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Covalent DNA Modifications in Phage and Bacterial Dynamics

Abstract
The microorganisms on and in the human body play a significant role in health and disease; however, little is
known about how the interactions between these complex communities affect our wellbeing. This study
examines how bacteria and phage interact through bacterial nucleases that restrict infection, such as restriction
enzymes and CRISPR systems, and the covalent DNA modifications that neutralize them. Multiple targeted
nucleases equip bacteria with an innate immune response against phage, and CRISPR systems provide an
adaptive immune response. I report three main studies. 1) To study the human gut microbiome and virome
(comprised predominately of phage), we collected fecal samples from a healthy individual over four years.
From the fecal samples, total bacterial DNA and DNA from purified virus like particles (VLPs) were
sequenced using Illumina and Pacific Bioscience single-molecule real-time (SMRT) sequencing to yield
information about genome sequences and covalent modifications. Using computational methods we
identified seven bacterial contigs and one phage contig with CRISPR arrays targeting phage contigs. This
suggests that both bacteria and phage use CRISPR systems to compete with other phage. 2) Covalent DNA
modifications are known to block the nuclease activity of restriction enzymes, however it was unknown if they
can block the nuclease activity of CRISPR systems. To address this, we test if the CRISPR-Cas9 system could
target wild type T4 phage and two T4 mutants. Wild type T4 modifies all its cytosines to glycosylated
hydroxymethylcytosine (glc-HMC), and the two mutant T4 phage contain either hydroxymethylcytosine
(HMC) or unmodified cystosines (C). These tests confirmed that glc-HMC and HMC in high concentrations
can block CRISPR-Cas9. 3) To explore interactions between bacteria and phage further, we used covalent
DNA modification data to link bacteria and phage pairs from the human gut microbiome, based on the idea
that phage and bacterial DNAs in the same cell have been exposed to the same DNA modifying enzymes and
thus share modification patterns. Overall, 443 modified motifs were shared between phage and bacteria,
suggesting many possible phage-host pairs. In our data, 73% of phage genomes and 56% of bacterial genomes
contained motifs that were completely modified, highlighting how ubiquitous and important the roll of DNA
modifications are. These data allowed us to begin to specify the extent and types of interactions between
phage and bacteria in longitudinal data. This work explores the complex interactions between bacteria and
phage, a crucial step in understanding how these organisms contribute to human health and disease.
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ABSTRACT 

 COVALENT DNA MODIFICATIONS IN PHAGE AND BACTERIAL DYNAMICS  

Alexandra Lynn Bryson 

Dr. Frederic Bushman’s Laboratory 

The microorganisms on and in the human body play a significant role in 

health and disease; however, little is known about how the interactions between 

these complex communities affect our wellbeing.  This study examines how 

bacteria and phage interact through bacterial nucleases that restrict infection, 

such as restriction enzymes and CRISPR systems, and the covalent DNA 

modifications that neutralize them.  Multiple targeted nucleases equip bacteria 

with an innate immune response against phage, and CRISPR systems provide 

an adaptive immune response.   I report three main studies.  1) To study the 

human gut microbiome and virome (comprised predominately of phage), we 

collected fecal samples from a healthy individual over four years. From the fecal 

samples, total bacterial DNA and DNA from purified virus like particles (VLPs) 

were sequenced using Illumina and Pacific Bioscience single-molecule real-time 

(SMRT) sequencing to yield information about genome sequences and covalent 

modifications.  Using computational methods we identified seven bacterial 

contigs and one phage contig with CRISPR arrays targeting phage contigs. This 

suggests that both bacteria and phage use CRISPR systems to compete with 

other phage.  2) Covalent DNA modifications are known to block the nuclease 

activity of restriction enzymes, however it was unknown if they can block the 
iii



nuclease activity of CRISPR systems.  To address this, we test if the CRISPR-

Cas9 system could target wild type T4 phage and two T4 mutants. Wild type T4 

modifies all its cytosines to glycosylated hydroxymethylcytosine (glc-HMC), and 

the two mutant T4 phage contain either hydroxymethylcytosine (HMC) or 

unmodified cystosines (C).  These tests confirmed that glc-HMC and HMC in 

high concentrations can block CRISPR-Cas9.  3) To explore interactions 

between bacteria and phage further, we used covalent DNA modification data to 

link bacteria and phage pairs from the human gut microbiome, based on the idea 

that phage and bacterial DNAs in the same cell have been exposed to the same 

DNA modifying enzymes and thus share modification patterns.  Overall, 443 

modified motifs were shared between phage and bacteria, suggesting many 

possible phage-host pairs.  In our data, 73% of phage genomes and 56% of 

bacterial genomes contained motifs that were completely modified, highlighting 

how ubiquitous and important the roll of DNA modifications are.  These data 

allowed us to begin to specify the extent and types of interactions between phage 

and bacteria in longitudinal data. This work explores the complex interactions 

between bacteria and phage, a crucial step in understanding how these 

organisms contribute to human health and disease. 
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Chapter 1: Introduction 

1.1 The human gut virome and microbiome 

The microorganisms on and in the human body play a significant role in 

health and disease.  Commensal microbes help our immune systems develop 

properly, aid us in the breakdown and digestion of nutrients, and guard against 

pathogen invasion(1-5).  However, dysbiosis (disease associated with microbial 

ecosystem shifts) among the microbiota has been linked to heart disease, 

inflammatory bowel disease, depression, autoimmune disease, and obesity(6-

17). 

The human gastrointestinal tract contains one of the most densely populated 

microbial communities in the human body, and recent advances in deep 

sequencing technologies reveal complex communities of bacteria and viruses 

living and interacting together.  Phage, in addition to being the vast majority of 

viruses detected within the human gut, are also the most prevalent biological 

entities on Earth (estimated at 1031 virions) and known to dynamically regulate 

bacterial populations(2-5, 18-20).  Studies of phage, since their independent 

discovery in the early 1910s by Twort and d’Herelle, helped establish 

fundamental principals in molecular biology and genetics(21, 22); however, once 

the groundwork was laid, those fields quickly transitioned to studying higher order 

model organisms.  The recognition that phage play an integral role in the healthy 

1
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human microbiome has brought about a recent resurgence of phage biology in 

the context of the human virome. 

The human gut virome can be studied by isolating virus like particles (VLPs) 

from fecal samples.  Fecal samples offer a non-invasive way to study microbiota 

of the lower gastrointestinal tract.  Fecal samples are homogenized, passed 

though a 0.2µm filter (to remove human and bacterial cells) then treated with 

DNAse and RNAse to remove DNA that is not contained in a VLP.  The VLPs are 

then broken down with proteinase K and their nucleic acids are extracted for 

sequencing.  The sequenced viral genomes are assembled de novo using 

computational methods.  These proposed genomes are referred to as contigs.  

RNA and DNA viruses known to infect human cells have been found using these 

methods, however the majority of isolated viruses are DNA phage.  RNA viruses 

found in healthy, fecal samples are typically plant pathogens, which are thought 

to have been ingested with food and are passing though transiently(23). 

 To study bacteria of the human gut, total DNA is extracted from fecal 

samples.  The DNA can then be prepared and sequenced using two different 

methods.  The first is shotgun metagenomics, where the total, extracted DNA is 

sequenced using high-throughput technology.  The resulting sequencing reads 

are filtered to remove those mapping to the human genome.  The remaining 

sequence reads are assembled de novo using computational methods.  Roughly 
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96% of resulting contigs belong to bacteria, with the remaining 4% belonging to 

phage.  The second method is 16S ribosomal DNA (16S rDNA) amplicon 

sequencing.  The gene encoding 16S ribosomal RNA is ubiquitous and highly 

conserved among bacteria.  The 16S rDNA also contains nine hyper-variable 

regions that can be used to distinguish between bacterial species. Primers 

targeting the conserved segments of the 16s rDNA are used to amplify the gene.  

These amplicons are sequenced and the variable regions they contain are used 

to determine which bacteria are present within a fecal sample. 

Understanding the dynamics between bacteria and phage in healthy 

individuals is a crucial step in learning to treat disorders involving a dysbiotic 

microbial communities. However determining which phage infect which bacteria 

is a difficult challenge.  The human gut provides a unique niche for bacteria and 

phage to coexist that has yet to be replicated in a laboratory setting.  Previous 

efforts have failed to grow gut phage in vitro (outside of gut) despite being able to 

observe the phage propagating within a gnotobiotic mouse gut(24). Matching 

phage-host pairs is further complicated because phage can sometimes infect 

multiple bacterial hosts. Traditionally, there have been many phage known to 

bind a specific receptor, and they do not bind other structures that vary only 

slightly from their host receptor.  Research done by Jensen et al. suggests that 

current methods of isolating phage artificially select for phage with a specific host 
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and that phage with a broad-range of hosts are more prevalent than previously 

thought(25).  Jansen et al. even identified phage that plaque on both Escherichia 

coli and Sphaerotilus natans, which belong to different classes, 

Gammaproteobaceria and Betaproteobacteria respectively(25).  

In this body of work we seek to identity phage/ bacterial-hosts pairs and 

understand how they interact, particularly through host-parasite competition 

based on nucleases and protection of DNA with covalent modifications. 

 

1.2 Phage influence on bacterial communities 

There are two major mechanisms by which phage influence the survival of 

bacterial communities.  Phage can exert a predatory pressure killing their host or 

providing advantageous genetic information though lateral gene transfer.  Most of 

what is known about the control of bacterial populations by phage comes from 

environmental studies, particularly in lakes and seawater(26-31). The literature 

indicates that dynamics between phage and bacteria including predation rates 

can vary significantly.  Work done in Germany’s Lake Plussee demonstrated that 

bacterial mortality from viral lysis varies within the same body of water based on 

the steep temperature and oxygen gradients of the lake.  In the warm and oxic 

epilimnion, 8% to 42% of bacterial deaths are attributed to viral lysis, whereas in 
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the cooler, anoxic hypolimnion 88% to 94% of bacterial mortality is attributed to 

viral lysis(28).   

Phage can provide survival advantages to their bacterial hosts by existing in 

a lysogenic state as a prophage or episome.  Research conducted on bacteria 

living in the gulf of Mexico suggests that 0.07% to 4.4% of the bacteria harbor a 

prophage(27).  Other studies suggest higher rates of lysogenized bacteria in 

different environments (32).  A filamentous phage, f327, is though to help 

Pseudoalteromonas survive in the Artic Sea by enhancing motility and 

chemotaxis of their host(32).  Other marine phage provide their hosts with genes 

to carry out carbon and phosphate metabolism as well as photosynthesis(33, 34).   

Phage are also known to transfer antibiotic resistance genes between 

bacteria(35).  The mobility of antibiotic resistance is of particular concern to heath 

care providers as multidrug resistant pathogens are become more prevalent. 

 

1.3  Restriction-Modification Systems  

Bacteria use restriction-modification systems to protect themselves from 

foreign DNA, such as the DNA injected by a phage.  To distinguish self from non-

self DNA, bacteria use enzymes to add covalent modifications to their own 

genomes at specific nucleotide motifs known as recognition sites.  The number of 
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nucleotides in a recognition site is typically 4 to 8 bases, and the exact motif 

sequences vary among restriction/modification systems.  Restriction enzymes 

scan DNA for recognition sites. If a recognition site is unmodified the restriction 

enzyme binds to the motif and cleaves the DNA.  If the recognition site is 

modified, the restriction enzyme will not be able to bind and cleave the DNA due 

to steric hindrance.  The first evidence for restriction-modification systems arose 

in the 1950s from work done by Salvador Luria and Giuseppe Bertani when they 

found phage λ could grow on some E. coli strains but not others(36, 37). In the 

1960s Werner Arber and Matthew Meselson demonstrated this restriction of 

phage growth was caused by enzymatic cleavage (38-40).  

Restriction enzymes are traditionally classified into four types. Type I 

enzymes (originally discovered to target phage λ) contain multiple subunits that 

preform restriction-and-modification functions within in one enzyme.  Their 

restriction cut sites are random and distant from the recognition motif.  Type II 

restriction enzymes cut at defined positions close to or within a specific DNA 

sequence motif.  HindII was the first Type II restriction enzyme to be 

characterized, when in 1970, Hamilton Smith observed phage P22 DNA 

degrading in the presence of Haemophilus influenza cell extract (41, 42).  Type 

III enzymes are combination restriction-and-modification complexes that cleave 

outside of their recognition sequence and required two motifs in opposite 
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orientations.  In contrast to Types I-III, Type IV enzymes recognize and cleave 

modified (typically methylated) DNA such as McrBC in E. coli. 

Phage evolved to avoid restriction modification systems by 

commandeering their host’s modifying enzymes or alternatively by encoding their 

own.  Replicating phage are thereby exposed to the same modifying enzymes as 

their host and are likely to share modification patterns.  In this work, we 

hypothesize that phage and their hosts can be linked matching DNA modification 

patterns between the two.  

1.4  CRISPR 

The Clustered regularly interspaced short palindromic repeats (CRISPR) and 

CRISPR-associated (Cas) proteins form an adaptive immune system used by 

roughly 50% of bacteria to confer resistance against phage, plasmid-mediated 

lateral gene transfer, and other mobile genetic elements (MGE)(43, 44).  The 

CRISPR-Cas system allows for acquisition and storage/memory of phage and 

plasmid-derived sequences that can be used to identify future infections based 

on sequence homology.  The CRISPR locus is comprised of an AT-rich leader 

sequence followed by an array of uniform repeat sequences alternating with 

unique segments of viral or MGE sequences (spacers).  The spacers, averaging 

32bp in length, are acquired from an invading virus or plasmid and integrated into 

the CRISPR locus near the 5’ leader end creating a linear history of invading 
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DNA.  The region in the viral or plasmid genome that matches the spacer is 

referred to as the protospacer(45).   

Upstream of the CRISPR array lies the Cas genes.  Different organisms 

contain distinctive clusters of Cas genes, which fall into two major classes that 

can be further broken down into five types and sixteen subtypes(46, 47).  

CRISPR systems requiring multiple proteins for interference belong to class I, 

while CRISPR systems requiring only one protein for interference are a part of 

class II.  Cas proteins process transcribed CRISPR arrays into smaller fragments 

called CRISPR RNAs (crRNA).  Cas proteins in complex with a crRNA form a 

functional unit that base pairs with and cleaves DNA containing the homologous 

protospacer sequence and a specific protospacer-adjacent motif (PAM) of ~3-7 

bases(45, 48, 49).  The PAM sequence plays an important role in allowing the 

CRISPR system to distinguish between self and non-self DNA.  The absence of 

PAMs in CRISPR arrays prevents the CRISPR system from degrading its own 

DNA. 

Two modes of spacer acquisition have been reported for class I CRISPR 

systems: native and primed(50-57).  So far, only native spacer acquisition has 

been reported in class II CRISPR systems(58-61).  In native spacer acquisition, 

proteins Cas1 and Cas2 are necessary and sufficient to obtain new spacers from 

foreign DNA.  Primed spacer acquisition requires Cas1, Cas2, Cas3, Cascade (a 
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complex of Cas proteins) and a “priming” spacer targeting an existing 

protospacer.  Priming enhances spacer acquisition 10 to 20 fold compared to 

native acquisition(62).  Spacer acquisition through priming increases when the 

priming spacer is an imperfect match to the protospacer or when the protospacer 

does not have the correct PAM(62).  This is thought to counteract against phage 

acquiring point mutations to escape the sequence homology requirements of 

CRISPR targeting. 

The class II, type II systems are among the best-characterized CRISPR 

systems largely because of their simple four Cas gene structure (Cas9, Cas1, 

Cas2, and Csn2 or Cas4).  Cas9 is the signature gene within these systems.  

