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Optimal Control of Epidemics in the Presence of Heterogeneity

Abstract
We seek to identify and address how different types of heterogeneity affect the optimal control of epidemic
processes in social, biological, and computer networks. Epidemic processes encompass a variety of models of
propagation that are based on contact between agents. Assumptions of homogeneity of communication rates,
resources, and epidemics themselves in prior literature gloss over the heterogeneities inherent to such
networks and lead to the design of sub-optimal control policies. However, the added complexity that comes
with a more nuanced view of such networks complicates the generalizing of most prior work and necessitates
the use of new analytical methods. We first create a taxonomy of heterogeneity in the spread of epidemics. We
then model the evolution of heterogeneous epidemics in the realms of biology and sociology, as well as those
arising from practice in the fields of communication networks (e.g., DTN message routing) and security (e.g.,
malware spread and patching). In each case, we obtain computational frameworks using Pontryagin’s
Maximum Principle that will lead to the derivation of dynamic controls that optimize general, context-specific
objectives. We then prove structures for each of these vectors of optimal controls that can simplify the
derivation, storage, and implementation of optimal policies. Finally, using simulations and real-world traces,
we examine the benefits achieved by including heterogeneity in the control decision, as well as the sensitivity
of the models and the controls to model parameters in each case.
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ABSTRACT

OPTIMAL CONTROL OF EPIDEMICS IN THE PRESENCE OF HETEROGENEITY

Soheil Eshghi

Saswati Sarkar

We seek to identify and address how different types of heterogeneity affect

the optimal control of epidemic processes in social, biological, and computer net-

works. Epidemic processes encompass a variety of models of propagation that are

based on contact between agents. Assumptions of homogeneity of communica-

tion rates, resources, and epidemics themselves in prior literature gloss over the

heterogeneities inherent to such networks and lead to the design of sub-optimal

control policies. However, the added complexity that comes with a more nu-

anced view of such networks complicates the generalizing of most prior work and

necessitates the use of new analytical methods. We first create a taxonomy of

heterogeneity in the spread of epidemics. We then model the evolution of hetero-

geneous epidemics in the realms of biology and sociology, as well as those arising

from practice in the fields of communication networks (e.g., DTN message rout-

ing) and security (e.g., malware spread and patching). In each case, we obtain

computational frameworks using Pontryagin’s Maximum Principle that will lead

to the derivation of dynamic controls that optimize general, context-specific ob-

jectives. We then prove structures for each of these vectors of optimal controls

that can simplify the derivation, storage, and implementation of optimal policies.
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Finally, using simulations and real-world traces, we examine the benefits achieved

by including heterogeneity in the control decision, as well as the sensitivity of the

models and the controls to model parameters in each case.
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Chapter 1

Overview

1.1 Epidemics & Epidemic Modeling

An epidemic occurs when a disease spreads rapidly among a target population.

More generally, any process that involves spreading via interaction can be thought

of as an epidemic. Examples of epidemic or epidemic-like processes include the

spread of a virus among the human or animal population, malware over a com-

puter network, information over a communication network, and a rumor on social

media.

Mathematical models for epidemics, such as those put forth by Daniel Bernoulli

[13], predate the germ theory of disease by as much as 100 years. These mod-

els, which can be either deterministic or stochastic, seek to track and predict the

number of infected individuals. Of these models, deterministic ones have received

1



the most attention in recent years, both due to their relative analytical straight-

forwardness and due to limit results which generalize their applicability.1 It was

Hamer [35] who first postulated that the rate of spread of an epidemic is a func-

tion of both the populations of infected individuals and those yet to be infected,

which is the celebrated mass-action model. This means that the spreading process

is non-linear.2

Kermack and McKendrick [43] were the first to capture the dynamics of an

epidemic through looking at infection states of agents in populations (also known

as compartmental epidemiological models). Subsequently, these models utilize a

mass-action model of interaction to capture the spreading dynamics of the epi-

demic.3 In Kermack and McKendrick’s original work, agents were divided into

3 compartments based on their infection status (the celebrated SIR epidemic

model):

• Infected (I) agents have already contracted the malware,

• Susceptible (S) individuals have yet to contract the malware but are not

immune to it,
1E.g., those obtained by Kurtz [52] that show an equivalency between the two given some

general conditions.
2This nonlinearity complicates the analysis of epidemic processes, and leads to interesting

behavior such as the Basic Reproduction Number (R0) threshold results on the terminal spread of

an epidemic (c.f., [5]).
3These models are very closely related to the Lotka-Volterra predator-prey ecological model

(c.f., [63].)
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• Recovered (R) agents are not susceptible to the malware, either due to in-

herent immunity or pre- or post-infection patching.

However, the number and nature of these compartments and their interac-

tions, as well as their interactions with external processes (e.g., birth and death

in biological populations), have led to a variety of models that are specific to the

behavior of particular epidemics.

While initial work in epidemic modeling was focused on understanding the

evolution of an epidemic, intervention policies were soon to follow [36,65,92,93].

These policies seek to stop the spread of an epidemic given limitations on possible

actions, such as the limitations that the availability of vaccines, hospital beds, and

healthcare workers impose on the control of biological epidemics. Wickwire [93]

and Behncke [10] laid the ground-work for most optimal control approaches to

date. However, these approaches are limited to homogeneous epidemics, where

all nodes are assumed to have the same characteristics (e.g., contact rates, types,

importance) and to have identical behavior (i.e., identical control policies).
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1.2 Motivating Heterogeneity in Epidemic Models

In practice, however, most epidemics are not homogeneous. Many epidemics

spread non-homogeneously among the target population, infecting some more fre-

quently and faster than others. In viral epidemics, this can be due to biological,

geographical, behavioral, cultural, or socio-economic reasons [17]. We will ex-

amine three sources of heterogeneity in turn:

1.2.1 Rate-Heterogeneity

One of the primary ways in which an epidemic can be heterogeneous is when it

has different effects and rates of spread in sub-populations.4 Policies can similarly

be non-homogeneous given a dependence on the heterogeneous sub-populations.

These sub-populations, or clusters, may result from a variety of reasons, relating

to the nature of the network:

• Locality: In this case, rate-heterogeneity arises because contact rates among

distant nodes are less than those among closer ones. This is most natural

assumption in most types of biologic and social epidemics (i.e., where the

epidemic spreads via physical contact) and has led to the study of ecoepi-
4In literature, these settings have been described by terms such as stratified, structured, clus-

tered, multi-class, multi-type, multi-population, meta-population, demes, heterogeneous, inhomo-

geneous or spatial epidemic models.
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demics [63].

• Clique/cluster formation: With the rise of data networks, physical prox-

imity is no longer necessary for the propagation of malware and social epi-

demics. Users of the same clique can be regarded as the same type with the

rate of contact within cliques and across cliques differing depending on the

relative sizes of the cliques and their contact rates. Alternately, in cluster (or

grid, or volunteer) computing [3], each cluster of CPUs in the cloud consti-

tutes a type. Any two computers in the same cluster can communicate at

faster rates than those in different clusters.

• Behavioral patterns: In malware epidemics, agents can be clustered based

on their security-consciousness, creating safe and risky types based on usage

history [99]. Security-savvy users may use more secure protocols, avoid

executing untrustworthy code or mass forwarding a received message. The

rate of propagation of the malware is therefore the lowest among safe users,

higher between safe and risky users, and highest among the risky users.

Clustering can also arise naturally in the contexts of technological adoption,

fads, opinions [26,79,81], where social contact between adopters of various

options and the undecided (infection propagation/ immunization) can lead

to their spread.
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• Software/Protocol diversity: Studies have shown that a network that relies

on a homogeneous software/protocol is vulnerable to an attack that exploits

a common weakness (e.g., a buffer overflow vulnerability) [56, 69, 94]. In

practice, mobile nodes use different operating systems and communication

protocols. Such heterogeneities lead to dissimilar rates of propagation of

malware among different types, where each type represents a specific OS,

platform, software, protocol, etc.

1.2.2 Resource-Heterogeneity

Furthermore, epidemics may spread heterogeneously based on naturally fluctuat-

ing resource-states in the system that are not inherent to the node (e.g., remaining

battery-power in nodes), which leads to fluid types, in contrast to most of the in-

herent types discussed above. Specifically, the composition of each type of nodes

will evolve with time. In these cases, resource constraints limit the ability of par-

ticular nodes to perform a certain function, thus stratifying nodes based on their

remaining resources. For example, in a Delay-Tolerant Network, or DTN, the abil-

ity of a node to relay a message towards its destination depends on its remaining

energy reserves. However, message-forwarding consumes energy in the sender

and the receiver, which impacts the nodes’ future ability to forward further mes-

sages. Thus, nodes will be naturally stratified based on the number of messages

that they can pass, which is a function of their remaining energy (stratification
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due to resource-heterogeneity).

1.2.3 Heterogeneity of Epidemics

Finally, multiple epidemics may evolve in tandem, with possible correlations in

their infected targets. These epidemics may either: 1) compete for the same

nodes, as is the case in multiple strains of a viral epidemic [40, 41] and memes

in a world with a limited attention span [91], 2) have an amplifying effect on

each others’ spread, as is the case with the HIV/TB co-epidemic [38], or 3) they

may spread in conjunction with each other, where their relative spread is coordi-

nated. In computer networks, this last case can model the case where there are

multiple malware types/variants available to the attacker (possibly with different

capabilities), and thus the network is attacked by an amalgamation of closely-

interlinked malware. For example, variants of a particular malware may execute

different policies at certain time as a means of balancing other objectives (e.g.,

stealth) against the immediate damage that they inflict. In particular, malware

such as Stuxnet [53] have had multiple variations that were released at different

times with differing functionalities to achieve a unified goal. This is a third type

of non-homogeneity - that of the epidemic itself.
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1.3 Motivation of this work

Models of epidemics need to capture these heterogeneities to be able to form a

clear picture of the spreading mechanism.5 However, prior work has focused on

the control of homogeneous epidemics, and thus is deficient in describing real-

world epidemics. Multidimensional optimal control formulations, which seek to

find optimal functions rather than variables, are usually associated with the pitfall

of amplifying the complexity of the optimization. This added complexity means

that prior approaches will not, in general, yield results for the control of a hetero-

geneous epidemic. In addition, consideration of heterogeneity will give rise to a

wealth of possible structural results for these vectors of optimal controls that can be

derived and exploited by the controller. Thus, the control of heterogeneous epi-

demics is a novel, necessary, and natural topic of study that has many real-world

applications.

5The limit results of Kurtz [52] were extended to the multi-type setting by Ball and Clancey

[8], allowing the use of deterministic multi-type models.
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1.4 Summary of Contributions

We aim to understand how heterogeneity in contact rates, resources, and epi-

demics themselves can be leveraged to improve the control of epidemics and

epidemic-like processes. In particular:6

• In Chapter 2, we seek to derive a theory of the optimal control of type-

heterogeneous epidemics with a focus on SIR models of malware spread

(§1.5). We will concentrate on optimal control policies for classes of de-

fenders that may have different sensitivities to infection (i.e., perceived or

real damage) and differing control mechanisms at their disposal.

• In Chapter 3, we aim to develop a theory of optimal control of resource-

heterogeneous epidemics, focusing on a case where resource-heterogeneity

results from differences in the remaining energy of nodes in the process

of message delivery in a a Delay-Tolerant Network, or DTN (§1.6). In

this case, the resource-state is available to the node, and can be factored

into its message-forwarding decision. We concentrate on understanding the

structure of these forwarding decisions, as well as their dependence on the

energy-states in settings which guarantee a certain Quality of Service (QoS).

6Here and subsequently, “We” and “Our” are used in description of the work to acknowledge

the contributions of M.H.R. Khouzani, Saswati Sarkar, Santosh S. Venkatesh, and Ness B. Shroff,

who contributed to some or all of the work.
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• Finally, in Chapter 4, we seek to put forth a theory for the optimal control of

cases where the epidemic itself is heterogeneous. In particular, we investigate

stealth-aware optimal spread of malware in §1.7, where there is an inherent

heterogeneity to the infections. In this case, an attacker balances the need

for stealth against the traditional aim of damaging a network, as has been

seen in some recent malware [53]. Here, we aim to understand the structure

of the optimal decisions of the malware developer, given a range of possible

assumptions on the capabilities at their disposal, and to characterize the

optimal spread of the epidemic both on its own and in the presence of a

network defense mechanism.

We now present each problem in the 3 domains in more detail, and summarize

our contributions to each case:
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1.5 Rate-Heterogeneity: Optimal Control of Clus-

tered Malware Epidemics

We consider the spread of a malware epidemic in a heterogeneous environment

where nodes are stratified based on their respective contact rates. In the envi-

ronments, immunization/healing/patching policies need to cater to the specific

stratum to ensure maximal efficacy. In malware epidemics, as opposed to bi-

ological ones, the healing mechanism (i.e., patching) can be replicative, which

means that patched nodes may be able to spread the patch to other nodes. This

possible secondary spread of immunity also arises in some of the other rate-

dependent heterogeneous epidemic models (see §1.2.1). We consider the immu-

nization/healing/patching rates as dynamic controls that evolve with time. The

aim of this investigation was to find optimal, custom trade-offs between the dam-

age sustained by the network and the resources spent in patching it against the

malware utilizing the heterogeneity in contact-rates among nodes in the network.

The gains from these rate-heterogeneous approaches, however, usually come at a

cost (in terms of computation, storage, sensitivity, etc.) which depends on the

nature of the network. Characterizing these costs and the resulting optimal im-

munization/healing/patching structures determine whether the controller should

make use of such mechanisms. We seek to quantify the changes that arise from

such an approach as compared to simpler ones that assume a homogeneous net-
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work.

Contributions

• We modeled the spread of an epidemic in a rate-heterogeneous environment

by considering logical clusters of nodes where each cluster constitutes a type.

Nodes of the same type homogeneously mix with a rate specific to that type

and nodes of different types contact each other at rates particular to that

pair of types, with SIR epidemic dynamics that evolve according to these

pairwise contact rates. The model can therefore capture any communication

topology between different groups of nodes. To capture a general case of

possible responses of the network, we considered both non-replicative and

replicative patching: in the former, some of the hosts are pre-loaded with

the patch, which they transmit to the rest. In the latter, each recipient of the

patch can also forward the patch to nodes that it contacts by a mechanism

similar to the spread of the malware itself. In our model, patching can

immunize susceptible nodes and may or may not heal infective nodes. The

dynamics of the model can be seen in Fig. 1.1.

• We proposed a formal framework for computing dynamic optimal patching

policies (patching action within each cluster) for these rate-heterogeneous

settings. these policies leverage heterogeneity in the network structure to

attain the minimum possible aggregate cost due to the spread of malware
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and the overhead of patching. The framework in each case relies on optimal

control formulations that cogently capture the effect of the patching rate

controls on the state dynamics and their resulting trade-offs. We accom-

plished this by using a combination of damage functions associated with the

controls and a stratified mean-field deterministic epidemic model in which

nodes were divided into different types. Above and beyond, it can exploit

the inhomogeneity in the network to enable a better utilization of the re-

sources. Such higher patching efficacy is achieved by allowing the patching

controls to depend on node types, which in turn gives rise to multidimen-

sional (dynamic) optimal control formulations. These formulations lead to

a solution framework derived from Pontryagin’s Maximum Principle, which

characterizes necessary conditions for the optimality of vectors of controls.

• We proved that for both non-replicative and replicative settings the optimal

control associated with each type has a simple structure provided the corre-

sponding patching cost is either concave or convex. These structures were

derived using Pontryagin’s Maximum Principle and analytic arguments spe-

cific to this problem. This derivation reveals that the structure of the optimal

control for a specific type depends only on the nature of the corresponding

patching cost and not on those of other types. This fact (correspondence

of the nature of the optimal patching control in a type to the convexity or

concavity of the patching cost in that particular type and not that of others)
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is surprising, as the control for each type affects immunization and heal-

ing in other types and the spread of the infection in general. Specifically,

if the patching cost associated with the control for a given type is concave,

irrespective of the nature of the patching costs for other types, the corre-

sponding optimal control turns out to be a bang-bang function with at most

one jump: up to a certain threshold time (possibly different for different

types) it selects the maximum possible patching rate and subsequently it

stops patching altogether. If the patching cost is strictly convex, the decrease

from the maximum to the minimum patching rate is continuous rather than

abrupt, and monotone. Note that each of these bang-bang controls can

be represented by one point (the threshold), and thus the vector of control

functions can be expressed as a vector of scalars of the same size, which sim-

plifies their computation and storage. Furthermore, the simplicity of these

structures makes them suitable for implementation, while also providing a

benchmark for other policies that may require fewer network parameters.

The optimal controls were compared to heuristic and homogeneous alterna-

tives over real-world traces and numerical simulations in a variety of sample

topologies. As expected, it was seen that as contact rates become more var-

ied within a topology, homogeneous approximations to the optimal controls

become very inefficient. This experimentally validated the premise of con-

sidering rate-heterogeneity in the choice of the patching controls.
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Figure 1.1: This figure captures the SIR dynamics within each agent type, as well

as the interactions between types. The numbers on the arrows indicate rates.

Blue arrows indicate inter-type contacts, while black ones represent contacts that

happen within each type. Notice that the communication rates (denoted by β)

between susceptible agents of a certain type i and the infected nodes of type j

can be different from their communication rate with recovered notes of the same

type, a situation that may arise due to the nature of the system (e.g., in the case

of two competing infections) or because of provisions taken by either the attacker

or the defender (i.e., βij 6= βji). uj denotes the dynamic control of the defender

on the propagation of patches by type j, while πji (static) represents the extent to

which infected agents of type i can be healed by agents of type j.
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1.6 Resource-Heterogeneity: Optimal Energy-Aware

Epidemic Routing in DTNs

In Delay-Tolerant Networks (DTNs), end-to-end connectivity is rare, and messages

have to be passed along by intermediate nodes to reach their destination. Most im-

portantly, message forwarding consumes energy in the intermediate nodes, which

is critical as in many cases their energy supplies are non-replenishable (e.g., where

communication devices are carried by disaster relief personnel and soldiers, or

where they can be mounted on wandering animals). These forwarding decisions

leave different nodes with different remaining energies at each time-instant, lead-

ing to an exploitable resource-heterogeneity in the network. This message forward-

ing process can accordingly be controlled to achieve certain objectives in terms of

both the delivery of the message and the resources of the network. A fundamen-

tal question in this realm is how to balance quality of service (i.e., the probability

that the message reaches its destination in a timely manner) against the use of

network resources (such as node battery power and bandwidth). It is of practical

importance to see whether it is possible to derive optimal controls that depend

on readily-measurable resource-states of nodes (such as battery power), and to

quantify the effects of this trade-off and the benefits of incorporating the addi-

tional information in the decision.

16



Contributions

• We modeled message transmission in a DTN as a resource-state heterogeneous

controllable SI epidemic, where the forwarding policies in each node consti-

tute the controls. We defined a node that had received a copy of the message

and is not its destination as an infective (I) and a (non-destination) node that

had not yet received a copy of the message as a susceptible (S). When an in-

fective node contacts a susceptible at time t, the message is transmitted with

a certain forwarding probability if the infective (transmitter) and susceptible

(receiver) have at least s and r units of energy (s and r being the energy nec-

essary for transmission and reception of the message). Stratifying the nodes

based on their energy resource-state, we defined Si(t) (respectively, Ii(t))

to be the fraction of nodes that are susceptible (respectively, infective) and

that have i energy units at time t. At any given time, each node can observe

its own level of available energy, and its forwarding decision should, in gen-

eral, utilize such information. Thus, the forwarding decision in our model is

dependent on the forwarding node’s remaining energy: upon an instance of

contact between a susceptible node of energy i and an infective node of en-

ergy j, the message is forwarded with probability uj(t) (0 ≤ uj(t) ≤ 1). We

took these probabilities to be our controls u(t) =
(
us(t), us+1(t), . . . , uB(t)

)
.

If the message is forwarded, the susceptible node of energy i transforms to

an infective node with i− r energy units, and the infective node of energy j
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likewise to an infective node with j − s energy units. If a message-carrying

node that has sufficient energy for one transmission contacts the destination

that has yet to receive the message, the message is always forwarded to the

destination. These dynamics can be seen in Fig. 1.2. We modeled the evolu-

tion of these fractions (states) using epidemiological differential equations

that rely on mean-field approximation of Markov processes. Subsequently,

we formulated the trade-off between energy conservation and likelihood of

timely delivery as a dynamic energy-dependent optimal control problem: at

any given time, each node chooses its forwarding probability based on its

current remaining energy. Since the number of relay nodes with the mes-

sage increases and residual energy reserves decrease with transmissions and

receptions, the forwarding probabilities vary with time. Thus, they must be

chosen so as to control the evolution of network states, which capture both

the fraction of nodes holding a copy of the message and the remaining bat-

tery reserves of the nodes.

• We sought to compute dynamic forwarding probabilities (optimal controls)

that optimize objective functions penalizing energy depletion subject to en-

forcing timely message delivery. These dynamic forwarding probabilities

constituted our optimal controls. The resulting optimal control problem is

solved using Pontryagin’s Maximum Principle, which leads to a computa-

tional framework for the optimal controls.
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• Utilizing the above framework combined with arguments specific to this con-

text, we characterized the structures of these resource-dependent optimal

controls (i.e., forwarding decisions) and showed that they follow simple

rules that can be computed in a computationally efficient manner.

Our first result was to prove that dynamic optimal controls follow simple

threshold-based rules. That is, a node in possession of a copy of the mes-

sage forwards the message to nodes it encounters that have not yet received

it until a certain threshold time that depends on its current remaining en-

ergy. Calculating these thresholds is much simpler than solving the general

problem and can be done once at the source node of the message. Subse-

quently, they can be added to the message as a small overhead. Each node

that receives the message can retrieve the threshold times and forward the

message if its age is less than the threshold entry of the node’s residual en-

ergy level. The execution of the policy at each node is therefore simple and

based only on local information.

Our second result was to characterize the nature of the dependence of the

thresholds on the energy levels. Intuitively, the less energy a node has, the

more reluctant it should be to transmit the message, as the transmission

will drive it closer to critically low battery levels. However, our investiga-

tions revealed that this intuition can only be confirmed when the penalties

associated with low final remaining energies are convex. In particular, we
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constructed a viable case with non-convex costs where the optimal thresh-

olds did not follow this intuition.

Our optimal control provided a missing benchmark for forwarding policies

in large networks in which no information about the mobility pattern of the

individual nodes is available and a minimum QoS is desired. This bench-

mark allowed me to observe the sub-optimality of some simpler heuristic

policies, and to identify parameter ranges in which they perform close to

the optimal. Furthermore, we showed that the optimal controls were robust

to estimation errors in their parameters and synchronization, and that they

performed much better than heuristics in cases with more energy hetero-

geneity and starker penalties on energy mis-utilization. Finally, we showed

that these optimal controls extended the number of messages a network

could transmit before exhaustion, which is a measure of network lifetime.
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Figure 1.2: This figure captures how the message transmission upon contact

changes the energy levels of nodes, as well as infecting the susceptible node. The

dotted boxes represent the two agents in which the simultaneous transformations

that result from a message transmission occur. The susceptible agent becomes an

infective while losing r units of power, while the infecting agent spends s units of

energy to send the message.

1.7 Epidemic-Heterogeneity: Visibility-Aware Mal-

ware Epidemics

Multiple epidemics may spread simultaneously in a network, leading to a third

type of heterogeneity: epidemic heterogeneity. In particular, malware epidemics

differ from biological ones in that multiple variants of an epidemic can spread in

a coordinated manner. Furthermore, these epidemics can be designed to respond

to triggers and to act in such a way as to maximize a certain utility for the mal-

ware designer, perhaps even factoring the response of the defender (controlled

evolution). This creates challenges for security professionals who have to under-

stand the motivations and methods of these malware designers. The malware
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designer’s control, in this model, is to dynamically tune the mix of the malware

variants to achieve a certain objective. Thus, the designer’s decision to spread the

epidemic will be dependent on the particular variant, leading to heterogeneous

control structures.

Specifically, a new generation of malware, one that eschews damage to the

network to maintain stealth, has led to new challenges in computer network se-

curity. These “surgical” strikes seek to minimize visibility, as awareness can lead

the intended target to cease communication (e.g., by quarantining the targets).

Stuxnet, for example, was designed to attack a specific control software used in

centrifuges [25] and did not steal or manipulate data, or receive any command

instructions from remote sources so as to maintain stealth [53] (cf. Duqu, Flame,

and Gauss [11]). Yet, it was discovered and remedied after it spread outside its

target area [76]. Thus there is a new trade-off for the attacker — that between

stealth and damage. That is, if the malware spreads too fast, it will also be de-

tected and remedied fast, so a slower spread may mean that it can cause more

aggregate damage. Thus, in contrast to many other epidemiological contexts,

aggressive policies may not be optimal.

In particular, we consider the case where two variants of a single malware

spread in a network. One spreads aggressively in every contact, and is thus visible

to the network due to its communications, while the other passive variant does

not spread subsequent to infecting a node. Coordinating distributed attacks comes
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at the cost of added visibility due to communication and is susceptible the timing

errors in the hosts. Thus, we focus on the case where distributed nodes that

are infected are not asked to coordinate, as was the case in Stuxnet. The natural

question that arises is to characterize the structure of optimal malware variant mix

that the attacker will spread at each instant depending on their goal structures and

the communication mechanisms that they may have at their disposal.

Contributions

• We modeled a network under attack by these two variants of a malware.

Depending on their infection status, nodes could be divided into 4 groups:

1) Germinators (G) that are a fixed (potentially very small) fraction of the

nodes that are the only nodes under the direct control of the attacker, 2)

Susceptibles (S) that are nodes that have not received any variant of the

malware, 3) Zombies (Z) that have received the aggressive malware variant

and will continue to propagate it indiscriminately, and 4) Passives (P) that

have received the passive variant of the malware, and thus do not propagate

it any further. Both zombies and passives can contribute to damaging the

network through the execution of malicious code. Zombies, however, are

potentially visible to the network as they have to communicate with other

nodes to spread the message. To capture the visibility-conscious malware

designer’s decision to spread either of the potent-yet-visible or less-potent-
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but-less-visible variants of a malware at each time instant, we proposed a

mathematical formulation for the state dynamics governing interaction be-

tween nodes in these 4 groups. This model characterizes how nodes in these

groups transform from one state to the other, as well as the impact of the

attacker’s control. In this model, the germinators, at each encounter with

a susceptible, decide whether to turn it into a zombie or a passive, or to

leave it as a susceptible. We also investigated the case where we added a

further mechanism of interaction whereby the germinators, upon contact

with zombies, can turn them into passives (i.e., stopping them from spread-

ing the message any further). Finally, we formulated state dynamics that

account for the network’s defense strategy. Once a defender becomes aware

of a malware outbreak, she can ask nodes to limit their effective contacts

as a means to limit the spread of malware. This, however, comes at a cost

of stopping legitimate communication within the network. For a pictorial

representation of these 3 dynamics, see Fig. 1.3. We quantified the damage

inflicted by the malware through characterizing an overall damage function

consisting of an efficacy function of the aggregate number of zombies and

passives, and a visibility function of the number of zombies. In the first two

models described above, the attacker chooses controls that maximize this

damage. In the latter model, the effect of visibility is built into the network

dynamics, as we allow the network to choose a policy based on the fraction
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of zombies, and so the attacker is only directly concerned with maximizing

efficacy. In these settings, the network can choose quarantine policies that

are either affine or logistic in the number of zombies.

• We sought to compute dynamic malware-spread mixes (optimal controls)

that the malware designer would employ to optimally balance her objectives

of maximum damage and minimum visibility given the variety of possible

mechanisms available to the defender. These dynamic decisions, which de-

termined the probability that each variant will be spread at each encounter

between a germinator and a susceptible, constituted our optimal controls.

The resulting optimal control problem is solved using Pontryagin’s Maxi-

mum Principle, which leads to a computational framework for the optimal

controls.

• We showed that the attacker’s optimal strategy in all of these models follows

a certain structure: the germinators only create zombies up to a certain

time, and then only create passives (including by halting zombies) from

then on. That is, the optimal controls are bang-bang (i.e., only taking their

minimal and maximum values) with only one jump. It is interesting to note

that in each of the variations we considered, our analysis revealed that all

the controls switch at the same point, a fact that was not at all clear a

priori. Thus the entire control space could be described by one time-point,

a fact that is invaluable for deriving the optimal controls computationally.
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Furthermore, the controls were easy to implement as the infectives need to

be programmed with just one time instant for all of their controls. After

completely characterizing the optimal controls, we investigated the effect of

the network’s estimation errors in the latter model for network response. We

demonstrated that the model performs reasonably well even when there are

small errors in the network’s estimation of the number of zombies, which it

uses to determines its response to the malware epidemic.
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Figure 1.3: The solid black arrows show the dynamics in the visibility-aware epi-

demic model with no halting (the ability to make zombies into passive agents

upon contact). The red arrows show the additional mechanism that affects the

case where halting is assumed in the model. Finally, in the case with network

defense, β is replaced by β(Z), which is a function of the number of zombies (i.e.,

the visibility of the epidemic). Note that the population of G never changes, and

the arrows emanating from it show that some changes happen when a germinator

agent encounters another type of agent. As before, the numbers beside the arrows

denote rates of transition.
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1.8 Literature review and positioning of our con-

tributions

1.8.1 Rate Heterogeneity

Epidemic models, and especially SIR epidemic models, have been used extensively

to model the spread of malware and the propagation of information in computer

networks, beginning from Murray [66] and Kephart and White [42]. Recent work

on malware and information epidemics has focused on how these epidemics can

be controlled [1, 50, 58]. However, the work on the propagation of information

(such as [1,58]) has focused on two-hop routing with no adversaries, which does

not apply to malware defense and a host of other applications such as technology

adoption. On the other hand, works on malware defense, such as [50] have mod-

eled healing and immunization as contact-independent exogenous processes that

are uniform among all nodes, which are very limiting assumptions. Recognizing

the constraints of the defender, works such as [45, 46] have included the cost of

patching in the aggregate damage of the malware and have characterized the opti-

mal dynamic patching policies that attain desired trade-offs between the patching

efficacy and the extra taxation of network resources. Similarly, Li et al. [57]

and Altman et al. [2] have characterized optimal dynamic transmission control

policies for two-hop and multi-hop messages. These results, however, critically
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rely on the homogeneous mixing assumption: that all pairs of nodes have identi-

cal expected inter-contact times. Thus, there will only be one optimal control for

the system. While this assumption may serve as an approximation in cases where

detailed information about the network is unavailable, studies [16,55,64,71,89]

show that the spread of malware in mobile networks can be very inhomogeneous,

owing primarily to the non-uniform distribution of nodes. Thus, a uniform action

may be sub-optimal.

To the best of our knowledge, our work was the first that considers the control

of a general stratified epidemic and provides analytical structural guarantees for

a dynamic patching.7 Our model is general enough to capture any clustering of

the nodes with arbitrary inter-contact rates of interaction and to allow different

methods of type specification. Owing to the heterogeneity of nodes, it becomes

necessary to have differing controls for different strata (types), leading to a vector

of controls as opposed to the single control that was derived for homogeneous users

in prior literature. Deriving structure results for a vector of controls requires

analytical arguments that are quite different from those employed for a single

control. The simple structure results described for the optimal policies have not

been established in the context of (static or dynamic) control of heterogeneous

epidemics. The power of our analytical results is in the extensive generality of

our model.
7Li et al. [58] consider a 2-type epidemic, but with no control. All other prior work has

assumed one uniform control for one set of homogeneous users.

