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Nanofibrous Disc-Like Angle Ply Structure for Total Disc Replacement in
a Small Animal Model

Abstract
Low back pain affects 85% of the population and carries a socioeconomic price tag of $100 billion USD per
year. Lumbar intervertebral disc disease is strongly implicated as a causative factor in back pain, as
degeneration, which is ubiquitous in the population, leads to loss of normal spine function. For these reasons,
our lab has developed disc-like angle ply structures (DAPS) for total disc replacement. These cell-seeded
replacements are designed to match the natural hierarchical structure and function of the native disc and
correct spinal kinematics after end-stage disc disease.

In this dissertation, I describe the development of a rat caudal spine (tail) model of total disc replacement as a
platform to evaluate DAPS in vivo; an external fixation system that immobilized caudal vertebrae at the site of
implantation was required for DAPS retention and a radiopaque scaffold was developed to confirm
intervertebral DAPS positioning. A detailed analysis of the DAPS in vitro growth trajectory was performed to
select the optimum pre-culture duration before implantation. Cell-seeded DAPS were subsequently
implanted in the rat tail and evaluated by histological, mechanical, and MRI analyses. DAPS successfully
restored the mechanical properties of the native motion segment in compression, providing the first evidence
of the efficacy of engineered disc replacements. Adaptations of the implant to the in vivo environment were
identified; there was a reduction in glycosaminoglycan after implantation, structural modifications to the NP
material, and no evidence of vertebral integration. In tackling the first of these issues, a pre-culture strategy
that primed DAPS for the in vivo environment was developed; using a rat subcutaneous model, implant
phenotype was best conserved post-implantation using a pre-culture strategy with a transient high dose of
TGF-b3. Future work will address maintenance of NP structure, vertebral integration and scaling up to human
sizes.

In my work, the most promising finding was that DAPS replicated compressive motion segment mechanical
properties after implantation supporting the idea that engineered biological disc replacement is a possibility
for clinical treatment of advanced disc disease.
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ABSTRACT 

 

NANOFIBROUS DISC-LIKE ANGLE PLY STRUCTURES FOR  

TOTAL DISC REPLACEMENT IN A SMALL ANIMAL MODEL 

John T. Martin 

Robert L. Mauck, Ph.D. 

 

Low back pain affects 85% of the population and carries a socioeconomic price 

tag of $100 billion USD per year. Lumbar intervertebral disc disease is strongly 

implicated as a causative factor in back pain, as degeneration, which is ubiquitous in the 

population, leads to loss of normal spine function. For these reasons, our lab has 

developed disc-like angle ply structures (DAPS) for total disc replacement. These cell-

seeded replacements are designed to match the natural hierarchical structure and function 

of the native disc and correct spinal kinematics after end-stage disc disease. 

In this dissertation, I describe the development of a rat caudal spine (tail) model 

of total disc replacement as a platform to evaluate DAPS in vivo; an external fixation 

system that immobilized caudal vertebrae at the site of implantation was required for 

DAPS retention and a radiopaque scaffold was developed to confirm intervertebral DAPS 

positioning. A detailed analysis of the DAPS in vitro growth trajectory was performed to 

select the optimum pre-culture duration before implantation. Cell-seeded DAPS were 

subsequently implanted in the rat tail and evaluated by histological, mechanical, and MRI 

analyses. DAPS successfully restored the mechanical properties of the native motion 
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segment in compression, providing the first evidence of the efficacy of engineered disc 

replacements. Adaptations of the implant to the in vivo environment were identified; 

there was a reduction in glycosaminoglycan after implantation, structural modifications 

to the NP material, and no evidence of vertebral integration. In tackling the first of these 

issues, a pre-culture strategy that primed DAPS for the in vivo environment was 

developed; using a rat subcutaneous model, implant phenotype was best conserved post-

implantation using a pre-culture strategy with a transient high dose of TGF-3. Future 

work will address maintenance of NP structure, vertebral integration and scaling up to 

human sizes.  

In my work, the most promising finding was that DAPS replicated compressive 

motion segment mechanical properties after implantation supporting the idea that 

engineered biological disc replacement is a possibility for clinical treatment of advanced 

disc disease.   
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CHAPTER 1 - Introduction  

1.1 Motivation: Low Back Pain 

The etiology of low back pain is poorly understood, however its societal impact is 

well studied and remarkable. 70-85% of the population will experience a bout of back 

pain at one point in their life [5]. It is the second most common reason for visits to a 

primary care physician, behind the common cold [112], and is the second most common 

reason for surgery, behind coronary bypass procedures [193]. Chronic low back pain 

affects over 50% of the population aged 65 or younger, and prevalence increases with age 

[5], resulting in more than $100 billion in medical costs and lost wages in the United 

States [112] , approximately 1% of our gross domestic product [4]. Unfortunately, 

chronic low back pain is on the rise, increasing from 4% of the population to 10% of the 

population over the span of 14 years from 1992-2006 [69]. 

There are many risk factors for reported back pain; these are derived not only 

from physical sources, like musculoskeletal disease, but also from environmental, 

psychological and socioeconomic phenomena. Some are self-evident; previous 

musculoskeletal trauma is a risk factor for back pain, either directly related to the back or 

related to another joint where symptoms propagate through the kinetic chain and affect 

the back. There is a strong genetic component; the best evidence of which is derived from 

a study of Finnish twins, where twins had similar MRI findings despite discordant 

occupational histories [17]. Psychosocial factors, like anxiety/depression and Workers’ 

compensation/job dissatisfaction, as well as self-induced comorbidities, like smoking, 

obesity, and type II diabetes, are all inextricably linked to reports of chronic pain.  
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There is an additional and important factor related to low back pain that will be 

the focus of this dissertation. Lumbar intervertebral disc degeneration, which is 

ubiquitous in the population, has been implicated as a causative factor in low back pain, 

as deficiency in disc function is closely tied to the degeneration of its components [89, 

146, 189]. Disc pathology can result in back pain and also chronic radicular pain when 

the loss of disc height or the instability of the intervertebral joint cause compression of 

the adjacent neural structures. The disc itself may also be a direct source source of pain, 

termed discogenic pain, as the ingrowth of nociceptors can result from disc injury or 

degeneration [60]. Restoration of disc health and function may be necessary for long-

term relief from chronic low back and radicular pain. 

1.2 Intervertebral Disc Anatomy 

The human spine is a major structural component of the skeleton, providing a 

flexible connection between the lower and upper halves of the body and shielding the  

spinal cord from external forces. Flexibility can be mainly credited to the spinal column’s   

heterogeneous structure, predominantly made up of five vertebral bodies (L1, L2, L3, L4, 

L5) and five intervertebral discs (L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1) organized as 

repeating vertebral body – intervertebral disc – vertebral body elements (referred to as 

motion segments). The intervertebral disc is a composite fibrocartilaginous tissue. It 

provides the spine with flexibility while maintaining the even distribution of joint forces 

from one vertebral body to the next. The disc has three major components, an inner 

gelatinous core, the nucleus pulposus (NP), a highly organized outer fibrocartilage, the 
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annulus fibrosus (AF), and a porous boundary between inferior and superior vertebral 

bodies, the cartilaginous endplate (CEP) [Fig. 1-1].  

  

Figure 1-1 Intervertebral disc 

anatomy The disc lies between 

adjacent vertebral bodies and is 

composed of a gelatinous nucleus 

pulposus core, surrounded by an 

organized fibrocartilage, the 

annulus fibrosus. The nucleus is 

bounded superiorly and inferiorly 

by cartilaginous endplates. [223] 
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The NP is an anisotropic distribution of type II collagen fibrils encased in a matrix 

of hydrophilic proteoglycans at the core of the disc. It makes up approximately 30% of 

the disc by volume [188]. Type II collagen is a common extracellular matrix protein 

found throughout the body in hyaline cartilage. In the NP, it forms a loose meshwork of 

fibrils and while its function is not well understood, it is thought to provide a substrate for 

proteoglycan and cell accumulation [238]. Proteoglycans are complex high molecular 

weight biomolecules that consist of a backbone core protein connected to 

glycosaminoglycan (GAG) side chains that form a structure to similar to a pipe brush. 

GAGs are highly negatively charged molecules and, as the pipe brush structure allows for 

a large reactive surface area, the GAG sidechains of a proteoglycan attract a significant 

amount of water molecules into the NP. As a result, the NP of the average adult human is 

approximately 70% water [97]. The most prevalent proteoglycan in the NP is aggrecan, 

which binds to the GAGs chondroitin sulfate and keratan sulfate. In addition, there are 

two major cell phenotypes within the NP, notochordal-like cells and chondrocyte-like 

cells. They are classified by their morphology; notochordal-like cells have similar 

appearance to cells that derive from the embryonic notochord, the precursor to the spinal 

column, and chondrocyte-like cells are similar to the typical chondrocyte found in other 

forms of cartilage. These cells both function similarly, maintaining and renewing the disc 

extracellular matrix, however, notochordal-like cells are believed to be more 

metabolically active [44] .With maturation, a gradual transition in NP cellularity occurs 

as notochordal cells disappear and are replaced by chondrocyte-like cells. In addition, 
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decreases in cell number and viability in adult NP compared to juvenile NP has been 

observed [97].The disappearance of the notochordal-like cell population, occurring in the 

first 10 years of life, has therefore been linked to disc degeneration. 

The NP is surrounded by a highly organized fibrocartilaginous structure, the AF 

[Fig. 1-2].  

  

Figure 1-2 Annulus fibrosus structure The 

annulus fibrosus is a fibrocartilage that 

encircles the nucleus pulposus and is 

composed of multiple layers of aligned 

collagen fibers; apposed layers have 

alternating fiber alignment. This hierarchical 

structure supports multidirectional 

mechanical loads during routine daily 

activities. 
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There is no distinct boundary between the NP and the AF. From NP to AF, there is a 

gradual transition from type II collagen rich NP tissue to type I collagen rich AF tissue. 

The AF is organized into distinct concentric sheets of type I collagen fibers called 

lamellae which interdigitate with the inferior and superior vertebral bodies, enclosing the 

NP. The collagen fibers within each lamella are parallel and from lamella to lamella 

alternate ±30o to the transverse axis. The number and thickness of lamellae is individual 

and spinal location dependent. Specifically, in the adult human lumbar spine there are 

between 15 and 25 lamellae [206]  that range in thickness from 200 to 400 µm [97]. Type 

I collagen is a major structural protein, thus, the arrangement of lamellae and 

intralammellar fibers provides a significant amount of functional versatility, allowing the 

disc to resist mechanical forces in tensile, compressive, torsional, and bending 

orientations. In addition to type I collagen, the lamellae also include proteoglycans and 

water, although to a lesser extent than the NP, and elastin, a protein that provides 

structural support at low loads. The primary cells of the AF are spindle shaped and 

fibroblast-like. They align themselves along collagen fibrils and maintain the disc 

extracellular matrix. 

Finally, the NP and AF are constrained inferiorly and superiorly end by the CEPs, 

porous boundaries between vertebral bodies.  The CEPs are thin permeable cartilaginous 

membranes, about 1 mm thick [97] located above and below the NP at the adjacent 

vertebral bodies. A network of vertebral blood vessels are embedded within the CEP, 

which function as the main source of nutrition delivery and waste removal for the NP.  
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1.3 Intervertebral Disc Mechanical Function 

The functional properties of the disc are derived from its structural and material 

properties. In vivo the disc is primarily loaded in compression or in a combination of 

compressive and torsional or bending loads. In pure compression, the mechanical 

response of the disc as a structure is governed by the balancing of applied external forces 

with internal hydrostatic pressure. The NP is primarily composed of water and is 

therefore characterized as nearly incompressible [173]. As the disc is compressed, the NP 

hydrostatically pressurizes and expands radially. In turn, the AF is compressed radially 

and consequently experiences a circumferential hoop stress. Collagen fibers of the AF 

lamellae then reorient circumferentially, and as a result of the alternating fiber angles, are 

restricted by an interlamellar shear force [175].  

The load response of the disc is both nonlinear and viscoelastic. At low loads, the 

collagen fiber network exhibits a nonlinear response, which is attributed to recruitment 

and realignment of the crimped collagen orientation.  When all fibers are engaged, the 

response is approximately linear. Thus the stress/strain behavior is divided into two 

distinct regions, a low load/low stiffness “toe” region, and a high load/high stiffness 

“linear” region. During compression, water is expelled from the disc. Since the internal 

constituents have changed, the disc is unable to recapitulate its original stress/strain 

response as it is unloading. This phenomenon is known as hysteresis and is common to 

any biphasic material. As the disc transitions from tension to compression or compression 

to tension, there is a region of joint laxity known as the neutral zone. The disc primarily 
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functions during routine activities within the neutral zone, and thus this behavior, which 

can be characterized by low stiffness as collagen fibers are crimped and not engaged, is 

very important.  

The disc demonstrates a viscoelastic response to compressive forces.  This 

mechanical behavior is both time and history-dependent and can be characterized by both 

creep and stress relaxation behaviors. The creep response is governed by the movement 

of water out of the disc. Water is thought to leave in two phases. First, the path of least 

resistance is through the CEP, and therefore the short term creep response is governed by 

the permeability of the CEP. Once the pressure differential is balanced across the CEPs, 

fluid is pushed through the AF and out of the disc. The equilibrium creep response is 

therefore governed by the permeability of the AF [187].  

 There is a complex mechanical relationship between the NP and AF in other 

loading modes as well. For example, in torsion, the NP provides little resistance in 

comparison to the AF. Therefore, the torsional response is primarily driven by AF fiber 

tension. Since the AF has nonlinear behavior caused by the uncrimping of fibers as 

previously described, the torsional response of the disc is also nonlinear. During a 

consecutive sequence of counter clockwise and clockwise rotation, there is a region of 

joint laxity similar to what is experienced during cyclic tension/compression. This region 

is described as the torsional neutral zone, is characterized by low stiffness, and is the 

primary region in which the disc functions physiologically. In bending, one region of the 

disc is compressed, while the contralateral region is extended, and both the AF and NP 

are strained. The bending response is similarly nonlinear with regions of low and high 

stiffness. The axial component of the AF fiber direction is important in bending, as it 
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supports fiber tension on the extended side of the AF during bending events. The NP 

pressurizes during bending loads as well and previous reports have demonstrated that 

intradiscal pressures, or pressures generated in the NP, are highest during simulated 

occupation tasks involving bending from the waist and lifting heavy objects [242], 

suggesting that the disc materials are at a high risk for failure during bending. 

Furthermore, complex loading events, where compression, bending, and torsional forces 

are superimposed, are known to be a risk for disc failure and herniation of the NP [39]. 

1.4 Intervertebral Disc Degeneration 

1.4-1 Prevalence of degeneration 

 The lumbar intervertebral discs naturally degenerate even in the healthiest 

individuals; there is a strong correlation between MRI findings of disc degeneration and 

age [162]. Thus, disc degeneration is ubiquitous in the population; by age 40, 50% of all 

lumbar discs will be mildly degenerate while 40% while show signs of advanced 

degeneration [162]. This is true of both males and females, with the incidence rate 

slightly higher in males. Axial spinal loads and disc size increase when proceeding 

caudally along the lumbar spine, and as these are both certainly risk factors for 

degeneration, the incidence of degeneration does not correlate to caudal lumbar position. 

In fact, the discs with the highest risk for degeneration are the L3-L4 and L4-L5 discs, 

not the L5-S1 disc as one might expect [162]. This may be due to the specific orientations 

of the discs, as spinal curvature may affect the distribution of mechanical forces at the 

lowest lumbar level.  

1.4-2 Clinical diagnosis of degeneration 
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 Clinical diagnosis of degeneration usually occurs after and individual reports back 

pain and is primarily done through a combination of medical history examination, 

physical evaluation and radiography, and is eventually confirmed by magnetic resonance 

imaging (MRI). MRI allows for the quantitative, non-invasive assessment of soft tissues 

like the disc and, consequently, can be used to identify pathological changes in the disc. 

In the healthy disc, signal intensity on T2-weighted MR images is highest in the central, 

hydrated NP and dissipates radially with transition to the fibrocartilaginous AF [196]. 

With degeneration, there is a characteristic loss of NP signal intensity and consequently 

the NP and AF become indistinguishable [196]. These abnormalities are routinely 

assessed by visual inspection of MR images or by qualitative evaluations on an integer 

scale, like the Pfirrmann grading framework [196].  In addition, clinicians routinely 

evaluate candidates for surgery using MRI to identify disc abnormalities in the presence 

of radicular and/or low back pain. Disc-related surgery however is never performed for 

MRI indication of disc degeneration, as the correlation between back pain and 

degeneration Is not perfect, and disc surgery is rarely performed for back pain alone, as 

the pathogenesis of back pain is complicated by a number of local substructures that are 

difficult to diagnose, including the disc, facet joints, spinal cord, spinal nerves, and 

surrounding muscles and other connective tissues.  

1.4-3 Pathogenesis of degeneration 

While the complete pathogenesis of disc degeneration is unknown, the hostile 

nature of the cellular environment has been implicated as an aggravating factor. The disc 

supports relatively large passive forces (body weight) and stabilizes the torso during 

dynamic movements, requiring abdominal muscle contraction and increasing spinal loads 
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[156]. In addition, the disc is almost completely avascular, as a sparsity of blood vessels 

is located at the periphery of the AF. Thus, any of the NPs nutritional needs are met by 

passive diffusion through the CEPs. The combination of large forces and avascularity 

provides for an extremely hostile environment for functioning disc cells. Consequently, 

the number and activity level of disc cells is quite low in comparison to other tissues [80].  

Disc degeneration is characterized by several biological changes occurring in the 

NP, AF, and CEPs.  The hallmark of degeneration is proteoglycan loss and the collapse 

of the intervertebral disc space.  In addition to proteoglycan loss, other cellular and 

compositional changes occur. Specifically, number of viable NP cells is reduced, with the 

remaining forming clusters [206]. These cells display an increased expression of type I 

collagen mRNA and a decreased expression of Aggrecan and type II collagen mRNA, 

denoting a shift to a fibrocartilaginous phenotype. In addition, NP cells begin expressing 

an increased quantity of extracellular matrix catabolic factors and a decreased quantity of 

anabolic factors, coinciding with an increase in the prevalence in pro-inflammatory 

cytokines. Consequently, there is a shift in the internal disc biochemical constituents. 

With loss of pressure in the NP, the AF becomes disorganized, transitioning from radially 

bulged, to serpentine, to radially infolded. Also, the presence of annular defects like tears 

and delaminations increases, and AF cells increase their expression of catabolic matrix 

factors [75]. Changes in the CEP include calcification and complete disruption, which are 

both linked to degeneration. As a result of the altered mechanical loading, vertebral 

osteophytes form adjacent to the disc space.  

1.4-4 Mechanical consequences of degeneration 
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 Degenerative changes in the composition and structure of the disc have significant 

damaging effects on disc properties. While some studies have shown that human lumbar 

disc mechanics change as a result of degeneration, the number of studies to draw 

conclusions from is limited.  This is due to the scarcity of non-degenerate tissue (to use as 

experimental controls) and a wide range of inter-subject variability. However, it has 

definitively been shown that both the proteoglycan content and disc height decrease, 

densely compacting the remaining tissue. In addition, there is an increased prevalence of 

type I collagen throughout the disc. These compositional and structural changes in the 

disc are important in understanding the resulting mechanical changes, at both the tissue 

and motion segment level. At the tissue level the loss of proteoglycan content results in a 

decreased swelling pressure in both the AF [100] and NP [107]. Hydraulic permeability 

also changes from an anisotropic distribution to an isotropic distribution in the AF [248] 

and decreases in the NP [107]. In addition, the biphasic compressive modulus of the AF 

increases [100] while that of the NP decreases [107].The tensile modulus of the AF 

increases, while the Poisson’s ratio, failure load, and strain energy density decrease [2]. 

At the motion segment level tissue compaction and proteoglycan loss result in decreased 

NP osmotic pressure; consequently there is an increased response to creep loads with 

degeneration [187]. This is supported by an increase in joint laxity displayed in 

flexion/extension, rotation, and bending [163]. Increases in axial strains in compression, 

and compression combined with flexion or extension have also been described. In 

addition, the disc loses its ability to transfer compressive forces through the hydrostatic 

NP pressure/annular tension mechanism during degeneration. The AF begins to bear 



13 
 

compressive loads as axial AF compressive strains are increased, and radial strains 

transition compressive to tensile [189].   

1.5 Surgical Strategies for Treating Symptomatic Disc Disease 

Regenerative strategies for treating disc degeneration must be compared to 

clinical techniques to evaluate their ability to improve clinical outcomes; a description of 

clinical techniques is thus a necessary part of the discussion of disc regeneration. The 

primary indications for clinical intervention related to spine disease are local or radicular 

pain and/or neurological dysfunction. Thus, current surgical strategies to treat disc 

disease aimed primarily at alleviating pain and reducing neurological deficits.  

The current gold-standard surgical treatment for treating symptomatic 

degenerative disc disease is spinal fusion. This technique alleviates pain by expanding the 

disc height to decompress neural structures and by solidifying the disc space with a 

combination of vertebral hardware and intervertebral spacers. In the US, approximately 

400,000 spinal fusion surgeries are performed per year, a rate that has consistently 

increased over the past 10 years in comparison to other standard musculoskeletal 

surgeries [200]. Many spinal fusion cases have unfavorable clinical outcomes however 

(approximately 20%) [184], and revision surgeries are required for a number of reasons, 

including mechanical complications related to fusion, post-operative stenosis and 

spondylosis, and the degeneration of adjacent discs  [201]. Pseudoarthrosis, for example, 

is a common mechanical complication that accounts for the majority of revisions [201], 

as it occurs in approximately  0-15% of cervical fusion cases [215] and 5-10% of lumbar 

fusion cases [37, 144], and is a known cause of recurrent pain. Another complication 
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related to spinal fusion is adjacent segment degeneration, which may be caused by the 

artificial segment rigidity following fusion and altered loads in adjacent discs. There have 

been many reports of adjacent disc disease following fusion in the literature, though the 

incidence rates and epidemiology are still points of debate [85].  

Total disc prostheses, like the Synthes Pro-Disc, are available as an alternative to 

fusion and are intended to preserve near-physiological spine kinematics, thus mitigating 

adjacent segment disease. These procedures involve decompressing the disc space, 

removing the native tissue, and inserting the prosthetic into the intervertebral space. 

While total knee and hip replacements have gained widespread acceptance as gold-

standard treatments for knee and hip diseases, total disc arthroplasty has not. There are a 

number of reasons for this. In comparison to fusion, arthroplasty is a more complicated 

surgery and requires special training from the device manufacturer. In addition, fusion 

has been relatively successful, and controlled trials have not demonstrated any clinical 

benefit of arthroplasty in comparison [235]. Some complications of total disc arthroplasty 

include implant subsidence and migration, the degeneration of adjacent structures, the 

generation of wear particles and periprosthetic tissue inflammation [198].   

1.6 Overview of Disc Regeneration Strategies 

Spinal fusion and total disc arthroplasty have seen much success in recent years 

through the improvement of instrumentation and the rise of minimally invasive surgery. 

Inherently these techniques, however, do not restore normal spine function because; in 

both cases, the disc is removed and the original structure and mechanical functions of the 

spine are not replicated. Consequently, while they may initially relieve pain, they are 
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subject to these post-operative complications. Disc degeneration presents clinically as a 

spectrum that ranges from non-degenerate to mildly degenerate to severely degenerate, 

with the level of tissue degradation correlating to the age of the individual [162]. Thus 

new regeneration techniques aim to rescue the disc from either early or late stage 

degeneration, rather than remove it, and promise to improve upon current standards by 

restoring the intervertebral joint to a healthy and natural state. Early in the degenerative 

process, interventions with cell, gene, or pharmaceutical therapies may maintain disc 

function by reducing inflammation and preventing further matrix degradation [93, 152, 

243]. A more substantial approach will likely be necessary for the treatment of end-stage 

disc disease, due to depletion of the endogenous cell population and irreversible 

deterioration of tissue structure. In such circumstances, a composite (or whole disc) 

approach would be required, where the entirety of disc structure and function is 

replicated. Two general strategies have emerged to treat at different points along the 

spectrum of intervertebral disc disease. 

1) Injectable therapeutics. For early stage degeneration where the intrinsic ability of the 

tissue to repair itself is still intact but must be bolstered, the injection of therapeutics into 

the native disc may slow or reverse degeneration. These techniques are aimed at directly 

improving the quality of the NP, the disc region that displays degenerative changes 

earliest. Research efforts on injectable therapeutics are based either on the injection of 

cells that have the ability engraft into the host tissue, proliferate, and deposit new 

extracellular matrix to replenish the diseased tissue, or, the injection of growth factors 

that can modify the behavior of the resident cell population so that they develop a 

phenotype more conducive to anabolism.   
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2) Total or partial disc replacement. For end-stage degeneration when the native tissue 

likely has little capacity for regeneration, the removal of the native diseased AF and/or 

NP tissues and their replacement with an engineered substitute may restore healthy joint 

structure and function. Efforts to replace the native disc structure through the 

development of viable engineered tissues leverage the growing knowledge base on cell, 

biomaterial, and cell-material interactions. The ultimate goal of my work will be to 

develop an engineered intervertebral disc that functional replaces the native disc. 

1.7 Native Tissue Benchmarks for Successful Regeneration 

 A number of criteria must be met for validating the efficacy of the therapeutic 

modalities proposed above at achieving tissue regeneration. To define a set of criteria, 

non-diseased native tissue provides a number of compositional, structural, and functional 

benchmarks. Strict recapitulation of every native tissue characteristic may not be 

necessary for disc regeneration. Thus, we propose a set of relevant properties for 

“successful” disc regeneration which have been summarized from the literature and are 

listed here in Table 1-1. The parameters presented are specific to non-degenerate human 

tissue, and in addition, as the primary function of the disc is mechanical, emphasis is 

placed on mechanical properties, which are reported as measured from bone-disc-bone 

motion segments with facet joints removed.  



17 
 

Table 1-1. Relevant Native Tissue Benchmarks for Regeneration or Replacement 

 

  

Compositional and Cellular 

AF GAG  10% dry weight OAF, 40% dry weight IAF [8] 

AF Collagen 65-70% dry weight [190] 

AF Cell # 9000 cells/mm3 [190] 

NP GAG 50% dry weight [8] 

NP Collagen 15-20% dry weight [190] 

NP Cell # 4000 cells/mm3 [190] 

AF Water Content 60-70% [190] 

NP Water Content 80% [190] 

Structural and Geometric 

Disc Height 11 mm [20, 188]  

Disc Width 56 mm (lateral), 37 mm (AP) [188] 

NP %Volume 30% [188] 

Lamellar Count 15-25 [140] 

Lamellar Thickness 200-400 um [102] 

Lamellar Fiber Angle alternating, 30-40 degrees [97] 

Functional 

Motion Segment Compressive Stiffness 1700 N/mm [20] 

Motion Segment Bending Stiffness 3-5 N-mm/degree [48] 

Motion Segment Creep Strain 

5% (Load = 750 N, 1 h) [20], 30% (Load =1000 N, 4h) 

[187] 

Motion Segment Creep Recovery Time 8 h (Load = 2000N, 1 h) [187] 

Motion Segment Cyclic Loading Strain 15% (1500 N, 10,000 cycles) [214] 

VB/AF Interface Stiffness or Failure Load 2.85 MPa (unpublished internal data) 

AF Permeability 0.25 (x10-15 m4/N-s) [23] 

NP Permeability 0.90 (x10-15 m4/N-s) [107] 
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1.8 In Vitro Culture Systems for Developing Regenerative Therapies 

In order to test if cells, growth factors, and biomaterials can function in a 

regenerative capacity, numerous in vitro model systems have been developed to mimic 

specific features of the intervertebral disc microenvironment. This applies to studying 

basic physiologic processes, injectable therapeutics and engineered tissue replacements. 

In vitro model systems generally include a cell source with regenerative potential, a 

material substrate on which the cells are cultured, and a set of external variables that can 

be controlled to replicate the disc microenvironment. The following section will 

introduce these three topics and provide examples from ongoing research in the field to 

present the current state of the art in this area. 

1.8-1 Cell Sources 

In the field of regenerative medicine, there are a wide variety of cell sources 

available for therapeutic use. In general, these can be categorized by their differentiation 

potential, that is, by their ability to assume phenotypic features similar to cells from 

different tissue types when provided with the appropriate environmental cues.  

1.8-2 Pluripotent Cell Sources 

Pluripotent stem cells can differentiate into all cell types and form all tissues 

derived from the three germ layers. Embryonic stem cells (ESCs), for example, are 

considered pluripotent and there has been some effort to use these as an injectable 

therapeutic for disc regeneration [11]. ESCs require special handling, however, as their 

phenotype is difficult to direct and maintain. In addition, clinical use of ESCs requires 

allogeneic cells and so their use incorporates limitations such as the potential for immune 
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rejection and infection. Likewise, the supply of such cells is currently limited and there 

are well-known ethical issues related to obtaining fetal cells.  

As an alternative to ESCs, fully differentiated cells, such as skin fibroblasts, can 

be induced into pluripotency by introducing a series of reprogramming genes through 

viral transduction and other mechanisms [12]. These are aptly named induced pluripotent 

stem cells or iPSCs. Similar to ESCs, iPSCs require a fibroblast feeder layer and a 

number of chemical factors to first maintain the cells in an undifferentiated state and then 

to induce differentiation. In contrast to ESCs, however, there is an unlimited supply of 

donor cells from adult skin tissue. This is a promising, though new, line of research for 

the regeneration of the intervertebral disc [13, 14] as well as other musculoskeletal tissues 

[15, 16]. One drawback of iPSCS is that their preparation is time-consuming, requiring 

months to generate, differentiate, expand and direct towards skeletal lineages [17], which 

may limit their use as an autogenous source. To overcome this, researchers in Japan, 

Europe and the US are developing iPSC banks with fully differentiated cell lines for on-

demand access.   

1.8-3 Multipotent Cell Sources 

There are a number of multipotent stem cell sources under investigation for disc 

regeneration. In general, multipotent cells have limited differentiation potential compared 

to pluripotent cells, but have more clinical relevance as they can be harvested from 

adults. For applications in orthopaedics, there are multipotent sources with the ability to 

adopt phenotypes of a number of musculoskeletal tissues [18, 19], including cartilage and 

fibrocartilage, like the NP and AF. Mesenchymal stem cells (MSCs), for example, are a 

popular source because they can be isolated from a number of locations, most commonly 
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bone marrow, adipose tissue, and synovium, and can generate tissues with compositional 

and functional properties similar to native cartilage [20-22]. There is a growing body of 

work on MSCs for disc regeneration that ranges from in vitro experiments to animal 

models to clinical trials [23]. A minor surgical procedure is required in most cases for 

retrieving MSCs from the donor, and so donor site morbidity remains an issue.  Likewise, 

it is not clear that every MSC has the same potential, and so methods to sort and use 

optimized sub-populations of MSCs is an area of considerable interest. 

1.8-4 Notochordal Cells 

Another source of cells relevant to regeneration are those that reside within the 

disc at early development stages that are notochordal in origin. During development, the 

NP forms from the embryonic notochord [24], and cells that retain a notochordal-like 

appearance make up a portion of the NP cellular composition early in life. The 

disappearance of these cells, potentially due to either differentiation into less 

metabolically active chondrocyte-like cells or apoptosis, may be associated with the onset 

of degenerative change at older ages. It has been hypothesized that notochordal cells play 

an important role in healthy disc homeostasis and may have regenerative properties. 

Currently, there is significant research interest in notochordal cells for disc regeneration 

[25-34], either through direct injection into a degenerate disc, or for use in co-culture 

with another cell source like MSCs or degenerate NP cells. While studying the function 

of notochordal cells will likely elucidate mechanisms for regenerative therapies, a reliable 

source of notochordal cells, one that can be harvested and expanded for injection or tissue 

engineering, has yet to be identified. 

1.8-5 Fully Differentiated Cell Sources 



21 
 

Fully differentiated or unipotent cells from a number of tissues lack stemness, but 

still have potential for regeneration. It has been well demonstrated that AF and NP cells 

can be isolated and cultured in vitro, and that these cells can produce tissue whose 

composition largely mirrors that of the native extracellular matrix; gene expression data 

suggests that AF cells maintain a fibrochondrogenic phenotype, with high levels of types 

I and II collagen mRNA; the NP phenotype is more chondrogenic and, similarly to 

articular chondrocytes, NP cells express  type II collagen, the chondrogenic transcription 

factor SOX9,  and aggrecan [35, 36]. NP cells also express unique factors that likely 

reflect their notochordal origin and the unique microenvironmental niche in which they 

must survive and function [37]. Potential sources for therapeutic AF and NP cells are 

from discarded disc tissue, such as degenerate tissue removed prior to spinal fusion for 

spondylolisthesis/disc disease. However, there exist technical hurdles related to this cell 

source given that degenerate tissue yields cells with an altered phenotype characterized 

by decreased proteoglycan production, senescence, catabolism, and a number of 

inflammatory markers [38-41]. These cells may be rescued from their degenerate state 

prior to their injection into the disc space, for example, by co-culture with a healthy cell 

population [42, 43].  

Other terminally differentiated cells can be sourced from cartilage at various 

anatomical locations; these cells have demonstrated potential for musculoskeletal 

regeneration. Articular chondrocytes from non-load-bearing regions of the knee have 

been widely used (and are clinically available) for cartilage restoration procedures such 

as autologous chondrocyte implantation [44, 45]. While these cells have robust 

chondrogenic potential, their isolation is associated with local tissue damage. Nasal [46] 
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and auricular [47] chondrocytes have demonstrated potential for in vitro chondrogenesis, 

and local donor site morbidity related to the isolation of these cells may be preferable 

when compared to articular chondrocytes, as they are not in an environment which has 

potential for joint level communication of inflammatory signals, as is the case for a 

synovial joint. Additionally, allogeneic articular chondrocytes have recently become 

commercially available. As these cells are prepared from juvenile (deceased) donors, this 

is a source of highly active chondrocytes that has shown some clinical success in treating 

articular cartilage defects [48]; these cells may likewise have potential for disc 

regeneration applications. 

1.8-6 Culture Systems 

The physical environment in which cells are cultured has a significant influence 

on experimental outcomes; cells read cues from their material substrates to regulate 

phenotype and metabolic activity [49, 50]. The standard material platforms for disc cell 

culture fit into one of three categories: cells cultured in a thin layer on plastic dishes 

(monolayer culture), cells aggregated as pellets, encapsulated in hydrogels, or seeded 

onto fibrous scaffolds (three-dimensional culture), and live disc explants removed from 

animals or human cadavers and cultured in the lab (organ culture) [Fig. 1-3].  

  



23 
 

 

  

Figure 1-3 In vitro model systems (A) Monolayer culture allows for simple high-

throughput studies of cell behavior. (B) Organ culture allows for studies of disc cells 

in their native environment. VB = vertebral body, AF = annulus fibrosus, VEP = 

vertebral endplate. (C) Cells can be aggregated into pellets through centrifugation 

for high throughput studies in a 3D environment. (D) To simulate the AF, cells can 

be cultured on scaffolds that mimic the organization of collagen fibers found in the 

AF region. (E) To simulate the NP, cells can be cultured in hydrogels so as to 

reproduce a spherical cell morphology. (F) A combination of fibrous AF scaffolds 

and hydrogel NPs allows for co-culture of cells in a simulated disc environment. 
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Monolayer Culture 

Due to ease of manipulation and experimental assays, simple monolayer culture 

conditions have been used to generate the majority of our knowledge regarding 

mammalian cell behavior, and intervertebral disc cells are no exception. The procedure 

for culturing disc cells or other cell types in monolayer involves first isolating cells from 

donor tissue, suspending these cells in a growth medium, and plating the cell suspension 

onto a sterile polystyrene culture dish. Cells attach directly to the dish and can be serially 

passaged to expand their number. A number of outcomes can be measured; cells can be 

retrieved and their RNA can be extracted for gene expression analysis; cultures can be 

directly stained for protein and ECM components; cell appearance and morphology can 

be evaluated by microscopy; culture media can be extracted and its composition can be 

analyzed.  

One or more cell-types and their interactions can be evaluated by simple 

modifications to a monolayer culture system. For example, the influence of NP cells on 

AF cells can be evaluated through co-culture; NP and AF cells can be seeded in direct 

apposition to study the influence of direct cell-cell communication, or seeded in culture 

dishes that have two tiers (one of which is porous) to study the influence of paracrine 

signaling between these two cell types. These are popular techniques in disc regeneration 

to evaluate the influence of one cell type on another; for example, to generate a NP-like 

phenotype in MSCs, MSCs can be co-cultured with NP cells [51]. 

Three-Dimensional Culture 

In vivo, disc cells reside in a three-dimensional microenvironment that is not well 

represented by monolayer culture systems. Phenotypic differences are evident when 
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comparing NP cells cultured in monolayer, where they develop a fibroblast-like 

phenotype, to NP cells cultured in a three-dimensional environment [52, 53]. Indeed, the 

‘de-differentiation’ which invariably occurs during cell expansion complicates 

interpretation of data acquired using monolayer culture methods.  