The Cas9 protein aids in crRNA biogenesis and cleavage of target DNA. These 

systems also require a trans-activating crRNA (tracrRNA)(63).  In crRNA 

biogenesis, the tracrRNA hybridizes with the transcribed CRISPR array forming 

dsRNA that is then cleaved by RNase III (a bacterial host enzyme) to release the 

individual crRNAs.  Cas9, the crRNA, and the tracrRNA then together form a 

functional unit to cleave target DNA.  Cas9 has an HNH domain and a RuvC-like 

domain, which cleave protospacer targets that match the crRNA(63). 

Phage use several mechanisms to evade CRISPR systems. Point mutations 

acquired in the PAM or protospacer sequences allow phage to escape the 

sequence homology requirement of CRISPR systems.  Exact homology between 
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the first eight bases of the spacer and protospacer (known as the seed 

sequence) are crucial for the CRISPR system to recognize and degrade its 

target.  Outside of the seed sequence, multiple point mutations can accumulate 

before inhibiting the CRISPR system(64).  To date, three phage encoded anti-

CRISPR (Acr) proteins have been reported: AcrF1 (from phage JBD30), AcrF2 

(from phage D3112), and AcrF3 (from phage JBD5)(64, 65).  These proteins 

block the DNA-binding activity of the CRISPR-Cas complex and bind the Cas3 

helicase-nuclease so it cannot be recruited to target DNA bound by the CRISPR-

Cas complex(65).  One study evaluated if a single adenine-N6-methyl DNA 

modification within a phage protospacer could block CRISPR activity, since 

methyl groups are known to block other nucleases(66).  The single adenine-N6-

methyl group was not sufficient to block CRISPR activity; however, phage are 

known to have multiple unique and unusual DNA modifications (many of which 

are significantly larger than methyl groups).  Thus, here we seek to determine if 

larger DNA modifications can block the CRISPR-Cas9 system.  We also search 

for CRISPR systems targeting phage within the human gut microbiome for an 

improved understanding of how the phage and bacteria communities are 

intertwined.  
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1.5 Covalent DNA modifications in Phage 

At least ten covalent DNA modifications have been reported in phage such as 

α-gluThy in SP10, 5-dhpUra in SP15, 5-mCyt in χP12, and 2-n-Ade in S2L(67).  

Despite the remarkable bases seen in phage, very few phage have been 

analyzed for covalent modifications, and no studies have looked at DNA 

modifications of phage in the human microbiome.  DNA modifications of bacteria 

within the human microbiome were previously evaluated in one paper yielding 

information about two Bacteroides genomes(68).  In this body of work, we 

evaluate the modification profiles of the complete microbiome, including both 

phage and bacteria, providing insight into the frequency and breadth of DNA 

modifications of the human gut microbiome.  Additionally, we demonstrate a new 

function for several different phage DNA modifications. 
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2.1 Contributions 

My contributions to this paper are the CRISPR analysis and MetaPhlan analysis.  

I generated Table 1,  Figure 5, Figure S2, and Figure S3. 

2.2 Abstract 

Humans are colonized by immense populations of viruses, which 

metagenomic analysis shows are mostly unique to each individual. To investigate 

the origin and evolution of the human gut virome, we analyzed the viral 

community of one adult individual over 2.5 y by extremely deep metagenomic 

sequencing (56 billion bases of purified viral sequence from 24 longitudinal fecal 

samples). After assembly, 478 well-determined contigs could be identified, which 

are inferred to correspond mostly to previously unstudied bacteriophage 

genomes. Fully 80% of these types persisted throughout the duration of the 2.5-y 

study, indicating long-term global stability. Mechanisms of base substitution, 

rates of accumulation, and the amount of variation varied among viral types. 
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Temperate phages showed relatively lower mutation rates, consistent with 

replication by accurate bacterial DNA polymerases in the integrated prophage 

state. In contrast, Microviridae, which are lytic bacteriophages with single-

stranded circular DNA genomes, showed high substitution rates (>10(-5) per 

nucleotide each day), so that sequence divergence over the 2.5-y period studied 

approached values sufficient to distinguish new viral species. Longitudinal 

changes also were associated with diversity-generating retroelements and virus-

encoded Clustered Regularly Interspaced Short Palindromic Repeats arrays. We 

infer that the extreme interpersonal diversity of human gut viruses derives from 

two sources, persistence of a small portion of the global virome within the gut of 

each individual and rapid evolution of some long-term virome members. 

2.3 Introduction 

There are an estimated 1031 viral particles on earth, and human feces 

contain at least 109 virus-like particles per gram (1–3). Many of these are 

identifiable as viruses that infect bacteria (bacteriophages), but the great majority 

remains unidentified. Even today, gut virome samples taken from different human 

individuals still yield mostly novel viruses (4–8), and only a small minority of viral 

ORFs resembles previously studied genes (7). Bacteriophages are of biomedical 

importance because of their ability to transmit genes to their bacterial hosts, 

thereby conferring increased pathogenicity, antibiotic resistance, and perhaps 
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new metabolic capacity (4, 5, 9, 10). Despite their importance, the forces 

diversifying bacteriophage genomes in human hosts have not been studied in 

detail. Humans show considerable individual variation in the bacterial lineages 

present in their guts (11–13); this variation likely is one reason for the differences 

in their phage predators (5–8, 14). The large differences in phage populations 

among individuals also may be influenced by within individual viral evolution. To 

investigate the origin and nature of human viral populations, we carried out a 

detailed study of a single human gut viral community. Ultra-deep longitudinal 

analysis of DNA sequences from the viral community, combined with 

characterization of the host bacteria, revealed rapid change over time and begins 

to specify some of the mechanisms involved. 

 

2.4 Results 

2.4.1 Sample Collection, Viral Purification, and DNA Sequencing.  

Stool samples (n = 24) were collected from a healthy male at 16 time 

points spread over 884 days (Fig. 1A). For eight of the time points, two separate 

samples taken 1 cm apart were purified and sequenced independently to allow 

estimation of within-time point sample variation. Virus-like particles were 

extracted by sequential filtration, Centricon ultrafiltration, nuclease treatment, and 

solvent extraction. Purified viral DNA was subjected to linear amplification using 
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Φ29 DNA polymerase, after which quantitative PCR showed that bacterial 16S 

sequences were reduced to less than 10 copies per nanogram of DNA, and 

human sequences were reduced to below 0.1 copies per nanogram, the limit of 

detection. Paired-end reads then were acquired using Illumina HiSeq 

sequencing, yielding more than 573 million reads (Q ≥ 35; mean read length, 

97.5 bp), with 15–39 million reads per sample (Table S1). No attempt was made 

to study gut RNA viruses, which also are known to exist, although some samples 

were dominated by abundant plant RNA viruses ingested with food (15). 

Sequence reads from each sample were first assembled individually using 

MetaIDBA (16). When reads were aligned back onto contigs generated within 

each sample, only 71% of reads could be aligned. Improved contigs then were 

generated using a hybrid assembly method combining all samples, taking 

advantage of the fact that viruses that are rare at one time point may be 

abundant at another. After this step, 97.6% of the reads could be aligned to 

contigs, allowing assessment of within-contig diversity. Rarefaction (collector’s 

curve) analysis showed that the detection of these contigs was saturated at 20-

fold coverage (median, 82-fold); from the purification results, we infer these 

contigs to be mostly or entirely DNA viruses (Fig. 1C). Sixty contigs assembled 

as closed circles (ranging in size from 4–167 kb), an indication of probable 

completion of these genome sequences, providing an estimate of the viral 

population size and composition in unprecedented detail. One circular genome 
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was sequenced independently using the Sanger method and was confirmed to 

have the structure predicted from the Solexa/Illumina data (SI Methods). The 

abundance of each contig at each time point was measured by the proportion of 

reads that aligned to it, normalized to the length of each contig. The correlation 

coefficient between replicate samples from the same time point was at least 0.99, 

indicating a high degree of reproducibility (Fig. S1). 

 

2.4.2 Viral Groups Detected 

Taxonomic analysis of these contigs indicated recovery of Microviridae, 

Podoviridae, Myoviridae, and Siphoviridae, but contigs with taxonomic 

attributions were a minority, only 13%, emphasizing the enormous sequence 

variation present in bacteriophages. Microviridae (the group including ΦX174) 

predominated, but this predominance could be a consequence of favored 

amplification by Φ29 polymerase of the small circular genomes that characterize 

this group. The most abundant contigs were mostly retained over the duration of 

the experiment. Because there are many possible pairwise comparisons between 

time points, distances between time points analyzed (Fig. 2A, x-axis) were 

compared with Jaccard index values (Fig. 2A, y-axis), which score shared 

membership, over all of the possible pairwise comparisons of time points. On 

average, more than 80% of contigs were found in common between the time 
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points separated by 850 d (points at the right side of the plot), the longest time 

intervals compared. No contigs corresponded to known viruses infecting 

eukaryotic cells. To investigate the possible presence of eukaryotic cell viruses 

further, we aligned the raw sequence reads to the National Center for 

Biotechnology Information viral genome database. Thirty-two percent coverage 

was seen for Gyrovirus in one time point, and pooling reads over all time points 

yielded 42% coverage. Gyrovirus is a Circovirus genus with very small genome 

sizes (∼2.3 kb) recently reported to infect humans (17). However, the number of 

reads aligning was modest (10 total), and in no case did both reads of the paired 

end reads align. Because of these results, and in addition to the small target size, 

we believe that the detection of Gyrovirus is uncertain. All other animal cell virus 

genomes showed <10% coverage, so detection is questionable. The rarity of 

eukaryotic virus sequences is typical of gut virome samples from healthy 

individuals (4–6, 18, 19), emphasizing the tremendous size of the bacteriophage 

populations of the gut. 

2.4.3 Host Bacteria 

To allow tracking of the bacterial hosts, for three of the time points we also 

sequenced a total of 5.2 Gb of DNA purified from unfractionated stool, which 

yields predominantly bacterial DNA. Attribution of bacterial lineages using 

MetaPhlAn (20) showed members of the Bacteroides and Firmicutes phyla to be 
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the most abundant community members (Fig. S2). Bacterial community 

membership and taxonomic proportions showed only modest variation over time. 

Longitudinal Base Substitution in Viral Contigs. The depth of sequence 

information available and the quality of the viral contigs allowed a detailed 

assessment of the rates of accumulation of base substitutions. For each viral 

contig at each time point, the extent of nucleotide polymorphism was determined 

by aligning reads within each sample. The extent of nucleotide substitution then 

was compared for each contig between time points, and substitution frequencies 

were correlated with biological features. Substitution rates varied with viral family 

and replication style (Fig. 2B). The Microviridae showed the highest substitution 

rate (P < 0.004). Microviridae package ssDNA genomes, which have been 

reported to show higher mutation rates than dsDNA genomes in vitro (21, 22), 

and this study confirms this result in a human host. The Podo-, Myo-, and 

Siphoviridae all package dsDNA genomes and showed lower substitution 

frequencies. The lowest substitution rates were seen for temperate 

bacteriophage (P = 0.015, Kruskal–Wallace test), which can integrate into the 

host bacterial genome. Temperate phages were identified as contigs satisfying at 

least one of three criteria: (i) encoding integrase genes, (ii) homologs present as 

prophage in sequenced bacterial genomes, or (iii) annotated as resembling 

previously studied temperate phage (5). When integrated, temperate phage DNA 
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is replicated by high-fidelity bacterially encoded machinery, and temperate phage 

also may undergo fewer lytic replication cycles; both result in lower substitution 

rates. Temperate bacteriophage showed significantly lower substitution rates 

even when Microviridae were excluded from the comparison (P = 0.044). There 

was no significant difference in rates among the families of large dsDNA viruses. 

The four contigs with the highest rate of nucleotide substitution were all members 

of the Microviridae (Fig. 3A). The main variant for each lineage showed 1–4% 

nucleotide substitutions over the course of the experiment (more than one 

substitution per 105 nt per day). An alternative explanation for these high 

substitution rates could be the immigration of new closely related Microviridae 

into the community. To investigate this possibility, we reconstructed the 

consensus genome for the four contigs at multiple time points and aligned them 

against a large collection of Microviridae genomes. In every case the contig 

consensus sequences for all time points clustered closely together (Fig. 3B), 

arguing against immigration of related Microviridae and supporting the model of 

continuous substitution in long-term viral residents. A detailed analysis of the 

longitudinal change of each SNP detected (Fig. 4) showed that a complex 

community of variants was present at most time points and that new SNPs 

accumulated on this background. Substitutions could accumulate either at a 

steady rate or in an episodic fashion, for example in response to a change in 

selective pressure. Linear modeling of substitution rates versus time showed 
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correlation coefficients of 0.91–0.99, consistent with generally steady substitution 

rates, although with considerable sample-specific fluctuations. Longitudinal 

sequence divergence in major variants predicted from the Illumina data were 

confirmed using Sanger sequencing for two of the Microviridae (described in SI 

Methods). 

2.4.4 Clustered Regularly Interspaced Short Palindromic Repeats Targeting 

Phage Genomes 

One force driving phage sequence variation is the bacterial Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) system (23–26). 

DNA sequences from invaders such as bacteriophage or plasmids are 

incorporated as spacers into arrays in the bacterial genome. Transcription of 

such arrays allows the CRISPR spacer RNAs to be incorporated into 

nucleoprotein effector complexes that target the destruction of sequence-

complementary invaders. Thus, bacteriophages are under pressure to mutate to 

evade degradation by the CRISPR system, as has been documented in model 

systems (23–25, 27). The deep analysis of viral sequences presented here, 

together with the shotgun metagenomic analysis of host bacterial sequences, 

allowed the influence of the CRISPR system in vivo to be studied in detail. A total 

of 34 types of CRISPR repeat sequences and their associated spacers were 

identified in the bacterial metagenomic sequence. Table 1 shows that several of 
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these spacers targeted contigs from the virome sequence data. Up to 28 spacers 

could be identified targeting a single viral contig. The CRISPR-targeted viral 

contigs were analyzed for their relative abundance over time. No simple pattern 

was seen relating the presence of CRISPR spacers to the relative abundance 

over all of the targeted viruses. In one case, a viral contig accumulated a base 

substitution in a CRISPR target site, and the mutant contig increased in 

abundance while the original contig declined, suggestive of CRISPR evasion by 

mutation (Fig. S3). Of the CRISPR arrays identified, four appeared to be 

encoded by temperate phage. Several previous reports also have documented 

phage-encoded CRISPR arrays (5, 28, 29). An analysis of longitudinal variation 

in phage CRISPR arrays would be useful, but uncertainties in reconstructing 

arrays from short read data precluded a detailed analysis. For the CRISPR array 

with the most sequence coverage (contig 117), we found that the entire collection 

of spacers was replaced over the time series studied. The phage-encoded 

CRISPR array on phage contig 117 encoded spacers that targeted four different 

phage contigs from our study (Fig. 5 shows one example). We previously 

reported another example from a different subject of a phage-encoded CRISPR 

spacer targeting a different phage in the same virome sample (5). Evidently 

phages commonly use CRISPR systems to compete with one another. 
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2.4.5 Identifying Phage Hosts 

Characterization of bacteriophage populations by sequencing typically 

does not specify the host bacterial species, leaving important gaps in our 

understanding of phage–host interactions. Analysis of CRISPRs, however, 

provides a means of connecting phage–host pairs (Table 1). Three previously 

sequenced bacterial genomes, from Ruminococcus bromii, Eubacterium 

siraeum, and Bacteriodes fragilis, contain CRISPR repeats that were found here 

linked to spacers matching virome contigs from this study (contig 232_308, 

contig 132_57, and contig 111_52, respectively), allowing us to infer that these 

phages infect these three bacteria in the subject studied. In another approach to 

associating phage–host pairs, phage sequences annotated as integrated 

prophages in sequenced bacterial genomes could be recognized that resembled 

our newly sequenced phage contigs, thereby also specifying potential hosts (4–

6). Bacterial lineages identified as harboring phage from the virome analysis 

included Bacteroides fragilis, Eubacterium siraeum, Ruminococcus bromii, 

Blautia hansenii, and Lachnospiraceae, all of which were found to be present in 

metagenomic sequence analysis of total stool DNA (Fig. S2). Overall, 19 of the 

phage contigs sequenced here could be associated with bacterial hosts by at 

least one of the two approaches (Table S2), although for the great majority the 

hosts remain unknown. 
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2.4.6 Longitudinal Sequence Variation Driven by Diversity-Generating 

Retroelements 

Another force diversifying bacteriophage genomes are diversity-

generating retroelements (DGRs), which are reverse transcriptase-based 

systems that introduce mutations at adenines in specific repeated sequences 

using a copy–paste targeting mechanism (6, 30–33). We analyzed the viral 

contigs described here to investigate whether DGRs were detectably active 

within the human gut. DGRs were identified by searching contigs for regions that 

matched three criteria: (i) they contained proteincoding regions resembling 

reverse transcriptases, (ii) they encompassed short repeat regions containing 

mismatches in adenine positions, and (iii) they contained hypervariable regions. 

