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The Application and Challenges of RNA-Sequencing to the Study of
Circadian Rhythms

Abstract
The circadian clock drives daily rhythms in behavior and physiology, often in anticipation of the coming dusk
or dawn. Almost all organisms possess an internal time-keeper, as it represents an adaptation to one of the
most ancient selective pressures; the day-night cycle. Mounting evidence suggests the clock plays important
roles in critical metabolic and signalling pathways, the sleep/wake cycle, immune function, as well as learning
and memory. Perhaps more importantly, misregulation of the clock is associated with metabolic disorders,
neurodegeneration, and incidence of cancer. In an effort to unlock the connections between the circadian
clock and these downstream effects, researchers have searched for genes with rhytmic transcription driven by
the clock. These so-called clock-controlled genes (CCGs) mediate these observed rhythms in important
biological pathways.

Over the past decade, researchers have searched for these CCGs using microarrays. However, with the
growing popularity of high-throughput sequencing, and revelations about both the number and importance of
non-coding RNAs (ncRNAs), investigators have begun to use RNA-seq for their circadian profiles. While
RNA-seq has led to important findings about the circadian regulation of RNA editing, small RNAs, and
epigenetic modifications, there is still much about its biases and limitations that we are still discovering. To
this end, this thesis seeks to build upon this foundation and examine the use of RNA-seq for studying
circadian transcription. I applied a hybrid RNA-seq, microarray approach to assay the circading transcriptome
in liver, and eleven other mouse tissues. Notably, I saw that 1/3rd of ncRNAs conserved between human and
mouse show rhythmic transcription. These rhythmic transcripts are strong candidates for future functional
validation, and include important miRNA and snoRNA precursors. Additionaly, I found hundreds novel
ncRNAs with rhythmic expression, which may provide novel CCGs. Lastly, I developped and applied a
method for identifying the sources of bias in RNA-seq protocols. Taken together, this work extends our
understanding of the circadian transcriptome, and the challenges associated with interpreting RNA-seq data.
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ABSTRACT 

THE APPLICATION AND CHALLENGES OF RNA-SEQUENCING TO THE STUDY 

OF CIRCADIAN RHYTHMS 

Nicholas F. Lahens 

John B. Hogenesch 

 

 The circadian clock drives daily rhythms in behavior and physiology, often in 

anticipation of the coming dusk or dawn. Almost all organisms possess an internal time-

keeper, as it represents an adaptation to one of the most ancient selective pressures; the 

day-night cycle. Mounting evidence suggests the clock plays important roles in critical 

metabolic and signalling pathways, the sleep/wake cycle, immune function, as well as 

learning and memory. Perhaps more importantly, misregulation of the clock is associated 

with metabolic disorders, neurodegeneration, and incidence of cancer. In an effort to 

unlock the connections between the circadian clock and these downstream effects, 

researchers have searched for genes with rhytmic transcription driven by the clock. These 

so-called clock-controlled genes (CCGs) mediate these observed rhythms in important 

biological pathways. 

 Over the past decade, researchers have searched for these CCGs using 

microarrays. However, with the growing popularity of high-throughput sequencing, and 

revelations about both the number and importance of non-coding RNAs (ncRNAs), 

investigators have begun to use RNA-seq for their circadian profiles. While RNA-seq has 
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led to important findings about the circadian regulation of RNA editing, small RNAs, and 

epigenetic modifications, there is still much about its biases and limitations that we are 

still discovering. To this end, this thesis seeks to build upon this foundation and examine 

the use of RNA-seq for studying circadian transcription. I applied a hybrid RNA-seq, 

microarray approach to assay the circading transcriptome in liver,  and eleven other 

mouse tissues. Notably, I saw that 1/3rd of ncRNAs conserved between human and 

mouse show rhythmic transcription. These rhythmic transcripts are strong candidates for 

future functional validation, and include important miRNA and snoRNA precursors. 

Additionaly, I found hundreds novel ncRNAs with rhythmic expression, which may 

provide novel CCGs. Lastly, I developped and applied a method for identifying the 

sources of bias in RNA-seq protocols. Taken together, this work extends our 

understanding of the circadian transcriptome, and the challenges associated with 

interpreting RNA-seq data. 
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Chapter 1: Introduction 

1.1 Background 

The circadian clock 

 The day-night cycle represents one of the most ancient environmental stimuli 

under which life has evolved on Earth. As a result, nearly every organism on the planet 

maintains an internal time-keeper, known as the circadian clock (in Latin: circa = 

around/about, and diem = day). This internal clock oscillates with a period of roughly 24 

hours, and allows organisms to anticipate the coming of dawn and dusk. A diverse set of 

behaviors, biological processes, and diseases are under circadian regulation and/or 

affected by circadian disruption. These include sleep, body temperature, blood pressure, 

memory, neurodegeneration, and metabolic disorder, just to name a few [1–8]. 

The molecular basis for these organism-level rhythms consists of a 

transcriptional/translational negative feedback loop. The transcriptional activators 

CLOCK/NPAS2 [9, 10] and BMAL1 form a heterodimer that binds E/E’-box DNA 

sequence motifs in gene promoters. This heterodimer activates the transcription of the 

circadian repressors Per1, Per2, Per3, Cry1, and Cry2. Following their translation, the 

PER and CRY proteins form a complex, and translocate back into the nucleus. Once in 

the nucleus, they repress their own transcription by inhibiting the activity of CLOCK and 

BMAL1. As PER and CRY levels drop due to targeted degradation, CLOCK and 

BMAL1 activity is restored, and the cycle begins again. This cycle of activation and 

repression takes roughly 24 hours to complete, providing the molecular mechanism for 
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circadian time-keeping. A second, stabilizing loop modulates Bmal1 and Cry1 

expression. This secondary loop consists of the transcriptional activators Rora, Rorb, and 

Rorc, and the transcriptional repressors Rev-erbα and Rev-erbβ [11–14]. For a more 

thorough review of the core clock, please consult the following papers [15, 16]. 

The core oscillator is present and active in most cells throughout the body [17–

19]. However, the central time-keeper, or master oscillator, in the mammalian circadian 

system is contained in the suprachiasmatic nucleus (SCN) of the hypothalamus. 

Knocking out the molecular clock in the SCN, or damaging/removing the SCN itself 

disrupts behavioral rhythms [20, 21]. The SCN is entrained by light input received 

directly from the retina through melanopsin-positive ganglion cells [22, 23]. Most other 

tissues maintain local or peripheral oscillators. These peripheral oscillators are capable of 

sustained rhythms, but all are entrained by the master oscillator present in the SCN. This 

cascade of light signaling through the retina, to the SCN, and on to the peripheral 

oscillators, keeps the internal clocks throughout an organism running in phase with the 

environmental day-night cycle [24–26]. 

Clock-controlled genes 

The core, molecular oscillator is able to drive rhythms in other cellular and 

physiological processes by regulating the expression of clock-output or clock-controlled 

genes (CCGs). In some cases, this regulation is direct. For instance, Dbp, Tef, and Hlf are 

direct targets of CLOCK/BMAL1 binding [27, 28]. Many of these direct targets regulate 

the expression of downstream CCGs [29]. The direct CLOCK/BMAL1 target Dbp binds 
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D-box promoter elements and can drive rhythmic expression in genes downstream of the 

core oscillator [30]. It is through this cascade of oscillating expression in direct and 

indirect CCGs, that the molecular clock is able to affect a wide array of biological 

processes. For example, rate-limiting enzymes in cholesterol biosynthesis (Hmgcr), bile 

acid synthesis (Cyp7a1), catecholamine synthesis (Th), and catecholamine degradation 

(Maoa), all have expression affected by the clock [31–35]. 

Finding clock-controlled genes 

 Given their rhythmic expression, and their role as mediators of the clock’s effect 

on downstream biology, the research community has expended significant effort to 

identify CCGs across a wide range of tissues and model organisms [34, 36–54]. Since the 

turn of the century, the primary workhorse for these studies has been the DNA 

microarray. The genome scale data provided by microarrays has allowed researchers in 

the clock field to not only identify individual clock genes, but explore clock regulation at 

the level of gene networks, and draw comparisons between different organs. These 

studies lead to the finding that CCGs in the SCN are enriched in pathways for peptide 

synthesis, secretion, and redox state, while those in the liver regulate various metabolic 

pathways, and those in the heart are associated with G-protein-coupled receptor signaling 

[34, 36]. While a CCG may oscillate in a particular set of tissues, it is still unclear 

whether these rhythms are driven by the local organ clock, or the master clock in the 

SCN. To address this question, later studies used transgenic mice with disrupted Clock 

and Bmal1 expression in the SCN or peripheral tissues [37, 38]. They found that while 



4 

 

the majority of CCGs appear to be driven by local clocks, there is a small subset that may 

receive their cues from the master oscillator. Researchers also noted that by increasing 

sampling resolution of their circadian tissue collections (eg. collect RNA every 2 hours, 

instead of every 4 hours), they decreased noise in their ability to accurately detect 

oscillating genes [39]. Studies that applied this philosophy were able to find greater 

numbers of CCGs, as well as genes displaying sub-circadian rhythms (cyclers with 12-

hour and 8-hour periods) [40]. These recent studies have also brought to light the need to 

carefully design experiments to identify CCGs, and to select analysis algorithms that 

complement this experimental design [55]. 

 While their use led to these great advances in the circadian field, microarrays are 

not without their disadvantages. The first disadvantage is not specific to microarrays, but 

arises more from assumptions made when designing these CCG-focused experiments. 

Most CCGs are ultimately acting at the protein level. Researchers use RNA expression as 

a proxy for the protein quantity. While it would be ideal to look for rhythms in protein 

activity at the genome-level, our ability to detect proteins and their activity remains 

limited with current technology. At present, nucleic acids are simply a more tractable 

molecule to study at scale. Secondly, microarrays are limited by the composition of their 

probesets. In other words, an array can only assay transcripts for which it has matching 

probes. Manufacturers have sought to mitigate this shortcoming by increasing the number 

and diversity of probesets included in successive versions of their arrays. Alternatively, 

one could use a tiling array covering the entire genome, but this approach is not feasible 
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for organisms with larger genomes (like humans and mice). Lastly, microarrays do not 

yield nucleotide-level information or splicing information. Some researchers and 

manufactures have developed specialized exon and splicing arrays to partially overcome 

this deficit. In fact, one study used exon arrays to identify a set of CCGs in the liver with 

clock-regulated splicing [41]. Despite these limitations, microarrays still offer an efficient 

and effective means to quantify RNA expression.  

RNA-sequencing 

 Over the past six years, high-throughput sequencing of RNA (RNA-seq) has 

emerged as a potential successor to microarrays for studying transcriptomics. Though 

there are multiple implementations of the RNA-seq paradigm, all involve reading 

sequences from a massive number of RNA fragments at the resolution of individual base 

pairs. It is this massive number of sequences that differentiate RNA-seq from traditional 

Sanger sequencing. In the context of this dissertation, RNA-seq refers specifically 

Illumina's implementation, unless otherwise stated. Briefly, RNA-seq begins with the 

fragmentation of RNA into short fragments (100 ~ 1000 bp), which are subsequently 

converted to cDNA. Since most RNA samples consist of 90-99% ribosomal RNA, these 

first steps are commonly preceded by some form of polyA selection or rRNA-depletion. 

After cDNA generation, special adapters are ligated to the cDNA fragments. This in turn 

is most commonly followed by a PCR step to enrich the quantity of cDNA fragments 

with ligated adapters. These adapters will serve as primers during the sequencing 

reaction. Next, the cDNA fragments are immobilized on a flow cell and amplified in 
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place through a bridge PCR reaction. This leaves clusters of cDNA fragments that are all 

copies of the original that was bound to the flowcell. The sequencing-by-synthesis 

reaction is carried out through the incorporation of special fluorescent nucleotides with 

reversible terminators, which prevent the addition of more than one nucleotide at a time. 

Next, the flow cell is scanned with a laser to determine which nucleotides were 

incorporated (each nucleotide has a different fluorescent color associated with it). Finally, 

the 3’ terminator and flurophore are removed and the colonies are ready for the addition 

of the next nucleotide. These steps of nucleotide incorporation, base imaging, and 

terminator cleavage are repeated to yield short sequence reads ranging from 35-300 bp in 

length. For paired-end sequencing, the sequencing reaction is repeated from the opposite 

end of the cDNA fragments. This yields two reads with a range (dependent upon the 

fragmentation kinetics) of possible distances between them, making them easier to map 

to a reference genome. For further details on this procedure, consult the following papers 

[56–59]. 

Analyzing RNA-seq data 

 After generating these short reads, the next stage in the process is to map them 

back to a reference genome. The sequencing machine produces a text file containing a list 

of nucleotide sequences. This information is relatively useless unless we can identify 

which transcripts these sequence reads originated from. This is the problem solved by the 

alignment step. At its core, the alignment step involves sorting through all possible 

genomic locations for the one that provides the best match for a given sequence. The 
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alignment step must perform this task efficiently, as it needs to repeat this millions of 

times (once for each read). Early aligners, like Bowtie [60], used a method based upon 

the Burrows-Wheeler transform to both rapidly query the reference genome for possible 

alignments, and to shrink the reference genome down to a size small enough to fit into 

the main memory of most desktop computers. While this made the aligners quick and 

memory efficient, these aligners suffered from decreased accuracy [61]. They tended to 

have difficulty handling sequencing errors, SNPs, and gapped alignments, which 

commonly arise from reads mapping across splice junctions. These problems 

compounded as the length of reads has steadily increased from 35 bp. The current 

generation of aligners achieve high accuracy and speed by leaving the reference genome 

uncompressed [62–64]. This effectively trades off memory efficiency for speed; a human 

sized genome requires roughly 30 GB of RAM. However, by storing the entire reference 

in an uncompressed state, these aligners can quickly access the reference genome and 

find alignments, without suffering from the inaccuracies introduced by a memory 

transformation function. 

Comparing RNA-seq to microarrays 

 RNA-seq offers several advantages over microarrays. The most substantial 

difference being that RNA-seq is not limited to specific probe regions. In theory, RNA-

seq should be able to assay any transcript originating from anywhere in the genome, 

regardless of prior knowledge. For quantification, RNA-seq possesses a higher dynamic 

range than microarrays [65, 66]. RNA-seq provides a greater depth of information in the 
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form of nucleotide-level data. This allows for the detection of RNA-editing, as well as 

genetic variants [48, 67]. Also, RNA-seq data can identify the splicing state of transcripts 

by searching for reads that span splice junctions (ie. two thirds of the reads map to one 

exon, and one third map to another exon) [68–70]. This, in theory, allows RNA-seq data 

to differentiate between different transcript isoforms. While RNA-seq offers several 

advantages of microarrays, it is not without its shortcomings. 

 Given the relative youth of RNA-seq, when compared to microarrays, there are 

substantial biases and challenges present when handling and analyzing RNA-seq data. 

These biases/challenges come in two forms: those introduced by the molecular biology of 

library preparation and sequencing, and those introduced during downstream 

bioinformatics analyses. The molecular biology involved in library preparation and 

sequencing itself can introduce biases that lead to over-/under-representation of particular 

transcripts or genomic regions. These can arise from GC-content biases, PCR artifacts, 

preferential adapter ligation to particular sequences, random-priming during reverse 

transcription, and errors introduced during the actual sequencing reaction [71–75]. Many 

of these artifacts are cause by the biases inherent to the enzymes that catalyze the various 

steps during library preparation and sequencing. These biases are mostly likely overcome 

by making changes to the protocol, like using different enzymes or devising methods for 

skipping particularly troublesome steps (like PCR enrichment). Alignment and analysis 

of RNA-seq data also presents several challenges. Importantly, RNA-seq data requires 

significantly greater computational resources, both in terms of storage and CPU speed, 
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than microarrays [76]. Also, while it is theoretically possible to quantify different 

transcript isoforms, this is an extremely difficult problem to address given current read 

lengths. Current methods for quantifying isoforms produce significant numbers of false 

positives in the form of incorrectly assembled transcripts [77]. These biases introduced 

by biology and informatics compound to make it extremely difficult to accurately 

quantify transcripts and identify differentially expression genes [78]. Microarrays offer a 

comparatively simple and accurate analysis pipeline. They are a mature technology and 

we have come to understand their associated biases [79, 80]. As a result, bias analysis in 

RNA-seq remains a very active area of research. 

Clock-controlled genes and RNA-seq 

 Despite these challenges and its recent adoption, RNA-seq offers great promise in 

the search for CCGs. Circadian studies using RNA-seq have found evidence of 

oscillations in RNA editing, as well as novel and non-coding transcripts [44, 48]. Other 

studies have used specialized RNA-seq protocols to differentiate between accumulated 

RNA transcripts, and nascent transcripts in the process of being actively transcribed [49, 

50]. These studies found transcripts with rhythmic RNA accumulation, but no rhythms in 

transcription, suggesting these transcripts may owe their oscillations to post-

transcriptional processes like RNA degradation. Researchers have also leveraged ChIP-

seq experiments to find loci with coordinated rhythms in clock factor binding, transcripts, 

and epigenetic chromatin marks [42–47, 54]. These complementary approaches have 

added to previous findings from the microarray studies in the liver. Not only did they 
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confirm oscillation in these metabolic genes, but they found their transcriptional rhythms 

appear to be driven by both BMAL1 and REV-ERBα binding. Additionally, these studies 

revealed the temporal sequence of chromatin events leading to rhythmic transcription. 

Finally, researchers have also begun to search for CCGs among non-coding RNAs 

(ncRNAs) [48, 51, 53]. These include snoRNA host genes, miRNAs, and novel 

transcripts. Many of these transcripts were missed by previous studies, since they were 

not included on any microarrays. While there is little functional information about many 

of these non-coding transcripts, there is emerging evidence of their importance for 

downstream processes like sleep, and their ability to feedback into the clock [52, 81]. 

1.2 Motivation and thesis outline 

 RNA-seq has experienced explosive popularity since its introduction. When this 

thesis project began in August of 2009, there were 46 datasets stored in GEO that 

featured the keyword “RNA-seq.” As of June 2014, there are 6,286. Researchers across 

all fields have sought to leverage this technology, and the circadian field is no exception. 

In the search for oscillating transcripts, recent studies have used RNA-seq to add to the 

strong foundation already established by microarray data. As I mentioned in the 

background, this work has revealed a great deal more complexity in circadian 

transcriptional control, especially in the area of ncRNAs. However, many of these studies 

focused on single tissues. Furthermore, while RNA-seq has proven extremely powerful, it 

is a relatively new technology, and we are still coming to grips with its limitations and 
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biases. The work presented in this thesis demonstrates the utility and challenges of using 

RNA-sequencing, with a focus on the circadian system and ncRNAs.  

Chapter 2 describes a hybrid circadian expression profile which uses both 

microarrays and RNA-seq to identify oscillating transcripts. I demonstrate the utility of 

this combined approach and examine core clock gene splicing and ncRNAs present in the 

mouse liver. In chapter 3 I apply this technique to twelve different mouse tissues in order 

to study the circadian non-coding transcriptome. I identify oscillating transcripts 

conserved between humans and mice, as well as hundreds of putative lincRNAs and 

antisense transcripts. Chapter 4 describes a technique to assess the sources of coverage 

bias in sequencing protocols. Using this technique, I identify rRNA-depletion as a 

significant source of bias that has been previously unappreciated. In chapter 5, I discuss 

the future of this work and additional experiments which will expand upon my existing 

findings. Finally, in chapter 6 I conclude this thesis by summarizing my work and 

discussing its significant findings. 
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Chapter 2: A combined DNA array and RNA sequencing 

approach to profiling circadian transcription in the mouse 

liver 

2.1 Abstract 

The circadian clock regulates biological rhythms of ~ 24 hours in most organisms. 

The molecular clock is comprised of transcriptional regulators that drive rhythmic 

expression of key mediators of physiology and behavior. Here we apply a combined 

approach using high resolution temporal profiling by DNA arrays with lower resolution 

temporal profiling by RNA sequencing to profile clock regulated gene transcription in 

mouse liver. This hybrid approach allows us to leverage array data to identify oscillating 

transcripts with a high degree of accuracy, and then explore the structure and splicing 

patterns of these transcripts. Analysis of this data demonstrates the importance of 

sampling resolution when designing experiments to identify oscillating transcripts. 

Furthermore, we show that more than half of core clock factors express alternatively 

spliced forms concurrently in mouse liver. Interestingly, we find several forms of non-

coding RNAs, including microRNAs and long non-coding RNAs, exhibit high amplitude 

circadian rhythms.  These results provide a more complete picture of circadian 

transcriptional output and identify new clock-controlled genes. 
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2.2 Introduction 

The circadian clock is a cell-autonomous molecular mechanism that drives daily 

rhythms in behavior, physiology, and metabolism [3–5]. Dysfunction in the clock has 

been linked to a wide array of diseases, including sleep and metabolic disorders [1, 2, 6]. 

Oscillations of the clock at the molecular level are driven by the interactions of two 

transcriptional/translational negative-feedback loops [82]. The main loop consists of the 

transcriptional activators Clock, Bmal1, and Npas2 [9, 10, 83]. These transcriptional 

activators drive the transcription of, and are subsequently repressed by the repressors 

Per1, Per2, Per3, Cry1, and Cry2 [16]. The secondary loop consisting of Nr1d1, Nr1d2, 

Rora, Rorb, and Rorc, further modulates the transcription of Bmal1 and Cry1 [11–13]. 

Rhythmic expression of these core clock genes in turn drives oscillations in the 

expression of their target genes, also known as clock controlled genes (CCGs). It is 

largely through these CCGs that the circadian clock is able to influence various biological 

pathways [27]. 

Since CCGs mediate the circadian clock’s biological influence, researchers have 

spent a great deal of time and effort profiling the expression of oscillating transcripts [36–

38, 84]. Over the past decade, DNA microarrays have been the primary tool used for this 

purpose. These arrays have proven extremely useful due to their low cost and well-

established analysis methods [85].  Nevertheless, DNA microarrays can only assay a 

finite, defined set of loci and/or transcripts. Given the well-trodden state of this array-

based approach to circadian expression profiling , circadian researchers would benefit 
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from a new approach and a leap in technology to progress beyond what we can currently 

see, particularly to assess the rich diversity of ncRNAs in the transcriptome. 

One such alternative is high-throughput sequencing of RNA/cDNA (RNA-seq). 

This technology provides several advantages over DNA microarrays, including the ability 

to profile virtually any transcribed region of the genome, and analyze alternative splicing 

by sequencing exon-exon junctions [57, 65, 68]. Researchers have successfully used 

RNA-seq for circadian profiling in  several model organisms [44, 48, 53, 86].  

Nevertheless, the monetary costs and investment of time required for RNA-Seq 

analyses – both for the bench top and computational work – is prohibitively expensive for 

many applications [76, 87, 88].  This is particularly relevant to studies of circadian 

transcription, which are exquisitely sensitive to sampling resolution and require large 

sample sizes [39].  Therefore, we have developed a hybrid approach that combines the 

advantages of DNA arrays with the un-paralleled sequence resolution of RNA-Seq.  

Using this method, we analyze circadian transcriptional rhythms in the mouse liver and 

demonstrate that alternative splicing generates extensive diversity among clock genes.  

Additionally, we sequenced liver RNA of Clock
Δ19

 mutant mice and found that the loss of 

the molecular clock did not alter the splicing patterns of core clock genes. Finally, we 

identify many ncRNAs that oscillate with high-amplitude in the liver, and appear to be 

regulated by the clock. These results reveal a greater degree of diversity in the 

mammalian circadian liver transcriptome than previous array-based studies and broaden 

the list of CCGs to include new classes of ncRNAs. 
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2.3 Results 

Sampling resolution in circadian experiments 

We collected liver mRNA every six hours for two days (8 samples total) from 

wildtype animals, and every six hours for one day (4 samples total) from Clock
Δ19

 mutant 

animals. This mutation results in the loss of exon 19 from the mature Clock transcript and 

produces a dominant-negative form of the CLOCK protein [89, 90]. The mutant CLOCK 

interacts with and inhibits the function of BMAL1, thereby eliminating oscillations of the 

core molecular clock and leading to behavioral arrhythmicity in constant conditions [38, 

89]. We sequenced all of these mRNA samples using the Illumina GA IIx platform, 

yielding ~46 gigabases of sequencing data (see section 2.5 Methods). We successfully 

mapped 94% - 97% of the  raw reads to the mouse genome (Table S2.1) using the RNA-

seq Unified Mapper (RUM) [61]. Additionally, we sequenced mRNA from the livers of 

mice with the Clock
Δ19

 mutation collected every six hours for one day (4 samples total). 

To identify genes with rhythmic transcription, we used quantification values for each 

transcript generated by RUM for the wildtype samples and analyzed them with 

JTK_CYCLE [91]. This analysis yielded 1166 genes with rhythmic transcription. 

We compared these 1166 oscillating genes from our RNA-seq data with a 

previous DNA array study which identified over 3000 oscillating genes in mouse liver 

[40]. In practice, the RNA-seq data found at most 12% of the oscillating genes identified 

by the array study (Fig. 2.1A). Aside from the difference in technology (sequencing vs. 

arrays), the principal difference between these two experiments is the sampling resolution 
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(every 6 hours vs. every hour). However, when we looked at Bmal1, Per2, and Dbp, three 

clock genes identified as oscillating by both the arrays and RNA-seq, we saw excellent 

agreement between the two data sets (Fig. 2.2B). These observations led us to examine 

the effects of sampling resolution on our ability to accurately identify oscillating genes. 

To simulate different sampling resolutions we took the Hughes et al. data set [40] 

(one hour resolution), and sampled different subsets (ie. every other array = two hour 

resolution, every third array = three hour resolution, etc.). We then analyzed each of these 

smaller data sets using JTK_CYCLE, and compared the results to the one hour data set, 

which served as our gold standard. We saw a steep drop-off in our ability to identify 

oscillating genes in the gold standard as we increased the time between samplings (Fig. 

2.2A; upper panel). Additionally, we saw a reciprocal increase in the number of false 

positives (genes incorrectly identified as oscillating when compared to the gold standard) 

as we increased the time between samples (Fig. 2.2A; lower panel). For example, the four 

hour resolution data correctly identified 26% of the gold standard at the lowest levels of 

statistical stringency, with a false positive rate of 24%. The statistical weakness of low 

sampling resolutions is particularly apparent when one day of data is analyzed rather than 

two (Fig. 2.2B). The four-hour resolution data from a single day correctly identifies 13% 

of the gold standard with a false positive rate of 72%. These data indicate that as the 

sampling resolution for a circadian time course experiment decreases, the ability to 

correctly identify oscillating genes drops drastically. Furthermore, this effect appears to 

be more extreme for data collected over a single day instead of two. Thusly, data 
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spanning multiple days allow us to see the repeated expression patterns that are the 

hallmark of rhythmic genes. Based on these data, we recommend collecting data over two 

days at no less than two-hour resolution for the most accurate profile of circadian 

transcription. 

