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Ebna1-Specific T Cell Responses During Persistent Rhesus Lcv infection
and The Development of a Novel Therapeutic Prototype Vaccine for Ebv-
Associated Diseases

Abstract
The impact of EBV on human health is substantial, but vaccines that prevent primary EBV infections or treat
EBV-associated diseases are not yet available. The Epstein-Barr nuclear antigen 1 (EBNA1) is an important
target for vaccination because it is the only protein expressed in all forms of latency and in all EBV-associated
malignancies. The overarching goal throughout this dissertation was to determine if EBNA1 is a suitable target
for vaccine development. This was addressed in two ways. First, because an improved understanding of
EBNA1-specific T cell responses benefits EBV vaccine development, we characterized responses against
EBNA1 of the EBV-homologous rhesus lymphocryptovirus (rhLCV) in naturally infected rhesus macaques.
We assessed frequency, phenotype, and cytokine production profiles of rhesus (rh)EBNA1-specific T cells by
intracellular cytokine staining (ICS) and polychromatic flow cytometry. We found that most naturally
infected animals had CD4+ and/or CD8+ T cells against rhEBNA1 and rhBZLF1, an immediate-early lytic
phase antigen of rhLCV. Peptide-specific CD8+ T cells showed a more activated effector phenotype, while
most peptide-specific CD4+ T cells exhibited a resting central memory phenotype. T cells were highly
functional and produced various combinations of the cytokines IFN-γ, IL-2, and TNF-α. The differentiation
status and functional profiles of rhEBNA1-specific T cells suggests they are not impaired by chronic exposure
to low levels of antigen, and rhEBNA1-specific T cells therefore represent a viable population to target
through vaccination. Similarities between our findings and the human response further validate the rhLCV
model for studying chronic EBV infection and for pre-clinical vaccine development. We then asked if
vaccination could expand functional rhEBNA1-specific T cells during persistent rhLCV infection. To test this,
we developed two serologically distinct replication-defective adenoviral vectors that expressed chimeric
rhEBNA1 constructs fused to functional and non-functional versions of Herpes Simplex Virus- glycoprotein
D (HSV-gD). HSV-gD has been shown to augment T cell responses by inhibiting the immunosuppressive
Herpes Virus Entry Mediator (HVEM) pathway during T cell activation. After confirmation of vaccine
specificity and antigenicity in vitro, rhesus macaques were vaccinated in a prime-boost regimen, and responses
in peripheral blood were measured by ICS and polychromatic flow cytometry. Importantly, we found that
vaccination induced the expansion of highly functional rhEBNA1-specific CD8+ and CD4+ T cells in vivo,
regardless of HSV-gD binding ability. Vaccination did not increase rhBZLF1-specific T cell responses, thus
indicating that rhEBNA1-specific responses were vaccine-driven. Overall, these results serve as important
proof-of-principle analyses of a therapeutic EBNA1-based vaccine regimen and demonstrate that EBNA1 is a
viable target that warrants exploration in future vaccine studies.
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ABSTRACT 

 
 

EBNA1-SPECIFIC T CELL RESPONSES DURING PERSISTENT RHESUS LCV 

INFECTION AND THE DEVELOPMENT OF A NOVEL THERAPEUTIC PROTOTYPE 

VACCINE FOR EBV-ASSOCIATED DISEASES 

 

Rachel M. Leskowitz 
 

Hildegund C.J. Ertl 
 

The impact of EBV on human health is substantial, but vaccines that prevent primary 

EBV infections or treat EBV-associated diseases are not yet available.  The Epstein-Barr nuclear 

antigen 1 (EBNA1) is an important target for vaccination because it is the only protein expressed 

in all forms of latency and in all EBV-associated malignancies. The overarching goal throughout 

this dissertation was to determine if EBNA1 is a suitable target for vaccine development.  This 

was addressed in two ways.  First, because an improved understanding of EBNA1-specific T cell 

responses benefits EBV vaccine development, we characterized responses against EBNA1 of the 

EBV-homologous rhesus lymphocryptovirus (rhLCV) in naturally infected rhesus macaques.  We 

assessed frequency, phenotype, and cytokine production profiles of rhesus (rh)EBNA1-specific T 

cells by intracellular cytokine staining (ICS) and polychromatic flow cytometry.  We found that 

most naturally infected animals had CD4+ and/or CD8+ T cells against rhEBNA1 and rhBZLF1, an 

immediate-early lytic phase antigen of rhLCV.  Peptide-specific CD8+ T cells showed a more 

activated effector phenotype, while most peptide-specific CD4+ T cells exhibited a resting central 

memory phenotype.  T cells were highly functional and produced various combinations of the 

cytokines IFN-γ, IL-2, and TNF-α.   The differentiation status and functional profiles of rhEBNA1-

specific T cells suggests they are not impaired by chronic exposure to low levels of antigen, and 

rhEBNA1-specific T cells therefore represent a viable population to target through vaccination.  

Similarities between our findings and the human response further validate the rhLCV model for 
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studying chronic EBV infection and for pre-clinical vaccine development. We then asked if 

vaccination could expand functional rhEBNA1-specific T cells during persistent rhLCV infection.  

To test this, we developed two serologically distinct replication-defective adenoviral vectors that 

expressed chimeric rhEBNA1 constructs fused to functional and non-functional versions of 

Herpes Simplex Virus- glycoprotein D (HSV-gD).  HSV-gD has been shown to augment T cell 

responses by inhibiting the immunosuppressive Herpes Virus Entry Mediator (HVEM) pathway 

during T cell activation.  After confirmation of vaccine specificity and antigenicity in vitro, rhesus 

macaques were vaccinated in a prime-boost regimen, and responses in peripheral blood were 

measured by ICS and polychromatic flow cytometry.  Importantly, we found that vaccination 

induced the expansion of highly functional rhEBNA1-specific CD8+ and CD4+ T cells in vivo, 

regardless of HSV-gD binding ability.  Vaccination did not increase rhBZLF1-specific T cell 

responses, thus indicating that rhEBNA1-specific responses were vaccine-driven. Overall, these 

results serve as important proof-of-principle analyses of a therapeutic EBNA1-based vaccine 

regimen and demonstrate that EBNA1 is a viable target that warrants exploration in future 

vaccine studies.    
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CHAPTER 1: INTRODUCTION 

 

More than 95% of the human population is infected with the Epstein-Barr virus (EBV) by 

adulthood1, and EBV contributes to the development of about 1% of all human cancers1, 2.  EBV 

establishes a persistent infection through its latency in B cells, where it can occasionally 

reactivate, but infections as well as reactivations are controlled by the adaptive immune system3.  

Although infection is typically benign, EBV is considered a carcinogen due to its strong 

association with both lymphoid and epithelial cell malignancies, and the incidence of these 

malignancies is highly elevated during immune suppression.  The impact of EBV on human 

health is substantial, but vaccines that prevent primary EBV infections or treat EBV-associated 

diseases are not yet available.  

 

1.1 EPSTEIN-BARR VIRUS (EBV) 

 
General properties 

Discovery  

Denis Burkitt, a surgeon working in East Africa in the late 1950s, was the first to propose 

that an infectious agent was involved in the etiology of a human malignancy.  He was studying a 

novel childhood tumor, now known as Burkitt’s lymphoma (BL), which he noticed was unusually 

common among areas with similar climatic factors around equatorial Africa4, 5.  This idea caught 

the attention of Dr. Anthony Epstein, who after attending a seminar given by Dr. Burkitt in 1961, 

arranged to receive BL biopsy specimens.  Dr. Epstein and his Ph.D. student Yvonne Barr 

successfully established a line of BL-derived cells in culture.  They examined these cells under an 

electron microscope and discovered “herpesvirus-like particles in a small proportion [of the 

cells]”6.  These particles proved to be biologically and antigenically distinct from other members of 
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the human herpesvirus (HHV) family, thus marking the discovery of the first candidate human 

tumor virus, also known as Epstein-Barr virus (EBV), or human herpesvirus 4 (HHV-4).   

In the years to follow, serological studies revealed the vast prevalence of EBV worldwide.  

In 1968, EBV was identified as the cause of infectious mononucleosis (IM) when a lab technician, 

who had been studying EBV, developed IM and seroconverted7.  EBV was found to transform 

human B cells in vitro in 19718 and to replicate in human epithelial cells in 19849.  Since its initial 

discovery in BL cells, EBV has been found in a variety of human epithelial and lymphoid 

malignancies and has also been linked to various autoimmune diseases10.  

Classification 

EBV is a member of the Herpesviridae family, which is a large group of DNA viruses 

characterized by their lifelong latency following primary infection. Currently, there are nine 

herpesviruses known to infect humans10.  These include herpes simplex virus 1 and 2 (HSV1, 

HHV-1; HSV-2, HHV-2), human cytomegalovirus (HCMV; HHV-5), varicella-zoster virus (VZV; 

HHV-3), Epstein-Barr virus (EBV; HHV-4), human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-

6B, HHV-7), and Kaposi’s sarcoma-associated herpesvirus (KSHV; HHV-8).  Herpesviruses are 

classified into Alpha-, Beta-, and Gammaherpesvirinae subfamilies based on various biological 

properties such as host range, reproductive cycle, and cell tropism. The gammaherpesviruses, 

which includes EBV, are lymphotropic and usually establish latency in lymphoid tissue. EBV is 

distinguished by its latent infection of B lymphocytes and its ability to transform B cells in vitro into 

latently infected, immortalized, B-lymphoblastoid cell lines (LCLs) that proliferate indefinitely in the 

presence of sufficient growth factors.  Subfamily classification of human herpesviruses can be 

found in Table 1-1. 
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Table 1-1: Subfamily classification of the human herpesviruses 
Official name Common name Subfamily 

Human herpesvirus 1 Herpes simplex virus 1 (HSV-1) Alpha- 
Human herpesvirus 2 Herpes simplex virus 2 (HSV-2) Alpha- 
Human herpesvirus 3 Varicella-zoster virus (VZV) Alpha- 
Human herpesvirus 4 Epstein-Barr virus (EBV) Gamma- 
Human herpesvirus 5 Human cytomegalovirus (CMV) Beta- 
Human herpesvirus 6-A --- Beta- 
Human herpesvirus 6-B --- Beta- 
Human herpesvirus 7 --- Beta- 
Human herpesvirus 8 Kaposi’s sarcoma-associated 

herpesvirus (KSHV)  
Gamma- 

 
 
 
Subfamilies are further divided into a series of genera based on similarities in DNA 

sequences and genome arrangement as well as immunologic and antigenic similarity of important 

viral proteins10. The gammaherpesvirus subfamily consists of the gamma 1 (Lymphocryptovirus, 

LCV) genus, which includes EBV and related primate viruses, and the gamma 2 (Rhadinovirus, 

RDV) genus, which includes KSHV and other related viruses of primate and non-primate species.  

EBV is the only human member of the LCV genus, which also includes a number of simian 

homologs including rhesus lymphocryptovirus (rhLCV), which is the only fully sequenced EBV 

homolog with a repertoire of lytic and latent genes identical to that of EBV. 

Genome and structure      

Like all herpesviruses, EBV virions have a protein core that is wrapped by a double 

stranded DNA viral genome and enclosed within an icosahedral nucleocapsid composed of 162 

capsomeres. A protein-rich structure called the tegument separates the nucleocapsid from the 

envelope and delivers pre-synthesized proteins to newly infected cells.  The envelope itself is 

spiked with several virus-encoded glycoproteins involved in cellular attachment and entry.  

The EBV genome is approximately 172 kilobase (kb) pairs long10, with two distinct 

programs of gene expression that are broadly characterized as lytic or latent.  EBV encodes 

about 100 proteins as well as multiple non-coding RNAs11 that are organized and expressed in a 

linear fashion.  Therefore, gene overlaps and multiple gene products that result from frame shifts, 

alternative splicing, and internal translation initiation sites are common.  The genome is divided 

into 15 kb unique short (US) and 150 kb unique long (UL) regions that are separated by multiple 

tandemly reiterated internal repeats (IRs).  Tandemly reiterated terminal repeats (TRs) flank the 
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genome on both ends (Figure 1-1A). During latent infection, the viral genome takes the form of a 

closed circular molecule from which only a small subset of genes are expressed (Figure 1-1B). 

EBV DNA remains in this circular form during replication in latently infected cells.  

Two distinct types of EBV (types 1 and 2) share between 70 to 85% sequence 

homology10, and strains within each type are distinguished by the number of genomic repeats.  

Differences between the two types of EBV are based on sequence polymorphisms in four nuclear 

proteins expressed during latency (EBNA2, -3A, -3B, and -3C).  Both types co-exist in all 

populations that have been studied10, but EBV-1 is more prevalent in the developed world than 

EBV-2, which is common in equatorial Africa and New Guinea10.  Differences between type 1 and 

2 are not correlated with human diseases, but it has been shown that EBV-1 isolates transform B 

cells more efficiently in vitro10.  Dual infections and intertypic recombinants are most often 

observed during immune suppression, and infection with either type results in lifelong 

persistence.  
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Figure 1-1: The EBV genome in linear and episomal forms 
 

         A. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
    
   B.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 1-1: (A) Structure of the EBV genome shown in linear form with the location of important 
lytic and latent genes below.  The genome is organized into series of unique short (US) and unique 
long (UL) regions of internal repeats (IRs) flanked by terminal repeat domains (TRs).  Figure was 
adapted from Straus et al., 199312. (B) Structure of EBV episome showing location and 
transcription of latency genes.  The origin of plasmid replication is shown in orange (OriP).  Arrows 
indicate the direction of transcription, with larger arrows showing exons.  The thin green arrow 
starting at the Cp or Wp promoters represents transcription of the EBNA proteins during latency III, 
which are generated by differential splicing.  EBNA1 is transcribed from the Qp promoter during 
latency I and II (red arrow).   Figure was adapted from Young et al., 200413. LMP, latent membrane 
protein; EBNA, Epstein-Barr nuclear antigen; gp, glycoprotein; BCRF1, BamH1 C rightward reading 
frame; ZEBRA, Z Epstein-Barr virus replication activator, also known as ZTA (Z fragment trans 
activator) or BZLF1 (BamH1 Z leftward reading frame).  
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Transmission 

EBV is one of the most common known human viruses; 95 to 99% of adults in the U.S. 

and over 95% of the population worldwide are seropositive14. Primary infection occurs early in life 

in most developing countries and is generally asymptomatic or produces only mild clinical 

symptoms.  When infection is delayed until adolescence or adulthood, as is common in 

developed countries, EBV can cause IM. IM is a benign, self-limited, lymphoproliferative disease 

characterized by fever, sore throat, cervical lymphadenopathy, and fatigue.   

EBV is transmitted orally through saliva; some individuals continue to shed virus even 

after resolution of primary infection.  At any given time, between 20 to 30% of healthy seropositive 

adults are shedding low concentrations of EBV, and the incidence of shedding increases to 60 to 

90% during immunosuppression15.  In addition to oral secretions, EBV can also be transmitted 

through blood product transfusions and bone marrow or solid organ transplants11.  EBV has also 

been found in genital secretions, which suggests that it can be transmitted sexually16.   

Cell tropism, attachment, and entry 

The primary targets of EBV infection are squamous pharyngeal epithelial cells and B 

cells.  Initiation of infection and mechanisms of entry are different for epithelial cells and B cells, 

which have different cell surface receptors that facilitate binding of EBV.  The host range of EBV 

is therefore partially influenced by receptor availability on target cells.  EBV enters epithelial cells 

via fusion with the plasma membrane and B cells via endocytosis followed by fusion with the 

endocytic membrane. For B cell entry, EBV virions bind CD21, also known as the complement 

receptor 2 (CR2), which is highly expressed on B cells.  Binding of CD21 to the virus-encoded 

glycoproteins (gp) 350/220 results in endocytosis.  The viral and endocytic membranes fuse via 

gp42, which binds to human leukocyte antigen (HLA) class II on B cells and forms a three part gp 

complex with gH and gL (gp42gHgL) that triggers fusion. In contrast, epithelial cell attachment 

and entry is mediated primarily through interactions between cell surface integrins and the viral 

protein BMRF2. BMRF2 functions similarly to gp350/220 by tethering virions to target cells and 

inducing signal transduction pathways. Following attachment, two part complexes (gH/gL) bind to 

integrins and mediate epithelial cell membrane fusion.  Therefore, in addition to surface receptors 
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on target cells, tropism is also dictated by the composition of glycoproteins on the EBV virion, 

which can differ depending on the cell in which the virion was produced.  Virions produced in B 

cells are deficient in gp42, as it remains bound to HLA class II.  In contrast, virions produced in 

epithelial cells, which do not express HLA class II, contain high levels of gp42/gH/gL complexes 

on the surface.  As a result, EBV virions produced in B cells are more infectious to epithelial cells, 

and virions made in epithelial cells are more infectious to B cells17.  While epithelial cells and B 

cells are the primary targets of EBV, infection of T-cells, monocytes, neutrophils, and natural killer 

(NK) cells has also been described17. 

Phases of infection 

EBV causes both lytic (productive) and latent infections that generally have different 

primary target cells and express different sets of genes.  Initial productive infection is primarily 

localized to epithelial cells of the oropharynx, where mature infectious virions are assembled and 

released, resulting in cell lysis.  In contrast, latent infection usually occurs in B cells, where the 

viral genome exists as a stable circular episome, gene expression is restricted, and infectious 

viral particles are not produced. Latently infected B cells can be detected in peripheral blood, in 

tonsils and adenoids in the oral cavity, and to a lesser extent in mesenteric lymph nodes and the 

spleen18.  Latent EBV retains the capacity to reactivate to a lytic state and produce new infectious 

virions; this can occur in the presence or absence of clinical symptoms.    

 
EBV gene expression during latent infection  

Genes expressed during latency are initially growth transforming; infection of naïve B 

cells results in B cell activation, expansion, and maturation, which allows EBV to spread quickly 

throughout the B cell compartment11.  Although the majority of these lymphoblasts are eventually 

destroyed by the adaptive immune system, EBV persists within B cells by downregulating gene 

expression and becoming essentially undetectable to host immune cells. Downregulation of latent 

gene expression is accompanied by a transition to a resting memory B cell phenotype, and the 

amount of virus detected in latently infected cells is drastically reduced19.  Latently infected B cells 

in peripheral blood are present at a rate of about 1 to 60 per million B cells15.  Each cell carries 
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less than five copies of the latent viral genome19, 20, and the frequency of latently infected cells 

remains relatively stable over time21.  

Only a small subset of the nearly 100 EBV-encoded genes is expressed during latency.  

These include six Epstein-Barr nuclear antigens (EBNAs; 1, 2, 3A, 3B, 3C, leader protein (LP)), 

three latent membrane proteins (LMPs; 1, 2A, 2B), two EBV-encoded small non-polyadenylated 

RNAs (EBERs), and rightward transcripts from the BamHI A region of the genome (BARTs).  

EBNA1 and LMP1 are also expressed during lytic infection10.   

Programs of gene expression 

Different programs of gene expression are associated with different phases of latency, 

and the combination of genes expressed determines the extent of proliferation and the ability of 

EBV to escape immune surveillance. The growth-transforming properties of latency occur when 

all of the latency genes are expressed.  This is known as latency III.  The latency III program of 

gene expression is also what causes transformation of B cells to LCLs in vitro. In vivo, pressures 

of the immune system eventually cause a downregulation of gene expression, which allows EBV 

to persist in a latent state.  In latency II, EBNA1, LMP1, and LMP2 are expressed with the EBERs 

and BamHI A RNAs.  EBNA1 is the only protein expressed during latency I along with the EBERs 

and BamHI A RNAs.  Finally, a fourth program referred to as latency 0 has been used to describe 

latently infected cells in the blood that do not express any viral genes except the EBERs22.  This 

fourth stage of latency is most common among healthy virus carriers, however, transcripts for 

EBNA1 and LMP2 have also been detected in the blood of such individuals23, 24.   

In addition to establishing lifelong infection, the latency genes and their products are 

implicated in the pathogenesis of many EBV-associated malignancies.  A latency I pattern of 

gene expression is associated with Burkitt’s lymphoma (BL), some diffuse large B cell lymphomas 

(DLBCLs), and gastric cell carcinomas (GC).  Latency II is associated with Hodgkin’s lymphoma 

(HL), T/NK cell lymphomas, and nasopharyngeal carcinoma (NPC).  Latency III is found in IM and 

all EBV-associated Immunoblastic/lymphoproliferative diseases.  A list of the different latency 

programs, genes expressed, and associated diseases can be found in Table 1-2. EBV-

associated diseases will be discussed in detail in a later section. 
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Table 1-2: Patterns of latent gene expression and associated diseases 
Latency 

type 
Genes expressed Associated diseases  

0 EBER1,2; occasional EBNA1 
and/or LMP2 
 

[latently infected B cells in peripheral blood] 

I EBNA1; EBER1,2; BamHI A 
RNAs 

Burkitt’s lymphoma 
Centroblastic diffuse large B cell lymphoma  
Gastric carcinoma 
 

II EBNA1; LMP1,2A,2B; EBER1,2; 
BamHI A RNAs  

Chronic active EBV 
Hodgkin’s lymphoma 
Nasopharyngeal carcinoma 
T/NK cell lymphoma 
 

III EBNA1,2,3A,3B,3C,LP; 
LMP1,2A,2B; EBER1,2; BamHI A 
RNAs  

B cell transformation to LCL in vivo 
B cell lymphoproliferative disease 
Immunoblastic diffuse large B cell lymphoma  
 

 
 

Function of latency genes  

Genes expressed during latency are important for B cell growth transformation, 

maintaining the viral episome, and preventing apoptosis.  The specific functions of these genes 

and their protein products are reviewed below. 

EBNAs: EBNA-LP and EBNA2 are the first proteins expressed during latent EBV 

infection.  EBNA2 is required for B cell transformation and is responsible for activating 

transcription from various promoters, which results in the expression of additional EBNAs as well 

as the LMPs25, 26.  EBNA2 also activates transcription of several cellular genes including CD21 

(EBV receptor), CD23 (B cell activation marker), c-myc and c-fgr (proto-oncogenes)27-29.  EBNA-

LP enhances EBNA2-dependent transcription of viral and cellular genes and likely plays a role in 

RNA processing30. The EBNA3 proteins regulate the activity of EBNA2, and they also upregulate 

cellular and viral gene expression, including CD21 and LMP1 (EBNA3C), CD40 and Bcl-2 

(EBNA3B)31.  EBNAs 3A and 3C are required for B cell transformation32.  

EBNA1 is a DNA binding protein that functions to maintain the viral episome and is 

therefore essential for EBV persistence.  EBNA1 ensures episomal segregation during cell 

division by binding the origin of plasmid replication (oriP) on the viral genome and tethering it to 

mitotic chromosomes33.  EBNA1 is also important for B cell transformation during latency and for 
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activating the expression of additional EBV latent genes10.  Transcription of EBNA1 is 

autoregulated through its binding to the oriP and various upstream promoters.  EBNA1 is the only 

protein expressed in all of the patterns of latency associated with disease (I, II, III). The 

importance of EBNA1 and its potential as a vaccine target will be discussed in a later section. 

LMPs:  LMP1 is an important signaling molecule that is necessary for many of the 

changes involved in B cell transformation34.  Structurally, it mimics proteins of the tumor necrosis 

factor (TNF)-receptor superfamily by acting as a constitutively active CD40 homolog35.  

Downstream signaling stimulates two important families (nuclear factor κB (NF-κB) and c-jun 

kinase) of transcriptional activators that are both involved in controlling cell growth36, 37.   

Additional phenotypic effects include B cell aggregation, the upregulation of activation and 

adhesion molecules, the activation of cytokine genes, and the induction of cell survival proteins 

such as Bcl-210, 35.  LMP1 therefore functions as an oncogene for EBV, and the resulting effect is 

constitutive B cell proliferation.  Unlike LMP1, neither LMP2A nor LMP2B are essential for B cell 

transformation38.  LMP2A co-localizes with LMP1 in the plasma membrane of the infected B 

cell39.  Its cytoplasmic tail resembles that of the B cell receptor (BCR), and it competes for binding 

to molecules involved in BCR downstream signaling.  The resulting inhibition of BCR signal 

transduction allows EBV to prevent and therefore control normal B cell stimulation and activation.  

This helps promote latency, as normal BCR signaling induces reactivation of the lytic cycle40. 

LMP2A also promotes B cell survival by deregulating transcription factors during B cell 

development in order to bypass certain developmental checkpoints while driving B cell 

differentiation to a long-lived memory phenotype41.  

Small RNA molecules: The EBERs are the most abundant EBV RNAs, present at about 

50,000 copies per cell10.  Both EBER1 and EBER2 are small, nuclear, non-polyadenylated RNAs 

whose function is not completely understood.  Neither 1 nor 2 are necessary for B cell 

transformation42, but their expression leads to the upregulation of Bcl-243 and IL-1044.  The result 

is increased resistance to apoptosis and enhanced B cell maturation, proliferation, and survival.  

EBV also encodes a large group of micro RNAs (miRNAs) with a wide rande of functions.  For 

example, BamHI A transcripts are highly spliced RNAs that most likely influence latent infection 
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through cell signaling or by regulating promoters, as the transcripts are antisense to many 

important genes45. 

 
EBV gene expression during lytic infection 

EBV in infected B cells can remain latent with varying levels of gene expression or it can 

reactivate to lytic replication.  The decision to enter the lytic cycle induces a classic regulatory 

cascade where about 80 different genes are expressed.  Virally-encoded lytic proteins are 

involved in cell entry, gene expression regulation, nucleotide metabolism, viral DNA synthesis, 

and virion assembly as well as management of host defenses and cellular metabolism10. Viral 

gene expression during lytic infection is defined by the order of expression and the mechanisms 

that drive it.  Gene expression is temporally regulated into three broad phases in which the 

immediate-early, early, and late genes are sequentially expressed.   

Immediate early (IE) gene expression: Viral transactivator proteins incorporated in the 

viral tegument activate transcription of the IE genes, which encode additional transcriptional 

transactivators important for early progression of the lytic cycle.  IE proteins include BZLF1 and 

BRLF1, which initiate the switch from latent to lytic infection and downregulate latent gene 

expression10.   

Early (E) gene expression: Transcription of the E genes is independent of viral DNA 

synthesis.  E proteins such as BSMLF1 and BMRF1 are transactivators of other early genes10, 

such as BHRF1 and BALF1, which are homologous to the anti-apoptotic molecule Bcl-246.  

Additional early genes encode proteins involved in viral DNA replication, such as the major DNA 

binding protein (BALF2), DNA polymerase (BALF5), ribonucleotide reductases (BORF2 and 

BaRF1), thymidine kinase (BXLF1), and alkaline exonuclease (BGLF5)10.   

Late (L) gene expression: Expression of the L genes is either augmented by or 

completely dependent on the onset of viral DNA synthesis.  The majority of these genes encode 

structural proteins such as viral glycoproteins, nucleocapsid proteins, tegument proteins, and a 

core protein; the majority of the L proteins are therefore required for proper assembly and 

packaging of EBV virions10.  
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The life cycle of EBV  

EBV’s replication cycle, similar to all herpesviruses, begins after viral fusion and entry in 

the host cell.  Nucleocapsid and tegument are then released into the cytoplasm, where they travel 

to nuclear pores via the cellular cytoskeleton.  Viral DNA is translocated, circularized, and partially 

chromatinized in the nucleus.  Chromatinization is a dynamic form of transcriptional regulation 

that changes throughout the viral life cycle.  The nature of viral DNA chromatinization (and 

therefore the viral genes accessible) as well as the presence and status of specific viral and 

cellular regulators of transcription are important factors that influence whether EBV enters lytic 

replication or establishes latent infection47.   

It was originally believed that oropharyngeal epithelial cells were the target for primary 

and productive EBV infection, and that released virions would then latently infect resting naïve (or 

occasionally memory) B cells that traffic through the oropharynx9.  However, it has also been 

shown that viral infection can be entirely restricted to lymphoid cells48.  This indicates that primary 

productive infection can occur in B cells, although the majority become latently infected 

lymphoblasts that display a type III pattern of gene expression11. 

Latently infected B cells then typically undergo a phase of maturation and differentiation 

that is associated with a downregulation of latent gene expression. One proposed pathway in 

which this occurs is in the germinal centers of lymphoid follicles through similar mechanisms 

exhibited during normal B cell activation49.  The latency III program of gene expression induces 

proliferation of EBV-infected naïve B cells, which eventually migrate to lymphoid follicles to 

differentiate.  This is likely facilitated through a downregulation of gene expression to a type II 

latency pattern, where LMPs mimic cellular and extracellular factors that may induce class switch 

recombination, somatic hypermutation, and stimulate BCR signaling.  Additional lines of 

evidence, however, suggest that EBV-infected B cells may not transmit and differentiate through 

the germinal center24, 50, and not all EBV-infected B cells are isotype-switched51.  Regardless of 

the mechanism, latently infected B cells differentiate into a resting memory phenotype, where 

they express even fewer EBV antigens (type I or 0 pattern of latency) and establish a carrier state 

that persists for life19, 22, 24. 
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The exact details that lead to viral reactivation remain elusive; however, various 

contributing factors have been shown to stimulate the transition to lytic replication.  For example, 

latently infected resting memory B cells may encounter their cognate antigen and undergo 

differentiation into plasma cells52.  This can trigger re-entry into the EBV lytic cycle, where 

depending on the location of the B cell, released virions can infect naïve B cells in the periphery, 

epithelial cells in the oropharynx, or can be shed directly in saliva.  Additional factors that may 

influence reactivation include times of weakened immunity as a result of trauma, infection, or 

physiological stress associated with increased stress hormones53-56.  The life cycle of EBV is 

summarized in Figure 1-2. 
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Figure 1-2: The EBV life cycle 

 
 

Figure 1-2: Primary EBV infection occurs in epithelial cells and B cells.  B cells are infected 
either directly or with virus released from oral epithelial cells.  The majority of EBV-infected B 
cells undergo latent infection, where the type III program of gene expression induces B cell 
proliferation and maturation.  Some EBV-infected B cells also undergo lytic infection as well.  
EBV-specific cytotoxic T cells control primary infection and subsequent reactivations, but the 
virus persists in resting memory B cells.  This figure was adapted from Odumade, et al., 
201157. 
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1.2 THE ADAPTIVE IMMUNE RESPONSE AGAINST EBV 

 
The virus-specific immune response is crucial for maintaining a disease-free virus-host 

equilibrium.  The host immune system can easily detect and destroy virus-infected cells during 

lytic replication, when the vast majority of EBV genes are expressed, but detection is difficult 

during latency.  EBV uses additional mechanisms to hinder or delay host immune responses, 

which include blocking antigen presentation, mimicking the function of host immunomodulators, 

and generating orthologs of cellular proteins that mislead infected cells to stimulate desired 

functions10.  Despite these various mechanisms, healthy individuals mount an effective immune 

response that regulates and controls infection, but does not completely eliminate the virus.  This 

balance between viral reactivation and host immune surveillance is maintained throughout the 

lifetime of all healthy seropositive individuals.  While components of the innate immune response 

are certainly important in combating EBV (such as NK cells), the most crucial control comes from 

the humoral and cell-mediated arms of the adaptive immune system58.   

 
The humoral immune response against EBV 

 The humoral immune response consists of antigen-specific antibodies which target and 

destroy extracellular pathogens and prevent the spread of intracellular infections59. Antibodies 

can contribute to immunity by binding and therefore blocking infection of host cells 

(neutralization); by coating pathogen and stimulating phagocyte removal; and by triggering 

destruction through additional immune mechanisms such as NK cell-mediated killing of antibody-

antigen coated cells (antibody-dependent cell-mediated cytotoxicity) or activating the complement 

system59. 	
   	
  

	
   EBV elicits a strong humoral immune response.  Most EBV-specific antibodies against lytic 

antigens are generated during acute infection, while EBV-specific antibodies against latent 

antigens tend to arise during convalescence15.  IgM antibodies against a variety of IE, E, and L 

lytic antigens arise first, and responses against viral capsid antigen (VCA) are detected most 

frequently10.  Anti-VCA IgM antibodies are usually present at the onset of symptoms, peak during 
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the acute phase of infection, and decline to undetectable levels upon resolution of clinical 

symptoms.  VCA IgG arises about three months after the onset of infection, which is around the 

same time as antibodies to EBNA1 begin to appear15.  IgG antibodies to VCA and EBNA1 persist 

for life60. Antibody responses against other EBV proteins are also detected, including those 

against the envelope glycoprotein gp350, which can neutralize virus and are important for 

convalescence and control of reactivation61.  Elevated titers of isotype-specific EBV antibodies 

can also be used for diagnostic and prognostic characterization of certain EBV-associated 

diseases, such as BL (VCA, EA)15, HL (VCA, EA, EBNA2)62, NPC (VCA)63, and GC (VCA)64.   

 EBV-induced polyclonal B cell activation also leads to the production of non-EBV-specific 

heterophile antibodies, which are reactive against antigens expressed on red blood cells (RBCs) 

of many animals such as sheep, cow, goat, horse, and ox7.  A standard means of diagnosing IM 

is by testing the ability of sera from infected patients to agglutinate such cells.  

 
The cell-mediated immune response against EBV 

 Cell-mediated immunity (CMI) includes CD8+ and CD4+ T lymphocytes, which interact with 

peptide derived from viral antigen that is displayed on the surface of antigen presenting cells 

(APCs) in the context of major histocompatibility (MHC) alleles (in humans these are the HLA 

alleles).  Individuals present different peptides depending on their HLA alleles.  As a result of this 

interaction with MHC molecules, CD8+ and CD4+ T lymphocytes can be stimulated to proliferate 

and differentiate into either effector or memory cells59.  Effector T cells develop quickly, mediate 

direct or indirect killing of infected cells, and have a more limited lifespan than memory cells, 

which develop slowly, but confer long-term protection against reinfection65.  

 The typical immune response to an acute infection involves the activation, expansion, and 

contraction of antigen-specific T cells. Although the majority of expanded cells will die by 

apoptosis, a minority survives and differentiates into the long-lived memory pool66.  Upon 

secondary exposure to cognate antigen, these memory T cells can undergo rapid recall 

proliferation and can differentiate into secondary effector and memory populations. Memory T cell 

subsets are quite heterogeneous, but can be broadly classified as either effector memory (TEM) or 
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central memory (TCM) cells65.  TCM cells reside primarily in lymphatic tissues and may require 

further differentiation to attain full effector function, but respond to secondary antigen stimulation 

with rapid proliferation66.  In contrast, TEM cells reside primarily in the periphery and have more 

rapid effector function upon secondary stimulation, but they do not proliferate as well as the TCM 

compartment66.  Although both are long-lived, TEM cells have a shorter lifespan than TCM cells, 

which are stably maintained through homeostatic self-renewal66.   

T cells are important for controlling acute EBV infection and for long-term control of EBV 

reactivation67.  CD8+ T cells recognize viral peptides that are 8 to 11 amino acids (aa) long and 

are presented by epitope-specific MHC class I molecules on the surface of infected cells68.  

Almost all nucleated cells express MHC class I receptors.  EBV-specific cytotoxic T lymphocytes 

(CTLs) are generated against both lytic and latent antigens, display an effector phenotype during 

IM, and mediate direct killing of cells infected with intracellular pathogen69.  CTLs against lytic 

antigens arise first, while CD8+ T cells against latent antigens arise slightly later during acute 

infection and can continue to arise for 3 to 4 months following convalescence70, 71.  EBV-specific 

CTLs are generally positive for granzyme and perforin, which correlates with cytotoxic activity, as 

demonstrated by cytotoxicity and cytokine secretion assays71-76.  Most EBV-specific CTLs are 

short-lived and undergo apoptosis once the level of EBV antigen drops.  CTLs to IE antigens 

decline rapidly after infection, while CTLs to latent antigens decline more slowly67, 77.  Expression 

of PD-1, a marker of lymphocyte exhaustion, is elevated on EBV-specific CD8+ T cells during IM, 

but returns to low levels during convalescence67. After resolution of acute infection, lytic antigen 

responses typically have a TEM cell phenotype, while latent antigen responses have either a TEM 

or TCM cell phenotype67, 70, 74.   