Of the 20 contigs with both a reverse transcriptase and an adenine mismatched 

repeat, six were associated with hypervariable regions (located no more than 100 

bp away; Table S3) and were selected for further study. As was found previously, 

hypervariation was directed toward asparagine AAY codons in genes encoding 

either predicted C-type lectin or Ig-superfamily proteins (6, 30–33). We next 

asked whether any of the DGRs were detectably active over the time series 

studied. The longest gap between sample collections was 22 mo, so to maximize 

sensitivity we asked whether the hypervariable regions had evolved to become 

clearly different over this time interval. Of the two hypervariable regions with 

sufficient longitudinal coverage for analysis, one (contig 42) showed change over 
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the 22-mo time period, and change was greater than for samples closer together 

in time (P < 0.0001) or for pairs of samples from the same time point (P < 

0.0001). For the second (contig d03-2), we did not obtain evidence for 

longitudinal variation. We conclude that one of our DGRs was active in the 

human gut. For the others, it is unclear whether they were inactive or whether we 

did not have enough sequence coverage to detect activity. Analysis showed that 

DGR containing contigs were not among the most variable, highlighting the local 

nature of DGR variation and emphasizing the contributions of other mechanisms. 

The possibility that some of the DGRs were inactive raises the question of 

whether the mutagenic activity might be regulated in the human host. 

2.5 Discussion  

Here we report a study of longitudinal variation in the human gut virome 

and some of the mechanisms responsible for change over time. Loss and 

acquisition of viral types was uncommon: Fully ∼80% of viral forms persisted over 

the 2.5-y time course studied, as is consistent with previous studies of shorter 

duration (4–6). Most viral contigs showed diversity within each time point and 

accumulated variation over time. Temperate DNA phages showed relatively 

modest rates of variation compared with lytic phage, as is consistent with 

temperate phage DNA replication by accurate bacterial polymerases in the 

prophage state, and potentially fewer total rounds of replication. In contrast, the 
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strictly lytic ssDNA Microviridae showed up to 4% substitutions in the major 

variants present over the time period studied. DGRs showed high diversity in 

variable repeat regions, and one was detectably active over the time series 

studied. CRISPR arrays encoded in viral genomes also were associated with 

longitudinal variation. Thus, multiple mechanisms contributed to viral sequence 

variation, and our data provide a detailed picture of their relative contributions. 

This study did not yield any clear examples of known DNA viruses infecting 

animal cells. Rare reads did align to genomes of animal cell viruses, but it is 

uncertain whether these alignments represent true detection of these viruses or 

rare regions of homology between animal cell viruses and phages. In contrast, 

several studies have reported frequent detection of animal cell viruses in 

metagenomic analysis of stool DNA from humans and other primates, raising the 

question of how these studies differed. One observation is that samples from sick 

individuals (34, 35) or SIV-infected macaques (36) have yielded animal cell 

viruses more frequently than samples from healthy controls. Some of these 

studies did not attempt to analyze bacterial viruses, instead using bioinformatic 

filters to extract animal cell viruses from complex sequence mixtures, potentially 

leading to an under-appreciation of the size of the phage populations. Thus, our 

data emphasize that in the healthy human gut bacterial viruses are much more 

numerous than animal cell viruses, although it remains possible that some of our 

contigs with no database matches correspond to previously unknown viruses 
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infecting human cells. Given the findings reported here, we can return to the 

question of why human gut viromes differ so greatly among human individuals. 

One factor must be the differences in bacterial populations in the guts of different 

humans. Many metagenomic studies emphasize that, although the human gut 

typically contains bacteria from only a few phyla, the bacterial strains are mostly 

different between individuals (11–13). Phages can be highly selective for different 

bacterial lineages—indeed, phage sensitivity is used clinically to distinguish 

some bacterial strains (e.g., refs. 37 and 38)—likely explaining some of the 

differences in phage populations in different individuals. However, a second 

basis for the differences among individuals, highlighted in data reported here, is 

rapid within-host viral evolution. Microviridae lineages showed up to 4% 

substitution in the main variant over the 2.5-y period studied, consistent with 

laboratory experiments also showing high mutation rates for Microviridae (39). 

There is no single threshold of sequence identity accepted for splitting related 

viruses into separate species (40), but different Microviridae species specified by 

the International Committee on Taxonomy of Viruses show as little as 3.1% 

divergence (Table S4). Evidently the divergence seen here for Microviridae 

contigs 122_321 and 001_39 approaches the level sufficient for designation as 

speciation events. Extrapolating from these rates, our data suggest that multiple 

new viral species commonly will arise in the gut of a typical human over the 

course of a human life. Thus, part of the explanation for the extremely large 
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populations of gut viruses inferred from sequence information and for the 

extreme differences among individual humans appears to be rapid within-

individual evolution of long-term viral residents. 

2.6 Methods 

  Longitudinal stool samples were collected from a single healthy male adult 

under a protocol approved by the Internal Review Board of the Perelman School 

of Medicine at the University of Pennsylvania. Samples of viral particles were 

purified by filtration, Centricon ultrafiltration, and nuclease treatment, and then 

total DNA was extracted using the QIAamp DNA Stool kit. Sequence information 

was acquired using Illumina paired-end technology. Sequences were assembled 

by iterative deBruijn graph assembly using MetaIDBA, and contigs were 

combined using Minimo. Taxonomy was assigned using Blastp, ORFs were 

predicted using Glimmer, and bacterial taxa were called using Metaphlan. 

Oligonucleotides used in this study are presented in Table S5. All sequence 

information has been deposited at the National Center for Biotechnology 

Information. For further details see SI Methods. 
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2.7 Figures 

Figure 1 

 

Fig. 1. Longitudinal analysis of the human gut virome from a single individual. (A) Timeline of 
sample collection. Note that at some time points, two separate portions of the stool sample, taken 
approximately 1 cm apart, were processed and sequenced independently to assess 
reproducibility. (B) Rarefaction analysis of sampling depth by number of reads; detection of each 
contig is scored as positive if 50% of the contig is covered by sequence reads. (Inset) Contig 
recovery. The x-axis is the number of samples included (black line: 2 million reads; blue line: 15 
million reads). (C) Contig spectrum, relating the lengths of the contigs assembled in bas pairs (x-
axis) to the depth of coverage (y-axis). Circular contigs are shown as blue and linear contigs as 
red. 
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Figure 2 

 

 

 

 

 

 

 

 

 

Fig. 2. Stability and change in the gut virome of the individual studied. (A) Conserved 

membership in the viral community over time intervals analyzed using the Jaccard index. 

Because many pairwise comparisons are possible between the 24 time points, we plotted shared 

membership for all pairs of time points as a function of the length of time between each pair. The 

x-axis shows the time interval between time points, and the y-axis shows shared membership in 

the two communities compared summarized using the Jaccard index. Perfect identity yields a 

value of 1, and complete divergence yields a value of 0. (B) Comparison of substitution rates 

among viral families. Temperate phages are shown in blue, and lytic phages are in red. The viral 

families studied are shown at the bottom; substitution rates on the y-axis are substitutions per 

base, per day. Only contigs with clear taxonomic attributions were analyzed; such contigs 

comprise a minority of all contigs. 
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Figure 3 

 
Fig. 3. Longitudinal DNA substitution in Microviridae. (A) Substitution rates in the four Microviridae 
genomes with the highest values measured. Because many pairwise comparisons are possible 
between the time points at which each virus was detected, the plot shows distances between time 
points on the x-axis and the percent substitution on the y-axis. The percent substitution values 
within each time point were subtracted from the between-time point values before the plot was 
constructed. Colors differentiate the four viruses studied. (Inset) The genome with the highest 
substitution rate (contig 122_321). (B) Phylogenetic tree of microphages detected in this and 
other studies. The four microphage contigs with the highest substitution rates observed in this 
study are shown in large black lettering. Database microphages are shown in red, microphages 
from ref. 6 are shown in green, and additional microphages identified in this study are shown in 
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blue. (Scale bar: the proportion of amino acid substitutions within the 919-aa major coat protein, 
which was aligned to make the tree.) Longitudinal maps of substitution accumulation are shown 
to the right. Note that all of the variations shown in the sequences to the right are plotted in the 
phylogenetic tree but are not visible because of the comparatively low divergence. Only time 
points with high-quality complete-genome assemblies are shown. 
 

Figure 4 

 

Fig. 4. Relative abundance of SNPs in four Microviridae genomes analyzed longitudinally. 
Contigs studied are marked above each figure panel. The x-axis shows elapsed time since the 
start of the study. The y-axis shows the relative proportion of each variant in the population. The 
dashes on the x-axis show replicate analysis of single time points, allowing assessment of within-
time point variability. Only positions with SNPs that transitioned from minor (0.5) are plotted. The 
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colors are used to make the different positions easier to visualize. Panel labels A–D show data for 
the contigs indicated at the top of each panel. 
 

Figure 5 

 

Fig. 5. A phage-encoded CRISPR array targeting another phage. The array shown (contig 117) 
was detected in the viral contig collection. Gray indicates CRISPR repeats, and colors indicate 
CRISPR spacers. The target contig (contig 102) also was identified and observed to be present at 
some of the same time points; three other contigs also were targeted by the CRISPR array in 
contig 117. The CRISPR array in viral contig 117 is closely similar to CRISPR-2 detected in the 
total stool metagenomic sequencing. 
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Figure S1 

 

Fig. S1. Reproducibility between replicates. Each point represents the normalized abundance of a 
contig in a pair of replicate virome samples from the same time point. All contigs and pairs of 
technical replicates are represented in the figure. 
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Figure S2 

 

Fig. S2. Bacterial species detected in Illumina sequencing of unfractionated stool DNA. Bacterial 
lineages were identified using MetaPhlan. 
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Figure S3 

 

Fig. S3. A possible case of an escape mutation allowing evasion of CRISPR pressure. An 
example of bacterial CRISPRs targeting viral contig 111_52 and a possible example of an escape 
mutation. (A) Mapping of bacterial CRISPR target sites on the phage genome. The CRISPR 
spacer targets are shown by the arrows, and the spacer described in B is indicated by the 
asterisk. (B) Longitudinal abundance of a phage genome with an additional mismatch at a 
CRISPR homologous site. The genome containing an additional mismatch in the CRISPR 
recognition site (red) versus the original sequence (blue) increased in abundance over time. 
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3.1 Abstract 

The genomic DNAs of tailed bacteriophages are commonly modified by 

attachment of chemical groups.  Some forms of DNA modification are known to 

protect phage DNA from cleavage by restriction enzymes, but others are of 

unknown function.  Recently the CRISPR-Cas nuclease complexes were shown 

to mediate bacterial adaptive immunity using RNA-guided target recognition, 

raising the question of whether phage DNA modifications may also block attack 

by CRISPR-Cas9.  We investigated phage T4 as a model system, where 

cytosine is substituted with glucosyl-hydroxymethylcytosine (glc-HMC).   We first 

quantified the extent and distribution of covalent modifications in T4 DNA using 

single molecule DNA sequencing and enzymatic probing. We then designed 

CRISPR spacer sequences targeting T4, and found that wild-type T4 containing 
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glc-HMC was insensitive to attack by CRISPR-Cas9, but mutants with 

unmodified cytosine were sensitive.  Phage with HMC only showed intermediate 

sensitivity.  While this work was in progress, another group reported examples of 

heavily engineered CRISRP-Cas9 complexes that could in fact overcome the 

effects of T4 DNA modification, indicating that modifications can inhibit but do not 

always fully block attack. 

3.2 Importance 

Bacteria were recently found to have a form of adaptive immunity, the CRISPR-

Cas systems, which use nucleic acid paring to recognize and cleave genomic 

DNA of invaders such as bacteriophage.  Historic work of tailed phages has 

shown that phage DNA is often modified by covalent attachment of large 

chemical groups.  Here we demonstrate that DNA modification in phage T4 

inhibits attack by the CRISPR-Cas9 System.  This finding provides insight into 

mechanisms of host-virus competition, and also a new set of tools that may be 

useful in modulating the activity of CRISPR-Cas9 in genome engineering 

applications. 
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3.3 Introduction 

The functional importance of covalent DNA modification was first 

demonstrated in 1952 in studies of bacteriophage (1, 2).  In bacteriophage T4, 

genomic DNA contains 5-hydroxymethylcytosine (HMC), which is further 

modified by attachment of glucose to yield glucosyl HMC (glc-HMC) (Fig. 1) (3-

6).  Incorporation of HMC blocks DNA cleavage by many restriction 

endonucleases, and the glc-HMC modification further blocks attack by the HMC-

specific McrABC (Rgl/MspJI) nuclease. Today more than ten different types of 

covalent modification are known in bacteriophage DNA, many of which are of 

unknown function (7, 8).  Eukaryotic DNA also can be modified to methyl-

cytosine, hydroxymethyl-cytosine and glucosylated 

hydroxymethyldeoxyuridine(9, 10). 

Recently striking studies have revealed a new class of nucleases in 

bacteria, the CRISPR-Cas systems, which provide bacteria with a form of 

adaptive immunity against infection by genomic parasites such as phages or 

plasmids(11-17).  Short sequences from genomic parasites are incorporated into 

CRISPR arrays in the bacterial chromosome, which consist of repeated 

sequences and unique spacers (typically ~30 nt) that are derived from 

invaders(18-20).  Transcription of the arrays and RNA processing produces 
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spacer RNA sequences (crRNAs), which are bound by a nuclease (Cas9 for the 

type II CRISPR systems)(21).  The crRNA is then used to recognize DNA of 

invaders by base pairing, allowing subsequent nucleic acid cleavage by Cas9(22) 

(reviewed in (23-25)).  These programmable nuclease systems are now used 

widely in biotechnology applications (26-31). 

The discovery of the CRISPR-Cas9 system raised the question of whether 

T4 DNA modification might have an additional function—protecting phage DNA 

from cleavage by CRISPR-Cas9.  One previous paper analyzed the effects of a 

smaller DNA modification--adenine N6 methylation--and showed that phage DNA 

with this modification was still sensitive (32).  Another study demonstrated that 

genome engineering by Cas9 in eukaryotes is also unaffected by 5-methyl 

cytosine (33).    Here we investigate the effects of the larger DNA modifications 

found in T4.  We first characterize T4 DNA modification in detail using single 

molecule sequencing and nuclease digestion.  We go on to show that the bulkier 

HMC and glc-HMC modifications can in fact inhibit CRISPR-Cas9 attack. While 

this work was in progress, another group reported examples were T4 with glc-

HMC modification could be in fact be sensitive to attack by CRISPR-Cas9, which 

we further analyzed and attribute to use of a heavily engineered and optimized 

CRISPR-Cas9 system (34). 
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3.4 Results 

3.4.1 The extent of modification in T4 and mutant derivatives 

Prior to testing sensitivity to CRISPR-Cas9, wild-type bacteriophage T4 

(termed “T4(glc-HMC)” in the following) and mutants altered in DNA modification 

were analyzed to characterize the nature and extent of genomic DNA 

modification.  T4(147) is mutant in genes encoding the alpha and beta glucosyl 

transferases, which attach glucose to HMC DNA, so that genomes contain HMC 

only (termed “T4(HMC)” in the following).  T4(GT7) is mutant in genes required to 

substitute HMC for dCTP in nucleotide pools, so genomes contain only 

unmodified cytosines (termed “T4(C)” below).  Complete T4 genotypes are in 

Table S1.   