29



1.8.2 Resource Heterogeneity

The literature on message routing in DTNs is extensive [1, 7, 9, 19, 20, 60, 61, 67,

68, 82–84, 88, 90, 96]. Most notably, Vahdat and Becker [88] present a policy

where each node propagates the message to all of its neighbors simultaneously

(“Epidemic Routing”), while Spyropoulos et al. [84] propose spreading a specific

number of copies of the message initially and then waiting for the recipients of

these copies to deliver the message to the destination (“Spray and Wait”). Wang

and Wu [90] present “Optimized Flooding”, where flooding is stopped once the

total probability of message delivery exceeds a threshold. Singh et al. [83] and

Altman et al. [1] identify optimal and approximately optimal message forwarding

policies in the class of policies that do not take the distribution of node energies

into account. In summary, the state of the art in packet forwarding in DTNs com-

prises of heuristics that ignore energy constraints [60,88,96], those that consider

only overall energy consumption but provide no analytic performance guaran-

tees [9, 19, 61, 68, 84, 90], and those that do not utilize the energy available to

each node in making forwarding decisions [1, 7, 20, 67, 82, 83]. An efficient for-

warding strategy can use knowledge of the distribution of energy among nodes to

its advantage, and this motivates the design of dynamic energy-dependent con-

trols which are the subject of this work.

To the best of our knowledge, our work was the first work that considers

message routing in DTNs as a resource-heterogeneous optimal forwarding problem
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where the forwarding decision of a node is based on its remaining energy. Fur-

thermore, the optimal structures derived for the forwarding decisions are also a

contribution of the work, given the difficulties posed by vectors of controls. Next,

the threshold ordering results for the optimal controls, obtained for convex costs,

are without precedent in proposition and analysis. Finally, the counter-example

provided shows that convexity is a relatively strong sufficient condition for this

ordering phenomenon.

1.8.3 Epidemic Heterogeneity

Multiple interacting epidemics that spread among a single population have been

considered in the fields of biology [40, 41] and sociology [91]. In these models,

these epidemics either compete for a limited pool of susceptible nodes, or cause

the susceptibles to become more vulnerable to other epidemics. However, in all

these contexts, there is no mechanism to coordinate the actions of competing epi-

demics. In the realm of malware, on the other hand, such a coordination among

multiple epidemics can not only exist, but can be intrinsic to the attack strategy of

a malware designer. Furthermore, in the majority of malware epidemic models,

e.g., [27, 34, 51, 62, 77, 98], two things have generally been assumed: 1- that the

attacker’s sole aim is to maximize the spread of the malware, and 2- that they

have a mechanism to control the malware in the future (through a timer in the

code, for example– for a similar framework, see [22]). As we described, these two
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assumptions are no longer true for the emerging generation of malware. Thus,

the model presented for the spread of visibility-heterogeneous malware variants

has no precedent in literature. Accordingly, the questions we asked and the solu-

tions we obtained are substantially different to prior work. The closest work to

this topic was by Khouzani and Sarkar [47]. However, their model differs from

mine in two key ways: 1) They assume that the malware can control the transmis-

sion range of infected nodes, while in this problem, we assume that the control

affects the mix of malware variants and that the communication ranges of nodes

are outside the malware’s control, perhaps even being controlled by the defender

as a mitigation mechanism. Thus, the control and the trade-off to the malware

designer is fundamentally different. 2) The models for defense are also different:

In their model, patching is the major defense of the network and starts as soon as

the epidemic spreads. This may not be the case for an emerging stealthy epidemic

like Stuxnet that is very large and extremely hard to decipher, let alone miti-

gate [15,95]. In our model, the network only becomes aware of the malware as it

becomes more visible (i.e., as the visible variant spreads). Furthermore, we exam-

ine at a case where the network can defend itself by choosing the communication

ranges of nodes as a decreasing function of the visibility of the malware, which

is a form of quarantine. In addition to these two key differences, in our models

the malware designer only requires synchronized actions from a fixed number of

nodes that are under its control from the outset. This decreases the risks of de-
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tection and policy implementation errors arising from coordinating synchronized

distributed actions among a varying set of nodes, which is necessary in Khouzani

and Sarkar’s model.

To the best of our knowledge, our work was the first work that considers

the problem of multiple coordinated malware variants spreading in a network

(malware epidemic heterogeneity). Furthermore, the consideration of stealth as a

means of stratification of the epidemics and as a goal of the malware designer is

also without precedent. The optimal structures that are presented for the opti-

mal malware spreading probabilities also constitute a contribution of the work.

The simple structure of these optimal controls - that at each time, the spread of

only one variant of the malware is encouraged, with only one abrupt transition in

the preferred malware - holds for all the models presented. This means that it is

reasonable for a network defender to assume this simple action structure for the

actions of the malware. Finally, the numerical simulations show that the model is

not sensitive to estimation errors in the fraction of visible malware (zombies) on

the part of the network defender, and thus the simple defense structures assumed

in the latter model can be a reasonable starting point in the derivation of optimal

stable defense strategies for the network.

33



Chapter 2

Rate-Heterogeneity: Optimal

Patching in Clustered Malware

Epidemics1

2.1 Introduction

Differing communication rates among multiple types/clusters of agents constitute

the most obvious type of heterogeneity that inherently affects the spreading of

most epidemics. This is especially relevant where there is an opportunity to lever-

age this heterogeneity to develop better type-dependent epidemic control poli-

cies. In particular, we focus on the spread of malware (and specifically, worms)

1Presented in the Information Theory and Applications Workshop (ITA) 2012 and published

in the IEEE Transactions on Networking, November 2015 [22].
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in computer networks, where there are multiple factors that cause heterogeneity,

e.g., locality, IP space, platform.

Worms (self-propagating malicious codes) are a decades-old threat in the realm

of the Internet. Worms undermine the network in various ways: they can eaves-

drop on and analyze traversing data, access privileged information, hijack ses-

sions, disrupt network functions such as routing, etc. Although the Internet is the

traditional arena for trojans, spyware, and viruses, the current boom in mobile

devices, combined with their spectacular software and hardware capabilities, has

created a tremendous opportunity for future malware. Mobile devices commu-

nicate with each other and with computers through myriad means – Bluetooth

or Infrared when they are in close proximity, multimedia messages (MMS), mo-

bile Internet, and peer to peer networks. Current smart-phones are equipped

with operating systems, CPUs, and memory powerful enough to execute complex

codes. Wireless malware such as cabir, skulls, mosquito, commwarrior have al-

ready sounded the alarm [72]. It has been theoretically predicted [89] that it

is only a matter of time before major malware outbreaks are witnessed in the

wireless domain.

Malware spreads when an infective node contacts, i.e., communicates with, a

susceptible node, i.e., a node without a copy of the malware and vulnerable to

it. This spread can be countered through patching [97]: the vulnerability uti-

lized by the worm can be fixed by installing security patches that immunize the
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susceptible and potentially remove the malware from the infected, hence simul-

taneously healing and immunizing infective nodes. However, the distribution of

these patches burdens the limited resources of the network, and can wreak havoc

on the system if not carefully controlled. In wired networks, the spread of Welchia,

a counter-worm to thwart Blaster, rapidly destabilized important sections of the

Internet [54]. Resource constraints are even more pronounced in wireless net-

works, where bandwidth is more sensitive to overload, and nodes have limited

energy reserves.

We propose a formal framework for deriving dynamic optimal patching poli-

cies that leverage heterogeneity in the network structure to attain the minimum

possible aggregate cost due to the spread of malware and the overhead of patch-

ing. We assume arbitrary (potentially non-linear) functions for the cost rates of

the infective nodes. We consider both non-replicative and replicative patching: in

the former, some of the hosts are pre-loaded with the patch, which they transmit

to the rest. In the latter, each recipient of the patch can also forward the patch to

nodes that it contacts by a mechanism similar to the spread of the malware itself.

In our model, patching can immunize susceptible nodes and may or may not heal

infective nodes. The framework in each case relies on optimal control formula-

tions that cogently capture the effect of the patching rate controls on the state

dynamics and their resulting trade-offs. We accomplish this by using a combina-

tion of damage functions associated with the controls and a stratified2 mean-field

2Known by other terms such as structured, clustered, multi-class, multi-type, multi-population,

36



deterministic epidemic model in which nodes are divided into different types.

Nodes of the same type homogeneously mix with a rate specific to that type, and

nodes of different types contact each other at rates particular to that pair of types.

The model can therefore capture any communication topology between different

groups of nodes. Above and beyond, it can exploit the inhomogeneity in the net-

work to enable a better utilization of the resources. Such higher patching efficacy

is achieved by allowing the patching controls to depend on node types, which in

turn leads to multidimensional (dynamic) optimal control formulations.

Multidimensional optimal control formulations, particularly those in the solu-

tion space of functions rather than variables, are usually associated with the pit-

fall of amplifying the complexity of the optimization. An important contribution

of this work, therefore, is to prove that for both non-replicative and replicative

settings the optimal control associated with each type has a simple structure pro-

vided the corresponding patching cost is either concave or convex. These struc-

tures are derived using Pontryagin’s Maximum Principle and analytic arguments

specific to this problem, another of our contributions. This derivation reveals that

the structure of the optimal control for a specific type depends only on the nature

of the corresponding patching cost and not on those of other types. This holds

even though the control for each type affects immunization and healing in other

types and the spread of the infection in general. Specifically, if the patching cost

compartmental epidemic models, and sometimes loosely as heterogeneous, inhomogeneous or

spatial epidemic models.
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associated with the control for a given type is concave, irrespective of the na-

ture of the patching costs for other types, the corresponding optimal control turns

out to be a bang-bang function with at most one jump: up to a certain thresh-

old time (possibly different for different types) it selects the maximum possible

patching rate and subsequently it stops patching altogether. If the patching cost

is strictly convex, the decrease from the maximum to the minimum patching rate

is continuous rather than abrupt, and monotone. To the best of our knowledge,

such simple structure results have not been established in the context of (static

or dynamic) control of heterogeneous epidemics. Furthermore, the simplicity of

these structures makes them suitable for implementation, while also providing a

benchmark for other policies that may require fewer network parameters. Our

numerical calculations reveal a series of interesting behaviors of optimal patching

policies for different sample topologies.

To the best of our knowledge, this is the first work that considers a stratified

epidemic and provides analytical structural guarantees for a dynamic patching.3

Our model is general enough to capture any clustering of the nodes with arbitrary

inter-contact rates of interaction and to allow different methods of type specifi-

cation. Owing to the heterogeneity of nodes, we are compelled to have differing

controls for different strata (types), leading to a vector of controls as opposed to

the single control that was derived for homogeneous users in prior literature. De-

3Li et al. [58] consider a 2-type epidemic, but with no control. All other prior work has

assumed one uniform control for one set of homogeneous users.
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riving structure results for a vector of controls requires analytical arguments that

are quite different from those employed for a single control. The power of our

analytical results is in the extensive generality of our model.

First, we develop our system dynamics and objectives (§2.2) and character-

ize optimal non-replicative (§2.3) and replicative (§2.4) patching. We then ana-

lyze an alternate objective (§2.5) and present numerical simulation of our results

(§2.6).

2.2 System Model and Objective Formulation

In this section we describe and develop the model of the state dynamics of the sys-

tem as a general stratified epidemic for both non-replicative (§2.2.1) and replica-

tive (§2.2.2) patching, motivate the model (§2.2.3), formulate the aggregate cost

of patching, and cast this resource-aware patching as a multi-dimensional opti-

mal control problem (§2.2.5). This formulation relies on a key property of the

state dynamics which we isolate in §2.2.4. We develop solutions in this model

framework and present our main results in §2.3 and §2.4.

Our models are based on mean-field limits of Poisson contact processes for

which path-wise convergence results have been shown (c.f. [52, p.1], [32]).
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2.2.1 Dynamics of non-replicative patching

A node is infective if it has been contaminated by the malware, susceptible if it

is vulnerable to the infection but not yet infected, and recovered if it is immune

to the malware. An infective node spreads the malware to a susceptible one while

transmitting data or control messages. The network consists of nodes that can

be stratified into M different types4. The population of these types need not be

equal. A node of type i contacts another of type j at rate β(N)
ij .

There are Ni = αiN (αi > 0) nodes of type i in the network, among which

nSi (t), nIi (t) and nRi (t) are respectively in the susceptible, infective and recovered

states at time t. Let the corresponding fractions be Si(t) = nSi (t)/Ni, Ii(t) =

nIi (t)/Ni, and Ri(t) = nRi (t)/Ni. We assume that during the course of the epi-

demic, the populations of each type, Ni, are stable and do not change with time.

Therefore, for all t and all i, we have Si(t) + Ii(t) +Ri(t) = 1.

Amongst each type, a pre-determined set of nodes, called dispatchers, are pre-

loaded with the appropriate patch. Dispatchers can transmit patches to both sus-

ceptible and infective nodes, immunizing the susceptible and possibly healing the

infective; in either case successful transmission converts the target node to the

recovered state. In non-replicative patching (as opposed to replicative patching-

see §2.2.2) the recipient nodes of the patch do not propagate it any further.5 Dis-

4equivalently, clusters, segments, populations, categories, classes, strata).
5This may be preferred if the patches themselves can be contaminated and cannot be reliably
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patchers of type i contact nodes of type j at rate β̄(N)
ij , which may be different from

the contact rate β(N)
ij of the malware between these two types. Examples where

contact rates may be different include settings where the network manager may

utilize a higher priority option for the distribution of patches, ones where the mal-

ware utilizes legally restricted means of propagation not available to dispatchers,

or ones where the patch is not applicable to all types, with the relevant β̄(N)
ij now

being zero. The number of dispatchers of type i, which is fixed over time in the

non-replicative setting, is NiR
0
i , where 0 < R0

i < 1.

Place the time origin t = 0 at the earliest moment the infection is detected

and the appropriate patches generated. Suppose that at t = 0, for each i, an

initial fraction 0 ≤ Ii(0) = I0
i ≤ 1 of nodes of type i are infected. At the onset

of the infection, the dispatchers (Ri(0) = R0
i ) are the only agents immune to the

malware. In view of node conservation, it follows that Si(0) = S0
i = 1− I0

i −R0
i .

At any given t, any one of the nSi (t) susceptibles of type i may be infected

by any of the nIj (t) infectives of type j at rate β
(N)
ji . 6 Thus, susceptibles of

type i are transformed to infectives (of the same type) at an aggregate rate of

nSi (t)
∑

j β
(N)
ji nIj (t) by contact with infectives of any type.

The system manager regulates the resources consumed in the patch distribu-

tion by dynamically controlling the rate at which dispatchers contact susceptible

authenticated.
6Susceptibles of type i may be contacted by infectives of type j at a higher rate, and it is

possible that not all contacts lead to infection.
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and infective nodes. For each j, let the control function uj(t) represent the rate

of transmission attempts of dispatchers of type j at time t. We suppose that the

controls are non-negative and bounded,

0 ≤ uj(·) ≤ uj,max. (2.2.1)

We will restrict consideration to control functions uj(·) that have a finite number

of points of discontinuity. We say that a control (vector) u(t) =
(
u1(t), . . . , uM(t)

)
is admissible if each uj(t) has a finite number of points of discontinuity.

Given the controls u1(·), . . . , uM(·), susceptibles of type i are transformed to re-

covered nodes of the same type at an aggregate rate of nSi (t)
∑

j β̄
(N)
ji nRj (0)uj(t) by

contact with dispatchers of any type. A subtlety in the setting is that the dispatcher

may find that the efficacy of the patch is lower when treating infective nodes. This

may model situations, for instance, where the malware attempts to prevent the

reception or installation of the patch in an infective host, or the patch is designed

only to remove the vulnerability that leaves nodes exposed to the malware but

does not remove the malware itself if the node is already infected. We capture

such possibilities by introducing a (type-dependent) coefficient 0 ≤ πji ≤ 1 which

represents the efficacy of patching an infective node: πji = 0 represents one ex-

treme where a dispatcher of type j can only immunize susceptibles but can not

heal infectives of type i, while πji = 1 represents the other extreme where contact

with a dispatcher of type j both immunizes and heals nodes of type i equally well;

we also allow πij to assume intermediate values between the above extremes. An
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infective node transforms to the recovered state if a patch heals it; otherwise, it

remains an infective. Infective nodes of type i accordingly recover at an aggregate

rate of nIi (t)
∑M

j=1 πjiβ̄
(N)
ji nRj (0)uj(t) by contact with dispatchers.

In the large (continuum) population regime, suppose that the two limits βij :=

limN→∞ αiNβ
(N)
ij and β̄ij := limN→∞ αiNβ̄

(N)
ij exist. We say that a type j is a neigh-

bor of a type i if βij > 0, and Sj(t) > 0 (i.e., infected nodes of type i can contact

nodes of type j). There is now a natural notion of a topology that is inherited

from these rates with types as vertices and edges between neighboring types. Fig-

ure 2.1 illustrates some simple topologies. For a given topology inherited from the
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Figure 2.1: Four sample topologies of 5 hotspot regions: linear, star, complete, and

ring. For instance, nodes of hotspot 1 in the linear topology can only communicate

with nodes of hotspots 1 (at rate β11) and 2 (at rate β12).

rates {βij, 1 ≤ i, j ≤M} there is now another natural notion, that of connectivity:
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we say that type j is connected to type i if, for some k, there exists a sequence of

types i = s1 7→ s2 7→ . . . 7→ sk−1 7→ sk = j where type sl+1 is a neighbor of type

sl for 1 ≤ l < k. We assume that each type is either initially infected (Ii(0) > 0),

or is connected to an initially infected type. We also assume that for every type i

such that R0
i > 0, there exists a type j for which β̄ij > 0, i.e., type i can immunize

nodes of at least one type, and there exist types k and l for which βki > 0 and

βil > 0, Sl(0) > 0, i.e., the infection can spread to and from that type. (In most

settings we may expect, naturally, that βii > 0 and β̄ii > 0.)

Thus, we have:7

Ṡi = −
M∑
j=1

βjiIjSi − Si
M∑
j=1

β̄jiR
0
juj, (2.2.2a)

İi =
M∑
j=1

βjiIjSi − Ii
M∑
j=1

πjiβ̄jiR
0
juj, (2.2.2b)

where, by writing S(t) =
(
S1(t), . . . , SM(t)

)
, I(t) =

(
I1(t), . . . , IM(t)

)
, and R0(t) =(

R0
1(t), . . . , R0

M(t)
)

in a compact vector notation, the initial conditions and state

constraints are given by

S(0) = S0 � 0, I(0) = I0 � 0, (2.2.3)

S(t) � 0, I(t) � 0, S(t) + I(t) � 1−R0. (2.2.4)

In these expressions 0 and 1 represent vectors all of whose components are 0 and 1

respectively, and the vector inequalities are to be interpreted as component-wise

inequalities. Note that the evolution of R(t) need not be explicitly considered

7We use dots to denote time derivatives throughout, e.g., Ṡ(t) = dS(t)/dt.
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since at any given time, node conservation gives Ri(t) = 1 − Si(t) − Ii(t). We

henceforth drop the dependence on t and make it implicit whenever we can do so

without ambiguity.

2.2.2 Dynamics of replicative patching

In the replicative setting, a recipient of the patch can forward it to other nodes

upon subsequent contact. Thus, recovered nodes of type i are added to the pool

of dispatchers of type i, whence the fraction of dispatchers of type i grows from

the initial Ri(0) = R0
i to Ri(t) at time t. This should be contrasted with the non-

replicative model in which the fraction of dispatchers of type i is fixed at R0
i for

all t.

The system dynamics equations given in (2.2.2) for the non-replicative setting

now need to be modified to take into account the growing pool of dispatchers.

While in the non-replicative case we chose the pair
(
S(t), I(t)

)
to represent the

system state, in the replicative case it is slightly more convenient to represent the

system state by the explicit triple
(
S(t), I(t),R(t)

)
. The system dynamics are now

governed by:

Ṡi = −
M∑
j=1

βjiIjSi − Si
M∑
j=1

β̄jiRjuj, (2.2.5a)

İi =
M∑
j=1

βjiIjSi − Ii
M∑
j=1

πjiβ̄jiRjuj, (2.2.5b)

Ṙi = Si

M∑
j=1

β̄jiRjuj + Ii

M∑
j=1

πjiβ̄jiRjuj, (2.2.5c)
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with initial conditions and state constraints given by

S(0) = S0 � 0, I(0) = I0 � 0, R(0) = R0 � 0, (2.2.6)

S(t) � 0, I(t) � 0, R(t) � 0, S(t) + I(t) + R(t) = 1. (2.2.7)

The assumptions on controls and connectivity are as in §2.2.1.

2.2.3 Motivation of the models and instantiations

We now motivate the stratified epidemic models (2.2.2) and (2.2.5) through ex-

amples, instantiating the types in each context.

Proximity-based spread—heterogeneity through locality

The overall roaming area of the nodes can be divided into regions (e.g., hotspots,

office/residential areas, central/peripheral areas) of different densities (fig. 2.1).

One can therefore stratify the nodes based on their locality, i.e., each type corre-

sponds to a region. IP eavesdropping techniques (using software such as AirJack,

Ethereal, FakeAP, Kismet, etc.) allow malware to detect new victims in the vicin-

ity of the host. Distant nodes have more attenuated signal strength (i.e., lower

SINR) and are therefore less likely to be detected. Accordingly, malware (and also

patch) propagation rates βij (respectively β̄ij) are related to the local densities of

the nodes in each region and decay with an increase in the distance between

regions i and j: typically βii exceeds βij for i 6= j, likewise for β̄ij. The same phe-

nomenon was observed for malware such as cabir and lasco that use Bluetooth
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and Infrared to propagate.

Heterogeneity through software/protocol diversity

A network that relies on a homogeneous software/protocol is vulnerable to an

attack that exploits a common weakness (e.g., a buffer overflow vulnerability).

Accordingly, inspired by the natural observation that the chances of survival are

improved by heterogeneity, increasing the network’s heterogeneity without sacri-

ficing inter-operability has been proposed as a defense mechanism [94]. In prac-

tice, mobile nodes use different operating systems and communication protocols,

e.g., Symbian, Android, iOS, RIM, webOS, etc. Such heterogeneities lead to dis-

similar rates of propagation of malware amongst different types, where each type

represents a specific OS, platform, software, protocol, etc. In the extreme case,

the malware may not be able to contaminate nodes of certain types. The patch-

ing response should take such inhomogeneities into account in order to optimally

utilize network resources, since the rate of patching can also be dissimilar among

different types.

Heterogeneity through available IP space

Smart-phone trojans like skulls and mosquito spread using Internet or P2P net-

works. In such cases the network can be decomposed into autonomous systems

(ASs) with each type representing an AS [59]. A worm either scans IP addresses

uniformly randomly or uses the IP masks of ASs to restrict its search domain and
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increase its rate of finding new susceptible nodes. In each of these cases the

contact rates differ between different AS’s depending on the actual number of

assigned IPs in each IP sub-domain and the maximum size of that IP sub-domain.

Heterogeneity through differing clique sizes

Malware that specifically spreads in social networks has been recorded in the

past few years [24]. Examples include Samy in MySpace in 2005 and Koobface

in MySpace and Facebook in 2008. Koobface, for instance, spread by delivering

(contaminated) messages to the “friends” of an infective user. MMS based mal-

ware such as commwarrior can also utilize the contact list of an infective host to

access new handsets. In such cases the social network graph can be approximated

by a collection of friendship cliques.8 Users of the same clique can be regarded as

the same type with the rate of contact within cliques and across cliques differing

depending on the relative sizes of the cliques.9

8A clique is a maximal complete sub-graph of a graph [14, p. 112].
9In MMS/E-mail, types typically depend on the nature of social contact, while in Bluetooth,

types are naturally based on distance to the center of the cluster, as nodes that are closer are more

likely to contact each other. Wang et al. [89] examine the spreading patterns of viruses through

both these mechanism with the same assumption as our work in terms of the underlying variable

behind the spread (proximity for Bluetooth and social ties for MMS). Furthermore, our model is

general enough to even capture the hybrid spread of a virus that the authors investigate. In that

case, the types would be based on both distance to the center of the cluster and the nature of the

social contact.
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Cloud-computing—heterogeneity through cluster sizes

In cluster (or grid, or volunteer) computing [3], each cluster of CPUs in the cloud

constitutes a type. Any two computers in the same cluster can communicate at

faster rates than those in different clusters. These contact rates depend on the

communication capacity of connecting lines as well as the relative number of

computers in each cluster.

Clustered epidemics in technology adoption, belief-formation over social me-

dia and health care

We now elaborate on the application of our clustered epidemics model in these

diverse set of contexts. First consider a rivalry between two technologies or com-

panies for adoption in a given population, e.g., Android and iPhone, or cable and

satellite television. Individuals who are yet to choose either may be considered

as susceptibles and those who have chosen one or the other technology would be

classified as either infective or recovered depending upon their choice. Dispatch-

ers constitute the promoters of a given technology (the one whose subscribers

are denoted as recovered). Awareness about the technology and subsequent sub-

scription to either may spread through social contact between infectives and sus-

ceptibles (infection propagation in our terminology), and dispatchers and the rest

(patching in our terminology). Immunization of a susceptible corresponds to her

adoption of the corresponding technology, while healing of an infective corre-

49



sponds to an alteration in her original choice. The stratifications may be based

on location or social cliques, and the control u would represent promotion ef-

forts, which would be judiciously selected by the proponent of the corresponding

technology. Patching may either be replicative or non-replicative depending on

whether the newly subscribed users are enticed to attract more subscribers by

referral rewards. Similarly, clustered epidemics may be used to model belief man-

agement over social media, where infective and recovered nodes represent indi-

viduals who have conflicting persuasions and susceptibles represent those who are

yet to subscribe to either doctrine. Last, but not least, the susceptible-infective-

recovered classification and immunization/healing/infection have natural conno-

tations in the context of a biological epidemic. Here, the dispatchers correspond

to health-workers who administer vaccines and/or hospitalization and the strat-

ification is based on location. Note that in this context, patching can only be

non-replicative.

2.2.4 Key observations

A natural but nevertheless important observation is that if the initial conditions

are non-negative, then the system dynamics (2.2.2) and (2.2.5) yield unique

states satisfying the positivity and normalization constraints (2.2.4) and (2.2.7),

respectively.

Theorem 1. The dynamical system (2.2.2) (respectively (2.2.5)) with initial con-
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ditions (2.2.3) (respectively, (2.2.6)) has a unique state solution
(
S(t), I(t)

)
(re-

spectively
(
S(t), I(t),R(t)

)
) which satisfies the state constraints (2.2.4) (respec-

tively, (2.2.7)). For all t > 0, Ii(t) > 0; Ri(t) > 0 if Ri(0) > 0; and Sj(t) > 0 if and

only if Sj(0) 6= 0. For each j such that Sj(0) = 0, Sj(t′) = 0 for all t′ ∈ (0, T ].

Proof of Theorem 1

We use the following general result :

Lemma 1. Suppose the vector-valued function f = (fi, 1 ≤ i ≤ 3M) has compo-

nent functions given by quadratic forms fi(t,x) = xTQi(t)x + pi
Tx (t ∈ [0, T ];

x ∈ S), where S is the set of 3M -dimensional vectors x = (x1, . . . , x3M) satisfying

x ≥ 0 and ∀j ∈ {1, . . . ,M};xj + xM+j + x2M+j = 1, Qi(t) is a matrix whose com-

ponents are uniformly, absolutely bounded over [0, T ], as are the elements of the

vector pi. Then, for an 3M -dimensional vector-valued function F, the system of

differential equations

Ḟ = f(t,F) (0 < t ≤ T )

subject to initial conditions F(0) ∈ S
(2.2.8)

has a unique solution, F(t), which varies continuously with the initial conditions

F0 ∈ S at each t ∈ [0, T ].

This follows from a standard result in the theory of ordinary differential equa-

tions [78, Theorem A.8, p. 419] given that f(t,F) is comprised of quadratic and

linear forms and is thus Lipschitz over [0, T ] ∗ S.
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Proof of Theorem 1: We write F(0) = F0, and in a slightly informal notation,

F = F(t) = F(t,F0) to acknowledge the dependence of F on the initial value F0.

We first verify that S(t) + I(t) + R(t) = 1 for all t in both cases. By summing

the left and right sides of the system of equations (2.2.2) and the Ṙi equation that

was left out (respectively the two sides of equations (2.2.5)), we see that in both

cases for all i,
(
Ṡi(t) + İi(t) + Ṙi(t)

)
= 0, and, in view of the initial normalization(

Si(0) + Ii(0) +Ri(0)
)

= 1, we have
(
Si(t) + Ii(t) +Ri(t)

)
= 1 for all t and all i.

We now verify the non-negativity condition. Let F = (F1, . . . , F3M) be the

state vector in 3M dimensions whose elements are comprised of (Si, 1 ≤ i ≤ M),

(Ii, 1 ≤ i ≤ M) and (Ri, 1 ≤ i ≤ M) in some order. The system of equa-

tions (2.2.2) can thus be represented as Ḟ = f(t,F), where for t ∈ [0, T ] and

x ∈ S, the vector-valued function f = (fi, 1 ≤ i ≤ 3M) has component func-

tions fi(t,x) = xTQi(t)x + pi
Tx in which (i) Qi(t) is a matrix whose non-zero

elements are of the form ±βjk, (ii) the elements of pi(t) are of the form ±β̄jkR0
juj

and ±β̄jkπjkR0
juj, whereas (2.2.5) can be represented in the same form but with

(i) Qi(t) having elements ±βjk, ±β̄jkuj, and ±β̄jkπjkuj, and (ii) pi = 0. Thus,

the components of Qi(t) are uniformly, absolutely bounded over [0, T ]. Lemma 1

establishes that the solution F(t,F0) to the systems (2.2.2) and (2.2.5) is unique

and varies continuously with the initial conditions F0; it clearly varies continu-

ously with time. Next, using elementary calculus, we show in the next paragraph

that if F0 ∈ Int S (and, in particular, each component of F0 is positive), then
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each component of the solution F(t,F0) of (2.2.2) and (2.2.5) is positive at each

t ∈ [0, T ]. Since F(t,F0) varies continuously with F0, therefore F(t,F0) ≥ 0 for

all t ∈ [0, T ], F0 ∈ S, which completes the overall proof.

Accordingly, let the Si, Ii, and Ri component of F0 be positive. Since the

solution F(t,F0) varies continuously with time, there exists a time, say t′ > 0, such

that each component of F(t,F0) is positive in the interval [0, t′). The result follows

trivially if t′ ≥ T . Suppose now that there exists t′′ < T such that each component

of F(t,F0) is positive in the interval [0, t′′), and at least one such component is 0

at t′′.

