
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

Steering Contexts for Autonomous Agents Using
Synthetic Data
Cory Boatright
University of Pennsylvania, coryb@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1614
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Boatright, Cory, "Steering Contexts for Autonomous Agents Using Synthetic Data" (2015). Publicly Accessible Penn Dissertations. 1614.
http://repository.upenn.edu/edissertations/1614

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1614?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1614
mailto:libraryrepository@pobox.upenn.edu


Steering Contexts for Autonomous Agents Using Synthetic Data

Abstract
Data-driven techniques have become synonymous with replication of real-world phenomena. Efforts have
been underway to use these techniques in crowd simulation through a mapping of pedestrian trajectories onto
virtual agents using a similarity of circumstance. These works have exposed two fundamental issues with data-
driven crowds.

First, robust real-world data is logistically difficult to accurately collect and filled with unknown variables, such
as a person's mental state, which change behavior without providing a means to replicate their effects. Second,
current data-driven approaches store and search the entire set of training data to decide the next course of
action for each agent. A straightforward single-model system would alleviate the burden of storing and
searching the data. The problem with a monolithic model, though, is that a single steering policy cannot
handle all possible scenarios. To counter this we propose the splitting of possible scenarios into separable
contexts, with each context in turn learning a model. The model used by an agent can then be dynamically
swapped at runtime based on the evolving conditions around the agent. This results in a more scalable
approach to data-driven simulation.

In lieu of tracked data from real pedestrians, we propose the use of an oracle steering algorithm. This algorithm
stands in for real data and can be queried for a steering decision for any combination of factors. This allows us
to more thoroughly explore the problem space as needed. Furthermore, we can control all variables and
capture behavior from scenarios that are otherwise infeasible to adequately sample in reality. This synthetic
source of training data allows for a scalable and structured approach to training machine-learned models
which virtual agents can use to navigate at runtime.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Norman I. Badler

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1614

http://repository.upenn.edu/edissertations/1614?utm_source=repository.upenn.edu%2Fedissertations%2F1614&utm_medium=PDF&utm_campaign=PDFCoverPages


STEERING CONTEXTS FOR AUTONOMOUS AGENTS USING SYNTHETIC DATA

Cory D. Boatright

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Supervisor of Dissertation

Norman I. Badler, Professor,
Computer and Information Science

Graduate Group Chairperson

Lyle Ungar, Professor,
Computer and Information Science

Dissertation Committee

Petros Faloutsos, Associate Professor,
York University
(External Committee Member)

Ladislav Kavan, Assistant Professor,
Computer and Information Science

Stephen H. Lane,
Associate Professor of Practice,
Computer and Information Science

Aaron Roth, Assistant Professor,
Computer and Information Science



STEERING CONTEXTS FOR AUTONOMOUS AGENTS USING SYNTHETIC DATA

COPYRIGHT

Cory D. Boatright



To my grandfathers, Howard D. Boatright and James C. Kuntz, and my cousin Ryan

C. Boatright who unexpectedly joined them far too young. They did not see me finish

my education in Person, but I know they are watching in Spirit.

iii



Acknowledgements

While it’s common to thank “all the little people” who contributed in our accom-

plishments, but I would like to thank two by name. Kimberly Detwiler sat next to

me in Intro to Comp Sci so many years ago and her request for help kicked off my

interest in teaching. Costel Ionita was the first to tell me getting a PhD is not that

big a deal and that I should consider it, even though he’d just found me skipping his

Calc III class. Looking back, there’s a fair chance he got the last laugh on that one.

These two people inadvertently started the ripples that would lead to this day.

Once the ripples started, I have Oberta Slotterbeck and Ellen Walker from Hiram

College to thank for pushing me to the University of Pennsylvania, and my advisor

Norm Badler to thank for taking a chance and pulling me in. I have often thought

he lost the GRE page of my application. His humble approach to mentoring a young

wannabe professor was often exactly what I needed. While at UPenn I’ve been the

beneficiary of support from many amazing people: Aline Normoyle, Amy Calhoun,

Ben Sunshine-Hill, and Chris Czyzewicz to name a few in particular. I also havemajor

appreciation for Jennie Shapira’s assistance. She and I would agree I could have done

all this without her, but it would not have been anywhere near as fun. She made all

the figures in this dissertation that required more effort than hitting “prt sc” which

is where my illustrative abilities abruptly end.

Finally my family’s unwavering support has been a blessing on which I can always

iv



depend. My Mom, Dad, and sisters Cari and Dayna, who have supported me my

whole life in all of my endeavors, even when they didn’t really understand them.

Of course I’ve saved the best for last, my wife Dr. Kaitlyn Boatright. She has seen

me at my best, got me through my worst, and never had trouble with believing in

me…something I cannot claim of myself. Thanks, princess.

v



ABSTRACT

STEERING CONTEXTS FOR AUTONOMOUS AGENTS USING SYNTHETIC DATA

Cory D. Boatright

Norman I. Badler

Data-driven techniques have become synonymouswith replication of real-world phe-

nomena. Efforts have been underway to use these techniques in crowd simulation

through a mapping of pedestrian trajectories onto virtual agents using a similarity of

circumstance. These works have exposed two fundamental issues with data-driven

crowds.

First, robust real-world data is logistically difficult to accurately collect and filled

with unknown variables, such as a person’s mental state, which change behavior

without providing a means to replicate their effects. Second, current data-driven ap-

proaches store and search the entire set of training data to decide the next course of

action for each agent. A straightforward single-model systemwould alleviate the bur-

den of storing and searching the data. The problemwith amonolithicmodel, though,

is that a single steering policy cannot handle all possible scenarios. To counter this

we propose the splitting of possible scenarios into separable contexts, with each con-

text in turn learning a model. The model used by an agent can then be dynamically

swapped at runtime based on the evolving conditions around the agent. This results

in a more scalable approach to data-driven simulation.

In lieu of tracked data from real pedestrians, we propose the use of an oracle

steering algorithm. This algorithm stands in for real data and can be queried for a

steering decision for any combination of factors. This allows us to more thoroughly

explore the problem space as needed. Furthermore, we can control all variables and

capture behavior from scenarios that are otherwise infeasible to adequately sample in

vi



reality. This synthetic source of training data allows for a scalable and structured ap-

proach to training machine-learned models which virtual agents can use to navigate

at runtime.

vii



Contents

Acknowledgements iv

Abstract vi

Contents viii

List of Tables xii

List of Figures xiii

List of Algorithms xv

Introduction

. Population Versus Realism . . . . . . . . . . . . . . . . . . . . . . . .

. Machine Learning as Precomputation . . . . . . . . . . . . . . . . .

. Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Context-Sensitive Steering . . . . . . . . . . . . . . . . . . . . . . . .

. Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . .

Related Work

. Agent Steering and Collision Avoidance . . . . . . . . . . . . . . . .

. Crowd Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii



. Data-Driven Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Best-Match Search . . . . . . . . . . . . . . . . . . . . . . . .

. . Regression on Similar Data . . . . . . . . . . . . . . . . . . .

. A New Machine-Learned Approach . . . . . . . . . . . . . . . . . . .

Steering Contexts

. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Decomposition of Scenario Space . . . . . . . . . . . . . . . . . . . .

. . Computational Impacts . . . . . . . . . . . . . . . . . . . . .

. . Context Approximation . . . . . . . . . . . . . . . . . . . . .

. Context Identification . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Intuitively Derived Contexts . . . . . . . . . . . . . . . . . . .

Synthetic Data

. Nature of Real-World Data . . . . . . . . . . . . . . . . . . . . . . . .

. . Collection Techniques . . . . . . . . . . . . . . . . . . . . . .

. . Processing Data . . . . . . . . . . . . . . . . . . . . . . . . .

. . Noise in the Data . . . . . . . . . . . . . . . . . . . . . . . . .

. Algorithmic Alternative . . . . . . . . . . . . . . . . . . . . . . . . .

. . Stochastic Scenario Generation . . . . . . . . . . . . . . . . .

. . Oracle Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .

. . Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . .

Initial Application

. Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Initial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . .

. . Feature Spaces . . . . . . . . . . . . . . . . . . . . . . . . . .

ix



. . Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Classifier Accuracy . . . . . . . . . . . . . . . . . . . . . . . .

. . Frames per Second . . . . . . . . . . . . . . . . . . . . . . . .

. . Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . .

. Summary of Performance . . . . . . . . . . . . . . . . . . . . . . . .

Refinements Through Data Mining

. Context Identification . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Unsupervised Learning Algorithms . . . . . . . . . . . . . . .

. . Principal Component Analysis . . . . . . . . . . . . . . . . .

. . Evaluating Cluster Results . . . . . . . . . . . . . . . . . . . .

. Generating Policies for Contexts . . . . . . . . . . . . . . . . . . . . .

. . Application of a Mixture of Experts . . . . . . . . . . . . . . .

. . Feature Space . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Classification Algorithms Used . . . . . . . . . . . . . . . . .

. . Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . .

. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . .

. . Clustering Contexts . . . . . . . . . . . . . . . . . . . . . . .

. . Policies for Clustered Contexts . . . . . . . . . . . . . . . . .

Improved Application

. Oracle Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Classification Improvements . . . . . . . . . . . . . . . . . . . . . . .

x



. . Context Classifier . . . . . . . . . . . . . . . . . . . . . . . . .

. . Specialized Classifiers . . . . . . . . . . . . . . . . . . . . . .

. . Model Interface . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Emergency Stop Action . . . . . . . . . . . . . . . . . . . . .

. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Frames per Second . . . . . . . . . . . . . . . . . . . . . . . .

. . Policy Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . .

Conclusions and Future Work

. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Suggested Uses . . . . . . . . . . . . . . . . . . . . . . . . . .

. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . Further Oracle Improvements . . . . . . . . . . . . . . . . . .

. . Failure-Based Context Generation . . . . . . . . . . . . . . .

. . Purpose-Dependent Context Sets . . . . . . . . . . . . . . . .

A Original Context ID Numbers

B Details of the Final Oracle Planner

B. Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Domain-Specific Considerations . . . . . . . . . . . . . . . . . . . .

B. Algorithm Alterations . . . . . . . . . . . . . . . . . . . . . . . . . .

Bibliography

xi



List of Tables

. Parameters for Defining Contexts . . . . . . . . . . . . . . . . . . . .

. Oracle vs. Model Time . . . . . . . . . . . . . . . . . . . . . . . . . .

. Clustering on Original Data . . . . . . . . . . . . . . . . . . . . . . .

. Clustering on PCA Data . . . . . . . . . . . . . . . . . . . . . . . . .

. Percent Incorrect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Weighted F-measure . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Weighted MCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Cluster Centroids (No Obstacles) . . . . . . . . . . . . . . . . . . . .

. Cluster Centroids (With Obstacles) . . . . . . . . . . . . . . . . . . .

. Algorithm-Policy Pairing . . . . . . . . . . . . . . . . . . . . . . . . .

. New Oracle and Decision Tree Baseline . . . . . . . . . . . . . . . . .

xii



List of Figures

. Common Artificial Scenario . . . . . . . . . . . . . . . . . . . . . . .

. Steering Contexts’ Virtual Environment . . . . . . . . . . . . . . . .

. Context Feature Space . . . . . . . . . . . . . . . . . . . . . . . . . .

. Context Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Regions for Scenario Generation . . . . . . . . . . . . . . . . . . . .

. Our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Multi-level Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Feature Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Classifier Error Rates . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Steering Time for Agent Count . . . . . . . . . . . . . . . . . . . . .

. Rendering at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . .

. Collision Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Steering Time for Agent Populations . . . . . . . . . . . . . . . . . .

. Randomized Scenario . . . . . . . . . . . . . . . . . . . . . . . . . .

. Per-Agent Decision Times . . . . . . . . . . . . . . . . . . . . . . . .

. Urban Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Hallway Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiii



. Hierarchical Model Usage . . . . . . . . . . . . . . . . . . . . . . . .

. Lane-Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Orbiting Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiv



List of Algorithms

Oracle Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Agent Decision at Runtime . . . . . . . . . . . . . . . . . . . . . . . .

xv



Chapter

Introduction

And so it begins…

Gandalf the White

Simulations of pedestrian behavior range from “multiagent simulations” of a few

people to “crowd simulation” with thousands to millions of virtual agents all vying

for system resources. This pressure on compute power creates a tense battle between

the scale of the simulation and the algorithms needed to display acceptably realistic

behavior. As the number of agents increases, the algorithms must be leaner in their

resource use to accommodate the population. Adding to the challenge, more robust

steering algorithms require the agent to be capable of handling an increasing number

of possible situations. In this dissertation we explore our hypothesis that appropriate

machine learning techniques can address the problem of crowd steering while also

mitigating scalability problems and leveraging the realismbenefits of empirical, data-

driven simulations.



. Population Versus Realism

Two dominant forces continuously push the development of crowd simulation.

Both of these factors are manifest through a problem of scalability. When we ordi-

narily think of scale, we think of the number of inputs to a system. However with a

goal as complex as crowd simulation, we must also consider scale with respect to the

possible behaviors produced by the artificial intelligence.

The first force is the count of agents in the simulated scene. We want and need

to simulate ever-higher numbers of simulated humans. With larger populations, we

can simulate more complex scenarios and move towards duplicating the crowding

phenomena of the real world and what we witness in day-to-day life. Modeling more

agents strains against the available processing power of a single machine, as each

agent requires processor time to make navigation decisions and to avoid collisions to

ensure that, just as in reality, the population as a whole moves to its target configu-

ration without agents striking one another.

The second force is realism. The practice of simulating large numbers of humans

is not complete with just the existence of a massive population. Each member of

that population, a priori, is expected to navigate in a manner consistent with our

intuition of human action such as through use of individualized strategies or poli-

cies that lead to some goal or destination. In short, typical steering challenges do

not cause confusion in a human, and thus a simulated person should be capable of

appropriately handling the same challenges. Creating computational solutions for

such a complex system often rely on ad hoc mathematical models or preconceived

designer intuitions. Both generalizations may be lacking in correctness and require

scalable, efficient algorithms to be effective on typically tight runtime and hardware

constraints. For the sake of scalability we must strive to reduce the computation



needed to replicate plausible human behavior in order to allow more people to be

simulated within the targeted, often real-time , framerate.

. Machine Learning as Precomputation

To properly extend the science of crowd simulation we need an efficient, scalable

strategy for steering given a virtual environment. Cognitive algorithms have shown

promise, but ultimately suffer from a combinatorial explosion of the possible factors

contributing to the decision-making process. Rather than striving to replicate the

true thought processes of a human and subsequently devoting resources to carry out

these thoughts for every agent in the simulation, we instead model input stimuli

and observe the decision-making which uses these stimuli. While human factors

such as personality and emotional factors likely influence results, we can set those

variations aside in favor of explicitly computable navigation directives. In essence

we treat cognition as a “black box” such that external influences are input, decisions

are the output, and the mechanics behind producing those decisions only matters

insofar that the decisions are reasonable upon inspection. Thus we abstract away

the complexities of a true-to-life thought process.

Precalculating information for caching and future lookuphelps improve the speed

of many algorithms by reducing the amount of computation required at runtime by

replacing it with a lookup to the cached results. In this spirit, data-driven tools have

been demonstrated which select proper behavior via a best-match search against a

database of samples. These samples serve as a surrogate for past experience which

can be consulted when a similar situation arises. However, these techniques suffer

from scalability issues of their own. The phrase “throw more data at it” cannot handle

unbounded numbers of samples, and sampling bias can lead to holes in the resulting



action space since unobserved behavior cannot be represented by the system. Fur-

ther complicating matters, numerous scenarios can have different actions because of

factors not accounted for by the current feature space in use by the agents. Expanding

the feature space creates an arms race between possible outcomes and unique com-

binations of features, ultimately making generalization impractical without machine

learning algorithms.

With machine learning, general models can be fit rather than using all data for

a best-first match. Learning fits hyperplanes and other hypersurfaces around the

data with three key advantages. First, the model itself can be saved and loaded into

memory rather than the full collection of samples. This can drastically reduce the

size of the memory footprint. Second, the trained models can be executed faster

than an extensive database can be searched. Finally, the machine-learned models

allow predictions in novel situations where the input is only approximate compared

to samples acquired during observation. Generating these models are not without

its challenges. We gain these benefits but still have an issue of generalization versus

memorization, where the algorithm overtrains to the data. We break apart the prob-

lem space into what we have named “steering contexts.” These steering contexts can

allow the training of smaller models on more manageable amounts of data.

. Data Sources

To create the best models, training samples should be of the highest possible

quality. Tracked trajectories of real-world pedestrians have thus far been the gold

standard of training examples, however this type of data is logistically challenging

to collect, likely incomplete with respect to behavior coverage, and at times simply

impossible to gather in an accurate manner.



In naïve pedestrian observation, discrete cameras are placed to record an unaware

population. While those seen in the recordings are not affected by the observation,

uncommon scenarios may never be encountered and factors unanticipated and unac-

counted for by the researchers may lead to hidden influences. For instance, a person’s

navigational goal may change due to meeting a friend on the street, receiving a phone

call, or reacting to an event outside of the camera’s view.

Another option for data collection is to gather volunteers and take direct control

through the assignment of starting positions and end goals. Unlike the naïve case

detailed above, the artificial nature of the scenario leads to the observer effect and

thus calls into question the resulting behavior of participants. In particular we must

question if we are seeing truly natural behavior, or instead what the participants think

should be natural.

With the advances made in crowd simulation over the past decades, we find at our

disposal numerous software systems which have been published as suitable repre-

sentations of human behavior while steering through crowded environments. These

artificial humans provide us with a powerful opportunity. The computer agents do

not care—or know—if they are being observed yet can be given any start and goal

configuration needed. These virtual agents’ behavior can be used to supply data to

in turn generate training data for machine learning algorithms.

. Context-Sensitive Steering

This dissertation explores the next push forward in multiagent steering by ad-

dressing each of the following issues.

• Scalability, both in the space of possible situations and in the number of agents.

• Fitting models to data representing the vast problem space.



• Finding reliable training data.

We have developed a framework which uses a novel context-sensitive approach to

create a collection of machine-learned models for multiagent steering. This process

starts with a slow, offline algorithm and produces a faster algorithm based on the

slower algorithm’s results. The workflow consists of the following steps.

. An algorithm derived from Iterative Deepening A⋆ (IDA⋆), which we call our

oracle algorithm, is used to create a nearly optimal plan for stochastically gen-

erated simulations.

. The recorded simulations are grouped into steering contexts and mined for

training samples.

. Models are fit to the data for each steering context, and an additional model is

used to dynamically switch between models as the situation merits.

. At runtime the agent uses the model matched to its current situation to choose

its next action .