Several studies were carried out to verify the presence of the expected 

DNA modifications in each phage and evaluate the extent of base substitution.  

First, genomic DNAs were purified from phage stocks and probed by exposure to 

DNA modifying enzymes of known specificities.  DNA from T4(C), but not 

T4(HMC) or T4(glc-HMC), was sensitive to digestion by the restriction enzyme 

AluI (Fig. 2A, top), as expected for DNA containing unmodified cytosines.  T4 

genomic DNAs were next incubated with MspJI, which cleaves HMC-containing 

DNA selectively.  T4(HMC) DNA was digested, but not T4(glc-HMC) or 

T4(C)(Fig. 2A, middle).  The T4 DNAs were also exposed to a glucosyl-
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transferase and a glucose donor, which resulted in reduced mobility of T4(HMC) 

DNA, consistent with glucose attachment to HMC, but no changes were 

observed for the faster migrating T4(C) or slower migrating T4(glc-HMC) (Fig. 

2A, bottom).  T4 DNA modification was further probed by infection of E. coli 

strains expressing the Rgl nuclease, which cleaves HMC-containing DNA 

selectively.  Infection by T4(HMC) was undetectable in Rgl-containing strains, but 

infection by T4(glc-HMC) or T4(C) was not restricted.  These data confirm the 

expected modification patterns in the T4 DNA stocks studied, and indicate that 

the extents of HMC incorporation and subsequent glucosyl conjugation are high, 

consistent with an analysis of nucleotides generated after enzymatic degradation 

of T4(glc-HMC) DNA (35). 

3.4.2 Single molecule sequencing to characterize T4 DNA modification 

To characterize the extent and distributions of DNA modifications in more 

detail, we subjected each T4 DNA sample to analysis by single molecule real-

time (SMRT) sequencing using Pacific Biosciences technology (36, 37).  In this 

method, single DNA molecules are sequenced by synthesis on immobilized DNA 

polymerase enzymes.  Sequence information is acquired by detection of 

fluorescently labeled nucleotides during each incorporation step.  The presence 

of DNA modifications in the template can slow the kinetics of incorporation, 

allowing DNA modification to be quantified as an increase in interpulse duration 
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(IPD).  IPD values are calculated for each position in the template sequence and 

are compared to an in silico model of IPD values for an unmodified sequence 

(IPD ratio) (38).  In favorable cases, different forms of DNA modification show 

distinguishable kinetic profiles (38-41). 

Figure 2B and Fig. S1A and B  summarize the SMRT sequencing results 

for T4(glc-HMC), T4(HMC), T4(C), and a T4 genome lacking all forms of 

modification made by copying wild-type T4 DNA with a DNA polymerase in vitro 

(whole genome amplification, “WGA”). Kinetic profiles of T4(glc-HMC) showed 

many increased IPD ratios associated with expected positions of glc-HMC (Fig. 

2B, top).  Particularly increased IPDs were seen for potential glc-HMC sites 3’ of 

a G residue, or 5’ of a pyrimidine (Fig. S2).  The mechanism of these sequence 

context effects is unknown--they could either reflect different extents of glucose 

attachment dependent on local sequence, or differential effects of sequence on 

polymerase kinetics.  Kinetic perturbations were also seen at additional base 

positions, commonly those near C residues in the sequence, suggesting that 

modifications may contact polymerase from nearby positions in the DNA chain.  

For T4(HMC), kinetic lags were also associated with sites of potential C 

modification (Fig. 2B, middle), but the magnitude of the effects were typically less 

than for T4(glc-HMC). For T4(HMC) modification, IPD ratios were particularly 

high for pairs of expected HMC residues (Fig. S2). T4(C) and the WGA DNA 
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showed no notable alterations in kinetics at C residues (Fig. 2B, bottom two 

panels).   

T4 also encodes an (N6-adenine)-methyltransferase that methylates A 

residues at 5’-GATC-3’ sequences.  The role of this modification is unknown, but 

it may help protect T4 DNA from the cellular methyl-directed mismatch repair 

system, which carries out double strand cleavage when mismatches are detected 

near unmodified 5’-GATC-3’ sequences (42-44).  Methylation was evident as 

increased IPD values at A in 5’-GATC-3’ in all three T4 genomic DNAs but not in 

the WGA control. However, the extents of modification differed (Fig. 2C).  The 

extent of 5’-GATC-3’ adenine methylation was higher in both T4(C) and T4(HMC) 

than in T4(glc-HMC) DNA, paralleling a previous report (45).  This is consistent 

with a steric interference model, which posits that glucosylation of HMC obstructs 

access of the adenine methyltransferase to T4 DNA and thereby reduces the 

extent of 5’-GATC-3’ adenine methylation.  

Sequencing data for T4(C) showed a high proportion of reads that 

mapped to the E. coli genome (56.7%; Fig. S3).  Far fewer E. coli reads were 

detected in the T4(glc-HMC) and T4(HMC) samples (1.5% and 0.8% 

respectively).  The T4(C) strain has been widely used in generalized transduction 

for genetic mapping in E. coli (46-48).  T4(C) contains a mutation that inactivates 

the gene encoding the denB nuclease, which normally degrades host cell DNA, 
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thus allowing E. coli DNA to compete for packaging in T4 particles, as well as 

mutations inactivating the T4 encoded dCTPase and dCMP hydroxymethylase 

enzymes.  In T4(C), different segments of the E. coli DNA was not packaged with 

uniform frequency (Fig. S3), suggesting possible involvement of sequence-

specific recognition during T4 packaging(49).  

3.4.3 Inhibition of CRISPR-Cas9 by T4 DNA modification 

Given that the densities of DNA modification in T4(glc-HMC) and T4(HMC) 

are high, we sought to investigate whether the CRISPR-Cas system was blocked 

by T4 DNA modification.  As a representative CRISPR-Cas system, we chose 

the type II system of Streptococcus pyogenes, because it has been widely used 

in biotechnology applications and functions well in E. coli (27).  CRISPR spacers 

(targeting sequences) were designed to target four regions of the T4 genome 

(termed “protospacers”), each proximal to the required downstream 5’-NGG-3’ 

protospacer adjacent motif (PAM) in the T4 target.   

Protospacer sequences and T4 DNA modification densities in these 

regions are shown in Fig. 3.  The spacers were designed to target regions of the 

T4 genome with varying cytosine arrangement and density.  None of the spacers 

contain the adenine methylation target sequence, GATC. Spacer T4 CRISPR 1 

was designed to target a region of the T4 genome that maximizes the number of 

cytosines on the target strand and in the “seed sequence”, which is the inferred 
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3’ region of the CRISPR RNA that is reported to be most important for 

recognition (50). Spacer T4 CRISPR 2 maximizes the number of cytosines or 

modified derivatives on both the target and complementary strands in the T4 

protospacer.  Spacer T4 CRISPR 3 minimizes the number of cytosines in the 

target strand, but maximizes the number of cytosines on the complementary 

strand of the T4 protospacer.  Spacer T4 CRISPR 4 minimized the numbers of 

cytosine residues on both the target and complementary strands of the T4 

protospacer.  IPD ratio analysis of T4(glc-HMC) and T4(HMC) DNA showed 

slowed kinetics at C-residues in the complement of the 5’-NGG-3’ PAM 

sequence and at internal cytosines, indicative of DNA modification.   

The efficiency of phage infection was then tested on the CRISPR-Cas9-

containing strains. To confirm the CRISPR system was active using our 

engineered spacers, we transformed the CRISPR-Cas9 containing bacteria with 

pUC19-derived plasmids encoding either the corresponding T4 protospacers and 

PAM sequences or a nonspecific control sequence (Fig. 4A).  Using 

spectinomycin antibiotic selection for the target plasmid, we quantified efficiency 

of transformation, comparing the number of bacteria containing the incoming 

plasmid with a target matching T4 protospacer versus a control plasmid lacking 

the target (Fig. 4B).  All of the CRISPR-Cas9 containing bacteria showed 
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reduced acquisition of the target-containing plasmid, indicating that the CRISPR 

systems are functional and reduce transformation by at least two logs (Fig. 4B).   

The ability of T4 and mutant derivatives to infect CRISPR-Cas9 containing 

bacteria was then scored in plaque assays (Fig. 4C).  Figure 4D-F shows 

illustrative experiments in which T4 phage were plated on CRISPR-Cas9-

containing strains or controls and the efficiency of plaquing quantified. Infection 

with the cytosine-only strain T4(C) resulted in reduced or undetectable plaque 

formation in the presence of the T4-targeting spacers (Fig. 4D, right-most four 

spacers). Plaque formation was not affected by the presence of Cas9 and a 

nonspecific spacer, or in E. coli with no CRISPR-Cas9 system (Fig. 4D, left two 

samples marked “None” and “non-sp”).  T4 CRISPR 1 showed the weakest 

activity, possibly due to high G/C content or the presence of homopolymeric 

sequences in the crRNA, which were previously reported to inhibit function (51).  

Titration studies on strains containing Cas9 and CRISPR 2, 3, and 4 showed the 

efficiency of plating to be reduced by >10,000-fold. CRISPR1 was weaker, 

showing only about 3-fold reduction, paralleling many studies showing variation 

in the efficiency of CRISPR targeting. 

T4(glc-HMC), in contrast, formed plaques on strains expressing T4 

CRISPR 1-4 and Cas9 efficiently (Fig. 4E).  Infection of three of the four 

CRISPR-containing strains was as efficient as for the strains with control 
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nonspecific spacers.  The fourth (T4 CRISPR 4) contained the spacer with the 

fewest modified C resides on both DNA strands, and so the lowest modification 

density.  Infection by T4(glc-HMC) was reduced 2-10 fold in repeated assays, 

and plaque size was reduced by about two-thirds, indicating some sensitivity.  

Note that two modified cytosines are present in T4 CRISPR 4 target in the DNA 

complementary to the 5’NGG’3 PAM, and glucosylation of these likely exerted 

some inhibition.  A previous study showed both DNA strands of the PAM are 

important for target recognition in other CRISPR systems(52).   T4(glc-HMC) 

infection was not inhibited in strains expressing T4 CRISPR 3, which contains no 

cytosines on the target DNA strand but seven on the complementary strand, 

indicating that modifications on either strand can interfere with CRISPR attack.  

Thus glucosylation of HMC mostly protects T4 from attack by the CRISPR-Cas9 

system, but a region with few glc-HMC residues showed modest but detectable 

sensitivity. 

For T4(HMC)(Fig. 4F), the T4 CRISPR 1-3 targeting constructs did not 

inhibit infection, indicating that substitution of cytosine with HMC was also 

sufficient to block CRISPR-Cas9 attack.  However, for T4 CRISPR 4, which has 

the fewest C residues on both the target and complementary strands, T4(HMC) 

was highly sensitive—efficiency of plating was reduced by at least 10,000-fold 

(Fig 4F).  This indicates that the HMC modification alone on the cytosines on the 
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complementary strand of the 5’-NGG-3’ PAM is not enough to inhibit CRISPR-

Cas9 attack.  Evidently the HMC modification is a less effective blocker than the 

glc-HMC modification, though both suffice at a high enough density.  

3.4.4 Comparison to results of Yaung et al. 

 While this work was in progress, Yaung et al. reported three spacers in an 

engineered type II CRISPR system that were functional against wild-type T4(glc-

HMC) phage and a T4 mutant containing HMC DNA (34).  We obtained their 

spacer plasmids, and confirmed that they were able to restrict growth of 

T4(HMC) and T4(glc-HMC) phage in plaque assays as reported (Fig. S4A&B).  

These spacers differed from ours in that the crRNAs were engineered so that 

they were fused to tracrRNAs also know as a single-guide RNAs(26).  The 

tracrRNA is a small RNA bound by Cas9 that is required for crRNA processing 

and as a cofactor for Cas9 nuclease activity(53).  Fusion of the two RNAs is 

convenient in some genome engineering applications (26).   

We cloned the spacers of Yaung et al. into the type II CRISPR system 

used in our studies, where crRNAs are not fused to tracrRNA, as in the natural S. 

pyogenes CRISPR-Cas9 system.  We found that two of the three spacers were 

ineffective against the modified DNA of phage T4(glc-HMC) (Fig. S4D), but all 

three spacers were effective against unmodified DNA (Fig S5).  Two of the 

spacers restricted growth of T4(HMC), while the third showed partial activity (Fig. 
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S4C).  We confirmed that the Cas9 nucleases used here and by Yaung et al. 

functioned similarly in side-by-side tests, indicating that the CRISPR RNAs and 

not the Cas9 nuclease were responsible for the functional differences (Fig. 

S5E&F).  Evidently the spacers of Yaung et al., with the synthetic single-guide 

RNA fusion, shows higher activity against modified T4 DNA (Fig. S4).   These 

data indicate that DNA modifications can inhibit a biologically-occurring type II 

CRISPR system, but that particularly potent crRNAs can overcome this inhibition.  

With the model system available to study CRISPR-Cas9 attack on T4, we 

were able to address further questions of T4 biology as described below. 

3.4.5 Testing the role of T4 IP proteins 

Three T4 proteins are injected into E. coli along with T4 DNA early during 

infection (IPI-III) and bind the T4 genome (54).  IPI protects T4 from the 

GmrS/GmrD restriction enzyme, but the function of IPII and IPIII are unknown 

(55) —we thus asked whether any of the IP proteins contributed to evasion of the 

CRISPR-Cas9 system.  This study was motivated in part by a previous report in 

which Pseudomonas phages were shown to encode protein inhibitors of a 

CRISPR-Cas system (56).  For T4, such proteins would hypothetically be 

required for DNA modifications to exert their protective effect.  A T4(glc-HMC) 

strain mutant in all three IP genes was tested by infection of strains containing 

the T4 targeting CRISPRs.  No difference in infectivity was observed, indicating 
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that the IP proteins are not cofactors required to allow DNA modification to inhibit 

attack by CRISPR-Cas9 (Fig. S6).  However, we note that there are multiple 

types of CRISPR-Cas systems that are quite different from each other, and T4 

can infect Escherichia, Shigella and Yersinia (57), so it would be of interest to 

test possible inhibition of additional CRISPR-Cas systems from these organisms. 

 

3.4.6 Characterization of a revertant of T4(C) with reduced sensitivity to 

CRISPR-Cas9 

We observed a T4(C) revertant that reduced sensitivity to CRISPR-Cas9, 

and so characterized it further. Normally T4(C) plaques are small and turbid.  

During growth, we observed appearance of a new variant generating large clear 

plaques resembling T4(glc-HMC) plaques.  Further tests showed reduced 

sensitivity to CRISPR-Cas9 (FigS7 C data).  We sequenced the revertant phage, 

named T4(C)R and identified three mutations (FigS7 A and B). One point 

mutation eliminated the stop codon in gp42, which encodes dCMP 

hydroxymethylase, an enzyme necessary to synthesize HMC.  A second 

mutation introduced a single nucleotide deletion into the deoxycytidylate 

deaminase gene, yielding a stop codon that truncated the encoded protein.  

Deoxycytidylate deaminase converts dCMP (a precursor of HMC) to dUMP.  

Both of these mutations favor the synthesis of HMC, which can be incorporated 
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in the T4(C)R genome and then further modified to glc-HMC by alpha and beta 

glucosyl transferases.  The third mutation was a nonsynonymous point mutation 

in the uncharacterized, hypothetical protein NrdC.5, and is of unknown 

significance.  

