 

common goal of restoring ER homeostasis. Activated IRE1α functions as an 

endoribonuclease, cleaving the X-box binding protein 1 (Xbp1) transcript.  Translation of 

the cleaved Xbp1 results in translation of spliced XBP1 (XBP1s) protein, a transcription 

factor targeting UPR-specific genes. Activation of ATF6 results in its translocation and 

subsequent proteolytic cleavage in the Golgi. Cleaved ATF6 is itself an active 

transcription factor which targets genes such as chaperones and protein disulfide 

isomerase (PDI). Activated PERK acts as a protein kinase, phosphorylating the 

translation initiation factor 2 alpha (eIF2α), Phosphorylation inactivates eIF2α, resulting 

in an immediate halting of cap-dependent translation initiation. Once translation is 

downregulated on a global scale, translational machinery can be redirected to 

upregulate translation of certain transcripts important for restoring ER homeostasis, such 

as Atf4. This translation happens in an eIF2α-independent manner (reviewed in 

[47,48,51,52]).  

Causes of ER stress in the beta cell 

Accumulation of misfolded proteins in the ER can occur due to protein demand that 

overloads the capacity of the ER or due to ER deficiencies that compromise folding 

efficiency. Beta cells are particularly susceptible to ER stress, given the high protein 

synthesis load placed on them. Beta cells can manufacture 1 million insulin molecules 

per minute under high glucose conditions [53]. In the event of inefficient folding or 

processing, these cells are therefore at a high risk for misfolded protein overwhelming 

the capacity of the ER. Due to this constantly high need for insulin production, the UPR 

is often activated in beta cells, at least at a low level, until ER homeostasis is restored. In 

fact, activation of IRE1α is necessary for the stimulation of proinsulin production in 
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response to acute glucose exposure [54]. Thus, physiological levels of stimuli, such as 

glucose, are part of normal beta cell ER function.  

However, pathophysiological conditions, such as insulin resistance, can increase the 

demand for insulin, thereby increasing ER stress in the beta cells [52]. Additionally, 

chronically high glucose leads to chronic ER stress and inhibition of translation, including 

translation of proinsulin [54]. Perhaps more important than chronically high glucose 

levels in causing beta cell ER stress is lipotoxicity, or toxically high levels of circulating 

fatty acids, a condition common in obesity [55,56]. Experimentally, high fatty acid levels 

are sufficient to recapitulate ER stress seen in diabetic patients.  

Pharmacological ER stress agents, such as thapsigargin and tunicamycin, are often 

used to generate high levels of ER stress in experimental settings. Typically, the stress 

generated cannot be resolved by the cells and ultimately leads to apoptosis. This is in 

contrast to more physiologically relevant settings, where the cells often are able to 

resolve stress and restore normal protein production [47].  

Stress-induced remodeling of translatome 

The majority of mammalian translation is dependent on a unique feature of the 5’ end of 

the mRNA, the methylguanate cap. It is this feature that is recognized by translation 

initiation factors and begins the process of mRNA translation. As noted earlier in this 

chapter, one of the strategies utilized by the UPR in order to combat ER stress is to 

globally downregulate protein translation. This repression is typically at the level of 

translation initiation, targeting cap-dependent factors such as 4E-BPs and eIFs 

(Reviewed in [51]). However, in order to properly resolve the stress, translation of certain 

transcripts are upregulated. By activating these factors, the cell can attempt to deal with 

the stress and if the situation cannot be fixed, an apoptosis cascade can be initiated. In 
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these situations, translation is carried out in a cap-independent manner. This is thought 

to occur through an internal ribosome entry site (IRES), which are specialized mRNA 

elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs 

or to capped mRNAs under conditions in which cap-dependent translation is inhibited 

[57]. 

Cellular stress can induce a global remodeling of the translatome of a cell. Ventoso et al 

described the translatome of two cells lines, NIH3T3 and Jurkat, before and after 

induction of ER stress by thapsigargin. They found that approximately half of the 

transcripts analyzed had reduced translational efficiency in response to stress, 

consistent with the model of UPR-mediated downregulation of translation. Interestingly, 

they also characterized two other groups of transcripts: those that were resistant to 

downregulation and maintained the same level of translational efficiency and those 

whose efficiencies were actually increased in response to stress. Not surprisingly, many 

of the transcripts in these two groups encoded proteins known to be associated with 

stress response, such as HSPA5 (BiP) and ATF4 [58].  

Regulation of translation in the beta cell 

One potential regulator of the stress response specifically in beta cells is the pancreatic 

and duodenal homeobox 1 (Pdx1). Pdx1 is a transcription factor that is indispensable in 

pancreas development [59–61]. Additionally, Pdx1 is crucial for maintenance of 

postnatal beta cell identity and function and low Pdx1 expression is associated with the 

diabetic state [62–64].  

Pdx1-deficient mice exhibit evidence of increased ER stress in their beta cells in 

response to a high fat diet. Additionally, reduction of Pdx1 levels makes cells more 

susceptible to pharmacologically-induced ER stress and the resulting apoptosis [65]. 
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Pdx1-deficient mouse insulinoma (Min6) cells had reduced levels of a number of genes 

associated with ER stress response, including Atf4 and BiP. Pdx1 was further found to 

directly occupy the Atf4 promoter. In Pdx1+/- islets, not only is Atf4 transcript reduced, 

mirroring the effect in Min6 cells, but the direct target of Atf4, Eif4ebp1, is also reduced 

[65]. The eIF4EBP1 (or 4E-BP1) protein directly inhibits translation by physically 

sequestering the translation initiation factor, eIF4E. These data suggest that Pdx1 may 

play a role in regulating rates of cap-dependent translation through regulation of Atf4.  

Another target of Pdx1 in the beta cell is microRNA 7 (miR-7). miR-7 was demonstrated 

to target the mTOR complex and inhibition of miR-7 resulted in increased mTOR activity 

and upregulation of the downstream target of mTOR, ribosomal protein S6 kinase 

(p70S6K) [66]. Additionally, miR-7 was shown to target MAPK-interacting Ser/Thr kinase 

1/2 (MNK1/2), which regulates translation via eIF4E phosphorylation. Pdx1, via 

regulation of miR-7, is thereby further implicated in regulation of cellular translation. 

Given the high level of stress placed on beta cells, as well as the propensity for failure if 

not kept in check, the specific response of the beta cell to stress will be important in fully 

understanding the development of diabetes. 

1.2.7 Beta cell compensation and failure in Type 2 Diabetes 

Beta cell mass is determined by the net result of both cell death and the appearance of 

new cells, either via proliferation of existing cells or, more controversially, the conversion 

of non-beta cells into beta cells [67]. As shown by in vitro  and in vivo experiments, 

glucose is a key stimulus for beta cell proliferation and, under conditions where insulin 

demand is high, such as insulin resistance and hyperglycemia, beta cell mass will 

expand to compensate [68–71]. This expansion will increase the amount of insulin the 

pancreas is able to produce, thereby counterbalancing the increased demand. Individual 
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beta cells are also able to adjust to increased insulin demand via hypertrophy resulting in 

an increase in insulin production and secretion per cell [72]. 

The combination of proliferation and hypertrophy to expand beta cell mass is typically 

sufficient to respond to physiological increases in demand for insulin, such as growth, 

pregnancy, and aging. However, beta cells that are unable to expand sufficiently will 

result in uncontrolled glucose homeostasis, beta cell dysfunction, and, eventually, 

diabetes [73]. Many factors contribute to whether an individual’s beta cells will fail to 

compensate. Extreme insulin resistance in peripheral tissues that pushes insulin 

demand far beyond normal will begin to exhaust the capacity of beta cells to 

compensate [67]. Additionally, genetic factors can determine what the “upper limit” of 

any one person’s beta cell mass will be [73]. Once the demand for insulin surpasses that 

limit, beta cells are no longer able to maintain glucose homeostasis.  

1.3 Ubiquitination 

1.3.1 Ubiquitin 

Ubiquitin is a small molecule that can be post-translationally conjugated to target 

proteins in order to modify the action or stability of the protein [74]. The process of 

adding one or more ubiquitin molecules requires the activity of three enzymes. First, a 

ubiquitin-activating enzyme, or E1, adenylates and binds the ubiquitin molecule in an 

ATP-dependent manner, thereby “activating” it. The adenylated ubiquitin molecule is 

recognized by and transferred to a ubiquitin-conjugating enzyme, or E2, of which there 

are approximately 30 in mammals. Finally, the E2-ubiquitin complexes with one of over 

300 ubiquitin ligases, or E3s, which facilitate the transfer of the ubiquitin onto a lysine 

residue of the target protein.  Ubiquitin molecules typically bind covalently to lysine 

residues of target proteins, although non-canonical ubiquitination of cysteine, tyrosine, 
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serine, and threonine sites, as well as the N terminal of target proteins, have been 

described. There is no known consensus sequence for ubiquitination [75].  

Increasing levels of specificity exist as the ubiquitin molecule moves along the process 

described above. E1 enzymes bind promiscuously to E2s. E2 enzymes interact with a 

subset of E3s and, finally, each E3 targets an even smaller number of target proteins. 

This specificity allows for precise targeting of ubiquitin molecules to intended substrate 

proteins. (Ubiquitination reviewed in [74]) 

Ubiquitination of identified targets can occur as a monoubiquitination or as a 

polyubiquitin chain. The ubiquitin molecule contains seven lysine residues. Polyubiquitin 

chains are formed when the C-terminal glycine residue of a new ubiquitin molecule binds 

the amine group of one the lysines on the original ubiquitin. This process may be 

repeated to form long chains of ubiquitin molecules. The presence of seven potential 

lysines with which to form linkages allows for almost infinite possibilities of 

heterogeneous ubiquitin chains. These chains can be linear or branched, with more than 

one ubiquitin linked to the preceding molecule. Additionally, chains of ubiquitin have 

been identified that contain other non-ubiquitin small molecules, such as the small 

ubiquitin-like modifier (SUMO) [76]. Single or multiple monoubiquitinations have also 

been described [77]. Together, these many potential options make ubiquitination one of 

the most diverse post-translational modifications [77]. 

1.3.2 Ubiquitination leading to degradation 

Polyubiquitin chains can target proteins for degradation by the 26S proteasome [78,79]. 

The proteasome is a cylindrical protein complex with a protease-lined central pore 

through which target proteins pass and are degraded. Proteasomal degradation allows 

for the removal of damaged or unneeded proteins, recycling the amino acids for 
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incorporation into new proteins. Targeting to the proteasome is the most well-

characterized result of ubiquitination and as such, this targeting by polyubiquitin chains 

homogeneously linked through lysine 48, has historically been thought to be the primary 

role of ubiquitin.  

Polyubiquitin chains formed through linkages at lysine 48 were originally described as 

identifying target proteins for proteasomal degradation [80,81]. More recently however, 

other homogenenous chains have been shown to be capable of targeting to the 

proteasome [82].  

1.3.3 Ubiquitin as a non-degradative posttranslational modification 

Compared to the classically-described degradative role of polyubiquitination, less is 

known about the roles of other poly- and monoubiquitin modifications. In some cases, 

specific E2/E3 combinations result in atypical mono- or polyubiquitinations [82].  

Polyubiquitin chains formed through linkages other than lysine 48 have been shown to 

modify the action of proteins involved in a broad range of cellular functions. The results 

of these modifications include invocation of the DNA damage response, regulation of cell 

cycle proteins, trafficking to the membrane, promotion of nuclear translocation, initiation 

of mitophagy, and activation of cytokine signaling [77,83].  

Ubiquitin has also been shown to modify histones, thereby influencing transcription rates 

of genes at those sites. Ubiquitination of histone H2A has been well described, as well 

as, more recently, H2B and H3. Generally, ubiquitination of H2A at lysine 119 is thought 

to be associated with silencing of gene expression, although the exact mechanism is 

unclear [84].   
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1.4 Pcif1 

1.4.1 Properties of Pcif1 

Pdx1 C-terminal interacting factor (Pcif1), also known as speckle-type POZ protein 

(SPOP), is a substrate-specific adapter that facilitates ubiquitination of target proteins by 

the Cullin3-based E3 ligases and was initially identified in the serum of a scleroderma 

patient [85]. The Pcif1 protein contains a meprin and TRAF homology (MATH)/TNF 

receptor-associated factors (TRAF) domain and a bric-a-brac, tramtrack, and broad 

complex (BTB)/Pox virus and Zinc finger (POZ) domain and is highly evolutionarily 

conserved [86]. TRAF-domain containing proteins are generally found to be involved in 

protein processing and ubiquitination. As in Pcif1, TRAF domains are often found in 

proteins that also contain BTB domains. TRAF/BTB proteins have been shown to 

facilitate interaction between E3 ligases and target proteins [87].  