. Dissertation Structure

Chapter surveys the literature most pertinent to this work. We then define

steering contexts and our initial set of intuitively-defined contexts in Chapter . Sub-

sequently, Chapter begins the detailed explanation of this dissertation’s use of syn-

thetically generated data to stochastically sample scenarios from each context. With

contexts defined, a pipeline which uses this context-sensitive technique to steering is

detailed in Chapter along with a preliminary implementation of the pipeline. We

explore potential refinements to this implementation through the use of machine



learning in Chapter , which includes both the introduction of clustering to define

contexts and an analysis of various classification algorithms. An adjusted implemen-

tation of the pipeline which takes these improvements into account is presented in

Chapter . We conclude and speculate upon future avenues of research based on the

framework established by this dissertation in Chapter .

Notes

A minimum of frames per second, or ms per frame. An interactive framerate is approxi-

mately frames per second, or ms per frame.

In this dissertation all agents share the same model, however the models could theoretically vary

by agent to accommodate different roles and other variation of behavior.



Chapter

Related Work

If I have seen further it is only by

standing on the shoulders of giants.

Isaac Newton

Crowd simulation is a well-developed field of research with several focus areas.

Of particular interest to this dissertation are those of agent steering and evaluation

of the generated crowd with respect to real-world fidelity. A general overview of

some key milestones in the field is given in Sections . and Section . . Additional,

broader surveys of steering and behavior can be found in [ , , ]. In Section

. we specifically focus on data-driven approaches which are more relevant to this

dissertation.

. Agent Steering and Collision Avoidance

The most basic crowds model pedestrians walking from waypoint to waypoint in

the virtual world. They can appear towander as theywalk towards randomly assigned

goal points. There are at least three sources of randomness in crowd simulation:



how an individual selects its goals, how it creates its path to the goal, and how the

agent decides on actions when it encountered obstacles—and other agents—along

its path. An agent needs a technique for selecting goals to give them a destination

for walking. This can be done stochastically [ ], through utility functions which can

give the agent needs [ ], or can simply be hardcoded as experimental arrangements

[ , ]. The path an agent will follow can be generated in a myriad of ways ranging

from geometrically-oriented [ ], to flow-based [ , ], and to cognitively-driven

[ ] algorithms. Once decided, the agents’ paths are not necessarily guaranteed to

be safe, as previously unknown obstacles may be discovered which invalidate the

plan. Other agents may also move into the path and thus invalidate it. Adjusting for

these new environmental constraints adds to the overall complexity and apparent

randomness of the scene.

Crowd simulation was launched with the seminal work of Reynolds [ ] on an-

imating grouped movement behaviors of collections of agents. He focused on pop-

ulations of animals, especially birds, to drive a particle-system approach to crowd

simulation. His “boids” paved the way for studying the group dynamics of human

crowds and animating substantial populations of interacting agents. This rule-based

approach also serves as one of the first examples of emergent behaviors, which are

characteristics of a simulation that are a result of agents’ individual decision-making

but has the appearance of higher-level coordination. Boids may fly in a common path

but each agent is not consciously trying to create an ordered flock. This work was

followed by [ ] where human maneuvering was defined. These definitions led to

boids with more natural behavior in a pedestrian simulation by providing building

blocks for more complex behaviors, but the complex behaviors are not emergent and

instead identified by the programmer at design-time.

While Reynolds focused on steeringwhile taking collision avoidance into account,



other research has focused almost exclusively on collision avoidance during a sim-

ulation through purely geometric solutions. Velocity obstacles [ ] are a common

approach that look at velocity-space for potential collisions and avoid them by navi-

gating around the troublesome velocities themselves. This allows an agent to reduce

or increase their speed in advance of a collision and make other natural adjustments.

A drawback to this approach is oscillation inherent in each agent constantly adjust-

ing to the other agents’ adjustments. By changing one’s speed, the velocity obstacle

changes which leads to a different viable solution. The technique was improved upon

by [ ] to create reciprocal velocity obstacles (RVO) which extended agent consider-

ations to that of the colliding agents’ response. This alleviated most of the oscillation

problems associated with the original method but at the cost of making true—but

poorly justified—assumptions in their model. In the RVO algorithm, it is assumed

that an approaching agent is also using the RVO algorithm. While this is true in

a homogenous simulation and leads to orderly passing of one another in cramped

conditions, real life is not so symmetric. The ClearPath algorithm [ ] further trans-

forms velocity obstacles into a truncated cone and presents a highly parallel solution

supporting hundreds of thousands of agents in a matter of milliseconds, also with

a symmetric assumption. The environment has also been used to provide hints to

agents as to the behavior needed for better navigation, as seen in [ ].

Anticipating crowd densities and planning around them is the tactic used in the

work by Kapadia et al. [ ]. Their algorithm also adds some human factors

into consideration when planning an agent’s next steering decision. A coarser view

of the world exists further away from the agent, and a path through occupied space

is planned and refined as the agent gets closer to its goal. While a step forward, the

algorithm lacks a viewing frustum so obstacles all around the agent are always consid-

ered in steering. Complex human reactions in the real world often take place when a



person is surprised by an unanticipated obstacle suddenly entering their perception.

Such a startled reaction occurs because the new obstacle must be rapidly assessed

and accommodated for without the benefit of long-term planning. This work has

just recently been parallelized in [ ].

Until very recently, steering and collision avoidance algorithms have worked with

path-planning and with animation handled as a separate process. Singh et al. pub-

lished a new algorithm which considers actual footsteps when steering [ ]. This

not only supports a new level of realism in steering and collision avoidance but also

provides an improvement for the visualization of the simulation itself. Instead of

depending on potentially poorly matched or interpolated walk cycles the animation

can be derived for each footstep. This also allows for sidestepping during collision

avoidance, which is an almost universally overlooked strategy to resolving such a

problem.

Higher-level abstractions exist. Viewing crowds as a collection of people under

the effect of social forces is a common simplification that casts a crowd into a less

autonomous space as in [ , , , ]. In this area of the literature particle physics

is adapted to use social forces rather than natural forces like gravity [ ]. Each par-

ticipant in the simulation is treated as a particle subject to these forces and moved

accordingly with each time step. The crowd becomes a unified organism with no

individual drives, making specific breakout characters harder to motivate and inject

into the simulation without partially abandoning the very assumption made by the

underlying rules of the simulation. For instance, [ ] allowed for agents to trip and

fall and thus become static obstacles for others to navigate around, but the falling

itself is a factor of the forces on the agent, not an individual trigger. Note that while

any algorithm can have special events of this nature permitted through the use of

triggering mechanisms, each trigger becomes a break from the normal operation of



the algorithm. Each special case adds to the complexity not only from its own exis-

tence, but how other agents will need to handle the agents in the “special” condition.

Pelechano et al. handled this well by treating fallen agents as static obstacles.

Cognitive modeling aims to provide more “human-like” responses to perceptual

input. Cognitive modeling is often considered with respect to high-level thinking

such as goal selection [ , ] but also exists for basic steering and navigation. In the

work of Ondřej et al. [ ], synthetic vision is used to grant agents the ability to

navigate their environment using human-like anticipation of impending collisions.

Agents visualize fields corresponding to the rate of change for other agents’ bearings

and use these fields to calculate a time-to-intersection. Adjustments to an agent’s

velocity only takes place when a collision is likely and imminent, much like human

behavior. This framework is highly parallelizable and included the use of GPU pro-

gramming for higher throughput, allowing agents to be simulated in real time

at the time of publication. More cognition-oriented features such as personality [ ]

add to the randomness experienced in a scene as different personalities tune low-

level parameters to adjust how an agent moves.

. Crowd Evaluation

To be used as a scientifically valid experimental framework, a crowd simulation

needs to be evaluated for correctness. A properly vetted simulation can be used in

training simulations requiring crowds of people and provide a higher sense of pres-

ence to the subjects. The crowd must behave naturally to not draw undue attention

from what the trainer intends to be important. The problem then is how to define

natural behavior and quantify deviation from it.

Until recently virtual crowds were validated from a subjective viewpoint. Re-



Figure 2.1: A common stress-test scenario for steering algorithms. While it will test
the collision-avoidance of an algorithm and force a densely-packed scene, the situ-
a on itself is completely ar ficial. Opposing agents, illustrated here with the same

color, have the goal of swapping posi ons.

searchers and reviewers must decide whether or not a system appears to recreate

plausible human behavior in test scenarios. A general “ground truth” is unlikely to

exist because of the number of uncontrollable variables to human behavior. In fact,

humans do not even always act rationally; we make real mistakes and these mistakes

would have to be accounted for by the performance metric used. This high-variance

nature of human activity aside, one of the other main problems with subjective anal-

ysis of crowd simulations is that many of the most popular test scenarios are artificial

examples. A classic scenario is that seen in Figure . . Most subjective evaluation fo-

cuses on emergent behaviors as proof of recreating real behavior. Lane formation,

the organization of the crowd into polarized lines of agents, is one of the most com-

monly sought emergent behaviors in crowd navigation literature but in the extreme

can create degenerate behavior through strict rules forcing pedestrians to one side of

a corridor, similar to highway traffic.



Lerner et al. used a data-driven evaluation algorithm in [ ]. A database is con-

structed from manually tracked video of an intersection with sparse crowding and a

walkway with dense crowding. This database is used to compare examples from the

real world with agent states in the simulation using database queries. A metric from

– is given to each agent based on how closely it matches normal behavior as de-

fined by that behavior present in the database. Actual queries are formulated based

on a density metric. Significantly low ratings can automatically indicate what the

authors have deemed “curious” behavior, such as a person walking towards a cluster

or odd evasive maneuvers.

The drawbacks of this early quantitative measurement is that anomalous behav-

ior is dictated by the sample video used for comparison without any considerations

for why the anomalous behavior exists. Furthermore, only densities are taken into

account which is a very transient feature. Random wandering with the right random

densities will pass the test. Most of these problems were alleviated in [ ], where

long-term decision metrics were introduced along with with the addition of proxim-

ity and flocking components to the metrics. A drawback of the system is that the

flocking behavior requires a flocking video input for analysis; it is not automatically

generated. Furthermore, the determination of what is natural and what is not de-

pends only on the trajectories witnessed in the training videos. A similar data-driven

approach is used as a component of [ ], with the main difference being that input

data is pulled using very specific tracking of known persons with known goals.

Some of the latest work has been from Kapadia et al. [ ]. Their work takes the

quantitative analysis a step further by also describing a state space for the scenarios

that steering algorithms can encounter. This space can then be sampled to derive

scenario sets to test a steering algorithm in a structured and rigorous fashion. Static

obstacles and other agents are generated as a result of the parameters given to the



scenario generator and a run of the simulation is performed. Success or failure, due to

agent stalemate or actual collision, will give a representation for the types of scenarios

that a given algorithm is competent in handling and where it falls short. This work

is beneficial for multiple reasons. First, we now have a way to test algorithms in

a structured manner that does not rely solely on creating handmade scenarios to

target specific behaviors as previously mentioned with the circle-crossing scenario.

We can instead sample the scenario space using whatever strategy best analyzes the

algorithm. Second, there is a way to get a clear idea of the conditions that will cause

an algorithm to fail. Finally, it can be shown that no one algorithm can universally

solve all agent navigation problems. By having a good sense of a failing scenario

multiple algorithms can be used to create a more robust system.

. Data-Driven Systems

Data-driven algorithms choose an agent’s next action by matching the current

environment against examplar scenarios. The data can be used directly by best-

match as seen in Section . . , or machine learning algorithms can be used with the

training data to create the final steering behaviors, such as Naïve Bayes in [ ] and

locally-weighted linear regression in Section . . . Computer vision has been used to

drive agents based on real-world data [ , ], which provides one of the best “gold

standards” for training data. Information theory [ ] has been used to analytically

manipulate characteristics of agent behavior based on global trends to better tune

overall behavior rather than relying on low-level agent-to-agent interactions. The

data used for a system can come from the designer or user in lieu of real-world stud-

ies. Recently, the idea of a crowd as flowing agents has been used with user-generated

navigation fields to give more control over the simulation itself. Rather than using



another algorithm to create a database or annotating video feeds of street corners,

Patil et al. [ ] use a discretized world with either precalculated or hand-drawn pref-

erences for their agents to follow. Recent work [ ] uses discretized pieces of real-world

trajectories as the basis for navigation and manipulates these trajectories based on

the possibility of future collisions.

. . Best-Match Search

One of the first data-driven pipelines [ ] for steering has been an inspiration for

our own. The authors manually tracked videos from an urban setting, and generated

examples to populate a database. This database can be very large as each person in

view can create one example in each frame of the video. At runtime, the example

database is then queried by each agent based on its surrounding influences. A tra-

jectory from the database best matching the situation is then returned and used by

the agent.

To best mimic the behavior of a real person, the influences of a real person need

to be modeled appropriately. The authors created a region of influence around an

agent. Any person and static obstacle in this field is registered as a factor in the re-

sulting trajectory. This brute-force approach creates an interesting, continuous state

space, but results in a heavy computational burden for finding the best match and

also requires maintaining the full collection of examples at runtime. Finally, as only

external influences are considered the internal state of mind for the person cannot

be a factor, which is detail that cannot be recovered from a video. We note that no

current technology could use such input to derive a computer model, which means

this is a problem inherent in the use of real-world data by its very nature. Ad hoc

decisions and interaction with entities not in view of the video can cause otherwise

unreasonable choices to be made when the tracked factors match. Thus a motivat-



ing phone call may be absent in the recreated behavior, causing a sharp trajectory

change with no obvious cause. Due to the burden of finding the best-match in a

continuous state space, runtimes were not generally favorable for interactive use as

frames of simulation with agents could be processed in minutes, while

agents required a full hour for simulation.

. . Regression on Similar Data

Lee et al. [ ] provided an alternative to brute-force matching at about the same

time Lerner’s group proposed their pipeline. The approach was reproduced and ex-

tended by Torrens et al. [ ]. These works use multiple samples from a database to

construct better results at runtime. Instead of a direct copy-paste trajectory, candi-

date trajectories are merged via regression into a final steering selection. Most im-

portantly, discrete state spaces were used to handle the otherwise unlimited amount

of possible configurations of stimuli. Each agent populates a feature vector to access

a kd-tree of examples and extract the nearest neighbors.

Data found in the search is clustered by k-means into clusters to get a high-level

feel for the kinds of decisions available to the agent. For example, steering around

a wall may have a right and left possibility and these should be separated for the

regression step. Clusters are tested for suitability and the least fit is thrown out. A

winning cluster is chosen from the remaining two either at random or by strongly

favorable fitness to the current environment. This cluster selection is passed to the

regression phase. Locally-weighted regression is used to take the data and calibrate

the speed and direction of the agent.



. A NewMachine-Learned Approach

Currently, some of the most promising reproductions of human activity in crowd

simulations have been the results from data-driven engines. This is not surprising as

the data itself is an exact representation of human response to comparable stimuli.

However, these simulations have been held back by the computational overhead of

the very data they require. In particular, the works by Lerner and Torrens in Sec-

tion . relied on maintaining a full database of samples, which reduces scalability

over time as more information is collected and assimilated into the database. Part of

the scalability issue lies in data beginning to contradict other examples, which was

observed by Torrens et al. and relieved by the use of clustering. Small sampling of

behavior simulated according to [ ] was also tested as a basis for generating data.

Their pilot use of an artificial algorithm as a source of training data has motivated

our own work. Replication of the mechanical behavior of the source algorithm was

achieved, but this dissertation extends the concept by using a nearly-optimal space-

time algorithm as the source of our own training data. Optimal space-time planning

has been used in recent work [ , ] to produce solutions to complex navigational

situations, but is constrained to only a few agents because of the heavy computational

overhead.

This dissertation extends this idea of grouping otherwise contradictory data into

a key component of the steering pipeline. Another data-driven method seen in [ ]

focuses on capturing the dynamics of the overall crowd, while we focus on the in-

dividual agents. This dissertation also extends the work of Becket [ ] who previ-

ously showed a single-policy system is insufficient to cover general steering. Becket

used online learning techniques to adjust the agents’ behavior during the simula-

tion, while we instead try to identify the multitude of policies as well as better for-



malize the concept of a steering policy. We use a two-layer hierarchy as a divide-

and-conquer approach to the general steering problem, which is different from how

others have used hierarchies to iteratively refine the planning process [ ]. Hierar-

chical machine learning has also seen use for other AI-based problem solving [ , ]

and in robotics [ ].

The potential of a data-driven approach in conjunction with the ideas of scenario

space in [ ] allow for stochastic sampling and coverage analysis of real versus syn-

thetic data. Scenario space also motivates the definition of an algorithm’s failure set

to characterize the type of scenario the algorithm is incapable of handling. We use

the complement of this idea in our work to better focus the machine learning we use

for simulation. Similar to Ahn et al. [ ] our basic algorithm [ , ] is not collision-

proof and our collision handling is left implicit in the training data itself.



Chapter

Steering Contexts

Our job is to remind us that there are

more contexts than the one that we’re

in—the one that we think is reality.

Alan Kay

In this chapter, we define the concept of a steering context. This similarity-based

grouping is performed to give a high-level perspective on the agents’ current situ-

ations. For an agent to properly steer, a policy is required for each context. While

these could be handwritten rulesets, achieving generality by identifying contexts and

creating their corresponding policies for each is a task which quickly becomes work-

bound. We use machine learning to offset this burden and automatically generate

models to serve as a policy for each context, which is further detailed in Chapter .

. Terminology

We must first establish some terminology to serve as a basis for further exposi-

tion. A scenario is the global configuration of obstacles, agents, and agents’ goals



in a virtual environment. The space of all possible scenarios is referred to as sce-

nario space [ ] and denoted 𝕊. The high-dimensionality of scenario space makes

it inherently intractable to exhaustively precompute solutions for all scenarios, thus

requiring a more general model of steering behavior in the face of the diverse possi-

ble challenges. Each agent in a frame of simulation encounters its own situation 𝑆
based on its local perspective. In essence a situation is a scenario transformed to a

local space with respect to a particular agent. Situations which are similar, based on

some quantitative metric, are grouped together to form a steering context or more

succinctly context, 𝐶. Finally, a steering policy or simply policy is an approach

to finding a steering solution to a situation. Multiple policies may be present in an

overall algorithm to account for such things as special cases.

A key difference between our use of the term “context” and that of the related lit-

erature is we focus on the context as an egocentric concept. Each agent experiences

its own context. Previous works have instead treated context to mean the charac-

teristics of the group or entire population as a whole. While this better allows for a

centralized solution to the steering of many agents, such a treatment of contexts does

not take into account the fact that not all perspectives are the same in the simulation.

In a densely crowded hallway, for instance, one person attempting to walk against a

large crowd is experiencing a very different scenario than the others, even though

from a macroscopic perspective one could just refer to the hall as densely crowded.