T4(C)R was resistant to spacers 1,2, and 3 in the CRISPR-Cas9  system, 

but sensitive to spacer 4 (FigS7 C), thus showing slightly greater sensitivity than 

wild-type T4(glc-HMC). These results and other results are consistent with the 

idea that T4(C)R contains HMC or glc-HMC, though potentially not at every 

position in the genome due to higher cellular dCTP pools competing for 

incorporation. These findings again support the idea that DNA modifications can 

block CRISPR-Cas9 activity. 

 

3.5 Discussion 

 These data show that modification of T4 DNA to HMC or glc-HMC reduces 

sensitivity to attack by CRISPR-Cas9.  A previous study showed that adenine 

methylation at a 5’-GATC’3’ sequence did not block CRISPR-Cas-mediated 

inhibition (32), and data presented here shows that low density modification with 

HMC also was not protective.  Evidently protection against CRISPR-Cas9 attack 

can be achieved either by addition of bulkier glucosyl-HMC modifications or 

addition of a high density of less bulky HMC modifications.   
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While this work was in progress, and contrary to our developing data, 

Yaung et al. reported spacers that could in fact target glc-HMC modified T4 DNA 

efficiently (34).  Our own tests with the reagents of Yaung et al. confirmed their 

conclusions. The Cas9 enzymes used were identical in both studies, specifying 

the RNA component as the origin of the different potency.  Yaung et al. used 

crRNAs fused to tracrRNAs, which could have potentially improved activity by 

favoring RNA loading onto Cas9, or increased specific activity of the loaded 

sgRNA/Cas9 complex.  One of the crRNAs of Yaung was notably potent even 

without the tracrRNA fusion, suggesting that for this spacer fusion with the crRNA 

did not explain potency.  Another candidate explanation is that the positions of 

base modifications in the recognition site may be important, and that the rules for 

this are not fully clarified.  For all spacers studied here, we have not investigated 

whether cleavage mediating T4 inhibition is in fact due to on target or off target 

cleavage, so increased off target specificity is another possible explanation for 

increased inhibition (58).  

Classic studies on the tailed DNA phages have identified more than ten 

different forms of covalent DNA modification, and modification is commonly found 

in DNA of these viruses (7, 8).  Recent metagenomic studies also emphasize the 

ubiquity of CRISPR systems targeting phage in natural environments such as the 

human microbiome (59-61).  There are even examples of phage from the human 
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gut that themselves encoding CRISPR spacers targeting other phage from the 

same individual, indicating that phages may be competing with each other using 

the CRISPR-Cas system (60, 61).   Given these observations, and data shown 

here that modification of T4 DNA to HMC or glc-HMC can reduce sensitivity to 

attack by CRISPR-Cas9, it seems probable that many of the bulkier forms of 

DNA modification seen in tailed DNA phage have evolved at least in part to 

reduce sensitivity to cleavage by CRISPR-Cas systems.   

 

3.6 Materials and Methods 

Propagation of phage strains. Manipulation of phage T4 was carried out as 

described in (62).  Phage T4(glc-HMC), T4(HMC), and T4(C) were provided by 

Lindsay Black. Genotypes are listed in Table S1.  T4(C) contains amber 

mutations in several DNA modifying genes (Table S1).  The amber mutations are 

known to easily revert so T4(C) was propagated in the amber suppressor strain 

E.coli CR63 to prevent genotype reversion.  Experiments with T4(C) were carried 

out in the non-suppresser E.coli strain DH10B ensure cytosines in T4(C) were 

unmodified.   Experiments and propagation of T4(glc-HMC) and T4(HMC) were 

carried out in DH10B. Experiments with T4(IP0) were carried out in E.coli B834.  
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CRISPR system and spacer design.  Design of CRISPR spacers was carried 

out using custom code in R attached in Supplementary Material. CRISPR 

targeting plasmids were constructed using the system described by L. Marraffini 

and coworkers(27), which consists of two plasmids pCas9 and pCRISPR.  pCas9 

contains the Cas9 nuclease and tracrRNA (Addgene number 42876). Spacers in 

this study were cloned into the CRISPR array on pCRISPR (Addgene number 

42875) using the Marraffini lab protocol available on Addgene.  Comparison of 

work to Yaung et al.  was carried out using plasmids DS-SPCas (addgene 

number 48645), PM-SP!TB (addgene number 48650) and plasmids provided by 

Yaung et al.  Oligos used for cloning are listed in table S2. 

 

Plasmid transformation assays. T4 protospacer and PAM sequences used in 

this study were individually cloned into pUC19 plasmids.  100ng of 

protospacer/PAM containing pUC19 were transformed into chemically competent 

E. coli DH10B containing a CRISPR-Cas9 system targeting the corresponding 

protospacer. As a transformation control, 100ng of pUC19 without a protospacer 

was transformed into DH10B containing a CRISPR-Cas9 expression system.  

Transformations were incubated at 37oC for 1hr in 200uL SOC media without 

antibiotic selection then plated on LB 100ug/mL carbenicillin plates to select for 

pUC19.   Efficiency of transformation was determined by dividing the number of 
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colony forming units observed in the protospacer containg pUC19 transformation 

by the number of colony forming units observed in the control pUC19 

transformation. 

 

 Plaque assays. Plaque assays were used to determine the ability of phage to 

infect bacteria DH10B containing the CRISPR-Cas9 system.  Up to 104 phage 

PFUs in a volume of 10uL were added to 200uL of log phase E.coli DH10B and 

incubated at room temperature for 10min.  3mL of 0.4% LB top agarose were 

added to the bacteria/phage, mixed, and poured onto LB plates containing 

appropriate antibiotics:100ug/mL kanamycin for pCRISPR, 50ug/mL 

chloramphenicol for pCas9,  100ug/mL ampicillin for DS-SPcas and 50ug/mL 

chloramphenicol for PM-SP!TB.  Plates were incubated at 37oC overnight.  Three 

biological replicates, each with three technical replicates, were carried out per 

experiment. The efficiency of plaquing was determined by dividing the number of 

plaques on an experimental plate by the number of plaques on a control plate 

containing E.coli with no CRISPR system.  A Kruskal-Wallis nonparametric 

comparison of means was carried out using GraphPad Prism software for each 

experiment. 
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Phage DNA isolation and sequencing.  Phage lysates were grown at an MOI 

of 0.01 on DH10B. Phage T4 DNAs were isolated using Norgen Phage DNA 

isolation kit (Thorold, Canada).  Chloroform-treated phage lysates were 

concentrated by 4% precipitation in PEG4000/500 mM NaCl, resuspended into 

TE buffer, and purified as recommended.   The concentration of isolated T4 

phage DNAs was measured using Quant-iT™ PicoGreen® dsDNA Assay Kit 

(Carlsbad, CA).  For single molecule sequencing, purified phage DNA was 

fragmented to an average size of 1.5 kb via adaptive focused acoustics (Covaris, 

Woburn, MA). SMRTbell template sequencing libraries were prepared as 

previously described (63). Sequencing was carried out on an RS II (Pacific 

Biosciences, Menlo Park, CA) using P4/C2 sequencing chemistry and standard 

protocols for large insert libraries.  Consensus sequences were generated using 

Quiver and kinetic data was generated with SMRT Analysis Software v2.0 

(Pacific Biosciences). For further methods see SI Methods. Libraries for 

sequencing T4(C) and T4(C)R were made using Illumina’s Nextera XT DNA 

Sample Preparation Kit with 1 ng of input DNA, generating paired-end fragments. 

Metagenomic sequencing was performed on an Illumina MiSeq instrument.  

Paired-end reads from the MiSeq instrument were quality-trimmed.  Reads were 

aligned using Geneious to the NCBI T4 genome sequence to form consensus 

sequences for T4(C) and T4(C)R. 
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Nuclease Assays. 1ug of T4(C), T4(HMC), and T4(glc-HMC) were digested with  

AluI (NEB: R0137s), MspJI (NEB: R0661S), and T4 phage β-glucosyltransferase 

(NEB: M0357S) using NEB specified protocols. 
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3.7 Figures 

Figure 1 

 

DNA modification in phage T4 showing C-containing DNA (left), HMC-containing DNA (middle), 
and glc-HMC DNA (right). 
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Figure 2 

 

FIG 2 Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and 
T4(C) DNA left untreated () or treated with () restriction enzymes AluI (top), which cleaves 
unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 glucosyltransferase 
(bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. 
The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA 
modification by single-molecule sequencing. Results are summarized for each genome by 
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mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base 
is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for 
each of the four genomes. The distance each colored point is displaced from the center indicates 
the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). 
Examples of interpulse distances (indicative of modification) are shown to the right for a short 
segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward 
strand and downward for the reverse strand).A 5=GATC 3=site of DAM methylation is highlighted 
in yellow. (C)Violin plot showing IPD ratios of A residues at 5= GATC 3= sequences.  
 

Figure 3 

 

FIG 3 IPD modification profiles of T4(glc-HMC), T4(HMC), and T4(C) phage protospacers. IPD 
ratios for the forward strand (blue) and reverse strand (red) of T4(glc-HMC), T4(HMC), and T4(C) 
are depicted for the regions of the T4 genome targeted by spacers 1 to 4 along with the 
surrounding nucleotides. The nucleotide sequences of the phage protospacer (orange), the PAM 
(green), and the surrounding nucleotides (black) are along the x axis. The top strand of the 
protospacer is identical in sequence to the crRNA/spacer, and the bottom strand is the target 
strand, which is complementary to the spacer and will base pair with the crRNA. 
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Figure 4 

 

FIG 4 Glc-HMC and HMC modifications inhibit attack by the CRISPR-Cas9 system on phage T4. 
(A) Diagram of the strategy used to validate CRISPR spacers in a transformation assay. Bacteria 
containing the type II CRISPR system were transformed with a pUC19 plasmid containing either 
a T4 protospacer and PAM sequence or a nonspecific DNA sequence. Antibiotic selection for the 
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pUC19 plasmid and quantification of the efficiency of transformation reveal the efficacy of 
CRISPR system cleavage of unmodified DNA containing a protospacer and PAM. (B) Results of 
plasmid challenge tests. The efficiency of transformation is the ratio of colony counts of cells 
transformed with equal amounts of pUC19 that contain a protospacer targeting the plasmid 
(numerator) to the colony counts of cells transformed with pUC19 (denominator). (C) Diagram of 
plaque assays to assess inhibition of T4 infection with CRISPR-Cas9. (D to F) Results of plaque 
assays in which the E. coli strains indicated were infected with up to 1x104 PFU of T4(C) (panel 
D), T4(glc-HMC) (panel E), or T4(HMC) (panel F). E. coli strains expressed Cas9 and crRNAs 
targeting T4 or controls. Starting from the left in each panel, None indicates no crRNA or Cas9, 
non-sp indicates nonspecific crRNA, 1 contained the maximum number of cytosines in the target 
strand and seed sequence, 2 contained the maximum number of cytosines in the target and 
complementary strands, 3 contained no cytosines in the target strand and seven cytosines in the 
complementary strand, and 4 contained the fewest cytosines in the target and complementary 
strands. Mean values were compared with the Kruskal-Wallis test. *, P < 0.01; ***, P < 0.0001; ns, 
not significant. 
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Figure S1 
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FIG S1 (A) Read lengths in the single-molecule sequence data sets. (B) Mapped subread lengths 
in the single-molecule sequence data sets.  
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Figure S2 
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FIG S2 Heat map summarizing the effects of local sequences on IPD ratios at C residues. The 
base preceding the C residue in the sequence is marked 5′-base, and that following the C residue 
is marked 3′-base. The scale at the bottom summarizes the IPD ratios. 
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Figure S3 
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FIG S3 Sequence coverage maps for T4 strains comparing T4 (top) to E. coli B834 (bottom). 
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Figure S4 
Figure S4
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FIG S4 Comparison of our work with that of Yaung et al. (A and B) Results of plaque assays in 
which theE. coli strains indicated containing previously studied CRISPR spacers (C1 to C3) in the 
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Yaung-Church CRISPR system (in C) were infected with up to 100 PFU of T4(HMC) (panel A) or 
T4(glc-HMC) (panel B). CRISPR spacer labeling: None, no crRNA or Cas9; non-sp, nonspecific 
crRNA. E.O.P., efficiency of plating. (C and D) Results of plaque assays in which 
the E. coli strains indicated containing previously studied CRISPR spacers (C1 to C3) in the 
Marraffini CRISPR system (in M) were infected with up to 100 PFU of T4(HMC) (panel C) or 
T4(glc-HMC) (panel D). CRISPR spacer labeling: None, no crRNA or Cas9; non-sp, nonspecific 
crRNA. (E and F) Plaque assay results of the Church laboratory Cas9 expression vector with the 
Marraffiini CRISPR array on the T4 CRISPR spacers studied here. The Church Cas9 expression 
vector and the Marraffini CRISPR array containing the spacers studied in this investigation 
(spacers 1 to 4) and the previously studied spacers (C1 to C3) were tested for efficacy against 
T4(HMC) (panel E) and T4(glc-HMC) (panel F). Mean efficiency of transformation was compared 
to that of a nonspecific control with a t test. **, P < 0.001; ***, P < 0.0001; ns, not significant. 
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FIG S5 Results of plasmid transformation assay comparing the efficacies of all of the CRISPR 
spacers studied in this investigation against unmodified DNA. Efficiency of transformation was 
normalized to 1 by the transformation of a plasmid not targeted by the CRISPR system (control). 
Spacers 1 to 4 are from this study. C1 to C3 are the spacers from Yaung et al. cloned into the 
CRISPR-Cas9 system developed by the Church lab (in C) or the Marraffini lab (in M). Mean 
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efficiency of transformation was compared to the nonspecific control with a t test. ***, P < 0.0001. 
E.O.P., efficiency of plating.  
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FIG S6 Mutation of IP1-3 genes encoding the three T4 proteins that are injected along with the 
phage DNA does not reduce resistance to attack by CRISPR-Cas9. Shown are replicate 
infections with wild-type T4(glc-HMC) (A) and the triple mutant T4(IP0) (B), which show no 
differences in infectivity for the strains tested. Plaque assay with approximately 100 PFU of 
T4(glc-HMC) or T4(IP0) infecting E. colinot expressing CRISPR-Cas9 (None) 
or E. coli expressing CRISPR-Cas9 with spacers targeting a protospacer in the T4 genome with 
the maximum number of cytosines in the target sequence and seed sequence (1), the maximum 
number of cytosines in the target and complementary strands (2), the fewest cytosines in the 
target strand (3), the fewest cytosines in the target and complementary strands (4), or a 
nonspecific spacer that does not target the T4 genome (non-sp). The mean efficiency of plating 
(E.O.P.) for infection of cells with each spacer was compared to that of no-CRISPR-Cas9 control 
with a t test. No statistically significant differences were found. 
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Figure S7 
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FIG S6 Phenotype of a revertant of T4(C) named T4(C)R with reduced CRISPR sensitivity. (A) 
Genetic map of T4(C) and the revertant obtained by Illumina deep sequencing. The bottom black 
line represents the T4(glc-HMC) genome length, and black arrows indicate genes and the 
direction of transcription. Variations in the T4(C) genome compared to T4(glc-HMC) are blue for 
single nucleotide deletions, red for large deletions, and pink for nonsynonymous substitutions; red 
×’s represent early stop codons. The top black line represents the T4(C)R genome. Variations in 
T4(C)R compared to T4(C) are green for nonsynonymous mutations and blue for deletions. The 
green circle indicates reversion of a stop codon, and the green × indicates a stop codon. (B) 
Glycosylated hydroxymethylcytosine synthesis pathway in T4(glc-HMC) phage and mutations in 
T4(C) and T4(C)R. Proteins mutated in T4(C) are shown by red ×’s. T4(C)R acquired a mutation 
designated by a green × and reverted a previous amber mutation denoted by a green circle. (C) 
Reduced sensitivity to CRISPR attack in the revertant. The mean efficiency of plating (E.O.P.) for 
infection of cells with each spacer was compared with that of the no-CRISPR-Cas9 control with 
a t test. ***, P < 0.0001; ns, not significant.  
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3.8 Tables 