These simulations with the Hughes et al. data explained the low concordance 

between the RNA-seq and array data sets. The six-hour resolution from the array 

simulation (same resolution as the RNA-seq experiment) has a 50% false positive rate 

and only correctly identifies 11% of the gold standard as oscillating (Fig. 2.2A). This is 

extremely close to the RNA-seq data, which has a false positive rate of 58% and correctly 

identifies 12% of the gold standard. Furthermore, comparing the overlap between the lists 

of cycling genes identified in the six-hour array data set and in the one-hour array data set 

is remarkably similar to the previous RNA-seq vs. arrays comparison (Fig. S2.1). These 

results suggest that the differences we saw are likely the result of sampling resolution, 

rather than a difference in technology. 

 Transcript diversity of clock genes 

Next, to characterize splicing of rhythmically expressed genes we leveraged the 

structural data from RNA-seq with the high temporal resolution of the array data set. To 

this end we used the Hughes et al. array data, re-analyzed with JTK_CYCLE, as a first 

pass to identify oscillating genes. We performed this re-analysis because JTK_CYCLE 

has greater sensitivity and specificity than the algorithms originally used to identify 

oscillating genes in the array data [91]. We then used RNA-seq to examine the splicing 
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patterns of these oscillating genes. Of the 4016 oscillating genes identified by the arrays 

(JTK q-value < 0.05), 2530 express more than one spliceform in our wildtype RNA-seq 

data (see section 2.5 Methods). 

We are particularly interested in alternative splice forms of core clock genes.  The 

majority of core clock genes (16 of 19) have multiple annotated spliceforms, with over 

half of those expressing multiple spliceforms in the liver (Table 2.1). Furthermore, our 

Clock
Δ19 

RNA-seq data showed little change in the spliceform usage of core clock genes.  

While we detected fewer spliceforms for Per3 and Csnk1a1 in the Clock
Δ19

 samples than 

in the wildtype samples, this is likely due to the loss of amplitude in cycling genes shown 

in a previous study [38]. The expression levels of these alternative transcripts may simply 

be too low to detect. This evidence for expression comes in the form of RNA-seq reads 

which map across exon-exon junctions. By examining which junctions are used, we 

determined which transcripts are expressed. We focused subsequent analyses on three 

key circadian genes: Clock, Dbp, and Tef. Each of these genes concurrently express both 

a principal, well-studied spliceform (Fig. 2.3A; orange gene models), and at least one 

minor, but less well-studied spliceform (Fig. 2.3A; purple gene models). In the case of 

Clock, we saw the spliceform skipping exon 18 (Fig. 2.3A; top panel), which was 

originally identified during the positional cloning of Clock [90]. For Dbp, there was a 

spliceform skipping exon 2 (Fig. 2.3A; middle panel). Finally, in the case of Tef, we saw 

a spliceform with an extra exon added between the first and second (Fig. 2.3A; bottom 

panel). We validated that spliceforms from the same gene are expressed and oscillate in 



19 

 

phase with each other using spliceform-specific qPCR primers in wildtype samples (Fig. 

2.3B). These spliceforms were also expressed in the Clock
Δ19

 samples, but were 

arrhythmic and expressed at extremely low levels (Fig. S2.2). Taken together, these 

results not only confirm the concurrent expression of multiple spliceforms in clock genes, 

but also suggest that transcription and splicing may co-occur for these genes.  

Alternative transcriptional start site in Dbp intron 

In addition to alternative splicing, we also saw many genes with expression peaks 

located within their introns. We have seen 853 oscillating genes with intronic expression 

(RPKM of intron is at least 10% of those for adjacent exons) in the wildtype samples. We 

chose to focus on Dbp because of its importance as a well-characterized circadian output 

gene in the liver [92]. According to RNA-seq coverage plots, there is an expressed peak 

located in Dbp’s first intron (Fig. 2.4A). We did not detect this peak in our RNA-seq data 

from the Clock
Δ19

 samples (Fig. S2.3A), which is likely due to the extreme loss of 

amplitude in Dbp expression we observed previously (Fig. S2.2B). This peak oscillates in 

phase with the remainder of the transcript, and has amplitude similar to that of the 

surrounding exons. This result was confirmed by quantitative PCR, from an independent 

tissue collection, using primers specific to the intronic sequence (Fig. 2.4B; lower panel), 

and the mature spliced transcript (Fig. 2.4B; upper panel). These results provide strong 

evidence that this peak is expressed, and that it oscillates with the remainder of the Dbp 

transcript. 
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There are three likely explanations for this peak in expression: 1) It is a novel 

exon spliced into the Dbp transcript. 2) It is a small RNA that is processed from the 

spliced intronic sequence, similar to Mir132 and Mir212 [93]. 3) It represents a novel, 

alternative transcriptional start site (TSS) for another Dbp spliceform. However, there 

was no evidence of splice junctions connecting this peak to any exons in the Dbp 

transcript (Fig. S2.3A), which suggests this is not a novel exon. The height of this peak in 

the RNA-seq data suggested that this was not simply a retained intron.  To determine the 

size of the transcript(s) containing this intron, we performed a northern blot with probes 

specific to the region of the intronic peak as well as the spliced junction between exons 1 

and 2 (Fig. 2.4C). For the splice junction probe, we saw bands at the appropriate lengths 

for Dbp pre-mRNA and the mature spliced transcript, as expected (Fig. 2.4C; upper 

panel). For the intron probe, we saw the expected pre-mRNAs (Fig. 2.4C; lower panel). 

However, rather than seeing a short length band corresponding to a small RNA, we saw a 

band of a similar length to the mature spliced Dbp mRNA. Furthermore, since we 

performed the northern blot using mouse liver RNA samples from the peak and trough of 

Dbp expression (CT34 and CT46 respectively), we saw that all of these bands oscillate 

together. Interestingly, a recent study has found evidence of rhythmic CLOCK/BMAL1 

binding, and rhythmic changes in histone modifications directly upstream of this intronic 

peak in expression [44]. These histone modifications include H3K4me3, a marker for 

active promoters [94], as well as H3K9ac and H3K27ac, which are also associated with 

promoters [95, 96]. This site of rhythmic clock factor binding and chromatin modification 
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is located within the first intron of Dbp and is independent of the binding/chromatin 

signal present at the annotated TSS. These new data indicate this intronic transcript is not 

a small RNA, but rather an alternative TSS. To test this hypothesis, we performed a 5’ 

RACE experiment and did in fact find evidence of a TSS in Dbp’s first intron 

corresponding to the beginning of this peak in intronic expression (Fig. S2.3C). Taken 

together, all of these results suggest that an alternative form of Dbp is transcribed from an 

alternative TSS located in its first intron. This alternative, un-annotated TSS is similar to 

those found for Clock and Timeless in Drosophila [48].  

A cycling miRNA cluster 

In addition to robust expression within introns, we were also surprised to see 

RNA-seq coverage of miRNAs. Given that our RNA isolation and library construction 

methods were not optimized for small RNAs, those RNA-seq reads aligning to miRNA 

loci (taken from miRbase [97]) are likely from the larger, primary transcripts. We were 

very interested to examine miRNAs from a circadian perspective, since previous work 

has shown they play an important role in the regulation of the Drosophila clock [52]. 

None of these loci oscillated in our wildtype samples when analyzed by JTK_CYCLE.  

This is likely due to the low sampling resolution of this study, and the fact that the 

annotations we used were limited to stem-loop sequences. Through manual curation and 

visual inspection of the top hits near the significance threshold for oscillation, we found 

several members of a miRNA cluster with a primary transcripts that oscillate (Fig. 2.5A). 

This cluster, located on chromosome 7, consists of Mir290, Mir291a, Mir292, Mir291b, 
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Mir293, Mir294, and Mir295. Interestingly, the annotated locations of the stem-loop 

structures correspond to dips in the RNA-seq coverage plot (Fig. 2.5A). Given the high 

degree of RNA secondary structure associated with the stem-loop region, it is possible 

that this drop in coverage is due to the inaccessibility of the RNA during library 

construction. We tested three regions by qPCR: Mir292, Mir291b, and the putative TSS 

for this miRNA cluster (Fig. 2.5B). Each of these regions showed consistent, low-

amplitude oscillations. Additionally, we saw loss of these oscillations in our Clock
Δ19

 

samples (Fig. S2.4), indicating expression at these loci is regulated at least in part by the 

molecular clock. These miRNAs have largely been characterized in mouse ES cells [98], 

so little is known about their role in liver biology. 

Novel circadian lincRNAs 

From the wildtype RNA-seq data, we found seven oscillating junctions in 

intergenic regions that were not part of any known transcript, raising the possibility that 

our data includes novel, clock-regulated transcripts.  We chose to focus on two of these 

loci, located on chromosomes 6 and 7 (Fig. 2.6). Interestingly, the structure of the 

adjacent junctions from the RNA-seq data (Fig. 2.6A and B; middle panels) forms 

putative exons from their boundaries (Fig. 2.6A and B; bottom panels). These putative 

exons correspond to peaks in the coverage plot (Fig. 2.6A and B; top panels). This is true 

even for the chromosome 6 locus, despite the relatively noisy coverage plot. In the case 

of the chromosome 7 locus, the putative exons line up almost exactly with peaks in the 

coverage plots. We were able to confirm that they are rhythmically expressed using 
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custom designed qPCR primers (Fig. 2.6C). Interestingly, when we examined these same 

transcripts in the Clock
Δ19

 samples, they continued to oscillate but at a different phase 

than in the wildtype livers (Fig. 2.6C). This suggests that the clock influences the 

expression of these novel trancripts, but is not the sole driver. Additionally, we used the 

PCR primers to clone and sequence their amplicons, and confirm the presence of the 

spliced forms of these transcripts (see Appendix B). Our RNA-seq data define the 

boundaries and structure of the chromosome 7 transcript most clearly, predicting a 

transcript length of 1843 bp. We performed Northern blots using probes specific to the 

same spliced regions assayed by the qPCR primers (Fig. 2.6D). These probes hybridized 

in bands of the same size predicted by RNA-seq. Having confirmed their expression, we 

examined the sequences for these putative transcripts for ORFs and found none, which 

indicates these transcripts likely do not have protein-coding potential. Additionally, we 

performed a BLASTX search using these transcript sequences to determine if proteins 

produced by these transcripts are similar to any known protein. BLASTX yielded no 

results, which provides further evidence that these transcripts are non-coding. Taken 

together, these data suggest these putative transcripts are long non-coding intergenic 

RNAs (lincRNAs). 
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2.4 Discussion 

This study presents a combined RNA-seq and DNA microarray analysis of 

circadian transcriptional rhythms, revealing a high degree of diversity in oscillating 

transcripts. This hybrid approach has many significant advantages, notably combining the 

ease and affordability of DNA microarrays to conduct high-resolution studies, with the 

un-biased resolution of RNA-seq. Our hybrid approach will prove useful for future 

studies, since it allows us to leverage the vast amount of pre-existing array data to bolster 

the ability of RNA-seq studies to accurately identify oscillating transcripts. In an effort to 

make this data available to the community, we have integrated our RNA-seq data into the 

web interface we use for circadian microarray profiles 

(http://bioinf.itmat.upenn.edu/circa) [99].    

We also demonstrated how a circadian profiling experiment’s power to accurately 

identify oscillating transcripts is greatly influenced by sampling resolution. To this end, 

we recommend collecting a minimum of 24 samples (1-hour resolution for 1-day study, 

2-hour resolution for 2-day study, etc.) to accurately identify the majority of oscillating 

transcripts, while limiting the number of false positives (Fig. 2.2). Given the substantial 

investment of time and resources required to both perform and analyze a circadian profile 

by RNA-seq, researchers may be limited to a lower than ideal sampling resolution. The 

integration of cheaper or pre-existing microarray data with RNA-seq provides one way of 

alleviating this problem. 

http://bioinf.itmat.upenn.edu/circa
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Our RNA-seq data have also shown that most genes with rhythmic transcription 

express multiple spliceforms at the same time. This diversity in oscillating transcripts has 

not been previously seen by microarrays due to the limitations of the technology. While 

there are exceptions [41], the general trend appears to be that alternative transcripts from 

the same gene are regulated together and accumulate with the same phase and period. 

This trend is in agreement with previous RNA-seq studies performed in Drosophila and 

Arabidopsis [48, 100]. One of the best uses for this splicing information in future studies 

may be for comparing spliceform usage of rhythmic genes across different tissues. 

In addition to alternative splicing, our RNA-seq data have allowed us to identify 

oscillating, non-coding RNAs. We used RNA-seq to characterize novel oscillating 

transcripts that appear to be non-coding (Fig. 2.6). Our finding that RNA-seq is capable 

of identifying novel circadian clock genes is in agreement with previous studies [48, 53]. 

Furthermore, lncRNAs are an ideal place to look for new clock components, since new 

lncRNAs are continually being discovered [101], and there is emerging evidence of their 

involvement in cancer and disease [102, 103]. Given the existence of many transcripts 

that are not polyadenylated [104], future studies using rRNA depletion, as well as RNA 

isolation and library construction techniques optimized for small  RNAs may find a 

greater number of novel oscillating transcripts and miRNAs in the mammalian system. 

Additionally, since novel transcripts and miRNAs are traditionally not detectable by 

arrays, it is likely there are more oscillating transcripts of this kind that will require 

sequencing at a higher temporal resolution to accurately identify. The miRNA cluster 
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centered around Mir292 (Fig. 2.5) that we did identify as oscillating appears to be 

involved in mouse ES cell stress response [105].  Interestingly, Casp2 and Ei24, two of 

the validated targets of this miRNA cluster involved in stress response, are themselves 

rhythmically transcribed [40]. Previous studies demonstrating that the clock and CCGs 

can be regulated by miRNAs [52, 106, 107] emphasize the need to include small RNA 

sequencing in future profiling experiments, and we have demonstrated that RNA-seq is 

capable of profiling the larger, miRNA primary transcripts. Furthermore, given that our 

focus has previously been restricted to protein-coding transcripts, due largely to 

technological limitations, it is likely that non-coding RNAs hold great promise for future 

studies as a source of novel CCGs and clock regulators.  
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2.5 Methods 

Circadian tissue collection 

Mouse liver tissue was collected as previously described [40]. Briefly, WT 6-

week old male C57/BL6 mice were acquired from Jackson Labs; Clock
Δ19

 mice were 

prepared as previously described [38]. Mice were entrained to a 12-h:12-h light:dark 

schedule for 1 week before being shifted to total darkness. Mice were supplied with food 

and water ad libidum. Starting at CT18, 3-5 mice were sacrificed in the darkness every 6 

hours for 2 days. Livers samples were quickly dissected and snap-frozen in liquid 

nitrogen. Liver samples used for quantitative PCR were collected in the same manner, 

except collection began at CT24 and continued every 2 hours for 2 days. All animal 

experiments were performed in accordance with the approval of the Institutional Animal 

Care and Use Committee. 

RNA-seq library preparation 

Liver samples were homogenized in Trizol reagent (Invitrogen) using a 

Tissuelyser homogenizer (Qiagen). RNA was extracted using RNeasy columns according 

to the manufacturer’s protocol (Qiagen). For the full library preparation protocol, please 

see Appendix C. Briefly, equal quantities of total RNA were mixed from 3 animals for 

each time point. Total RNA was subjected to two rounds of poly(A) selection with 

Dynabeads (Invitrogen). The mRNA was fragmented for 5 minutes by metal-ion 

hydrolysis (Ambion), and then used as a template for a random-primed cDNA generation. 

Following a second-strand synthesis reaction, and a phenol-chloroform extraction, cDNA 
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fragments were prepared for sequencing by an end-repair reaction. Blunted fragments 

were adenylated to create a single A overhang, and Illumina adapters were ligated to 

these sticky ends. Library fragments were size-selected by gel electrophoresis (350-

550bp), and amplified by 13 PCR cycles. 

Library sequencing and analysis 

RNA-seq libraries were each sequenced in a single lane on the Illumina Genome 

Analyzer IIx, using the 100bp paired-end chemistry. Raw reads were aligned to the 

mouse genome (mm9/NCBI37) using the RNA-seq Unified Mapper [61]. Transcripts 

were quantified by RUM using the UCSC [108], Refseq [109], and Vega [110] gene 

annotations. Quantification values were tested for oscillations using the JTK_CYCLE 

[91] package in R. miRNAs from the miRbase annotations v18 [97] were also quantified 

and tested for oscillations. For all junction analyses, only those junctions identified by 

RNA-seq reads mapping at least 8 bp on each side were used. A junction was classified 

as novel if it did not appear in any of the following annotations: Vega, UCSC, 

Transcriptome, SGP, RefSeq, Other RefSeq, NSCAN, Genscan, GeneId, Esnsembl and 

AceView [108–116]. Each of these annotation tracks was downloaded from the UCSC 

Genome Browser. Genes with alternative splicing were identified by searching for splice 

junctions with identical start coordinates, but different end coordinates (and vice versa). 

We have made our raw RNA-seq data and aligned results freely available on GEO 

(accession numbers: GSE40190 and GSE41082). 

Sampling resolution simulation 
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The gold standard of oscillating genes was determined by analyzing the Hughes 

1-hour data set [40] with the JTK_CYCLE [91] package in R. A 2-hour sampling 

resolution was simulated by taking data from every second array from the Hughes data 

set, beginning with CT18, and using JTK_CYCLE to identify oscillating genes. A 3-hour 

sampling resolution was simulated by taking data from every third array, and so on, up to 

a 10-hour sampling resolution. A one-day data set was simulated by repeating the above 

process, but only using arrays from the first day of sampling (CT18-CT41). The one-day 

simulation used a maximum resolution of 8-hours. For the comparison, a true positive 

was defined as a gene identified as oscillating in both the simulated data set and the gold 

standard. A false positive was defined as a gene identified as oscillating by the simulated 

data set, but not by the gold standard. The one-day simulation with replicates used time 

points separated by 24 hours as replicates for each other. For example, CT42 served as a 

replicate for CT18. 

Quantitative PCR 

0.5 µg of total RNA, pooled from 3 liver samples, was used to generate cDNA 

with the QuantiTect Reverse Transcription kit according to manufacturer’s protocol 

(Qiagen). Quantitative PCR reactions were performed using SYBR Green PCR Master 

Mix (Applied Biosystems) in combination with custom primers on 7900 HT Real-Time 

PCR System (Applied Biosystems). Rps18 (Mm_Rps18_1_SG) was used as endogenous 

control for all qPCR experiments. Information for this primer is available from the 

manufacturer’s website (Qiagen). Primer pairs were designed using NCBI Primer-
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BLAST [117] and ordered from Integrated DNA Technologies. Sequences for primer 

pairs are included in Table S2.2. All analysis was performed using RQ Manager v1.2.1 

(Applied Biosystems). 

5-prime RACE 

Total RNA was isolated from mouse livers collected at the peak phase of Dbp 

expression (CT34). The RNA was used for 5-prime race using FirstChoice RLM Race 

Kit (Applied Biosystems) and Superscript III (Invitrogen) by manufacturer’s protocols. 

Race products generated using forward primers included with kit and reverse primers 

used for Dbp qPCR primers (see Table S2.2). These products were visualized on a 2% 

agarose gel, purified using MinElute Gel Purification columns (Qiagen), and sequenced 

to confirm their identities. 

Northern blots 

Templates for Northern probes were generated from qPCR amplicons. Briefly, 

amplicons were run on a 2% agarose gel following qPCR reactions and purified using 

MinElute Gel Purification kit (Qiagen) by manufacturer’s protocol. Purified amplicons 

were cloned using TOPO TA Cloning Kit (Invitrogen) by manufacturer’s protocol. 

Templates verified by sequencing (sequences included in Appendix B). RNA for 

Northern blots was isolated from frozen mouse liver samples (collected as described 

above) by TRIzol according to manufacturer’s protocol (Invitrogen). For the Dbp 

Northern blots, 40 µg of total RNA was subjected to poly(A) purification by Dynabeads 

according to manufacturer’s protocol (Invitrogen). Northern Blots performed using 
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NorthernMax Kit according to manufacturer’s protocols (Ambion). Briefly, 700 ng of 

poly(A) RNA (Dbp) or 20 µg of total RNA (novel chr7 transcript) were run on a 1.5% 

denaturing agarose gel. RNA was transferred to Amersham Hybond-N+ membrane (GE 

Life Sciences) by downward transfer using a TurboBlotter (Whatman). RNA was 

crosslinked to membrane using a UV Stratalinker 2400 (Stratagene) using the Auto Cross 

Link setting. Oligonucleotide probes incorporating P-32 alpha dCTP were synthesized 

from the probe template using Prime-It II Random Primer Labeling Kit (Agilent) and 

unincorporated nucleotides were removed using Micro Bio-Spin Chromatography 

Columns (Biorad), according to manufacturer’s protocols. Probes were hybridized 

overnight in an Isotemp Hybridization Incubator (Fisher) at 46ºC. Hybridized probes 

were exposed to a Storage Phosphor Screen (GE Life Sciences) overnight and imaged 

using a Storm 840 Phosphorimager (Molecular Dynamics). 
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2.6 Tables 

Table 2.1: Core clock spliceforms expressed in RNA-seq data. 

Clock 

genes 

Annotated 

spliceforms1 

Detected in 

wild-type 

Detected in 

Clock
Δ19

 

Clock 6 4 33 

Npas2 1 1 1 

Arntl 7 3 3 

Arntl2 3 1 1 

Cry1 1 1 1 

Cry2 2 1 1 

Per1 5 3 3 

Per2 2 1 1 

Per3 6 3 2 

Fbxl3 3 2 2 

Fbxl21 4 2 2 

Nr1d1 1 1 1 

Nr1d2 2 1 1 

Rora 4 2 2 

Rorb2 5 0 0 

Rorc 5 3 3 

Csnk1a1 6 4 3 

Csnk1d 4 3 3 

Csnk1e 2 2 2 

 
1
 derived from visual inspection of UCSC, Refseq, Ensemble, & NSCAN annotations 

2
 not expressed in RNA-seq data set 

3
 The loss of exon 19 in the mutant masks other spliceforms 
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2.7 Figures 
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Fig. 2.1: Comparison between RNA-seq and previous array study. 

(A) RNA-seq data and array data from Hughes et al. 2009, were analyzed with 

JTK_CYCLE to identify genes with oscillating transcripts. These gene lists were 

compared at different JTK q-value cutoffs of 0.05, 0.01, and 0.001 to determine the 

number of overlapping genes. For the RNA-seq data, JTK p-values were used instead of 

q-values due to the lower time resolution of the data set. (B) Expression profiles from 

Hughes et al. array data (blue) and wildtype RNA-seq data (red) for three genes identified 

as oscillating by both datasets: Dbp, Bmal1, and Per2. Grey and black bands identify 

times corresponding to subjective day and night, respectively. Array intensity plotted 

using the left y-axis and RNA-seq RPKM values plotted using the right y-axis. 
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Fig 2.2: Impact of time-resolution on circadian gene expression profiles. 

Circadian profiling studies of different sampling resolutions were simulated by taking 

different subsets of the Hughes et al. 2009 array data set and analyzing them with 

JTK_CYCLE. These subsets used data from (A) 2 days of the array data or (B) just the 

first day to simulate two day and one day experiments, respectively. The list of genes 

with oscillating transcripts from each of these subsets was compared to those identified 

by the full 2 day, one-hour resolution data set, which served as a gold standard. The 

percentage of genes with oscillating transcripts from a given subset that overlap with 

those from the gold standard served as an indicator of the true-positive rate for that subset 

(top panels). The percentages of genes that did not overlap with the gold standard served 

as the false-positive rate for that subset (bottom panels). These lists of oscillating genes 

identified by the subsets were calculated using JTK p-value cutoffs of 0.05, 0.01, and 

0.001, which the list from the gold standard always used a JTK q-value cutoff of 0.05. 
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Fig. 2.3: Multiple spliceforms of core clock genes. 

(A) Exon junctions mapped by RNA-seq data were used to identify major (blue junctions, 

orange gene models) and minor (green junctions, purple gene models) spliceforms for 

Clock, Dbp, and Tef. The numbers adjacent to the blue and green junctions are the 

number of gapped RNA-seq reads mapping to those junctions from a representative time 

point. (B) qPCR with primers specific to major (orange) and minor (purple) spliceforms 

shows expression of these spliceforms across two days. Grey and black bands identify 

times corresponding to subjective day and night, respectively. Expression of transcripts 

was normalized to Rps18. 
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Fig. 2.4: Expression peak in Dbp intron. 

(A) Wildtype RNA-seq coverage plots from four representative time points (CT47, 

CT53, CT59, CT65) are displayed above the Dbp gene model (purple). The gray bar 

highlights the region in the first intron showing rhythmic expression. Coverage plots are 

normalized by the total number of reads in in each RNA-seq sample. (B) qPCR with 

primers specific to the mature splice junction between the first and second exon (top), 

and the expressed region of the first intron (bottom) was used to detect expression of 

these transcripts in wildtype livers across two days. Grey and black bands identify times 

corresponding to subjective day and night, respectively. Expression of these transcripts 

was normalized to Rps18. (C) Northern blots with probes specific to the mature splice 

junction between the first and second exon (top), and the expressed intronic region 

(bottom) were used to determine the size of the transcripts associated with each of these 

regions. Poly(A) RNA for the Northern was collected from two independent, wildtype 

mouse livers at the peak (CT34) or trough (CT46) of Dbp expression. 
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Fig. 2.5: Oscillating miRNA cluster. 

A miRNA cluster containing Mir290, Mir291a, Mir292, Mir291b, Mir293, Mir294, and 

Mir295 is located at chr7:3,217,507-3,221,276. (A) Wildtype coverage plots for this 

genomic region from four representative time points (CT47, CT53, CT59, CT65) are 

displayed. The annotated locations of Mir292 (blue) and Mir291b (red), in addition to the 

putative TSS of the cluster (green) are displayed below the coverage plots. All coverage 

plots are normalized by the total number of reads in each sample. (B) qPCR with primers 

specific to Mir292 (blue), Mir291b (red), and the putative TSS (green) were used to 

detect expression in wildtype livers across two days. Grey and black bands identify times 

corresponding to subjective day and night, respectively. Expression of these transcripts 

was normalized to Rps18. 
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Fig. 2.6: Novel oscillating lincRNAs. 