. Decomposition of Scenario Space

We propose breaking the space of all possible scenarios, and by their related def-

inition all possible situations, into more manageable groupings. This is possible by

using the context concept to break apart scenario space. For a given feature space 𝐅∗,



Figure 3.1: An illustra ve example of steering contexts and situa ons. This bird’s-
eye view of the scene represents the scenario, which consists of one group of agents
which must pass a single agent. The blue agent, however, only sees the scene as
a situa on where it must pass a group of other agents. The orange agents see the
situa on where they only have one agent moving towards them. Similar situa ons

are thus grouped together into a steering context.



context space ℂ is a projection of 𝕊 onto the coordinate system of 𝐅∗. As a result of

the projection from 𝕊 to ℂ qualitatively similar scenarios will be mapped relatively

closely compared to scenarios showing less similarity. Specific features from 𝐅∗ thus

become axes for a high-dimensional space, which allows values of the features to be

used for classification. While potentially high, the number of features used can be

smaller than the total number used for defining all scenarios and thus the overall

dimensionality advantageously decreases.

Context space can be split along features’ values to form a classification of spe-

cific contexts. Steering contexts could also be derived from the features of 𝕊 but the

“curse of dimensionality” [ ] makes the process much more difficult as even similar

situations are increasingly sparse as the number of dimensions increases, limiting the

usefulness of grouping situations quantitatively. Similar situations should be man-

ageable with a similar approach, motivating our identification and use of a collection

of policies to handle subsets of situations rather than confronting the general steering

problem with a single-policy approach.

Formally then, an individual context 𝐶 ⊆ ℂ is defined in Equation . with re-

spect to the success of steering policy 𝑖 in handling a group of situations. A policy is

successful if it can produce a valid action from the provided action space 𝔸 for the

situation, which is one where a collision does not occur and the overall situation pro-

gresses towards its final frame. This in theory permits some agents to stop moving

in some situations provided the result is other agents continue to move, which could

be seen in a scenario involving two agents approaching a narrow doorway which re-

quires one to yield to the other.

Thus a simulation can be considered a sequence of situations and actions with

some transition function 𝛿 (𝑆, 𝑎) moving from one situation to the next. Since a sit-

uation is the entire scenario transformed to an agent’s local perspective, a change in



the overall environment can change the agent’s situation even if they are a passive,

stationary participant. Two situations can be considered equal if the agents, obsta-

cles, and goal are all in the same location and orientation, and we denote the set of

all previous situations as 𝑆 . Past situations need to be prevented as they will induce

a cycle into the agent’s behavior. It is not sufficient to only ensure that 𝛿 (𝑆, 𝑎) ≠ 𝑆
as simple oscillation would meet the criteria but not lead to the agent reaching its

goal.

𝐶 = 𝑆 ∈ ℂ | ∃𝑎 ∶ ⟨𝐟, 𝑎⟩ , 𝐟 ∈ 𝐅 , 𝑎 ∈ 𝔸, 𝑆 ∉ 𝑆 ( . )

A situation is guaranteed membership in at least one context because in the worst

case, it could have a special-case policy defined for it. Additionally, the steering pol-

icy is an analog for the transition function 𝛿, which allows the objective of policy

creation to be framed as one of finding the appropriate function. A main application

of machine learning is fitting functions, making the technique especially suitable for

automating the derivation of specific policies for each context. Note it is also per-

missible for a situation to be a valid member of multiple contexts, as several policies

may produce valid actions for the same situation.

. . Computational Impacts

We have used the concept of scenario space to initially frame the concept of steer-

ing contexts, but we can also use the contexts to redefine scenario space in terms of

a union of sets, seen in Equation . . This alternative definition yields important

insight into not only the data-driven process of this dissertation but also the pur-

suit of any generalized steering algorithm. The general applicability stems from the

fact that policies are not specific only to our framework. This means any algorithm



with different approaches, such as activating more costly collision avoidance in the

presence of other agents, exists as a collection of policies and thus contexts.

𝕊 = 𝐶 ( . )

The set definition of 𝕊 presents contexts as equivalence classes of all possible

situations. Since they are equivalence classes, by necessity an equivalence relation

must exist. Such a relation exposes another function-based aspect of steering con-

texts, and again motivates the use of machine learning. By fitting a function for the

equivalence relation, we can attempt to classify a situation’s context. An equivalence

relation should partition scenario space into disjoint subsets, but recall we stated in

Section . that multiple policies could be viable for a situation. This can be trivially

remedied by picking an arbitrary candidate context for the scenario to be a member.

Steering algorithms all view the virtual environment in terms of its features in

some space, and thus strive to identify and handle contexts. Due to the fundamental

set theory nature of situations and contexts two very desirable aspects of formulating

a generalized steering algorithm, optimality and coverage, are difficult to confirm.

Both of these are 𝒩𝒫-Complete set problems [ ].

Optimal Contexts

The ultimate challenge to a steering algorithm is to handle any situation in the

best possible way. To achieve such a goal, a steering algorithm needs to handle every

situation by the policy best suited to it. In this case, the underlying contexts theoret-

ically need to partition scenario space according to optimal contexts. As Equation .

allows for situations to exist in multiple contexts, one would need to select only those

contexts optimally solving all situations.



The problem then is one where the input is a collection of subsets for some mas-

ter set, and task is the selection of those subsets which partition the full set. This

is a direct application of the exact cover problem, one of the classic 𝒩𝒫-Complete

problems.

Number of Contexts

With optimality of context selection out of computational reach, the next analyt-

ical question we would want to know is how many contexts are necessary for full cov-

erage of scenario space. Full coverage means that all situations are handled, which as

previously mentioned could be done with a situation-per-context approach although

not in a practical manner. We only care that all situations are dealt with, not that

they are optimally solved.

However, finding the minimum number of contexts, and thus the minimum num-

ber of policies, is also 𝒩𝒫-Complete. The problem consists of selecting the mini-

mum number of subsets from a collection such that all elements of the full set are

represented at least once. This is a direct application of the set cover problem.

. . Context Approximation

Although steering contexts yield disappointing conclusions for optimality, these

same conclusions are applicable to any steering algorithm consisting of multiple poli-

cies. A specifically context-cognizant approach to steering still has the advantage of

better structure and scalability. Furthermore, by using a suite of data-driven tech-

niques we can strive to approximate the underlying context space. This more pur-

poseful exploration of all possible situations opens the door for more strategic devel-

opment of algorithms, while also creating a framework which is more modular and

extensible by allowing future additions and modifications of some policies without



Figure 3.2: 𝐅∗ for our set of contexts. The region ahead of the agent checks for the
presence of obstacles. All four regions track the density of nearby agents as well as

the general flow of traffic.

necessarily affecting the rest.

. Context Identification

We divide the possible scenarios by qualitatively different pedestrian traffic pat-

terns inspired by those observed in real pedestrians. Another strategy would use un-

supervised machine learning to cluster the scenarios. Our objective then would be to

approximate contexts based on computable separability rather than human-centric

qualitative differences. This alternative approach is explored in detail in Chapter .

. . Intuitively Derived Contexts

For our first set of contexts we selected typical traffic patterns seen in pedestrian

activity. A feature space visualized in Figure . was also developed to characterize

these patterns . This space’s origin is locked on the particular agent currently per-

ceiving the virtual environment. The region around the agent is divided into four sec-



tions, one for each cardinal direction. Furthermore each section tracks three pieces

of data: the density of neighbors in that area as well as their general velocity relative

to the agent’s own movement divided into heading and speed. The northern section

also acknowledges the presence of static obstacles in the scene. This gives us a total

of dimensions for 𝐅∗.
There are four primary types of steering context in this set based on traffic pattern.

Clear

Very sparse neighbors, the agent is predominantly free to move.

Oncoming

Nearby neighbors are generally moving towards the agent from the forward

direction.

Crossing

Nearby neighbors aremoving perpendicular to the agent’s own path. This could

be from the agent’s left or right side.

Chaos

Very dense neighbors with no obvious pattern to their movement with respect

to the agent.

Additionally, multiple divisions of Oncoming and Crossing are defined. These

subdivisions take into account the density of the scenario including neighbors travel-

ing along with the agent rather than just those causing potential steering challenges.

Light

– agents total in the scenario’s environment.



Medium

– agents total in the scenario’s environment. A “noise” agent not fitting the

traffic pattern is permitted to promote generalization.

Heavy

– agents total in the scenario’s environment. Depending on the total popu-

lation, – “noise” agents are permitted.

Group

Scenarios where two groups of approximately equal size are navigating the en-

vironment, with the agent part of one of the groups.

Winning-Side

The mirrored scenarios compared to Medium and Heavy. The agent is a member

of the large group in the environment rather than in the minority.

In total, these variations provide us with steering contexts, which are assigned

numerical IDs in this dissertation. The full matching of IDs to context definitions

is provided in Appendix A. Duplicate contexts with the added presence of static

obstacles raise the total to . Examples of the contexts from this section and how

they are represented in the feature space are provided in Figure . with a full index

in Table . .

Notes

The symmetry of this space is a convenience for prototyping a proof-of-concept. Any other geo-

metric form could be substituted. We do not try to optimize over this structure in this dissertation.



C
on

te
xt
ID

O
bs
ta
cl
es

N
or
th

So
ut
h

Ea
st

W
es
t

Fl
ow

D
en
si
ty

Fl
ow

D
en
si
ty

Fl
ow

D
en
si
ty

Fl
ow

D
en
si
ty

Ye
s

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
To

w
ar

ds
Li

gh
t

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
To

w
ar

ds
M

ed
iu

m
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
To

w
ar

ds
H

ig
h

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
To

w
ar

ds
M

ed
iu

m
To

w
ar

ds
M

ed
iu

m
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
To

w
ar

ds
Li

gh
t

To
w

ar
ds

H
ig

h
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Ye

s
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
To

w
ar

ds
|A

w
ay

Li
gh

t
Aw

ay
|T

ow
ar

ds
Li

gh
t

Ye
s

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
To

w
ar

ds
|A

w
ay

M
ed

iu
m

Aw
ay

|T
ow

ar
ds

M
ed

iu
m

Ye
s

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Aw

ay
|T

ow
ar

ds
H

ig
h

Aw
ay

|T
ow

ar
ds

H
ig

h
Ye

s
N

eu
tr
al

Li
gh

t
To

w
ar

ds
M

ed
iu

m
Aw

ay
|T

ow
ar

ds
M

ed
iu

m
Aw

ay
|T

ow
ar

ds
M

ed
iu

m
Ye

s
N

eu
tr
al

Li
gh

t
To

w
ar

ds
H

ig
h

Aw
ay

|T
ow

ar
ds

Li
gh

t
Aw

ay
|T

ow
ar

ds
Li

gh
t

Ye
s

To
w

ar
ds

H
ig

h
To

w
ar

ds
H

ig
h

To
w

ar
ds

H
ig

h
To

w
ar

ds
H

ig
h

N
o

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
To

w
ar

ds
Li

gh
t

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
To

w
ar

ds
M

ed
iu

m
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
To

w
ar

ds
H

ig
h

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
To

w
ar

ds
M

ed
iu

m
To

w
ar

ds
M

ed
iu

m
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
To

w
ar

ds
Li

gh
t

To
w

ar
ds

H
ig

h
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
N

o
N

eu
tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
To

w
ar

ds
|A

w
ay

Li
gh

t
Aw

ay
|T

ow
ar

ds
Li

gh
t

N
o

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
To

w
ar

ds
|A

w
ay

M
ed

iu
m

Aw
ay

|T
ow

ar
ds

M
ed

iu
m

N
o

N
eu

tr
al

Li
gh

t
N

eu
tr
al

Li
gh

t
Aw

ay
|T

ow
ar

ds
H

ig
h

Aw
ay

|T
ow

ar
ds

H
ig

h
N

o
N

eu
tr
al

Li
gh

t
To

w
ar

ds
M

ed
iu

m
Aw

ay
|T

ow
ar

ds
M

ed
iu

m
Aw

ay
|T

ow
ar

ds
M

ed
iu

m
N

o
N

eu
tr
al

Li
gh

t
To

w
ar

ds
H

ig
h

Aw
ay

|T
ow

ar
ds

Li
gh

t
Aw

ay
|T

ow
ar

ds
Li

gh
t

N
o

To
w

ar
ds

H
ig

h
To

w
ar

ds
H

ig
h

To
w

ar
ds

H
ig

h
To

w
ar

ds
H

ig
h

Ta
bl
e
3.
1:

Pa
ra
m
et
er
sw

hi
ch

de
fin

e
th
e
24

co
nt
ex
ts
w
e
us
e
to

pr
ot
ot
yp
e
ou

rp
ip
el
in
e.



(a) Clear View (b) Obstacles Ahead (c) Light Oncoming

(d) Groups Crossing (e) Chaos

=  Net Flow of Agents =  Subject   

Clear                                                                            Heavy

Agent Density

(f) Symbols Key

Figure 3.3: Examples fromour set of contexts. Net flow is represented by the arrow in
each region, density of the region is depicted by darker shades of red, and obstacles
are gray boxes. Each of these contexts was stochas cally generated with overlap in
the permissible values for density. Chaos was generated randomly without regard to

any structure as seen in the other contexts. We used a total of 24 contexts.



Chapter

Synthetic Data

Ours may be the last generation that

can see a difference between real and

virtual things.

Norman I. Badler

In this chapter we explore some of the sources for training data available to crowd

simulation. Real-world data is a commonly used source when using data-driven

techniques, but collecting that data has challenges, which we discuss. Regardless

of whether or not the pedestrians know they are being observed the subsequent re-

sults are likely flawed. In contrast, we use synthetic data in an attempt to mitigate

those flaws.

. Nature of Real-World Data

Real-world data is limited in efficacy due to “noise” in observations as well as the

complex nature of the system—humans—being observed.



. . Collection Techniques

While the specifics of real-world observations vary widely, ultimately such exper-

iments fall in one of two categories based on the awareness of the pedestrians that

surveillance is occurring. Ultimately these two options available to researchers create

a need to compromise between the results’ robustness and its accuracy.

Overt Data Collection

Possibly the most direct way to observe pedestrian behavior is to have volunteers

“solve” situations presented by an experimenter. The key benefit to being overt with

data collection is the essentially complete control researchers have over the circum-

stances. Scenarios key to the intended purpose of the simulation can be replicated

for the participants, complete with obstacles arranged and other participants given

specific targets to create the necessary situation. Thus over time a more robust set of

data can be compiled with common situations including queuing, groups of pedestri-

ans crossing, and groups of pedestrians passing each other. Additional consideration

can be given to the sensors used to collect the data itself such as unique clothing for

each individual or other features to enhance tracking of a particular pedestrian over

time.

Such an approach to observing pedestrian behavior is not without its limitations.

The participants in these experiments are particularly vulnerable to the observer ef-

fect. They can become self-conscious about their own behavior, being more careful

to exhibit what they think is the expected result. The net result of this effect is a

reduced accuracy provided by the observations. There is also a great amount of over-

head in adding new data to the set. Volunteers must be found and coordinated, a

suitable recording area located, and the scenarios desired must be clearly defined



for the participants. This overhead is not only prohibitive for adding new scenarios,

but even repeating previous scenarios. Such repetition is scientifically desired for re-

ducing bias and confirming previous results. While the overhead is unfortunate and

inconvenient, the impacts are secondary to the inherent tradeoff of reduced accuracy

in favor of robustness.

Covert Data Collection

Pedestrians are not difficult to locate; people walk along streets and through

stores all the time. Security cameras already monitor these pedestrians with minimal

intrusion and people have acclimated to these recordings taking place. Researchers

can gather data from these low-impact views to collect very accurate data. In ad-

dition to existing monitoring systems, researchers have set up video surveillance in

targeted locations to observe different types of crowds. Since there is no direct inter-

vention on the part of researchers, this technique offers low overhead for the initial

data collection, as the camera simply needs to record the location even without the

researchers present.

While more accurate in terms of natural responses to stimuli, the lack of control

offered by such a covert system reduces the robustness of the resulting data. We are

restricted only to behavior which coincidentally takes place, diminishing the likeli-

hood of a variety of observations. In particular those situations which could be more

important from a simulation standpoint, such as a building evacuation, may never

be witnessed in the time window provided to the researcher.

. . Processing Data

Regardless of method, the data must be processed into a form suitable for appli-

cation to crowd steering. Individuals must be identified and tracked, as well as the



factors affecting their actions. Algorithms have been shown [ ] that are capable of

automating this process but they are imperfect. For example, the algorithms may be

unable to differentiate between a person and their reflection in a specular surface,

leading to overlapping routes and conflicting data.

Manually tracking of the data is a common solution, but suffers from scalability.

When data is collected overtly smaller groups are used, making the task tedious but

within the capability of a single person. Busy urban areas, however, lead to more

demand on the observer to account for large numbers of individuals as missing any

is not only a lost trajectory for the database, but also a missing influence on others’

actions. Multiple observers can be used to reduce an individual’s workload, but there

remains a fundamental disconnect between the data and its origins in a recording.

. . Noise in the Data

In either paradigmof data collection, there is noise inherent in the data. Extra fac-

tors not being monitored by the observers can influence a person’s steering decisions,

leading to a mismatch between the stimuli being used to later replicate the behav-

ior and that which actually caused it. Loss of focus through distracting thoughts or

attention-grabbing environmental factors can cause delays in processing the current

situation, such as when two pedestrians nearly—or actually—collide because neither

saw the other. Sound is usually not considered and is particularly prevalent during

covert data collection. Individuals’ personalities, concept of personal space, cultural

background and norms, and more can also affect a myriad of variation in steering

behavior.

When these factors are not being tallied and accounted for in the eventual data-

driven reconstruction of behavior, they become noise in the system. Consequently as

these factors contribute more or less, they insert randomness into the results. This is



the equivalent of a signal-to-noise ratio (SNR). The signal consists of the important

factors leading to steering behavior, while the noise also affects the results. To im-

prove the SNR of the source data we need to either carefully and thoroughly learn as

much about the noise as possible to filter it out, or we can generate data where the

noise is absent by algorithmically creating synthetic samples.

. Algorithmic Alternative

In this dissertation, we explore the efficacy of using the trajectories of a crowd

simulation as a source of synthetic data. The simulation used serves as our oracle

algorithm, since it can be consulted for the solution to an arbitrary scenario. Using

simulation in this manner can help mitigate the issues with real-world recordings

because we possess a crowd where we control the initial conditions but avoid in-

troducing an observer effect. New results can be generated as needed with minimal

overhead and these results do not require potentially lossy tracking. The use of crowd

simulation to create an alternative to real-world data has been used for training com-

puter vision [ ], and here we use the same concept to take a slow algorithm and train

faster models on that algorithm.