Table S1 

Table S1 Genotypes of bacteria and bacteriophages used in this study 

Phage 
(Nomenclature 
used in this 
paper) 

Alternative/
historical 
name 

Genotype 

T4(Glc-HMC) T4 wild type 
T4(HMC) T4147 gt1, gt7 

T4(C) T4GT7 amC87g42, amE51g56, rNB5060, alc
IPI (HA35) IP2 (amber HA100) IP3 (amber HA9)

 
IP0 IP0   

   
   

Bacteria  Genotype 
DH10B  F– mcrA (mrr-hsdRMS-mcrBC)  
CR63   -, serU60(AS), lamB63  

 
 

B834  hsdRB, hsdMb, Sup0, rgl+ 
K803  rk-, mk-, rgl-, supE44  

Table S2 

Oligo Name Oligo DNA sequence 5'-3' Function Source

T4_Top_70718_70747 AAACAAAAGTTTTAGGGAATTCTAGGGCGGAGAGG
top oligo for cloning T4 spacer 1 into pCRISPR this study

T4_Bottom_70718_70747 AAAACCTCTCCGCCCTAGAATTCCCTAAAACTTTT
bottom oligo for cloning T4 spacer 1 into pCRISPR this study

T4_ModA_Top_13205_13234 AAACGCCCAGGGAGCCCAAGGCGGAGGGTCAAGAG
top oligo for cloning T4 spacer 2 into pCRISPR this study

T4_ModA_Bottom_13205_13234 AAAACTCTTGACCCTCCGCCTTGGGCTCCCTGGGC
bottom oligo for cloning T4 spacer 2 into pCRISPR this study

T4_30.2_top_127687_127716 AAACTTCACTATCAAAACTTTCTTTATTTTCCTTG
top oligo for cloning T4 spacer 3 into pCRISPR this study

T4_30.2_bottom_127687_127716 AAAACAAGGAAAATAAAGAAAGTTTTGATAGTGAA
bottom oligo for cloning T4 spacer 3 into pCRISPR this study

T4_Top_116439_116468 AAACTTTATTTATCATATTTATAAATAGAATAAAG
top oligo for cloning T4 spacer 4  into pCRISPR this study

T4_Bottom_116439_116468 AAAACTTTATTCTATTTATAAATATGATAAATAAA
bottom oligo for cloning T4 spacer 4 into pCRISPR this study

Church1_top_pPCRISPR AAACATATCGAAAGCAATCAGGTTG
top oligo for cloning T4 spacer C1  into pCRISPR adapted from Yaung et al. 2014 

Church1_bottom_pCRISPR AAAACAACCTGATTGCTTTCGATAT
bottom oligo for cloning T4 spacer C1 into pCRISPR adapted from Yaung et al. 2014 

Church2_top_pPCRISPR AAACAAGAACTTCCAACCGGTAATG
top oligo for cloning T4 spacer C2  into pCRISPR adapted from Yaung et al. 2014

Church2_bottom_pCRISPR AAAACATTACCGGTTGGAAGTTCTT
bottom oligo for cloning T4 spacer C2 into pCRISPR adapted from Yaung et al. 2014

Church3_top_pPCRISPR AAACGATGCTGATGCTGAACTGTCG
top oligo for cloning T4 spacer C3  into pCRISPR adapted from Yaung et al. 2014

Church3_bottom_pCRISPR AAAACGACAGTTCAGCATCAGCATC
bottom oligo for cloning T4 spacer C3 into pCRISPR adapted from Yaung et al. 2014

70_puc19_top AATTCAAAAGTTTTAGGGAATTCTAGGGCGGAGAGGGGA top oligo for cloning T4 protospacer 1 into puc19 this study

70_puc19_bottom AGCTTCCCCTCTCCGCCCTAGAATTCCCTAAAACTTTTG bottom oligo for cloning T4 protospacer 1 into puc19 this study

ModA_puc19_top AATTCGCCCAGGGAGCCCAAGGCGGAGGGTCAAGATGGA top oligo for cloning T4 protospacer 2 into puc19 this study

ModA_puc19_bottom AGCTTCCATCTTGACCCTCCGCCTTGGGCTCCCTGGGCG bottom oligo for cloning T4 protospacer 2 into puc19 this study

30.2_puc19_top AATTCTTCACTATCAAAACTTTCTTTATTTTCCTTTGGA top oligo for cloning T4 protospacer 3 into puc19 this study

30.2_puc19_bottom AGCTTCCAAAGGAAAATAAAGAAAGTTTTGATAGTGAAG bottom oligo for cloning T4 protospacer 3 into puc19 this study

11_puc19_top AATTCTTTATTTATCATATTTATAAATAGAATAAAAGGA top oligo for cloning T4 protospacer 4 into puc19 this study

11_puc19_bottom AGCTTCCTTTTATTCTATTTATAAATATGATAAATAAAG bottom oligo for cloning T4 protospacer 4 into puc19 this study

30_Chruch1_top_puc19 AATTCAACACCACAAATATCGAAAGCAATCAGGTTAGGA top oligo for cloning T4 protospacer C1 into puc19 adapted from Yaung et al. 2014 

30_Church1_bottom_puc19 AGCTTCCTAACCTGATTGCTTTCGATATTTGTGGTGTTG bottom oligo for cloning T4 protospacer C1 into puc19 adapted from Yaung et al. 2014 

30_Church2_top_puc19 AATTCTTCCGATCCGAAGAACTTCCAACCGGTAATGGGA top oligo for cloning T4 protospacer C2 into puc19 adapted from Yaung et al. 2014

30_Church2_bottom_puc19 AGCTTCCCATTACCGGTTGGAAGTTCTTCGGATCGGAAG bottom oligo for cloning T4 protospacer C2 into puc19 adapted from Yaung et al. 2014

30_Church3_top_Puc19 AATTCTCACGGTATGGATGCTGATGCTGAACTGTCTGGA top oligo for cloning T4 protospacer C3 into puc19 adapted from Yaung et al. 2014

30_Church3_bottom_puc19 AGCTTCCAGACAGTTCAGCATCAGCATCCATACCGTGAG bottom oligo for cloning T4 protospacer C3 into puc19 adapted from Yaung et al. 2014

Table S2.  Oligonucleotides used in this study
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CHAPTER 4: Phage predation in the human gut microbiome 

Alexandra Bryson*, Christel Chehoud*, Anatoly Dryga, Abigail Lauder, Jacque 

Young, Seth Zost, Elizabeth Loy, Eric Chen, Hongzhe Li, Richard Roberts, 

Samuel Minot, Tyson Clark, Jonas Korlach, Scott Sherrill-Mix, Frederic D. 

Bushman 

*these authors contributed equally 

4.1 Contributions 

 My contributions to this paper include the DNA modification analysis, 16S 

bacteria analysis, Jaccard analysis, gold particle staining of phage, writing the 

paper, and working with Christel Chehoud to organize qPCR, staining, and 

sequencing data collected by other coauthors. 

4.2 Abstract 

Studies of the human microbiome have specified the types of micro-

organisms present but interactions between organisms are less well studied. 

Here we report analysis of the dynamics of gut bacteriophage and their hosts in 

one healthy human male over four years of sampling.  We used multiple 

sequencing methods, including long-read single-molecule sequencing, to specify 

many of the major phage and bacterial lineages present, and their changes in 

abundance over time. RNA viruses were less common than DNA viruses and 

corresponded to probable transients in food. Analysis of single-molecule 
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sequencing data identified motif-specific covalent DNA modifications in 73% of 

phage contigs and 56% of bacterial contigs. The patterns of shared base 

modifications between phage and bacteria could be used to propose hosts for 

some of the phage studied, which allowed querying of the pairs for evidence of 

predator-prey cycles.  Assessment of viral numbers using particle counts or 

qPCR for phage genomes standardized with metagenomic data suggested 

population sizes ranging from 2.8 x 1010 to 3.7 x 1012 viral particles per gram of 

stool.   These estimates allowed investigation of predation rates--phage must 

multiply at rates that maintain the steady state density in gut despite the 

continuous outward flow of luminal contents.  Using this assumption, we were 

able to estimate predation rates ranging from 0.2% to 14% of bacteria killed by 

phage predation per day in the human gut.  Although these data emphasize that 

different approaches to estimation yield a wide range of values, we can use 

these approaches to begin to investigate the dynamics of predation in the human 

gut—for example to analyze variation among human populations, disease states, 

and responses to therapies such as antibiotics. 
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4.3 Introduction 

The composition of the human gut microbiota has now been studied 

extensively, but dynamics associated with growth and predation are much less 

well understood.  Studies of bacteria in marine and freshwater environments 

suggest that phage often outnumber their hosts, and that substantial fractions of 

the bacterial population are killed per day by phage predation(1-3).  These high 

turnover rates must have a strong effect on the composition and dynamics of 

bacterial communities, but little data is available for human gut. 

Studies of bacteriophage populations are complicated by the extremely 

high numbers and diversity of global phage populations.  Earth is believed to host 

1031 viral particles, and this is paralleled by very large numbers of viral types.  In 

contrast, the NCBI viral database only contains 6,693 reference viral genomes 

(NCBI accessed 3/10/16). Consequently, sequence samples of environmental 

viral populations typically show only modest sporadic matches to database viral 

genomes (though for viruses that are human pathogens the coverage is much 

greater).  Another challenge is that bacteriophage from vertebrate guts have 

typically proven difficult to culture outside the gut environment (4), further limiting 

experimental characterization.  
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However, it is possible to investigate bacteriophage populations in the 

vertebrate gut by purifying viral particles from stool, sequencing the encapsulated 

genomes, assembling reads to generate contigs corresponding to complete or 

partial genomes, then interrogating the contigs in longitudinal analysis.  Several 

studies have used this approach to characterize phage communities in humans 

(5-8) or reconstructed human-derived communities in gnotobiotic mice (4). 

Here we take such an approach to investigate longitudinal dynamics over 

four years in a closely-studied gut phage community from a healthy human male 

(subject 1014;(5)).  Previously viral communities were studied using Illumina 

short read sequencing over 2.5 years (5).  Here we acquired single-molecule 

sequencing data on the phage and bacterial communities, which we used to 

improve contig assembly.  The single-molecule data also allowed quantification 

of covalent DNA modification, which provide a novel means of associating 

potential phage-host pairs.  We used metagenomic sequence data, qPCR, and 

fluorescence microscopy to estimate the sizes of the phage and bacterial 

populations, and found that estimates ranged widely depending on the 

quantification methods used.  Modeling the gut as a steady state with our inferred 

phage bacterial dynamics predicts that between 0.2% and 14% of gut bacteria 

are killed per day by phage predation. 
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4.4 Results and Discussion 

4.4.1 Sequence data acquisition 

 DNA sequence data to characterize phage and bacterial communities in 

subject 1014 were derived from several sources. We previously reported phage 

contigs from 2.5 years of sampling from this subject derived from Illumina HiSeq 

short-read sequencing. We also reported deep shotgun sequence analysis for 

whole stool, allowing comparison to the full gut community.  Here we add single-

molecule sequencing data using the Pacific Biosciences technology, and further 

Illumina MiSeq sequencing of viral fractions of later time points out to 4 years.  

To characterize bacterial prey species further, whole stool DNA was also 

analyzed by PacBio sequencing, and 16S rRNA gene tag sequencing was used 

to characterize bacterial communities over the four year time span plus an 

additional year. A complete list of samples studied is in Table S1. 

For all virome samples, viral particles were purified by filtration, and 

preparations treated with nucleases to remove free nucleic acids.  Samples were 

treated with chloroform during purification, which disrupts membranes and is 

important for achieving high purity, so only non-enveloped viruses were 

recovered. We and others have observed that enveloped viruses are relatively 

uncommon in stool (5, 9, 10), so we expect only modest losses due to this step.  

Virome samples were verified to be depleted in 16S rRNA gene copies, which 
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indicates minimal bacterial DNA contamination. To characterize the RNA virome, 

RNA was purified from particles from two time points, reverse transcribed and 

analyzed by Illumina DNA sequencing.  

 

4.4.2 DNA virome contigs 

A total of 3358 contigs corresponding to DNA viruses were generated from 

the merged Illumina and PacBio sequence data (information on contigs is 

summarized in Table S2). For the merged contigs, the N50 was 25,633.  The 

maximum length was 217,304.  Contigs were aligned to viral databases, and 

16% found annotations based on matching ORFs (open reading frames) to ORFs 

of reference viral genomes.  Of these, the major groups were Siphoviridae (57%), 

Myoviridae (22%), and Podoviridae (7%).  Contigs annotated as Microviridae 

yielded large numbers of reads after GenomiPhi amplification of DNA samples, 

as expected because these small single stranded circular DNA viruses are 

preferentially amplified by this method.   

No convincing matches were detected to viruses infecting animal cells, 

though this pipeline has yielded well-known animal-cell viruses in studies of other 

sample types (11, 12). We thus infer that most or all of the contigs detected here 

likely derive from bacteriophage. 
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Many viral genomes are either circular or terminally redundant—thus an 

indication of completion of a viral contig sequence is closure of the sequence as 

a circle.  Of the 3358 contigs, 51 closed as circles.  Thus we infer that most of 

these are complete sequences, though apparent circularity could also be 

obtained if genomes contained internal direct repeats with high sequence 

identity.  The linear contigs represented either linear viral genomes or incomplete 

genomes. 

Viral ORFs were identified and the encoded proteins assessed for 

similarity to proteins of known viruses (Figure S1).  Genes commonly annotated 

as phage structural proteins (capsid, baseplate, tail, portal and others), functions 

important in nucleic acid manipulation (recombinase, resolvase, terminase, 

repressor and others), and proteins important in host cell manipulation 

(lysozyme, beta lactamases, and restriction-modification). Only 22% (2407 / 

10899) of viral ORFs found any taxonomic annotation by comparison using a 

BLAST e-value threshold of 10-5. 

4.4.3 RNA virome contigs 

Viruses containing RNA genomes were interrogated by purifying RNA 

from particle preparations from two time points, reverse transcription, and 

sequence analysis.  Reads were quality filtered and aligned to a viral database.  

The major lineages detected based on extent of coverage of the target genome 
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all annotated as Tobamoviruses, which are non-enveloped helical plant viruses.  

The Tobamovirus genus contains species such as the Tobacco mosaic virus, 

Pepper mild mottle virus, Tomato mosaic virus, and Rehmannia mosiac virus.  At 

the first time point queried (day 181), 2,768 reads aligned to Pepper mild mottle 

virus, and 545 aligned to Tomato mosaic virus.  At the second time point (day 

852), 548 reads aligned to Rehmannia mosiac virus and 862,802 aligned to 

Tomato mosaic virus.  No convincing alignments were detected to RNA viruses 

infecting human cells or RNA phage, though human RNA viruses were readily 

detected in spiked-in positive controls (data not shown).  We thus infer that the 

major RNA viruses in our fecal specimens are non-enveloped plant viruses 

ingested with food and not long term residents of the gut virome, consistent with 

published studies of other human subjects (13). 

 

4.4.4 DNA Phage populations analyzed longitudinally 

DNA Phage and bacterial contigs detected over the 4-year period of 

sampling are shown in Figure 1.  The phage populations were analyzed by 

Illumina shotgun sequencing of GenomiPhi-treated samples, so viruses with 

small, circular genomes such as Microviridae are enriched.  Many of the viral 

types detected were seen at multiple time points, suggesting stability in the major 

types present.  During the first year of sampling, one ~6 Kb contig annotating as 
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Microviridae predominated, but by day 851 this variant was replaced as the major 

form by another ~6Kb variant that could not be classified.  To evaluate stability in 

the phage population, we scored shared community membership between all 

pairwise time point comparisons using Jaccard index values. Figure S2A shows 

the Jaccard index for each pairwise comparison and indicates that community 

composition changed only slowly over the four years studied. 