During IM there is a massive expansion of lytic EBV antigen-specific CD8+ T cells.  In 

some individuals, up to 44% of the total CD8+ T cell pool can be directed against a single epitope, 

and responses are highly HLA type-dependent78.  IE lytic proteins such as BZLF1 and BRLF1 are 

highly antigenic and are recognized by more CD8+ T cells than E proteins, which are more 

antigenic than L proteins67.  This hierarchy of antigenicity may be due to immune-evasion genes, 

which are not expressed until later in the lytic cycle. In fact, there is a direct correlation between 
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lytic protein immunodominance and the efficiency to which those proteins are processed and 

presented in lytically infected cells79.  In contrast, up to 5% of CD8+ T cells are directed against 

latent antigens during IM, and EBNA3-specific responses are most common67, 80-82.  Other EBV 

latency proteins that are targets for CD8+ T cells include LMP2 followed by EBNAs 1 and 267, 82-84.  

In long-term healthy carriers, the frequency of CTLs directed against EBV antigens can reach 5%, 

with about 0.2 to 2% of CD8+ T cells directed against lytic proteins and 0.05 to 1% of CD8+ T cells 

specific for latent proteins67.  Thus, a significant proportion of the CD8+ T cell pool is devoted to 

controlling long-term EBV infection.  Age-correlated expansion of EBV-specific T cells has also 

been observed, and responses can constitute up to 14% of total CD8+ T cells in healthy 

individuals over age 6085. 

 In comparison to the CD8+ T cell response, less is known about EBV-specific CD4+ T cells.  

CD4+ T cells recognize 10 to 18 aa long peptide fragments that are presented by epitope-specific 

MHC class II molecules after endocytosis rather than de novo synthesis.  Only a limited group of 

cells express MHC class II, including B cells and professional antigen presenting cells (APCs) 

such as dendritic cells (DCs) and macrophages.  CD4+ T cells generally have a large repertoire of 

potential effector activities, and the majority differentiate into various subsets with distinct 

immunological ‘helper’ functions (helper T cells (TH))86.  CD4+ TH cells can promote the activation 

of CD8+ T cells during inflammatory responses against intracellular pathogens (TH1), promote B 

cell activation for antibody secretion in response to extracellular pathogens (TH2), provide B cell 

help in lymph node follicles for B cell differentiation (follicular helper, TFH), and help regulate TEFF 

cells through silence or death signaling (regulatory T cells, Tregs).   Additionally, CD4+ TH cells can 

function as CTLs and lyse MHC class II-positive cells that express their cognate antigen.   

 EBV-specific CD4+ T cells produce the inflammatory cytokines interferon gamma (IFN-γ) 

and tumor necrosis factor alpha (TNF-α), lower levels of interleukin 2 (IL-2), and some clones are 

perforin positive, cytotoxic, and can inhibit the outgrowth of virus-transformed cells67, 87, 88.   EBV-

specific CD4+ T cell responses against lytic antigens are more evenly distributed across the IE, E, 

and L proteins compared to CD8+ responses10, 89, 90.  This is probably because CD4+ T cells 

readily communicate with professional APCs, which process and display extracellular antigen.  In 
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contrast, antigen presented by MHC class I molecules on the surface of virus-infected cells is 

more likely influenced by EBV immune evasion mechanisms.  

 During IM, there is large expansion of BZLF1-specific CD4+ T cells; responses against 

BMLF1 and EBNA3A are also commonly detected71, 88, 90.  CD4+ T cells recognize EBNA3C more 

than EBNAs 1 or 271, 90.  After resolution of acute infection, EBV-specific CD4+ T cells rapidly 

decline to less than 1% total frequency after 1 year10.  In healthy carriers, CD4+ T cells 

predominantly recognize EBNA1, with the majority of responses generated against its carboxyl 

terminus91, 92.  CD4+ T cells also recognize EBNAs 2 and 3C, but to a lesser extent than EBNA167, 

91, 93.  Other latency proteins (EBNA3A, 3B; LMP1, 2)91, 93 and many lytic proteins (BZLF1, 

BMLF1, BHRF1, BNLF2b, BCRF1, gp110, gp350)87, 88, 94-96 are also recognized by CD4+ T cells in 

healthy carriers.     

 The frequency of EBV-specific CD8+ T cells is generally about 10-fold higher than the 

frequency of EBV-specific memory CD4+ T cells in healthy virus carriers91, 93.  Studies using B 

cells with inducible latent gene expression were used to demonstrate that newly infected B cells 

are better recognized by CD8+ T cells, while latently infected B cells are better recognized by 

CD4+ T cells97.  CD8+ T cells recognized latency proteins quickly, but frequencies declined once 

expression was halted. CD4+ T cell recognition of latency proteins was initially delayed, but 

persisted for several days after expression was suppressed.  

 

1.3 EBV-ASSOCIATED DISEASES  

  
EBV and humans have coevolved for millions of years, during which both virus and host 

have developed intricate strategies to maintain coexistence in a disease-free setting; a 

disturbance of the balance between EBV and host immune responses can manifest as a variety 

of EBV-associated diseases.  In the absence of T cells, the oncogenic potential of EBV is 

demonstrated in vitro by its capacity to immortalize B cells.  In vivo, the incidence of EBV-

associated diseases is significantly elevated in individuals with weak or suppressed immune 

systems.  Despite the near ubiquity of EBV worldwide, EBV-associated malignancies are 
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relatively rare among individuals with intact immune systems.  However, there is great 

geographical variation in incidence, and certain populations of otherwise healthy individuals are at 

high risk of developing EBV-associated malignancies.  This points to a crucial requirement for 

genetic and environmental cofactors that contribute to the viral tropism and cellular transformation 

of EBV-associated cancers, but the exact contributions of EBV to the various malignancies are 

still not clearly understood. 

The wide range of EBV-associated diseases can be divided into two broad categories: 

malignancies of B cell origin (lymphoid) and malignancies of non-B cell/epithelial cell origin.  EBV-

associated malignant disorders of B cells include a range of immunoblastic lymphomas (that arise 

during immunosuppression), BL, and a subset of HL.  There are also a wide array of non-Hodgkin 

lymphomas that are positive for EBV to varying degrees10.  Some malignancies of non-B cell 

origin include NPC, GC, and T cell/NK cell lymphomas. A list of the various diseases and the 

percent of cases associated with EBV can be found in Table 1-3. EBV has also been linked to a 

number of autoimmune disorders including multiple sclerosis98, dermatomyositis99, rheumatoid 

arthritis100, and systemic lupus erythematosus101, 102; elevated EBV DNA is often detected in the 

blood of patients with these diseases, but the role of EBV in disease pathogenesis is still 

unclear102, 103.     

 
 

Table 1-3: Diseases and their approximate association with EBV  
Cellular 
origin 

Disease Association 
with EBV 

latency 
type 

 IM  III 
B cell lymphoproliferative disease  90% III 
Immunoblastic diffuse large B cell lymphoma (HIV) >90% III 
Chronic active EBV 100% II 
Burkitt’s lymphoma: Endemic 
                                Sporadic 
                                HIV-associated 

96% 
10-70% 
30-70% 

I 

Hodgkin’s lymphoma 
                     HIV-associated 

40-60% 
95% 

II 

B cell 

Centroblastic diffuse large B cell lymphoma (HIV) 30% I 
Nasopharyngeal carcinoma 100% II 
Gastric carcinoma 10% I Non-B 

cell T/NK cell lymphomas 10-100% II 
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Infectious mononucleosis 

IM is a self-limiting lymphoproliferative disease that can be caused by primary EBV 

infection in adolescents and adults.  It is largely a disease of developed countries, where higher 

standards of hygiene and sanitation result in delayed virus acquisition.  Around 50% of 

adolescents or adults who become infected with EBV will develop IM104, which is characterized by 

a massive expansion of latently infected B cells in lymphoid tissue and blood, lytic replication of 

virus in the oropharynx, and virion shedding into the saliva.  Up to 25% of peripheral blood B cells 

can become infected with EBV during IM, and this stimulates a robust T cell response that can 

comprise up to 50% of the total T cell pool at its peak78.  Symptoms of IM are caused by this 

massive T cell response.  Treatment is only supportive, and infection generally resolves on its 

own. 

 
Malignancies of B cell origin  

Immunoblastic lymphomas are a heterogeneous group of latency III-expressing B cell 

tumors that arise in immune compromised individuals who cannot mount an effective CTL 

response.  Immune suppression can be a result of genetic defects (X-linked lymphoproliferative 

disease, XLPD), medical treatment (post transplant lymphoproliferative disease, PTLD), or 

immune-targeting infections (Human Immunodeficiency Virus; HIV)105, 106.  XLPD is caused by a 

mutation in a gene involved in the regulation of T cell activation and homeostasis, which results in 

an inability to control EBV-driven B cell proliferation107. PTLD is a heterogeneous group of 

diseases associated with organ transplant; its development is largely dependent on the degree 

and duration of immune suppression as well as the type of organ transplanted.  Lesions that 

occur within the first year after transplant are almost always EBV positive108.   

HIV-infected individuals have a 60- to 200-fold increased risk of developing various 

lymphomas109.  About 10% of all AIDS patients develop B cell malignancies, and EBV is 

associated with about 60% of cases overall.  A small portion of these are considered 

immunoblastic latency III-expressing tumors, which tend to accompany T cell impairment 

observed during late stage AIDS.  Immunoblastic diffuse large B cell lymphomas (DLBCLs) 



	
   22 

comprise 15% of all HIV lymphomas, and >90% are EBV positive10. Other immunoblastic 

lymphomas such as primary central nervous system (CNS) lymphomas also occur during the late 

stages of AIDS and are usually EBV positive.  EBV is also associated with cancers that express 

type I or type II patterns of latency during co-infection with HIV.  The most common are BL (35%), 

HL (5%), and centroblastic DLBCL (25-30%)10.  EBV is present between 30 to 70% (BL), >95% 

(HL), and in 30% (DLBCL) of cases10.  BL and HL arise early during the course of HIV infection, 

when immune function is still relatively intact.  HIV-infected individuals are also at increased risk 

for developing Non-Hodgkin lymphomas (NHL) and a variety of lymphomas that involve tissues 

within the gastrointestinal tract, lungs, liver, and bone marrow109.  NHL during HIV is EBV positive 

in 50% of cases10.   

The two most common B cell malignancies that occur among immune-competent 

individuals are BL and HL.  BL cells express a type I latency program.  Endemic BL is the most 

common childhood tumor in equatorial Africa and New Guinea, and occurs at an astounding 5 to 

20 cases per 100,000 children anually110.  This accounts for 74% of all childhood malignancies in 

equatorial Africa111.  Non-endemic (sporadic) BL occurs equally across all age groups at a much 

lower incidence of 0.2 to 3 cases per 100,000 annually throughout the United States and 

Europe112.  While between 20 to 85% of sporadic BL tumors are EBV positive10, endemic BL is 

nearly universally positive for EBV112.  It is probably not a coincidence that endemic BL is highly 

prevalent in areas where malaria infection is common, as malaria induces B cell proliferation and 

may impair EBV-specific CTL activity113.   One indication of a causative role for EBV in BL is that 

children in endemic regions with the highest antibody titers against VCA are the most at risk for 

subsequent BL tumor development114.  A defining feature of BL is dysregulation of the c-myc 

oncogene caused by a chromosomal translocation into an immunoglobulin locus115.  Constitutive 

expression of the c-MYC protein drives continuous proliferation and inhibits differentiation.  EBV 

may expand the population of B cells at risk for this translocation, or EBV infection may aid in the 

survival of mutated cells that would have normally undergone apoptosis.  Malaria-induced B cell 

activation would further expand the population of B cells at risk for malignant transformation.   
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HL is arguably the most common EBV-associated lymphoma worldwide, with about 40% 

of EBV-positive cases in the western hemisphere and 80% of cases in the developing world11.  

One indication of EBV’s contribution to HL is the 2- to 5-fold increased risk of disease following 

IM.  Risk is highest within the first year after resolution of IM116, and increased antibody titers 

against EBV antigens have been found prior to the development of HL117.   EBV genomes in HL 

cells are monoclonal, which implies that infection may be a prerequisite for the development of 

disease118.  About 90% of EBV-positive HLs have mutated immunoglobulin genes that cause a 

loss of function10.  Genes expressed during the type II pattern of EBV latency observed in HL 

cells may provide the proliferative and anti-apoptotic signals needed for oncogenesis.   

 
Malignancies of non-B cell/epithelial cell origin 

NPC and GC are both malignancies of epithelial cell origin that occur in immune 

competent individuals.  NPC occurs worldwide, but it is 10 times more common in Southern 

China, where it is the most common malignancy in men and the second most common among 

women119; prevalence is also increased among the Inuit population in the Arctic15, 120.  EBV-

associated GCs are most prevalent in Central and Eastern Europe as well as some countries in 

North and South America64, 121.  Such geographic variations of incidence imply that both genetic 

and environmental cofactors have important roles in the etiology of these two diseases.   EBV-

infected NPC cells typically exhibit a latency II pattern of gene expression, and EBV is more 

strongly associated with NPC than GC122.  This is especially true among the undifferentiated 

subtype that is highly prevalent in China (20-30 cases per 100,000), where nearly all cases are 

EBV positive120.  About 10% of all GC cases are associated with EBV123, which may be the most 

common EBV-associated non-lymphoid malignancy on a global scale, diagnosed in over 90,000 

new patients each year124.  GC tumors express a type I pattern of latency with variable 

expression of LMP2A13.  NPC arises from the mucosal epithelium of the nasopharynx, while GC 

arises from epithelial cells within the gastrointestinal tract.  In both malignancies, the 

accumulation of genetic and epigenetic alterations results in the inactivation of tumor suppressor 

genes and overexpression of oncogenes, which in the presence of proliferative and anti-apoptotic 
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signals, leads to tumorigenesis64, 125.  EBV also contributes to a variety of other tumors, including 

carcinomas of the salivary glands, thymomas and thymic carcinomas derived from thymic 

epithelia cells, laryngeal carcinomas, and lymphoepithelial tumors of the respiratory tract10.    

Atypical EBV infection of cells that are neither B lymphocytes nor epithelial cells is most 

often observed during immunodeficiency.  Individuals with congenital immunodeficiencies, AIDS, 

or who have undergone transplant surgery occasionally develop leiomyosarcomas with EBV-

positive smooth muscle cells expressing various iterations of latency I or II genes15, 126.  EBV is 

also present in virtually all T/NK cell lymphomas, which typically express a type II pattern of 

latency109.  Additionally, T and NK cells are infected with EBV during chronic active EBV 

(CAEBV), which is a rare lymphoproliferative disorder of childhood that usually presents after 

primary EBV infection10.  The etiology of CAEBV is not known, but patients with various genetic 

mutations have been described, and EBV latency II proteins can be detected in the peripheral 

blood10, 123. 

 
EBNA1 and EBV-associated disease  

One common thread between all EBV-associated diseases is the expression of the EBV 

latency protein EBNA1, which is the only protein expressed in all types of latency and in all EBV-

associated malignancies.  EBNA1 is important for initial B cell immortalization.  It facilitates EBV 

genome persistence in latently infected cells, and it initiates the expression of additional latency 

genes such as the EBERs and small microRNAs, which are involved in cell transformation.  The 

inhibition of EBNA1’s DNA-binding ability results in decreased proliferation, loss of episomes, and 

even apoptosis in certain cell lines127, 128.  Conversely, the expression of EBNA1 in EBV-negative 

cells has been linked to less differentiated, more rapidly growing tumors with increased 

metastases129, 130.  EBNA1 also has several potentially transformative cellular effects that are 

independent of DNA binding and seem to be essential for EBV-associated carcinogenesis11, 131. 

In support of the importance of EBNA1, immune responses directed against the protein 

are decreased or absent in many EBV-associated malignancies.  Furthermore, the loss of such T 

cells has been linked to the progression of various diseases, including HL, BL, NPC, and NHL62, 
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132-134.  This implies a loss of such responses could contribute to an inability to control infection.  

HL patients with EBV-positive tumors have a selective loss of EBNA1-specific CD4+ T cells 

compared to patients with EBV-negative tumors and healthy seropositive donors62.  In one study, 

0 of 10 EBV positive, but 9 of 11 EBV negative HL patients had detectable EBNA1-specific CD4+ 

T cells by IFN-γ production or by proliferation asssays62.  Interestingly, the same patients all had 

detectable EBNA1-specific antibodies.  The presence of EBNA1 IgG in the absence of specific 

CD4+ T cell help suggests those T cells were not always absent, but were lost at some point prior 

to or during tumorigenesis.  Similar findings have been described in BL134.  A selective loss of 

EBV-specific T cells has also been detected in some HIV-positive individuals, including those 

under antiretroviral therapy with recovered total CD4+ T cell counts133.  Additionally, the loss of 

EBNA1-specific CD4+ and CD8+ T cells has been associated with the development of NHL133, 

and a decrease in EBNA1-specific CD8+ T cells has been described among patients with EBV-

positive NPC132.  While it is unclear exactly what causes a loss of EBNA1-specific T cells, 

vaccines that aim to enhance or restore such responses could be a valuable therapeutic 

approach, as supported by the success of adoptive immune therapies discussed below.   

 

1.4 TREATMENT OF EBV-ASSOCIATED DISEASES 

 
Therapies for immunoblastic lymphomas have a range of effectiveness that is influenced 

by the source, degree, and duration of immune suppression.  Common therapies include those 

that target viral replication (chemotherapy, radiation, antiviral agents), eliminate B cells 

nonspecifically (anti-B cell antibodies), or reconstitute EBV-specific immune responses (adoptive 

transfer).  Treatment for PTLD highlights the importance of EBV-specific CTL immunity and 

function, as reconstitution of EBV-specific immune cells is often an effective therapeutic 

approach.  In fact, between 25 to 63% of adults with early lesions respond well to a reduction of 

immunosuppression109.  EBV-specific T cells can also be reconstituted through adoptive transfer, 

where specific T cells are first expanded in vitro (using autologous LCLs) and then re-infused into 

PTLD patients.  Activated EBV CTLs are polyclonal, long-lived, have broad reactivity to a range of 
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latency epitopes, and are able to eradicate tumors upon transfer in vivo135.   EBV-specific CTLs 

can be expanded from either donor or recipient cells, depending on what cells the PTLD lesions 

arise from.  Both types have successfully been used as prophylaxis in patients with high viral 

loads after transplant or as treatment for patients with established PTLD136, 137.  Even partially 

HLA-matched donor T cells have demonstrated positive results138. The best responses were 

generated when individuals also received high numbers of CD4+ T cells, which have been shown 

to directly target and kill EBV-transformed B cells in addition to providing helper functions109.  

The success of adoptive therapy for the treatment of PTLD has provoked interest in 

adapting a similar approach to treat other EBV-related diseases including NPC and HL.  This 

approach has had more limited success due to the restricted expression of latent viral antigens 

and the various immune suppression/evasion techniques elicited by tumor cells109.  As a result, 

current strategies aim to target antigen recognition and augment CTL function by altering 

stimulation protocols, genetically modifying effector cells to render them resistant to certain types 

of immune suppression, and generating EBV-specific CD4+ T cell immunity in conjunction to 

CD8+ CTLs.  Additional treatment options are generally the same for EBV positive and negative 

cancers, and include various combinations of chemotherapy, antiviral drugs, and other 

compounds that serve to activate viral gene expression in order to sensitize EBV-infected cells, 

inhibit the growth of cancer cells, or induce apoptosis139. 

Although adoptive transfer has resulted in sustained clinical responses in some patients, 

CTL generation is costly, time consuming, and requires access to highly specialized health care 

facilities.  It is therefore an impractical solution for the thousands of patients diagnosed annually 

with EBV-associated diseases.  Further development of strategies that exploit various aspects of 

EBV biology is warranted; vaccination would be the most cost-effective approach to reach the 

largest number of people, but there is currently no licensed preventative or therapeutic EBV 

vaccine. 
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1.5 VACCINE STRATEGIES 

 
Vaccines have had a substantial impact on disease prevention since Edward Jenner first 

introduced the concept over 200 years ago.  Vaccination has saved more than 700 million cases 

of disease and more than 150 million deaths140.  Vaccines are responsible for the eradication of 

smallpox, and diseases that once plagued the world such as poliomyelitis, measles, mumps, and 

rubella are now practically nonexistent.  Vaccines induce protection by stimulating adaptive 

immune responses and generating functional memory cells that can be rapidly reactivated upon 

encounter with cognate antigen.  The major component of protection for most of these highly 

successful vaccines is high affinity neutralizing antibodies, which can be generated by many 

types of vaccines including live attenuated, inactivated, or subunit vaccines141.  Most vaccines are 

given prophylactically to prevent infection, but vaccines can also be used in a therapeutic context 

after infection has already occurred.  Vaccines can limit the spread of a pathogen within infected 

cells, they can reduce transfer between individuals, and they have even been used to treat or 

prevent certain cancers.   

 
Conventional vaccines 

There are over 70 licensed vaccines that utilize different strategies to induce an immune 

response142.  Conventional vaccines include live attenuated and inactivated vaccines, purified 

protein vaccines, peptide/subunit vaccines, DNA vaccines, and recombinant-vectored vaccines.  

Live attenuated vaccines are most commonly generated through prolonged passage of pathogen 

in a non-human host so that it can no longer replicate in human cells.  Because of their capacity 

to infect host cells, live attenuated vaccines can induce B and T cell responses; however, the 

possibility of reversion to virulence is cause for concern.  An alternative to live, attenuated 

vaccines are inactivated (killed) vaccines, which are generated by exposing pathogen to heat, 

chemicals, or irradiation.  Inactivated vaccines do not pose the threat of reversion to virulence, 

but in exchange they are not as immunogenic and may require multiple exposures to generate 

long-term immunity. Despite their capacity to elicit broad-ranging potent responses, live 
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attenuated or killed EBV vaccines are generally not considered a viable option due to the 

carcinogenic potential of EBV and the capacity for a number of EBV genes to independently 

transform cells143.  Protein/subunit vaccines are generated against an immunogenic fragment of 

the pathogen (typically a protein), either through isolation or using recombinant DNA technology.  

Immune responses are typically weak, require multiple boosts, and are primarily humoral; 

synthetic peptides can be used for vaccination in a similar manner.  Alone, synthetic peptide 

vaccines are even less immunogenic than protein/subunit vaccines; however, they can also be 

incorporated into immune-stimulating complexes with both B and T cell epitopes that induce both 

humoral and CMI responses.  DNA vaccines carry the gene sequence of a specific antigen that is 

produced inside host cells after vaccination.  As a result, DNA vaccines typically favor CMI.  

Despite the low cost and relative safety of DNA vaccines, delivery and immunogenicity remain a 

challenge.  Recombinant DNA technology can also be used to generate recombinant-vectored 

vaccines.  In this approach, genetically modified viruses such as vaccinia virus and adenovirus 

serve as vectors for delivering antigen, which is then produced at high levels within the 

immunized host.  Recombinant viral vector vaccines- especially those that infect APCs- have the 

potential to elicit strong B and T cell responses, and the delivery system itself can even act as a 

potential adjuvant.  Pre-existing immunity and additional safety concerns are challenges for 

recombinant virus vaccines, but vector modifications, use of viruses that do not commonly infect 

humans, and development of replication-defective vectors can overcome many of these 

obstacles144.   

  
Adenovirus as a vaccine carrier  

There are over 50 known human Adenovirus (AdHu) serotypes, which commonly infect 

humans at a young age.  Although relatively non-pathogenic, infection can cause acute 

respiratory or gastrointestinal illness145.  Adenoviruses (Ad) contain a linear, double stranded 

DNA genome that is encapsidated in an icosahedral protein shell.  The Ad genome can range 

between 26 to 45 kb pairs long, and contains two inverted terminal repeats (ITRs) at either end10.  

Genes are grouped by early, intermediate, and late transcription units10.  The early E1A gene is 
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expressed first and acts as a transactivator for expression of the remaining early genes.  It is 

therefore necessary for viral replication.  

Recombinant Ad-based vectors are an ideal system to deliver antigen for many reasons.  

First, Ad can be rendered replication-defective by deleting the essential early E1 gene (which is 

provided in trans during production)146.  Large amounts of foreign DNA can then be incorporated 

into the deleted E1-domain and expressed off exogenous promoters to ensure high levels of 

transgene expression147.  Second, Ad vectors express high levels of transgene product in a wide 

range of cell types, including DCs and macrophages148.  As a result, vectors induce potent and 

protective transgene product-specific CD8+ T cell responses149.  Finally, recombinant Ad vectors 

are safe, easy to manipulate, and relatively inexpensive to manufacture.   

Ad was initially studied as a delivery vehicle for gene transfer, but potent immune 

responses to both the vector itself as well as the transgene product rapidly cleared Ad-transduced 

cells and caused serious side effects in some individuals150, 151.  The induction of robust T cell 

responses raised concern for the use of Ad vectors in gene therapy, but was beneficial for the 

use of Ad vectors as vaccine carriers.  The inherent immunogenicity of Ad acts as an adjuvant for 

stimulating cellular and humoral immune responses, and transgene product-specific responses 

are sustained over time152, 153.  While Ad-transduced cells at the site of vaccination are rapidly 

cleared by the immune system, very low levels of transcriptionally active vector have been shown 

to persist in activated T cells and may act as an internal ‘boost’ for the specific responses153.  

Several Ad serotypes have been developed for use as vaccine vectors.  Early studies 

focused on AdHu5, which along with AdHu2, are the most prevalent serotypes that infect 

humans.  Mice vaccinated with AdHu5 vectors that expressed rabies glycoprotein (rab.gp) quickly 

developed protective titers of rab.gp-specific neutralizing antibodies along with antigen-specific 

CD8+ and CD4+ T cells154.  Ad vaccine vectors have since been tested with a variety of viral 

antigen-based transgenes, and they all elicited very high transgene product-specific B and T cell 

responses155.  Furthermore, the magnitude of transgene-specific T cells is often higher in 

comparison to responses elicited by other recombinant viral vectors and by DNA vaccines156. 
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One potential problem for the use of AdHu5 vaccine vectors is pre-existing immunity.  

Between 45 to 80% of adults have high titers of neutralizing antibodies specific to AdHu5, which 

varies depending on geographic region157.  Pre-existing neutralizing antibodies and vector-

specific T cells can inhibit adaptive immune responses either by restricting the amount of viral 

vector that can enter APCs and express transgene (antibodies) or by quickly eliminating vector-

transduced cells (CMI)158.  This has been demonstrated in animals that were pre-exposed to 

AdHu5 prior to immunization with AdHu5 vectors.  Transgene product-specific CD8+ T cell and B 

cell responses were reduced in comparison to responses of animals that were not first exposed to 

AdHu5158. 

Numerous approaches can be used to circumvent the issue of pre-existing immunity.  

One approach is to increase the vector dosage; however, extremely high doses of Ad vector can 

induce serious side effects.  Alternatively, transgene product-specific responses can be enhanced 

through prime-boost vaccine strategies that utilize heterologous Ad vectors or additional delivery 

vehicles159.  Another approach that avoids pre-existing immunity is the use of serologically distinct 

uncommon human Ads160, 161 or Ads that naturally infect non-human species157, 162.  Recombinant 

vectors derived from simian Ad (SAdV, hereon referred to as AdC) are similar to human Ad in 

terms of genetic organization, structure and cell tropism162.  AdCs have been found to induce 

strong transgene product-specific T and B cell responses in a similar magnitude as human Ads 

following systemic vaccination163.  This has been shown repeatedly in both mice and non-human 

primates (NHPs) using a variety of transgene products159, 164-166.  As a result, several recombinant 

AdC vectors have been developed as vaccine carriers, including serotypes C68 (AdC68), C6 

(AdC6), and C7 (AdC7)167.    

 
Needs and challenges of an EBV vaccine  

Despite their vast impact on public health, current vaccines have their limitations.  

Vaccines are not yet protective against pathogens with antigenic hypervariation or intracellular 

pathogens that require T cells for control.  Persistent infections with long periods of latency face a 

unique set of challenges, as the development of -or protection against- clinical disease may not 
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be feasible endpoints for measuring vaccine efficacy, and traditional correlates of protection may 

not be sufficient or even desirable outcomes.  Neutralizing antibodies are not suited to clear cells 

that harbor virus.  Instead, potent, CTLs are typically responsible for clearing latently infected 

cells. A thorough understanding of the nature of such antigen-specific T cell responses and 

appropriate methods of quantification is therefore important for vaccine development.  Additional 

surrogates of protection and biomarkers of disease are also needed, but this information is 

typically not known until efficacy has been demonstrated in large-scale clinical trials.   

A successful EBV vaccine could have numerous applications.  The first, and perhaps 

most obvious use would be to prevent primary EBV infection.  However, designing an EBV 

vaccine that provides sterilizing immunity has been quite challenging—mostly because it is 

unclear what type of immunity would provide protection from repeated mucosal infections.  

Furthermore, the natural immune response to EBV may not be sufficient in protecting healthy 

seropositive individuals from recurrent infections, as repeated infections with different strains of 

EBV have been described in otherwise healthy individuals10, 168.  A second application for a 

preventative EBV vaccine would be to reduce the incidence of IM, even if the rate of acquisition 

does not change.  The massive expansion of EBV-specific T cells during IM has been described 

as an “abnormal” immune response that subsequently impairs the immune system169 and 

increases the risk of acquiring certain EBV-associated diseases such as HL170.  Furthermore, 

serum EBV DNA levels are elevated before the onset of PTLD as well as NPC104.  Therefore, a 

vaccine that prevents IM or facilitates better control of viral DNA in the blood may ultimately 

decrease the incidence of EBV-associated malignancies.  Vaccination to prevent EBV infection or 

disease would benefit a variety of populations including transplant recipients, individuals in areas 

with high incidences of NPC and BL, and western societies where there is a high incidence of IM.   

EBV vaccines can also be administered to EBV seropositive individuals in the context of 

therapeutic vaccination to treat or prevent certain malignancies.  Currently, the majority of 

therapies to treat EBV-associated diseases involve an ex vivo component, where T cells are 

stimulated, expanded, and then re-infused.  A therapeutic vaccine that is capable of expanding 

specific immune responses in vivo could reach far more individuals than the current adaptive 
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immune strategies, although adaptive techniques would still be important for individuals where 

vaccination is not an option.  The goal of a therapeutic EBV vaccine would be to restore cellular 

immunity in diseases where important responses are lacking, such as NPC, HL, and BL.  In the 

presence of disease, vaccination could be administered to elicit or boost T cell responses that 

limit progression or cause remission.  Vaccination could also be used to prevent disease 

occurrence among high-risk seropositive individuals.  Additional groups that would potentially 

benefit from such a vaccine include those at high risk of acquiring HIV infection as well as HIV-

positive individuals with relatively stable CD4+ T cells and low HIV loads.   

An important factor to consider when designing an EBV vaccine is that of target antigens; 

but because the immune correlates of protection against EBV infection, IM, and EBV-associated 

malignancies are not well understood, optimal target antigens are still unclear.  The decision of 

which viral antigens to target through vaccination largely depends on the desired 

outcome/vaccine application.  A preventative EBV vaccine would probably need to elicit 

neutralizing antibodies; most antigens that elicit neutralizing antibodies are expressed during lytic 

replication.  An effective therapeutic vaccine would need to target the smaller range of proteins 

expressed during latency, when virus is not replicating.  Furthermore, therapeutic EBV vaccine 

strategies should aim to elicit or boost cellular immune responses against specific EBV antigens 

that are expressed in the various malignancies.  Since different malignancies express different 

EBV antigens, this is another factor that must be appropriately considered.  The work described 

here focuses on EBNA1 because it is the only latent antigen that is expressed in all EBV-

associated malignancies.  It is therefore a very promising target for a therapeutic vaccine.  

 
EBV vaccine studies  

Most vaccine efforts to date have focused on EBV’s gp350, which is the most abundant 

of the surface antigens, is the main target of virus-neutralizing antibodies, and is also a target for 

CTLs104. The potency of gp350 antibodies was demonstrated in immunodeficient mice 

reconstituted with PBMCs from EBV seronegative individuals171.  Monoclonal antibodies to gp350 

prevented the development of lymphoma after EBV challenge172.  Recently, two tetrameric gp350 
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vaccines (a subunit vaccine and a DNA vaccine) were found to be more immunogenic than their 

monomeric equivalents173, however the significance of these results is unknown, as mice were 

not challenged with tumor after vaccination.  Recombinant gp350 in combination with adjuvants 

or expressed by adenoviral or vaccinia viral vectors also protected cotton-top tamarins and 

common marmosets from developing EBV-induced lymphomas174-176.  Interestingly, vaccination 

with the gp350-expressing viral vectors as well as with certain preparations of soluble gp350 did 

not induce neutralizing antibodies, which suggests a role for CMI174, 175, 177.  EBV acquisition in the 

absence of lymphoma was not a quantified endpoint because these animals do not develop 

persistent EBV infection.    

Vaccines designed to elicit neutralizing antibodies have also been tested in humans, with 

variable results.  A gp350-expressing vaccinia virus induced neutralizing antibodies to EBV when 

tested in seronegative children in China178.  All 10 children that received the placebo vaccine 

seroconverted 1.25 years after immunization, while only 3 of 9 vaccinated children became 

infected in the same time span.  In a phase I trial of children with chronic kidney disease, only 

33% developed neutralizing antibodies after receiving three doses of soluble gp350, and immune 

responses declined rapidly179.  Authors concluded that the dosage and adjuvant were likely not 

optimal.  In the only phase II trial of a prophylactic EBV vaccine, vaccination of EBV seronegative 

adults with three doses of soluble gp350 reduced the rate of EBV IM by 78%, but it did not reduce 

the rate of EBV acquisition180.  Despite promising results, it is still not clear if a reduction in the 

rate of IM will reduce the risk of certain malignancies.   

Vaccines designed to elicit cellular-based responses have also been studied.  The 

majority of these cell-based therapies have required some sort of ex vivo expansion or stimulation 

phase, but more traditional vaccine designs are under development.  In a phase I clinical trial of 

HLA-matched, EBV seronegative adults, vaccination with an epitope-specific EBNA3A peptide 

vaccine induced epitope-specific T cells in eight of nine recipients181.  Four of those vaccine 

recipients later became infected with EBV, but none developed IM.  In comparison, one of the two 

placebo recipients who acquired EBV developed IM.  Importantly, this study demonstrated that 

vaccine-driven induction of EBNA3-specific cellular immune responses did not significantly 



	
   34 

influence the development of a normal repertoire of EBV-specific T cell responses following 

seroconversion.  This indicates that vaccination will likely not introduce additional risks upon 

primary exposure to EBV.  It also demonstrates the capacity of cell-mediated immunity to protect 

against IM.  Although EBNA3 is highly immunogenic, its expression is limited to lymphoblastic 

diseases.  The challenge now is to devise novel strategies that target other EBV latent antigens 

expressed during the more restricted phases of latency that are associated with cancers such as 

NPC, BL, and HL.  

Additional vaccine candidates that have induced antibody and/or T cell responses in mice 

or in human cell lines include an LMP2A-derived peptide-based vaccine, which prolonged survival 

after tumor challenge and inhibited tumor growth therapeutically182; a virus-like particle vaccine 

expressing EBNA1, LMP2, and nearly all of the EBV lytic genes except BZLF1, which induced 

neutralizing antibodies and T cell responses in mice and reactivated human T cells lines183; and 

Ad-based vaccines expressing various combinations of EBNA1, LMP1, and LMP2 epitopes, 

which in one study stimulated T cell responses in healthy EBV seropositive and NPC patient cell 

lines that inhibited LCL outgrowth184.  This wide array of vaccine candidates serves to explore a 

variety of options in order to determine the most effective methods for eliciting the most 

successful responses in the absence of known correlates of protection.   