A more realistic culture system would provide three-dimensional spatial cues for 

cells to promote or preserve their phenotype, and while the types of experimental assays 

suitable for application to cells in 3D culture are more limited than for monolayer culture, 

advantages include the ability to more effectively assess matrix elaboration and 

mechanical function. In vitro NP and AF models can be scaffold-free (as in pellet culture) 

or can generated from naturally- occurring (agarose, alginate, collagen, fibrin, hyaluronic 

acid) or synthetic (polyethylene glycol, polyvinyl alcohol, polylactic acid, 

polycaprolactone) biomaterials [Fig. 1-4A].  
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Figure 1-4 Three Dimensional Culture Sytems: Material Selection, Fabrication, and 

Examples. (A) A variety of naturally-occurring and synthetic biomaterials, with 

specific physical and chemical properties, are available individually or as composite 

materials as a framework for cell culture. (B) Fabrication processes allow control 

over structural features and physical properties, and can incorporate bioactive 

components to better match the intervertebral niche or to elicit a desired cellular 

response (C) In vitro NP Model: NP cells cast in hyaluronic acid hydrogels develop 

a disc-like phenotype over 8 weeks of culture. This is evidenced by increasing levels 

of type II collagen and glycosaminoglycans (GAGs). (scale = 100 µm) [113] (D) In 

vitro AF Model: (Top left) SEM images of electrospun scaffold with aligned and 

random orientations. (scale = 10 µm). (Bottom left) MSCs seeded on aligned 

scaffold demonstrate preferential alignment in the fiber direction. (scale = 20 µm). 

(Top right) En face TEM image of cell bodies aligned with the fiber direction (a cell 

nucleus is outlined with dotted white line). (scale = 10 µm) [15] (Bottom right) 

Cross-sectional TEM image of a cell anchored at two electrospun fibers (starred). 

Collagen fibrils deposited by the cell (dark puncta) populate the space between the 

cell and the electrospun fibers. (scale = 10 µm) [15, 174] 
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Material topographies include homogenous materials, composite networks of a bulk 

polymer and an additional interpenetrating polymer, and aligned and randomly oriented 

fibrous scaffolds. These materials are typically crosslinked to infer stability to the 

polymer network; this can be initiated through photo, thermal and chemical stimuli, and 

depending on processing parameters, can lead to sparsely or densely crosslinked 

networks to enable tight control over the physical properties of the bulk material. 

Additionally, direct regulation of cellular phenotype and adhesion can be exerted by 

including growth factors and adhesion ligands that mimic natural extracellular matrix 

proteins [Fig. 1-4B].  

Pellet Culture 

Cells in a high density suspension can be centrifuged and concentrated in a pellet, 

forming a spheroid scaffold-free cell aggregate. Cell-generated extracellular matrix 

accumulates in the pellet over time, forming a physiologic three-dimensional 

microenvironment. Pellet culture is often used as a simple and more realistic alternative 

to monolayer culture to study basic cell functions, such as their response to inflammatory 

factors and hypoxia [54]. Additionally, scaffold-free aggregates are emerging for tissue 

engineering applications [55], where multiple pellets can be combined into large 

structures, or aggregation geometry can be controlled to match a defect shape like those 

common to the articular surface of the tibia. One could envision exploiting this method 

for disc tissue engineering; however these studies have not yet been conducted. One 

drawback of the pellet culture approach is that, in most connective tissues, cell density is 

low and cell-cell contact is not common; thus, high density cell aggregates produce 

abnormal cell-cell contact which may influence experimental findings. 
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Hydrogels 

As an alternative to pellet culture, cells can develop and maintain a disc-like 

phenotype when encapsulated in hydrogels [Fig. 1-4C]. In contrast to monolayer culture, 

hydrogel encapsulation provides a three-dimensional environment and limits cell-cell 

contact. 

There are a number of applications in NP regeneration in which hydrogels can be 

useful. Hydrogel culture systems allow for studying basic cell responses; for example, 

hydrogel systems are used to determine how NP cells respond to inflammatory challenge 

and anti-inflammatory interventions [56]. In a very active area of study, hydrogel 

vehicles are being used to deliver cells for NP regeneration [57-61]. Hydrogel mediated 

cell delivery serves as an alternative to delivery in a liquid carrier (such as saline or 

media), and physical parameters such as viscosity of the hydrogel can be tuned to both 

protect the cells during delivery as well as improve their retention at the delivery site. In 

addition, the chemistry of the hydrogel may be exploited to modulate cell activity; for 

example, a polyethylene glycol hydrogel can be modified to include cell adhesion ligands 

designed to influence cell phenotype [62]. Alternatively, the backbone of these hydrogels 

may be designed based on naturally occurring materials within the disc; another study 

demonstrated that the encapsulation of NP cells in hyaluronic acid, a ubiquitous 

extracellular matrix component, encapsulation drives cells to express NP-specific 

markers [63]. Hydrogels on their own (without cells) may allow for functional restoration 

of by restoring native tissue mechanical properties by virtue of their own physical 

properties in the disc space [64, 65]. This restitution of disc mechanics may have a 
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regenerative impact on endogenous cells by normalizing stresses and strains that they 

experience. 

While hydrogels are largely used for the study of NP cells, they have also been 

used for AF regeneration studies. To study basic cell functions, AF cells can be 

encapsulated in hydrogels; for example, AF cells in agarose respond to growth factor 

stimulation and osmotic loading [66]. Others have also taken advantage of cell-mediated 

remodeling of hydrogels to build engineered AF-like tissues; fiber alignment can be 

generated by depositing cell-laden collagen around a post and allowing the gel to 

contract, producing circumferential fiber architecture similar to the native AF [67]; 

adhesive gels are also in evaluation for the repair of AF fenestrations that remain after 

microdiscectomy [68, 69]  

Fibrous Scaffolds  

Given the ordered structure of the AF, scaffolds composed of aligned polymer 

fibers, of geometry ranging from nanoscale to microscale, are of particular interest for AF 

tissue engineering [Fig. 1-4D]. These scaffolds provide a topographical template; when 

cells are seeded on fibrous scaffolds, they will orient and elongate in the prevailing fiber 

direction. These topographical cues direct cells toward a phenotype similar to that of AF 

cells [70-72], depositing ordered extracellular matrix that acts as a mechanical 

reinforcement in the fiber direction. The hierarchical fiber structure in the AF, with 

alternating angles +/-30o in apposed layers, can be constructed from sheets of aligned 

fibers using a layering technique [73], and this structure can be maintained after in vivo 

implantation [74]. This methodology has also been exploited to develop engineered 
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fibrous tissues composed of MSCs with mechanical properties matching the native AF 

[75].   

Composite Disc Constructs 

Beyond simple realization of the component parts of the disc, recent research 

efforts have expanded to include the ambitious goal of total disc replacement with an 

engineered, cellularized artificial disc, combining hydrogel NP regions with fibrous AF 

regions [Fig. 1-5].  

  

Figure 1-5 Composite engineered discs Engineered discs are fabricated from a 

variety of materials and cell types. Top, from left to right: Silk AF, fibrin and 

hyaluronic acid NP, porcine disc cells and chondrocytes [194]; poly(glycolic acid) 

AF, alginate NP, ovine disc cells [166]; poly(ε-caprolactone) foam AF, hyaluronic 

acid NP, bovine disc cells or MSCs (unpublished work from our lab); electrospun 

poly(ε-caprolactone) AF, alginate NP, bovine disc cells or MSCs [179]; Bottom, 

from left to right: collagen AF, alginate NP, ovine disc cells [31]; demineralized bone 

matrix gelatin AF, collagen, hyaluronic acid, chondroitin sulfate NP, lapine disc cells 

[254]; poly(glycolic acid) AF, alginate NP, ovine disc cells [165]. 
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This methodology allows for evaluating co-culture of NP and AF cells, or other types of 

cells such as MSCs, in an anatomically correct disc-like environment. It also allows for 

the interrogation of total disc mechanical properties, which are of particular importance 

for engineered total disc replacement. NP and AF regions that comprise the total disc 

constructs have taken a number of forms with varying levels of complexity, ranging from 

3D-printed polymer discs [76], to nanofibrous scaffold AFs wrapped around hydrogel 

NPs [73], to collagen gels with circumferential fiber alignment about a central hydrogel 

NP region [77]. Even more recently, this work has been extended to include engineered 

endplates into total disc constructs in order to improve potential attachment at the 

vertebral junction [78]. 

The last decade has witnessed significant advances in the development of 

engineered total disc replacements, with benchtop work now transitioning to in vivo total 

disc replacement in animal models.  In some studies, these engineered discs have proven 

to be biocompatible and match motion segment mechanical properties [79], with early 

work in murine models now transitioning to large animal models [80]. These constructs 

have the potential to improve upon current clinical treatments for degenerative disc 

diseases, such as spinal fusion and metal-on-plastic arthroplasty, by restoring native 

spinal mechanics with a self-sustaining, cell-based, viable, and continually remodeling 

engineered replacement. 

Organ Culture 

While in vivo large animal models are an essential platform for preclinical 

evaluation of an engineered disc, intervertebral disc organ culture provides for the 

capacity to investigate therapeutic strategies in the native environment without the 
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expense,  logistical or ethical considerations involved in large animal work [81]. Further, 

it can be argued that through use of live, cadaveric human disc explants, organ culture 

can explore unique research questions that cannot be answered with animal models, 

particularly in the absence of robust large animal models that accurately recapitulate the 

human degenerative disc phenotype. Organ culture involves isolating discs from recently 

deceased subjects, ranging from murine to bovine to human, and culturing the disc in 

standard culture media [Fig. 1-6].  

  

Figure 1-6 Isolation of a bovine caudal disc for organ culture The bovine caudal disc 

is one of the most common models used in organ culture. The procedure for isolating 

a bovine disc is pictured here as documented by Chan and Gantenbein-Ritter [42]. 

(A) A bovine tail is procured from a local stockyard and prepared for aseptic 

dissection. (B) The disc can be visualized after removal of the contiguous connective 

tissues and muscle. (C) A device similar to an osteotome is used to sharply dissect 

the disc from the tail proper, leaving a small amount of vertebral bone. (D) The 

vertebral endplate is visualized, (E) the disc is submerged in growth media, and (F) 

then placed on an orbital shaker plate inside an incubator for long-term culture. 
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Studies have shown that cells in the NP and AF of organ cultured discs can 

remain viable and active for periods of time on the order of months. Organ culture studies 

have been used to address a number of basic physiological mechanisms, such as cellular 

response to inflammatory factors and hypoxia [82], and also to generate disc 

degeneration models through chemonucleolysis [83]. Sophisticated bioreactors have been 

developed to apply complex static [84], dynamic [85], and impact loading [86] to identify 

organ- and cell-level functions. 

Using organ culture systems, therapies for the treatment of degenerative disc 

disease can be screened for efficacy prior to their use in an animal model or human 

clinical trial. The delivery of cells to the disc, through direct injection [87], through 

hydrogel vehicle injection [88], and through cell homing [89], has demonstrated 

regenerative changes in organ culture models. Growth factor treatment has also been 

successful in organ culture models of disc degeneration [90]. Currently, there is no 

clinical treatment to prevent reherniation following microdiscectomy. It may be possible 

to mend the AF with a fibrous patch or polymer plug, as has been demonstrated 

successfully in organ culture [91]. One of the most exciting possibilities associated with 

organ culture is the ability to culture, maintain, and perform experiments on live human 

discs for realistic studies of physiology and regeneration [92]. However, it is still not 

known how well the organ culture framework can generate translatable clinical therapies; 

so while the technique is very promising, in vivo validation is still required. 

1.8-7 Controllable External Variables 

The disc microenvironment is comprised of a complex interconnected set of 

precisely balanced external variables that are required to maintain disc homeostasis. 
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These external variables are often controlled in vitro to mimic the native physiological 

environment and alter cell behavior. This section will discuss these relevant variables and 

summarize results related to their impact on disc culture. 

Oxygen tension, pH, and Glucose 

As the intervertebral disc is primarily avascular, it acquires oxygen by diffusion 

through a network of vessels in the cartilaginous endplates. Consequently, there are steep 

oxygen gradients in the NP and areas of low oxygen tension. This can be replicated in 

vitro; specialized incubators designed for oxygen regulation are available to induce a 

hypoxic environment similar to the intervertebral niche. Hypoxia studies have been 

conducted in a number of formats including monolayer [93] and hydrogel culture [94] 

systems. These studies collectively show that NP cells are uniquely suited to survive in 

strenuous conditions, deprived of both oxygen and serum, with minimal changes in 

viability; an ability that is closely tied to the transcription factor HIF-1α [95]. 

Consequently, one school of thought suggests that preconditioning engineered 

replacements in a hypoxic in vitro environment will induce an NP-like phenotype and 

improve transplantation results, affecting in vivo survival and phenotype retention. Other 

cell types with potential for disc regeneration, such as MSCs, which normally reside in an 

oxygen-rich environment, demonstrate muted functional extracellular matrix deposition 

when cultured under hypoxic conditions in vitro [96], perhaps foretelling their poor 

performance when implanted into the disc space. 

A number of factors contribute to an acidic pH in the intervertebral disc space. 

Due to disc avascularity and an insufficient oxygen supply, NP cells are powered 

primarily through anaerobic glycolysis. A byproduct of this metabolic process is lactic 
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acid, which accumulates in the extracellular space due to impaired transport out of the 

disc space as a result of poor vascular supply, resulting in a low local pH.  

As demonstrated by hydrogel NP cell culture experiments, pH set at a neutral 

level provides an anabolic boost in extracellular matrix metabolism, while pH set at lower 

levels, a state with physiologic relevance to the disc, causes a profound disruption of 

extracellular matrix metabolism [97]. It may be necessary to examine and challenge 

potential therapeutic strategies, such as engineered tissue replacements, in a low pH 

environment prior to clinical use to ensure successful translation. 

Glucose is transported into the disc through the limited vascular supply in the 

cartilage endplates. As a result, this important energy source for disc cells is in low 

supply in healthy discs and the supply is further compromised with degeneration due to 

changes in tissue permeability as a result of endplate calcification. The effects of low 

glucose are often simulated in vitro by formulating media with varying glucose 

concentrations. Low glucose was shown to have a significant effect on NP cells in 

hydrogel culture, causing decreases in many metabolic markers [98]. Similar effects of 

glucose deprivation have been demonstrated for MSCs as well [96].  

The implications of limited glucose on tissue regeneration are important to 

consider. The degenerate disc space may not be able to sustain injectables with highly 

concentrated cells or engineered tissue replacements with a high cell density, as the finite 

glucose reserves may only sustain a finite number of cells. Thus, high cell concentrates 

may be subjected to increased levels of apoptosis soon after injection. Appropriately 

tuning the cell source for the in vivo environment is of critical importance for cell 

therapies [99]. 
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Inflammatory Factors 

For resident cells, conditions in the disc microenvironment adversely affect 

normal function in a healthy state and are uninhabitable in a degenerate state; the 

physiological niche is characterized in normal conditions by low pH, low glucose, and 

low oxygen (as described above), and in degeneration by disc-wide inflammation, as pro-

inflammatory factors are produced by cells of both the NP and AF [41, 100-102]. These 

factors, which induce downstream production of collagen- and proteoglycan-degrading 

enzymes, create an environment of catabolism, contributing to fibrosis, compaction, and 

loss of structure in the NP, and are a significant hurdle for regeneration. 

This pathologic inflammatory milieu will influence both injectable therapies and 

engineered tissue replacements. In vitro studies have confirmed that powerful pro-

inflammatory cytokines, like TNF-α and IL-1β, which are ubiquitous in disc 

degeneration, have a negative impact on extracellular matrix production by disc cells. 

Matrix synthesis can be rescued by including antagonists to these molecules, such as a 

soluble TNF receptor [103], the IL-1 receptor antagonist (IL-1ra) [56, 104], or an NF- B 

inhibitor [105], suggesting molecules like these have significant potential for 

regeneration. Co-delivery of such anti-catabolic agents at the time of cell to construct 

implantation may improve long term outcomes. 

Mechanical Loading 

The disc experiences multiaxial static and dynamic loading during routine daily 

activities. Loading directly affects behavior at the cell level through mechanotransduction 

events. In addition, loading has an effect on nutrient transport and waste removal, and in 

a nutrient-deficient homeostatic state, loading can have a profound impact on the 
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precarious balance of the intervertebral niche. Depending on the load magnitude, 

frequency, and duration, physical forces can positively or negatively affect cell 

metabolism [84, 85, 106-108], and consequently mechanical loading conditions are often 

replicated in in vitro studies to study these effects.  

Mechanical loading events can be simulated in vitro on the organ and tissue scale 

to study the effects on extracellular matrix metabolism and regeneration. For tissue 

engineering purposes, dynamic loading is used to stimulate extracellular matrix 

production to generate more robust tissues for implantation. On the tissue sub-component 

level, dynamic compressive loading has been evaluated in hydrogel culture for both NP 

cells [109] and MSCs [110], and dynamic tensile loading has been evaluated for both AF 

cells on flexible membranes [111] and MSCs on fibrous scaffolds [112]. On the whole 

disc level, dynamic loading has been used for mechanical stimulation of engineered discs 

comprised of AF and NP cells [113] and MSCs [114], as well as in organ culture [115]. A 

general summary of findings from these studies is that low frequency, moderate 

magnitude physical forces allow for anabolic in vitro stimulation of engineered tissues 

and disc explants.  

Growth Factors 

Growth factors that regulate cell metabolism are present in the disc space, and can 

be applied in vitro at supra-physiological concentrations to achieve a specific cell 

phenotype or provide an anabolic stimulus to promote regeneration. A wealth of 

experiments on growth factor stimulation are available to support growth factor injections 

[116], as well to stimulate engineered tissues for disc repair or replacement [79]. The 

BMP family of growth factors is of specific interest, as two members of this family (OP-
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1/BMP-7 and GDF-5/BMP-14) have demonstrated sufficient in vitro success to motivate 

clinical trials [117]. 

Growth factors have shown promising results in in vitro models, but significant 

hurdles must be overcome for growth factor injection to be translatable. In vitro studies 

allow for growth factors to be continuously supplemented by refreshing the culture 

media. The standard route for growth factor delivery in vivo however is by needle 

injection through the AF and delivery through multiple injections for continuous 

supplementation is not feasible. One method for prolonged growth factor delivery with a 

single injection is through the sustained released of these factors from biomaterials. This 

can be achieved through a number of mechanisms including delivery from slow-releasing 

microspheres, hydrogels and electrospun scaffolds. Release profiles can be tuned in vitro 

through polymer engineering to achieve continuous release that lasts on the order of 

weeks, obviating the need for multiple injections. 

1.9 In Vivo Models for Disc Research 

 In the absence of successful treatments for degeneration and because of the 

scarcity and variability in human donor disc tissue, animal models are used to perform 

tightly controlled experiments to evaluate disc physiology, degeneration, and 

regeneration, to determine the efficacy of injectable therapeutics and to evaluate 

engineered disc tissues in situ. For the purposes of this dissertation, I will discuss three 

categories of animal models relevant to these experiments. 

1.9-1 Altered Loading Models 
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 The lumbar discs experience multiaxial loading during routine daily activities. 

These mechanical forces directly affect the tissue in a number of ways: by causing micro-

failures in tissue subcomponents, by inducing the transport of nutrients through the CEPs, 

and through mechanobiological mechanisms in resident cells. In these ways, physical 

loads can directly affect disc structure, metabolism and homeostasis and can cause 

catabolic or anabolic stimuli that vary with the load frequency and magnitude. 

 Static and dynamic loading have been examined in animal models through 

external control of vertebrae adjacent to the disc. The caudal spines (or tails) of rats and 

mice are of specific interest for these types of studies, as they allow for facile access to 

the spine. Static loading compression and bending loads can be applied to the mouse 

caudal spine by fixing the vertebrae with surgical pins [49, 131]. Dynamic compression 

and torsion loading have been applied to the rat caudal spine using a sophisticated 

external mechanical system with a framework similar to the Ilizarov device for fracture 

fixation [Fig. 1-7] [16, 98].  

  

Figure 1-7 External device for 

simulated loading in rat model [98]. 

The rat tail can be instrumented with 

an external device used to apply 

static or dynamic loading to evaluate 

the effects of loading on disc 

homeostasis. Surgical wires are 

inserted through adjacent vertebrae 

and an Ilizarov ring-type fixator is 

secured to the pins; the rings can then 

be manipulated mechanically. 
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In addition, the rabbit lumbar spine has been instrumented for dynamic loading to 

evaluate the effects of cyclic compression on nutrient transport [81, 82] .  

In general the results of these studies suggest that static loading is detrimental to 

disc health, producing a catabolic response similar to degeneration, and dynamic loading 

can be either catabolic or anabolic, where moderate frequency, moderate magnitude loads 

are anabolic and high frequency, high magnitude loads are catabolic.   

1.9-3 Degeneration Models 

 There are three types of animal models for investigating disc degeneration: 

animals in which disc degeneration spontaneously occurs, animals in which degeneration 

is artificially-induced through disc insult, and genetically altered mice in which a 

degenerate phenotype develops in the disc.  

Naturally Occurring Models 

Degeneration naturally develops in the lumbar discs of sand rats [78] and 

chondrodystrophic breeds of canines, like the beagle [10]. These models closely relate to 

the human condition in that the degenerative phenotype slowly and naturally develops. 

Specifically, canine models are of interest as they represent a clinical population and may 

be a good and sufficiently challenging step prior to clinical trials in humans. One 

drawback of naturally developing disease is that it can take months to years to be evident, 

causing logistical issues, and does not reliably occur in specific levels, which complicates 

designing experiments. Recently, another naturally occurring model was described; the 

alpaca naturally develops disc degeneration in the caudal levels of the cervical spine 

[228]. This model has two advantages over other naturally occurring models, first, 

degeneration can be predicted by level and, second, alpacas are farmed throughout the 
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US and thus there is readily available supply of animals at the right ages. The work on the 

alpaca is still preliminary but is promising. 

Injury-induced Models 

To assert better experimental control in a degeneration model, a number of 

methods have been developed to artificially induce degeneration in individual discs. This 

can be done through mechanical overloading of discs with an external loading device 

similar to what was described above, or by creating spinal instability, by resection of the 

facet joints for example [110]. Similarly, scoring or partially removing the AF with a 

scalpel blade or needle creates instability in the motion segment by impairing the AF and 

depressurizing the NP [Fig. 1-8].  

  

Figure 1-8 Needle puncture 

injury in the rat tail [76]. 

Fluoroscopic images of a needle 

inserted a controlled depth into a 

rat caudal disc at (A) low and (B) 

high magnification. The needle 

breeches the AF and is inserted 

into the central NP, where further 

penetration is prevented by a 

circumscribing stopper with a 

larger bore. 
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This technique comprises the majority of disc degeneration models as it requires a simple 

surgical procedure, is precise, and causes a highly reproducible degenerative condition. 

Annular injury models have been performed in large animals, like goats [251] and sheep 

[191], medium sized animals like rabbits [153], and small animals like rats [207] and 

mice [247]. There is a size-dependent response to the injury; larger needle diameters and 

scalpel defects lead to degeneration while injuries below a sizes threshold do not.  

Degeneration can also be cause by the injection of matrix degrading enzymes, like 

chondroitinase ABC [32, 88], into the disc to desiccate the nucleus pulposus. This 

chemonucleolysis method of producing degeneration may be preferable to annular injury 

methods as a smaller diameter needle can be used for the injection, the AF will remain 

intact, and degenerative changes will occur first in the NP, mimicking the natural 

degeneration process.  

The primary criticism of the induced degeneration models is that the resultant 

degeneration processes that take place after the loading event, annulus injury, or 

chemonucleolysis, do not well represent the natural course of human degeneration, as it 

occurs over the course of weeks rather than slowly over years like natural degeneration. 

However, some important conclusions can be drawn from these studies. For example as a 

result of induced degeneration models, it is postulated that human disc degeneration is an 

adaptation to an altered loading pattern followed by a re-establishment of stability [130]. 

As a corollary, it has been suggested that the presence of sufficient mechanical 

perturbation is required in order for degenerative changes to take place [89]. It is likely 

that the physiological response to a redistribution of mechanical forces is the stabilization 

of the joint space through the alteration of extracellular matrix composition, a shift in the 
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NP composition from a cartilaginous to fibrotic. Numerous animals have shown that 

changes in structure or altered mechanical loads are followed by progressive changes in 

disc height, biochemistry, and cellular activity [32, 89, 224]. 

Injury-induced models play a very important role in investigating therapeutic 

interventions for degeneration. Typically, an insult to the disc is performed surgically and 

the physiologic processes that cause the degenerate phenotype are allowed to proceed for 

a number of weeks/months. Then, a second surgery is performed in which an injectable 

therapeutic, usually a cell, growth factor, or biomaterial intervention, is applied to the 

degenerated disc, and its ability to restore a healthy condition are evaluated. Efficacy can 

be monitored by fluoroscopic visualization of disc height, MR imaging to investigate disc 

composition, mechanical evaluation of the motion segment, histological staining for 

extracellular matrix alteration, RNA quantification for changes in cell behavior, etc. 

These studies generate critical data to screen efficacious therapies and proceed to clinical 

trials. 

Models Induced Through Genetic Manipulation 

As stated previously, the presence of degeneration is highly correlated to the 

presence or lack of certain genetic factors. Leveraging this strong relationship to genetics, 

a final subset of animal models, genetically manipulated mice, can be exploited to 

develop a degenerate-like condition. For example, inactivation or knockdown of genes 

encoding for type I [212] and type II collagen [209] leads to a musculoskeletal phenotype 

that includes a condition similar to disc degeneration. Polymorphisms in the collagen IX 

gene correlate to the presence of disc degeneration in genome wide studies, and 

mutations in the gene that encodes for collagen IX in mice lead to degeneration of the 
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cervical discs [117]. In this way, large scale, genome wide studies often pinpoint specific 

genetic discrepancies that correlate to degeneration in humans and follow-on studies that 

induce these specific mutations in mice play a role in improving our understanding of the 

degeneration process. The reverse process, in which many genetic phenotypes are 

induced in mice and these mice are screened for disc pathology, may also play a role in 

discovering new genetic influences on disc health. 

1.9-4 Total Disc Replacement Models 

Animal models have been developed for evaluating total disc replacement in a 

number of species, including in baboons, macaques, goats, dogs, and sheep [Fig. 1-9] [50, 

51, 121, 122, 133, 230, 245].  
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Figure 1-9 In vivo models of total disc replacement [29, 30, 50, 51, 121, 122, 133, 

245]. Animal models of total disc replacement have been developed for either the 

cervical, lumbar, or caudal spines in species that range in size from large animals like 

sheep, goats and dogs, to medium sized animals like baboons and macaques, to small 

animals like rats. There are four general types of implants: allografts, acellular 

biomaterials, metal-on-plastic arthroplasty devices, and cell-seeded biomaterials.  
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These experiments were designed for prosthetic metal-on-plastic discs or whole-disc 

allografts, and generated preliminary data to motivate clinical trials. The rat or mouse 

caudal spine, used in many disc studies to investigate degenerative processes [146, 207] 

and engineered disc tissues [63, 73], is an ideal candidate for preclinical studies given the 

ease of surgical access and the ability to avoid critical structures (e.g., spinal cord and 

spinal nerves). Recently, total disc replacement with cell-seeded engineered discs was 

performed in the rat caudal spine [30]. These studies, performed on immunocompromised 

rats, demonstrated that xenogeneic cells within engineered discs were viable and 

produced a functional matrix over the course of months, validating the rat model for 

proof-of-concept design evaluation. In the context of disc tissue engineering, the rat tail 

model may serve as a high-throughput native environment in which to screen engineered 

disc designs and inform large animal studies. Thus, a rat tail model would be valuable 

tool to evaluate and optimize DAPS. 

1.10 Acellular Biomaterials as an Alternative to Traditional Tissue Engineering 

The current paradigm for regeneration of the musculoskeletal system through 

tissue engineering involves a two-step procedure. First, the cell source of interest is 

harvested from the patient in a pre-operation outpatient procedure. These cells are 

expanded, seeded onto an engineered scaffold, and matured for re-introduction into the 

body. The engineered construct is then implanted at the desired site and functions as the 

original tissue.  

There are a number of drawbacks to this method. First, there is potential for 

morbidity at the donor site. For example, harvesting bone marrow from the iliac crest 
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results in post-operative pain and introduces the risk of infection. Second, the cells 

isolated from bone marrow require closely regulated culture conditions to induce and 

maintain a desired phenotype. AF cells, NP cells and MSCs are phenotypically unstable 

after a number of passages in monolayer [22, 118, 157, 240]. Finally, clinical 

implementation of cell-based therapy requires overcoming significant FDA regulatory 

obstacles and also necessitates expensive clinical trials requiring academic-industrial 

partnership for financial contributions from industry. 

Thus, acellular biomaterials that attract and direct endogenous cells have come to 

the fore in the context of tissue engineering as an alternative to cell-based methods [36]. 

For example, acelluar HA hydrogels injected into the left ventricle have improved 

cardiovascular function in an ovine model of myocardial infarction [Fig. 1-10][101]. 

Also, for the treatment of articular cartilage defects, autologous matrix induced 

chondrogenesis is a developing strategy that combines recruiting cells from the 

subchondral bone marrow through microfracture and directing the behavior of those cells 

once engrafted into a synthetic matrix implanted into the defect [Fig. 1-10] [21, 57].  
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Figure 1-10 Acellular biomaterials for regenerative medicine. Two examples 

of acellular biomaterials for tissue repair: (top) the left ventricle following a 

simulated myocardial infarction (MI) in an ovine model. Hyaluronic acid 

hydrogels improved wall thickness and cardiac output. (bottom) The 

articular surface was repaired using a microfracture technique assisted by a 

poly(glycolic acid) and hyaluronic acid hydrogel. [21, 57, 59, 101, 113] 
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1.11 Current Challenges for Regenerative Therapies 

 The intervertebral disc and its resident cells have a difficult assignment; the disc 

must meet substantial functional demands, resisting physical forces that are on the order 

of multiple body weights in compression, shear, torsion, and bending modes, and it must 

do so in an avascular environment, with minimal nutritional support for healthy 

extracellular matrix maintenance. These two aspects, high functional demands and 

limited nutrition, present a challenge not only for disc survival but also for the restoration 

of injured or diseased discs to a healthy state. In the previous sections, we reviewed a 

number of potential cell sources, biomaterial frameworks, and culture systems that have 

advanced our knowledge of disc biology and that can serve as experimental tools towards 

realizing disc regeneration. However, numerous challenges remain, many of which can 

be addressed using in vitro experimentation. The remaining challenges are summarized as 

follows for each mode of regenerative therapeutic under development:  

 

 Injectable cell therapies: 

o Low O2, glucose, and pH 

o Inflammatory signals present in diseased tissue 

o Mechanical stress  

o Maintenance of cell regenerative phenotype after injection 

o Delivery route is damaging to AF 

 

 Injectable growth factor therapies: 

o Limited number of endogenous cells available for regeneration 

o Resident cells have a degenerate phenotype 

o Limited activity and/or half-life of growth factors 
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o Growth factors may have limited activity in acidic environment 

o Delivery route is damaging to AF 

 

 Biologic NP replacements: 

o Low O2, glucose, and pH 

o Mechanical stress 

o Maintenance of cell regenerative phenotype after implantation 

 

 Biologic AF replacements 

o Low O2, glucose, and pH 

o Mechanical stress 

o Mechanical properties vary with fiber orientation 

o Method of fixation to native tissue 

o Maintenance of cell regenerative phenotype after implantation 

 

 Biologic total disc replacements: 

o Low O2, glucose, and pH 

o Must match multiaxial mechanical properties of native tissue 

o Integration into vertebrae 

o Meet nutritional demands through diffusion over long distances 

o Impaired or degenerated interface at vertebral endplate 

o Maintenance of cell regenerative phenotype after implantation 

 

1.12 Conclusion of Introduction 

There has been substantial progress towards disc regeneration in the past 15 years 

and an array of strategies have been developed that show promise. From these studies, we 

have learned much about disc cell physiology, mechanobiology, and biomaterials, 
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generating a foundation for future research that will inform the implementation of new 

strategies. Additional work is now required to systematically evaluate the second 

iterations of these earlier regeneration strategies, bearing in mind the challenging 

environment present in the disc may counteract the regenerative potential of these 

approaches. These in vitro efforts, using many of the strategies documented in this 

chapter, are the critical experiments to define and optimize therapeutic approaches as 

they progress towards pre-clinical animal studies and ultimately onto clinical trials in 

humans suffering from degenerative disc disease. 
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CHAPTER 2 – Previous Work 

2.1 Engineered Intervertebral Discs 

My global hypothesis for this work is that engineered, cell-seeded, viable 

intervertebral discs can restore long-term function to the spine. Fabrication of an 

engineered composite disc requires replication of the structure, composition, and function 

two primary disc components, the NP and the AF. In our lab, we have developed a 

method to fabricate engineered discs from a hydrogel NP region and an electrospun 

nanofibrous AF region. Relevant previous work is described below. 

2.1-1 Hydrogels for NP replacement 

There are a number of devices on the market for NP replacement ranging from 

metal mechanical devices to injectable polymers that cure in situ [127]. For sustained 

regeneration of the native tissue, we and others have implemented biomimetic cell-seeded 

hydrogels [59, 68, 71, 114].  One such hydrogel, hyaluronic acid (HA), is a naturally 

occurring extracellular matrix component that can be remodeled by endogenous 

hyaluronidases and binds to cell surface receptors to influence cell behavior [159]. NP 

cells and Mesenchymal stem cells (MSCs) cast in HA hydrogels develop a viable NP-like 

phenotype as demonstrated by the improved elaboration of extracellular matrix proteins 

and compressive mechanical properties approaching the levels of native tissue [59, 222].   

 In previous work, our lab has used hyaluronic acid hydrogels to fabricate 

engineered tissues with a NP phenotype that mature in vitro and develop functional 

properties near native tissue levels [Fig. 2-1].   
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Figure 2-1 Hyaluronic acid (HA) hydrogels for NP regeneration (A) HA is a 

natural component of the disc extracellular matrix; it serves as the backbone 

substrate for the aggregation of the chondroitin sulfate (CS) and keratan 

sulfate (KS) that make up the proteoglycan (PG) aggrecan. (B) HA can be 

modified to form photopolymerizable hydrophillic elastomer networks; UV 

crosslinking can be performed for in situ or in vitro gelation of the HA. (C) 

Both NP cells and MSCs encapsulated in HA hydrogels obtain a 

chondrogenic phenotype, maturing both functionally (left, compressive 

modulus) and compositionally (right, Alcian blue staining for GAG) . 
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Hyaluronic acid is an essential extracellular matrix component as it acts as the backbone 

substrate for aggrecan, the most abundant proteoglycan in the NP.  Purified hyaluronic 

acid can be crosslinked to form a hydrophyllic elastomer by adding the crosslinking 

molecule methacrylic anhydride. This allows for photopolymerization of the material 

with ultraviolet light to generate constructs of specified mechanical properties and 

geometry. Our lab has used this technology as a chondrogenic platform to encapsulate 

MSCs and NP cells with much success. Both NP cells and MSCs respond favorably to 

the hyaluronic acid hydrogels, enabling long-term viability and extracellular matrix 

production similar to the NP phenotype. 

2.1-2 Electrospun Polymers for AF replacement 

A procedure called electrospinning can be used to generate engineered materials 

that recreate the organized fibrous architecture of the native AF [9, 175-179]. The 

electrospinning process involves drawing a charged polymer solution across a voltage 

gradient onto a rotating collection mandrel [Fig. 2-2].  
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Figure 2-2 Electrospun scaffolds for AF tissue engineering (A) The 

electrospinning process involves charging a polymer solution with high 

voltage, drawing the solution across and air gap where it is collected on a 

grounded rotating mandrel. (B) This produces sheets of aligned nanofibers. 

(C) Cells seeded on these fibers orient their cytoskeleton with the fiber 

direction. 
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This produces sheets of aligned polymer nanofibers, the topography of which permits cell 

attachment and promotes directed extracellular matrix production for reinforcement in 

principal loading directions [14, 15, 54]. Strips of electrospun scaffold can be layered to 

create an engineered tissue with alternating fiber that matches the hierarchical structure of 

the native AF.  

Our lab has used an electrospinning procedure to develop engineered fibrous 

tissues for meniscus, ligament, and AF repair and replacement. These scaffolds have 

mechanical properties near native tissue levels, that vary with the direction of fiber 

alignment [176]. When cells are seeded on these materials, they develop an elongated 

shape and orient their cell body in the direction of the fibers, which directs their 

extracellular matrix deposition [Fig. 1-5 and Fig. 2-2C]. Electrospun poly(ε-

caprolactone) (PCL), a polymer with sufficient physical properties for tissue 

engineering and with long-term in vitro and in vivo stability,  can be seeded with 

either AF cells or MSCs and increase in functional properties with in vitro culture, 

approaching native tissue properties at the single and multi-lamellar length scales 

[54, 175, 176].  