Non-mammalian orthologs of SPOP have been shown to exhibit the predicted activity 

described above. The C. elegans ortholog, maternal effect lethal (MEL) -26, facilitates 

interaction of meiosis inhibitor 1 (MEI-1) with the scaffolding protein Cullin3, resulting in 

ubiquitination [88,89]. The Drosophila ortholog, Roadkill, modulates Hedgehog signaling 

by targeting the Gli-family transcription factor Cubitus interruptus (Ci) for degradation 

[90]. Additionally, Roadkill promotes TNF-mediated apoptosis via ubiquitination of the 

JNK phosphatase Puckered (Puc) [91]. The roles for SPOP targeting of Hedgehog and 

TNF signaling are also conserved in humans [91,92].  

1.4.2 Pcif1 in the beta cell 

Pcif1 is broadly expressed in many human tissues, including the beta cells [85,86]. Pcif1 

was also found to interact with the C terminus of Pdx1, a transcription factor necessary 
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for maintaining function and identity of the beta cell, thus implicating it in beta cell biology 

[86]. Further characterization of the role of Pcif1 in the beta cell revealed a direct impact 

on Pdx1 protein levels via ubiquitination and subsequent proteasomal degradation, as 

described with other targets [93]. Pcif1 also has a role in the maintenance of beta cell 

mass via modulation of the rates of both replication and apoptosis, although the 

mechanism for these processes is not clearly defined at this time.  

Pcif1 heterozygosity results in an accumulation of Pdx1 protein [93] and can normalize 

Pdx1 protein levels in Pdx1+/- animals, thereby rescuing many phenotypes associated 

with decreased Pdx1 protein, including beta cell mass, beta cell survival, and glucose 

homeostasis.  

The role for Pcif1 in cell cycling is complex, as it appears to involve a fine balance 

between rates of replication and apoptosis that occurs in an age-dependent manner [93]. 

Pcif1 has been shown to interact with both the death domain-associated protein, Daxx, 

which has been implicated in both apoptosis and cell cycle regulation [94,95], as well as 

the polycomb protein Bmi1, which is well known for its role in regulation of p16-

dependent cell replication [96] offering a potential mechanistic explanation for the 

alteration of replication and apoptosis rates in Pcif1 heterozygous animals.  

1.5 Polycomb group proteins 

1.5.1 Discovery and classic roles of PcG proteins 

Polycomb group (PcG) proteins assemble into multi-subunit complexes and repress 

target genes. Polycomb Repressive Complex 2 (PRC2) initiates repression and PRC1 

maintains repression via histone methyltransferase and ubiquitin E3 ligase activities, 

respectively [97], [98]. Beyond their histone modifications, the complexes repress 
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transcription via chromatin compaction, thereby limiting access for transcriptional 

machinery.   

The Polycomb complexes were first characterized in Drosophila but found to be much 

more complex in mammalian cells, with many subunits having multiple homologues. 

PRC2 consists of three core elements: the catalytic component enhancer of zeste 

(EZH), embryonic ectoderm development (EED), and suppressor of zeste (SUZ). PRC2 

deposits methylation marks on lysine 27 of histone 3 (H3K27me3), thus initiating 

repression of the genes in the targeted region [99]. PRC1 consists of 4 components: 

chromobox-domain protein (CBX), which recognizes the H3K27me3 mark deposited by 

PRC2, an E3 ligase ring finger protein (RING), a polycomb group RING finger protein 

(PGCF), and a polyhomeotic-like protein (HPH) [100]. The RING protein catalyzes the 

deposition of ubiquitin on lysine 119 of histone H2A (H2Ak119ub1) [98,101].  

 

Figure 1.6. Canonical PRC components. (From [102]) 

PCGF4, also known as Bmi1, is a member of PRC1, which represses the Ink4a/Arf 

locus, and overexpression of Bmi1 allows for rapid proliferation, eventually leading to 
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immortalization of mouse embryonic fibroblasts in culture [103]. Bmi1 was initially 

identified as an oncogene that cooperates with c-myc in B cell lymphomagenesis and 

was named as such: B cell-specific Moloney Murine Leukemia Virus integration site 1 

[104], 17]. Bmi1 was later found to be involved in cell cycle progression and to be 

necessary for hematopoetic and neural stem cell renewal, as Bmi1-deficient mice have 

severe hematopoetic and neurological abnormalities [18, [107] p16 expression is 

elevated in the islets of Bmi1-/- mice and this correlates with a beta cell- specific 

reduction in proliferation, suggesting a critical role for Bmi1 in beta cell proliferative 

potential [96]. 

1.5.2 Non-canonical roles of Bmi1 

As described above, numerous reports have been published regarding the necessity of 

Bmi1 expression in maintaining sufficient cell proliferation in many tissues. More 

recently, it has also been shown that phenotypes exist outside of the Bmi1-Ink4a/Arf axis 

described in section 1.2.5 of this thesis. For example, Molofsky et al showed that 

deletion of Bmi1 resulted in almost a complete loss of neural stem cell renewal 

capability, in both the central and peripheral nervous systems, as well as an almost 50% 

reduction in adult body weight. Co-deletion of Ink4a/Arf completely rescued the stem cell 

deficiencies, indicating that this phenotype was caused by dysregulation of the 

classically described pathway. However, body weight was not even partially rescued by 

concomitant deletion of Ink4a/Arf [108].  

Another well-characterized phenotype of Bmi1 null mouse is its severe hematopoietic 

deficiency. Mice lacking Bmi1 have almost a complete ablation of splenocytes and 

thymocytes. Co-deletion of Ink4a/Arf results in a rescue of only about one-third of normal 

cell numbers for both cell populations [109]. This partial rescue implies that although the 
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role for Bmi1 in regulating expression at the Ink4a/Arf locus is important for 

hematopoetic cell numbers, it is not the entire story.  

Bmi1 appears to play different roles depending on the tissue and cell type that is studied. 

For example, deletion of Bmi1 inhibits the ability of hepatic progenitor cells to replicate 

upon stimulation [110]. However, normal hepatocyte replication rates are unaffected, as 

measured by both BrDU incorporation as well as Ki67 expression. Thus, even within the 

same tissue type, Bmi1 differentially impacts distinct cell types.  

1.5.4 Regulation of Bmi1 expression 

The capacity for renewal of endogenous beta cells decreases over time. Older mice 

have a limited beta cell expansion capacity compared to young mice in response to 

stimuli such as high fat diet and streptozotocin treatment [111]. In this study, Bmi1 levels 

increased in young mice in response to high fat diet, whereas older mice had very low 

Bmi1 levels. Low Bmi1 and correspondingly elevated p16 levels appeared to correlate 

with a blunted compensatory beta cell mass expansion in these mice. Pancreatic Bmi1 

expression is restricted primarily to the beta cells and declines rapidly with age, 

concurrent with an increase in Ink4a/Arf transcript [96]. This age-dependent decline may 

be beta cell-specific, as previous studies reported no consistent correlation between 

Bmi1 levels and age when comparing many tissue types from young and old mice [16].  

Although it is known that Bmi1 levels decline early in life [111], it is currently unclear 

what happens to Bmi1 levels with age. Due to the severely detrimental phenotypes and 

resulting shortened lifespan associated with Bmi1 deletion [104,107], the function of 

Bmi1 has not been well studied past early adulthood.  
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A yeast two-hybrid screen identified Pcif1 as an interacting protein for Bmi1. Further, 

immunoprecipitation determined that Pcif1, Cullin3 and Bmi1 formed a complex in 

293HEK cells, resulting in ubiquitination of Bmi1 [112]. Hernandez-Munoz et al also 

reported that ubiquitination did not affect Bmi1 protein stability, but did impact the ability 

of Bmi1 (as part of the PRC1 complex) to repress target genes [112]. This indicates that 

ubiquitination most likely alters Bmi1 function in some way.  

In 2010, Maertens et al. identified a deubiquitinating enzyme, USP7, that interacts with 

Bmi1, resulting in removal of ubiquitins from it. Suppression of USP7 via shRNA resulted 

in an increase in Ink4a/Arf transcript and a decrease in Bmi1 protein. This would imply 

that ubiquitinated Bmi1 protein is less stable and therefore the increase in target 

transcript is due to decreased Bmi1 levels, not function [113]. This study did not, 

however, specifically address ubiquitination of Bmi1 by Pcif1. Therefore, the exact role of 

Pcif1 on Bmi1 stability and/or function remains unclear.  

Another modification shown to influence Bmi1 protein is phosphorylation. Nacerddine et 

al. demonstrated that active Akt can phosphorylate Bmi1 in a number of tumor cell lines 

and in vitro. This phosphorylation enhanced the ability of Bmi1 to facilitate H2A 

ubiquitination and was found to be necessary for Bmi1’s oncogenic activity [114].  

Voncken et al. described a correlation between Bmi1 phosphorylation state and its 

association with chromatin. Phosphorylation and chromatin association were further 

found to be regulated by cell cycle stage [115]. In a subsequent publication, Voncken et 

al. demonstrated that Bmi1 is phosphorylated by MAPK-activated protein kinase 3 (3pK) 

[116]. This phosphorylation caused a dissociation of Bmi1 and other PcG proteins from 

chromatin, thereby nullifying their ability to repress target genes. Thus, Bmi1 (and PRC2) 
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activity has been shown to be dynamically regulated by a number of inputs, including 

activation of both Akt and MAPK pathways.  
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Chapter 2: Regulation of beta cell proliferation by Pcif1 

2.1 Abstract 

The ability for beta cells to replicate is crucial for maintaining glucose homeostasis as 

demands for insulin change with age, obesity, and/or pregnancy. Previously published 

data indicate that Pcif1 heterozygosity results in an increase in beta cell replication, 

whereas Bmi1 null mice have a severely blunted proliferative capacity. Pcif1 facilitates 

the ubiquitination of Bmi1, which may lead to its degradation or altered activity. In order 

to determine whether the ubiquitination of Bmi1 by Pcif1 was responsible for the 

increase in beta cell replication seen in mice heterozygous for Pcif1, glucose 

homeostasis and Bmi1 activity were assessed in mice heterozygous for Pcif1 and/or 

Bmi1. A lack of difference in p16 levels in Pcif1 heterozygous islets indicates that 

regulation of cell replication via p16 was unlikely. Additionally, Bmi1 heterozygous 

animals were more insulin sensitive than controls, making further analysis of beta cell 

replication in these animals difficult.  

2.2 Introduction 

Ubiquitination is an important post-translational modification, influencing both protein 

activity as well as stability. The scaffolding protein Cullin3 (Cul3) has been shown to bind 

BTB-containing proteins to facilitate the ubiquitination of targets. This complex was first 

described for the degradation of MEI-1 by Cul3 and MEL-26 in C. elegans [117]. This 

complex has also been shown to form using the mammalian and Drosophila orthologs of  

MEL-26, Pcif1/SPOP and Roadkill, respectively. Pcif and its orthologs have been shown 

to target a number of critical cellular pathways, including TNF signaling, Hedgehog 

signaling, Pdx1, and Bmi1 [88,90,94,112,118,119]. 
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A gene trap was inserted into the first intron of the Pcif1 locus in order to generate mice 

deficient in Pcif1 [119]. Homozygous deletion of Pcif1 is lethal, so the glucose 

homeostasis of Pcif1gt/+ mice was studied. In Pcif1 heterozygous mice, glucose and 

insulin tolerance are normal. However, closer examination of the pancreas reveals an 

increase in rates of both replication and apoptosis in beta cells. This results in a no net 

difference in beta cell mass. However, it does highlight a role for Pcif1 in regulating 

replication and survival of beta cells. Further, while beta cell survival is impaired in 

Pdx1+/- mice, it is rescued in Pcif1gt/+;Pdx1+/- mice. This is directly due to the fact that 

Pdx1 is a target of Pcif1. Altering Pcif1 levels were therefore able to shift the balance 

between replication and apoptosis to rescue beta cell mass and normalize glucose 

homeostasis [119]. Currently, the mechanism linking Pcif1 to cell cycling is unknown.  

Pcif1 facilitates interaction between a Cul3-based E3 ligase complex and target proteins 

to promote ubiquitination. This has been studied for the beta cell transcription factor, 

Pdx1, where the overexpression of Pcif1 and Cul3 results in the polyubiquitination and 

degradation of Pdx1. This is not seen when Cul3 is mutated and unable to interact with 

Pcif1 [119]. Pcif1 has also been shown to interact with and facilitate ubiquitination of the 

Polycomb protein Bmi1, a well-characterized epigenetic regulator of p16-dependent cell 

replication [112].  

Bmi1, as a member of PRC1, functions to regulate cellular proliferation rates at least in 

part through repression of the Ink4a/Arf locus. Bmi1 null mice have a number of 

abnormalities, including severe ataxia, hematopoetic deficiencies, and skeletal 

abnormalities [107]. Of particular relevance for this thesis are the phenotypes associated 

with the beta cell. Beta cell proliferation rates are significantly reduced in Bmi1 null 

animals as early as 2 weeks of age, leading to an overall deficiency in beta cell mass 

[96]. This results in glucose intolerance and blunted glucose-stimulated insulin secretion 
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(GSIS). Combined, these phenotypes result in a severely shortened lifespan, with almost 

no animals surviving past 12 weeks of age.  