 

1.6 AN ANIMAL MODEL FOR EBV: RHESUS LYMPHOCRYPTOVIRUS 

 
Because EBV only infects humans, vaccine development has been largely impeded by 

the lack of an appropriate animal model for EBV research.  Humanized mouse models are an 

alternative system, but the reconstituted immune systems in mice are not identical to those of 

healthy humans.  Despite recent improvements, it is likely that some features of the human 

immune response will not be accounted for185.  Cotton-top tamarin monkeys can become infected 

with very high titers of EBV and subsequently develop EBV-induced B cell lymphomas, but the 

high doses and non-physiologic route of infection (intraperitoneal injection) make it challenging to 
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translate results to humans.  More importantly, these animals are now an endangered species 

and are therefore not practical as pre-clinical models for vaccine development.   

An alternative approach for studying EBV is to use a related virus, rhesus 

lymphocryptovirus (rhLCV), which naturally infects rhesus macaques (Macaca mulatta).  The 

animal model based on rhLCV is a particularly powerful tool for studying various aspects of EBV 

due to its unusually high degree of biologic, genetic, and pathogenic similarity to EBV and the 

similarity of the immune responses between humans and non-human primates186-189.  Infection of 

non-human primates strongly resembles EBV infection of humans187.  Most animals are infected 

during infancy through the oral route, and a majority of the target population is naturally infected 

by adulthood187, 190.  The virus, which can be detected in blood or upon activation in saliva, 

persists for life as a latent infection in B cells.  As seen with humans, rhLCV infection induces 

transient lymphoproliferation in vivo and immortalizes B cells in tissue culture187.  Animals can 

develop virus-associated malignancies, and the incidence of these malignancies is increased 

during immunosuppression190, 191.  Furthermore, rhLCV has a high degree of sequence homology 

to EBV, molecular organization is well conserved between the two viruses, and they have an 

identical repertoire of latent and lytic genes (Figure 1-3)190, 192, 193.  In fact, rhLCV is the only fully 

sequenced gamma-1 herpesvirus with a homolog for every EBV gene, and the functions of the 

genes are complementary.  Thus, the biology, molecular virology, and immunology of rhLCV 

infection in rhesus macaques are very similar to EBV infection in humans, making this model 

appropriate for studying EBV immunology as well as for pre-clinical testing of EBV therapeutics.  
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Figure 1-3: EBV and rhLCV ORF homology 
 

 
 
Figure 1-3: Small boxes representing the open reading frames (ORFs) of EBV and rhLCV 
are aligned in positional order within each genome.  EBV and rhLCV share an identical 
repertoire of ORFs, and genomic arrangements are the same.  The degree of amino acid 
similarity between homologous EBV and rhLCV ORFs ranges between 28% to 98% and is 
represented by the various shading and patterns within each box.  Average homology 
between all EBV and LCV ORFs is 75.6%.  EBNA1 sequence homology falls within the 
light grey box, at about 46%.  BZLF1 sequence homology falls within the medium grey box, 
at about 71%.  Figure was adapted from Wang F., 2013186. 

 
 
 



	
   37 

1.7 OBJECTIVES AND SIGNIFICANCE 

 
Since its discovery over 60 years ago, great strides have been made towards 

understanding the virology and pathogenesis of EBV.  However, translating this information into 

an effective prophylactic or therapeutic EBV vaccine has proven challenging, and progress 

towards an EBV vaccine has been slow.  Most EBV vaccine efforts to date have focused on 

decreasing acquisition or reducing the burden of IM.  A therapeutic EBV vaccine could also 

significantly improve public health, but there are still many questions that need to be answered 

before such a vaccine can reach fruition.  

Work described here focuses on EBNA1 as a potential target for a therapeutic EBV 

vaccine.  EBNA1 is an attractive target for vaccination because it is the only EBV protein 

consistently expressed in all forms of latency and in all EBV associated malignancies.  Despite 

this, EBNA1 has only recently begun to be viewed as an appropriate vaccine antigen.  It was 

originally believed that EBNA1-specific CTL responses were either non-existent or non-functional 

due to an internal glycine-alanine rich repeat domain (GAr) that had been shown to interfere with 

antigen presentation by MHC class I molecules194-196.  However, it has since been demonstrated 

that functional EBNA1-specific T cells are frequently detected in EBV-infected humans197-199, and 

a loss of EBNA1-specific CD4+ and/or CD8+ T cells has been correlated with numerous EBV-

associated diseases, including HL, NPC, and BL62, 132-134.  These findings suggest that EBNA1 

plays an important role in controlling EBV infection. 

The overarching goal throughout this dissertation was to determine if EBNA1 is a suitable 

target for vaccine development.  This was addressed with the following aims: 

  
I. Characterize the T cell response to the latent antigen rhEBNA1.  

An improved understanding of important immune responses benefits the preclinical 

development of potential EBV vaccines.  Therefore, using the EBV homolog rhLCV as an animal 

model for EBV, we aimed to characterize the magnitude, phenotype, and functionality of rhesus 

EBNA1 (rhEBNA1)-specific T cell responses in naturally infected animals. This was done using 
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some of the most advanced flow cytometry techniques that allow us to precisely characterize 

responses using a multitude of biological and immunological markers.  We hypothesized that 

most animals would have detectable responses that exhibited a variety of functions.  By 

comparing our findings to the human EBNA1 response, these studies also serve to validate the 

rhLCV animal model and to establish baseline responses so that we can use this model to 

develop and test potential vaccines.   

 
II. Develop novel recombinant adenoviral-based vaccine vectors that express rhEBNA1. 

EBNA1-specific T cell responses are reduced in a variety of EBV-positive cancers, and a 

loss of these responses is associated with disease progression.  Thus, the primary goal of a 

therapeutic EBV vaccine would be to restore or enhance EBNA1-specific T cell-mediated 

immunity directly in vivo.  Such a vaccine would need to elicit both protective CTL responses as 

well as a strong central memory component. With that in mind, we developed recombinant Ad-

based vaccine vectors that express rhEBNA1 as potential therapeutic prototype vaccines.  Ad 

vectors have been shown to induce potent, multi-specific, and sustained transgene product-

specific T cell responses, which is important for targeting cells that are already infected with virus.  

To further enhance transgene-specific responses, we also included herpes simplex virus 

glycoprotein D (HSV-gD), which is a known inhibitor of the herpes virus entry mediator - B and T 

lymphocyte attenuator (HVEM-BTLA) immune inhibitory signaling pathway.  Our lab has 

consistently shown that vaccines that express antigen as fusion protein with HSV-gD elicit more 

potent T cell responses compared to vaccines that express the antigen alone.  These results are 

independent of antigen or of vaccine carrier.  We therefore expected vaccines containing HSV-gD 

to induce larger transgene-specific responses compared to appropriate controls.  Replication-

defective Ad vector vaccines expressing rhEBNA1 within functional or non-functional versions of 

HSV-gD were generated and subsequently tested in a series of in vitro and small animal studies 

for quality control purposes.  The main goals of these studies were to demonstrate that all 

vaccines expressed equal levels of transgene and were capable of inducing EBNA1-specific T 

cell responses.  
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III.  Vaccinate naturally rhLCV-infected rhesus macaques and evaluate the effect of 

vaccination on rhEBNA1-specific cellular immunity.   

The rhLCV animal model is an excellent tool for the preclinical development of EBV 

vaccines.  Using this system, we sought to evaluate whether vaccination could expand functional 

rhEBNA1-specific T cells in rhesus macaques with persistent rhLCV infection.  Fifteen healthy 

rhLCV seropositive rhesus macaques were enrolled in the study, and animals were vaccinated in 

a prime-boost regimen with two serologically distinct replication-defective adenoviral vectors that 

expressed our chimeric rhEBNA1 constructs.  To better understand the effect of vaccination on T 

cell phenotype and function, we once again conducted in-depth analyses of rhEBNA1-specific T 

cells using flow cytometry.  It has been shown that suboptimal latent EBV T cell responses from 

both healthy and EBV-positive tumor bearing individuals can be recovered ex vivo200, 201.  

Therefore, our goal was to determine if the induction or expansion of rhEBNA1-specific 

responses is possible in vivo through vaccination.  We hypothesized that vaccination with Ad-

based rhEBNA1 vectors would lead to the expansion of functional rhEBNA1-specific T cells in the 

majority of vaccinated animals. This study serves as an important proof-of-principle analysis of a 

therapeutic rhEBNA1-based vaccine regimen and provides insight into appropriate strategies for 

therapeutic EBV vaccination.  Most importantly, our findings address the critical question of 

whether EBNA1 is a viable target for vaccination. 
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CHAPTER 2: 

 

 

T CELL RESPONSES TO LATENT ANTIGEN EBNA1 AND 

LYTIC ANTIGEN BZLF1 DURING PERSISTENT RHLCV 

INFECTION OF RHESUS MACAQUES 

 

 

ABSTRACT 

 
Epstein Barr virus (EBV) infection leads to life-long viral persistence through its latency in 

B cells. EBV-specific T cells control reactivations and prevent the development of EBV-

associated malignancies in most healthy carriers, but infection can sometimes cause chronic 

disease and malignant transformation. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the only viral 

protein consistently expressed during all forms of latency and in all EBV-associated malignancies, 

and is a promising target for a therapeutic vaccine. Here we studied the EBNA1-specific immune 

response using the EBV-homologous rhesus lymphocryptovirus (rhLCV) infection in rhesus 

macaques.  We screened 40 animals for rhLCV EBNA1 (rhEBNA1)-specific T cell responses by 

intracellular cytokine staining (ICS) and flow cytometry.  We then assessed the frequency, 

phenotype, and cytokine production profiles of rhEBNA1-specific T cells in 15 rhesus macaques 

and compared to the lytic antigen of rhLCV, BZLF1 (rhBZLF1).  We were able to detect rhEBNA1-

specific CD8+ and/or CD4+ T cells in 14 of the 15 animals screened.  In comparison, all 15 

animals had detectable rhBZLF1 responses.  Peptide-specific CD8+ T cells showed a more 
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activated phenotype, belonging mainly to the effector cell subset, while most peptide-specific 

CD4+ T cells exhibited a resting phenotype of central memory (TCM).  By comparing our results to 

the human EBV immune response, we demonstrate that the rhLCV model is a valid system for 

studying chronic EBV infection and for the pre-clinical development of therapeutic vaccines.                         

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Portions of this chapter were adapted from: 

Leskowitz RM, Zhou XY, Villinger F, Fogg MH, Kaur A, Lieberman PM, Wang F, and Ertl HC.  
CD4+ and CD8+ T cell responses to latent antigen EBNA1 and lytic antigen BZLF1 during persistent 

lymphocryptovirus infection of rhesus macaques. Journal of Virology 2013; 87(15):8351-8362. 
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INTRODUCTION 

 
The Epstein-Barr Nuclear Antigen 1 is a particularly important target for vaccination, as it 

is the only protein present during all stages of viral infection including every form of latency, lytic 

infection, and all EBV-associated cancers202.  EBNA1 is a 76 kilo Dalton (kDA) viral-encoded 

DNA binding phosphoprotein that is essential for the maintenance and replication of viral DNA 

during latency203.  EBNA1 is therefore tightly linked to EBV persistence33, and the elimination of 

EBNA1 from the EBV genome results in a rapid loss of stability33, 204.  Furthermore, dominant 

negative forms of EBNA1 or siRNA depletion of EBNA1 inhibits EBV-dependent B cell 

proliferation, thus indicating that EBNA1 is also important for B cell transformation during 

latency205, 206.  EBNA1 is separated into C and N terminal domains, which are linked by an 

internal glycine-alanine rich repeat domain (GAr). The repeat domain stabilizes the protein and 

inhibits EBNA1’s degradation by cellular proteasomes194, 195.  As a result, both the generation of 

peptide sequences for association with MHC class I molecules and the induction of EBNA1-

specific CD8+ T cells are impaired195. Furthermore, the mRNA that encodes the GAr is enriched 

for purines, which causes a lack of secondary structure and reduces the translation efficiency and 

antigen presentation of EBNA1196, 207.  Consequently, despite its obvious importance, EBNA1 was 

not originally considered a viable target for vaccination, as it was believed to escape immune 

detection by CTLs.  

Nevertheless, recent studies have demonstrated that most EBV-infected humans develop 

CD8+ T cells in response to EBNA1197, 198.  The primary source of epitopes is most likely newly 

synthesized EBNA1 as a result of proteasome-dependent degradation of defective ribosomal 

products (DRiPs) during translation197, 198, 208.  Long-lived, stable EBNA1 has a half life greater 

than 20 hours in B cells and is therefore not a likely source of epitopes195.  Upon expansion, 

EBNA1-specific CTLs have been shown to prevent the outgrowth of infected B cells in vitro and to 

secrete IFN-γ in response to stimulation, thus suggesting they play a role in controlling infections 

in vivo199.  Additionally, EBNA1 is an immunodominant target of EBV-specific CD4+ T cells that 

are capable of inhibiting virus-induced B cell proliferation in vitro92, 209.  In support of the 
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importance of EBNA1-specific T cell responses, loss of EBNA1-specific CD4+ or CD8+ T cells has 

been correlated with numerous diseases, including non-Hodgkin’s lymphoma, nasopharyngeal 

carcinoma, and Burkitt’s lymphoma62, 132-134.   

While we know that EBNA1-specific CD4+ and CD8+ T cells develop in response to EBV 

infection203, little is known on how persistent, low-level antigen exposure influences the 

phenotype and  functionality of this response in vivo.  Generally, if antigen is not cleared following 

primary infection, CD4+ and CD8+ T cells can develop various degrees of functional 

exhaustion210.  Each pathogen and host establish their own unique relationship that varies 

depending on the duration, magnitude, and location of antigen exposure211.  Chronic viremia and 

continuous high antigen exposure leads to constant T cell receptor triggering that causes 

progressive T cell dysfunction and interferes with differentiation into the TCM cell pool212.  In the 

most severe situations, this may ultimately result in physical deletion of the responding cells; 

however, a hierarchical loss of effector functions is more frequently observed212.  The ability of 

cytolysis, robust proliferation, and IL-2 production are lost at early stages of exhaustion.  This is 

followed by the loss of TNF-α and then IFN-γ production212.  In contrast, T cells responding to 

persistent infection with low antigen exposure are not as severely impaired212.  Studies examining 

the effect of gammaherpesvirus persistence on the T cell response in mice demonstrate more 

limited proliferative potential in response to antigen, but the antiviral T cell response is vigorous 

and exhibits immediate cytotoxic function213.  Exhausted T cells also upregulate various cell 

surface markers, and the number and level of expression appears to be associated with the 

severity of infection and degree of exhaustion214.  

A detailed understanding of the immune response to EBNA1 benefits the preclinical 

development of EBV vaccines.  The most common methods for studying EBV-specific T cell 

responses utilize EBV-specific T cell lines expanded in vitro after repetitive antigenic stimulation, 

which can change T cell function and lead to selective proliferation of specific clones.  Instead, we 

aim to characterize EBNA1-specific T cell responses directly ex vivo using intracellular cytokine 

staining, which offers the ability to both quantitate these responses and to analyze their functional 

nature directly without expansion.  
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Using the rhLCV model, we have characterized the magnitude, phenotype, and function 

of latent rhEBNA1-specific immune responses in healthy rhLCV-infected rhesus macaques.  

Although some studies have been conducted to assess immune responses to rhLCV188, 215, the 

scope of such studies has been more limited. Here we screened 40 captivity-kept rhesus 

macaques for rhEBNA1-specific T cells using ICS followed by multicolor flow cytometry.  We then 

characterized peptide-specific T cell responses in blood from a cohort of 15 captivity-kept rhesus 

macaques, which allowed us to define dominant CD4+ and CD8+ T cell subsets and cytokine 

production profiles. We compared this to responses directed against the highly immunogenic, 

immediate-early lytic rhBZLF1 protein, which has been studied extensively in humans and to 

some degree in rhesus macaques.  Our results show that most rhLCV seropositive animals carry 

both rhEBNA1- and rhBZLF1-specific T cells.  RhEBNA1-specific CD4+ T cells were highly 

functional, with both TCM and TEM cell subsets and a wide range of cytokine responses, while 

specific CD8+ T cells were composed primarily of more activated IFN-γ-producing effector cells.  

In contrast, rhBZLF1-specific CD4+ T cells maintained a resting phenotype of TCM cells and 

primarily produced single-cytokine responses.  As with rhEBNA1, the CD8+ T cell response 

against rhBZLF1 was more activated than the CD4+ T cell response, but contained a large 

proportion of memory cells as well.  The similarities between our findings and the human immune 

response against these two very important proteins serve to further validate the rhLCV model as 

a useful and highly relevant animal model for studying various aspects of EBV.  Our studies are 

also fundamentally important for establishing baseline responses so that the rhesus macaque 

model can be used for exploring potential EBV vaccines.  
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RESULTS PART I 

 
Characteristics of NHPs 

Forty Indian-origin rhesus macaques were enrolled in this study at the Yerkes National 

Primate Center (YNPC). All animals were female adults ranging from 5-19 years of age at the 

start of the study. Animals were either housed at a field station or at the main station, and all 

except ID# 442, PH1019, and PWW were born at YNPC. All animals were SIV negative and all 

but two animals (RNg7, Rje8) had antibodies to rhLCV. Thus, 95% (38/40) of the rhesus 

macaques enrolled in our study were rhLCV seropositive.  Animals were tested for Mamu-A*01, 

A*02, A*08, B*01, B*04, B*08, B*17 (YNPC).  Table 2-1 shows housing arrangements, age, 

rhLCV serology, genotype, and blood collection time points for each animal.  
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Table 2-1: List of rhesus macaques used in this study 
 

rhEBNA1 NHP ID # Housing Age at 
start of 
study 

rhLCV 
serology 

MHC Alleles Blood collection 
CD4+ CD8+ 

RUu6 10 Y  0, 2M Y Y 
442 11 Y B.01 0 Y Y 

RDn6 11 Y  0 Y Y 
RLz5 12 Y  0, 4-6M, 11-13M  Y Y 
RCv5 13 Y  0, 4-6M, 11-13M  Y Y 
RTn5 15 Y A.01, A.08 0, 2M, 4-6M, 11-13M  Y Y 
RQm7 9 Y  0 Y N 
RBm7 9 Y A.01 0 Y N 
RAt7 9 Y A.01, A.02 0 Y N 
RZl7 9 Y A.01, B.17 0, 4-6M, 11-13M  Y N 
RCj7 9 Y  0, 4-6M, 11-13M  Y N 
RFu7 10 Y A.01 0 Y N 
RVw6 10 Y A.01, A.08, B.01 0, 2M, 4-6M, 11-13M  Y N 
RCa6 12 Y B.17 0, 2M Y N 
RQf7 10 Y A.01 0 N N 

PH1019 10 Y A.08, B.17 0, 2M, 4-6M, 11-13M  N N 
RMr6 11 Y A.01, B.01 0 N N 
RJy5 12 Y B.17 0 N N 
RQf6 12 Y A.02 0	
   N N 
RYa6 12 Y B.01, B.17 0, 4-6M, 11-13M  N N 
PWw 13 Y A.02, A.08 0, 2M, 4-6M, 11-13M  N N 
RKc5 14 Y B.01 0 N N 
Rje8 8 N A.01 0 N/A N/A 
RNg7 

MS 

10 N A.01, B.17(?) 0	
   N/A N/A 
RBo10 5 Y A.01, B.08 0 Y Y 
RLy9 6 Y  0, 4-6M, 11-13M Y Y 
Ref8 8 Y  0 Y Y 
RDc8 8 Y A.02 0 Y Y 
RYr9 6 Y A.01 0	
   Y N 
RRi9 7 Y B.01 0, 4-6M, 11-13M	
   Y N 
RQb8 8 Y A.01 0 Y N 
RNm8 8 Y  0 Y N 
RBt7 9 Y A.01, B.01 0 Y N 
RQt5 13 Y  0, 4-6M, 11-13M Y N 
RTp4 15 Y  0, 4-6M, 11-13M	
   Y N 

RJm10 5 Y B.17 0 N N 
RNw9 6 Y A.08 0, 4-6M, 11-13M	
   N N 
RTf9 7 Y A.01, B.01 0	
   N N 
RCs7 9 Y  0 N N 
RYc3 

FS 

19 Y A.01 0, 4-6M, 11-13M N N 
 

Abbreviations: NHP, non-human primate; DOB, date of birth; FS, field station; MS, main station.  
Blood from all 40 animals was collected over a period of two months (time point 0).   Additional 
samples from smaller cohorts were collected at 2 months (6 animals), 4-6 months (15 animals), and 
11-13 (15 animals) months after initial bleeds.  The two most right-hand columns reflect presence or 
absence of rhEBNA1-specific CD4+ (left) or CD8+ (right) T cells detected by ICS at time point 0.  
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RhEBNA1 responses can be quantitated and characterized directly from the peripheral 

blood of rhesus macaques 

The ability to detect rhEBNA1-specific T cells directly ex vivo is important for analyzing 

intricacies of the immune response and is critical for experiments such as vaccine testing, where 

the direct effect of vaccination and potential correlates of protection can be assessed.  Therefore, 

our first goal was to determine if rhEBNA1-specfic T cells in the peripheral blood of naturally 

rhLCV infected rhesus macaques can be detected directly ex vivo using ICS.  To accomplish this, 

we enrolled a large cohort of 40 animals for testing. The two animals with negative rhLCV 

serology were excluded from these analyses.  To measure rhEBNA1-specific T cell responses, 

PBMCs were isolated and tested for CD4+ and CD8+ T cells producing IFN-γ, IL-2, and/or TNF-α 

in response to a short in vitro stimulation with overlapping rhEBNA1 peptide pools. Background 

activity was measured by culturing cells in medium containing DMSO for the same length of time.  

Results are expressed as absolute number of cells per 106 live CD3+ T cells. To calculate the 

sum of the peptide-specific response, we subtracted normalized background activity and then 

summed the seven possible different combinations of functions. We define a positive response as 

anything greater than the mean plus two standard deviations of total CD4+ (183 per 106 CD3+ T 

cells) or CD8+ (216 per 106 CD3+ T cells) cytokine responses from 5 seronegative animals from 

the New England Primate Research Center (Figure 2-1A).  To determine differentiation status, 

samples were stained for CD95, CD28, and CCR7, where TCM cells are CD95+CD28+CCR7high, 

TEM cells are CD95+CD28+CCR7lo, and TEFF cells are CD95+CD28-CCR7lo. 

We were able to detect rhEBNA1-specific CD4+ and/or CD8+ T cells in 25 of the 38 (66%) 

rhLCV-seropositive rhesus macaques (Table 2-1, right-hand columns).   All 25 of the animals 

had rhEBNA1-specific CD4+ T cell responses, while only 10 animals had rhEBNA1-specific CD8+ 

T cell responses (26%).  Interestingly, all of the animals with rhEBNA1-specific CD8+ T cells also 

had rhEBNA1-specific CD4+ T cells.  This could reflect a need for CD4+ T helper cells or it could 

simply be a result of the larger number of MHC class II epitopes within rhEBNA1.   
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  Refer to page 141 for comment on staining panel.	
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The magnitude of rhEBNA1-specific CD4+ and CD8+ T cells was quite variable and 

seemed to fall within three distinct groups based on the number of total CD4+ or CD8+ specific 

cells per 106 CD3+ T cells.  Responses were either (1) less than 1,000, (2) between 1,000-10,000, 

or (3) greater than 10,000, as seen in Figure 2-1B and corresponding shading in Table 2-2.  The 

magnitude of CD4+ T cell responses ranged between 186 and 42,830 cells per 106 CD3+ T cells, 

but the majority of those responses (19 of 25 animals) were less than 1,000 cells per 106 CD3+ T 

cells.  Thus, the median response was 417 cells per 106 CD3+ T cells.  Subset analyses revealed 

that rhEBNA1-specific CD4+ T cell responses composed of fewer than 1,000 cells per 106 CD3+ T 

cells were evenly distributed between TEM and TCM cell phenotypes (TCM versus TEFF, P = 0.007; 

TEM versus TEFF, P = 0.005 by Kruskal-Wallis test), while the majority of rhEBNA1-specific T cell 

responses composed of greater than 1,000 cells per 106 CD3+ T cells were primarily TEM cells 

(TEM versus TEFF, P = 0.03; TEM versus TCM, P = 0.027 by Kruskal-Wallis test).  Such a large 

proportion of TEM cells could be reflective of ongoing or recent rhLCV reactivation, which would be 

expected to increase the proportion of TEM and TEFF cells.  This observation is further supported 

by results for rhEBNA1-specific CD8+ T cell responses, which were similarly large in magnitude 

(258 to 25,264 cells per 106 CD3+ T cells).  However, in contrast to CD4+ T cell responses, only 

about half of rhEBNA1-specific CD8+ T cell responses fell below 1,000 cells per 106 CD3+ T cells.  

The median rhEBNA1-specific CD8+ T cell response was therefore significantly larger than the 

rhEBNA1-specific CD4+ T cell response, at 3,213 cells per 106 CD3+ T cells (P = 0.023, two-sided 

Mann-Whitney test).  This is again suggestive of recent reactivation, as CD8+ CTLs rapidly 

proliferate in order to clear infection, and the observed rhEBNA1-specfic CD8+ T cells were 

primarily of an effector phenotype for all animals (TEFF versus TCM, P = 0.021; TEFF versus TEM, P 

= 0.035 by Kruskal-Wallis test).   Animals with the highest numbers of total rhEBNA1-specific 

CD8+ T cells had the largest proportion effector cells.   
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Figure 2-1: Number of rhEBNA1-specific CD4+ and CD8+ T cell responses 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2-1: PBMCs from rhLCV seronegative (A) and rhLCV seropositive (B) animals were tested by ICS 
for rhEBNA1-specific CD4+ and CD8+ T cells producing IFN-γ, IL-2, or TNF-α.  Graphs display the total of all 
cytokine-producing cells per 106 live CD3+ T cells after subtraction of normalized background values.  (A) 
Horizontal bars reflect the median response for all rhLCV seronegative samples.  The limit of detection is 
defined as the mean + 2 standard deviations (SD) for total CD4+ (183 cells/106 CD3+ T cells) and total CD8+ 
(216 cells/106 CD3+ T cells) responses from rhLCV seronegative animals.  (B) Detection limit cutoffs are 
represented as shaded bars, and positive responses are displayed as floating bars (5th to 95th percentiles) 
with lines at the median.  The frequency of responding animals is presented above each bar.  
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Table 2-2: Numbers of rhEBNA1-specific CD4+ and CD8+ T cells  
	
  

      CD4         CD8       
    Subject TOTAL TCM TEM EFF   TOTAL TCM TEM EFF 

 RDn6 42830 89 32544 2374  25264  0 2245 22661 

 442 15353 70 11984 399  9546  17 901 8198 

> 
10

4  

 RDc8 308 208 101 11  15488  1109 104 13145 

            

  RLz5 5074 567 3464 574   6752  404 414 5427 
 RTn5 2406 146 1509 0   258  46 13 100 

 RCj7 1865 65 1130 26   − − − − 
 RFu7 1012 13 792 0   − − − − 1,

00
0-

 
10

,0
00

 
  RBo10 344 138 84 84   5721 458 147 4456 

             

 RLy9 675 266 138 208  567  21 118 431 

 RUu6 657 96 458 50  598  32 53 441 

 RCv5 514 355 359 0  430  239 215 120 

 REf8 281 201 81 40  704  182 61 280 

 RZi7 654 0 459 42  − − − − 

 RQt5 490 358 95 3  − − − − 

 RYr9 425 238 224 86  − − − − 

 RBt7 417 272 43 75  − − − − 

 RCa6 358 30 340 19  − − − − 

 RRi9 341 104 28 37  − − − − 

 RNm8 316 234 65 0  − − − − 

 RTp4 272 114 38 96  − − − − 

 RVw6 234 85 131 38  − − − − 

 RQb8 225 68 30 44  − − − − 

 RQm7 214 11 228 4  − − − − 

 RAt7 206 56 159 24  − − − − 

<1
,0

00
 

 RBm7 186 136 57 35  − − − − 
 

Table 2-2:  RhEBNA1-specific CD4+ (left) and CD8+ (right) T cell responses are 
displayed as counts per 106 live CD3+ cells after subtraction of background values.  
Responses are separated into three groups based on the number of total CD4+ or CD8+ 
T cells: light grey, less than 1000 cells; medium grey, between 1,000-10,000 cells; dark 
grey, greater than 10,000 cells.  The number of responses within central memory, 
effector memory, and effector T cell subsets are listed to the left of the total responses for 
each animal.  Within subsets, all values greater than 100 are in bold, and the largest 
subset response is highlighted in red; subset responses with 10 or fewer cells difference 
between them were considered equal.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   51 

RhEBNA1-specific T cells decreased and stabilized over time  

An outbreak of Human Metapneumovirus at YNPC a few months prior to the onset of 

these studies may have induced rhLCV reactivation and could therefore be responsible for the 

large responses observed.  Once reactivation was controlled, the magnitude of specific T cell 

responses would be expected to decline and stabilize.  To study this in the context of rhEBNA1, 

we measured rhEBNA1-specific T cell responses over time in 17 of the 40 rhesus macaques and 

determined the frequency, magnitude, and phenotype by ICS.  Animals included in these studies 

exhibited a wide range of magnitudes in order to determine if differences were somehow related 

to response stability.  Animals were bled an additional one to three times over a 13-month period 

in intervals of 2, 4, and 7 months as listed in Table 2-1.   

The number of animals with rhEBNA1-specific CD4+ and/or CD8+ T cell responses 

declined with time.  RhEBNA1-specific T cells were initially present in 12 (CD4+) and 5 (CD8+) of 

17 animals at month 0, which decreased to 8 (CD4+) and 4 (CD8+) of 15 animals by the end of 

the study (11 to 13 months later).  This change could reflect the natural contraction of T cells 

following re-activation and expansion, or it could simply be a reflection of the small number of 

animals tested at each time point.  Nevertheless, our sample size was too small to conduct 

powerful statistical analyses, although some important changes did seem to occur.  First, the 

majority of responses tended to decline and stabilize with time, including all CD4+ and CD8+ 

responses that were initially greater than 1,000 cells per 106 CD3+ T cells (Figure 2-2).   This 

reached significance at the 4 to 6 month time point for rhEBNA1-specific total CD4+ T cell 

responses, where the distribution of responses was significantly smaller compared to month 0 (P 

= 0.046, Kolmogorov-Smirnov test) (Figure 2-2A).  Two animals with responses that did not 

follow this trend were PH1019 and PWw.  In these animals, responses were not detectable at 

baseline, sharply increased at the second time point, and later decreased.  Additionally, the 

rhEBNA1-specific CD4+ T cell responses of RTp4 and RWv6 were relatively stable across all time 

points, while corresponding CD8+ T cell responses were virtually absent.  In terms of subsets, 

CD4+ TCM cell responses remained relatively stable (Figure 2-2B), while the large CD4+ TEM cell 

responses decreased significantly by 4 to 6 months (P = 0.041) and remained stable through 
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months 11 to 13 (P = 0.031, two-sided Mann-Whitney test), as would be expected after resolution 

or control of reactivation (Figure 2-2C).  A similar trend was observed within the CD8+ TEFF cell 

responses, and this was most pronounced for animals with the largest magnitudes at the first time 

point (Figure 2-2D).   
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Figure 2-2: RhEBNA1-specific CD4+ and CD8+ T cells over time 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2-2: RhEBNA1-specific CD4+ (left column) and CD8+ (right column) T cells detected by ICS at month 
0 and then in 2-, 4-, and 7-month intervals are shown using a subcohort of animals from YNPC.  Graphs 
display the total of all cytokine-producing cells per 106 live CD3+ T cells after subtraction of normalized 
background values for  (A) total, (B) central memory, (C) effector memory, and (D) effector T cell subsets.   
Values below the limit of detection are graphed as 0.  The number of subjects with positive responses / the 
total number of subjects tested at each time point is displayed at the top of each column.  Responses from 
RTn5, PH1019, PWw, and RVw6 were measured all four times; RUu-6 and RCa-6 were measured at 0 and 
+2 MOS; and all remaining animals were measured at 0, +4/6 MOS, and +11/13 MOS.   
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DISCUSSION 

 
In this study, we assessed the natural immune response to rhEBNA1, which is a highly 

attractive target for vaccine development.  We screened 40 rhesus macaques for rhEBNA1-

specific T cells in peripheral blood, and we demonstrate that responses can be detected directly 

ex vivo based on the production IFN-γ, IL-2, and TNF-α by ICS.  The number of animals with 

rhEBNA1-specific CD4+ T cells was larger than CD8+ T cells, and the range in magnitude for both 

subsets was extremely variable.  We suspect the largest of those responses is indicative of 

recent rhLCV reactivation.  Animals with fewer than 1,000 rhEBNA1-specific T cells tended to 

have equal proportions of specific CD4+ TCM and CD4+ TEM cell responses, with little to no 

rhEBNA1-specific CD8+ TEFF cells.  In contrast, animals with more than 1,000 rhEBNA1-specific T 

cells tended to have mostly rhEBNA1-specific CD4+ TEM and CD8+ TEFF cells.  Chronic infection 

promotes the differentiation of TEM and TEFF cells, and low-level expression of rhEBNA1 during 

latent rhLCV infection could therefore be responsible for maintaining relatively equal proportions 

of rhEBNA1-specific CD4+ TCM and TEM cells rather than mostly TCM cells.  However, it is also 

possible that TEM responses in some of these are animals still contracting after recent lytic 

reactivation.  Similarly, the large CD4+ TEM and CD8+ TEFF cell populations could be indicative of 

reactivation, or they could be a result of low-level antigen during latent infection.      

To determine if rhEBNA1-specific T cells are maintained in this highly activated state, we 

followed responses over time in a smaller cohort of animals to assess their stability.  Our findings 

provide further evidence of recent rhLCV reactivation, as rhEBNA1-specific T cells tended to 

decrease and stabilize among those animals with initially high responses.  This was especially 

true within TEFF and TEM cell populations.  The presence of rhEBNA1-specific TCM cells and the 

capacity for expansion and contraction of more activated subsets indicate the potential to 

successfully target and expand of rhEBNA1-specific T cells by vaccination.  Our theory of rhLCV 

reactivation is based on the magnitude and phenotype of rhEBNA1-specific T cell responses, but 

unfortunately these studies are limited by our lack of data on viral loads.  Therefore, we chose not 
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to characterize the rhEBNA1-specific immune response using these data, as unconfirmed 

reactivation introduces additional factors that make interpretation quite difficult.   

 

RESULTS PART II 

 
Frequency and magnitude of rhEBNA1- and rhBZLF1-specific T cell responses 

The initial goal of these studies was to characterize the frequency, magnitude, 

phenotype, and function of rhEBNA1-specific T cells in healthy, naturally infected rhesus 

macaques.  However, our original time points may have been influenced by viral infection and 

possible rhLCV reactivation, as indicated by the magnitude and phenotype of rhEBNA1-specific T 

cell responses at the first time point.  Regardless of the cause of such large responses, our 

follow-up studies demonstrated that results from month 0 seemed to be atypical, and responses 

tended to decrease and stabilize with time.  We therefore decided to characterize rhEBNA1-

specific responses from 15 animals using two additional time points that were collected after 

responses had stabilized.  Furthermore, because it is difficult to characterize immune responses 

based on such a small sample size, we aimed to increase the number of subjects with detectable 

rhEBNA1-specific T cells by increasing the degree of overlap within our rhEBNA1 peptide pool 

from 5 to 10 amino acids.  This could potentially increase the number of epitopes that are 

recognized by T cells.  However, increasing the size of the peptide pool creates competition for 

binding to MHC molecules and could therefore reduce the likelihood of binding a specific peptide 

during stimulation.  This could cause a reduction in T cell responses if there are very few T cell 

epitopes within the pool.  For this reason, PBMCs were stimulated with two different pools that 

each contained half of the rhEBNA1 peptides from our new larger library, and responses were 

measured by ICS.  For comparison, we also measured T cell responses to the highly 

immunogenic immediate-early antigen rhBZLF1, which regulates the switch from latent infection 

to lytic replication and is not expressed during latency216, 217.  This also serves as an internal 

control, as changes caused by reactivation would be detected among rhBZLF1-specific T cells as 

well.  Peptide-specific responses were measured at two time points spaced two months apart, 
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and analyses were based on the average response of each subject.  RhEBNA1- and rhBZLF1-

specific total cytokine responses for each time point can be seen in Tables 2-3A and 2-3B, 

respectively.     