Two putative transcripts were identified at (A) chr6:121,086,416-121,114,417 and (B) 

chr7:35,913,467-35,928,124. Representative RNA-seq coverage plots are displayed in 

red for each of these genomic regions. Numbers next to splice junctions (green) list the 

number of RNA-seq reads with gapped alignments identifying the corresponding 

junction. Locations of predicted exons displayed below junctions. (C) qPCR primers 

spanning multiple spliced exons were used to detect expression of novel transcripts 

across two days in wildtype (orange and blue) and Clock
Δ19

 (green and red) livers. Three 

primer pairs spanning exons 1-2, 1-3, and 2-4 were used for chr6 transcript (left panel), 

while two primer pairs spanning exons 1-3 and 2-4 were used for chr7 transcript (right 

panel). Grey and black bands identify times corresponding to subjective day and night, 

respectively. Expression of these transcripts was normalized to Rps18. (D) Northern blots 

with probes specific to the same regions assayed by qPCR were used to determine the 

size of the chr7 transcript. Total RNA for the Northern was collected from two 

independent, wildtype mouse livers collected at CT28. 
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2.7 Supplemental tables 

Table S2.1: RNA-seq alignment statistics. 

Sample 
Total Number 

of Reads 
% Mapped 

Uniquely % Mapped 

WT CT23 13577682 82.82% 95.80% 
WT CT29 12453604 84.73% 96.60% 
WT CT35 27943589 81.84% 95.80% 
WT CT41 12266671 84.34% 95.30% 
WT CT47 13279060 84.85% 97% 
WT CT53 13197401 84.07% 94.20% 
WT CT59 12198646 85.62% 96.40% 
WT CT65 14512233 83.43% 95.60% 

Clock-Mutant 

CT22 28873747 82.57% 96.1% 
Clock-Mutant 

CT28 28504730 85.63% 96.6% 
Clock-Mutant 

CT34 25768876 85.47% 95.1% 
Clock-Mutant 

CT40 27491918 85.95% 96% 
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Table S2.2: qPCR primer sequences. 

Target Gene Fw Primer (5' -> 3') Rv Primer (5' -> 3') 
Clock - Major  AGCCAGCGATGTCTCAAGCTGCA CATCCGTGTCCGCTGCTCTAGC 

Clock - Minor 

(Skip Ex 16) CGCAGTCTCAGACCCTTCCTCCA AACTGAGCTGAAAACTGAAACTGACT 

Dbp - Major CGGCCTCTGAGCGACAGGAC CACTAACGGCCCCACTCGGG 

Dbp - Minor 
(Skip Ex 2) CAAAGAACCGGCCAGCTGCTTGAC GACAGGGCGAGATCAGCGGGA 

Tef - Major GAAACCGTGTCCAGCACAGAATCG AGGTCGGCAGGGTCAGGGTT 

Tef - Minor 

(Extra Exon) TCCCCTACGATGGCGAGTCCT GGGTCCTCCTGTTCCATATGGCTG 

Dbp - Exons 1-2 GGAGCGCTGCTTGGGCTGAG GAGGGGACCCACCGCCACTA 

Dbp - Intron CCCGGGCCCCTAACCCTATCC GCCGTAGGGCAAAGACCCAGG 

mir292 AGGGCGGTTCAGTTGGGTGC ACCTGGCGGCACTTTTCTTCCG 

mir291b CGGCTTGGCGGGAAAGTGCA CAGCTGCAGCCGGCTTTTCA 

miRNA Cluter 

TSS AGCCTCCCCCACGCCTCTC GAAGCAGCACGCCGGAGGT 

Chr6 Novel 

Transcript - 

Ex1-2 
GCATCAGCTCCTGCTCCAGGTTC GCTTTCTACCCCACGGGGTCTCT 

Chr6 Novel 

Transcript - 

Ex1-3 
CAGCCTCTGCATCAGCTCCTGC GGTTCCTGGGACGCACTGGA 

Chr6 Novel 

Transcript - 
Ex2-4 

CCGTGGGGTAGAAAGCAGGAAGA TGGAGTGAGCGAACGAGCGTC 

Chr7 Novel 
Transcript - 

Ex1-3 
AAGGCAGCTCTTGGGCCTCACT GCAGTCTGTGGGACATGTGCC 

Chr7 Novel 

Transcript - 

Ex2-4 
CAAATGGTGACCCCTGCGCCTG TGCTTAGCTGGCCCCCAGTTG 
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2.8 Supplemental figures 

 

Fig. S2.1: Overlap between array data at 1-hour and 6-hour resolution. 

Hughes et al. 2009 array data at 1-hour resolution and a simulated 6-hour data set were 

analyzed with JTK_CYCLE to identify genes with oscillating transcripts. These gene lists 

were compared at different JTK q-value cutoffs of 0.05, 0.01, and 0.001 to determine the 

number of overlapping genes. For the 6-hour data, JTK p-values were used instead of q-

values due to the lower time resolution of the data set. 
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Fig. S2.2: Clock
Δ19 disrupts oscillations in Clock, Dbp and Tef expression. 

Major (left) and minor (right) spliceforms for Clock, Dbp, and Tef were used to assay 

wildtype (red) and Clock
Δ19

 (blue) liver RNA. These are the same qPCR primers used in 

Fig. 2.3B. Both spliceforms showed reduced expression in Clock
Δ19

 liver relative to 

wildtype liver. Grey and black bands identify times corresponding to subjective day and 

night, respectively. Expression of transcripts was normalized to Rps18. 
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Fig. S2.3: Exon-exon junctions and 5’ RACE suggest expression in Dbp intron 

corresponds to a TSS. 

(A) RNA-seq expression profiles for the entire Dbp transcript (left) and the first intron 

(right) are plotted for wildtype (blue) and Clock
Δ19

 (red) livers. RPKM expression values 

are plotted for a single day. Grey and black bands identify times corresponding to 

subjective day and night, respectively. (B) Exon-exon junctions (light blue traces above 

gene model) were identified by RNA-seq reads with gapped alignments mapping at least 

8 bp on each side. Number listed adjacent to each junction corresponds to the number of 

RNA-seq reads mapped to that junction. (C) Amplicon resulting from 5’ RACE using 

Dbp primers was sequenced and aligned to the genome using BLAT (black). RNA-seq 

coverage plot (red) and Dbp gene model (blue) are included for reference. 
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Fig. S2.4: Clock
Δ19 disrupts oscillations in miRNA cluster. 

qPCR with primers specific to Mir292 (middle), Mir291b (bottom), and the putative TSS 

(top) were used to detect expression in wildtype and Clock
Δ19

 livers across two days. 

These are the same primers used in Fig. 2.5B. Grey and black bands identify times 

corresponding to subjective day and night, respectively. Expression of these transcripts 

was normalized to Rps18. 
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Chapter 3: The circadian non-coding transcriptome across 

twelve mouse tissues 

3.1 Abstract 

 The circadian clock is a cell-autonomous, molecular oscillator that drives daily 

rhythms in behavior and physiology. Many studies have sought to identify oscillating 

transcripts in an effort to connect the molecular clock to these downstream rhythms in 

biology. The majority of this previous work has focused on protein-coding transcripts 

oscillating in one or two tissues. To characterize the role of the circadian clock in mouse 

physiology and behavior, we used RNA-seq and DNA arrays to quantify the non-coding 

transcriptomes of twelve mouse organs over time. We found that the expression of more 

than one thousand known and novel ncRNAs oscillate and are timed throughout the day. 

Supporting their potential role in mediating clock function, those ncRNAs conserved 

between mouse and human oscillate at the same rate as protein encoding genes. 

Furthermore, these conserved ncRNAs cover a broad range of functional groups, 

including potential regulators of rRNA biogenesis and cardiac health. The highly tissue-

specific nature of the oscillations in these ncRNAs indicates they are involved in highly-

specialized functions. Lastly, the broad scale of this data will provide an excellent 

resource for those investigators interesting in studying ncRNA expression at the system-

level. 
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3.2 Introduction 

Circadian rhythms are endogenous 24-hour oscillations in behavior and biological 

processes found in all kingdoms of life [118]. This internal clock allows an organism to 

adapt its physiology in anticipation of transitions between night and day. The circadian 

clock drives oscillations in a diverse set of biological processes, including sleep, 

locomotor activity, blood pressure, body temperature, and cellular redox state [2, 3, 7, 

119]. Disruption of normal circadian rhythms leads to clinically relevant disorders 

including neurodegeneration and metabolic disorders [6, 120]. In mammals, the 

molecular basis for these physiological rhythms arises from the interactions between two 

transcriptional/translational feedback loops [15, 16]. Many members of the core clock 

regulate the expression of other transcripts. These clock-controlled genes mediate the 

molecular clock’s effect on downstream rhythms in physiology. 

 In mammals, the core oscillator is located in the suprachiasmatic (SCN) nucleus 

of the hypothalamus. Other tissues contain peripheral oscillators capable of driving local 

rhythms in CCG transcription [1]. These peripheral oscillators receive input from the 

SCN in order to remain coordinated across the entire body and entrained to the correct 

time of day [24].  

 In an effort to identify new clock factors, and to study circadian physiology in 

different organisms, researchers have devoted significant time and effort to studying 

transcriptional rhythms in the SCN and the periphery [34, 40, 44, 49, 51, 121]. While 

these studies have traditionally been performed with microarrays, recent studies have 



56 

 

begun to adopt RNA-seq as the primary method for transcriptional analysis. This has the 

advantage of allowing researchers to identify novel circadian transcripts in the 

mammalian system, including long-intergenic non-coding (linc) RNAs, miRNAs, and 

antisense transcripts [44, 49, 51, 53]. While extremely informative, most circadian studies 

of this nature have analyzed one or two organs. This is particularly important for the 

characterization of circadian non-coding transcripts (ncRNAs), given the highly tissue-

specific nature of their expression [122–124]. Given the emerging roles of ncRNAs in 

gene regulation, disease, as drug targets, and as molecular markers [125–129], it is 

important that we design studies capable of identifying ncRNAs and their patterns of 

expression. To address this, we used strand-specific RNA-sequencing (RNA-seq) and 

DNA arrays to profile the transcriptomes of twelve different mouse organs: adrenal 

gland, aorta, brainstem, brown fat, cerebellum, heart, hypothalamus, kidney, liver, lung, 

skeletal muscle, and white fat. We sampled organs every 6 hours by RNA-seq and every 

2 hours by arrays. 
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3.3 Results 

Constructing the list of conserved, non-coding transcripts 

To identify conserved transcripts, we started with NONCODE v3 [130] 

annotations for mouse and human non-coding transcripts (33,801 human transcripts; 

36,991 mouse transcripts). To prevent overlapping ncRNAs from confounding the 

analysis (many of these appeared to be alternative spliceforms of the same ncRNAs), we 

merged all overlapping ncRNAs on the same strand. Next, we aligned the human and 

mouse transcripts against each other using BLAST [131]. Since ncRNAs have previously 

been shown to have relaxed constraints on sequence conservation [124], we ran blastn 

using the more permissive dc-megablast algorithm and a minimum e-value cutoff of 1E-

10. We then mined these BLAST results for pairs of human and mouse ncRNAs that 

were each other’s top BLAST hit (termed “reciprocal best hits”). Filtering for these 

reciprocal best hits left us with 1601 human and mouse transcript pairs, we termed 

conserved ncRNAs. We are confident in our ability to identify conserved ncRNAs using 

these relaxed BLAST parameters as we successfully found well-known, conserved 

ncRNAs like Xist, Tsix, Hotair, H19, and Gas5. 

To assign genes names and annotation data to these conserved transcripts, we 

aligned them to human and mouse RefSeq transcripts. At this point, we found that 585 of 

these conserved transcripts aligned to in the sense orientation to protein-coding genes in 

both humans and mice. Upon visual inspection of these ncRNAs, we found that many of 

these mapped along the entire length of the protein-coding transcripts. While some 
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ncRNAs in this list might represent non-coding isoforms of these protein-coding 

transcripts, we chose to take a conservative approach and removed these from further 

analysis. Following the removal of these transcripts, we were left with a final list of 1016 

conserved ncRNAs. Once again, our conservative approaches to generating this list of 

ncRNAs still retained well-known, conserved ncRNAs. This process is summarized in 

Fig. 3.1. 

Assign functional groups to conserved ncRNAs 

In order to assign basic functional categories to this list of conserved ncRNAs, we 

assigned biotypes (defined by GENCODE [132] and Ensembl [115]) to these transcripts 

using both the Ensembl annotation and manual curation (for full details, please see 

section 3.5 Methods). Briefly, we mapped the Ensembl biotypes to our list of conserved 

ncRNAs. Next, we identified miRNA host genes by checking for overlap between the 

genomic coordinates of the conserved ncRNAs, and the latest miRNA annotation from 

miRBase [97]. Following this, there were cases where a small number of ncRNAs 

mapped to related functional groups, like different categories of pseudo gene. In these 

instances, we collapsed the related functional groups together (eg. collapsing "snRNA" 

and "snoRNA" into "snoRNA_host"). Lastly, we assigned any ncRNAs from the 

"protein_coding" functional group to the "non-coding_isoform" group. We previously 

filtered out all transcripts aligning in sense orientation to protein-coding transcripts 

during construction of the list of conserved ncRNAs. Thus, we consider it most likely that 

any remaining genes from the "protein_coding" functional group  represent non-coding 
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isoforms of protein-coding genes. The breakdown of conserved ncRNAs by functional 

group is presented in Fig. 3.2. 

Rhythmic, conserved, non-coding RNAs 

We sought to leverage our stranded RNA-seq data to find oscillating ncRNAs. 

The multi-organ nature of our data makes it particularly well-suited for this purpose, due 

to the high degree of tissue-specificity in ncRNA expression [122–124]. To identify 

oscillating ncRNAs, we quantified both the conserved and non-conserved ncRNAs in our 

RNA-seq data across all twelve mouse organs, and analyzed this expression data using 

JTK_CYCLE [91]. For comparison purposes, we also quantified and analyzed protein-

coding transcripts across the entire RNA-seq dataset. We found that a higher percentage 

of conserved ncRNAs showed circadian expression, when compared to non-conserved 

ncRNAs (Fig. 3.3A). Furthermore, the percentage of circadian, conserved ncRNAs was 

very much in line with the protein-coding transcripts, suggesting that these ncRNAs are 

functionally relevant, and that they may be regulated by the clock. We also found that 

individual ncRNAs oscillate in, at most, five organs. This is likely a function of two 

factors: 1) lower sampling resolution (6-hour) in the RNA-seq data limited our power to 

identify all circadian transcripts (this is also the reason why we see protein-coding 

transcripts oscillating across fewer organs in the RNA-seq data, relative to the array data) 

and 2) ncRNAs are highly tissue-specific in their expression [122–124]. 

 The conserved, circadian ncRNAs covered a diverse set of functional groups (Fig. 

3.3B). There were 38 conserved ncRNAs antisense to coding genes, half of which were 
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antisense to coding genes that oscillated themselves. For example, Galt, a critical enzyme 

in the galactose-metabolism pathway, had an antisense transcript that oscillated in phase 

with its sense transcript, in liver (Fig. 3.4A, B). While Galt’s antisense transcript 

oscillated in phase, there did not appear to be any relationship between the phases of 

sense and antisense expression, across all of these antisense ncRNAs. We also find four 

circadian snoRNA host genes: Cbwd1, Snhg7, Snhg11, and Snhg12. Taking this last one 

as an example, Snhg12 oscillated in both brown adipose and hypothalamus (Fig. 3.4C, 

D). Previous work has already found that host genes for U snoRNAs show light-driven 

oscillations in Drosophila brains [48]. Given that our collection was performed in DD 

conditions, our data provides further evidence of the clock’s potential to influence 

ribosome biogenesis. 

 In addition to snoRNA host genes, we also found 30 circadian, miRNA host 

genes, each of which provides a possible avenue for the clock to regulate downstream 

physiological processes. For example, Mir22 is predicted to target Ptgs1/Cox1 

(prediction by TargetScan [133, 134]), an NSAID target implicated in the reduced 

incidence of myocardial infarction due to low-dose aspirin treatment [135]. The host 

transcript for Mir22 oscillates antiphase to Ptgs1 in both heart and lung (Fig. 3.5). Given 

that incidence of myocardial infarction shows a circadian rhythm [2, 136], it could be 

possible this effect is regulated in part by oscillations in Mir22hg and Ptgs1. Taken 

together, these cases provide only a few examples of the different biochemical pathways 

the clock could manipulate through regulation of non-coding transcripts. Annotation data 
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and the peak phase in expression for each conserved ncRNA are listed in Supplementary 

digital file S1 (see Appendix A for details). 

Novel antisense transcripts 

 In addition to the antisense transcripts we identified from the list of conserved 

ncRNAs, we also identified novel antisense loci. Briefly, we divided each gene into 1 KB 

tiles. We quantified read counts on both the plus and minus strand for each of these tiles. 

Next, we used expression data from the sense orientation to calculate background 

expression levels for each locus. For example, given a plus-strand transcript, we used all 

plus-strand reads mapping to intronic tiles to calculate the background level of 

expression. We identified all antisense tiles exceeding 10x this background level of 

expression. In order to focus on novel antisense transcription events, we filtered out all 

tiles overlapping known transcripts on the same strand. Lastly, we required all antisense 

transcripts consist of at least 3 adjacent tiles with expression above background. This 

procedure yielded a final list of 1,979 genes with un-annotated antisense transcripts, 187 

of which showed sense and antisense oscillations in the same organ. Of these, 43 

antisense transcripts oscillated at least eight hours out of phase with their sense 

transcripts. These antiphase oscillators may be the most likely antisense loci to have 

functional consequences. Genes with antiphase, antisense oscillators included Arntl and 

Per2 (Fig. 3.6). This previously-identified Per2 antisense transcript [44, 51] oscillated in 

five organs, the most of any antisense transcript, providing further evidence of its 

functional relevance. While it is currently unclear what functional role these novel 
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antisense transcripts play, they may provide the circadian clock with the ability to fine-

tune transcription of their sense transcripts. Annotation information and phase differences 

between sense and antisense transcripts are listed in Supplementary data file S2 (see 

Appendix A for details). 

Identifying putative lincRNAs 

 Given that RNA-seq data is not limited to a specific gene annotation, we sought to 

characterize novel lincRNAs. We began by collecting all reads that mapped across splice 

junctions (ie. reads with large gaps in their alignments). While this will cause us to miss 

single-exon transcripts, we have greater confidence that the data comes from a real, 

expressed transcripts if we see evidence of RNA splicing. To reduce the impact of 

spurious reads and noise, we required that splice junctions be mapped by a minimum of 

16 reads across our entire dataset (this corresponds to 2 reads per time point in a single 

organ). We chose a fairly low threshold so as not to remove junctions present in only a 

single organ, and those circadian transcripts expressed in a bursting patterns (like Dbp). 

Next, we filtered out any junction mapping within 1KB of any known gene, or 

overlapping any NONCODE transcript. All of these steps left us with 10,452 junctions 

from putative transcripts. We merged all junctions within 500 bp of each other to form 

5,154 putative, ncRNA transcript regions. 

 Of these 5,154 spliced, transcribed, putative ncRNAs, 712 oscillated in at least 

one organ. The percentages of these putative ncRNAs oscillating in multiple organs were 

much closer to those of the non-conserved ncRNAs, than to the conserved ncRNAs and 
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protein-coding genes (Fig. 3.3A). This is likely because the list of putative ncRNAs 

contains both conserved and non-conserved transcripts. Taking two of these novel 

ncRNAs as an example (originally characterized in chapter 2), we saw from the RNA-seq 

coverage data that they were clearly expressed (Fig. 3.7). The transcript from chr7 even 

appeared to have discrete coverage in exon blocks (Fig. 3.7A). Both of these transcripts 

showed oscillations across multiple tissues. The chr7 transcript oscillated in phase in both 

liver and brown adipose (Fig. 3.7B). Interestingly, the chr6 transcript oscillated antiphase 

in adrenal gland and liver (Fig. 3.7D). While neither of these transcripts have known 

functions, or ORFs, they are clearly spliced and showed rhythmic expression. These 

putative transcripts may represent completely novel genes and CCGs, and provide the 

circadian clock with as yet unknown means for controlling downstream processes and 

pathways. The full list of novel, oscillating transctips, their genominc coordinates, and 

the tissues in which they oscillated are listed in Supplementary digital file S3 (see 

Appendix A for details). 
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3.4 Discussion 

In this study we used RNA sequencing and DNA microarrays to characterize 

circadian oscillations in non-coding transcript expression across twelve mouse organs. 

We found a functionally diverse set of ncRNAs with rhythmic oscillations. The rhythms 

of these conserved ncRNAs tended to be highly organ-specific, which likely stems from 

the known expression patterns of most ncRNAs [122–124]. Those ncRNAs conserved 

between human and mouse oscillated with the same frequency as protein-coding genes, 

suggesting their functional importance. While some of these rhythmic ncRNAs have 

recognized functions, like snoRNA and miRNA host genes, little is known about the 

majority. As annotation efforts move forward, these oscillating ncRNAs may provide the 

most likely candidates for functional relevance. Furthermore, the oscillations of these 

ncRNAs may prove advantageous for functional studies e.g. by linking a cycling miRNA 

to its predicted target genes by comparing their cycles. 

 It is important that we continue to identify and characterize these ncRNAs, as 

mounting evidence suggests that they serve important functional roles in many biological 

and disease pathways [125–129]. Furthermore, the clock itself appears to be no exception 

for regulation by miRNAs and lincRNAs [52, 106, 107]. Not only does this functional 

importance suggest some ncRNAs are mediators of the clock's control of physiology, but 

it makes them potential candidates as drug targets. For example, the aspirin target, Ptgs1, 

shows rhythmic expression in the heart and lungs. We found the host gene for Mir22 

oscillates antiphase to Ptgs1, its predicted target, in these same tissues. Furthermore, mice 
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with a Mir22 deletion show increased sensititivity to cardiac stress [137]. Not only does 

this suggest Mir22 may regulated Ptgs1 expression, but it also makes Mir22hg itself a 

potential drug target. This is important as Ptgs1 is the direct aspirin target implicated as 

the cause for the cardioprotective properties of low-dose aspirin therapy [138]. Given that 

Mir22 targets Ptgs1, without targeting Ptgs2/Cox2, it may provide a means to fine-tune 

expression between these two important genes. 

 In addition to examining known ncRNAs, we have expanded the list of potential 

clock regulators and outputs genes by identifying several hundred novel, circadian 

lincRNAs and antisense transcripts. These include a Bmal1 antisense transcript, as well as 

the Per2 antisense transcript indentified by previous studies [44, 51]. Taken together, we 

hope this work will provide an excellent resource for investigators in the clock and 

ncRNA fields. This also serves to highlight the vast, relatively untapped potential of 

ncRNAs as a source for clock output genes. 
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3.5 Methods 

Circadian tissue collection 

 Mice were prepared for tissue collection as previously described [40]. Briefly, 6-

week old male C57/BL6 mice were acquired from Jackson Labs, entrained to a 12h:12h 

light:dark schedule for one week, then released into constant darkness. Starting at CT18 

post-release, three mice were sacrificed in the darkness every 2h, for 48 hours. Specimens 

from the following organs were quickly excised and snap-frozen in liquid nitrogen: aorta, 

adrenal gland, brainstem, brown adipose (anterior dorsum), cerebellum, heart, 

hypothalamus, kidney, liver, lung, skeletal muscle (gastrocnemius) and white adipose 

(epididymal). Food and water were supplied ad libidum at all stages prior to sacrifice. All 

procedures were approved by the Institutional Animal Care and Use Committee. 

Microarray analysis 

 Tissue samples were homogenized in Trizol reagent (Invitrogen) using a 

Tissuelyser homogenizer (Qiagen). RNA was extracted using RNeasy columns according 

to the manufacturer’s protocol (Qiagen). RNA abundances were quantified using 

Affymetrix MoGene 1.0 ST arrays and normalized using Affymetrix Expression Console 

software (GC-RMA). Probesets on the Affymetrix MoGene 1.0 ST array were cross-

referenced to best-matching gene symbols using Ensembl BioMart software, then filtered 

for known protein-coding status. The resulting 19,788 genes formed the protein-coding 

background set. These protein-coding genes were tested for oscillations with a period of 

24-hours using the JTK_CYCLE [91] package in R. 
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RNA-seq library preparation and sequencing 

 Pooled RNA samples across all tissues from CT22, CT28, CT34, CT40, CT46, 

CT52, CT58, and CT64 (96 samples total) were converted into Illumina sequencing 

libraries using the Illumina TruSeq Stranded mRNA HT Sample Preparation Kit, 

according to manufacturer’s protocol. Briefly, 1 ug of total RNA was polyA-selected, 

fragmented by metal-ion hydrolysis, and converted into double-stranded cDNA using 

Superscript II (Invitrogen). Next, the cDNA fragments were subjected to end-repair, 

adenylation, ligation of Illumina sequencing adapters, and PCR amplification. Libraries 

were pooled together in groups of six and sequenced in a single lane of an Illumina HiSeq 

2000 using the 100 bp paired-end chemistry (for a total of 16 lanes). 

RNA-seq analysis 

 Fastq files containing raw RNA-seq reads were aligned to the mouse genome 

(mm9/NCBI37) using STAR [63], with default parameters. All RNA-seq quantification 

was performed using HTSeq (http://www-huber.embl.de/users/anders/HTSeq), run in 

stranded mode with default parameters. Protein-coding genes were quantified using the 

Ensembl gene annotation [115]. All quantification values were normalized using DESeq2 

[139], and tested for oscillations with a period of 24-hours using the JTK_CYCLE [91] 

package in R. 

Identifying conserved ncRNAs from NONCODE database 

BED files listing genomics coordinates for human (33,801 transcripts) and mouse 

(36,991 transcripts) ncRNAs were downloaded from the NONCODE v3 database [130]. 
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Overlapping ncRNAs from the same strand were merged using the BEDTools suite 

[140]. This merge step reduced the number of ncRNA to 20,042 human and 27,286 

mouse transcripts. Using the coordinates for these merged transcripts and the UCSC 

Genome Browser [141], nucleotide sequences corresponding to each of these ncRNAs 

were downloaded in FASTA format. Next, separate human and mouse BLAST libraries 

were constructed from these ncRNA sequences by running the makeblastdb command 

with default parameters. Following this, the mouse ncRNA sequences were aligned 

against the human ncRNA BLAST library, and vice-versa. For this alignment, BLAST 

[131] was run with the following arguments: -evalue 1E-10 -max_target_seqs 1 -

num_threads 5 -task dc-megablast -strand plus. Only ncRNAs with reciprocal best hits 

were retained for further analysis. 