2.1-3 Engineered Composite Discs for Total Disc Replacement 

A number of studies have reported on co-cultured NP and AF components for 

tissue-engineered total disc replacement. These cell-seeded engineered discs have been 

evaluated in vitro [180, 194], in the subcutaneous space [165, 166, 254], and have 

recently been placed in situ between rat lumbar and caudal vertebrae [29, 30], illustrating 

the rapid advances in this regenerative approach to engineered disc replacement. 
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Our lab has developed DAPS for total disc replacement by combining HA 

hydrogels that act as an NP region with an electrospun PCL AF region [Fig. 2-3] 

[177].  

  

Figure 2-3 Fabrication of DAPS, an engineered composite disc (A) DAPS are 

fabricated by first generating a sheet of aligned nanofibers by electrospinning. The 

sheet is cut at an angle into strips to generate the “lamellae” of the engineered disc. 

These strips are wrapped with alternating fiber alignment around a post and 

fabrication is completed when the core is filled with an HA hydrogel. (B) 

Picrosirius red stained sections (for collagen) show that bilayers of PCL scaffold 

develop a fibrochondrogenic phenotype and mechanical properties of these 

bilayers are near native levels after 10 weeks in culture. (C) Similarly, DAPS 

mature both compositionally and functionally with time in culture [175, 179]. 
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To do so, an sheet of align PCL nanofibers is generated by electrospinning, and then two 

strips are cut from the sheet at +/- 30o and wrapped as bilayers into concentric discs, 

precisely mimicking the alternating fiber alignment and lamellar structure of native 

tissue. The resultant discs, when filled with a hydrogel core, form DAPS. These 

constructs mature both compositionally and functionally over time when seeded with AF 

and NP cells or MSCs alone [175], indicating their potential for use in total disc 

replacement. DAPS have yet to be evaluated in an in vivo environment; a limitation 

of the work which will be the major focus of this dissertation. 

2.2 Trajectory Based Tissue Engineering – Implantation at Peak Maturation State 

vs. Maturation Rate 

 Integration of an engineered disc into the native vertebrae may be the most 

difficult challenge facing intervertebral disc tissue engineering.  One strategy to improve 

the integration of engineered cell-seeded materials is to culture constructs for an extended 

period of time and implant in vivo at their peak maturation rate. Engineered cell-seeded 

tissues go through stages of growth; an early phase of slow development, an intermediate 

phase of rapid development, and a late phase in which growth stabilizes [Fig. 2-4, A-B].  
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Figure 2-3 Trajectory-based tissue engineering (A) The development of an 

engineered tissue, as modeled here by engineered cartilage, can be defined in terms 

of the trajectory of its compressive modulus, EY, over time. There are three distinct 

periods of growth: (1) an early phase of slow growth, (2) an intermediate phase of 

rapid growth, and (3) a late phase where growth stabilizes. (B) By plotting the 

derivative of compressive modulus over time, a peak becomes evident where the 

highest maturation rate occurs. (C) In an in vitro model of in situ integration, we 

found no correlation between the compressive modulus and integration strength. 

(D) However, the rate of change in compressive modulus, or growth rate, 

positively correlated to integration strength, suggesting that implanting engineered 

tissues at their highest growth rate will improve integration into native tissue [67]. 
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Implanting engineered discs at their peak maturation rate, in the intermediate phase 

where rapid growth occurs, may improve integration into the vertebral endplates. 

We have demonstrated that integration potential correlates with the 

maturation rate of engineered cartilage [67]. One possible explanation is that the most 

mature constructs contain cells that are at a reduced activity level and contain tissue too 

dense for endogenous cells to penetrate. Thus, an emerging strategy to improve 

integration is to base the timepoint of implantation on the peak maturation rate, and 

recently this was successfully demonstrated in engineered cartilage in vitro [Fig. 2-4, C-

D]. A fundamental concern for an engineered intervertebral disc is the ability of the disc 

to integrate into the native vertebral bodies. Engineered discs implanted at their 

highest growth rate may integrate better into native tissue, but this hypothesis has 

yet to be tested. 

2.3 Summary 

Collectively, these data suggest our lab has the ability to fabricate and develop in 

culture a cell-seeded, viable engineered disc with structural hierarchy matching the native 

disc. We have developed biomaterials that mimic the AF and NP and methods to isolate 

stem cells or disc cells, methods to seed cells on these biomaterials, and media conditions 

in which cells will proliferate and deposit extracellular matrix. We have also developed a 

strategy in which to culture these discs to improve integration into the intervertebral 

space using trajectory-based implantation strategy.  The next step in the progression to 

clinical application of disc tissue engineering is the evaluation of DAPS in vivo, to test 

their function and viability in the physiological environment. 
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CHAPTER 3 – Executive Summary 

The text in the following chapters describes the steps taken to design an animal 

model system and to evaluate the function of DAPS to the in vivo environment.  

First, Ch. 4 will detail the development of a total disc replacement model using 

the rat tail. In preliminary studies, DAPS were displaced from the disc space, as the 

biomechanical environment of the tail, which has significant range of motion, was not 

conducive to implant engraftment. To improve upon this result, I developed an external 

fixation system to stabilize adjacent vertebrae and a radiopaque scaffold to track implants 

in vivo. External fixation provided a stable environment for implantation as evidenced by 

the fluoroscopic monitoring of radiopaque implants over time.  

Next, Ch. 5 will be a further evaluation of the radiopaque scaffold, documenting 

its mechanical properties, nanostructure, and in vitro and in vivo compatibility. I found 

that these scaffolds were radiographically visible in both small and large joints, were 

cytocompatible both in vitro and in vivo and did not promote osteogenesis. These data 

indicated that radiopaque scaffolds have potential for improving animal model 

development, where they may reduce the number of iterations required to perfect new 

surgical procedures by allowing for in vivo monitoring of implants, and also radiopaque 

scaffolds may act as a substrate for engineering fibrous tissues that can be 

radiographically monitored. 

I further investigated aspects of the rat tail disc replacement model (Ch. 6), 

evaluating the effects of the external fixator and the behavior of DAPS biomaterials over 
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long-term implantation. In a series of control groups, I found that immobilization did not 

affect native disc health, was conducive to fibrous tissue deposition, and eventually lead 

to intervertebral fusion. Acellular DAPS were implanted into the rat tail and allowed 

significant endogenous cell infiltration when sacrificial layers were used to create void 

spaces in between AF layers. Over time these implants became invested with fibrous 

tissue. There were, however, a few drawbacks of these implants; when acellular 

hyaluronic acid was used as the NP region, native cells degraded the hydrogel, and at 

later timepoints intervertebral fusion could not be prevented. This motivated seeding 

DAPS with cells to improve in vivo performance.  

In the next set of studies (Ch. 7), I evaluated cellular DAPS both in vitro and in 

vivo. In vitro, DAPS were cultured with either AF cells in the AF region and NP cells in 

the NP region (AF/NP DAPS), or MSCs in the AF region and MSCs in the NP region 

(MSC/MSC DAPS). Both implants matured over 15 weeks of culture, with composition, 

structure and function matching a number of native tissue benchmarks. At 5 weeks, these 

implants were at an immature and highly active growth state, while at 10 weeks, implant 

were near fully mature. However, I hit a roadblock; when DAPS were implanted into the 

rat tail after either 5 weeks or 10 weeks of in vitro maturation, their resident cells 

underwent a substantial shift in phenotype. The DAPS, which were originally highly 

invested with GAG pre-implantation, were completely devoid of GAG after 5 weeks 

post-implantation as evident through histological and MRI evaluations (measurement 

details described in Appendix I). In addition, there was histological evidence that the NP 

was degrading in vivo. Despite these changes, motion segment mechanical (measurement 
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details described in Appendix II) properties matched native tissue perfectly, but it was 

evident that a new method for pre-maturation and a modification to the implant materials 

was necessary. 

The final chapter with experimental data (Ch. 8) describes a series of studies in 

which I evaluated various pre-culture techniques to improve in vivo performance of 

DAPS. Interestingly, DAPS cultured in serum containing media matured very little in 

vitro, but had excellent in vivo performance after subcutaneous implantation into athymic 

rats, and, DAPS cultured in various chondrogenic media formulations with TGF-3 

accumulated significant extracellular matrix in vitro, but could not maintain this 

production in vivo.  

In the final chapter (Ch. 9), I express that while as a field we can develop 

engineered tissues that are in vivo-ready before implantation, matching native 

benchmarks, this tissue does not function properly in vivo. This phenomenon may 

certainly be related to the rat tail or rat subcutaneous implantation models, which have a 

number of important differences from the native intervertebral space, and suggests that 

another model in an environment similar to the human lumbar disc space is worth 

investigating. Perhaps mechanical stimulation, which is not present in this rat tail model 

due to the external fixation device, is necessary to maintain properties in vivo. This may 

be tested by remobilizing the implant after a period of integration. The specific material 

used for the NP region, hyaluronic acid, does not perform well in vivo, and should be 

modified in future work. The final issue is that integration into the vertebral endplate was 

not evident; this will likely require an intervening integration device. Eventually, when 
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moving up in scale to human-sized constructs, requirements related to nutrient diffusion 

over longer distances and the maintenance of human cell sources will be necessary to 

evaluate. 
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CHAPTER 4 - Translation of an Engineered 

Nanofibrous Disc-like Angle Ply Structure (DAPS) for 

Intervertebral Disc Replacement in a Small Animal 

Model 

4.i Preface 

 Chapter 4 describes the development of a rat tail model of total disc replacement 

for in vivo evaluation of DAPS, which is published in [149]. In our first attempts at 

implantation, DAPS were displaced from the disc space and were found in the 

subcutaneous tissue. I then developed an external fixation device to unload and stabilize 

the implantation site and found that this improved retention of DAPS. Additionally, in 

this study, I introduce a method for fabricating DAPS with sacrificial layers in the AF 

region (sDAPS) that provide routes for cell infiltration. sDAPS are later used both in vivo 

to allow for endogenous cell infiltration, and in vitro as a method to improve the 

infiltration of seeded cells. The in vivo application of sDAPS will be elaborated on in 

Chapter 6 and the in vitro application will be described in Chapter 7. I also introduce a 

method for fabricating DAPS using a radiopaque scaffold (rDAPS). rDAPS were used in 

this study to track the position of the implants over time. The radiopaque scaffold has 

other uses in tissue engineering; this will be expanded on in Chapter 5. 
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4.1 Introduction 

A number of therapeutic strategies have been developed for each stage of the 

degenerative process to preserve or restore function of the intervertebral joint. Early in 

the degenerative process, interventions with cell, gene, or pharmaceutical therapies may 

maintain disc function by reducing inflammation and preventing further matrix 

degradation [93, 152, 243]. A more substantial approach will likely be necessary for the 

treatment of end-stage disc disease, due to depletion of the endogenous cell population 

and irreversible deterioration of tissue structure. In such circumstances, a composite (or 

whole disc) approach would be required, where the entirety of disc structure and function 

is replicated. Towards that end, a number of studies have reported on co-cultured NP and 

AF components for tissue-engineered total disc replacement. These cell-seeded 

engineered discs have been evaluated in vitro [180, 194], in the subcutaneous space [165, 

166, 254], and have recently been placed in situ between rat lumbar and caudal vertebrae 

[29, 30], illustrating the rapid advances in this regenerative approach to engineered disc 

replacement.  

Current engineered discs do not replicate the hierarchical AF organization 

required to support multiaxial spinal loads. The AF is comprised of lamellae, discrete 

fibrous sheets with specialized collagen alignment. Within each lamella, fibers run in a 

single direction, ranging from 20 o to 50o with respect to the transverse plane, and 

adjacent lamellae have opposing fiber orientation, producing an angle-ply structure [86]. 

Multi-directional load-bearing during compression, torsion, flexion/extension, lateral 

bending, and shear is supported by tensile reinforcement provided by fibers oriented in 
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these directions [227]. An engineered disc may need to incorporate aspects of this native 

design for proper function of the regenerated tissue.  

Our lab has previously used electrospinning to generate engineered materials that 

recreate the organized fibrous architecture of the native AF [175-179]. Electrospun 

scaffolds with aligned nanofibers permit cell attachment and promote directed matrix 

production for reinforcement in principal loading directions [14, 15, 54]. Specifically, 

electrospun poly(ε-caprolactone) (PCL) seeded with either AF cells or mesenchymal 

stem cells increases in functional properties with in vitro culture, approaching native 

tissue properties at the single and multi-lamellar length scales [54, 175, 176]. Single 

strips of aligned scaffold can be arranged concentrically, precisely mimicking the 

alternating fiber alignment of native tissue, to form disc-like angle ply structures (DAPS) 

[179]. Like their single layer counterparts, these constructs mature both compositionally 

and mechanically over time in culture, indicating their potential for use in total disc 

replacement. 

The objective of this study was to develop a disc replacement model in which to 

evaluate DAPS in vivo. The murine caudal spine, used in many disc studies to investigate 

degenerative processes [146, 207] and engineered disc replacements [63, 73], is an ideal 

candidate for preclinical studies given the ease of surgical access and the ability to avoid 

critical structures (e.g., spinal cord and spinal nerves). In the context of disc tissue 

engineering, the rat tail model serves as a high-throughput system to screen engineered 

disc designs and inform large animal studies. Thus, I developed a rat tail disc replacement 

model in which native caudal discs were removed and replaced with the electrospun AF-

region of engineered DAPS. Here, our focus on the AF was to specifically assess the 
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potential for colonization of and matrix deposition in electrospun scaffolds in the in vivo 

disc environment. Given early findings of graft displacement, I also developed an 

external fixation system to stabilize the disc space. Further, since early studies showed 

poor infiltration of the AF region of the DAPS by endogenous cells, I included sacrificial 

layers within the DAPS structure to provide additional routes for cell migration.  

4.2  Methods 

4.2-1 Preparation of Disc-like Angle Ply Structures (DAPS) 

DAPS were fabricated to reproduce the hierarchical structure of the native AF  

[Fig. 4-1A-B] [179]. Aligned nanofibrous sheets (thickness = 250 µm) were formed by 

electrospinning a 14.3% w/v solution of PCL (Shenzhen BrightChina Industrial Co., 

Hong Kong, China) dissolved in a 1:1 mixture of tetrahydrofuran (THF) and N,N-

dimethylformamide (DMF) (Fisher Chemical, Fairlawn, NJ) [Fig. 4-1C]. The polymer 

solution was extruded at a rate of 2.5 mL/hour through a 13 kV-charged 18G needle. 

Fibers were drawn across a 15 cm air gap onto a grounded mandrel rotating with a 

surface velocity of 10 m/s. The resultant sheets of aligned nanofibers were cut into strips 

with fibers aligned at 30o relative to the strip long axis to mimic the native AF fiber 

architecture [Fig. 4-1D] [176, 179]. Two strips with opposing fiber orientation were 

wrapped concentrically and fixed with a spot weld to form the AF region of the DAPS 

[Fig. 4-1E].  
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Figure 4-1 Fabrication of disc-like angle ply structures (DAPS) that replicate the 

intervertebral disc lamellar patterning (A) The intervertebral disc is a composite 

fibrocartilage that stabilizes multiaxial dynamic loading of the spine. It has two 

substructures that are targets for tissue engineering, the nucleus pulposus (NP) and 

the annulus fibrosus (AF). (B) The AF is composed of concentric lamellae with 

alternating +/- 30o collagen fiber alignment. (C) Single AF layers are replicated 

by electrospinning poly(ε-caprolactone) (PCL) nanofibers onto a rotating mandrel. 

(D) Aligned PCL nanofiber sheets (bottom) are then cut into strips at an angle 

(top) to establish a fiber arrangement consistent with native AF lamellae. (E) 

These strips are rolled about a post as bilayers with opposing fiber alignment (top) 

to form disc-like angle ply structures (DAPS) (bottom). Scale = 10 μm in panel 

(D, bottom) and 1mm in panel (E, bottom). 
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Preliminary characterization of DAPS fabricated in this manner included the 

measurement of DAPS geometry and compressive mechanical properties (n=7). First, a 

non-contact laser device was used to measure height [13] and images of DAPS were 

taken with a digital camera and processed in Matlab to determine inner and outer 

diameters [188]. DAPS were then tested in unconfined compression on an 

electromechanical testing system (Instron 5542, Instron, Norwood, MA). First, a 0.5 N 

preload was applied and allowed to relax over 300 s. Next, three consecutive compressive 

strain ramps of 5% magnitude were applied with a 300 s relaxation period between each 

ramp. The compressive equilibrium modulus was defined as the slope of a line fit through 

points at equilibrium after 5%, 10%, and 15% strain. The mean DAPS dimensions were: 

5.1±0.4 mm outer diameter, 1.0±0.1 mm inner diameter, and 1.9±0.3 mm height. These 

dimensions allow a press-fit into the (caudal) C8/C9 disc space and are comparable to the 

native rat caudal disc geometry (4.15 mm outer diameter, 2 mm NP diameter, 0.94 mm 

height [20]).  The compressive equilibrium modulus was 12.6±4.3 kPa and was lower 

than that of the native rat caudal disc (238 kPa [30]), but was expected to increase after 

implantation as cells infiltrate and deposit a collagenous matrix. 

4.2-2 Surgical Implantation of DAPS into the Rat Caudal Spine 

In a first set of surgeries, DAPS consisting of only the AF region were implanted 

into the caudal spines of Sprague Dawley rats (male, 7-9 months, 478±11g) in 

accordance with local institutional regulations. Rats were first anesthetized and, using the 

sacrum as an anatomical landmark, the (caudal) C8 and C9 vertebral bodies were located 

via fluoroscopy (Orthoscan HD, Orthoscan, Inc., Scottsdale, AZ). Then, the dorsal skin 

spanning the vertebral bodies was incised, the dorsal tendons were partially separated 
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from their bony insertions adjacent to the C8/C9 disc with a scalpel, and the native disc 

was removed. A double-armed non-absorbable suture was passed through the DAPS 

center, fed through the disc space, and tied exterior to the ventral skin to anchor the 

implant in place [Fig. 4-2A]. The incision was then closed with non-absorbable simple 

interrupted sutures. Post-surgical management included prophylactic treatment of 

infection (cefazolin, 15 mg/kg subcutaneous, 1 day pre-op and 2 days post-op), 

inflammation (meloxicam, 1 mg/kg subcutaneous, 1 day post-op), and pain 

(buprenorphine, 0.1 mg/kg subcutaneous, 3 days post-op). Rats were returned to normal 

cage activity and euthanized at either 14 (n=6) or 28 days (n=9). Additional rats were 

assigned to a discectomy-only control group, in which the native disc was removed in its 

entirety but no implant was placed. These rats were also euthanized at 14 (n=4) or 28 

days (n=4). 

  

Figure 4-2 DAPS implantation into the rat caudal spine and analysis of disc height 

A rat tail model was used to evaluate DAPS integration and function.  (A) 

Following a dorsal incision and discectomy, DAPS were implanted into the C8/C9 

disc space and anchored to the ventral skin with a suture. (B) Lateral fluoroscopic 

images were taken at regular intervals throughout the study to analyze changes in 

disc height. (C) These changes were quantified through digital image analysis and 

expressed as Disc Height Index (DHI). The indicated quantities were used for 

calculating DHI: vertebral body 1 area, AVB1, vertebral body 2 area, AVB2, disc 

area, AD, vertebral body 1 width, WVB1, vertebral body 2 width, WVB2, and disc 

width, WD. 
 



72 
 

 

4.2-.3 Evaluation of Disc Height 

To evaluate implant stability, caudal spines were imaged fluoroscopically pre-

operatively, immediately post-operatively and at regular intervals through 28 days [Fig. 

4-2B]. Disc height index (DHI) [153], a standard technique used to normalize disc height 

to vertebral body length, was quantified from lateral fluoroscopic images using a custom 

Matlab program [Fig. 4-2C]. The disc and adjacent vertebral bodies areas (AVB1, AVB2, AD) 

and widths (WVB1, WVB2, WD) were quantified digitally. The mean vertebral body lengths 

(LVB1, LVB2) were defined as LVB = AVB/WVB, the disc height (HD) as HD = AD/WD, and DHI 

as DHI = 2HD/(LVB1+LVB2). For longitudinal analysis, DHI was expressed as a percentage 

of pre-operative DHI (%DHI0). Implants were deemed ‘successful’ if 75% DHI0 was 

maintained at the terminal timepoint and ‘displaced’ if this was not the case.  

4.2-4 Microcomputed Tomography (µCT) 

To assess disc height and adjacent vertebral bone remodeling, µCT scans (vivaCT 

75, SCANCO Medical AG, Bruttisellen, Switzerland) of the caudal spine were acquired 

after euthanasia at an isotropic resolution of 20.5 µm. Three-dimensional reconstructions 

were generated for visualization of the disc space and bony surfaces.  

4.2-5 DAPS Implantations with External Fixation  

Several DAPS were displaced from the intervertebral space in the initial surgical 

series; likely due to the eccentric loading conditions in the caudal spine. This motivated 

development of an external fixation system to improve implant retention. A radiolucent 

PEEK/stainless steel ring-type external fixator [98] was designed to unload and stabilize 

the intervertebral space [Fig. 4-3A].  
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Figure 4-3 External fixation to stabilize the caudal spine and improve DAPS 

retention (A) Given observations of displaced implants following initial surgeries, 

an external fixator was designed to provide a stable environment for DAPS 

integration. (B) Surgical wires were passed through adjacent caudal vertebral 

bodies (*) and were inserted into machined grooves in the fixator. The open fixator 

design provided a window through which to conduct surgery. (C) The fixator ring 

material, PEEK, is radiolucent, allowing for visualization of the vertebral bodies 

by fluoroscopy and quantification of disc height over the course of the study. (D) 

Radiopaque DAPS (rDAPS) illustrate implant retention with external fixation over 

the course of 28 days. 
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To apply the fixator, 0.8 mm Kirschner wires (Synthes Inc., West Chester, PA) were 

passed laterally through the mid-height of the C8 and C9 vertebral bodies with a 

pneumatic wire driver, the ‘C’ shaped rings of the fixator were slid onto the wires 

ventrally leaving access to the dorsal tail, and the intervertebral height was set by 

adjusting the position of nuts on the threaded rods. With the fixator in place, removal of 

the native disc and DAPS implantations proceeded as described above, though no internal 

suture was used to secure the DAPS [Fig. 4-3B]. Rats received the same pre- and post-

surgical medication regimen and were returned to normal cage activity until euthanasia at 

14 (n=4) or 28 days (n=5). An additional external fixator plus discectomy control group 

was included to verify preservation of disc height with application of the fixator at 14 

(n=2) and 28 days (n=4). Rats from all external fixator surgeries were subjected to serial 

fluoroscopy [Fig. 4-3C] and µCT (after the fixator was removed) as described above.  

To facilitate regular assessment of the position of implanted DAPS, radiopaque 

DAPS (rDAPS) were fabricated to enable visualization via fluoroscopy. To do so, PCL 

solutions were supplemented with the radiopaque nanopowder, zirconia (Zirconium(IV) 

Oxide Nanopowder, Sigma-Aldrich, St. Louis, MO). Nanofibrous radiopaque sheets 

(thickness = 250 µm) were formed by electrospinning a 14.3% w/v solution of 50% PCL 

and 50% zirconia dissolved in a 1:1 mixture of THF and DMF. To monitor changes of 

implant position over time, rDAPS were implanted along with application of the external 

fixator described above [Fig. 4-3D]. Rats with rDAPS were subject to serial fluoroscopy 

and euthanized at 28 days for µCT (n=2).  

4.2-6 Histological Analysis  
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All segments from DAPS, fixation+DAPS, discectomy, and fixation+discectomy 

surgeries were fixed in buffered formalin and decalcified in formic acid. Vertebra-DAPS-

vertebra motion segments were sectioned to 30 µm thickness in the dorsoventral plane on 

a cryostat microtome (Microm HM 500, Thermo Scientific, Waltham, MA). Sections 

were stained with hematoxylin and eosin (H&E) to visualize cell infiltration and matrix 

deposition. Stained sections were observed and imaged under bright field with an upright 

microscope (Eclipse 90i, Nikon, Tokyo, Japan). Additional samples were imaged with 

cross-polarized light to inspect the DAPS lamellar structure. Sections were also stained 

with 4',6-diamidino-2-phenylindole (DAPI) to visualize cell nuclei; these samples were 

imaged under fluorescence and overlaid with differential interference contrast (DIC) 

microscopy images to highlight the location of cells with respect to the DAPS lamellar 

structure. 

4.2-7 Implantation of DAPS with Sacrificial Layers to Improve Cell Infiltration 

After the achievement of implant stability, the slow migration of endogenous cells 

into the PCL-only DAPS warranted the modification of the scaffold material to include 

routes for cell infiltration. Sacrificial layer DAPS (sDAPS) were fabricated by 

sequentially electrospinning two layers of polymer, the first, a standard aligned PCL 

layer, and the second, a water soluble poly(ethylene oxide) (PEO) layer (200kDa, 

Polysciences, Inc., Warrington, PA). PEO nanofibers were electrospun from a 10% w/v 

solution of PEO dissolved in 90% ethanol. This solution was drawn through an 18G 

needle across a 10 kV gradient at 2.5 mL/hr and collected onto the rotating mandrel atop 

the deposited PCL layer. Strips were cut from the composite PCL/PEO mats and wrapped 

using the same method as described above, forming sDAPS.  
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To evaluate infiltration, sDAPS were first seeded in vitro with bovine AF cells 

and cultured for 7 days [Fig. 4-7A].  For this, a 31G needle was passed radially through 

the mid-height of the sDAPS to stabilize the structure. The sDAPS were then rehydrated 

in a series of gradient ethanol washes to remove PEO layers and coated overnight in a 

solution containing 20 μg/mL fibronectin (Sigma-Aldrich, St. Louis, MO) to improve cell 

attachment [9]. The sDAPS were then lyophilized and seeded with passage 2 bovine AF 

cells isolated as described previously [177]. Cells were loaded onto each surface (1x106 

cells per side) and allowed to incubate for 1 hour per side before culture in media 

containing Dulbecco’s modified Eagle’s medium (Gibco, Invitrogen Life Sciences, 

Carlsbad, CA), 1% penicillin, streptomycin, and fungizone (Gibco), and 10% fetal bovine 

serum (Gibco) for 7 days. Three types of DAPS were included in the study (n = 

3/constructs/group); PCL only DAPS (250 µm layer thickness), ‘thick’ sDAPS (125 µm 

PCL layer, 250 µm PEO layer), and ‘thin’ sDAPS (125 µm PCL layer, 125 µm PEO 

layer). Infiltration was evaluated by DAPI staining of cross sections on day 7, as 

described above.   

Acellular sDAPS, with intact thick or thin PEO layers, were also implanted into 

the rat caudal spine (using the external fixator), and cell infiltration was evaluated after 

14 days in vivo (n=3/group) [Fig. 4-7A]. Following euthanasia, motion segments were 

sectioned, stained with H&E or picrosirius red (for collagen), and imaged by brightfield 

or polarized light microscopy. 

4.2-8 Statistical Analysis  

DHI was statistically assessed by grouping discectomy, displaced DAPS, 

successful DAPS, fixation+discectomy and fixation+DAPS surgeries and implementing 
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an ANOVA, with comparisons made among groups within each timepoint and to pooled 

pre-operative measurements. Tukey’s post-hoc test was used for pairwise comparisons 

(p<0.05). Statistical analyses were performed using Prism 5 (GraphPad Software Inc., La 

Jolla, CA). 

4.3 Results 

4-3.1 DAPS Implantations in the Caudal Spine: DAPS implantations using only a suture 

anchor successfully maintained 75% DHI0 in 8 of 15 surgeries [Fig. 4-4A]. Immediately 

after implantation, an increase in DHI was noted following the press-fit of DAPS into the 

disc space. DHI gradually decreased over time, but, by day 28, DHI for successful 

implants was not different from pre-operative DHI. Following discectomy alone, the disc 

space also initially expanded, likely due to joint laxity caused by detachment of the dorsal 

tendon bundles, but collapsed to 40% of preoperative DHI by 28 days. In cases where 

DAPS were displaced from the intervertebral space, there was variability in the timing of 

implant failure, as evidenced by large standard deviations of DHI at 14 days in the 

displaced group. However, by day 28, there was no difference in DHI between the 

displaced DAPS and discectomy groups. Gross examination of tails from the displaced 

DAPS group revealed that the DAPS were located in the dorsal subcutaneous space at 

both the 14 and 28 day timepoints.  
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Figure 4-4 DHI and bony anatomy for DAPS implantations with or without 

external fixation (A) Flouroscopic analysis of %DHI0 for discectomy, displaced 

DAPS, successful DAPS, fixation+discectomy and fixation+DAPS surgeries over 

a 28 days. Significant differences (p<0.05) are displayed as (*, vs. pre-op) and ($, 

vs. successful DAPs, fixation+discectomy and fixation+DAPS groups). Sample 

numbers for each group are indicated at the base the corresponding bar. These 

decrease from day 14 to day 28 as rats were removed from the study (as scheduled) 

for µCT and histological analysis. For successful DAPS and both fixation groups, 

the pre-op disc height was maintained over the course of the study. For DAPS that 

were eventually displaced, there was variation in the time at which they were 

displaced as evidenced by the large standard deviation at day 14. These eventually 

collapsed to a level similar the discectomy control group. (B) Representative µCT 

reconstructions for the same groups on day 28.  Both discectomy and displaced 

DAPS groups collapsed by day 28, with the displaced DAPS group demonstrating 

new bone adjacent to the disc space. Disc height is maintained with little change 

in the bony architecture in the successful DAPS and both fixation groups. The 

rightmost panel shows the morphology of an implanted rDAPS and adjacent 

vertebrae. Scale = 2 mm. 
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4-3.2 External Fixation Preserves Disc Height  

External fixation caused no changes in surgical outcome or post-operative cage 

activity. All DAPS implanted with external fixation remained in the disc space for the 

duration of the study. With the fixation system in place, disc height was preserved, even 

in the case of discectomy. At day 14 and 28, the fixation+discectomy DHI was 

significantly greater than the discectomy-only DHI, and was not different from pre-

operative levels. DHI was also maintained by external fixation in all fixation+DAPS 

surgeries; %DHI0 post-op was set at 165% to allow room for DAPS implantation. This 

was significantly different from pre-operative DHI and remained so through day 28. 

4-3.3 Vertebral Bone Morphology Post-DAPS Implantation  

Reconstructions of µCT scans confirmed the maintenance of disc height in 

successful DAPS surgeries and the collapse of disc height in displaced DAPS and 

discectomy surgeries at 28 days [Fig. 4-4B]. In the discectomy group, the intervertebral 

space collapsed, though there was no evidence of adjacent vertebral bone remodeling. 

Conversely, in the displaced DAPS group, bone remodeling was present adjacent to the 

collapsed disc space, though the reason for this new bone deposition is unclear. In 

successful DAPS surgeries, the intervertebral space was intact, and minor misalignment 

and remodeling were evident in all cases. External fixation prevented collapse with 

minimal superficial bone deposition at the K-wire insertion sites as illustrated in the both 

fixation groups. Reconstructions of rDAPS confirmed intervertebral positioning at 28 

days [Fig. 4-4B].  

4-3.4 Histological Appearance of DAPS and the Intervertebral Space 
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Histological analysis via H&E staining confirmed that disc height was maintained 

by the external fixator, even following discectomy, and that in all 9 fixation+DAPS 

surgeries, the DAPS remained in the intervertebral space. In the absence of fixation, disc 

height collapsed following discectomy, with remnant AF visible at both timepoints [Fig. 

4-5A-B]. With the external fixator, the space left vacant by discectomy was partially 

filled with fibrous repair tissue by 28 days [Fig. 4-5C-D].  

  

Figure 4-5 Histological appearance of DAPS in the rat caudal spine Representative 

H&E stained sections at 14 and 28 days for discectomy (A, B), 

fixation+discectomy (C, D), and fixation+DAPS groups (E-H). Vertebral bodies 

are indicated by an asterisk (*) in (A). The fixation+DAPS group was imaged in 

both brightfield (E, F) and polarized light (G, H) to highlight the intact DAPS 

lamellar structure. The discectomy group showed narrowing of the disc space at 

both 14 and 28 days with some remnant AF visible. The fixation+discectomy 

group demonstrated an expanded disc space at day 14 that was maintained through 

day 28, and began to fill with fibrous repair tissue. In the fixation+DAPS group, 

the implant filled the disc space and, at 28 days, concentric lamellae with 

alternating fiber orientation were observed. Scale = 1 mm in panel (A). 
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In fixation+DAPS surgeries, the DAPS remained in the intervertebral space at 

both 14 and 28 days [Fig. 4-5E-F], however, there was intense nuclear staining at the 

implant periphery with little or no matrix deposition between layers. Polarized light 

images of the H&E stained sections demonstrated that the lamellar structure (with 

alternating fiber angles) was intact over the course of the experiment [Fig. 4-5G-H]. 

DAPI staining confirmed that few cells had infiltrated the AF structure of the DAPS, with 

nuclei confined primarily to the boundaries of the implant and few in the interlamellar 

space by day 28 [Fig. 4-6A]. Cells that infiltrated had nuclei that were elongated, 

suggesting their interaction with the aligned nanofiber pattern [Fig. 4-6B].  

  

Figure 4-6 Cell infiltration into PCL-only DAPS in vivo Representative DAPI 

staining of cell nuclei from a fixation+DAPS implant on day 28 at low 

magnification (A) and high magnification (inset) (B) overlaid with a DIC image 

of the DAPS structure. Cells aggregated at the periphery of the DAPS, with little 

infiltration into the DAPS layers. Cells that did populate the interlamellar space 

(arrows) had elongated nuclei, indicative of their orientation with the nanofiber 

template. Scale = 1mm in panel (A) and 100 µm in panel (B). 
 



82 
 

 

4-3.5 Improved Colonization of sDAPS 

sDAPS effectively maintained interlayer gaps for cell infiltration both in vitro and 

in vivo. In in vitro studies, AF cells penetrated the full height of both thick and thin PEO 

layer sDAPS after a one week culture period [Fig. 4-7C-D]. Consistent with in vivo 

findings above, PCL-only DAPS were poorly infiltrated, with central areas completely 

devoid of cells [Fig. 4-7B]. When implanted in the caudal disc space, sDAPS remained in 

place and maintained their structure over time [Fig. 4-7E, H]. Along with advanced cell 

infiltration relative to PCL-only DAPS, collagen deposition was apparent between the 

remnant PCL layers, as evidenced by positive staining in both H&E [Fig. 4-7F-G] and 

picrosirius red sections [Fig. 4-7I-J]. Furthermore, layers with alternating fiber 

orientation remained intact [Fig. 4-7I-J]. 
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Figure 4-7 Sacrificial DAPS (sDAPS) improve cell colonization in vitro and in 

vivo (A) To overcome issues of poor cell infiltration, sDAPS were fabricated with 

a layer of PEO spun directly onto a PCL layer prior to wrapping. sDAPS were 

evaluated both in vitro (via surface seeding of constructs with bovine AF cells and 

7 days of culture) and in vivo (via direct implantation). DAPI staining of cross 

sections on day 7 show increasing cell infiltration in vitro comparing PCL-only 

DAPS (B), ‘thin’ sacrificial layer sDAPS (C), and ‘thick’ sacrificial layer sDAPS 

(D). Implantation in the rat caudal spine (with external fixation) showed improved 

colonization and matrix deposition in ‘thin’ sDAPS (E-G) and ‘thick’ sDAPS (H-

J). Matrix formation between lamellae was apparent at higher magnification in 

both formulations (F, G and I, J).  Scale = 500 µm in (B), 1 mm in panel (E), 100 

µm in panel (F), and 50 µm in panel (G). 
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4.4 Discussion 

Cell-based disc implants may enable reconstruction of the intervertebral disc with 

an engineered tissue that has the capacity to function as a living disc replacement. To 

further this goal, I engineered DAPS (with an AF region mirroring the hierarchical 

organization of the native disc), and evaluated their performance in an in vivo model of 

disc replacement in the rat caudal spine. This study was the first to assess an engineered 

disc that possessed a lamellar structure and fiber alignment similar to the native AF in 

vivo. In addition, I developed an external fixation system to stabilize the implant site and 

prevent implant extrusion, and further improved the DAPS by including sacrificial layers 

in the AF to improve upon poor endogenous cell infiltration. 

This work validated the rat tail as a demanding, load-bearing model for disc 

replacement. While the axial loads experienced in the tail may be lower than the lumbar 

spine, the large angular displacements that occur during tail flexion (coincident with 

dynamic balancing activities) lead to graft displacement. Thus, in the absence of external 

fixation, DAPS were retained in the disc space in only 47% of surgeries, while with 

fixation 100% retention was achieved. Previous studies have demonstrated that a cell-

seeded engineered composite disc comprised of a collagen hydrogel-based AF and an 

alginate hydrogel-based NP were retained in the rat lumbar and caudal disc space without 

external fixation [29, 30]. Differences in outcomes between that study and the current one 

may be due to differences in surgical approach, including the length of the dorsal skin 

incision, the treatment of dorsal tendon bundles, and the amount of annulus removed. 