The number of subjects with detectable rhEBNA1-specific T cells increased after 

stimulation with the modified rhEBNA1 peptide pools.  We were able to detect rhEBNA1-specific 

CD4+ and/or CD8+ T cells in 14 of the 15 rhesus macaques (93%) from YNPC (Figure 2-3A). 

Twelve of the 15 animals (80%) had rhEBNA1-specific CD4+ T cell responses above the detection 

limit, with a magnitude that ranged between 238 and 2,190 responding cells per 106 CD3+ T cells. 

Slightly fewer animals had detectable rhEBNA1-specific CD8+ T cell responses (10 of the 15, or 

67%) with a lower magnitude that ranged from 233 to 693 cells per 106 CD3+ T cells.  The mean 

rhEBNA1-specific CD4+ T cell response of 638 cells/106 CD3+ T cells was significantly higher 

than the mean CD8+ T cell response of 387 cells/106 CD3+ T cells (P = 0.0391).  One subject, 

RZi7, had neither CD4+ nor CD8+ rhEBNA1-specific T cells above the detection limit.  Eight of the 

remaining 14 animals had both CD4+ and CD8+ rhEBNA1-specific T cells; in seven of these 

animals the CD4+ response was higher. We were unable to detect a peptide-specific CD8+ T cell 

response in four animals, and two animals did not have detectable CD4+ T cell responses.   

In contrast to results for rhEBNA1, we detected rhBZLF1-specific CD4+ and/or CD8+ T 

cells in all 15 of the screened animals (Figure 2-3B).  Fourteen of these macaques (93%) had 

rhBZLF1-specific CD4+ T cell responses above the detection limit, and the magnitude ranged 

from 226 to 1206 rhBZLF1-specific cells per 106 CD3+ T cells.  RZi7 was the only animal with no 

detectable CD4+ T cells to rhBZLF1.  We were also able to detect rhBZLF1-specific CD8+ T cell 

responses in 14 animals (93%), and the magnitude of the response was larger than the rhBZLF1 

CD4+ T cell response, ranging from 285 to 2184 rhBZLF1-specific CD8+ T cells per 106 CD3+ T 

cells.  The one subject with undetectable rhBZLF1 CD8+ T cell responses had undetectable 

rhEBNA1 CD8+ T cells as well.  While the difference between the mean CD4+ (550 cells/106 CD3+ 

T cells) and CD8+ (687 cells/106 CD3+ T cells) T cell responses was not significant, there seemed 

to be a trend towards higher CD8+ responses, as noted in 7 of the 13 animals with both CD4+ and 

CD8+ peptide-specific T cells.  Of the remaining six animals, four had larger CD4+ than CD8+ T 
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cell responses, and two had similar levels of both CD4+ and CD8+ rhBZLF1-specific T cells (a 

difference of fewer than 10 cells per 106 CD3+ T cells).  

Numbers of rhEBNA1- and rhBZLF1-specific CD4+ and CD8+ T cells varied between 

individual animals; some rhesus macaques had over 500 rhEBNA1- or rhBZLF1-specific 

circulating CD4+ or CD8+ T cells per 106 CD3+ T cells, while the majority of animals had lower 

numbers averaging 200 to 400 cells.  Animals with high rhEBNA1 responses did not necessarily 

have high rhBZLF1 responses and vice versa. In contrast, those with high responses against one 

peptide pool tended to have lower responses against the other.  
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Table 2-3: Total cytokine-secreting rhEBNA1- (A) and rhBZLF1- (B) specific CD4+ and CD8+ 
T cells for each animal at both collection points 

 
A.      B. 

 Number of T cells by cell population   Number of T cells by cell population 
 CD4+   CD8+    CD4+   CD8+  
Subject Bleed 1 Bleed 2  Bleed 1 Bleed 2  Subject Bleed 1 Bleed 2  Bleed 1 Bleed 2 
RNw9 461 498  284 235  RNw9 260 191  2395 1973 
RQt5 562 294  393 74  RQt5 323 427  324 246 
RYc3 63 1334  238 410  RYc3 32 1893  434 556 
RRi9 146 538  342 21  RRi9 698 579  1331 614 
RLy9 103 394  44 62  RLy9 1566 845  0 364 
RTp4 739 159  725 34  RTp4 152 255  937 610 
RCj7 351 744  764 623  RCj7 342 254  464 361 
RTn5 268 208  0 60  RTn5 255 327  352 779 
RZi7 67 91  89 14  RZi7 137 40  336 294 
RLz5 1380 760  450 465  RLz5 438 178  465 163 
PH1019 71 122  451 458  PH1019 144 405  1756 1190 
PWw 158 150  545 149  PWw 211 730  498 425 
RVw6 1666 2713  267 603  RVw6 133 605  411 768 
RCv5 469 714  130 200  RCv5 1337 957  190 535 
RYa6 378 368  457 111  RYa6 1007 851  583 234 

 
Peptide-specific responses at both collection points (bleed 1, bleed 2) are displayed as counts per 106 
live CD3+ cells after subtraction of background values. 
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Figure 2-3: Numbers of rhEBNA1- and rhBZLF1-specific T cells in PBMCs 
 
 

 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-3: We determined the frequency and magnitude of rhEBNA1- and rhBZLF1-specific T cell 
responses in 15 rhesus macaques by ICS.  All values are represented as peptide-specific T cell 
counts per 106 live CD3+ T cells. The average sum of total cytokine secreting rhEBNA1- (A) or 
rhBZLF1- (B) specific CD4+ and CD8+ T cells after subtraction of background values is shown.  Data 
for each animal reflect the mean of two time points spaced two months apart; values for each time 
point can be seen in table 2-3.  Bars indicate the mean value of all positive animals within each 
group.  Standard deviations are as follows: rhEBNA1 CD4, 538; rhEBNA1 CD8 134; rhBZLF1 CD4, 
358; rhBZLF1 CD8, 538. There was a significant difference between total rhEBNA1 CD4+ and CD8+ T 
cell cytokine responses (P = 0.0391).  P-values were calculated using a two-sided Wilcoxon’s 
matched-pairs signed-rank test, with a P-value <0.05 considered significant.  All multiple comparisons 
were Bonferroni-adjusted to control for a type I error rate. 
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Peptide-specific CD4+ and CD8+ T cell responses differ in phenotypes and types of 

cytokine production 

We next assessed rhEBNA1- and rhBZLF1-specific subset phenotypes (TEFF, TCM, and 

TEM) and their corresponding functionalities based on the production of IFN-γ, IL-2, and/or TNF-α.  

The average CD4+ T cell response to rhEBNA1 was composed largely of TCM cells (mean, 426 

cells per 106 CD3+ T cells); TEM cells were detectable at about one-third lower frequency (mean, 

138 cells per 106 CD3+ T cells), and TEFF CD4+ T cells were virtually absent (mean, 28 cells per 

106 CD3+ T cells) (Figure 2-4A).  Differences between each subset were significant (TCM versus 

TEFF cells, P = 0.0015; TCM versus TEM cells, P = 0.003; TEFF versus TEM cells, P = 0.0015).   

Both CD4+ TCM and TEM cell populations produced all three cytokines (Figure 2-4B).  

There were subtle differences in the profiles of each.  On average, TCM cells produced IL-2 with 

the highest frequency (IL-2 versus TNF-α, P = 0.0102), followed by IFN-γ, and then TNF-α.  In 

contrast, TEM cells most often produced IFN-γ (46%; IFN-γ versus IL-2, P = 0.006; IFN-γ versus 

TNF-α, P = 0.0117), followed by IL-2 and TNF-α, which were about the same.   

The rhEBNA1 CD8+ T cell response differed from the CD4+ T cell response in terms of 

both phenotype and function. In contrast to the large CD4+ TCM response, 60% of rhEBNA1-

specific CD8+ T cells had an effector phenotype with a mean of 237 cells per 106 CD3+ T cells 

(Figure 2-4C).  T cells with a central memory phenotype were detected at about one-half the 

frequency of the effector response, with a mean of 104 cells per 106 CD3+ T cells.   The TEM cell 

response was significantly smaller, contributing only 12.5% to the total CD8+ response with a 

mean of 49 cells per 106 CD3+ T cells (TEM versus TEFF cells, P = 0.0177; TEM versus TCM cells, P 

= 0.0294).  RhEBNA1-specific CD8+ TEFF cells mainly produced IFN-γ (74%; IFN-γ versus TNF-α, 

P = 0.006) (Figure 2-4D).  Cytokine production within the TCM and TEM cell subsets was low, but 

the profile of the average response was similar to the rhEBNA1 CD4+ T cell response; TNF-α was 

produced by the fewest TCM cells (TNF-α versus IFN-γ, P = 0.0411; TNF-α versus IL-2, P = 

0.0117), and IFN-γ was produced by the most TEM cells (IFN-γ versus TNF-α, P = 0.0294). 

The CD4+ T cell response to rhBZLF1 was nearly exclusively composed of TCM cells 

(mean, 467 cells per 106 CD3+ T cells) (Figure 2-5A).  The TCM cell response contributed to 88% 



	
   61 

of the total rhBZLF1 CD4+ T cell response, while TEM and TEFF cell subsets represented only 9% 

and 3% of the total response, respectively.  Differences between each subset were significant 

(TCM versus TEFF cells, P = 0.0003; TCM versus TEM cells, P = 0.0003; TEFF versus TEM cells, P = 

0.0018).  The dominant functions of the rhBZLF1 CD4+ TCM response differed from that of 

rhEBNA1.  While all three cytokines were still detected, IFN-γ production was significantly lower 

than both IL-2 (51%) and TNF-α production (37%), comprising only 12% of the total response 

(IFN-γ versus IL-2, P = 0.0018) (Figure 2-5B). 

The rhBZLF1 CD8+ T cell response was larger than the rhEBNA1 CD8+ T cell response.  

It was composed of more equal proportions of TEFF (mean, 226 cells per 106 CD3+ T cells), TCM 

(mean, 214 cells per 106 CD3+ T cells), and TEM (mean, 147 cells per 106 CD3+ T cells) cell 

subsets (Figure 2-5C).  Although there were no significant differences between the average 

magnitudes of each response, the TEM cell subset contributed only 25% of the total rhBZLF1 

CD8+ T cell response, while the TEFF and TCM cell subsets were each 38.5% and 36.5% 

respectively.  In terms of cytokine production, all three subsets produced IFN-γ most frequently  

(in TEFF cells [84%], IFN-γ versus IL-2 and TNF-α, P = 0.0054 and 0.0036, respectively; in TCM 

cells [58%], IFN-γ versus IL-2 and TNF-α, P = 0.0006 and 0.0018, respectively; in TEM cells 

[59%], IFN-γ versus IL-2 and TNF-α, P = 0.003 and 0.0006, respectively) (Figure 2-5D).  IL-2 

was produced with a frequency of about 30% within each memory subset, while only 10% of 

memory responses were positive for TNF-α.  
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Figure 2-4: Subset analysis of rhEBNA1-specific T cell responses 
 

 
 
 
 
   
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4: The average total counts of rhEBNA1-specific cytokine-producing CD4+ (A) and CD8+ (C) T 
cells within the effector (EFF; CD28-CD95+), central memory (TCM; CD28+CD95+, CCR7hi), and effector 
memory (TEM; CD28+CD95+, CCR7lo) cell populations of all positive animals are shown.  The numbers of 
rhEBNA1-specific CD4+ (B) and CD8+ (D) effector, TCM, and TEM cells producing IFN-γ, IL-2, and TNF-α 
were determined.  Bars indicate the averages. Significant differences were calculated using a two-sided 
Wilcoxon’s matched-pairs signed-rank test, with a P-value <0.05 considered significant (indicated by 
asterisks).  All multiple comparisons were Bonferroni-adjusted to control for type I error rate. 
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Figure 2-5: Subset analysis of rhBZLF1-specific T cell responses 
 

 
 
 
 
   
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5: The average total counts of rhBZLF1-specific cytokine-producing CD4+ (A) and CD8+ (C) T cells 
within the effector (EFF; CD28loCD95hi), central memory (TCM; CD28hiCD95hi, CCR7hi), and effector 
memory (TEM; CD28hiCD95hi, CCR7lo) cell populations of all positive animals are shown.  The numbers of 
rhBZLF1-specific CD4+ (B) and CD8+ (D) effector, TCM, and TEM cells producing IFN-γ, IL-2, and TNF-α 
were determined.  Bars indicate the averages. Significant differences were calculated using a two-sided 
Wilcoxon’s matched-pairs signed-rank test, with a P-value <0.05 considered significant (indicated by 
asterisks).  All multiple comparisons were Bonferroni-adjusted to control for type I error rate. 
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Polyfunctional analyses reveal distinct cytokine combinations within each subpopulation 

Because increased polyfunctionality has been associated with increased protection and 

therefore better control of viral replication in some chronic viral infections218, 219, we further 

assessed peptide-specific T cell functionality using Boolean gating to analyze the seven possible 

combinations of IFN-γ, IL-2, and TNF-α production.  Comparing the cytokine profiles of the most 

common rhLCV-specific T cell subsets, rhEBNA1-specific CD4+ TCM cells were highly 

polyfunctional and exhibited an array of different cytokine profiles.  While we detected substantial 

responses within every combination, CD4+ TCM cells most often produced either all 3 cytokines or 

IL-2 alone (Figure 2-6A). The rhEBNA1-specific CD4+ TEM cell responses were quite similar, 

producing either all 3 cytokines or IFN-γ alone most often, but the frequency of IL-2 and TNF-α 

production (either alone or together) was substantially reduced in CD4+ TEM cells. In contrast, the 

majority of rhEBNA1-specific CD8+ TEFF cells produced IFN-γ only (Figure 2-6B).  There was also 

a small population of IL-2 producing TEFF cells.  Based on the degree of double- and triple 

cytokine-producing cells, the percentage of polyfunctional rhEBNA1-specific CD4+ TCM cell 

responses was significantly larger than the percentage of polyfunctional CD8+ TCM cell responses 

(P = 0.0021) (Figure 2-6C).  A similar trend was observed between CD4+ and CD8+ TEM cell 

responses (P = 0.0519). Furthermore, CD4+ TCM and TEM cell responses were significantly more 

polyfunctional than CD4+ TEFF cell responses (TEFF versus TCM, P = 0.0366; TEFF versus TEM, P = 

0.0279).  We observed a similar trend within the rhEBNA1-specific CD8+ T cell response as well 

(TEFF versus TCM, P = 0.0177).    

In contrast to the high degree of polyfunctionality within the rhEBNA1-specific CD4+ 

memory T cell response, rhBZLF1-specific CD4+ TCM cells were largely monofunctional, most 

often producing only IL-2 or TNF-α (Figure 2-7A). RhBZLF1-specific CD8+ TEFF cells were 

strongly dominated by cells producing IFN-γ only (Figure 2-7B).  While CD8+ TEFF cell responses 

to rhEBNA1 and rhBZLF1 exhibited similar functions, we also detected rhBZLF1-specific CD8+ 

TCM and TEM cells that produced either IFN-γ only, IFN-γ in combination with IL-2, or IL-2 alone.  

The rhBZLF1 CD8+ TCM cell response was significantly more polyfunctional than the CD4+ T cell 

response (P = 0.0081), but the majority of both CD4+ and CD8+ T cell responses were composed 
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of single-cytokine producing cells and therefore exhibited only a low degree of polyfunctionality 

(Figure 2-7C). 
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Figure 2-6: Multi-function analysis of rhEBNA1-specific T cell responses 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-6: Fifteen rhesus macaques were assessed for polyfunctional rhEBNA1-specific T cell responses.  
Graphs show responses as counts per 106 live CD3+ cells after subtraction of background values for all 
positive animals.  (A and B) All possible combinations of IFN-γ, IL-2, and TNF-α production by rhEBNA1-
specific CD4+ and CD8+ effector, TCM, and TEM cells. Black circles represent the average number of T cells 
comprising each cytokine combination in a single animal. Bars represent the mean value +/- the standard 
deviation of each group. Each combination of cytokine responses is represented by plus (+) and minus (-) 
signs below the x-axis, which is also associated with a pie slice color.  The same colors are reflected in the 
pie charts, which display the average ratio of the various cytokine combinations within each subset.  (C) Pie 
charts display the proportion of triple (red), double (green), and single (blue) cytokine-producing CD4+ (top) 
and CD8+ (bottom) peptide-specific responses based on average production of IFN-γ, IL-2, and/or TNF-α.  
Percentages of polyfunctional CD4+ TCM and TEM cells were significantly larger than CD4+ effector 
responses (TCM vs. EFF, P = 0.0366; TEM vs. EFF, P = 0.0279).  The percentage of polyfunctional CD8+ 
TCM cells was significantly larger than CD8+effector responses (P = 0.0177).  CD4+ TCM cells also 
exhibited a larger degree of polyfunctionality than CD8+ TCM cells (P = 0.0021).   P-values within groups or 
between CD4+ and CD8+ responses were calculated using a two-sided Wilcoxon’s matched-pairs signed-
rank test or two-sided Mann-Whitney test, respectively.  A P-value <0.05 was considered significant.  All 
multiple comparisons were Bonferroni-adjusted to control for type I error rate.  Graphs were generated using 
SPICE software (exon.niaid.nih.gov/spice/).   
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Figure 2-7: Multi-function analysis of rhBZLF1-specific T cell responses 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-7: Fifteen rhesus macaques were assessed for polyfunctional rhBZLF1-specific T cell responses.  
Graphs show responses as counts per 106 live CD3+ cells after subtraction of background values for all 
positive animals.  (A and B) All possible combinations of IFN-γ, IL-2, and TNF-α production by rhBZLF1-
specific CD4+ and CD8+ effector, TCM, and TEM cells. Black circles represent the average number of T cells 
comprising each cytokine combination in a single animal. Bars represent the mean value +/- the standard 
deviation of each group. Each combination of cytokine responses is represented by plus (+) and minus (-) 
signs below the x-axis, which is also associated with a pie slice color.  The same colors are reflected in the 
pie charts, which display the average ratio of the various cytokine combinations within each subset.  (C) Pie 
charts display the proportion of triple (red), double (green), and single (blue) cytokine-producing CD4+ (top) 
and CD8+ (bottom) peptide-specific responses based on average production of IFN-γ, IL-2, and/or TNF-α.  
CD8+ TCM cells exhibited a larger degree of polyfunctionality than CD4+ TCM cells (P = 0.0081).   P-values 
were calculated using a two-sided Mann-Whitney test, with a P-value <0.05 was considered significant.  All 
multiple comparisons were Bonferroni-adjusted to control for type I error rate.  Graphs were generated using 
SPICE software (exon.niaid.nih.gov/spice/).   
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Expression of programmed death receptor 1 (PD-1) does not indicate exhaustion 

One of the hallmarks of chronic infection is the upregulation of various inhibitory 

receptors on the cell surface, which can be used to gauge the degree of T cell exhaustion.  While 

the effector-like function and multi-cytokine production by rhEBNA1-specific T cells is not 

consistent with an exhausted phenotype, the increased proportion of rhEBNA1-specific CD4+ TEM 

cells and IFN-γ production by CD8+ TEFF cells could be caused by constant low-level antigen 

stimulation.  Therefore, to determine the activation status of rhEBNA1- and rhBZLF1-specific T 

cells, we measured cell surface expression of the inhibitory receptor PD-1 by staining cells with a 

PD-1 antibody prior to stimulation with overlapping peptide pools and ICS.  PD-1 is an activation 

marker of CD4+ and CD8+ T cells that is upregulated as a negative feedback mechanism to limit 

immune pathology during infection220.  Upon ligand binding, PD-1 delivers inhibitory signals that 

downregulate T cell receptor signaling and suppress effector cell functions.  During chronic 

infection, high levels of PD-1 expression have been associated with T cell dysfunction and failure 

to control infection221. Thus, PD-1 is typically used as a marker of T cell exhaustion.   

The percentage of rhEBNA1-specific memory CD4+ T cells expressing PD-1 was 

increased (mean: 55%; range: 23% to 90%) compared to rhBZLF1-specific memory CD4+ T cells 

(mean: 41%; range: 20% to 77%; P = 0.0186) and total CD4+ memory cells (mean: 35%; range: 

28% to 41%) (Figure 2-8A; P = 0.0068).  While the percentage of PD-1+ CD4+ memory T cells 

was lower than PD-1+ CD8+ memory T cells (mean: 54%; range: 41%-66%) (P = 0.0005), 

rhEBNA1-specific T cells did not follow this trend, and there was no significant difference between 

the two memory subsets.  Peptide-specific memory responses were broad, which suggests a 

range of activation that is highly variable between animals.  In contrast, the percentages of both 

rhEBNA1- (mean: 21%; range: 9% to 49%) and rhBZLF1- (mean: 33%; range: 7% to 68%) 

specific PD-1+ CD8+ TEFF cells were significantly lower than total CD8+ TEFF cells (mean: 62%; 

range: 36% to 83%) (P = 0.0039, 0.0007, respectively), and the same was true for rhEBNA1-

specific PD-1+ CD8+ effector versus memory cells (P = 0.039) (Figure 2-8B).   There was no 

correlation between the magnitude of rhEBNA1-specific responses and percentages of PD-1 

expression.  However, two animals with the highest frequencies of PD-1+ CD4+ memory cells 
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(RVw-6) and PD-1+ CD8+ memory cells (RCj-7) also had some of the largest magnitudes of 

matching responses.  Interestingly, there was a negative correlation for rhBZLF1-specific memory 

CD4+ T cell responses (r = -0.6; P = 0.02) and a trend towards a positive correlation for rhBZLF1-

specific memory CD8+ T cell responses  (r = 0.5; P = 0.054), which may encounter antgen more 

often.   As expected, the percentage of PD-1-expressing naïve T cells was significantly lower than 

all other populations, since PD-1 is expressed upon activation.  Similar trends were also observed 

for the intensity of PD-1 expression (data not shown because inter-experimental values cannot be 

compared). 
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Figure 2-8: PD-1 surface expression on rhEBNA1- and rhBZLF1-specific T cells 
 

 
 
Figure 2-8: The percentages of total, rhEBNA1-, and rhBZLF1-specific CD4+ (A) and CD8+ (B) T cells 
expressing PD-1 are shown for memory and effector cell subsets from 14 rhLCV-seropositive rhesus 
macaques.  PBMCs were stained for PD-1 prior to stimulation with overlapping rhEBNA1 or rhBZLF1 
peptide pools.  The percent of peptide-specific PD-1+ T cells was obtained by creating a single Boolean 
gate that included every combination of cytokines.   Animals with peptide-specific responses below the limit 
of detection were excluded from peptide-specific subsets.   Floating bars reflect the interquartile range of 
responses, with whiskers extending to the minimum and maximum values.  Horizontal bars reflect the 
median response, with a + symbol designating the mean.   Significant differences (designated by *) are as 
follows: total CD4+ memory versus total CD8+ memory, P = 0.0005 (designated by ^) ; rhEBNA1 CD4+ 

memory versus rhBZLF1 CD4+ memory, P = 0.0186, and total CD4+ memory, P = 0.0068; rhEBNA1 CD8+ 
memory versus rhEBNA1 CD8+ effector, P = 0.0391 (designated by #); total CD8+ effector versus rhEBNA1 
CD8+ effector, P = 0.0039, and rhBZLF1 CD8+ effector, P = 0.0007.  Additionally, all naïve responses were 
significantly smaller than every other group.   Significance was calculated using Wilcoxon matched-pairs 
signed rank test, with a P-value <0.05 considered significant.  All multiple comparisons were Bonferroni-
adjusted to control for type I error rate.   
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DISCUSSION 

 
 The striking similarities between EBV and rhLCV favor the use of rhLCV infection of 

rhesus macaques as an ideal system for pre-clinical studies aimed at preventing or treating EBV 

associated malignancies, but a more detailed understanding of rhLCV-specific T cell responses is 

needed to firmly establish this model.  We characterized rhEBNA1-specific T cell responses in 15 

rhLCV-seropositive healthy rhesus macaques and compared these responses to rhBZLF1-

specific T cells within the same population of animals by ICS.  RhEBNA1-specific CD4+ T cells 

were detected at a slightly higher frequency than CD8+ T cells, while rhBZLF1-specific CD4+ and 

CD8+ T cells were both present in 93% of the animals.  Unlike responses in humans222, 

responses to rhEBNA1 in macaques did not appear to be influenced by the Mamu-genotype, 

although additional studies with larger cohorts and more extensive genotyping as well peptide 

mapping would be required to firmly establish the effects of MHC class I restricting elements on T 

cell responses. 

In addition to frequencies, we also examined subset phenotypes and cytokine production 

of rhEBNA1- and rhBZLF1-specific T cells.  These studies served to determine the effect of 

persistent low-level antigen on specific T cell responses and to evaluate the capacity of such T 

cells to respond to vaccination.  T cells affected by persistent antigen exposure may be difficult to 

expand, as TCM cell pools are often depleted and TEFF/TEM cells do not function optimally.  We 

found that rhEBNA1-specific CD4+ T cells were composed of both TCM and TEM cell subsets that 

produced IFN-γ, IL-2, and TNF-α, while rhEBNA1-specific CD8+ T cells were primarily IFN-γ-

producing TEFF cells. This may suggest that repeated in situ reactivation of rhLCV or the 

persistent presence of latently infected cells expressing rhEBNA1 primarily maintains activation of 

CD8+ rather than CD4+ T cells.  An alternative explanation could be that rhEBNA1-specific CD8+ 

T cells are exposed to antigen more regularly and are beginning to lose function, but low 

expression of the inhibitory molecule PD-1 indicates this is most likely not the case.  In fact, PD-1 

expression was higher on rhEBNA1-specific CD4+ memory T cells, which indicates that these T 

cells probably see antigen more often.  In comparison, rhBZLF1-specific CD4+ T cells were 
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primarily of the TCM subset, produced IL-2 and TNF-α, and exhibited significantly lower PD-1 

surface expression compared to rhEBNA1-specific memory CD4+ T cells.  In contrast, rhBZLF1-

specific CD8+ T cells were composed of both effector and memory cell subsets that mainly 

produced IFN-γ, followed by IL-2.  The presence of rhEBNA1-specific TCM cells that produce 

multiple cytokines in response to stimulation indicates that vaccination could be a feasible 

approach for expanding this response.  

Both rhEBNA1 and rhBZLF1 T cell responses have previously been studied in 

macaques.  Using IFN-γ enzyme-linked immunosorbent spot (ELISpot) assays, Fogg et al. 215 

measured antigen-specific responses to latent rhLCV proteins directly ex vivo by culturing 

PBMCs with recombinant vaccinia viruses. While responses were detected against all latent 

proteins tested, rhEBNA1-specific CD8+ T cells were identified most frequently in nearly half of 

the animals (11 of 23) and with the highest mean responses of the latent proteins tested.  The 

same group detected ex vivo rhBZLF1-specific CD8+ T cell responses at a frequency of 63% (36 

of 57)217.  Orlova et al.188 showed by IFN-γ ELISpot assays of T cell lines from healthy 

seropositive rhesus macaques that rhBZLF1-specific T cells were present in 53% (8 of 15) of the 

animals tested, 40% of which had specific CD8+ T cells.  Using a more sensitive method that 

allows for simultaneous screening of several T cell cytokines, we show that every rhLCV-

seropositive rhesus macaque carries rhBZLF1-specific T cells, while the majority (14 of 15) have 

circulating rhEBNA1-specific T cells. Such T cells could not be detected at significant frequencies 

in rhLCV-seronegative animals. 

EBNA1- and BZLF1-specific T cells have been studied in more depth in the human 

system and with a variety of techniques and functional readouts in diverse cohorts. Early studies 

based on ELISpot assays for IFN-γ revealed EBNA1-specific T cell responses in less than 20% (2 

of 13) of healthy human adults, while responses to another latent antigen, EBNA3, were detected 

in nearly 80% of this cohort223. In contrast, Fogg et al.132 detected EBNA1-specific T cells ex vivo 

in over 90% (12 of 13) of human adults and about 50% of those responses included EBNA1-

specific CD8+ T cells. Bickham et al.224 studied the EBNA1 CD4+ T cell response and found 

detectable responses in only 37% (7 of 19) of the tested individuals directly ex vivo; upon in vitro 
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expansion EBNA1-specific CD4+ T cells became detectable in 95% of those individuals.  

Similarly, Munz et al.92 detected EBNA1-specific CD4+ T cell responses in all human adults (10 of 

10) upon initial in vitro expansion of specific cells.   

BZLF1 is considered an immunodominant target of the EBV-specific T cell response1, 225.  

Prevalence of T cells in response to this antigen within human populations is commonly studied 

using specific HLA backgrounds and immunodominant epitopes, and so their presence and 

characteristics in a truly diverse population are not well documented. Houssaint et al.225 detected 

BZLF1-specific CD8+ T cells in 60% of polyclonal T cell lines from human subjects, but epitope-

specific responses have been detected at a much higher rate when cells are tested with the 

appropriate HLA background. For example, Tan et al.226 and Woodbury et al.71 both reported 

BZLF1-specific responses in all individuals of their HLA-specific cohorts.  Less is known about 

BZLF1-specific CD4+ T cells, but Long et al.89 used IFN-γ ELISpot assays to detect responses in 

79% of EBV-seropositive individuals.  The various techniques and corresponding results have 

been reviewed elsewhere1, 89, 217, but in general, BZLF1 is known to induce a stronger CD8+ than 

CD4+ T cell response, which is similar to what we observed in the current study. 

Other studies have examined subset phenotypes and cytokine production of human EBV-

specific T cells by flow cytometry. Heller et al.227 reported the presence of proliferation-competent 

IFN-γ-producing EBNA1-specific CD4+ T cells in 90% (18 of 20) of individuals; slightly more than 

half belonged to the TCM cell subset and the remaining belonged to the TEM cell subset.  Both the 

frequency and subset distribution are quite similar to our findings in rhesus macaques. Guerreiro 

et al.228 described responses in eight EBV-seropositive individuals and found the majority of 

directly ex vivo-tested EBNA1-specific CD4+ and CD8+ T cells and BZLF1-specific CD4+ T cells 

belonged to the TCM cell subset and produced IL-2 and/or TNF-α, while BZLF1-specific CD8+ T 

cells were more activated and produced mainly IFN-γ and TNF-α.  While we describe similar 

subset distributions, we found that rhesus EBNA1 CD4+ T cells were more polyfunctional and 

more commonly produced IFN-γ either alone or in combination with other cytokines. We also 

detected more activated rhEBNA1 CD8+ T cells based on the large effector populations. It is 

possible that some of these differences are due to the fact that Guerreiro et al. analyzed the 
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cytokine profiles of only two of the highest responders.  Not only may the small sample size sway 

the response, but also the profile of high responders may naturally differ.  Finally, Ning et al.81 

compared BZLF1 polyfunctional responses to a combination of latent EBV antigens, adding 

MIP1-α and CD107a to the staining panel.  Although they did not analyze subset distributions, 

they found polyfunctional responses within both human CD4+ and CD8+ T cell populations similar 

to results of our studies in rhesus macaques.  These findings indicate that latent infection has 

only minor impact on the function of EBNA1-specific T cells. 

An additional approach to gauge the degree of T cell exhaustion is to measure the 

expression of inhibitory receptors on the cell surface.  Expression of the inhibitory receptor PD-1 

increases after T cell activation, and overexpression of PD-1 has been linked to T cell exhaustion 

and decreased functional capacity.  We had originally planned on measuring PD-1 expression 

using MHC class I tetramer staining, but the Mamu A*08 specific tetramer developed by our 

collaborators was not sensitive enough to consistently detect responses directly ex vivo.  Instead, 

we stained PBMCs for PD-1 prior to stimulation with peptide pools for ICS.  It would have been 

ideal to stain for multiple inhibitory receptors, but there are only a small number of suitable human 

antibodies that cross-react with rhesus proteins.  Because PD-1 can reflect normal T cell 

activation as well as T cell dysfunction, our data were interpreted in the context of the phenotypic 

and functional readouts.   

We detected a significantly larger frequency of rhEBNA1-specific PD-1+ CD4+ memory T 

cells compared to total and rhBZLF1-specific CD4+ memory cells.  However, the average 

percentage of rhEBNA1-specific PD-1+ T cells was just above 50%, which is not indicative of 

exhaustion229.  Salisch et al.230 used flow cytometry to characterize the distribution of PD-1 

expression among T cell subsets in healthy rhesus macaques and found that PD-1 was primarily 

restricted to memory T cells: between 30% to 45% of CD4+ memory T cells expressed PD-1.  The 

increase we observed in PD-1+ rhEBNA1-specific CD4+ memory T cells relative to total CD4+ 

memory cells could be a result of recent activation or could be caused by low-level rhEBNA1 

expression during latency.  However, because the frequency of PD-1+ rhBZLF1-specific T cells 

was not elevated in any subset, reactivation is unlikely.  Memory responses were broad, which 
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suggests a range of activation that is highly variable between animals.  This could reflect different 

rates of rhLCV reactivation or the ability of different Mamu genotypes to detect different epitopes.   

We were surprised to find consistently low percentages of rhEBNA1- and rhBZLF1-

specific PD-1+ CD8+ TEFF cells compared to total CD8+ TEFF cell responses, as effector cells are 

typically highly activated and are often associated with increased expression of PD-1231.  

However, Hokey et al.231 found higher PD-1 expression on total CD8+ TCM cells compared to TEM 

and TEFF cells.  Similarly, Salisch et al.230 found that the majority of PD-1+ CD8+ T cells (between 

20-30%) exhibited a memory phenotype.  In comparison, we found larger percentages of total 

PD-1+ CD8+ memory (54%) and effector cells (62%).  Petrovas et al.232 report a similar 

percentage of PD-1+ CD8+ memory T cells in healthy rhesus macaques using an approach similar 

to ours, however, they stained for PD-1 after stimulating cells for 6 hours, whereas we stained 

prior to stimulation. The large percentage of total PD-1+ CD8+ TEFF cells we detected could signify 

a high degree of general immune activation. 

Groups have also studied PD-1 expression on EBV-specific T cells. Day et al.233 and 

Petrovas et al.234 used a BMLF1 tetramer to detect the percentage of PD1-expressing CD8+ T 

cells, which was about 75% (range: about 50% to 100%).  We expected to find a similarly large 

percentage of rhBZLF1-specific PD-1+ CD8+ TEFF cells, but instead found the opposite.  One 

explanation is that neither rhEBNA1- nor rhBZLF1-specific CD8+ T cells frequently encounter 

antigen- either due to the rhEBNA1 GAr domain or to a lack of recent reactivation, respectively. 