Sequences from these conserved ncRNAs, were aligned to human and mouse 

RefSeq [109] transcripts. For this alignment, BLAST was run with the following 

arguments: -evalue 1E-10 -max_target_seqs 1 -num_threads 5 -outfmt 6 -task dc-

megablast. The best hit from this RefSeq alignment was used to assign a gene name and 

RefSeq ID to each conserved ncRNA. All ncRNAs with an assigned RefSeq ID 

beginning with NM or XM (ie. from a protein-coding gene) in both humans and mice 

were excluded from further analysis. 

Assigning functional group to conserved transcripts 

 The GENCODE [132] and ENSEMBL [115] annotations define functional 

groups, or biotypes, for each transcript. Ensembl's Biomart interface 



69 

 

(http://www.ensembl.org/biomart/) was used to generate files that mapped Ensembl gene 

and transcript biotypes to corresponding RefSeq transcript IDs. These files were 

generated for both human (GRCh37.p13) and mouse (GRCm38.p2) transcripts. Using 

these files, functional groups were mapped to each conserved ncRNA, giving preference 

to the biotype listed for the mouse genes, when conflicts arose. 

 To identify miRNA host genes, annotations for human (last updated 6/24/2013) 

and mouse (last updated 6/24/2013) miRNAs were downloaded from miRBase [97]. The 

BEDTools suite [140] was used to identify conserved ncRNAs that overlap the miRBase 

miRNAs. Biotypes for these ncRNAs were changed to "miRNA_host." 

 Finally, several biotypes were only present for a few ncRNAs. If there were 

related biotypes present, they were collapsed into single categories: 1) 

"processed_transcript" and "misc_RNA," were collapsed into "lincRNA." 2) "snoRNA" 

and "snRNA," were collapsed into "snoRNA_host." Also, the biotypes for known 

snoRNA host genes Snhg11, Snhg12, and Snhg7, were changed to "snoRNA_host." 3) 

All biotypes including the word "pseudogene" were collapsed into a single "pseudogene" 

biotype. 4) "nonsense_mediated_decay" and "protein_coding" were collapsed into "non-

coding_isoform." 

Identify antisense transcription 

 A list of gene regions was created by taking the start and stop coordinates for each 

gene in the Ensembl annotation. All gene regions sharing the same gene name were 

merged into single loci representing all spliceforms for a given gene. This yielded 37,310 
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gene regions. A tiled annotation was created by adding 5 KB to the beginning and end of 

each gene region (to represent the promoter and 3' trailing regions), and then dividing the 

resulting region into 1 KB tiles. The operation started at the 5' end of each gene region, 

and continued sequentially until the end of the transcript. If the number of nucleotides in 

the gene region was not evenly divisible by 1000, the last tile's length was less than 1 KB. 

Reads mapping to the plus- and minus-strands for each of these tiles were quantified 

separately, using HTSeq (stranded mode with default parameters). 

 For each tile the background level of expression was calculate from the 10 closest 

tiles not overlapping exons (ie. intronic tiles). The background expression was calculated 

by taken the mean read count from these background tiles in the sense orientation, adding 

1 (to prevent divide-by-zero errors in subsequent calculations), and taking the floor of 

this value. Next, only antisense tiles exceeding 10x their background level of expression 

were kept for further analysis. This yielded 85,111 tiles across 16,374 genes. To focus on 

novel antisense transcripts, all tiles overlapping a known Ensembl or NONCODE gene 

were marked for exclusion from future analysis. This reduced the number of  tiles to 

23,943 across 7,056 genes. Antisense transcripts were assembled from spans of three or 

more adjacent tiles above background expression. Any putative transcript containing at 

least one tile marked as overlapping a known gene were excluded from further analysis. 

This analysis yielded 2,643 putative, antisense transcripts covering 2,291 genes. Reads 

mapping to these novel transcripts were quantified using HTSeq (stranded mode, with 

default parameters), and tested for 24-hour oscillations using JTK_CYCLE. The phases 
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for these antisense transcripts were compared to those of their overlapping, sense 

transcripts, derived from the microarray data. Some of the overlapping transcripts did not 

have corresponding array probes. This yielded a final list of 1,979 genes with novel 

antisense transcription events. 

Identify putative lincRNAs 

 The STAR output files with the SJ.out.tab extension store splice junctions 

identified by reads with gapped alignments. All junctions with < 16 mapped reads across 

all tissues and samples were filtered out. Next, any junctions mapping within 1KB of any 

Ensembl or Refseq [109] transcript, or overlapping with any NONCODE transcript were 

removed using the BEDTools suite. Lastly, all junctions within 500 bp of each other were 

merged to form the final list of putative non-coding loci. Expression values within these 

transcript regions were calculated, normalized, and checked for oscillations as described 

above.  

Data access 

We deposited all sequencing data in the NCBI Gene  Expression  Omnibus (GEO) under 

accession number GSE54652. We have also added our data to the web interface we use 

for high-throughput circadian profiles (http://bioinf.itmat.upenn.edu/circa). 
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3.6 Figures 

 

Fig. 3.1: Method overview for identifying conserved ncRNAs 
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Fig 3.2: Functional groups for conserved ncRNAs 
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Fig. 3.3: Characteristics of rhythmic ncRNAs. 

(A) Percentage of genes oscillating in the given number of organs. Data is displayed for 

protein-coding genes (green), conserved ncRNAs (blue), non-conserved ncRNAs (red), 

and novel, putative ncRNAs characterized in this study (purple). Note, this graph is cut 

off at a maximum of 3 organs. While there is data for genes oscillating in 4 and 5 organs, 

their numbers are so small that they are not readily visible on this graph. (B) Breakdown 

of functional groups for conserved ncRNAs with circadian expression. 

  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0 1 2 3

%
 o

f g
en

es

# of organs in which gene oscillates

protein-coding 

genes

conserved 

ncRNAs

non-conserved 

ncRNAs

novel ncRNAS

A B

non-coding 

isoform

39%

antisense

12%

none

13%

lincRNA

11%

pseudogene

13%

miRNA host

9%

snoRNA host

2%

other

1%

Circadian conserved ncRNAs



75 

 

 

  

Antisense ncRNA

20

60

100

140

18 24 30 36 42 48 54 60N
o

rm
a

li
z
e
d

 r
e
a

d
 

c
o

u
n

ts

Circadian time

Galt

800

1000

1200

1400

1600

18 24 30 36 42 48 54 60

N
o

rm
a

li
z
e
d

 a
rr

a
y

 

in
te

n
si

ty

Circadian time

Brown Adipose

100

200

300

400

500

18 24 30 36 42 48 54 60N
o

rm
a

li
z
e
d

 r
e
a

d
 

c
o

u
n

ts

Circadian time

Hypothalamus

100

200

300

400

18 24 30 36 42 48 54 60N
o

rm
a

li
z
e
d

 r
e
a

d
 

c
o

u
n

ts

Circadian time

A

B

C

D



76 

 

Fig. 3.4: Representative examples of conserved, oscillating ncRNAs. 

(A) RNA-seq coverage plot for Galt (red) and its antisense transcript (blue). The gene 

model for Galt is displayed above the coverage plots. (B) Expression profiles for Galt 

(red; data from microarrays) and the antisense transcripts (blue; data from RNA-seq). 

Gray regions indicate subjective night. (C) RNA-seq coverage plot for Snhg12. The gene 

model is displayed below the coverage plot. Note the locations of the mature snoRNA 

sequences located in the introns of Snhg12. (D) RNA-seq expression profiles for Snhg12 

in brown adipose and hypothalamus.  
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Fig. 3.5: Mir22hg expression is antiphase to its target Ptgs1. 

(A) RNA-seq coverage plot for Mir22hg. The gene model is displayed below the 

coverage plot. Note the location of the mature Mir22 sequence in the second exon of 

Mir22hg. (B) Expression profiles for Mir22hg (blue; data from RNA-seq) and its 

predicted target Ptgs1 (red; data from microarrays), from lung (left) and heart (right) 

samples. The blue traces use the y-axes on the right, and the red traces use the y-axes on 

the left.   
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Fig. 3.6: Antiphase, antisense transcripts of Arntl and Per2. 

(A) RNA-seq coverage plot for Arntl (red) and its antisense transcript (blue), from white 

adipose. The gene model for Arntl is displayed below the coverage plots. (B) Expression 

profiles for Arntl (red; data from microarrays) and the antisense transcripts (blue; data 

from RNA-seq), from white adipose and liver. Gray regions indicate subjective night. (C) 

RNA-seq coverage plot for Per2 (red) and its antisense transcript (blue), from liver. The 

gene model for Per2 is displayed below the coverage plots. (D) Expression profiles for 

Per2 (red) and the antisense transcript (blue) from liver, adrenal gland, lung, and kidney. 
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Fig. 3.7: Novel circadian ncRNAs. 

(A) RNA-seq coverage plot for novel transcript located on chr7:35,913,467-35,928,124 

(red). Note, there is some antisense transcription (blue) around the 5’ end of this 

transcript. (B) RNA-seq expression profiles for novel chr7 transcript in liver and brown 

adipose. Gray regions indicate subjective night. (C) RNA-seq coverage plot for novel 

transcript located on chr6:121,086,416-121,114,417 (red). (D) RNA-seq expression 

profiles for novel chr6 transcript in adrenal gland and liver.  
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Chapter 4: IVT-seq reveals extreme bias in RNA-sequencing 

4.1 Abstract 

RNA sequencing (RNA-seq) is a powerful technique for identifying and 

quantifying transcription and splicing events, both known and novel. However, given its 

recent development and the proliferation of library construction methods, understanding 

the bias it introduces is incomplete but critical to realizing its value. Here we present a 

method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the 

technical biases in RNA-seq library generation and sequencing at scale. We created a 

pool of > 1000 in vitro transcribed (IVT) RNAs from a full-length human cDNA library 

and sequenced them with poly-A and total RNA-seq, the most common protocols. 

Because each cDNA is full length and we show IVT is incredibly processive, each base 

in each transcript should be equivalently represented. However, with common RNA-seq 

applications and platforms, we find ~50% of transcripts have > 2-fold and ~10% have > 

10-fold differences in within-transcript sequence coverage. Strikingly, we also find > 6% 

of transcripts have regions of high, unpredictable sequencing coverage, where the same 

transcript varies dramatically in coverage between samples, confounding accurate 

determination of their expression. To get at causal factors, we used a combination of 

experimental and computational approaches to show that rRNA depletion is responsible 

for the most significant variability in coverage and that several sequence determinants 

also strongly influence representation. In sum, these results show the utility of IVT-seq in 

promoting better understanding of bias introduced by RNA-seq and suggest caution in its 
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interpretation. Furthermore, we find that rRNA-depletion is responsible for substantial, 

unappreciated biases in coverage. Perhaps most importantly, these coverage biases 

introduced during library preparation suggest exon level expression analysis may be 

inadvisable. 
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4.2 Introduction 

High-throughput sequencing of RNA (RNA-seq) is a powerful suite of techniques 

to understand transcriptional regulation. Using RNA-seq, not only can we perform 

traditional differential gene expression analysis with better resolution, we can now 

comprehensively study alternative splicing, RNA editing, allele specific expression, and 

identify novel transcripts, both coding and non-coding RNAs [58, 142, 143]. In contrast 

to the more established microarray based RNA expression analysis, the flexibility of 

RNA-seq has allowed for the development of many different protocols aimed at different 

goals (e.g. gene expression of poly adenylated transcripts, small RNA sequencing, total 

RNA sequencing, etc.). However, this same flexibility has the potential for complex 

technical bias, as different methods are routinely employed in RNA isolation, size 

selection, fragmentation, conversion to cDNA, amplification, and finally, sequencing 

[144–147]. While progress has been made in generating and analyzing RNA-seq data, we 

understand comparatively little about the technical biases the various protocols introduce. 

Understanding these biases is critical to differential analysis, to avoiding experimental 

artifacts (e.g. in characterizing RNA editing), and to realizing the full potential of this 

powerful technology. 

Previous efforts at understanding bias identified several contributing sources, 

including GC-content and PCR enrichment [71, 72], priming of reverse transcription by 

random hexamers [73], read errors introduced during the sequencing-by-synthesis 

reaction [74], and bias introduced by various methods of ribosomal RNA (rRNA) 
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subtraction [147]. Studies that revealed these sources of bias typically use computational 

methods on existing sequencing data to assess the performance of various sequencing 

technologies and library protocols. One downside to this approach is that it can be 

difficult to know whether anomalies in coverage are natural, or are due to technical 

artifacts. For example, nearly every RNA-seq study has differences in intra-exonal 

coverage, which could arise from naturally occurring splice variants sharing part of an 

exon, or could be due to technical error in library construction or sequencing. 

Given that researchers are continually developing new sequencing methodologies 

and library generation protocols [148], we need a means for assessing the technical biases 

introduced by each new iteration in technology. One attractive alternative is to generate 

libraries from RNA that has been in vitro transcribed (IVT) from cDNA clones, where 

the nucleotide sequence at every base is known, the splicing pattern established and 

inviolate, and the expression level is known to be uniform across the transcript. Thus, any 

observed biases in coverage or expression must be technical rather than biological. This 

is the experimental equivalent of simulated data that computational researchers 

commonly use to develop and assess alignment algorithms [61, 149, 150]. Jiang and 

colleagues used a similar approach with 96 synthetic sequences derived from Bacillus 

subtilis or the deep-sea vent microbe Methanocaldococcus jannaschii genomes [151], 

organisms that do not have RNA splicing or poly adenylation. The focus of that work, 

though, was creating a useful set of standards that could be used in downstream analysis, 
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not exploring library construction bias in a comprehensive set of complex mammalian 

samples. 

Here we present and apply IVT-seq at scale to better understand bias introduced 

by RNA-seq. In brief, individual plasmids were produced, pooled, and subjected to in 

vitro transcription. Next, this RNA was mixed with complex mouse total RNA at various 

concentrations, and sequenced using the two most common RNA-seq protocols, polyA 

seq or total RNA seq, on the Illumina platform. We find coverage bias in most IVT 

transcripts, with over 50% showing > 2-fold changes in within-transcript coverage and 

10% having > 10 fold differences attributable to library preparation and sequencing. 

Additionally, we find > 6% of IVT transcripts contain regions of high, unpredictable 

sequencing coverage, which vary significantly between samples. These biases are highly 

reproducible between replicates and suggest that exon-level quantification may be 

inadvisable. Furthermore, we created sequencing libraries from the original plasmid 

templates and using several different RNA selection methods (rRNA depletion, polyA 

selection, and no selection). We find that both rRNA depletion and polyA selection are 

responsible for a significant portion of this coverage bias, and computational analysis 

shows that poorly represented regions of transcripts are associated with low complexity 

sequences. Taken together, these results show the utility of the IVT-seq method for 

characterizing and identifying the sources of coverage bias in sequencing technologies. 
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4.3 Results and discussion 

IVT-seq library preparation and sequencing 

To generate IVT-seq libraries (for full details, please see the section 4.5 

Methods), individual glycerol stocks each harboring a single, human, fully sequenced 

plasmid from the Mammalian Gene Collection [152] were produced and plasmid DNA 

was extracted and plated at 50 ng per well in 384-well plates. The contents of three 384-

well plates containing a total of 1062 cDNA clones (Appendix D) were mixed, 

transformed into bacteria, and plated as single colonies. These plates were scraped, 

amplified for a few hours in liquid culture, and purified as a pool (Fig. 4.1A). Next, 

plasmids were linearized, purified, and SP6 polymerase was used to drive in vitro 

transcription of the cloned cDNA sequences (Fig. 4.1B). Following a DNase I treatment 

to remove the DNA template and RNA purification, a pool of 1062 different human 

RNAs derived from fully sequenced plasmids was produced. 

To approximate what happens in a total RNA sequencing reaction, we subjected 

this IVT RNA to rRNA-depletion and then prepared libraries using the Illumina TruSeq 

protocol (Fig. 4.1C, IVT only). To account for possible carrier effects, we also mixed the 

IVT RNA with various amounts of mouse total RNA derived from liver. The addition of 

the mouse RNA gave these samples greater diversity (transcripts from ~10k genes vs. 

1062) and more closely resembled a real biological sample. Also, by adding background 

RNA from a different species (mouse) than the IVT RNA (human), we make it easier to 

differentiate between the IVT transcripts and mouse sequences during downstream 
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analysis. Since the IVT RNA does not contain rRNA sequences while the mouse RNA 

does, the quantity of mouse RNA will be significantly reduced by the rRNA depletion 

step. In order to account for this we mixed IVT and mouse RNA such that following 

rRNA depletion we would have final pools with IVT:mouse ratios of 1:1, 1:2, and 1:10. 

Finally, to account for mouse RNAs potentially mapping to the human reference genome 

and our IVT sequences, we prepared a pool consisting of mouse RNA alone. We pooled 

the resulting six libraries and sequenced them using an Illumina HiSeq 2000. We 

performed this entire process in duplicate. 

Mapping and coverage of IVT-seq data 

Following sequencing and de-multiplexing, we aligned all of the data to the 

human reference genome (hg19) using the RNA-seq Unified Mapper (RUM) [61]. For all 

analyses, we only used data from reads uniquely mapped to the reference, excluding all 

multi-mappers (data contained in RUM_Unique and RUM_Unique.cov files). Of the 

1062 original IVT transcripts, we found 11 aligned to multiple genomic loci, while 88 

aligned to overlapping loci. To avoid any confounding effects in our analyses, we filtered 

those transcripts from all analyses, leaving us with 963, non-overlapping, uniquely-

aligned IVT transcripts. We saw excellent correlation in expression levels between 

replicates (transcript-level R
2
 between replicates > 0.95; Fig. S4.1A). Secondly, at least 

90% of the 963 IVT transcripts are expressed with an FPKM ≥ 5 in all IVT-seq datasets 

except mouse only (Table 4.1). In the IVT-only samples, over 80% of the IVT sequences 

are expressed above 100 FPKM (Fig. S4.1B). Since we prepared the MGC plasmids and 



88 

 

IVT transcripts as pools, it is likely that the IVT transcripts showing low or zero coverage 

were initially present at low plasmid concentrations prior to the transformation and IVT 

steps. Using the IVT-seq technique, we are able to specifically detect the vast majority of 

the human IVT transcripts with high coverage in both the absence and presence of the 

background mouse RNA. 

While we do see reads aligned to the human IVT transcripts in the mouse only 

data, these transcripts collectively represent ~2% of reads (Table 4.1). Those transcripts 

with higher coverage are likely the result of mouse reads aligning to highly similar 

human sequences. We excluded these sequences from our analyses. 

Within-transcript variation in RNA-seq coverage of IVT transcripts 

Consider first the IVT only data. Given that these transcripts were generated from 

an IVT reaction using cDNA sequences, this data is unaffected by splicing or other post-

transcriptional regulation. Thus, most regions of transcripts should be “expressed” and 

present at similar levels. The exceptions would be repetitive sequences that map to 

multiple genome locations and may be poorly represented, and the ends of the cDNAs, 

which are subject to fragmentation bias. To account for this we created a simulated 

dataset which models the fragmentation process and which deviates from uniform data 

only by the randomness incurred by fragmentation.  We generated two such datasets 

using the Benchmarker for Evaluating the Effectiveness of RNA-Seq Software (BEERS) 

[61]. The first dataset contains all of the IVT transcripts expressed at roughly the same 

level of expression (~500 FPKM). For the second, we used FPKM values from the IVT-



89 

 

only samples as a seed, creating a simulated dataset with expression levels closely 

matching real data (Fig. S4.2). These datasets are referred to as simulated and QM-

simulated (Quantity Matched), respectively. The simulated data provides an ideal result, 

while the QM data allows us to control for any artifacts arising from expression level (eg. 

transcripts with lower expression may show more variability). Next, we aligned both 

simulated datasets using RUM, with the same parameters as for the biological data. Thus, 

both simulated datasets also serve as a controls for any artifacts introduced by the 

alignment (eg. low coverage in repeat regions). For full details on the creation of 

simulated data, see the section 4.5 Methods. 

Using IVT data derived from the BC015891 transcript as a representative 

example, the ideal, theoretical coverage plot from the simulated data shows near-uniform 

coverage across the transcript’s entire length, with none of the extreme peaks and valleys 

characteristic of biological datasets (Fig. 4.2A). However, our observed data shows a 

high degree of variability, with peaks and valleys within an exon (Fig. 4.2B). 

Furthermore, these patterns are reproducible across our replicates (Fig. S4.3). We see 

many other cases of extreme changes in coverage; over 50% of the IVT transcripts show 

> 2-fold changes in within-transcript coverage attributable to library preparation and 

sequencing (Table 4.2 and Fig. S4.4). For example, BC009037 shows sudden dips to 

extremely low levels of expression in both of its exons (Fig. 4.2C). Both simulated 

datasets show no such patterns, which indicates this coverage variability is not the result 

of alignment artifacts. Furthermore, the absence of this pattern in the QM-simulated data 
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indicates these fold-change differences in coverage are not due to sampling noise 

introduced by transcripts with low or high coverage. In the case of BC016283, the peaks 

and valleys in coverage lead to greater than five-fold differences in expression levels 

between exons (Fig. 4.2D). Once again, these patterns are reproducible across replicates 

(Fig. S4.3). The SP6 polymerase cannot fall off and then re-attach at a later point in the 

transcript, leaving a region un-transcribed. Therefore, given that these patterns show 

troughs followed by peaks, they cannot be the result of artifacts from in vitro 

transcription. Furthermore, we sequenced the IVT products directly and found the vast 

majority were transcribed with little to no bias. Taken together, these data suggest that 

these coverage patterns are primarily the result of technical biases introduced during 

library construction, rather than biology. These results are consistent with a previous 

study that uses in vitro transcribed RNA as standards in RNA-seq experiments [151], 

suggesting that our IVT-seq methodology is suitable for identifying technical variability 

in sequencing data.  

Between-sample variation in RNA-seq coverage of IVT transcripts 

In addition to this variability within transcripts, we also find many transcript 

regions showing extreme variability in coverage across samples (Fig. 4.3). For example, 

the sixth exon of BC003355 varies wildly relative to the remainder of the transcript 

across all IVT:mouse dilutions. Interestingly, the overall pattern of variation relative to 

the rest of the transcript across the dilutions is maintained between the replicates. Almost 
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no reads in the mouse-only sample map to this transcript, which eliminates the possibility 

that this variability is due to incorrect alignment of mouse RNA. 

Including BC003355, we find 86 regions of high, unpredictable coverage (hunc) 

spread across 65 transcripts (Appendix E). Therefore, over 6% of the 963 IVT transcripts 

contain regions showing wild but reproducible variations in RNA-seq coverage between 

samples. While identifying these hunc regions, we used a two-stage filter to eliminate 

variable regions resulting from mouse reads mapped to highly similar human sequences. 

First, we eliminated all hunc regions coming from transcripts with FPKM >= 5 in either 

mouse-only dataset. Next, to account for localized misalignment of mouse reads, we 

filtered out all hunc regions with an average coverage >= 10 in either mouse-only dataset. 

We also removed those hunc regions with mouse-only coverage >= 10 in the flanking 

100bp on either side. Given the stringent criteria we used to identify these hunc regions 

(for full details see section 4.5 Methods), it is likely that this is an underestimate. To 

address the possibility that mouse RNAs may interact with homologous human RNAs 

and interfere with them in trans, we assayed the sequences surrounding these regions 

using the MEME Suite [153], but we found no sequence motifs these regions have in 

common. Furthermore, the depth of coverage at these regions does not follow a linear 

relationship with the increasing mouse RNA, which suggests it is not simply a direct 

interaction with the background RNA. There is no clear cause for these hunc regions, 

particularly since we prepared all samples from the same pool of IVT RNA and the only 

difference between samples is the relative ratios of IVT RNA to mouse liver RNA. We 
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also searched for hunc regions that were divergent between the two replicates, but found 

none. If such regions do exist, they could be identified and overcome by creating libraries 

in duplicate. The hunc regions we identified above with expression patterns maintained 

between replicates present a greater challenge, as they could not be identified and filtered 

out by creating duplicate libraries. This is particularly problematic for using exon-level 

expression values to identify alternative splicing events or differential expression. The 

within-transcript and between-sample variation we see in our IVT-seq data suggests that 

library generation introduces strong technical biases, which could confound attempts to 

study the underlying biology. 

Sources of variability in RNA-seq coverage 

There are three potential sources for technical bias in library preparation: RNA-

specific molecular biology (i.e. RNA fragmentation, reverse-transcription), RNA 

selection method (i.e. rRNA-depletion, polyA selection), and sequencing-specific 

molecular biology (i.e. adapter ligation, library enrichment, bridge PCR). To identify 

biases introduced solely by sequencing-specific molecular biology, we created a DNA-

seq library from the same MGC plasmids used as templates for the IVT-seq libraries (Fig. 

S4.5). In doing this, we skip the steps specific to the IVT or RNA molecular biology. We 

also prepared two additional IVT-seq libraries using polyA selection or no selection, 

instead of rRNA depletion. By comparing our plasmid library data and the IVT-seq data 

using various selection methods, we can identify which coverage patterns are the result of 
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RNA-specific molecular biology, the RNA selection method, or of some common aspect 

of the library generation protocol. 

We sequenced the plasmid library using an Illumina MiSeq and aligned the 

resulting data to the human reference genome using the same method as the IVT-seq 

libraries. In this plasmid data, we see 924 of the cDNA clone sequences with FPKM 

values ≥ 5, compared to ~870 in both of the IVT only samples (Table 4.1). This small 

drop in coverage is likely because the IVT RNA goes through more pooling steps during 

library construction than the plasmids. Furthermore, the plasmids are not affected by 

transcription and reverse transcription efficiencies. Additionally, the plasmid data maps 

to the cDNA sequences with an average, normalized coverage of 42.08, which is within 

the range of coverage values we see for the IVT-seq samples. We sequenced the no 

selection and polyA selection libraries on a HiSeq 2500. This data also shows cDNA 

clone coverage values similar to the other IVT-seq libraries. 