We first examine the non-replicative case. We show that such components

can not be Si for any i and subsequently rule out Ii and Ri for all i. Note

that uj(t), Ij(t), Sj(t) are bounded in [0, t′′] (recall (Sj(t) + Ij(t) +Rj(t)) = 1 ,

Sj(t) ≥ 0, Ij(t) ≥ 0, Rj(t) ≥ 0 for all j ∈ {1, . . . ,M}, t ∈ [0, t′′]). From (2.2.2a)

Si(t
′′) = Si(0)e−

∫ t′′
0

∑M
j=1(βjiIj(t)+β̄jiR

0
juj(t)) dt. Since all uj(t), Ij(t) are bounded in

[0, t′′], Si(0) > 0, R0
j ≥ 0, and βji, β̄ji ≥ 0, therefore Si(t′′) > 0. Since Si(t) > 0,

Ii(t) ≥ 0 for all i, t ∈ [0, t′′], and βji ≥ 0, from (2.2.2b), İi ≥ −Ii
∑M

j=1 πjiβ̄jiR
0
juj

for all i in the interval [0, t′′]. Thus, Ii(t′′) ≥ Ii(0)e−
∫ t′′
0

∑M
j=1 πji(β̄jiR

0
juj(t)) dt. Since all

uj(t), Ij(t), Sj(t) are bounded in [0, t′′], and Ii(0) > 0, β̄ji, πji ≥ 0, it follows that

Ii(t
′′) > 0 for all i ≥ 0. Finally, Ri(t

′′) > 0 because Ri(0) > 0 and Ṙi(t) ≥ 0 from

the above, so Ri(t) ≥ R0
i , and Si(t) + Ii(t) ≤ 1 − R0

i for all t and i. This contra-

dicts the definition of t′′ and in turn implies that F(t,F0) > 0 for all t ∈ [0, T ],
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F0 ∈ Int S.

The proof for the replicative case is similar, with the difference that R0
i is

replaced with Ri, which is itself bounded.

Since the control and the unique state solution S(t), I(t) are non-negative,

(2.2.2a, 2.2.5a) imply that S(t) is a non-increasing function of time. Thus, Sj(t) =

0 if Sj(0) = 0 for any j. Using the argument in the above paragraph and starting

from a t′ ∈ [0, T ) where Sj(t
′) > 0, Ij(t′) > 0, or Rj(t

′) > 0, it may be shown

respectively that Sj(t) > 0, Ij(t) > 0, and Rj(t) > 0 for all t > t′. All that remains

to show now is:

Lemma 2. There exists ε > 0 such that I(t) > 0 for t ∈ (0, ε).

Let d(i, j) be the distance from type j to type i (i.e., for all i, d(i, i) = 0 and

for all pairs (i, j), d(i, j) = 1+ minimum number of types in a path from type j to

type i). Now, define d(i, U) := minj∈U d(i, j), where U := { i : I0
i > 0 }. Since we

assumed that every type i is either in U or is connected to a type in U , d(i, U) < M

for all types i.

Let δ > 0 be a time such that for all types i such that d(i, U) = 0 (the initially

infected types),we have Ii(t) > 0 for t ∈ [0, δ). Thus, proving Lemma 3 below will

be equivalent to proving Lemma 2, given an appropriate scaling of δ.

Lemma 3. For all i and for all integers r ≥ 0, if d(i, U) ≤ r, then Ii(t) > 0 for

t ∈ ( r
M
δ, T ).

Proof: By induction on r.
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Base case: r = 0. If d(i, U) = 0, this means that the type is initially infected,

and thus Ii(t) > 0 for t ∈ (0, T ) by definition. Therefore the base case holds.

Induction step: Assume that the statement holds for r = 0, . . . , k and con-

sider r = k + 1. Since (k+1
M
δ, T ) ⊂ ( k

M
δ, T ), we need to examine types i such that

d(i, U) = k+1. In equation (2.2.2b) at t = k+1
M
δ, the first sum on the right involves

terms like Ij(k+1
M
δ)Si(

k+1
M
δ) where j is a neighbor of i, while the second sum in-

volves terms like Ii(k+1
M
δ)uj(

k+1
M
δ). Since d(i, U) = k+1, there exist neighbors j of

i such that d(j, U) = k, and therefore Ij(t) > 0 for t ∈ [k+1
M
δ, T ) (by the induction

hypothesis). Hence since S0
i > 0 and βji > 0 (i and j being neighbors), for such

t, İi(t) > −Ii(t)
∑M

j=1 πjiβ̄jiR
0
juj(t) ≥ −GIi(t), where G ≥ 0 is an upperbound on

the sum (continuous functions are bounded on a closed and bounded interval).

Thus Ii(t) > Ii(
k+1
M
δ)e−Kt > 0, completing the proof for r = k + 1. �

2.2.5 The optimality objective

The network seeks to minimize the overall cost of infection and the resource over-

head of patching in a given operation time window [0, T ]. At any given time t, the

system incurs costs at a rate f
(
I(t)
)

due to the malicious activities of the mal-

ware10. For instance, the malware may use infected hosts to eavesdrop, analyze,

misroute, alter, or destroy the traffic that the hosts generate or relay. We suppose

that f(0) = 0 and make the natural assumption that the scalar function f(I) is

10 This is a standard assumption in the field of epidemics, e.g., Rowthorn et al. [74], and Sethi

and Staats [80])
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increasing and differentiable with respect to each Ii. The simplest natural candi-

date for f(I) is of the form
∑M

i=1 fi(Ii); in this setting each fi is a non-decreasing

function of its argument representing the cost of infection for type i which is

in turn determined by the criticality of the data of that type and its function.11

The network also benefits at the rate of L
(
R(t)

)
, i.e., incurs a cost at the rate of

−L
(
R(t)

)
, due to the removal of uncertainty about the state of the nodes being

patched. The inclusion of L(R) allows the framework to capture domains such

as belief propagation and technology adoption, where there are gains associated

with the fraction of recovered nodes at each instant. We suppose that the scalar

function L(R) is non-decreasing and differentiable with respect to each Ri (e.g.,

allowing constant or zero functions).

In addition to the cost of infection, each dispatcher burdens the network with a

cost by consuming either available bandwidth, energy reserves of the nodes (e.g.,

in communication and computing networks), or money (e.g., in technology adop-

tion, propaganda, health-care) to disseminate the patches. Suppose dispatchers

of type i incur cost at a rate of R0
ihi(ui). We suppose that the overhead of extra

resource (bandwidth or energy or money) consumption at time t is then given by

a sum of the form
∑M

i=1R
0
ihi(ui). The scalar functions hi(·) represent how much

resource is consumed for transmission of the patch by nodes of each type and how

significant this extra taxation of resources is for each type. Naturally enough, we

11Such differences themselves may be a source of stratification. In general, different types need

not exclusively reflect disparate mixing rates.
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assume these functions are non-decreasing and satisfy hi(0) = 0 and hi(γ) > 0

for γ > 0. We assume, additionally, that each hi is twice differentiable. Following

the same lines of reasoning, the corresponding expression for the cost of replica-

tive patching is of the form
∑M

i=1Rihi(ui). In problems that arise from the field

of computer networks, such as malware propagation and cloud computing, we

would expect to have concave hi(·), as the marginal effort required to spread the

epidemic at a contact opportunity would be expected to rise negligibly. For exam-

ple, in a Delay-Tolerant Network, every contact between a transmitting recovered

and another node would already involve beaconing and the exchange of messages

that identify the state of the nodes, and transmitting the patch more frequently

would just affect the part of the transmission cost that is to do with the patch

itself. However, when looking at social networks, for example, asking a user to

spread a message more often can lead to reluctance on its part, and this would

justify hi(·) that are convex. We therefore allow for both convex and concave hi(·)

functions.

With the arguments stated above, the aggregate cost for non-replicative patch-

ing is given by an expression of the form

Jnon−rep =

∫ T

0

(
f(I)− L(R) +

M∑
i=1

R0
ihi(ui)

)
dt, (2.2.9)

while for replicative patching, the aggregate cost is of the form

Jrep =

∫ T

0

(
f(I)− L(R) +

M∑
i=1

Rihi(ui)

)
dt. (2.2.10)
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Problem Statement: The system seeks to minimize the aggregate cost (A) in

(2.2.9) for non-replicative patching (2.2.2, 2.2.3) and (B) in (2.2.10) for replica-

tive patching (2.2.5, 2.2.6) by an appropriate selection of an optimal admissible

control u(t).

In this setting, it is clear that by a scaling of β̄ji and hj(·), we can assume WLoG

that uj,max = 1.

It is worth noting that any control in the non-replicative case can be emulated

in the replicative setting: this is because the fraction of the dispatchers in the

replicative setting is non-decreasing, hence at any time instance, a feasible urep(t)

can be selected such that Ri(t)u
rep
i (t) is equal to R0

iu
non−rep
i (t). This means that

the minimum cost of replicative patching is always less than the minimum cost

of its non-replicative counterpart. Our numerical results will show that this im-

provement is substantial. However, replicative patches increase the risk of patch

contamination: the security of a smaller set of known dispatchers is easier to man-

age than that of a growing set whose identities may be ambiguous. Hence, in a

nutshell, if there is a dependable mechanism for authenticating patches, replica-

tive patching ought to be the preferred method, otherwise one needs to evaluate

the trade-off between the risk of compromised patches and the efficiency of the

patching.
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2.3 Optimal Non-Replicative Patching

2.3.1 Numerical framework for computing optimal controls

The main challenge in computing the optimal state and control functions
(
(S, I),

u
)

is that while the differential equations (2.2.2) can be solved once the optimal

controls u(·) are known, an exhaustive search for an optimal control is infeasible

as there are an uncountably infinite number of control functions. Pontryagin’s

Maximum Principle (PMP) provides an elegant technique for solving this seem-

ingly intractable problem (c.f. [85]). Referring to the integrand in (2.2.9) as

ξnon−rep and the RHS of (2.2.2a) and (2.2.2b) as νi and µi, we define the Hamil-

tonian to be

H = H(u) := ξnon−rep +
M∑
i=1

(λSi νi + λIiµi), (2.3.1)

where the adjoint (or costate) functions λSi and λIi are continuous functions that

for each i = 1 . . .M , and at each point of continuity of u(·), satisfy

λ̇Si = −∂H
∂Si

, λ̇Ii = −∂H
∂Ii

, (2.3.2)

along with the final (i.e., transversality) conditions

λSi (T ) = 0, λIi (T ) = 0. (2.3.3)

Then PMP implies that the optimal control at time t satisfies

u ∈ arg min
v
H(v) (2.3.4)
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where the minimization is over the space of admissible controls (i.e., H(u) =

minvH(v)).

In economic terms, the adjoint functions represent a shadow price (or imputed

value); they measure the marginal worth of an increment in the state at time t

when moving along an optimal trajectory. Intuitively, in these terms, λIi ought to

be positive as it represents the additional cost that the system incurs per unit time

with an increase in the fraction of infective nodes. Furthermore, as an increase in

the fraction of the infective nodes has worse long-term implications for the system

than an increase in the fraction of the susceptibles, we anticipate that λIi −λSi > 0.

The following result confirms this intuition. It is of value in its own right but as

its utility for our purposes is in the proof of our main theorem of the following

section, we will defer its proof (to §2.3.3) to avoid breaking up the flow of the

narrative at this point.

Lemma 4. The positivity constraints λIi (t) > 0 and λIi (t) − λSi (t) > 0 hold for all

i = 1, . . . ,M and all t ∈ [0, T ).

The abstract maximum principle takes on a very simple form in our context.

Using the expression for ξnon−rep from (2.2.9) and the expressions for νi and µi

from (2.2.2), trite manipulations show that the minimization (2.3.4) may be ex-
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pressed in the much simpler (nested) scalar formulation

ui(t) ∈ arg min
0≤x≤1

ψi(x, t) (1 ≤ i ≤M); (2.3.5)

ψi(x, t) : = R0
i (hi(x)− φi(t)x); (2.3.6)

φi : =
M∑
j=1

β̄ijλ
S
j Sj +

M∑
j=1

β̄ijπijλ
I
jIj. (2.3.7)

Equation (2.3.5) allows us to characterize ui as a function of the state and ad-

joint functions at each time instant. Plugging into (2.2.2) and (2.3.2), we obtain

a system of (non-linear) differential equations that involves only the state and ad-

joint functions (and not the control u(·)), and where the initial values of the states

(2.2.3) and the final values of the adjoint functions (2.3.3) are known. Numeri-

cal methods for solving boundary value nonlinear differential equation problems

may now be used to solve for the state and adjoint functions corresponding to the

optimal control, thus providing the optimal controls using (2.3.5).

We conclude this section by proving an important property of φi(·), which we

will use in subsequent sections.

Lemma 5. For each i, φi(t) is a decreasing function of t.

Proof. We examine the derivative of φi(t); we need expressions for the derivatives

of the adjoint functions towards that end. From (2.3.1), (2.3.2), at any t at which
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u is continuous, we have:

λ̇Si =− ∂L(R)

∂Ri

− (λIi − λSi )
M∑
j=1

βjiIj + λSi

M∑
j=1

β̄jiR
0
juj,

λ̇Ii =−
M∑
j=1

(
(λIj − λSj )βijSj

)
+ λIi

M∑
j=1

πjiβ̄jiR
0
juj −

∂L(R)

∂Ri

− ∂f(I)

∂Ii
. (2.3.8)

Using (2.3.7), (2.3.8) and some reassembly of terms, at any t at which u is

continuous, φ̇i(t) = −
∑M

j=1 β̄ij

[
Sj
∂L(R)

∂Rj

+ πijIj

(
∂L(R)

∂Rj

+
∂f(I)

∂Ij

)
+
∑M

k=1(1 +

πij)λ
I
jβkjSjIk +

∑M
k=1 πijIjSkβjk(λ

I
k − λSk )

]
. The assumptions on L(·) and f(·) (to-

gether with Theorem 1) show that the first two terms inside the square brackets

on the right are always non-negative. Theorem 1 and Lemma 4 (together with

our assumptions on πij, βij and β̄ij) show that the penultimate term is positive

for t > 0 and the final term is non-negative. It follows that φ̇i(t) < 0 for every

t ∈ (0, T ) at which u(t) is continuous. As φi(t) is a continuous function of time

and its derivative is negative except at a finite number of points (where u may be

discontinuous), it follows indeed that, as advertised, φi(t) is a decreasing function

of time.

2.3.2 Structure of optimal non-replicative patching

We are now ready to identify the structure of optimal controls (u1(t), . . . , uM(t)):

Theorem 2. Predicated on the existence of an optimal control, for types i such that

R0
i > 0: if hi(·) is concave, then the optimal control for type i has the following

structure: ui(t) = 1 for 0 < t < ti, and ui(t) = 0 ti < t ≤ T , where ti ∈ [0, T ). If
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hi(·) is strictly convex then the optimal control for type i, ui(t) is continuous and

has the following structure: ui(t) = 1 for 0 < t < t1i , ui(t) = 0 for t2i < t ≤ T , and

ui(t) strictly decreases in the interval [t1i , t
2
i ], where 0 ≤ t1i < t2i ≤ T.

Notice that if R0
i = 0 in (2.2.2), the control ui is irrelevant and can take any

arbitrary admissible value. Intuitively, at the onset of the epidemic, a large frac-

tion of nodes are susceptible to the malware (“potential victims”). Bandwidth and

power resources should hence be used maximally in the beginning (in all types),

rendering as many infective and susceptible nodes robust against the malware as

possible. In particular, there is no gain in deferring patching since the efficacy of

healing infective nodes is less than that of immunizing susceptible nodes (recall

that πij ≤ 1). While the non-increasing nature of the optimal control is intuitive,

what is less apparent is the characteristics of the decrease, which we establish

in this theorem. For concave hi(·), nodes are patched at the maximum possible

rate until a time instant when patching stops abruptly, while for strictly convex

hi(·), this decrease is continuous. It is instructive to note that the structure of the

optimal action taken by a type only depends on its own patching cost and not on

that of its neighbors. This is somewhat counter-intuitive as the controls for one

type affect the infection and recovery of other types. The timing of the decrease

in each type differs and depends on the location of the initial infection as well as

the topology of the network, communication rates, etc.
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Proof. For non-linear concave hi(·), (2.3.5) requires the minimization of the (non-

linear concave) difference between a non-linear concave function of a scalar vari-

able x and a linear function of x at all time instants; hence the minimum can only

occur at the end-points of the interval over which x can vary. Thus all that needs

to be done is to compare the values of ψi(x, t) for the following two candidates:

x = 0 and x = 1. Note that ψi(0, t) = 0 at all time instants and ψi(1, t) is a function

of time t. Let

γi(t) := ψi(1, t) = R0
ihi(1)−R0

iφi(t). (2.3.9)

Then the optimal ui satisfies the following condition:

ui(t) =


1 γi(t) < 0

0 γi(t) > 0

(2.3.10)

From the transversality conditions in (2.3.3) and the definition of φi(t) in

(2.3.7), for all i, it follows that φi(T ) = 0. From the definition of the cost term,

hi(1) > 0, hence, since R0
i > 0, therefore γi(T ) > 0. Thus the structure of the

optimal control predicted in the theorem for the strictly concave case will follow

from (2.3.10) if we can show that γi(t) is an increasing function of time t, as that

implies that it can be zero at most at one point ti, with γi(t) < 0 for t < ti and

γi(t) > 0 for t > ti. From (2.3.9), γi will be an increasing function of time if φi is

a decreasing function of time, a property which we showed in Lemma 5.
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If hi(·) is linear (i.e., hi(x) = Kix, Ki > 0, since hi(x) > 0 for x > 0), ψi(x, t) =

R0
ix(Ki − φi(t)) and from (2.3.5), the condition for an optimal ui is:

ui(t) =


1 φi(t) > Ki

0 φi(t) < Ki

(2.3.11)

But from (2.3.3), φi(T ) = 0 < Ki and as by Lemma 5, φi(t) is decreasing, it follows

that φi(t) will be equal to Ki at most at one time instant t = ti, with φi(t) > 0 for

t < ti and φi(t) < 0 for t > ti. This, along with (2.3.11), concludes the proof of

the theorem for the concave case.

We now consider the case where hi(·) is strictly convex. In this case, the min-

imization in (2.3.5) may also be attained at an interior point of [0, 1] (besides 0

and 1) at which the partial derivative of the right hand side with respect to x is

zero. Hence,

ui(t) =



1 1 < η(t)

η(t) 0 < η(t) ≤ 1

0 η(t) ≤ 0.

(2.3.12)

where η(t) is such that
dhi(x)

dx

∣∣∣∣
(x=η(t))

= φi(t).

Note that φi(t) is a continuous function due to the continuity of the states and

adjoint functions. We showed that it is also a decreasing function of time (Lemma

5). Since hi(·) is double differentiable, its first derivative is continuous, and since

it is strictly convex, its derivative is a strictly increasing function of its argument.
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Therefore, η(t) must be a continuous and decreasing function of time, as per the

predicted structure.

2.3.3 Proof of Lemma 4

Proof. From (2.3.8) and (2.3.3), at time T we have:

λIi |t=T = (λIi − λSi )|t=T = 0,

lim
t↑T

λ̇Ii = −∂L(R)

∂Ri

(T )− ∂f(I)

∂Ii
(T ) < 0

lim
t↑T

(λ̇Ii − λ̇Si ) = −∂f(I)

∂Ii
(T ) < 0

Hence, ∃ ε > 0 s.t. λIi > 0 and (λIi − λSi ) > 0 over (T − ε, T ).

Now suppose that, going backward in time from t = T , (at least) one of the

inequalities is first violated at t = t∗ for i∗, i.e., for all i, λIi (t) > 0 and (λIi (t) −

λSi (t)) > 0 for all t > t∗ and either (A) (λIi∗(t
∗) − λSi∗(t∗)) = 0 or (B) λIi∗(t

∗) = 0

for some i = i∗. Note that from continuity of the adjoint functions λIi (t
∗) ≥ 0 and

(λIi (t
∗)− λSi (t∗)) ≥ 0 for all i.

We investigate case (A) first. We have:12 (λ̇Ii∗−λ̇Si∗)(t∗+) = −∂f(I)

∂Ii∗
−
∑M

j=1[(λIj−

λSj )βi∗jSj] − λIi∗
∑M

j=1 β̄ji∗(1 − πji∗)R0
juj. First of all, −∂f(I)/∂Ii∗ < 0. The other

two terms are non-positive, due to the definition of t∗ and πij ≤ 1. Hence, (λ̇Ii∗ −

λ̇Si∗)(t
∗+) < 0, which is in contradiction with Property 1 of real-valued functions,

proved in [50]:

12g(t+0 ) := limt↓t0 g(t) and g(t−0 ) := limt↑t0 g(t). The RHS of the equation is evaluated at t = t∗

due to continuity.
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Property 1. Let g(t) be a continuous and piecewise differentiable function of t. If

g(t0) = L and g(t) > L (g(t) < L) for all t ∈ (t0, t1]. Then ġ(t+0 ) ≥ 0 (respectively

ġ(t+0 ) ≤ 0).

On the other hand, for case (B) we have:12 λ̇Ii∗(t
∗+) = −∂L(R)

∂Ri∗
− ∂f(I)

∂Ii∗
−∑M

j=1[(λIj−λSj )βi∗jSj],which is negative since−∂L(R)/∂Ri∗ ≤ 0, −∂f(I)/∂Ii∗ < 0,

and from the definition of t∗ (for the third term). This contradicts Property 1 and

the claim follows.

2.4 Optimal Replicative Patching

2.4.1 Numerical framework for computing the optimal controls

As in the non-replicative setting, we develop a numerical framework for calcula-

tion of the optimal solutions using PMP, and then we establish the structure of the

optimal controls.

For every control ũ, we define τi(I(0),S(0),R(0), ũ) ∈ [0, T ] as follows: If

Ri(0) > 0, and therefore Ri(t) > 0 for all t > 0 due to Theorem 1, we de-

fine τi(I(0),S(0),R(0), ũ) to be 0. Else, τi(I(0),S(0),R(0), ũ) is the maximum

t for which Ri(t) = 0. It follows from Theorem 1 that Ri(t) = 0 for all t ≤

τi(I(0),S(0),R(0), ũ) and all i such thatRi(0) = 0, andRi(t) > 0 for all τi(I(0),S(0),

R(0), ũ) < t ≤ T . We begin with the hypothesis that there exists at least one op-

timal control, say ũ ∈ U∗, and construct a control u that chooses ui(t) := 0 for
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t ≤ τi(I(0),S(0),R(0), ũ) and ui(t) := ũi(t) for t > τi(I(0),S(0),R(0), ũ). Clearly,

the states S(t), I(t),R(t) corresponding to ũ also constitute the state functions for

u, as the state equations only differ at t = 0, a set of measure zero. Thus, u is

also an optimal control, and τi(I(0),S(0),R(0), ũ) = τi(I(0),S(0),R(0),u) for each

i. Henceforth, for notational convenience, we will refer to τi(I(0),S(0),R(0), ũ),

τi(I(0),S(0),R(0),u) as τi. Note that the definition of this control completely spec-

ifies the values of each ui in [0, T ].

Referring to the integrand of (2.2.10) as ξrep and the RHS of equations (2.2.5

a,b,c) as νi, µi and ρi the Hamiltonian becomes:

H = H(u) := ξrep +
M∑
i=1

[(λSi νi + λIiµi + λRi ρi), (2.4.1)

where the adjoint functions λSi , λ
I
i , λ

R
i are continuous functions that at each point

of continuity of u(·) and for all i = 1 . . .M , satisfy

λ̇Si = −∂H
∂Si

, λ̇Ii = −∂H
∂Ii

, λ̇Ri = − ∂H
∂Ri

, (2.4.2)

with the final constraints:

λSi (T ) = λIi (T ) = λRi (T ) = 0. (2.4.3)

According to PMP, any optimal controller must satisfy:

u ∈ arg min
v
H(v), (2.4.4)

where the minimization is over the set of admissible controls.
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Using the expressions for ξrep from (2.2.10) and the expressions for νi, µi and

ρi from (2.2.5), it can be shown that the vector minimization (2.4.4) can be ex-

pressed as a scalar minimization

ui(t) ∈ arg min
0≤x≤1

ψi(x, t) (1 ≤ i ≤M); (2.4.5)

ψi(x, t) : = Ri(t)(hi(x)− φi(t)x); (2.4.6)

φi :=
M∑
j=1

β̄ij(λ
S
j − λRj )Sj +

M∑
j=1

πijβ̄ij(λ
I
j − λRj )Ij. (2.4.7)

Equation (2.4.5) characterizes the optimal control ui as a function of the state

and adjoint functions at each instant. Plugging the optimal ui into the state and

adjoint function equations (respectively (2.2.5) and (2.4.2)) will again leave us

with a system of (non-linear) differential equations that involves only the state

and adjoint functions (and not the control u(·)), the initial values of the states

(2.2.6) and the final values of the adjoint functions (2.4.3). Similar to the non-

replicative case, the optimal controls may now be obtained (via (2.4.5)) by solving

the above system of differential equations.

We conclude this subsection by stating and proving some important properties

of the adjoint functions (Lemma 6 below) and φi(·) (Lemma 7 subsequently),

which we use later.

First, from (2.4.3), ψi(0, t) = 0, hence (2.4.5) results in ψi(ui, t) ≤ 0. Further-

more, from the definition of τi, if t ≤ τi, (hi(ui(t)) − φi(t)ui(t)) = 0, and if t > τi,
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(hi(ui(t))− φi(t)ui(t)) =
ψi(ui, t)

Ri(t)
≤ 0, so for all t,

αi(ui, t) := (hi(ui(t))− φi(t)ui(t)) ≤ 0. (2.4.8)

Lemma 6. For all t ∈ [0, T ) and for all i, we have (λIi − λSi ) > 0 and (λIi − λRi ) > 0.

Using our previous intuitive analogy, Lemma 6 implies that infective nodes are

always worse for the evolution of the system than either susceptible or healed

nodes, and thus the marginal price of infectives is greater than that of susceptible

and healed nodes at all times before T . As before, we defer the proof of this

lemma (to §2.4.3) to avoid breaking up the flow of the narrative. We now state

and prove Lemma 7.

Lemma 7. For each i, φi(t) is a decreasing function of t, and φ̇i(t
+) < 0 and

φ̇i(t
−) < 0 for all t.

Proof. φi(t) is continuous everywhere (due to the continuity of the states and

adjoint functions) and differentiable whenever u(·) is continuous. At any t at

which u(·) is continuous, we have: φ̇i(t) =
∑M

j=1 β̄ij[(λ̇
S
j − λ̇Rj )Sj + (λSj − λRj )Ṡj +

πij(λ̇
I
j − λ̇Rj )Ij + πij(λ

I
j − λRj )İj].

From (2.4.1) and the adjoint equations (2.4.2), at points of continuity of the
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control, we have:

λ̇Si =− (λIi − λSi )
M∑
j=1

βjiIj − (λRi − λSi )
M∑
j=1

β̄jiRjuj,

λ̇Ii =− ∂f(I)

∂Ii
−

M∑
j=1

(λIj − λSj )βijSj − (λRi − λIi )
M∑
j=1

πjiβ̄jiRjuj,

λ̇Ri =
∂L(R)

∂Ri

+ ui

M∑
j=1

β̄ij(λ
S
j − λRj )Sj + ui

M∑
j=1

πijβ̄ij(λ
I
j − λRj )Ij

− hi(ui) =
∂L(R)

∂Ri

− αi(ui, t). (2.4.9)

Therefore, after some regrouping and cancellation of terms, at any t, we have

−φ̇i(t+) =
M∑
j=1

β̄ij[(1− πij)
M∑
k=1

(λIj − λRj )βkjIkSj + πij
∂f(I)

∂Ij
Ij

+ (Sj + πijIj)(
∂L(R)

∂Rj

− αi(ui, t)) + πijIj

M∑
k=1

(λIk − λSk )βjkSk].

Now, since 0 ≤ πij ≤ 1, the assumptions on β̄ij, βki and βil, Theorem 1, and

Lemma 6 all together imply that the sum of the first and last terms of the RHS will

be positive. The second and third terms will be non-negative due to the definitions

of f(·) and L(·) and (2.4.8). So φ̇i(t
+) < 0 for all t. The proof for φ̇i(t−) < 0 is

exactly as above. In a very similar fashion, it can be proved that φ̇i(t) < 0 at all

points of continuity of u(·), which coupled with the continuity of φi(t) shows that

it is a decreasing function of time.

2.4.2 Structure of optimal replicative dispatch

Theorem 3. If an optimal control exists, for types i such that Ri(t) > 0 for some

t: if hi(·) is concave for type i, the optimal control for type i has the following

71



structure: ui(t) = 1 for 0 < t < ti, and ui(t) = 0 for ti < t ≤ T , where ti ∈ [0, T ). If

hi(·) is strictly convex, the optimal control for type i, ui(t) is continuous and has

the following structure: ui(t) = 1 for 0 < t < t1i , ui(t) = 0 for t2i < t ≤ T , and ui(t)

strictly decreases in the interval [t1i , t
2
i ], where 0 ≤ t1i < t2i ≤ T.

Notice that for i such that Ri(t) = 0 for all t, the control ui(t) is irrelevant and

can take any arbitrary value. We first prove the theorem for t ∈ [τi, T ], and then

we show that τi ∈ {0, T}, completing our proof.

Proof: First consider an i such that hi(·) is concave and non-linear. Note that

hence ψi(x, t) is a non-linear concave function of x. Thus, the minimum can only

occur at extremal values of x, i.e., x = 0 and x = 1. Now ψi(0, t) = 0 at all times

t, so to obtain the structure of the control, we need to examine ψi(1, t) at each

t > τi. Let γi(t) := ψi(1, t) = Ri(t)(hi(1) − φi(t)) be a function of time t. From

(2.4.5), the optimal ui satisfies:

ui(t) =


1 γi(t) < 0,

0 γi(t) > 0.

(2.4.10)

We now show that γi(t) > 0 for an interval (ti, T ] for some ti, and γi(t) < 0 for

[τi, ti) if ti > τi. From (2.4.3) and (2.4.7), γi(T ) = hi(1)Ri(T ) > 0. Since γi(t) is a

continuous function of its variable (due to the continuity of the states and adjoint

functions), it will be positive for a non-zero interval leading up to t = T . If

γi(t) > 0 for all t ∈ [τi, T ], the theorem follows. Otherwise, from continuity, there

must exist a t = ti > τi such that γi(ti) = 0. We show that for t > ti, γi(t) > 0,
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from which it follows that γi(t) < 0 for t < ti (by a contradiction argument). The

theorem will then follow from (2.4.10).

Towards establishing the above, we show that γ̇i(t+) > 0 and γ̇i(t
−) > 0 for

any t such that γi(t) = 0. Hence, there will exist an interval (ti, ti + ε) over which

γi(t) > 0. If ti + ε ≥ T , then the claim holds, otherwise there exists a t = ti
′
> ti

such that γi(ti
′
) = 0 and γi(t) 6= 0 for ti < t < t

′
i (from the continuity of γi(t)).

So γ̇i(ti
′−) > 0, which contradicts a property of real-valued functions (proved

in [50]), establishing the claim:

Property 2. If g(x) is a continuous and piecewise differentiable function over [a, b]

such that g(a) = g(b) while g(x) 6= g(a) for all x in (a, b), dg
dx

(a+) and dg
dx

(b−) cannot

be positive simultaneously.

We now show that γ̇i(t+) > 0 and γ̇i(t−) > 0 for any t > τi such that γi(t) = 0.