Differences in methods of detection and markers used to define various subsets could also be 

responsible for these discrepancies.  Differences could also be a reflection of epitope specificity, 

as supported by Greenough et al.221, who studied PD-1 expression on EBV-specific CD8+ T cells 

during AIM, convalescence, and chronic infection using tetramers against immediate-early 

(BRLF1) and early (BMLF1) lytic antigens.  They report a percentage of total BRLF1 CD8+ T cells 

expressing PD-1 during convalescence (median: 35.1%; range: 10.3% to 80%) that is quite 

similar to the percentage of total PD-1+ CD8+ rhBZLF1 responses in our studies (data not shown, 

median: 29.8%; range: 12.2% to 70%).  They also describe very similar percentages of BMLF1 

CD8+ T cells as Day et al. and Petrovas et al.  Furthermore, they note that PD-1 expression was 
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highest within the TEM cell compartment, which would be represented within our memory subset 

(which was also the largest).  To our knowledge, we are the first group to study the expression 

PD-1 on rhLCV-specific T cells.  Our results clearly demonstrate that PD-1 is not over-expressed 

on rhEBNA1- or rhBZLF1-specific T cells, both of which produce multiple cytokines in response to 

stimulation. Therefore, while antigens may be continually present and could influence the cell 

phenotypes we observed, they do not appear to cause functional exhaustion.  

Trends observed in our studies regarding the immunodominance of lytic and latent 

proteins parallel responses observed in humans; EBNA1-specific CD4+ T cell responses are 

more dominant than CD8+ T cell responses, and the opposite is observed for BZLF1.  In 

concordance with this, we found that rhEBNA1-specific CD4+ T cells were more polyfunctional 

than rhEBNA1-specific CD8+ T cells and rhBZLF1-specific CD4+ T cells.  RhEBNA1- and 

rhBZLF1-specific CD8+ TEFF cells had similar functional properties, but the magnitude of rhBZLF1-

specific responses was larger, and rhBZLF1-specific CD8+ TCM cells were more polyfunctional.  

Upon primary infection and subsequent reactivations, BZLF1-specific CD8+ T cells are probably 

seeing more antigen and have a more direct role in controlling reactivations than the CD4+ 

response, which is mostly central memory.  On the other hand, EBNA1-specific CD8+ T cells may 

be less sensitive in detecting antigen due to the glycine-alanine repeat domain, and this may 

somehow trigger a larger and more functional CD4+ T cell response.   

All of the studies in humans as well as rhesus macaques demonstrate that a natural 

infection with EBV or rhLCV induces detectable CD4+ and CD8+ T cell responses to both EBNA1 

and BZLF1. Differences in subset distribution or functionality of EBNA1-specific T cell responses 

in different studies may in part reflect differences in the employed assays. We have chosen to 

assess antigen-specific responses with overlapping peptide pools and a short 6-hour stimulation 

because we feel that this method provides the most accurate reflection of the response in vivo.  

Prolonged stimulation of T cells by their ex vivo expansion not only changes T cell functions but 

also leads to selective proliferation of some T cells and concomitant loss of others. Furthermore, 

studies that use only IFN-γ as an output of response specificity are likely minimizing the actual 

frequencies of the responses. Variances may also reflect different study populations from diverse 
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geographic regions, different age ranges, or different underlying diseases. While humans are 

more frequently exposed to infectious agents and more commonly encounter perturbations of 

their immune systems that may support EBV reactivation, such as infections235, autoimmunity236, 

or stress237, 238, the non-human primates of our study were housed in a relatively controlled 

environment. Furthermore, it is important to note that most primates become naturally infected 

with rhLCV during the first few years of life. Exposure of humans in developed countries is more 

sporadic and can be delayed until adolescence or even adulthood although infections occur 

earlier in less developed countries such as Africa239.  Some studies suggest that responses 

against lytic and latent antigen in healthy seropositive individuals are influenced by the length of 

time since primary exposure71, 240, and this is much more variable in the human response. 

Nonetheless, other data failed to demonstrate a correlation between age and magnitude of T cell 

responses to antigens of EBV using cohorts from Africa241.   

The immunological responses to EBV are complex yet critical for understanding their role 

in human carcinogenesis and related diseases.  Although primary infection is in general benign, 

the persistence of this oncogenic virus can lead to multiple cancer types, typically exacerbated by 

immunological dysfunction or immunosuppression associated with human immunodeficiency 

virus type 1 (HIV-1) infection or solid-organ transplants. Recent evidence also supports a role for 

EBV infection in several autoimmune disorders, suggesting that EBV has a complex interaction 

with the host immune system.  The natural rhLCV infection of rhesus macaques provides an ideal 

animal model to study host immunological responses to EBV-like viruses and is also the system 

of choice for pre-clinical evaluation of EBV vaccines. Therefore, the importance of this study is 

twofold: first, by comparing rhesus macaque EBNA1 and BZLF1 T cell responses to human 

EBNA1 and BZLF1 T cell responses, we have further validated the rhLCV model as an 

appropriate and useful system for studying EBV.  Second, an improved understanding of the 

rhEBNA1 immune response will benefit the pre-clinical development of vaccines that could 

potentially prevent or control EBV-associated malignancies.   
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Our study provides a baseline for future studies of therapeutic interventions in the rhLCV 

model. We have shown that rhEBNA1-specific T cell responses are present and functional.  Next, 

we will determine if they can be expanded through vaccination.   
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 CHAPTER 3:  

 

 

ADENOVIRUS-BASED VACCINES TO RHESUS 

LYMPHOCRYPTOVIRUS EBNA1: VECTOR DESIGN, 

MOUSE STUDIES, IN VITRO TESTING  

 

 

ABSTRACT 

 
The impact of EBV on human health is substantial, but vaccines that prevent primary 

EBV infections or treat EBV-associated diseases are not yet available. EBNA1 is an important 

target for vaccination because it is the only protein expressed in all EBV-associated 

malignancies. We designed two therapeutic EBV vaccines that express a GAr-deleted rhLCV 

EBNA1.  Vaccines were based on two serotypes of E1-deleted simian adenovirus.   To further 

modulate the response, rhEBNA1 was fused to herpes simplex virus glycoprotein D (gD), which 

acts to block an inhibitory signaling pathway during T cell activation.  Although we were unable to 

detect rhEBNA1-specific T cell responses in mice, vaccines stimulated IFN-γ production by 

autologous rhEBNA1-specific T cells in vitro.  These experiments confirm the specificity and 

functionality of our novel prototype vaccines.    

 
 

Portions of this chapter were adapted from: 
Leskowitz R, Fogg MH, Zhou XY, Kaur A, Silveira ELV, Villinger F, Lieberman PM, Wang F, and Ertl HC.  
Adenovirus-based vaccines to rhesus lymphocryptovirus EBNA1 induce expansion of specific CD8+ and 

CD4+ T cells in persistently infected rhesus macaques. Journal of Virology 2014; 88(9): 4721-4735. 
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INTRODUCTION 

 
EBV is associated with about 200,000 new cases of cancer annually and around 1% of 

all human cancers worldwide104. Although primary infections are in general benign, EBV 

establishes a persistent infection through its latency in B cells, where it occasionally reactivates. 

This can lead to EBV-associated malignancies in certain populations52.  For example, when the 

immune system becomes compromised, as it does during infection with HIV or immune 

suppression following organ transplant, its ability to control EBV declines, and EBV-associated 

malignancies can arise52. In Southern China, EBV-associated nasopharyngeal carcinoma afflicts 

0.05% of all males over the age of 50242. EBV-associated gastric carcinomas are highly prevalent 

in Eastern Asia, Eastern Europe and Africa104, and EBV is tightly linked to endemic forms of 

Burkitt’s lymphoma in Central Africa243.  EBV has also been linked to autoimmune disorders102. 

The impact of EBV on human health is thus substantial, but vaccines to prevent primary EBV 

infections or treat EBV-associated diseases are not yet available.  

An effective therapeutic EBV vaccine would need to target antigens produced during 

latency, when most viral protein expression is down-regulated244.  Epstein-Barr nuclear antigen 1 

functions to maintain the viral episome and is essential for viral DNA replication during latency.  It 

is the only antigen expressed during all forms of latency245 and in all EBV-associated 

malignancies246.  EBNA1 is thus a primary target for a therapeutic EBV vaccine.  However, like 

many antigens of herpesviruses, EBNA1 subverts CD8+ T cell responses, thus potentially 

enhancing EBVs’ ability to persist and escape immune surveillance. EBNA1 mRNA contains a 

purine-rich domain that encodes a large GAr sequence, which can interfere with EBNA1-specific 

CD8+ T cell responses, either by direct inhibition of GAr-containing protein synthesis or 

proteasome-mediated degradation, thus leading to reduced antigen presentation194-196. As a 

result, induction and effector functions of EBNA1-specific CD8+ T cell responses are impaired.  

Nevertheless, EBNA1-specific CD8+ 197, 198 and CD4+ 92 T cells are frequently detected in EBV-

infected humans. These T cells are capable of controlling EBV-infected cells in vitro199, 209, and 

the loss of EBNA1-specific T cells has been correlated with numerous EBV-associated 
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diseases62, 132-134; this suggests that EBNA1-specific T cells play an important role in controlling 

infections in vivo.   

Studies described in the following two chapters explore the use of EBNA1 as a potential 

vaccine target.  In the previous chapter, we demonstrated that like humans, rhesus macaques 

develop EBNA1-specific CD8+ and CD4+ T cells during persistent rhLCV infection.  Here, using 

the rhLCV model, we developed and tested two prototype vaccines expressing rhesus EBNA1.  

To facilitate rhEBNA1 processing and antigen presentation, the GAr domain was removed from 

the coding sequence.  To further modulate the response, rhEBNA1 was genetically fused into the 

C-terminal domain of a modified herpes simplex virus (HSV-1) glycoprotein D (gD), which is a 

structural envelope protein that is essential for HSV-1 entry into host cells247.  HSV-1 gD contains 

an immunoglobulin fold flanked by an N-terminal hairpin loop, C-terminal extension, and 

hydrophobic transmembrane region (TMR)248.  The N-terminal loop of HSV-gD binds the bimodal 

herpes virus entry mediator (HVEM)249 and prevents inhibitory molecules from binding HVEM 

during T cell activation247, 250.  Downstream HVEM immunoinhibitory signaling pathways are 

subsequently blocked250.  As we have previously shown, HSV-1 gD thereby enhances T cell 

responses to antigens fused into its C-terminus247.  For example, mice vaccinated with DNA or 

Ad-based vaccines expressing antigen fused to HSV-1 gD develop significantly larger 

frequencies of IFN-γ+ CD8+ T cells (Figure 3-1).   

HSV-1 gD-rhEBNA1 chimeric antigens were expressed by E1-deleted Ad vectors of 

simian serotype 25 (SAdV-25) for priming and serotype 23 (SAdV-23) for booster immunizations. 

Vectors based on these serotypes are from here on referred to as AdC68 (SAdV-25) and AdC6 

(SAdV-23) vectors. We have previously shown that chimpanzee-based Ad vectors induce potent 

and sustained transgene product-specific T cell responses in rodents163, 164 and non-human 

primates159, 251.  Because humans are our eventual target population, we chose simian-derived 

Ad vectors rather than Ad vectors based on human serotypes in order to prevent neutralization of 

the vaccine construct by antibodies to the vaccine carrier167.  Heterologous prime-boost vaccine 

regimens have been shown to elicit high transgene product-specific T cell responses, as they 
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overcome blocking immunity induced by the first vaccine and allow successful boosting of the 

memory immune response by the second vaccine251, 252.   

This chapter focuses on vaccine production, small animal studies, and in vitro 

experiments designed to test rhEBNA1 transgene expression and the ability of our vaccines to 

stimulate transgene product-specific T cell responses.  Western blotting and cell surface staining 

experiments confirmed similar levels of transgene expression when rhEBNA1 was fused to 

various forms of HSV-1 gD.   We were unable to detect rhEBNA1-specific T cell responses in 

mice regardless of the strain of mouse, vaccine dose, or the presence of mutations that 

destabilized rhEBNA1.  However, vaccines stimulated IFN-γ production by autologous rhEBNA1-

specific T cells in vitro, thus confirming their functionality and specificity.    

 
 
 
 
 
 
 
 



	
   83 

Figure 3-1:  Enhanced T cell responses to antigens expressed as fusion proteins with 
HSV-gD 

 
 

 
 
Figure 3-1: (A) PBMCs were stimulated and stained for CD8+ surface expression and intracellular IFN-γ 10 
days after mice were immunized i.m. with AdC68 vectors (bottom) or DNA vaccines (top) expressing various 
antigens either alone or fused to gD.  Numbers reflect the frequencies of CD8+ T cells that produce IFN-γ.  
(B) A comparison of IFN-γ-specific CD8+ T cell responses to DNA vaccines expressing antigen fused to wild 
type gD (center bar), super gD (SgD; black bar), or non-binding gD (NBEFgD) shows enhanced and 
diminished T cell responses from splenocytes 14 days after immunization.  Figure was adapted from Lasaro 
et al., 2008247.   
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RESULTS 

 
Vector construction and in vitro transgene expression 

We developed several Ad-based vaccines expressing rhEBNA1 in which the GAr domain 

was removed from the coding sequence and a flag tag was inserted.  The truncated rhEBNA1 

protein was genetically fused into the C-terminal domain of various forms of HSV-1 gD.  The GAr-

deleted rhEBNA1 was also expressed without a fusion partner (rhEBNA1).  Finally, to control for 

any non-specific effects of vaccination, we used a vaccine that expressed gD fused to an 

irrelevant antigen, i.e., the nucleoprotein of influenza A virus (gD-NP).  Vaccines based on 

recombinant E1-deleted AdC68 and AdC6 viral vectors were used to deliver the antigens.    

The truncated rhEBNA1 was inserted into a mutated version of gD with enhanced HVEM 

binding (termed super (S)gD; SgD-rhEBNA1).  Enhanced binding to HVEM by SgD is the effect of 

a single amino acid mutation that opens up the HVEM binding domain and results in more potent 

T cell responses against antigens fused into it’s C-terminus as compared to wild-type HSV-1 

gD248.  To control for this effect, we generated a vaccine that expressed the truncated rhEBNA1 

within a version of SgD with strongly reduced binding to HVEM (NBEFSgD-rhEBNA1)247, 248.  We 

confirmed rhEBNA1 protein functionality with a DNA binding assay using protein lysates from 

infected cells (data not shown).  Schematic representations of the chimeric proteins are shown in 

Figure 3-2A.    

To compare vaccine immunogenicity, it was essential that all vaccines expressed similar 

amounts of rhEBNA1.  We therefore quantified rhEBNA1 expression levels by immunoblotting 

and cell surface staining of infected CHO-CAR cells.  Immunoblots of protein lysates from AdC 

vector-infected cells confirmed that SgD-rhEBNA1 and NBEFSgD-rhEBNA1 were expressed at 

similar levels (Figure 3-2B).  The rhEBNA1 transgene product was detected with antibodies 

against the flag epitope (Figure 3-2B; top), HSV-1 gD (Figure 3-2B; center), and rhesus serum 

reactive to rhEBNA1 (data not shown).  As expected, both SgD-rhEBNA1 and NBEFSgD-

rhEBNA1 achieved similar levels of expression at the expected size of 90-kDA.  The 55-kDA 

band detected only by the gD antibody is unrelated to rhEBNA1, since it was also expressed by 
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vectors encoding gD only and therefore reflects either a gD degradation product, an alternative 

splicing event, or cross-reactivity with an Ad vector-derived protein.  It is also possible that gD has 

been cleaved from the chimeric SgD-rhEBNA1 protein, although full length SgD-rhEBNA1 is still 

expressed at comparable levels compared to NBEFSgD-rhEBNA1.  Cell surface staining of 

infected CHO-CAR cells for SgD-rhEBNA1 and NBEFSgD-rhEBNA1 with an antibody to flag also 

revealed similar levels of transgene expression (Figure 3-2C).  This indicates that the gD 

transmembrane domain redirected rhEBNA1 from the nucleus to the cell surface at similar levels 

regardless of the version of gD.     

While vectors expressed gD-rhEBNA1 chimeric proteins at similar levels, the AdC-

rhEBNA1 vector expressed markedly higher levels of rhEBNA1 (Figure 3-3A), which would have 

made it difficult to determine whether differences in vaccinated animals were due to blockade of 

the HVEM pathway or to levels of rhEBNA1 expression. We therefore chose the two vectors with 

similar levels of rhEBNA1 expression but different abilities to block the HVEM pathway (SgD-

rhEBNA1, NBEFSgD-rhEBNA1) for in vivo comparisons in rhesus macaques.   

The chimeric proteins were also tested in an HVEM binding assay to confirm enhanced 

and reduced binding to SgD and NBEFSgD, respectively.  Normalized protein extracts from cells 

infected with AdC68 vectors encoding SgD-rhEBNA1, NBEFSgD-rhEBNA1 or rhEBNA1 were 

added to plates coated with HVEM.  Figure 3-2D shows the enhanced binding of SgD-rhEBNA1 

compared to NBEFSgD-rhEBNA1 and rhEBNA1 without gD, both of which failed to bind HVEM at 

the tested concentrations of protein, as expected.  
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Figure 3-2: In vitro testing of AdC-SgD-rhEBNA1 and AdC-NBEFSgD-rhEBNA1 vaccines  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2:  (A) Schematic representations of HVEM-binding (top) and non-binding (bottom) gD-rhEBNA1 
fusion proteins expressed by AdC-based vaccines.  Super (S) gD contains a mutation at position 294 of 
HSV-1 gD, in which a tryptophan was changed to an alanine (light grey band)248.  The result is increased 
HVEM binding.  The non-binding effect (NBEF) gD was generated by replacing seven amino acids at the N-
terminus of HSV-1 gD with alanine (dark grey bands)248.  These mutations block HVEM binding.  (B) 
Western blot analyses of protein lysates harvested from CHO-CAR cells infected with 1010, 109, or 108 vps 
of AdC-based vaccines expressing SgD-rhEBNA1 (left), NBEFSgD-rhEBNA1 (center), or gD alone (right). 
Transgene products were detected with antibodies against the flag epitope (top row) or HSV-1 gD (center 
row).  Anti β-actin was used as an internal control (bottom row).  (C) Cell surface staining of infected CHO-
CAR cells for SgD-rhEBNA1 and NBEFSgD-rhEBNA1. Cells were infected for 48 hours with 1010 or 109 vp of 
AdC68-SgD-rhEBNA1 or AdC68-NBEFSgD-rhEBNA1 or 1010 vp of AdC68-gD, stained with mouse anti-flag 
antibody, and probed with goat anti-mouse IgG-Alexa700.  (D) An HVEM binding assay was used to test the 
ability of the chimeric proteins to bind their receptor. Normalized protein extracts from CHO-CAR cells 
infected with AdC68 encoding SgD-rhEBNA1 show enhanced HVEM binding (vs. AdC68-NBEFSgD-
rhEBNA1, p = 0.0036; vs. AdC68-rhEBNA1, p = 0.0035; Comparing AUC by one-way Anova). A p-value 
<0.05 was considered significant.  All multiple comparisons were Bonferroni-adjusted to control for type I 
errors.   
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Vaccination does not induce rhEBNA1-specific T cells in mice 

We tested the ability of our Ad-based rhEBNA1 vaccines to induce rhEBNA1-specific T 

cell responses in mice.   Rhesus LCV does not naturally infect mice, and we were unable to find 

any reports of rhLCV-specific vaccines tested within the murine immune system.  Because mouse 

epitopes were unknown, we began with a dose escalation study in a small group of BALB/c mice.  

We used AdC vectors expressing either truncated rhEBNA1 alone or fused to HSV-1 gD from 

which the transmembrane domain had been deleted.  Four animals per group received either 109, 

1010, or 1011 vps per mouse of AdC68-rhEBNA1 or AdC68-gD-rhEBNA1 administered intra-

muscularly (i.m.).  As a control, four animals were vaccinated with 1011 vps per mouse of AdC68-

HIV-gag.  T cells were tested for IFN-γ production by ICS after PBMCs were stimulated with an 

overlapping rhEBNA1 peptide pool at 2 and 4 weeks after vaccination.  As shown in Figure 3-3, 

frequencies and numbers of rhEBNA1-specific IFN-γ+ CD8+ T cells were all low, but looked most 

promising at the 1011 dosage.  All rhEBNA1-specific T cell responses were significantly lower than 

HIV-gag-specific T cell responses (p < 0.05), as shown at week 4.  Using the highest dose of 1011 

vps per mouse, we repeated the same study through week 12 and compared responses to 

vaccine-naïve animals, which were not significantly different than animals vaccinated with either 

Ad-rhEBNA1-expressing vaccine (Figure 3-4).  Peptide-specific CD4+ T cell responses were also 

undetectable (data not shown).  These results indicate that BALB/c mice do not recognize 

epitopes within rhEBNA1.   

A similar series of experiments using C57/Bl6 (n = 5) and ICR (n = 10) mice produced the 

same results despite staining for three different cytokines in order to broaden our detection of 

vaccine-induced responses (Figure 3-5).  Mice were vaccinated with 1011 vp of AdC68-rhEBNA1 

or AdC68-gD-rhEBNA1, and PMBCs were stained for IFN-γ, IL-2, and TNF-α.   The lack of 

substantial responses led us to conclude that mice are not capable of recognizing epitopes within 

rhEBNA1, even when they are outbred (such as ICR mice).   

Alternatively, the lack of rhEBNA1-specific T cell responses in mice could be a result of 

the high degree of stability of rhEBNA1, which is a DNA-binding protein that is not very well 

degraded.  To address this, we destabilized rhEBNA1 by introducing various mutations within the 
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protease-resistant DNA binding domain (rhEBNA1-M and gD-rhEBNA1-M) to interfere with 

protein folding and increase degradation and antigen presentation of rhEBNA1.  Thus, if mice are 

capable of responding to rhEBNA1, then immunization with AdC vaccines expressing rhEBNA1-

M or gD-rhEBNA1-M would induce larger rhEBNA1-specific T cell responses.  However, we were 

still unable to detect rhEBNA1-specific T cells after vaccination with mutated rhEBNA1 vaccines 

(data not shown).   

To confirm that the lack of rhEBNA1-specific T cell responses was not caused by 

experimental error, we tested for the induction of gD-specific antibodies by serum ELISA.  All 

animals that received gD-expressing vaccines developed antibodies against gD, which confirms 

that mice appropriately responded to vaccination (data not shown).   
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Figure 3-3: Frequency and number of IFN-γ+ CD8+ T cells following dose-escalation study 
 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3-3: The frequency (A) and number (B) of IFN-γ+ CD8+ T cells following a dose-escalation study of 
BALB/c mice (n = 4 per group) that received 109, 1010, or 1011 vp of AdC68 vectors expressing either 
rhEBNA1 or gD-rhEBNA1.  As a control, animals were vaccinated with 1011 vp of AdC68 expressing HIV-
gag.  Responses were measured by production of IFN-γ after PBMCs were stimulated with overlapping 
rhEBNA1 or gag peptide pools.  Representative data is shown here at week 4.  Responses are shown after 
subtraction of background values.  Bars indicate the mean. 
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Figure 3-4: Kinetics of peptide-specific CD8+ T cells after vaccination 
 
 

 
 
 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 
 
 
 

Figure 3-4: BALB/c mice (n = 5) were immunized with 1011 vp of AdC68-expressing rhEBNA1 
(red circle) or gD-rhEBNA1 (blue square) to study the kinetics of peptide-specific T cells.  
PMBCs were collected every other week after vaccination and were stimulated with 
overlapping rhEBNA1 (left column) or HIV-gag (right column) peptide pools (labeled here as 
negative control).  Responses are reported as the frequency (top row) or number (bottom row) 
of IFN-γ+ CD8+ T cells after a five hour incubation.  Vaccine-naïve mice (black triangle) were 
included as an additional control starting at week 4 in order to measure general immune 
fluctuation.  	
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Figure 3-5: Peptide-specific CD8+ T cells after vaccination of C57/Bl6 and ICR mice 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-5: C57/Bl6 (left; n = 5) and ICR (right; n = 10) mice were immunized with 1011 vp of AdC68-
expressing rhEBNA1 (red circle) or gD-rhEBNA1 (blue square).  PMBCs were collected at weeks 2, 4, 10, 
and 12 after vaccination and were stimulated with overlapping rhEBNA1 or HIV-gag (labeled here as 
negative control) peptide pools.  Responses are reported as the frequency of IFN-γ+ (A), IL-2+ (B), or TNF-
α+ (C) CD8+ T cells after a five-hour incubation. 
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Vaccination induces rhEBNA1-specific T cells in vitro  

To test if our vaccines could stimulate rhEBNA1-specific effector T cells in vitro, rhesus 

macaque DCs were infected with the AdC68-rhEBNA1 or AdC68-gD-rhEBNA1 viral vectors and 

cultured with autologous rhEBNA1-specific CD8+ T cells.  T cell responses were measured by an 

IFN-γ ELISPOT assay.  As shown in Figure 3-6, the rhEBNA1 antigen could be efficiently 

processed and presented to rhEBNA1-specific CD8+ T cells. DCs infected with the AdC68-gD-

rhEBNA1 vector were able to induce IFN-γ secretion by rhEBNA1-specific T cells, and responses 

were comparable to those elicited by an AdC68-rhEBNA1 vector, which lacked gD.  Empty vector 

or non-infected DCs did not induce responses.  IFN-γ was produced by responding T cells, since 

cultures containing only infected DCs failed to produce IFN-γ. 

 
 
 
	
  



	
   93 

Figure 3-6: In vitro stimulation of rhEBNA1-specific T cells 
 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
 

 
 
 
Figure 3-6: Mature DCs from an rhLCV-seropositive rhesus macaque were infected with 
the indicated Ad vectors or pulsed with rhEBNA1 peptide and then co-cultured with 
autologous rhEBNA1-specific CD4+-depleted CD8+ T cells.  rhEBNA1-specific responses 
were measured by an IFN-γ ELISPOT assay after 16 hours and results are shown as 
average spots per 106 CD8+ T cells based on quadruple experiments of the DC + T cells 
and triplicate experiments of the other samples.  Asterisk denotes significant differences: 
all p-values < 0.0001 except for peptide vs. AdC68-rhEBNA1 (p = 0.0009) and AdC68-gD-
rhEBNA1 (p = 0.0036). P-values were calculated using one-way ANOVA, with a p-value 
<0.05 considered significant.  All multiple comparisons were Bonferroni-adjusted to control 
for type I errors.   
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DISCUSSION 

 
EBV infection causes a significant amount of morbidity and mortality within both immune 

competent and immune compromised populations throughout the world, but there is currently no 

approved prophylactic or therapeutic EBV vaccine.   Using the rhLCV animal model of EBV 

infection, we constructed AdC-based vaccines that target rhEBNA1, the only antigen of rhLCV 

(and EBV) expressed during lytic and latent infection and in all associated malignancies.  Ad 

vectors derived from chimpanzee serotypes are highly immunogenic159, 251, 253, have low 

prevalence rates in human cohorts254, and are well suited for clinical development255. Vaccines 

expressed a GAr-deleted form of rhEBNA1 that was fused to the HVEM-binding HSV-1 gD to 

further promote T cell responses.  We had originally planned to use AdC vaccines expressing 

rhEBNA1 without HSV-1 gD as a control, but rhEBNA1 protein expression as detected via 

western blot was at least 100-fold higher than gD-rhEBNA1.  This likely reflects either differences 

in protein stability caused by fusion to HSV-1 gD or differences in the rates of 

transcription/translation between shorter versus longer sequences. Therefore, to better control for 

the adjuvant effect of HSV-1 gD, rhEBNA1 was fused to an HVEM-non-binding form of gD.  In 

vitro studies confirmed that vaccines expressed similar levels of gD-rhEBNA1 fusion products so 

that potential differences after vaccination could be attributed to HVEM binding of gD rather than 

to differences in antigenic load.  Additional in vitro studies confirmed that the two forms of gD 

exhibited the expected HVEM binding patterns. 

We initially attempted to confirm vaccine immunogenicity by testing their ability to induce 

rhEBNA1-specific T cell responses in several different strains of mice, including BALB/c, C57/Bl6, 

and ICR mice, which are outbred.   Mice were vaccinated with AdC68-rhEBNA1 or AdC68-gD-

rhEBNA1.  We were unable to detect rhEBNA1-specific T cells regardless of the strain of mouse, 

vaccine received, or dose of vaccination.  A dose-escalation study followed by a kinetic analysis 

of rhEBNA1-specific responses after immunization at the highest dose (1011 vps/mouse) did not 

elicit any clear rhEBNA1-specific T cell responses.  While we later learned that levels of 

transgene expression by AdC-rhEBNA1 and AdC-gD-rhEBNA1 vaccines differed, this was 



	
   95 

inconsequential since neither vaccine elicited responses.  This is perhaps because there are no 

rhEBNA1-specific mouse epitopes.  An alternative explanation is that rhEBNA1 is an extremely 

stable protein that is not very well degraded.  To address this question, we generated additional 

vaccines with mutated rhEBNA1 DNA-binding domains to destablize rhEBNA1 and increase its 

degradation.  However, we were still unable to detect responses in mice upon vaccination with 

modified vaccines. We assume this reflects a lack of suitable epitopes within rhEBNA1 that can 

bind to mouse MHC molecules.   

While mice were vaccinated with a TMR-deleted vaccine, it is not likely that inclusion of 

the TMR would have significantly altered the results given that we were unable to detect 

responses against rhEBNA1 alone, which was expressed at a much higher rate than gD-

rhEBNA1.  Furthermore, all gD-rhEBNA1 transgene products were expressed at similar levels 

regardless of the version of HSV-1 gD (data not shown).  Thus, mouse studies were not repeated 

with our TMR-containing vaccines.  It is possible that without the TMR, the gD-rhEBNA1 fusion 

protein was redirected to the nucleus, which would have minimized the adjuvant effect of HSV-1 

gD.  However, if this were the case, then the magnitude of rhEBNA1-specific T cells would have 

increased after vaccination with rhEBNA1 (-M) and gD-rhEBNA1 (-M) vaccines.    

We confirmed the immunogenicity of our rhEBNA1-expressing vaccines by an in vitro 

assay in which rhesus macaque DCs were co-cultured with autologous peptide-induced 

rhEBNA1-specific CD8+ T cells.  Vaccines stimulated IFN-γ production, which demonstrates their 

ability to induce transgene product-specific T cell responses.   These experiments do not exhibit a 

clear adjuvant effect of HSV-1 gD, which could be due to the high level of rhEBNA1 expression 

(compared to gD-rhEBNA1) as detected by western blots.   A dose titration would have been 

useful for testing the difference between AdC-rhEBNA1 and AdC-gD-rhEBNA1 vectors and also 

for confirming the adjuvant effect of HSV-1 gD.  Nevertheless, these experiments confirm vector 

immunogenicity and specificity, which was necessary in order to begin testing in rhesus 

macaques.    
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CHAPTER 4: 

 

 

ADENOVIRUS-BASED VACCINES TO RHESUS 

LYMPHOCRYPTOVIRUS EBNA1 INDUCE EXPANSION OF 

CD8+ AND CD4+ T CELLS IN PERSISTENTLY INFECTED 

RHESUS MACAQUES  

 

 

ABSTRACT 

 
Latent EBNA1 is a promising target for a therapeutic vaccine, as it is the only antigen 

expressed in all EBV-associated malignancies. We have designed and tested two therapeutic 

EBV vaccines that target the rhesus LCV EBNA1 to determine if ongoing T cell responses during 

persistent rhLCV infection in rhesus macaques can be expanded upon vaccination.  Vaccines 

were based on two serotypes of E1-deleted simian adenovirus and were administered in a prime-

boost regimen. We found that vaccines expressing rhEBNA1 induced expansion of rhEBNA1-

specific CD8+ and CD4+ T cells in 33% and 83% of the vaccinated animals, respectively. 

Additional animals developed significant changes within T cell subsets without changes in total 

numbers. Vaccination did not increase T cell responses to rhBZLF1, an immediate early lytic 

phase antigen of rhLCV, thus indicating that increases of rhEBNA1-specific responses were a 

direct result of vaccination. Vaccine-induced rhEBNA1-specific T cells were highly functional and 



	
   97 

produced various combinations of cytokines as well as the cytolytic molecule granzyme B. These 

results serve as an important proof-of-principle that functional EBNA1-specific T cells can be 

expanded by vaccination. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Portions of this chapter were adapted from: 
Leskowitz R, Fogg MH, Zhou XY, Kaur A, Silveira ELV, Villinger F, Lieberman PM, Wang F, and Ertl HC.  
Adenovirus-based vaccines to rhesus lymphocryptovirus EBNA1 induce expansion of specific CD8+ and 

CD4+ T cells in persistently infected rhesus macaques. Journal of Virology 2014; 88(9): 4721-4735. 
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INTRODUCTION 

 
EBV is a common human pathogen that establishes a persistent infection through latency 

in B cells, where it occasionally reactivates. EBV infection is typically benign and is well controlled 

by the host adaptive immune system; however, it is considered carcinogenic due to its strong 

association with lymphoid and epithelial cell malignancies.  The EBV protein EBNA1 is a 

promising target for a therapeutic vaccine, as it is the only antigen expressed in all types of 

latency and in EBV-associated malignancies.  

We designed and tested vaccines that target the rhLCV EBNA1 (described in detail in 

Chapter 3). Rhesus macaques are naturally infected with rhLCV, a gamma-1 herpesvirus that is 

closely related to EBV191, 256. Most rhesus macaques become infected during infancy, and rhLCV 

persists for life in a latent form in B cells. Like EBV, rhLCV has been associated with virus-

positive B cell lymphomas upon immunosuppression191. EBV and rhLCV share a high degree of 

sequence homology, they have identical repertoires of lytic and latent genes189, and they elicit 

similar immune responses257.  We characterized rhEBNA1-specific T cell responses in a cohort of 

seropositive rhesus macaques and found that most animals have rhEBNA1-specific CD4+ and 

CD8+ T cells that resemble human T cell responses in many aspects (Chapter 2). The rhLCV 

model is therefore ideal for preclinical testing of EBV vaccines. 

The goal of this study was to test if prototype vaccines expressing rhEBNA1 could 

expand ongoing rhEBNA1-specific CD8+ and CD4+ T cell responses in adult rhesus macaques 

with persistent rhLCV infections. We developed and tested two vaccine regimens based on 

replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes (AdC).  

Vaccines expressed a GAr-deleted form of rhEBNA1. To further modulate the response, 

rhEBNA1 was fused to herpes simplex virus glycoprotein D (gD), which binds the herpes virus 

entry mediator (HVEM) and blocks its interaction with the immunoinhibitory B and T lymphocyte 

attenuator (BTLA) during T cell activation.  HVEM-binding and -non-binding versions of HSV-gD 

were tested.  Vaccination increased the number of circulating rhEBNA1-specific CD8+ and CD4+ 

T cells in rhesus macaques with persistent rhLCV infections regardless of gD binding ability.  
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Responses were highly functional, and T cells produced various combinations of the cytokines 

IFN-γ, IL-2, and TNF-α.  T cells also produced granzyme B, which indicates that vaccination 

increased the cytolytic potential of rhEBNA1-specific T cells. These preliminary studies confirm 

that rhEBNA1 is a suitable target for therapeutic rhLCV and presumably EBV vaccines.  
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RESULTS  

 
Characteristics of NHPs 

Fifteen female adult, healthy, and SIV-uninfected rhesus macaques aged 6 to 20 years 

were enrolled in this study at the Yerkes National Primate Research Center (YNPRC).  Animals 

were negative for neutralizing antibodies to AdC68 and AdC6 and positive for antibodies to 

rhLCV.  Table 4-3 shows the basic characteristics of animals enrolled in this study.  