Differences may also be due to the physical properties of the construct, where DAPS are 

~4-fold stiffer in compression than the collagen/alginate implants [95], perhaps making 
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them more likely to displace (rather than compress) with tail flexion. Future studies could 

challenge such implants in a physiologic loading environment, with compressive loading 

and smaller angular displacements, like the lumbar or cervical spine. Alternatively, the 

rat caudal disc space could be subjected to controlled physiologic loads by modifying the 

external fixator to apply static or dynamic compressive forces [98, 244].  Such 

mechanical perturbation may act to increase biosynthetic activities in the implant, and 

encourage integration with the surrounding tissue [90, 120, 154, 244]. 

 Another observation in this study was poor infiltration of endogenous cells, even 

in DAPS that were stably fixed in the disc space. Poor cell infiltration is a common 

drawback of electrospun scaffolds used for tissue engineering [11, 104, 167, 197] and 

may have been exacerbated in this case by the tight wrapping of concentric layers during 

DAPS fabrication. Stable PCL-only DAPS showed poor infiltration over 28 days, with an 

accumulation of cells at the implant periphery and little or no matrix deposition between 

layers. This result was independent of external fixation (i.e., fibrous encapsulation was 

similar in successful PCL-only DAPS with or without an external fixator) and may be a 

limitation of that scaffold formulation. Nevertheless, stable retention of an implant, as is 

enabled by an external fixator, may improve or hasten integration by preventing 

micromotion that would interrupt newly formed tissue bridges. Borrowing from our 

previous work using PEO as a water-soluble porogen, I fabricated sDAPS with a 

sacrificial layer interwoven between PCL layers. This allowed for rapid and complete 

infiltration by cells in vitro and in vivo, as well as marked collagen deposition between 

layers. Future work will confirm the cell type responsible for this new tissue formation, 

and its composition.  
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Our goal in initiating these studies with an acellular, AF-only DAPS was to 

determine the viability of the caudal disc replacement model using such materials.  

However, acellular biomaterials have come to the fore in the context of tissue engineering 

as an alternative to cell-based methods. Acellular approaches are motivated by difficulties 

with cell isolation, handling, and behavior, and the regulatory obstacles that may act as 

barriers to clinical translation of biological therapies [36]. Here, I developed a material-

based (rather than a cell-based) approach in which the AF construct is populated by 

active endogenous cells that secrete extracellular matrix proteins to produce functional 

tissue. This approach requires evaluation in the target patient population, whose 

degenerated disc environment (with deficient vascularity, low cellularity and chronic 

inflammation) might limit the capacity of endogenous cells to produce functional tissue. 

Our in vitro data also show that DAPS can be readily pre-seeded with exogenous cells 

(AF cells or mesenchymal stem cells) and coupled to an acellular or cell-based NP 

replacement to enable total disc replacement in such scenarios.  

The interface between the DAPS and the adjacent soft tissue/vertebral bodies is 

critical for functional restoration of the motion segment but was not specifically 

evaluated in this study. Integration did occur with the surrounding soft tissue, as 

endogenous cells transited into sacrificial layer DAPS and deposited new extracellular 

matrix. Soft tissue contiguity was observed histologically, particularly in those implants 

with sacrificial layers that were more fully invested. This soft tissue bridge is likely quite 

fragile at early timepoints and thus future studies are required to mechanically evaluate 

the forming interface as a function of time as matrix deposition continues. It is also likely 

that additional steps must be taken to specifically enhance integration, and this model 
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provides a platform to optimize both implant design and surgical strategy to promote 

implant integration within the motion segment.  

A primary limitation of this model is the use of external fixation to unload the 

disc space, and so implants were not challenged or modulated by the physiologic loading 

environment. The current fixator design can, however, be modified to enable application 

of controlled static or dynamic loads [98, 205, 244]. Thus, this model provides an 

opportunity to investigate how the mechanical boundary conditions alter integration at 

the vertebral interface and guide maturation of the DAPS. Additionally, I excluded major 

disc structures, namely the NP and the cartilaginous/vertebral endplates, to focus on 

model development and the improvement of the AF region of the DAPS. Future implant 

design will involve DAPS inclusive of an NP region to form a composite total disc 

replacement.  

4.5 Conclusion 

This study advances the goal of biologic total disc replacement by validating a rat 

caudal spine model for in vivo testing of engineered disc replacements, and illustrates 

that a stable fixation system improves the retention of implanted discs. I evaluated the 

performance of a nanofibrous scaffold that was structurally equivalent to the native AF 

and found that the dense PCL scaffold formed by electrospinning did not permit 

endogenous cell infiltration. However, by modifying the design to include water soluble 

layers to create interlamellar spaces, endogenous cells populated the full thickness of the 

implant and produced a collagenous network. Future work (Ch. 7) will build upon this 

foundation to further the goal of a functional, tissue-engineered total disc replacement.  
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CHAPTER 5 - A Radiopaque Electrospun Scaffold for 

Engineering Fibrous Musculoskeletal Tissues: Scaffold 

Characterization and In Vivo Applications 

5.i Preface  

Chapter 5 describes a radiopaque scaffold for engineering fibrous tissues (and is 

published in [150]). In the previous chapter, I described the use of radiopaque DAPS 

(rDAPS) fabricated from this scaffold in vivo. This proved extremely useful for 

improving our surgical techniques and then to track implant position over time to confirm 

implants did not migrate from the disc space. In this chapter, I expand on the use of 

radiopaque scaffold, showing that in can be visible in joints with dimensions similar to 

humans, that it is cytocompatible, and that it does not induce osteogenesis.  

5.1 Introduction 

The healing capacity of musculoskeletal tissues like the intervertebral disc, 

meniscus, tendon, and ligament is limited, and injury or degeneration of these tissues 

compromises the standard of living of millions in the US [193]. While there are a number 

of surgical approaches for repairing diseased or damaged fibrous musculoskeletal tissues, 

each of these are associated with significant limitations. For example, partial 

meniscectomy may be indicated for tears in the avascular region of the meniscus. While 

in many cases this procedure provides relief of pain and mechanical symptoms, it 

accelerates osteoarthritis due to altered load transmission in the knee [1] and its long-term 
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efficacy is uncertain [106]. Spinal fusion is often performed for segmental instability 

resulting in stenosis or radiculopathy in the presence of a collapsed or bulging 

intervertebral disc. While many patients have positive outcomes following fusion, 

alterations in spinal kinematics after fusion are associated with accelerated degeneration 

of adjacent discs [85]. Rotator cuff repair is commonly performed for pain and weakness 

resulting in compromised upper extremity function. However, the poor healing capacity 

of degenerated rotator cuff tendons and high tensile loads due to tendon retraction impair 

healing at the bone-tendon interface [6]. For these reasons, engineering fibrous 

musculoskeletal tissues from cells and various natural and artificial materials has 

emerged as a strategy to improve the outcomes of the above procedures. In particular, 

tissue engineering repair strategies for disc, meniscus, tendon and ligament have 

transitioned over the past decade from in vitro [34, 132, 165, 179] to in vivo [30, 134, 

149, 246] evaluation using a variety of animal models, and the clinical application of 

these emerging technologies is imminent. 

Engineered fibrous tissues must meet specific design criteria related to their 

physical characteristics in order to effectively resist, dissipate, and transfer mechanical 

loads during normal daily activities. Fibrous musculoskeletal structures resist 

multidirectional loading by dissipating energy through collagen fibers and inter-fibrillar 

matrix, and, in order to ensure proper functional performance, engineered tissues must 

not only withstand physiologic loading and motion, but also must integrate into adjacent 

native tissues. In vivo visualization of engineered tissues would be a powerful method to 

track and confirm the performance in situ, however, the composition of most scaffold 
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materials does not allow for visualization by methods available to clinicians (e.g., 

radiography).  

Visualization by fluoroscopy and radiography is routinely performed for the diagnosis of 

musculoskeletal conditions, surgical planning, intraoperative guidance, and postoperative 

assessment. Total joint replacement prostheses and fracture fixation implants have 

characteristic radiographic profiles due to their radiopaque components; radiopaque 

markers in interbody prosthetic devices for spinal fusion allow for image-guided 

placement and long-term confirmation of position; radiopaque bone cements derived 

from methyl methacrylates and heavy metal/ceramic radiopacifiers are currently used for 

the fixation of prostheses and in the augmentation of vertebral compression fractures. 

Enabling similar visualization of engineered fibrous musculoskeletal tissues is very 

important for repairing tissues that are subject to physiological loads and resultant 

deformations, as it would improve intraoperative positioning and allows post-operative 

tracking of scaffold location, integration and remodeling. 

Electrospun scaffolds are currently being evaluated for a number of fibrous tissue 

engineering applications, including repair of the annulus fibrosus of the intervertebral 

disc [105, 176], the knee meniscus [12, 66], tendons [19, 40, 119], and ligaments [125, 

211].  As these scaffolds are typically radiolucent, I developed a radiopaque nanofibrous 

scaffold by electrospinning a polymer/ceramic nanopowder solution [149]. Scaffolds 

were produced with aligned fibers to provide a template for cell attachment and to orient 

newly formed collagenous matrix [129, 174]. To impart radiopacity, I included 

radiodense nanoparticles within each fiber. In this study, I characterized the structure, 
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radiation attenuation, and mechanical behavior of these scaffolds as a function of 

nanoparticle density, as well as the behavior of bone marrow-derived mesenchymal stem 

cells (MSCs) seeded on the scaffolds. We further evaluated these materials in situ in the 

bovine knee for applications in meniscus repair and in vivo in a rat model of total 

intervertebral disc replacement.  

5.2 Methods 

5.2-1 Scaffold Fabrication  

Radiopaque scaffolds were generated from a solution of poly(ε-caprolactone) 

(PCL, Shenzhen BrightChina Industrial Co., Hong Kong, China) mixed with radiodense 

zirconium(IV) oxide nanoparticles (Zirconia, Sigma-Aldrich, St. Louis, MO). Zirconia 

particles have a characteristic dimension of <100 nm, allowing for their complete 

encapsulation within PCL fibers that typically have a diameter greater than 300 nm [128]. 

PCL and zirconia were dissolved in a 1:1 mixture of tetrahydrofuran (THF) and N,N-

dimethylformamide (DMF) (Fisher Chemical, Fairlawn, NJ) and the slurry was extruded 

at a rate of 2.5 mL/hour through a 15-20 kV-charged 18G needle while continuously 

mixed with a magnetic stirrer. Fibers were drawn across a 15 cm air gap onto a grounded 

mandrel rotating with a surface velocity of 10 m/s to create aligned nanofibrous sheets 

(thickness = 200µm). Four scaffold-types with varying zirconia concentration were 

fabricated with PCL/zirconia mass ratios of either 50%/50%, 75%/25%, 90%/10%, or 

100%/0% [Table 5-1, Fig. 5-1]. In each case, the solution concentration was 14.3 g of 

PCL/zirconia in 100 mL of THF/DMF (14.3% w/v [13]).  
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Scaffold  
%PCL by 

mass 
%Zr by 
mass 

PCL 
mass 

(g) 

Zirconia 
mass 

(g) 

THF 
volume 

(mL) 

DMF 
volume 

(mL) 
% w/v 

1 100 0 14.3 0 50 50 14.3 

2 90 10 12.9 1.4 50 50 14.3 

3 75 25 10.7 3.6 50 50 14.3 

4 50 50 7.15 7.15 50 50 14.3 

Figure 5-1 Electrospun radiopaque scaffold Radiopaque scaffolds were generated 

by electrospinning a mixture of PCL, a biocompatible polymer with long term in 

vivo stability, and zirconia, a ceramic nanopowder. The slurry was continuously 

mixed with a magnetic stirrer and collected onto a rotating mandrel to produce 

aligned nanofibrous sheets. Four different scaffold formulations were produced: 

100% PCL scaffold, 90% PCL/10% zirconia scaffold, 75% PCL/25% zirconia 

scaffold, and 50% PCL/50% zirconia scaffold. 
 

Table 5-1 - Composition of Solutions Used to Produce Electrospun Scaffolds 
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5.2-2. Scaffold Characterization 

Each scaffold was assayed for structural continuity, radiodensity and mechanical 

properties. To assess scaffold nanostructure, samples were cut from freshly spun mats, 

sputter coated, and imaged at 2,000X and 10,000X magnification on a scanning electron 

microscope (SEM; 6400, JEOL Ltd., Tokyo, Japan) with an accelerating voltage of 10 

kV. To measure radiodensity, 8 mm diameter samples were punched from each scaffold 

and scanned by microcomputed tomography (µCT; vivaCT 75, SCANCO Medical AG, 

Bruttisellen, Switzerland) at 20.5 µm resolution (n=5/group). The linear attenuation 

coefficient (volumetric average radiation attenuation) of each sample was calculated from 

volumetric reconstructions of the punched samples and then converted to Hounsfield 

Units (HU) by normalizing values to the attenuation of water.  Scaffold radiation 

attenuation was directly compared to that of cortical bone in order to assess the potential 

for in situ visualization. To measure scaffold mechanical properties, scaffold strips (5 mm 

x 40 mm) were tested in uniaxial tension parallel to the fiber orientation using an 

electromechanical testing system (5542, Instron, Norwood, MA) (n=5/group). The testing 

protocol consisted of a 0.05 N preload followed by extension to failure at a rate of 0.1% 

strain/sec. The linear region tensile modulus was calculated as described previously [13].  

5.2-3. In Situ Evaluation in the Bovine Meniscus 

 To determine whether scaffolds had radiation attenuation suitable for 

visualization in joints with dimensions similar in scale to human joints, a radiopaque 

scaffold was implanted ex vivo into the medial meniscus of a juvenile bovine stifle joint 
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and imaged with a fluoroscope (HD, Orthoscan Inc., Scottsdale, AZ). To do so, a medial 

parapatellar incision was made through the joint capsule, the anterior cruciate ligament 

was transected, and a circumferential incision was made in the medial meniscus, 

mimicking the location and shape of a bucket handle tear similar to those others have 

used in animal models [199]. The radiopaque scaffold was prepared from 50% 

zirconia/50% PCL solution at a thickness of 500 m. Strips of dimensions 3 mm by 30 

mm were layered into a stack of 8 and welded together with a soldering pencil. The 

layered scaffold was inserted into the bucket handle tear and tethered to the meniscus 

with 4-0 suture. The synovium and fascia were then closed with suture and anterior-

posterior and medial-lateral fluoroscopic images were acquired. After this preliminary 

imaging, the meniscus was removed en bloc, soaked for 72 hours in Lugol’s solution 

(Sigma-Aldrich) to enhance the radiocontrast of the meniscal tissue, and imaged via µCT 

at 20.5 µm resolution for visualization of both the contrast-enhanced meniscus and the 

radiopaque scaffold. 

5.2-4 In Vitro Assessment of Cytocompatibility and Osteogenic Potential 

 To determine whether radiopaque scaffolds were cytocompatible, scaffolds were 

seeded with juvenile bovine bone marrow-derived MSCs and assayed for cell metabolic 

activity. MSCs were isolated from the proximal femur of 3-6 month old calves and 

expanded to passage 2 in a basal medium (BM) containing Dulbecco’s Modified Eagle 

Medium (DMEM; Gibco, Invitrogen Life Sciences, Carlsbad, CA), 10% fetal bovine 

serum (Gibco) and 1% penicillin-streptomycin-Fungizone (Gibco). Sections were cut 

from each scaffold with an 8 mm biopsy punch, sterilized in ethanol, rehydrated, and then 
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seeded with 2x105 cells/scaffold (n=4/group). Metabolic activity was measured using the 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Invitrogen, 

Carlsbad, CA) colorimetric assay at 3, 7, and 14 days after seeding. Cells were also 

seeded onto tissue culture plastic (TCP) and cultured in BM (n=4/group).  

Previous studies have shown that nanofibrous scaffolds intended for bone tissue 

engineering can be optimized for osteogenic differentiation by including ceramic 

particles like hydroxyapatite [123, 252]. To test this potential undesirable side effect of 

zirconia inclusion, two additional groups, MSCs seeded on either on 100% PCL scaffold 

or MSCs seeded on 50% PCL/50% zirconia scaffold, were cultured for 28 days in basal 

media and alkaline phosphatase activity was measured. To do so, the dephosphorylation 

of p-nitrophenyl (pNP) phosphate by alkaline phosphatase was quantified using a 

colorimetric assay kit (Alkaline Phosphatase Assay Kit (ab83369); Abcam PLC, 

Cambridge, UK) (n=5/group). Additionally, each scaffold type (100% PCL, 90% 

PCL/10% zirconia, 75% PCL, 25% zirconia, and 50% PCL/50% zirconia) was seeded 

with MSCs, cultured for 28 days in basal media, fixed in formalin and stained with von 

Kossa to determine whether overt mineralization had occurred (n=1/group).  

 5.2-5 In Vivo Evaluation in a Rat Model of Total Disc Replacement  

 To examine in vivo function, disc-like angle ply structures [149] fabricated from 

radiopaque scaffold (rDAPS) were implanted into the coccygeal spines (tails) of Sprague 

Dawley rats with institutional IACUC approval (male, 440-485 g, n = 5). To fabricate 

rDAPS, strips were cut from aligned radiopaque scaffold 30o to the fiber direction and 
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two strips with alternating ±30o alignment were wrapped concentrically to form the 

annulus fibrosus region. Implantation of rDAPS into the rat coccygeal spine involved 

passing two surgical wires (0.8 mm) laterally through the mid-height of both the Co8 and 

Co9 vertebrae, and then fastening a radiolucent external fixator to the wires [Fig. 5-2a-b]. 

A dorsal incision was made, the native disc was removed, rDAPS were inserted into the 

disc space, and the incision was closed. Rats were then returned to cage activity and 

euthanized 28 days post-surgery. Two implants of varying radiodensities were evaluated: 

a high radiodensity implant composed of two layers of 50% PCL/50% zirconia (50/50 

rDAPS, n=2), and a low radiodensity implant composed of one layer of 75% PCL/25% 

zirconia, 1 layer of 100% PCL and one layer of degradable 75:25 poly(lactic-co-glycolic 

acid) (PLGA) (multilayer rDAPS, n=3) [Fig. 5-2c]. I have previously shown that 

degradable layers included in DAPS provide additional routes for cell infiltration 

following implantation (Ch.4) [149]. In each case, the layer thickness was 125 m.  
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Figure 5-2 Radiopaque engineered discs in a rat model of total disc replacement 

(a) Rat tails were externally fixed with a custom device to provide a stable site for 

implantation [149]. (b) This device was radiolucent by design to allow for 

visualization of the disc space by fluoroscopy for longitudinal analysis. (c) rDAPS 

of two formulations were implanted: 50/50 rDAPS composed entirely of 50% 

PCL/50% zirconia layers, and multilayer rDAPS composed of three layers, a 

radiopaque layer of 75% PCL/25% zirconia, a radiolucent layer of 100% PCL, and 

a layer of 100% PLGA (designed to degrade when implanted in order to provide 

pathways for endogenous cell infiltration). 
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Implants were assessed for positioning between vertebrae, maintenance of 

microstructure, and integration with native tissues. To monitor implant position and 

structure in vivo, rat tails were imaged via fluoroscopy post-operatively and then at 3, 7, 

14, 21, and 28 days through the radiolucent external fixator. Following euthanasia, the 

external fixator was removed and bone-rDAPS-bone motion segments were separated 

from the tails by sharp dissection. Motion segments were imaged via µCT (resolution: 

20.5 µm for 50/50 rDAPS, 10 µm multilayer rDAPS) and reconstructed in 3D to confirm 

implant position and visualize implant microstructure. Following imaging, motion 

segments were fixed in formalin, decalcified in formic acid, and sectioned at 30 m 

thickness on a cryostat microtome (Microm HM 500, Thermo Scientific, Waltham, MA). 

To assess implant structure and integration with native tissue, sections were double-

stained with Alcian blue (for glycosaminoglycans) and picrosirius red (for collagen), and 

were visualized via brightfield microscopy (Eclipse 90i, Nikon, Tokyo, Japan).  

5.2-6 Statistical Analysis 

 Radiation attenuation and tensile modulus were compared between groups using 

one way analysis of variance (ANOVA) with zirconia concentration as the independent 

variable. MTT results were analyzed by two-way ANOVA with time and zirconia 

concentration as the independent variables. In each case, Bonferroni’s post-hoc tests were 

used to make pairwise comparisons between groups (p<0.05). Finally, alkaline 

phosphatase activity was compared by t-test (p<0.05). Data are reported as mean ± 

standard deviation. 
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5.3 Results  

5.3-1 Scaffold structure, radiation attenuation, mechanical function, and 

cytocompatibility 

SEM analysis revealed that all formulations of the radiopaque scaffold had 

continuous and aligned nanofibers [Fig. 5-3a]. Zirconia particles were embedded within 

the electrospun fibers and fiber morphology was not changed at lower concentrations, 

while at higher concentrations (25% and 50% zirconia scaffolds) zirconia aggregated as 

pellets exterior to the fibers. Radiation attenuation increased with zirconia content, 

plateauing at 25% zirconia inclusion [Fig. 5-3b]. The measured attenuation of 50% and 

25% zirconia scaffolds was within the attenuation range of cortical bone [94]. PCL alone 

had no signal and thus 3D reconstruction of 100% PCL scaffolds was not possible. The 

linear region tensile modulus of the radiopaque scaffold increased with increasing 

zirconia content, reaching a maximum at 25% zirconia. At higher levels (50%), the 

tensile modulus dropped sharply to the level of 100% PCL [Fig. 5-3c].  
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Figure 5-3 Structure, linear attenuation coefficient, and tensile modulus of 

radiopaque scaffolds (a) All scaffold types were aligned and nanofibrous. 

Structure was largely unaltered with low zirconia inclusion levels, though zirconia 

clusters (arrows) appeared on the fiber surfaces at the highest concentration and to 

a lesser extent on 75% PCL/25% zirconia scaffold. Scales – top row: 5 m, bottom 

row: 1 m. (b) The linear attenuation coefficients of scaffolds with high zirconia 

content was similar to that of cortical bone (*p<0.05 vs. 90% PCL/10% zirconia). 

(c) Tensile modulus was greater with increasing zirconia concentration, except for 

the highest concentration (*p<0.05 vs. 100% PCL). 
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When seeded with cells, there were no differences between scaffold variants in 

terms of cell proliferation which was slower on all scaffold formulations in comparison to 

cells seeded on TCP [Fig. 5-4a]. Additionally, there was significantly less alkaline 

phosphatase activity on 50% PCL/50% zirconia scaffolds when compared to 100% PCL 

scaffolds [Fig. 5-4b] and there was no evidence of positive von Kossa staining for any of 

the zirconia scaffolds. [Fig. 5-4c]. 
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Figure 5-4 MSC viability and osteogenic potential on radiopaque scaffolds 

(a) The MTT assay for total cell metabolic activity over 14 days 

demonstrated no significant differences between groups and (b) 

quantification of alkaline phosphatase revealed diminished activity on 

radiopaque scaffolds (*, p<0.05). (c) Futhermore, von Kossa staining 

revealed no evidence of calcium on any of the radiopaque scaffolds. Scale, 

4mm. These data indicate that scaffolds were not cytotoxic and did not 

cause osteogenesis. 
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5.3-2 Appearance of radiopaque scaffold in situ and with long term in vivo implantation 

 Radiopaque scaffolds were readily visualized within the bovine meniscus in situ 

in both anterior-posterior and medial-lateral fluoroscopic images of the knee [Fig. 5-5a-

b]. µCT reconstructions with Lugol’s solution used to enhance the contrast of the native 

meniscus provided anatomical information of the meniscus (the boundaries of the soft 

tissue were readily visualized) and positioning of the scaffold within the bucket handle 

tear [Fig. 5-5c-e]. The bucket handle tear was located near the boundary between the red-

red and red-white meniscal regions and the layered scaffold was positioned within the 

tear, conforming to the curvature of the meniscus, with scaffold layers distinctly visible. 
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Figure 5-5 Visualization of radiopaque scaffold implanted into the bovine 

meniscus A layered radiopaque scaffold (arrows) was visible in an 

artificial tear created in the bovine medial meniscus on (a) medial-lateral 

and (b) anterior-posterior fluoroscopic images. Ex situ μCT analysis, with 

contrast enhancement to visualize the meniscus, is shown in (c) cross 

section, with (d) anterior and (e) cranial views after 3D reconstruction. 
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Both formulations of rDAPS were visualized intra- and post-operatively by µCT 

and fluoroscopy. 50/50 rDAPS had a distinct signal that allowed for segmentation of 

- 6a]. Fluoroscopy revealed that the 

radiopaque signal of 50/50 rDAPS was more intense than that of the native bone and that 

there was minimal change in implant position over time [Fig. 5-6b]. Histologically, 50/50 

rDAPS were located directly between vertebrae and were structurally intact, with little 

infiltration of local tissue [Fig. 5-6c].  

  

Figure 5-6 High radiopacity rDAPS in vivo (a) rDAPS (gold) were located 

1 mm. (b) rDAPS (arrows) attenuation was distinct from adjacent 

vertebrae and position did not change over time as visualized by 

fluoroscopy. (c) Histologically, rDAPS maintained their lamellar 

structure, though no tissue infiltration was apparent (as expected for DAPS 

without sacrificial layers). Scale, 1mm. 
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Multilayer rDAPS were segmented for 3D μCT reconstructions based on their 

appearance, and were located directly between vertebrae [Fig. 5-7a]. The alternating 

radiopaque and non-radiopaque layers allowed for the visualization of the lamellar 

structure in transverse [Fig. 5-7b] and axial [Fig. 5-7c] cross-sections. Fluoroscopically, 

multilayer rDAPS were not distinguishable from adjacent vertebrae, and did not appear to 

migrate over time [Fig. 5-7d]. Images of histological sections confirmed that the implant 

lamellar structure was maintained, new collagen was deposited on PCL/zirconia layers, 

and that  PLGA had not fully degraded by day 28 [Fig. 5-7e-f]. In addition, H&E stained 

sections revealed there was no endogenous response to the implanted biomaterial (not 

shown). 
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Figure 5-7 Multilayer rDAPS in vivo rDAPS were fabricated to include a radiopaque 

PCL/zirconia layer, a non-radiopaque semi-permanent PCL layer, and a non-

radiopaque degradable PLGA layer. (a) rDAPS (gold) were located directly between 

vertebrae (gray) with a distinct layered st

Individual layers were apparent in (b) transverse (scale, 1mm) and (a) axial (scale, 

1mm) cross-sections. (d) Fluoroscopy demonstrated that low radiopacity rDAPS 

(arrows) were not distinct from adjacent vertebrate and that there was no change in 

position over time. (e) Histologically, rDAPS structure appeared intact and new 

tissue was deposited between layers. Scale, 1 mm. (f) Zirconia was sequestered 

within PCL/zirconia layers (star), while PCL-only layers (white arrow) and PLGA 

layers (striped white arrow) remained intact. New collagen deposits (black arrows) 

appeared on PCL/zirconia layers suggesting the radiopaque scaffold provides a 

template for fibrous tissue formation in vivo. 
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5.4 Discussion  

In this study, I developed and characterized a radiopaque electrospun scaffolding 

system to enable visualization of engineered implants using clinically relevant and 

readily accessible imaging modalities (i.e., x-ray attenuation). Nanofibrous scaffolds 

were produced from PCL, a standard biodegradable polymer widely used in tissue 

engineering applications, coupled with nanoparticles composed of zirconia, a ceramic 

nanopowder. While many scaffolds for bone tissue engineering are intrinsically 

radiopaque, this is the first scaffold of its kind for fibrous tissue engineering applications. 

In developing this system, I demonstrated that scaffold radiopacity and mechanical 

properties could be tuned by altering the concentration of zirconia included in each fiber, 

that the scaffolds were visible radiographically when implanted into large joints of human 

dimensions, that inclusion of the radiopacifier did not influence cell viability or 

proliferation, and that it did not instigate osteogenic differentiation by MSCs seeded onto 

these scaffolds or when placed into the disc space. Radiopaque implants designed for 

total disc replacement were visible over 4 weeks using both fluoroscopy and µCT. In 

addition, these scaffolds were compatible with the formation of collagenous tissue in 

vivo, establishing their utility for both animal model development and fibrous tissue 

engineering applications. 

The linear attenuation coefficient of scaffolds was assessed in vitro and the total 

radiation attenuation was assessed in vivo. The linear attenuation coefficient of 

electrospun scaffolds changed as a result of inclusion of the zirconia nanoparticles. 

Specifically, the linear attenuation coefficient increased with zirconia content, reaching a 
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plateau at 25% zirconia. This may suggest that the maximum packing density of zirconia 

in the nanofibers is in the range of 25%. Thus, while scaffolds were nominally 50%, 

25%, 10% or 0% zirconia, at the highest concentration phase separation may have 

occurred during the electrospinning procedure as evidenced by the extrafibrillar 

accumulation of zirconia in SEM images. The linear attenuation coefficient reported here 

is a property intrinsic to the scaffold material. It represents the volumetric average of 

radiation attenuation and consequently is not a function of scaffold geometry. As it is a 

material property it allows for direct comparisons between samples independent of 

scaffold geometry. Fluoroscopic images however are a visualization of total radiation 

attenuation, which is a function of scaffold geometry. For our in vivo studies, the 50/50 

rDAPS were composed of 100% radiopaque layers, while the multilayer (75/25) rDAPS 

consisted of only 33% radiopaque layers. This resulted in a difference in the total 

radiation attenuation of the two implant types, despite 75/25 and 50/50 layers have a 

similar linear attenuation coefficient. For future studies, by controlling the zirconia 

content, scaffold radiopacity could be tuned for a specific application. For example, if an 

electrospun scaffold is used to repair a deeper tissue, such as a tissue inside a synovial 

joint [41], the abdomen [87], or within the lumbar spine [149], a high radiodensity 

scaffold may be required for adequate visualization. However, in a subcutaneous model, 

a less radiodense scaffold may be useful, since the superficial nature of a subcutaneous 

model lends itself to less obstructed visualization. 

Scaffold mechanical properties were also affected by increasing the concentration 

of zirconia nanoparticles. Tensile modulus initially increased with increasing zirconia 
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content but declined at the highest concentration. This phenomenon has also been 

observed in electrospun scaffolds containing hydroxyapatite inclusions that have been 

investigated for bone tissue engineering [236], and may be related to a loss of fiber 

continuity at high filler concentrations. The aggregation of zirconia on the surface of the 

50% zirconia scaffolds may also have an effect on the mechanical response (by altering 

fiber-to-fiber interactions), and further suggests that zirconia concentration within PCL 

had reached a saturation point at this high percent weight. 

To assess in vivo potential, radiopaque implants formed with high and low 

concentrations of zirconia were visualized in the rat coccygeal spine. Previous work with 

this model demonstrated that the retention of engineered discs can be improved by 

stabilizing the implant site with an external fixation device [149]. Visualization by 

fluoroscopy in this context was useful for intraoperative positioning of the implant and to 

confirm that there was no migration of scaffolds over time. Likewise, imaging of the 

scaffold in situ in the bovine knee demonstrated the potential utility of these radiopaque 

scaffolds in large animal and human applications. Subsequent µCT analyses on explanted 

tissues offered high resolution scaffold imaging and dimensioning that could be coupled 

with other outcome measures (such as histology) to better monitor scaffold localization, 

integration, and degradation with time after implantation. These features may enable the 

conservation of animals in future studies by eliminating the number of iterations required 

for improving surgical techniques during model development.  

The inclusion of zirconia into the PCL fibers did not alter cell viability and 

appeared to not be a factor in promoting osteogenesis. While other polymer/ceramic 
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composite scaffolds have been used to promote an osteogenic phenotype, I did not 

observe additional alkaline phosphatase activity or calcium deposition on scaffolds 

containing zirconia cultured in vitro. Furthermore, when these scaffolds were implanted 

into the rat coccygeal spine after discectomy (a location that is prone to fusion), I did not 

find any evidence of increased mineral density in adjacent to the intervertebral space (by 

µCT) after 4 weeks.  Other osteogenic scaffolds are composed of minerals like 

hydroxyapatite or calcium phosphate [72, 84] which are naturally present in bone and 

provide raw materials that cells can utilize to form mineral deposits; in contrast, zirconia 

is foreign to the body and should not play a role in this process. Future work is required 

to fully characterize MSCs and other cell types after seeding onto these scaffolds, 

including measurements of extracellular matrix production and the expression of genes 

relevant to the osteogenic and fibrochondrogenic phenotype. Over a one month 

implantation time, multilayer rDAPS were compatible with the formation of new 

collagenous tissue by endogenous rat cells in the coccygeal spine. Taken together these 

data suggest that PCL/zirconia scaffolds may be useful for both developing engineered 

fibrous tissues and evaluating these tissues in in vivo models.  

As PCL will degrade in vivo, implanted scaffolds fabricated from PCL and 

zirconia will release zirconia once the slowly degrading PCL begins to break down, thus 

introducing a potential contaminant into the local microenvironment. A previous report 

demonstrated that the zirconia nanoparticles have the physical properties of a biologically 

inert material, and when zirconia nanoparticles were directly included in the culture 

media of 3T3 fibroblasts in monolayer, there was no effect on cell morphology or 
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viability [111]. Our study confirmed there was no effect of zirconia at any concentration 

on cell viability in vitro. In addition, H&E stained sections from rDAPS implanted in 

vivo showed no aberrant cellular response to two implant types with high or low 

concentrations of zirconia. This provides strong evidence that zirconia within the PCL 

fibers are not cytotoxic at the implant site. However, these studies are limited in that the 

timepoints evaluated are too early for the PCL degradation process to have occurred, thus 

little release of zirconia into the media or into the disc space would be expected. An 

additional limitation of this scaffold system may be that the radiopacity could change 

after the release of zirconia through the normal degradation of PCL, which could limit 

ability to radiographically visualize and track scaffolds after long-term implantation. 

Scaffold displacement usually occurs relatively soon after implantation, and at these 

longer time points, one would expect that the scaffold would be fully integrated in the 

surrounding native tissue. Future studies will focus on these potential changes in scaffold 

radiopacity, as well as the potential for systemic and local inflammatory responses to 

zirconia, after long-term degradation of the PCL fibers (on the order of months to years).  

These studies will identify whether the scaffold is best used for shorter term optimization 

of scaffold placement and surgical methods, or whether it may be considered for long 

term applications as well. 

5.5 Conclusions 

 Taken together, these data show that zirconia-embedded polymer scaffolds can be 

visualized radiographically in both small and large animal models and can serve as a 

framework for the development of an engineered fibrous tissue. The material was 
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cytocompatible and did not promote osteogenesis as demonstrated both in vitro, using a 

cell source with a pliable phenotype, and in vivo, where collagenous tissue was deposited 

into the scaffold. A scaffold with these characteristics will allow for the image-guided 

implantation and non-invasive assessment of engineered fibrous tissues.  
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CHAPTER 6 - Intermediate and long-term outcomes of 

an acellular disc-like angle ply structure (DAPS) for 

intervertebral disc replacement in a small animal model 

 

6.i. Preface 

 In chapters 4 and 5, I described the development and analysis of a rat model of 

total disc replacement. Building off this work, here, I describe the development of an 

acellular engineered total disc replacement, evaluating acellular DAPS with sacrificial 

layer (sDAPS) in the rat tail (1) to evaluate their ability to functionally replace discs and 

(2) to improve our understanding of the biomaterials (PCL and HA) response in the in 

vivo space. 

 

6.1. Introduction 

The current paradigm for regeneration of the musculoskeletal system through 

tissue engineering involves a two-step procedure. First, the cell source of interest is 

harvested from the patient in a pre-operative outpatient procedure; these cells are 

expanded, seeded onto an engineered scaffold, and matured for re-introduction into the 

body. There are a number of drawbacks to this method. First, there is potential for 

morbidity at the donor site. For example, harvesting bone marrow from the iliac crest 

results in post-operative pain and introduces the risk of infection. Second, the cells 

isolated from bone marrow require closely regulated culture conditions to induce and 
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maintain a desired phenotype. AF cells, NP cells and MSCs are phenotypically unstable 

after a number of passages in monolayer [22, 118, 157, 240]. Finally, clinical 

implementation of cell-based therapy necessitates overcoming significant regulatory 

hurdles, along with expensive clinical trials and the requisite academic-industrial 

partnership for financial contributions from industry.  

Thus, acellular biomaterials that attract and direct endogenous cells have come to 

the fore in the context of tissue engineering as an alternative to cell-based methods [36]. 

For example, acelluar hydrogels injected into the left ventricle have improved 

cardiovascular function in an ovine model of myocardial infarction [101]. Also, for the 

treatment of articular cartilage defects, autologous matrix induced chondrogenesis is a 

developing strategy that combines recruiting cells from the subchondral bone marrow 

through microfracture and directing the behavior of those cells once they have engrafted 

into a synthetic matrix implanted into the defect [21, 57]. An acellular engineered total 

disc replacement may establish healthy spine function while also eliminating the need for 

evaluating complicated cell-based tissue replacement strategies. 

For the treatment of end-stage disc pathology, our lab developed disc-like angle 

ply structures (DAPS) for total disc arthroplasty that include an electrospun nanofibrous 

annulus fibrosus (AF) that matches the structural hierarchy of the native AF and a 

hydrogel core nucleus pulposus (NP). When seeded with disc cells or stem cells, DAPS 

mature in vitro, recapitulating native compositional and mechanical properties [175, 179]. 