Due to the continuity of γi(t) and the states, and the finite number of points

of discontinuity of the controls, for any t > τi we have γ̇i(t
+) = (Ṙi(t

+) γi(t)
Ri(t)
−

Ri(t)φ̇i(t
+)) and γ̇i(t

−) = (Ṙi(t
−) γi(t)

Ri(t)
− Ri(t)φ̇i(t

−)). If γi(t) = 0, then γ̇i(t
+) =

−Ri(t)φ̇i(t
+) and γ̇i(t

−) = −Ri(t)φ̇i(t
−), which are both positive from Lemma 7

and Theorem 1, and thus the theorem follows.

The proofs for linear and strictly convex hi(·)’s are virtually identical to the

corresponding parts of the proof of Theorem 2 and are omitted for brevity; the

only difference is that in the linear case we need to replace R0
i with Ri(t). The

following lemma, proved in §2.4.4, completes the proof of the theorem.
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Lemma 8. For all 0 ≤ i ≤ B, τi ∈ {0, T}. �

2.4.3 Proof of Lemma 6

Proof. First, from (2.4.7) and (2.4.3), we have φi(T ) = 0, which, combined with

(2.4.6) results in ψi(x, T ) = Ri(T )hi(x). Since either Ri(T ) > 0 or τi > T , (2.4.5)

and the definition of ui result in ui(T ) = 0, as all other values of x would produce

a positive ψi(x, T ). Therefore, hi(ui(T )) = 0.

The rest of the proof has a similar structure to that of Lemma 4. (λIi−λSi )|t=T =

0 and limt↑T (λ̇Ii − λ̇Si ) = −∂f(I)/∂Ii < 0, for all i. Also, for all i, (λIi − λRi )|t=T = 0

and limt↑T (λ̇Ii−λ̇Ri ) = −∂f(I)/∂Ii−∂L(R)/∂Ri+hi(ui(T )) < 0, since hi(ui(T )) = 0.

Hence, ∃ ε > 0 such that (λIi − λSi ) > 0 and (λIi − λRi ) > 0 over (T − ε′, T ).

Now suppose that (at least) one of the inequalities is first13 violated at t = t∗

for i∗, i.e., for all i, (λIi (t) − λSi (t)) > 0 and (λIi (t) − λRi (t)) > 0 for all t > t∗,

and either (A) (λIi∗(t
∗) − λSi∗(t

∗)) = 0, or (B) (λIi∗(t
∗) − λRi∗(t

∗)) = 0 for some i∗.

Note that from continuity of the adjoint functions, (λIi (t
∗) − λSi (t∗)) ≥ 0, and

(λIi (t
∗)− λRi (t∗)) ≥ 0 for all i.

Case (A): Here, we have:14

(λ̇Ii∗ − λ̇Si∗)(t∗+) = −∂f(I)

∂Ii∗
−

M∑
j=1

(λIj − λSj )βi∗jSj − (λIi∗ − λRi∗)
M∑
j=1

β̄ji∗(1− πji∗)Rjuj.

First of all, −∂f(I)/∂Ii∗ < 0. Also, the second and third terms are non-positive,

13Going backward in time from t = T .
14The RHS of the equation is evaluated at t = t∗ due to continuity.
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according to the definition of t∗. Hence, (λ̇Ii∗ − λ̇Si∗)(t
∗+) < 0, which contradicts

Property 1, therefore case (A) does not arise.

Case (B): In this case, we have:14

(λ̇Ii∗ − λ̇Ri∗)(t∗+) = −∂f(I)

∂Ii∗
− ∂L(R)

∂Ri∗
−

M∑
j=1

(λIj − λSj )βi∗jSj + αi∗(ui∗ , t).

We have −∂f(I)/∂Ii∗ < 0 and −∂L(R)/∂Ri∗ ≤ 0. Also, −(λIi∗ − λSi∗)
∑M

j=1 βji∗Sj is

non-positive, according to the definition of t∗, and αi∗ will be non-negative due to

(2.4.8). This shows (λ̇Ii∗ − λ̇Ri∗)(t∗+) < 0, contradicting Property 1, and so case (B)

does not arise either, completing the proof.

2.4.4 Proof of Lemma 8

Proof. We start by creating another control ū from u such that for every i, for

every t ≤ τi, ūi(t) := 1, and for every t > τi, ūi(t) := ui(t). We prove by con-

tradiction that τi(I(0),S(0),R(0), ū) ∈ {0, T} for each i. Since ūi 6≡ ui only in

[0, τi] and Ri(t) = 0 for t ∈ (0, τi] when u is used, the state equations can only

differ at a solitary point t = 0, and therefore both controls result in the same state

evolutions. Thus, for each i, τi(I(0),S(0),R(0), ū) = τi(I(0),S(0),R(0),u), and

τi(I(0),S(0), ū) may be denoted as τi as well. The lemma therefore follows.

For the contradiction argument, assume that the control is ū and that τi ∈

(0, T ) for some i. Our proof relies on the fact that if ūi(t′) = 0 at some t′ ∈ (0, T ),

then ūi(t) = 0 for t > t′, which follows from the definition of ū and prior results

in the proof of Theorem 3.
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For t ∈ [0, τi], since Ri(t) = 0 in this interval, (2.2.5c) becomes:

Ṙi =
M∑

j=1,j 6=i

β̄ji(Si + πjiIi)Rjūj = 0 (2.4.11)

in this interval. Since all terms in
∑M

j=1,j 6=i β̄ji(Si + πjiIi)Rjūj are non-negative,

for each j 6= i we must either have (i) β̄ji(Si(t) + πjiIi(t)) = 0 for some t ∈ [0, τi],

or (ii) Rj(t)ūj(t) = 0 for all t ∈ [0, τi].

(i) Here, either β̄ji = 0; or (Si(t) + πjiIi(t)) = 0, and hence due to Theorem 1,

Si(t) = 0 and πjiIi(t) = 0. In the latter case, from Theorem 1, Si(0) = 0 and

πji = 0. and therefore for all t > 0, we will have β̄ji(Si + πjiIi)Rjūj = 0.

(ii) We can assume β̄ji(Si(t) + πjiIi(t)) > 0 for all t ∈ (0, τi]. For such j, if

τj < τi, Rj(t) > 0 for t ∈ (τj, τi], therefore ūj(t) = 0 for such t. Due to the

structure results obtained for the interval [τj, T ] in Theorem 3, ūj(t) = 0 for all

t > τj, and therefore β̄ji(Si + πjiIi)Rjūj = 0 for all t > 0.

Now, since M < ∞, the set W = {τk : τk > 0, k = 1, . . . ,M} must have a

minimum ω0 < T . Let L(ω0) = {k ∈ {1, . . . ,M} : τk = ω0}. Let the second

smallest element in W be ω1. Using the above argument, the values of Rk(t)

for t ∈ [ω0, ω1] for all k ∈ L(ω0) would affect each other, but not Ri’s for i such

that τi > 0, i 6∈ L(ω0). Furthermore, in this interval for k ∈ L(ω0) we have

Ṙk =
∑

g∈L(ω0) β̄gk(Sg + πgkIi)Rgūg, with Rk(ω0) = 0. We see that for all k ∈

L(ω0), replacing Rk(t) = 0 in the RHS of equation (2.2.5) gives us Ṙk(t) = 0, a

compatible LHS, while not compromising the existence of solutions for all other

states. An application of Theorem 1 for t ∈ [ω0, ω1] and ū shows that this is the
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unique solution of the system of differential equations (2.2.5). This contradicts

the definition of τk, completing the proof of the lemma.

2.5 An Alternative Cost Functional

Recall that in our objective function, the cost of non-replicative patching was de-

fined as
∑M

i=1R
0
ihi(ui) (respectively

∑M
i=1 Rihi(ui) for the replicative case), which

corresponds to a scenario in which the dispatchers are charged for every instant

they are immunizing/healing (distributing the patch), irrespective of the number

of nodes they are delivering patches to. This represents a broadcast cost model

where each transmission can reach all nodes of the neighboring types. In an al-

ternative unicast scenario, different transmissions may be required to deliver the

patches to different nodes. This model is particularly useful if the dispatchers may

only transmit to the nodes that have not yet received the patch.15 Hence, the cost

of patching in this case can be represented by:
∑M

i=1

∑M
j=1R

0
i β̄ij(Sj + Ij)p(ui) (for

the replicative case:
∑M

i=1

∑M
j=1Riβ̄ij(Sj + Ij)p(ui)), where p(.) is an increasing

15This can be achieved by keeping a common database of nodes that have successfully received

the patch, or by implementing a turn-taking algorithm preventing double targeting. Note that we

naturally assume that the network does not know with a priori certainty which nodes are infective,

and hence it cannot differentiate between susceptibles and infectives. Consequently, even when

πij = 0, i.e., the system manager knows the patch cannot remove the infection and can only

immunize the susceptible, still the best it may be able to do is to forward the message to any node

that has not yet received it.
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function. More generally, the patching cost can be represented as a sum of the

previously seen cost (§2.2.5) and this term.

For non-replicative patching, if all hi(·) and p(·) are concave, then Theorem

2 will hold if for all pairs (i, j), πij = πj (i.e., healing efficacy only depends

on the type of an infected node, not that of the immunizer). The analysis will

change in the following ways: A term of R0
i p(ui)

∑M
j=1 β̄ij(Sj + Ij) is added to

(2.3.6), and subsequently to (2.3.9) (with ui = 1 in the latter case). Also, (2.3.8)

is modified by the subtraction of
∑M

j=1 β̄jiR
0
jp(uj) from the RHS of both equa-

tions. This leaves λ̇Ii − λ̇Si untouched, while subtracting a positive amount from

λ̇Ii , meaning that Lemma 4 still holds. As φi(t) was untouched, this means that

Lemma 5 will also hold. Thus the RHS of γ̇i is only modified by the subtraction

of
∑M

j,k=1 β̄ij(Sj + πjIj)β̄kjR
0
k (p(uk)− ukp(1)) which is a positive term, as for any

continuous, increasing, concave function p(·) such that p(0) = 0, we have ap(b) ≥

bp(a) if a ≥ b ≥ 0, since p(x)
x

is increasing. This yields: (p(uk)− ukp(1) ≥ 0). There-

fore the conclusion of Theorem 2 holds. Similarly, it may be shown that Theorem

2 also holds for strictly convex hi(·) provided p(·) is linear.

For the replicative case, if p(·) is linear (p(x) = Cx) and again πij = πj for all

(i, j), Theorem 3 will hold. The modifications of the integrand and ψi are as above.

The adjoint equations (2.4.9) are modified by the subtraction of
∑M

j=1Cβ̄jiRjuj

from λ̇Ii and λ̇Ii , and the subtraction of Cui
∑M

j=1 β̄ij(Sj + Ij) from λ̇Ri . Due to the

simultaneous change in ψi, however, we still have λ̇Ri = ∂L(R)/∂Ri − αi(ui, t).
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Therefore, Lemma 6 still holds, as λ̇Ii − λ̇Si is unchanged, and a positive amount

is subtracted from λ̇Ii − λ̇Ri . We absorb
∑M

j=1 Cβ̄ij(Sj + Ij) into φi(t), where all

the p(·) terms in φ̇i will cancel out, leaving the rest of the analysis, including for

Lemmas 7 and 8, to be the same. The theorem follows.

2.6 Numerical Investigations

In this section, we numerically investigate the optimal control policies for a range

of malware and network parameters and examine its performance in a real-world

traces. 16 We first present an example of our optimal policy (§2.6), and then we

examine its behavior in some sample topologies (§2.6). Subsequently, we present

4 heuristics that are likely to arise in practice and show the cost improvements

the optimal policy is likely to show(§2.6) and demonstrate the relative benefits

of replicative, as opposed to non-replicative, patching (§2.6). For an emerging

epidemic, the initial conditions and the contact rates βij may not immediately be

known. However, these parameters can be estimated by the network by looking

at the empiric contact frequencies of a small number of nodes. Furthermore,

nodes may have synchronization issues that affect the implementation of a time-

sensitive policy. In §2.6, we investigate the optimal policy’s robustness to errors

in estimation of the initial states, mixing rates, and in the synchronization of the

node clocks. Finally, in §2.6, we examine how our optimal policy performs on a

16For our calculations, we used C and MATLAB programming.
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real trace of mobility and communication.

Recalling the notion of topologies presented in §2.2.1 (in the paragraph before

(2.2.2)), we consider four topologies: linear, ring, star and complete, as was

illustrated in Fig. 2.1. We assume βii = β = 0.223 for all i.17 The value of βij,

i 6= j is equal toXCoef ·β if link ij is part of the topology graph, and zero otherwise.

It should be noted that βij ∗ T denotes the average number of contacts between

nodes of regions i and j within the time period, and thus β and T are dependent

variables. For simplicity, we use equal values for βji, βij, β̄ij, β̄ji for all i, j (i.e.,

βji = βij = β̄ij = β̄ji), and set πij = π for all i, j. We examine two different

aggregate cost structures for non-replicative patching:18

(type-A) -
∫ T

0

(
KI

M∑
i=1

Ii(t) +Ku

M∑
i=1

R0
iui(t)

)
dt (2.6.1)

and

(type-B) -
∫ T

0

(
KI

M∑
i=1

Ii(t) +Ku

M∑
i=1

R0
iui(t)(Si(t) + Ii(t))

)
dt (2.6.2)

(described in §2.2.5 and §2.5 respectively). For replicative patching, R0
i in both

cost types is replaced with Ri(t). The parameters for all simulations are summa-

rized in Table 2.1.
17This specific value of β is chosen to match the average inter-meeting times from the numerical

experiment reported in [37].
18fi(·), hi(·), and p(·) are linear and identical for all i, and li(·) = 0.
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Table 2.1: Simulation parameters: Here, REP shows whether the patching is

replicative, XC is XCoef , and C is cost type. In all cases, KI = 1. Dashed pa-

rameters are simulation variables.

FIG. TOP. REP π M T C XC R0 I0 KU

2.2 LIN. N - 3 35 A 0.1 {0.2}M1 0.3,{0}M2 0.5

2.3 LIN. N - 10 35 A - {0.2}M1 0.3,{0}M2 0.5

2.4 STAR N - - 35 B 0.1 {0.2}M1 0.6,{0}M2 0.2

2.5 LIN. Y 1 - 35 A 0.1 {0.2}M1 0.2,{0}M2 0.2

2.6 COMP. Y 1 - 35 A 0.1 {0.2}M1 0.3,{0}M2 0.2

2.7A RING N 1 4 10 A 0.2
0.05,

{0.01}M2
0.1,{0}M2 0.01

2.7B RING N 0 4 35 A 0.1 {0.1}M1 0.4,{0}M2 0.07

2.7C RING N 1 4 20 A 0.5 {0.01}M1 0.05,{0}M2 0.01
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Figure 2.2: Optimal patching policies and corresponding levels of infection in a

three region linear topology. Note how the infection that initially only exists in

region 1 spreads in region 1 and then to region 2, and finally to region 3.

Numeric Example

First, in Fig. 2.2 we have depicted an example of the optimal dynamic patching

policy along with the corresponding evolution of the infection as a function of

time for a simple 3-region linear topology. For π = 0 the levels of infection are

non-decreasing, whereas for π = 1 they may go down as well as up (due to

healing).
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Effects of Topology

We study the drop-off times (the time thresholds at which the bang-bang optimal

patching halts) in different regions for linear and star topologies.

Fig. 2.3 reveals two different patterns for π = 0 and π = 1 in a linear topology.

For π = 0, a middle region is patched for the longest time, whereas for π = 1,

as we move away from the origin of the infection (region 1), the drop-off point

decreases. This is because for π = 0, patching can only benefit the network by

recovering susceptibles. In regions closer to the origin, the fraction of suscep-

tibles decreases quickly, making continuation of the patching comparatively less

beneficial. In the middle regions, where there are more salvageable susceptibles,

patching should be continued for longer. For regions far from the origin, patching

can be stopped earlier, as the infection barely reaches them within the time hori-

zon of consideration. For π = 1, patching is able to recover both susceptible and

infective nodes. Hence, the drop-off times depend only on the exposure to the

infection, which decreases with distance from the origin. As XCoef is increased,

the drop-off points when π = 1 get closer together. Intuitively, this is because

higher cross-mixing rates have a homogenizing effect, as the levels of susceptible

and infective nodes in different region rapidly become comparable. Also, Fig. 2.3

reveals that as XCoef increases and more infection reaches farther regions, they

are patched for longer, which agrees with our intuition.

We next investigate a star configuration where the infection starts from a pe-
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Figure 2.3: Drop-off times in a linear topology for XCoef = 0.2, 0.4, 0.6.

ripheral region (region 1 in the star in Fig. 2.1). Fig. 2.4 reveals the following

interesting phenomenon: although the central region is the only one that is con-

nected to all the regions, for π = 0, it is patched for shorter lengths of time

compared to the peripherals. In retrospect, this is because only susceptible nodes

can be patched and their number at the central region drops quickly due to its in-

teractions with all the peripheral regions, rendering patching inefficient relatively

swiftly. As expected, this effect is amplified with higher numbers of peripheral re-

gions. For π = 1, on the other hand, the central region is patched for the longest

time. This is because the infective nodes there can infect susceptible nodes in all

regions, and hence the patching, which can now heal the infectives as well, does

not stop until it heals almost all of infective nodes in this region.
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Figure 2.4: Drop-off times in the star topology.

Cost Comparison

Next, in order to evaluate the efficacy of our optimal dynamic heterogeneous

patching, which we henceforth refer to as Stratified Dynamic (S.D.), we compare

our aggregate cost against those of four alternative policies.

In the simplest alternative policy, all regions use identical patching intensities

that do not change with time. We then select this fixed and static level of patching

so as to minimize the aggregate cost among all possible choices. We refer to this

policy as Static (St.). The aggregate cost may be reduced if the static level of

the patching is allowed to be distinct for different regions. These values (still

fixed over time) are then independently varied and the optimum combination

is selected. We refer to this policy as Stratified Static (S. St.). The third policy

we implement is a homogeneous approximation to the heterogeneous network.
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Specifically, the whole network is approximated by a single region model with an

inter-contact rate equal to the mean pairwise contact rate of the real system. The

optimal control is derived based on this model and applied across all regions to

calculate the aggregate cost. We call this policy Simplified Homogeneous (S. H.).

The simplified homogeneous policy is a special case of Spatially Static (Sp. St.)

policies: Sp. St. policies optimize a single jump-point for a bang-bang control to

be applied to all types in the topology.

Fig. 2.5 depicts the aggregate costs of all five policies for a linear topology and

intra-type βii and inter-type contact rates βij constant. As we can clearly observe,

our stratified policy achieves the least cost, outperforming the rest. For example

for M ≥ 3 regions, our policy outperforms the best static policies by 40% and

for M = 5, it betters the homogeneous approximation by 100%, which shows

that our results about the structure of the optimal control can result in large cost

improvements. When the number of regions is small, S. H. and Sp. St. perform

better than S. St., all of which obviously outperform St. However, as the number

of regions increases and the network becomes more spatially heterogeneous, the

homogeneous approximation, and all uniform controls in general, worsen and the

S. St. policy quickly overtakes them as the best approximation to the optimal. In

this case, the cost of the two stratified policies does not change noticeably as the

number of types is increased. While this is an attribute of the simulation settings

(and in particular, the linear topology), in general, S.D. and S.St. are the only
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two policies that can optimize controls in direct accordance with the topology.

Therefore the extent of their cost variations is less as the number of types is varied

compared to the other heuristics. In the particular case of Fig. 2.5, the fraction

of recovered in each type increases much faster due to the increased number of

interactions, and thus less patching needs to be carried out in that type (less

intensity for the stratified static case, and for a shorter period in the stratified

dynamic policy). However, these effects are countered by the rising number of

elements in the cost function, leading to a seemingly constant cost. For π = 0,

a similar performance gap is observed. Specifically, as discussed, optimal drop-

off times for this problem should vary based on the distance from the originating

region, a factor that the Sp. St., S. H., and St. policies ignore.

We now present some general observations for which we do not present figures

due to space constraints. From our observations, the relative performance of the

optimal becomes better as the heterogeneity among the nodes increases, both in

terms of topology and in terms of states. Fig. 2.3 is typical for the intermediate

parameter range where the optimal stratified dynamic policy is not on or off all

the time. For example, the optimal performs better (relative to the heuristics) in

a linear topology as opposed to a complete topology (which has identical contact

rates among all pairs of types). Furthermore, for example, if the initial fraction of

infectives is high in all types and we have no healing (π = 0), or the time period

is too short relative to the contact rates, the patch cannot spread much beyond its
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Figure 2.5: Cost of heuristics vs. the optimal policy, linear topology.

original nodes, and thus all policies perform at around the same level. Finally, if

the cost of infection is very high or very low relative to immunization, the optimal

stratified dynamic policy will be one (respectively, zero) at all times, a control that

can be replicated by the constrained heuristics, and thus the gains in performance

are muted.

Replicative vs. Non-replicative Patching

We already know that optimal replicative patching will outperform optimal non-

replicative patching. We examine the extent of the difference through numerical

computation. In Fig. 2.6, we see the aggregate cost of optimal replicative and

non-replicative patching in a complete topology as a function of the size of the
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network for M ≤ 11. Here, even for such modest sizes, replicative patching can

be 60% more efficient than non-replicative patching, a significant improvement.

This is especially true for the complete topology and other edge-dense topologies,

as in replicative patching, the patch can spread in ways akin to the malware.

Figure 2.6: Replicative and non-replicative patch cost, complete topology.

Robustness

In this section, we simulated the robustness of our optimal control to errors in

the determination of the initial states (Fig. 2.7a), the contact rates (Fig. 2.7b),

and the synchronization of the node clocks (Fig. 2.7c). In Fig. 2.7a, the system

estimates the number of susceptibles and infectives of an emerging epidemic in a

ring topology of size M=3 with an unbiased, uniformly distributed error. It then

uses this estimated network to calculate optimal controls which it applies in the

real settings. It can be seen that a maximum estimation error of 15% leads to a
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mean cost deficiency of only 5%. This performance was replicated across differing

network sizes and values of the initial parameters. In Fig. 2.7b, the system esti-

mates the mean contact rates of an emerging epidemic in a ring topology of size

M=4 with an unbiased, uniformly distributed error. It then uses this estimated

topology to calculate optimal controls which it applies in the real settings. It can

be seen that an unbiased maximum estimation error of 25% changes the mean

costs by less than 1%. This remarkable robustness was seen with a range of sizes

and initial parameters. In Fig. 2.7c, it was assumed that the optimal controls for

a ring topology of size M=4 had been calculated and passed on to nodes whose

clocks have unbiased, uniformly distributed shifts from the reference, who then

implement the bang-bang policy. Here, we plot the mean cost difference as a func-

tion of the ratio of the maximum magnitude of the synchronization error to the

resolution at which the drop-off times of the optimal control were calculated, and

observe that the cost barely changes even when this ratio approaches one (and

the synchronization error is of the magnitude of the decision instants).

From these results, it can be seen that the optimal control is very robust to

errors in these parameters, and thus can be implementable in networks where

these parameters are initially unknown and have to be estimated. We have, in

each case, compared the performance of the optimal control to the heuristic which

is most robust to those specific types of errors - the Simplified Homogeneous (Sp.

St.) approximation for errors in the determination of the initial states and the
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contact rates (errors in which will get averaged out among the types), and the

Stratified Static (S. St.) heuristic for clock synchronization errors, as this heuristic

does not depend on the clocks of the nodes and is inherently robust to such errors.

Real-World Trace

In this section, we calculated the optimal control (and the relevant heuristics)

for a network topology derived from a real-world trace: Bluetooth data from

volunteers at the SigComm ’09 conference [70]. We calculated the optimal control

and the heuristics for a topology with constant contact rates derived from the

trace, and with one randomly chosen infective and one recovered person per each

type. We applied the controls to the real proximity data of the participants over

50 runs to find the cost differential and the variance (Table 2.2).

The SigComm ’09 data set includes “Bluetooth encounters, opportunistic mes-

saging, and social profiles of 76 users of MobiClique application at SIGCOMM

2009”. The participants from each country constitute a “type” for categorization.

We chose 5 types, as there were five nationalities with more than 2 participants,

and calculated their per-day contact rate. Patching was replicative with π = 1,

KI = 1, and KU = 0.05. Note that in this instance, the stratified dynamic policy

still outperforms all other heuristics by 15%. It is interesting to note that even the

Sp. St. policy significantly outperforms the homogeneous approximation S. H.,

which underscores the benefits of considering node heterogeneity.
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Table 2.2: MEAN AND VARIANCE OF THE COST OF THE POLICIES ON THE SIG-

COMM09 TRACE OVER 50 RUNS.

SIGCOMM09 MEAN VARIANCE

S.D. 0.4052 0.1090

S. H. 0.6914 0.2711

S. ST. 0.8829 0.0204

SP. ST. 0.4609 0.0781

ST. 1.1667 0.0285

2.7 Conclusion

We presented a general model for patch dissemination in a rate-heterogeneous

network in the mean-field regime that can capture the core of many different

types of real-world networks. We proved that optimal controls for each type have

a simple structure that can be easily computed, stored, and executed in many

cases of practical importance. The derived optimal controls are observed to be

robust to errors in model parameter estimation, and perform better than heuristics

derived from practice on simulations and traces.
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Figure 2.7: Effect of errors in initial condition estimation 2.7a, contact rate esti-

mation 2.7b, and node synchronization 2.7c on the mean cost of the optimal dy-

namic policy and the most robust heuristic. An error % of γ for the contact rate β,

for example, means that the estimate is uniformly distributed in [(1−γ)β, (1+γ)β].

Error-bars represent the cost variance over 25 runs.
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Chapter 3

Resource-Heterogeneity: Optimal

Energy-Aware Epidemic Routing in

DTNs 1

3.1 Introduction

An epidemic may also be constrained by the resources it needs from the infected

population in order to spread. These resources (e.g., wealth in the spread of a fad)

may fluctuate as a result of the spread of the epidemic, leading to a stratification of

nodes based on their relative amount of remaining resources, and thus their ability

to be affected by, and spread, the epidemic. As opposed to the inherent types of

1Presented in IEEE MobiHoc 2012 [44] and published in the IEEE Transactions on Automatic

Control, June 2015 [?].
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the previous chapter, these resource-dependent types are fluid. In particular, in

this chapter we focus on the spread of a message in a Delay-Tolerant Network

(DTN), where the act of sending and receiving the message consumes energy in

both nodes, and thus induces an energy-heterogeneity in the system that affects

the epidemic’s spread in the future.

Delay-Tolerant Networks have been envisioned for civilian disaster response

networks, military networks, and environmental surveillance, e.g., where com-

munication devices are carried by disaster relief personnel and soldiers, or where

they can be mounted on wandering animals. These networks are comprised of

mobile nodes whose communication range is much smaller than their roaming

area, and therefore messages are typically relayed by intermediate nodes at times

of spatial proximity. Relaying messages consumes a significant amount of energy

in the sending and receiving nodes. However, mobile nodes in DTNs typically

have limited battery reserves and replacing/recharging the batteries of drained

nodes is usually infeasible or expensive. Simple epidemic forwarding depletes the

limited energy reserves of nodes, while conservative forwarding policies jeopar-

dize the timely delivery of the message to the destination. Hence, there is an

inherent trade-off between timely message delivery and energy conservation.

The literature on message routing in DTNs is extensive [1, 7, 9, 19, 20, 60, 61,

67, 68, 82–84, 88, 90, 96]. Most notably, Vahdat and Becker [88] present a policy

where each node propagates the message to all of its neighbors simultaneously
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(“Epidemic Routing”), while Spyropoulos et al. [84] propose spreading a specific

number of copies of the message initially and then waiting for the recipients of

these copies to deliver the message to the destination (“Spray and Wait”). Wang

and Wu [90] present “Optimized Flooding”, where flooding is stopped once the

total probability of message delivery exceeds a threshold. Singh et al. [83] and

Altman et al. [1] identify optimal and approximately optimal message forwarding

policies in the class of policies that do not take the distribution of node energies

into account. In summary, the state of the art in packet forwarding in DTNs com-

prises of heuristics that ignore energy constraints [60,88,96], those that consider

only overall energy consumption but provide no analytic performance guaran-

tees [9, 19, 61, 68, 84, 90], and those that do not utilize the energy available to

each node in making forwarding decisions [1,7,20,67,82,83] (we describe some

of these policies in more detail in §3.4). An efficient forwarding strategy can use

knowledge of the distribution of energy among among nodes to its advantage,

and this motivates the design of dynamic energy-dependent controls which are

the subject of this work.

We start by formulating the trade-off between energy conservation and like-

lihood of timely delivery as a dynamic energy-dependent optimal control prob-

lem: at any given time, each node chooses its forwarding probability based on

its current remaining energy. Since the number of relay nodes with the message

increases and residual energy reserves decrease with transmissions and recep-
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tions, the forwarding probabilities vary with time. Thus, they must be chosen so

as to control the evolution of network states, which capture both the fraction of

nodes holding a copy of the message and the remaining battery reserves of the

nodes. We model the evolution of these states using epidemiological differential

equations that rely on mean-field approximation of Markov processes, and seek

dynamic forwarding probabilities (optimal controls) that optimize objective func-

tions penalizing energy depletion subject to enforcing timely message delivery

(§§3.2.1,3.2.2).

Our first result is to prove that dynamic optimal controls follow simple easy-to-

implement threshold- based rules (§3.3, Theorem 5). That is, a node in possession

of a copy of the message forwards the message to nodes it encounters that have

not yet received it until a certain threshold time that depends on its current re-

maining energy. Calculating these thresholds is much simpler than solving the

general problem and can be done once at the source node of the message. Sub-

sequently, they can be added to the message as a small overhead. Each node that

receives the message can retrieve the threshold times and forward the message

if its age is less than the threshold entry of the node’s residual energy level. The

execution of the policy at each node is therefore simple and based only on local

information.

Our second result is to characterize the nature of the dependence of the thresh-

olds on the energy levels. Intuitively, the less energy a node has, the more reluc-
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tant it should be to transmit the message, as the transmission will drive it closer to

critically low battery levels. However, our investigations reveal that this intuition

can only be confirmed when the penalties associated with low final remaining

energies are convex (§3.3, Theorem 6), and does not hold in general otherwise.

Finally, our optimal control provides a missing benchmark for forwarding poli-

cies in large networks in which no information about the mobility pattern of the

individual nodes is available and a minimum QoS is desired. This benchmark al-

lows us to observe the sub-optimality of some simpler heuristic policies, and to

identify parameter ranges in which they perform close to the optimal (§3.4).

3.2 System Model

We assume a low-load scenario in which only one message is propagated in the

network within a terminal time T . This message has a single destination and it

is sufficient for a copy of the message to be delivered to its destination by the

terminal time. We use the deterministic mean-field (i.e., for large numbers of

nodes) regime which models state evolution using a system of differential equa-

tions. Such models have been shown to be acceptable approximations both ana-

lytically and empirically for large and fast-moving mobile wireless networks [44].

In §3.2.1, we develop our system dynamics model based on mean-field determin-

istic ODEs. Subsequently, in §3.2.2 we consider two classes of utility functions

that cogently combine a penalty for the impact of the policy on the residual en-

98



ergy of the nodes with guarantees for the QoS of the forwarding policy.

3.2.1 System Dynamics

We begin with some definitions: a node that has received a copy of the message

and is not its destination is referred to as an infective; a (non-destination) node

that has not yet received a copy of the message is called a susceptible. The max-

imum energy capacity of all nodes is B units. A message transmission between

a pair of nodes consumes s units of energy in the transmitter and r units in the

receiver, independent of their total energy level. Naturally, r ≤ s. When an in-

fective node contacts a susceptible at time t, the message is transmitted with a

certain forwarding probability if the infective (transmitter) and susceptible (re-

ceiver) have at least s and r units of energy. If either does not have the respective

sufficient energy, transmission will not occur.