The plasmid data represents the “input” into the IVT reaction and the no selection 

data represents the closest measure of its direct output. By measuring the 3’/5’ ratio in 

depth of coverage for each IVT transcript, we can assess the processivity of the SP6 

polymerase. In a perfectly processive reaction, this 3’/5’ ratio would be 1, indicating the 

polymerase did not fall off the cDNA template and lead to the formation of truncated 

products. The median 3’/5’ ratios for the plasmid and no selection data were 1 and 0.98, 

respectively, indicating premature termination of the IVT reaction was not a factor in our 

analyses. 
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Effect of different RNA selection methods on coverage patterns 

Our analysis is illustrated by an examination of the coverage plots for BC003355 

across all of our different datasets.  The high degree of variability we noted in this gene's 

coverage plot from our rRNA-depleted data is absent in the no selection and plasmid data 

(Fig. 4.4A). While the polyA data also shows fewer peaks and valleys than the rRNA 

depleted total RNA-seq data, it is marked by the well-documented 3’ bias. This data 

suggests that the rRNA-depletion step is likely responsible for a large quantity of the 

observed coverage biases. 

To quantify the variability for each selection method, we calculated the 

coefficient of variation at the single base level in coverage for all IVT transcripts across 

each of these datasets (Fig. 4.4B). Using a Wilcoxon rank-sum test (plasmid n = 924, no 

selection n = 870, rRNA-depleted n = 869), we find the rRNA-depleted data has 

significantly higher variability than the no selection and plasmid data (p < 2.2e-16). 

Furthermore, the rRNA-depleted and polyA libraries are > 60% more variable on average 

than the plasmid library (Fig. 4.4C). This suggests that a significant portion of the 

observed variability in coverage across transcripts in the IVT-seq data is the result of 

RNA-specific molecular biology, specifically the RNA selection step. Furthermore, after 

accounting for bias introduced by the sequences themselves (plasmid data) and bias 

introduced by the IVT reaction (‘no selection’ data), we find that 50% of transcripts have 

2-fold and 10% have 10-fold variation in within transcript expression (Table 4.2 and Fig. 

S4.4). While it is well appreciated that polyA selection introduces bias, we found that 
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rRNA-depleted data introduced just as much if not more. Neither simulated dataset 

showed transcripts with a 2-fold or higher change in within transcript expression. Again, 

this suggests that the observed within transcript variations are not the result of alignment 

artifacts or sampling due to low/high expression. One commonly acknowledged source of 

bias arises from random priming during library preparation [10]. When we examined the 

different libraries, we saw that fragments from all of the RNA-seq data showed 

nucleotide frequencies characteristic of random priming bias (Fig. S4.6). As expected, the 

plasmid data showed no such bias, since it was derived directly from DNA and required 

cDNA generation step. However, the significant differences between all RNA libraries 

suggest that bias from random priming is not the only factor. The plasmid and no 

selection data still contain a fair amount of variability when viewed alongside the 

simulated data (Fig. 4.4A; black). When we examine the entire dataset, both the plasmid 

and no selection data have significantly higher variation than either simulated dataset 

(Wilcoxon rank-sum test; simulated data n = 963, QM-simulated data n = 869, plasmid n 

= 924, no selection n = 870; p < 2.2e-16). This data suggests that sequencing-specific 

molecular biology common to all libraries we prepared (adapter ligation, library 

amplification via PCR), is also responsible for a portion of the observed coverage 

variability and sequencing bias. 

Biases associated with sequence features are dependent on RNA selection method 

Given these significant differences in coverage variability, we sought to identify 

sequence features that might contribute to this bias. We considered three quantifiable 
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sequence characteristics: hexamer entropy, GC-content, and sequence similarity to rRNA 

(see Materials and methods for a detailed description of these metrics). For each 

sequencing strategy (plasmid, no selection, rRNA-depleted, polyA), we tested if any of 

the three sequence characteristics has a significant effect on variability in sequencing 

coverage, as measured by the coefficient of variation. While we are primarily focused on 

coverage variability as an indicator of sequencing bias, we also looked at depth of 

coverage, as measured by FPKM.  

For each sequencing strategy we sorted the transcripts by coverage variability or 

depth. Next, we selected the 100 most and 100 least extreme transcripts from each list. 

We compared the values of the sequence characteristics between the 100 most and 100 

least extreme transcripts using a Wilcoxon rank-sum test. Significant p-values indicate a 

significant association of the sequence characteristic with coverage variability and/or 

depth. The results of our analysis are displayed as box-plots (Fig. 4.5 and Fig. S4.8). 

To check for any confounding effects between coverage depth and variability, we tested 

the least and most expressed transcripts for any correlations with variability in coverage 

(Fig. S4.7). The polyA library showed a significant correlation (p < 2.2e-16) between 

coverage variability and depth, which indicates sequence features could be affecting 

coverage through variability (or vice versa).The rRNA-depleted data showed a slight, 

significant correlation (p = 0.04933). It is possible some feature of RNA selection affects 

both variability and coverage, given that we saw no significant correlations for the two 
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remaining samples.. This indicates that coverage variability and depth are independent 

for the plasmid and no selection data.  

All three sequence characteristics have a significant association with variability 

and depth-of-coverage in at least one of the sequencing strategies. In particular, lower 

hexamer entropy, a measure of sequence complexity [154–156], is strongly associated 

with higher variance in all of the RNA libraries (no selection p = 4.712e-05; rRNA-

depletion p = 3.956e-11; polyA p = 0.003921; Fig. 4.5A). This suggests that bias 

associated with hexamer entropy is due partially to RNA-specific procedures in library 

preparation. Furthermore, an association with lower hexamer entropy indicates there are 

more repeat sequences in the transcripts with higher variability. This could be indicative 

of complex RNA secondary structures, as repeated motifs could facilitate hairpin 

formation. Furthermore, the absence of this association from the plasmid data suggests 

that this observation is not due to mapping artifacts. The plasmid data contains the same 

sequences as the RNA-seq data, and would be subject to the same biases introduced by 

our exclusion of multi-mapped reads. 

Higher GC-content is strongly associated with lower coverage variability in the 

no selection and polyA data (p = 5.627e-13; p = 4.914e-05; Fig. 4.5B), suggesting that 

the effects of GC-bias on within-transcript variability could arise, in part due to some 

RNA-specific aspects of library preparation. Also, it appears that GC-bias is not a 

significant contributing factor to either depth of coverage, or the extreme variability in 

the rRNA-depleted data. Meanwhile, lower GC-content is associated with higher 
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coverage in the plasmid data (p = 3.776e-05), and lower coverage depth in the no 

selection and polyA libraries (no selection p = 8.531e-05; polyA p = 0.0009675; Fig. 

S4.8B). Given that this trend switches directions between the plasmid library and the 

RNA libraries, this also suggests that some RNA-specific aspect of library preparation is 

introducing GC-bias distinct from the high GC-bias associated with Illumina sequencing 

[157]. 

Interestingly, higher rRNA sequence similarity is associated with higher coverage 

variability in the rRNA-depleted library (p = 9.006e-05) and lower variability in the no 

selection library (p = 0.0367; Fig. 4.5C). It is unsurprising that similarity to rRNA 

sequences contributes to variability in the rRNA-depleted data, given that rRNA-

depletion is based upon pair-binding between probes and rRNA sequences. While it is 

unclear why this trend is reversed in the no selection library, it is striking given the 

significant increase in within-transcript variability between the no selection and rRNA-

depleted libraries (Fig. 4.4B). Furthermore, we see a slight but highly significant 

correlation (Pearson R
2
 = 0.308452; p < 2.2e-16) between a transcript sequence's 

similarity to rRNA, and the magnitude of the difference in coverage between the no 

selection and rRNA-depleted libraries (Fig. S4.9). While the majority of the factors 

contributing to the extreme bias in sequence coverage we see in the rRNA-depleted data 

remain unclear, our data suggests this is could be partially due to depletion of sequences 

homologous to rRNA. 
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Taken together, all of our data demonstrates the utility and potential of the IVT-

seq method to identify sources of technical bias introduced by sequencing platforms and 

library preparation protocols. 
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4.4 Conclusions 

In this study, we present IVT-seq as a method for assessing the technical 

variability of RNA sequencing technologies and platforms. We created a pool of in vitro 

transcribed RNAs from a collection of full length human cDNAs, followed by high-

throughput sequencing (Fig. 4.1). Since we know the identities and sequences of these 

IVT transcripts, and since they were created under conditions not affected by splicing and 

post-transcriptional modification, they are ideal for identifying technical biases 

introduced during RNA-seq library generation and sequencing. We used this method to 

demonstrate that library generation introduces significant biases in RNA-seq data, adding 

extreme variability to coverage and read-depth along the length of sequenced transcripts 

(Fig. 4.2). Our most striking finding is that over 50% of the IVT transcripts show > 2-fold 

differences in this within-transcript coverage attributable to library preparation and 

sequencing, in the polyA and rRNA-depleted data (Table 4.2). We prepared all RNA-seq 

libraries from the same pool of IVT RNA, so these differences are due to library 

construction and sequencing methods. Furthermore, 6% of the IVT transcripts contain 

regions with high unpredictable coverage variability (huncs) across different dilutions of 

IVT and mouse liver RNA (Fig. 4.3). We found it particularly concerning that these 

huncs are consistent between replicates, as this means these regions cannot be indentified 

and avoided by making replicate libraries. While the exact cause of this effect is unclear, 

it could be due to some trans interaction between different RNA (human IVT RNA and 

the background mouse liver RNA). If this is the case, it could prove difficult to account 
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for, given the challenges we have already encountered making predictions for miRNA 

targets and RNA secondary structure. Based on these results, we strongly recommend 

caution in interpreting exon-level quantification data, particularly for identifying and 

quantifying alternative splicing events, without further understanding of these biases. 

Using simulated data and by sequencing at various stages of the process 

(plasmids, unselected IVT RNAs, rRNA-depleted, and polyA selected), we found each 

step introduces bias. Regions of certain IVT transcripts are underrepresented in both 

DNA and RNA, suggesting something inherent in their structure may resist cloning and 

sequencing properly. The IVT reaction has its own biases, however, by and large, it 

worked extremely efficiently with 90%of the input templates producing transcripts at 

detectable levels. PolyA sequencing revealed the well described 3’ bias. Finally, we saw 

extreme bias introduced by the rRNA-depletion step. Though we have yet to find the 

majority of the sources for this extreme bias, knowing that it occurs and that is at least 

partially due to rRNA sequence similarity is an important first step. By making this data 

available to the community, we hope that new experimental and analysis methods can be 

developed to account for the biases inherent in various aspects of RNA-seq. 

Moreover, IVT-seq could be more broadly employed. By itself, the MGC 

collection has cDNAs derived from more than 16,000 mouse and human genes, including 

hundreds of genes for which there are more than one form. Therefore, in principle, it is 

possible to generate sequence profiles for representatives for nearly 2/3 of the 

mammalian transcriptome, or spike in datasets to develop new and better methods for 
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splice form detection and quantification. Similar profiling approaches could do the same 

for other organisms. In addition, IVT-seq is also immediately relevant to RNA-seq 

method development, e.g. developing new protocols or refining existing ones. Finally, the 

method is not specific to Illumina sequencing and could be used to account for bias in 

other sequencing chemistries and methods (e.g. SOLID, Ion Torrent, PacBio, etc.). 

Importantly, we are not suggesting that current generation RNA-seq is not a 

fantastic new technology or that quantification data is incorrect, particularly given the 

validated, reproducible results researchers have been able to gain through its use. Rather, 

we wish to provide a cautionary note that our understanding of this technology is still 

relatively new and incomplete. It is our hope that through the use of this data and IVT-

seq, we will develop the means to minimize or account for bias in RNA-seq and truly 

realize the vision of digital gene expression. 
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4.5 Methods 

Amplification of plasmid library 

Glycerol stocks containing individual cDNAs (cloned into pCMV-Sport 6 

plasmid) from the Mammalian Gene Collection [152], were produced and plasmid DNA 

was extracted and plated at 50 ng per well in 384-well plates. The contents of three 384-

well plates (total of human 1062 transcripts; Appendix D) were collected as follows: 10 

µl sterile dH2O was added to each well and incubated at 37
o
C for 10 min to resuspend 

plasmid DNA in water. Plasmid DNAs were collected and combined in 1.5 mL tube with 

aid of multichannel pipette and concentrated by ethanol precipitation. To amplify the 

library 10 ng of plasmid library was transferred into E.coli DH5α (Invitrogen catalog no. 

18258-012) with heat shock method. Cells were incubated with plasmid library for 5 min 

on ice and were subjected to 42
o
C for 30 sec. Then cells were transferred back to ice and 

incubated for 2 min. Next, 0.95 mL SOC medium was added to the cells and incubated at 

37 
o
C for 1 h by shaking at 225 rpm. Cells were plated on LB-agar plates containing 100 

µg/ml ampicilin. Plates were incubated for 16h at 37
o
C to grow the colonies and 3500 

(approx 3-fold of library size) colonies were collected with liquid LB. Cells were 

transferred into 100 mL liquid LB and incubated at 37
o
C for 2 h. Plasmids were purified 

using Qiagen maxiperep kit (catalog no. 12163), according to the manufacturer's 

protocol.  

In vitro transcription from plasmid library 
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Plasmids were linearized by NotI-HF enzyme so that the SP6 polymerase 

promoter site will be upstream of the sequences to be transcribed. Reactions consists of 5 

U NotI-HF (NEB catalog no. R3189L), 5 µg library plasmid DNA, 1 X NEBuffer 4 

(supplied with enzyme) and 90 µl of dH2O. Reaction was incubated at 37
o
C for 2 h to 

achieve complete digestion. The complete digestion of plasmid DNA was assessed by 

DNA gel electrophoresis. To eliminate NotI-HF and possible RNase in reaction mixture, 

samples was subjected to Proteinase K treatment. SDS and Proteinase K were added to 

the reaction mixture to a final concentration of 0.5% and 100 µg/mL, respectively. 

Sample was incubated at 37
o
C for 30 min. After Proteinase K treatment, sample was 

subjected to the phenol/chlororform extraction, followed by ethanol precipitation. Pellet 

was dissolved in 50 µl of RNase-free water. Next in vitro transcription was carried out 

using MAXIscript® SP6 Kit (Ambion catalog no: AM1308). Reaction composed of 1 µg 

of library plasmid, 1X transcription buffer, 0.5 mM of NTPs (GTP,ATP, CTP, and UTP),  

40 U of SP6 RNA polymerase and 10 µl of RNase-free water. Reaction was incubated at 

37
o
C for 30 min. Next, samples were treated with TURBO DNase to remove the plasmid 

templates. Briefly, 10 U of TURBO DNase (included with MAXIscript SP6 kit) were 

added to reaction mixture and incubated at 37
o
C for 15 min. To stop the reaction 1 μL of 

0.5 M EDTA was added. To remove unincorporated NTPs and other impurities sample 

was precipitated with ammonium acetate/ethanol. The following reagents were added to 

the DNase -treated reaction mixture: 30 μL RNase-free water to bring the volume to 50 

μL,  5 μL 5 M Ammonium Acetate, and 3 volumes 100% ethanol. Sample was chilled at 
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-20
o
C for 30 min and then centrifuged at maximum speed in a 4

o
C table-top microfuge. 

The supernatant was discarded and pellet was washed with ice-cold, 70% ethanol. Pellet 

was dissolved in 50 μL RNase-free water and quality of RNA was assessed by agrose gel 

electrophoresis. In addition, PCR was carried out with in vitro transcribed RNA to 

confirm total depletion of plasmid DNA as well.  

Mouse liver collection and RNA extraction 

WT 6-week old male C57/BL6 mice were acquired from Jackson Labs. Mice 

were sacrificed and liver samples were quickly dissected and snap-frozen in liquid 

nitrogen. RNA was isolated from frozen mouse liver samples by TRIzol reagent 

according to manufacturer’s protocol (Invitrogen catalog no. 15596-026). All animal 

experiments were performed in accordance with the approval of the Institutional Animal 

Care and Use Committee. 

Construction and sequencing of RNA-seq library from IVT RNA 

IVT RNA (2500 ng, 150ng, 75ng, 15 ng, and 0 ng) was pooled with mouse liver 

RNA (0 ng, 2350 ng, 2425 ng, 2485 ng, and 2500 ng respectively) to a final quantity of 

2.5 µg. Each pool was split into two replicate samples of 1 µg each. RNA pools were 

treated with Ribo-Zero Gold kit (Epicentre catalog no. RZHM11106) and converted into 

Illumina RNA-seq libraries with the TruSeq RNA sample prep kit (Ilumina catalog no. 

FC-122-1001). Briefly, rRNA was removed from 1 ug of pooled RNA using Ribo-Zero 

Gold kit and purified via ethanol/sodium acetate precipitation according to 

manufacturer’s protocol. After drying, the RNA pellet was dissolved in 18 μL of Elute, 
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Prime, Fragment mix (provided with TruSeq RNA sample prep kit). RNA was 

fragmented for 8 minutes and 17 uL of this fragmented RNA was used to make the RNA-

seq library according to Illumina TruSeq RNA sample prep kit protocol. After 

fragmentation/ priming, first strand cDNA synthesis with SuperScript II (Invitrogen 

catalog no. 18064014), second-strand synthesis, end-repair, a-tailing, and adapter 

ligation, the library fragments were enriched with 15 cycles of PCR. Quality and size of 

library was assessed using Agilent 2100 BioAnalyzer. The five libraries from each 

replicate were pooled together and sequenced using a single lane from an Illumina HiSeq 

2000 (paired 100 bp reads). 

Construction and sequencing of plasmid library 

MGC plasmids were linearized by NotI-HF enzyme as before. These linearized 

plasmids were then fragmented using a Covaris S220 Focused-ultrasonicator. Briefly, 1.2 

µg of linearized plasmid in a final volume of 60 uL of H2O was loaded into a 

microTUBE (Covaris catalog no. 520045). The ultrasonicator was de-gassed and 

prepared according to manufacturer’s protocol. Linearized plasmids were sonicated using 

the following conditions: intensity 5, duty factor 10%, cycles per burst 200, time 120s, 

and water bath temperature 7ºC. Fragmented plasmids were gel-purified using a 1% 

agarose gel (BioRad catalog no. 161-3107) and TAE running buffer (BioRad catalog no. 

161-0743). Gel slice between 100 bp and 700 bp was excised and DNA was purified 

using MinElute gel extraction kit (Qiagen catalog no. 28606) according to manufacturer’s 

protocol. Fragmented DNA was converted into a sequencing library using TruSeq DNA 
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sample prep kit (Illumina catalog no. FC-121-2001). End repair, adenylation, adapter 

ligation, gel size-selection, and PCR enrichment were performed according to 

manufacturer’s protocol. During the gel size-selection, a band between 300 bp and 500 

bp was excised. Quality and size of library was assessed using Agilent 2100 

BioAnalyzer. This library was sequenced using an Illumina MiSeq (paired 100 bp reads). 

Construction and sequencing of no selection and polyA libraries 

As with the other RNA-seq libraries, these libraries were prepared using the 

TruSeq RNA sample prep kit (Illumina catalog no. FC-122-1001). For the polyA sample, 

1 µg of IVT RNA was treated with polyA selection reagents included with the TruSeq 

RNA sample prep kit according to manufacturer's protocol. The remainder of the library 

preparation was carried out using the same conditions as for the other IVT RNA samples. 

For the no selection sample, 100 ng of IVT RNA at a concentration of 100 ng/µL was 

diluted with 17 μL of Elute, Prime, Fragment mix (provided with TruSeq RNA sample 

prep kit). Again, the remainder of the library preparation was carried out as with the other 

samples. These samples were sequence in a single Illumina HiSeq 2500 lane (paired 100 

bp reads). 

Aligning, quantifying, and visualizing sequencing data 

Raw reads from all sequencing samples were aligned to the human genome 

(GRCh37/hg19) using the RNA-seq Unified Mapper [61] (RUM; v2.0.4) with default 

parameters. Mapping stats for all libraries are included in Table S4.1. RUM also 

generated RNA-seq coverage plots in bedgraph format, and calculated transcript- and 
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exon-level FPKM values for each IVT transcript (accession numbers listed in Appendix 

D). All analyses were performed using uniquely aligned reads (no multi-mappers) from 

the RUM_Unique and RUM_Unique.cov output files. Quantification was performed 

using annotations for the IVT transcripts that we downloaded from the MGC Genes track 

[152] on the UCSC Genome Browser [158]. Those IVT transcripts mapping to multiple 

loci, or overlapping other IVT transcripts were removed from further analysis (marked 

with * in Appendix D). All coverage plots in this paper were visualized in and captured 

from the UCSC Genome Browser. All statistical tests and correlation plots were 

performed in R.  

Generating simulated data 

Simulated data was generated using the BEERS software package 

(http://www.cbil.upenn.edu/BEERS/) from gene models for IVT transcripts, with an 

average coverage depth of 1000 reads (10,000,000 reads total). All error, intronic read, 

and polymorphism parameters were set to zero. Remaining parameters used default 

values. For the QM-simulated (Quantity Matched) data, FPKM values from replicate 1 of 

the IVT-only data were used as seeds for generating expression levels (40,000,000 reads 

total). This generated simulated data with FPKM values closely matching those from the 

real data (Fig. S4.2B). All other parameters were the same as for the other simulated data. 

Processivity analysis 

Coverage data for each IVT transcript was extracted from coverage files for the 

plasmid and no selection samples. For each transcript, base pair-level coverage data was 

http://www.cbil.upenn.edu/BEERS/
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extracted from the regions spanning 5-15% and 85-95% of the transcript, by length. For 

example, given a 1000 bp transcript, the first region spans base pairs 50-150, and the 

second region spans base pairs 850-950. These two coverage regions represent the 5’ end 

and 3’ end of the transcript, respectively. The first and last 5% of the transcript was 

excluded to avoid artifacts from the fragmentation process. Processivity of each transcript 

was assessed by the ratio of the mean depth of coverage from both of these regions (3’ 

region mean / 5’ region mean). These processivity ratios were calculated for all 

transcripts in the plasmid and no selection data, with expression > 5FPKM. 

Calculating fold-change difference in within-transcript coverage 

Coverage data for each of the IVT transcripts was extracted from the coverage 

files for the IVT-only, polyA, and no selection samples. The first and last 200 bp were 

trimmed from each transcript to prevent edge effects from interfering with the 

calculations. Due to this trimming, all IVT transcripts with less than 500 bp were 

discarded. All IVT transcripts expressed with FPKM < 5 in any of the samples were 

discarded from further analysis. Nucleotide-level coverage data was grouped into 

percentiles based on depth of coverage. Average coverage across the 10
th
 percentile and 

90
th
 percentile were calculated. Fold-change difference in within-transcript coverage 

were calculated by dividing the 90
th
 percentile average by the 10

th
 percentile average. The 

list of transcripts with associated fold-change values is included in Supplementary digital 

file S3 (see Appendix A for details). 

Identifying hunc regions 
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Coverage data for each of the IVT transcripts was extracted from the coverage 

files from each of the rRNA-depleted datasets (replicate dilution series: IVT-only, 1 IVT: 

1 mouse, 1 IVT: 2 mouse, 1 IVT: 10 mouse, and mouse-only). These coverage plots were 

normalized between 0 and 1 to allow comparison between different dilutions. For each 

nucleotide position in a transcript, the deviation in coverage between each of the samples 

was calculated using the median absolute deviation (MAD), due to its resistance to 

outliers. MAD scores were calculated across the different dilutions using R’s mad 

function with constant=1. Next, a sliding window was used to calculate the average MAD 

in the 100 bp windows centered on each nucleotide in the transcript. The first 300 and 

last 250 windows were trimmed from each transcript to avoid confounding variability due 

to edge effects or fragmentation artifacts. All analysis up until this point was carried out 

separately on the two replicate datasets. The 95
th
 percentile of MAD scores was 

calculated for each of the replicates using R’s quantile function (replicate 1: 0.08810424, 

replicate 2: 0.07183765). Only those regions with at least 20 contiguous windows having 

MAD scores above the appropriate 95
th
 percentile values were retained for further 

analysis. Next, the BEDTools [140] intersect function was used to remove any regions 

with high MAD scores not present in both replicates. Finally, these remaining regions of 

high coverage variability were filtered for mouse reads misaligned to the human 

reference. Any region coming from a transcript with FPKM >= 5 in the mouse-only 

samples were discarded. To account for localized misalignment of mouse reads, any 

regions with an average coverage > 10 in the mouse-only samples or in the 100 bp on 
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either side of the region were discarded. These remaining regions comprise the list final 

list of regions with high coverage variability. To search for hunc regions not maintained 

between replicates, windowed MAD scores from replicate 2 were subtracted from those 

of replicate 1. The 2.5
th
 and 97.5

th
 percentiles of these difference values were used as 

cutoffs (2.5
th
 percentile: -0.07053690, 97.5

th
 percentile: 0.09134876) to pull out the most 

extreme positive and negative difference values. Regions corresponding to these extreme 

difference values were filtered as above. Additionally, those difference regions within 

200 bp of a previously identified hunc regions were filtered out. This last filtering step 

accounts for cases where a difference region with high MAD scores is just an extension 

of an existing hunc region. Hunc regions and difference regions were manually checked 

to determine whether or not they represent regions where expression patterns deviate 

from the remainder of the transcript. 

Generating sequence characteristics 

Sequences for each transcript were collected in R using the BSgenome, 

GenomicRanges, and GenomicFeatures packages. Hexamer entropy for each transcript 

was calculated as follows: occurrences of all possible hexamers in a given transcript were 

counted. These counts were converted into frequency space, and these frequency values 

were used to calculate the Shannon entropy. Shannon entropy is commonly used to 

represent complexity in nucleotide sequences or multiple alignments [154–156]. 

Similarity of transcripts to rRNA sequences were calculated as follows: each transcript 
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was aligned to 45S (NR_046235.1) and 5S (X71804.1) rRNA using NCBI-BLAST [131] 

and the e-score for the best alignment was saved. 

Sequence characteristic analysis 

The list of IVT transcripts was sorted by transcript-level coefficients of variation 

for each library method (plasmid, no selection, polyA, replicate 1 of rRNA-depleted IVT-

only). All transcripts with transcript-level FPKM <= 5 were excluded from further 

analysis. From this sorted list the transcripts with the 100 least and 100 most extreme 

coefficients of variation were collected for each of the above sequencing samples. The 

values for hexamer entropy, GC-content, and rRNA sequence similarity were compared 

between every pair of 100 least and 100 most extreme coefficients of variation using a 

Wilcoxon signed-rank test (implemented in R as the wilcox.test function). This entire 

analysis was repeated using transcript-level FPKM values instead of the coefficients of 

variation. All boxplots were prepared using R. 