	
  
Vaccination increases the frequency of rhEBNA1-specific T cell responses 

To test if our vaccines could induce or expand rhEBNA1-specific T cell responses in vivo, 

animals were injected i.m. with 1011 vp of AdC68 vectors expressing SgD-rhEBNA1 (group 1, n = 

6), NBEFSgD-rhEBNA1 (group 2, n = 6), or gD-NP (group 3, n = 3). They were boosted 15 weeks 

later with the same doses of AdC6 vectors expressing the same inserts.  Vaccines are described 

in detail in the previous chapter.  Responses were measured from blood collected two months 

prior to and on the day of vaccination to determine baseline responses and at 2, 4, and 8 weeks 

after priming and 2, 4, and 6 weeks after boosting (weeks 17, 19, and 21) to test for vaccine-

induced changes (Figure 4-1). RhEBNA1-specific CD8+ and CD4+ T cell responses were 

measured by ICS for IFN-γ, IL-2, and TNF-α198. We also analyzed the effects of vaccination on T 

cell subsets, i.e., effector (TEFF), effector memory (TEM) and central memory (TCM) cells identified 

by additional stains for CD95, CD28, and CCR7.  Results obtained by ICS were normalized to 

numbers of responding cells per 106 live CD3+ cells, and background data were subtracted. We 

used two criteria to define vaccine-induced increases of rhLCV-specific T cell responses. First, 

average normalized numbers of specific T cells from 5 rhLCV seronegative animals were used to 

determine the detection limit of the assay; numbers of total cytokine-producing T cells (after 

background subtraction) had to be two standard deviations (SDs) above this limit. Second, 

animals were classified as vaccine responders if rhEBNA1-specific cytokine responses increased 

2 SDs or more above mean baseline responses for at least 3 time points after vaccination. 

Animals that met these criteria only within T cell subsets were also viewed as responders, as the 
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additional stains used to identify TEFF, TEM, and TCM cells increase staining sensitivity by reducing 

background noise. Details on individual immune responses can be found in Table 4-1 (CD8+ T 

cell responses) and Table 4-2 (CD4+ T cell responses). 

Based on these criteria, 50% (6/12) of the animals were identified as vaccine responders 

for rhEBNA1-specific CD8+ T cells, and 92% (11/12) were vaccine responders for rhEBNA1-

specific CD4+ T cells (summarized in Table 4-3; primary data are provided in Table 4-1 and 

Table 4-2). The one vaccine non-responder was from group 1. Increases in rhEBNA1-specific T 

cell responses were driven by the rhEBNA1 vaccines, as none of the group 3 animals who 

received the control vectors qualified as vaccine responders.  Additionally, none of the animals 

qualified as responders when T cells were tested against an irrelevant rhLCV antigen, i.e., no 

animals in any group developed sustained T cell increases against rhBZLF1, a highly 

immunogenic immediate-early antigen of rhLCV (Table 4-1 and Table 4-2).        	
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Figure 4-1: Schedule of vaccinations and blood collection 
 
 

 
 
 
 
 
 
	
  
	
   	
  
	
  
	
  
	
  
	
  
 

 
Figure 4-1 shows the vaccination (black arrows) and blood collection (red arrows) schedule. 
Numbers along the axis display the timing in weeks after the first vaccination (at week 0).    
Baseline responses for each animal reflect the average between week 0 and 2 months prior to 
vaccination.  BL, baseline; mos, months.  

 
 
 
 
 
 

-2mos     0       2       4              8                       15            17      19      21 
 
(weeks) 

  AdC68 
vaccines 

  AdC6 
vaccines 

BL 



	
   103 

Ta
bl

e 
4-

1:
 N

um
be

r o
f C

D
8+  T

 c
el

ls
/1

06  li
ve

 C
D

3+  c
el

ls
 	
  

Ta
bl

e 
4-

1:
  

R
hE

B
N

A
1-

sp
ec

ifi
c 

(to
p)

 a
nd

 r
hB

ZL
F1

-s
pe

ci
fic

 (
bo

tto
m

) 
C

D
8+  T

 c
el

l r
es

po
ns

es
 a

re
 s

ho
w

n 
at

 a
ll 

pr
e-

 a
nd

 p
os

t-v
ac

ci
na

tio
n 

tim
e 

po
in

ts
.  

R
es

po
ns

es
 a

re
 n

or
m

al
iz

ed
 to

 1
06  li

ve
 

C
D

3+  T
 c

el
ls

 a
fte

r s
ub

tra
ct

io
n 

of
 b

ac
kg

ro
un

d 
da

ta
 fo

r i
nd

iv
id

ua
l a

ni
m

al
s.

  −
, v

al
ue

s 
be

lo
w

 th
e 

de
te

ct
io

n 
lim

it 
(b

as
ed

 o
n 

rh
LC

V
-s

er
on

eg
at

iv
e 

rh
es

us
 m

ac
aq

ue
s)

; d
at

a 
fo

r t
im

e 
po

in
ts

 a
t w

hi
ch

 
th

e 
pa

re
nt

al
 C

D
8+  T

 c
el

l r
es

po
ns

e 
w

as
 b

el
ow

 th
e 

de
te

ct
io

n 
lim

it 
ar

e 
no

t s
ho

w
n 

in
 th

e 
ta

bl
e 

(a
nd

 w
er

e 
al

so
 o

m
itt

ed
 fr

om
 th

e 
gr

ap
hs

). 
 P

ep
tid

e-
sp

ec
ifi

c 
va

cc
in

e 
re

sp
on

se
s 

gr
ea

te
r t

ha
n 

2S
D

s 
fro

m
 th

e 
m

ea
n 

ba
se

lin
e 

ar
e 

hi
gh

lig
ht

ed
 in

 g
re

y.
  B

L,
 b

as
el

in
e;

 N
T,

 n
ot

 te
st

ed
; N

H
P

, n
on

-h
um

an
 p

rim
at

e;
 ID

, i
de

nt
ifi

ca
tio

n 
nu

m
be

r. 
 	
  



	
   104 

Ta
bl

e 
4-

2:
 N

um
be

r o
f C

D
4+  T

 c
el

ls
/1

06  li
ve

 C
D

3+  c
el

ls
 	
  

Ta
bl

e 
4-

2:
  R

hE
B

N
A

1-
sp

ec
ifi

c 
(to

p)
 a

nd
 rh

B
ZL

F1
-s

pe
ci

fic
 (b

ot
to

m
) C

D
4+  T

 c
el

l r
es

po
ns

es
 a

re
 s

ho
w

n 
at

 a
ll 

pr
e-

 a
nd

 p
os

t-v
ac

ci
na

tio
n 

tim
e 

po
in

ts
.  

R
es

po
ns

es
 a

re
 n

or
m

al
iz

ed
 to

 1
06  li

ve
 C

D
3+  

T 
ce

lls
 a

fte
r 

su
bt

ra
ct

io
n 

of
 b

ac
kg

ro
un

d 
da

ta
 fo

r 
in

di
vi

du
al

 a
ni

m
al

s.
  
−,

 v
al

ue
s 

be
lo

w
 th

e 
de

te
ct

io
n 

lim
it 

(b
as

ed
 o

n 
rh

LC
V

-s
er

on
eg

at
iv

e 
rh

es
us

 m
ac

aq
ue

s)
; d

at
a 

fo
r 

tim
e 

po
in

ts
 a

t w
hi

ch
 th

e 
pa

re
nt

al
 C

D
4+  T

 c
el

l r
es

po
ns

e 
w

as
 b

el
ow

 th
e 

de
te

ct
io

n 
lim

it 
ar

e 
no

t s
ho

w
n 

in
 th

e 
ta

bl
e 

(a
nd

 w
er

e 
al

so
 o

m
itt

ed
 fr

om
 th

e 
gr

ap
hs

). 
 P

ep
tid

e-
sp

ec
ifi

c 
va

cc
in

e 
re

sp
on

se
s 

gr
ea

te
r t

ha
n 

2S
D

s 
fro

m
 

th
e 

m
ea

n 
ba

se
lin

e 
ar

e 
hi

gh
lig

ht
ed

 in
 g

re
y.

  B
L,

 b
as

el
in

e;
 N

T,
 n

ot
 te

st
ed

; N
H

P
, n

on
-h

um
an

 p
rim

at
e;

 ID
, i

de
nt

ifi
ca

tio
n 

nu
m

be
r. 

 	
  



	
   105 

Table 4-3: Characteristics and responsiveness of rhesus macaques enrolled in this study  
 

Response to 
vaccination 

Group NHP ID Age (yr) MHC alleles CD8+ CD4+ 

RYa6 
 

12 A.04, A.25 
B.01, B.17 

R R 

PH1019 
 

10 A.08, A.18b 
B.17, B.83 

R R 

RTn5 
 

15 A.01, A.08 
B.12b, B.47 

NR R 

RQt5 
 

13 A.04, A.12 
B.43a 

NR R 

RRi9 
 

7 A.03, A.04 
B.01, B.12b 

NR R 

Group 1:  
SgD-rhEBNA1 

RLy9 
 

6 A.04 
B.28b, B.47 

NR NR 

      
RNw9 
 

6 A.04, A.08 
B.12b, B.15a 

R R 

RZi7 
 

9 A.01, A.07/19 
B.17, B.55, B.69a 

R R 

RVw6 
 

10 A.01, A.08  
B.01, B.02 

R R 

RTp4 
 

15 A.04 
B.12b, B.28b 

R R 

PWw 
 

13 A.02, A.08 
B.12b, B.28b 

NR R 

Group 2: 
NBEFSgD-rhEBNA1 

RCv5 
 

13 A.04 
B.02, B.12b 

NR R 

      
RYc3 
 

19 A.01, A.03 
B.12b, B.47 

NR NR 

RCj7 
 

9 A.07, A.224 
B.15a, B.23 

NR NR Group 3: 
gD-NP 

RLz5 
 

12 A.04 
B.12b, B.69a 

NR NR 

 
Abbreviations: NHP, non-human primate; ID, identification number; MHC, major histocompatibility complex; 
R, responders; NR, non-responders.  

. 
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Magnitude and differentiation status of rhLCV-specific CD8+ T cells after vaccination 

Numbers of rhEBNA1-specific CD8+ T cells increased after vaccination.  Increases were 

most pronounced and sustained within the CD8+ TEM cell subset, while numbers of rhEBNA1-

specific CD8+ TCM and CD8+ TEFF cells increased only transiently (Figure 4-2A). Increases of 

rhEBNA1-specific T cells as measured by area under the curve (AUC) were significantly larger 

than the corresponding rhBZLF1-specific responses for overall CD8+ T (P = 0.048 by Mann-

Whitney) and CD8+ TEM (P = 0.039) cells (Figure 4-2B).  Increases of rhEBNA1-specific T cells 

were also significantly larger than those of controls (for overall and TEM cells, P = 0.048, 0.024, 

respectively).  For all vaccine responders, rhEBNA1-specific CD8+ T cells increased about 4-fold 

from baseline, with an average increase of 474 total T cells and 277 TEM cells (6.5-fold change) 

per 106 live CD3+ cells after vaccination. Corresponding rhBZLF1-specific responses and 

rhEBNA1-specific responses within the control group remained stable or contracted, which 

indicates that increases in rhEBNA1-specific CD8+ T cells were a result of vaccination.  

There were no significant differences in rhEBNA1-specific CD8+ T cell responses 

between groups 1 and 2. However, the number of rhEBNA1-specific CD8+ TEM cell responses of 

group 1, but not group 2, increased significantly more after vaccination than the corresponding 

rhBZLF1 responses (P = 0.0081) or rhEBNA1 responses of control animals (P = 0.012).  

The selective increases of rhEBNA1-specific CD8+ TEM cells caused shifts in the 

proportions of the three CD8+ T cell subsets (Figure 4-3A), while the proportions of rhBZLF1-

specific subsets did not change following vaccination (not shown).  At baseline, most rhEBNA1-

specific CD8+ responses were TCM or TEFF cells.  After vaccination, the proportion of rhEBNA1-

specific CD8+ TEM cells increased to nearly double the proportion at baseline for every time point 

(Figure 4-3A, white bars). This shift, which clearly indicates that vaccination preferentially 

induced or expanded CD8+ TEM cells, became significant by week 8 (P = 0.035).   

 
Magnitude and differentiation status of rhLCV-specific CD4+ T cells after vaccination 

RhEBNA1-specific CD4+ T cell responses increased after vaccination.  These increases 

were pronounced within both CD4+ TCM and TEM cell subsets, while CD4+ effector responses 
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remained stable (Figure 4-4A).  Increases of rhEBNA1-specific T cells as measured by AUC 

were significantly larger than the corresponding rhBZLF1-specific responses for overall CD4+ T (P 

= 0.0003), CD4+ TCM (P = 0.0019), and CD4+ TEM (P = 0.02) cells (Figure 4-4B).  Increases of 

rhEBNA1-specific T cells were also significantly larger than the same responses among animals 

that received the control vaccine (for overall and TCM cells, P = 0.02, 0.039, respectively).  

Numbers of rhEBNA1-specific CD4+ T cells increased about 3-fold from baseline, with an average 

increase of 424 total T cells, 212 TCM cells, and 191 TEM cells per 106 live CD3+ cells. 

Corresponding rhBZLF1-specific responses and rhEBNA1-specific responses within the control 

group remained stable or contracted, therefore indicating that increases in rhEBNA1-specific 

CD4+ T cells were a result of vaccination.  

RhEBNA1-specific overall CD4+ T cell responses were significantly larger for group 2 

responders than for group 1 (P = 0.0173, AUC, by the Mann-Whitney test); however, subset 

responses between the same groups were not significantly different.  The number of rhEBNA1-

specific T cells within group 2 but not group 1 also increased significantly more after vaccination 

than corresponding rhBZLF1 responses (for overall, TCM, and TEM cells, P = 0.002, 0.0009, 0.021, 

respectively) or rhEBNA1 responses of control animals (for overall, TCM, and TEM cells, P = 0.024, 

0.047, 0.038, respectively). This may suggest that vaccines expressing rhEBNA1 with a non- 

HVEM-binding version of gD induced more potent CD4+ T cell responses than did the SgD-

rhEBNA1 vaccines.  

The distribution of rhEBNA1-specific CD4+ TCM and TEM cell subsets shifted after 

vaccination (Figure 4-3B), while rhBZLF1-specific CD4+ T cell subsets remained stable (not 

shown). The shift in rhEBNA1-specific subset proportions, which was significant at week 2 (P = 

0.045), was caused by pronounced increases of CD4+ TEM cells, which resulted in a relative 

reduction in the percentage of CD4+ TCM cells. 
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Figure 4-2: Magnitude of peptide-specific CD8+ T cell responses upon vaccination 
 
 

 
 
Figure 4-2: PBMCs were stimulated with specific peptide pools and ICS was used to measure production of 
IFN-γ, IL-2, and TNF-α.  Mean counts of rhEBNA1-specific (A) and rhBZLF1-specific (B) total cytokine-
producing CD8+ T cells ± SD are plotted as a change from baseline (BL) for all vaccine responders of 
groups 1 (X, black line) and 2 (, grey line) and all animals of group 3 (+, dashed line).  Peptide-specific 
CD8+ T cell responses are shown for overall, TCM, TEM, and TEFF subsets (left to right).  Raw data were used 
to calculate changes from baseline, and any values below the limit of detection were excluded from the 
calculation of the mean.  All values are presented as numbers of responding cells per 106 live CD3+ cells.  
To calculate the sum of the peptide-specific response, we subtracted normalized background activity and 
then summed the 7 possible different combinations of functions.  Significant differences were determined by 
comparing areas under the curve (AUC) and are as follows.  For rhEBNA1 versus rhBZLF1 for all vaccine 
responders, CD8+ overall, P = 0.048, and TEM, P = 0.039. For rhEBNA1 for all vaccine responders versus 
controls, CD8+ overall, P = 0.048; TEM, P = 0.024.  RhEBNA1 CD8+ TEM responses were also significant for 
vaccine responders within group 1 (rhEBNA1 versus rhBZLF1, P = 0.0081; rhEBNA1 responders versus 
controls, P = 0.012). P values were calculated using two-sided Mann-Whitney tests (all responders grouped) 
or ANOVA (comparisons between all three groups), with a P value of <0.05 considered significant.   
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Figure 4-3: Proportions of peptide-specific CD8+ and CD4+ T cell subsets upon vaccination 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-3: The proportions of rhEBNA1-specific CD8+ (A) and CD4+ (B) TEFF (dark gray), TCM (light gray), 
and TEM (white) subsets are shown as a percentage of the total response at baseline and weeks 2, 8, and 17 
after vaccination.  For each subset, normalized counts were divided by the sum of all three subsets to 
determine the relative proportions.  Results for individual animals are shown as filled circles, and responses 
for all vaccine responders are displayed as floating bars (5th to 95th percentiles) with lines at the median.  
Significant differences were determined by comparing the percentage of a given subset after vaccination to 
the percentage at baseline and are as follows: rhEBNA1-specific CD8+ TEM and CD4+ TEM cells at week 2, P 
= 0.035 and 0.045, respectively.  P values were calculated using the two-sided Mann-Whitney test, with a P 
value of <0.05 considered significant.    
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Figure 4-4: Magnitude of peptide-specific CD4+ T cell responses upon vaccination 
 
 
 

 
 
Figure 4-4: Mean counts of rhEBNA1-specific (A) and rhBZLF1-specific (B) total cytokine-producing CD4+ T 
cells ± SD are plotted as a change from baseline (BL).  This figure is organized in the same fashion as 
Figure 4-2.  Significant differences are as follows.  For rhEBNA1 versus rhBZLF1 for all vaccine responders, 
CD4+ overall, P = 0.0003; TCM, P = 0.0019; TEM, P = 0.02. For rhEBNA1 for all vaccine responders versus 
controls, CD4+ overall, P = 0.02; TCM, P = 0.039.  RhEBNA1 responses were also significant for vaccine 
responders within group 2 (for group 2 versus group 1, CD4+ overall, P = 0.0173; for group 2 rhEBNA1 
versus group 2 rhBZLF1, CD4+ overall, P = 0.002; TCM, P = 0.0009; TEM, P = 0.021; for group 2 rhEBNA1 
versus control rhEBNA1, CD4+ overall, P = 0.024; TCM, P = 0.047; TEM, P = 0.038).  Responses of rhEBNA1 
CD4+ TEFF cells were significantly lower than those of both CD4+ TCM (P = 0.0058) and CD4+ TEM (P = 0.019) 
cells.  P values were calculated using two-sided Mann-Whitney tests (all responders grouped) or ANOVA 
(comparisons between all three groups), with a P value of <0.05 considered significant.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   111 

Cytokine profile of rhLCV-specific T cells after vaccination 

We assessed T cell functions after vaccination using Boolean gating to analyze seven 

possible different combinations of IFN-γ, IL-2, and TNF-α production257.  Cytokine profiles 

following vaccination were analyzed at weeks 2 and 8 after priming and at week 2 after the boost.   

Vaccination caused transient shifts in the cytokine profile of rhEBNA1-specific CD8+ T 

cells (Figure 4-5A). At baseline, most rhEBNA1-specific CD8+ T cells produced IFN-γ (light blue; 

EFF, 65%; CM, 25%; EM, 36%) or IL-2 alone (pink; EFF, 26%; CM, 34%; EM, 22%). The 

percentage of CD8+ TCM and TEM cells producing IFN-γ increased significantly by 2 weeks after 

priming (week 2; CM, 56%, P = 0.0006; EM, 71%, P = 0.0006) and 2 weeks after boosting (week 

17; CM, 59%, P = 0.0005; EM, 71%, P = 0.0018).  The average percentage of CD8+ TCM cells 

producing IL-2 alone, a cytokine generally associated with more resting T cells, significantly 

decreased at weeks 2 (11%, P = 0.011), 8 (10%, P = 0.0049), and 17 (11%, P = 0.02) after 

vaccination.  In addition, there was a transient increase in the percentage of IFN-γ+ IL-2+ CD8+ 

TCM cells at week 8 (BL, 12%; week 8, 45%; P = 0.012). As a result, the proportion of 

polyfunctional CD8+ TCM responses increased at week 8. The proportion of cells producing single-

, double-, and triple- cytokine responses did not change at any time point for CD8+ TEFF or TEM 

cells. Overall, these results confirm that AdC vectors preferentially expanded rhEBNA1-specific T 

cell responses that produced IFN-γ, a cytokine with potent anti-viral activity.   

As expected, the cytokine profile of rhBZLF1-specific CD8+ T cells did not markedly 

change after vaccination.  Most rhBZLF1-specific CD8+ T cells produced IFN-γ alone (light blue; 

EFF, 54%; CM, 47%; EM, 51%) or in combination with IL-2 (yellow; EFF, 11%; CM, 20%; EM, 

20%) at baseline and at weeks 2, 8, and 17 after vaccination (Figure 4-5B).  The only significant 

change was a decrease in the percentage of IFN-γ+ CD8+ TEM cells at week 8 (26%, P = 0.017) 

and therefore a transient decrease in the proportion of single-cytokine-producing cells. This shift 

was most likely caused by decreases in the magnitude of rhBZLF1 responses after vaccination.   

Vaccination increased the absolute numbers of polyfunctional rhEBNA1-specific CD4+ T 

cells without changing the cytokine pattern.  RhEBNA1-specific CD4+ T cells were highly 

polyfunctional at baseline and at weeks 2, 8, and 17 after vaccination (Figure 4-5C).  At each of 
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these time points, large proportions of cells produced two or three cytokines (baseline CM, 44%; 

EM, 49%) as well as IFN-γ (CM, 19%; EM, 28%) and IL-2 alone (CM, 25%; EM, 8%). The only 

significant change after vaccination was an increase in the proportion of IFN-γ+ CD4+ TEM cells at 

week 17 (50%, P = 0.037), however, the ratio of triple, double, and single responses did not 

change. Thus, vaccine-induced CD4+ T cell responses remained highly polyfunctional.   

Subtle changes in the cytokine profile of rhBZLF1-specific CD4+ T cells over time indicate 

that these cells may have shifted toward a response closer to resting memory.  CD8+ TCM cells 

produced mostly IL-2 (pink, 47%) or TNF-α (purple, 18%) at baseline and at weeks 2, 8, and 17 

after vaccination (Figure 4-5D). However, the proportion of IL-2+ CD8+ TCM cells increased 

significantly at week 17 (73%) compared to all other time points before and after vaccination 

(versus baseline, P = 0.0047; versus week 2, P < 0.0001; versus week 8, P = 0.0004).  

Additionally, the large proportion of CD8+ TEM cells that produced IFN-γ at baseline (30%) and at 

week 2 after vaccination (27%) decreased significantly by week 8 (8%, P = 0.0013).  IFN-γ is 

typically associated with cells that are fully activated, and therefore such decreases further 

support the notion that rhBZLF1 CD4+ T cells were transitioning toward a response closer to 

resting memory. 
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Figure 4-5: Cytokine profiles of rhLCV-specific T cells upon vaccination 
 
 
 

 
 
 
 
Figure 4-5: Pies represent the average percentage of CD8+ and CD4+ T cells making each combination of 
IFN-γ (g), IL-2 (2), and TNF-α (a) following stimulation with specific peptides.  RhEBNA1-specific (A) and 
rhBZLF1-specific (B) CD8+ TEFF, TCM, and TEM responses are shown at baseline and at weeks 2, 8, and 17 
after vaccination.  The same time points are shown for rhEBNA1-specific (C) and rhBZLF1-specific (D) CD4+ 
TCM, and TEM responses.  Numbers of peptide-specific CD4+ TEFF responses were all very low and are 
therefore not shown.  For all responding animals, normalized cell counts were calculated for each function 
within every subset.   Values for each of the seven possible combinations of functions were then divided by 
the sum of all seven, and pie charts reflect the ratio of those means. Changes in the size of the pie charts 
reflect proportional changes in the magnitude of total cytokine responses relative to baseline.  Significant 
differences are described in the results section. 
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Vaccination expands rhEBNA1-specific T cells with cytolytic potential 

Target cell lysis is one of the most crucial T cell functions involved in clearing virus-

infected cells. While cytokine production provides information on the T cells’ functional capacity, it 

does not directly assess their ability to lyse target cells.  We therefore measured production of 

granzyme B, a lytic enzyme that promotes target cell apoptosis.  Granzyme B was measured in 

CD8+ and CD4+ T cells for all of the vaccine responders and two animals from the control group 

using the same methods as those described above.  Because granzyme B is stored in cytolytic 

granules regardless of activation status, peptide-specific responses were considered positive only 

if granzyme B was produced in combination with one or more cytokines.   

We found that vaccine-induced rhEBNA1-specific CD8+ T cells produced granzyme B.  

Although the proportion of granzyme B+ CD8+ memory T cells was largest at baseline (Figure 4-

6A), absolute numbers of granzyme B-producing CD8+ T cells tended to increase after 

vaccination. At baseline, most cells produced granzyme B together with TNF-α (purple).  After 

vaccination, there was an increase in the number of cells producing granzyme B with IFN-γ (light 

blue) (week 2, P < 0.0001; week 17/19, P = 0.05) and a decrease in the number of cells 

producing granzyme B with TNF-α (week 8, P = 0.05; week 17/19, P = 0.046).  There was also a 

transient increase in the number of cells producing all four functions (red), which reached 

significance at week 8 (P = 0.048).  Granzyme B-negative responses after vaccination were 

composed largely of IFN-γ alone, followed by IFN-γ with IL-2 (not shown).  In contrast, numbers 

of rhBZLF1-specific memory CD8+ T cells producing granzyme B tended to decrease after 

vaccination (Figure 4-6B).  At baseline, the most common cytokines produced with granzyme B 

were TNF-α followed by IFN-γ.   Numbers of granzyme B+ TNF-α+ T cells decreased significantly 

from baseline at week 2 (P = 0.0003), week 8 (P = 0.0021), and week 17/19 (P = 0.0003).  As a 

result, the proportion of rhBZLF1-specific granzyme B+ responses decreased significantly at 

weeks 8 (P = 0.04) and 17/19 (P = 0.003).  Granzyme B-negative responses before and after 

vaccination were composed largely of IFN-γ alone, followed by relatively equal proportions of T 

cells that produced all remaining cytokine combinations except IL-2 with TNF-α; none of which 

changed after vaccination (not shown).   
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As expected, the majority of granzyme B+ rhEBNA1-specific CD8+ T cells were low in 

CCR7, a homing marker for lymphatic tissues, as is typical for CD8+ TEM cells (Figure 4-7).  

Expression of CCR7 on granzyme B+ rhEBNA1-specific CD8+ T cells was compared to 

expression of CCR7 on effector CD8+ T cells, memory CD8+ T cells, and naïve CD8+ T cells.  As 

expected, CCR7 expression on effector CD8+ T cells (orange) was similar to that on granzyme B+ 

rhEBNA1-specific CD8+ T cells, both of which were reduced in comparison to CCR7 expression 

on CD8+ memory (blue) and CD8+ naïve (green) T cells.    

There were no significant changes in rhEBNA1-specific or rhBZLF1-specific CD8+ 

effector T cell responses after vaccination.  RhEBNA1-specific effector T cell responses were all 

low, and granzyme B+ TNF-α+ as well as granzyme B+ IL-2+ were detected most frequently 

(Figure 4-6C).  The rhBZLF1-specific CD8+ T cell responses detected most frequently with 

granzyme B were TNF-α or IFN-γ (Figure 4-6D).  RhBZLF1-specific granzyme B-negative T cell 

responses were composed largely of IFN-γ alone, and the magnitude of this response decreased 

at every time point after vaccination (not shown). 

  Vaccination induced a sustained increase in numbers of rhEBNA1-specific memory 

CD4+ T cells that produced granzyme B—mostly with TNF-α and/or IFN-γ (Figure 4-6E).  The 

numbers of granzyme B+ IFN-γ+ and granzyme B+ IFN-γ+ TNF-α+ memory CD4+ T cells increased 

more than 6 and 10 times from baseline, respectively.  Responses were significantly larger than 

baseline by 2 weeks (B+γ+, P = 0.0025), 8 weeks (B+γ+α+, P = 0.0042), and 17/19 weeks (B+γ+α+, 

P = 0.031) after vaccination. Despite these changes, the average proportion of granzyme B+ 

responses did not significantly change from baseline, where more than one-quarter of specific 

CD4+ memory T cells produced granzyme B in combination with other factors.  Granzyme B-

negative responses were also highly polyfunctional, and there were significant increases in the 

magnitude of cells producing various cytokine combinations compared to baseline (week 2, γ+; 

week 8, γ+2+α+, γ+α+, γ+; week 17/19, α+; P < 0.05) (not shown).  In contrast, total numbers of 

granzyme B+ rhBZLF1-specific memory CD4+ T cells did not change following vaccination 

(Figure 4-6F).   At baseline, the most common cytokines produced with granzyme B were TNF-α 

or IL-2, and there was a significant decrease in the number of rhBZLF1-specific memory CD4+ T 
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cells that produced granzyme B with TNF-α at week 8 (P = 0.0096) and week 17/19 (P = 0.0089).  

Most granzyme B-negative CD4+ T cell responses were composed of either IFN-γ alone or IL-2 

alone, and the number of cells producing IL-2 alone increased significantly at week 17/19 (P = 

0.0001, data not shown).  This decrease in rhBZLF1-specific granzyme B+ TNF-α+ CD4+ T cells 

and increase in rhBZLF1-specific IL-2+ CD4+ T cells further indicates differentiation towards a 

more resting phenotype.  RhLCV-specific cytolytic T cells are crucial for controlling the outgrowth 

of virus-infected cells258, 259, and we have shown that rhEBNA1-specific T cells expanded through 

vaccination produce the cytolytic molecule granzyme B. 
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Figure 4-6: Granzyme B production by rhLCV-specific T cells 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-6: Vaccine responders were evaluated for granzyme B-producing T cells.  PBMCs were stimulated 
with overlapping peptide pools, and ICS was used to measure production of granzyme B (denoted B), IFN-γ 
(g), IL-2 (2), and TNF-α (a).  Bars reflect the average magnitudes of granzyme B+ T cells producing each 
combination of cytokines after stimulation with specific peptides.  RhEBNA1-specific CD8+ memory (A) and 
effector (C) cell responses as well as rhBZLF1-specific CD8+ memory (B) and effector (D) cell responses 
are shown.  RhEBNA1-specific CD4+ memory (E) and rhBZLF1-specific CD4+ memory (F) cell responses 
(Continued on page 118) 
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Figure 4-7: Expression of CCR7 before and after vaccination 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7: CCR7 expression by rhEBNA1-specific memory CD8+ T 
cells that produce granzyme B with all combinations of cytokines (red) is 
shown in comparison to total non-specific memory (blue), naïve (green), 
and effector (orange) populations.  Responses are shown at baseline 
and week 8 for one representative vaccine responder.  Responses at 
weeks 2 and 17/19 were the same as week 8 and are therefore not 
shown.  Significant differences are described in the results section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
(Continued from page 117) 
are also shown.  The total sums of all peptide-specific cytokine responses at each time point are listed 
above the bars.  Total values reflect the sum of every combination of the four functions tested; cells that 
produced only granzyme B were excluded.  Responses are shown at baseline (BL) and at weeks 2, 8, and 
17/19 after vaccination.  All responses were normalized and background values were subtracted.  Significant 
differences are described in the results section. 
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DISCUSSION 

 
The development of a vaccine to prevent EBV infection or treat EBV-associated diseases 

is of high priority104, but therapeutic vaccines that aim to expand ongoing immune responses to 

persisting viruses like EBV face a unique set of challenges. Neutralizing antibodies are generally 

ill suited to clear cells that have already been infected, and T cells may be difficult to expand if 

recurrent antigen exposure by viral reactivations has caused terminal differentiation and 

functional T cell impairments260.  EBNA1 is an important target for immune responses that aim to 

reduce EBV reservoirs in latently infected cells because it is the only antigen synthesized during 

all stages of latency and in all EBV-associated malignancies.  Despite its importance, the ability to 

boost rhEBNA1-specific T cell responses in rhesus macaques has never been tested.  In this 

proof-of-concept study, we are the first to report that ongoing rhEBNA1-specific T cell responses 

during persistent rhLCV infection in rhesus macaques can be expanded upon vaccination.   

We tested two prime-boost vaccine regimens based on replication-defective AdC vectors 

that express rhEBNA1.  Vaccines expressed a GAr-deleted form of rhEBNA1 fused to HSV-gD to 

potentially further promote T cell recall responses. The N-terminus of HSV-gD binds to the 

bimodal HVEM249 and prevents inhibitory molecules like BTLA from binding and signaling during 

T cell activation250. To control for this effect, an HVEM-non-binding version of HSV-gD was also 

tested. Animals were distributed as evenly as possible between vaccine groups based on age, 

Mamu phenotype, and rhLCV-specific T cell responses.  Because T cells to persisting viruses 

tend to fluctuate in response to reactivations, we enumerated and characterized rhEBNA1- and 

rhBZLF1-specific T cell responses at two time points prior to vaccination257 and set stringent 

criteria to assess if vaccination expanded rhEBNA1-specific T cells.  We found that vaccination 

increased numbers of circulating rhEBNA1-specific CD8+ and CD4+ T cells regardless of gD 

binding ability and that booster immunization was relatively ineffective.  Vaccination augmented 

mainly CD8+ TEM, CD4+ TCM, and CD4+ TEM cells. Responses were highly functional, and T cells 

produced various combinations of the cytokines IFN-γ, IL-2, and TNF-α and the cytolytic molecule 
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granzyme B.  Furthermore, responses were vaccine-specific, as T cell responses to the lytic 

antigen rhBZLF1 did not increase following vaccination.   

The ability to increase both CD8+ and CD4+ T cell responses through vaccination was an 

important finding of this study.  While CD8+ T cells can eliminate virus-infected cells, CD4+ T cells 

can also target virus that persists in MHC class II+ cells.  RhLCV-infected B cells and also some 

EBV-associated malignancies express both MHC class I and II261, and EBNA1-specific CD8+ and 

CD4+ T cells are both capable of lysing target cells in vitro199, 209.   Vaccination expanded specific 

CD8+ T cell responses in 2/6 animals from group 1 and 4/6 animals from group 2.  Two of the 

vaccine responders from group 2 (RVw6, RTp4) developed significant changes within T cell 

subsets (EM and CM, respectively) without changes in total numbers. This indicates a vaccine-

specific effect on the phenotype of rhEBNA1-specific T cells.  One animal (RZi7) developed a 

response after vaccination that was not detected at baseline, which indicates that vaccination 

may have induced new responses, although it is also possible that vaccination increased the 

magnitude of ongoing responses from below to above our limit of detection in this animal.  

Interestingly, the Mamu genotype may have influenced responsiveness, as all three of the Mamu 

B*17+ animals developed vaccine-specific CD8+ T cell responses. In comparison, a larger number 

of animals (11/12) developed specific CD4+ T cell responses to vaccination, including all three 

that did not have detectable rhEBNA1-specific CD4+ T cells at baseline.  About one-half of the 

vaccine responders from each group (group 1, 3/5; group 2, 3/6) developed significant changes 

within T cell subsets without changes in total numbers.  It is perhaps not surprising that 

vaccination stimulated more CD4+ versus CD8+ T cell responses, as EBNA1-specific CD4+ T cell 

epitopes are more immunodominant in both humans1, 67 and in rhesus macaques257.   

RhLCV-specific cytolytic T cells are crucial for controlling the outgrowth of virus-infected 

cells93, 258, 259, and utilization of the perforin/granzyme pathway is largely dependent on T cell 

specificity262, 263. Importantly, we found that numbers of rhEBNA1-specific CD8+ T cells producing 

granzyme B increased after vaccination.  We also found large and sustained increases in 

numbers of granzyme B-producing CD4+ T cells.  By just 2 weeks after vaccination, numbers of 

specific CD8+ and CD4+ T cells producing granzyme B had increased about 3 times over baseline 
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levels. Most granzyme B was produced in combination with IFN-γ and/or TNF-α, which is typical 

for cytolytic TEFF/TEM cells.  While in vitro killing assays would have provided the most direct 

functional analysis, granzyme B expression by flow cytometry serves as a surrogate assay that 

provides a more quantitative assessment of numbers of potentially lytic cells.  Our findings 

suggest that both CD8+ and CD4+ rhEBNA1-specific T cells may participate in the elimination of 

rhLCV-infected cells. 