. . Stochastic Scenario Generation

In order to keep completion time of the oracle practical, we used a relatively small

virtual world in our stochastic sampling. An agent is placed in the center of the space,

and the virtual environment is divided into five key sections with respect to this cen-

trally placed subject. Four of the regions are seen in Figure . . By identifying these

regions as North, South, East, West, and Central to the subject, we can randomly

generate scenarios with populations in each region. Additionally, we can set agents’



N

EW

S

C

Figure 4.1: A rela vely small virtual environment was subdivided into five regions for
North, South, East, and West. The “subject” agent, which will be sampled to gen-
erate training data, is placed near the center and its goal placed anywhere to the
North. Depending on the parameters needed for the simula on, agents were ran-
domly generated in the other regions with goals set as-needed. The Central region

was only used to allow the subject to be ini ally placed with some varia on.

goals inside other regions to create likely traffic patterns. For instance, the subject

can have the goal to move into the North region, while a group of agents in the North

section have the task of navigating to goals in the South. Obstacles can be placed

throughout the environment.

As was further explored in Section . . , the division of the virtual scene into log-

ically separate areas was based on an intuitively-derived set of initial contexts. We

wished to use these areas to force random generation according to some overall pat-

terns which we identified as likely steering scenarios for an agent to encounter dur-

ing simulation. We also introduced some imperfections during the random scenario

generation to prevent the resulting data from being too clean. For instance, while

generating random scenarios where the bulk of the agents in the scene are moving

perpendicular to the subject, we allowed for occasional agents to also be walking



elsewhere in the scene.

Once defined by our stochastic scenario generator, the virtual world’s division

into sections plays no further role in the oracle or data-driven algorithms we employ

in this work. Similarly, it is possible to introduce new scenarios for the oracle to

simulate by handcrafting the situation we wish to see. For bulk gathering of data

with the widest range of coverage, this randomized approach is ideal and results in

far less manual overhead.

. . Oracle Algorithm

Our oracle algorithm is based on a memory-bounded A⋆ planner with a discrete

footstep action space similar to the action space in [ ]. We chose a discretized foot-

step action space so our machine learning can use classifiers instead of being con-

strained to regression. When the oracle is run on the generated scenarios, each agent

uses the memory-bounded A⋆ planner to calculate the optimal path from its current

location to the goal. The bound on the memory is raised if a path is not found, as a

last resort Iterative Deepening A⋆ (IDA⋆) is used. The oracle planner’s overall algo-

rithm is given in Algorithm , and the heuristic used is in Equation . and is based

on the distance to the goal and average expected energy cost to reach that goal.

ℎ (𝐩, 𝐠) =
‖𝐩 − 𝐠‖ ⋅ energy

stride ( . )

Each agent has full knowledge only of the obstacles and agents within its bounded

field of view. Since other agents may enter or leave this field of view, each agent must

monitor its path for new collisions and invoke the planner again if such a problem

is found. We chose this limitation on the oracle for a couple of reasons. First, the

data would ultimately be used with respect to a set of features, covered in detail in



Algorithm : Oracle Planner
Data: Start, goal, low memory bound, max memory bound, memory

increment size.
Result: The path from start to goal.

for i←memMin tomemMax do
path← BoundAStar (start, goal, i)
if path.size = then

i ← i + memBlock
else

return path

// Could not find path with BoundAStar
path← IDAStar (start, goal)
return path

Section . . and Section . . . The second, and related, reason was that these feature

would be inspired by the perceptual capabilities of humans and thusmay lead tomore

realistic responses to stimuli. These limitations are reasonable, as the oracle-based

agents would otherwise be capable of unnatural abilities such as veering to avoid

neighbors while they should be obscured by an obstacle and thus unknown to the

agent.

The simulations using the oracle are recorded for later extraction of training sam-

ples. As the oracle does not use any feature spaces, the same oracle recordings can

be used to extract data with different feature spaces, allowing for future exploration

of such possibilities. We extract a state-action pair ⟨𝐟, 𝑎⟩ where 𝐟 is a vector from

feature space 𝐅 and 𝑎 is the parameters of the agent’s current step, and use it as a

sample for training.

The oracle essentially serves as a high-fidelity precomputation engine by gener-

ating recordings which can be used as needed for later work. While the oracle can

be time-consuming to run due to its goal of near-optimality, it is still less challeng-

ing than using a corresponding set of volunteers or monitoring a population for rare



events. If the amount of memory demanded for finding a nearly optimal solution

proved to be too high we could use IDA⋆, however in practice this was never required

for the scenarios we generated, possibly due to the constrained size of the environ-

ment.

. . Data Collection

We generated 5, 550 scenarios for each of our initial steering contexts for a

total of 133, 200 scenarios. For the purposes of machine learning, further detailed in

Chapters and , up to 2, 500 were used as training data for any given context based

on the success and runtime of the oracle algorithm. Approximately 10 seconds of

virtual footage was used from each scenario. This resulted in hours of automatically

tracked, reusable data with no need to collect and organize volunteers.



Chapter

Initial Application

…faith apart from works is dead.

James : , ESV

We used our initial contexts and synthetically generated training data to cre-

ate crowd simulations and analyze the preliminary results. This implementation

of context-sensitive steering served as a proof-of-concept and motivated further im-

provements.

. Framework

Our framework for the integration of various contexts into a unified steering algo-

rithm is illustrated in Figure . . This framework takes on the form of a pipeline and

is predominantly composed of precomputational steps. First the necessary steering

contexts must be defined. With these definitions, a targeted sampling of situations

can be performed as discussed in Chapter . These situations are solved by the oracle

algorithm and recorded. These recordings are then sampled with respect to feature

spaces for use with machine learning which produces the actual state-action pairs for



Data Flow

Goal 

Constraints

Environment 

Constraints

{Context

De!nitions

Scenario

Generator

Oracle

Training

Data

Extraction

Environment,

Footsteps

Training

Data

Machine

Learning

Model

Collection

Runtime

Steering

Footsteps

Feature Set 

De!nitions

Con!guration Preprocessing Stages Intermediate Data Online ComponentsPreprocessing OutputInput

Figure 5.1: Our framework for using steering contexts to develop a machine-learned
model for use at run me using a pipelined approach. The majority of the pipeline is
offline processing. A collec on of models is trained on data extracted from an oracle
algorithm’s solu on to steering situa ons, which are stochas cally generated. Then
each model is a boosted decision tree with its own specializa on. The ac on space
consists of footsteps as an advantageous discre za on which permits direct control

and modeling of human locomo on.

the data-driven technique. Models are fit to the pairs for subsequent use at runtime.

. Initial Machine Learning

Our contexts provide a natural way to form a two-level hierarchy of models. The

first level is used to select which context the agent is currently experiencing. This

allows the subsequent selection and use of the specialized classifier which represents

the policy for that particular context. This is in lieu of fitting a single, monolithic

model to all the training data generated by the oracle.

Avoiding the requirement that the learned policy be a monolithic, universal so-

lution has several key benefits. First, the policies can be simpler and thus easier to

fit. Second, we avoid the catastrophically high dimensionality common to such ap-

proaches, which are held back by all the factors that can influence every potential

action. Finally, we do not need to relearn the entire system to assimilate new data.



Goal, Environment

Learned

Policy 0

Learned

Policy n

Learned

Policy j

Learned

Policy i

Context

Classi!er

Figure 5.2: The mul level decision trees used by our models. At run me the agent
gives the model informa on about its current goal and environment in local-space.
This data is used to calculate 𝐟 for eachmodel used. First the context classifier informs
the agent of its current context, and the corresponding policy is used to determine

the next footstep.

By using one model to select more specialized models, new data requires only the

specialized model it belongs to be relearned. Even the creation of a new context only

requires the top-level model be recomputed while the other models are still valid and

will not be harmed by potentially contradictory data.

This framework is agnostic to the specific learning algorithms used at the different

levels of the hierarchy, and different algorithms can even coexist on different levels

of the hierarchy if particular contexts are better handled by different models. We

have chosen to use two levels of boosted decision trees [ ] for our instantiation of

the pipeline based on the similar problem domain of [ ] that showed success for

learning different policies that both classified different types of soccer behavior and

could be used to decide the actual action itself.

Each of our policies consists of two boosted decision trees; one for each foot. We

use a Windows port of the GPL release of the C . decision tree system [ ]. We



chose ten trees as the amount of boosting empirically based on cross-validation. In

total scenarios were sampled from each context and each scenario was gener-

ated with respect to a central agent, which provided a variable number of steps per

scenario. These steps then became the situations representative of the context for the

specialized classifier. A context classification sample was only generated for the first

five steps of each recording due to the total number of scenarios that were sampled,

all of which supplied data to the context classifier.

. . Feature Spaces

We define two orthogonal features for the area in each cardinal direction about

the agent for a total of features, with a ninth feature special to the region ahead of

the agent. The components of each area are agent density and the net flow of agents

in that area, with the area directly in front of the agent detecting the presence or

lack of obstacles. Agent density is a rough approximation of overall crowding in the

cardinal directions and includes obstacles. Net flow is the average velocity direction

of agents in a particular area. This helps determine whether or not the general crowd

is moving with or against the agent, which requires different care for such things as

collision avoidance.

Our feature space for learning specialized policies is based on a circular neighbor-

hood about the agent with discretized wedges that track the nearest agent or obstacle

in that region. Our feature spaces can be seen in Figure . and are in part inspired by

the state spaces of [ , ]. In particular, the context classifier’s state space is built of

two values for each of the four regions and an additional value denoting the presence

of obstacles in front of the agent for a -dimensional vector. The specialized feature

space is a -dimensional vector broken down into three values for each slice: the

distance, speed, and orientation of the nearest entity. The distance to the goal and



(a) 𝐅∗ (b) 𝐅

Figure 5.3: The feature spaces used in our pipeline, where other agents are circles
and sta c obstacles are depicted as boxes. 𝐅∗ is used by the context classifier to
dynamically choose the best model based on high-level features, while 𝐅 is used to

choose the agent’s next step based on the local neighborhood.

its orientation are the final two values.

A data-driven approach relies on the quality and coverage of its training samples.

Real-world data is often used as a source because humans empirically solve any pre-

sented steering challenges and we wish to create virtual representations of humans.

However, we cannot completely control the steering scenarios or know all the vari-

ables in the decision-making process of the people observed. To enforce artificial

limitations on the scenarios would impact the integrity of the data through the in-

fluences of the observer effect. Second, we have no way of knowing a priori whether

the data set collected has adequate sample coverage for the situations the agents will

need to handle. The problem of this potential incompleteness is compounded by the

overhead—or impracticality—of collecting additional data. For these reasons, our

pipeline uses synthetic data from which we can be conveniently gather additional

samples and know all the influences in advance.



. . Runtime

At runtime the agent generates feature vectors corresponding to both the context

classifier’s feature space and the corresponding specialized model’s feature space and

receives parameters used to derive its next footstep. These parameters include a rel-

ative offset and rotational angle to the next step’s location, while specifics such as

stride length are calculated on-the-fly based on the agent’s inherent characteristics.

This step is validated and if found to be unfit, a default “emergency action” takes

place, wherein the agent immediately stops. This allows the agent to try again after a

short cool-down period. This safety net was implemented to account for the worst-

case where a returned action is outside of the parameters permitted by the agents’

walking such as two steps in a row from the same foot or too wide a turn. The models

cannot be expected to be % accurate, which is the source of these potential errors.

Pseudocode for the agents at runtime is listed in Algorithm .

As shown in Section . . , it is 𝒩𝒫-Complete to know if our contexts cover all

possible scenarios. Furthermore, decision trees are susceptible to high variance de-

pending on the dataset we generate through our stochastic sampling. This causes

uncertainty in the decisions our agents will make. We account for this uncertainty

through the use of a confidence threshold defined by the C . algorithm. This rating

is roughly defined as the number of correct classifications made by the leaf nodes

divided by the total number of classifications made by the same node, making it a

static quantity once the tree is learned. If the confidence threshold is not met by

the classification the agent stops with the ability to resume as conditions change.

This confidence value is not a direct reflection on the technique itself, but is instead

heavily affected by pruning the decision trees to yield a more general model.

Note in Algorithm there is no explicit collision detection or avoidance. In our

system, runtime collision detection and avoidance is handled implicitly through the



Algorithm : Agent Decision at Runtime
Data: The environment with respect to the agent.
Result: The next footstep action.

𝐟𝐒𝐭𝐚𝐫 ← ObserveEnvironment ()
contextID← ContextClassifier (𝐟𝐒𝐭𝐚𝐫)
𝐟 ← ObserveLocalSpace (contextID)
ac on← Classifier (𝐟,contextID)

if ac on.confidence ≤ threshold then
ac on← StopInPlace

return ac on.step

training data itself. This is different fromother techniques such as [ ] where training

samples are used but thorough handling of collisions is required.

. Performance

The following results were generated on a desktop PC with GB of RAM, NVIDIA

GeForce GTX graphics card, and Intel Core i quad-core processor support-

ing eight hardware threads running at . GHz.

. . Classifier Accuracy

Figure . plots the error rate for the classifiers used in our experiments with vary-

ing amount of training data. Simulations were run using models trained on amounts

of data ranging from to scenarios per context. A separate validation set of

scenarios per context was kept back to calculate the error rate of the resulting

trees. Error rates were high but did decrease as data size increased, showing improve-

ment in generalization and not simply noise.

Additionally, each context used approximately of the possible step selections



0 500 1,000 1,500 2,000
20

40

60

Training Samples

Er
ro

r(
%

)

Classifier Error for Varying Dataset Sizes

Context Classifier
Specialized Classifiers

Figure 5.4: Classifier error rates as training data increases in quan ty. While the con-
text classifier has a high error rate, a 96% error rate is random chance given the large
number of classes to choose from. This shows both generaliza on and quality which

far surpasses random guessing.

which gives a randomguess accuracy of only %. We far surpass this level of accuracy.

Furthermore, random guess accuracy for contexts is %, which we also surpassed.

The error rate seen in the context classifier is likely a result of how the training data

was generated in a noisy manner, for instance some overlap in density between a high

density scenario and a medium density scenario exists. For our purposes a medium

density is or more nearby agents while or more is high density. A large burden is

also placed on the decision trees to distinguish the Chaos context from other contexts

but this by its nature adds a lot of noise and has no structure, making it difficult to

define hyperplanes to separate such scenarios.

. . Frames per Second

Our initial instantiation of a context-sensitive pipeline is much faster at runtime

than the oracle. As seen in Table . , all contexts experienced speedup, especially



500 1,000 1,500 2,000 2,500 3,000
0

50

100

150

Agent Count

Av
er

ag
e

Fr
am

es
Pe

rS
ec

on
d

Steering Time for Agent Count

Figure 5.5: Total me taken for compu ng the steps 1,200 frames of simula on with
varying numbers of randomly generated agents. Overhead was mostly incurred from
a naïve implementa on of agent densitymeasurement which is𝑂 𝑛 where 𝑛 is the

number of agents.

significant for themost challenging scenarios involving obstacles. The Chaos context,

bothwith andwithout obstacles, was themost challenging for the oracle and resulted

in skewed performance data due to the number of scenarios which were culled. Our

method showed an extremely constant amount of time across the different contexts

owing to its dynamic model-swapping.

To test the robustness of our collection of models, we created a large-scale simu-

lation consisting of randomly generated obstacles, agents, and goals, as seen in Fig-

ure . . We measured the time to generate the paths for varying numbers of agents to

simulate , frames, with the results given in Figure . . All tests were run using a

single-threaded implementation and realtime framerates were experienced at ,

agents and interactive framerates of about FPS were experienced with as many as

, agents. A major bottleneck in the results come from the generation of feature

vectors, which is 𝑂 (𝑛 ) in the number of agents. Each agent must check whether or



Figure 5.6: Mul ple views of a 3,000 agent simula on rendered with the Unity game
engine.

not another agent is close enough to be counted in the feature vector. This redundant

calculation could be lowered by taking the reciprocity of agent distance into account

but this would hurt the prospects of future parallelization.

. . Qualitative Analysis

Some screenshots of the framework at runtime are given in Figure . , which

used far more agents than the oracle could handle. We also ran several medium-

scale scenarios that are far beyond the type of scenarios used for training the models

to analyze the qualitative performance of the steering while using our data-driven

technique. These scenarios were as follows:

Hallway Two opposing groups of agents cross a hallway.

Random randomly placed agents with randomly placed obstacles through-

out the environment.

Urban randomly placed agents in an environment simulating an urban area

with obstacles as city blocks.

Recall our virtual agents navigate without an explicit collision avoidance stage to

their navigation. Generally, the agents do not collide on the basis that their training

samples contain no collisions, and thus they inherently steer around one another.

However, as the models are not % accurate, collisions are to be expected.



C
on

te
xt

O
ra

cl
e

.
.

.
.

.
.

.
.

.
.

.
.

M
od

el
s

.
.

.
.

.
.

.
.

.
.

.
.

(a
)W

ith
ou

tO
bs
ta
cle

s
C
on

te
xt

O
ra

cl
e

.
.

.
.

.
.

.
.

.
.

.
.

M
od

el
s

.
.

.
.

.
.

.
.

.
.

.
.

(b
)W

ith
Ob

st
ac
le
s

Ta
bl
e
5.
1:

To
ta
l

m
e
in
se
co
nd

so
fs
te
p
pl
an

ni
ng

fo
ra

ll
co
nt
ex
ts
to

ca
lcu

la
te

st
ep

so
ve
rs
ho

rt
sc
en

ar
io
s.
Th

e
fir
st
12

ar
e
co
n-

te
xt
sw

ith
ou

to
bs
ta
cle

sa
nd

ar
e
ba

se
d
on

on
co
m
in
g
an

d
cr
os
st
ra
ffi
cp

a
er
ns

w
ith

va
ry
in
g
le
ve
ls
of

ag
en

td
en

sit
y.
Co

nt
ex
ts

12
an

d
ab

ov
e
ha
ve

ob
st
ac
le
sa

nd
ag
en

tp
a

er
ns

m
at
ch
in
g
th
e
up

pe
r1

2.



These tests were run for varying numbers of training scenarios, from to

in increments of and each test was run for frames. Afterwards, we tabu-

lated the number of collisions and created the graphs in Figure . . The collisions

were recorded by severity. Type A collisions have occlusions in the range (0%, 10%]

at the worst point. These collisions could be registered due to the circular profile

of the agents’ bounding volume and thus may not be visible when the simulation is

rendered. Type B collisions have occlusion in the range (10%, 35%] and while more

severe than before, could be alleviated with a better anthropomorphic model with

torso-rotation. This type of collision is often dealt with in real pedestrians by turn-

ing the shoulders to more easily pass one another in cramped conditions. Type C

collisions occlude on the range (35%, 75%] and are major collisions which require

more tuning to the algorithm to avoid. Type D collisions complete the possibilities at

(75%, 100%] and would most likely need a fully reactive collision avoidance system

to prevent.