Two nodes contact each other at rate β̂. We assume that inter-contact times

are exponentially distributed and uniform among nodes, an assumption common

to many mobility models (e.g., Random Walker, Random Waypoint, Random Di-

rection, etc. [33]). Moreover, it is shown in [33] that

β̂ ∝ average rel. node speeds× communication ranges
the roaming area

. (3.2.1)

Assuming t = 0 mark the moment of message generation, we define Si(t) (respec-

tively, Ii(t)) to be the fraction of nodes that are susceptible (respectively, infective)

and that have i energy units at time t. Hence for t ∈ [0, T ]:
∑B

i=0 (Si(t) + Ii(t)) =
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1.

At any given time, each node can observe its own level of available energy,

and its forwarding decision should, in general, utilize such information. Hence,

upon an instance of contact between a susceptible node with i units of energy

and an infective node with j units of energy at time t, as long as i ≥ r and

j ≥ s, the message is forwarded with probability uj(t) (0 ≤ uj(t) ≤ 1). We

take these probabilities to be our controls u(t) =
(
us(t), us+1(t), . . . , uB(t)

)
∈ U ,

where U is the set of piecewise continuous controls with left-hand limits at each

t ∈ (0, T ], and right-hand limits at each t ∈ [0, T ). If the message is forwarded, the

susceptible node transforms to an infective node with i− r energy units, and the

infective node likewise to an infective node with j − s energy units. We assume

that once an infective contacts another node, the infective can identify (through

a low-load exchange of control messages) whether the other node has a copy

of the message (i.e., is infective), or does not (i.e., is susceptible), whether the

contacted node is a destination and also whether it has enough energy to receive

the message. We assume that the dominant mode of energy consumption is the

transmission and reception of the message, and that each exchange of the control

messages consumes an insignificant amount of energy. If a message-carrying node

that has sufficient energy for one transmission contacts the destination that has

yet to receive the message, the message is always forwarded to the destination.

Let N be the total number of nodes and define β := Nβ̂. Following (3.2.1), β̂
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is inversely proportional to the roaming area, which scales with N . Hence, if we

can define a density of nodes, β has a nontrivial value. The system dynamics in

this regime over any finite interval can be approximated thus, except at the finite

points of discontinuity of u ([31, Theorem 1]):

Ṡi =


−βSi

B∑
j=s

ujIj (r ≤ i ≤ B), (3.2.2a)

0 (0 ≤ i < r), (3.2.2b)

İi =



−βuiIi
B∑
j=r

Sj (B − r < i ≤ B), (3.2.2c)

−βuiIi
B∑
j=r

Sj + βSi+r

B∑
j=s

ujIj

(B − s < i ≤ B − r), (3.2.2d)

−βuiIi
B∑
j=r

Sj + βSi+r

B∑
j=s

ujIj + βui+sIi+s

B∑
j=r

Sj

(s ≤ i ≤ B − s), (3.2.2e)

βSi+r

B∑
j=s

ujIj + βui+sIi+s

B∑
j=r

Sj (0 ≤ i < s). (3.2.2f)

Note that in the above differential equations and in the rest of this work, when-

ever not ambiguous, the dependence on t is made implicit. We now explain each

of these equations:2

2We consider protocols where a destination receives at most one copy of the message by the

terminal time. The system dynamics hold if we allow the reception of multiple copies because

isolated transmissions have no effect on the mean-field regime.
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(3.2.2a): The rate of decrease in the fraction of susceptible nodes with energy

level i ≥ r is proportional to the rate of contacts between these nodes and trans-

mitting infective nodes with energy level equal to or higher than s.

(3.2.2b): Susceptibles with less than r units of energy cannot convert to infec-

tives.

The rate of change in infectives of energy level i is due to three mechanisms:

1. Transmitting infectives of energy level i convert to infectives with energy

level i − s upon contact with susceptibles that have sufficient energy for

message exchange. This conversion happens due to the energy consumed

in transmitting the message, resulting in a decrease in infectives of energy

level i.

2. Susceptibles with energy level i + r are transformed to infectives of energy

level i upon contact with transmitting infectives that have at least s units

of energy, swelling the ranks of infectives of energy level i. This conversion

occurs due to the energy consumed in receiving the message.

3. Transmitting infectives of energy level i+s convert to infectives with energy

level i upon contact with susceptibles that have sufficient energy for message

exchange, adding to the pool of infectives of energy level i. Like 1, this is

due to the energy consumed in transmitting the message.
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Now, given that energy levels are upper-bounded by B:

I If B − r < i ≤ B, only mechanism 1 is possible, as i + s ≥ i + r > B, ruling

out 2 and 3 respectively. This results in (3.2.2c).

II If B− s < i ≤ B− r, only mechanisms 1 and 2 are possible, as i+ s > B rules

out 3, leading to (3.2.2d).

III If s ≤ i ≤ B − s, all three mechanisms are in play, resulting in (3.2.2e).

IV If 0 ≤ i < s, only mechanisms 2 & 3 remain, as i − s < 0 rules out 1. Thus,

we have (3.2.2d).

We consider continuous state solutions S(t) =
(
S0(t), . . . , SB(t)

)
, I(t) =

(
I0(t),

. . . , IB(t)
)

to the dynamical system (3.2.2) subject to initial conditions

S(0) = S0 := (S00, . . . , S0B), I(0) = I0 := (I00, . . . , I0B). (3.2.3)

We naturally assume that the initial conditions satisfy S(0) ≥ 0, I(0) ≥ 0, and∑B
i=0

(
Si(0) + Ii(0)

)
= 1 (vector inequalities are to be interpreted component-wise

throughout).

We say that a state solution (S(t), I(t)) for the system (3.2.2) is admissible if

the non-negativity and normalization conditions

S(t) ≥ 0, I(t) ≥ 0,
B∑
i=0

(Si(t) + Ii(t)) = 1, (3.2.4)

are satisfied for all t ∈ [0, T ]. We next show that states satisfying (3.2.2) are

admissible and unique for any u ∈ U :
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Theorem 4. Suppose the initial conditions satisfy S(0) ≥ 0, I(0) ≥ 0, and
∑B

i=0

(
S0i

+ I0i)
)

= 1, and suppose u(t) =
(
us(t), us+1(t), . . . , uB(t)

)
is any system of piece-

wise continuous controls. Then the dynamical system (3.2.2) has a unique state

solution (S(t), I(t)), which is admissible. If Ii(t′) > 0 for any i (respectively,

Sj(t
′) > 0 for any j) and t′ ∈ [0, T ), Ii(t) > 0 (respectively Sj(t) > 0) for all t > t′.

Also, for each j, Sj(t′) = 0 for all t′ ∈ (0, T ] if Sj(0) = 0.

In our proof, we use the following general result:

Lemma 9. Suppose the vector-valued function f = (fi, 1 ≤ i ≤ N) has compo-

nent functions given by quadratic forms fi(t,x) = xTQi(t)x (t ∈ [0, T ]; x ∈ S),

where S is the set of N -dimensional vectors x = (x1, . . . , xN) satisfying x ≥ 0 and∑N
i=1 xi = 1, and Qi(t) is a matrix whose components are uniformly, absolutely

bounded over [0, T ]. Then, for an N -dimensional vector-valued function F, the

system of differential equations

Ḟ(t) = f(t,F) (0 < t ≤ T )

subject to initial conditions F(0) ∈ S
(3.2.5)

has a unique solution, F(t), which varies continuously with the initial conditions

F0 ∈ S at each t ∈ [0, T ].

This follows from standard results in the theory of ordinary differential equa-

tions [78, Theorem A.8, p. 419] given the observation that f(t,F) is comprised of

quadratic forms and is thus Lipschitz over [0, T ] ∗ S.

Proof. We write F(0) = F0, and in a slightly informal notation, F = F(t) =
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F(t,F0) to acknowledge the dependence of F on the initial value F0.

We first verify the normalization condition of the admissibility criterion. By

summing the left and right sides of the system of equations (3.2.2) we see that∑B
i=0

(
Ṡi(t) + İi(t)

)
= 0, and, in view of the initial normalization

∑B
i=0

(
Si(0) +

Ii(0)
)

= 1, we have
∑B

i=0

(
Si(t) + Ii(t)

)
= 1 for all t.

We now verify the non-negativity condition. Let F = (F1, . . . , FN) be the state

vector in N = 2(B + 1) dimensions whose elements are comprised of (Si, 0 ≤ i ≤

B) and (Ii, 0 ≤ i ≤ B) in some order. The system of equations (3.2.2a)–(3.2.2f)

can thus be represented as Ḟ = f(t,F), where for t ∈ [0, T ] and x ∈ S, the vector-

valued function f = (fi, 1 ≤ i ≤ N) has component functions fi(t,x) = xTQi(t)x

in whichQi(t) is a matrix whose non-zero elements are of the form±βuk(t). Thus,

the components of Qi(t) are uniformly, absolutely bounded over [0, T ]. Lemma 9

establishes that the solution F(t,F0) to the system (3.2.2a)–(3.2.2f) is unique and

varies continuously with the initial conditions F0; it clearly varies continuously

with time. Next, using elementary calculus, we show in the next paragraph that

if F0 ∈ Int S (and, in particular, each component of F0 is positive), then each

component of the solution F(t,F0) of (3.2.2a)–(3.2.2f) is positive at each t ∈

[0, T ].3 Since F(t,F0) varies continuously with F0, it follows that F(t,F0) ≥ 0 for

all t ∈ [0, T ], F0 ∈ S, which completes the overall proof.

Accordingly, let each component of F0 be positive. Since the solution F(t,F0)

3Throughout this chapter, we use positive for strictly positive, etc.
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varies continuously with time, there exists a time, say t′ > 0, such that each

component of F(t,F0) is positive in the interval [0, t′). The result follows trivially

if t′ ≥ T . Suppose now that there exists t′′ < T such that each component of

F(t,F0) is positive in the interval [0, t′′), and at least one component is 0 at t′′.

We first show that such components can not be Si for any i ≥ 0 and subsequently

rule out Ii for all i ≥ 0. Note that uj(t), Ij(t), Sj(t) are bounded in [0, t′′] (recall∑B
j=0 (Sj(t) + Ij(t)) = 1, Sj(t) ≥ 0, Ij(t) ≥ 0 for all j, t ∈ [0, t′′]). First, let r ≤

i ≤ B. From (3.2.2a), Si(t′′) = Si(0)e−β
∫ t′′
0

∑B
j=s uj(t)Ij(t) dt. Since all uj(t), Ij(t) are

bounded in [0, t′′], and Si(0) > 0, β > 0, therefore Si(t
′′) > 0. From (3.2.2b),

Si(t
′′) = Si(0) > 0 for 0 ≤ i < r. Thus, Si(t′′) > 0 for all i. Since Si(t) > 0,

Ii(t) ≥ 0 for all i, t ∈ [0, t′′], from (3.2.2c) – (3.2.2e), İi ≥ −βuiIi
∑B

j=r Sj for

all i ≥ s in the interval [0, t′′]. Thus, Ii(t′′) ≥ Ii(0)e−β
∫ t′′
0 ui(t)

∑B
j=r Sj(t) dt. Since

all uj(t), Ij(t), Sj(t) are bounded in [0, t′′], and Ii(0) > 0, β > 0, it follows that

Ii(t
′′) > 0 for all i ≥ s. Finally, since Si(t) > 0, Ii(t) ≥ 0 for all i, t ∈ [0, t′′], from

(3.2.2f), it follows that İi ≥ 0 for all i < s, t ∈ [0, t′′]. Thus, Ii(t′′) ≥ Ii(0) > 0 for

all i < s. This contradicts the definition of t′′ and in turn implies that F(t,F0) > 0

for all t ∈ [0, T ], F0 ∈ Int S.

Since the control and the unique state solution S(t), I(t) are non-negative,

(3.2.2a) implies that S(t) is a non-increasing function of time. Thus, Sj(t) = 0 if

Sj(0) = 0 for any j. Using the argument in the above paragraph and starting from

a t′ ∈ [0, T ) where Sj(t′) > 0, or Ij(t′) > 0, it may be shown that Sj(t) > 0 or
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Ij(t) > 0 respectively for all t > t′.

The above proof allows for choices of T that depend on the controls u, pro-

vided such controls result in finite T . For the problem to be non-trivial, we assume

henceforth that there exist i ≥ r, j ≥ s for which Si(0) > 0 and Ij(0) > 0.

We finish this section with a technical lemma for later:

Lemma 10. For all t ∈ (0, T ) and all i, |İi(t+)| and |İi(t−)| exist and are bounded,

as is |İi(T−)|.

Proof. The states are admissible (Theorem 4) and continuous, and the controls

are bounded by definition. Hence, due to (3.2.2), |İi(t)| exists and is bounded

at all points except the finite set of points of discontinuity of the controls, and

continuous over intervals over which u is continuous. Thus, |İi(t+)| and|İi(t−)|

exist and are bounded for all t ∈ (0, T ). With the same reasoning, |İi(T−)| also

exists and is bounded.

3.2.2 Throughput constraint and objective functions

The objective function of the network can represent both a measure of the efficacy

of the policy in ensuring timely message delivery, and the effect of the policy on

the residual energy reserves of the nodes. We first develop measures for each of

these cases, and then utilize them to define an objective function and a constraint

on the achieved network throughput.
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Throughput constraint One plausible measure of QoS in the context of DTNs

is the probability of delivery of the message to the destination before a terminal

time T . We examine two cases: one in which a minimum probability of delivery

is mandated on the message before a fixed terminal time T , and another in which

the time-frame of message delivery is flexible and the goal is to meet the mini-

mum probability of delivery requirement as soon as possible. In what follows, we

discuss these two cases.

Let β̂0 be the rate of contact of a node with the destination, potentially different

from β̂, and define β0 := Nβ̂0.

Following from the exponential distribution of the inter-contact times, the

mandated probability of delivery constraint P(delivery) ≥ p (i.e., the message be-

ing delivered to the destination with probability greater than or equal to p within

[0, T ]) implies that:

1− exp
(
−
∫ T

0
β0

∑B
i=s Ii(t) dt

)
≥ p. 4

Note that the exponential term in the LHS is the probability that no contact

occurs between the destination and any infective with sufficient energy during the

interval of [0, T ].

Also notice that similar to (3.2.1), β̂0 is inversely proportional to the roaming

area, which itself scales with N . Another point to note is that the summation

4Because P (delivery) = E{1σ=t}, where σ is the time the message reaches the destination.

So, P (delivery) =
∫ T
0
P (σ = t) dt =

∫ T
0

exp(−β̂0
∫ t
0

∑B
i=sNIi(ξ) dξ) · β̂0

∑B
i=sNIi(t) dt = 1 −

exp(−
∫ T
0
β0
∑B
i=s Ii(t) dt). A special case of this was shown in [33, App. A] and [1, §II.A].
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inside the integral starts from index s, since infective nodes with less than s units

of energy cannot forward their message to the destination upon potential contact.

This is equivalent to a throughput constraint:

∫ T

0

B∑
i=s

Ii(t) dt ≥ − ln(1− p)/β0. (3.2.6)

In the first case, referred to as the fixed terminal time problem, the terminal

time T is fixed and the throughput constraint is satisfied (along with minimizing

the adverse effects on the residual energy of the nodes which we will discuss next)

through appropriate choice of control function u, if any such functions exist. In

the second case, referred to as the optimal stopping time problem, for every choice

of the control function u, the terminal time T is chosen to satisfy (3.2.6) with

equality. The terminal time is therefore variable and depends on the choice of u.

Such a T exists for a given control u if and only if for the resulting states

lim
T ′→∞

∫ T ′

0

B∑
i=s

Ii(t) dt ≥ − ln(1− p)/β0. (3.2.7)

The throughput constraint will not be satisfied in any finite time horizon for con-

trols that do not satisfy the above. We will therefore exclude such controls in the

optimizations we formulate next. Note that if the system uses a zero-control (i.e.,

u(t) = (0, . . . , 0) at all t) then Si(t) = Si(0) and Ii(t) = Ii(0) for all t; thus, since∑B
i=s Ii(0) > 0, (3.2.7) holds. Therefore, there exists at least one control that sat-

isfies (3.2.7). Since T is finite for every control that satisfies (3.2.7), the system is

admissible for each such control as well.
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Energy cost of the policy In the simplest representation of the trade-off with the

energy overhead, one can think of maximizing the aggregate remaining energy

in the network at the terminal time, irrespective of how it is distributed. It is

however desirable for the network to avoid creating nodes with critically low

energy reserves. We capture the impact of a forwarding policy on the residual

energy reserves of the nodes by penalizing the nodes that have lower energy

levels. Specifically, denoting the terminal time as T , the overall penalty associated

with the distribution of the residual energies of nodes at T , henceforth referred to

as the energy cost of the policy, is captured by:
∑B

i=0 ai (Si(T ) + Ii(T )), in which,

{ai} is a decreasing sequence in i, i.e., a higher penalty is associated with lower

residual energies at T .

The trade-off can now be stated as follows: by using a more aggressive for-

warding policy (i.e., higher ui(t)’s and for longer durations), the message propa-

gates faster and there is a greater chance of delivering the message to the destina-

tion in a timely manner. However, this will lead to lesser overall remaining energy

in the nodes upon delivery of the message, and it will potentially push the energy

reserves of some nodes to critically low levels, degrading the future performance

of the network.

Overall Objective and Problem Statements We now state the two optimization

problems for which we provide necessary structural results for optimal forwarding

policies in §3.3.
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Problem 1: Fixed Terminal Time Considering a fixed terminal time T, we

seek to maximize the following utility:

R = −
B∑
i=0

ai (Si(T ) + Ii(T )) (3.2.8)

by dynamically selecting the vector u(t) = (us(t), . . . , uB(t)) of piece-wise con-

tinuous controls subject to control constraints 0 ≤ ui(t) ≤ 1 for all s ≤ i ≤ B,

0 ≤ t ≤ T and throughput constraint (3.2.6). States S(t) and I(t) satisfy state

dynamics (3.2.2) and positivity and normalization conditions (3.2.4).

Problem 2: Optimal Stopping Time We seek to minimize a combination

of a penalty associated with the terminal time T (the time taken to satisfy the

throughput constraint (3.2.6)) and one associated with the adverse effects on

the residual energy of nodes through choice of the control u. We represent the

penalty associated with terminal time T as f(T ). We make the natural assumption

that f(T ) is increasing in T . We further assume that f(T ) is differentiable (thus

f ′(T ) > 0). Considering a variable terminal time T that is selected to satisfy

(3.2.6) with equality, the system seeks to maximize:

R = −f(T )−
B∑
i=0

ai(Si(T ) + Ii(T )) (3.2.9)

by dynamically regulating the piecewise continuous set of controls u(t) = (us(t),

. . . , uB(t)) subject to the control constraints 0 ≤ ui(t) ≤ 1 for all s ≤ i ≤ B,

0 ≤ t ≤ T and (3.2.7). As in Problem 1, states S(t) and I(t) satisfy state dynam-

ics (3.2.2) and positivity and normalization conditions (3.2.4).
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3.3 Optimal Forwarding Policies

We identify the structure of the optimal forwarding policies in §3.3.1 and prove

them in §3.3.2 and $3.3.3 respectively. Our theorems apply to both the Fixed

Terminal Time and Optimal Stopping Time problem statements.

3.3.1 Structure of the optimal controls

We establish that the optimal dynamic forwarding policies require the nodes to

opportunistically forward the message to any node that they encounter until a

threshold time that depends on their current remaining energy.5 Once the thresh-

old is passed, they cease forwarding the message until the time-to-live (TTL) of

the message. In the language of control theory, we show that, excluding the op-

timal controls related to energy levels for which the fraction of infectives is zero

throughout, all optimal controls are bang-bang with at most one jump from one

to zero. In the excluded cases, optimal controls do not affect the evolution of

states or objective values.

Theorem 5. Suppose the set U∗ of optimal controls is not empty.6 Then for all

5As an infective node transmits, its energy level sinks; the threshold of each infective node

should therefore be measured with regards to the residual level of energy (and not, for example,

the starting level).
6If U∗ is non-empty, the problem is feasible, i.e., there exists at least one control for which the

throughput constraint holds. But, even if the problem is feasible, U∗ may be empty, albeit rarely.
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optimal controls u in U∗, and for all s ≤ i ≤ B such that Ii 6≡ 0, there exists a

ti ∈ [0, T ] such that ui(t) = 1 for 0 < t < ti and ui(t) = 0 for ti < t ≤ T.7 Moreover,

under any optimal control, for all s ≤ i ≤ B, either Ii(t) = 0 for all t ∈ [0, T ] or

Ii(t) > 0 for all t ∈ (0, T ].

Given any optimal control u, we define a set Z(u) such that Z(u) = {i : s ≤

i ≤ B, Ii(t) > 0, ∀t ∈ (0, T ]}. The above theorem implies that the population of the

infectives is zero throughout for any index outside Z(u) (i.e., if i 6∈ Z(u), Ii(t) = 0

for all t ∈ [0, T ]), and we therefore characterize the optimal control only for the

indices that are in Z(u). Also, for each i ∈ Z(u), ti is the threshold time as-

sociated with the optimal control ui. Intuitively, we would expect each optimal

control to be a non-increasing function of time, since if a control is increasing

over an interval, flipping that part of the control in time would result in earlier

propagation of the message and a higher throughput with the same final state

energies. The theorem, however, goes beyond this intuition in that it establishes

For example, there may be an infinite sequence of optimal controls such that the objective values

constitute a bounded increasing sequence of positive real numbers; such a sequence will have a

limit but the limiting value may not be attained by any control.
7Since the optimal controls associated with energy levels for which the population of the

infectives is zero throughout do not influence the evolution of states or the objective values, this

theorem implies that unless U∗ is empty, there exists an optimal control in U∗ that will have the

reverse-step function structure posited in the theorem for all s ≤ i ≤ B. Note that the irrelevance

of optimal controls associated with energy levels with zero population of infectives implies that

the optimal controls are not, in general, unique.
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that optimal controls are at their maximum value up to certain threshold times

and then drop abruptly to zero (Fig. 3.1-(a)). For the fixed terminal time prob-

lem, the optimal controls can therefore be represented as a vector of B − s + 1

threshold times corresponding to different energy levels. This vector can be calcu-

lated through an optimization in the search space of [0, T ]B−s+1. For the optimal

stopping time problem, there is an additional degree of freedom; the stopping

time T itself. Note that T ∈ [0, T0], where T0 satisfies (3.2.6) with equality if all

controls are always zero. This is because no optimal control can have T > T0,

as in that case both the energy cost and the penalty associated with terminal

time will exceed that of the all-zero controls case. Thus, the optimal stopping

time and the thresholds can be calculated through an optimization in the space of

{(T, t) : 0 ≤ T ≤ T0, t ∈ [0, T ]B−s+1}. The one-time calculation of the threshold

levels (and the optimal stopping time as appropriate) at the origin can be done by

estimating the fractions of nodes with each energy level irrespective of their iden-

tities. This data can then be added to the message as a small overhead. Therefore,

optimal message forwarding has the following structure:

Intuitively, it appears that the threshold-times will be non-decreasing functions

of the energy levels, since lower levels of residual energy are penalized more and

the energy consumed in each transmission and reception is the same irrespective

of the energy levels of the nodes. The optimal controls depicted in Fig. 3.1-(a)

suggest the same: t2 < t3 < t4 < t5. We now confirm the above intuition in the
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Algorithm 1 Source Node

1: Given: I0 := (I00, . . . , I0B).

2: Estimate the distribution of energy among nodes.

3: Find the best set of thresholds {ti} (and optimal stopping time T in the opti-

mal stopping time problem).

4: Append the header, which contains the destination, T , and {ti}, to the mes-

sage.

5: Create an initial distribution of messages such that for j = 0, . . . , B, infectives

of energy level j constitute a fraction I0j of the whole population.

case that the terminal-time penalty sequence {ai} satisfies certain properties:

Theorem 6. Assume that the sequence {ai} in (3.2.8) is strictly convex.8 Then, for

any optimal control u, the sequence {ti} for i ∈ Z(u) is non-decreasing in i.

Fig. 3.1-(a) illustrates the threshold times for a strictly convex and decreas-

ing sequence of terminal penalties. The naive intuition provided before Theo-

rem 6 will however mislead us in general — we now present examples that show

when the strict convexity requirement of the terminal-time penalty sequence is

not satisfied, the claim of the theorem may not hold. One sample configura-

tion is when we have a sharp reduction in penalty between two consecutive fi-

nal energy levels, with penalties on either side being close to each other, e.g.,
8A sequence {ai} is strictly convex (resp. strictly concave) if the difference between the penal-

ties associated with consecutive energy levels increases (resp. decreases) with a decrease in energy

levels, i.e., for each 2 ≤ i ≤ B, ai−1 − ai < ai−2 − ai−1 (resp. ai−1 − ai > ai−2 − ai−1).
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Algorithm 2 Infective Nodes

1: On receipt of the message, extract destination, thresholds {ti}, and stopping

time T from the header.

2: Measure own residual energy i.

3: while i ≥ s and t ≤ T do

4: if node n encountered then

5: query its state [low cost].

6: if n = {destination} then

7: if n has not received the message yet then

8: transmit the message.

9: end if

10: exit.

11: else if n = {S with energy j ≥ r} and t < ti then

12: forward message.

13: i← (i− s).

14: end if

15: end if

16: end while
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a0 ≈ a1 ≈ a2 � a3 ≈ a4 ≈ a5 in Fig. 3.1-(b). The motivation for such a setting

could be the case where the system is primarily interested in ensuring that it re-

tains a certain minimum amount of energy (e.g., 3 units in Fig. 3.1-(b)) at the ter-

minal time: energy values above the requisite threshold (e.g., 4, 5 in Fig. 3.1-(b))

acquire insignificant additional rewards and energy values below the threshold

(e.g., 0, 1, 2 in Fig. 3.1-(b)) incur insignificant additional penalties, but the penalty

at the threshold amount is substantially lower than that at the next lowest value.

Fig. 3.1-(b) reveals that Theorem 6 need not hold for such a setting, as nodes

with energy values that are either higher or lower than 3 would be incentivized

to propagate the message (because of the low loss incurred for propagation in

terms of final states), but those with exactly 3 units of energy would be extremely

conservative, as there is a large penalty associated with any further propagation

of the message. Thus, t3 < min(t2, t4, t5). The sequence of terminal-time penalties

in Fig. 3.1-(b) is neither convex nor concave. But, Theorem 6 does not hold for

concave terminal-time penalties either (Table 3.1). Therefore, the convexity of

the terminal-time penalty sequence is integral to the result of Theorem 6.

3.3.2 Proof of Theorem 5

We prove Theorem 5 using tools from classical optimal control theory, specifically

Pontryagin’s Maximum Principle (stated in §3.3.2). We provide the full proof for

the fixed terminal time problem (3.2.8) in §3.3.2, and specify the modifications
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Threshold Times of Controls

Energy Level 4 Energy Level 5

α = 0.5 5.75 1.75

α = 1.5 2.5 2.75

α = 2 2.5 2.75

Table 3.1: An example for non-ordered threshold times of the optimal controls for

concave terminal time penalties in the settings of Theorem 6 for the fixed terminal

time problem. The parameters were exactly the same as those used in Fig. 3.1-

(a), with the difference that ai = (B− i)α, α is varied over the values {0.5, 1.5, 2},

I0 = (0, 0, 0, 0, 0, 0.1) and S0 = (0, 0, 0, 0.3, 0.3, 0.3). For α = 0.5, the terminal

time penalties become concave, and t4 > t5. For α = {1.5, 2}, the terminal time

penalties are strictly convex, and t4 < t5 as Theorem 6 predicts.

for the optimal stopping time problem in §3.3.2.

Pontryagin’s Maximum Principle with Terminal Constraint

We start by stating the problem for a fixed terminal time t1. Let u∗ be a piecewise

continuous control solving:
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maximize
∫ t1

t0

f0(x(t),u(t), t) + S1(x(t1)) (3.3.1)

ẋ(t) = f(x(t),u(t), t), x(t0) = x0, u ∈ U ,

x1
i (t1) = x1

i 1 ≤ i ≤ l,

x1
i (t1) ≥ x1

i l + 1 ≤ i ≤ m,

x1
i (t1) free i = m+ 1 ≤ i ≤ n,

and let x∗(t) be the associated optimal path. Define

H(x(t),u(t),p(t), t) :=

p0f0(x(t),u(t), t) + pT (t)f(x(t),u(t), t) (3.3.2)

to be the Hamiltonian, with p = {pi}ni=1.

Theorem 7. [78, p.182] There exist a constant p0 and a continuous and piecewise

continuously differentiable vector function p(t) = (p1(t), . . . , pn(t)) such that for

all t ∈ [t0, t1],

(p0, p1(t), . . . , pn(t)) 6= ~0, (3.3.3)

H(x∗,u∗,p(t), t) ≥ H(x∗,u,p(t), t) ∀u ∈ U . (3.3.4)

Except at the points of discontinuities of u∗(t), for i = 1, . . . , n: ṗi(t) =

−∂H(x∗,u∗,p(t), t)

∂xi
.

Furthermore, p0 = 0 or p0 = 1, and, finally, the following transversality condi-
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tions are satisfied,

pi(t1) no condition 1 ≤ i ≤ l,

pi(t1)− p0
∂S1(x∗(t1))

∂xi
≥ 0

(= 0 if x∗i (t1) > x1
i ) l + 1 ≤ i ≤ m,

pi(t1)− p0
∂S1(x∗(t1))

∂xi
= 0 m+ 1 ≤ i ≤ n. (3.3.5)

Now, we state the analogous theorem when t1 is not fixed in (3.3.1), and

S1(x(t1)) is replaced with S1(x(t1), t1), allowing explicit dependence of the cost

on the terminal time:

Theorem 8. [78, p.183] Let (x∗(t),u∗(t), t∗1) be an admissible triple solving (3.3.1)

(with S1(x(t1), t1)) with t1 ∈ [T1, T2], t0 ≤ T1 < T2, T1, T2 fixed. Then the conclu-

sions in Theorem 7 hold, with S1(x∗(t1), t1) replacing S1(x∗(t1)). In addition:

H(x∗,u∗,p, t∗1) + p0
∂S1(x∗(t1), t1)

∂t



≤ 0 if t∗1 = T1

= 0 if t∗1 ∈ (T1, T2)

≥ 0 if t∗1 = T2

. (3.3.6)

Fixed Terminal Time Problem

For every control ũ, we define τi(I(0),S(0), ũ) ∈ [0, T ] as follows: If Ii(0) > 0, and

therefore Ii(t) > 0 for all t > 0 due to Theorem 4, we define τi(I(0),S(0), ũ) to

be 0. Else, τi(I(0),S(0), ũ) is the maximum t for which Ii(t) = 0. It follows from
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Theorem 4 that Ii(t) = 0 for all t ≤ τi(I(0),S(0), ũ) and all i such that Ii(0) = 0,

and Ii(t) > 0 for all τi(I(0),S(0), ũ) < t ≤ T . We begin with the hypothesis that

there exists at least one optimal control, say ũ ∈ U∗, and construct a control u that

chooses ui(t) := 0 for t ≤ τi(I(0),S(0), ũ) and ui(t) := ũi(t) for t > τi(I(0),S(0), ũ).