It is also interesting that numbers of granzyme B+ rhBZLF1-specific T cells decreased 

after vaccination.  Within the same population, numbers of TNF-α+ cells decreased and IL-2+ cells 

increased.  Together, this indicates that rhBZLF1-specific T cells were differentiating towards a 

more resting phenotype. Such differentiation could reflect a vaccine-induced reduction in rhLCV 

reactivation events.  It would have been of interest to measure rhLCV loads before and after 

vaccination, as this would have provided the most direct evidence of vaccine efficacy or lack 

thereof.  Only 1 in 105 to 106 peripheral B cells carries EBV in healthy subjects264, 265.  Because 

the viral genome is present at such low levels, it is difficult to detect viral load fluctuations in live 

animal studies, in which peripheral blood samples are limited.   

We were intrigued to find that differences in immune responses between animals 

vaccinated with either rhEBNA1 vaccine regimen were too subtle to clearly demonstrate an effect 

of HSV-gD. This is because we have previously shown that expression of antigen within HSV-gD 

augments primary antigen-specific CD8+ T cell responses in mice, and such responses were 

larger than with antigen alone or when expressed within a non-binding HSV-gD247.  This study 

was the first to test the same approach for the expansion of ongoing T cell responses during a 

persistent viral infection in rhesus macaques.  While differences in T cell responses to rhEBNA1 

expressed within the binding (group 1) or non-binding (group 2) version of gD were not 

significant, it is interesting that only animals who received the vaccine with binding gD developed 

increased CD8+ TEM cell responses that were significantly larger than corresponding rhBZLF1 

responses as well as rhEBNA1-specific responses of control animals.  The opposite was found 

for CD4+ responses, whereby only animals that received the non-binding version of gD developed 

significant increases in TCM and TEM cell responses.  
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To determine if additional factors influenced whether or not an animal responded to 

vaccination, we compared baseline immune responses between responders and non-responders.  

Total numbers of rhEBNA1-specific CD8+ or CD4+ T cells were largely comparable at baseline 

(data not shown), so it is unlikely that differences in pre-vaccination T cell responses influenced 

whether or not an animal responded.  In terms of cytokine production, vaccine responders tended 

to have a higher proportion of polyfunctional rhEBNA1-specific CD8+ TCM cells at baseline than 

did non-responders (data not shown, P = 0.048), which could suggest a higher proliferative 

capacity of polyfunctional T cells than of those with a more restricted functional profile.   

To determine whether vaccination with AdC-SgD-rhEBNA1 or AdC-NBEFSgD-rhEBNA1 

augmented pre-existing or de-novo responses, our collaborators generated T cell lines with 

overlapping rhEBNA1 peptides and then measured IFN-γ production by ELISPOT after re-

stimulating cells with pools, subpools, or single peptides derived from rhEBNA1266.  They found 

that vaccination expanded new and existing responses.  They detected responses in 4 of 12 

animals before vaccination and in 8 of 12 animals after vaccination.  All of the responses detected 

prior to vaccination were still detected after vaccination, but at much higher levels, and one 

animal also developed a new response.  Vaccination stimulated de-novo CD4+ or CD8+ T cell 

responses in four additional animals.  Again, it is difficult to interpret trends due to the small 

number of animals in each group.  Fewer animals were described as vaccine responders using 

this approach compared to ICS, which highlights the importance of choosing appropriate assays 

to study different aspects of the immune response.  IFN-γ ELISPOT is an invaluable tool for 

defining epitope-specific responses, but it does not account for additional cytokines or cytolytic 

molecules that are produced in response to vaccination.  Furthermore, extended stimulation can 

change T cell functions and deplete T cells to sub-dominant epitopes. 

A previous study explored the feasibility of EBNA1-specific immunotherapy for treatment of 

EBV-associated cancer267. In this study, an Ad-based vaccine expressing a GAr-depleted 

sequence of EBNA1 fused to epitopes of latent membrane protein (LMP) of EBV was tested for in 

vitro expansion of T cells obtained from patients with EBV-associated recurrent metastatic 

nasopharyngeal carcinoma.  More than one-half of the T cell lines contained EBNA1-specific CD8+ 
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T cells following in vitro expansion, demonstrating that humans develop EBNA1-specific CD8+ T 

cells, which can be expanded upon further antigenic stimulation. While adoptive transfer of ex vivo-

expanded EBV-specific T cells has resulted in sustained clinical responses in some patients268, 

adoptive immunotherapy is costly, requires access to highly specialized health care facilities, and 

is therefore an impractical solution for the thousands of patients diagnosed annually with EBV-

associated diseases.  Another study showed that EBNA1-specific CD8+ T cells could be isolated 

from healthy human adults as well as from patients with post-transplantation lymphoproliferative 

disease269. These results are in agreement with our studies, which showed not only that rhLCV-

infected rhesus macaques mount an rhEBNA1-specific CD8+ T cell response upon natural 

infection, but also that these CD8+ T cells can be expanded in vivo upon vaccination. Responses 

were sufficiently robust to allow for their detection directly ex vivo without further expansion through 

extended in vitro culture. 

Our study is the first to assess rhEBNA1-based vaccines in seropositive non-human 

primates.   We showed that rhEBNA1-specific T cells can be expanded through vaccination and 

also that these T cells are highly functional. The main limitation of the vaccines was that only one-

half of the animals showed increases in CD8+ T cell responses, and responsiveness appeared to 

be influenced by the Mamu genotype. This suggests that the numbers of potently MHC class I-

binding epitopes are limited within rhEBNA1266. Our stringent criteria for responsiveness, which 

stipulated that T cell counts had to increase significantly over baseline at three of the tested time 

points, combined with the limited numbers of animals, may have prevented us from identifying 

weak responders.   

In summary, the results presented here confirm that rhEBNA1 is a valid target for a T cell 

vaccine to rhLCV.  Vaccination led to the expansion of rhEBNA1 immune cells that exhibited 

functions fit for controlling viral infection. Future studies should aim at generating more robust 

rhEBNA1-specific T cell responses through modified vaccines.  It would be of interest to monitor 

the effect of vaccination on viral load or on the frequency of virus-infected cells as a potential 

readout for a positive vaccine response264.  Additional testing of modified vaccines in rhLCV-
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seropositive and -seronegative rhesus macaques is also warranted to further explore rhEBNA1-

based vaccines for prevention and treatment of EBV-associated diseases.   
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CHAPTER 5: DISCUSSION 

 

SIGNIFICANCE  

 
EBV was the first human tumor-associated virus to be discovered.  This common human 

pathogen infects more than 95% of the human adult population worldwide and establishes a 

persistent infection through latency in B cells.  Although EBV infection is typically benign and is 

well controlled by the host adaptive immune system, it can sometimes cause chronic disease and 

malignant transformation.  Thus, EBV is considered a carcinogen due to its strong association 

with various lymphoid and epithelial cell malignancies.  Despite the large range of EBV-

associated diseases, neither prophylactic vaccines that block primary EBV infection nor 

therapeutic vaccines that eliminate virus-positive lesions are currently available.      

EBV’s ability to enter latency and avoid recognition by host immune cells is one of the 

factors that makes designing an effective vaccine quite challenging, as it is unclear exactly what 

type of immunity would provide the best protection against primary infection, IM, and associated 

malignancies.  Because a different repertoire of genes is expressed during EBV’s lytic and latent 

phases, the selection of appropriate vaccine targets is contingent on a thorough understanding of 

EBV, its life cycle, and associated pathogenesis.  Considerable progress has been made towards 

reaching such goals, beginning with an improved understanding of EBV biology and associated 

diseases.  The development of a successful vaccine largely depends on this knowledge.   

EBV vaccines could be used to prevent infection, modify infection and reduce disease, 

prevent disease, or treat disease.  Most preventative vaccine efforts focus on decreasing 

acquisition or reducing the burden of IM through neutralizing antibodies or T cells.  It has been 

speculated that by re-defining virus-specific immune responses, vaccines that reduce the 

incidence of IM may ultimately reduce the rate of some EBV-associated malignancies.  In the only 

phase II trial of an EBV vaccine, the rate of IM but not the rate of acquisition was reduced in 
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healthy seronegative subjects who received soluble gp350 plus adjuvant270.  Similar findings 

resulted from a peptide vaccine corresponding to EBV latency proteins181, which highlights the 

importance of T cells for controlling infection.  Therapeutic EBV vaccines aim to prevent or treat 

EBV-associated malignancies by correcting for the selective loss of EBV-specific T cells, which 

can target tumor cells and prevent or delay tumor progression.  For this approach to be effective, 

tumor cells must maintain viable antigen processing and presentation.  The success of passive 

immunization by adoptive transfer of EBV-specific T cells to treat PTLD highlights the importance 

of this concept, as PTLD lesions maintain normal antigen processing and presentation.  However, 

the same approach has been less successful as treatment for NPC, BL, and HL, where antigen 

expression is more restricted and local tumor environments differ271.   The infusion of epitope-

specific CTLs is one method for overcoming restricted antigen expression, and this has 

demonstrated promising results, even following immunosuppressive treatments136, 268, 272.  

Antigen-loaded DCs have also been tested, and have shown mixed results in the clinic200, 201, 273.  

A therapeutic EBV vaccine could similarly be used to restore or enhance EBV-specific T cell-

mediated immunity directly in vivo.  The impact of such a vaccine could be staggering, as 

vaccines are more accessible and less costly than adoptive transfer techniques.   

EBNA1 is the only EBV antigen consistently expressed in all forms of latency and in all 

known EBV-associated malignancies, and it is therefore an attractive target for vaccine 

development.  However, EBNA1 has only recently begun to be viewed as an appropriate vaccine 

antigen.  It was originally believed that EBNA1-specific CTL responses were either non-existent 

or non-functional due to an internal repeat domain that had been shown to interfere with antigen 

presentation by MHC class I molecules194-196.  It has since been shown that functional EBNA1-

specific T cells are frequently detected in EBV-infected humans197, 198, and a loss of EBNA1-

specific CD4+ and/or CD8+ T cells has been correlated with numerous EBV-associated diseases, 

including HL, NPC, and BL62, 132-134.  These findings suggest that immune responses to EBNA1 

play an important role in controlling EBV infection.  In support of its potential as a vaccine target, 

EBNA1 and other sub-dominant latent EBV T cell responses from both healthy and EBV-positive 

tumor-bearing individuals have been recovered ex vivo182, 184, 269.  The overarching goal 
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throughout this dissertation was to determine if EBNA1 is a suitable target for vaccine 

development.   

 

SUMMARY AND CONCLUSIONS  

 
An improved understanding of EBNA1 T cell responses will benefit the preclinical 

development of EBV vaccines.  Herpesviruses generally drive T cell differentiation towards highly 

activated effector-like cells rather than towards exhaustion, but this is highly variable and 

depends on the quantity, location, and duration of a specific antigen274, 275.  Using the EBV 

homolog rhLCV, I characterized T cell responses to rhEBNA1 in naturally infected rhesus 

macaques to determine the effect of low-level, persistent antigen on the magnitude, phenotype, 

and function of rhEBNA1-specific T cells.  These studies also served to evaluate the capacity of 

rhEBNA1-specific T cells to respond to vaccination, as T cells affected by persistent antigen 

exposure may be difficult to expand, TCM cell pools are often depleted, and TEFF/TEM cells do not 

function optimally276-278.  In Chapter 2, we used ICS and flow cytometry to measure rhEBNA1-

specific responses directly ex vivo, which allowed us to quantitate responses and to directly 

analyze their functional nature without expansion. In contrast, methods frequently used to study 

EBV-specific T cell responses utilize EBV-specific T cell lines expanded in vitro after repetitive 

antigenic stimulation, which can change T cell function and lead to selective proliferation of 

specific clones.   

By comparing our results to studies conducted in humans, we demonstrated that the 

rhLCV animal model faithfully reproduces EBNA1-specific T cell responses and provides a 

powerful tool for preclinical vaccine studies.  Despite the small sample size of 15 animals, 

rhEBNA1-specific T cells were detected at a frequency of 93%, which is strikingly similar to the 

global seroprevalence of EBV.  Furthermore, trends in the magnitudes of these responses are 

also similar to what has been observed in humans; numbers of rhEBNA1-specific CD4+ T cells 

were larger than CD8+ T cells, and the opposite was observed for rhBZLF1.  The relatively equal 

proportions of rhEBNA1-specific CD4+ TCM and TEM cells that we detected could be due to low-
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level expression of rhEBNA1 during latent rhLCV infection, since persistent antigen promotes the 

differentiation of TEM and TEFF cells.  RhEBNA1-specific CD4+ T cell responses were also highly 

functional and produced IFN-γ, IL-2, and TNF-α in various combinations.  This indicates that cells 

are not under constant TCR stimulation.  Their ability to produce IL-2, which stimulates cell 

growth, survival, and proliferation and is a function lost during early stages of exhaustion, may 

indicate that rhEBNA1-specific CD4+ T cells maintain a proliferative capacity.  However, 

proliferation assays would be needed to test this hypothesis.  On the other hand, rhEBNA1-

specific CD8+ T cells were primarily IFN-γ-producing effector cells that expressed low levels of the 

inhibitory molecule PD-1.  Cell surface expression of PD-1 is a measure of T cell activation.  High 

levels of PD-1 expression coupled with low functional capacity indicate T cell exhaustion and are 

consistently correlated to poor proliferation and increased sensitivity to apoptosis. Thus, while the 

majority of rhEBNA1-specific CD8+ T cells displayed an effector phenotype, rhEBNA1-specific 

CD8+ T cells were not persistently activated.  Interestingly, PD-1 expression was higher on 

rhEBNA1-specific CD4+ memory T cells, which indicates that these T cells probably see antigen 

more often.  Since rhBZLF1 is only expressed during lytic replication, rhBZLF1-specific T cells 

exhibited characteristics that more closely resembled responses to an acute infection with 

occasional re-exposure, as expected.  RhBZLF1-specific CD4+ T cells maintained a resting 

phenotype of central memory and primarily produced single-cytokine responses.  As with 

rhEBNA1, the CD8+ T cell response against rhBZLF1 was more activated than the CD4+ T cell 

response, but contained a large proportion of memory cells as well.   

The presence of rhEBNA1-specific TCM cells with the capacity for expansion of more 

activated subsets indicates the potential to successfully target and expand rhEBNA1-specific T 

cells by vaccination.  Evidence of their capacity to expand and contract was described in the first 

part of Chapter 2, where initially large numbers of rhEBNA1-specific TEFF/TEM cells decreased and 

stabilized over time.  We speculated that rhLCV reactivation could have caused the initial peaks 

in T cell numbers.  Data on viral loads might have allowed us to draw more solid conclusions, 

although peak viral loads probably occurred prior to our first time point.  It is also possible that the 

initial large numbers of rhEBNA1-specific T cells were caused by cross-reactivity or general 
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inflammation in animals with ongoing unrelated infections.  Unfortunately, these studies were 

conducted prior to our acquisition of the rhBZLF1 peptide pool, which would have provided further 

insight into whether rhLCV had reactivated in some animals.  Data from these early time points 

were not used to characterize responses.     

In Chapters 3 and 4, we designed and tested novel AdC-based prototype vaccines that 

target rhEBNA1.  To be effective, such a vaccine needs to elicit both protective CTL responses as 

well as a strong central memory component.  Ad vectors have been shown to induce potent, 

multi-specific, and sustained transgene product-specific T cell responses, which is important for 

targeting cells already infected with virus.  Animals received AdC68-prime followed by AdC6-

booster vaccines that expressed rhEBNA1 fused to functional (group 1) and non-functional (group 

2) versions of HSV-gD.  HVEM-binding forms of HSV-gD have been shown to enhance transgene 

product-specific CD8+ T cell responses during vaccination by inhibiting the HVEM-BTLA immune 

inhibitory signaling pathway.  To facilitate antigen processing, we also removed the GAr domain 

from the coding sequence of rhEBNA1.  Using ICS and flow cytometry, we conducted in-depth 

analyses to examine the effect of vaccination on T cell phenotype and function.   

Our study is the first to assess rhEBNA1-based vaccines in a seropositive non-human 

primate study, where we show that highly functional rhEBNA1-specific CD8+ and CD4+ T cells 

can be expanded in vivo through vaccination.  The results presented in Chapter 4 confirm that 

rhEBNA1 is a valid target for a therapeutic T cell vaccine to rhLCV, as vaccination led to the 

expansion of rhEBNA1 immune cells that exhibited functions fit for controlling viral infection.   

To avoid misinterpreting viral reactivation or general immune fluctuations as vaccine 

responses, we set stringent criteria to define vaccine-driven responses.  While this may have 

ultimately excluded animals with weaker responses to vaccination, total CD8+ and CD4+ T cells 

increased in 33% and 83% of vaccinated animals, respectively.  Two additional animals from 

group 2 developed increases in CD8+ TCM or TEM cells and one animal from group 1 developed an 

increase in CD4+ TEM cells without any changes in total numbers.  This indicates vaccine-induced 

shifts in cell phenotypes.  The ability to expand both CD8+ and CD4+ T cell responses through 

vaccination was an important finding of this study, since both T cell subtypes can target and lyse 
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EBV-infected cells199, 209.   It is perhaps not surprising that vaccination stimulated higher CD4+ 

than CD8+ T cell responses, as EBNA1-specific CD4+ T cell epitopes are more immunodominant 

in both humans1, 67 and in rhesus macaques257.  Vaccination augmented mainly CD8+ TEM, CD4+ 

TCM, and CD4+ TEM cells.  Responses were highly functional, and T cells produced various 

combinations of the cytokines IFN-γ, IL-2, and TNF-α and the lytic enzyme granzyme B, which is 

important for controlling outgrowth of virus-infected cells.   

  This was the first study to utilize the immune-stimulating effect of HSV-gD to expand 

ongoing T cell responses in non-human primates.  We were intrigued to find that vaccine-driven 

immune responses were similar regardless of gD binding ability, since our laboratory has 

consistently shown that vaccines that express antigens as fusion proteins with HSV-gD elicit more 

potent T cell responses compared to vaccines that express antigens alone.  HSV-gD has also 

displayed an adjuvant-like effect under conditions of T cell stress in tumor-bearing247 and aged279 

mice.  However, these experiments utilized the HSV-gD adjuvant effect during priming of T cell 

responses.  In contrast, our results indicate that blockade of the HVEM signaling pathway fails to 

augment T cell expansion of previously primed, ongoing responses.  Alternatively, the small 

sample size of each vaccine group (n = 6) may not have provided enough power to assess 

significant differences between groups.  There were some intriguing differences in post-vaccination 

frequencies of rhBZLF1-specific T cells, which contracted more in animals that received functional 

versions of HSV-gD.  This could potentially reflect a reduction in viral load, which in turn would 

suggest functionally superior T cell responses.  Additional studies that include measurements of 

viral loads before and after vaccination would be needed to confirm or reject this hypothesis.    

Expression of gD-rhEBNA1 fusion proteins in vitro was more than 100-fold lower than 

rhEBNA1 alone.  Since antigenic load influences the immune response, our recombinant Ad-based 

vaccine that expressed rhEBNA1 alone was not an appropriate control for the Ad-gDrhEBNA1 

vaccine.  Instead, we chose to compare binding and non-binding versions of HSV-gD.  It would be 

interesting to test the Ad-rhEBNA1 vaccine in the presence or absence of additional adjuvants to 

determine if higher levels of rhEBNA1 transgene expression generate higher responses or 

responses in a larger number of animals.    
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Another unexpected outcome was that peak responses occurred after the first 

vaccination, rather than after boosting.  However, the peak immune response after boosting 

typically occurs faster than after priming, and we waited the same length of time (2 weeks) to 

collect blood after each administration.  Thus, responses may have peaked before they were 

measured.  Furthermore, numbers of rhEBNA1-specific T cells after 21 weeks were still larger 

than at baseline in many animals.  There were also significant increases in PD-1 expression by 

week 2 after vaccination, which slowly declined by week 8 and were maintained at a similar 

percentage through conclusion of the study (data not shown).  The percentage of PD-1-

expressing cells at these later points in time still appeared higher than at baseline, although 

differences did not reach significance.  Finally, the reduced proliferative capacity of TEM cells 

compared to TCM cells could be another factor that contributed to the low response following the 

second vaccination, as TEM cell responses were still relatively high shortly before boosting.   

It is important to note that our studies only assessed responses in peripheral blood, but 

activated T cells can also reside in the lymph nodes, the spleen, or in the periphery.  This is 

especially true at locations where tissues express cognate antigen.  As a result, there may have 

been a more definitive effect of HSV-gD that was not detected by our employed assays.  This 

could also explain the lack of a significant increase following boost, as T cells may have already 

been mobilized from the circulation.  Animals were released back to YNPC upon completion of 

the study and necropsies were therefore not an option.  This is definitely something that is 

important to consider when designing future studies.   

 

FUTURE DIRECTIONS  

 
Ad vectors are capable of stimulating both CD4+ and CD8+ T cell responses, and their 

inherent immunogenicity has the potential to elicit strong responses, but overall there is still a 

need for more effective strategies that induce larger and more sustained responses.  Future 

studies should aim at generating more robust T cell responses through modified vaccines.  This 

can be accomplished through epitope vaccines that expand T cell responses against sub-
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dominant EBV T cell epitopes.  However, because epitope recognition depends on MHC 

genotype, this approach is challenging for human vaccines that aim to target large populations.   

Cytokines and signaling molecules can also be used to help shape and promote immune cell 

responses.  Vaccines can be designed to encode growth factors such as IL-2 and GM-CSF.  

They can also be administered in the presence of cytokines such as IL-7, IL-10, and IL-21, which 

have been shown to promote large central memory responses in some studies280.  

Chemotherapeutic agents that effect signaling pathways during cell differentiation can be used in 

a similar manner281.   

Alternative antigen delivery systems for use in heterologous prime-boost regimens can 

also be explored as a means of inducing larger and/or more sustained responses.  For example, 

a CMV-based SIV vaccine has been shown to induce potent, sustained, and broad TEM cell 

responses that were able to suppress SIV viral loads to undetectable levels in 50% of rhesus 

macaques after challenge282.  It is noteworthy that CMV-vaccinated animals with SIV 

breakthrough infections did not achieve a lowering of viral loads, which presumably reflects that 

CMV-based vaccines fail to induce TCM cells, which have a higher proliferative capacity than TEM 

cells.  Among animals unable to rapidly control viral load, those that were boosted with an Ad-

based vaccine had significantly reduced peak viremia, which was most likely due to SIV-specific 

TCM cell responses induced by the Ad-based vaccines.  A similar approach may be best suited to 

prevent EBV acquisition.  In a therapeutic context, the strong TEM cell responses induced by a 

CMV-based vaccine could potentially be used to clear EBV viral reservoirs by inducing latent 

virus reactivation after vaccination.  This could be used as a preventative measure to eliminate 

virus-infected cells among individuals at high risk of developing EBV-associated malignancies.  

Ad-prime followed by poxvirus-based boost is another approach to explore, since pox vectors 

have been shown to act as potent boosts in NHPs and humans283.    

Additional factors to consider when designing vaccines to treat or prevent EBV-

associated malignancies are deficiencies within the tumor site itself.  For example, local immune 

suppression in the tumor tissue may dampen the outcome of a therapeutic EBV vaccine, and we 

may need to develop approaches that can overcome this.  As one example, anti-PD-1 or anti-
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CTLA-4 treatment can sometimes be used to overcome local immune suppression for tumors that 

express relevant ligands.    

Optimal EBV vaccine targets are still unknown, and the continued testing of candidate 

vaccines is fundamental for advancing the field.  The ideal formulation is still unclear and may 

depend on the desired application.  One method for increasing overall vaccine effectiveness is to 

include epitopes from additional EBV latency proteins such as LMP1 and/or LMP2, which are 

expressed by tumors such as NPC, GC, and HL.  Although neither LMP1 nor LMP2 are dominant 

targets during natural infection, they contain subdominant CD8+ T cell epitopes, and studies 

suggest that vaccinating against these responses may have clinical benefit.  For example, an Ad-

based vaccine expressing random overlapping peptides from EBNA1, LMP1, and LMP2 

stimulated epitope-specific responses that inhibited LCL outgrowth in cell lines generated from 

both healthy EBV seropositive individuals as well as NPC patients184.  This indicates that infected 

cells in diseases such as NPC may be accessible targets for activated EBV-specific T cells.  Hui 

et al. expanded upon this concept and designed a recombinant modified vaccinia Ankara (MVA) 

vaccine that expressed portions of EBNA1 and LMP2.  The objective of this phase I study was to 

measure safety and immunogenicity and not to test clinical effect, but results were promising, as 

vaccination increased numbers of circulating CD4+ and CD8+ T cell responses to EBNA1 and/or 

LMP2 in 15 of 18 recent NPC chemotherapy patients in remission284.  The size of responses 

generated by their vaccine was similar to or higher than effector frequencies following adoptive 

transfer.  However, responses were only sustained in half of the highest dose group.  Thus, more 

durable and lasting responses are needed.  It is possible that virus-neutralizing antibodies limited 

the effectiveness of their MVA-based vaccine, whereas our use of two distinct chimpanzee-based 

Ad vectors avoids this limitation.   

As demonstrated in this thesis, the rhLCV model has proven to be a highly relevant and 

useful tool for the preclinical testing of EBV-related rhLCV vaccines.  Recently, virus-like replicon 

particle vaccines expressing rhEBNA3A, B and/or gp350 of rhLCV were tested in rhLCV 

seronegative rhesus macaques, where gp350 was shown to induce antibodies, while the 

immunodominant rhEBNA3 latency proteins induced detectable CD4+ and CD8+ T cell 
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responses183, 285.  In comparison, immunization with soluble rhLCV gp350 alone induced a larger 

antibody response, animals were better protected from infection, and those that did become 

infected had reduced viral loads in the blood compared to animals that received the VRP 

vaccines.  A vaccine that induces NAbs against gp350 and T cell responses against important 

latency proteins is an interesting concept that merits further exploration, as this approach could 

be more effective than vaccines that target either one alone.  Adenovirus-based vaccines would 

be an interesting platform for exploring this approach since they can induce potent B cell and 

antibody responses in addition to transgene product-specific CD4+ and CD8+ T cells.    

As the field progresses, we need to define better markers of disease and correlates of 

protection.  Levels of EBV DNA in the blood can be predictive of some types of lymphomas, and 

a vaccine that reduces viral DNA load may ultimately reduce the incidence of certain cancers.  As 

discussed previously, data on rhLCV loads before and after vaccination would have provided the 

most direct evidence of vaccine efficacy or lack thereof.  However, direct measurement of EBV 

replication in the oropharynx through saliva is difficult, and very low levels of viral genome in the 

peripheral blood of healthy individuals make it difficult to detect viral load fluctuations in live 

animal studies with limited samples.  A more thorough analysis of viral loads would provide 

clarity, but this hinges on the development of more sensitive assays.  Alternatively, larger cohorts 

can provide more samples for testing viral loads.  It will be important to explore correlations 

between viral load and specific immune responses or between viral load and PD-1 expression in 

order to define prognostic markers and correlates or surrogates of protection.  Larger cohorts 

would also provide more statistical power for interpreting results.   

The field of therapeutic EBV vaccines is still relatively young, and there are many 

questions that need answers before such vaccines will have success in a clinical setting.  We 

have shown that rhEBNA1-specfic T cells can be expanded through vaccination, but we do not 

yet know whether they confer protection or can be used to target tumor cells.  Future studies 

using SIV-infected rhesus macaques or tumor challenge models can be used to address some of 

these questions, but the absence of good surrogate markers for the development of most EBV-

associated tumors, the long length of time between primary acquisition and development of most 
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tumors, and the lack of immune correlates of protection make clinical trials difficult to conduct.  

Furthermore, it is not yet clear what combination of viral antigens would be needed for a vaccine 

to effectively prevent or treat EBV-associated malignancies, but it will likely be a combination of 

relevant CD4+ and CD8+ T cell antigens expressed in a variety of tumors.  By continuing to study 

the intricacies of different EBV-associated malignancies and testing various candidate vaccines in 

animals and humans, we can begin to answer the aforementioned questions, and we can use this 

information to design more effective vaccines.   
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CHAPTER 6: MATERIALS AND METHODS 

 

6.1 T CELL RESPONSES TO LATENT ANTIGEN EBNA1 AND LYTIC 

ANTIGEN BZLF1 DURING PERSISTENT RHLCV INFECTION OF RHESUS 

MACAQUES 

 
 
Non-Human Primates (NHPs)	
  

Adult, healthy, and simian immunodeficiency virus (SIV)-uninfected Indian-origin Macaca mulatta 

animals were housed at the Yerkes National Primate Research Center (YNPRC; Atlanta, GA).  

Most animals with the exception of PH1019 and PWw were born at YNPRC.  Animals were either 

housed at a field station or at the main station. All animals were female adults ranging from 5-19 

years of age at the start of the study.  Animals were tested for Mamu-A*01, -A*02, -A*08, -B*01, -

B*04, -B*08, and -B*17.  All animals included in the analyses tested positive for rhLCV infection 

by serologic testing for serum antibodies against the rhLCV small viral capsid antigen265.  

Characteristics are shown in Table 2-1.  Additional samples were obtained from five rhLCV-

seronegative rhesus macaques in the extended specific-pathogen-free colony housed at the New 

England National Primate Research Center, Harvard Medical School, Southborough, MA. All 

procedures involving handling of animals were performed according to approved protocols and 

upon review by the Institutional Animal Care and Usage Committees. 	
  

 
Isolation and Preservation of Lymphocytes	
  

Peripheral blood mononuclear cells (PBMCs) were isolated from blood as described158. Briefly, 

whole blood collected in CPT tubes was centrifuged at 2600 rpm for 30 minutes.  The clear 

plasma layer (top layer) was transferred to cryo tubes (about 1 ml per tube) and frozen at -80°C.  

The remaining plasma layer was then gently mixed with the cloudy lymphocyte layer below and 

transferred to a new 50 ml conical tube.  Remnants of the mixed cell layer within the CPT tube 
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were gently washed twice with 5 ml of HBSS and transferred to the same 50 mL conical tube.  

The tube was topped with HBSS and spun at 1200 rpm for 10 minutes.  After discarding 

supernatant, cells were resuspended in 5 ml ACK lysis buffer and incubated for 5 minutes at 

room temperature.  Cells were washed twice with HBSS and resuspended in RPMI complete 

medium (RPMI 1640 supplemented with 10% fetal bovine serum [FBS; Tissue Culture Biological], 

10 mM HEPES, penicillin-streptomycin, and gentamicin [Cellgro]).  Samples were tested 

immediately after isolation or 1x107 cells per ml were frozen in 90% fetal bovine serum (FBS) and 

10% dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO) at -80°C until testing.  

 
Intracellular Cytokine Staining (ICS) 

The function of rhEBNA1- and rhBZLF1-specific T cells was assessed by intracellular cytokine 

staining (ICS) after stimulation with peptide pools286. RhEBNA1 was used at a final concentration 

of 2µg of each peptide per ml, and rhBZLF1 was used at a final concentration of 1µg of each 

peptide per ml. Frozen cells were thawed and immediately washed with Hank's balanced salt 

solution (HBSS; Mediatech Inc., Herndon, VA) supplemented with 2 units/ml DNase I, 

resuspended with RPMI medium and stimulated for 6 h with anti-CD28, anti-CD49d, and 

Brefeldin A. Cells were stained with violet-fluorescent reactive dye Pacific Blue, anti-CD14-Pacific 

Blue, anti-CD16-Pacific Blue, anti-CD20-Pacific Blue, anti-CD8-allophycocyanin (APC)-H7, anti-

CD4-Alexa 700, anti-CD95-phycoerythrin (PE)-Cy5, and anti-CD28-PE-Texas Red (ECD) for 30 

min at 4°C (solution prepared in PBS). Additionally, cells were stained with anti-CCR7-PE. After 

fixation and permeabilization with Cytofix/Cytoperm (BD Biosciences, San Jose, CA) for 30 min at 

4°C, cells were stained with anti-interferon gamma (IFN-γ)-APC, anti-interleukin-2–fluorescein 

isothiocyanate (anti-IL-2–FITC), anti-tumor necrosis factor alpha (TNF-α)–PE–Cy7, and anti-CD3-

peridinin chlorophyll protein (PerCp)-Cy5.5 for 30 min at 4°C (solution prepared in 1x perm wash). 

Cells were washed twice, fixed with BD Stabilizing Fixative (BD Biosciences, San Jose, CA), and 

then analyzed by fluorescence-activated cell sorting (FACS) using an LSRII instrument (BD 

Biosciences, San Jose, CA) and DiVa software.  Flow cytometric acquisition and analysis of 

samples were performed on at least 500,000 events. Single-color controls used CompBeads Anti-
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Mouse Igk (BD Biosciences, San Jose, CA) for compensation. The same protocol was repeated 

for cell surface staining of PD-1, except cells were stained for 30 minutes with anti human 

CD279-brilliant violot (BV) 605 and washed prior to the 6 h stimulation.  Table 6-1 is a 

comprehensive list of all antibodies used in these studies, including item numbers, clones, and 

concentrations used for staining. 

 
Postacquisition analyses were performed with FlowJo software (TreeStar, Ashland, OR). Figure 

6-1A shows the gating strategy.  Briefly, single cells were gated from PBMCs (a) followed by 

lymphocytes (b), live CD3+ T cells (c), CD4+ versus CD8+ T cells (d), and differentiation within 

each T cell population (e).  Figures 6-1B and 6-1C show responses to the rhEBNA1 peptide pool 

exemplified by one rhLCV-seropositive (B) and one rhLCV-seronegative (C) animal.  Results 

were normalized to numbers of responding cells per 106 live CD3+ cells. Data shown on graphs 

represent values of peptide-stimulated cells from which background values have been subtracted.  

To calculate the sum of peptide-specific responses, we subtracted normalized background 

activity and then summed the seven possible different combinations of functions. We define a 

positive response as any value greater than the mean plus two standard deviations of total CD4+ 

(183 CD4+ cells per 106 CD3+ T cells) or CD8+ (216 CD8+ cells per 106 CD3+ T cells) cytokine 

responses from five seronegative subjects from the New England Primate Research Center.  In 

part II, peptide-specific responses were measured at two time points spaced two months apart, 

and analyses were based on the average response of each subject. RhEBNA1- and rhBZLF1-

specific total cytokine responses for each time point can be seen in Tables 2-3A and 2-3B, 

respectively. Polyfunctionality pie-chart graphs were generated using SPICE software (NIH, 

Bethesda, MD).  

 
Synthetic peptides 

Two different rhEBNA1 peptide pools were used in the ICS experiments conducted in this 

chapter.  The rhEBNA1 peptide pool used in part I consists of 51 15-mer peptides that overlap by 

5 amino acids (Genemed Syn, San Antonio, TX).  The rhEBNA1 peptide pool used in part II 

consists of 85 15-mer peptides that overlap by 10 amino acids except for the GA repeat domain, 
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which overlaps by 5 amino acids.  Additional rhEBNA1 peptides used in part II were purchased 

from NeoBioSci (Cambridge, MA).  Table 6-2 shows a list of the rhEBNA1 peptides used in parts 

I and II.  To account for its large size, rhEBNA1 was divided into two pools for all ICS experiments 

conducted in part II: pool one with peptides 1-42 and pool two with peptides 43-85.  Responses 

were combined after normalization and subtraction of background values. The rhBZLF1 peptide 

pool consists of 60 15-mer peptides with an 11 amino acid overlap and was provided by A. Kaur.  

Peptides were reconstituted in DMSO. 