The results were counterintuitive at first. As training samples grew in quantity,

so did collisions and even the severity of the collisions. We hypothesize two main

factors behind this increase. First, the oracle algorithm is collision-free. Thus a sort

of “event horizon” was established in the training data where no reaction to an agent

occurs once the agent is too close to another. This means once two agents are too

close, there is no policy that would push them apart, which explains the increased

amount of more serious collisions compared to the more minor offenses.

The second factor is that with increased sample counts, the models better attempt

the mimicry of the oracle algorithm’s behavior. The oracle has the ability to steer

agents together in a very tight, close-call manner. While this is good for the oracle

and such nearby passing can be accommodated by it, as the training data increases

in size and the agents steer more like the oracle, a misstep is more likely to cause



a collision. In essence, more training data made the agents attempt to steer in a

more precise manner, but the inherent inaccuracy of any machine learning algorithm

simultaneously leads to higher risk. Thus a collision avoidance algorithm is necessary

for a data-driven approach to agent steering, although perhaps more sparingly as

model accuracy improves.

. Summary of Performance

Our initial hypothesis of improved runtime was confirmed by this experiment.

The oracle algorithm was universally slower than the hierarchical model, and in some

contexts the difference in speed was orders of magnitude apart, as was shown in

Table . . Our data-driven algorithm was also demonstrated to generalize as accuracy

improved for all classifiers as training data was increased, and the framework could

produce simulations beyond the scope of the training data itself. No training data

fed to the decision trees possessed even agents, however agent counts in excess of

, were possible. Given the performance of the oracle on the training scenarios,

such high-count simulations were not feasible for comparison.

While the premise was shown to be sound, we also demonstrated the potential for

improvement in our use of machine learning. Decision trees are a class of algorithms

with high variance in the resulting models. Our accuracy compared to that of ran-

dom guessing was high, but still lacking. The high variance inherent in our technique

helped generalize the complex data we presented for fitting however the diminish-

ing returns evident in Figure . suggest the samples are too complex—situations

likely overlap too much—for the creation of more accurate models. Reasons for this

complexity could be inherent in the phenomenon itself or rooted in our initial defi-

nition of the contexts. In the following chapter, we use data mining to explore other



0 500 1,000 1,500 2,000

50

100

150

Training Samples

C
ol

lis
io

ns

Hallway

500 1,000 1,500 2,000
50

100

150

200

250

Training Samples

C
ol

lis
io

ns

Random

500 1,000 1,500 2,000
500

1,000

1,500

2,000

2,500

Training Samples

C
ol

lis
io

ns

Urban

Figure 5.7: Counts for collisions in 3 minute simula ons in different test scenarios.
Type A collisions are blue, Type B collisions are red, Type C are yellow, and Type D are
green. Once collisions occurred, there was li le pressure for agents to move apart as
the training data was collision-free, thus no samples existed for overlapping agents.
Note that while high, per capita an agent in each of these simula ons is only likely
to encounter around 1-3 collisions with approximately one third of them minor in

nature in spite of the lack of any explicit collision avoidance.



possible algorithms to improve this pipeline.



Chapter

Refinements Through Data Mining

“Data! Data! Data!” he cried

impatiently. “I can’t make bricks

without clay.”

Arthur Canon Doyle, The Adventure of

the Copper Breeches

In this chapter, we present data mining as a means to evaluate and integrate possi-

ble options for improvement of the machine-learning component of our framework.

In Section . we explain the use of unsupervised learning to better approximate con-

texts within scenario space. We detail the use of supervised learning for automati-

cally generating a policy for each resulting context in Section . and conclude the

chapter with data mining experiments and results in Section . .

. Context Identification

In Chapter we used intuitively defined contexts as an example of breaking sce-

nario space into qualitatively different types of scenarios. However we also showed



the number of contexts is not truly known and we must instead work with approxi-

mations of these steering contexts. Approximations may be refined a couple of dif-

ferent ways: e.g., by improving the precision of the data or by taking new perspective

on how it is organized and used. Furthermore, different classes of data separated

wholly on the basis of human intuition may not map well to a computationally fea-

sible partition. Such intuitive separations may subsequently give rise to inaccuracies

or biases in trained models.

To avoid human bias through intuitively-based separations, unsupervised ma-

chine learning techniques can be exploited to search for qualitative differences in

data while also focusing on splitting the data in a manner more natural to the com-

puter itself. The result is a better approximation of the potential contexts in our

scenarios and a better method for identifying those contexts at runtime.

. . Unsupervised Learning Algorithms

Unsupervised machine learning algorithms, also called clustering algorithms, use

a set of samples as input and group them together based on similarities of their var-

ious features. Unlike their counterpart, the supervised learning algorithms, these

clustering techniques can operate on unlabeled data with the goal of labeling said

data. In essence, rather than attempting to fit rules to discern between classes of

data, unsupervised learning tries to derive what the likely classes of data could be.

This modus operandi is a natural fit to our goal of content approximation. We

have a large set of steering scenarios and we know some are more similar than oth-

ers, but we do not know with certainty how many types of scenario there are nor do

we know the characteristics which define these types. Thus clustering algorithms’

goal of identifying related scenarios and in the process deriving values which sug-

gest some scenarios are more related than others will give us an automated manner



of computing an approximation for our contexts. There are several clustering algo-

rithms which we consider as candidates for our work and we selected three due to

their different approaches to determining the number of clusters. K-means [ ] is

given the number of clusters, X-means [ ] takes a top-down approach, and canopy

clustering [ ] uses a bottom-up technique.

K-means is one of the best known and most used clustering algorithms. This al-

gorithm uses an initial guess at the feature values which identify the different groups

of data. These values form the centroids of each cluster. Samples are then assigned to

a cluster based on nearest-neighbor proximity. The centroids are moved to the me-

dian of the clusters and the process is repeated until the centroids’ positions reach

convergence. The theory behind this algorithm is that the centroids will be pulled

into position by data which is close together. K-means suffers from the problem of its

random initial guess, local minima, and the user’s estimation of the number of clus-

ters. The random initial guesses can be improved with better seeding of the initial

centroids [ ] and we can use cross-validation to analyze several cluster counts and

their relative merit.

X-means is a clustering algorithm which attempts to extend the concepts from

K-means while avoiding its shortcomings. Rather than supplying the number of cen-

troids as one of its parameters, X-means accepts a range of possible cluster counts.

The iterative process discussed with K-means is extended to include refining the

number of clusters by considering the results of splitting each current centroid into

two children. These new clusters are initially separated an even distance from the

original center along a randomly chosen vector. Ideally this will cause the child clus-

ters to identify distinct groups of data rather than unnecessarily divide samples. X-

means is not without its potential weaknesses. The success of the centroid division

depends on the relative density of samples that are related versus those which are



not. Local minima can still exist with the randomized aspect of the new cluster gen-

eration. We can again use cross-validation to compare results with those of other

algorithms.

In contrast with the prior two algorithms, canopy clustering was developed pri-

marily as a way to accelerate the learning process for large data sets, cluster counts,

and number of dimensions. Canopies serve as a rough pass on the training data using

a similarity approximation and samples may belong to multiple canopies. Common

membership in a canopy does not guarantee samples will belong in the same cluster,

but lack of a common canopy indicates the samples cannot be in the same cluster.

A second pass through the data computes an exact similarity between samples and

assigns them to their actual clusters with a greatly reduced overall cost. By using

heuristics in the initial creation of canopies, the number of clusters can be estimated

and cross-validation used to compare possible models for the best result.

. . Principal Component Analysis

The -dimensional feature space used for context selection is not unreasonably

high in and of itself but as the number of dimensions increases, samples move geo-

metrically further apart and clustering becomes more difficult. This is because dat-

apoints which are similar are harder to distinguish from those which are dissimilar

based on Euclidean distance in a high-dimensional space. Thus it is to our advan-

tage to consider reducing the number of features. Principal Component Analysis

(PCA)[ ] is a technique used to project the data onto a lower-dimensional space

while also preserving much of the important variation in the dataset. The features

after applying PCA are linear combinations of the original features so all original val-

ues of a datapoint can influence the values of the projected data. The success of this

reduction is dependent on the original data which may or may not be well-suited to



projection.

. . Evaluating Cluster Results

Unlike with supervised learning algorithms, we cannot compute an accuracy met-

ric when clustering unlabeled data. Rather than comparing to a “ground truth” or set

of known classes, we must evaluate the clusters produced by unsupervised learning

algorithms using metrics of relative likely quality. One such metric is the likelihood

of the clusters with respect to the data provided, for which a formula is given in

Equation . where 𝒟 is the complete dataset, 𝜽 represents the model—in this case

cluster centroids—fit to 𝒟, and 𝑝 (𝐱 |𝜽) is the likelihood of the model with respect

to the particular sample 𝐱 . An option for comparing the clusters is to compare the

measures of likelihood resulting from each tested algorithm.

𝐿 = 𝑝 (𝒟|𝜽) = 𝑝 (𝐱 |𝜽) ( . )

Without knowing the number of clusters a priori, we must try different quanti-

ties. Cross-validation can be used to estimate the number of clusters, but a draw-

back to using likelihood as our metric is that the likelihood value tends to increase as

the number of clusters increases. This is a phenomenon related to overfitting when

training a model. Each cluster can be considered an additional, independent param-

eter for the algorithm to tune to the data. Additional parameters result in additional

degrees of freedom and yield higher likelihoods. This is analogous to supervised ma-

chine learning’s memorization problem. With memorization a model is fit to the

training data with extreme accuracy, but later suffers a high error rate when given

a separate test set as the model fit parameters too tightly to the specific data rather

than identifying a trend. Since we do not have a separate test set, we need a more



robust metric than just likelihood.

The Akaike Information Criterion (AIC)[ ] uses the likelihood as well as the num-

ber of parameters used in a model to produce a better relative metric. Equation .

defines the AIC using the natural logarithm of the likelihood as well as 𝑘𝜽, the num-

ber of parameters used by model 𝜽. For our purposes, 𝑘𝜽 is the number of clusters

used by the algorithm. Akaike defines this criterion based on information theory

such that the AIC is a unitless estimation of how much information is potentially

lost by using a given model. In any form of machine learning, models are fit to data

produced by some process—known or unknown—and by necessity some informa-

tion is lost. This is manifest as the error rate of a learned model against a test set. In

the absence of a known process, AIC provides a statistical foothold on quality while

still being wary of overfitting. Theoretically, the best model out of a candidate pool

is that which minimizes the probability of losing information relative to the other

models.

AIC = 2𝑘𝜽 − 2ln (𝐿) ( . )

Since we are dealing with probabilities and the relative quality of various potential

contexts, it is useful that AIC provides a probability-based comparison of two values.

Given some model 𝜽 with AIC , another model 𝜽 has the relative probability of

actually minimizing information loss according to Equation . :

exp AIC − AIC
2 ( . )

We use the AIC metric to evaluate the candidate clustering algorithms due to its

more balanced approach of comparing models with varying parameters.



. Generating Policies for Contexts

In addition to seeking a better set of contexts, we also need to explore other op-

tions for creating a policy for a particular context. We consider several algorithms

as potential replacements of the C . algorithm used previously and take full advan-

tage of our model hierarchy by looking for an algorithm better-suited to each context,

rather than using the same decision tree technique for all policies.

. . Application of a Mixture of Experts

Our prototype in Chapter consisted of a two-level hierarchy of decision trees.

The top level of the hierarchy chose the most appropriate model for the agent’s par-

ticular context. A major benefit of this departure from a single, monolithic model

is the ability to use different models for different policies. Our approach also al-

lows for the use of different algorithms for the different models. Rather than simply

choosing different parameter values, the nature of the models themselves is open for

customization. This concept of allowing smaller models to serve as specialists for

narrowed problem domains is known as a mixture of experts[ ], and is defined in

Equation . .

𝑝 (𝑡|𝐱) = 𝝅 (𝐱) 𝑝 (𝑡|𝐱) ( . )

In our use of this mixture of experts concept, 𝑝 (𝑡|𝐱) gives the result of a specific

policy, and we leverage our definition of contexts from Equation . to define 𝝅. By

using multiple experts, the result from each expert for the same sample can be com-

bined into a single final result. Due to the binary nature of our 𝝅 and our context

classifications’ result of only a single context for a particular 𝐱, we do not need to



consult every policy.

𝝅 (𝐱) =
1 if 𝐱 ∈ 𝐶

0 if 𝐱 ∉ 𝐶
( . )

Thuswe can consider our hierarchicalmachine learning to be amixture of experts,

and each policy serves as an expert. Since the model and underlying algorithm are

customizable for each policy, other aspects of the data-driven process can be tailored

as well. In this dissertation we concentrate on the choice of algorithms, but another

avenue for exploration would be creating and selecting different feature spaces for

the different contexts.

. . Feature Space

The models in our prototype application used discretized feature spaces. This

was due to a limitation of the C . algorithm used to generate all models. C . can

accept both continuous and discrete values for features, but handles each very dif-

ferently. Nodes created for the continuous features may only be divided into three

ranges according to two split values. Discrete values, conversely, allow the algorithm

to consider various subsets as potential splits. This increases the branching factor

and flexibility during the training process. In the short-term the use of discrete val-

ues improved the error rate but ultimately caused a loss of information as otherwise

distinct values were forced into bins. These bins did not necessarily reflect the dis-

tribution of the data which could increase the loss of information as bins could be

devoted to seldom-used values.

Since we were no longer constrained to the C . algorithm, we changed the fea-

ture space to use continuous values. We used a filter on the data for tests on the



effectiveness of machine learning techniques that required discrete values. The filter

generated bins based on a statistical view of the full data set to reduce the impact of

lowering the precision. Since the filter created bins for each data set separately, each

policy could have a different set of bins. While not as effective as a fully customized

feature space for each context, this did allow some additional flexibility available only

possible through the use of a hierarchy of models.

. . Action Space

We initially viewed the lack of collisions in the training data as a strength of the

oracle’s output. However, inaccuracies inherent in the use of machine learning led

to collisions under the data-driven algorithm. The collisions exposed a gap in cov-

erage for the policies, as no conditions comparable to the situation existed in the

training data. In essence, the oracle’s lack of collisions meant the data-driven agents

could find themselves in a fundamentally novel situation which the agents could not

“know” is improper and thus should be avoided. Fixing this problem required either

the oracle be modified to permit collisions, or the data-driven models be made such

that the wrong step is never selected. Only one of these options is possible, so the

oracle was revised such that an agent may opt to collide with another but only as a

last resort, enforced with a high penalty to the energy cost.

. . Classification Algorithms Used

We used the clustering results from Section . to form new contexts. The new

contexts required new policies, so we repartitioned the footstep sample data accord-

ing to the new contexts. We considered other algorithms than C . for generating

the policies and ran experiments to determine which algorithm should be responsi-



ble for generating which policy. In particular we considered some other decision tree

algorithms, ruleset algorithms, Bayesian algorithms, and margin-based classifiers.

Various algorithms exist for creating decision trees. In addition to the one already

used in our preliminary experiments, there are also the ID [ ] and C . [ ] algo-

rithms. The algorithms are similar and developed by the same person, J. R. Quinlan.

The feature used for splitting the data at a given level of the decision tree is selected

based on entropy and information gain. The algorithms differ in how the split is de-

termined and what forms of data can be used for features. The strengths of these

algorithms are their ability to fit to data with high variance as well as their need to

only store the information for nodes rather than samples themselves.

Similar to decision trees, rulesets can also be created from training data. The in-

ternal structure of a decision tree can be converted into a ruleset, with each node’s

split information becoming a rule. In a sense, this type of algorithm subsumes deci-

sion trees. Rules can take on a more general form though and allow for more com-

binations and special cases than might be considered with techniques such as ID .

PART [ ] is an example of learning rules based on techniques similar to a decision

tree, in this case C . . An alternative is ripple-down learning [ ] which takes a dif-

ferent approach to deriving rules. This method treats the most prominent class of

data as the default classification. Rules serving as special cases or exceptions to this

default rule are then created to accommodate the other possible classes found in the

training data.

In contrast to the above, Bayesian statistics have been used to create classifiers.

Naïve Bayes selects a class of data based on that which is most probable based on

training samples. Bayesian networks [ ] expand on the probability-based treatment

of classification by adding the potential for dependencies to the mix. The strengths

of these approaches are in their success with higher-dimensional data. Naïve Bayes in



particular is often used for text classification applications which can have dimensions

in the tens of thousands.

Support vector machines (SVMs) [ ] focus the most on geometric relations be-

tween classes and features. An SVM fit to training data can provide the smallest

memory footprint at runtime. This is due to the need to only keep specific sam-

ples which serve as the boundaries between classes. SVMs can also use the kernel

trick to find separating planes in transformed spaces, which can help divide classes

in otherwise difficult datasets.

. . Evaluation Metrics

Our application consists of classes with very different representation in the sam-

ples, which complicates how we should measure the quality of our learning results.

A simple measure of accuracy can be found by tallying the number of correct clas-

sifications. Accuracy then only accounts for the number of errors, not their nature.

More thorough analysis is possible by further analyzing the types of incorrect classifi-

cations. In binary classification, we can consider two types of errors. False positives,

or Type I errors, occur when a classified instance actually belongs to the other class.

False negatives, or Type II errors, occur when a classified instance is a member of the

class but not recognized as such by the model. This distinction of errors means a

model may be incorrect by too heavily favoring a class, causing Type I errors, or by

insufficiently acknowledging a class reflected by a high Type II error rate.

Recall and precision are two statistical measures which can be used to give more

insight into the performance of the model by quantifying the manner in which the

model is accurate. For instance, recall measures the ability to identify positives rela-

tive to the number of true positives. Higher recall then indicates higher probability

of identifying the class given the sample does in fact belong to the class. Precision,



on the other hand, measures how likely the model is to be correct when it indicates

a positive result. Precision increases when fewer false positives are returned. Nei-

ther recall nor precision is a complete picture on its own. High recall can be attained

with low precision and vice-versa, though in both cases overall accuracy should be

reduced. Rather than compare two measurements indirectly, recall and precision are

combined into what is known as the F-measure which is the harmonic mean of the

two quantities and defined in Equation . .