Pcif1 has been shown to ubiquitinate Bmi1 in HEK 293T cells [112]. However, siRNA-

mediated suppression of Pcif1 did not affect Bmi1 protein levels, leading Hernandez-

Munoz et al. to conclude that Pcif1-mediated ubiquitination was functioning to alter Bmi1 

activity, rather than stability. However, without thorough half-life experiments, this 

conclusion may be premature.  

The following studies sought to explain the observation that Pcif1gt/+ mice have increased 

rates of beta cell proliferation. We hypothesized that Pcif1 regulates beta cell 

proliferation through a Bmi1-dependent mechanism, as depicted in Figure 2.1. 

Pcif1gt/+;Bmi1+/- mice were generated in order to test this hypothesis. We predicted that 

beta cell replication in these animals would be blunted compared to Pcif1gt/+ mice.  
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2.3 Materials and Methods  

2.3.1 Animals and Physiological Experiments  

All animal experiments were performed according to procedures approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. Animals 

were placed on high fat diet (60% fat), low fat diet (10% fat) (Research Diets Inc., New 

Brunswick, NJ) or standard chow at weaning. Pcif1gt/+ and Bmi1+/- mice were previously 

described [93], [107]. Mice were maintained on a C57BL/6N background. All 

experiments were performed on males 15-18 weeks of age, except where otherwise 

noted. For glucose tolerance tests, animals were fasted overnight, given 1 g/kg glucose 

via IP injection and blood glucose was measured by handheld glucometer at 0, 15, 30, 

60, and 120 minutes after injection. For insulin tolerance tests, animals were fasted 6 

hours prior to IP injection of 1.0 or 1.5 U/kg insulin (NovolinR, Novo Nordisk, Princeton, 

NJ) and blood glucose was measured by handheld glucometer at 0, 15, 30, 60, and 120 

minutes after injection. 

2.3.2 Islet isolation 

Islets were isolated from 16 week old males by inflation of the pancreas followed by 

collagenase digestion, a Ficoll gradient and at least 3 rounds of hand picking. Islets were 

purity matched for amylase and insulin transcript. Method adapted from [120].   

2.3.3 Western blot 

Proteins were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) and immunoblotted with the following antisera: rabbit anti-p16 (1:1000, 
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Santa Cruz), mouse anti-Bmi1 clone F6 (1:1000, Upstate), mouse anti-ran (1:10,000, BD 

Biosciences) 

2.3.4 Measuring beta cell replication  

Pancreata were dissected, weighed and fixed overnight in 4% paraformaldehyde. Fixed 

tissue was embedded into paraffin and sectioned for maximal footprint. Paraffin sections 

were stained for BrdU (US Biologicals) and insulin (Linco). For BrdU measurements, 

1mg/ml BrdU was administered in the drinking water for one week prior to sacrifice. 

Individual islet images were captured by with iVision software (BioVision Technologies) 

and the number of BrDU+/Insulin+ cells was quantified using ImagePro software (Media 

Cybernetics).  

2.3.5 Statistical Analysis 

All data are represented as mean +/- SEM.  Statistical significance was assessed by 

two-tailed Student’s t test or two-way ANOVA (Prism GraphPad).  

2.4 Results  

2.4.1 Beta cells of Pcif1gt/+ mice replicate at a higher rate than controls at 16 weeks 

of age  

The Pcif1gt/+ mice have been previously shown to have increased beta cell replication as 

well as increased apoptosis at 16 weeks of age. When BrDU/insulin double-positive cells 

were counted in animals at 5, 16, and 24 of age, this phenotype was shown to be age-

dependent (Fig 2.2). In 5 week old mice, beta cell replication is the highest, as expected 

for young animals [8]. However, there is no difference in replication rate, as measured by 

BrDU incorporation, between Pcif1+/+ and Pcif1gt/+ beta cells at this age. As previously 

published, beta cell BrDU incorporation rates are higher in Pcif1gt/+ animals. When 

replication rates were assessed in 24 week old beta cells, rates were very low in both 
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genotypes, as expected [8]. As in young animals, there is no difference between 

genotypes, indicating that the role of Pcif1 in regulating proliferation is limited to a 

specific window in early adulthood.  

 

It has been previously published that Pcif1gt/+ mice have normal glucose and insulin 

tolerance and normal beta cell mass compared to Pcif1+/+ mice at 16 weeks [93]. Given 

the apparent temporal dependence of the Pcif1 phenotype, mice were assessed at ages 

similar to those in Figure 2.2. Additionally, these mice were placed on a high fat diet in 

order to elicit any additional phenotypes that may have been below the limits of detection 

on a normal diet. At 4, 8, 12, and 20 weeks of age glucose tolerance was 

indistinguishable between Pcif1+/+ and Pcif1gt/+ mice (Fig. 2.3). At 21 weeks, insulin 

tolerance was also unchanged in Pcif1gt/+ mice (Fig. 2.4).  
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2.4.2 Bmi1+/- and Bmi1+/-; Pcif1gt/+ mice have normal glucose tolerance 

Bmi1 null mice are glucose intolerant at a young age [96]. However, the metabolic 

phenotype of Bmi1+/- mice has not been described. Bmi1+/- mice display normal glucose 

tolerance at 9, 18, and 26 weeks of age, whether on a low or high fat diet (Fig. 2.5), 

although there was a surprising trend toward improved glucose tolerance at 18 weeks.  

Although neither Pcif1gt/+ nor Bmi1+/- mice exhibit an apparent deficiency in glucose 

homeostasis, we hypothesized that the additional perturbation of Pcif1 heterozygosity in 

the context of Bmi1 heterozygosity (Pcif1gt/+;Bmi1+/-) may lead to an alteration of glucose 

tolerance. Hence, having established the baseline phenotype of the Pcif1gt/+ and Bmi1+/- 

mice, Bmi1 heterozygosity was combined with Pcif1gt/+ animals in order to test this 

hypothesis. When assessed at 12 weeks of age, no difference in glucose tolerance was 

seen in Pcif1gt/+;Bmi1+/- animals (Fig. 2.6). 
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2.4.3 p16 levels unchanged in Pcif1gt/+  mice 

As described previously [96], Bmi1, as part of PRC1, mediates progression of the cell 

cycle by inhibiting transcription of p16. If the increase in beta cell replication shown in 

Figure 2.2 was due to enhanced Bmi1 activity, we would anticipate a corresponding 

decrease in p16 protein levels. Islets were harvested from 16 week-old male Pcif1+/+ and 

Pcif1gt/+ mice. Western blot analysis of the protein lysates revealed no difference in p16 

protein levels in Pcif1gt/+ islets, compared to controls (Fig. 2.7). While this would suggest 

that Bmi1 is not mediating this phenotype through regulation of its traditional cell cycle 

target, it does not exclude the possibility of other Bmi1 targets contributing to control of 

replication and/or apoptosis rates in the beta cell. It is interesting to note that there may 

be an increase in Bmi1 protein in Pcif1gt/+ islets, suggesting that Pcif1 may in fact 

regulate Bmi1 levels in islets. However, further experiments would need to be performed 

in order to confirm this observation.  
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2.4.4 Bmi1+/- mice have improved insulin sensitivity 

Although no difference in whole body glucose tolerance was detected, there remained a 

possibility that cell cycling would be perturbed, albeit at too low of a level to impair 

glucose tolerance test at this age. Before moving forward with histological analysis, we 

further characterized the physiology of these animals in order to rule out confounding 

factors. In order to thoroughly phenotype the Bmi1+/- mice, insulin tolerance tests were 

performed in order to assess whole-body insulin sensitivity. 17-week old Bmi1+/- mice are 

more sensitive to an exogenous insulin bolus than Bmi1+/+ controls (Fig. 2.8). This 

surprising phenotype complicated any further analysis of beta cell number and 

replication, as discussed in detail below.  
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2.5 Discussion  

Pcif1gt/+ mice have a perturbation in beta cell cycling, with rates of both proliferation and 

apoptosis higher than in controls [119]. The experiments described in this chapter were 

performed in an attempt to mechanistically explain this phenomenon. I hypothesized that 

an alteration in Bmi1 levels or activity may influence cell cycling via the well-described 

p16 signaling pathway. However, it is unlikely that Bmi1 explains the increase in 

replication, as p16 protein levels were equivalent in Pcif1+/+ and Pcif1gt/+ islets. However, 

it is possible that the increase in apoptosis seen in Pcif1gt/+ islets may be the more 

dominant phenotype or that replication is mediated through another factor.  
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It was also interesting to see that the western blot data suggested a trend towards 

increased Bmi1 protein levels in Pcif1gt/+ islets. Due to the inherent variability of primary 

tissue, it would be prudent to explore this observation in a larger number of animals 

before drawing definitive conclusions. However, if this observation were to hold true, it 

would imply that Bmi1 is, in fact, regulated by Pcif1 in islets. It would also suggest a role 

for Bmi1 outside of the regulation of the Ink4a/Arf locus. This might speak to a type of 

“prioritizing” of Bmi1 targets that is sensitive to different degrees of Bmi1 protein, rather 

than just a simple presence or absence that has been studied in the Bmi1 null model.  

It was interesting to note the age dependence of the Pcif1 replication phenotype. There 

appears to be a narrow window in adulthood wherein Pcif1 levels influence beta cell 

replication. Further assessment of Pcif1 expression with age would aid in determining 

whether the age dependence of this phenotype is due to changes in Pcif1 expression or 

activity.  

Interestingly, these studies revealed an unexpected increase in insulin sensitivity 

associated with Bmi1 heterozygosity. This observation complicated the overall analysis 

of beta cell replication. In response to changes in insulin demand, beta cells compensate 

by adjusting both cell number and function. It is therefore reasonable to expect that 

Bmi1+/- animals would have lower beta cell replication and mass, simply due to the fact 

that they are more insulin sensitive than the Bmi1+/+ mice. This would make it extremely 

difficult to extricate an intrinsic beta cell replication phenotype from one influenced by 

changes in peripheral insulin sensitivity in our current mouse model.  

Both genetic models used in these studies are whole-body heterozygous models. A 

tissue-specific Bmi1 deletion could aid in circumventing the complications of beta cell 

compensation caused by differential whole-body insulin sensitivity. Additionally, deletion 
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of Pcif1 and/or Bmi1 in only the beta cells may allow for complete deletion, rather than 

heterozygosity, without the fatal phenotypes associated with whole body deletion.  

Although these experiments did not result in an explanation for the role of Pcif1 in beta 

cell replication, they did reveal a surprising protection from high fat diet-induced insulin 

resistance associated with Bmi1 heterozygosity. This phenotype will be further described 

through the studies described in Chapter 3 of this thesis.  
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CHAPTER 3: THE POLYCOMB PROTEIN, BMI1, REGULATES INSULIN 

SENSITIVITY 

3.1 Abstract 

The Polycomb Repressive Complexes (PRC) 1 and 2 function to epigenetically repress 

target genes. The PRC1 component, Bmi1, plays a crucial role in maintenance of 

glucose homeostasis and beta cell mass through repression of the Ink4a/Arf locus. Due 

to poor postnatal survival of Bmi1-/- mice, no previous studies have explored the role of 

Bmi1 in regulating glucose homeostasis in the adult animal. Here we report that 

heterozygous loss of Bmi1 results in increased insulin sensitivity in adult male C57BL/6N 

mice, with no impact on body weight or composition. Hyperinsulinemic-euglycemic 

clamp reveals increased suppression of hepatic glucose production and increased 

glucose disposal rate, indicating elevated glucose uptake to peripheral tissues, in Bmi1+/- 

mice. Enhancement of insulin signaling, as measured by Akt phosphorylation, in liver 

and, to a lesser extent, in muscle appear to contribute to this phenotype. Together, these 

data define a new role for Bmi1 in regulating insulin sensitivity.  

3.2 Introduction 

Type 2 diabetes is characterized by a relative insulin deficiency and is associated with 

insulin resistance in the peripheral tissues. At first, pancreatic beta cells are able to 

compensate by releasing more insulin. As insulin resistance progresses, the beta cells 

fail, resulting in overt diabetes. Insulin signals to peripheral tissues to take up glucose 

and to halt hepatic glucose production and lipolysis. An insulin resistance state impairs 

these responses, causing hyperglycemia, leading to vascular, nerve and renal 

complications, among others. At this time, many aspects of the molecular progression of 

insulin resistance remain unclear.  
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Polycomb group (PcG) proteins assemble into multi-subunit complexes and repress 

target genes. PRC2 (Polycomb Repressive Complex 2) initiates repression and PRC1 

maintains repression via histone methyltransferase and ubiquitin E3 ligase activities, 

respectively [97],[98].  Bmi1 is a member of PRC1 and is necessary for full activity of the 

complex. The classically studied targets of the Polycomb complexes are the Ink4a/Arf 

locus and the Hox gene clusters, which PRC1 and PRC2 function to repress. Regulation 

of the Ink4a/Arf locus has been studied particularly extensively due to the impact of this 

locus on cancer progression and stem cell self-renewal. Overexpression of Bmi1 allows 

rapid proliferation, eventually leading to immortalization of mouse embryonic fibroblasts 

in culture [103]. Bmi1 was initially identified as an oncogene that cooperates with c-myc 

in B cell lymphomagenesis and was named as such: B cell-specific Moloney Murine 

Leukemia Virus integration site 1 [10,7]. Bmi1 was later found to be involved in cell cycle 

progression and to be necessary for hematopoetic and neural stem cell renewal, as 

Bmi1-deficient mice have severe hematopoetic and neurological abnormalities [9,11].   