In previous work, I implanted acellular DAPS into the rat tail for short durations and 

established that endogenous cell infiltration and tissue deposition was possible (Ch. 4), 

indicating that the topographical template provided by the nanofibrous structure of the 
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electrospun AF region guides the natural remodeling response to establish an “organized 

scar” and ultimately a functional tissue. This strategy is likely translatable, as fibrous 

tissue deposited around total disc arthroplasty devices in human surgeries has substantial 

mechanical properties, nearing those of the native AF and NP [70]. While significant 

tissue deposition between AF layers was evident in this model histologically, mechanical 

competence of the resultant DAPS/repair-tissue hybrid was not measured. In addition, 

long-term timepoints, where the risk for intervertebral fusion is high, were not evaluated, 

and the role of an acellular NP replacement was not investigated. 

To expand on this previous study (Ch. 4), here I generated acellular DAPS 

composed an eletrospun AF region and a hydrogel NP region and evaluated their 

intermediate and long-term function after implantation in the rat tail model. A number of 

control groups were also evaluated so as to assess the local wound remodeling process in 

the intervertebral space and its potential for populating an acellular DAPS with functional 

tissue. In addition, the role of fixation in this model was more closely examined to 

determine its effect on tissue health. 

 

6.2. Methods 

6.2-1 Formation of acellular sacrificial layer DAPS (sDAPS) for total disc replacement 

DAPS with sacrificial layers (sDAPS) [Fig. 6-1a] were fabricated with geometry 

compatible with the rat tail: outer diameter of 5 mm, NP diameter of 1.5 mm, and height 

of 2 mm. The AF regions of these constructs had 3 repeating concentric layers: a 125 um 

layer of a cytocompatible polymer with longterm stability, a 125 um layer of the same  
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polymer with opposing fiber orientation, and a 250 um layer of a polymer designed to 

degrade after implantation to provide channels for cell infiltration [149]. The center of the 

construct was filled with a bioactive hydrogel core. 

  

Figure 6-1 Study design: evaluation of acellular engineered discs (a) Engineered 

disc-like angle ply structures with sacrificial layers for cell infiltration (sDAPS) were 

fabricated with an AF region consisting of PCL, a cytocompatible polymer with long 

term stability, and PLGA, a degradable polymer designed to allow cell infiltration, 

and an NP region consisting of photopolymerizable HA, an essential component of 

the NP extracellular matrix. These constructs were implanted into the rat caudal spine 

and the implantation site was immobilized with an external fixation device. Spinal 

segments were assayed by µCT, histology and mechanical testing over the course of 

12 weeks. (b) Additional control groups were evaluated over the same time period to 

explore the role of immobilization on functional outcomes. 
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Specifically, AF regions were fabricated from oriented electrospun nanofibrous 

sheets that included layers of poly(ε-caprolactone) (PCL; Shenzhen Bright China 

Industrial Co., Hong Kong, China), and resorbable layers of poly(lactic-co-glycolic acid) 

(PLGA; 50:50 DL-PLG, LACTEL, Birmingham, AL)]. To enable electrospinning, PCL 

was dissolved in a 1:1 mixture of tetrahydrofuran (Fisher Chemical, Fairlawn, NJ) and 

N,N-dimethylformamide (Fisher Chemical), generating a 14.3% w/v solution, and PLGA 

was dissolved in 1:1 THF/DMF at 35.1% w/v. PCL solution was loaded into a syringe, 

extruded through an 18G needle at 2.5 mL/hr across a 12-15 kV voltage gradient, and 

collected on a mandrel positioned 15 cm from the needle tip, which was rotating at a 

surface velocity of 10 m/s. A layer of PLGA was electrospun atop the accumulated PCL 

at 2.5 mL/hr and 13 kV. These PCL/PLGA sheets were cut with a scalpel at 30o, 

replicating the angled fiber alignment of an individual lamella, and strips with alternating 

fiber alignment were wrapped concentrically about a post, generating an artificial AF 

region with hierarchical fiber structure similar to the native AF. 

NP regions consisted of hyaluronic acid, an essential component of the disc 

extracellular matrix, which was processed as a photopolymerizable hydrogel. 

Methacrylated hyaluronic acid (MeHA) was generated by reacting sodium hyaluronate 

(65 kDA, Lifecore, Chaska, MN) with methacrylic anhydride (Sigma Aldrich, St. Louis, 

MO). A 5% w/v solution of MeHA in PBS was modified with 0.05% photoinitiator 

(Irgacure 2959, (2-methyl-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone, Ciba-

Geigy, Tarrytown, NY) to allow for photocrossinking of the polymer network. The 

centers of the PCL/PLGA AF regions were removed with a 1.5 mm biopsy punch and 10 

uL of MeHA solution was pipetted into the core. An airtight container was filled with 
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nitrogen gas at 2 psi, the composite PCL/PLGA AF regions with MeHA NP regions were 

inserted the into the container, and the MeHA NP regions were photopolymerized 

through a window by exposure to ultraviolet light at 5 mW/cm2 for 20 minutes. 

 

6.2-2 Implantation of sDAPS into the rat caudal spine 

 sDAPS were implanted into the tails of retired breeder Sprague Dawley rats 

(male, 7-9 months, 507 +/- 32g) with local institutional approval [Fig. 6-1a]. Rats were 

anesthetized with isoflurane, two surgical wires were passed through both the C8 and C9 

(caudal) vertebrae, and a PEEK/stainless steel ring-type external fixator was secured to 

the embedded wires to immobilize the implantation site [149, 150]. The fixator was 

distracted slightly to expand the disc space and provide room for the implant. A dorsal 

skin incision was made, a scalpel and micro-curette were used to remove the native C8-

C9 disc and sDAPS were implanted into the open intervertebral space. The skin was 

closed with suture and rats were returned to normal cage activity. Several additional 

control groups were included: an immobilized intact disc, a group with immobilization 

and discectomy, and a non-immobilized discectomy only control [Fig. 6-1b]. Rats from 

each group were euthanized at 2, 4 or 12 weeks after surgery; sample sizes for each group 

are listed in Table 6-1. 
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Table 6-1 – sDAPS and Control Group Sample Sizes 

  Week 2 Week 4 Week 12 

Immoblization   3 (), 3 (H) 3 (), 3 (H) 

Discectomy 2 (), 2 (H) 2 (), 2 (H) 4 (), 4 (H) 

Immobilization + 
Discectomy 

2 (), 2 (H) 3 (), 3 (H) 5 (), 5 (H) 

Immoblization + sDAPS 2 (), 2 (H) 8 (), 4 (H), 4 (M) 4 (), 4 (H) 

: micro-computed tomography, H: histology: M: mechanical testing 

 

6.2-3 Microcomputed tomography (CT), histology, and mechanical function 

 After euthanasia, external fixation devices were removed, and the C8 through C9 

spinal section was dissected en bloc and assayed by µCT and histology. Segments were 

isotropic resolution of 20.5m and three-dimensional reconstructions were performed. 

The segments were then fixed in formalin, decalcified in formic acid, and either 

embedded in optimum cutting temperature gel for sectioning on a cryostat microtome (2 

week and 4 week groups, 30 m sections) or processed for paraffin infiltration for 

sectioning on a paraffin microtome (12 week groups, 10 m sections). Sections were 

stained with a combination of Alcian blue and picrosirius red to evaluate proteoglycan 

(PG) and collagen content. Immunohistochemical staining for types I and II collagen was 

performed by first incubating sections in proteinase K and the blocking with 10% NGS. 

Primary antibodies were applied overnight followed by a 1 h incubation with secondary 

antibodies at room temperature. Staining was visualized using the DAB chromogen 

reagent. In each case, images were acquired in brightfield (Eclipse 90i, Nikon, Tokyo, 

Japan). 
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 Additional segments from the sDAPS group were tested in compression to 

evaluate their ability to function at physiologically relevant loads. Vertebra-sDAPS-

vertebra motion segments were isolated from the tail, the skin was removed, and the 

dorsal soft tissue was cleared away with a micro-curette to expose the vertebrae. The 

proximal and distal vertebrae were marked with ink directly adjacent to the vertebral 

endplates and the motion segment was inserted into custom fixtures installed on an 

electromechanical testing system (5948; Instron, Norwood, MA). The testing protocol 

consisted of 20 cycles of compression from 0 to -3N (~0.3 MPa, 60% body weight). 

During testing, a digital camera (acA3800-14um; Basler AG, Ahrensburg, Germany) fit 

with a close-focusing macro video lens (Zoom 7000; Navitar Inc., Rochester, NY) was 

used to record the motion of the segment, and a custom texture tracking program was 

used to optically track displacement [146]. The linear region compressive modulus and 

maximum strain were extracted from the 20th compressive loading cycle using a bilinear 

fit routine. Mechanical properties were normalized to sDAPS geometry,[20] which was 

measured after the mechanical test. Cross-sectional area was measured from a digital 

image and height was measured using a non-contact laser-based device [13, 149]. Intact 

native discs proximal to the external fixator served as controls. 

 

6.3 Results  

The mechanical properties of sDAPS very closely matched that of the native disc 

after 4 weeks of implantation, while at 12 weeks, intervertebral fusion precluded 

mechanical analysis. [Fig. 6-2].  
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Figure 6-2 Mechanical properties and gross appearance at 4 weeks (a) sDAPS 

appearance after 4 weeks in vivo. Layers of the AF region are intact and invested 

with tissue, while the NP region appears to have degraded or contracted. (b) 

Representative stress-strain curves and mechanical properties for vertebra-sDAPS-

vertebra and native motion segments. sDAPS nearly matched native mechanics, with 

the exception of a stiffer response at strains < 2%. sDAPS properties were not 

significantly different than that of the native motion segments. Data are displayed as 

mean +/- standard deviation. 
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The stress-strain curves of native discs and sDAPS nearly overlapped, as the calculated 

compressive moduli and maximum strains were not significantly different (compressive 

modulus, β = 0.94; maximum strain, β = 0.90). The key mechanical difference was that 

the sDAPS response to strain was very nearly linear (2 of 4 samples tested were 

completely linear, the other 2 of 4 were slightly nonlinear), whereas that of the native 

disc was nonlinear with a distinct low stiffness “toe” region and a high stiffness “linear” 

region. Upon gross inspection of sDAPS explanted after 4 weeks, layers in the AF region 

appeared to be intact and invested with tissue, though there was evidence that the NP 

region had degraded or contracted. 

 Reconstructions from µCT scans revealed no evidence of intervertebral fusion at 

2 or 4 weeks for the sDAPS and control groups [Fig. 6-3]. However, by 12 weeks, there 

was evidence of intervertebral bone deposits after either immobilizing and performing a 

discectomy or immobilizing and inserting an sDAPS. The sDAPS group had more 

aberrant intervertebral bone formation in comparison to the immobilization with 

discectomy group, suggesting that the implant accelerated the fusion process. Complete 

intervertebral bridging did not occur in all motion segments with implanted sDAPS, 

though intervertebral bone deposition was present in all. There was no evidence of fusion 

after immobilizing an intact disc or after discectomy alone (i.e., without immobilization). 
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Histologically, it was apparent that immobilization had little effect on the native 

tissue, but did seem to promote fibrous tissue deposition in the intervertebral space after 

discectomy [Fig. 6-4]. After externally fixing a healthy disc, there were no gross changes 

in disc appearance and the NP and AF regions appeared normal. After immobilizing the 

segment and then performing a discectomy, the empty intervertebral space accumulated 

picrosirius-red-positive tissue, starting from the periphery at 4 weeks and completely 

filling the space by 12 weeks. In this group there was also histological evidence of early 

fusion, as the boundaries of the vertebral endplates expanded into the intervertebral space 

and additional Alcian-blue positive staining was present in some intervertebral areas 

indicating a pre-osteogenic, hypertrophic phenotype. This did not occur after performing 

a discectomy without immobilizing the segment; this group lost disc height gradually 

over time, without an immediate collapse. By week 12, vertebral bodies in this 

discectomy group were in contact, but the disc space did not fill with new fibrous tissue. 
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sDAPS successfully promoted cell infiltration and tissue deposition in vivo. 

However, at week 12 there was evidence of intervertebral bridging and degradation of the 

hydrogel core [Fig. 4]. At timepoints as early as 2 weeks, sDAPS began filling with 

collagenous tissue, and, by week 12, sDAPS appeared to have cohesive layers. There was 

evidence of the hydrogel core at 2 and 4 weeks, but by 12 weeks, there was no hydrogel 

apparent and the volume that the hydrogel NP had originally filled had collapsed. Also at 

12 weeks, just adjacent to the sDAPS boundary, bridging of the vertebrae proximal and 

distal to the implant occurred, and while there was no evidence of direct integration of 

sDAPS into the vertebrae, there was significant integration into the adjacent soft tissue.  

In terms of specific collagens, there was little evidence of type I collagen in native 

discs after long-term immobilization, while type II collagen was distributed as expected, 

concentrated centrally and dissipating radially outwards [Fig. 6-5]. After removal of the 

native disc and 12 weeks of immobilization, types I and II collagen were distributed 

throughout the intervertebral space, with type II collagen concentrated in areas that also 

stained for proteoglycan, further indicating a hypertrophic phenotype. Similar results 

were seen in sDAPS group, with types I and II collagen distributed throughout the disc 

space and throughout the implant. 
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Figure 6-5 – Immunostaining of types I and II collagen at 12 weeks (a-d) Sections from 

each group stained for type I collagen. After 12 weeks of fixation only mild type I 

collagen staining was evident in native discs, while there was strong type I collagen 

staining throughout the intervertebral space in the immobilization with discectomy and 

the immobilization with sDAPS groups. (e-h) Sections from each group stained for type 

II collagen. Type II collagen staining started from the NP and dissipated radially in 

native discs after 12 weeks of immobilization, while in the immobilization with 

discectomy group, type II collagen filled the intervertebral space and concentrated in 

areas that matched concentrations of proteoglycan staining, indicating a pre-osteogenic, 

hypertrophic phenotype. sDAPS stained strongly for type II collagen as well, suggesting 

a fully infiltrated engineered tissue. 
 



130 
 

6.4 Discussion 

 Constructs that replicate the structure of the native disc were implanted into the 

rat caudal spine. These constructs, which are designed to organize the remodeling process 

by allowing cells to infiltrate between layers and engraft onto an aligned topographical 

framework, were effectively invested with tissue and reached mechanical properties 

equal to that of the native disc. In a series of control groups, I found that immobilization 

did not affect native disc health, and (following discectomy) was conducive to fibrous 

tissue deposition and lead to intervertebral fusion. Placement of the engineered construct 

seemed to expedite this process, suggesting that additional measures, including cell 

and/or growth factor delivery from the implant, may be required to harness the 

regenerative capacity of the disc space while preserving the fibrocartilaginous nature of 

the tissue that forms.   

Endogenous cells colonized the implanted sDAPS and filled the construct with 

fibrous tissue; consequently sDAPS had compressive moduli equivalent to native 

intervertebral discs. The hydrogel NP region degraded or contracted after implantation, 

however, rendering the surrogate NP ineffective. In previous work with these constructs, 

cell-seeded DAPS showed robust growth in both the NP and AF regions, and had 

mechanical properties that were strongly nonlinear both in vitro and in vivo [147]. 

Testing sDAPS after implantation, when the hydrogel core was no longer intact or was 

too weak to provide the mechanical functions of the NP, revealed that the stress-strain 

response was linear. Previous studies have established that the NP dominates the neutral 

zone response, or the low-stiffness region of the stress-strain curve. Thus, when the NP is 

altered as a consequence of nucleoctomy [214], chemonucleolysis [33], or by 
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degeneration [163] there is an increase in compliance at low strains. Previous work with 

in vivo implantation of acellular crosslinked HA hydrogels has demonstrated that this 

material can be degraded in the physiological environment. For instance, in a porcine 

model where HA gels were used to fill a full thickness cartilage defect, no sign of 

remaining HA implant was apparent at 6 weeks, suggesting the potential for rapid 

degradation in vivo [64]; endogenous hyaluronidase activity resulting from surgery-

related inflammation may be responsible for disappearance of HA in these models. In the 

rat tail model, the NP disappeared along with the neutral zone response of sDAPS; this 

suggests that the design of the DAPS successfully reproduces the load-sharing 

interactions of the AF and NP, but that it may be necessary to modify the hydrogel to 

better meet physiological demands after implantation. 

The requirement for external fixation is a limitation of this rat model, as implants 

are not challenged by the physiological mechanical environment. However, 

immobilization had a number of significant effects in this model that have broader 

implications. For example, immobilization was required for fibrous tissue deposition; 

even in this highly metabolically active rodent model. It appears that motion at the joint 

(the discectomy-only group) did not allow fibrous remodeling after removal of the disc. 

With implications for spinal fusion surgeries, these findings suggest that improper 

fixation at the intervertebral joint is a risk factor for non-union. The application of pedicle 

screws or locking plates to assist in interbody fusion is a technically complicated 

procedure, thus variability in fixation quality, segmental rigidity and consequently 

incomplete intervertebral fusion may be unavoidable. Another observation in this study 

was that the fusion process appeared to be accelerated with sDAPS implantation. 
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Interestingly, a similar finding was reported previously when a small intestinal 

submucosa patch was used for annular repair in a sheep model [124]. In that study, the 

patch was affixed to adjacent vertebrae with bone screws, thus interrupting the 

periosteum and initiating bleeding from the vertebra. Similarly, the rat caudal disc 

replacement model requires interrupting the periosteum with surgical wires for the 

external fixation device. Breaching the cortical shell and including a material that bridges 

the vertebrae are both factors that may accelerate fusion in these models.  

 Altered loading is also a risk factor for degenerative changes to the disc [131, 239, 

249]; a previous report in the rat tail model compared immobilization to compressive 

loading and demonstrated that while static compression caused remodeling in the loaded 

discs, there were no changes to immobilized discs [98]. The histological results from the 

current study are consistent with those findings, as there was no gross change in 

appearance after long-term immobilization. Dynamic loading affects fluid transport into 

and out of the disc [81, 82] and the disc is predominantly avascular. Restriction of 

dynamic loading through immobilization would restrict fluid convection into and waste 

removal from the disc, and so the disc would be required to rely on diffusion for these 

processes. In larger discs, such as those of human dimensions where diffusion distances 

are long, immobilization would likely produce degenerative changes.  However, in the rat 

tail model, where diffusion distances are relatively shorter, the effect appears to be 

minimal. This reinforces the role of diffusion for nutrient transport into the rat disc.  

The effects of immobilization described herein also have implications for disc 

tissue engineering. Total disc replacement with an engineered tissue will likely require a 

period of integration into adjacent vertebrae just after implantation; this may be 
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facilitated by immobilization. That immobilization did not cause degenerative effects 

after 12 weeks suggests that an engineered tissue composed of disc cells or cells with a 

disc phenotype may have some tolerance to immobilization and suggests that diffusion 

alone may be sufficient for maintenance of the engineered disc through a period of 

fixation to enhance integration immediately post-operatively. The duration of this 

integration period must be closely controlled, however, so as to reduce the potential for 

spinal fusion, as was noted here with long-term immobilization. Remobilization after a 

period integration may prevent fusion from occurring.  Likewise, local delivery of factors 

from the scaffold in a temporally or spatially controlled manner [103, 234], including 

pro-chondrogenic factors that resist progenitor cell hypertrophy, may help to limit fusion 

in this scenario. 

 

6.5 Conclusion 

In these experiments, the rat caudal disc was immobilized using an external 

fixation device and the potential for an acellular construct to functionally replace the 

native disc was investigated. This construct was designed to permit endogenous cell 

infiltration and tissue deposition. These constructs were successfully implanted and 

integrated into the intervertebral space, as evidenced by robust tissue formation within 

the construct and mechanical properties that matched that of the native disc. 

Immobilization, which is a requirement for successful implant retention in this model, 

had no discernible effect on the histological appearance of native discs and provided a 

stable site for the fibrous tissue formation necessary for the implants success. However, 
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in cases of discectomy, immobilization eventually lead to intervertebral fusion. Indeed, 

this fusion appeared to be promoted by the sDAPS under these immobilized conditions. 

Limitations of the current implant include the volatility of the hydrogel NP region and the 

inability to prevent intervertebral fusion. However, with modifications in material design 

and the adoption of an implantation, integration, and then remobilization strategy, these 

limitations can likely be overcome. 
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CHAPTER 7 - In Vitro Growth Trajectory and In Vivo 

Function of Cell-Based Disc-like Angle Ply Structures 

(DAPS) for Total Disc Arthroplasty 

7.i Preface 

 This chapter describes the culmination of much work: the development and 

validation of the rat tail model of total disc replacement, the development of methods to 

fabricate cellular DAPS, and the development of assays to track and evaluate DAPS 

composition and function after in vivo implantation. Here, cellularized DAPS were 

cultured in vitro and a detailed analysis of their growth trajectory was performed. These 

were then implanted into the rat tail at either a mature or an immature state of growth and 

their performance was tracked by MRI, histological and mechanical analyses.  

 

7.1 Introduction 

To treat severely degenerated discs, our group has developed engineered implants 

that replicate the hierarchical structure of the native disc. These implants are comprised 

of an organized multi-lamellar nanofibrous scaffold that replicates the annulus fibrosus 

(AF) and a hydrogel that replicates the central nucleus pulposus (NP). In previous work, I 

showed that multilayer AF constructs support tissue development when seeded with 

mesenchymal stem cells (MSCs) and match the mechanical properties of native tissue 

[175]. I have also shown that various hydrogels that serve as the NP region can promote a 

chondrogenic phenotype in both MSCs [59] and NP cells [113] and drive NP cells to 

express genetic markers indicative of a healthy NP phenotype [113]. When combined 
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together, these subunits form a disc-like angle ply structure (DAPS) for total disc 

replacement and DAPS seeded with MSCs or disc cells mature with in vitro culture 

[179], emphasizing their potential for disc regeneration. In previous work (Ch. 4), I also 

developed an in vivo model to evaluate DAPS biocompatibility and integration, using the 

rat caudal spine (or tail) along with an external fixation system to stabilize vertebrae 

adjacent to the implantation site [149]. Implantation of the acellular AF region of the 

DAPS showed them to be biocompatible, with constructs maintaining their lamellar and 

fiber structure over time, further illustrating the potential of these constructs for disc 

regeneration. To further this line of inquiry, the primary objective of this study was to 

take the next step in this regenerative process by evaluating cell-seed DAPS in this in 

vivo environment. 

One strategy for implanting engineered cell-seeded materials is to culture 

constructs for an extended period of time and then implant these constructs in vivo at 

their peak maturation state. These mature constructs are fully invested with tissue and 

contain cells with a stable phenotype that are likely to survive the difficult transition to 

the in vivo space. Recent studies, however, have demonstrated that integration potential 

does not correlate with the maturation state of engineered cartilage, but rather that 

integration with native tissue occurs to the greatest extent when constructs are implanted 

at their peak maturation rate [67]. Thus, an emerging strategy to improve the integration 

of engineered tissues is to implant constructs at a pre-culture timepoint corresponding to 

the peak maturation rate. This strategy may likewise be useful for disc tissue engineering, 

as integration into the adjacent vertebrae is paramount to the success of the procedure. 
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In this study, I hypothesized that in vivo integration potential is related to the in 

vitro growth trajectory (i.e., the maturation rate) of the engineered tissue. To test this 

hypothesis, I established the in vitro growth trajectory of DAPS seeded with either AF 

and NP cells or MSCs over a 15 week period. After establishing this profile, I next tested, 

after short- or long-term pre-culture durations, the ability of DAPS to integrate and 

function in the rat tail in vivo. Results from this study showed that when transitioning 

from the in vitro culture environment to the in vivo space, there was marked shift in cell 

phenotype and function, with loss of disc constituents as evidenced by histological, MRI, 

and mechanical analyses. These data highlight the difficult transition from in vitro studies 

to in vivo application, and identify new challenges that must be overcome to improve the 

stability in composition and function of engineered tissues after implantation into a 

challenging microenvironment. 



138 
 

7.2 Materials and Methods 

7.2-1 Study Design 

 These experiments were broken into 3 distinct studies. In Study 1, DAPS were 

seeded with either MSCs or AF and NP cells, cultured for up to 15 weeks in vitro, and 

assayed for mechanical, compositional, and histological characteristics [Fig. 7-1a,b; pg. 

150]. Doing so, I developed the in vitro growth trajectory of cellular DAPS, defining in 

immature and mature states of growth. In Study 2, using this established growth 

trajectory, AF/NP DAPS were implanted in to the caudal spines of athymic rats after 5 

weeks of in vitro pre-culture, representing an immature/rapidly-growing state of 

maturation. Over the course of 5 weeks, vertebra-DAPS-vertebra motion segments were 

evaluated mechanically, imaged by MRI, and examined histologically to determine the 

functional and compositional maturation of DAPS after implantation [Fig. 7-3a; pg. 155]. 

Finally, in Study 3, AF/NP DAPS were implanted the caudal spines of athymic rats after 

pre-culture for either 5 or 10 weeks, comparing the effects of pre-maturation duration on 

the implant phenotype. These were assayed by µCT and histology after 5 weeks in vivo 

[Fig. 7-5s; pg. 160].  To evaluate the effects of the implantation site, DAPS were also 

implanted in dorsal subcutaneous pockets in athymic rats an analyzed histologically. The 

following sections (7.2-2 to 7.2-10) provide a technical description of the assays 

performed. 

7.2-2 Cell Isolation and Expansion 

Bovine MSCs were isolated from femoral and tibial bone marrow, while bovine 

AF and NP cells were isolated from caudal discs as described previously [113, 155]. In 

preparation for seeding, all cell types were expanded to passage 2 or 3 in a basal medium 
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(BM) that included Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Invitrogen Life 

Sciences, Carlsbad, CA), 10% fetal bovine serum (Gibco) and 1% Antibiotic-

Antimycotic (Gibco).  

7.2-3 DAPS Fabrication, Cell Seeding, and In Vitro Culture 

The AF portions of DAPS were fabricated from an electrospun nanofibrous 

scaffold to match the rat caudal disc geometry [149, 179]. Layers of poly(ε-caprolactone) 

(PCL) nanofibers and poly(ethylene oxide) (PEO) were sequentially electrospun onto a 

rotating mandrel as aligned multilayer sheets. This scaffold was cut at an angle into strips 

in which fibers ran 30o to the strip length, replicating the structure of an individual 

lamella. Strips with alternating alignment were wrapped around a post into concentric 

discs with final dimensions 5 mm diameter by 2 mm height. Scaffolds were rehydrated 

and sterilized through a gradient of ethanol washes, which removed water-soluble PEO 

layers to provide routes for infiltrating cells, and then coated with a 20 g/mL fibronectin 

solution (Sigma-Aldrich). Bovine MSCs or AF cells from primary isolation were seeded 

on the top and bottom side of the constructs (2x106 cells per construct), allowing for 1 

hour of cell attachment per side.  

The NP portions of DAPS were generated using a photocrosslinkable bioactive 

hydrogel [35, 58].  Methacrylated hyaluronic acid (MeHA) was produced by reacting 65 

kDA sodium hyaluronate (Lifecore, Chaska, MN) with methacrylic anhydride (Sigma 

Aldrich, St. Louis, MO). A 1% w/v solution of MeHA in PBS was sterilized by 30 

minutes of UV light exposure, after which 0.05% photoinitiator (Irgacure 2959, (2-

methyl-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone, Ciba-Geigy, Tarrytown, 



140 
 

NY) was added. Bovine MSCS or NP cells were suspended in the MeHA solution (20M 

cells/mL, 6x105 cells per construct), which was poured into a mold and photo-

polymerized with UV light exposure for 10 minutes. The mold was punched to create 

cell-laden cylindrical gels of final dimensions 2 mm diameter by 1.5 mm height. 

Following fabrication and seeding, AF and NP regions were cultured separately 

for 2 weeks, at which point a 2 mm core was punched from the center of the AF and the 

NP was inserted to form DAPS [Fig. 7-1a]. Throughout this study, DAPS were cultured 

in a chemically defined medium [108] consisting of DMEM supplemented with 1% 

penicillin, streptomycin, and amphotericin B (Antibiotic-Antimycotic; Gibco), 40 ng/mL 

dexamethasone (Sigma-Aldrich), 50 g/mL ascorbate 2-phosphate (Sigma-Aldrich), 40 

g/mL L-proline (Sigma-Aldrich), 100 g/mL sodium pyruvate (Corning Life Sciences, 

Corning, NY), 0.1% insulin, transferrin, and selenious acid (ITS Premix Universal 

Culture Supplement; Corning), 1.25 mg/mL bovine serum albumin (Sigma-Aldrich), 5.35 

g/mL linoleic acid (Sigma-Aldrich), and 10 ng/mL TGF-3 (R&D Systems, 

Minneapolis, MN). This media was replenished every 3 days.  

7.2-4 Geometric and Mechanical Characterization of DAPS 

DAPS geometry and compressive mechanical properties were measured at each 

timepoint (n=4). DAPS were geometrically characterized for total cross-sectional area by 

evaluating digital images with a custom MATLAB program [149, 188]. Mechanical 

properties were evaluated in unconfined compression on an electromechanical testing 

system (5542; Instron, Norwood, MA) with a protocol used to assay native tissue [20, 

146]. First a 0.05 N preload was applied, and the platen-to-platen distance was used to 
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define the DAPS height. Next, 20 cycles of compressive loading from 0.05 N to 3.0 N 

were applied at a rate of 0.5 Hz. This was followed by a return to 0.05 N, and then, to 

characterize creep behavior, a 1.5 second step load to 3.0 N was applied, with this load 

held for 10 minutes.  

7.2-5 Compositional and Histological Characterization of DAPS 

Following mechanical testing, AF and NP regions were separated and total 

glycosaminoglycan (GAG) and collagen contents were measured for each region (n=4). 

GAG content was evaluated using the dimethylmethylene blue (DMMB) technique [61], 

and collagen content (following acid hydrolysis) using the p-

diaminobenzaldehyde/chloramine-T technique for hydroxyproline [226]. Results are 

reported as normalized to AF or NP region wet weight. 

An additional group of DAPS without prior mechanical testing was used for 

histological analysis (n=2). These were prepared by fixation in formalin at room 

temperature and embedding in paraffin at 55oC (below the melting temperature of PCL). 

Sections were cut at 10µm, stained with alcian blue (GAG) or picrosirius red (collagen) 

and imaged in bright-field. Immunohistochemical staining for types I and II collagen was 

performed by first incubating sections in proteinase K and the blocking with 10% NGS. 

Primary antibodies were applied overnight followed by a 1 h incubation with secondary 

antibodies at room temperature. Staining was visualized using the DAB chromogen 

reagent and imaged in brightfield. 

 

 

7.2-6 DAPS Implantation Procedure 
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DAPS were implanted into the caudal spines of athymic rats (Foxn1rnu  retired 

breeders, 465±41g; Harlan Laboratories, Inc., Indianapolis, IN) using an external fixator 

designed to unload and stabilize the rat caudal disc space [149]. To do so, two surgical 

wires were passed laterally through both the C8 and C9 vertebrae and the external fixator 

was secured to the wires. A dorsal skin incision was made, the native C8/C9 disc was 

removed, and DAPS were implanted into the disc space. Rats were returned to normal 

cage activity, pair-housed after a 2 week recovery period, and euthanized after 5 weeks. 

7.2-7 Mechanical Testing of Implanted DAPS 

Vertebra-DAPS-vertebra and native motion segments were tested in compression 

using an electromechanical testing system (5948; Instron, Norwood, MA) and an optical 

displacement tracking technique (n=4). In preparation for testing, the skin around the 

motion segment was carefully removed, while adjacent muscle and tendons were left 

intact. The ventral bony surface adjacent to the disc space was cleared of soft tissue using 

a micro-curette. Ink spots drawn onto the vertebral surfaces proximal and distal to the 

disc space served as markers for optical tracking. A digital camera (acA3800-14um; 

Basler AG, Ahrensburg, Germany) fit with a close-focusing macro video lens (Zoom 

7000; Navitar Inc., Rochester, NY) and custom software were used to record images 

during testing. The mechanical testing protocol consisted of 20 cycles of compression 

from 0 to -3N at 0.05 Hz, with images of the segment recorded at 10 Hz. Texture tracking 

was performed in MATLAB [146] and the 20th cycle of stress-strain was analyzed using 

a bilinear fit routine. Mechanical properties were normalized to cross-sectional area 

measurements from digital images and disc height from MR images as described 

previously [20]. 
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7.2-8 Mechanical Data Analysis 

The 20th cycle of the load/displacement curve was analyzed for toe and linear 

region modulus, transition strain, and total compressive range of motion (ROM). First, 

load and displacement were converted to stress and strain, by dividing by the total cross-

sectional area and height, respectively. Then, toe and linear region stiffnesses were 

calculated using a bilinear fit routine in MATLAB.  

The creep response was fit to a 5 parameter viscoelastic constitutive model [Eq. 7-

1] [146] that defines the compressive strain (ε) and stress (σ) as a function of time (t) and 

includes an early damping modulus and time constant (E1 and τ1), a late damping 

modulus and time constant (E2 and τ2), and an instantaneous damping modulus (E3). 

[Eq. 7-1]  𝜀(𝑡) =
𝜎

𝐸1
(1 − 𝑒

−
𝑡

𝜏1) +
𝜎

𝐸2
(1 − 𝑒

−
𝑡

𝜏2) +
𝜎

𝐸3
 

 

Creep strain, or the total change in strain from 1.5s to 10 minutes, was also calculated. 

7.2-9 µCT and Histological Analysis of Implanted DAPS 

Vertebra-DAPS-vertebra segments were imaged by µCT (vivaCT 75; SCANCO 

Medical AG, Bruttisellen, Switzerland) and evaluated histologically (n=6). Segments 

were scanned at an isotropic 20.5µm resolution to evaluate the appearance of the 

vertebral bodies and potential bony fusion across the disc space. Then, segments were 

fixed in formalin, decalcified in formic acid and embedded in paraffin at 55oC. Sections 

were cut to 10 µm and stained with both AB and PR, and imaged in brightfield. 

7.2-10 MRI Analysis of Implanted DAPS 
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MRI was performed at 4.7T on intact rat tail discs and AF/NP constructs 5 weeks 

after implantation into the rat caudal spine (n=3-6). A multi-echo-multi-spin sequence 

was used to acquire quantitative coronal T2 maps (three 0.5 mm thick slices, 16 echoes, 

TE/TR = 7.84 ms/2,000 ms, FOV = 15x15 mm2, matrix = 128×128, 4 averages). 

Timepoint average T2 maps were generated by scaling T2 maps to a normalized grid and 

averaging the T2 signals at each of each disc within a timepoint [145]. Mean NP T2 

signals for individual discs were calculated after manual segmentation of the NP.  

7.2-11 Subcutaneous Implantation of DAPS 

DAPS were implanted into the dorsal subcutaneous space of athymic retired 

breeder rats (n=2). Incisions were made 1 cm lateral to the spine and 1 cm caudal to the 

scapula and a subcutaneous pocket was opened. DAPS were inserted into the pocket 

which was then closed with suture.  

7.2-11 Statistical Analysis 

In vitro and in vivo DAPS compositional measurements and mechanical 

properties were compared by one or two-way ANOVA. Post-hoc pairwise analyses were 

made using the method of Bonferroni (p<0.05). Data are displayed as mean ± standard 

deviation. 

 

7.3 Results  

7.3-1 Study 1: DAPS In Vitro Growth Trajectory 

I fabricated two versions of DAPS constructs [Fig. 7-1a], either DAPS with AF 

cells in the AF region and NP cells in the NP region (AF/NP DAPS) or DAPS with 
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MSCs in both regions (MSC/MSC DAPS).  Both construct types were cultured in defined 

media with the chondrogenic growth factor TGF-β3 for up to 15 weeks [Fig. 71b]. Both 

MSC/MSC and AF/NP DAPS matured compositionally with time in culture [Fig. 7-1c] 

and grew physically larger [Fig. 7-2a]. For the AF region, picrosirius red (PR) staining 

for collagen and alcian blue (AB) staining for GAG began at the AF boundaries at 2.5 

weeks and gradually infiltrated to deeper regions by 10 weeks. GAG was distributed 

diffusely through the AF, while collagen was localized to specific areas in the 

interlamellar spaces. By 15 weeks, a peripheral concentration of dense extracellular 

matrix indicated encapsulation. In the NP region, both collagen and GAG-positive 

staining increased with time, with collagen staining concentrated at the center of the NP, 

and GAG staining evenly distributed throughout the NP. Immunostaining for type I and 

type II collagens indicated a fibro-chondrogenic phenotype, rich in type II collagen 

deposition in both regions [Fig. 7-1c].   
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Figure 7-1 Study 1: In vitro growth trajectory of cell-seeded DAPS: design and results 

(a) Engineered intervertebral disc analogs, DAPS, composed of a nanofibrous AF and 

a hydrogel NP, were seeded with either AF and NP cells or MSCs and cultured in 

chemically defined media with TGF-3 separately for 2 weeks and then combined. (b) 

The in vitro maturation of DAPS was evaluated mechanically, compositionally, and 

histologically at regular intervals over the course of 15 weeks. (c) DAPS matured 

compositionally in terms of proteoglycan (alcian blue) and collagen (picrosirius red) 

staining over this time period, and stained strongly for type II collagen after 15 weeks. 