𝐹 = 2 Precision × Recall
Precision + Recall ( . )

The F-measure summarizes accuracy of supervised learning algorithms well but

focuses entirely on one part of the classification results, namely that of positively

identifying a class. While the F-measure is potentially better than simple accuracy,

both recall and precision can be artificially high when there is a lack of balance be-

tween positive and negative instances in the data. In particular, a class which dom-

inates the dataset can be favored and result in a high F-measure. If the difference

in sample count is high enough, a model could simply always return the more com-

mon classification and receive high numbers. The Matthews Correlation Coefficient

(MCC)[ ] computes a value which takes this imbalance into account. The MCC is

formulated in Equation . and essentially considers the model’s effectiveness for not

only the original problem but its inverse as well. Thus if a model’s high precision and

recall is only an artifact of having comparatively few negative samples, the MCC will

be reduced when the model fails to adequately identify those negative samples.

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

( . )

Our policies are generated for a multiclass application, rather than binary classi-



fication as described above. However, each specific class can be analyzed using these

metrics by considering success with the problem “class 𝑖” and “not class 𝑖.” The re-

sults for all classes can be averaged to provide an overall metric for the success of the

model. We use a weighted average when combining the individual class results to

compensate for unbalanced class sizes.

. Experiments and Results

We used the same training data from the oracle algorithm to explore the possibil-

ities for both unsupervised and supervised learning algorithms. These experiments

were all conducted using the Weka data mining system [ ]. Clustering experiments

were conducted first and the results deemed the best were used to define new con-

texts. Since these new contexts need new policies, further experiments were con-

ducted to evaluate which algorithm should be used for each policy.

We used ten trial runs of each algorithm tested with each dataset. Different trial

runs had different randomized ordering of the data. We also used -fold, stratified

cross-validation in each trial to check the expected generalization of the algorithms.

Stratification slightly alters the typical cross-validation scheme by actively matching

the distribution of classes in the validation fold and the other folds. As some of our

classes are very rare, this is necessary to ensure some classes are not left out of the

validation phase.

. . Clustering Contexts

We explored several options for unsupervised learning algorithms so we could

define steering contexts based on a computational sense of similarity rather than our

intuitive sense of similar scenarios. Creating clusters also gave us the opportunity



to correct for some problems with invalid class labeling. Some of the error in the

context classifier in Chapter likely came from polluted data caused by an entire

oracle simulation being attributed to the same context. However the oracle’s agents

could move to new positions which would not match the original criteria defining the

context, such as a sample from a crowded scenario after the agents have successfully

passed one another.

For these trials, we predivided the data based on the presence or lack of obsta-

cles. This decision was due to the ease of making the distinction before consulting

the model hierarchy, much like we already distinguish between left and right step se-

lections for the specialized classifiers themselves. Our decision was further justified

because the clear divide between samples with and without obstacles made the sin-

gle feature completely dominant with preliminary clustering experiments universally

showing two clusters based solely on the obstacles.

One additional control available to us is the distance metric used to determine

how close different sampled points are to one another. The standard metric is the

𝐿 norm, or Euclidean distance between two points. For our application the relative

importance of each feature is not known, so they may not have a geometric relation-

ship. Thus we also analyzed algorithms with the 𝐿 norm, commonly referred to as

the Manhattan distance. This distance formulation adds the absolute value of the

differences in all dimensions, rather than the square root of the summed squared

differences.

Original Feature Space

We performed runs of each clustering algorithms. A run consisted of a ran-

domized ordering of the context samples and execution of -fold cross-validation.

The results of these clustering experiments are given in Table . with average values



Ta
bl
e
6.
1:

Re
su
lts

of
un

su
pe

rv
ise

d
le
ar
ni
ng

al
go

rit
hm

so
n
th
e
or
ig
in
al
da

ta
ge
ne

ra
te
d
by

th
e
or
ac
le
.K

-m
ea
ns

an
d
X-
m
ea
ns

w
er
e
te
st
ed

w
ith

bo
th

Eu
cli
de

an
(𝐿

)a
nd

M
an

ha
an

(𝐿
)d

ist
an

ce
m
et
ric

s.
A
†
in
di
ca
te
st
he

lo
w
es
tA

IC
an

d
a
‡
in
di
ca
te
s

re
su
lts

w
ith

in
st
a

s
ca
ls
ig
ni
fic
an

ce
of

th
e
lo
w
es
tv

al
ue

.

A
lg
or
it
hm

N
o
O
bs
ta
cl
es

W
it
h
O
bs
ta
cl
es

C
lu
st
er
s

Lo
g-
Li
ke
li
ho

od
A
IC

C
lu
st
er
s

Lo
g-
Li
ke
li
ho

od
A
IC

𝐿
K-

m
ea

ns

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)‡
-

.
(

.
)

.
(
.

)‡
-

.
(

.
)

.
(
.

)‡
-

.
(

.
)

.
(
.

)‡
-

.
(

.
)

.
(
.

)†
-

.
(
.

)
.

(
.

)†
-

.
(

.
)

.
(
.

)‡
-

.
(

.
)

.
(

.
)‡

-
.

(
.

)
.

(
.

)‡
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)

𝐿
K-

m
ea

ns

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(
.

)
.

(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
-

.
(

.
)

.
(
.

)
𝐿

X-
m

ea
ns

.
(

.
)

-
.

(
.

)
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

𝐿
X-

m
ea

ns
.

(
.

)
-

.
(

.
)

.
(

.
)

(
.

)
-

.
(

.
)

.
(

.
)

C
an

op
y

.
(
.

)
-

.
(

.
)

.
(

.
)

.
(
.

)
-
.

(
.

)
.

(
.

)



and standard deviations. Note that smaller AIC values depict higher potential qual-

ity of the resulting clusters due to a decreased probability of information loss. The

measures were compared for statistical-significance using a paired T-test and .

two-tailed confidence interval. The results with the lowest AIC values were selected

as potential candidates for clustered contexts.

PCA Feature Space

Our previous tests of unsupervised learning included different distance metrics

to try to help mitigate the impact of the number of dimensions. We also ran exper-

iments using PCA on the features first, which made a slight reduction to the overall

number of dimensions and provided for more abstract features. We repeated our

experiments with this lower-dimensional projection of the data.

Based on the results in Table . , using PCA to try to reduce the dimensionality

of the data was not beneficial to the clustering process. The number of clusters was

suggested to be only with statistical significance, which intuitively seems low com-

pared to previous results and the diversity in simulations created as samples for the

oracle. Additionally, the AIC values for this small value of clusters are much higher

than those seen in Table . , suggesting information is likely lost by using PCA. While

some information is expected to be lost with the projection to a lower-dimensional

space, the goal of PCA is to preserve the important variance which does not appear

to have happened in our experiments.

. . Policies for Clustered Contexts

The footstep feature vectors were regrouped based on their corresponding context

feature vector’s cluster membership. Thus step data was no longer per-scenario but

directly tied to a context definition, which prevented further errors from mislabeled



Ta
bl
e

6.
2:

Re
su
lts

of
un

su
pe

rv
ise

d
clu

st
er
in
g
al
go

rit
hm

s
on

th
e
or
ig
in
al

da
ta

a
er

di
m
en

sio
na

lit
y
re
du

c
on

w
ith

PC
A.

A
†i
nd

ica
te
st
he

lo
w
es
tA

IC
.

A
lg
or
it
hm

N
o
O
bs
ta
cl
es

W
it
h
O
bs
ta
cl
es

C
lu
st
er
s

Lo
g-
Li
ke
li
ho

od
A
IC

C
lu
st
er
s

Lo
g-
Li
ke
li
ho

od
A
IC

𝐿
K-

m
ea

ns

-
.

(
.

)
.

(
.

)†
-

.
(

.
)

.
(

.
)†

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

𝐿
K-

m
ea

ns

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

-
.

(
.

)
.

(
.

)
-

.
(

.
)

.
(

.
)

𝐿
X-

m
ea

ns
.

(
.

)
-

.
(

.
)

.
(
.

)
.

(
.

)
-

.
(

.
)

.
(
.

)
𝐿

X-
m

ea
ns

.
(
.

)
-

.
(

.
)

.
(
.

)
.

(
.

)
-

.
(

.
)

.
(
.

)
C
an

op
y

.
(
.

)
-

.
(

.
)

.
(

.
)

.
(
.

)
.

(
.

)
.

(
.

)



contexts. We tested C . , ID , Naïve Bayes (NB), Bayesian network (BN), Ripple-

down ruleset learning (Ridor), SVM, and PART algorithms in the Weka software suite.

Raw accuracy for each algorithm with each subset of data is given in Table . . As

discussed previously, raw accuracy is not necessarily a good discriminator of quality

in machine-learned models, and the weighted F-measure is given in Table . to give

a better analysis of the recall and precision produced by each algorithm’s models.

Since we have unbalanced representation of step selections in our training data, we

ultimately used the weighted MCC in Table . for most decisions regarding which

models to use for which policies.



Ta
bl
e
6.
3:

Ra
w
er
ro
rr
at
es

fo
re

ac
h
al
go

rit
hm

us
in
g
ea
ch

da
ta
se
tw

ith
st
an

da
rd

de
vi
a

on
to

tw
o
sig

ni
fic
an

td
ig
its
.†

in
di
ca
te
s

th
e
lo
w
es
te

rr
or

ra
te

fo
ra

pa
r
cu
la
rc

on
te
xt
,a

nd
‡i
nd

ica
te
s
va
lu
es

w
hi
ch

ar
e
w
ith

in
st
a

s
ca
ls
ig
ni
fic
an

ce
of

th
e
lo
w
es
t

va
lu
e.

D
at
as
et

C
.

ID
N
B

R
id
or

B
N

SV
M

PA
R
T

cl
us

te
r

le
ft

.
(

.
)‡

.
(

.
)‡

.
(

.
)

.
(

.
)‡

.
(

.
)

.
(

.
)

.
(

.
)†

cl
us

te
r

ri
gh

t
.

(
.

)†
.

(
.

)‡
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)‡
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)‡
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)‡
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)‡
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)‡
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)‡
.

(
.

)‡
.

(
.

)
.

(
.

)‡
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)‡
.

(
.

)
.

(
.

)‡
.

(
.

)
.

(
.

)
.

(
.

)‡
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)‡
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)‡
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)‡
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)



Ta
bl
e
6.
4:

W
ei
gh
te
d
F-
m
ea
su
re

fo
re

ac
h
al
go

rit
hm

us
in
ge

ac
h
da

ta
se
tw

ith
st
an

da
rd

de
vi
a

on
to

tw
o
sig

ni
fic
an

td
ig
its

w
he

re
th
e
m
et
ric

is
w
ei
gh
te
d
fo
re

ac
h
ac

on
by

its
fre

qu
en

cy
in

th
e
tra

in
in
g
da

ta
.†

in
di
ca
te
st
he

lo
w
es
te

rr
or

ra
te

fo
ra

pa
r
cu
la
r

co
nt
ex
t,
an

d
du

e
to

th
e
co
ns
ist
en

cy
of

pe
rfo

rm
an

ce
m
ay

be
re
pe

at
ed

fo
rc

on
te
xt
sw

he
re

th
e
st
an

da
rd

de
vi
a

on
is
to
o
lo
w

fo
ro

ur
sig

ni
fic
an

td
ig
its
.

D
at
as
et

C
.

ID
N
B

R
id
or

B
N

SV
M

PA
R
T

cl
us

te
r

le
ft

.
(

.
)†

.
(

.
)†

.
(

.
)

.
(

.
)†

.
(

.
)

.
(

.
)

.
(

.
)†

cl
us

te
r

ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)



Ta
bl
e
6.
5:

W
ei
gh
te
d
M
a

he
w
sC

or
re
la

on
Co

effi
cie

nt
fo
re

ac
h
al
go

rit
hm

us
in
g
ea
ch

da
ta
se
tw

ith
st
an

da
rd

de
vi
a

on
to

tw
o

sig
ni
fic
an

td
ig
its

w
he

re
th
em

et
ric

is
w
ei
gh
te
d
fo
re

ac
h
ac

on
by

its
fre

qu
en

cy
in
th
et

ra
in
in
gd

at
a.

†i
nd

ica
te
st
he

lo
w
es
te

rr
or

ra
te

fo
ra

pa
r
cu
la
rc

on
te
xt
,a
nd

du
e
to

th
e
co
ns
ist
en

cy
of

pe
rfo

rm
an

ce
m
ay

be
re
pe

at
ed

fo
rc

on
te
xt
sw

he
re

th
e
st
an

da
rd

de
vi
a

on
is
to
o
lo
w
fo
ro

ur
sig

ni
fic
an

td
ig
its
.‡

in
di
ca
te
sv

al
ue

sw
hi
ch

ar
e
w
ith

in
st
a

s
ca
ls
ig
ni
fic
an

ce
of

th
e
lo
w
es
tv

al
ue

.

D
at
as
et

C
.

ID
N
B

R
id
or

B
N

SV
M

PA
R
T

cl
us

te
r

le
ft

.
(

.
)†

.
(

.
)†

.
(

.
)

.
(

.
)†

.
(

.
)

.
(

.
)

.
(

.
)†

cl
us

te
r

ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)†
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)‡
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
le

ft
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
cl

us
te

r
ri
gh

t
.

(
.

)†
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)
.

(
.

)



Chapter

Improved Application

Strive for continuous improvement,

instead of perfection.

Kim Collins

In this chapter, we use the results of our data-mining experiments to make a sec-

ond iteration of simulations. We then use the updated hierarchical model to explore

the limitations of our pipeline and data-driven crowd simulation.

. Oracle Improvement

Originally we planned to use the same training data from Chapter without any

change to the oracle itself. However, an upgrade in hardware required running the

oracle again for accurate comparisons of performance. Since we needed to run the

oracle’s scenarios again, we took the opportunity to try to improve it and potentially

acquire better training data. In particular we adjusted two behaviors in the oracle’s

implementation.



. . Collisions

The oracle’s lack of collisions were previously viewed as a strength of the algo-

rithm itself. The reasoning was that if an agent had no training that might involve

colliding with another, the situation would be less likely to present itself. As seen in

the preliminary results, however, other factors can lead to agents colliding with each

other. What began as a strength was revealed as also having a weakness associated

with it; once the agents experienced a collision, nothing in their training motivated

them to separate. Rather than completely dismissing steps with collisions, we attach

a high energy penalty to make it extremely unfavorable. Agents should only collide

in rare instances when the only other option is complete deadlock.

. . Action Space

While implementing the high energy penalty, we discovered and fixed several

weaknesses in the original planner code regarding the selection of a stop action.

Agents were effectively prevented from considering a temporary stop as a viable part

of a solution in all but the rarest of instances. To stop, an exact sequence of steps had

to be accepted by the planner without deviation. Although we refined the approach,

the nature of IDA⋆ is such that stopping must bear an energy penalty dispropor-

tionate to its actual energy cost. Without this additional penalty, the planner must

consider arbitrary stops of arbitrary length at any point along an agent’s potential

path. We empirically set this penalty to allow stopping to occur but not lead to un-

workable runtimes. As a result, agents do not stop as often as might be encountered

in real pedestrians, but the action is better represented in the data.



Table 7.1: These are the feature values for each centroid produced by clustering all
samples of scenarios without obstacles.

Region Feature Cluster Cluster Cluster Cluster Cluster Cluster

North
Speed . . . . . .
Theta - . - . - . - . . - .
Density . . . . . .

East
Speed . . . . . .
Theta - . - . - . - . . .
Density . . . . . .

South
Speed . . . . . .
Theta . - . - . . . .
Density . . . . . .

West
Speed . . . . . .
Theta . . . . . .
Density . . . . . .

. Classification Improvements

In addition to the changes made to the oracle algorithm, we used the results from

our experiments in the previous chapter to modify our use of classification and the

model hierarchy.

. . Context Classifier

Based on results from Section . . , we used k-means clustering with clusters for

scenarios lacking obstacles and clusters for scenarios with obstacles. Consequently

we reduced the total number of contexts by just over half the original count. The

centroids for contexts derived for the absence of obstacles are given in Table . and

were fit with a log-likelihood of - . . This is slightly better than the projected log-

likelihood in Table . and we believe the difference is from the extra data available

when not using cross-validation. Table . gives the centroid information for the

contexts with obstacles, which were fit with a log-likelihood of - . , which was lower

than projected.



Table 7.2: These are the feature values for each centroid produced by clustering all
samples of scenarios with obstacles.

Region Feature Cluster Cluster Cluster Cluster Cluster

North
Speed . . . . .
Theta - . - . - . - . .
Density . . . . .

East
Speed . . . . .
Theta - . - . - . - . - .
Density . . . . .

South
Speed . . . . .
Theta . . . . .
Density . . . . .

West
Speed . . . . .
Theta . . . . .
Density . . . . .

For runtime identification of an agent’s context we switched from using a super-

vised learning model, such as a decision tree, to using the centroids found by the

clustering algorithm with a nearest-neighbor search. This change allows for lower

memory overhead as only the centroids must be stored rather than a full model and

also logically matches well to our use of the clusters; given a set of clusters, a single

new sample would have been attributed to the nearest centroid. Any other method

of runtime context identification would have only added an unnecessary level of in-

direction.

. . Specialized Classifiers

Based on the results observed in our machine learning experiments in Section

. . , we selected a learning algorithm for each cluster’s policy. Recall the data was

split based on which foot is being used, for a total of models. Four particular

algorithms stood out as the best candidates for these policies: ripple-down rules,

PART rules, C . decision trees, and ID decision trees. Often these algorithms were



Table 7.3: Each cluster’s designated policy was selected based on the combined per-
formance metrics of accuracy, F-measure, and MCC.

Cluster Left Foot Right Foot
cluster Ripple-Down C .
cluster C . ID
cluster Ripple-Down Ripple-Down
cluster C . C .
cluster Ripple-Down Ripple-Down
cluster Ripple-Down PART
cluster C . C .
cluster C . C .
cluster ID ID
cluster C . C .
cluster C . C .

in tight contention for “best” algorithm and results for some of the metrics would be

within statistical significance of each other. Final selections were made by using the

results of all three performance metrics and determining which technique performed

the best on more metrics than the others.

The algorithm selections for each policy are provided in Table . . Ripple-down

learning was the most commonly used algorithm for scenarios without obstacles,

where the oracle’s paths were predominantly straight as turning generally relied on

course-corrections and more subtle movements of that nature. The introduction of

obstacles into scenarios forced the oracle to use more frequent and pronounced turns

to steer around objects. As a result, the high variance characteristic of decision trees

appears better suited to handle this additional complexity.

. . Model Interface

Since the Weka suite was used to perform the data mining experiments, we used

the Weka implementations of the algorithms for our runtime models. The toolkit

provides for the export of models for subsequent runtime use which streamlined the



process of putting new models in use within our pipeline. The tradeoff, however,

lies in the Java implementation of the Weka codebase. Because Java runs on a virtual

machine, it is generally known to run less efficiently on hardware compared to a C++

implementation. While the gap in performance has been shrinking, this must be

taken into account when viewing performance results.