Bacteria were characterized by sequencing 16S rRNA gene tags (V1V2 

region).  Overall, the predominant families were present from the start to the end 

of the study.  Prominent lineages included the Firmicutes families 

Ruminococcaceae, Lachnospiraceae, and Clostridiaceae.  Lesser amounts were 

seen for Bacteroidetes families Bacteroidaceae, Poryphoromonadaceae, and 

Prevotellaceae.  Only trace amounts of Proteobacteria were detected.  Thus the 

bacterial community is rich in anaerobes, as expected for a healthy adult (14).  

We used Jaccard index values to score shared bacterial community membership 

between all pairwise time points (Figure S2B) which suggested that shared 

community membership was generally stable but changed slowly over time. 
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4.4.5 DNA modification analyzed in phage and bacterial metagenomic 

samples 

Bacteria commonly encode nucleases targeting DNA of phage, plasmids 

and other invaders.  These include restriction enzymes (15-28), CRISPR/Cas 

systems (29-35), and other nucleases (36, 37). DNA phages recruit DNA 

modifying enzymes from their hosts to protect their DNA, so that they are 

insensitive to host nucleases, and in addition encode further modifying enzymes 

to protect their DNA.  Previous studies have specified more than ten types of 

chemical modification in phage DNA (38).  

Here we take advantage of modification patterns to propose associations 

between phage and their bacterial hosts.  In metagenomic samples, it is usually 

not possible to determine which phage infect which bacteria in the population.  

We thus sought to associate phage-host pairs in the human gut microbiome 

though matching modified motifs in our single-molecule Pacific Biosciences 

sequencing.  In this technology, single polymerase molecules traverse a single 

DNA molecule, but the presence of many forms of covalent DNA modification 

slows the kinetics, allowing modified base detection. We thus applied single-

molecule sequencing to metagenomic phage and whole stool fractions, and 

scored covalent DNA modifications common to the two, reasoning that sharing of 

patterns between phage and hosts would indicate potential phage-host pairs.  
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Single-molecule real-time sequencing has previously been used to identify 

modifications of more than 230 individual prokaryotic genomes(39) (40)--this is 

the first study to analyze paired modification profiles in bacteria and phage in 

human metagenomic samples. 

We developed a pipeline for statistical analysis of kinetic sequencing data, 

in which modified bases were scored in either motifs known to be modified from 

previous studies (41-44) or all k-mers of lengths 2-5 nucleotides.  To identify 

modified bases, we fitted a Gaussian mixture model on IPD ratio, quality score, 

and sequencing coverage.  We assumed that the IPD ratios from the modified 

bases and unmodified bases follow two separate, normal distributions.  By fitting 

the Gaussian mixture model, we obtained a posterior probability indicating how 

likely the base is to be modified.  We fitted the Gaussian mixture model for G, A, 

T, and C separately.  We compared these to a list of 467 DNA motifs previously 

known to be modified (41-44). Each nucleotide within each k-mer was analyzed 

for modification, yielding 6366 k-mer-position combinations.  The occurrences of 

each known motif and k-mer were identified in every bacterial and phage contig, 

and we recorded the mean IPD and mean posterior probability of modification for 

each motif of interest.  We used an FDR correction on the posterior probability to 

establish a list of modified motifs.  Because our method evaluates each motif 

independently on each contig, some larger k-mer motifs may show up as 
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modified because they contain an embedded smaller motif.  We thus parsed 

larger modified motifs for embedded smaller motifs within the same contig, and 

recorded the smaller motifs.  

As a control to validate our motif finding algorithm, we used a set of T4 

phage variants studied previously (45).  T4 DNA was compared containing 

glycosylated hydroxymethylcytosine T4(glc-HMC), hydroxymethylcytosine 

T4(HMC) or unmodified cytosines T4(C) (Figure S3).  In all three strains, 

adenines are methylated within GATC (A bolded to emphasize modification) 

motifs.  The GATCs in T4(glc-HMC) are know to be modified less frequently than 

T4(HMC) and T4(C)(45, 46), probably due to crowding on the DNA, and this was 

seen in results from our pipeline.  Modifications at GATC were detected in T4(C) 

and T4(HMC), but not T4(glc-HMC) because T4(glc-HMC) only modifies some 

GATC motifs and our pipeline reports motifs with complete modification.  Not 

every C in the T4(glc-HMC) and T4(HMC) appear modified by SMRT 

sequencing, so modified Cs also are not identified here.  We tested a whole 

genome amplified (WGA) version of T4(glc-HMC), which contains no DNA 

modifications and this was confirmed in our data.  

Contigs where a motif occurred at least three times were considered for 

analysis.  Of the 467 known motifs we queried, 56 were identified among 78 

phage genomes (Figure 2). Among the bacterial contigs, 1,868 had at least one 
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of 138 known motifs (Figure 3).  The bacteria and phage shared 31 known 

modified motifs.  In the k-mer analysis, 1,004 modified k-mer motifs were 

discovered in 288 phage contigs, and we observed 2,285 modified k-mer motifs 

in 2,526 bacterial contigs (Table S3).  Merging the known motif and k-mer data 

revealed that 73% of phage contigs and 56% of bacterial contigs contain fully 

modified motifs.  Table S3 contains the complete list of contigs and their 

associated modified motifs. This dataset identifies 2,804 candidate novel 

modified motifs. 

 

4.4.6 Phage-host pairs linked via DNA modifications  

We next used covalent DNA modification data to link bacteria and phage 

pairs, based on the idea that phage and bacterial DNAs in the same cell will have 

been exposed to the same DNA modifying enzymes and thus share modification 

patterns.  Overall, 443 modified motifs were shared between phage and bacteria 

(found in Table S3) suggesting many possible phage-host pairs.  Figure 4 depicts 

a subset of these possible phage-host pairs, where phage contigs were filtered 

by requiring matching to one ORF annotated as a phage protein or showing the 

top NCBI blast hit to be a phage genome.  Motifs with GATCs were removed 

from this analysis because they are widely distributed biologically and common 
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among bacteria and phage, making it difficult to determine specific phage-host 

pairs using this motif.  

Five phage contigs could be linked to bacterial contigs though five motifs 

(Figure 4). Bacteria of the Bacteriodes, Anaerostipes, and Enterococcus genera 

could be linked to specific phage contigs, as well as four unattributed bacteria.  In 

one case (CAAAAA motif) the phage motif was found in bacteria of multiple 

phyla, indicating either interphyletic mobility of restriction/modification operons or 

convergent evolution of enzyme specificities.  The CAAAAA motif has previously 

been reported modified in Clostridium difficile (47).  One of the bacterial contigs 

that contained the CAAAAA motif annotated as Lachnospiraceae, which belongs 

to the same order Clostridialese.   

For each of these pairs, we assessed possible Lotka-Volterra predator-

prey cycles in longitudinal abundance (48, 49).  In this analysis, we assumed that 

increases in predator would precede decreases on prey species, and vice versa. 

Such cycles can be observed in a plot comparing predator and prey abundances 

as a counter-clockwise progression of longitudinal samples (50). Thus we 

searched for an enrichment of left turns in the prey-predator plot. In contrast, 

reverse (clockwise) cycles have recently been proposed to occur in natural 

systems where there is co-evolutionary tradeoff of costly offense and defense 

between predator and prey (50).  
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 Samples were compared for the periods of sampling where three or more 

contiguous days were acquired, days 180-183, 851-853 and 879-883. As three 

points are required to determine turn angle, we had six total turns to compare to 

the null hypothesis of a 50% chance of a left or right turn. None of the pairs in 

Figure 4 showed such cycles. In the larger set of possible phage/host pairs, 

aggregating the bacterial data at the Family level (n=21), two examples of 

clockwise cycling were detected, and one example of counterclockwise cycling.  

However, these results are not significant after an FDR correction for multiple 

comparisons, emphasizing that future experimental designs should incorporate 

more time points and time scales of analysis.  

 

4.4.7 Dynamics of phage and bacteria in the human gut 

Given counts of phage, their hosts, and the ratio between them, then we 

can make initial estimates of the predation rate.  We thus devised two ways of 

counting phage and bacteria, and a third way of estimating the phage:host ratio 

from metagenomic sequence data.   

 In the first approach, we used quantitative PCR (qPCR) to estimate 

numbers.  DNA was purified from weighed stool samples, then 16S qPCR was 

used to measure the total numbers of bacterial 16S rRNA gene copies per gram 
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of stool. The number of cells was then inferred assuming four 16S rRNA gene 

copies per cell (51), yielding a median of 1.9 x 1013 (Table 1).   

For phage, we took advantage of qPCR analysis of phage genomes 

combined with information on the proportions of each phage in metagenomic 

data.  We devised qPCR assays for 8 phage contigs and measured the copy 

numbers in DNA from weighed stool samples (Table S4).  The total phage 

population size was then estimated by dividing the qPCR estimate by the 

proportion of the quantified phage in the metagenomic analysis of unfractionated 

stool DNA at each of three time points. All estimates were averaged to yield a 

global median of 3.7 x 1012 for the phage population size (Table 1).  

 The second method relied on classical staining of aliquots of weighed 

samples with fluorescent dyes, DAPI for bacteria and cyber gold for phage. This 

yielded 2.8 x 1011 cells for bacteria and 2.8 x 1010 particles for phage.  The 

numbers for phage reported here are ~10-fold higher than those reported 

previously by Kim et al (52). It is unknown whether this reflects a true difference 

between subjects or methodological differences.  We suspect that the cyber gold 

staining for phage undercounts particles due to inefficient staining of phage with 

smaller genomes and single stranded DNA phage.    

 We calculated the geometric mean values for phage and bacteria using 

each of the two methods, yielding phage:host ratios of 1:10 to 1.3:1 (Table 2). 
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Another estimate of the phage/host ratio could be made based solely on 

metagenomic sequence data.  As described above, we have a well-studied 

contig set describing phage in subject 1014 and shotgun metagenomic sequence 

data from unfractionated stool at three time points.  We could thus ask what 

fraction of the total metagenomic reads are contributed by sequences aligning to 

phage contigs.  We found that an average of 4% of the total reads matched 

phage contigs (range 3.5 to 4.4%).  The bacteria are estimated, on average, to 

have genome sizes 176 times longer than phage (53).  Scaling the percentage of 

reads by the ratio of genome sizes gives (0.04 phage reads)(176)=7.0 for the 

phage/host ratio (Table 2).  The proportion of phage called in the metagenomic 

ratio estimate may be high, because some of the phage sequences will be 

present as prophages in bacterial genomes. The metagenomic ratio could be low 

due to possible contamination of phage sequences with bacterial sequences, and 

also due to addition of phage not yet represented as contigs. In summary, our 

estimated phage:host ratios ranged from 1:10 to 7:1. 

  

4.4.8 Estimating the phage predation rate 

The data in Table 1 allow estimation of the rate of predation by phage on 

gut bacteria. Replication rates of phage and bacteria in gut must be matched, so 

that the population is replaced continuously despite material flowing out of the 
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gut.  To estimate predation rates, we need to know burst sizes of gut phage, and 

the rate of flow of material through the gut.  Using these data, we can estimate 

the proportion of bacteria killed per day by phage to meet the required 

replacement rate to maintain a steady state.  

From environmental data on phage replication in marine and lake 

ecosystems, the average size of a phage burst is 50 particles/burst (range 25th 

percentile 27, 75th percentile 75; Table S5).  Values for burst sizes are higher for 

laboratory measurements using bacteria grown in rich medium (170 phage per 

burst range 25th percentile 115, 75th percentile 260; Table S5), but we favor use 

of the environmental estimates for gut to reflect phage replication under non-

optimal growth conditions.  The transit time in the individual studied was 

estimated at 24 hours. 

  To estimate predation rates, we used three different values for the phage 

host ratio (Table 2).  Using targeted qPCR, we estimate that there are 8.3 x 1012 

phage and 1.6 x 1012 bacteria, though with wide confidence intervals. To produce 

this number of phage, given the average burst size of 50, 1.7 x 1011 bacteria 

must die each day.  This corresponds to 10% of all gut bacteria killed per day by 

phage predation. Using staining data, we estimate there are 2.8 x 1010 phage 

and 3.0 x 1011 bacteria (Table 2) and conclude that 0.2% of all bacteria are killed 

due to phage predation each day.  Using the metagenomic ratio of phage to 
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bacteria of 7:1, we obtain a predation rate of 14% of bacteria killed per day.  

Thus our values range from 0.2% to 14% of bacteria killed per day depending on 

the estimation method used. 

 

4.4.9 Summary and prospectus 

Here we present a four-year study of the dynamics of phage and bacterial 

populations in the gut of one adult human male.  We carried out single-molecule 

sequencing of phage and bacterial populations, augmenting a large short-read 

data set acquired previously (5), which allowed us to characterize new aspects of 

the dynamics of phage replication.  Analysis of DNA modification using the 

single-molecule sequencing data indicated that 73% of phage genomes and 56% 

of bacterial genomes were fully modified at a motif.  We expect the percent of 

modified genomes would increase if we considered motifs that are only partially 

modified.  A total of 443 modified motifs were shared between phage and 

bacteria (Table S3), suggesting potential phage:host paires, and five phage-host 

pairs could be called using conservative criteria. Predation rates could be 

assessed using data on phage and bacterial population sizes, burst sizes of 

phage in the environment, and transit time of material through the gut, leading to 

the suggestion that between 0.2 and 14% of bacteria in gut are killed by phage 

predation per day.  Several factors could have affected our estimates.  For 
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example, purification of phage particles from stool samples is unlikely to be 100% 

efficient.  It has been suggested that phage decay rates can be substantial in 

natural environments (54) —if this is true in gut, our proposed production rates 

are minimal estimates.  Conversely, it is possible that defecation and exposure of 

anaerobic bacteria to oxygen may result in phage induction and particle 

production.  If so, our measurements are overestimates. Our estimates of 

predation in gut varied associated with the method used, but all estimates 

suggested substantial predation rates.  Although methods of quantification need 

further refinement, these data pave the way for analysis of phage:host dynamics 

in medically important settings such as bacterial infections, inflammatory 

autoimmune diseases, and antibiotic use. 

 

4.5 Methods 

Research subject. This work was carried out under an IRB approved protocol 

(5). Transit time was self-reported by the research subject and parallels 

measurements with Sitz markers on healthy adults eating a high fiber diet (55). 

 

Single-molecule sequencing. For single-molecule sequencing, purified DNA 

was fragmented to an average size of 1.5 kb via adaptive focused acoustics 
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(Covaris, Woburn, MA). SMRTbell template sequencing libraries were prepared 

as previously described (5). Sequencing was carried out on an RS II (Pacific 

Biosciences, Menlo Park, CA) using P4/C2 sequencing chemistry and standard 

protocols for large insert libraries.  Consensus sequences were generated using 

Quiver. 

 

Sequencing of bacterial 16S rRNA gene tags. DNA was extracted from fecal 

samples in triplicate using the MBIO powersoil kit.  The V1V2 region of the 16S 

rRNA gene fragment was amplified using Golay-barcoded universal primes 

BSF8(27F) and BSR357(228R), listed in Table S4. The adaptors added to the 

16S specific primers allows the amplicons to be sequenced using the Illumina 

MiSeq and HiSeq platforms.   Each PCR reactions included 0.19uL of AccuPrime 

Taq DNA Polymerase High Fidelity (Thermo Fisher Scientific Inc, Waltham, MA), 

7.21 µL PCR-grade water, 2.5 µL 10X buffer II, 5 µL of each forward and reverse 

primer (2 µM), and 5 µL template DNA. PCRreactions were prepared in a PCR 

clean room. Reactions were run on an Applied Biosystems GeneAmp PCR 

System 9700 (Thermo Fisher Scientific Inc, Waltham, MA) with the following 

cycling conditions: initial denaturation at 95°C for 5 min followed by 30 cycles of 

denaturation at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and 

extension at 72°C for 90 seconds, with a final extension of 8 min at 72°C. 
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Amplicions were pooled and bead purified using Agencourt AMPure XP 

(Beckman Coulter, Indianapolis, IN) with the manufacturer’s protocol. Reaction 

products were sequenced using the Illumina MiSeq technology.  The 16S rRNA 

gene reads were annotated using QIIME. 