(continued on following page…) 
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Figure 7-1 Study 1: In vitro growth trajectory of cell-seeded DAPS: design and results 

(cont.) (d) This was confirmed by measurements of GAG and collagen content, which 

exceeded or was within range of native tissue values in every case. GAG content 

consistently increased over 15 weeks, while collagen content increased early and then 

reached a plateau. Native values from [20, 30]. (*, p<0.05 vs Wk. 2.5; +,p<0.05 vs. 

AF/NP at corresponding timepoint) (e) DAPS demonstrated a nonlinear stress/strain 

response in compression, and elastic mechanical properties (moduli) were stable over 

15 weeks. Viscoelastic properties (creep strain) became more dominant over the 15 

week period, stabilizing by 10 weeks. In both cases there were no differences between 

AF/NP and MSC/MSC DAPS and mechanical properties were within range of native 

tissue mechanical properties. Native values from [20, 30, 113]. (*, p<0.05 vs Wk. 2.5; 

+,p<0.05 vs. AF/NP at corresponding timepoint). 
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The maturational changes evident by histology were confirmed by measurement 

of GAG and collagen content [Fig. 7-1d]. GAG content steadily increased in the NP 

region of both AF/NP and MSC/MSC DAPS, reaching significance by week 15. GAG 

production in NP region of MSC/MSC DAPS was significantly greater than that of the 

same region of AF/NP DAPS at 15 weeks. GAG content also increased in the AF region 

of both AF/NP and MSC/MSC DAPS, reaching significance by 7.5 weeks for MSC/MSC 

DAPS and 15 weeks for AF/NP DAPS. GAG production in the AF region by MSC/MSC 

DAPS again outpaced that of AF/NP DAPS, and was significantly different at 7.5 and 

12.5 weeks, but not different at 15 weeks. Collagen content in both the AF and NP 

regions of MSC/MSC DAPS significantly increased over time and was significantly 

different than collagen content in the AF and NP regions of AF/NP DAPS. There was an 

increase in collagen in the AF region of AF/NP DAPS over time, reaching significance at 

15 weeks, while there was no change in collagen content in the NP region of AF/NP 

DAPS. 

Functional properties of MSC/MSC and AF/NP DAPS were not different from 

one another over 15 weeks of culture. Indeed, for both DAPS types, elastic mechanics 

were primarily unchanged and viscoelastic effects steadily become more dominant. Toe 

and linear region compressive moduli did not change significantly over 15 weeks, with 

no differences between MSC/MSC and AF/NP DAPS [Fig. 7-1e]. There was a significant 

increase in creep strain over the first 10 weeks that plateaued between 10 and 15 weeks, 

with no differences between cell types [Fig. 7-1e]. Both the early and late response to 

creep load became stronger, as evidenced by viscoelastic parameters extracted from the 



150 
 

creep curves [Fig. 7-2b], suggesting that DAPS were increasingly viscous with time, 

progressing from a cell-seeded biomaterial to an engineered tissue. 

7.3-2 Study 2: Trajectory-based In Vivo DAPS Implantation 

Using the in vitro growth trajectory defined by the study described above, I 

determined a timepoint that corresponded to an immature, rapidly growing state of the 

DAPS, which I hypothesized would integrate better into the native vertebrae than a 

mature DAPS based on [67]. Thus, DAPS were precultured for 5 weeks and implanted 

into the caudal spines of athymic rats. An external fixation device was used to stabilize 

adjacent vertebrae to provide a patent site for implantation and further in vivo maturation 

[149] [Fig. 7-3a]. After 5 weeks in the in vivo environment, bone-DAPS-bone motion 

segments were subjected to compression loading in order to evaluate their in situ 

mechanical response. To do so, motion segments with DAPS were cyclically loaded from 

0 to 3 N (≈0.3 MPa) in compression, using an optical displacement tracking technique 

and, subsequently, a digital texture tracking program to evaluate the mechanical response. 

[Fig. 7-3b]. Both implanted DAPS and native discs had a similar non-linear stress/strain 

response [Fig. 7-3c]; DAPS were mechanically functional at physiologically-relevant 

loads, with toe and linear region compressive moduli matching that of the native disc (toe 

region compressive modulus, β = 0.89; linear region compressive modulus, β = 0.86) 

[Fig. 7-3d]. While these toe and linear moduli were comparable between DAPS and 

native discs, DAPS implants exhibited a significantly later transition between the toe and 

linear regions, the primary difference between groups [Fig. 7-3d]. 
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Figure 7-3 Study 2: In vivo implantation of immature, rapidly growing DAPS (a) After 

5 weeks of in vitro culture, AF/NP DAPS were implanted into the caudal spines of 

athymic rats, an in vivo model of total disc replacement. 
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Figure 7-3 Study 2: In vivo implantation of immature, rapidly growing DAPS (cont.) 

(b) After 5 weeks in vivo, vertebra-DAPS-vertebra motion segments were tested in 

compression, using an optical displacement tracking technique to measure 

deformations. (c) Similar to native motion segments, DAPS had a nonlinear stress-

strain response with separate toe and linear regions, as shown in these representative 

curves.  (d) After extracting mechanical parameters, it was evident that there were no 

significant differences between toe and linear region moduli of DAPS implants and 

native discs. The primary difference mechanically was in the transition and maximum 

strains, which were higher in the DAPS group. (ns, nonsignificant, p>0.05, **, p<0.01). 
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To investigate adaptations in DAPS composition post-implantation, T2 MRI maps 

(which are indicative of GAG and water content) were generated using a multi-echo 

multi-spin sequence at 4.7T. Quantification of the AF and NP T2 signal showed that the 

NP T2 signal of implanted DAPS was higher than native tissue at early timepoints, but 

progressively decreased over 5 weeks [Fig. 7-4a]. This was confirmed visually by 

timepoint average maps [145] [Fig. 7-4b, left column]. Alterations in composition were 

mirrored in histological sections [Fig. 7-4b, middle and right columns]. Pre-implantation, 

the NP composition was initially proteoglycan- and collagen-rich after 5 weeks of in vitro 

culture [Fig. 7-1c]. However, within 5 weeks post-implantation, DAPS lost proteoglycan 

staining, and became composed primarily of collagen rich tissue. This alteration in 

phenotype initiated in the NP at days 1 and 3, with infiltration by host cells apparent by 

day 7.  By day 35, the original implanted NP was difficult to distinguish, while the AF 

region retained its structure over time, but similarly lost proteoglycan content and was 

primarily comprised of collagen at day 35. In addition, there was little evidence of 

integration into adjacent vertebrae. In terms of specific collagens, at post-implantation 

day 1, the NP region stained for types I and II collagen in some areas, while the AF 

region stained strongly for both collagens [Fig. 7-4c]. By 35 days post-implantation, both 

the AF and NP region stained positively and homogenously for types I and II collagen, 

possibly indicating a shift in implant phenotype or the infiltration of endogenous cells 

that deposited fibrous repair tissue throughout the intervertebral space. 
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Figure 7-4 Study 2 (cont.): Compositional analysis of implanted DAPS (a) T2 MRI 

mapping was performed over the 5 week implantation period, and the T2 relaxation 

time (which is indicative of water and GAG content) was calculated after manual 

segmentation of the AF and NP regions. The AF and NP T2 both decreased significantly 

after implantation (*, p<0.05). (b) Timepoint average T2 maps were generated and 

compared to Alcian blue (AB) and picrosirius red (PR) stained histological sections. 

Corresponding with the decrease in T2, AB positive staining decreased over time in 

both the AF and NP regions. Dynamic modifications to the NP region took place over 

this time period. (c) At day 1, was mildly and heterogeneously stained for types I and 

II collagen, while the AF stained strongly for both. By day 35, collagens were 

distributed homogenously throughout both the AF and NP regions. 

 



155 
 

7.3-3 Study 3: Implantation of Fully Mature DAPS 

Given these findings with immature DAPS constructs, I next hypothesized that a 

more mature construct may be better suited to retain its composition the in vivo 

environment. DAPS were thus precultured for 10 weeks (to a mature state) and implanted 

into the caudal spines of athymic rats, as above [Fig. 7-5a]. Microcomputed 

tomographical (µCT) reconstructions revealed normal vertebral morphology, with only 

mild bone formation around the surgical wire holes and no bone formation in the 

intervertebral space, indicating that fusion had not occurred. Alcian blue/picrosirius red 

stained vertebra-DAPS-vertebra sections showed that these more mature DAPS 

maintained their lamellar structure after 5 weeks. However, again, the majority of 

implants were positive for collagen staining throughout the entire construct, but showed 

little evidence of proteoglycan [Fig. 7-5b]. In only two of 12 implants was significant 

GAG staining apparent in the NP region [Fig 7-5b, ‘Mature: Best’] and in some cases 

implants stained yellow as a result of bleeding from an inadvertent fracture at the growth 

plate [Fig 7-5b, ‘Immature: Intermediate and Worst’, Fig 7-5b ‘Mature: Best and Worst’]. 

Integration into the adjacent bone was not apparent for any of these implants, and upon 

gross dissection, the vertebral motion segment separated at the DAPS/vertebra interface, 

suggesting that earlier success in mechanical testing was likely due to integration into 

adjacent soft tissue. 
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Figure 7-5 Study 3: In vivo implantation of fully matured DAPS AF/NP DAPS were 

pre-matured for 10 weeks and implanted into the caudal spines of athymics rats. 

(continued on following page…) 
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Figure 7-5 Study 3: In vivo implantation of fully matured DAPS (cont.) (c) To compare 

between implantation sites, DAPS were pre-matured for 5 weeks and implanted into 

the dorsal subcutaneous space of athymic rats. Again, GAG staining decreased over 5 

weeks of implantation, though not to the extent that occurred in the disc space, while 

types I and II collagen stained strongly in the NP region, and in the interlamellar spaces 

of the AF. 
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To determine whether these phenotypic changes were due to in vivo implantation 

in general, or a consequence of implantation in the intervertebral space specifically, 

AF/NP DAPS were next implanted in the subcutaneous space of athymic rats. After 5 

weeks of implantation subcutaneous, a similar shift from GAG-rich to GAG-deficient 

occurred, as evidenced by histologically sections [Fig. 7-5c]. However, in this case, the 

NP structure was still intact and retained some proteoglycan as well as types I and II 

collagen. The AF region was devoid of proteoglycan but did stain for collagen; thus the 

matrix distribution in the AF following subcutaneous implantation was very similar to the 

native disc [Fig. 7-4b]. Thus, while the transition from in vitro culture to in vivo 

implantation is deleterious to the in vitro phenotype, the infiltration of endogenous tissue 

and adaptations to the NP structure appear to be specific to intervertebral implantation.  

 

7.4 Discussion  

This study details the compositional and functional growth trajectory of an 

engineered disc composed of an electrospun AF and a hydrogel NP, and subsequent in 

vivo characteristics of the engineered disc after implantation in a rat model of total disc 

replacement. In vitro, DAPS demonstrated composition and nonlinear, viscoelastic 

mechanical properties similar to native tissue, and supported a viable cell population of 

either disc cells or stem cells over 15 weeks in culture. After 5 weeks of in vivo 

implantation, DAPS maintained their structure and did not instigate intervertebral fusion. 

However, both histological and MRI results suggested a shift in phenotype after the 

transition from in vitro culture to the in vivo space, a phenomenon that was independent 
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of the pre-culture duration. Despite these changes, key mechanical features of the native 

disc were fully replicated, strongly implicating the potential of this strategy for total disc 

replacement. 

 Current metal-on-plastic engineered replacements for total disc arthroplasty aim 

to restore the natural kinematics of the spine but are composed of materials that have 

physical properties that do not match native tissue. In this study, I demonstrated that the 

complete rescue of healthy spine function in compression is possible by replacement with 

living engineered tissues, such as the DAPS constructs. I applied physiologically relevant 

loading (approximately 60% rat body mass) and found that DAPS demonstrated full 

recapitulation of healthy disc compressive mechanics, with the exception of an elongated 

toe region. Histologically, a significant amount of fibrous tissue was evident between the 

DAPS and the adjacent vertebrae, which likely is engaged and contributes to the 

functional response at low loads, lengthening the toe region. Future work will seek to 

improve integration at the endplate to eliminate this region of fibrous tissue at the 

interface of the DAPS and the vertebrae, while at the same time improving anchorage at 

the implant site. Improved integration would enable further mechanical characterization 

of these implants at higher loads and other physiologically relevant loading modalities, 

including bending and torsion. 

With extended in vitro growth, the compositional and functional properties of the 

DAPS reached levels comparable to native human and rat discs [4,5]. Measurements of 

GAG and collagen content showed a progressive increase in matrix deposition in the AF 

and NP regions for both cell types, with deposition rate in MSC-seeded DAPS outpacing 

that of disc-cell seeded DAPS. GAG content of MSC/MSC and AF/NP DAPS 
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approached human levels in the AF and NP regions, while collagen content was 40% of 

the human AF and exceeded or matched that of the human NP. Interestingly, single GAG 

molecules that are not attached to aggrecan core protein have a molecular weight an order 

of magnitude lower than collagens (chondroitin sulfate: 0.5 Da, keratan sulfate: 1 kDa vs. 

type I collagen: 140kDa, type II collagen: 140kDa ). These charged species appeared 

spread throughout the construct while collagen was localized to the interlamellar spaces 

in the AF and the central region of the NP. This suggests that GAG molecules 

themselves, or potentially smaller breakdown products of the larger aggrecan molecule, 

might diffuse more readily than collagens through the biomaterials, poly(ε-caprolactone) 

(PCL) and hyaluronic acid (HA), used in these implants. Collagen-positive staining was 

strongest in the center of the NP of DAPS of both cell types, not at the periphery where 

cells are closest to culture media. This may be related to oxygen tension, which would be 

lower in the central NP when compared to the peripheral NP, as previous studies have 

shown that collagen production increases in hypoxic conditions [138].  

While the in vitro elastic mechanical properties of DAPS were generally unaltered 

over time in culture, the development of time-dependent mechanical properties, along 

with improvements in extracellular matrix content, demonstrated the transition of the 

construct from a cell-seeded biomaterial to an engineered tissue. DAPS possessed 

nonlinear stress/strain behavior and moduli within 70% of the native rat disc, an 

improvement over previous reports of engineered discs [30, 96, 179].  Despite increasing 

extracellular matrix content over time, compressive mechanical properties did not 

change. Electrospun PCL has a tensile modulus in the MPa range [13] and slowly 

degrades [128]. Thus, PCL may is likely the dominant factor in the elastic mechanical 
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response over 15 weeks in vitro. Additionally, DAPS mechanical properties became 

increasingly more viscous over time, while the overall response to creep loads exceeded 

that of native tissue. Thus, while DAPS resembled native tissue in their elastic 

mechanical behavior, there were differences in their time dependent mechanisms 

compared to native, perhaps driven by differences in the ability to retain water under load 

or plastic deformation in the AF region.  

Given that the DAPS cultured in vitro met or exceeded many compositional and 

mechanical design criteria for native tissue, there is little room for improvement in terms 

of generating a more in-vivo-ready engineered tissue. However, after implantation, a 

significant shift in phenotype occurred. This suggests that the standard tissue engineering 

techniques employed to generate a functional construct in vitro (cell isolation, expansion 

and seeding techniques, media conditions for differentiation and growth) do not generate 

a construct whose phenotype is sustainable in vivo. Specifically, upon implantation, there 

was marked depletion of GAGs in the NP region, suggesting there was an inability to 

continuously produce and retain GAG in vivo or there was a catabolic shift in cell 

behavior. This may be a result of the surgical procedure, as post-operative inflammation 

may have caused an increase in catabolic cell activities. It may also be a limitation of the 

rat tail model; externally fixing the tail does not allow the normal course of physiological 

loads, which may be an anabolic stimulus [244], to act on the engineered implant. 

Likewise, the lack of loading may have compromised load-induced convective diffusion 

mechanisms that are necessary to maintain cell function. Phenotypic transformations after 

implantation of either fully differentiated cells or stem cells into the subcutaneous space 

have been documented in a number of studies [52, 53, 195, 237]. Such changes may be 
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related to the abrupt removal of media components such as glucose, TGF-β3, or 

dexamethasone upon implantation. Glucose deficiency causes a depletion in the 

functional capacity of disc cells [27], though less is known in terms of the sudden 

removal of the other media components, a possible area for future study. The effects of 

transitioning from the amenable in vitro culture conditions to the harsh in vivo conditions 

on other cell sources with potential for regeneration, such as MSCs, may comparatively 

be exaggerated, as disc cells are known to be uniquely suited to function in challenging 

environments [204]. However, based on our findings, new strategies for transitioning 

engineered tissues in vitro to in vivo will be required for sustained function post-

implantation.  

One notable observation in the implant post-implantation was that the HA 

hydrogel NP began degrading within the first few days after implantation and was 

completely absent after five weeks. HA is a naturally occurring component of the 

extracellular matrix and can be turned over by cells; hyaluronidase production, as a result 

of a catabolic shift in cell phenotype after implantation or as a result of surgery-related 

inflammation, may have caused the loss of HA. Invading endogenous cells that take part 

in the wound healing response are also likely a factor in HA turnover. Certainly, these 

materials are meant to degrade after implantation, but the rapidity of HA breakdown was 

somewhat unexpected, as HA is sufficiently stable in the subcutaneous environment as 

demonstrated both in this study and in previous work [25, 26], though it was absent after 

polymerization in a porcine osteochondral defect [64]. A modification to the NP 

biomaterial may improve in vivo stability, improve implant performance, and better 

support and sustain the implanted cell population.   
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7.5 Conclusion 

 In these experiments, an engineered disc composed a fibrous AF region and a 

hydrogel NP region supported the compositional and functional growth of seeded cells, 

and reproduced the compressive mechanical functions of the native disc after 

implantation in vivo. Degeneration of the intervertebral disc leads to a loss of function in 

disc structures, and ultimately inferior mechanical performance at the motion segment 

level. Tissue engineering is one strategy to replace degenerate tissue with a functional 

substitute, and in these preclinical experiments, I demonstrated that, through tissue 

engineering, recapitulation of disc mechanical properties was possible in situ. These data 

strongly support tissue engineering for functional restoration of spine health. 

Furthermore, I also detailed an important limitation of current tissue engineering 

strategies, that culture in a chemically-defined media formulation with TGF-3, a staple 

of the field, does not produce an engineered tissue that is prepared for transition the in 

vivo environment. This finding was demonstrated in two locations, both in situ in the rat 

tail and ex situ in the subcutaneous space. While the former resulted in more dramatic 

declines in GAG content, both showed reduced content within five week. As such, 

modifications to the pre-culture strategy and the NP biomaterial may be necessary to 

ensure the viability of the engineered disc after implantation; future work should first 

focus on these challenges. Finally, engineered discs must be evaluated at a larger scale 

and in a physiologically relevant mechanical environment, such as the lumbar spine of a 

large animal model, and in an environment relevant to disc degeneration, such as an 

animal model of disc degeneration. Ultimately, this will need to be addressed with human 
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cells, demonstrating their ability to mature in vitro and survive in vivo, for this DAPS 

technology to transition forward to clinical trials.  
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CHAPTER 8 - Optimization of in vitro pre-culture to 

maximize in vivo performance of a cell-seeded disc-like 

angle ply structure (DAPS) for total disc replacement  

 

8.i Preface 

 In the previous chapter, I described that DAPS development matched many 

compositional and mechanical benchmarks of native tissue after in vitro culture. 

However, in vivo, DAPS deteriorated and lost the GAG content that had developed in 

vitro. I hypothesized that this may be due to the sharp transition in environments, moving 

DAPS from an in vitro space rich in chondrogenic factors to an in vivo space where these 

do not exist. Thus, in this chapter, I will describe the analysis of a pre-culture method 

with the potential to improve upon these results. 

 

8.1 Introduction 

The development of engineered tissues has progressed over the past twenty years 

from in vitro characterization to in vivo implementation, particularly for the 

musculoskeletal system, where in vitro metrics of engineered constructs regularly meet or 

exceed native tissue benchmarks for bone [74, 141], cartilage [24, 59, 185], and 

fibrocartilage [167, 175, 232]. The emphasis of many of these studies was to select 

conditions to maximize functional and compositional gains in vitro; however, the 

transition from the favorable in vitro culture environment to a less favorable in vivo 

environment has proven difficult. That is, in many cases, engineered tissues do not retain 

their pre-implantation phenotype after even short periods in vivo [52, 53, 195, 237]. 
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Developing a successful pre-culture strategy that allows for functional extracellular 

matrix production in vitro which continues after implantation in vivo is critical to the 

translation of these technologies.  

While DAPS recapitulate important mechanical parameters of the native disc in 

vivo, consistent with other studies in the field, I found that after implantation of DAPS 

proteoglycans that had accumulated in the AF and NP regions during pre-culture 

diminished markedly post-implantation [148]. This shift in phenotype may be due to 

inflammation related the surgical procedure or to limitations of the biomaterials, or issues 

with transition form nutrient and growth factor rich pre-culture media to the challenging 

nutrient- and growth-factor poor in vivo environment.  In the current studies, I focus on 

the transition from the in vitro culture conditions to the in vivo space. The culture 

medium used for these studies was designed for MSC chondrogenesis [108], and is a 

chemically-defined, serum-free formulation that includes potent factors for extracellular 

matrix production, including transforming growth factor β3 (TGF- β3), ascorbate-2-

phosphate, proline and dexamethasone. This formulation has been useful for engineering 

a number of musculoskeletal tissues, including cartilage [46, 62], meniscus [12, 65], as 

well the intervertebral disc [179], using both multipotent and fully differentiated cell 

sources.  While this formulation has proven successful in developing tissues that meet 

native tissue benchmarks in vitro, there are some drawbacks. For example, MSCs 

differentiated using this formulation do not match the gene expression profiles of 

articular chondrocytes [91], and the phenotype imprinted on MSCs following culture in 

this medium dissipates when media components are selectively removed [115]. Thus, this 

chemically defined medium likely does not instill a cell phenotype that is truly 
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chondrogenic or one that is sufficiently stable to be carried forward through the 

challenging in vivo environment. 

A modification to the media formulation may better prepare engineered implants 

for the in vivo environment. For example, a growing number of studies suggest culture in 

serum-containing media before implantation successfully primes cells for in vivo 

environment where they maintain a healthy chondrogenic phenotype; this has been true 

for AF cells, NP cells, and chondrocytes in implantation sites that include the 

subcutaneous space, the disc space, and articular cartilage defects for a number of species 

[30, 43, 63, 137, 166, 208, 254]. Combining the benefits of pre-culture in media with 

chondrogenic factors with those of serum-containing media may therefore improve 

extracellular matrix deposition in vitro while at the same time fostering phenotype 

retention in vivo. Others have reported that transient stimulation with TGF-β3, a method 

that models the rapid formation of tissue during fetal development, improves the 

chondrogenesis of MSCs and chondrocytes in vitro [38, 83, 114, 181]. While the 

biomolecular mechanisms that drive this phenomenon are unknown, the phenotype 

imprinted by transient doses of TGF-β3 appears to be maintained over an extended period 

of time. In one study, chondrogenic features of engineered cartilage based on MSCs 

remained intact 8 weeks after the cessation of TGF administration [114]. While it is 

unknown whether the imprinted phenotype will persist after in vivo implantation, this 

strategy of ‘weaning’ constructs off of a dependence on TGF-3 may be effective in 

developing extracellular matrix in vitro and then retaining phenotype in vivo. 
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In these experiments, I tested six different pre-culture strategies for their ability to 

preserve DAPS composition and metabolic activity during the transition from in vitro 

culture to in vivo implantation in an athymic rat subcutaneous model. Based on the 

strategies described above and our previous in vitro success with TGF-β3, I tested three 

hypotheses: (1) that pre-culture in serum-containing media with TGF-β3 would improve 

in vivo performance, (2) that a transient high dose of TGF-β3 would improve phenotype 

retention in vivo and (3) that, just prior to implantation, a gradual transition from 

chemically-defined media to serum-containing media would facilitate a stable in vivo 

transition. 

8.2 Methods 

8.2-1 DAPS Fabrication and Cell Seeding  

DAPS were fabricated to match the natural hierarchical features of the 

intervertebral disc, including an electrospun nanofibrous AF region, with layers of 

aligned fibers that, similar to the AF lamellar structure, alter in apposed layers +/- 30o to 

the transverse plane, and a hydrogel NP region. The AF region was assembled from 

layers of a soluble polymer between layers of a cytocompatible, backbone polymer with 

long-term in vivo stability. These soluble layers would be washed away before seeding, 

providing channels for seeded cells to penetrate and then engraft onto the backbone 

polymer. The NP was fabricated from hyaluronic acid (HA), an essential component of 

the disc extracellular matrix, as a photopolymerizable hydrogel network. 

Specifically, AF regions were composed of poly(ε-caprolactone) (PCL; Shenzhen 

Bright China Industrial Co., Hong Kong, China) as the core polymer, and poly(ethylene 
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oxide) (PEO; 200kDa, Polysciences, Inc., Warrington, PA) as the sacrificial polymer. 

PCL was dissolved in a 1:1 mixture of tetrahydrofuran (THF) and N,N-

dimethylformamide (DMF) (Fisher Chemical, Fairlawn, NJ) to form a 14.3% w/v 

solution. PCL was electrospun onto a grounded rotating mandrel to produce a sheet of 

aligned fibers; PEO was dissolved in 90% ethanol at 10% w/v and electrospun atop the 

PCL layer. The PCL/PEO layers were then cut to produce strips with a 30o fiber angle, 

and two strips with opposing alignment were rolled concentrically about a post and spot 

welded with a soldering pencil. A 31G needle was passed radially through the mid-height 

of the construct to provide the implant with initial stability and hold the formed layers 

together during removal of PEO. The final construct had two 125 µm layers of PCL for 

every one 250 µm layer of PEO, a diameter of 5 mm diameter and a height of 2 mm. 

Prior to cell seeding, constructs were washed in a gradient ethanol series for both 

sterilization and to remove PEO layers, and then coated in 20 μg/mL fibronectin (Sigma-

Aldrich, St. Louis, MO). 

The NP regions of DAPS were filled with a photocrosslinkable methacrylated HA 

(MeHA) hydrogel. Sodium hyaluorate (65kDa, Lifecore, Chaska, MN) and methacrylic 

anhydride (Sigma Aldrich, St. Lous, MO) were reacted to produce MeHA, which was 

dissolved in phosphate buffered saline at 1% w/v, sterilized by UV light, and combined 

with 0.05% photoinitiator (Irgacure 2959, (2-methyl-1-[4-(hydroxyethoxy)phenyl]-2-

methyl-1-propanone, Ciba-Geigy, Tarrytown, NY).  

To harvest AF and NP cells, caudal intervertebral discs were dissected from adult 

bovine tails obtained from local abattoir with institutional approval. The disc tissue was 

isolated in aseptic conditions and the AF and NP regions were separated and then 
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digested, first in pronase at a concentration of 2.5 mg/mL for 1 h, and subsequently in 

collagenase at 0.5 mg/mL (4 h for NP tissue, 8 h for AF tissue). AF and NP cells were 

then expanded in a serum-containing medium consisting of Dulbecco’s Modified Eagle’s 

Medium (DMEM; Gibco, Invitrogen Life Sciences, Carlsbad, CA), 10% fetal bovine 

serum (FBS; Gibco), and 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.25 µg/mL 

amphotericin B (Antibiotic-Antimycotic, Gibco). At passage 2-3, cells were trypsinized 

and then seeded, AF cells onto the top and bottom of the electrospun AF region (1x106 

cells per side) and NP cells in MeHA solution (20x106 cells/mL or ~6x105 cells/NP) that 

was subsequently photopolymerized with UV light exposure for 10 min and then punched 

to 2 mm diameter. 

 

8.2-2 Study Design 

AF and NP regions were cultured separately for 2 weeks in one of 6 media 

conditions, at which point they were combined to form DAPS, cultured an additional 3 

weeks, and then implanted into dorsal subcutaneous pockets of athymic rats for 5 weeks 

or cultured for an additional 5 weeks in vitro [Fig. 8-1]. At 2.5, 5, 6, and 10 weeks after 

in vitro culture, the metabolic activity (n=3), composition (n=3), and histological 

appearance (n=1-2) of DAPS were analyzed. Similar assays were performed 1 and 5 

weeks after in vivo implantation (corresponding to in vitro weeks 6 and 10) for metabolic 

activity (n=3), composition (n=3), and histological appearance (n=1-2). 
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Figure 8-1 Study design: Optimization of pre-culture strategies Cell-seeded disc-like 

angle ply structures (DAPS) for engineered total disc replacement were cultured in 

one of six pre-culture conditions and implanted into the subcutaneous space of 

athymic rats; conditions were directly compared to evaluate which was the best for in 

vivo performance. 

 

There were 3 serum-containing media pre-culture conditions: 

#1, SM+: serum-containing media plus TGF-β3;  

#2, SM++: serum-containing media plus a one week high dose of TGF-β3;  

#3, SM+T: serum-containing media plus TGF-β3 and then a transition to serum-

containing media without TGF-β3 over 10 days.  

There were 3 chemically-defined media pre-culture conditions:  

#4, CM+: chemically-defined media plus TGF-β3;  

#5, CM++: chemically-defined media plus a one week high dose of TGF-β3;  

#6, CM+T: chemically-defined media plus TGF-β3 and then a transition to serum-

containing media without TGF-β3 over 10 days. 
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The base media formulations were a serum-containing medium (SM) [116, 168] 

with DMEM, 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 2.5 µg/mL 

amphotericin B (Gibco), 1% MEM vitamin solution (Gibco), 25 mM HEPES Buffer 

(Gibco), and 40 µg/mL ascorbate 2-phosphate (Sigma-Aldrich) and a chemically-defined 

medium (CM) [59, 108] containing DMEM, 100 U/mL penicillin, 0.1 mg/mL 

streptomycin, and  0.25 µg/mL amphotericin B, 40 ng/mL dexamethasone (Sigma-

Aldrich), 50 µg/mL ascorbate 2-phosphate, 40 µg/mL L-proline (Sigma-Aldrich), 100 

µg/mL sodium pyruvate (Corning Life Sciences, Corning, NY), 0.1% insulin, transferrin, 

and selenious acid (ITS Premix Universal Culture Supplement; Corning), 1.25 mg/mL 

bovine serum albumin (Sigma-Aldrich), 5.35 µg/mL linoleic acid (Sigma-Aldrich). 

Transforming growth factor-3 (TGF-3; R&D Systems, Minneapolis, MN) was 

included at either a normal dose (10 ng/mL) or a high dose (100 ng/mL).  

DAPS maturation and in vivo phenotype were evaluated after culture in 3 SM 

conditions and 3 CM conditions. Two groups had media with a normal dose of TGF-3 

(SM+, CM+ groups), two groups had a high dose of TGF-3 for one week followed by 

culture in SM or CM (SM++, CM++ groups), and two groups were cultured in SM+ or 

CM+ and then transitioned over 10 days (4 media changes) to SM just prior to week 5 

(SM+T, CM+T groups). Specifically, the transitioning strategy is as follows: Day 24 

(100% SM+ or CM+), Media Change 1 at Day 25 (75% SM+ or CM+, 25% SM), Media 

Change 2 at Day 28 (50% SM+ or CM+, 50% SM), Media Change 3 at Day 31 (25% 

SM+ or CM+, 75% SM), Media Change 4 at Day 34 (100% SM). 
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8.2-3 Implantation Surgery  

DAPS were implanted into the dorsal subcutaneous space of athymic retired 

breeder rats (male, 9-10 months, 463g ± 45g) with local institutional approval. Rats were 

anesthetized with isoflurane and dorsal subcutaneous pockets were opened with small 

incisions at 6-7 positions 1 cm lateral to the spine. DAPS were inserted into the pocket, 

which was then closed with suture. Rats were returned to normal cage activity after the 

procedure. 

 

8.2-4 T2 Magnetic Resonance Imaging (MRI), Metabolic Activity, and Histological 

Analyses  

T2 relaxation time generated from MRI correlates to the spatial distribution of 

water within a tissue and is a non-invasive, clinically-relevant method for assessing 

intervertebral disc health. A 4.7T MRI spectrometer was used to generate T2 maps of 

DAPS using a multi-slice, multi-echo acquisition (three 500 µm thick slices, 16 echoes, 

TE/TR = 7.84 ms/2,000 ms, FOV = 15x15 mm2, matrix = 128×128, 4 averages). AF and 

NP regions were manually segmented from T2 maps and the mean T2 signal was 

calculated for each region.  

 Metabolic activity was assayed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) colorimetric assay (n=3). To do so, DAPS were 

sectioned in half axially, submerged in a solution of DMEM and MTT at 0.5 mg/mL, and 

incubated for 5h at 37oC and 5% CO2. AF and NP regions were then separated, minced, 

and the formazan product was solubilized in dimethyl sulfoxide and read on a microplate 

reader.  
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 For histological analysis, DAPS were fixed in formalin, embedded in paraffin, 

sectioned axially at 10 m, stained with either Alcian blue or picrosirius red to identify 

collagens and proteoglycans, respectively, and then imaged in brightfield (Eclipse 90i, 

Nikon, Tokyo, Japan). 

 

8.2-5 Statistical Analysis 

For both MRI and MTT measurements, results after 5 Weeks subcutaneous 

implantation were normalized to either the pre-implantation CM+ measurements, to 

determine their relationship to the control group, or to the pre-implantation measurements 

within each group, to determine changes after implantation. It was important for DAPS 

maturation to outperform the standard growth conditions (CM+) and to improve over 

time after in vivo implantation. Data were analyzed by analysis of variance, and 

Bonferroni’s method was used to make post-hoc comparisons (p<0.05). Data are 

displayed as mean ± standard deviation.  

In order to draw conclusions from this large data set, a simple scoring system was 

devised to determine the best media condition for pre-maturation. Categories were based 

on each assay (T2, MTT, Alcian blue staining, picrosirius red staining) and for each, two 

comparisons were made (to the CM+ group at week 5, and within the group to W5). 

Points were assigned to each category based on a statistically significant difference 

(MTT, MRI) or an increase in staining intensity; “+1” was added for an increase in MTT 

absorbance (increase in metabolic activity), decrease in T2 relaxation time (increase in 

matrix accumulation), or increase in staining intensity (increase in collagen or GAG); “-
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1” was assigned for a decrease in these measurements; “0” was added to indicate no 

difference in the comparison. The scores were tallied for both the AF and NP regions to 

develop a cumulative score indicative of the success of the pre-culture to implantation 

strategy. 

 

8.3 Results  

8.3-1 Histological appearance of DAPS before and after implantation 

Overall, CM conditions were most conducive to DAPS in vitro growth, SM 

conditions improved DAPS maturation after implantation, and DAPS cultured in the 

CM++ condition performed well both in vitro and in vivo [Fig. 8-2]. There were 

substantial differences in SM groups compared to CM groups with in vitro culture. DAPS 

from CM conditions were considerably larger at every timepoint, especially in the NP 

region, suggesting that CM is better for the in vitro growth of these constructs. After 

implantation, DAPS cultured in every condition increased in collagen staining in the AF.  

For the CM+ and CM++ groups, the only groups with significant NP growth in vitro, 

there was also an increase in NP collagen staining post implantation. The CM++ group 

demonstrated substantial AF and NP growth in vitro and continued with this trend after 

implantation, where both GAG and collagen staining in the AF and NP either persisted or 

increased. 
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Figure 8-2 – Picrosirius red (collagen) and Alcian blue (proteoglycan) staining DAPS 

were sectioned after 5 and 10 weeks of in vitro culture (W5, W10) or after 5 weeks in 

vitro and an additional 5 weeks of subcutaneous implantation (SQ, W10).  Sections 

were stained with picrosirius red for collagen and Alcian blue for proteoglycans.  One 

half-section is displayed for each condition. Each of the six pre-culture conditions are 

represented here; the difference in size and staining intensity between SM and CM 

groups is evident; SM conditions were not conducive to growth in vitro. All implants 

demonstrated increased collagen staining after the implantation; GAG staining after 

implantation was dependent on the pre-culture condition. The CM++ condition 

produced DAPS with the best histological characteristics after implantation. 
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For the SM conditions, there was little to no growth in DAPS size and minimal 

accumulation of extracellular matrix in vitro. There was, however, an increase in GAG 

and collagen in both the AF and NP regions after implantation. For the CM groups, CM+ 

was favorable for DAPS growth in vitro, but these constructs either did not retain the 

GAG and collagen produced in vitro or did not produce new GAG and collagen in vivo. 

The CM++ condition outperformed all others, with successful in vitro growth and 

maintenance/improvement in histological appearance after implantation. The CM+T 

condition, similar to the other serum conditions, was not conducive to growth in the NP 

region, but showed positive results in the AF region after implantation. 