Clearly, the states S(t), I(t) corresponding to ũ also constitute the state functions

for u, as the state equations only differ at t = 0, a set of measure zero. Thus, u is

also an optimal control, and τi(I(0),S(0), ũ) = τi(I(0),S(0),u) for each i. Hence-

forth, for notational convenience, we will refer to τi(I(0),S(0), ũ), τi(I(0),S(0),u)

as τi. Note that the definition of this control completely specifies the values of

each ui in [0, τi]. We will prove the following lemmas.

Lemma 11. For each s ≤ i ≤ B, if τi < T there exists a ti ∈ [τi, T ] such that

ui(t) = 1 for τi < t < ti and ui(t) = 0 for t > ti.

Lemma 12. For all s ≤ i ≤ B, τi ∈ {0, T}.

If τi = 0 for some i ≥ s, ũi(t) = ui(t), and Ii(t) > 0, for all t ∈ (0, T ]. If τi = T ,

Ii(t) = 0 for all t ∈ [0, T ]. So the theorem follows from these lemmas, which we

prove next.

Proof of Lemma 11 The lemma clearly holds if u ≡ 0 (with ti = τi for all i ≥ s);

we therefore consider the case that u 6≡ 0.9 We proceed in the following steps:

1) Applying standard results from optimal control theory, we show that each

optimal control ui assumes the maximum value (1) when a switching function
9Note that u ≡ 0 in (τi, T ] does not imply τi = T .
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(denoted ϕi) is positive and the minimum value (0) when the switching function

is negative. However, standard optimal control results do not specify the nature

of the optimal control when the corresponding switching function is at 0 or the

durations for which the switching function is positive, zero, or negative. The next

step answers these questions using specifics of the problem.

2) The switching functions turn out to be continuous functions of time. We

want to show that for each i ≥ s, there exists ti ∈ [τi, T ] such that the relevant

switching function (ϕi) is positive for t ∈ (τi, ti), negative for t ∈ (ti, T ], and equal

to zero at ti only if ti ∈ (τi, T ). Lemma 11 now follows from the relation between

the optimal control and the switching function obtained in the first step.10

Step 1 Consider the system in (3.2.2) and the objective function in (3.2.8). To

make the analysis more tractable, we introduce the following new state variable:

Ė :=
∑B

i=s Ii, with E(0) := 0.

Therefore, our throughput constraint (3.2.6) simply becomes: E(T ) ≥ − ln(1−

p)/β0.

To facilitate an appeal to Theorem 7, we take xT = (E,ST , IT ), u = u, p0 = λ̄0,

p = (λE,λ,ρ), l = 0, m = 1, x1
1 = − ln(1 − p)/β0, f0 ≡ 0, t0 = 0, t1 = T , and

S1(x∗(t1)) = R, the optimization objective. In this case, {fi}2N+3
i=1 are given by the

Ė equation above and by (3.2.2).

10We still do not know the value of ui at time ti at which the corresponding switching function

ϕi may be zero. This is not a serious deficiency as the value of the optimal control in a measure

zero set does not affect state evolution.
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Using these replacements, the Hamiltonian (3.3.2) becomes

H =λE

B∑
i=s

Ii −
B∑
i=r

[βλiSi

B∑
j=s

ujIj] +
B∑
i=r

[βρi−rSi

B∑
j=s

ujIj]

+
B∑
i=s

[βuiρi−sIi

B∑
j=r

Sj]−
B∑
i=s

[βuiρiIi

B∑
j=r

Sj] (3.3.7)

where, at the points of continuity of the controls, the absolutely continuous co-

state functions λi, ρi and λE satisfy

λ̇i = −∂H
∂Si

= βλi

B∑
j=s

ujIj − βρi−r
B∑
j=s

ujIj

− β
B∑
j=s

ujρj−sIj + β
B∑
j=s

ujρjIj (r ≤ i ≤ B)

λ̇i = −∂H
∂Si

= 0 (i < r)

ρ̇i = −∂H
∂Ii

= βui

B∑
j=r

λjSj + βuiρi

B∑
j=r

Sj

− λE − βui
B∑
j=r

ρj−rSj − βuiρi−s
B∑
j=r

Sj (s ≤ i ≤ B)

ρ̇i = −∂H
∂Ii

= 0 (i < s)

λ̇E = −∂H
∂E

= 0 (3.3.8)

with the final constraints:

λi(T ) = −λ̄0ai, ρi(T ) = −λ̄0ai, ∀i = 0, . . . , B

λE(T ) ≥ 0, λE(T ) [E(T ) + ln(1− p)/β0] = 0,

(3.3.9)

and λ̄0 ∈ {0, 1}.
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We formally define the switching functions ϕi as follows:

ϕi :=
∂H
∂ui

= βIi

[
B∑
j=r

(−λj + ρj−r + ρi−s − ρi)Sj

]
,

(s ≤ i ≤ B). (3.3.10)

Note that ϕi(t) is continuous for s ≤ i ≤ B. From (3.3.7):

H = λE

B∑
i=s

Ii +
B∑
i=s

ϕiui. (3.3.11)

From Theorem 7, maximizing the Hamiltonian (3.3.4) yields

ui(t) =


1 for ϕi(t) > 0

0 for ϕi(t) < 0.

(3.3.12)

Furthermore, ϕi(t)ui(t) ≥ 0 for each s ≤ i ≤ B and all t ∈ [0, T ]; otherwise the

value of the Hamiltonian can be increased at t by choosing ui(t) = 0.

Equations (3.3.10, 3.3.12) reveal an accessible intuition about the logic behind

the decision process: at any given time, by choosing a non-zero ui, infectives with

energy level i ≥ s forward the message to susceptibles of any energy level j ≥ r

and turn into infectives with i− s energy units, with the susceptibles turning into

infectives of energy level j − r. The optimal control determines whether such

an action is beneficial, taking into account the advantages (positive terms) and

disadvantages (negative terms).

Step 2 To establish this claim, we prove the following lemma:
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Lemma 13. Let u 6≡ 0. For all i ≥ s, if ϕi(t′) = 0 for t′ ∈ (τi, T ), then ϕi(t) < 0 for

all t > t′. Also, if ϕi(T ) = 0, ϕi(t) > 0 for t ∈ (τi, T ).

For i ≥ s, we show that for t ∈ (τi, T ) at which ϕi(t) = 0, ϕ̇i(t+) < 0 and

ϕ̇i(t
−) < 0.11 Furthermore, we show that if ϕi(T ) = 0, ϕ̇i(T−) < 0. We state and

prove a property of real-valued functions which we will use in proving Lemma 13.

Property 3. If g(x) is a continuous and piecewise differentiable function over [a, b]

such that g(a) = g(b) while g(x) 6= g(a) for all x in (a, b), dg
dx

(a+) and dg
dx

(b−) cannot

be negative simultaneously.

Proof. We denote the value of g(a) and g(b) by L. If dg
dx

(a+) < 0, there exists ε > 0

such that g(x) < L for all x ∈ (a, a+ ε), and if dg
dx

(b−) < 0, there exists α > 0 such

that g(x) > L for all x ∈ (b−α, b). Now g(a + ε
2
) < L and g(b− α

2
) > L; thus, due

to the continuity of g(t), the intermediate value theorem states that there must

exist a y ∈ (a + ε
2
, b − α

2
) such that g(y) = L. This contradicts g(x) 6= g(a) for

x ∈ (a, b). The property follows.

If ϕi(t) = 0 and ϕ̇i(t+) < 0 for t < T , we have:

ϕ(t+ ∆t) = ϕi(t) +

∫ t+∆t

t

ϕ̇i(x) dx =

∫ t+∆t

t

ϕ̇i(x) dx,

which proves the existence of an interval (t, t + ε] over which ϕi is negative. If

t + ε ≥ T , then the claim holds, otherwise there must exist a t′, t < t′ ≤ T such

that ϕi(t′) = 0 and ϕ(t̄) 6= 0 for t < t̄ < t′ (from the continuity of ϕi(t)). Note that

11x(a+) = limt↓a x(t), x(a−) = limt↑a x(t).
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because ϕi(t′) = 0, we have ϕ̇i(t′−) < 0. This contradicts Property 3, completing

the proof of the first part of the lemma. For the second part, note that if ϕi(T ) = 0

and ϕ̇i(t
−) < 0, there exists an interval (T − ε, T ) over which ϕi is positive. If

T − ε ≤ τi, then the claim holds, otherwise there must exist a t′ ∈ (τi, T ) such that

ϕi(t
′) = 0 and ϕ(t̄) 6= 0 for t′ < t̄ < T (from the continuity of ϕi(t)). Note that

because ϕi(t′) = 0, as we show we have ϕ̇i(t′+) < 0. This contradicts Property 3,

completing the proof of the second part of the lemma.

We now seek to upper bound ϕ̇i(t+) and ϕ̇i(t−) for t ∈ (τi, T ) at which ϕi(t) =

0, and subsequently prove that the upper bound is negative. For t = T , we only

consider the left hand limit of the derivative. Keeping in mind that Ii(t) > 0 for

t > τi, at any t > τi at which u is continuous,

ϕ̇i =
İiϕi
Ii
− ϕiβ

B∑
j=s

ujIj + βIi

B∑
j=r

(ρ̇j−r − λ̇j + ρ̇i−s − ρ̇i)Sj.

From the expressions for the time derivative of the co-states in (3.3.8) com-

bined with the expression for the switching functions in (3.3.10), and using

(from (3.3.7)) that
∑B

j=r−λ̇j(t)Sj(t) = H(t)− λE(t)
∑B

j=s Ij(t), we can write:

ϕ̇i = βIi

(
H(t)− λE

B∑
j=s

Ij − λE
B∑
j=r

Sj

)

+ İi
ϕi
Ii
− ϕiβ

B∑
j=s

ujIj + ϕiuiβ
B∑
j=r

Sj

− β2Ii

B∑
j=r

Sjuj−r(
B∑
k=r

[−λk + ρk−r + ρj−r−s − ρj−r]Sk)

− β2Ii(
B∑
j=r

Sj)ui−s(
B∑
k=r

[−λk + ρk−r + ρi−2s − ρi−s]Sk).
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Now, consider a t ∈ (τi, T ) at which ϕi(t) = 0. We show that the right and

left-hand limits of all terms in the second line are zero at t:

From the continuity of Ii and since t > τi, Ii(t) > 0. Thus Ii(t′) is positive

and bounded away from 0 for t′ in a neighborhood of t. Furthermore, Lemma 10

shows that |İi(t+)| and |İi(t−)| exist and are bounded for all t ∈ (0, T ). Thus, from

the continuity of ϕi at t and since ϕi(t) = 0, İi(t+)ϕi(t
+)

Ii(t+)
and İi(t−)ϕi(t

−)
Ii(t−)

equal zero.

Due to Theorem 4, since the states and controls are bounded and since ϕi(t) = 0,

the right hand and left hand limits at t of the second and third terms in the second

line are also zero. We now argue that the right hand and left hand limits of lines

3 and 4 are non-positive. Starting with line 3, this is because for j ≥ r,

Ij−r

(
uj−r

B∑
k=r

[ρk−r − λk + ρj−r−s − ρj−r]Sk

)
= ϕj−ruj−r.

The right hand side is non-negative at each t, as argued after (3.3.12). For t >

τj−r, Ij−r(t) > 0. Thus for all such t,

(uj−r

B∑
k=r

[ρk−r − λk + ρj−r−s − ρj−r]Sk) ≥ 0. (3.3.13)

For 0 < t ≤ τj−r, uj−r(t) = 0. Thus, at all t > 0, (3.3.13) holds.

Now, since I, S are continuous and u has right and left hand limits at each

t, the right and left hand limits of the LHS above exist; such limits are clearly

non-negative at each t. The same arguments apply for line 4 as well (except that

i− s must be considered instead of j − r, with i ≥ s). It follows that at any t > τi
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at which ϕi(t) = 0,

ϕ̇i(t
+) ≤βIi(t+)(H(t+)− λE[

B∑
j=s

Ij(t
+) +

B∑
j=r

Sj(t
+)]),

ϕ̇i(t
−) ≤βIi(t−)(H(t−)− λE[

B∑
j=s

Ij(t
−) +

B∑
j=r

Sj(t
−)].

Using the same arguments it may also be shown that the latter inequality holds at

t = T if ϕi(T ) = 0.

The lemma now follows once we prove:

Lemma 14. If u 6≡ 0, then for all t ∈ (0, T ), we have:

H(t−)− λE(t−)

[
B∑
j=s

Ij(t
−)−

B∑
j=r

Sj(t
−)

]
< 0. (3.3.14)

H(t+)− λE(t+)

[
B∑
j=s

Ij(t
+)−

B∑
j=r

Sj(t
+)

]
< 0. (3.3.15)

Furthermore, (3.3.14) applies for t = T .

Proof. We only prove (3.3.14); the proof for (3.3.15) is exactly the same and

therefore omitted for brevity. We first establish:

Lemma 15. If λ̄0 = 1, for each j ≥ s there exists a positive-length interval contain-

ing T in which uj equals 0. In addition, irrespective of the value of λ̄0 and for all

t,

H(t−) = H(T ) = λE(T )
B∑
k=s

Ik(T ). (3.3.16)

Proof. Since the system is autonomous12, the Hamiltonian is continuous in time
12An autonomous optimal control problem is one whose dynamic differential equations and

objective function do not explicitly vary with time t.
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and H(t) = H(T ) for all t ∈ [0, T ] [78, p. 86 & p. 197]. We separately consider:

λ̄0 = 1 and 0.

1) λ̄0 = 1. The first part of the lemma clearly holds for j ≥ s if τj = T , since

then uj(t) = 0 for all t ∈ [0, T ]. We now seek to establish the same in the case that

τj < T , and therefore Ij(T ) > 0. At t = T , for s ≤ j ≤ B we have:

ϕj(T ) = βIj(T )λ̄0

B∑
k=r

(ak − ak−r − aj−s + aj)Sk(T ). (3.3.17)

Recall that ak is decreasing in k. Hence, since S(0) 6= 0, and so for at least one

k ≥ r, Sk(T ) > 0 (from Theorem 4), for all j ≥ s we have ϕj(T ) < 0. 13 Since ϕj

is a continuous function, ϕj is negative in an interval of positive length including

T . The first part of the lemma follows from (3.3.12).

Now, since uk(T ) = 0 for all k ≥ s from the first part of this lemma, (3.3.7)

simplifies to (3.3.16).

2) λ̄0 = 0. Replacing λ̄0 = 0 in (3.3.17), it follows that ϕj(T ) = 0 for all

j ≥ s; the expression for the Hamiltonian in (3.3.11) would thus lead again to

(3.3.16).

From (3.3.8), we have λ̇E = 0 , except at the points of discontinuity of u – a

countable set – leading to λE(t) = λE(T ) for all t ∈ [0, T ] due to the continuity of

the co-states. Hence, from Lemma 15, the LHS in (3.3.14) becomes

λE(T )

(
B∑
j=s

Ij(T )−
B∑
j=r

Sj(t
−)−

B∑
j=s

Ij(t
−)

)
. (3.3.18)

13Each term is negative as ak−r > ak, aj−s > aj for k ≥ r and j ≥ s.
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The lemma follows from two subsequently established facts:

(A) λE(T ) > 0,14 and

(B)
∑B

j=s Ij(T )−
∑B

j=r Sj(t
−)−

∑B
j=s Ij(t

−) < 0.

In order to establish (A), we rule out λE(T ) = 0; it must therefore be positive

by (3.3.9). We again consider two cases: (i) λ̄0 = 0 and (ii) λ̄0 = 1. (i) If λ̄0 = 0,

λE(T ) = 0 would lead to (λ̄0, ~λ(T ), ~ρ(T ), λE(T )) = ~0, which contradicts (3.3.3).

(ii) Otherwise (i.e., for λ̄0 = 1), let λE(T ) = 0. Then, λE(t) = 0 for all t ∈ [0, T ].

Thus, from (3.3.11), H(t) =
∑B

j=r ϕj(t)uj(t). Furthermore, since our system is

autonomous and from Lemma 15, H(t) = H(T ) = 0 for all t ∈ [0, T ]. But, as

argued after (3.3.12), ϕj(t)uj(t) ≥ 0, for all t ∈ [0, T ] and all j ≥ s. Hence, we

have ϕj(t)uj(t) = 0 for all such t and j. From Lemma 15 and since u 6≡ 0, there

exists t′ ∈ (0, T ) such that uj(t) = 0 for all t ∈ (t′, T ] and all j ≥ s and for some

k ≥ s, there exists a non-zero value of uk in every left neighborhood of t′. At any

t ∈ (t′, T ] at which u is continuous and from equations (3.3.8), ρ̇j(t) = λ̇j(t) = 0

for 0 ≤ j ≤ B. Since u may be discontinuous only at a countable number of points

and due to the continuity of the co-states, ρj(t′) = ρj(T ) = λj(T ) = λj(t
′) = −aj

for all j ≥ s.

For j ≥ r and k ≥ s, define Ωj,k(t) := λj(t)−ρj−r(t)−ρk−s(t)+ρk(t). For all such

j, k, we know that Ωj,k(t
′) = (−aj +aj−r+ak−s−ak) > 0. Hence, due to continuity

14In this part we show that λE(T ) > 0 whenever u 6≡ 0. This combined with (3.3.9) leads

to E(T ) = −ln(1 − p)/β0. Therefore, the delivery probability of the optimal control at the given

terminal time T equals the mandated probability of delivery except possibly when u ≡ 0.

130



of the co-states, there exists ε > 0 such that for all t ∈ (t′−ε, t′) and all j, k, we have

Ωj,k(t) > 0. But for all t, we had: H(t) = −
∑B

j=r

[
β
∑B

k=s Ωj,k(t)uk(t)Ik(t)

]
Sj(t) =

−
∑

r≤j≤B:Sj(0)>0

[
β
∑B

k=s Ωj,k(t)uk(t)Ik(t)

]
Sj(t).

The last equality follows since for each j ≥ 0, Sj(t) = 0 at each t ∈ (0, T ] if

Sj(0) = 0 (Theorem 4). Since S(0) 6= 0 there exists k ≥ r such that Sk(0) > 0. We

examine a point t̄ ∈ (t′ − ε, t′) for which ul(t̄) > 0 for some l ≥ s. Since H(t̄) = 0,

and every variable in the above summation is non-negative, Ωk,l(t̄)ul(t̄)Il(t̄)Sk(t̄) =

0. Since ul(t̄) > 0, Il(t̄) > 0 by definition of u, and Ωk,l(t̄) > 0, therefore Sk(t̄) = 0.

This contradicts Sk(0) > 0 (Theorem 4). Thus, (A) holds.

We now seek to establish (B). The proof follows from the key insight that

it is not possible to convert all of the susceptibles to infectives in a finite time

interval, and hence at the terminal time the total fraction of infectives with suf-

ficient energy reserves for transmitting the message is less than the sum fraction

of susceptibles and infectives with energy reserves greater than r, s respectively

at any time before T . To prove this, note that for all t ∈ [0, T ], from (3.2.2) we

have:
∑B

j=s İj +
∑B

j=r Ṡj = −β(
∑s+r−1

j=r Sj
∑B

k=s ukIk +
∑2s−1

j=s ujIj
∑B

k=r Sk) ≤ 0.

Thus (
∑B

j=s Ij +
∑B

j=r Sj) is a decreasing function of time, leading to
∑B

j=s Ij(T )−∑B
j=s Ij(t

−)−
∑B

j=r Sj(t
−) ≤ −

∑B
j=r Sj(T ). Now, since there exists k ≥ r such that

Sk(0) > 0, there will exist k ≥ r such that Sk(T ) > 0 (Theorem 4). Also, from the

same theorem, we have Sm(T ) ≥ 0 for all m. Thus,
∑B

j=r Sj(T ) > 0. The result

follows.
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Proof of Lemma 12 We start by creating another control ū from u such that for

every i ≥ s, for every t ≤ τi, ūi(t) := 1, and for every t > τi, ūi(t) := ui(t). We

prove by contradiction that τi(I(0),S(0), ū) ∈ {0, T} for each i ≥ s. Since ūi 6≡ ui

only in [0, τi] and Ii(t) = 0 for t ∈ (0, τi] when u is used, the state equations can

only differ at a solitary point t = 0, and therefore both controls result in the same

state evolutions. Thus, for each i ≥ s, τi(I(0),S(0), ū) = τi(I(0),S(0),u), and

τi(I(0),S(0), ū) may be denoted as τi as well. The lemma therefore follows.

For the contradiction argument, assume that the control is ū and that τi ∈

(0, T ) for some i ≥ s. Our proof relies on the fact that if ūi(t′) = 0 at some

t′ ∈ (0, T ), then ūi(t) = 0 for t > t′, which follows from Lemma 11 and the

definition of ū. We break the proof into three parts:

Case 1: i > B − r

Here, for t ∈ [0, T ] (3.2.2c) leads to: Ii(t) = Ii(0)e−β
∫ t
0 ūi(t

′′)
∑B
j=r Sj(t

′′) dt′′ . Since

Ii(t) = 0 for t ∈ [0, τi], Ii(0) = 0. Thus, Ii(t) = 0 for all t ∈ [0, T ]. So τi = T which

contradicts our assumption that τi ∈ (0, T ).

Case 2: B − s < i ≤ B − r

For t ∈ [0, τi], since Ii(t) = 0 for t ≤ τi, (3.2.2d) becomes:

İi = βSi+r

B∑
j=s

ūjIj = 0

in this interval. Now, since all elements in βSi+r
∑B

j=s ūjIj are non-negative, we

must either have (i) Si+r(t) = 0 for some t ∈ [0, τi], or (ii) for all s ≤ k ≤ B,

ūk(t)Ik(t) = 0 for all t ∈ [0, τi].
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(i) In the first case, from two appeals to Theorem 4, Si+r(0) = 0 and therefore

Si+r(t) = 0 for all t ∈ [0, T ]. So in [τi, T ], (3.2.2d) becomes İi = −βūiIi
∑B

j=r Sj,

leading to

Ii(t) = Ii(τi)e
−β

∫ t
τi
ūi(t
′′)

∑B
j=r Sj(t

′′) dt′′
. (3.3.19)

Since Ii(τi) = 0, Ii(t) = 0 for all t ∈ [τi, T ]. Therefore τi = T which contradicts our

assumption that τi ∈ (0, T ).

(ii) In this case, from (3.2.2a) to (3.2.2f), it follows that for all k ≥ 0, İk = 0

and Ṡk = 0 in [0, τi], leading to I(t) = I(0) and S(t) = S(0) for t ∈ [0, τi]. Also, since

Ik(t) > 0 for all t > τk, we know that for all k ≥ s such that τk < τi, Ik(t) > 0 for

t ∈ (τk, τi] and therefore ūk(t) = 0 for t ∈ (τk, τi]. This leads to ūk(t) = 0 for t ≥ τi

(since Lemma 11 and the definition of ū show that if ūk(t′) = 0 at some t′ ∈ (τk, T ),

then ūk(t) = 0 for t > t′). Especially notice that for all k ≥ s such that Ik(0) > 0,

τk = 0 and this would apply. Thus, for each k, either Ik(0) = 0 or ūk(t) = 0

for all t ≥ τi, and hence Ik(0)ūk(t) = 0 for all t ≥ τi. Looking at the interval

[τi, T ], we prove that S ≡ S(0) and I ≡ I(0) constitute solutions to the system

of differential equations (3.2.2) in this interval. Replacing these functions and ū

into the RHS of equations (3.2.2), all terms will be zero (since Ik(0)ūk(t) = 0 for

all k ≥ s, t ≥ τi), leading to İk = 0 and Ṡk = 0 for all k ≥ s, which in turn leads

to (S(t), I(t)) = (S(τi), I(τi)) = (S(0), I(0)) for all t ∈ [τi, T ]. Thus, S ≡ S(0) and

I ≡ I(0) are the unique solutions to the system of differential equations (3.2.2) in

[0, T ], wherein uniqueness follows from Theorem 4. So τk ∈ {0, T} for these state
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solutions; a contradiction.

Case 3: s ≤ i ≤ B − s

We prove this case using induction on i. In the induction case, we will consider

i such that τl ∈ {0, T} for all l such that i < l ≤ B. From the arguments for the

previous cases, we know that i = B − s satisfies the above criterion and therefore

constitutes our base case. We only present the proof for the induction case as that

for the base case is identical. For t ∈ [0, τi], since Ii(t) = 0, (3.2.2e) becomes

İi = βSi+r
∑B

j=s ūjIj + βūi+sIi+s
∑B

j=r Sj = 0. Now, since both of these terms are

non-negative, each must be equal to zero in [0, τi]. As there exists k ≥ r such that

Sk(0) > 0, there will exist k ≥ r such that Sk(t) > 0 for all t ∈ [0, τi] (due to

Theorem 4). Also from the same theorem, we have Sm(t) ≥ 0 for all m. Thus,∑B
j=r Sj(t) > 0 for all t ∈ [0, τi], and hence the second term is zero contingent on

ūi+s(t)Ii+s(t) = 0 for all t in this interval. So we must either have (I) Si+r(t) = 0

for some t and ūi+s(t)Ii+s(t) = 0 for all t in this interval, or (II) for all s ≤ k ≤ B,

ūk(t)Ik(t) = 0 over this interval. Note that the condition on (II) is exactly the

same as in (ii) of Case 2, and following the same argument it may be shown that

τk ∈ {0, T} for each k ≥ s in this case. So we focus on (I):

In (I), again with two appeals to Theorem 4, we see that Si+r(0) = 0 and

therefore Si+r(t) = 0 for all t ∈ [0, T ]. Thus, for all t ∈ [0, T ], İi = −βūiIi
∑B

j=r Sj+

βūi+sIi+s
∑B

j=r Sj. If τi+s < τi, Ii+s(t) > 0 for all t ∈ (τi+s, τi] and therefore

ūi+s(t) = 0 for t ∈ (τi+s, τi], leading to ūi+s(t) = 0 for t ≥ τi. So again, we have
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(3.3.19) and therefore τi = T , a contradiction. If τi+s > τi, on the other hand, for

t ∈ [τi, τi+s], (3.2.2e) becomes İi = −βūiIi
∑B

j=r Sj, again leading to (3.3.19) and

thus Ii(t) = 0 for all t ∈ [τi, τi+s], a contradiction. Thus, we are left with τi = τi+s.

But, since i < i + s ≤ B, τi+s ∈ {0, T}. Thus, τi ∈ {0, T}, which contradicts our

assumption that 0 < τi < T. This completes our proof.

Optimal Stopping Time Problem

Using Theorem 8 (with S1(x∗(t1), t1) = R), the proof differs from the fixed termi-

nal time case only in the arguments used to establish λ̄0 = 1 and λE > 0 in the

proof of Lemma 14 in Step 2. Note that we need separate arguments since the

problem is no longer autonomous. Equation (3.3.3) along with λ̄0 ≥ 0 leads to

λ̄0 = 1, because λ̄0 = 0 would imply:

(i) λi(T ) = ρi(T ) = 0, ∀i = 0, . . . , B,

(ii) H(T ) = λE(T )
∑B

i=s Ii(T ) = λ̄0f
′(T ) = 0. The first equality in (ii) comes from

replacing λi(T ) = ρi(T ) = 0 for all i into (3.3.7), and the second from (3.3.6).

Now, there exists a j ≥ s such that Ij(0) > 0, and due to Theorem 4, Ij(T ) > 0,

and Im(T ) ≥ 0 for all m. Thus,
∑B

i=s Ii(T ) > 0, leading to λE(T ) = 0. This,

combined with λ̄0 = 0 and (i), contradicts (3.3.3) at t = T .

Thus, henceforth we consider λ̄0 = 1. As in Lemma 15, it can be shown that

ui(T ) = 0 for all i ≥ s. So we again have

H(T ) = λE(T )
B∑
i=s

Ii(T ),
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and, from (3.3.6), λ̄0f
′(T ) = λE(T )

∑B
i=s Ii(T ). Since f ′(T ) > 0 and

∑B
i=s Ii(T ) >

0, λE(T ) > 0. The rest of the proof is identical to that for the fixed terminal time

case.

3.3.3 Proof of Theorem 6

We present the proof without explicitly mentioning which version of the optimal

control problem (fixed terminal time or optimal stopping time) we are considering

since the proof is identical. We will use Lemma 13, (3.3.10), (3.3.12), and the

values of λi(T ), ρi(T ) from (3.3.9) which hold for both versions.

We will prove this theorem for an optimal control u such that ui ≡ 0 for all

i 6∈ Z(u). It is sufficient to consider only such optimal controls because for any

optimal control ũ we can construct a control u such that ui(t) := 0 for i 6∈ Z(ũ)

and ui := ũi for i ∈ Z(ũ). Since u leads to the same state evolutions as ũ, u

is optimal, Z(ũ) = Z(u), and both controls have identical threshold times for

i ∈ Z(ũ) = Z(u). The theorem therefore follows for ũ if it is proven for u.

The result clearly holds if u ≡ 0 as then ti = tj = 0 for all i, j ∈ Z(u). We

therefore assume that u 6≡ 0. It suffices to show that if ϕi(t) = 0 for some t > 0

and for i ∈ Z(u), we have ϕk(t) ≤ 0 for any k < i where we have k ∈ Z(u).

From the definition of Z(u), τi = τk = 0. Then, from Lemma 13 and (3.3.12), the

threshold time for uk will precede that of ui.

To prove the above, we examine two cases: (1) λ̄0 = 0 and (2) λ̄0 = 1. In case
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(1), ρi(T ) = λi(T ) = 0 for all i, leading to ϕi(T ) = 0 for all i ≥ s from (3.3.10).

From Lemma 13, this means that ϕi(t) > 0 for all 0 < t < T and all i ∈ Z(u) (note

that τi = 0 if i ∈ Z(u)). Therefore, from (3.3.12), ui(t) = 1 for all t ∈ (0, T ); thus

ti = T for all i ∈ Z(u). Thus, henceforth we focus on the case where λ̄0 = 1.

Consider an i ∈ Z(u) and a time σi > 0 such that ϕi(σi) = 0. From (3.3.10)

we have: ϕi(σi) = βIi

(∑B
j=r (−λj + ρj−r + ρi−s − ρi)Sj

) ∣∣∣∣
t=σi

= 0. Note that

Ii(σi) > 0 (since i ∈ Z(u), σi > 0); thus, at t = σi,
∑B

j=r (−λj + ρj−r)Sj =

−
∑B

j=r (ρi−s − ρi)Sj. Using the above and (3.3.10), it turns out that for all k ∈

Z(u), ϕk(σi) = βIkψi,k(σi)
∑B

j=r Sj, where ψi,k, for s ≤ k < i, is defined as:

ψi,k(σi) := −ρi−s + ρi + ρk−s− ρk. We know that
∑B

j=r Sj(σi) ≥ 0, Ik(σi) > 0 (from

Theorem 4). The theorem now follows from the following lemma:

Lemma 16. For any k < i such that i, k ∈ Z(u) and for σi > 0 such that ϕi(σi) = 0,

we have ψi,k(σi) ≤ 0.