We extended the interface to our models to use the Java Native Interface (JNI)

distributed with Java. This technology allows for intercommunication between C++

and Java code. For our purposes, the proper technique requires the instantiation and

loading of the necessary Java classes into a dynamically-linked library (DLL) form

of the Java Virtual Machine (JVM). Thus, Java code must be run through the JVM

intermediary, which adds overhead due to the use of interprocess communication

and access model of the virtual machine itself. As Java class method calls and return

values are the performance bottleneck, we implemented our JNIwrapper tominimize

these calls and instead perform as much computation on either side of the interface

as possible.

. . Emergency Stop Action

In our first prototype application, there was no collision detection or avoidance

and we instead used the C5.0 classification’s provided confidence rating as a trigger

to the agent if it should execute a stopping action. The confidence rating was discov-

ered to be based on precomputation embedded in the leaf of the tree at the time of

training. Since the rating was not calculated based on a dynamic comparison of the

current feature vector and the decision being offered, we looked for a different and

more effective approach for better stopping behaviors.

Rather than use a prediction based on the feature vector, we elected to focus on

the results of the policy’s chosen action. The agent is permitted to use the action cho-



sen by the policy with two exceptions. If the action violates the inverted pendulum

model used by the agent for locomotion or if the action will lead to an immediate col-

lision, the action is rejected. In place of the policy’s action, the agent is forced into a

stopping action. Once in this stopping action, the agent will become stationary until

it determines a starting action is valid. The agent resumes motion and also resumes

the use of policies for determining future actions.

. Performance

The following results were generated on a desktop PC with GB of RAM, NVIDIA

GeForce GTX TITAN graphics card, and Intel Core i K six-core processor sup-

porting twelve hardware threads running at . GHz. The same test scenarios were

used to compare runtimes between the oracle and data-driven algorithms. Table .

gives the runtimes and shows that the new models run slower than the the original

models, but faster than the oracle itself. This was expected due to the additional

overhead of using JNI.

. . Frames per Second

To check the overall scalability of our revised technique, we replicated our prior

experiments of scenarios with randomly generated obstacles and agents. The results

are shown in Figure . and demonstrates a linear growth with respect to the number

of agents. The graph further shows our implementation can support generating steps

for nearly , agents in realtime. An example view of the randomized scenario is

provided in Figure . .

The average decision time per step was also calculated and given in Figure . .

The average decision time is not constant but also grows linearly with the number



Ta
bl
e

7.
4:

Av
er
ag
e

m
e
in

se
co
nd

s
of

st
ep

pl
an

ni
ng

fo
r5

0
te
st

sc
en

ar
io
s
fro

m
ea
ch

or
ig
in
al

co
nt
ex
t,
to

th
re
e
sig

ni
fic
an

t
di
gi
ts
.E

ac
h
te
st
sc
en

ar
io
ra
n
fo
r2

5
sim

ul
at
ed

se
co
nd

s.

(a
)W

ith
ou

tO
bs
ta
cle

s

C
on

te
xt

O
ra

cl
e

.
.

.
.

.
.

.
.

.
.

.
.

C
.

.
.

.
.

.
.

.
.

.
.

.
.

C
lu

st
er

s
.

.
.

.
.

.
.

.
.

.
.

.
(b

)W
ith

Ob
st
ac
le
s

C
on

te
xt

O
ra

cl
e

.
.

.
.

C
.

.
.

.
.

.
.

.
.

.
.

.
.

C
lu

st
er

s
.

.
.

.
.

.
.

.
.

.
.

.



500 1,000 1,500 2,000 2,500 3,000

20

40

60

80

100

Agent Count

Ru
nt

im
e(

se
co

nd
s)

Steering Time for Agent Populations

Figure 7.1: Total me taken for compu ng the steps of a simula on 1,200 frames long
for varying numbers of agentswith randomly generated obstacles and anoverall small

area.

of agents. This time could be reduced with a more optimized implementation, such

as the use of natively-coded algorithms in lieu of JNI. These results strongly indicate

that parallel threads could boost the supported agent count, likely with a nearly scalar

improvement.

. . Policy Use

Since the policies are not % accurate, incorrect steps can still be selected by the

policies at runtime. This motivated our inclusion of a the “emergency stop” action.

For large scenarios, we cannot use the oracle algorithm to generate an expected or

ground-truth series of steps due to the prohibitive amount of time required to run

the simulations. However, we can still measure the performance of the hierarchical

model by checking how often the stopping action is invoked. We checked this rate

of use for the random scenario used in the previous section, an urban-based scenario



Figure 7.2: One view of the randomized scenario used for much of our performance
tes ng.

provided in Figure . , and a hallway scenario illustrated in Figure . .

As shown in Figure . , the percentage of policy-based steps used by agents stays

in the upper % range even at larger populations as seen in the random and urban

scenarios. The percentage is also high in situations with relatively crowded popula-

tions, such as the hallway scenario. Although the rejection of the policy-based step

may help stop collisions and actions inconsistent with the inverted pendulum model,

it is important to note that the step ultimately used by an agent to resume motion is

not tested for ideal progress towards the agent’s goal. Thus agent progress towards

goals and actions to circumvent collisions and obstacles come from the policies.

. . Qualitative Analysis

In general, the data-driven agents follow paths with similar characteristics to

those seen with oracle-driven agents. Since the planner used by the oracle uses

a heuristic based on the expected energy cost per step, paths are predominantly



500 1,000 1,500 2,000 2,500 3,000

0.28

0.3

0.32

Agent Count

Ru
nt

im
e(

m
ill

is
ec

on
ds

)

Decision Time for Agent Populations

Figure 7.3: The average me taken per-agent to decide their next step ac on for
various popula on sizes.

straight. Differences arise with turning radii when the agents must turn, as the oracle

has the ability to plan ahead rather than just use a single step. Thus the oracle can

better fine-tune the turning angle.

The use of a single turning angle for a given circumstance, rather than being able

to plan ahead, results in degenerative behavior, an example of which is given in Fig-

ure . . This behavior is particularly witnessed when agents must turn to reorient

Figure 7.4: Two views of the urban-based scenario used for tes ng the frequency
with which the data-driven agents resort to the emergency stop ac on.



Figure 7.5: Two views of the hallway scenario used for tes ng the frequency with
which the data-driven agents resort to the emergency stop ac on in a more confined

space.

to a goal. Depending on the distance to the goal, turning radius, and availability of

other stimuli, an agent may settle into an orbit around the goal. This happens for

the same reason objects can maintain steady orbits around gravitational bodies in

astronomy. The forces at play are rotationally invariant, so the same reaction oc-

curs. Similarly, after a small distance traveled while turning, an agent observes the

same state as before, which invokes the same step. This is a limitation of only being

capable of planning a single step at a time and represents a limit reached with our

technique’s abilities.

The hallway scenario we tested also demonstrated lane-forming emergent behav-

ior. As the two groups move to opposing sides of the hall, the agents within each

group tend towards their right sides, letting the groups pass one another with fewer

problems involving collisions. This is particularly interesting to witness as the train-

ing data for the hierarchical model does not specify such organized behavior, and

also this is more consistent with human behavior than that often seen with crowd

simulations. Crowd simulations often show lane-forming as many narrow lanes, not

a bisection of the passage into two lanes as seen in Figure . .



500 1,000 1,500 2,000 2,500 3,000
86

88

90

92

94

96

Agent Count

M
od

el
s
U

se
d(

%
)

Hierarchical Model Usage

Random
Urban

50 100 150 200 250 300

92

94

96

98

Agent Count

M
od

el
s
U

se
d(

%
)

Hierarchical Model Usage

Hallway

Figure 7.6: These two graphs indicate the hierarchical model usage for agents using
our data-driven technique. The le graph is for higher-popula on simula ons inmore
open areas while the right graph is for a different scenario which could not support

the same agent counts.

Figure 7.7: A view of an example hallway simula on where the AI produced lane-
forming behavior. Rather than forming narrow lanes to squeeze past one another,
the agents en massemove to their right sides, crea ng larger trends more consistent

with common prac ce in the real world.



Figure 7.8: This is an example of an agent which will not reach its goal. The turning
radius for the agent’s selected step is such that the agent’s local view of the scene is

rota onally invariant, leading to the agent repea ng the same decision.



Chapter

Conclusions and Future Work

I’d now like to digress from my prepared

remarks to say, “I’m done.”

Bender, Futurama

We have described a technique for systematically breaking down the problem of

agent steering in crowd simulations, while also demonstrating the efficacy of com-

puter-generated training data for pedestrian paths. In this chapter, we conclude with

a discussion of the limitations of our system and potential avenues for future work.

. Conclusions

This dissertation has defined steering contexts, a new view on the space of pos-

sible scenarios an agent may encounter as it steers through its virtual world. These

contexts provide insight into the task of creating a robust, general-purpose steer-

ing controller suitable for any situation. Unless the controller can be independently

proven to consist of a single context, the algorithm will shatter scenario space into

subsets which must be handled by separate policies. This creates an uncertainty of



coverage that is by its nature 𝒩𝒫-Complete. To our knowledge no realtime algo-

rithm is unaffected by this discovery because as discussed in Section . . different

behaviors triggered by different conditions, such as collision avoidance, create con-

texts and thus require multiple policies.

We have also proposed a pipeline for constructing a steering algorithm that is

both context-sensitive and scalable with respect to the circumstances the algorithm

can handle. Through the use of a multiplicity of policies fit to steering contexts, ma-

chine learned models can be combined for more structured and principled coverage

of the space of possible scenarios than would otherwise be possible by a single-model

approach. We used an oracle algorithm to generate high quality, on-demand train-

ing data which can be used for new contexts without the overhead, uncertainty, or

uneven coverage. The overhead of organizing volunteers and subsequently track-

ing their movements would have been large for a single scenario, let alone the vast

number of scenarios we used. We could not have perfectly controlled the parameters

of the scenarios as was possible with the virtual participants who could not possess

motives or the behavior-changing awareness which comes with being observed.

Our training data was then broken into contexts based on intuition and policies

fit for each context using machine learning. To even further remove the unscien-

tific role of human intuition in partitioning the data into contexts, we demonstrated

the derivation of a set of contexts formed by applying a clustering algorithm to the

training data set. The contexts found through unsupervised machine learning were

very different from those we defined by intuition, as evidenced by the values of the

centroids.

This data-driven technique has shown a massive increase in efficiency as realtime

simulation was achieved with far higher population counts than the oracle algorithm

could handle. The oracle’s calculations would exceed the amount of time required for



realtime simulation for scenarios with as few as agents. By comparison, the data-

driven simulations of the same scenarios were nearly always faster by – orders of

magnitude and could support thousands of agents in realtime. Furthermore, training

on this data resulted in relatively small numbers of collisions, many of them minor.

The clustered contexts also resulted in paths similar to those generated by the oracle

algorithmand some emergent behavior such as lane-formingwhichwere not targeted

by the training data.

. . Strengths

The context-sensitive approach detailed in this dissertation has several strengths

compared to the current literature. Our technique has low memory overhead com-

pared to other data-driven work which relies on searching for either the best match

in a database of samples or finding the k-nearest neighbors in an arbitrarily large

collection of data. We achieve this lower overhead by storing fit models rather than

the data itself; in the case of the context classifier we reduce hundreds of thousands

of samples to points, each containing a -dimensional vector. Other models we

used vary in how much space is saved, but none of the machine learning algorithms

we used requires maintaining the whole collection of training data, which also led to

memory consumption growing slower than the raw data set itself. The resulting col-

lection of policies is also shared by all agents in the simulation, making the memory

overhead a constant independent of the size of the population.

Another strength is that the runtime performance of footstep selection is very

consistent. This is because models are quick to execute with only slight variation in

runtime depending on how “deep” into the learned structure the computation must

progress to reach a decision. The depth of the model is constant once learned which

gives an upper bound on time required to attain a decision, which cannot be said for



algorithms involving loops or recursion. Perception of the environment does experi-

ence a linear increase in time as population increases, but it is a slow growth and is a

possible avenue for future optimization. Improving the efficiency of the code evalu-

ating the policies or constructing the feature vectors would have significant impacts

on performance. Either of these are strong candidates for out-of-core processing on

the GPU since each agent could perform these tasks independently.

. . Limitations

The data-driven work in this dissertation is not without its limitations. Many of

these limitations are ultimately rooted in the same key issue shared by all data-driven

techniques. Agents’ paths are generated piecemeal rather than in totality. Construc-

tion of a complete long-term solution from partial short-term results led to several

problems.

One such problem is concerned directly with model inaccuracy. If we envision

each selected step as being a component of an overall ideal plan, even one step in the

wrong directionwill change the entire path. The next observation of the environment

will not take place from the same expected perspective, which can lead to a differ-

ent selection in the next step, and so on. Thus even with extremely high accuracy,

there exists a butterfly effect of consequences for an inaccurate selection. Inaccurate

steps also cause secondary ripples through the simulation, as the selections will alter

the agent’s location with respect to what other agents would have expected for their

own plans. While our models could exceed % accuracy which is far higher than

random chance, this still represents an average of false step for every . The full

extent to which these suboptimal steps impact the simulations requires further anal-

ysis because though it is true the emergency stop action is evidence of their negative

influence, we do not know how often these deviations from an ideal solution can be



corrected by subsequent data-driven actions.

Another problem with data-driven crowd simulation comes from the global ver-

sus local nature of step selection. The oracle algorithm used in this work planned a

long series of steps for an agent to execute. By using data-driven techniques to de-

cide a single step at a time, we are treating footstep selection as a Markovian process,

meaning the past values for the agents’ states are not a factor for the current decision.

Some steps were used rarely by agents in our training data. While it is possible they

were used for extremely rare circumstances in the virtual environment, it is also pos-

sible they were used because they helped form very specific paths as the oracle’s cost

function was minimized. If the steps are sensitive to the path being used, one could

argue against the Markovian assumption, which leads to a fundamental shortcom-

ing in data-driven techniques for agent steering. This is because proper modeling of

the step selections would require accumulating this past state which requires either

allowing the features to grow over time without bound, or discarding the past state

which causes the fidelity of the state space to degrade with time.

. . Suggested Uses

As it currently exists, we can foresee several application areas for the develop-

ment pipeline presented in this dissertation. First, the modular aspect of the pipeline

and hierarchical nature of the policies makes the pipeline a robust framework for fu-

ture data-driven crowd simulation efforts. This work allows for the specific focus on

steering contexts as a way to generalize from considering special cases and instead to

thinking of categories of cases with the intent to increase the realism and/or scenario

coverage of data-driven crowd simulation.

Another potential application area is in anomaly detection [ ]. The limitations

expressed above can be lessened if an agent is locked to a runtime source of path



information. In monitoring pedestrians, for instance, an agent can be bound to a

particular pedestrian. The pedestrian’s position and orientation can then provide the

long-term information missing from the data-driven technique. Mismatched actions

of agents compared to real-world entities could then be used to determine how far

observations are from “expected” results. At its simplest form anomalies could be

found by assuming an agent should not be wrong more often than its models’ error

rates, with the butterfly effect of incorrect steps mitigated by synchronizing to the

agent’s real-world counterpart.

Finally, the data-driven algorithm presented here could be useful for short-term

agent activity, perhaps while amortizing the calculation of a higher-quality plan. Due

to the effects of errors on the overall simulation, long-term simulations requiring co-

ordination would be unsuitable application areas for this work. Evacuation scenar-

ios, for instance, would not be a natural fit to our technique at this time. Instead the

collection of policies can be used to help agents progress to their goals while more

elaborate algorithms can plan further ahead and correct future actions for previous

suboptimal data-driven decisions.

. Future Work

This dissertation provides a context-sensitive approach to developing policies for

agent steering and also opens areas for further exploration. Particular focus could

be made on creating a better oracle algorithm to serve as the underlying basis for

our data. Additionally there is the possibility of new ways to derive collections of

contexts rather than intuition or unsupervised learning. Creating sets of contexts for

simulations with different purposes would extend the paradigm an additional level

and acknowledge, for example, the difference between an evacuation and ordinary



pedestrian traffic.

. . Further Oracle Improvements

The oracle algorithm used for generating synthetic data was used for its theoret-

ical ability to solve any steering problem. As the current oracle is based on IDA⋆ a

tradeoff is required between the completeness of the oracle and the time necessary

to reach the solution. A better oracle could exist because of this compromise and

there are three components of the oracle which could be changed while searching

for an improved algorithm.

Heuristic Function Alternatives

Recall our heuristic function, reproduced in Equation . . Minimizing the heuris-

tic value involves minimizing the number of steps to reach the goal state. Generally

this implies favoring the lowest energy cost but as we discovered previously there

is a problem regarding situations when agents should temporarily stop. This is ad-

vantageous for allowing other agents to pass before continuing forward. As we have

discussed in Chapter , a temporary stopping action is difficult to justify given this

heuristic function.

ℎ (𝐩, 𝐠) =
‖𝐩 − 𝐠‖ ⋅ energy

stride ( . )

We theorize a more realistic heuristic function would be one which represents

both the energy cost and the expected time remaining to reach the goal. Thus stop-

ping to yield the right-of-way to another agent can incur a more natural penalty to

cost since the agent must wait while not expending energy, however the energy cost

from a more indirect route which does not include pausing can help constrain the



search. With such a heuristic, an agent could discover that the overall fastest way to

reach its goal is to wait, rather than always be in motion. An analogy would be the

meter of a taxicab, where the fare increases for both waiting and distance traveled.

Thus standing still can be the better option when too much extra distance is added

to avoid the wait, which would encourage the agent to more appropriately use its

stationary action.

Trajectory Planning

We chose to use footsteps as the action space of the oracle because classification-

based learning could be used for generating the policies. These learning algorithms

often have higher variance which allow for fitting more complex models. An alter-

native worth further investigation is to use the trajectories from footstep sequences

as the results of the policies. These trajectories are continuous, rather than discrete,

which allows for the expansion of machine learning experiments to consider regres-

sion. Regression models are more adaptive than classification as several results can

be combined to a customized result depending on the output from the model. At

runtime, these trajectories would be selected and the agent can find steps to walk

along the chosen path.

. . Failure-Based Context Generation

This dissertation has explored two strategies for identifying steering contexts:

differences based on intuition and differences identified by clustering algorithms.

In both cases the differences were decided a priori and were not reinforced using

any information from the success or failure of the resulting policies. Future work

could identify those scenarios for which the policies fail and use those scenarios to

define new contexts. The process could then be repeated to find new failure cases



and merge contexts when one policy can do the work of two. Our context-sensitive

crowd steering could adapt from a pipeline based on clustering, to one bootstrapped

by clustering and procedurally refined with minimal human input.