Description of window analysis of rRNA sequence similarity 

All transcripts with zero read counts in the no selection and rRNA-depleted data 

were discarded. Nucleotide-level read counts for each of the remaining transcript were 

normalized between 0 and 1 as follows: The read depth for each nucleotide was divided 

by the transcript's maximum read depth. This step was performed to account for any lane 

effects. Read counts from the rRNA-depleted data were scaled to be strictly less than or 

equal to their corresponding read counts in the no selection data as follows: ignoring the 

first and last 100 bp of the transcript, the nucleotide position with the smallest ratio 
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between the no selection and rRNA-depleted data was determined. All nucleotides within 

that transcript were multiplied by this ratio. This step was performed under the 

assumption that biases introduced by rRNA-depletion will always result in a loss of 

coverage relative to the no selection data. A 128 bp window slid across each transcript in 

16 bp increments and calculated the following: 1) the highest Smith-Waterman alignment 

score between the sequence in the current window and a library of rRNA sequences (see 

below), using the SimMetrics Java package (http://sourceforge.net/projects/simmetrics/). 

2) The average difference in coverage between the no selection and rRNA-depleted data. 

The Pearson correlation between this coverage difference and the Smith-Waterman score 

in each window was calculated using the cor.test function in R. The rRNA sequences 

used in this analysis came from the Refseq entries with the following IDs: NR_003286.2, 

NR_003287.2, NR_023365.1, NR_023366.1, NR_023367.1, NR_023368.1, 

NR_023369.1, NR_023370.1, NR_023371.1, NR_023372.1, NR_023373.1, 

NR_023374.1, NR_023375.1, NR_023376.1, NR_023377.1, NR_023378.1, 

NR_023379.1, NR_046235.1, NR_048572.1, and NR_049740.1. 

Data access 

We deposited all sequencing data in the NCBI Gene  Expression  Omnibus (GEO) 

under accession number GSE50445. We have also loaded the coverage tracks on the 

UCSC genome browser, and made them available at the following URLs: 

http://goo.gl/S7r5BG (comparison between different selection methods) and 

http://goo.gl/ISJUAH (comparison between replicates).  

http://goo.gl/S7r5BG
http://goo.gl/ISJUAH
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4.6 Tables 

Table 4.1: Detection of source cDNA sequences in IVT-seq. 

Total number of cDNA clones: 963   

 

Replicate 1 Replicate 2 

# of clones detected (FPKM ≥ 5): 

  IVT Only 869 870 

1:1 Mix 877 876 

1:2 Mix 886 883 

1:10 Mix 896 892 

Mouse Only 278 271 

PolyA Selection 829 - 

No Selection 870 - 

Plasmid Library 924 - 

   Average, normalized* depth of 

coverage for detected clones: 

  IVT Only 76.09 80.22 

1:1 Mix 75.15 75.06 

1:2 Mix 65.79 69.40 

1:10 Mix 37.50 47.46 

Mouse Only 01.58 02.42 

PolyA Selection 72.27 - 

No Selection 72.74 - 

Plasmid Library 42.08 - 

 

*Average depth of coverage is normalized by the number of millions of fragments 

mapped to the human reference in each sample. 
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Table 4.2: Fold-change differences in within-transcript coverage by library type. 

 # of IVT-transcripts with fold-change differences: 

> 2 > 10 > 100 

rRNA-Depleted 713 (74.0%) 110 (11.4%) 17 (1.7%) 

PolyA Selection 678 (70.4%) 163 (16.9%) 7 (0.7%) 

No Selection 400 (41.5%) 31 (3.2%) 3 (0.3%) 

Plasmid 189 (19.6%) 14 (1.5%) 3 (0.3%) 

Simulated 0 0 0 

QM-Simulated 0 0 0 

 

The plasmid data provides a measure of bias from library preparation/sequencing, while 

the ‘no selection’ data accounts for potential artifacts from the in vitro transcription step. 

To calculate the percentage of transcripts affected by bias due specifically to library 

preparation and sequencing, but not sequence or in vitro transcription artifacts, we 

perform the following calculation: rRNA-depletion % - no selection % + plasmid %. So 

we find 74% – 41.5% + 19.6% = 52.1% of transcripts in the rRNA-depleted data have > 

2-fold difference in coverage, and 11.4% – 3.2% + 1.5% = 9.7% have > 10-fod difference 

in coverage. 
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4.7 Figures 
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Fig. 4.1: Construction of IVT-seq libraries. 

(A) Prepare pool of 1062 human cDNA plasmids. Contents of three 384-well plates 

containing MGC plasmids were pooled together. Pool was amplified via transformation 

in E. coli , and resulting clones were purified, and re-pooled. (B) Generate IVT 

transcripts. Pool of MGC plasmids were linearized and used a template for an in vitro 

transcription reaction. Enzymes and un-incorporated nucleotides were purified, leaving 

pool of poly(A) transcripts. (C) Create IVT-seq libraries. Listed quantities of IVT RNA 

were mixed with mouse liver total RNA to create six pools with final RNA quantities of 1 

µg. Ribosomal RNA was depleted from these pools using the Ribo-Zero Gold kit. IVT 

RNA and mouse RNA are now present in pools at the listed ratios, following depletion of 

rRNA from mouse total RNA. These pools were used to generate RNA-seq libraries 

using Illumina’s TruSeq kit/protocol. This entire process was performed in duplicate. 

Replicate libraries were pooled separately and sequenced in separate HiSeq 2000 lanes 

(two lanes total). 
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Fig. 4.2: Within-transcript variations in RNA-seq coverage. 

(A) Simulated RNA-seq coverage for a representative IVT transcript (BC015891). RNA-

seq coverage plot (black) is displayed according to the gene model (green), as it is 

mapped to the reference genome. Blocks correspond to exons and lines indicate introns. 

The chevrons within the intronic lines indicated the direction of transcription. Numbers 

on y-axis refer to RNA-seq read-depth at a given nucleotide position. (B) The actual 

RNA-seq coverage plot for BC015891 in the IVT-only sample. Representative coverage 

plots for the IVT transcripts (C) BC009037 and (D) BC016283 are displayed according 

to the same conventions used above. All transcripts are displayed in the 5ʹ to 3ʹ direction. 
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Fig. 4.3: Between-sample variations in RNA-seq coverage. 

RNA-seq coverage plots across all samples for exons 4 – 11 of the IVT transcript 

BC003355. The black rectangles identify exon six, which shows extreme variability in 

coverage relative to the rest of the transcript when viewed across all of the samples. The 

ratio of IVT RNA to moue RNA is listed to the left of each sample’s coverage plots. 

Coverage plots (red for first replicate; blue for second replicate) are displayed according 

to the gene model (black), as it is mapped to the reference genome. Blocks in the gene 

model correspond to exons and lines indicate introns. The chevrons within the intronic 

lines indicated the direction of transcription. Numbers on y-axes refer to RNA-seq read-

depth at a given nucleotide position. 
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Fig. 4.4: Sources of bias in RNA-seq coverage. 

(A) RNA-seq coverage plots for IVT transcript BC003355 from simulated (black), 

plasmid (blue), no selection (green), rRNA-depleted (red), and polyA (orange) data. The 

gene model is displayed in black, below all of the coverage plots. Blocks correspond to 

exons and lines indicate introns. The chevrons within the intronic lines indicated the 

direction of transcription. (B) Distributions for coefficients of variation across data 

displayed above, with the addition of the QM-simulated data (gray). Note that while the 

graph is cutoff at a coefficient of variation of 1.3, the tails for the Ribo-Zero and PolyA 

distributions extend out to 2.13 and 2.7, respectively. (C) Effect sizes for the differences 

in distribution of coefficients of variation between sequencing libraries and simulated 

data. Effect sizes are calculated as the per-transcript ratios of coefficients of variation 

between a given library and the simulated dataset. 
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Fig. 4.5: Effects of sequence characteristics on coverage variability. 

Distributions of (A) hexamer entropy, (B) GC-content, and (C) rRNA sequence similarity 

for the 100 transcripts with the highest and lowest coefficients of variation for transcript 

coverage from the plasmid, no selection, rRNA-depleted, and polyA libraries. Asterisks 

indicate the significance of a Wilcoxon signed-rank test comparing values for the listed 

sequence characteristics between each pair of groups from the same sample. * = p-value 

< 0.05; ** = p-value < 0.01; *** = p-value < 0.001. 
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4.8 Supplemental tables 

Table S4.1: Alignment statistics for all sequencing data sets. 

Library 
Total 

Fragments 
Total Fragments 

Mapped Unique Mappers 
Simulated data: 

   Simulated 10,000,000 9,997,076 (99.9%) 9,631,147 (96.31%) 

QM-Simulated 40,000,000 39,990,729 (99.9%) 39,308,168 (98.27%) 

Replicate 1: 

   IVT only 41,260,668 38,237,172 (92.6%) 36,740,018 (89.04%) 

1:1 mix 35,315,448 23,824,059 (67.4%) 22,246,072 (62.99%) 

1:2 mix 42,092,262 24,139,758 (57.3%) 21,365,369 (50.75%) 

1:10 mix 37,640,274 12,989,430 (34.5%) 9,890,945 (26.27%) 

Mouse only 39,243,399 10,697,075 (27.2%) 6,473,917 (16.49%) 

Replicate 2: 

   IVT only 32,240,162 29,278,157 (90.8%) 28,352,845 (87.94%) 

1:1 mix 32,474,073 21,714,926 (66.8%) 19,836,639 (61.08%) 

1:2 mix 36,655,155 19,582,020 (53.4%) 16,870,009 (46.02%) 

1:10 mix 34,091,563 10,392,308 (30.4%) 6,459,324 (18.94%) 

Mouse only 39,086,565 8,746,680 (22.3%) 3,391,749 (8.67%) 

Other libraries 

   Plasmid* 24,008,610 5,969,758 (24.8%) 5,650,393 (23.53%) 

No Selection 105,970,103 97,410,895 (91.9%) 93,636,659 (88.36%) 

PolyA 7,779,720 7,214,472 (92.7%) 6,919,962 (88.94%) 

 

*Relatively low percentage of mapped reads is due to the presence of the plasmid 

backbone in library. The backbone does not map to the reference human genome. 
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4.9 Supplemental figures 
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Fig. S4.1: Expression comparison between replicates. 

(A) Correlation plots for log10 transcript-level FPKM values between replicate IVT-seq 

samples. Pearson R
2
 values for the correlations are included as inserts in each plot. (B) 

Distribution of FPKM values in both replicates of the IVT-only sample. FPKM values are 

plotted on the x-axis in log10 space. The y-axis is plotted in arbitrary density units. 
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Fig. S4.2: Expression comparison between simulated and IVT data. 

Correlation plots for log10 transcript-level FPKM values between (A) simulated data or 

(B) QM-simulated data, and replicate 1 of the IVT-only data. Pearson R
2
 values for the 

correlations are included as inserts in each plot. 
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Fig. S4.3: Coverage patterns are reproducible across replicates. 

Coverage patterns from both replicates for all transcripts in Fig 4.2. RNA-seq coverage 

plots from replicate IVT only samples (red – replicate 1l blue – replicate 2) for (A) 

BC015891, (B) BC009037, and (C) BC016283 are displayed according to the gene 

model (green), as it is mapped to the human reference genome. Blocks correspond to 

exons and lines indicate introns. The chevrons within the intronic lines indicated the 

direction of transcription. Numbers on y-axis refer to RNA-seq read-depth at a given 

nucleotide position. All transcripts are displayed in the 5ʹ to 3ʹ direction. 
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Fig. S4.4: Fold-change in within-transcript coverage across libraries. 

The cumulative distribution functions for fold-change in within transcript coverage are 

displayed for the rRNA-depleted (red), polyA (orange), no selection (green), plasmid 

(blue), QM-simulated (gray), and simulated (black) datasets. Curves toward the left side 

of the plot indicate fewer genes contain high fold-change differences in coverage. Curves 

toward the right side of the plot indicate many genes contain high fold-change differences 

in coverage. The dotted lines indicate the y-axis values for none of the data (0.0) and all 

of the data (1.0). This plot is focused on the fold-change values between 1 and 10. See the 

Materials and Methods section for full details on the fold-change calculations. 
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Fig. S4.5: Plasmid sequencing protocol compared to IVT-seq. 

The protocol for preparing MGC plasmids for DNA-sequencing library generation is 

displayed alongside the protocol for preparing IVT transcripts for RNA-seq library 

generation. Both protocols start by linearizing the plasmids. For DNA-sequencing, 

linearized plasmids are fragmented via Covaris sonication, and the resulting fragments 

are taken through the TruSeq protocol. For RNA-sequencing, the linearized plasmids are 

used as templates for an in vitro transcription reaction. IVT RNA is then pooled with 

mouse RNA, rRNA is removed from pool via Ribo-Zero Gold kit, rRNA-depleted pool is 

fragmented via metal-ion hydrolysis, and fragmented RNA is converted to cDNA via 

reverse transcription with random-hexamer priming. The resulting cDNA fragments are 

then taken through the TruSeq protocol. 

  



133 

 

 

Fig. S4.6: Random hexamer bias across all selection methods. 

Nucleotide frequency as a function of read position for sequencing reads at the 5’ ends of 

cDNA fragments. Frequencies are plotted for plasmid, no selection, rRNA-depleted, and 

polyA datasets.  
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Fig. S4.7: Confounding effects between coverage depth and variability. 

Distributions of transcript-level coefficients of variation for the 100 transcripts with the 

highest and lowest transcript-level FPKMs from the plasmid, no selection, rRNA-

depleted, and polyA libraries. Asterisks indicate the significance of a Wilcoxon signed-

rank test comparing values for the listed sequence characteristics between each pair of 

groups from the same sample. * = p-value < 0.05; *** = p-value < 0.001. 
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Fig. S4.8: Effects of sequence characteristics on coverage depth. 

Distributions of (A) hexamer entropy, (B) GC-content, and (C) rRNA sequence similarity 

for the 100 transcripts with the highest and lowest transcript-level FPKMs from the 

plasmid, no selection, rRNA-depleted, and polyA libraries. Asterisks indicate the 

significance of a Wilcoxon signed-rank test comparing values for the listed sequence 

characteristics between each pair of groups from the same sample. ** = p-value < 0.01; 

*** = p-value < 0.001. 
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Fig. S4.9: rRNA sequence similarity and coverage bias in rRNA-depleted data. 

Correlation plot between Smith-Waterman alignment score to rRNA sequences and the 

magnitude of the decrease in coverage depth between no selection and rRNA-depleted 

samples. A coverage drop of 1.0 indicates a large decrease in coverage between the no 

selection and rRNA-depleted samples. A coverage drop of 0 indicates no difference 

between the two samples. For full details on this analysis, see Materials and methods 

section. 
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Chapter 5: Future directions 

5.1 Circadian rhythms and RNA-seq 

Confirming miRNA targets 

 We found examples of oscillating miRNA host transcripts in chapters 2 & 3. In 

chapter 2, we found a cluster of oscillating miRNA precursors for Mir290, Mir291a, 

Mir292, Mir291b, Mir293, Mir294, and Mir295. In chapter 3, we found the host gene for 

Mir22 oscillates in heart and lung tissue. In both cases, these miRNAs have promising 

predicted targets (prediction by TargetScan, release 6.2 [134]). Mir292 and Mir291b have 

predicted target sites in the 3' UTR of Clock. Mir22 has one of the most broadly-

conserved target sites located in the 3' UTR of Ptgs1. While both of these findings offer 

interesting functional implications, these targets must be experimentally confirmed and 

validated. 

 Over-expression studies provide the most direct approach for initial testing. 

Briefly, this involves transfecting miRNA mimics into cells expressing the predicted 

targets. If the predicted targets are valid, a Western blot should show decreased levels of 

the target protein in the presence of the miRNA mimic, and no change in the presence of 

a scrambled miRNA sequence (a control which accounts for any of the transfection 

effects). Alternatively, one could use an antagomir to knock down endogenous 

expression of the miRNA [159], and then check for effects on target gene 

expression/translation. While this second approach does avoid potential artifacts arising 

from super-biological levels of the miRNA of interest, it does require finding a cell line 
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in which both the miRNA and its target are expressed at high enough levels to elicit a 

response. However, any  differences in protein levels one might observe from either of 

these experimental paradigms could be due to interactions with intermediate genes, rather 

than a direct effect. 

 To confirm the direct interaction between miRNAs and target genes, begin by 

cloning the 3'UTR of the target transcript into a luciferase reporter vector, such that the 

target UTR sequence serves as the UTR for the luciferase transcript. In this way, any 

regulatory effect occurring through the UTR sequence should affect downstream 

luciferase levels as measure by luminescence. As a control, take the same luciferase-UTR 

construct and mutagenize the predicted miRNA seed sequence. As the seed sequence is 

necessary for correct miRNA binding and function, disrupting it should remove any 

regulatory effects caused by direct miRNA binding to that specific site in the target UTR 

(for full details on protocol, see [160]). 

 Lastly, to address the circadian aspect of this miRNA regulation, particularly in 

the case of the mir292 cluster which may target a core clock component, we should 

repeat these experiments listed above in a cell line with endogenous circadian rhythms 

(like U2OS or NIH3T3 cells [40, 161, 162]). For Mir292 and Mir291b, we would expect 

miRNA mimics to affect oscillations in these cell lines similar to a Clock knockdown 

experiment [162]. To assess the effects of Mir22 on oscillations in Ptgs1 requires that we 

find a cell line in which Ptgs1 oscillates. If no such cell line exists, we may need to look 
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at endogenous rhythms in Ptgs1 mRNA and protein from mouse lines deficient in Mir22. 

Given our data, the best tissues to examine in these mice would be heart and lung. 

Expanding our analysis of circadian transcription across twelve mouse tissues 

 In chapter 3, we presented the results of an experiment using RNA-seq and 

microarrays to assay circadian transcription across twelve mouse tissues. We only 

scratched the surface of this huge dataset by focusing on non-coding transcripts. This data 

is also useful for a large-scale study of circadian mRNA splicing and (TSS) selection. 

While previous work has found several examples of alternative splicing with a time-of-

day effect [41, 48, 163], these appear to form a relatively small portion of the oscillating 

transcriptome within a specific tissue. By using our data to expand this analysis across 

multiple tissues, we can look for correlations between differential spliceform usage and 

differential oscillations between tissues. For example, do rhythmic genes have different 

"oscillatory" and "non-oscillatory" spliceforms expressed in different tissues? These 

initial analyses should focus on alternative TSS usage as opposed to internal alternative 

exon usage, given evidence that clock regulation of alternative splicing seems to operate 

largely at the level of TSS selection [48]. This analysis may prove challenging for genes 

with low levels of expression, or particularly long transcripts, as we used polyA selection 

during the preparation of our RNA-seq libraries. Future studies seeking to analyze 

circadian TSS usage specifically should use alternative selection methods. 

 Given the limited knowledge of the functional role of ncRNAs, this dataset may 

also serve to guide future projects for the functional annotation of ncRNAs. For example, 
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one could use the list of conserved ncRNAs as the basis for a cell-based functional 

screen. Researchers have already had success using such screens to identify the 

functional effects of miRNAs on the NF-κB signaling system [164]. We would begin by 

assembling a cDNA library of, or an siRNA library targeting the oscillating ncRNAs 

identified above. Next, we would perform a high-throughput transfection of these 

libraries into cells with a luciferase reporter for a specific pathway (like NF-κB signaling, 

CLOCK-BMAL1 activation of E-boxes, or oscillations in Per2 promoter activity). We 

would then use any ncRNAs which affected these various pathway outputs for secondary 

screening and mechanism characterization. Additionally, once such a library of ncRNAs 

exists, we could use it to assay any pathway with an output measurable by luciferase 

reporter.  

 Lastly, while our current work is limited more to lincRNAs and host genes, future 

studies could repeat these experiments to look at mature miRNA sequences. The RNA 

purification and library preparation techniques we used will only yield expression data 

for transcripts greater than 100 bp in length. This misses all small RNAs, including 

mature miRNAs. Future work should use small RNA-seq protocols across multiple 

tissues to expand upon our work. Also, future studies could sample RNA-seq data at a 

higher sampling resolution to detect more oscillating ncRNAs with a likely greater degree 

of accuracy. 
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5.2 IVT-seq and bias analysis 

Replicate IVT-seq experiment with different platforms 

 In chapter 4 we presented a method for assessing technical biases in RNA-seq 

experiments, and used it to study the effect of RNA-selection method on coverage. 

However, we only performed this analysis using Illumina sequencing technology. Future 

studies could repeat these experiments using 454, SOLiD, and PacBio sequencing. While 

there are existing studies comparing the differences between these technologies, none 

have examined whether or not they have differential effects on RNA-selection method. 

We could assess the effects of particular sequencing methodologies on the variability 

introduced by rRNA-depletion or polyA selection (ex. does a particular sequencing 

platform exacerbate these biases?). Additionally, we could assess how sequencing 

method affects the location and frequency of hunc regions. This expanded study would 

allow us to more precisely determine whether or not particular biases arise from RNA 

selection (which would conceivably be common to all sequencing methods), library 

preparation, and sequencing. 

Identify cause of hunc regions 

 At the moment, we hypothesize that the hunc regions described in chapter 4 could 

arise from a trans interaction between the IVT sequences and the background RNA 

(mouse liver RNA in this case). We can test this by creating additional sequencing 

libraries using different background RNA. Briefly, we would prepare new RNA samples 

that consist of different proportions of the human IVT RNA and background RNA (1:1, 
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1:2, 1:10, and background only). For background RNA, we could use mouse brain tissue 

(cortex, hypothalamus), as it is quite functionally distinct from the liver and is therefore 

likely to express a significantly different population of transcripts. We could take existing 

transcriptome studies across multiple tissues (like the one presented in chapter 3) to 

confirm that the population of RNA presenting in new background samples are highly 

distinct from one another. Also, we could use background RNA from a completely new 

species, like Drosophila or C. elegans. However, we must take care when selecting RNA 

from a new species; we are using an rRNA-depletion kit targeting mammalian ribosomes 

and we do not want to pick RNA from an organisms with rRNA sequences not 

recognized by this kit. Finally, after creating a dilution series of RNA pools from 

different background RNA, we would prepare and sequence libraries using the same 

protocol described in chapter 4, and compare any resultant hunc regions to those we 

generated using the mouse liver RNA background. If our initial hypothesis is true, we 

would expect to see different hunc regions represented in libraries with different 

background RNAs. If we see the same hunc regions present regardless of background 

RNA, it suggests this effect may be the result of an interaction between some aspect of 

library preparation, and the quantity of IVT RNA present in a sample. We could also 

repeat the above dilution experiments using polyA selection to address: a) whether or not 

hunc regions are an effect of rRNA-depletion specifically, and b) whether or not polyA 

selection is differentially affect by any trans interactions between different RNA. These 

future studies would help us further elucidate the true sources of this bias. 
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Chapter 6: Summary and conclusions 

The circadian clock appears to regulate an ever-expanding list of behaviors, 

biological processes, and disease phenotypes. With this list of large, system-level clock 

outputs comes the need to identify CCGs; the molecular outputs that mediate these grand 

rhythms. As I noted in chapter 1, the majority of studies to identify CCGs have been 

performed using microarrays. However, with the advent and growing popularity of RNA-

seq, it appears most researchers have begun to favor sequencing over arrays. RNA-seq 

offers many advantages over microarrays, particularly for identifying novel transcripts, 

and for quantifying ncRNAs and other transcripts not commonly assayed by arrays. In 

this dissertation, I demonstrate the utility of using RNA-seq to find CCGs. However, 

RNA-seq is relatively young, having only emerged in the past 6-7 years. As a result, our 

understanding of its biases and limitations is still very much evolving. To address this 

shortcoming, I conclude the work in this dissertation by presenting a technique for 

assessing the sources of bias from sequencing experiments. 

In chapter 2 I present a hybrid circadian expression profile which uses both 

microarrays and RNA-seq to identify oscillating transcripts in the mouse liver. This work 

demonstrates the feasibility of leveraging the low cost and established quantification 

pipelines for microarrays, with the nucleotide-level, genome-wide data provided by 

RNA-seq. In fact, a similar hybrid study found a new component of the zebrafish clock 

that appears to link molecular oscillations to rhythms in locomotor activity [165]. To 

begin, I analyzed the effect sampling resolution has on the ability to detect cycling 
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transcripts, and found a steep drop in accuracy when sampling at greater than 4-hour 

resolution, or using only one data of data. As a result, I recommend that future circadian 

RNA profiles use at least a 2-hour sampling resolution over 48 hours to achieve the best 

balance between detection rates and cost of sample preparation and analysis. 

From the microarray and RNA-seq expression data, I examined splicing in clock 

genes and their direct targets. I noted that ~84% of core clock genes have multiple 

annotated spliceforms, with ~58% expressing multiple spliceforms concurrently in the 

liver. These spliceforms appeared to oscillate in phase with each other, suggesting that 

circadian regulation of alternative splicing among core clock genes in the liver is not a 

significant factor in their expression. Additionally, I found evidence of a novel, 

alternative TSS for the Dbp gene, two novel lincRNAs, and a cluster of miRNAs, all with 

circadian expression. This oscillating cluster of miRNAs is predominantly expressed in 

ES cells [98, 105], and two of its members , Mir292 and Mir291b, are predicted to target 

Clock. Given that ES cells appear to have no core clock rhythms [166], the expression of 

this miRNA cluster may help suppress these rhythms by targeting Clock. These results 

demonstrate the utility of a hybrid approach to circadian expression profiling, and of 

RNA-seq for identifying non-coding transcripts. Furthermore, this means we can leverage 

the vast body of existing array data to supplement and improve our future RNA-seq 

experiments. 

 In chapter 3 I applied this hybrid technique to twelve different mouse tissues to 

characterize the circadian non-coding transcriptome. As part of this work, I constructed a 
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list of 1,016 ncRNAs conserved between humans and mice. Of this list, I found roughly 

1/3
rd

 oscillated in at least one of the sampled tissues, with no single ncRNA oscillating in 

more than five tissues. These oscillating ncRNAs included snoRNA and miRNA host 

genes. The snoRNAs associated with these host genes are predicted to modify 18s and 

28s rRNA [167–169], and may contribute to the clock's emerging role in ribosome 

biogenesis [170]. One of the miRNAs with an oscillating host gene, Mir22, has been 

implicated in oncogenesis, arthritis, and cardiac stress [137, 171–173]. In the heart and 

liver, Mir22hg oscillates antiphase to the transcript levels of its predicted target, Ptgs1. 