 
Statistical analysis:  

RhEBNA1- and rhBZLF1-specific immune responses were compared between CD4+ and CD8+ T 

cells.  IFN-γ, IL-2, and TNF-α cytokine production as well as effector, central memory (TCM), and 

effector memory (TEM) cell subset analyses within both CD4+ and CD8+ T cell populations was 

also compared.  All comparisons were performed using a two-tailed Wilcoxon’s signed-rank test 

unless otherwise noted.  A Bonferroni adjustment was applied to all multiple comparisons in order 

to control for a type I error rate.  A P-value <0.05 was considered statistically significant.  

Graphpad Prism version 6 (La Jolla, CA) and SPICE version 5.22 (NIH, Bethesda, MD) were 

used for calculations and illustrations.   
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Table 6-1: List of antibodies 
 

Antibody Clone Company Catalog 
number 

Ratio 
used  

Mouse anti-human CD28 CD28.2 BD Biosciences, 
San Jose, CA 

555725 1µl/ml  

Mouse anti-human CD49d 9F10 BD Biosciences, 
San Jose, CA 

555501 1µl/ml  

violet-fluorescent reactive dye PacBlue  Invitrogen, 
Carlsbad, CA 

L34955 1:400 

Mouse anti-human CD14-PacBlue  M5E2 BD Biosciences, 
San Jose, CA 

558121 1:50 

Mouse anti-human CD16-PacBlue  3G8 BD Biosciences, 
San Jose, CA 

558122 1:50 

Mouse anti-human CD20-PacBlue  2H7 AbD Serotec,  
Raleigh, NC 

MCA1710PB 1:50 

Mouse anti-human CD8-APC-H7   SK1 BD Biosciences, 
San Jose, CA 

560179 1:25 

Mouse anti-human CD4-Alexa 700  OKT4 BD Biosciences, 
San Jose, CA 

557922 1:20 

Mouse anti-human CD95-PE-Cy5  DX2 BD Biosciences, 
San Jose, CA 

559773 1:10 

Mouse anti-human CD28-ECD CD28.2 Beckman Coulter, 
Fullerton, CA 

6607111 1:20 

Mouse anti-human CCR7-PE   150503 R&D Systems, 
Minneapolis, MN 

FAB197P 1:50 

Mouse anti-human IFN-γ-APC  B27 BD Biosciences, 
San Jose, CA 

554702 1:50 

Mouse anti-human IL-2–FITC MQ1-
17H12 

BD Biosciences, 
San Jose, CA 

554566 1:50 

Mouse anti-human TNF-α–PE–Cy7  MAb11 BD Biosciences, 
San Jose, CA 

557647 1:20 

Mouse anti-human CD3-PerCp-Cy5.5   SP34-2 BD Biosciences, 
San Jose, CA 

552852 1:50 

Mouse anti-human CD279 (PD-1)-BV 605  EH12.2H7 BioLegend, San 
Diego, CA 

329923 1:20 
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Figure 6-1: Gating strategy and representative examples 
 
 
	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
  

 
 
Figure 6-1: Gating strategy for multiparameter flow cytometry and representative examples 
(A) The following gating strategy was used to identify rhEBNA1-specific T cells:  Cells were initially gated on 
the basis of their forward scatter (FSC) area versus FSC height profile to remove doublets (a), followed by a 
lymphocyte gate based on FSC area versus side scatter (SSC) area profile (b).  Dead cells were then 
excluded by gating CD3 versus a live-cell stain (Pacific blue). The amine reactive live/dead stain was in the 
same channel as CD14+, CD16+ and/or CD20+, so that non-T cell populations were also gated out at this 
step (c).  CD4+ and CD8+ T cell differentiation (d) was based on CD28 and CD95 expression (effector, 
CD95hiCD28lo; memory, CD95hiCD28hi) (e).  Memory cells were further differentiated into central memory 
and effector memory with CCR7 (central memory, CCR7hi; effector memory, CCR7lo).  A gate was then set 
for each stain identifying intracellular-accumulated IFN-γ, IL-2, or TNF-α.  RhEBNA1-specific CD4+ and 
CD8+ T cell multi-subset analysis from the peripheral blood of one seropositive (B) and one seronegative (C) 
animal was performed. The analyses were performed with samples immediately frozen after blood collection 
and PBMC isolation.  Phorbol myristate acetate and ionomycin were used as positive controls, and medium 
with DMSO was used as a negative control (data not shown).  Numbers represent the frequency of cytokine-
producing cells in the corresponding quadrant.  Samples were analyzed by FACS using LSRII and DiVa 
software.  Post-acquisition analyses were performed with FlowJo.   
 
Some groups refer to the CD95hiCD28hiCCR7lo population as transitional effector memory (TTrEM) cells287, 
which differ from other CD28lo TEM cells by showing superior homing to peripheral sites and increased 
production of IL-2.   
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Table 6-2: rhEBNA1 peptide sequences 
	
  

Position # Sequence Part 
I 

Part 
II 

Molecular 
Weight 

1-15 1 MSDGRGPGNGLGYTG 1  1438.53 
6-20 2              GPGNGLGYTGPGLES  1 1375.45 

11-25 3                            LGYTGPGLESRPGGA 2  1431.57 
16-30 4                                        PGLESRPGGASGSGS  2 1315.36 
21-35 5                                                    RPGGASGSGSGGNRG 3  1273.27 
26-40 6 SGSGSGGNRGRGAHG  3 1313.29 
31-45 7              GGNRGRGAHGRGRGR 4  1520.62 
36-50 8                            RGAHGRGRGRGRGRG  4 1562.71 
41-55 9                                         RGRGRGRGRGRGGGG 5  1468.59 
46-60 10                                                       GRGRGRGGGGVLGET  5 1385.49 
51-65 11 RGGGGVLGETGEFGG 6  1349.41 
56-70 12               VLGETGEFGGHGSES  6 1462.49 
61-75 13                           GEFGGHGSESETRHG 7  1543.53 
66-80 14                                        HGSESETRHGNGHRD  7 1675.65 
71-85 15                                                     ETRHGNGHRDKKRRS 8  1833.98 
76-90 16 NGHRDKKRRSCVGCK  8 1744 
81-95 17              KKRRSCVGCKGGTGG 9  1493.74 

86-100 18                           CVGCKGGTGGSSAGG  9 1197.28 
91-105 19                                        GGTGGSSAGGAGGNS 10  1093.01 

101-115 20 AGGNSRGGGGAGVGS 11  1160.14 
111-125 21                            AGVGSGRGAGGSGGA 12  1117.12 
121-135 22                                                      GSGGAGGGAGGSLGG 13  1017.98 
131-145 23 GSLGGGAGGSSGGSG 14  1064.01 
141-155 24                           SGGSGAGGSGAGGSG 15  1021.93 
151-165 25                                                      AGGSGAGGSGAGGSR 16  1105.07 
161-175 26 AGGSRGRGRGRGGSA 17  1358.43 
171-185 27                            RGGSAGGRGGRGGGG 18  1215.23 
181-195 28                                                       RGGGGGGGSRGRGRG 19  1300.34 
191-205 29 GRGRGRGGGSRGRGR 20  1498.62 
201-215 30                            RGRGRGRGRGRGRGE 21  1639.8 
211-225 31                                                       RGRGEGPSKGEKRPR 22  1666.86 
221-235 32 EKRPRSPSGRSSSQS 23  1645.76 
231-245 33                          SSSQSSSRSSSSSRS 24  1503.47 
241-255 34                                                   SSSRSSSNGSDSSDF 25  1506.42 
251-265 35 DSSDFPGFPGHRPLP 26  1625.77 
256-270 36             PGFPGHRPLPTSFPG  10 1563.79 
261-275 37                          HRPLPTSFPGSPLGG 27  1519.73 
266-280 38                                      TSFPGSPLGGYRGTD  11 1511.62 
271-285 39                                                  SPLGGYRGTDGTDGG 28  1409.43 
276-290 40 YRGTDGTDGGDEQPP  12 1564.55 
281-295 41              GTDGGDEQPPGAVEQ 29  1456.44 
286-300 42                           DEQPPGAVEQGPGED  13 1524.52 
291-305 43                                        GAVEQGPGEDPGEGP 30  1395.4 
296-310 44                                                     GPGEDPGEGPSRQTT  14 1484.51 
301-315 45 PGEGPSRQTTTSGGR 31  1487.56 
306-320 46              SRQTTTSGGRGSGKK  15 1507.62 
311-325 47                          TSGGRGSGKKGGWFG 32  1438.54 
316-330 48                                       GSGKKGGWFGRRRGE  16 1634.8 
321-335 49                                                    GGWFGRRRGEGGRGF 33  1651.8 
326-340 50 RRRGEGGRGFKKFEN  17 1794 
331-345 51             GGRGFKKFENMAKNL 34  1696.97 
336-350 52                          KKFENMAKNLKVLLA  18 1747.15 
341-355 53                                      MAKNLKVLLARCQAE 35  1688.07 
346-360 54                                                  KVLLARCQAERTNTT  19 1703.98 



	
   143 

351-365 55                                                             RCQAERTNTTGNWPF 36  1780.94 
356-370 56 RTNTTGNWPFGVFVY  20 1758.95 
361-375 57             GNWPFGVFVYGPKTS 37  1655.86 
366-380 58                           GVFVYGPKTSCYNLR  21 1703.97 
371-385 59                                       GPKTSCYNLRRCIAC 38  1685.01 
376-390 60                                                   CYNLRRCIACCIPEC  22 1760.16 
381-395 61                                                               RCIACCIPECRLTPL 39  1691.13 
386-400 62 CIPECRLTPLGRLPF  23 1715.12 
391-405 63            RLTPLGRLPFGYAPE 40  1686.99 
396-410 64                       GRLPFGYAPEPGPQP  24 1582.79 
401-415 65                                   GYAPEPGPQPGPMRE 41  1582.77 
406-420 66                                               PGPQPGPMRESTDCY  25 1634.82 
411-425 67                                                            GPMRESTDCYFIVFL 42  1778.09 
416-430 68 STDCYFIVFLQTMIF  26 1828.19 
421-435 69             FIVFLQTMIFAECVK 43  1789.23 
426-440 70                       QTMIFAECVKDALRD  27 1740.03 
431-445 71                                   AECVKDALRDYIMTK 44  1756.07 
436-450 72                                               DALRDYIMTKPLPTS  28 1721.02 
441-455 73                                                           YIMTKPLPTSSVQVT 45  1664.99 
446-460 74 PLPTSSVQVTVITFE  29 1617.87 
451-465 75             SVQVTVITFEDPVML 46  1677.98 
456-470 76                         VITFEDPVMLPVFFP  30 1751.13 
461-475 77                                   DPVMLPVFFPPHLPA 47  1677.05 
466-480 78                                                PVFFPPHLPAAAVAA  31 1504.8 
471-485 79                                                              PHLPAAAVAAEGGEG 48  1346.46 
476-490 80 AAVAAEGGEGAEGDD  32 1318.27 
481-495 81             EGGEGAEGDDGDEGG 49  1350.18 
486-500 82                          AEGDDGDEGGEGGDG  33 1336.15 
491-505 83                                       GDEGGEGGDGNEGDE 50  1393.2 
496-510 84                                                    EGGDGNEGDEGAAGQ  34 1362.23 
501-511 85                                                                  NEGDEGAAGQE 51  1075.99 

	
  
Table 6-2: The rhEBNA1 overlapping peptide library contains a total of 85 peptides synthesized at 85-90% 
purity.  Peptides are 15 aa in length and overlap by 5 or 10 amino acids.  The 51 peptides used in part I 
were ordered from Genemed Synthesis (San Antonio, TX) and overlap by 10 amino acids.  An additional 34 
peptides were ordered from NeoBio Sciences (Cambridge, MA) so that the complete peptide library used in 
part II was composed of 85 peptides that overlapped by 5 amino acids except for the GAr domain, which 
overlapped by 10 amino acids. The GAr region is highlighted in grey, and colors represent the hydrophobic 
classification of each amino acid: red, very hydrophobic; orange, hydrophobic; green, hydrophilic; blue, very 
hydrophilic.  Figure was generated using the Sigma-Aldrich PEPscreen® library design tool. 
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6.2 ADENOVIRUS-BASED VACCINES TO RHEBNA1: VECTOR DESIGN, 

MOUSE STUDIES, IN VITRO TESTING  

 
 
Vaccine vectors 

The rhEBNA1 gene was deleted of the GAr domain and a flag epitope was inserted using 

conventional cloning techniques as described288.  Start and stop codons were also removed, and 

the final gene product was amplified by PCR with the following primers: Fw5’- ACCGGT 

AGGGAGGGTGGTTTGGGAGG-3’ and Rv5’- ACGCGTCGACCTCCTGCCCCGCCGCGTCGAC 

-3’.  Primers were purchased from Integrated DNA Technologies (Coralville, IA). DNA fragments 

were cloned into the ApaI site of the pRE4 vector as described248. The correct in frame cloning of 

the rhEBNA1 encoding gene was confirmed by restriction enzyme digest followed by visualization 

of bands by gel electrophorese and DNA sequencing. To generate pSh-SgD-rhEBNA1 and pSh-

NBEFSgD-rhEBNA1 vectors, the GAr-deleted rhEBNA1 gene was ligated into pShuttle vectors 

containing sequences encoding the previously described247 mutated versions of HSV-1 gD, which 

either showed increased (SgD) or reduced (NBEFSgD) binding to HVEM248. Transgenes were 

under control by the CMV enhancer and promoter.  Restriction enzyme digests followed by gel 

electrophoresis and nucleotide sequencing confirmed correct insertion of the rhEBNA1 

sequences into pShuttle.   

 
We then cloned the inserts including the regulatory elements from the pShuttle vectors into the 

E1 domain of molecular clones of E1-deleted AdC vectors of simian serotype 25 (SAdV-25; 

AdC68) and serotype 23 (SAdV-23; AdC6) used for primary and booster immunizations, 

respectively, as described289.  

 
Recombinant AdC vectors were rescued and propagated on HEK 293 cells as described289. Virus 

was purified and titrated as previously described289. Vector batches were quality controlled by 

determining virus particle (vp) to infectious units (moi) ratios. They were tested for replication-

competent Ad and endotoxin contaminations. Genetic integrity of AdC vectors was determined by 
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restriction enzyme digest of purified viral DNA. AdC-gD-NP and AdC-gD vectors have been 

described previously247, 279. 

 
Vectors used in mouse experiments were cloned as described above, except rhEBNA1 was first 

ligated into an empty pShuttle vector (to generate AdC-rhEBNA1) or a pShuttle that contained 

wild-type HSV-1 gD without the transmembrane domain (to generate AdC-gD-rhEBNA1).  

 
Immunoblotting 

Expression of the different forms of rhEBNA1 from recombinant AdC vectors was confirmed upon 

infection of CHO cells stably transfected to express the coxsackie adenovirus receptor (CAR) by 

Western Blot analysis.  An AdC68 vector expressing gD was used as a control vector.  Briefly, 

CHO-CAR cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% fetal calf serum (FBS), 1% penicillin/streptomycin, 1% pyruvate and 1% non-essential amino 

acids at 37°C in 5% CO2 until 80% confluence in wells of a 6-well plate. Medium was then 

replaced with 1ml of serum-free DMEM, and about 106 cells were infected with either 1011, 1010, 

or 109 vp of vector per well or 1010, 109, or 108 vp of vector per well.  After 2 hours, 1ml complete 

DMEM was added to each well, and cells were harvested after 48 hours. 

 
Total cellular protein was prepared by washing cells 2x with phosphate-buffered saline (PBS). 

They were then suspended in RIPA buffer (InVitrogen, Grand Island, NY) supplemented with 

Complete Protease Inhibitor (Roche, Indianapolis, IN).  Cells were transferred to a new tube and 

incubated for 1 hour on ice.  Tubes were spun for 30 minutes at 4°C to pellet debris, and lysate 

was transferred to new tubes.  10ul of lysate was mixed with 10ul 2X loading buffer (laemmli blue 

dye, 2-mercaptoethanol) and boiled for 5 minutes.  Protein samples were then separated with 4-

15% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

proteins were transferred to a 0.45 um PVDF transfer membrane (Millipore, Billerica, MA).  The 

membranes were blocked for 1 hour at room temperature in 5% fat-free milk dissolved in PBS 

containing 0.1% Tween-20.  After washing, expression of chimeric rhEBNA1 proteins was 

detected with a mouse monoclonal antibody specific for the Flag epitope (M2; Sigma, St Louis, 
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MO), diluted 1:1,000 in 5% milk, PBS, 0.1% Tween 20 and incubated at 4°C overnight.  Blots 

were then washed, incubated for 1 hour with a horseradish peroxidase-conjugated goat anti-

mouse IgG antibody (1:30,000, KPL), and developed with Super Signal West Pico 

chemiluminescence substrate (Thermo Scientific, Waltham, MA).  Membranes were washed 

extensively between all steps.  Some membranes were treated with stripping buffer (Thermo 

Scientific) for 15 minutes, washed in PBS-Tween, blocked and re-probed as described above.  To 

detect gD, membranes were probed with a polyclonal anti-gD serum R6 (R45) diluted 1:500.  

Donkey anti-rabbit IgG horseradish peroxidase (HRP) (Amersham Biosciences, Little Chalfont, 

Buckinghamshire, UK) was used as a secondary antibody at 1:10,000.  For loading control, we 

stripped and re-probed with a 1:20,000 dilution of a β-actin-specific antibody (AC-15; Sigma, St 

Louis, MO), and then 1:30,000 goat anti-mouse IgG-HRP as described above.  

 
Immunofluorescence 

Expression of transgene products by AdC vectors was further measured by immunofluorescence.  

Cells (106) were infected as described above with 1010 or 109 vp of vector and washed.   PBS (1 

ml) supplemented with 10 mM EDTA was added to each well, and cells were incubated at 37°C 

for 5 minutes.  Cells were harvested, washed, and transferred to a 96-well plate where they were 

stained with mouse anti-Flag antibody for 30 minutes, washed, and probed with goat anti-mouse 

IgG-Alexa700 (Molecular Probes, Eugene, OR).  Cells were washed twice more, fixed with BD 

Stabilizing Fixative (BD Biosciences, San Jose, CA), and then analyzed by FACS using LSRII 

(BD Biosciences, San Jose, CA) and DiVa software.  

 
HVEM binding assay 

CHO-CAR cells (106) were infected with 1010 vps of AdC vectors as described above.  After 48 

hours, cells were harvested and total cellular protein was prepared as described above.  Protein 

extracts were kept at -80°C until use. Western blotting and densitometry (AlphaEaseFC 

software version 3.3.0; Alpha Innotech, San Leandro, CA) were used to normalize the amount of 

chimeric protein in the extracts.   
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To measure the gD fusion proteins’ ability to bind HVEM, ELISA plates were coated with 50 ul per 

well of a 5ug/ml concentration of HVEM 247 diluted in 0.1 M carbonate coating buffer (pH 9.6) and 

incubated overnight at 4°C.  Plates were washed 5 times and then blocked for 1.5 hours in 5% 

milk-PBST (0.05% Tween20) at room temperature.  After washing, normalized protein extract 

was serially diluted in blocking solution and added to the plates for 1.5 hours.  To detect captured 

chimeric protein, 50uL mouse anti-Flag antibody diluted 1:1,000 in 5% milk-PBST was added for 

1 hour, followed by 50ul goat anti-mouse IgG-HRP diluted 1:1,000 for 30 minutes with washings 

after each step. TMB substrate solution (Calbiochem, San Diego, CA) was then added to each 

well, plates were stored in the dark for 15 minutes, and the reaction was stopped by adding 2N 

HCl. The optical density at 450 nm was determined using a microtiter plate reader.  

 
Electrophoretic mobility shift assays (EMSA)  

Adenovirus vaccines expressing gD, rhEBNA1, or gD-rhEBNA1 were used to infect CHO/CAR 

cells at 1010 VPS in order to measure DNA-binding ability of rhEBNA1 transgenes.  Infected cells 

were harvested and then prepared as total cell lysates.  Lysates were assayed by electrophoretic 

mobility shift assays (EMSA) with a 32P labeled probe for rhEBNA1 binding sites at rhLCV OriP. 

as previously described290.  

 
Animals and immunization regimen 

Dose-escalation study: Four to six week old female BALB/c mice were purchased from the 

National Cancer Institute.  Groups of 4 mice each received 109, 1010, or 1011 vp of AdC68 

vaccines that expressed either rhEBNA1 or gD-rhEBNA1. As a control, animals were vaccinated 

with 1011 vp of AdC68 expressing HIV-gag.  Blood was collected at weeks 2 and 4 after 

vaccination.   

Kinetics studies: Groups of 5 female BALB/c mice received 1011 vp of AdC68-expressing 

rhEBNA1 or gD-rhEBNA1.  Blood was collected every other week after vaccination.  Vaccine-

naïve mice were included as an additional control starting at week 4 in order to measure general 

immune fluctuation.  Similar experiments were conducted with C57/bl6 mice and ICR mice.  

Three to four week old female C57/bl6 mice were purchased from Taconic labs (NY, Hudson), 
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and 6-8 week old female ICR mice were purchased from ACE Animals Inc. (Boyertown, PA).  

Groups of 5 C57/bl6 mice and 10 ICR mice received 1011 vp of AdC68-expressing rhEBNA1 or 

gD-rhEBNA1.  Blood was collected at weeks 2, 4, 10, and 12 after vaccination.  The same studies 

were repeated with AdC68-rhEBNA1-M vaccines.  All vaccines were diluted in PBS and 

administered intramuscularly to the tibialis anterior muscle of each hindlimb (50 µL per leg).  

Animals were house at the Wistar Institute Animal Facility (Philadelphia, PA), and all procedures were 

performed according to institutionally approved protocols. 

	
  
Isolation of lymphocytes	
  

Blood was collected in 1mL of 4% sodium citrate, and 1mL of L-15 media (Cellgro, Herndon, VA) 

was then added.  Lymphocytes were purified through a Histopaque (Sigma-Aldrich, St. Louis, 

MO) gradient solution and washed in PBS supplemented with 1% FBS.  Cells were then treated 

with 1mL lysis buffer (ebioscience, San Diego, CA) for 5 min on ice to rupture red blood cells.  1% 

FBS in PBS was added and cells were centrifuged at 1500 rpm for 10 minutes.  Pellets were 

washed again and cells were resuspended in 2% MLC/DMEM (DMEM, 2% heat-inactivated FBS, 

1% Pen–Strep, 10 mM Hepes, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 106 M 

2-mercaptoethanol)(Cellgro, Herndon, VA) to a final volume of 200 µl.   

 
Intracellular cytokine staining (ICS) 

Induction of rhEBNA1-specific T cells was assessed by intracellular cytokine staining (ICS) after 

stimulation of PBMCs with overlapping peptide pools. RhEBNA1 was used at a final 

concentration of 2µg of each peptide per ml. As a control, cells were stimulated with an HIV-gag 

peptide pool at the same concentration. PBMCs (106 cells/well) were incubated with peptide 

pools and Brefeldin A (1 ml/ml; GolgiPlug; BD Biosciences, San Jose, CA) for 5 hrs at 37 °C in a 

96-well round bottom microtiter plate at a final volume of 200 µl/well in 2%MLC/DMEM.  After 

washing, cells were incubated for 30 min at 4°C in 50µl/well of staining solution (in PBS) 

composed of LIVE/DEAD fixable aqua dead cell stain (AmCyan), anti-CD8-PercP-Cy5.5, and in 

some experiments either anti-CD4-FITC and anti-CD44-APC or anti-CD44-Alexa700, anti-

CD62L-FITC, and anti-CD127-PacBlue. After several washings, cells were fixed and 
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permeabilized with Cytofix/Cytoperm (BD Biosciences, San Jose, CA) for 20 min at 4°C, and then 

stained with 50µl/well of staining solution (in 1x Perm Wash) composed of anti-IFN-γ-PE, and in 

some experiments with anti-IL-2-APC and anti-TNF-α-PE-Cy7.  Cells were washed twice, fixed 

with BD Stabilizing Fixative (BD Biosciences, San Jose, CA), and then analyzed by FACS using 

LSRII (BD Biosciences, San Jose, CA) and DiVA software. Flow cytometric acquisition and 

analysis of samples was performed on at least 500,000 events. Post-acquisition analyses were 

performed with FlowJo (TreeStar, Ashland, OR). Data shown on graphs represent values of 

peptide-stimulated cells from which background values have been subtracted, unless negative 

control data is shown. Single color controls used CompBeads anti-rat and anti-hamster Igk (BD 

Biosciences, San Jose, CA) for compensation.  Table 6-3 is a comprehensive list of all antibodies 

used in these studies, including item numbers, clones, and concentrations used for staining. 

 
In vitro stimulation 

Dendritic cells (DCs) were generated from peripheral blood mononuclear cells (PBMCs) of a 

rhLCV seropositive rhesus macaque by culturing in the presence of GM-CSF and IL-4 (R&D 

Systems, Minneapolis, MN). They were subsequently matured in the presence of monocyte-

conditioned medium as previously described291. Matured DCs were infected with recombinant 

AdC vectors at 50 moi per cell and cultured overnight.  Effector CD8+ T cells were generated by 

stimulating PBMCs from the same animal with a rhEBNA1 peptide pool followed by depletion of 

CD4+ T cells as described215. Twenty thousand AdC vector- or rhEBNA1 peptide-pulsed DCs 

were used as APCs in the presence or absence of 50,000 CD8+ T cells in an IFN-γ ELISPOT 

assay. After a 16h incubation, IFN-γ-secreting cells were visualized following the manufacturer’s 

instructions (Mabtech, Cincinnati, OH) as described previously215.  The number of activated CD8+ 

T cells was enumerated by counting the number of spots using an automated reader and analysis 

software (Zellnet, Fort Lee, NJ) and the results were expressed as the number of spot forming 

cells per 106 CD8+ T cells. Positive and negative controls were CD8+ T cells cultured in the 

presence of PHA or medium alone.  

	
  
Synthetic peptides 
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The rhEBNA1 peptide pool consists of 85 15-mer peptides overlapping by 10 amino acids 

(Genemed Synthesis Inc. San Antonio, TX). The peptide pools used for testing of pre-vaccination 

samples contained peptides to the GAr domain and we continued to use these pools although the 

vaccine does not carry these sequences of rhEBNA1.  The HIV-gag peptide pool consists of 

(123) 15-mer peptides overlapping by 11 amino acids (National Institutes of Health AIDS 

Research and Reference Reagent Program).   All peptides were reconstituted in DMSO. 

 
Statistical analysis  

Experiments were conducted repeatedly using 4-5 mice per group. Results show the means ± 

SD. Significances between two groups were analyzed by one-tailed Student's t-test or a one-way 

ANOVA, depending on the number of comparisons made.  A p-value <0.05 was considered 

significant.  All multiple comparisons were Bonferroni-adjusted to control for type I errors.   
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Table 6-3: List of antibodies for ICS (mouse studies) 

Antibody Clone Company Catalog 
number 

Ratio 
used  

LIVE/DEAD fixable aqua dead cell stain  Invitrogen, 
Carlsbad, CA 

L34957 1:500 

Rat anti-mouse CD8-PerCp-Cy5.5 53-6.7 BioLegend,  
San Diego, CA	
  

100734 1:100 

Rat anti-mouse CD4-FITC RM4-4 BD Biosciences, 
San Jose, CA 

553055 1:100 

Rat anti-mouse CD44-APC IM7 BioLegend,  
San Diego, CA 

103011 1:100 
 

Rat anti-mouse CD44-Alexa 700 IM7 BioLegend,  
San Diego, CA 

103026 1:100 

Rat anti-mouse CD62L-FITC MEL-14 BD Biosciences, 
San Jose, CA 

553150 1:100 

Rat anti-mouse CD127-PacBlue A7R34 eBioScience,	
  
San Diego, CA 

48-1271-82 1:100 

Rat anti-mouse IFN-γ-PE  XMG1.2 BD Biosciences, 
San Jose, CA 

554412 1:100 

Rat anti-mouse IL-2–APC JES6-5H4 BD Biosciences, 
San Jose, CA 

554429 1:100 

Rat anti-mouse TNF-α–PE–Cy7  MP6-
XT22 

BioLegend,  
San Diego, CA 

506324 1:100 
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6.3 ADENOVIRUS-BASED VACCINES TO RHEBNA1 INDUCE EXPANSION 

OF CD8+ AND CD4+ T CELLS IN PERSISTENTLY INFECTED RHESUS 

MACAQUES  

 
	
  
Microneutralization assay for Ad virus-specific neutralizing antibodies (NA) 

NA titers were determined as described previously167 on HEK 293 cells infected with AdC vectors 

expressing green fluorescent protein (GFP).  

	
  
Non-human primates  

Fifteen female adult, healthy, and SIV-uninfected rhesus macaques (Macaca mulatta) of Indian 

origin aged 6 to 20 years were enrolled into the study.  Animals were housed at the Yerkes 

National Primate Research Center (YNPRC, Atlanta, GA) at either the field station or the main 

station.  All animals except PH1019 and PWw were born at YNPRC.  Animals were negative for 

NAs to AdC68 and AdC6, except for one animal (RZi7) with a low titer (1:10) to AdC6.  All 

animals tested positive for rhLCV infection by serologic testing for serum antibodies against the 

rhLCV small viral capsid antigen265.  Mamu phenotypes were also determined.  A detailed 

analysis of baseline rhEBNA1- and rhBZLF1-specific immune responses was conducted and is 

discussed in chapter 2.   

 
Additional samples were obtained from five rhLCV-seronegative rhesus macaques housed in the 

extended specific-pathogen-free colony at the New England Primate Research Center, Harvard 

Medical School, Southborough, MA.  All procedures involving handling of animals were 

performed according to approved protocols and upon review by the respective Institutional Animal 

Care and Usage Committees. 	
  

 
Immunization regimen of rhesus macaques 

Fifteen animals were divided into 3 groups with similar age distribution and rhEBNA1 immune 

response status. Group 1 animals (n = 6) received 1011 vps of AdC68-SgD-rhEBNA1, group 2 
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animals (n = 6) received 1011 vps of AdC68-NBEFSgD-rhEBNA1, and group 3 animals (n = 3) 

received 1011 vps of an AdC68 vector expressing an irrelevant antigen (i.e., nucleoprotein of 

influenza A virus) fused into gD (AdC68-gD-NP).  Animals were boosted 15 weeks after priming 

with 1011 vps of the corresponding AdC6 vectors expressing the same antigens used for priming. 

All vaccines were given intramuscularly (i.m.). See Table 4-3 for basic characteristics of the 

animals enrolled in the study and the vaccines they received.  

	
  
Isolation and preservation of lymphocytes	
  

Peripheral blood mononuclear cells (PBMCs) were isolated from blood as described257. Briefly, 

whole blood collected in CPT tubes was centrifuged at 2600 rpm for 30 minutes.  The clear 

plasma layer (top layer) was transferred to cryo tubes (about 1 ml per tube) and frozen at -80°C.  

The remaining plasma layer was then gently mixed with the cloudy lymphocyte layer below and 

transferred to a new 50 ml conical tube.  Remnants of the mixed cell layer within the CPT tube 

were gently washed twice with 5 ml of HBSS and transferred to the same 50 mL conical tube.  

The tube was topped with HBSS and spun at 1200 rpm for 10 minutes.  After discarding 

supernatant, cells were resuspended in 5 ml ACK lysis buffer and incubated for 5 minutes at 

room temperature.  Cells were washed twice with HBSS and resuspended in RPMI complete 

medium.  Samples were tested immediately after isolation or 1x107 cells per ml were frozen in 

90% FBS and 10% dimethyl sulfoxide (Sigma, St. Louis, MO) at -80°C until testing.  

 
Intracellular cytokine staining (ICS) 

The magnitude and function of rhEBNA1- and rhBZLF1-specific T cells was assessed by 

intracellular cytokine staining (ICS) after stimulation with peptide pools257. Samples collected at 

different time points were tested in parallel for each animal to minimize variability.  RhEBNA1 was 

used at a final concentration of 2µg of each peptide per ml, and rhBZLF1 was used at a final 

concentration of 1µg of each peptide per ml. Frozen cells were thawed and immediately washed 

with HBSS supplemented with 2 units/ml DNase I, resuspended with RPMI medium, and 

stimulated for 6 hrs with anti-CD28, anti-CD49d, and Brefeldin A. Cells were stained with violet-

fluorescent reactive dye-Pacific Blue, anti-CD14-Pacific Blue, anti-CD16-Pacific Blue, anti CD20-
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Pacific Blue, anti-CD8-APC-H7, anti-CD4-Alexa700, anti-CD95-PE-Cy5, and anti-CD28-Texas 

Red for 30 min at 4°C (solution prepared in PBS). Additionally, cells were stained with anti-CCR7-

PE. After fixation and permeabilization with Cytofix/Cytoperm (BD Biosciences, San Jose, CA) for 

30 min at 4°C, cells were stained with anti-IFN-γ-APC, anti-IL-2-FITC, anti-TNF-α-PE-Cy7, and 

anti-CD3-PerCp-Cy5.5 for 30 min at 4°C (solution prepared in 1x perm wash). Cells were washed 

twice, fixed with BD Stabilizing Fixative (BD Biosciences, San Jose, CA), and then analyzed by 

FACS using LSRII (BD Biosciences, San Jose, CA) and DiVA software. Flow cytometric 

acquisition and analysis of samples were performed on at least 500,000 events.  Post-acquisition 

analyses were performed with FlowJo (TreeStar, Ashland, OR).  Data shown on graphs represent 

values of peptide-stimulated cells from which background values have been subtracted. 

Polyfunctionality pie chart graphs were generated using SPICE software (NIH, Bethesda MD, 

http://exon.niaid.nih.gov/spice/). Single-color controls used CompBeads Anti-Mouse Igk (BD 

Biosciences, San Jose, CA) for compensation. See Table 6-1 for a comprehensive list of all 

antibodies used in these studies, including item numbers, clones, and concentrations used for 

staining. 

 
The above-described experiment was repeated for 11 of the 12 animals (excluding RLz5) with the 

addition of an antibody for staining of intracellular granzyme B.  Anti-granzyme B PE-Cy5.5 (clone 

GB11; Life Science Products, Chestertown, MD) was added after the fixation and 

permeabilization steps at a dilution of 1:40 (determined by titration).  Responses were tested at 

weeks 0, 2, 8, and either week 17 or week 19 after vaccination, depending on sample availability.   

	
  
Synthetic peptides 

The rhEBNA1 peptide pool consists of 85 15-mer peptides overlapping by 10 amino acids except 

for the GAr domain, where peptides overlap by 5 amino acids (Genemed Synthesis Inc., San 

Antonio, TX; NeoBioSci, Cambridge, MA). The peptide pools used for testing of pre-vaccination 

samples contained peptides to the GAr domain and we continued to use these pools although the 

vaccine does not carry these sequences of rhEBNA1. To account for its large size, the rhEBNA1 

peptide pool was divided into two pools, one with peptides 1 to 42 and the other with peptides 43 
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to 85.  Responses were combined after normalization and subtraction of background values. The 

rhBZLF1 peptide pool consists of 60 15-mer peptides with 11 amino acid overlap and was 

provided by A. Kaur.  Peptides were reconstituted in DMSO. 

 
Statistical analysis  

For statistical analyses of data several comparisons were made. To assess the overall magnitude 

of vaccine responses, areas under the curve (AUC) using increases of cytokine producing T cells 

(normalized after subtraction of background responses) over baseline counts (normalized after 

subtraction of background responses) were calculated. For these calculations negative values 

were set at 0. The AUCs for animals belonging to both rhEBNA1 vaccine groups were compared 

to the AUCs of control animals by using unpaired Mann-Whitney tests. Comparisons between all 

three groups or between the three types of T cell subsets were conducted by analysis of variance 

(ANOVA). Comparisons for individual patterns of functions were made by Fischer’s least 

significant difference test by ANOVA.   All multiple comparisons were Bonferroni adjusted to 

control for type I error rate, and P values of < 0.05 were considered significant.  Data were 

analyzed using Prism version 6a software.   
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