 

Annotation of Pac Bio Sequenced Bacterial contigs. Taxonomic classification 

of bacterial contigs was performed with BROCC pipeline (56). Contigs were 

aligned against NCBI nt database with blastn program(e value = 1e-5, 

max_target_seqs = 100 and outfmt=7). BROCC then uses BLAST sequence 

alignment results for taxonomic annotation by first filtering BLAST hits for 

sufficient coverage and identity and then uses voting to classify contigs for 

required taxonomical level. Minimum coverage for the hit (min_cover) was 20% 

and minimum identity of the hit was 20% to pass quality filtering for the 

alignment. Minimum identity for classification for species and genus  levels was 

set to 60 and 40% respectively. Standard taxonomic ranks has been assigned 

with NCBI taxonomy database and are used in the further analysis. Details of the 

BROCC filtering, voting and parameters description can be found in (56) and 

source code for the BROCC pipeline is available at 

[https://github.com/kylebittinger/brocc]. 
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Matching Phage-Host Pairs by Modified Motifs.  433 motifs were shared 

between bacteria and phage contigs.  The subset shown in figure 4 was 

stringently filtered to find the best matches.  Phage contigs were required to host 

one ORF annotated as a phage protein or showing the top NCBI blast hit to be a 

phage genome.  Motifs with GATCs were removed from this analysis because 

they are widely distributed biologically and common among bacteria and phage, 

making it difficult to determine specific phage-host pairs for this motif.  Motifs 

from our list of previous known motifs that occurred at least three times within a 

contig were used in this analysis. A slightly higher cutoff of five motif occurrences 

per contig was used for k-mer motifs.  This was done to be more conservative in 

determining novel modified motifs.  Bacterial contigs were annotated with 

BROCC. 

 

Quantitative PCR. Quantitative PCR was carried out as previously described 

using the Syber green method for bacteriophage and Taqman for 16S rRNA 

genes using the primers described in Table S4.  For each amplicon, amplification 

products were cloned into bacterial plasmids and quantified for use as standards 

in the qPCR reactions. 
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Counting phage and bacteria using fluorescence staining.  Phage DNA was 

isolated from viral particles as previously described by Minot et al.(5).  

Fluorescent staining of phage particles was carried out as described in (57). 

Bacteria from stool was quantified using DAPI-staining and visualized using 

flourescent microscopy (58).  

 

Known motifs and k-mers.  Lists of modified motifs from NEB REBASE 

(http://rebase.neb.com/rebase/rebase_methylase_recseqs.txt) and R. Roberts 

(unpublished) were combined to form the known motif database.  Motifs listed as 

<genuine>y indicates modified motifs that have been experimentally validated or 

identified with high confidence through Pac Bio Sequencing.  Only motifs marked 

<genuine>y were used from this list. Another list of known motifs came from the 

NEB REBASE website in the list of all enzymes, sorted by organism 

(http://rebase.neb.com/rebase/rebase.files.html).  The motifs are listed by 

restriction recognition sites where the sequence is targeted by a 

nuclease/methylase pair. These lists were merged and redundant motifs were 

removed.  Only motifs with one modification site per motif were analyzed. 
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Statistical analysis to identify sites of modification in metagenomic data.  

We first filtered out low quality bases and contigs by 1) removing the 100 bases 

at the beginning and the end of each contig, 2) filtering out short contigs with 

length less than 1000 bp, 3) removing contigs with extreme GC content 

(GC%<15% or GC%>85%) and removing contigs with more than 50% low quality 

bases. Then we fit a Gaussian mixture model on the IPD ratio. For each base, 

there are two possible modification states, i.e. the base is either modified or 

unmodified. We assume that the IPD ratio from the modified bases and 

unmodified bases follow two separate normal distributions.  Each normal 

distribution has its own mean and standard deviation. By fitting the Gaussian 

mixture model, we obtained a posterior probability indicating how likely the base 

is to be modified. We fitted the Gaussian mixture model for A, T, C, G separately 

and the posterior probability was adjusted by FDR control.  To identify modified 

motifs, the occurrences of known motifs and k-mers were identified and recorded 

for each contig along with the median IPD and median probability of being 

modified for the base of interest within the motif.  An FDR Benjamini hochberg 

correction was applied to determine the list of modified motifs in each data set 

(phage, bacteria, or T4 strains).   

 

Contig assembly and annotation.  Three sets of contigs were combined: 1) 
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Pacific Bioscience unitigs, 2) Illumina HiSeq contigs previously published(5) and 

3) Illumina MiSeq contigs built from a single time point (10).  These contigs were 

merged using Mimimo, an overlap consensus assembler, with default 

parameters. The finalized merged contigs were annotated by length, circularity, 

open reading frames, putative viral family classification, and presence of 

integrase genes, as previously described in Chehoud et al., 2015 (10).  The viral 

contig summary and annotation is in Table S6. Bacterial contigs were annotated 

using BROCC (56). All of the bacterial genera found in the bacterial contigs by 

BROCC annotation were also identified in the 16S rRNA gene tag analysis in 

Figure 1. 
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4.6 Figures 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Longitudinal variation in phage and bacterial communities over four years of sampling.  
A) Longitudinal abundance of phage contigs. The abundance of phage contigs is shown in 
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relative proportions over time.  The gray arrow indicates sequential days that fecal samples were 
collected.  Sample collection began on day zero and ended on day 1881. Solid lines connecting 
the plot to the sample timeline indicate time points sequenced for viral particles using shotgun 
metagenomics.  Family level classification was assigned when possible.  B) Longitudinal 
abundance of bacterial contigs. The abundance of bacterial families over time is shown in relative 
proportions.  Solid lines connecting the plot to the sample timeline indicate time points where 16s 
sequencing was done.  Family level classification was assigned using QIIME. 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sites of DNA modification in phage DNA inferred from single-molecule sequencing data. 
The heat map shows the mean IPD value for individual phage contigs (rows) at the modified base 
(denoted in red) within the motifs listed in the columns.  The motifs depicted here come from the 
list of previously studied motifs. 
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Figure 3 

 

 

 

 

 

 

 

 

Figure 3. Sites of DNA modification in bacterial DNA inferred from single-molecule sequencing 
data. The heat map shows the mean IPD value for individual bacterial contigs (rows) at the 
modified base (denoted in red) within the motifs listed in the columns.  Only modified motifs that 
occurred in more than two bacterial contigs are show here.  The motifs depicted here come from 
the list of previously studied motifs. 
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Figure 4 

 

Figure 4. Associating phage host pairs via modification patterns.  Multiple modified motifs showed 
up in both the phage and bacteria data sets, which may be a way to link phage to their bacterial 
host.  Depicted here are phage contigs (containing at least one phage gene marker) that shared a 
modified motif pattern with a bacterial contig.  The lines indicated which phage contigs and 
bacteria contigs share a modified motif.  Red text indicates the predicted modified base within 
each motif. The motifs shown here have modified patterns that match between the bacteria and 
phage, and the nucleotide in red indicates where the strong IPD signal occurs and is the 
predicted modified base.  Note that strong IPD signals can occur nucleotides neighboring a 
modified bases, thus the actual modified nucleotide may occur on an adjacent base. 
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Figure S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1: Viral gene type composition.  The predicted ORFs in the viral contigs that 
were found any taxonomic annotation by comparison using BLAST e-value threshold of 10-5 are 
shown here grouped by gene type. 
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Figure S2 

 

Supplemental Figure 2: Shared community membership over time.  We scored shared community 
membership between all pairwise time point comparisons using Jaccard index values.  The X-
axis indicates how much time (in days) occurred between two sample time points.  At the far left 
of the graph are samples that were collected only one day apart, where as the comparisons on 
far right depict samples taken 4years apart.  A) Viral Jaccard analysis. B) Bacterial Jaccard 
analysis. 
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Figure S3 

 

Supplemental Figure 3: Analysis control of custom modified motif finder. T4 Phage T4(glc-HMC), 
T4(HMC), T4(C), and T4(WGA) have known modifications and serve as a control for our custom 
modified motif finder.  T4(glc-HMC) is methylated at GATC and C’s are modified to glucosyl 
hydroxymethylcytosine.  T4(HMC) is methylated at GATC and C’s are modified to 
hydroxymethylcytosine.  T4(C) is methylated at GATCs only.  T4(WGA) has been whole genome 
amplified from T4(glc-HMC) DNA to make an unmodified genome.  The heatmap depicts the 
mean IPD value for the modified base in the motif context denoted at the bottom of the figure.  
The rows indicate individual contigs, and the columns contain motifs that have previously been 
know to be modified in a living organism.  Our motif finding pipeline only finds motifs that are 
always modified, the GATC does not appear in the T4(glc-HMC) because it is only modified a 
fraction of the time.  The motifs depicted here come from the list of previously studied motifs. 
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4.7 Tables 

Table 1 

 

Table 2 
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Table S1 

 

 

Table S2 

 

 

Table S3 

See supplemental attachments. Modified phage and bacteria contigs.  All phage 

and bacteria contigs with modified motifs (including known motifs and kmers) are 

listed with the mean and median IPD value for each modified motif. 
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Table S4 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

Table S5 
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Table S6 

See supplemental attachments.  Merged contig summary.   
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Chapter 5: Conclusion and Future Directions 

5.1 Conclusion and Future Directions 

 This thesis sheds light on how communities of phage and bacteria interact 

through the CRISPR system and covalent DNA modifications.  In chapter 2 we 

find high nucleotide substitution rates in human gut phage over time, which may 

be in part due to CRISPR pressure(1).  In chapter 3 we explore the role of 

covalent DNA modifications in protecting phage from the CRISPR-Cas9 system.  

Specifically, we find that glc-HMC and HMC allow T4 phage to escape the 

CRISPR-Cas9 system.  In Chapter 4 we estimate phage predation rates on 

bacteria of the human gut and link potential phage-host pairs though DNA 

modification patterns.  This is the first study to look at global modification patters 

of phage and bacteria in the human gut microbiome. 

 In a 2.5 year longitudinal study of the human gut virome, we observed 

nucleotide substitution rates up to 4% in the strictly lytic ssDNA Microviridae 

phage. Phage with dsDNA genomes showed modest rates of nucleotide variation 

over time, which is consistent with temperate phage whose genomes are 

replicated by an accurate bacterial polymerases.  One possible driver for 

nucleotide changes in phage is to escape pressure from CRISPR systems(2).  

Seven bacterial contigs with CRISPR arrays targeting phage contigs were 

identified.  All but one targeted phage contained between one and four 
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protospacers, and the remaining phage contained 27 protospacers.  In one of the 

targeted phage, a  point mutation in the protospacer arose and  went to fixation 

indicating a fitness advantage for this genotype.   We also found a phage contig 

harboring a CRISPR array that targeted another phage.  There has been one 

previous report of a phage encoded CRISPR(3).  Our results suggest that both 

phage and bacteria use CRISPR systems to compete with phage. 

 Phage have been shown to use covalent DNA modifications to protect 

themselves from restriction endonucleases(4-6), however the ability of DNA 

modifications to block CRISPR nuclease activity was previously unknown.  One 

study had shown that a single adenine-N6-methyl group was not sufficient to 

block CRISPR activity(7), however phage contain multiple unique and unusual 

DNA modifications (many of which are significantly larger than methyl groups)(8).  

We used T4 phage, which replaces all of its cytosine bases with glc-HMC and 

two mutant T4 phage, which contain either HMC or unmodified C’s to further 

address this question.  Our results show that glc-HMC and HMC in high 

concentrations are sufficient to block CRISPR-Cas9 activity(9). 

In future studies I would like to test additional combinations of CRISPR 

systems and DNA modifications.  At least 16 CRISPR system subtypes and 10 

unique phage DNA modifications have been discovered(8, 10).  It is likely that 

the diverse CRISPR systems will behave differently when confronted with various 
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DNA modifications.   It is also important to establish a mechanism for how DNA 

modifications block CRISPR activity.  The in vivo assays we used could not 

distinguish if CRISPR activity is blocked at the DNA binding step or the DNA 

cleavage step.  In vitro assays with type I and type II CRISPR systems have 

been recently established and can be used to address this question.  I would also 

like to systematically test which nucleotide positions are most important in 

blocking CRISPR activity.  Crystal structures and nuclease protection assays for 

types I -III CRISPR systems indicate that the Cas proteins do not come in direct 

contact with every nucleotide in the protospacer(11-16).  Even when modified, I 

expect some nucleotides within the protospacer will not contact the Cas proteins 

and will not provide protection.  Our study uses the naturally occurring T4 

protospacers, so it was not possible to test all permutations of modified 

nucleotide positions.  However, we can use synthetic oligos and in vitro 

enzymatic assays to address this hypothesis.   

The acquisition of spacers from modified DNA is another exciting area of 

research that has yet to be addressed. I hypothesize that some DNA 

modifications can block spacer acquisition which can be tested using T4 phage 

and a genetically modified E. coli strain.  E. coli K12 contains a type I CRISPR 

system that is repressed by H-NS (heat-stable nucleoid-structure: a global 

transcriptional repressor) and LeuO(a transcription factor)(17). Knocking out H-
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NS and LeuO result in a fully functional CRISPR system.  I would culture the H-

NS and LeuO E. coli knockout with T4(glc-HMC), T4(HMC), and T4(C) 

separately and sequence the newly acquired spacers.  E. coli K12 has two 

CRISPR arrays, so I would PCR amplify both arrays and deep sequence the 

amplicons.  I anticipate spacers to be acquired without bias from the T4(C) 

infection, and the T4(HMC) and T4(gls-HMC) infections would prevent, reduce or 

bias spacer acquisition to regions of the T4 genome most devoid of modified 

bases. 

We used staining, qPCR, an metagenomics to study phage predation 

dynamics in the human gut microbiome and estimate that between 0.2 and 14% 

of the gut bacteria community are killed by phage per day.  In this study it 

became clear that each assay has advantages and disadvantages leading to an 

overall estimate with wide confidence intervals.  This suggests that current 

methods to evaluate phage and bacteria populations have significant limitations. 

Using multiple techniques to query microbial communities should be used to help 

reduce bias.   

Analysis of the gut microbiome DNA modifications indicated that 73% of 

phage genomes and 56% of bacterial genomes contain motifs that are 

completely modified.  A total of 443 modified motifs were shared between phage 

and bacteria, suggesting potential phage-host pairs, and five phage-host pairs 



139 

 

could be called using conservative criteria. The computer pipeline we developed 

is the first to query modification patters among metagenomic phage and bacterial 

communities.  The pipeline currently only identifies motifs that are modified at 

each motif occurrence.  For future directions of this project, I would like to expand 

the pipeline to identify motifs that are only modified a fraction of the time.  It is 

known that some phage modify motifs only 20-50% of the time(8).  Our pipeline 

identified modifications on all four bases (G, A, T, and C); so,  I would also like to 

use high-performance liquid chromatography coupled with mass spectrometry to 

confirm the presence of modifications on each of the bases. 

 The work in this thesis indicates that both bacteria and phage within the 

human gut microbiome use CRISPR systems to target phage.  One way phage 

may protect themselves from the CRISPR system is through covalent DNA 

modifications such as HMC and glc-HMC, so we conducted the first global 

covalent modifications analysis of bacteria and phage within the human gut 

microbiome.  We found that the majority of bacteria and phage contain modified 

motifs.  The fact that many modified motifs were shared between bacteria and 

phage highlights how important DNA modifications are to the survival of these 

intertwined communities.  This work provides insight into how phage and bacteria 

interact with each other within the human gut microbiome, a crucial step in the 

development of therapies for dysbiotic microbiomes. 
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