This is significant as Ptgs1 is the aspirin target thought to mediate the cardioprotective 

effect of low-dose aspirin therapy [138]. It is possible these Mir22hg oscillations may 

contribute to the rhythmic expression of Ptgs1. Additionally, I characterized 1,979 novel 

antisense transcripts, 43 of which oscillate at least eight hours out of phase with their 

sense transcripts. This includes novel a Bmal1 antisense transcript. I also found 

oscillations of the  previously characterized Per2 antisense transcript [44, 51] in five 

tissues, the most out of any antisense transcript. Finally, I identified 5,154 putative 

ncRNAs. Of these, 712 oscillated in at least one tissue. These oscillating transcripts, both 

known and novel, provide excellent candidates for future functional analysis. Also, future 

analyses could likely improve the number and quality of the conserved ncRNAs I 

identified, by regenerating this list using successive versions of ncRNA databases, and by 

adding a step to filter out sequences with significant ORFs and coding potential. 



146 

 

 In chapter 4, I presented a method, IVT-seq, for assessing the sources of technical 

bias in library preparation and sequencing. As this method is based around creating a 

pool of know IVT transcripts, it is applicable to any current or future technology that uses 

RNA as input. I applied this method to the Illumina sequencing methodology, in order to 

assess the contribution of different steps in library preparation to coverage bias. All 

stages of library preparation contribute bias, but it appears RNA selection (either polyA 

or rRNA-depletion) is responsible for > 2-fold differences in coverage across ~50% of 

IVT transcripts and > 10-fold differences across ~9% of transcripts. This finding suggests 

it is inadvisable to use exon-level quantification, or any other method which uses a subset 

of the whole transcript. I also identified regions in ~6% of transcripts which show 

variability in coverage level independent of the rest of the transcript. These hunc (high, 

unpredictable coverage) regions may be the result of trans interactions between different 

RNA sequences in the same sample. This has important implications for the 

interpretation of RNA-seq results, as gene-level quantification measures cease to be 

independent of one another. Finally, I attempted to determine sequence features 

responsible for these biases. While there was no single factor responsible for the majority 

of these biases, hexamer entropy and GC-content contribute to variability among RNA-

specific aspects of library preparation, and rRNA sequence similarity contributes to 

variability in the rRNA-depleted library. This work demonstrates the utility of IVT-seq 

for bias analysis, and serves as a cautionary note for the interpretation of RNA-seq 

results. 
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 In chapter 5, I conclude this dissertation by discussing future experiments that 

expand on the work presented in the previous chapters. Chief among these is the 

validation of Clock and Ptgs1 as targets of the Mir292 cluster and Mir22, respectively. If 

these are confirmed as direct targets, they have significant implications for regulation of 

the circadian clock and its effect on cardiac health. Also, to build upon the analysis of 

bias in RNA-seq data, I propose repeating the IVT-seq experiments using different 

sequencing technologies. This should serve to improve our understanding of bias sources 

in each of these different methods, and may also serve to highlight biases common to any 

sequencing-based technology. Lastly, I propose an experiment to examine whether or not 

hunc regions are the result of trans interactions between different RNA transcripts in the 

same sample. 

 Taken together, the work presented in this thesis demonstrates the power of RNA-

seq data, as well as the pitfalls to consider when interpreting its results. The data 

presented herein should serve as an excellent resource to any researchers interested in 

circadian gene expression, cross-tissue transcriptome comparisons, benchmarking, and 

improving algorithms for the analysis of RNA-seq data. This work also provides 

additional evidence suggesting we put greater focus on ncRNAs in future studies of the 

circadian system, and ultimately any molecular network. Finally, this work adds to the 

call for continued development of RNA-seq analysis tools, standardized protocols, 

analysis pipelines, and data repositories. We continue to mine new insights from RNA-
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seq data, and with careful planning and analysis we can avoid getting buried by our own 

data. 
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Appendices 

Appendix A – Names and descriptions of supplementary digital files 

There are several data tables which are too large to include as part of this thesis. These 

have been uploaded as supplementary digital files. This section lists the names for these 

files, as well as a brief description of their contents. 

 

Supplementary_digital_file_S1.xls - Conserved non-coding RNAs 
This file lists annotation data for each conserved ncRNA identified in chapter 3 of this 

thesis. Annotation data includes genomic coordinates from the mouse geneome, the 

assigned RefSeq IDs and gene symbols from mouse and human, the direction of the 

alignment between the ncRNA and RefSeq sequences (sense or antisense), and the 

functional group assigned to each ncRNA. Additionally, this file lists the peak phase in 

expression for each tissue, as well as the number of tissues in which each ncRNA 

oscillates. 

 

Supplementary_digital_file_S2.xls - Novel antisense transcripts 
This file lists annotation data for each novel antisense transcript identified in chpater 3 of 

this thesis. Annotation data includes the genomic coordinates for each transcript, as well 

as the Ensembl gene ID and symbol for the overlapping sense transcript. Additionally, 

this file lists the difference between peak expression phase in the sense and antisense 

transcripts for each tissue. If these columns list "antisense_osc_only", or 

"sense_osc_only", it means that in the given tissue, only the antisense or sense transcript 

oscillated, respectively. Lastly, this file contains four summary columns that list the 

number of tissues in which the antisense transcript oscillated, the number in which the 

sense transcript oscillated, the number in which both oscillated, and the maximum 

difference in peak expression phase across all tissues. 

 

Supplementary_digital_file_S3.xls - Loci for oscillating, novel transcripts 
This file lists the genomic coordinates for each putative novel transcript with rhythmic 

expression, identified in chapter 3 of this thesis. It also lists the number and name of each 

tissue in which each novel transcript oscillated. 

 

Supplementary_digital_file_S4.xls - List of transcripts with associated fold-change 
values in within-transcript coverage 
This file lists the fold-change differences in coverage across all library preparation 

protocols for each IVT transcript in chapter 4. 
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Appendix B – Novel transcript sequences and qPCR amplicons 

Novel Chromosome 6 Transcript - Predicted Sequence 
 

>Ex1 chr6:121087472-121087563 
AGAGCAGACTGAGAAAGCCATGTGGAGCAAGCCAGTAAACAGCACTCCTC 

CACAGCCTCTGCATCAGCTCCTGCTCCAGGTTCCTGCCTCAT 

>Ex2 chr6:121091595-121091797 
GTTTGGCTGAAAGTGGATAAAGCTCTATTGTAAGAGACCCCGTGGGGTAG 

AAAGCAGGAAGAGCTGTGTAGTTTGAAGCAACAAGCCAGAAAGACATATC 

CTATGTTCCTGGCCTGTGTGTACCTCTGTACCTGGGGACCATTCATGTTC 

CTTCATGGACCAGATCACATCTACTGGCGTGGAGACCAGAGGCCAGATTT 

AAG 

>Ex3 chr6:121093022-121093132 
CTTTTCTTGCAGTCTCCGTGACATTGGGCTGTATGTGCCTCATTAGATGG 

GATTCCATCCAGTGCGTCCCAGGAACCGCCCTGCCATCTCACTTAAGATT 

CTTAGCAACCT 

>Ex4 chr6:121096091-121096223 
GTCATCCTGGGTCACAGACGCTCGTTCGCTCACTCCATCGTGGACCAGCA 

GCTGTCAGCCAGTGCTGCCCACAGCTGTGTTCTCTGCCTCATGCTGCTTT 
GCAGACCATTGAAAGCATCTCCCGCTCAGTGAG 

>Ex5 chr6:121096313-121097060 
GTCTGGATTTGAACCCAGGCCCCATGCATGCTAATGGGGAGTGAAGTGCC 

ACAGCCCAGGGTCTTCTTTTGACAGCCTAGTCCGTCCACCTTGTCCACAA 

GATGTCCAGGTTAGGCCTGAGCCTAACCTGCTTCCCTTCCCCTTGCCAAC 

TGCTCTCCATCTATGAATGGTCCCCGGGAATTAGGAAGAATGGGGTGGGA 

GTGGGATTGGCCACTCCTAGGAGTCTGGTGTTTGTTTCATCTCCTCTATA 
AATGGTGTAAGAAAGATGTCCCAGCAAGACGTAGTAGCACACATCTGGGA 

TACTAGCACTCAAGAGGTAGAGGCAAGGGTTATCCTGAGCTACATAGCCT 

ATCCAAAACCAGTCTGGGTTACAGGAGACCCTGGTTTTATTCATTCATTC 

ATTTATGATATTCTCTTTATCCAGTTCCAACCTAAACTAAATAAATTAAA 

ATTTCAGTTTCTCTCTCTATGTAATTTTTCTCTTAGAGGAATCATTTGGA 

TCCACAGCCAGGCGAATCCTGCAGTGGCATCTGCACTCTTGGGGCTGTGG 

CCTTTGCATCCCTTAGCCCATGCCAGTTTCCAAAGCAGGCTGTGGGTGTC 

TCTCAGAATGTACAATCAGTTTTTCCAGAGGCCTTGACATACTCCCATCC 

CCACACCGAGTCTTTGCCTGTGATTTCTGGAAACGGTCCTGTTTCCCTTT 

TCTCTCAGCCTTAAGTGGATTCTACCTTGGGTTCAGAGGAAGTTCAAG 
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Novel Chromosome 7 Transcript - Predicted Sequence 
 

>Ex1 chr7: 35913467-35914000 
TAACTTTAGATACATACCTGGCTTCGTGAAAAGGTAAATACATACCTTTT 

CATTCAGAAAGCTGTTCCCTGAAAGAGTTGGGAGGCTTTGAATTCCCTTC 

ATCACTGGGAGGAGAGCAGGAGCCATACACTGTGTGTGAGGGGTGTGGGG 

ACCATTCCTACTGTCTCCCTCCCTCTGTTCTCCCCTAAATGATCCTGAGC 

CAGGAAGAGTGATGCAGAATGTCTCTCACCCTGTGGAAGAGTTGGTCAGG 
CTGGTCCTCAGACAACCAGGGAAGCTCTTGGGGTCCTGGAGAATAGGCAC 

ATAGCAGATAAAAGGAGTTCTTAACCAAACTTCCCTAGAACGGAGGGAGC 

TAACAAGAAAGAACTTTGGAAATCTACCCTCCTCTTTCCCTGTCACTGCC 

AGGAATGTCACCATGAGAGCAGTTTCAGTTAATGAGCAAACTCCTCAGAC 

AAGGCAGGAAGGCAGCTCTTGGGCCTCACTGTCAAGCACAGGAAGCGACT 

GGATTCCACTTGCCCGGTGTAGGGATGACAGCAG 

>Ex2 chr7:35922009-35922185 
GTCAGCTCCTCTCCAATTACCCAGAATGGGTGAGAGTTGAAGATCTAGAA 

ACAGATTGCTGAGGCAGGAGAACAAATGGTGACCCCTGCGCCTGCCCACG 

TTCCTGGAGGAAAACAGGAGCCAGTAGAGAGTGAGCTGACTCGGTGTGAC 

TCCCTTAACATTGACACAAAAGAGAAA 

>Ex3 chr7:35924154-35924250 
CTATCATAGGTCATGGGTACCAGCATCCCCAGTTCTCATCAGGAAGCAGT 
ACCCCAGGGCACATGTCCCACAGACTGCTGAAAGAGATCTTGCTCAG 

>Ex4 chr7:35924466-35924775 
GGTTTCCCAGGATGAGGGGGTGCAGGAGCCCCCCAGAAGTGCCCATCCTC 

TAACCAACTGGGGGCCAGCTAAGCAGACATCTTGGTCAAGCCTCAGCCCG 

TAGACTTGTGCTCTTGTGGCATAAGATGAGCCTCTGGGAACCAACTCGAG 

ACCTACTGTTTGGGAGTTCGCCGGAGCAACGAGCCCCTTCTGAGGCCTCT 

AAGCTGCTGAGCTCTGCAGGATTGAGGTCATGATCCCTGCCATGTTCCAG 
AGGCTTCACAAGAAGATGAAGGGACCCAGGAGGAGATTGTGGGTCCATGG 

GAACTGTCAG 

>Ex5 chr7:35927234-35927958 
GCCCCAGAGAACCTCCTAGCCCATGCTGGAAGAGAAGGCCATTCCATCTG 

GGAATCACATGGCACTGGGTGGAGAGAGAACCGACTGGGCCTGACGCCTT 

GCAGAACCAGCATCCAGCCTGTGTCCAAAGTGCTCCTGGAACCACAGAAT 

GTTTCATGCCTCCAACCCTGCCCCCTCTGTCTGTCTGTCTGTTTGTCCAT 
CTGTCCATCTGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT 

CTGTGTGTGTGTGTGTGTGTGTGTTACATACATGTATAACATTCAACACT 

CACACTCATGCTCTGGCCCATGACTTTATCCATGTGCTCAGCATCCTCCC 

ATCCAGAAATCTCCAAGGCTCCCAACTGCACAGGCGACCAGCCTGAGTTC 

TCTGCCGGTCACTCCCAGGCTCCACCCAGCCCTTCCCCAGCCCCTTCACA 

CAGCCCAGCTCAGCCAGGCAGGTCTCCCCTAGGGCACTATTTTCGAGCAC 

ACTTTCTCTGCAGATGTTCAGTCATTTGCACCTGGGGCTGCTCTGCATTT 

GTGCATCAGCCTCAGTAGGGGTGTCTGAATTGGGTGAGAGGGTGTGTCGG 

AGAAGAATCCTGACTTGCATTGGTTTGAGCAGATAACGAATAAAAAGTGT 

TCTCGCCGTGGAAAAATCCAGACGGGTGTTGGCCCAGGCACAGCTCTAGG 

TCAAAATTTTAAGAACCCCCACTCA 
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Novel Chromosome 6 Transcript – qPCR Amplicon Sequences 
 

: = Site of exon-exon junction in predicted sequence 

 

>Ex1-2 Amplicon 
GCATCAGCTCCTGCTCCAGGTTCCTGCCTCAT:GTTTGGCTGAAAGTGGA 

TAAAGCTCTATTGTAAGAGACCCCGTGGGGTAGAAAGC 

>Ex1-3 Amplicon 
CAGCCTCTGCATCAGCTCCTGCTCCAGGTTCCTGCCTCAT:GTTTGGCTG 

AAAGTGGATAAAGCTCTATTGTAAGAGACCCCGTGGGGTAGAAAGCAGGA 

AGAGCTGTGTAGTTTGAAGCAACAAGCCAGAAAGACATATCCTATGTTCC 

TGGCCTGTGTGTACCTCTGTACCTGGGGACCATTCATGTTCCTTCATGGA 
CCAGATCACATCTACTGGCGTGGAGACCAGAGGCCAGATTTAAG:CTTTT 

CTTGCAGTCTCCGTGACATTGGGCTGTATGTGCCTCATTAGATGGGATTC 

CATCCAGTGCGTCCCAGGAACC 

>Ex2-4 Amplicon 
CCGTGGGGTAGAAAGCAGGAAGAGCTGTGTAGTTTGAAGCAACAAGCCAG 

AAAGACATATCCTATGTTCCTGGCCTGTGTGTACCTCTGTACCTGGGGAC 

CATTCATGTTCCTTCATGGACCAGATCACATCTACTGGCGTGGAGACCAG 
AGGCCAGATTTAAG:CTTTTCTTGCAGTCTCCGTGACATTGGGCTGTATG 

TGCCTCATTAGATGGGATTCCATCCAGTGCGTCCCAGGAACCGCCCTGCC 

ATCTCACTTAAGATTCTTAGCAACCT:GTCATCCTGGGTCACAGACGCTC 

GTTCGCTCACTCCA 

 

Novel Chromosome 7 Transcript – qPCR Amplicon Sequences 
 

: = Site of exon-exon junction in predicted sequence 

 

>Ex1-3 Amplicon 
AAGGCAGCTCTTGGGCCTCACTGTCAAGCACAGGAAGCGACTGGATTCCA 

CTTGCCCGGTGTAGGGATGACAGCAG:GTCAGCTCCTCTCCAATTACCCA 

GAATGGGTGAGAGTTGAAGATCTAGAAACAGATTGCTGAGGCAGGAGAAC 

AAATGGTGACCCCTGCGCCTGCCCACGTTCCTGGAGGAAAACAGGAGCCA 

GTAGAGAGTGAGCTGACTCGGTGTGACTCCCTTAACATTGACACAAAAGA 

GAAA:CTATCATAGGTCATGGGTACCAGCATCCCCAGTTCTCATCAGGAA 

GCAGTACCCCAGGGCACATGTCCCACAGACTGC 

>Ex2-4 Amplicon 
CAAATGGTGACCCCTGCGCCTGCCCACGTTCCTGGAGGAAAACAGGAGCC 

AGTAGAGAGTGAGCTGACTCGGTGTGACTCCCTTAACATTGACACAAAAG 

AGAAA:CTATCATAGGTCATGGGTACCAGCATCCCCAGTTCTCATCAGGA 

AGCAGTACCCCAGGGCACATGTCCCACAGACTGCTGAAAGAGATCTTGCT 

CAG:GGTTTCCCAGGATGAGGGGGTGCAGGAGCCCCCCAGAAGTGCCCAT 

CCTCTAACCAACTGGGGGCCAGCTAAGCA 
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Appendix C – Detailed RNA-seq library construction protocol 

Dynabead Purification (Invitrogen 610-06 – Dynabeads mRNA Purification Kit): 
The following Dynabead protocol was adapted from Invotrogen’s  Dynabeads mRNA Purification Kit 

Protocol (rev no. 004), and the protocol used by the Gilad Lab [65]. 

 

1) Dilute 40 µg total RNA in 80 µL of RNase-free H2O. 

2) Heat RNA samples to 65ºC for 5 minutes, and then quickly put on ice. Keep samples on ice until 

step 6. 

3) Re-suspend Dynabeads through vigorous vortexing. Transfer 160 µL of re-suspended beads to 
RNase-free 1.5mL microcentrifuge tube. Place tubes on magnetic stand, remove supernatant, and 

remove tubes from magnetic stand. 

4) Re-suspend beads in 160 µL of Binding Buffer. Place tubes on magnetic stand, remove 

supernatant, and remove tubes from the magnetic stand. 

5) Repeat step 4. 

6) Add 80 µL of Binding Buffer to beads and combine with total RNA sample from 2. Mix by 

flicking tubes until resuspended. 

7) Rotate for 5 minutes at room temperature. 

8) Place tubes on magnetic stand, remove supernatant, and remove tubes from the magnetic stand. 

9) Wash beads with 160 µL of Washing Buffer B. Place tubes on magnetic stand, remove 

supernatant, and remove tubes from the magnetic stand. 
10) Repeat step 9. 

11) Prepare a clean tube for each sample containing 140 µL of Binding Buffer. This tube will prepare 

the poly(A)+ selected mRNA for the second round of Dynabeads. 

12) Remove supernatant from step 9, add 20 µL of Elution Buffer to beads, and mix by flicking. 

13) Heat the beads to 80ºC for 2 minutes. Immediately put beads on magnetic stand and transfer 

supernatant to tubes containing Binding Buffer prepared during step 11. It is important to keep the 

eluting beads as hot as possible while removing the supernatant from the beads. As the eluate 

cools, the mRNA will start re-binding to the beads. It might be best to perform this step one 

sample at a time to keep the temperature as high as possible. 

14) Heat eluted RNA samples from step 13 to 65ºC for 5 minutes, then quickly put on ice. Keep 

samples one ice until step 17. 

15) Add 160 µL of Washing Buffer B to used beads from step 13. Place tubes on magnetic stand, 
remove supernatant, and remove tubes from the magnetic stand. 

16) Repeat step 13. 

17) Remove supernatant from beads from step 16 and add RNA sample from step 14. Rotate tubes at 

room temperature for 5 minutes. 

18) Repeat steps 7-10 with the new samples. 

19) Remove supernatant from step 18, add 9 µL of Elution Buffer to beads, and mix by flicking. Heat 

beads to 80ºC for 2 minutes. Immediately put beads on the magnetic stand and transfer supernatant 

to a clean 1.5 mL tube. 

20) Holding point: store samples at -80ºC or proceed directly to fragmentation. 

 
Fragment RNA and Precipitate (Ambion AM8740 – RNA Fragmentation Reagents): 
*Keep all samples on ice unless otherwise specified (for all steps) 

 

1) Add 1 µL of fragmentation reagent. 

2) Mix by gentle flicking. 

3) Spin samples briefly. 

4) Incubate samples at 70ºC for 5 minutes. Replace on ice immediately. 
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5) Add 1 µL of stop buffer and mix by gentle flicking. 

6) Spin briefly. 

7) Ethanol precipitate fragmented mRNA. 

a. Bring sample volume up to 100 µL with nuclease-free H2O. 

b. Add 10 µL 3M Sodium-Acetate (1/10
th

 volume). 

c. Add 350 µL of 100% ethanol (3.5 volumes) at room temperature. 
d. Shake samples vigorously by hand (don’t vortex). 

e. Freeze samples at -80ºC. Precipitate for at least 45 minutes (preferably overnight). 

8) Holding point: keep samples at -80ºC or proceed to ds cDNA Synthesis. 

 

ds cDNA Synthesis (Invitrogen 11917-010 – SuperScript double-stranded cDNA kit): 
 

1) Complete precipitation: 

a. Spin samples at 4ºC in a refrigerated table-top microcentrifuge for 90 minutes at full 

speed. 

b. Decant Ethanol while taking care not to disturb the pellet. 

c. Add 750 µL of 80% ethanol. 

d. Spin samples at 4ºC for 5 minutes at full speed. 
e. Decant ethanol while taking care not to disturb the pellet. 

f. Invert tubes and allow pellets to dry for 10 minutes. 

g. Add 9 µL of nuclease-free H2O to each pellet, mix by gentle flicking, and allow to 

dissolve on ice for 10 minutes. 

h. Spin samples briefly to collect at the bottom of tubes. 

2) Prepare random hexamers (Promega C1181 – Random Primers) by diluting 10-fold. This dilution 

yields primers at 50 ng/µL. 

3) Combine 9 µL of fragmented RNA sample with 4 µL of diluted hexamers in a Nuclease-free PCR 

tube. Mix by gentle flicking and spin briefly to collect in the bottom of the tube. 

4) Heat mixture to 70ºC for 10 minutes, then cool to 4ºC. Once samples have cooled to 4ºC, place 

them on ice. 
5) Combine the following reagents to create the first-strand synthesis master mix: 

 Per Reaction 

5x 1st-Strand Reaction Buffer 4 μL 

0.1 M DTT 2 μL 

10 mM dNTP mix 1 μL 

SuperScript II (add last) 1 μL 

 

Add 8 μL of the above reaction mix to each sample/primer mix. Mix gently and spin. 

6) Incubate sample-reactions at 45°C for 62 minutes, then cool to 4°C. Once sample-reactions have 

cooled to 4°C, place them on ice. 

7) Combine the following reagents to create the second-strand synthesis master mix: 

 Per Reaction 
Nuclease-free H2O 91 μL 

5x 2nd-Strand Reaction Buffer 30 μL 

10 mM dNTP mix 3 μL 

E. coli DNA Ligase 1 μL 

E. coli DNA Polymerase I 4 μL 

E. coli RNase H 1 μL 

 

Add 130 μL of the above reaction mix to each sample-reaction. Mix gently and spin. 

8) Incubate sample-reactions at 16°C for 3 hours. After incubation, place the PCR tubes on ice (no 

need for cool-down this time). 

Add last 
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9) Add 2 μL of T4 DNA Polymerase to each sample-reaction. Mix gently and spin. 

10) Incubate sample-reactions at 16°C for 5 minutes, then cool to 4°C. Once sample-reactions have 

cooled to 4°C, place them on ice. 

11) Add 10 μL of 0.5 M EDTA (not included with kit) to each sample-reaction. Mix gently and spin. 

12) Perform Phenol:Chloroform extraction on all sample-reactions: 

a. Transfer reactions to clean, nuclease-free 1.5 mL microcentrifuge tube. 
b. Add 170 μL of Phenol:Chloroform to each sample. Mix Vigorously by vortexing for 30 

seconds. 

c. Spin samples at max speed for 10 minutes. 

d. Remove 145 μL of the upper aqueous phase, and transfer to a clean, nuclease-free 2 mL 

microcentrifuge tube. 

13) Perform ethanol precipitation 

a. Add 14.5 µL 3M Sodium-Acetate (1/10th volume). 

b. Add 560 µL of 100% ethanol (~3.5 volumes) at room temperature. 

c. Shake samples vigorously by hand (don’t vortex). 

d. Freeze samples at -80ºC. Precipitate for at least 45 minutes (preferably overnight). 

14) Holding point: keep samples at -80ºC or proceed to End Repair. 

 

End Repair (Epicentre ER0720 – End-It DNA End-Repair Kit): 
 

1) Complete precipitation: 

a. Spin samples at 4ºC in a refrigerated table-top microcentrifuge for 90 minutes at full 

speed. 

b. Decant Ethanol while taking care not to disturb the pellet. 

c. Add 750 µL of 80% ethanol. 

d. Spin samples at 4ºC for 5 minutes at full speed. 

e. Decant ethanol while taking care not to disturb the pellet. 

f. Invert tubes and allow pellets to dry for 10 minutes. 

g. Add 30 µL of nuclease-free H2O to each pellet, mix by gentle flicking, and allow to 
dissolve on ice for 10 minutes. 

h. Spin samples briefly to collect at the bottom of tubes. 

2) Combine the following reagents to create the end repair master mix: 

 Per Reaction 

10x End-Repair Buffer 5 μL 

2.5 mM dNTP Mix 5 μL 

10 mM ATP 5 μL 

Nuclease-free H2O 4 μL 

End-Repair Enzyme Mix (add 

last) 
1 μL 

 

Combine 31 μL of cDNA from each sample with 20 μL of the above reaction mix in 
RNase/DNase-free PCR reaction tubes (50 μL total reaction volume). Mix gently and spin. 

3) Incubate sample-reaction at room temperature for 45 minutes. 

4) Purify reaction products with the QIAquick PCR Purification Protocol and QIAquick columns, 

with the following modifications: 

a. 3 minute evaporation spin. 

b. Elute in 34 μL of EB and let columns stand for 5 minutes. 

c. 2 minute elution spin. 