Proof. At t = T , following (3.3.9), we have: ψi,k(T ) = −ρi−s(T )+ρi(T )+ρk−s(T )−

ρk(T ) = [ai−s − ai − (ak−s − ak)], which due to the properties assumed for ai (ai

decreasing and strictly convex in i), yields ψi,k(T ) < 0. This also holds on a

sub-interval of nonzero length that extends to t = T , owing to the continuity of

ψi,k. We now prove the lemma by contradiction: going back in time from t = T

towards t = σi, suppose a ψi,k becomes non-negative at time σ̄ > σi for some
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k < i, k ∈ Z(u). That is, for at least one such k we have:

(−ρi−s + ρi + ρl−s − ρl) < 0

∀l < i, l ∈ Z(u) , ∀t σi < σ̄ < t ≤ T ; (3.3.20)

and at t = σ̄,
(−ρi−s + ρi + ρk−s − ρk) = 0

(−ρi−s + ρi + ρl−s − ρl) ≤ 0,∀ l < i, l ∈ Z(u).

(3.3.21)

We show that the time derivative of ψi,k is non-negative over the points of con-

tinuity of the controls in the interval [σ̄, T ]. Note that this, plus the continuity of

ψi,k, leads to a contradiction with the existence of σ̄ and hence proves the lemma,

since: ψi,k(σ̄) = ψi,k(T ) −
∫ T
t=σ̄

ψ̇i,k(ν) dν ≤ ψi,k(T ) < 0. We now investigate ψ̇i,k

over the points of continuity of the controls in [σ̄, T ].15 For s ≤ k < i < 2s such

that k ∈ Z(u):

ψ̇i,k =− ϕiui
Ii

+
ϕkuk
Ik

, (3.3.22)

and for s ≤ k < 2s ≤ i such that k ∈ Z(u) it follows that:

ψ̇i,k =βui−s(
B∑

m=r

[−λm + ρm−r + ρi−2s − ρi−s]Sm)

+ λE −
ϕiui
Ii

+
ϕkuk
Ik

. (3.3.23)

The RHS of (3.3.22-3.3.23) is non-negative because:

15Note that since i, k ∈ Z(u), Ii(t) > 0 and Ik(t) > 0 for all t > 0.
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(A)
ϕkuk
Ik

is non-negative due to (3.3.12) for all k ≥ s,

(B) ui−s(
∑B

m=r [−λm + ρm−r + ρi−2s − ρi−s]Sm) is non-negative for i ≥ 2s. To

see this, note that for i such that Ii−s(t) > 0 for t > 0 this term is equal

to
ϕi−sui−s
Ii−s

which is non-negative, again as imposed by the optimizations

in (3.3.12); else (i− s) 6∈ Z(u) and ui−s ≡ 0;

(C) ϕi(t)ui(t) = 0 for t ≥ σi. To see this note that ϕi(σi) = 0. For t > σi,

from Lemma 13, we have ϕi(t) < 0, which together with (3.3.12) leads to

ui(t) = 0,

(D) λE = λE(T ) > 0, as established after (3.3.18) for the fixed terminal time

problem and in §3.3.2 for the optimal stopping time problem.

For i > k ≥ 2s we have:

ψ̇i,k = βui−s(
B∑

m=r

[−λm + ρm−r + ρi−2s − ρi−s]Sm)

− βuk−s(
B∑

m=r

[−λm + ρm−r + ρk−2s − ρk−s]Sm)

− ϕiui
Ii

+
ϕkuk
Ik

≥ −βuk−s(
B∑

m=r

[−λm + ρm−r + ρk−2s − ρk−s]Sm). (3.3.24)

The above inequality follows from (A), (B), (C) above. Now we show that the

RHS in the last line is zero over the interval of [σ̄, T ], completing the argument. If

k − s 6∈ Z(u), then uk−s ≡ 0. Else, Ik−s(t) > 0 for all t > 0, and the RHS equals
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ϕk−suk−s
Ik−s

. We now show that ϕk−s(t) ≤ 0 for all t ∈ [σ̄, T ]; thus (3.3.12) leads to

ϕk−s(t)uk−s(t) = 0, for all t ∈ [σ̄, T ]. The result follows.

From (3.3.10), we have:
ϕi = βIi

(∑B
j=r (−λj + ρj−r + ρi−s − ρi)Sj

)
ϕk−s = βIk−s

(∑B
j=r (−λj + ρj−r + ρk−2s − ρk−s)Sj

)
Now, since Ii(t) > 0 for t > 0, ϕi(t) ≤ 0 leads to:

B∑
j=r

(−λj + ρj−r + ρi−s − ρi)Sj ≤ 0.

From (3.3.20, 3.3.21) and for k′ = k− s < i, we have ρk−2s−ρk−s ≤ ρi−s−ρi over

the interval of [σ̄, T ]. Hence we now have:
∑B

j=r (−λj + ρj−r + ρk−2s − ρk−s)Sj ≤

0, which together with Ik−s(t) ≥ 0 for t > 0 results in ϕk−s(t) ≤ 0.

This concludes the lemma, and hence the theorem.

3.4 Numerical Investigations

Numerous heuristic policies have been proposed for message passing in DTNs in

prior literature [1, 7, 9, 19, 20, 60, 61, 67, 68, 82–84, 88, 90, 96]. Many of these

heuristics are simpler to implement than our optimal control as they employ con-

trols that either do not depend on residual energy levels or do not change with

time. We start by experimentally validating the mean-field deterministic model

we used (§3.4.1) and quantifying the benefit of our optimal policy relative to
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some of these heuristics (§3.4.2). Next, we investigate the sensitivity of our opti-

mal control to errors in clock synchronization and residual energy determination

among nodes (§3.4.3). Finally, in §3.4.4, we investigate the sending of multiple

messages over successive time intervals empirically, and assess the performance

of a natural generalization of our policy (which is optimal for the transmission of

a single message) relative to that of the mentioned heuristics.

We focus on the fixed terminal time problem and derive the optimal controls

using the GPOPS software [12, 28–30, 73] with INTLAB [75]. Unless otherwise

stated, our system used parameters: B = 5, s = 2, and r = 1 (note that s ≥ r, as

demanded by our system model), S0 = (0, 0, 0, 0.3, 0.3, 0.35), and ai = (B − i)2.

Note that βT denotes the average number of contacts of each node in the system

in the time interval [0, T ]. Thus, as expected we observed that changing β and

T had very similar effects on the costs and the drop-off points of the optimal

controls. We further assumed that β = β0 (i.e., the rate of contact between any

two nodes is the same as the rate of contact of the destination and any given

node). We compared policies based on the difference between
∑B

i=s ai(Si(T ) +

Ii(T )) and
∑B

i=s ai(Si(0) + Ii(0)) (which, as the initial penalty function value, is

the same for all policies) for each policy, which we call the “Unbiased Energy

Cost”.
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3.4.1 Validation of the mean-field deterministic model

We noted in §3.2.1 that assuming exponential contact among nodes leads to the

system dynamics (3.2.2) (the mean-field deterministic regime) in the limit that

the number of nodes, N , approach ∞. We therefore assess the applicability of

(3.2.2) for exponential contact processes and large, but finite N (§3.4.1). Subse-

quently we assess the validity of (3.2.2) for a specific truncated power-law con-

tact process that was experimentally observed for human mobility at INFOCOM

2005 [37] (§3.4.1). Under this model, nodes do not mix homogeneously, as those

that have met in the past are more likely to meet in the future, and their conver-

gence to ODEs like ours has not been established.

For each contact process, we simulated 100 runs of the evolution of the states

with forwarding probabilities provided by the optimal control for the fixed ter-

minal time problem and state equations (3.2.2). We compared the average state

evolutions and unbiased energy costs of these cases with those obtained from

(3.2.2) under the same control. We describe the results below.

Exponential Contact Process

For a system with N = 160 nodes, I0 = (0, 0, 0, 0.0125, 0.0125, 0.025), β = 2, and

T = 5, leading to an average 10 meetings per node, Fig. 3.2 and Fig. 3.3 show

that the results obtained from the simulation of the exponential contact process

and (3.2.2) are similar, as expected.
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Truncated Power Law Contact Process

We consider the truncated power-law contact process observed in [37] for a net-

work with N = 41 nodes and α = 0.4. The power-law process was truncated

in that the contact times are restricted to be between 2 minutes and 24 hours.

We use β = 4.46 in our differential equations (3.2.2) so that 1/β equals the ex-

pected inter-contact time between any pair of nodes under this distribution. Also,

I0 = (0, 0, 0, 0, 0.025, 0.025). Even though N is small and the contact process is

not memoryless, Fig. 3.4 shows that the states derived from this simulation and

(3.2.2) follow the same trends, but there is a gap, which is to be expected be-

cause this contact model does not have the homogeneity of the exponential case,

and the number of nodes is small (N = 41, since the experimental data in [37]

was obtained for this N). Fig. 3.5 show that the costs in this model are, how-

ever, quite close to those derived from our equations, suggesting the robustness

of energy cost to the change in contact process.

3.4.2 Performance advantage of optimal control over heuristics

Description of Heuristics

We propose two classes of heuristic policies, and describe sub-classes that cor-

respond to policies in prior literature. In all classes and sub-classes, we define

the best policy to be that which minimizes the unbiased energy cost subject to
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satisfying the throughput constraint (3.2.6).

I- Static Across Energy Levels: Policies that choose a one jump (from a fixed

value in [0, 1] to zero) control that is the same for all energy levels. In these

policies, nodes do not need to know their residual energy level. The best policy

in this class is selected through a search over the range [0, T ]× [0, 1], which is less

than that of the optimal control ([0, T ]B−s+1).

II- Static Across Time: Policies that force all controls to be at a fixed value

(potentially different for each energy level) throughout [0, T ]. These policies are

inherently robust to errors in clock synchronization, and the best policy in this

class can be determined through a search over the range [0, 1]B−s+1, which is

similar to that of the optimal control.

Policies where controls depend on residual energy levels, e.g., those in (II),

have not been proposed in existing literature. Several sub-classes of (I) have been

proposed, however:16

1) Probability Threshold (optimized flooding): Policies whose controls drop

from 1 to 0 when the probability of message delivery in [0, T ] passes a certain

threshold (e.g., [90]).

2) Infection Threshold: Policies whose controls drop from 1 to 0 when the

total number of infected nodes with enough energy to transfer the message to the

destination surpasses a certain threshold (e.g., [67]).

16Sub-classes inherit constraints of classes from which they are descended.
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3) Static Across Time and Energy Levels: Policies that force all energy levels

to choose the same fixed control (between 0 and 1) throughout [0, T ] (e.g., [67]).

4) One Control (flooding, epidemic routing): The single policy that sets all

controls to one. (Originally in [88], also in [20] and [90].)

5) Zero Control (Spray and Wait, two-hop transmission, direct transmission):

The single policy that sets all controls to zero. (Originally in [84], also in [20]

and [90].)

The best policy in the Probability and Infection Threshold classes can be deter-

mined through a search over [0, T ], and that in the Static Across Time and Energy

Levels class through a search over [0, 1]. However, the Zero Control policy fails

to attain the mandated probability of delivery in settings that we consider (small

to moderate values of initial infection and T ), and is thus excluded from Fig. 3.6

and 3.9 presented below.

Relative Performance

In Fig. 3.6, the costs associated with energy consumption for the optimal pol-

icy and also the best policies in each of the proposed classes are compared as

β is varied. We use the name of the class/sub-class to refer to the best pol-

icy in that class/sub-class. The mandated probability of delivery is 90%, while

I0 = (0, 0, 0.0125, 0.0125, 0.0125, 0.0125). As the number of contacts increases, for-

warding the message at every available opportunity becomes less desirable as it
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leads to massive energy consumption. The “One Control” policy, therefore, acts as

a battery depletion attack on the nodes, using up all of their energy reserves and

leading to significantly higher cost (over 30% worse than the second worst heuris-

tic), and therefore it is left out of the figure for illustrative purposes. We see that

the optimal policy significantly outperforms the best of the rest of the heuristic for

low and moderate values of β (for β ≤ 2.5), e.g., the performance difference is

50% for β ≈ 2. We also see that the Static Across Energy Levels and Static in Time

heuristics respectively outperform all other heuristics for low and high values of

β. As contacts (βT ) increase, the flexibility to adapt the control in accordance

with the residual energy of the nodes provided by Static in Time turns out to be

beneficial, as the mandated probability of delivery can be achieved by utilizing

higher energy nodes. In fact, Static in Time performs close to the optimal for

large values of β. In summary, the improvement in performance attained by the

optimal control over simpler heuristics justifies its utilization of time-dependent

and residual-energy-dependent decisions except for relatively large values of β

where there is less need to spread the message due to more frequent meetings

with the destination. In this case, near-optimal performance can be achieved by

choosing controls based only on residual energy and not time, as is the case for

Static in Time. Such choices may be used instead of the optimal policy for more

robustness to clock synchronization errors, an issue we visit next.
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3.4.3 Sensitivity of the optimal control to synchronization and

residual energy determination errors

We will consider a system with N = 500 nodes, I0 = (0, 0, 0, 0.0125, 0.0125, 0.025),

T = 5, mandated probability of delivery 75% and β = 2 simulated over 200 runs.

Synchronization Errors

We allow each node to have a clock synchronization error that manifests itself

as a time-shift in implementing the control decisions.17 Thus, the optimal policy

may incur a higher energy cost than the optimal value and provide a probability

of delivery which is lower than the mandated value. We assess the extent of the

deviations considering node time-shifts as mutually independent and uniformly

distributed in [−θ∗, θ∗]; θ∗ represents a measure of the magnitude of the synchro-

nization errors. Fig. 3.7 reveals that the network’s performance is remarkably

robust in terms of both unbiased energy cost and probability of delivery (with

maximum standard deviations of 0.5 for the unbiased energy cost and 0.03 for

the probability of delivery) for θ∗ up to 10% of the TTL T . This suggests that the

optimal policy does not have a significant operational drawback compared to the

Static In Time heuristics that incur substantially higher energy costs except for

17In other words, if a node has a time-shift of ∆, while implementing the optimal control it

uses a threshold time of ti + ∆ instead of ti when it has i units of residual energy.
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large values of β.

Energy Determination Errors

Now we examine the case where each node is uncertain about its residual energy

level, as may be the case for nodes with dated hardware. We assume each node

under/over-estimates its residual energy level by one unit, each with probability

p∗, independent of others. Specifically, if a node has i units of energy, where

0 < i < B, it estimates its energy availability as i− 1, i and i+ 1 with probabilities

p∗, 1 − 2p∗ and p∗ respectively.18 Fig. 3.8 reveals that the network’s performance

is robust to such errors in terms of probability of message delivery, though the

unbiased energy cost incurred increases slightly with p∗ (a change of less than

10% for p∗ < 0.15). The maximum standard deviations of both cases are similar to

their analogs from §3.4.3, confirming the previous observation. This suggests that

the optimal policy does not suffer from any significant operational drawbacks as

compared to the Static Across Energy Levels heuristics, which attain substantially

higher energy costs.

3.4.4 Multiple Message Transmission

We now consider a scenario where the network seeks to successively transmit M

messages, where M is a system parameter. Each message is associated with a

18If a node has B (respectively 0) units of energy, it estimates its energy to be B − 1 and B

(respectively 0 and 1) energy units with probabilities p∗ and 1− p∗ (respectively 1− p∗ and p∗).

148



TTL of T and all nodes drop the message at the end of the TTL. The transmission

of the i-th message starts at the end of the TTL of the (i − 1)-th message. The

transmission of each message must satisfy the throughput requirement (3.2.6).

We assume that at its initial time each message is uniformly spread to a fixed,

say Υ, fraction of the nodes that have at least s+ r units of energy. Since each ini-

tial reception consumes r units of energy, the nodes that receive the initial copies

of a message have enough (i.e., at least s units of) energy to subsequently forward

the message after reception.19 Once the network cannot guarantee the mandated

probability of delivery for a message, we consider it to have been exhausted.

In these settings, we consider the natural generalization of our single trans-

mission policies: the “Myopic Optimal” policy uses the one-step optimal for the

transmission of each message, while others use the single-transmission best pol-

icy in their corresponding class (from §3.4.2). Our metric for comparing the per-

formance of policies is the unbiased energy cost
∑B

i=s ai (Si(MT ) + Ii(MT )) −∑B
i=s ai(Si(0) + Ii(0)). We only consider the cost of messages that can be for-

warded to the destination before network exhaustion.

We plot the performance of each policy for {ai} that are quadratic functions

of B − i (Fig. 3.9), though similar results are seen for linear and exponential

19Here, r + s = 3. Thus, for example, if 50% of nodes have 4 units of energy and 80% of nodes

have at least 3 units of energy at the beginning of transmission of a message, and Υ = 0.01,

then 1.25% of the nodes with 4 units of energy receive the initial copy of the message. So at the

beginning of this transmission, I3 = 0.00625 and S4 = 0.04375.
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functions of B − i [21]. Here, T = 100, β = 3,Υ = 0.001, and the mandated

probability of delivery for each message is 95%. Also, before the initial copies of

the first message are distributed, all nodes have at least 3 units of energy - 33%,

33%, and 34% of the nodes have 3, 4, and 5 units of energy respectively. We see

that the Myopic Optimal policy outperforms all the other policies that we consider

in terms of the unbiased energy cost for each fixed number of transmissions and

also the number of messages transmitted till exhaustion. Note that asM increases,

the difference between the unbiased energy costs of the Myopic Optimal policy

and other policies becomes substantial, e.g., the difference is around 90% for

around 10 transmissions. The number of messages forwarded to the destination

till exhaustion by the Myopic Optimal policy is also slightly greater than that of

the Static Across Time policy, and 60% better than the best of the rest.

3.5 Conclusion

We formulated the problem of energy-dependent message forwarding with (de-

lay sensitive) throughput guarantees in energy-constrained DTNs as a resource-

heterogeneous epidemic using a deterministic mean-field model. We analytically

established that optimal forwarding decisions are composed of simple threshold-

based policies, where the threshold used by a node depends only on its residual

energy. We also proved that the thresholds are monotonic in the energy levels for

a large class of cost functions associated with the energy consumed in transmis-
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sion of the message. Our simulations reveal that the optimal control substantially

outperforms state-of-the-art heuristic strategies and are reasonably robust to pos-

sible errors that may arise in implementation.
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(a) convex terminal-time penalties

(b) non-convex terminal-time penalties

Figure 3.1: Illustrative examples for Theorems 5 and 6 for the fixed terminal time

problem. The controls are plotted for a system with parameters: B = 5, r = 1,

s = 2, β = β0 = 2, T = 10, and S0 = (0, 0, 0, 0.55, 0.3, 0.1), with the mandated

probability of delivery being 90%. In (a), the terminal time penalty sequence was

ai = (B − i)2 and I0 = (0, 0, 0, 0, 0, 0.05), while in (b) the terminal time penalty

sequence was a0 = 4.4, a1 = 4.2, a2 = 4, a3 = 1.2, a4 = 1.1, a5 = 1 (i.e., the {ai}

sequence was neither convex nor concave) and I0 = (0, 0, 0, 0, 0.025, 0.025).
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Figure 3.2: Comparison of the state processes for the mean-field deterministic

regime (dashed lines) and simulated exponential contact process. We consider a

mandated probability of delivery of 80%.
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Figure 3.3: Comparing the costs of the mean-field deterministic regime (dashed

line) and simulated exponential process as a function of the mandated probability

of delivery. The error bars represent the standard deviations of the statistical

simulations.

154



Figure 3.4: Comparison of the evolution of the infection in a mean-field determin-

istic regime (dashed lines) and the power-law contact process observed in [37].

We use a mandated probability of delivery of 90%.
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Figure 3.5: Comparing the costs of the mean-field deterministic regime (dashed

line) and a simulated truncated power law contact process as a function of the

mandated probability of delivery. The error bars represent the standard deviations

of the statistical simulations.
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Figure 3.6: Performance of the optimal and heuristic controls. The perfor-

mances of the “Static Across Energy Levels”, “Infection Threshold”, and “Prob-

ability Threshold” policies are very close, and they are indicated with a single

arrow.
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(a) Unbiased energy cost

(b) Probability of delivery

Figure 3.7: Comparison of the performance of the optimal policy when we have

perfect synchronization (solid line) and an implementation with synchronization

errors, in terms of both unbiased energy cost and probability of message delivery.

θ∗ is the range of the synchronization error for each node, and the error bars

represent standard deviations.
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(a) Unbiased energy cost

(b) Probability of delivery

Figure 3.8: Comparison of the performance of the optimal policy when nodes

have correct knowledge of their residual energy (solid line) with cases where

each node can makes a one unit error in determining its residual energy level

(with probability p∗). Again, the error bars represent the standard deviations of

each parameter.
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Figure 3.9: The figures plot the unbiased energy cost as a function of M, the

number of messages transmitted, for different policies. The battery penalties were

ai = (B − i)2.
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Chapter 4

Epidemic-Heterogeneity:

Visibility-Aware Optimal Contagion

of Malware Epidemics1

4.1 Introduction

Epidemics that spread among a population may be heterogeneous themselves, with

their interactions playing a critical role in their spread. Multiple epidemics spread-

ing in one population can either compete with each other, amplify each other’s

effects/spread, or they may spread in conjunction with each other, where their

relative spread is coordinated and controlled. This latter case arises uniquely

1Presented at Information Theory and Application Workshop (ITA) 2015 and submitted to

IEEE Transactions on Automatic Control, July 2015 [23].
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within the realm of malware. In this chapter, we examine how the heterogeneity

of malware variants in terms of visibility to the network defender is being used by

attackers in an emerging stealth-conscious generation of malware, and how this

heterogeneity affects their particular spreading policies.

Malware (i.e., viruses, worms, trojans, etc.) has been a prominent feature of

computer networks since the 1980’s [66], and has evolved with the growing ca-

pabilities of computing technology. Anderson et al. [4] estimated that malware

caused $370m of damage globally in 2010 alone. Traditionally, malware was

designed with the express aim of infecting as many machines as possible, lead-

ing to the mass epidemics of the early 2000’s (e.g., Blaster [6]). More recently,

the focus has shifted to more “surgical” strikes where visibility is highly undesir-

able, as awareness can lead the intended target to cease communication (e.g.,

by quarantining the targets). The malware Regin was only discovered (in 2014)

after operating since at least 2008, and was so complex that even when its pres-

ence was detected, it was not possible to ascertain what it was doing and what it

was targeting [87]. Stuxnet, as another example, was designed to attack a spe-

cific control software used in centrifuges [25] and did not steal or manipulate

data, or receive any command instructions from remote sources so as to maintain

stealth [53]. Yet, it was discovered and remedied after it spread outside its tar-

get area [76] (cf. Duqu, Flame, and Gauss [11]). Thus there is a new trade-off

for the attacker — to ensure maximum damage while minimizing visibility to the

162



defender.

We now describe different dimensions of this trade-off. Malware spreads from

one computing device to another when there is a communication opportunity

between the devices. In networks, both wired and wireless, inter-node commu-

nication can be visible to the network administrator, and can serve as a way of

detecting the presence of malware before its function is fully understood. How-

ever, the attacker also has a conflicting onus to ensure the rapid propagation of

her program, as computer systems evolve at a rapid pace, and the exploit(s) that

the malware targets will be noticed and patched in due course. Furthermore,

some malware designers work to specific deadlines — e.g., Stuxnet was due to

become inoperational in June 2012 [95]. Thus, an attacker will seek to minimize

her communication footprint while still trying to ensure the timely spread of the

malware.

In particular, we consider the case where two variants of a single malware

spread in a network. One spreads aggressively in every contact, and is thus vis-

ible to the network due to its communications, while the other, passive, variant

does not spread subsequent to infecting a node. Coordinating distributed attacks

comes at the cost of added visibility due to communication and is susceptible to

timing errors in the hosts. Thus, we focus on the case where distributed nodes that

are infected are not asked to coordinate, as was the case in Regin and Stuxnet.

The natural question that arises is to characterize the structure of the optimal mal-
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ware variant mix that the attacker will spread at each instant depending on their

goal structures and the communication mechanisms that they may have at their

disposal. This is an imperative first step to devising remedies for such attacks.

4.1.1 Problem Description

We consider a network under attack by these two variants of a malware. Depend-

ing on their infection status, nodes can be divided into 4 groups: Germinators (G),

Susceptibles (S), Zombies (Z), and Passives (P). We now describe these states, as

well as their dynamics and the impact of the attacker’s control (as will be eluci-

dated in §4.3.1). We also outline an augmentation to the model that is considered

in §4.3.2 and adds a further possible mechanism of interaction and control to the

dynamics:

1. Germinators (G):

• are a fixed (potentially very small) fraction of nodes,

• are the only nodes under the attacker’s direct control,

• are the only nodes that can choose how to interact with susceptibles

and zombies depending on the goal of the attacker: at each encounter

with a susceptible, they decide whether to turn it into a zombie or a

passive, or to leave it as a susceptible.

• damage the network by executing malicious code,
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• are visible to the network due to their communications.

• in an augmentation in §4.3.2, we add a further mechanism of inter-

action (halting) whereby the germinators, upon contact with zombies,

can turn them into passives (i.e., stopping them from spreading the

message any further). This can potentially lead to the attacker ini-

tially utilizing epidemic spreading and then halting the spread once

the marginal benefit of infection is overtaken by the marginal effect of

visibility, leading to to a potentially longer propagation of the zombies.

2. Susceptibles (S):

• are nodes that have not received any variant of the malware,

• upon receipt of the malware from germinators, they can turn into zom-

bies (Z) or passives (P ).

• upon receipt of the malware from zombies, they will turn into zombies

(Z).

3. Zombies (Z):

• have received the aggressive malware variant,

• damage the network by executing malicious code,

• will continue to propagate the aggressive variant indiscriminately (i.e.,

upon meeting a susceptible, will turn into a zombie),
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• are visible to the network due to their communications.

• in the augmentation in §4.3.2, the additional mechanism of halting can

turn zombies into passives.

4. Passives (P):

• have received the passive variant of the malware,

• damage the network by executing malicious code,

• will not propagate the malware variant any further,

• contrary to germinators and zombies, are invisible to the network as

they do not communicate with other nodes to spread the malware

henceforth.

These states and their properties are summarized in Table 4.1.

In these models, the attacker controls the mixture of zombie and passive mal-

ware variants through the germinators under its direct control. Whenever a

germinator meets a susceptible, based on the control chosen by the attacker, it

spreads either the zombie or passive variant of the malware to the susceptible,

or leaves it as it is. In the dynamics in §4.4.3, the germinator has an additional

controlled mechanism of action, whereby upon meeting a node with the zombie

variant of the malware, it can replace the variant with the passive one (a “halting”

mechanism). These controls are assumed to be piecewise continuous, but they can

take any value between zero and one, which determines the percentage of rele-
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State Visibility Growth over time Propagation

S N Only decrease -

G Y Fixed Y

Z Y Increase or decrease Y

P N Only increase N

Table 4.1: The states of the SGZP model and their characteristics. “Visibility”

denotes whether the infection state of the node is detectable by the network

defender. “Growth over time” determines the possible changes in the fraction

of nodes in each state over time (note that the only case in which zombies can

decrease is the dynamics outlined in §4.4.3). Finally, “Propagation” determines

whether a node in that state can spread the malware to a susceptible node upon

contact.
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vant interactions for which the specified action happens. We do not assume that

all nodes make the same spreading decision at each time instance: the attacker

can assign a certain uniformly distributed and possibly varying fraction of germi-

nators to make the same decision at each time, or it could allow all agents to make

one of the two decisions with a certain, possibly varying probability at each time.

The outcome of both cases is that a certain uniformly distributed percentage of

interactions (derived from the attacker’s controls) lead to the creation of zombies

and passives, and the rest have no effect on the potential target.

Later, we also investigate the effect of defense strategies on the optimal spread

of malware variants (§4.3.3). In these defense strategies, the defender limits the

effective contacts of nodes using a pre-determined function of malware visibility

(which changes over time) as a means to limit the spread of malware. We consider

two classes of network defense functions: affine and sigmoid. These defense

strategies, however, come at the cost of stopping legitimate communication within

the network. This is akin to choosing the communication ranges of nodes as a

decreasing function of the visibility of the malware, which is a form of quarantine.

We allow the attacker to choose the malware spreading controls so as to max-

imize a measure of overall damage (described in §4.3.5). We first consider a

damage function that depends on a) malware efficacy, which is a function of the

aggregate number of zombies and passives, and b) malware visibility, which is a

function of the number of zombies (for the models in §4.3.1 and §4.3.2). Then, we
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consider a damage function where malware efficacy is the attacker’s only direct

concern, and is thus the damage function to be maximized, for the case where

visibility is built into the network dynamics through a network defense policy

which is a function of the fraction of zombies (as in the model in §4.3.3). These

formulations, to the best of our knowledge, have no precedent in the epidemics

literature, and can be used to further investigate the effects of malware visibility

in networks.

An advantageous feature of all these models is that the malware designer only

requires synchronized actions from a fixed number of nodes that are under its con-

trol from the outset. This decreases the risks of detection and policy implemen-

tation errors arising from coordinating synchronized distributed actions among a

varying set of nodes.

4.1.2 Results

We then derive necessary structures for optimal solutions for each of the cases, us-

ing Pontryagin’s Maximum Principle and custom arguments constructed for each

case (in §4.4). We show that the attacker’s optimal strategy in all of these models

is for the germinators to spread only one variant of the epidemic at each time:

the germinators will create zombies up to a certain threshold time, and then only

create passives (including by halting zombies) from then on. That is, the optimal

controls are bang-bang (i.e., only taking their minimal and maximum values) with
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only one jump. Note that the controls can take any value between 0 and 1 at each

point in time, and this bang-bang structure is one that emerges from the dynamics

of the problem. These structural results are without precedent in the literature,

both due to the uniqueness of the model, as well as the constraints placed on the

vector of optimal controls.

It is interesting to note that in each of the variations we consider, our analysis

reveals that all the controls in each model have the same threshold, a fact that

is not at all clear a priori. Thus the entire control space can be described by one

time threshold. This structure is invaluable for deriving the optimal controls com-

putationally. Furthermore, the controls are easy to implement as the germinators

need to be programmed with just one time instant for all of their controls.

Finally, we investigate the performance of the derived optimal controls using

numerical simulations (in §4.5). We first investigate the effect of the additional

halting action on the optimal attack policies. We show that for both the simple and

halting models, as the rate of contact between zombies and susceptibles increases,

zombies are created for a shorter time period. We also show that the halting con-

trol adds to the length of time the zombie variant should optimally be propagated,

with the additional propagation time depending on some system parameters. We

then compare the optimal control with heuristics, and show that even without the

halting control, the optimal solution performs 10% better than the leading heuris-

tic, with the performance differential being larger for more naive heuristics. We
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then consider errors in the implementation of the network defense strategy out-

lined in §4.3.3, and investigate their effects on the malware spread. We show that

erroneous estimations on the part of the defender only slightly affect the dam-

age inflicted by the attacker, which points towards the robustness of the attack

policies to errors in estimations by the network defense. Finally, we quantify the

effect of synchronization errors among the relatively small number of germina-

tors on the efficacy of the malware attack. We show that any such attack is robust

to small errors among the germinators, sounding an alarm to the fact that these

malware attacks are less vulnerable to implementation issues that may arise from

synchronization errors than previous generations of malware.