The most well-characterized target of Bmi1 is the Ink4a/Arf locus, which encodes two 

key regulators of cell cycling, p16 (Ink4a) and p19 (Arf). While some Bmi1 null 

phenotypes can be fully explained by regulation of this locus, others cannot. For 

instance, the loss of self-renewal capability in Bmi1-/- neural stem cells is completely 

rescued by concomitant deletion of Ink4a/Arf  [108]. Additionally, the drastic reduction in 

proliferation after Bmi1 knockdown is completely rescued by knockdown of Ink4a in 

cultured mouse islets [96]. In contrast, Bmi1 null mice have a 50% reduction in body 

weight that is not significantly rescued by the genetic loss of either Arf alone or both 

Ink4a and Arf [108]. Similarly, the severe hematopoietic deficiency of Bmi1 null mice is 

only partially rescued by co-deletion of Ink4a/Arf  [109]. These observations have 

contributed to the recognition that Bmi1 (and PRC1) regulates targets beyond Ink4a/Arf, 
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the identity of which are only beginning to be understood.  Complicating the identification 

of Bmi1 targets is the lack of a clear consensus binding sequence that defines the 

location to which PRC complexes are recruited [121,122]. 

The severe phenotypes limiting postnatal survival of Bmi1 null mice have precluded 

exploration of the role of Bmi1 in regulating glucose homeostasis in the adult animal.  

Here, we study the metabolic role of Bmi1 in adult Bmi1+/- mice and, surprisingly, find 

enhanced insulin sensitivity in vivo and enhanced insulin signaling in liver and muscle, 

thereby defining a novel metabolic role of Bmi1. 

3.3 Materials and Methods  

3.3.1 Animals and Physiological Experiments 

All animal experiments were performed according to procedures approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. Animals 

were placed on high fat diet (60% fat), low fat diet (10% fat) (Research Diets Inc., New 

Brunswick, NJ) or standard chow at weaning. Bmi1+/- mice were previously described 

[107]. Mice were maintained on a C57BL/6N background. All experiments were 

performed on males 15-18 weeks of age, except where otherwise noted. For glucose 

tolerance tests, 18 week old males were fasted overnight, given 1 g/kg glucose via IP 

injection and blood glucose was measured by handheld glucometer at 0, 15, 30, 60, and 

120 minutes after injection. For insulin tolerance tests, animals were fasted 6 hours prior 

to IP injection of 1.0 or 1.5 U/kg insulin (NovolinR, Novo Nordisk, Princeton, NJ) and 

blood glucose was measured by handheld glucometer at 0, 15, 30, 60, and 120 minutes 

after injection. For insulin secretion assays, blood was collected at time 0 and 3 minutes 

after glucose bolus. Insulin concentration was measured by ELISA (Crystal Chem Inc., 

Downers Grove, IL).  
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3.3.2 Body Composition Measurements 

Body composition was assessed using a 3-in-1 NMR machine by EchoMRI (Houston, 

TX)  

3.3.3 Hyperinsulinemic-Euglycemic Clamp 

Hyperinsulinemic-euglycemic clamp was performed according to previously published 

procedures [123–125]. Briefly, [3–3H] glucose was used to measure baseline glucose 

kinetics. The hyperinsulinemic clamp utilized a continuous infusion of 2.5 mU kg−1 min−1 

insulin (Humulin; Eli Lilly, Indianapolis, IN) and a variable intravenous infusion of 20% 

glucose (w/v) to maintain blood glucose levels at 120–140 mg/dL. 2-deoxy-D-[1-14C] 

glucose was used to estimate glucose uptake.  

3.3.4 Western Blot Analysis 

Livers, gastrocnemius muscles, and isolated hepatocytes were sonicated in lysis buffer 

(50 mM Tris-Cl, pH 7.8, 2% SDS, 10% glycerol, 10 mM Na4P2O7, 100 mM NaF, 6 M 

urea, 10 mM EDTA). Proteins were resolved by SDS-PAGE and immunoblotted with the 

following antisera: rabbit anti-Akt (1:1000, Cell Signaling), rabbit anti-phospho-Akt 

(1:1000, Cell Signaling), mouse anti-Ran (1:10,000, BD Biosciences). 

3.3.5 Hepatocyte Isolation 

Hepatocytes were isolated from 15 week old male mice following a 5 hour fast using 

Liver Perfusion Media (Invitrogen, Carlsbad, CA) and Kreb’s Ringer Bicarbonate Buffer 

(Sigma, St. Louis, MO) supplemented with Collagenase and DNase (Worthington 

Biochemical Corporation, Lakewood, NJ) with a modified two-step perfusion protocol 

[126]. Hepatocytes were seeded at a density of 2.5 x 105 cells per well in collagen-I-

coated 12-well plates M199 media plus 10% FBS plus penicillin/streptomycin. Cells were 
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allowed to attach ~2 hours prior to 2 hour serum starvation. Cells were then treated with 

the indicated concentrations of insulin for 20 minutes.  

3.3.6 RNA sequencing 

RNA sequencing libraries were generated using the Tru-Seq RNA Sample Prep Kit 

(Illumina). RNA sequencing was performed on an Illumina hiSeq2000 by the Next 

Generation Sequencing Core at the University of Pennsylvania. 

3.3.7 Statistical Analysis 

All data are represented as mean +/- SEM.  Statistical significance was assessed by 

two-tailed Student’s t test or two-way ANOVA (Prism GraphPad).  

3.4 Results  

3.4.1 Bmi1+/- mice are partially protected from HFD-induced insulin resistance.  

In order to exacerbate what we predicted might be a mild defect in beta cell replication, 

Bmi1+/- males and Bmi1+/+ littermates were placed on a high fat diet at weaning and 

followed through 18 weeks of age. Bmi1 heterozygosity resulted in an approximate 60% 

reduction in Bmi1 protein (Fig. 3.1a). High fat diet induced an equivalent degree of 

weight gain in both genotypes. Surprisingly, glucose tolerance was not worse in Bmi1+/- 

mice; rather, there was a trend toward improved glucose tolerance (Fig. 3.1b; P=0.12 by 

two-way ANOVA for HFD-fed Bmi1+/+ vs. HFD-fed Bmi1+/-). Insulin tolerance testing 

(ITT) revealed that Bmi1 heterozygosity confers partial protection from high fat diet-

induced insulin resistance (Fig. 3.1c; P=0.0095 by two-way ANOVA for HFD-fed Bmi1+/+ 

vs. HFD-fed Bmi1+/-). Bmi1 null animals have multiple phenotypes resulting from severe 

deficiencies in cell replication, including stunted growth [107]. In contrast, body weight 

and composition were indistinguishable between Bmi1+/+ and Bmi1+/- littermates (Fig. 
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3.1d-e). These observations indicate that the role of Bmi1 in whole-body insulin 

sensitivity is independent of body weight or adiposity. 
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3.4.2 Bmi1 null mice may be hypersensitive to insulin 

Impaired glucose tolerance at an early age due to reduced insulin secretion has been 

observed in Bmi1 null animals [96]. This phenotype was recapitulated in our hands, with 

marked hyperglycemia evident at 10 weeks of age (Fig. 3.2a). We also observed a trend 

toward hyper-responsiveness to insulin on insulin tolerance testing (Fig. 3.2b). Due to 

grossly impaired survival of Bmi1 null mice beyond weaning, this observation could not 

be extended. However, combined with our observations of adult Bmi1+/- animals, these 

data suggest a gene-dosage dependent role of Bmi1 in whole animal insulin sensitivity.  

3.4.3 Bmi1+/- mice require less circulating insulin to maintain glucose homeostasis 

Similar to HFD-fed Bmi1+/- mice, Bmi1+/- mice fed a low fat diet (LFD) had normal glucose 

tolerance (Fig. 3.3a).  Although insulin tolerance was not different between LFD-fed 

Bmi1+/- mice and wild type littermates, we observed lower insulin secretion in response to 

a glucose bolus in Bmi1+/- animals (Fig. 3.3b).  In contrast to Bmi1-/- mice, in which 

decreased insulin secretion due to reduced beta cell mass is associated with marked 

impairment of glucose homeostasis, the reduction of insulin in the face of normal 

glucose tolerance in LFD-fed Bmi1+/- mice suggests an appropriate adaptive response to 

enhanced insulin sensitivity. 
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3.4.4 Hyperinsulinemic-euglycemic clamp reveals increased insulin sensitivity in 

low fat diet-fed Bmi1+/- mice 

We hypothesized that a more sensitive measure might reveal an insulin sensitivity 

phenotype in Bmi1+/- animals. Therefore, we assessed insulin sensitivity in LFD-fed mice 

using a hyperinsulinemic-euglycemic clamp. There was no difference in basal blood 

glucose levels or hepatic glucose production (HGP; Fig. 3.4a-b); however, Bmi1+/- mice 

required a glucose infusion rate (GIR) more than twice that of Bmi1+/+ mice to maintain 

the target blood glucose level of 120-140 mg/dl, echoing our previous observations of 

improved whole-body insulin sensitivity (Fig 3.4c). The suppression of HGP by insulin 

during the clamp was greatly increased in Bmi1+/- mice (Fig. 3.4d; 77% suppression vs 

40% in controls; p=6.5 x 10-5), suggesting that Bmi1 heterozygosity results in greater 

responsiveness of the liver to insulin stimulation. During the clamp, the glucose disposal 

rate (Rd) was 67% higher in Bmi1+/- mice (Fig. 3.4e; p=0.0011), indicating a difference in 

responsiveness of peripheral tissues to insulin as well. Glucose uptake to muscle was 

elevated 57% (Fig. 3.4f; p=0.06), while there was no difference in glucose uptake to 

adipose tissue (Fig. 3.4g). Together, these results suggest a role for Bmi1 in modulation 

of insulin signaling in liver and muscle. Given the robust phenotype observed in liver, we 

first examined insulin signaling in that tissue. 
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3.4.5 Hepatic insulin signaling is enhanced by Bmi1 heterozygosity 

After a 5 hour fast to minimize stimulation by endogenous insulin, Bmi1+/+ and Bmi1+/- 

mice were injected with saline or insulin 20 minute prior to sacrifice. Western blot 

analysis of liver lysates revealed no effect of either genotype or insulin treatment on total 

Akt levels (Fig. 3.5a); however, Akt phosphorylation levels in heterozygous mice were 

lower at baseline as compared to controls, suggesting reduced basal insulin signaling in 

Bmi1+/- livers. This supports the observation from whole animal physiology that less 

insulin is needed to maintain normal glucose homeostasis in the Bmi1 heterozygous 

animals (Fig. 3.3). Upon insulin stimulation, Akt phosphorylation was higher in Bmi1+/- 

liver lysates, compared to controls, indicating enhanced signal transduction in response 

to insulin (Fig. 3.5a-b; 2.2-fold change in Bmi1+/+ vs 8.9-fold in Bmi1+/-).  
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To determine whether these findings reflect an alteration of insulin sensitivity within 

hepatocytes, we performed studies in cultured primary hepatocytes isolated from Bmi1+/+ 

and Bmi1+/- mice. Here we compared total and phosphorylated Akt levels in response to 

a range of insulin doses. Hepatocytes isolated from Bmi1+/- animals had detectable 

levels of Akt phosphorylation at lower doses of insulin as compared to Bmi1+/+ 

hepatocytes (Fig. 3.6a-b). Additionally, the maximal level of Akt phosphorylation was 

higher in mutant hepatocytes. Together, these experiments suggest a hepatocyte-

autonomous role for Bmi1 in modulating sensitivity of insulin signaling, specifically Akt 

phosphorylation. 
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3.4.6 Activity of early insulin signaling pathway not altered in Bmi1+/- mice 

In order to further investigate the effect of Bmi1 heterozygosity on insulin signaling, 

critical signaling events upstream of and parallel to Akt phosphorylation were assessed 

by immunoblot (Fig. 3.7a). The first step in the insulin signaling pathway, insulin receptor 

phosphorylation, showed a comparable response to insulin in both groups, although 

there was a slight increase in basal levels of IR phosphorylation in Bmi1+/- animals (Fig. 

3.7b). Similarly, there was no statistically significant difference in IRS1 phosphorylation 

between genotypes when stimulated by insulin, although a trend toward reduced IRS1 

phosphorylation was observed at baseline in the Bmi1+/- animals (p=0.07) (Fig. 3.7c). As 

an important pathway parallel to Akt signaling, ERK1/2 phosphorylation was also 

measured. The response to insulin was variable at this time point and no significant 

difference was observed between genotypes (Fig. 3.7d).  