. . Purpose-Dependent Context Sets

All of the simulations used for this work were pedestrian simulations where the

specific goals and manner in which the agent reaches that goal is not crucial to the

overall result. In an evacuation or similar safety study, these details are often very im-

portant as are the agents’ roles in the scenario. For example, some agents may be des-

ignated as leaders or be more erratic in their behavior to represent panic. Features for

these added details would need to be added to extend this pipeline into these appli-

cation areas. Additionally, the new features would motivate the creation of purpose-

dependent context sets. Since this process fits within the overall paradigm of this

dissertation, it may also be possible to link together the purpose-based contexts at a

higher level and allow agents to transition between categories at runtime as well.



Appendix A

Original Context ID Numbers

For brevity, this dissertation uses IDs to refer to the intuitively defined contexts.

The following is a full enumeration of these contexts with respect to traffic patterns.

Recall that the first twelve IDs are repeated for scenarios which also have static obsta-

cles present. Thus contexts – are the same as – with respect to traffic patterns.

Context : Clear. The agent has an insignificant number of neighbors nearby, if any.

Context : Light oncoming. The agent has a small number of neighbors nearby that

are walking against its velocity.

Context : Medium oncoming. The agent has a more significant number of neigh-

bors which are walking against its velocity.

Context : Heavy oncoming. The agent has a large number of neighbors, or more,

which are walking against its velocity.

Context : Group oncoming. The agent is a member of a group walking at opposing

velocity to another group of agents.



Context : Winning-side oncoming. The agent is a member of a group walking at

opposing velocity to only one or two neighbors.

Context : Light crossing. The agent has a small number of neighbors nearby which

are walking perpendicular to its velocity.

Context : Medium crossing. The agent has a more significant number of neighbors

which are walking perpendicular to its velocity.

Context : Heavy crossing. The agent has a large number of neighbors, or more,

which are walking perpendicular to its velocity.

Context : Group crossing. The agent is amember of a groupwalking perpendicular

to to another group of agents.

Context : Winning-side crossing. The agent is a member of a group walking per-

pendicular to only one or two neighbors.

Context : Chaos. The agent has a significant number of neighbors nearby whose

relative velocities do not form a coherent pattern.



Appendix B

Details of the Final Oracle Planner

Due to the oracle algorithm’s role as provider of all synthetic data used in this

dissertation, choices made during implementation have a potentially large effect on

all subsequent results. This appendix serves as an account of the changes made to

the algorithm and observations of the generated behavior.

B. Basis

At its core, the oracle planner is derived from the IDA⋆ planning algorithm. This

algorithm represents one of the greatest speed-for-memory tradeoffs in computing as

it will, under certain circumstances , provide an optimal solution while minimizing

memory consumption. These characteristics are made possible by limiting the total

cost of possible solutions during the search and only increasing these limitations if

no solution is found.

Essentially, the technique converts an optimization problem into a decision prob-

lem. Rather than directly ask, “What is the lowest cost of a solution,” we can itera-

tively ask, “Is there a solution with 𝑥 cost” with increasing values for 𝑥. IDA⋆ answers



this question by performing a bounded search using the heuristic function to predict

if such a solution could exist. The algorithm keeps track of the minimum exceeding

cost during the search, and if it is determined that no viable solution exists with the

current cost limitation, the limitation is increased to the minimum exceeding cost

and the search restarts with this new boundary.

The constraint placed on cost restricts how far down a suboptimal solution the

search can progress before ending. Unlike with A⋆, only one possible solution is

tracked at a time as the rising ceiling should ultimately only allow an optimal path

to the goal and disqualifies suboptimal paths. The restarting of the search is what

provides previously disqualified paths a new chance under a new cost limitation.

However, restarting the search also delivers a steep blow to performance because

the computation must be repeated .

B. Domain-Specific Considerations

In this dissertation’s application, we used planning for identifying footsteps in

multiagent simulations which lead to goal locations. The branching factor was high,

as possible steps were considered as the next potential step. While it was possible

that not all steps were valid at any given time due to neighboring agents, obstacles,

or the inverted pendulum model used for step mechanics, the full branching factor

of still leads to many possible paths, which favors the use of IDA⋆ as the memory

requirement for a single solution remains relatively small compared to keeping so

many potential solutions for future expansion.

Although the oracle’s use as an offline universal algorithm specifically permits

for long computation times, we still had real-world time constraints on how long we

could afford to wait for results. Thus the repetitive computation is not prima facie



proof of IDA⋆’s poor fit to the application, but rather the concern is a matter of how

many times the computation is repeated. The number of restarts depends on how

many times the cost limit may need to be raised, which in turn depends on how much

the cost limit is raised on a particular iteration. For our application, the difference

in cost can be very small, less than . In our initial empirical analyses of the oracle’s

runtime, differences in cost limit between iterations were as low as . .

The final blow to the use of pure IDA⋆ was proving the heuristic function was not,

as originally intended, admissible. The heuristic function is an estimate of the energy

cost to the goal and based on the number of steps to cover a straight-line trajectory

to the goal and the average energy cost per step. While often an underestimation,

as a straight-line trajectory typically includes obstacles that must be steered around,

the average energy per step is a problem. It is empirically estimated and thus has

uncertainty involved, but worse as an average it is immediately implied that there are

steps with less energy. Their inclusion would create a solution with less energy than

the heuristic.

B. Algorithm Alterations

Since the branching factor of our problem space is too high for A⋆ to serve as our

oracle, the time penalty is poorly defined and empirically excessive for IDA⋆, and the

heuristic function already strips the algorithm of its optimality guarantee, changes

were required of the oracle. We decided to use a hybrid of the two algorithms based

on memory bounding.

Memory was constrained by placing a limit on the number of nodes which could

be expanded by A⋆. Since we could not guarantee optimality, the search could be

continued to find other solutions in the same memory-bound and the best solution



retained. If a solution is found during a particular memory bound, it is returned by

the algorithm. If no solution is found, the memory bound is raised. If the memory

bound exceeds the memory available by the computer, IDA⋆ could be used as a last

resort. The algorithm could, if not practically then theoretically, find the solution to

any solvable steering challenge.

The time was mitigated by the modifications back towards A⋆ and also through

the constraints on the actual problems presented to the algorithm. Since the number

of steps to reach a goal does depend on the distance to the goal, scenarios given

as input to the planner were kept short, about the width of agents shoulder-to-

shoulder. In more general use, waypoints would need to be generated as milestones

to the goal and allow for piecemeal planning.

Notes

The heuristic function must be admissible, which means it cannot overestimate the cost of a

solution.

This is also the memory tradeoff seen in dynamic programming.



Bibliography

[ ] A , J., W , N., T , D., B , R. Within-crowd immersive

evaluation of collision avoidance behaviors. Proc. th ACMSIGGRAPH Int. Conf.

Virtual-Reality Contin. its Appl. Ind. - VRCAI ’ ( ), .

[ ] A , H. A new look at the statistical model identification. Automatic Con-

trol, IEEE Transactions on , (Dec ), – .

[ ] A , J. M. Carosa: A tool for authoring npcs. In MIG ( ), R. Boulic,

Y. Chrysanthou, and T. Komura, Eds., vol. of Lecture Notes in Computer

Science, Springer, pp. – .

[ ] A , E. L., F , R. B. Simulation of crowd problems for computer

vision. In Work. Crowd Simul. ( ).

[ ] A , D., V , S. K-means++: The advantages of careful seed-

ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms (Philadelphia, PA, USA, ), SODA ’ , Society for Industrial and

Applied Mathematics, pp. – .

[ ] B , W. M. Reinforcement learning of reactive navigation for computer ani-

mation of simulated agents. PhD thesis, University of Pennsylvania, .



[ ] B , R. Adaptive Control Processes: A Guided Tour. Princeton University

Press, .

[ ] B , D. C., A , C. G., C , G. Learning From Observation

and Practice Using Behavioral Primitives: Marble Maze. AAAI Fall Symp.

Ser. / Work. Notes Real-Life Reinf. Learn. ( ).

[ ] B , C. D., K , M., S , J. M., B , N. I. Pedestrian

Anomaly Detection using Context-Sensitive Crowd Simulation. In First Interna-

tional Workshop on Pattern Recognition and Crowd Analysis ( ).

[ ] B , C. D., K , M., S , J. M., B , N. I. Context-

sensitive data-driven crowd simulation. In Proceedings of the th ACM SIG-

GRAPH International Conference on Virtual-Reality Continuum and Its Applica-

tions in Industry (New York, NY, USA, ), VRCAI ’ , ACM, pp. – .

[ ] B , C. D., K , M., S , J. M., B , N. I. Generat-

ing a multiplicity of policies for agent steering in crowd simulation. Computer

Animation and Virtual Worlds ( ), n/a–n/a.

[ ] B , B. E., G , I. M., V , V. N. A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual Workshop on Computa-

tional Learning Theory (New York, NY, USA, ), COLT ’ , ACM, pp. – .

[ ] C , S., V , M. Confidence-Based Policy Learning from

Demonstration Using Gaussian Mixture Models. In Proc. th Int. Jt. Conf. Au-

ton. AgentsMultiagent Syst. (New York, New York, USA, ), ACM, pp. : –

: .

[ ] C , N. Data-driven animation of crowds. In Int. Conf. Comput. Vision/-

Computer Graph. Collab. Tech. ( ), pp. – .



[ ] D , F., P , N., A , J., G , U., B , N. I.,

G , U. How the Ocean Personality Model Affects the Perception of

Crowds. IEEE Comput. Graph. Appl. , ( ), – .

[ ] F , P., S , Z. Motion planning in dynamic environments using

velocity obstacles. Int. J. Rob. Res. , ( ), – .

[ ] F , E., W , I. H. Generating accurate rule sets without global op-

timization. In Proceedings of the Fifteenth International Conference on Machine

Learning (San Francisco, CA, USA, ), ICML ’ , Morgan Kaufmann Publish-

ers Inc., pp. – .

[ ] F , J., T , X., T , D. Cognitive modeling: knowledge, rea-

soning and planning for intelligent characters. In Proc. th Annu. Conf. Com-

put. Graph. Interact. Tech. ( ), ACM Press/Addison-Wesley Publishing Co.,

pp. – .

[ ] G , B. R., C , P. Induction of ripple-down rules applied to mod-

eling large databases. J. Intell. Inf. Syst. , (Nov. ), – .

[ ] G , D., W , C., W , X. A hierarchical pedestrians motion planning

model for heterogeneous crowds simulation. In Int. Conf. Inf. Autom. (June

), Ieee, pp. – .

[ ] G , S. J., C , J., K , C., S , N., L , M., M , D., D ,

P. Clearpath: highly parallel collision avoidance for multi-agent simulation.

In Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Animat. ( ),

ACM, pp. – .



[ ] H , M., F , E., H , G., P , B., R , P., W -

, I. H. The WEKA data mining software: an update. SIGKDD Explor. ,

( ), – .

[ ] H , L., L , A., T , J., C , N. A physically-based

particle model of emergent crowd behaviors. In Graphicon ( ), Citeseer,

pp. – .

[ ] H , D., M , P. Social force model for pedestrian dynamics. Phys.

Rev. E , ( ), .

[ ] H , R. L. A continuum theory for the flow of pedestrians. Transp. Res. Part

B Methodol. , (July ), – .

[ ] H , R. L. The Flow of Human Crowds. Annu. Rev. Fluid Mech. , (Jan.

), – .

[ ] J , R. A., J , M. I., N , S. J., H , G. E. Adaptive mix-

tures of local experts. Neural Comput. , (Mar. ), – .

[ ] J , I. T. Principal Component Analysis, second ed. Springer, .

[ ] K , M., S , S., H , W., F , P. Egocentric affordance

fields in pedestrian steering. Proc. , ( ), – .

[ ] K , M., S , S., H , W., R , G., F , P. Par-

allelized Egocentric Fields for Autonomous Navigation. Vis. Comput. ( ),

– .

[ ] K , M., W , M., S , S., R , G., F , P. Scenario

space: Characterizing coverage, quality, and failure of steering algorithms. In



Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Animat. ( ), ACM,

pp. – .

[ ] K , R. M. Reducibility among combinatorial problems. Complex. Comput.

Comput. ( ), – .

[ ] L , K. H. K., C , M. G. M., H , Q., L , J. Group behavior from

video: a data-driven approach to crowd simulation. In Proc. ACM SIG-

GRAPH/Eurographics Symp. Comput. Animat. ( ), vol. , Eurographics As-

sociation, pp. – .

[ ] L , A., C , Y., L , D. Crowds by Example. Com-

put. Graph. Forum , (Sept. ), – .

[ ] L , A., C , Y., S , A., C -O , D. Data Driven

Evaluation of Crowds. In Proc. nd Int. Work. Motion Games ( ), Springer,

pp. – .

[ ] L , A., C , Y., S , A., C -O , D. Context-

Dependent Crowd Evaluation. Comput. Graph. Forum , ( ), – .

[ ] L , S., L , Y., K , V., P , Z. Space-time planning with

parameterized locomotion controllers. ACM Trans. Graph. , (May ), –

.

[ ] L , S. Least squares quantization in pcm. Information Theory, IEEE Trans-

actions on , (Mar ), – .

[ ] L , T., L , F., L , T. Space-�time planning in changing envi-

ronments: using dynamic objects for accessibility. Comput. Animat. Virtual …,

March ( ), – .



[ ] L , C., M , D., M , A. Intuitive crowd behavior in dense

urban environments using local laws. Proc. Theory Pract. Comput. Graph. .

( ), – .

[ ] M , B. W. Comparison of the predicted and observed secondary struc-

ture of t phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struc-

ture , ( ), – .

[ ] M C , A., N , K., U , L. H. Efficient clustering of high-

dimensional data sets with application to reference matching. In Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (New York, NY, USA, ), KDD ’ , ACM, pp. – .

[ ] M , R. A., H , J. K. Reactive pedestrian path following from

examples. In th Int. Conf. Comput. Animat. Soc. Agents (Nov. ), vol. ,

pp. – .

[ ] M , S., J , C., B , A. Simulating the motion of virtual agents

based on examples. ACM/EG Symp. Comput. Animat. ( ), – .

[ ] M , S. R., J , C. R., J J ., J. C. S., B , A. Using computer

vision to simulate the motion of virtual agents. Comput. Animat. VirtualWorlds

( ), – .

[ ] O , J., P , J., O , A. A.-H. H., D , S. A synthetic-

vision based steering approach for crowd simulation. ACM Trans. Graph. ,

(July ), .

[ ] P , S., B , J. V. D., C , S., L , M. C., M , D. Directing

crowd simulations using navigation fields. IEEE Trans. Vis. Comput. Graph. ,

(Feb. ), – .



[ ] P , J. Bayesian networks: A model of self-activated memory for evidential

reasoning. In Proceedings of the th Conference of the Cognitive Science Society

( ), pp. – .

[ ] P , N., A , J., B , N. Virtual Crowds: Methods, Simu-

lation, and Control. Morgan & Claypool, .

[ ] P , N., A , J. M., B , N. I. Controlling individual agents

in high-density crowd simulation. In Proc. ACM SIGGRAPH Eurographics

Symp. Comput. Animat. ( ), D. Metaxas and J. Popovic, Eds., vol. of SCA

’ , Eurographics Association, p. .

[ ] P , D., M , A. W. X-means: Extending k-means with efficient

estimation of the number of clusters. In Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning (San Francisco, CA, USA, ), ICML

’ , Morgan Kaufmann Publishers Inc., pp. – .

[ ] Q , J. R. Induction of decision trees. Mach. Learn. , (Mar. ), – .

[ ] Q , J. R. C . : Programs for Machine Learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, .

[ ] R , C. W. Flocks, herds and schools: A distributed behavioral model.

ACM SIGGRAPH Comput. Graph. , (Aug. ), – .

[ ] R , C. W. Steering behaviors for autonomous characters. In Game Dev.

Conf. ( ), vol. , Citeseer, pp. – .

[ ] R Q . See /c . . http://rulequest.com, .

[ ] S , W., T , D. Autonomous pedestrians. Graph. Models ,

- (Sept. ), – .



[ ] S , G. Categorising the Abnormal Behaviour from an Indoor Overhead Cam-

era. PhD thesis, VIT University, .

[ ] S , S., K , M., F , P., R , G. SteerBench: a bench-

mark suite for evaluating steering behaviors. Comput. Animat. Virtual Worlds

( ), – .

[ ] S , S., K , M., H , B., R , G., F , P. A mod-

ular framework for adaptive agent-based steering. In ACM SIGGRAPH Symp.

Interact. D Graph. Games ( ), vol. , pp. – .

[ ] S , S., K , M., R , G., F , P. Footstep navigation

for dynamic crowds. Comput. Animat. Virtual Worlds , April ( ), – .

[ ] S -H , B., B , N. Perceptually Realistic Behavior through

Alibi Generation. In Proc. th Artif. Intell. Interact. Digit. Entertain. Conf. ( ).

[ ] T , D., M , S. R. Crowd Simulation, nd ed. No. May. Springer,

.

[ ] T , R., H , J., T , F. RoboCup Agent Learning from

Observations with Hierarchical Multiple Decision Trees. PRIMA ( ).

[ ] T , P., L , X., G , W. . Building Agent-Based Walking Models

by Machine-Learning on Diverse Databases of Space-Time Trajectory Samples.

Trans. GIS (July ), – .

[ ] T , P. M., N , A., L , X., Z , H., G , W. ., B , S. B. An

extensible simulation environment and movement metrics for testing walking

behavior in agent-based models. Comput. Environ. Urban Syst. (Aug. ).



[ ] T , A., C , S., P , Z. Continuum crowds. ACM Trans.

Graph. , (July ), .

[ ] T , C., K , E., B , S. Integrating Information Theory in Agent-

Based Crowd Simulation Behavior Models. Comput. J. , (Feb. ), –

.

[ ] B , J., M , D. Reciprocal Velocity Obstacles for real-

time multi-agent navigation. IEEE Int. Conf. Robot. Autom. (May ),

– .

[ ] Y , B., M , J., M , F., T , D. Real-time crowd motion

planning. Vis. Comput. , (Aug. ), – .

[ ] Y , Q. A Decision Network Framework for the Behavioral Animation of Virtual

Humans. PhD thesis, University of Toronto, .

[ ] Z , S., C , D., C , W., L , L., Y , M., L , H., T , F., T , V. S.-H.,

O , D. W. S., H , B. D. Crowd modeling and simulation tech-

nologies. ACM Trans. Model. Comput. Simul. , ( ), : – : .


	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	Steering Contexts for Autonomous Agents Using Synthetic Data
	Cory Boatright
	Recommended Citation

	Steering Contexts for Autonomous Agents Using Synthetic Data
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories


	tmp.1480453208.pdf.749HW