 

Add ‘A’ base to 3’ Ends (NEB MO212s – Klenow Fragment 3’  5’ exo-; 1 mM dATP – not included 
with Klenow kit): 
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1) Combine the following reagents to create the add ‘A’ master mix: 

 Per Reaction 

Klenow Buffer (NEB 

Buffer 2) 
5 μL 

1 mM ATP 10 μL 

Klenow Fragment (3’ 
to 5’ exo-) 

(add last) 

1 μL 

 

Combine 34 μL of cDNA from each sample with 16 μL of the above reaction mix in 

RNase/DNase-free PCR reaction tubes (50 μL total reaction volume). Mix gently and spin. 

2) Incubate sample-reaction at 37°C for 30 minutes. 

3) Purify reaction products with the MinElute PCR Purification Protocol and QIAquick MinElute 

columns, with the following modifications:  

a. 3 minute evaporation spin. 

b. Elute in 10 μL of EB and let columns stand for 5 minutes. 

c. 2 minute elution spin. 

 

Ligate Adapters (Promega M8221 – LigaFast Rapid DNA Ligation System; Illumina PE-102-1001 – 
Paired-End Adapters from PE DNA Sample Prep Kit): 
 

1) Dilute the Paired-end adapter mix 1:10 in DEPC-treated H2O before beginning. 

2) Combine the following reagents to create the adapter ligation master mix: 

 Per Reaction 

DNA Ligase Buffer 15 μL 

Nuclease-Free H2O 2 μL 

Adapter oligo mix 

(1:10 dilution) 
1 μL 

DNA Ligase (add last) 2 μL 
 

Combine 10 μL of cDNA from each sample with 20 μL of the above reaction mix in 

RNase/DNase-free PCR reaction tubes (30 μL total reaction volume). Mix gently and spin. 

3) Incubate sample-reaction at room temperature for 15 minutes. 

4) Purify reaction products with the MinElute PCR Purification Protocol and QIAquick MinElute 

columns, with the following modifications: 

a. 3 minute evaporation spin. 

b. Elute in 15 μL of EB and let columns stand for 5 minutes. 

c. 2 minute elution spin. 

 

Purify Ligation Products (Invitrogen 10416-014 – 50 bp DNA Ladder): 
 

1) Prepare 2% agarose gel by dissolving 4 g of agarose in 200 mL of TAE. Add ethidium bromide to 

a final concentration of 0.5 μg/ml. 

2) Pour separate gels for each sample or a single large gel. Both gel configurations should be 14 cm 

in length. 

3) Combine the following reagents to create a 50 bp Ladder master mix: 

 Per Reaction 

50 bp Ladder 1 μL 

Nuclease-Free H2O 14 μL 

6x Loading Buffer 5 μL 
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Prepare ladder by combining 1 μL of 50 bp Ladder, 5μL of 6x loading buffer, and 14 μL of 

Nuclease-free H2O. Prepare 20 μL of 50 bp ladder mix for ever two cDNA samples. 

4) Prepare samples by combining 15 μL cDNA sample and 5 μL 6x loading buffer. 

5) Load ladder and samples into gel(s). For separate gels, leave an empty gel lane between the ladder 

and the sample. For a single large gel, load samples like so (“-“ is an empty cel): 
– sample1 – ladder – sample2 – sample3 – ladder – sample4 – sample5 – ladder – sample6 – 

sample7 – ladder – sample8 – 

 These steps facilitate cutting of gels later in this protocol. 

6) Run gel at 150v for 51 minutes. 

7) Image gel(s). Be sure to limit gel exposure time to UV light. 

8) Cut slices from gel(s)s in the 350-500bp range (and/or any other lengths of interest) for each 

sample. Cut each sample with a new, clean blade. For a single large gel, divide the gel first such 

that each gel section contains two sample lanes separated by a ladder lane. Cute slices from these 

smaller gel pieces. Gel slices can be stored at -20°C. 

9) Image gel(s) following cuts. 

10) Holding point: Keep gel slices at -20°C or proceed to PCR amplification. 

 

PCR Amplification (NEB F-531S – Phusion High-Fidelity PCR Master Mix): 
 

1) Purify DNA from gel slices with the Qiagen Gel Extraction Kit, with the following modifications: 

a. 3 minute evaporation spin. 

b. Elute in 23 μL of EB and let columns stand for 5 minutes. 

c. 2 minute elution spin. 

2) Combine the following reagents to create the PCR amplification master mix: 

 Per Reaction 

2x Phusion HF Mix 25 μL 

25 μM Paired-End Primer Mix 

(sequences included at the end of 
this protocol) 

2 μL 

 

Note that the Phusion Mix is a master mix that requires thawing. 

Combine 23 μL of cDNA from each sample with 27 μL of the above reaction mix in 

RNase/DNase-free PCR reaction tubes (50 μL total reaction volume). Mix gently and spin. 

3) Incubate according to the following PCR protocol: 

a. 30 seconds at 98°C. 

b. 10 seconds at 98°C. 

30 seconds at 65°C. 

60 seconds at 72°C. 

c. 10 minutes at 72 °C. 

d. Hold at 4°C. 
4) Purify reaction products with the QIAquick PCR Purification Protocol and QIAquick columns, 

with the following modifications:  

a. 3 minute evaporation spin. 

b. Elute in 50 μL of EB and let columns stand for 5 minutes. 

c. 2 minute elution spin. 

 

Double-Stranded cDNA Synthesis PCR Program: 
This thermocycler program is used to perform the Double-stranded cDNA synthesis step above. 

 

1) 10 minutes at 70°C. 

Cycle 13 times 
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 Incubate sample/primer mixture. 

2) Hold at 4°C. 

 Once the samples have cooled to 4°C (~2 minutes), put them on ice, and add the 1st-Strand 

Master Mix. 

 Skip the remainder of this step once the master mix is added to the sample/primer mixture. 

3) 62 minutes at 45°C. 

 Incubate 1st-strand synthesis sample-reactions 

4) Hold at 4°C. 

 Once the samples have cooled to 4°C (~2 minutes), put them on ice, and add the 2nd-

Strand Master Mix. 

 Skip the remainder of this step once the master mix is added to the sample/primer mixture. 

5) 4 hours at 16°C. 

 Incubate 2nd-strand synthesis sample-reactions. 

 After 3 hours, put sample-reactions on ice and add 2 μL of T4 DNA Polymerase to each 

sample-reaction. 

 Once T4 DNA Polymerase has been added to each sample-reaction, return them to the 

PCR machine to incubate for 5 minutes. 
6) Hold at 4°C. 

 

Illumina Paired-End PCR Primers: 
 

1) PE Primer 1.0: 

5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-

3’ 

2) PE Primer 2.0: 

5’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCG
ATCT-3’ 

 

When ordering primers of this length, be sure to get them HPLC- or PAGE-purified to reduce the number 

of prematurely-terminated primers generated during the synthesis process. 
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Appendix D – Accession numbers for IVT transcripts 

*indicates IVT transcript was removed from analysis for mapping to multiple loci, or 

overlapping another IVT transcript. 

BC000128 BC001001 BC006772 BC009084 BC011353 BC015050 

BC000129 BC001003 BC006781 BC009139 BC011355 BC015052 

BC000130 BC001226 BC006784* BC009523 BC011359* BC015054 

BC000131 BC001228 BC006786* BC009524 BC011361 BC015056 

BC000132 BC001229 BC006791 BC009529 BC011362 BC015164* 

BC000133 BC001231 BC006793* BC009530 BC011363 BC015165 

BC000134 BC001232* BC006794 BC009538* BC011365* BC015169* 

BC000135 BC001233* BC006795 BC009540 BC011368 BC015171 

BC000138 BC001234 BC006804 BC009545 BC011369 BC015180 

BC000140 BC001235 BC006807 BC009548* BC011371 BC015202 

BC000141 BC001236 BC006808 BC009552 BC011372 BC015219* 

BC000142 BC001238* BC006811 BC009553 BC011375 BC015231 

BC000145 BC001239 BC006818 BC009561 BC011377 BC015236 

BC000146 BC001240 BC006819 BC009564 BC011379 BC015474 

BC000147 BC001241 BC006821 BC009614 BC011380 BC015480 

BC000148* BC001242 BC006823 BC009617 BC011381 BC015489 

BC000149 BC001243 BC006825 BC009618 BC011382 BC015490 

BC000150 BC001244 BC006831 BC009620 BC011384 BC015505 

BC000151 BC001245 BC006832 BC009621 BC011387 BC015507 

BC000152 BC001247 BC006837 BC009623 BC011392 BC015513 

BC000153 BC001249* BC006838 BC009624 BC011393 BC015541 

BC000154 BC001250 BC006839* BC009631 BC011394 BC015542 

BC000155 BC001251 BC006849* BC009642 BC011396 BC015555 

BC000157 BC001252 BC006850 BC009644 BC011399 BC015701 

BC000158 BC001253 BC007121 BC009670 BC011400 BC015703* 

BC000159 BC001254 BC007122 BC009671 BC011402 BC015704 

BC000160 BC001255 BC007123 BC009672 BC011404 BC015706 

BC000161 BC001256 BC007124* BC009674 BC011405 BC015708 

BC000162 BC001257 BC008087 BC009675 BC011406 BC015710 

BC000163 BC001258 BC008090 BC009677 BC011408 BC015711 

BC000165 BC001259 BC008091 BC009678 BC011410 BC015712 

BC000166 BC001261 BC008092* BC009679 BC011414 BC015713 
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BC000168 BC001262 BC008094* BC009680 BC011418 BC015714 

BC000169 BC001263 BC008095 BC009681 BC011419 BC015715 

BC000170 BC001264 BC008100 BC009684 BC011453 BC015722 

BC000171 BC001265 BC008145 BC009685 BC011454 BC015725 

BC000172 BC001267 BC008146 BC009686 BC011460 BC015794 

BC000175 BC001268 BC008149 BC009687 BC011498 BC015796 

BC000176 BC001269* BC008151 BC009689 BC011502 BC015797 

BC000177 BC001270 BC008178* BC009691 BC011515 BC015799 

BC000178 BC001271 BC008180 BC009693 BC011517 BC015801 

BC000179 BC001272 BC008182 BC009694 BC011519 BC015802 

BC000180* BC001273 BC008183 BC009696 BC011520 BC015803 

BC000181 BC001274 BC008185 BC009697 BC011522 BC015806 

BC000793 BC001275 BC008188 BC009698 BC011523 BC015807 

BC000794 BC001276 BC008191 BC009699 BC011524 BC015808 

BC000795 BC001277 BC008194 BC009701 BC011526 BC015809 

BC000797 BC001278 BC008195 BC009703 BC011529 BC015810 

BC000799 BC001279 BC008196 BC009704 BC011534 BC015812 

BC000802 BC001280 BC008197 BC009707 BC011535 BC015813 

BC000803* BC001281 BC008198* BC009708 BC011537 BC015814 

BC000804 BC001282 BC008200 BC009709 BC011538 BC015882 

BC000805 BC001283 BC008201 BC009710 BC011539 BC015883* 

BC000806 BC001284 BC008202 BC009711 BC011542 BC015886 

BC000807 BC001285 BC008203 BC009712 BC011948 BC015887 

BC000808* BC001286 BC008205 BC009713 BC011992 BC015888* 

BC000809 BC001287 BC008207 BC009714 BC012037 BC015890* 

BC000810 BC001288 BC008211 BC009715 BC012040 BC015891 

BC000813 BC001289* BC008212 BC009716 BC012201 BC015893 

BC000814 BC001291 BC008214 BC009717 BC012302* BC015899 

BC000819 BC001293 BC008215 BC009718 BC012304 BC015904 

BC000820 BC001294 BC008219 BC009719 BC012372* BC015925 

BC000823 BC001295 BC008226 BC009720 BC012850 BC015926 

BC000824 BC001297 BC008235 BC009722 BC012857* BC015927 

BC000827 BC001298* BC008246 BC009726 BC012860 BC015928 

BC000829 BC001300 BC008250 BC009727 BC012890* BC015930 

BC000830 BC001301* BC008251 BC009731 BC012895 BC015931 

BC000832 BC001302 BC008253 BC009733* BC012925 BC015932 

BC000834 BC001303 BC008254 BC009734 BC012926 BC015934* 

BC000835 BC001304 BC008505* BC009737 BC012932 BC015935 
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BC000836 BC001305 BC008506 BC009738 BC012941* BC015936 

BC000837 BC001308 BC008567 BC010235 BC012942 BC015937 

BC000846 BC001309 BC008568 BC010439 BC012944 BC015938 

BC000849 BC001310 BC008569 BC010441 BC012950 BC015939 

BC000850 BC001311 BC008572 BC010444 BC013045 BC015940 

BC000851 BC001312 BC008573 BC010446 BC013073 BC015941 

BC000852* BC001316 BC008584 BC010449 BC013142 BC015943 

BC000853 BC001317 BC008585* BC010450 BC013153 BC015944 

BC000854 BC001318 BC008586* BC010451 BC013155 BC015945 

BC000855 BC001319 BC008594* BC010456 BC013158 BC015946* 

BC000857* BC001321 BC008600 BC010458 BC013425 BC015947 

BC000861 BC001326 BC008602 BC010460 BC013426 BC015948 

BC000864 BC001327 BC008603 BC010463 BC013428 BC015949 

BC000866 BC001328* BC008604 BC010464 BC013433 BC016024 

BC000868 BC001329 BC008605 BC010466 BC013435 BC016025 

BC000870 BC001331 BC008607 BC010469 BC013436 BC016026 

BC000871 BC001333* BC008608 BC010471 BC013437 BC016028 

BC000872 BC001334 BC008611 BC010522 BC013439* BC016029 

BC000873 BC001337 BC008613 BC010537 BC013566 BC016031 

BC000875 BC001338 BC008618 BC010569 BC013567 BC016137 

BC000877 BC001340 BC008621 BC010570 BC013568 BC016139 

BC000878* BC001341 BC008624 BC010571 BC013569 BC016140 

BC000879 BC001342 BC008625 BC010574 BC013572 BC016145 

BC000881 BC001344 BC008628* BC010576 BC013575 BC016146 

BC000882 BC001345 BC008629 BC010609 BC013576 BC016147 

BC000884 BC001346 BC008631 BC010611 BC013577 BC016148 

BC000887 BC001964 BC008632 BC010614 BC013580 BC016172 

BC000889* BC001965 BC008634 BC010616 BC013581 BC016174 

BC000890 BC001966 BC008636* BC010618 BC013583 BC016178 

BC000891 BC001967* BC008640 BC010620 BC013584 BC016179 

BC000892 BC001968 BC008641 BC010623 BC013585 BC016277 

BC000893 BC001970 BC008650 BC010626 BC013587 BC016279 

BC000894 BC001971 BC008651 BC010628 BC013588 BC016281 

BC000895 BC001972 BC008652 BC010629 BC013589 BC016282 

BC000896 BC001979 BC008654 BC010632 BC013590 BC016283 

BC000897 BC001980 BC008656 BC010634 BC013591 BC016284 

BC000898 BC003352 BC008658* BC010640 BC013592 BC016285 

BC000899 BC003353 BC008659* BC010641 BC013596 BC016286 
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BC000901 BC003354 BC008662 BC010647 BC013597 BC016288 

BC000902 BC003355 BC008663 BC010648 BC013609 BC016292 

BC000903 BC003356 BC008664 BC010649 BC013645 BC016294 

BC000904 BC003357 BC008666 BC010652 BC013690 BC016295 

BC000905 BC003358 BC008667 BC010653 BC013693 BC016445 

BC000906 BC003359 BC008668 BC010658 BC013748 BC016472* 

BC000907 BC003360* BC008669 BC010659 BC013760 BC016474 

BC000908* BC003361 BC008671 BC010660* BC013781 BC016509 

BC000910 BC003362 BC008673 BC010661 BC013787 BC016582 

BC000912 BC003364 BC008674* BC010662 BC013788 BC016613 

BC000913 BC003365 BC008675 BC010665 BC013789 BC016614* 

BC000914 BC003366* BC008678 BC010668 BC014787 BC016617 

BC000915 BC003367 BC008679 BC010671 BC014789 BC016622 

BC000916 BC003369 BC008680 BC010674 BC014846 BC016623 

BC000918 BC003370 BC008682 BC010681 BC014861* BC016633 

BC000921* BC003371 BC008684 BC010689 BC014879 BC016655 

BC000923 BC003373 BC008685 BC010691 BC014880 BC016663 

BC000924* BC003375 BC008686 BC010692 BC014881 BC016664 

BC000926 BC003376 BC008688 BC010696 BC014885 BC016852 

BC000927 BC003377 BC008689 BC010697 BC014887 BC017025 

BC000930* BC003378 BC008690 BC010698 BC014888 BC017045 

BC000931 BC003379 BC008691 BC010701 BC014889 BC017061 

BC000932 BC003381 BC008972 BC010703 BC014890 BC017094 

BC000933 BC003382 BC008973 BC010704 BC014891 BC017114 

BC000934 BC003383 BC008975* BC010708 BC014894 BC017115 

BC000936 BC003384 BC008976 BC010732 BC014896 BC017117 

BC000937* BC003385* BC008979 BC010734 BC014897 BC017119 

BC000938 BC003387 BC008981 BC010735* BC014898 BC017123 

BC000939* BC003388 BC008982 BC010737 BC014900 BC017163 

BC000941 BC003389 BC008983 BC010738 BC014901* BC017168 

BC000942 BC003390 BC008984 BC010739 BC014904 BC017169 

BC000944 BC003394 BC008986 BC010740 BC014907 BC017453 

BC000948 BC003395 BC008987 BC010743 BC014908* BC017469 

BC000949 BC003397 BC008988 BC010744 BC014911 BC017471 

BC000952 BC003398 BC008990 BC010846 BC014912 BC017472 

BC000953 BC003400 BC008991 BC010849 BC014913 BC017492 

BC000954 BC003401* BC008992 BC010850 BC014916 BC017495* 

BC000956* BC003402 BC008993 BC010852 BC014918 BC017553 



163 

 

BC000959 BC003403 BC009009* BC010853* BC014919 BC017554 

BC000961 BC003407* BC009010 BC010854 BC014923 BC017555 

BC000962 BC003408 BC009011 BC010855 BC014924 BC017556 

BC000964 BC003409 BC009012 BC010856 BC014928 BC017558 

BC000965 BC003410 BC009014 BC010857 BC014939* BC017559 

BC000966 BC003412 BC009015 BC010858 BC014940 BC017655 

BC000968 BC003413 BC009016 BC010859 BC015012 BC017673 

BC000971 BC003417 BC009017 BC010860 BC015013 BC018118 

BC000972 BC003418 BC009025 BC010861 BC015014 BC018130 

BC000973 BC003682 BC009026 BC010862 BC015016 BC018164 

BC000974 BC003683 BC009031 BC010863 BC015017 BC018207 

BC000977 BC003684 BC009032* BC010866 BC015018 BC018295 

BC000978 BC003685 BC009037 BC010868 BC015020* BC018337 

BC000979 BC003686* BC009039 BC010874 BC015022 BC018349 

BC000980 BC003688 BC009040 BC010876 BC015025 BC018426 

BC000981 BC003689* BC009041 BC011046 BC015026 BC018445 

BC000983* BC003690 BC009046 BC011047 BC015027 BC018466 

BC000985 BC003691 BC009047 BC011048* BC015028 BC018509 

BC000986 BC003694 BC009048 BC011049 BC015030* BC018514 

BC000988 BC003701 BC009049 BC011051 BC015031 BC018528* 

BC000989 BC004815 BC009051 BC011054 BC015032 BC020265 

BC000990 BC004816 BC009052* BC011057 BC015033 BC020492 

BC000991 BC004817* BC009053* BC011175 BC015037 BC020493 

BC000992 BC004818 BC009054 BC011249 BC015038 BC020494 

BC000993 BC004819 BC009055 BC011262 BC015039 BC020518* 

BC000994 BC004822* BC009065 BC011263 BC015041 BC020965 

BC000995 BC005404 BC009073 BC011267 BC015044 BC020973 

BC000996 BC005408 BC009074 BC011268 BC015045 BC021892 

BC000997 BC005700 BC009077 BC011348 BC015046 BC021958 

BC000998* BC006768* BC009078 BC011349* BC015047* BC021959 

BC001000 BC006769 BC009081 BC011350 BC015049 BC022096 
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Appendix E – List of hunc regions 

Chr Start Stop Accession Strand 

Block 

Count 

Block 

Length Block Starts 

chr1 181059172 181059250 BC000128 + 1 78, 0, 

chr19 58084981 58085042 BC000130 - 1 61, 0, 

chr21 44949456 44949536 BC000153 - 1 80, 0, 

chr19 1877291 1877385 BC000158 - 1 94, 0, 

chr3 169802008 169802070 BC000181 + 1 62, 0, 

chr9 139835174 139835213 BC000850 - 1 39, 0, 

chr1 224380163 224380238 BC000961 + 1 75, 0, 

chr1 224380275 224380371 BC000961 + 1 96, 0, 

chrX 48121201 48121214 BC001003 + 1 13, 0, 

chr19 55789027 55789128 BC001236 - 1 101, 0, 

chr1 63894682 63894739 BC001253 + 1 57, 0, 

chr6 3850619 3850729 BC001261 + 1 110, 0, 

chr16 54147446 54147491 BC001284 + 1 45, 0, 

chr11 60689485 60689526 BC001309 + 1 41, 0, 

chr8 120846893 120847048 BC001316 - 1 155, 0, 

chr11 66839035 66839073 BC001338 + 1 38, 0, 

chr7 100075015 100075078 BC001966 - 1 63, 0, 

chr20 60887523 60887695 BC003355 - 2 64,8, 0,164, 

chr17 26672748 26672831 BC003694 + 1 83, 0, 

chr15 101605981 101606062 BC005408 + 1 81, 0, 

chr2 128460639 128460658 BC006808 + 1 19, 0, 

chr2 128460786 128460885 BC006808 + 1 99, 0, 

chr3 172538777 172538883 BC006838 + 1 106, 0, 

chrX 153247810 153247972 BC008203 + 1 162, 0, 

chr12 133587531 133587671 BC008211 + 1 140, 0, 

chr7 8272267 8272298 BC008640 - 1 31, 0, 

chr7 8257950 8260973 BC008640 - 2 182,69, 0,2954, 

chr7 8183560 8198158 BC008640 - 3 41,99,2, 0,13185,14596, 

chr4 845649 845679 BC008668 - 1 30, 0, 

chr11 702952 703087 BC008671 + 1 135, 0, 

chr11 114270761 114270857 BC009041 - 1 96, 0, 

chr19 39898915 39899005 BC009693 + 1 90, 0, 

chr19 39899600 39899631 BC009693 + 1 31, 0, 

chr5 150175494 150175570 BC009719 + 1 76, 0, 
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chr2 220379553 220379750 BC010439 + 1 197, 0, 

chr2 101019094 101023097 BC010441 - 2 22,60, 0,3943, 

chr2 101014504 101014536 BC010441 - 1 32, 0, 

chr2 101009725 101009843 BC010441 - 1 118, 0, 

chr2 101009310 101009425 BC010441 - 1 115, 0, 

chr2 101009082 101009194 BC010441 - 1 112, 0, 

chr2 101008793 101008837 BC010441 - 1 44, 0, 

chr1 156616744 156616942 BC010571 + 1 198, 0, 

chr17 26732326 26732350 BC010691 - 1 24, 0, 

chr2 232672717 232672809 BC010739 + 1 92, 0, 

chr15 75641401 75641430 BC010876 + 1 29, 0, 

chr22 29704246 29704382 BC011047 + 1 136, 0, 

chr17 71205714 71205742 BC011054 - 1 28, 0, 

chr19 39663585 39663681 BC011368 + 1 96, 0, 

chr17 38191523 38192027 BC011375 - 2 78,53, 0,451, 

chr8 145745721 145745902 BC011377 + 1 181, 0, 

chr19 34180216 34180256 BC011380 + 1 40, 0, 

chr1 165632263 165632381 BC011410 - 1 118, 0, 

chr8 103662373 103662418 BC011538 - 1 45, 0, 

chr8 103661393 103661567 BC011538 - 1 174, 0, 

chr10 100018914 100019169 BC013153 - 2 70,22, 0,233, 

chr10 100016604 100016609 BC013153 - 1 5, 0, 

chr19 39913833 39913901 BC013426 + 1 68, 0, 

chr19 39914208 39914268 BC013426 + 1 60, 0, 

chrX 101970155 101970194 BC013576 + 1 39, 0, 

chrX 101970457 101970503 BC013576 + 1 46, 0, 

chrX 101970778 101971019 BC013576 + 1 241, 0, 

chrX 101971326 101971540 BC013576 + 1 214, 0, 

chrX 101972206 101972236 BC013576 + 1 30, 0, 

chr3 99514066 99514102 BC013581 + 1 36, 0, 

chr3 38180451 38180519 BC013589 + 1 68, 0, 

chr17 42989048 42989069 BC013596 - 1 21, 0, 

chr16 30536028 30536223 BC013760 - 1 195, 0, 

chr9 115449230 115449332 BC014881 - 1 102, 0, 

chrX 108787397 108787436 BC014888 + 1 39, 0, 

chr11 8710413 8710450 BC014919 + 1 37, 0, 

chr16 21191146 21191222 BC015812 + 1 76, 0, 

chr15 93595560 93595618 BC015886 - 1 58, 0, 
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chr15 93588554 93588620 BC015886 - 1 66, 0, 

chr8 141525920 141525990 BC015891 + 1 70, 0, 

chr8 141526007 141526152 BC015891 + 1 145, 0, 

chr1 112991680 112991725 BC016029 + 1 45, 0, 

chr17 48046861 48046943 BC016145 + 1 82, 0, 

chr3 179472630 179478901 BC016146 + 3 11,27,2, 0,2209,6269, 

chr12 122729186 122729257 BC016617 - 1 71, 0, 

chr12 122723160 122723196 BC016617 - 1 36, 0, 

chr21 45738419 45739268 BC018295 + 2 58,35, 0,814, 

chr21 45741639 45741729 BC018295 + 1 90, 0, 

chr8 27145514 27145594 BC018337 - 1 80, 0, 

chr16 67134042 67134152 BC018509 + 1 110, 0, 

chr19 17691641 17691665 BC020492 + 1 24, 0, 

chr19 17692293 17692361 BC020492 + 1 68, 0, 
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