Given the well-described role of Bmi1 in repressing transcription of target genes, we 

sought to determine whether the expression of the insulin signaling proteins upstream of 

Akt was altered in Bmi1+/- livers. There were no differences in the levels of the receptors 

(IR, Igf1r), adaptor proteins (Irs1, Irs2, p85) or proteins that regulate activity of the core 

pathway components (Pten, Ptb1b, Pdk1, Sos1, Pp2a, Phlpp1, Phlpp2), suggesting that 

Bmi1 does not regulate expression of these genes.  
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3.4.7 Insulin signaling is enhanced in muscle of Bmi1+/- mice.  

Given the robust enhancement of Akt signaling in liver (Fig. 3.5), we hypothesized that a 

similar enhancement may be responsible for the trend toward increased glucose uptake 

seen in the muscle of Bmi1+/- animals during the clamp (Fig. 3.4). Lysates of muscle 

tissue taken from the same animals as above were analyzed by western blot. As 

expected, Bmi1 protein was reduced in Bmi1+/- muscle (Fig. 3.8a). Similar to liver, Akt 

phosphorylation increased higher above baseline in response to insulin stimulation in 

Bmi1+/- muscle, as compared to Bmi1+/+ , due to lower phospho-Akt levels at baseline 

(Fig. 3.8b; 1.6-fold change in Bmi1+/+ vs 3.6-fold in Bmi1+/-).  

 



57 
 

3.4.8 RNA-sequencing suggests potential mechanisms for Bmi1-mediated insulin 

sensitivity 

In order to quantitatively compare gene expression in livers from Bmi1+/+ and Bmi1+/- 

mice, we performed RNA sequencing, which revealed 23 differentially-regulated genes 

with an FDR <10% (Fig. 3.9). Of these, 8 were upregulated in Bmi1 heterozygous livers 

and 15 were downregulated. Two noteworthy genes from this list were members of the 

core circadian clock machinery, Bmal1 (Arntl) and Npas2. By expanding the stringency 

of our list of differentially-regulated genes to include those with p-values below 0.01, we 

identified two additional circadian genes affected by Bmi1 heterozygosity: Nr1d1 and 

Nr1d2, also known and Rev-erbα and Rev-erbβ, respectively.  

Together, these 4 clock genes were particularly interesting, as they contribute to the 

maintenance of circadian rhythmicity of clock target genes. Circadian expression of 

target genes has been shown to be critical in maintaining normal metabolic function 

(reviewed in 9). We confirmed a significant ~25% reduction in Bmal1 transcript and a 

trend towards reduction in Nr1d2 transcript in Bmi1+/- liver at 5 PM (Fig 3.10). This time 

point corresponds with high expression of Nr1d2 and repressed expression of Bmal1. 

There was no difference in transcript 12 hours earlier at 5AM, when the overall 

expression patterns were reversed.  
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Another group of genes identified as differentially expressed in Bmi1 heterozygous livers 

were those associated with JAK/STAT signaling, specifically Cish, Myc, and Ccnd1. 

These targets were first assessed by qPCR (Fig. 3.11a). Cish expression was found to 

be significantly increased in Bmi1+/- livers, whereas Myc and Ccnd1 expression was not 

significantly different between genotypes. In order to further assess the activity of this 

pathway, STAT5 phosphorylation was measured by western blot analysis after saline or 

insulin injection. Insulin induced a statistically significant increase in STAT5 

phosphorylation in Bmi1+/+ livers, whereas the stimulated levels of phospho-STAT5 were 

significantly reduced in Bmi1+/- livers (Fig. 3.11b).  
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3.5 Discussion  

We identify a novel role for the Polycomb protein, Bmi1, in regulating insulin sensitivity. 

Alterations in insulin signaling in both liver and muscle tissue appear to contribute to a 

striking improvement in whole-body insulin sensitivity. Homozygous loss of Bmi1 has 

been associated with severe glucose intolerance and diabetes due to stunted beta cell 

replication [96]. It was therefore surprising to discover the favorable metabolic phenotype 

of Bmi1+/- mice. Not only was there no impairment of glucose homeostasis, there was a 

trend toward protection from HFD-induced glucose intolerance and a clear sensitization 

of insulin responsiveness in these animals. Our data therefore indicate a role for Bmi1 in 

extra-islet tissues in regulating glucose homeostasis.  

We find a striking effect of Bmi1 gene dosage on Akt activity.  A comprehensive analysis 

of early insulin signaling events revealed no difference in activation of IR, IRS1, or 

ERK1/2, nor alterations in the transcript levels of known regulators of Akt, including 

IRS1, Akt phosphatases, and the PI3K regulatory subunit p85. Thus, the mechanism by 

which Bmi1 influences Akt activity warrants further investigation.  

We also noted a decrease in plasma insulin levels in Bmi1+/- animals following a glucose 

bolus. While we interpret this to indicate an adaptive response to reduced insulin 

requirement by more sensitive Bmi1+/- tissues, at this time we cannot rule out the 

possibility that the livers of these animals are clearing glucose more rapidly from the 

blood. Given the supporting molecular data showing enhancement of insulin signaling, 

we believe this to be an unlikely explanation.  

The observations that Bmi1 null animals have no discernible difference in hepatocyte 

proliferation compared to wildtype [110] and that p16 expression is not detectable in 
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hepatocytes (data not shown) suggest a non-classical, proliferation-independent role of 

Bmi1 in the liver. Although recent studies have begun to explore the potential for Bmi1 

action independent of its regulation of the Ink4a/Arf locus, Bmi1 targets identified in 

neural stem cells [128] were not dysregulated in Bmi1+/- liver (data not shown), 

suggesting that Bmi1 targets may be tissue-specific. Further, the lack of a clear 

consensus sequence for mammalian PRC1 binding [121,122], complicates efforts to 

predict Bmi1 targets in the liver. A direct determination of Bmi1 targets in liver by 

chromatin immunoprecipitation and high throughput sequencing will be required to 

identify the direct Bmi1 targets involved in insulin action in the liver. Further, it is likely 

that derepression of multiple genes contributes to this phenotype. 

Our current model is limited by the global and heterozygous nature of the genetic 

deletion, which complicates interpretation of how specific tissues are contributing to the 

overall improvement in insulin sensitivity. It is likely that tissues in addition to liver 

contribute to the insulin sensitivity phenotype. The marked increase in glucose disposal 

rate indicates that glucose uptake in the peripheral tissues is a key contributor to this 

phenotype, which we speculate is due, at least in part, to Bmi1 regulation of insulin 

signaling in muscle.  Additionally, it is still unclear whether the role of Bmi1 in insulin 

sensitivity is gene dosage dependent, since the severely shortened lifespan of the Bmi1 

null mice precludes the type of analysis we present here.  Future work in a tissue-

specific model, when one becomes available, will circumvent these limitations. Complete 

ablation of Bmi1 in liver may further protect animals from age- and/or high fat diet-

induced insulin resistance, compared to the heterozygous deletion described here.  

Given the myriad of negative phenotypes associated with Bmi1 deletion, it was 

unanticipated to see such a strikingly positive effect of Bmi1 heterozygosity. Our 

observations not only highlight the role of Bmi1 in regulating insulin sensitivity but also 
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broaden the scope of phenotypes that Bmi1 and PRC1 play a role in beyond their 

classical regulation of cell cycling.  
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CHAPTER 4: BMI1 PROTEIN LEVELS ARE DYNAMIC 

4.1 Abstract 

Phenotypes associated with Bmi1, such as regulation of beta cell proliferation, as 

described previously, and the development of insulin resistance, as described in the 

previous chapter, seem to occur only at specific ages. Regulation of Bmi1 function 

and/or levels with age therefore appears to be critical in regulating the downstream 

effects of Bmi1. Previous work indicates that Bmi1 can be regulated at a transcriptional 

level as well as post-translationally modified. Analysis of Bmi1 protein levels revealed 

that Bmi1 increases with both age and insulin resistance, whereas acute insulin 

treatment reduces Bmi1 protein independent of transcript. Pcif1 ubiquitinates Bmi1 in 

293T cells and this may provide one explanation for the post-translational regulation of 

Bmi1 levels in response to insulin.  

4.2 Introduction 

Bmi1 protein and transcript levels have been shown to decrease dramatically early in life 

in pancreatic islets [111]. Additionally, in islets, Bmi1 protein levels remain low in mice 

throughout late adulthood. However, the observed age-dependence of the phenotypes 

described in Chapter 3 raised the question of the role of Bmi1 with age in the liver. One 

particularly relevant phenotype associated with aging is insulin resistance. Here we will 

focus on 4 models of insulin resistance: aging, deletion of the leptin gene (Lepob/ob), 

deletion of insulin receptor in the liver (LIRKO), and deletion of Akt1/2 in the liver 

(DLKO). Although induced by different mechanisms, all of these animals exhibit some 

degree of hyperglycemia and insulin intolerance [33,129].  
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Although Bmi1 levels are known to change with age, little is known about the mechanism 

behind this. Bmi1 has been shown to be regulated at a transcriptional level by the 

transcription factors E2F-1 and c-Myc [130,131]. Other known regulators of Bmi1 have 

been shown to act in a post-translational manner and therefore cannot explain the 

transcriptional changes seen early in life [114,116,132]. However, post-translational 

regulation of Bmi1 may provide an explanation for the appearance of the phenotypes 

described in Chapter 3 later in life.  

Bmi1 has been shown to be both ubiquitinated and phosphorylated, both of which have 

been implicated in destabilizing the protein [114,116,132]. As noted earlier, Pcif1 has 

been shown to ubiquitinate Bmi1 [112]. Additionally, knockdown of deubiquitinating 

enzymes that act on Bmi1 results in accumulation of ubiquitinated Bmi1 and reduction of 

Bmi1 protein levels [113].   

Phosphorylation of Bmi1 has been shown to negatively influence the activity of Bmi1, 

primarily by inhibiting association with chromatin [115]. Two kinases in particular have 

been shown to phosphorylate Bmi1: MAPKAP kinase 3 (3pK) and Akt [114,116,133]. It is 

noteworthy when considering the metabolic impact of differential Bmi1 levels to note that 

both of these kinases can be activated by insulin [25,134,135].  

In the studies described below, we find that Bmi1 protein levels appear to be influenced 

by insulin levels. Additionally, we find that Pcif1 facilitates the ubiquitination of Bmi1 and 

that this results in decreased Bmi1 protein.   
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4.3 Materials and Methods  

4.3.1 Animals and physiological experiments 

All animal experiments were performed according to procedures approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. Animals 

were placed on high fat diet (60% fat), low fat diet (10% fat) (Research Diets Inc., New 

Brunswick, NJ) or standard chow at weaning. Bmi1+/- mice were previously described 

[107]. Mice were maintained on a C57BL/6N background. 

Lepob/ob and wildtype mice were obtained from Jackson Laboratories. Liver samples from 

LIRKO mice were a gift from Morris Birnbaum (2 month old animals) and Rohit Kulkarni 

(6 month old animals). 

4.3.2 Tissue culture 

HEK293T cells were maintained in DMEM with 25 mM glucose (Invitrogen) 

supplemented with 10% FBS, and 1% penicillin/streptomycin. Cells were transfected 

with Lipofectamine 2000 according to manufacturer’s instructions using indicated 

plasmids.  

4.3.3 Western blot analysis 

HEK 293T cells, livers, and isolated hepatocytes were sonicated in lysis buffer (50 mM 

Tris-Cl, pH 7.8, 2% SDS, 10% glycerol, 10 mM Na4P2O7, 100 mM NaF, 6 M urea, 10 mM 

EDTA). Proteins were resolved by SDS-PAGE and immunoblotted with the following 

antisera: mouse anti-Bmi1 clone F6 (Millipore, 1:1000), mouse anti-FLAG (Sigma, 

1:1000), mouse anti-Ran (1:10,000, BD Biosciences), anti-HA-Peroxidase (Roche, 

1:1000).  

4.3.4 Ubiquitination assay 
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Ubiquitination assay was performed as described previously [93]. Briefly, HEK293T cells 

were transfected with Lipofectamine 2000 according to manufacturer’s instructions using 

constructs for HA-Bmi1 and myc-ubiquitin with and without FLAG-Pcif1 and FLAG-Cul3. 

Cells were harvested after 48 hours and lysed in RIPA buffer, followed by 

immunoprecipitation for myc as well as an IgG control. Immunoprecipitated proteins 

were analyzed by western blot analysis. Input lysate was also analyzed to compare 

overall protein levels and verify loading controls. 

4.3.5 RNA isolation and quantitative RT-PCR 

Total RNA was isolated from snap-frozen liver using Trizol (Invitrogen, Carlsbad, CA), 

according to the manufacturer’s instructions. Ribosome-associated RNA was isolated 

using the RNeasy mini kit (Qiagen). DNA was digested using the TURBO DNA-free kit 

(Life Technologies). RNA concentrations were measured on a Nanodrop ND-1000 

spectrophotometer (Thermo-Scientific, Wilmington, DE).  RNA integrity was assessed 

using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).  To 

synthesize cDNA, RNA was reverse-transcribed with SuperScript III (Invitrogen) 

according to manufacturer’s instructions. Quantitative real time PCR was performed on a 

Bio-Rad CFX384 384-well thermal cycler.   