 

8.3-2 Measurements of DAPS metabolic activity before and after implantation 

 The transition to the in vivo environment proved difficult for cells within DAPS 

to maintain pre-culture levels of metabolic activity [Fig. 8-3]. In all groups except SM+ 

and CM+, there was a decrease in metabolic activity between weeks 5 and 6.  However, 

in most cases, levels either rebounded or were maintained after week 6. Conversely, in 

both the SM+ and CM+ groups, the effect of transitioning in vivo was not detrimental, as 

the SM+ group actually improved after implantation, while the CM+ maintained pre-

implantation levels. The negative impact of transitioning may have actually been due to 

withdraw from TGF-3, as DAPS in the SM++, SM+T, CM++, and CM+T conditions 

cultured in vitro in parallel to the subcutaneous implantations (which had TGF-3  

removed from media prior to implantation) also decreased between weeks 5 and 6.   
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Figure 8-3 Detailed MTT (metabolic activity) results The MTT assay was performed 

on the DAPS AF and NP regions at each timepoint to measure changes in metabolic 

activity in each media condition; an increase in absorbance indicates higher metabolic 

activity. Statistical analysis is displayed in Figure 8-4. 
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A summary of these results with statistical analysis [Fig. 8-4a-b] demonstrates that, in 

comparison to the standard growth condition (CM+), over 5 weeks of implantation there 

are no decreases in metabolic activity in the AF for all groups, while in the NP region 

there are significant decreases in every group except CM+ and CM++ [Fig. 8-4a]. In 

looking at the change after implantation within each group, there were moderate 

decreases in metabolic activity in the AF region of all groups except SM+ and CM+, and 

no significant changes in the NP region in the SM+, SM+T, CM+ and CM++ groups 

[Fig. 8-4b].  

 

 

  

Figure 8-4 Summary of MTT (metabolic activity) results Metabolic activity was 

measured over time and comparisons were drawn to either the week 5 CM+ group or 

within each group from week 5 to week 10 to track changes after implantation. Light 

blue and red bars about 0 indicate the standard deviation of the control group. In all 

cases: *, p<0.05 and +, p<0.1 vs. control. (a) Compared to CM+ growth, there were no 

differences in metabolic activity in the AF region after implantation, while in the NP 

region, there was significantly less activity in all groups that included serum (SM+, 

SM++, SM+T, and CM+T groups). (b) After implantation, there were decreases in 

metabolic activity in the AF region when TGF was removed in vitro (SM++, SM+T, 

CM++, CM+T), while in the NP region there were decreases in the SM++ and CM+T 

groups. 
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8.3-3 DAPS matrix accumulation before and after implantation as quantified by T2 MRI 

 The T2 relaxation time, which correlates to the amount of water within the 

construct, decreased as extracellular matrix was deposited and replaced free water as the 

construct matured. This is evidenced by decreases in the AF region T2 after implantation 

for all groups and the concurrent increase in collagen-positive staining in the same region 

[Fig. 8-5]. Thus, T2 can be used as a numerical quantification and confirmation of 

histological findings. 
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Figure 8-5 Detailed T2 MRI (composition) results The mean T2 relaxation time was 

calculated for the DAPS at each timepoint by manually segmenting the AF and NP 

region; a decrease in T2 signified an increase in matrix deposition. 
 



183 
 

For further validation of the use of T2 in this capacity, in the SM+ group, T2 

decreased in both the NP and AF regions during in vitro culture from weeks 2.5 to 5, and 

then continued to decrease after implantation, which corresponds to increased GAG and 

collagen staining. In addition, long term in vitro culture of this group revealed increases 

in T2, matching the lack of matrix deposition demonstrated in histological sections from 

week 10. In the CM+ group, the results also matched what was demonstrated 

histologically, as after implantation T2 decreased in the AF region, where more collagen 

was present, but did not change in the NP region, where NP deposition did not improve. 

 A summary of the T2 results with statistical analysis [Fig. 8-6] shows that T2 

decreased in the AF region of all groups after implantation, matching histological 

outcomes of increased collagen in this region in all groups. In the NP region, there was a 

decrease in T2 in the SM+ and SM++ groups, and a trend towards a decrease in the CM+ 

group after implantation. Pre-implantation levels were maintained in the SM+T, CM++ 

and CM+T groups. 
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Figure 8-6 Summary of T2 MRI (composition) results Composition was quantified over 

time through T2 MRI scanning and comparisons were drawn to either  the week 5 CM+ 

group or within each group from week 5 to week 10 to track changes after implantation. 

Light blue and red bars about 0 indicate the standard deviation of the control group. In 

all cases: *, p<0.05 and +, p<0.1 vs. control. (a) In all groups, T2 was lower (more 

matrix accumulation) in the AF region after implantation in comparison to the CM+ 

week 5 control group. In the NP region, T2 was lower only in the SM++ group. (b) 

After implantation, T2 decreased in the AF region of all groups (again, indicating more 

matrix accumulation) and decreased in the NP region in the SM+, SM++ and CM+ 

groups. 
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8.3-4 Summary of results based on scoring system  

In order to draw conclusions from this large data set, a simple scoring system was 

used to compare groups [Table 8-1]. DAPS cultured via the CM++ strategy outperformed 

all others with uniformly distributed collagen in both the AF and NP regions, high 

proteoglycan content in the NP, and stable metabolic activity and T2 signal. All strategies 

were conducive to growth in the AF region after implantation, but only the CM+ and 

CM++ strategies were conducive to a healthy NP phenotype, though they both mildly 

decreased in GAG staining after subcutaneous implantation. 
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8.4. Discussion 

 In many cases, engineered tissues do not retain their pre-implantation phenotype 

after introduction in vivo. This is likely due to the stark differences between the amenable 

in vitro culture environment, with high concentrations of media components conducive to 

cell proliferation and metabolism, and the harsh inflammatory and nutrient deprived in 

vivo environment. Six strategies were evaluated to identify pre-culture conditions 

conducive to maturation in vitro and phenotype maintenance in vivo, using DAPS (an 

engineered intervertebral disc) and a subcutaneous implantation model. I found that a 

scheme incorporating a transient high dose of TGF-3 in a chemically-defined media 

(CM++ group) promoted the best deposition of GAG and collagen in DAPS in vitro, 

maintenance of accumulated matrix in vivo, and minimal changes in the metabolic 

activity of cells within the construct.  

Subcutaneous implantation was conducive to collagen formation in all implants, 

while GAG production was dependent on the pre-culture medium formulation. After 

implantation, there was an increase in AF collagen staining in all media conditions, and 

an increase in NP collagen staining in conditions conducive to NP growth (CM+ and 

CM++). In terms of GAG production, it may be that a single, powerful phenotype driving 

event (a one week high dose of TGF-3) imparts a sustainable phenotype, whereas a 

continuous, less powerful series of events (continuous supplementation of low dose TGF-

3) does not. This was this case in studies on chondrocytes and MSCs in hydrogel culture 

with a transient high dose of TGF-3, which was sufficient to lock in the chondrogenic 

phenotype over a period of months, even though TGF-3 was only administered for 1-2 
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weeks [114, 181]. This may explain the success of the CM++ group after implantation 

and future work should characterize mRNA expression before and after implantation 

using this strategy. Another explanation is that the abrupt removal of TGF-3 (CM+ 

group) at implantation diminishes a cells potential in vivo, a phenomenon that does not 

occur when culturing in serum-containing media. This was true of human MSCs pre-

differentiated in chemically-defined media with TGF-1 for 3 weeks and implanted 

subcutaneous as a micromass.  In that study, there was a decrease in toluidine blue 

(GAG) staining and a decrease in cell viability after implantation [52]. In another study, 

MSCs were pre-differentiated in chemically-defined media with TGF-3 and BMP-6; 

these cells also lost their phenotype after subcutaneous implantation, with a reduction in 

GAG and type II collagen, and an increase in alizarin red indicative of hypertrophy [53]. 

This was also true of fully differentiated cells; chondrocytes encapsulated in hydrogels 

pre-cultured in chemically-defined media with TGF-3 maintained the collagen produced 

during pre-culture, but showed a depletion of GAG after implantation [237]. Taken 

together, these data suggest that culture using the CM+ formulation, while important for 

identifying aspects of chondrogenesis in vitro, may not be practical or useful for in vivo 

translation of engineered tissues.  

In vitro culture with serum is not conducive to functional and compositional 

maturation, while chemically-defined media enhance matrix accumulation, increase 

physical size, and improve metabolic activity in cultured engineered discs. In another 

study, NP cells encapsulated in hydrogels were cultured with TGF-3 in either 

chemically-defined or serum-containing media; gels in chemically-defined media with 
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TGF-3 developed a chondrogenic phenotype and compositionally and functionally 

outperformed gels cultured in parallel in serum-containing media [202]. It may be that 

serum increases the turnover rate of extracellular matrix components, as high levels of 

cleaved aggrecan were measured after culture of NP cells in serum-containing media with 

TGF-3 [203]. FBS contains many growth factors that contribute to cell proliferation, 

differentiation, and matrix production, including those of the Insulin-like growth factor 

family, fibroblast growth factor family, as well as the factors from the TGF family [253]. 

It may be that, in serum, finite resources within the cell are diverted to respond to these 

other signals, interfering with the main action of TGF-3. In contrast, in defined media, 

TGF-3 may be able to drive chondrogenesis and matrix accumulation without 

interruption. In addition, FBS contains lipopolysaccharides, which are implicated in 

rheumatoid arthritis [92] and provoke an inflammatory response in NP cells [135]; this 

molecule may oppose the anabolic signal from TGF-3. Though TGF-3 was originally 

employed as a molecule to induce differentiation of mesenchymal stem cells, it has a 

significant effect on the behavior of fully differentiated cells, an effect that is mitigated in 

serum. 

In two chemically-defined media conditions, CM+ and CM++, DAPS maintained 

a healthy NP phenotype after implantation while, in all other cases (where DAPS were 

exposed to serum), cells in the NP region did not produce matrix. In serum conditions, 

cells may have actively contracted or degraded the gel, as histological sections show a 

decrease in NP dimensions after culture (radius <1 mm in all cases) as compared Day 0 

(1 mm). In other cases when this hydrogel was exposed to serum, for example, in an in 
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vivo rat tail disc replacement model [147] and an in vivo pig osteochondral defect model 

[64], HA was also degraded, while in subcutaneous models such as this one and others 

[25, 26], where little bleeding occurs surgically, the hydrogel remains intact. In these in 

vivo systems, it may be that local inflammation, as communicated through the blood 

within the wound site, induces the activation of hyaluronidase by implanted cells or local 

endogenous cells to break down the gel. Circulating hyaluronidase in the blood may also 

play a role. Hyaluronidase activity in these constructs should be measured in future work 

for confirmation, and a more stable hydrogel, such as agarose, which is not susceptible to 

hyaluronidase-mediated degradation, may be useful as a substitute for HA for tissue 

replacement. 

 There are three primary limitations of this study; the infiltration of endogenous 

cells, which may affect matrix accumulation after implantation, was not characterized, 

and T2 MRI, an indirect method of quantifying extracellular matrix deposition, was used 

to evaluate DAPS maturation, and a subcutaneous implant model was adopted for high 

throughput. Implanted DAPS with little matrix accumulation in vitro have significant 

space available for the infiltration of endogenous cells; DAPS cultured with the SM 

strategies had poor matrix production in vitro. Thus these implants were at risk for 

colonization by host cells, which would subsequently engraft and produce collagen. 

However, the inability of these conditions to mature constructs in vitro precludes serum 

conditions from being useful for translation. Cell-tracking methods with fluorescent dyes 

and proteins are available for this purpose, and will necessarily be performed in future 

work. For the analysis of matrix accumulation by T2 MRI, I made the assumption that 

water is replaced during maturation of the engineered tissue with extracellular matrix, 
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and that high T2 values correspond to high water content and consequently an immature 

tissue. There is one complicating factor, however; increased GAG content with 

maturation would likely increase water content as GAGs are highly hydrophilic. Early 

Day 0 measurements of DAPS T2 revealed that T2 values in the AF and NP were 

between 250-300 ms (data not shown), much higher than those measured after 

maturation. Water sequestered by GAGs after maturation does not seem generate a T2 

signal as high as free water within the hydrogel. Further confirmation of this by direct 

measurement of GAG and collagen is necessary. In addition, T2 is a non-invasive and 

clinically-relevant method for evaluating matrix content of a tissue, and a method that is 

useful for in vivo animal models and ultimately clinical trials. For these reasons, T2 is an 

important tool for these experiments. A final limitation is that implants were evaluated in 

a subcutaneous implantation model, which allows for multiple implants per rat and 

reduces the number of animals required for these studies, but does not have all the 

characteristics of an orthotopic disc replacement model, for example the juxtaposition of 

vertebrae. Future work will evaluate the best strategy, CM++, as a pre-culture method 

before in situ total disc replacement. 

 

8.5. Conclusion 

Previous results demonstrated that a transient high dose of TGF-β3 improves the 

in vitro chondrogenesis and matrix production of MSCs and chondrocytes. Here, this 

strategy (CM++ group) improved both in vitro maturation and in vivo phenotype 

retention of disc-cell-laden DAPS. Other strategies were not as effective; DAPS cultured 
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in serum improved compositionally in vivo, but did not mature in vitro, especially in the 

NP region. Additionally, transition strategies (SM+T and CM+T groups) reinforced that 

serum was not compatible with maturation of the NP region. Interestingly, all groups 

showed increased collagen production after implantation, possibly in response to factors 

secreted by endogenous cells or as a result of infiltration by immune cells or fibroblasts. 

These findings define the most favorable pre-culture strategy (CM++) for DAPS 

development before and after implantation. In the future, another student should quantify 

proteoglycan and collagen composition for each condition, evaluate the CM++ strategy in 

terms of mRNA expression, and ultimately determine whether the CM++ pre-culture 

strategy improves the in vivo performance of engineered discs that are implanted into the 

intervertebral space. 
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CHAPTER 9 – Summary, Future Directions and 

Conclusions 

9.1 Summary  

My global hypothesis for this work was that engineered, viable intervertebral disc 

replacements can restore normal spine function. Building off earlier work from our lab in 

which disc-like angle ply structures (DAPS) for total disc replacement were designed and 

evaluated preliminarily in vitro, in this series of experiments, I developed a rat model of 

total disc replacement to evaluate DAPS in vivo. In developing this model, I designed an 

external fixation device to stabilize adjacent vertebrae of the rat tail and a radiopaque 

scaffold to fluoroscopically confirm implant retention. Radiopaque DAPS were 

implanted using external fixation and tracked fluoroscopically; no migration occurred 

after 4 weeks, confirming the utility of this model for evaluating engineered discs. I next 

focused on cell-seeding and in vitro culture of DAPS, using either AF and NP cells or 

MSCs, and found that DAPS seeded with disc cells or stem cells both compositionally 

and functionally matured reaching or exceeding many native tissue benchmarks. Over 

long-term culture, timepoints related to an immature/rapidly-growing phase of growth 

and a mature/stable phase of growth were identified and AF/NP cell-seeded DAPS were 

implanted into the rat tail using these pre-culture criteria. There were dynamic alterations 

to the DAPS after implantation; there was a depletion in GAG that had accumulated in 

vitro, remodeling of the NP region, infiltration of endogenous cells and tissue, and 

minimal vertebral integration. Despite these changes, vertebra-DAPS-vertebra motion 
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segments matched native tissue mechanical properties in compression. In tackling the 

first of these issues, the reduction in GAG after implantation, I evaluated six pre-culture 

strategies to identify which best prepared the implant for the in vivo environment, 

confirming that pre-culture in chemically-defined media with a high, transient dose of 

TGF-3 best prepared cells within DAPS for the harsh in vivo conditions. To conclude, 

in my work, the most promising finding was that DAPS matched the compressive moduli 

of the native disc, and though I have identified some limitations of the implant design, 

this mechanical competency validates my global hypothesis that engineered biological 

disc replacement is a real possibility for functional restoration of the intervertebral joint. 

9.2 Future Directions 

To realize the ultimate goal of biologic total disc replacement, future work must 

focus on the implant deficiencies described above: phenotype retention, NP degradation, 

and vertebral integration. The biostimulatory effects of dynamic, multidirectional 

mechanical loading on live DAPS should be evaluated, DAPS must be evaluated in a 

large animal model, and finally DAPS scaled up to human size with human cell sources 

must be evaluated.  

In terms of phenotype retention, I took the first step in solving this problem by 

identifying a useful pre-culture strategy and determining its success in a subcutaneous 

model. Confirming the efficacy of this strategy in situ, where exposure to blood, 

circulating cells, and serum components appears to be an impediment to implant 

performance, is the most relevant next step for evaluating this pre-culture strategy. 
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 The hyaluronic acid (HA) hydrogel that formed the NP degraded after 

implantation, and while degradation and replacement of the biomaterials with 

endogenous tissue is warranted after long-term implantation, the rate at which 

degradation occurred was unfavorable for implant performance. HA degradation may be 

a result of a local inflammatory process and the production of hyaluronidase; quelling 

inflammation may result in improved HA performance. Also, it may be useful to modify 

HA; increasing the number of crosslinks and thus reducing the number of exposed sites 

for hyaluronidase-mediated degradation will improve the in vivo stability of the implant, 

but may affect cell viability, proliferation, and matrix production, as cell-HA interactions 

are known to be bioactive. New materials, particular those that are not degradable in 

vivo, may be useful in pre-clinical models to better evaluate implant performance. There 

is an ever-growing list of biomaterials that may be useful for the NP region, as well as the 

AF region. The material selection should be optimized to promote successful in vitro 

growth, sufficient in vivo mechanical support and phenotype retention, and minimize the 

endogenous foreign body response. Some biomaterials of particular interest at this stage 

are silk, agarose, and dextran, but more will likely be identified. One additional point, in 

terms of the AF materials, electrospun PCL as-spun is very dense and cells have a 

difficult time penetrating the layers. One way to speed this process, as demonstrated 

previously by our lab, is to fabricate mats with stable PCL and soluble PEO fibers within 

one layer. Removing the PEO layers increases the porosity, and may speed tissue 

infiltration and improve the overall nutrient permeability of the engineered tissue.  
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  The integration of engineered soft tissues into native bone is currently a highly 

active area of study in musculoskeletal tissue engineering, and will be important for disc 

tissue engineering. Implanted DAPS integrate well into the adjacent soft tissue, but no 

integration was evident into the adjacent vertebrae, a significant limitation of the current 

technology. Engineered endplates that are osteoconductive may be attached or cultured in 

apposition with DAPS to improve integration. Some preliminary results that I have 

generated (not shown) suggest that a porous PCL foam cultured in apposition with DAPS 

will form tissue at the DAPS/foam interface during in vitro culture. 

Dynamic mechanical loading, which was neglected in these studies due to use of 

the external fixation system, will play an important role in evaluating the engineered disc 

moving forward. Pre-maturation of the construct can be enhanced through dynamic 

loading in vitro; it may shift the growth trajectory, increase the overall rate maturation, 

reduce the pre-culture duration and improve in vivo integration. A combination 

compression-torsion bioreactor may be useful for these purposes [Fig. 9-1].   
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Figure 9-1 Combination Compression-Torsion Bioreactor Here, I demonstrate the 

design of a bioreactor system that combines compression and torsion load for 

mechanical stimulation of DAPS in vitro. An array of 24 stepper motors provides 

oscillatory motion for torsional loading, while a single larger stepper motor raises 

and lowers a stage to apply compression loads. 
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Dynamic loading will also play an important role in vivo; for example, remobilization of 

the implantation site by removing the external fixation device will resume physiological 

loading and may have a biostimulatory effect. A period of integration after implantation 

will first be required, perhaps 5 weeks (when DAPS demonstrated mechanical 

competency ex vivo), at which point the external fixation device can be removed. DAPS 

support of long-term in vivo loading has yet to be evaluated in terms of mechanical 

fatigue, as well; this may be a future direction for mechanical analysis. 

 Before moving to clinical trials, a cervical or lumbar spine of a large animal 

model is a critical next step for in vivo evaluation of DAPS. This will open up new 

avenues of implant evaluation through functional outcome measures like gait analysis 

and joint kinematics, which were not possible using the aphysiologic externally-fixed rat 

tail model. My personal opinion is that the complete restoration of joint kinematics is 

likely the most important outcome for musculoskeletal tissue engineering. Of course, 

patients report to clinic because they have pain, and pain reduction and return to activity 

are the ultimate clinical goals. The restoration of joint kinematics is the foundation on 

which pain can be relieved; inappropriate kinematics causes stress in other tissues and 

joints, wearing of articular cartilage, inflammation and ultimately the tissue degeneration. 

It may be that, following tissue replacement, spinal nerve sensitization, muscle weakness, 

or arthritis in adjacent joints still linger; restoring joint kinematics is the first priority for 

total disc replacement, but secondary treatments may be necessary to resolve these 

problems. 

 Eventually, DAPS must be formed to match human dimensions and seeded with 

human cells for clinical translation. The maturation of engineered tissues in vitro is 
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closely tied to the ability of nutrients from the media to diffuse through the tissue and 

reach the deepest regions. Increasing the size of an engineered tissue increases the 

diffusion distance and limits nutrients to deeper areas. Scaling DAPS to human size will 

certainly create this problem. Assuming restrictions to diffusion occur along the shortest 

dimension, in the case of DAPS, height will be the limiting factor to diffusion; currently, 

our lab has grown rat-sized implants (2 mm height, as in this dissertation) and rabbit-

sized implants (3 mm height, [179]) with much success. Human-sized implants will be on 

the order of 10 mm in height, greatly increasing the diffusion distance. It remains to be 

seen whether this will limit growth, though some strategies are available to deal with this 

potential problem; mechanical stimulation is known to improve nutrient flow into tissues 

through convection, DAPS permeability can be improved by including channels or 

electrospinnng an additional sacrificial fiber layer to improve porosity, and perhaps cells 

can be primed to function in oxygen and glucose deprived conditions.  Human cell 

sources will need to be evaluated in future work. Some directions research on human cell 

sourcing could take include evaluating human MSCs, evaluating cells from degenerated 

human discs and methods to restore a healthy phenotype, and evaluating induced 

pluripotent cells and their ability to adopt a disc-like phenotype. This is an exciting area 

for future research.  

9.3 Conclusions 

 When I arrived in the lab, an engineered intervertebral disc had been developed 

and preliminary in vitro culture had been performed to demonstrate its compatibility with 

cells. I built upon this innovative work by characterizing the long-term in vitro 



200 
 

performance of the disc and evaluating it in an animal model of total disc replacement. 

There were some very promising results, for example, the implant matched the 

compressive mechanical properties of the native disc. In addition, along the way, I 

developed some tools that will be useful for future studies: an animal model of total disc 

replacement, a radiopaque scaffold, an optimized pre-culture strategy, and mechanical 

and MRI analysis protocols. There are also some areas in which these engineered discs 

require improvement, namely, phenotype retention, vertebral integration, and NP 

stability. I have confidence that by solving the problems I laid out above, engineered disc 

replacement will be a real clinical alternative to intervertebral fusion in the future. 
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APPENDIX I – Development of a Quantitative MRI 

Analysis Protocol: Population Average T2 MRI Maps 

Reveal Quantitative Regional Transformations in the 

Degenerating Rabbit Intervertebral Disc that Vary by 

Lumbar Level 

I.i Preface 

 In Appendices I and II, I describe two side projects I worked on, developing two 

disc degeneration models, one in rabbits and one in mice. These studies are published in 

[145, 146]. While the specific results of these studies are not directly related my work 

with DAPS, the assays I developed for MRI and mechanical analysis were later applied 

to evaluate DAPS after in vivo implantation. In Appendix I, I describe a method for 

developing average T2 MRI maps for a population of rabbit lumbar discs degenerated by 

needle puncture. Averaging T2 maps will later to be used to develop timepoint average 

T2 maps to track changes in DAPS composition over time.  

I.1 Introduction  

Towards developing therapies for disc degeneration, animal models are 

commonly used to assess degenerative changes and the efficacy of proposed therapeutics. 

In these models, degeneration can be induced by injuring the annulus fibrosus (AF) with 

a scalpel or needle, which depressurizes the nucleus pulposus (NP) and triggers a 
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physiological response that closely resembles human disc degeneration. AF injury has 

been conducted and validated in many species [89, 109, 146, 191], with the rabbit model 

among the most common [153, 171, 210, 224].  

Rabbit discs closely resemble human discs in composition and structure, and their 

response to puncture injury closely resembles human degeneration. Glycosaminoglycan 

(GAG)[20] and collagen [213] contents of both the NP and AF of healthy rabbit lumbar 

discs are similar to non-degenerate human lumbar discs. In addition, puncture injury 

results in compositional, cellular, structural, and mechanical changes that resemble 

human degeneration. Specific examples of puncture-induced modifications similar to 

human degeneration include the loss of NP GAG [126, 172], pro-fibrotic changes in 

mRNA expression [172], structural changes inclusive of a shift from bulging AF lamellae 

to serpentine lamellae [45], and mechanical changes at both the whole disc level [126, 

164] and the tissue level [77]. 

Magnetic resonance imaging (MRI) allows for the quantitative, non-invasive 

assessment of soft tissues like the intervertebral disc and, consequently, is used to 

identify pathological changes in the disc. In the healthy disc, signal intensity on T2-

weighted MR images is highest in the central, hydrated NP and dissipates radially with 

transition to the fibrocartilaginous AF [196]. With degeneration, there is a characteristic 

loss of NP signal intensity and consequently the NP and AF become indistinguishable 

[196]. These abnormalities are typically assessed by visual inspection of MR images or 

by qualitative evaluations on an integer scale, like the Pfirrmann or Thompson grading 

frameworks [196, 231]. In addition, clinicians routinely evaluate candidates for surgery 
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using MRI to identify disc abnormalities in the presence of radicular and/or low back 

pain, and, while these scoring systems provide some level of discrimination between 

degenerative states, they do not provide quantitative information on T2 signal or 

positional information regarding the location of the compositional changes. 

T2 relaxation time is a physical property related to tissue water content and can be 

quantitatively measured in vivo with MR imaging. This has been well described in 

articular cartilage [136, 169, 170, 221], and more recently, the disc [142, 143]. Rigorous 

spatial quantification of T2 MR images may allow for improved discrimination between 

age-based sub-populations or degenerate sub-populations (populations with early versus 

advanced degeneration) by identifying changes in disc shape, structure and composition. 

Furthermore, the development of quantitative outcomes that enable non-invasive 

assessment of degeneration is critical for longitudinally evaluating therapeutics.  

The objective of this study was to spatially map changes in T2 relaxation time as a 

result of puncture-initiated degeneration in the rabbit. To do so, rabbits were imaged 

before and after puncture to generate population average T2 maps of the healthy and 

post-injury state. Additionally, an auto-segmentation procedure was developed to enable 

objective observer-independent isolation of the NP. I hypothesized that population 

composite images would identify specific changes with degeneration as a function of disc 

level (i.e., change in NP area and T2 values), as well as morphologic changes such as the 

disappearance of the intranuclear cleft, a region of lower T2 signal intensity at the center 

of the NP [3].  
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I.2 Methods  

I.2-1 Surgical procedure  

With local institutional approval, 20 New Zealand White rabbits (3 mos., 2.5-3.0 

kg, Charles River Laboratories, Wilmington, MA) underwent a procedure in which four 

lumbar discs (L3/L4 to L6/L7) were injured by needle puncture to induce degeneration 

[171, 218-220].  Rabbits were tranquilized and anesthetized, and a retroperitoneal 

approach to the lumbar spine was achieved by incising the skin at the left flank and then 

the external oblique, and bluntly developing a plane between the paraspinal and psoas 

muscles. An 18G needle was inserted through the lateral AF a depth of 5 mm controlled 

by a stopper. Rabbits were returned to normal cage activity and medicated for pain 

(meloxicam, 0.2 mg/kg) and infection (cefazolin, 22 mg/kg). 

I.2-2 Radiographic Analysis 

Lateral radiographs were acquired preoperatively and 4 weeks postoperatively for 

disc height and of spinal curvature analysis [Fig. I-1a]. Resultant images were digitally 

processed in Matlab to calculate Disc Height Index (DHI) [151, 153] and the relative 

angles of rotation between vertebrae in the sagittal plane. First, each disc and its 

corresponding adjacent superior and inferior vertebrae were manually traced for area 

quantification (AD, AVB1, AVB2) [Fig. I-1b-c]. Then, a principal components analysis[139] 

was performed on individual disc and vertebrae shapes. The principal axes generated by 

this analysis point in the direction of minimum distribution of pixels within the shape, 

and thus the widths of the vertebrae (WVB1, WVB2) and disc (WD) could be defined along 
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the principal axes [Fig. I-1c]. Disc height (HD) and vertebral length (LVB1, LVB2) were 

defined as HD = AD/WD and LVB = AVB/WVB. DHI was defined as DHI = 2HD /( 

LVB1+LVB2).  

  

Figure I-1 Radiographic analysis of response to injury (a) Representative lateral 

radiograph with the location of punctured lumbar discs identified. (b) Manual 

outline of vertebrae for disc height analysis. (c) Features used for the analysis of 

disc height, vertebral width (WVB1, WVB2) and disc width (WD), vertebral area 

(AVB1, AVB2) and disc area (AD), and 1st and 2nd principal axes generated by 

principal components analysis. 
 



206 
 

I.2-3 MRI Acquisition  

In vivo T2 mapping was performed pre-injury and 4 weeks post-injury on each 

rabbit. A custom MR coil [Fig. I-2a] and a 3.0 T MRI spectrometer (Medspec S300; 

Bruker Instruments, Ettlingen, Germany) were used to generate coronal T2 maps as 

measured from a multi-slice, multi-echo acquisition (three 2mm-thick slices, 17 Echoes, 

TE/TR=7.55ms/2000ms, FOV=16.5x16.5cm2, matrix=384x384, 2 averages). 

I.2-4 Population Average T2 Maps  

Week 0 and Week 4 T2 maps [Fig. I-2b-c] were processed in Matlab to enable 

quantitative comparisons between groups. Discs were initially manually segmented from 

coronal slices and mapped to a coordinate system normalized to disc dimensions [Fig. I-

2d-f].  
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Figure I-2 MRI analysis of response to injury (a) Custom MR coil for imaging the 

rabbit spine. (b) Week 0 and (c) Week 4 coronal T2 maps. Example of (d) manual 

segmentation (AF, annulus fibrosus; NP, nucleus pulposus; VEP, vertebral 

endplate) and (e) rotation of a disc based on axes generated by principal 

components analysis. (f) Interpolation of a disc T2 map to a regularly spaced grid. 

The aspect ratio represents the average ratio of disc length to disc width. 
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The mapping process began with a principal components analysis of the manually 

segmented disc shape to identify the long and short axes. Then, the centroid of the disc 

was set as the origin and the disc axes were rotated to match the vertical and horizontal 

axes of a rectangular coordinate system. Finally, a grid was defined spanning -1 to 1 in 

both the axial and lateral disc dimensions, and the T2 map was linearly interpolated to 

these regularly spaced grid points. By mapping each disc to a grid, population average T2 

maps could be developed by averaging the T2 values of discs from the Week 0 or Week 4 

groups at each grid point. In addition, T2 difference maps were constructed by 

subtracting (and subsequently taking the absolute value of) the Week 0 population 

average map from (1) the Week 4 population average map (to identify the average change 

post injury), (2) from the Week 4 L3/L4, L4/L5, L5/L6 and L6/L7 population average 

maps (to identify average change as a function of level), or (3) from Week 4 individual 

disc maps (to identify deviations of individual discs from the population average). In case 

(3), for an individual disc, the T2 difference at each pixel was averaged to generate a 

single numerical quantity that described the degenerative changes following puncture 

injury.  

I.2-5 Auto-Segmentation of the NP by T2 Signal  

An automatic procedure was developed to enable non-biased segmentation of the 

NP based on T2 signal. The area surrounding the NP was first manually segmented to 

provide an initial guess for curve fitting (lateral boundaries at mid AF, axial boundaries at 

vertebral endplates). This area was mapped to a normalized grid as described above. 

Then, to evaluate fitting techniques, four modified Gaussian distribution functions [Table 
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I-1], two 2-D functions (a unimodal, univariate function and a bimodal, univariate 

function) and two 3-D functions (a unimodal, bivariate function and a bimodal, bivariate 

function), were fit to T2 data at the disc mid-height along the lateral axis (2-D) or to the 

full T2 surface along the lateral and axial axes (3-D). This was done for each disc in the 

Week 0 and Week 4 groups [Fig. I-3]. The mean and standard deviation associated with 

the Gaussian functions are determined from the fitting procedure and describe the 

distribution of the NP signal. Using the concept of full width at half maximum, NP 

boundaries were defined as points where 50% of the max NP T2 signal had dissipated as 

defined by the curve fit [Fig. I-3a,c]. This concept was expanded to determine NP 

dimensions with bimodal or bivariate fits [Fig. I-3b,d]. 
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Figure I-3 Gaussian distribution functions for NP auto-segmentation Gaussian 

distribution functions fit to the NP T2 signal: (a) unimodal, univariate, (b) 

unimodal, bivariate, (c) bimodal, univariate, and (d) bimodal, bivariate. On each 

plot, the max and ½ max points are labeled. These landmarks were used to 

determine the boundaries of the NP. Details on these functions are provided in 

Table I-1. In (b, d) NP T2 maps are shown before (Initial NP T2 Map) and after 

(Auto-segmented NP T2 Map) application of a Gaussian function to determine the 

NP boundaries. 
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I.2-6 Calculation of Mean T2 Signal and T2 Volume  

From the original raw T2 maps, the mean T2 signal was calculated for the whole 

disc, the AF, and the NP of all discs. The mean signal from the whole disc T2 map 

(isolated by manual selection) was quantified by averaging the T2 value at all pixels 

within the disc. The mean signal from the NP T2 map (isolated by bimodal, bivariate 

segmentation) was quantified by averaging pixels within the segmented region. The 

pixels within the disc excluded by auto-segmentation were used to define the AF and the 

mean AF signal was defined by the average of T2 values in the excluded region. The T2 

volume (or volume under the T2 surface) of the whole disc, AF, and NP regions was 

determined using a method analogous to numerical integration, summing the volume at 

each pixel, where dimensions are: axial resolution by lateral resolution by T2 value. T2 

volume is comparable to the MRI Index (the average T2 volume or the product of the 

total NP area and the mean NP signal intensity) which decreases following puncture 

injury as both the NP area and NP T2 signal decrease.  

To examine inter-observer reliability of the automatic segmentation procedure, 

two researchers (a PhD student with 6 years experience in spine research and an attending 

orthopaedic spine surgeon) independently analyzed 10 sets of images from the pre-injury 

and post-injury groups. Pearson correlation coefficients were calculated to determine the 

linear correlation between each set of observations. To demonstrate reliability, 

correlations related to manual outlining were compared to those from automatic 

segmentation using the bimodal, bivariate Gaussian function, specifically for 

measurements of mean NP T2 values. 



213 
 

I.2-7 Measurement of Disc Geometry from MR Images  

Area, width, and height for the whole disc, the AF, and the NP were determined 

from the original raw T2 maps for all discs [Fig. I-4]. Whole disc area was defined as the 

number of pixels within the manually segmented whole-disc region multiplied by the 

scan resolution. Whole disc width was defined as the maximum distance across the lateral 

axis of the disc; whole disc height was defined as the whole disc area divided by the 

whole disc width. NP area, width and height were defined in the same way using the NP 

area isolated from by bimodal, bivariate segmentation. AF area was defined as the 

difference between the disc area and NP area, AF width as the difference between the 

disc width and NP width, and AF height as the AF area divided by the AF width. AF 

width is reported as half the measured width to indicate the thickness of the right or left 

lateral AF. 
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Figure I-4 Geometry analysis for MR 

images. (a) Whole disc dimensions as 

estimated by manual tracing, (b) NP 

dimensions as determined by bimodal, 

bivariate auto-segmentation, (c) AF 

dimensions as the regions excluded by 

auto-segmentation. 
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I.2-8 Statistical Analysis  

Measurements of four discs from each rabbit were averaged for Week 0 (n=80, 4 

discs/rabbit, 20 rabbits) and Week 4 (n=76, 4 discs/rabbit, 19 rabbits) groups to 

determine the effect disc injury on disc geometry and T2 signal. Paired t-tests were used 

to determine significant differences (p<0.05). To evaluate NP segmentation functions, the 

mean coefficient of determination (R2) for each of the 4 Gaussian functions was 

calculated for Week 0 (n=80) and Week 4 (n=76) groups and a two-way ANOVA was 

implemented. Post-hoc Bonferroni analysis was employed to determine differences 

between groups at each timepoint (p<0.05). To analyze discs by level, measurements 

from each disc level were averaged for Week 0 (n=20 discs/level) or Week 4 (n=19 

discs/level) groups and a one-way ANOVA was performed with post-hoc Bonferroni 

analysis used to determine differences between groups at each timepoint (p<0.05).  

I.3 Results 

All rabbits survived surgery and maintained healthy body weight postoperatively. 

One rabbit was removed from the study due to skin necrosis and resultant wound 

complication. 

Quantitative T2 mapping was used to generate spatial maps of the T2 relaxation 

rate of each disc. Upon fitting these data, the bimodal, bivariate method was most 

effective for NP segmentation, as determined by the mean R2 of all fits (Table 1). For 

Week 0 fits, there were no differences between the bimodal, bivariate method and the 

univariate methods, while the unimodal, bivariate method mean R2 was less than the 
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bimodal, bivariate method. For Week 4 fits, the bimodal, bivariate function fit data more 

accurately than all other methods. Thus, all reported NP dimensions and T2 values were 

determined by bimodal, bivariate segmentation. 