4.3.6 Statistical Analysis 

All data are represented as mean +/- SEM.  Statistical significance was assessed by 

two-tailed Student’s t test or two-way ANOVA (Prism GraphPad).  
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4.4 Results  

4.4.1 Bmi1 protein levels change with age 

The decline in Bmi1 transcript and protein early in life has been well-described in the 

beta cells [111]. However, to date, no studies have explored Bmi1 levels with age in 

liver. Liver was harvested from mice 2 weeks, 8 weeks, 16 weeks, and 24 weeks of age. 

From 2 weeks to 8 weeks, there was a strong decline in Bmi1 protein and transcript, 

correlating with observations in other tissues (Fig. 4.1). Surprisingly, in older animals 

there was a dramatic increase in protein levels with no change in transcript. Given the 

well-established decline in insulin sensitivity with age, we hypothesized that Bmi1 protein 

may be correlated to serum insulin levels. 

4.4.2 Effect of liver-specific insulin resistance on Bmi1 levels 

To determine whether Bmi1 levels correlate inversely with insulin sensitivity in another 

model, we examine Bmi1 levels in the LIRKO (liver insulin receptor knockout) model of 

insulin resistance.  LIRKO mice display reduced body weight, severe fed hyperglycemia 

and hyperinsulinemia, as well as an abolishment of insulin-induced suppression of 
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hepatic glucose production [136].  In liver from 2 month old animals, there was no 

difference in Bmi1 levels between LIRKO and control in either the fasted or fed state 

(Fig. 4.2a). Notably, Bmi1 protein levels were increased in the livers of 6 month old 

LIRKO mice, compared to control littermates (Fig. 4.2b). Consistent with insulin 

resistance, these LIRKO animals displayed the expected phenotypes of hyperglycemia, 

hyperinsulinemia, and reduced body weight (Fig. 4.2c-e). Thus, Bmi1 protein levels are 

inversely correlated with insulin sensitivity in two well established models of insulin 

resistance.  
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Deletion of Akt 1 and 2  in liver (DLKO mice) results in severe hyperglycemia, disrupted 

insulin signaling, and insulin resistance [129]. Additionally, serum insulin levels are 

increased approximately 5 times above control levels. Analysis of lysates from livers 

lacking Akt1/2 from 8-week old animals revealed a decrease in Bmi1 protein compared 

to controls (Fig. 4.3).  

4.4.3 Effect of leptin deletion on Bmi1 levels 

As a final model of insulin resistance, Bmi1 levels in the livers of 16 week old Lepob/ob 

(ob/ob) males were measured by western blot analysis. These animals are severely 

obese, hyperinsulinemic, glucose intolerant, and insulin resistant due to deletion of the 

leptin gene [137]. When compared to controls, Bmi1 protein levels were dramatically 

lower in ob/ob livers (Fig 4.4).  
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4.4.4 Acute insulin stimulation leads to decrease in Bmi1 protein in liver 

Given the potential correlation between insulin levels and Bmi1 protein, we next 

assessed the effect of acute insulin stimulation on Bmi1. After a 5 hour fast to minimize 

stimulation by endogenous insulin, wildtype mice were injected with saline or insulin 20 

minute prior to sacrifice. Western blot analysis revealed a 54% reduction in Bmi1 protein 

(Fig. 4.5). Based on observations that Bmi1 is regulated at both the transcriptional and 

post-transcriptional levels ([111,114,116] and Fig 4.1), Bmi1 transcript was also 
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measured. Transcript levels were unchanged in the livers from insulin-treated animals as 

compared to saline-treated controls, indicating that the insulin-mediated reduction in 

Bmi1 protein occurred post-transcriptionally. Given the acute nature of the treatment, it is 

unlikely that the differences in protein levels were due to changes in translation rates, 

although not impossible. The more likely explanation involves post-translational 

regulation of Bmi1 levels.  

 

4.4.5 Pcif1 ubiquitinates Bmi1 in HEK293T cells and results in lower protein levels 

In order to further characterize the post-transcriptional modifications of Bmi1, a cell-

based ubiquitination assay was used. Bmi1 and ubiquitin were overexpressed in 

HEK293T cells with and without Pcif1 and Cul3. Lysates were then immunoprecipitated 
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for ubiquitin and immunoblotted for Bmi1 (Fig. 4.6a). Laddering of ubiquitinated Bmi1 

was present at low levels in lysates with Bmi1 alone, Bmi1 plus Pcif1, and Bmi1 plus 

Cul3. Levels of ubiquitinated Bmi1 were dramatically increased in the presence of both 

Pcif1 and Cul3. Additionally, substituting a mutated Cul3, without the ability to bind Pcif1, 

reduced the laddering. Low levels of ubiquitination when Pcif1 and Cul3 are not 

overexpressed are likely due to endogenous Pcif1 and Cul3 in HEK293T cells. 

Expression of indicated plasmids was as expected (Fig. 4.6b). Overexpression of Bmi1 

with or without Pcif1 and Cul3 in HEK293T cells revealed that Pcif1 overexpression 

lowered Bmi1 protein levels (Fig. 4.7). 
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4.5 Discussion  

An age related decline in Bmi1 expression has been observed in mutiple tissues and is 

associated with a decline in replication [111]. An initial reduction of Bmi1 protein levels 

occurs between 2 and 8 weeks in liver as well; however, Bmi1 levels subsequently 

increase dramatically with progressive age, surpassing the levels seen in juvenile livers 

by 30 weeks. The mechanisms underlying these temporally dynamic changes in Bmi1 

levels warrant further investigation. 

Here we describe two seemingly incongruous phenotypes. One, where elevated insulin 

appears to result in an increase in Bmi1 protein and another, where hyperinsulinemia 

results in less Bmi1 protein.  

Bmi1 protein increases with age, independent of transcriptional changes.  Hepatic insulin 

resistance and hyperinsulinemia caused by IR deletion also results in increased Bmi1 

protein in an age-dependent manner. Surprisingly, obesity and insulin resistance caused 

by deletion of leptin results in decreased Bmi1 protein at 4 months of age. Acute 

administration of insulin results in decreased Bmi1 protein with no change in transcript. 

Additionally, hyperinsulinemia early in life, via Akt1/2 deletion, results in decreased Bmi1 

protein. Although these mice are insulin resistant, they are quite young, compared to the 

6 month old LIRKO animals.  

The data from all of the described mouse models lead us to hypothesize that, acutely 

and early in life, insulin stimulates pathways that reduce Bmi1 protein. We show that 

high levels of Bmi1 are indicative of insulin resistance but the explanation for this is less 

clear. Further, it is unclear what the primary phenotype is in this situation. The first 

possibility is that insulin resistance causes Bmi1 protein to accumulate because the 

pathways upstream of Bmi1 cannot respond appropriately to insulin. This would place 
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Bmi1 as more of a passive hallmark of insulin resistance. Another possibility is that Bmi1 

itself is involved in inhibition of insulin signaling under basal conditions and is reduced in 

response to insulin in order to allow signaling to progress. Therefore high Bmi1 levels 

are actually contributing to insulin resistance. Given the observations from Chapter 3 

that reducing Bmi1 levels results in improved insulin sensitivity, we believe this to be the 

more likely explanation.  

The mechanism by which insulin influences Bmi1 is unclear at this point. Here, we 

explored one possibility—that Bmi1 is ubiquitinated by Pcif1 in response to insulin. 

Further work would need to be done to characterize the result of this ubiquitination, 

although the data in Figure 4.7 are suggestive that ubiquitination by Pcif1 may lead to 

proteasomal degradation, as that is a well-described pathway for other Pcif1 targets 

[88,90,94,112,118,119]. Additionally, it would be interesting to characterize the 

phosphorylation of Bmi1 in response to insulin, especially given that two insulin-

stimulated kinases, Akt and MAPKAP kinase 3 (3pK), have been shown to 

phosphorylate Bmi1 [114,116,132].  
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CHAPTER 5: MAPPING THE BETA CELL TRANSLATOME  

5.1 Abstract 

ER stress results in a complex cellular response in order to attempt to restore ER 

homeostasis. One strategy is to reduce the translational load placed on the cell until 

stress can be resolved. Beta cells are placed under a particularly high level of stress, 

given the high demand for insulin production placed on them. Characterizing the stress 

response in beta cells may help to identify ways to maintain beta cell mass by helping to 

resolve ER stress prior to failure and apoptosis. Here we apply the immunoprecipitation-

based translating ribosome affinity purification (TRAP) methodology in order to study 

translation in beta cells on a global scale. A pilot screen in Min6 cells using thapsigargin 

to induce ER stress validated that transcripts with the predicted ability to escape ER 

stress showed an increase in translational efficiency. Translational efficiencies were then 

assessed on a global scale in the context of Pdx1 knockdown.  Analysis of this dataset 

indicated that Pdx1 may be repressing translation under normal conditions, as the 

efficiencies of a subset of genes was increased with Pdx1 knockdown, with the 

translational efficiency of only one transcript being significantly reduced.  

5.2 Introduction 

ER stress has been implicated in the development of diabetes, specifically beta cell 

dysfunction and death [49,138]. Mutation of the eukaryotic translation initiation factor 2-

alpha kinase (EIF2AK3) gene in humans results in a form of monogenic diabetes known 

as Wolcott-Rallison syndrome [139]. EIF2AK3 is the human ortholog of PERK, one of 

the key mediators of the ER stress response in rodents. Additionally, a mutation in 

Wolfram syndrome gene 1 (Wfs1) results in disruption of an ER calcium channel, 

causing ER stress and diabetes [140].  
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In addition to the severe monogenic forms of diabetes, ER stress has been associated 

with Type 2 diabetes as well. Markers of ER stress are upregulated in islets of Type 2 

diabetic patients [56]. Additionally, treatment of Min6 cells with palmitate to simulate the 

high levels of free fatty acids seen in diabetic patients led to an induction of the ER 

stress program and eventual apoptosis [56]. Chronic exposure to high glucose levels, 

characteristic of a diabetic state, results in activation of the UPR in rat islets [141], thus 

also implicating the ER in glucotoxicity. In addition to glucose and fatty acids, cytokines 

have also been shown to activate the UPR in beta cells [142], thus implicating ER stress 

in the beta cell dysfunction and death associated with Type 1 diabetes as well.  

Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) is a calcium 

transporter important for maintaining ER homeostasis whose expression is reduced 

under diabetic conditions [143,144]. Thapsigargin is a SERCA inhibitor that results in 

depleted ER Ca2+ and inhibited autophagy, resulting in ER stress [145]. Many SERCA 

inhibitors exist but thapsigargin is by far the most popular and therefore the most well-

described in literature. Ca2+ concentrations are disproportionally high in the ER, 

compared to the rest of the cell [146]. These high levels are attained through the actions 

of the SERCA pumps. Inhibition of these pumps depletes calcium in the ER, resulting in 

ER stress [147]. Treatment with thapsigargin results in severely decreased protein 

synthesis and dissolution of polysomes [148] as well as upregulation of ER stress-

associated genes [149].  

As discussed in Chapter 1, one result of ER stress is a general downregulation of protein 

translation, with the exception of a subset of genes whose upregulation aids in resolution 

of ER stress. Multiple methods exist to characterize those genes. The goal of all of these 

methods is to isolate ribosome-associated transcripts, with the assumption that 

transcripts bound by ribosomes are those that are actively being translated. The 
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traditional approach is to use a sucrose density gradient to isolate polysomes, along with 

the associated mRNA [51,150]. While effective, this method requires a large amount of 

starting material, thus making it difficult to apply to small amounts of material, such as 

primary tissue. Additionally, unless a pure cell population is used as input, it is not 

possible to distinguish the translatome of a specific cell type. This makes analysis of 

heterogeneous tissues complicated [151].  

Newer published methods utilize immunoprecipitation of ribosomal proteins to isolate 

ribosomes, as well as associated transcripts. The RiboTag method uses an HA-tagged 

ribosome protein, Rpl22, while the TRAP method uses an EGFP-tagged ribosome 

protein L10a [152–154]. The epitope-tagged ribosomal proteins can be overexpressed in 

cell lines or targeted to specific cell types in vivo via appropriate Cre drivers, eliminating 

the difficulty in analyzing the translatome of specific cell types. Further, these 

immunoprecipitation-based methods require less starting material than traditional 

methods, making analysis of small cell populations more viable.  

Based on the association of ER stress with diabetes, characterization of the translational 

response to beta cell stressors may aid in more completely characterizing the role of ER 

stress in beta cell dysfunction and death, as well as the mechanisms by which beta cells 

respond to stress. Analysis of the beta cell translatome under conditions of ER stress will 

reveal common characteristics of transcripts important for ER stress response and 

possibly identify novel components of the beta cell stress response.  
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5.3 Materials and Methods  

5.3.1 Tissue culture  

293T cells were maintained in DMEM with 25 mM glucose (Invitrogen) supplemented 

with 10% FBS and 1% penicillin/streptomycin. Cells were transfected with Lipofectamine 

2000 according to manufacturer’s instructions using indicated plasmids.  

Min6 cells were maintained in DMEM with 25 mM glucose (Invitrogen) supplemented 

with 10% FBS, 1% penicillin/streptomycin, and 0.001% betamercaptoethanol.  

For thapsigargin treatment, 1 uM thapsigargin (Sigma) or vehicle (DMSO, Sigma) was 

added to the medium 6 hours before harvest.   

For knockdown experiments, cells were nucleofected by AMAXA with an siRNA pool 

against either Pdx1 or a non-targeting control (ON-TARGETplus SMARTpool, 

Dharmacon). 1 nmol siRNA was used per nucleofection. After 96 hours, cells were 

harvested for RNA expression analysis or TRAP immunoprecipitation.  

5.3.2 Creation of stable cell lines 

The EGFP-L10a plasmid has been described previously [153,154]. EGFP-L10a or EGFP 

alone was cloned into the retroviral pBABE-puro vector. BOSC retroviral producing cells 

were transfected and the media used 48 hours later to transduce Min6 cells for 6 hours. 

Cells were selected using puromycin for 5 days. Overexpression of EGFP-L10a was 

confirmed by qPCR and western blot.   
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5.3.3 Measuring protein translation 

Amino acid-deficient DMEM was supplemented with 10% dialyzed FBS and 4mM L-

glutamine. Min6 cells were seeded into 6-well tissue culture dishes. To each well, 2 mL 

AA-deficient media plus 165 uCi EasyTag Express protein labeling mix (Perkin Elmer) 

was added for labeling at 37C. Cells were then lysed and protein extracted using TCA 

precipitation. Incorporation of protein labeling mix was measured by scintillation 

counting. Counts were normalized to DNA content as measured by Nanodrop ND-100 

spectrophotometer (Thermo-Scientific, Wilmington, DE). 

5.3.4 Immunoprecipitation of ribosomes  

The translating ribosome affinity purification (TRAP) method was used as previously 

described, with minor modifications [153,154]. Briefly, 293T or Min6 cells overexpressing 

EGFP-L10a or EGFP alone were harvested and immunoprecipitated overnight at 4C 

with anti-GFP (clones 19C8 and 19F7, Sloan Kettering). After immunoprecipitation, 

bound material was either isolated for western blotting or qPCR analysis. RNA was 

isolated using the RNeasy Mini Kit (Qiagen). Input protein and RNA was isolated from 

material collected prior to immunoprecipitation.  

5.3.5 Western blotting 

Proteins were resolved by SDS-PAGE and immunoblotted with the following antisera: 

goat anti-GFP (Abcam, 1:1000), mouse anti-RPL10a (Abnova, 1:1000), rabbit anti-RPL7 

(Novus Biologicals, 1:1000), rabbit anti-S6 (Cell Signaling, 1:1000), mouse anti-tubulin 

(Sigma, 1:10,000).  
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5.3.6 RNA isolation and quantitative RT-PCR 

Total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA), according to the 

manufacturer’s instructions. Ribosome-associated RNA was isolated using the RNeasy 

mini kit (Qiagen). DNA was digested using the TURBO DNA-free kit (Life Technologies). 

RNA concentrations were measured on a Nanodrop ND-1000 spectrophotometer 

(Thermo-Scientific, Wilmington, DE).  RNA integrity was assessed using an Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA).  To synthesize cDNA, RNA was 

reverse-transcribed with the High-Capacity Reverse Transcription kit (ABI). Quantitative 

real time PCR was performed on a Bio-Rad CFX384 384-well thermal cycler.   

5.3.7 RNA sequencing 

RNA sequencing libraries were generated using the Tru-Seq RNA Sample Prep Kit 

(Illumina). RNA sequencing was performed on an Illumina hiSeq2000 by the Next 

Generation Sequencing Core (NGSC) at the University of Pennsylvania. 

5.3.8 Calculations and statistical analysis 

Translational efficiency rates were calculated using the ratio of the reads for the 

ribosome-associated transcripts over the reads for the total input transcript. RNA-seq 

analysis was performed as previously described [155] by the NGSC at the University of 

Pennsylvania. All other data are represented as mean +/- SEM.  Statistical significance 

was assessed by two-tailed Student’s t test or two-way ANOVA, as appropriate (Prism 

GraphPad).  
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5.4 Results  

5.4.1 Adapting TRAP methodology for use in beta cells 

In order to study the role of translational regulation in the beta cell, a mouse insulinoma 

cell line, Min6, was used for initial experiments. A previously-described construct 

encoding an EGFP-tagged ribosomal protein, L10a, was used in order to facilitate 

immunoprecipitation [153]. This construct was stably overexpressed via retrovirus in 

Min6 cells to create the Min6-L10a cell line. As a control during immunoprecipitations, 

EGFP alone was expressed in separate cells to create the Min6-EGFP cell line.  

To validate the TRAP methodology in our Min6 system, EGFP was immunoprecipitated 

from both cells lines. As shown in Figure 5.1, EGFP was efficiently depleted from both 

cell lines by immunoprecipitation. EGFP and EGFP-L10a are readily detectable in the 

immunoprecipitated material. Both endogenous and EGFP-tagged L10a are depleted in 

the Min6-L10a lysates, indicating that polysomes containing ribosomes both with and 

without EGFP-tagged L10a expressed are successfully being isolated using the TRAP 

methodology. We further validated this system by confirming co-immunoprecipitation of 

ribosomal proteins L7 and S6 specifically from the Min6-L10a cells. These experiments 

confirm that polysomes containing proteins from both ribosomal subunits can be isolated 

by immunoprecipitation of EGFP-tagged L10a in Min6 cells.   
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5.4.2 Pilot screen of transcripts escaping global downregulation due to ER stress 

In order to further validate this system, we assessed the quantity and quality of transcript 

recovered from EGFP-L10a immunoprecipitation. The isolated RNA was found to be 

high-quality and suitable for use in downstream applications (Fig. 5.2). Again, these 

results were specific to the Min6-L10a cell line, as no transcript was detected in the 

Min6-EGFP cells.  
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In Min6 cells thapsigargin induces significant ER stress after 6 hours, as measured by 

spliced XBP1 (Fig. 5.3). This treatment also reduces overall levels of translation, as 

assessed by S35-labeled cysteine and methionine incorporation (Fig. 5.4). We 

recognizing that thapsigargin is not a physiologically relevant stressor but chose to utilize 

it to induce large changes in translation and then estimate translational efficiencies in 

selected pilot genes. 
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A small group of genes was chosen for a pilot screen to validate our methodology in this 

system. Genes were chosen based on indications in the literature predicting an ability to 

escape the global downregulation of translation in response to stress. Indications 

included the presence of an identified IRES, interaction with RNA stabilizing proteins, 

and others, detailed in Figure 5.5. Additionally, we identified several genes in the 

literature whose translation rates were shown to be specifically sensitive to stress.  
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Figure 5.5. Panel of genes selected for pilot screen or translational response to ER 
stress. Genes selected based on published work. [76,85–89] 
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Following a 6 hour treatment with thapsigargin or DMSO, ribosome-associated RNA was 

isolated from Min6-L10a cells, as well as Min6-EGFP cells as a control specificity of the 

immunoprecipitation. This treatment led to a decrease on total transcript levels of some 

genes (Fig. 5.6). Additionally, the majority of the transcripts predicted to be able to 

escape global downregulation showed an increase in translational efficiency when 

treated with thapsigargin (Fig. 5.7). The genes selected as controls showed no 

difference in translational efficiencies upon treatment with thapsigargin.  
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5.4.3 High-throughput sequencing of translational efficiency following Pdx1 

knockdown 

Given the previously described role for Pdx1 in regulating many genes involved in 

protein translation [65], we sought to explore the effect of Pdx1 knockdown on 

translational efficiencies on a global scale. Pdx1 knockdown by siRNA was optimized in 

Min6-L10a cells (Fig 5.8). Pdx1 knockdown was observed at 48 hours and maintained 

through 96 hours. Additionally, perturbation of key Pdx1 targets was seen, indicating that 

knockdown was affecting pathways downstream of Pdx1. At 72 hours, the direct target 

of Pdx1, Atf4, was reduced 39% in response to Pdx1 knockdown (Fig 5.8b).  Atf4 is 

directly upstream of 4E-BP1, a key regulator of the rate at which translation initiation 

occurs. After 96 hours of Pdx1 knockdown, 4E-BP1 was reduced 54% (Fig 5.8c), thus 

confirming that the perturbation of Pdx1 resulted in changes in secondary targets as well 

as direct targets.  

Translational efficiency was then measured on a global scale. Both total RNA and 

ribosome-associated RNA were used to calculate ratios of translational efficiency in 

Min6-L10a cells with and without Pdx1 knockdown. Using a moderately lenient cutoff of 

a 20% false discovery rate, over 200 genes were identified whose efficiencies were 

altered by Pdx1 knockdown (Fig 5.9). Interestingly, the translational efficiencies of all but 

one of the identified transcripts were increased with Pdx1 knockdown, implying that 

Pdx1 has a negative impact on translational efficiency for a subset of genes.  
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5.5 Discussion  

A pilot screen in Min6 cells revealed that transcripts with a predicted ability to escape 

global down-regulation of translation have higher translation efficiencies after 

thapsigargin treatment. One fundamental question that arose from the pilot screen was 

why “sensitive” genes did not show decreased translational efficiency upon thapsigargin 

treatment. A number of possibilities exist and would need to be addressed prior to 

moving forward with a large-scale analysis of how this particular stressor influences the 
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translatome. One possibility is that the methods used for normalization were not optimal 

for this experiment. Both ribosome-associated and total RNA were normalized to the 

amount of ribosomal 18s transcript. The ratio of those normalized values then resulted in 

cancelation of the normalization. Because we were not attempting to directly compare 

actual amounts of transcript, rather we were interested in percentage efficiency, this 

seemed to be an acceptable method. However, given the large variation in the 

expression of the genes analyzed, it is possible that small error or variability in the 

measurement of the total expression of lowly expressed genes was amplified by the fact 

that this number was the denominator in our equation. One solution to this might be to 

increase the number of replicates or the number of sequencing reads, especially to 

reduce variability on lowly expressed genes. This would also likely aid in decreasing the 

large variability and allow for more statistically significant results to be seen above the 

noise. 

Another potential reason why genes whose efficiencies should be lower in response to 

stress did not behave as predicted could have to do with the length of thapsigargin 

treatment in these experiments. Preliminary experiments showed that 6 hours of 

thapsigargin treatment induced ER stress, as measured by XBP1 splicing, and reduced 

new protein synthesis (Fig 5.3 and 5.4). In retrospect, it may have been helpful to also 

assess how total transcript levels change with this treatment. An argument could be 

made that the ideal time point would be one where stress is still in an early stage, with 

protein synthesis globally blunted but before transcript levels have been largely affected. 

Further optimization would be needed to find the optimal timing and treatment, as well as 

whether this approach would aid in characterizing the translatome more accurately.  

Based on global analysis of the beta cell translatome in Min6 cells after siRNA-mediated 

knockdown of Pdx1, it appears that Pdx1 is a negative regulator of translation for a 
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subset of transcripts. Given the role of Pdx1 as a transcription factor, it is likely that Pdx1 

mediates its effect on translation via transcriptional control of genes responsible for 

translational control. Some of these genes have been previously identified [65] but a 

more complete characterization of the overlap between Pdx1-occupied genes and 

differentially translated genes downstream of Pdx1-occupied genes would likely identify 

new Pdx1-regulated mediators of the beta cell translatome.  

Pdx1 deficiency has also been shown to make cells more susceptible to ER stress [65]. 

This might imply that the genes identified in Figure 5.9 contribute to the beta cell UPR 

program. In future work, it would be particularly interesting to combine Pdx1 deficiency 

with ER stress and characterize the translatome. Genes whose translational efficiencies 

were increased in response to stress as well as Pdx1 deficiency may be part of the beta 

cell-specific stress response program.  
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CHAPTER 6: FUTURE DIRECTIONS AND DISCUSSION 

6.1 Thesis summary 

The inability of beta cells to maintain adequate function and mass is central to the 

development of all forms of diabetes. A more complete understanding of the molecular 

mechanisms behind both functional failure as well as expansion will be important in 

developing new approaches to maintain functional beta cell mass. This thesis describes 

three approaches toward this goal: 1) studying the role of Bmi1 in the replication of beta 

cells and the potential role of Pcif1 in regulating this expansion, 2) exploring the role of 

Bmi1 in modulating demand for insulin, thus influencing the required functionality of the 

beta cells, and 3) characterizing how beta cells respond to stress in order to maintain or 

restore function. Transcriptional regulators are key to all of these processes; specific to 

this work are the transcription factor, Pdx1, and the epigenetic modifier, Bmi1, both of 

which interact with the substrate adapter, Pcif1, which mediates ubiquitination of both 

Pdx1 and Bmi1. The network surrounding these three proteins as well as the functional 

outcomes of their action was described in the preceding chapters.  