  

  
Unimodal, 

Univariate  

Bimodal, 

Univariate  

Unimodal, 

Bivariate  

Bimodal, 

Bivariate  

          

Week 0 0.88 ± 0.076 0.94 ± 0.043 0.79 ± 0.086 0.87 ± 0.053 

         

Week 4 0.68 ± 0.28 0.74 ± 0.26 0.70 ± 0.16 0.85 ± 0.080 

Table I-2 - Coefficient of Determination (R2) for 4 modified Gaussian distribution 

functions fit to NP T2 Maps 

 

Bold font, p<0.05 vs. Bimodal, Bivariate at corresponding timepoint 

Values are listed as mean ± standard deviation 
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There were no differences between independent observers in terms of mean NP 

T2 values both pre- and post-injury for either manual outlining or bimodal, bivariate 

segmentation. In addition, I found that Pearson coefficients were identical between 

manual outlining and auto-segmentation (Pre-injury: manual outlining r2 = 0.86, auto-

segmentation r2 = 0.83; Post-injury: manual outlining r2 = 0.44, auto-segmentation, r2 = 

0.44). Thus, automatic segmentation was equivalent to manual outlining, while having 

the additional benefit of a rigorously defining NP boundaries and potentially eliminating 

user bias. 

Population average T2 maps showed quantitative differences in T2 values across 

healthy discs and revealed specific transformations following injury [Fig. I-5a]. Before 

injury, T2 relaxation time was lowest in the AF and increased gradually towards the NP. 

The pre-injury map identified that the intranuclear cleft (bilateral T2 peaks at the center 

of the NP) is a consistent anatomical feature preserved across all discs. At Week 4, NP 

T2 values decreased and the T2 difference map showed that this reduction occurred at the 

periphery of the NP. 

The T2 relaxation time decreased in the NP but not in the AF. Between Weeks 0 

and 4, the mean T2 decreased in the NP and the whole disc, while there was no change in 

the AF [Fig. I-5b]. T2 volume also decreased in the whole disc and NP, and increased in 

the AF [Fig. I-5c]. 
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Figure I-5 Population average T2 maps and T2 quantification by disc region (a) 

Population average T2 maps were generated for discs from Week 0 (n=80, top) 

and Week 4 (n=76 discs, middle) groups. Map of T2 difference (bottom) between 

Week 0 and Week 4 population averages. (b) Mean T2 values for the whole disc, 

the NP, and the AF at each timepoint (*, p<0.05 vs. Week 0). (c) Mean T2 volume 

(volume under T2 surface) for the whole disc, the NP, and the AF at each timepoint 

(*, p<0.05 vs. Week 0). Data is shown as the mean ± standard deviation. 
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Needle injury also resulted in changes in disc shape. Whole disc area remained 

constant from Week 0 to Week 4 while NP area decreased and AF area increased [Fig. I-

6a]. Whole disc width increased, while NP width decreased and AF width increased [Fig. 

I-6b]. In addition, whole disc and AF heights decreased, while there was no change in NP 

height [Fig. I-6c]. While MRI measurements confirmed disc height decreased in the 

coronal plane, radiographs demonstrated that disc height decreased in the sagittal plane 

[Fig. I-6d].  
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Figure I-6 Disc geometry pre- and post-injury MRI measurement of whole disc, 

NP, and AF (a) area, (b) width, and (c) height from Week 0 (n=80) and Week 4 

(n=76) discs (*, p<0.05 vs. Week 0). Note: AF Width refers to the AF radial 

thickness; see Figure I-4 for details. Radiographic measurement of (d) Disc Height 

Index (DHI) reported as % of Week 0 DHI and (e) vertebral offset angle in the 

sagittal plane. Data is shown as the mean ± standard deviation. 
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Population average T2 maps revealed differences in how discs at different lumbar 

levels responded to injury. Specifically, level-by-level analysis showed that the L4/L5, 

L5/L6 and L6/L7 discs were less responsive to injury than the L3/L4 discs [Fig. I-7].  

  

Figure I-7 T2 difference as a function of level T2 difference maps were used to 

identify the location of T2 transformation within each disc. (a) These were defined 

by subtracting the individual T2 maps of Week 4 discs from the Week 0 population 

average map (n=19 discs/level). (b)  T2 difference maps of individual discs were 

averaged at each point on the grid to quantify changes in T2 values with injury. 

Individual data points represent the mean T2 difference for an individual disc and 

are displayed with the median and interquartile range (*, p<0.05 vs. L3/L4 and $, 

p<0.05 vs. L4/L5). (c) Population average T2 maps of discs at each level confirm 

the variability in response to needle puncture injury, with less difference observed 

at lower levels. 
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With progression along the spine, the T2 difference in individual discs showed an 

increasing range, indicating that the response to injury was not only less severe, but was 

less repeatable at these lower levels. The mean NP T2 signal in the L3/L4 and L4/L5 

discs was significantly decreased between Weeks 0 and 4, while the mean NP T2 value in 

both the L5/L6 and L6/L7 discs did not change over the same time period and was 

significantly greater than the L3/L4 NP T2 [Fig. I-8]. In addition, while DHI changed for 

all levels from 0 to 4 weeks, the amount it changed was significantly less for L6/L7 discs 

compared to L3/L4 discs [Fig. I-8b]. Interestingly, the mean NP T2 signal in the L6/L7 

discs was significantly greater than the mean NP T2 signal in L3/L4 discs at Week 0 [Fig. 

I-8c], and the mean AF width of the L5/L6 and L6/L7 discs was significantly greater than 

the mean AF width of the L3/L4 discs [Fig. I-8d].  
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Figure I-8  Effects of puncture by level and baseline differences (a) Mean NP T2 

and (b) %DHI0 by level after injury. ($, <0.05 vs. corresponding Week 0 group 

and *, p<0.05 vs. Week 4 L3/L4). (c) Mean NP T2 signal and (d) AF width by 

level before injury (*, p<0.05 vs. Week 0 L3/L4).  
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I.4 Discussion  

Rabbit lumbar discs were injured using the needle puncture method established by 

Masuda and et al. [153], and changes in T2 MRI maps were quantified. I generated 

population average T2 maps before and after injury which demonstrated that 

transformations in T2 signal occurred primarily in the NP, with the intranuclear cleft 

disappearing as a result of injury. This method also identified transformations in disc 

geometry, as quantified by MRI and radiographs, analogous to those observed in the 

human degeneration process. Finally, analysis by level showed that lower lumbar discs 

were protected from injury, illustrating how anatomical differences (AF thickness) 

mediate the response to a standardized injury.  

  Overall, this study showed that lumbar disc injury led to MRI and geometric 

transformations consistent with those previously reported in both animal models and 

human disc degeneration. A standard MR definition of disc degeneration, the loss of T2 

signal in the NP, is consistently replicated in this and previous animal models [79, 224, 

229, 250]. Through quantitative analysis of MR images, this study also demonstrated the 

disappearance of the NP intranuclear cleft following injury, a feature of the rabbit 

puncture model that was not previously defined, but is consistent with human disc 

pathology [3]. Geometric changes like disc height loss and the disappearance of hydrated 

tissue in the NP are well documented for human disc degeneration and are similarly 

exhibited in this rabbit puncture model [224, 229]. This study revealed additional 

geometric transformations not previously described in the rabbit puncture model. 

Specifically, the increase in the coronal disc width following puncture supports the idea 
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that disc bulging occurs in this model, a common finding in epidemiological studies of 

the human disc [18].  

Another feature of this methodology was its sensitivity in identifying 

degeneration as a function of level. Level-by-level analysis illustrated the limits of set 

needle puncture depth (5mm) with respect to the increasing disc dimensions at lower 

lumbar levels. The heterogeneity in response to injury at L4/L5 and lower may suggest 

that needle insertion depth should be a function of disc level. Many studies support that 

structural perturbation is only apparent when the injury is of sufficient size relative to 

disc geometry [56, 89, 146, 158]. The specific findings of Michalek and Iatridis, who 

demonstrated computationally that disc mechanics were sensitive to the ratio of needle 

diameter to AF width, is particularly relevant to our result that increased AF width was 

protective in the context of a standardized needle injury [161]. Because initiating 

degeneration in the rabbit lumbar disc with an 18G needle is a standard model in disc 

research, we believe this information is important to take into account for future 

experiment planning, especially in light of the NIH call for improvements in the 

experimental reproducibility in animal research [47]. Careful selection of puncture depth 

and validation of the effects are critical to proper interpretation of experimental outcomes 

in multi-segment experiments. 

Auto-segmentation of the NP using a modified Gaussian function was successful 

in both pre- and post-injury discs, with the bimodal, bivariate function providing the best 

fit at both timepoints. Univariate functions along the lateral disc coordinates fit the pre-

injury data well, but failed to capture post-injury transformations in signal, likely because 
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the spatial distribution of T2 signal was plateau-shaped (rather than peak-shaped) in the 

post-injury situation. Post-injury, the T2 signal transformed from bimodal T2 peaks along 

a left-right line at the disc mid-height to bimodal T2 peaks at the superior and inferior 

margins of the NP. Thus, the bimodal, bivariate function provided the best fits, as 

expected for a bimodal function fit to bimodal data. In all cases, Gaussian functions 

produced meaningful boundaries for defining the NP geometry. 

 Use of bimodal, bivariate NP segmentation was an objective approach to defining 

internal boundaries. This method has less potential for bias relative to other NP isolation 

methods (i.e. by the absolute position within the disc [241], by using the geometry of a 

predefined region of interest [28], or by tracing the NP at its boundaries [183]). A 

comparable auto-segmentation procedure delineates the NP based on T2 pixel intensity 

by defining a T2 threshold based on the mean T2 signal within a region of interest in a 

control NP and selecting pixels above this threshold [79]. This method warrants direct 

comparison to the bimodal, bivariate method in future studies. 

The rabbit AF response to needle puncture was different from human 

degeneration.  In human degeneration the AF T2 relaxation times decreases with 

increasing degeneration grade [7, 241], while for the rabbit disc, there was no change in 

AF T2 following needle puncture. This suggests that biochemical changes that occur 

immediately following puncture are primarily in the NP and not the AF. Similar findings 

have been described for this model previously. Miyamoto et. al showed there were no 

changes in AF DNA, proteoglycan or collagen contents 8 weeks after needle puncture, 

while significant changes in composition occurred  in the NP [164]. We propose that in 
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disc puncture models compositional modifications in the AF are preceded by structural 

modifications in the AF. Evidence for AF structural disorganization in the rabbit puncture 

model was provided by Sakai et. al who demonstrated lamellar disorganization 6 weeks 

after puncture [210], and also by Gregory et. al who reported a decrease in interlamellar 

shear strength at 12 weeks [77]. Future work must evaluate later time points to confirm 

the effects of puncture on AF composition in the rabbit model and its relation to changes 

in the human AF. 

The primary criticism of disc injury models is that the rapid advancement of 

degeneration does not replicate changes seen in human degeneration, which develop over 

the course of years. These models, however, have a number of features that mimic the 

human condition: disc height collapse [146] and bulging [255], the disappearance of the 

NP T2 signal [224], and the presence of a number of molecular markers [225, 247]. 

Because the endpoints of both injury-initiated degeneration and human degeneration are 

comparable, injury-mediated degeneration is a powerful technique to study the basic 

science of disc degeneration and develop therapeutic strategies to regenerate tissue. 

Another limitation of this study is the inability of the MR analysis to detect subtle 

changes in disc geometry due to limited scan resolution. For example, at the 

segmentation boundaries there is volume averaging within each voxel, and consequently, 

evaluating the AF dimensions by T2 signal may overestimate AF geometry. Relative 

changes in AF and NP geometry resulting from puncture injury were detectable despite 

limited resolution, and, in addition to changes in T2 signal, measurement of these 

parameters enables monitoring of the degeneration process quantitatively. 
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I.5 Conclusion  

Population average T2 maps enable the quantification of the deviation of an 

individual disc from a population norm, providing new information on the degree of 

degeneration that is not available with standard ordinal grading methods. Furthermore, 

the spatial discrimination of changes implicit in this approach provides additional 

information on alterations in regional disc structure. This is exemplified here by the 

disappearance of the intranuclear cleft after injury, a potential early indicator of 

degeneration, which may be obscured in grading standard T2-weighted clinical MR 

images. Future work will determine whether these population average T2 and 

corresponding T2 difference maps are useful in a clinical population to assess the degree 

of degeneration, to predict pain/disability, and to quantify the adjacent segment 

degeneration. 
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APPENDIX II – Development of a Precision Mechanical 

Testing Protocol: Needle Puncture Injury Causes Acute 

and Long-Term Mechanical Deficiency in a Mouse 

Model of Intervertebral Disc Degeneration 

II.i Preface 

In Appendix II, I describe a method for precision mechanical analysis of 

degenerated mouse caudal discs through optical displacement tracking. This method will 

be used to quantify the mechanical properties of DAPS after implantation. 

II.1 Introduction  

While current surgical and non-surgical interventions may relieve discogenic 

pain, they do not restore disc function. An in vivo disc degeneration model can provide 

the necessary platform for evaluating therapies aimed at reducing pain and restoring 

function. Because the primary function of the disc is mechanical, consideration of disc 

mechanics is critical in such models. 

Intervertebral disc injury in animal models consistently produces an acute 

response that progresses to resemble key features of disc degeneration [99, 130]. Injury 

models provide repeatable results and have controlled specificity in comparison to global 

gene knockouts and spontaneous development models. Thus, injury studies have been 

conducted in many species including the sheep, pig, rabbit, and rat [89, 109, 153, 164, 
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191, 207]. Methods for inducing degeneration through injury include scalpel incision, 

defect creation (box, cruciate), and needle puncture and, of these methods, needle 

puncture is used frequently as puncture depressurizes the nucleus pulposus (NP), a 

primary factor for creating instability, while also minimizing annulus fibrosus (AF) 

damage [89, 153, 164]. Recently, the mouse caudal disc was shown to degenerate as a 

result of needle puncture, displaying changes in morphology, cellularity and composition 

consistent with those in humans [247]. Puncture-initiated degeneration of the rodent 

caudal disc requires only minor surgery; thus it is an excellent alternative to lumbar 

surgery in which access requires an invasive and technically challenging peritoneal or 

dorsolateral approach [32]. In addition, the mouse caudal disc is comparable 

mechanically to the human lumbar disc when accounting for geometry despite different 

physiological loading environments [55, 213]. These factors, along with the wide 

commercial availability of mouse-specific biological assays, indicate that the mouse 

caudal disc model can be a powerful tool for investigating degeneration. 

Mechanical function is the primary metric for studying the efficacy of potential 

therapies as restoring function is the end-goal of such therapies. Mechanical changes 

immediately following puncture injury [56, 89, 160] and over time due to biological 

effects such as inflammation [109, 164] have been assessed in separate studies; however 

no study has linked the immediate mechanical changes following puncture with 

progressive mechanical deterioration or recovery. In addition, a needle diameter to disc 

height ratio of 40% is required to cause changes in the mechanics of  lumbar discs [56], 

while much larger defects are required to alter rat caudal disc mechanics [89, 160]. By 
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evaluating acute and long-term disc mechanics, changes caused by the initial puncture 

can be distinguished from those caused by physiological processes, and by evaluating 

needle sizes, an appropriate injury for a degeneration model can be selected. 

Mechanical data for the degenerate mouse disc is currently limited to bending and 

creep [49, 192]; however, compression and torsion are also primary mechanical modes, 

and to date have not been measured. Compression and torsion are governed by different 

structural mechanisms; compression through the interactions between the NP and AF and 

torsion primarily through loading of the AF fiber network. Quantification of the 

compressive and torsional mechanical behavior of healthy and degenerate discs will aid 

in understanding alterations in mechanics of the individual disc tissues.  

The objective of this study was to quantify the acute and long-term effects of 

needle puncture injury on mouse caudal disc function. Injuries were surgically induced 

with one of two needle sizes and were evaluated for changes in disc structure, mechanics, 

and composition both immediately and after eight weeks. We hypothesized that the initial 

puncture would decrease compressive and torsional mechanical properties and that these 

changes would be amplified by subsequent structural and compositional deterioration. 

II.2 Methods 

II.2-1 Surgical Procedure  

With institutional IACUC approval, 26 C57BL/6 retired breeder mice (7.5-9 

months, 32.7±5.1g) were obtained from Jackson Laboratories (Bar Harbor, ME) and 

allocated to two timepoints: zero weeks (n=12) and eight weeks (n=14). Mice were 
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anesthetized in an aseptic setting and the surgery was fluoroscopically guided. The C6/C7 

and C8/C9 discs were exposed with a 2.5 mm dorsal longitudinal scalpel incision and 

puncture injuries were created at one randomly assigned level with either a 29G (65% of 

disc height) or 26G (90% of disc height) needle, while the other exposed disc served as a 

sham control. Needles were inserted at the dorsal annulus through the NP center and 

partially through the ventral annulus (controlled depth of 1.75 mm or 90% of the 

dorsoventral width) for 30 seconds and removed. The injured level was marked with 

India ink and both incisions were closed with suture. Mice were returned to normal cage 

activity and euthanized after eight weeks. Zero-week mice were euthanized and their 

discs were punctured in vitro following the same procedure. 

II.2-2 Microcomputed Tomography  

Microcomputed tomography (µCT) (vivaCT 40, SCANCO Medical AG, 

Bruttisellen, Switzerland) was used to measure disc area and mean disc height of zero-

week control and eight-week control and punctured groups (n=7/group). The C6 through 

C9 section the caudal spine was removed and imaged en bloc at an isotropic 21 µm 

resolution. Volumetric image data was converted to stacks of cross-sectional vertebral 

body slices and disc area and mean disc height were measured from a 3D reconstruction 

of slices that spanned disc space [32] [Fig. II-1a-c]. Polar moment of inertia, Jz, about the 

spinal longitudinal axis was measured from a cross-sectional slice directly distal to the 

disc space for use in normalizing torsional mechanical properties [Fig. II-1d-f].  
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Figure II-1 µCT analysis of disc geometry Disc area and mean disc height were 

measured by (a) isolating the intervertebral space and (b) converting to cross-

sectional image stacks. (c) Stacks were analyzed in Matlab by differentiating 

between pixels that corresponded to bone and pixels that corresponded to disc 

[32].  Polar moment of inertia, Jz, was measured by (d) isolating a cross-sectional 

image directly adjacent to the disc space, determining the centroid, and (f) 

numerically integrating over n pixels (where n is equal to the number of pixels 

within the boundary of the vertebral body cross-section), each with coordinate (xi, 

yi) and area (ΔA = 21µm x 21µm, based on µCT resolution).  
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II.2-3 Mechanical Testing 

Mechanical function was assessed with an electromechanical testing system 

(Instron 5542, Instron, Norwood, MA) fit with a custom torsion device consisting of a 

stepper motor (AM1524; MicroMo Electronics, Inc., Clearwater, FL) and a 5 in-oz (35 

mNm) torsional load cell (TFF400; Futek, Irvine, CA) [Fig. II-2].  A custom LabVIEW 

(LabVIEW 8.5; National Instruments, Austin, TX) program was used to control the 

angular displacement of the stepper motor and read the torsional reaction force. While the 

electromechanical testing system and stepper motor were used to directly control the 

compressive and rotational displacements, two digital cameras (A602f; Basler, Exton, 

PA) were used to optically track the extension and rotation of each vertebral body. Axial 

position (mm) was defined simply as the difference in the z-position of points in camera 

1, while rotational position (radians) was measured by recording the x-position of a point 

in camera 1 and the y-position of the same point in camera 2 and defined as tan-1(y/x) 

[Fig. II-2c].  
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Figure II-2 Mechanical testing and optical displacement tracking setup (a) A 

custom torsion device consisting of a stepper motor and torque cell was installed 

on a uniaxial mechanical testing system. (b) Two digital cameras positioned 90o 

apart were used to record the 3-dimensional position of the vertebral bodies. (c) 

Markings on the vertebral bodies were tracked using custom software. (d) Samples 

were fixed to the upper machine grip, lowered into a pot filled with dental cement 

and, when cured, the mechanical test was started.  
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A significant portion of machine-reported displacement was a contribution of 

unavoidable motion at spots along the load string (for example slipping at the grips or 

minor motions between bolted connections to the load cell). These errors are likely 

present in all disc compression tests, but because the rodent disc is small, minor motions 

have a relatively large impact. Thus, it was necessary to eliminate displacement error 

through optical tracking with the dual camera system and a custom texture tracking 

program written in Matlab. Preliminary evaluations of this technique demonstrated that 

axial displacements and rotations were successfully captured as 85.4±12.4% and 

75.4±38.4% of their machine-reported counterparts respectively [Fig. II-3]. These optical 

measures of displacement and rotation were then used in post-test mechanical parameter 

calculations. 

 

  

Figure II-3 Optical displacement vs. machine reported displacement 

Representative plots of machine-reported and optically-tracked (a) displacement 

and (b) rotation over one loading cycle. 
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Discs from zero-week and eight-week control and punctured groups (n=5/group) 

were exposed to a mechanical testing regimen including compressive, creep, and 

torsional loads. Caudal spines were prepared as bone-disc-bone segments by cutting 

through adjacent unused discs (leaving the entire vertebral body surface area to grip for 

mechanical testing) and gently clearing extraneous tendon and muscle with a scalpel. The 

testing protocol consisted of 20 cycles of compression/tension from -1.5 N to +0.5 N at 

0.5 Hz [20] (causing compression/extension of the disc from approximately 70%  to 

130% of the initial height), a one hour creep load of -1.5 N [20], and 10 cycles of torsion 

of ±8o at 0.05 Hz [213]. All testing was conducted in phosphate buffered saline bath at 

room temperature. 

Compression/tension data was analyzed for compressive stiffness and range of 

motion (ROM), and neutral zone (NZ) stiffness and ROM by fitting data to a sigmoid 

function[217] (an S-shaped curve with well-behaved first and second derivatives that 

represents displacement as a functional of applied load) [Fig. II-4]. Compressive and NZ 

stiffness were normalized to disc geometry by multiplying by the disc height and dividing 

by the disc area [20], and ROM measurements were normalized by dividing by the disc 

height [20]. Torsion data was analyzed for torsional stiffness, torque range, torsional NZ 

stiffness and torsional NZ ROM using the same curve fitting procedure [Fig. II-4]. 

Torsional stiffness, torsional NZ stiffness, torque range were normalized to disc geometry 

by multiplying by the disc height and dividing by Jz [213].  
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Figure II-4 Data analysis for compression and torsion response Loading curves were 

isolated from the final test cycle to analyze (a) compression and (b) torsion data. 

Positive loading curves (tension or counter-clockwise rotation) and negative loading 

curves (compression or clockwise rotation) were made to intersect by shifting each to 

the load axis to form a composite curve, which was subsequently fit to a sigmoid 

function. The maximum of the first derivative (maximum compliance) of the sigmoid 

function represents the transition from positive to negative loading regions. The 

extremum of the second derivative of the sigmoid function represent the boundaries of 

the NZ. (a,b) Neutral zone stiffness (for both compression/tension and torsion) was 

defined as the slope of the line connecting the point at the each boundary of the neutral 

zone. (a,b) Neutral zone ROM (for both compression/tension and torsion) was defined 

as the displacement between these points. (a) Compressive ROM was defined as the 

displacement between the inflection point of the curve and the displacement at -1.3 

MPa, a value of stress which consistently occurred just prior to the peak stress (the peak 

stress varied slightly from test to test). (a) Compressive stiffness was defined from the 

raw data as the slope of the line fit from -1.3 MPa to -0.5 MPa (a value that consistently 

occurred after the transition region). (b) Torque range was defined as the change in 

torque from the inflection point of the curve to the maximum torsional load. (b) 

Torsional stiffness was defined from the raw data by fitting a line from 40% - 90% of 

the maximum torque for both positive and negative rotations and then averaging the 

two. 
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Creep behavior was fit to a 5-parameter viscoelastic constitutive model[186] 

 

describing the displacement (d) at time (t) for constant load (L). The material response 

consists of an elastic stiffness (S3) and two exponential decays with one time constant (τ1, 

τ2) and damping stiffness (S1, S2) each. This model provided a simple but reasonable 

method to compare the time-dependent response across groups. In addition, creep 

displacement was measured from raw optical displacement. Damping stiffnesses were 

normalized by disc geometry by multiplying by disc height and dividing by disc area, and 

creep displacement was normalized by dividing by disc height [20]. 

II.2-4 NP Glycosaminoglycan and Collagen Content 

Following mechanical testing, discs from zero-week control and eight-week 

control and punctured groups (n=5/group) were isolated for NP GAG and collagen 

content analysis. First, a scalpel was used to cut through a vertebral body adjacent to the 

disc above the vertebral endplate. The remaining vertebral body-disc segment was 

embedded in optimum cutting temperature compound on a cryostat microtome, and 

consecutive sections through the partial vertebral body exposed the underlying disc. A 

100 µm section of disc was then isolated and the NP was removed with 0.75 mm biopsy 

punch (the approximate NP diameter). This dissection technique facilitated precise 

control of the volume of tissue obtained. Isolated NPs were subsequently digested in 

papain at 60C. Glycosaminoglycan (GAG) content was measured using the 

dimethylmethylene blue (DMMB) technique [61], and collagen content (following acid 
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hydrolysis) using the p-diaminobenzaldehyde/chloramine-T technique for hydroxyproline 

[226] assuming a ratio of hydroxyproline to collagen of 1:10 [182]. Results are reported 

as normalized to NP wet weight.  

II.2-5 Histology 

Discs from eight-week sham and punctured groups (n=2/group) were fixed in 

formalin, decalcified, and embedded in paraffin. Sagittal, 8 µm sections were stained 

with alcian blue/picrosirius red for GAG/collagen and imaged under bright field and 

cross-polarized light. 

II.2-6 Statistics  

Differences in disc height, GAG content and collagen content were analyzed by 

one-way ANOVA comparing the zero-week control group to the eight-week control and 

punctured groups. Differences in mechanical properties were analyzed by two-way 

ANOVA comparing zero-week control and punctured groups to the eight-week control 

and punctured groups with needle size and time as the main effects. Tukey’s post-hoc test 

was used for pairwise comparisons with significance defined as p≤0.05 and a trend as 

0.05<p≤0.10. Results are reported as mean ± standard deviation. 

II.3 Results  

Mice survived the minor surgical procedure and recovered with no change in 

body weight over 8 weeks. Disc height eight weeks after 26G puncture was less than the 

zero-week control group (37%, p≤0.05), the eight-week control group (29%, p≤0.05) and 

the 29G group (28%, p≤0.05), and there was no significant effect of the sham surgery or 
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29G needle puncture [Fig. II-5a]. Nucleus pulposus GAG content followed a similar 

trend as at eight weeks the 26G group was 41% less than the zero-week control group 

(p≤0.05), with no change in eight-week control or 29G groups [Fig. II-5b]. Nucleus 

pulposus collagen content for the 26G group was not significantly different from zero-

week control but was 45% greater than both the eight-week control and 29G groups 

(p≤0.10) [Fig. II-5c].  

  

Figure II-5 Disc height, GAG content, and collagen content at week 8 (a) Disc 

height (n=7/group/timepoint), (b) NP GAG content (n=5/group/timepoint) and (c) 

NP collagen content (n=5/group/timepoint) were altered after eight weeks. 

Significant differences (p<0.05) are labeled: from zero-week control (represented 

by dotted line) (#), from eight-week control (*), and from 29G (^). Significant 

trends (p<0.10) are labeled: from eight-week control (&) and from 29G ($). 
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Histologically, there were no qualitative differences between control and 29G puncture 

groups at eight weeks, while the 26G group had a collapsed disc space, disorganized 

lamellae, and collagenous NP [Fig. II-6]. 

  

Figure II-6 Histological results at week 8 Alcian Blue/Picrosirius Red stained 

sagittal sections of eight-week mice viewed under (a-c) brightfield and (d-f) 

polarized light (n=2/group/timepoint).  (a,d) Control and (b,e) 29G discs were no 

different at eight weeks, while (c,f) 26G discs had collapsed height and 

disorganized lamellae with the presence of collagen-positive stain and lack of 

GAG-positive stain in the NP. 
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The baseline mechanical response in both compression and torsion consisted of an 

elongated low stiffness NZ that transitioned with increasing strain to a high stiffness 

linear region [Fig. II-7]. A two-way ANOVA revealed that changes in compressive and 

torsional mechanical properties (normalized compressive stiffness, normalized torsional 

stiffness, normalized torque range) were a function of puncture size only (p≤0.05) and 

not time [Fig. II-7].Compressive stiffness of the 26G group was less than the control 

groups at week zero (62%, p≤0.05) and week eight (62%, p≤0.05), but there were no 

differences across timepoints [Fig. II-7a].In addition, there were no significant changes in 

compressive ROM for any treatment [Fig. II-7b].Torsional stiffness for the 26G group 

was significantly less than the control group at week zero (60%, p≤0.05) and at week 

eight (71%, p≤0.05), but again there were no differences across timepoints [Fig. II-

7c].Torque range of the 26G puncture group was less than the control group at week eight 

(51%, p≤0.05) [Fig. II-7d].The sham surgery and the 29G needle puncture had no effect 

and there were no differences in either compressive or torsional NZ mechanics for any of 

the groups.  

  



244 
 

  

Figure II-7 Elastic mechanical parameters before and 8 weeks after puncture injury 

(a) Normalized compressive stiffness, (b) normalized compressive ROM, (c) 

normalized torsional stiffness, and (d) normalized torque range 

(n=5/group/timepoint). Differences from control at each timepoint are labeled as 

significant (*, p<0.05) and trend (+, p<0.10).  
 



245 
 

The response to creep loading was characterized by an initial high strain rate over 

the first 60 seconds and slower strain rate thereafter, equilibrating by approximately 40 

minutes. Again, a two-way ANOVA revealed that changes in creep mechanical 

properties (normalized S1, τ1, τ2) were a function of puncture size only (p≤0.05) and not 

time [Fig. II-8]. Puncture with 26G needle caused a faster, magnified creep response [Fig. 

II-8a].The early damping stiffness, S1, of the 26G puncture group was significantly less 

than the control group at week zero (84%, p≤0.05) and week eight (84%, p≤0.05) [Fig. II-

8d], and there were similar statistical trends for τ1 and τ2 [Fig. II-8b-c]. There were no 

differences in the late damping stiffness, S2, the elastic stiffness, S3, or creep 

displacement [Fig. II-8e]. 
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Figure II-8 Viscoelastic mechanical response before and 8 weeks after puncture injury 

(a) Average creep curves calculated from mean parameter values in Eq. 1. The total 

response (initial step displacement plus creep displacement) was magnified by puncture 

while the creep displacement did not change. The data are displayed as: control 

(triangles), 29G (squares), 26G (circles) with zero-week (solid line) and eight-week 

(dotted line). (b) Early time constant, τ1, (c) late time constant, τ2, (d) normalized creep 

displacement, (e) normalized early damping stiffness, S1, (f) normalized late damping 

stiffness, S2, (g) and normalized elastic stiffness, S3 (n=5/group/timepoint). Differences 

from control at each timepoint are labeled as highly significant (**, p<0.001), significant 

(*, p<0.05), and trend (+, p<0.10). Significant differences from 29G are labeled as (^, 

p<0.05). 
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II.4 Discussion  

Compression, torsion, and creep mechanics of the mouse caudal disc were 

assessed both immediately and eight weeks following the needle injury described here. In 

each loading modality, stiffness was decreased after puncture with the large needle and 

remained at those levels at eight weeks. Conversely, the classical signs of degeneration 

progressed over eight weeks; disc height and NP GAG content decreased, while NP 

collagen content increased and histological signs of degeneration were present. Thus, 

needle puncture had an acute effect on mechanics that neither improved nor deteriorated 

over time despite other compositional changes. In addition, the mouse disc was 

insensitive to puncture with the smaller needle size. Thus, the injection of therapeutics 

into the nucleus pulposus with a minimal needle size may limit damage due to the needle 

insertion. 

With disc degeneration the NP undergoes structural and compositional alterations, 

shifting to a fibrocartilaginous phenotype. This fibrocartilaginous shift was observed in 

this study; needle puncture triggered compaction of the disc space with subsequent 

increase in collagen content and reduction in GAG content. This is consistent with 

findings reported by Yang et al., where, following needle injury, the mouse caudal NP 

transitioned from gelatinous to fibrocartilaginous, shifting from collagen II dominant to 

collagen I dominant [247]. Results from our study and that of Yang et al. are consistent 

with the well-defined alterations in internal composition in degenerative disc disease 

[233]. Thus, it is possible that the mouse disc post-injury exhibits a distorted internal 

strain field similar to that of the human degenerate disc [189].  However, bulk segment 
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mechanics declined immediately following puncture, but not over time. The NP transition 

to fibrocartilage observed here and in human degeneration may represent an adaptation to 

the loss of AF structural integrity, a physiological response to preserve segment 

mechanics or mitigate their decline. Future work should evaluate changes in tissue level 

mechanics following disc injury.  

The immediate effect of needle puncture depends upon the spinal region, as 

caudal and lumbar discs respond differently to a given defect size. A needle with 

diameter equivalent to 40% disc height is required to alter the mechanical response of 

lumbar discs in compression[56]. In the caudal disc, compressive and torsional 

mechanics following a 90% disc height disruption (26G) were diminished acutely, while 

a 65% disc height disruption (29G) had no significant effect. In the rat caudal disc 

Michalek et al. demonstrated that a 21G needle (80% disc height, assuming disc height of 

1 mm[188]) decreased compressive and torsional mechanical properties, while 25G and 

30G (50% and 30% disc height) needles affected compression only [160]. Similarly, 

Hsieh et al. showed that in the rat caudal disc an 18G needle (100% disc height) affected 

compressive properties while 22G and 26G needles (70% and 45% disc height) had no 

effect [89]. Our results are consistent with these studies [89, 160], confirming that in the 

caudal disc the defect size threshold is in the range 80% disc height. This may be due to 

lower NP pressure and lower residual AF tension in tail discs compared to lumbar discs, 

as lumbar levels experience considerable loads due to muscle forces for stance and 

ambulation [216].  
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The immediate changes in torsion mechanics following needle puncture are 

considered to be needle size-dependent [160]. Torsion is primarily governed by AF fiber 

tension, which decreases with increasing needle size. The changes in torsion mechanics 

we measured for the mouse caudal disc are consistent with those of the rat caudal disc 

[160]. However, there is not consensus regarding the acute changes in compression 

mechanics following needle puncture, which have been suggested to be both needle size-

dependent [56] and size-independent [160]. The underlying theory behind size-

independence in compression is that compression mechanics are primarily governed by 

NP pressure, which may be reduced by puncture regardless of needle size. In this study of 

the mouse caudal disc, I could not confirm size-independence in compression. This 

difference may be due to animal size effects or differences in puncture techniques and 

mechanical testing protocols. However, changes in compression mechanics may also 

depend on needle size since, in compression, both NP pressure and AF tension play a 

fundamental role. 

Needle puncture affects the response of the caudal disc to creep loading, although 

at eight weeks, the behavior did not match that of the degenerate human lumbar disc. 

Puncture with the 26G needle caused a magnified, faster creep response relative to 

control discs, predominantly seen in the early damping stiffness, S1. This is similar to the 

behavior of the rat caudal disc [89]. The stiffness, S1, dominated the response only over 

the short term τ1 (9.3 ± 4.5s), supporting the idea that puncture results in a pressure vent 

[161] in which fluid can immediately leave at the onset of load. However, in the human 

lumbar disc, degeneration causes a magnified and slower response [187]. In that study, 
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the late time constant, τ2, increased with human disc degeneration [187], which was not 

the case following needle puncture in the mouse caudal disc.  

All animal models have limitations. In this model, while the mechanical effects 

were immediate and do not represent the slow progressive nature of the human disease, 

other characteristics of degeneration were controlled and consistent. In addition, unlike 

the human disc, the mouse disc retains a notochordal cell population throughout its 

lifespan [223] and caudal discs experience different physiological mechanical loading 

than lumbar discs. Finally, our experiment was not able to reveal a difference in 

mechanical function following small needle puncture because, for the small effect caused 

by the 29G needle, the study was underpowered.  However, the primary goal of the study 

was to initiate a degenerative state and measure the resultant change in mechanics and the 

29G group did not meet any of the criteria for a degenerative state (loss of disc height, 

loss of NP GAG, change in histological appearance). Thus, our primary finding that disc 

height, NP GAG and collagen contents, and mechanical function did not recover eight 

weeks after large needle puncture is valid, supporting the mouse caudal injury model for 

certain studies. 

II.5 Conclusion  

The effects of needle injury in the mouse caudal disc were examined using 

rigorous mechanical outcomes. Injury caused an immediate change in mechanics that 

were not altered over time despite progressive compositional changes. Sufficient 

mechanical perturbation is required for degenerative changes to take place [89]. 

Consistent with this theory, changes in mechanics from a large needle injury were 
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associated with downstream alterations in disc height, NP composition, and histological 

characteristics of degeneration.  
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