It was first determined that regulation of p16 by Bmi1 cannot explain the elevated beta 

cell replication rates seen in Pcif1gt/+ animals. Further work would need to be completed 

in order to explore whether other Bmi1 targets are differentially expressed in Pcif1gt/+ 

beta cells. Unexpectedly, the data from the analysis of Bmi1 heterozygous animals led to 

the observation that Bmi1+/- mice are protected from age-induced insulin resistance. 

Further assessment of this phenotype revealed that insulin signaling, specifically Akt 

phosphorylation, is enhanced in the liver and muscle of Bmi1+/- mice. Bmi1 appears to 

be regulated by insulin, at least in liver tissue. Acute insulin stimulation reduces Bmi1 

protein levels, whereas chronically high insulin levels associated with insulin resistance 

increases Bmi1. Preliminary work in 293T cells confirmed previous publications 
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indicating that Bmi1 is ubiquitinated by a Pcif1/Cul3-based E3 ligase [112]. This appears 

to result in lowered Bmi1 levels and lays the groundwork for one possible explanation of 

the insulin-mediated reduction in Bmi1.  

It is likely that analysis of the beta cell translatome will help to develop a more complete 

picture of how the beta cell responds to different stimuli at a translational level. The 

immunoprecipitation-based TRAP method was optimized in the Min6 beta cell line. In a 

pilot screen, in response to ER stress, the translational efficiencies of transcripts with a 

predicted ability to resist ER stress-induced downregulation of global translation were 

increased. The effect of Pdx1 knockdown on the translatome was also assessed. It 

appears that Pdx1 is inhibitory to the translational efficiency of a subset of transcripts in 

Min6 cells, as the efficiencies of about 200 genes were increased in response to Pdx1 

knockdown.  

6.2 Future Directions 

6.2.1 Assess Pcif1 expression with age 

It was interesting to note the time-dependence of the increase in beta cell proliferation 

seen in Pcif1 heterozygous mice. It would be very informative to assess Pcif1 expression 

at both the transcript and protein levels at different ages. Pcif1 has been shown to be 

regulated at the transcript level by miR-145 [156] as well as hypoxia-inducible factor 

(HIF) [118]. However, little else is known about Pcif1 regulation, especially with age. 

Thorough analysis is further complicated by lack of a reliable antibody against Pcif1 

protein. As a surrogate, the ubiquitination of Pcif1 targets could be assessed at different 

ages.  

The fact that many of the Bmi1 phenotypes described in Chapters 3 and 4 of this thesis 

were also only seen at specific ages, some overlapping with the age at which beta cell 
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replication is altered in Pcif1 heterozygous mice, raises the possibility that Pcif1 is 

regulating Bmi1 in an age-dependent manner, thus allowing the Bmi1-dependent 

phenotypes to become evident.  

6.2.2 Limitations of whole body heterozygous models.  

The animal studies presented in this thesis are limited by the global heterozygous nature 

of the mutations. Complete global deletion of Pcif1 is lethal, making analysis of these 

animals impossible [119]. However, it is likely that deletion solely in the beta cell would 

allow the animals to survive post-natally. In the case of complete loss of Pcif1 in the beta 

cells, more dominant phenotypes may become evident. For example, targets of Pcif1 

that are degraded upon ubiquitination should be increased with a reduction in Pcif1. This 

was evident in the case of Pdx1 even in a heterozygous model [119]. However, the 

dynamics of translation and degradation will vary for different proteins. Therefore subtle 

changes that may not be appreciable might be more robust with complete deletion of 

Pcif1 in the beta cell.  

In the case of global loss of Bmi1, the mice are very sick and die early in life [96,107]. It 

is likely that tissue-specific deletion would alleviate many of the phenotypes associated 

with this shortened lifespan, such as the neural and hematopoetic deficiencies. This 

would allow for assessment of complete loss of Bmi1 in the tissue of interest later in 

adulthood. Additionally, dissecting the role of Bmi1 in specific tissues would give a more 

clear picture of the contributions of Bmi1 in different tissues to influence whole body 

glucose homeostasis.  

One caveat to the idea of complete deletion of Bmi1 in a tissue of interest is that it may 

be informative to study the effect of different levels of Bmi1, rather than simply the 

presence or absence of the protein. It is possible that there is a hierarchy of Bmi1 targets 
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that are differentially regulated depending on how much Bmi1 is present. Given the 

evidence that Bmi1 levels change in response to a variety of stimuli, including insulin 

and age, it would be interesting to modulate Bmi1 levels to mimic these conditions and 

assess binding to and expression of targets. It is possible that the relationship between 

Bmi1 and the expression of its targets is not linear, but rather that there are preferential 

targets that are bound under high or low levels of Bmi1 expression.  

Additionally, studying the regulation of Bmi1 would be impossible in a model of complete 

deletion. It would be most informative to use a heterozygous, tissue-specific Bmi1 model 

in order to detect both decreases and increases in Bmi1 after different manipulations. 

For example, given that Pcif1 has been shown to promote Bmi1 ubiquitination, deletion 

of Pcif1 in the context of Bmi1 heterozygosity may result in normalization of Bmi1 levels.  

6.2.3 Bmi1 target(s) upstream of insulin signaling 

One of the biggest questions that stems from the work described in Chapter 3 is what 

might be mediating the effect of Bmi1 on Akt phosphorylation. At this point, most of the 

immediately obvious candidates have been eliminated, including known regulators of Akt 

activity as well as known targets of Bmi1. The RNA-seq dataset described in Chapter 3 

may begin to provide some direction. However, this will not necessarily identify the direct 

Bmi1 target responsible for the enhancement of Akt phosphorylation. A Bmi1 ChIP-seq 

would identify direct Bmi1 targets and could be overlaid with the RNA-seq to identify 

which targets are differentially expressed in Bmi1+/+ and Bmi1+/- livers. One limitation of 

this approach is that it would not identify the factor(s) directly upstream of Akt if they are 

not direct Bmi1 targets. However, some targeted cell-based approaches may help to 

delineate the signaling in between Bmi1 and Akt.  

It would be expected that Bmi1 targets would be de-repressed in Bmi1+/- livers. 

Therefore, a reasonable approach might be to identify genes that appear on both the list 
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of Bmi1-occupied genes as well as those whose expression is elevated in Bmi1+/- livers 

by RNA-seq. These candidate genes could then be overexpressed in a cell system 

where Bmi1 levels have been shown to influence Akt phosphorylation. Hepatocytes 

would be the obvious choice but would be harder to manipulate than an immortalized 

cell line. If overexpression of one or more targets led to an increase in Akt 

phosphorylation in response to insulin, these are likely targets worth pursuing. 

Knockdown of these in the context of Bmi1 heterozygosity (or knockdown) would provide 

further confirmation; if the candidate gene is, in fact, mediating the effect of Bmi1 on Akt, 

knockdown should block the ability of Bmi1 heterozygosity to influence Akt 

phosphorylation.  

6.2.4 Role of insulin in regulating Bmi1 levels 

Confirm or exclude role of Pcif1 in regulating hepatic Bmi1 levels 

One potential explanation of acute insulin resulting in reduced Bmi1 protein is Pcif1-

mediated ubiquitination and subsequent degradation. Pcif1 has been demonstrated to 

ubiquitinate Bmi1 [112], possibly resulting in protein degradation. It would be useful to 

determine whether the half-life of Bmi1 is affected by the presence or absence of Pcif1. 

Additionally, insulin stimulation with and without a proteasome inhibitor would help to 

include or exclude the possibility that Bmi1 protein is reduced via proteasomal 

degradation. 

Activity of Pcif1 appears to be reduced under high glucose conditions in Min6 [119]. 

Given that high glucose levels lead to high insulin levels, it is reasonable to hypothesize 

that Pcif1 activity is enhanced by insulin as well as or instead of high glucose. If insulin 

does in fact induce Pcif1-mediated degradation of Bmi1, deletion of Pcif1 should block 

the ability of insulin to decrease Bmi1 protein levels.  
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Characterize Bmi1 phosphorylation in liver 

In order to determine whether phosphorylation of Bmi1 plays a role in the effect of insulin 

on Bmi1 protein levels, the phosphorylation state of Bmi1 could be assessed before and 

after insulin stimulation. Then a non-phosphorylatable Bmi1 could be used to either 

block the response to insulin or enhance Akt phosphorylation in the absence of insulin, 

depending on whether Bmi1 phosphorylation goes up or down in response to insulin. 

Bmi1 has been shown to be phosphorylated by both Akt and MAPKAP kinase 3 (3pK), 

both of which are downstream of insulin [116,132]. It would therefore be reasonable to 

hypothesize that Bmi1 is phosphorylated in response to insulin. However, given the 

described role of Bmi1 in regulating Akt phosphorylation, it could be difficult to dissect a 

primary role of insulin from a secondary role of increased Akt activity.  

Determine role of relative Bmi1 levels in insulin resistance 

One of the most important directions to pursue from Chapter 4 is to determine how 

insulin is affecting Bmi1 levels and what the temporal component is to that regulation. 

There appears to be a different response to acute versus chronic insulin, where Bmi1 

protein is reduced by acute insulin administration or hyperinsulinemia in young animals, 

such as the 2 month old DLKO mice, but increased in the context of chronically elevated 

insulin, such as in aging or LIRKO mice.   

In fully characterizing the role of Bmi1 in regulating insulin sensitivity, it will be important 

to determine why Bmi1 levels are high in insulin resistant states. It is possible that the 

increase in Bmi1 in older animals is due to an upstream factor that is no longer sensitive 

to insulin. However, given that genetically reducing Bmi1 levels is protective from age-

induced insulin resistance, this is unlikely. Alternatively, the role of Bmi1 may be in 

inhibiting the progression of insulin signaling. Therefore, when insulin stimulation lowers 
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Bmi1 levels, the repression is relieved. In the case of older animals, Bmi1 levels start 

higher at baseline and most likely remain higher than insulin sensitive animals in 

response to insulin. If this were the case, a Bmi1 mutant protein that cannot be degraded 

may be sufficient to induce insulin resistance by constantly repressing the insulin 

signaling pathway.  

6.2.5 Expand on TRAP analysis 

Establish optimal stressors to characterize beta cell stress response 

The described pilot experiments utilized thapsigargin treatment to induce ER stress in 

Min6 cells. However, thapsigargin is not a physiologically relevant stressor; rather, it is a 

tool to visualize the results of extreme ER stress. The results from this initial screen can 

be expanded to investigate more globally the effect of ER stress on translation 

efficiencies. This analysis will give a broad picture of the effects of massive ER stress 

and will identify pathways and targets involved in general ER stress response. More 

physiologically and pathophysiologically relevant stressors should be used to follow up 

on specific targets and pathways. Future experiments may include introduction of stress 

via fatty acid treatment, high glucose treatment, or overexpression of the mutant Akita 

insulin, which is unable to properly fold and therefore accumulates in the ER [157], both 

in cell lines and mouse models.   

Due to its potent and fast-acting effect on the ER, thapsigargin may be the ideal agent 

with which to study the temporal development of ER stress and the response of the 

cells. However, it will be important to also utilize more physiologically-relevant stressors 

in order to develop a model that more closely mimics the response of the beta cell to 

physiological or pathophysiological stress.  
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The initial experiments described here were established in a cell line. Further work will 

expand on Min6 results in mouse models. Use of a mouse expressing an inducible, beta 

cell-specific EGFP-L10a will allow for isolation of both a pure beta cell population by 

EGFP sorting as well as the isolation of ribosome-associated mRNA specifically from 

beta cells. This in vivo model can be utilized in concert with available models of beta cell 

stress, including Pdx1 deletion, high fat diet, or the Akita mutation. It will be particularly 

interesting to see how well the translatome profiles align under different models of ER 

stress. The similarities may help to develop a general model of beta cell stress 

response, whereas the differences will reveal how the cell tailors its response to different 

stressors.  

Mining for motifs in UTR 

One advantage to collecting data on a global scale is the ability to look for patterns. In 

particular, it would be interesting to mine the data set to identify similarities in the 

untranslated regions (UTRs) of genes that are up-regulated in response to stress. This 

type of analysis has the potential to reveal characteristics of a transcript that allow 

translation to progress during times of stress. A similar approach was undertaken by 

Thoreen et al to identify a 5’ terminal oligopyrimidine (TOP) motif present in transcripts 

whose translation was dependent on mTORC1 [158]. It is likely that these motifs are 

important in stress response as well, given the role of mTORC1 in regulating protein 

synthesis [159–161].  

Ribosome profiling 

One limitation of the TRAP methodology as described is that it does not account for 

changes in the density of ribosome binding per transcript. For example, one ribosome 

bound to one mRNA will theoretically result in far less translated protein than ten 
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ribosomes bound to the same mRNA. The methodology used in Chapter 5 does not 

account for those differences. However, the data obtained can still be used to identify 

large changes in translational efficiencies. Looking at individual ribosome footprinting 

would allow for a more fine-tuned picture. In this process, ribosome-associated mRNA is 

isolated as described above and subsequently subjected to RNase digestion. mRNA that 

is bound by ribosomes will be protected from digestion. Sequencing the protected mRNA 

will therefore provide quantification of how many ribosomes were associated with each 

transcript.  
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