4.2 Literature Review

Multiple interacting epidemics that spread among a single population have been

considered in the fields of biology (e.g., multiple strains of a viral epidemic [40,

41]) and sociology (e.g., competition among memes in a world with limited at-

tention span [91]). The key distinction between the control of biological epi-

demics [10,36,65,92,93] and that of malware ones is that in malware epidemics

the attacker can also decide to use her resources optimally and to adapt to foresee

the response of the defender. In the realm of sociology, the control of informa-

tion epidemics offers closer parallels to that of malware. For example, Kandhway

and Kuri [39] model how an erroneous rumor may be optimally stifled by the
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spread of correct information, which is a secondary epidemic that interacts with

the naturally occurring rumor epidemic. However, in this case only one of the epi-

demics can be controlled, while the malware attacker can possibly simultaneously

control the spread of all malware variants. When there are multiple controllable

epidemics, the resulting simultaneous controls are interdependent, and focusing

on one control and characterizing its structure does not lead to a characterization

of the optimal action. Thus, in malware epidemics there are vectors of controls

available to the attacker, which requires new approaches and techniques com-

pared to the other fields discussed.

Even within the majority of malware epidemic models, e.g., [27,34,48,51,62,

77, 98], the spread of only one malware has been examined, while we focus on

the case where two variants are spreading in conjunction with each other. This

presents a fundamentally different choice to the attacker, and so the model pre-

sented for the spread of visibility-heterogeneous malware variants has no prece-

dent in literature. Accordingly, the questions we asked and the solutions we ob-

tained are substantially different to prior work.

Nonetheless, we still distinguish other aspects of our work from those consid-

ering a single type of malware: in these papers: 1- it is assumed that the attacker’s

sole aim is to maximize the spread of the malware, which is no longer the case for

the emerging class of surgical malware such as Regin [87] and Stuxnet [25] and

2- attackers have a mechanism to control the spread of the malware remotely in
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the future, e.g., through a timer in the code which would be executed in infected

machines (as in [22]). Any such code would have to interact with the operating

system of the infected node, the configuration of which might not be known to

the attacker, and can thus create a point of failure for the malware. The failure of

such a mechanism of control was key to the overspread and subsequent remedy

of Stuxnet [76].

Among the work on the control of a single-type/variant of malware (and the

closely related literature on the spread of a message in Delay Tolerant Networks

[?, 82] and the spread of a rumor [39]), the closest work to this topic (in terms

of approach and spreading models) was by Khouzani and Sarkar [48]. They,

however assume that the malware can control the transmission range of infected

nodes2 and patching is the major defense of the network and starts as soon as the

epidemic spreads3. Thus, their models and their results apply to a fundamentally

different class of malware.

Finally, the very strict structure we prove for the vector of malware optimal

control, which restricts the search space for computational methods to a single

2We assume that the control affects the mix of malware variants and that the communication

ranges of nodes are outside the malware’s control, perhaps even being controlled by the defender

as a mitigation mechanism. Thus, the control and the trade-off to the malware designer is funda-

mentally different.
3This may not be the case for an emerging stealthy epidemic like Stuxnet that is very large and

extremely hard to decipher, let alone mitigate [15, 95]. In our model, the network only becomes

aware of the malware as it becomes more visible (i.e., as the visible variant spreads).
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parameter, is without precedent in any of the aforementioned literature.

4.3 System Model and Objective Formulation

In this section we model the spread of malware in a homogeneous network with

random contacts. This can be the case where malware spreads among mobile

devices with proximity-based communication, or where random contacts in an

address-book are utilized. The virus propagates in the network between times 0

and T . We represent the fraction of susceptible, germinator, zombie, and passive

nodes with S, G, Z, and P respectively, and assume that they are differentiable.

We assume that for any pair of states, the statistics of meeting times between

all pairs of nodes of those two states are identical and exponentially distributed,

where the mean is equal to the homogeneous mixing rate of those two states.

Groenevelt et al. [33] have shown that homogeneous mixing holds under the

common Random Way-point and Random Direction mobility models (when the

communication range of the fast-moving nodes is small compared to the total

region). Note that the zombies can be programmed to only spread the malware

at a fraction of the times they meet susceptibles, slowing their spread, or they can

be programmed to use resources that are not utilized by the rest of the network to

spread faster. Therefore we take the mixing rate between Z and S to be potentially

different from the other pairs of states.

We describe the state dynamics of such systems as an epidemic for the cases
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γβZS + βGSuZ

βGSup

πβGZuh

Figure 4.1: The solid lines show the dynamics in §4.3.1. The dotted lines show the

additional halting action in §4.3.2. The model in §4.3.3 has the same dynamics

as the solid lines, but with β being a function of Z (i.e., β(Z)).

where: 1) germinator agents can only interact with susceptible agents (§4.3.1),

2) germinator agents can also interact with zombies as well (§4.3.2), and 3) ef-

fective network contact rates are a function of the infection spread, mirroring the

response of a network defender (§4.3.3) (Figure 4.1). We state and prove a key

observation about all these dynamics (§4.3.4). We next formulate the aggregate

damage of attack efficacy and the ensuing visibility (§4.3.5). Finally, we lay out

the optimization problem in §4.3.6.

4.3.1 SGZP Model with no halting

The attacker can spread the malware in two ways: 1- upon encountering a sus-

ceptible, she can, through the control variable uZ , turn that susceptible node into

a zombie, i.e., one that will henceforth propagate that infection to susceptibles it
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meets. 2- upon encountering a susceptible, she can, through the control variable

uP , turn that susceptible into a Passive, P . These control variables — (uZ , uP ) ∈ U ,

where U is the set of piecewise continuous controls — can be thought of as the re-

spective probabilities of infection, and to maintain such an intuition, we constrain

their sum to be less than one.4

Ṡ = −βGS(uP + uZ)− γβZS (4.3.1a)

Ż = βGSuZ + γβZS (4.3.1b)

Ṗ = βGSuP (4.3.1c)

uP + uZ ≤ 1 (4.3.2a)

0 ≤ uP ≤ 1 0 ≤ uZ ≤ 1 (4.3.2b)

Here, β is the mixing rate between S and G, and γβ is the mixing rate between Z

and S (with γ > 0).
4Our models are based on results that show in the population (mean-field) limit and where

state transitions occur according to a Poisson contact process, the fractions of agents in each state

converges path-wise (with probability of path-divergence divergence going to zero) to the results

of the deterministic ordinary differential equation derived from the dynamics on any limited time

period (c.f. [52, p.1], [32]).
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4.3.2 SGZP Model with halting

This model is akin to the previous one, with one more mechanism added: germi-

nator nodes (G) can force a zombie (Z) to become passive (P) through a process

we will call ‘‘halting”. This happens through another control variable uh, which,

in keeping with the intuition, can be thought of as the probability of halting en-

countered zombies at each instant. Again, we take (uZ , uP , uh) ∈ U ′, where U ′ is

the set of piecewise continuous controls. The system dynamics become:

Ṡ = −βGS(uP + uZ)− γβZS (4.3.3a)

Ż = βGSuZ + γβZS−πβGZuh (4.3.3b)

Ṗ = βGSuP+πβGZuh, (4.3.3c)

with 0 < π ≤ 1 signifying the extent to which the zombies can be stopped when

encountered by the original germinators. This model is similar to the Daley-

Kendall rumor model [18], where repeated interaction with active agents can

turn an active spreader of the rumor into an agent that is aware of the rumor, but

has no interest in spreading it any further. The constraints now become:

uP + uZ ≤ 1 (4.3.4a)

0 ≤ uP ≤ 1, 0 ≤ uZ ≤ 1, 0 ≤ uh ≤ 1. (4.3.4b)
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4.3.3 SGZP Model with no halting and adaptive defense

Instead of allowing a constant rate of interactions β, the network defender can

choose the effective mixing rate β to be a function of the fraction of zombies as

her defense policy (β(Z)). In these policies, the network defender regulates the

rate of contact between nodes based on the proportion of zombie nodes it has

observed. The network can determine the fraction of the network that has been

infected by zombies by observing the chatter among nodes and the extra com-

munications whose purpose is unknown, either in the whole network or among a

representative subset of nodes.

We consider the system dynamics described in the no-halting model, and adapt

them accordingly:

Ṡ = −β(Z)GS(uP + uZ)− γβ(Z)ZS (4.3.5a)

Ż = β(Z)GSuZ + γβ(Z)ZS (4.3.5b)

Ṗ = β(Z)GSuP (4.3.5c)

The controls available are also the same as those in (4.3.2). In particular, they

are still assumed to be piecewise continuity.

We consider two classes of β(Z) functions: 1) Affine functions, of the form

β(Z) = −aZ + βmax for 0 ≤ a ≤ βmax (a natural assumption, as the contact rate

cannot be negative). If a = 0, the affine case simplifies to the constant β case. 2)

Exponential sigmoids, of the form βZ =
β0

1 + eα(Z−Zth)
, with 0 < Zth < 1 being a
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fixed threshold and α > 0 denoting the sharpness of the cut-off. As α increases,

β(Z) can become arbitrarily close to β(Z) = β01Z≤Zth, an all-or-nothing policy.

Both of these classes satisfy β(Z) > 0 for all Z (i.e., the network never shuts down

completely due to the infection) and dβ(Z)
dZ

< 0 for all Z (except for the trivial

case of constant β(Z)), as more visibility should lead to more communication

restrictions from the network. In mobile epidemics, this is equivalent to nodes

decreasing their communication range upon the detection of an infection, e.g.

as in [49]. In practice, the network will have an estimate Ẑ of the fraction of

zombies. Our simulations reveal that the sub-optimality induced by the estimation

error is small (§4.5).

4.3.4 Key observations

We start with a theorem that holds for all the models presented above, and which

will be used as a building block to obtain structural results in §4.4.

Theorem 9. For a system with the mechanics described in either §4.3.1, §4.3.2, or

§4.3.3, with initial conditions S(0) = S0 > 0, G(0) = G0 > 0, Z(0) = Z0 ≥ 0,

and P (0) = P0 ≥ 0, and S0 + G0 + Z0 + P0 = 1, and with piecewise continuous

controls uP , uZ (and in (4.3.3), uh), the dynamical systems (4.3.1), (4.3.3), and

(4.3.5) have unique state solutions (S(t), G(t), Z(t), P (t)), with S(t) > 0, Z(t) ≥ 0,

P (t) ≥ 0, and (S +G+ Z + P )(t) = 1 for all t ∈ [0, T ].

The assumptions S0 > 0 and G0 > 0 are natural, otherwise there is no in-
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teraction to control. Henceforth, we will assume these, as well as Z0 ≥ 0 and

P0 ≥ 0.

Proof. The uniqueness follows from standard results in the theory of ordinary

differential equations [78, Theorem A.8, p. 419] given the observation that the

RHS of the dynamic systems is comprised of quadratic forms and is thus Lipschitz

over [0, T ]×S, where S is the set of states such that the boundary conditions hold.

We provide the proof for the case of §4.3.1, and note the changes for §4.3.2.

First of all, (Ṡ + Ż + Ṗ )(t) = 0 and (S + Z + P )(0) = 1 − G0, so (S + G +

Z + P )(t) = 1 for all t. We know that Ṡ = −βGS(uP + uZ) − γβZS ≥ −MS,

where M is the upperbound of βG + γβZ (because (uP + uZ) ≤ 1). Therefore,

S(t) ≥ S0e
−Mt > 0 for all t. Therefore, Ż = βGSuZ + γβZS ≥ γβZS ≥ MZ,

where M is a lowerbound on γβS which exists due to continuity (respectively,

Ż = βGSuZ + γβZS − πβZGuh ≥ Z(γβS − βπGuh) ≥ M ′Z, where M ′ is a

lowerbound on (γβS − βπGuh) which again exists due to continuity). Note that

the first inequality resulted from uZ(t) ≥ 0 for all t. Therefore, Z(t) ≥ Z0e
Mt ≥ 0

(respectively Z(t) ≥ Z0e
M ′t ≥ 0) for all t. Finally, Ṗ = βGSuP ≥ 0 for all t

(respectively, Ṗ = βGSuP + πβZGuh ≥ 0 for all t), as uZ(t) ≥ 0, so P0 ≥ 0 leads

to P (t) ≥ 0 for all t.

Theorem 9 can be proved very similarly for the model in §4.3.3 using the rea-

soning we used for the model in §4.3.1, with the difference that in the arguments,

β is replaced by β(Z), which is lower-bounded away from zero for positive Z.
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4.3.5 Utility Function

As we discussed, the attacker tries to maximize attack efficacy while minimizing

visibility. We capture efficacy as a function f(·) of the aggregate number of zom-

bies (Z) and passives (P ) at each time instant. Meanwhile, visibility is only a

function of zombies that re-spread the malware. This means that we can capture

instantaneous visibility as a function g(·) of the number of zombies at that instant.

This formulation is comprehensive because the fixed number of Germinators (G)

both cause damage and are visible, and are implicitly a term that is added to the

variable of both functions. This leads to the following aggregate damage function

that the attacker seeks to maximize:

J =

∫ T

0

(f(Z(t) + P (t))− g(Z(t))) dt. (4.3.6)

We have some natural assumptions on f(.) and g(.):

dg(Z)

dZ
> 0,

∂f(Z + P )

∂Z
=
∂f(Z + P )

∂P
> 0 (4.3.7)

f(0) = g(0) = 0 (4.3.8)

We assume that f(x) is concave, which means that incremental damage does

not increase as the number of infected agents increases [i.e., the pay-off per in-

fected agent decreases].

In §4.4.1: We assume g(x) is convex. This means that an increment in the

zombies is costlier (results in more visibility) when the infection is already more
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visible. This could be the case when the network becomes more wary of the

infection as it progresses and becomes more visible.

In §4.4.3: We simplify g to be linear, g(x) = kgx, kg > 0.

In §4.4.5: We set g(x) ≡ 0, as the effects of visibility have been built into the

network dynamics through β(Z). This leaves us with:

J =

∫ T

0

f(Z(t) + P (t)) dt. (4.3.9)

4.3.6 Problem statement

In §4.4.1 and §4.4.5, the attacker seeks to choose controls (uZ , uP ) ∈ U satisfying

(4.3.2) so as to maximize J (respectively, (4.3.6) and (4.3.9)), while in §4.4.3,

she seeks to maximize J (4.3.6) through a choice of (uZ , uP , uh) ∈ U ′ that satisfies

(4.3.4).

4.4 Structural Results

Using Pontryagin’s Maximum Principle and custom arguments specific to each

case, we obtain the one-jump bang-bang structure of the optimal controls for the

various cases in §4.3.1, §4.3.2, and §4.3.3. We provide the proof for §4.4.1 in

§4.4.2) and the ones for §4.4.3 and §4.4.5 in §4.4.4 and §4.4.6 respectively.

Intuition is unclear in determining these structures: while intuitively creating

zombies at the beginning of the time period allows the malware to benefit from
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their epidemic spread, it also penalizes the malware more because of its prolonged

visibility. This is further complicated by the fact that the controls can take any

value between 0 and 1, and thus it is possible for the attacker to have any mix

of malware spread at each instance in time. The strict structures that arise from

the analysis are counter-intuitive and interesting both theoretically and from an

implementation standpoint.

4.4.1 Results for the no halting model (proved in §4.4.2)

Theorem 10. Any optimal control in U will satisfy

uP (t) =


0 t ∈ [0, t∗)

1 t ∈ (t∗, T )

uZ(t) =


1 t ∈ [0, t∗)

0 t ∈ (t∗, T )

for some t∗ ∈ [0, T ).

This result means that for any optimal control, there exists a time threshold t∗

such that prior to t∗, the germinators convert all the susceptibles they encounter

to zombies, and subsequent to it they convert the susceptibles to passives.

The fact that creating zombies starts from the initial time for all interactions,

that passives are created for a time period leading up to the terminal time for

all interactions, and that the switch between creating zombies and passives is

instantaneous – with no gap between, and no over-lap in, the intervals in which

these variants are propagated, as well as no intermediate propagation rates – is

not at all a priori obvious.
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Note that we prove a necessary condition for any optimal control, thus reducing

the search space of controls from a vector of functions to a scalar (t∗). This is a

cause for concern, as the latter is much more computationally tractable for the

attacker, and shows that any optimal policy will also be simple for the attacker to

execute.

4.4.2 Proof of Theorem 10 for the no halting model

Proof. This proof utilizes the necessary conditions for an optimal control derived

from Pontryagin’s maximum principle. In particular, we explicitly characterize

the optimal controls as functions of the optimal states and co-states (akin to La-

grange multipliers). Subsequently, we start at terminal time, where the co-states

are known, and follow their evolution backward in time till we arrive at the ini-

tial time, thereby implicitly characterizing the necessary structure of the optimal

controls.

Define continuous co-states (λS, λP , λZ , λ0) such that at points of continuity of

the controls:

λ̇S = β[(λS − λP )GuP + (λS − λZ)GuZ + (λS − λZ)γZ]

λ̇Z = −f ′(Z + P ) + g′(Z) + (λS − λZ)γβS

λ̇P = −f ′(Z + P ), (4.4.1)
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with final co-state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (4.4.2)

Towards characterizing properties of optimal solutions, we define the Hamil-

tonian as:

H(t) := λ0(f(Z + P )− g(Z)) + (λP − λS)βGSuP + (λZ − λS)βGSuZ

+(λZ − λS)γβZS. (4.4.3)

Pontryagin’s Maximum Principle [78, p.182] states that any optimal control vector

u∗ must satisfy the following necessary conditions:

(λS, λP , λZ , λ0) 6= ~0, (4.4.4)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t)

≥ H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (4.4.5)

λ0 ∈ {0, 1} (4.4.6)

But if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

Structure of the optimal control

If we define:

ϕP = (λP − λS)βGS (4.4.7a)

ϕZ = (λZ − λS)βGS, (4.4.7b)
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then, the Hamiltonian becomes:

H(t) = f(Z + P )− g(Z) + ϕPuP + ϕZuZ + (λZ − λS)γβZS. (4.4.8)

The maximization of the Hamiltonian (4.4.5), added to the sum constraints

for the controls (4.3.2a), leads to the following optimality conditions for the con-

trols:5

(uP , uZ) =



(0, 0) ϕP < 0, ϕZ < 0 (4.4.9a)

(1, 0) ϕP > 0, ϕP > ϕZ (4.4.9b)

(0, 1) ϕZ > 0, ϕZ > ϕP (4.4.9c)

(?, ?) ϕZ = ϕP ≥ 0 (4.4.9d)

(?, 0) ϕP = 0, ϕZ < 0 (4.4.9e)

(0, ?) ϕZ = 0, ϕP < 0 (4.4.9f)

From (4.4.7) and the state (4.3.1) and costate (4.4.1) evolution equations and

after some manipulations, we have:6

ϕ̇P = β[GuZ(ϕZ − ϕP ) + γZ(ϕZ − ϕP )−GSf ′(Z + P )] (4.4.10a)

ϕ̇Z = β[GS(g′(Z)− f ′(Z + P )) +GuP (ϕP − ϕZ)− γSϕZ ] (4.4.10b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βGuZ + γβZ + βGuP )−βGSg′(Z) + γβSϕZ , (4.4.10c)

5The question marks (?) denote singular controls. These can occur when the coefficient of

a control variable in the augmented Hamiltonian (which includes the constraints) is zero over an

interval, and thus the control has no effect on the Hamiltonian maximizing condition of the PMP.
6g′(Z) := dg(Z)

dZ , f ′(Z + P ) := ∂f(Z+P )
∂Z = ∂f(Z+P )

∂P
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Proof methodology outline

From here on, we will use the necessary optimality conditions to obtain timing

conditions for phase transitions among the conditions in (4.4.9). We show that a

time t∗ exists such that, for t ∈ (t∗, T ), we have uP (t) = 1 and uZ(t) = 0 (§4.4.2).

If t∗ = 0, we have finished characterizing optimal controls. If not (i.e., t∗ > 0),

we prove that a time t′′ exists such that for t ∈ (t′′, t∗), we have uP (t) = 0 and

uZ(t) = 1 (in §4.4.2). Finally, we show that t′′ must be equal to zero (in §4.4.2),

leading to all possible optimal controls agreeing with the structure laid out in

Theorem 10.

Time interval leading up to T and the existence of t∗

We now follow the evolution of ϕZ and ϕP for a time interval leading to T in

order to characterize necessary conditions for the optimal controls and to prove

the existence of t∗. From the terminal time costate conditions (4.4.2):

ϕP (T ) = ϕZ(T ) = 0,

ϕ̇P (T−) = −f ′((Z + P )(T−))βGS(T−) < 0,

ϕ̇P (T−)− ϕ̇Z(T−) = −βGS(T−)g′(Z(T−)) < 0.

Therefore, ϕP (t) > max{ϕZ(t), 0} for some interval leading up to T due to the

continuity of the states and costates and using the definition of a left derivative.

Let (t∗, T ) be the largest interval over which this holds for t ∈ (t∗, T ) for some
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t∗ < T , leading to the fact that for all such t, uP (t) = 1 and uZ(t) = 0 due to

(4.4.9b).

For t ∈ (t∗, T ), (4.4.10) becomes:

ϕ̇P = −βGSf ′(Z + P ) + γβZ(ϕZ − ϕP ) (4.4.11a)

ϕ̇Z = βGS(g′(Z)− f ′(Z + P )) + βG(ϕP − ϕZ)− γβSϕZ (4.4.11b)

ϕ̇P − ϕ̇Z = γβSϕZ − (ϕP − ϕZ)(γβZ + βG)−βGSg′(Z). (4.4.11c)

Recall that ϕP (t) > 0 for t ∈ (t∗, T ), so due to continuity, we either have

ϕP (t∗) > 0 or ϕP (t∗) = 0. We now rule out ϕP (t∗) = 0. If ϕP (t∗) = 0, Rolle’s

Mean Value Theorem [86, p. 215] applies over the interval (t∗, T ): as ϕP (t∗) =

ϕP (T ) = 0 and ϕP is continuous and differentiable over this interval, there must

exist τ ∈ (t∗, T ) such that ϕ̇P (τ) = 0. However, from (4.4.11a), it can be seen that

ϕ̇P (t) < 0 for t ∈ (t∗, T ), a contradiction. Therefore, ϕP (t∗) > 0.

Thus, either t∗ = 0 or ϕZ(t∗) = ϕP (t∗). If t∗ = 0, due to (4.4.9b), we have

uP (t) = 1 and uZ(t) = 0 for all t which agrees with the structure in Theorem 10,

so henceforth we focus on the case where ϕZ(t∗) = ϕP (t∗) > 0.

First, we derive a property that will prove useful later on. We have Ż(t) ≥ 0

from (4.3.1b) and Theorem 9, and thus due to the convexity of g(·) for t < t∗:

Gg′(Z(t∗))

γ
≥ Gg′(Z(t))

γ
. (4.4.12)

Next, Z(t∗) can either be equal to zero or strictly positive. We first show that

if Z(t∗) = 0, the structure holds.

188



If Z(t∗) = 0, we have Ż = γβSZ for t ∈ (t∗, T ) as uZ(t) = 0 in this interval.

Consider M1 > 0 to be an upper-bound on the continuous γβS in this interval, so

we must have Z(t) ≤ Z(t∗)eM1(t−t∗) = 0, and therefore Z(T ) = 0 due to continuity

and the uniqueness of solutions of first-order initial value problems. Thus, as

Ż ≥ 0 for t ∈ (0, T ), we must have Ż = 0 over this interval, which from (4.3.1b)

and Theorem 9 leads to uZ(t) = 0 for t ∈ (0, T ) and Z0 = 0. This also means

that from (4.4.11a), ϕ̇P (t) = −βGSf ′(Z + P ) < 0 in this interval, leading to

ϕP (t) > ϕP (T ) = 0, and from (4.4.9), to uP (t) = 1 over this interval. Thus, again

t∗ = 0, agreeing with the structure predicted by Theorem 10. So from now on we

will consider Z(t∗) > 0.

Now, we examine g′(Z(t∗))−f ′((Z+P )(t∗)), noting that it can either be positive

or strictly negative, and investigate both cases in turn.

If g′(Z(t∗)) − f ′((Z + P )(t∗)) ≥ 0, then g′(Z(t)) − f ′((Z + P )(t)) ≥ 0 for

all t ∈ (t∗, T ). This is because from (4.3.1), Ṗ (t) + Ż(t) ≥ 0 and Ż(t) ≥ 0

over this interval, which coupled with the convexity of g(·) and −f(·) in their

arguments gives the aforementioned result. From (4.4.11b) and the definition of

t∗, ϕ̇Z > −γβSϕZ ≥ −M2ϕZ in this interval, with M2 > 0 being an upper-bound

on γβS. Therefore, ϕZ(t∗) ≤ ϕZ(T )e−M2(t∗−T ) = 0 due to an integral argument,

which means that ϕP (t∗) > 0 ≥ ϕZ(t∗). Note that this would contradict the

starting assumption of this segment, which was ϕP (t∗) = ϕZ(t∗)

Therefore, from here on we will examine the case of g′(Z(t∗)) < f ′((Z +
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P )(t∗)).

Time interval leading up to t∗ > 0 and the existence of t′′

We now look at the evolution of ϕZ and ϕP for a time interval leading to t∗ >

0, and show that t′′ exists such that t for t ∈ (t′′, t∗), we have uP (t) = 0 and

uZ(t) = 1. Furthermore, in these cases we showed ϕZ(t∗) = ϕP (t∗), Z(t∗) > 0, and

g′(Z(t∗)) < f ′((Z + P )(t∗)). At such a point t∗, from (4.4.10b) and the continuity

of the states and co-states:

(ϕ̇P (t∗+)− ϕ̇Z(t∗+)) = βS(t∗)[γϕZ(t∗)−Gg′(Z(t∗))]. (4.4.13)

Now, (4.4.13) should be positive, because if this derivative was strictly negative,

the definition of the right-derivative would show that ϕZ(t) > ϕP (t) for t in an

interval starting from t∗, a contradiction. Because from Theorem 9, S(t∗) > 0:

βS(t∗)[γϕZ(t∗)−Gg′(Z(t∗))] ≥ 0 ⇒ ϕZ(t∗) ≥ Gg′(Z(t∗))

γ
. (4.4.14)

Now, we can see from a continuity argument on (4.4.10b) (given that ϕZ(t∗) =

ϕP (t∗) > 0) that ϕ̇Z(t∗−) < 0. Thus ϕZ(t) > ϕZ(t∗) for some interval leading up to

t∗ due to the definition of a left-derivative.

From (4.4.10b), (4.4.12), and (4.4.14), we must have: ϕZ(t) >
Gg′(Z(t))

γ
for

t in some interval leading up to t∗. Let (t′, t∗) be the maximal such interval. In this

interval, from (4.4.10c), ϕ̇P − ϕ̇Z > −(ϕP − ϕZ)(γβZ + βG) ≥ −M3(ϕP − ϕZ),

where M3 > 0 is an upper-bound on the continuous expression γβZ + βG. So
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for any t in this interval, (ϕP (t)− ϕZ(t)) < (ϕP (t∗)− ϕZ(t∗))e−M3(t−t∗) = 0. Thus,

ϕP (t) < ϕZ(t) for t ∈ (t′, t∗). As ϕZ(t∗) > 0, due to the continuity of the states and

co-states, there exists a maximal interval (t′′, t∗) such that ϕZ(t) > max{ϕP (t), 0}.

Following from (4.4.9c), for t ∈ (t′′, t∗) we must have uP (t) = 0 and uZ(t) = 1.

Proof that t′′ = 0

If t′′ = 0, the above concludes our specification of the structure, which agrees with

Theorem 10. Thus, henceforth we assume t′′ > 0, and thus either ϕZ(t′′) = ϕP (t′′)

or ϕZ(t′′) = 0.

For t ∈ (t′′, t∗), (4.4.10) becomes:

ϕ̇P = β[−GSf ′(Z + P ) +G(ϕZ − ϕP ) + γZ(ϕZ − ϕP )] (4.4.15a)

ϕ̇Z = β[GS(g′(Z)− f ′(Z + P ))− γSϕZ ] (4.4.15b)

ϕ̇P − ϕ̇Z = β[γSϕZ − (ϕP − ϕZ)(G+ γZ)−GSg′(Z)], (4.4.15c)

Now, for t ∈ (t′′, t∗), g′(Z(t)) − f ′((Z + P )(t)) < g′(Z(t∗)) − f ′((Z + P )(t∗)) < 0.

This is because Ż(t) > 0 as uZ(t) = 1, and Ṗ (t) = 0 as uP (t) = 0, so g(·) −

f(·) is convex in the strictly increasing Z in this interval. So from (4.4.15b),

ϕ̇Z < −γβSϕZ ≤ −M4ϕZ with M4 > 0 being the upper-bound of the continuous

γβS, and therefore for all t ∈ (t′′, t∗), ϕZ(t) ≥ ϕZ(t∗)e−M4(t−t∗), and therefore by

continuity, ϕZ(t′′) ≥ ϕZ(t∗)e−M4(t′′−t∗). Thus, we can conclude that ϕZ(t′′) > 0, as

ϕZ(t∗) > 0.

So for t′′ > 0, we must have ϕP (t′′) = ϕZ(t′′). In this case, we have (ϕ̇P (t′′+)−
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ϕ̇Z(t′′+)) ≤ 0, as if it is strictly positive, an integral argument will lead to a contra-

diction with ϕP (t) < ϕZ(t) for t ∈ (t′′, t∗). Using the continuity of the states and

co-states and as from Theorem 9, S(t′′) > 0, (4.4.15b) becomes:

ϕ̇P (t′′+)− ϕ̇Z(t′′+) = βS(t′′)[γϕZ(t′′)−Gg′(Z(t′′))] ≤ 0

⇒ ϕZ(t′′) ≤ Gg′(Z(t′′))

γ
, (4.4.16)

We know that for all t ∈ (t′′, t∗), g′(Z(t))−f ′(Z+P (t)) < 0, so from (4.4.15b),

ϕ̇Z(t) < −γβSϕZ < −M5ϕZ < 0, where M5 > 0 is an upper-bound on the contin-

uous γβS. Thus,

ϕZ(t′′) > ϕZ(t∗). (4.4.17)

But (4.4.12), (4.4.16), and (4.4.17) lead to ϕZ(t∗) <
Gg′(Z(t∗))

γ
, which contra-

dicts (4.4.14).

Thus t′′ = 0, and this concludes our specification of the structure of the optimal

controls which conform to the structure set out in Theorem 10.

4.4.3 Results for the halting model (proved in §4.4.4)

Theorem 11. Any optimal control in U ′ will satisfy

uP (t) = uh(t) =


0 t ∈ [0, t∗)

1 t ∈ (t∗, T )

uZ(t) =


1 t ∈ [0, t∗)

0 t ∈ (t∗, T )

for some t∗ ∈ [0, T ), except in the case where Z(t) = 0 for all t ∈ [0, T ], in which

case uh can be arbitrary with the other two structures holding.
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This means that there exists a time threshold t∗ such that prior to t∗, the ger-

minators again convert all the susceptibles they encounter to zombies while not

halting any zombies they meet, and subsequent to it they convert both the sus-

ceptibles and zombies they encounter to passives. Here, the added halting control

can be used to slow the spread of zombies.

The fact that the same result as Theorem 10 holds for uZ and uP in the pres-

ence of uh is not clear a priori. Furthermore, the fact that the halting optimal

control is bang-bang and that the switching time is the same as the other controls

is surprising.

4.4.4 Proof of Theorem 11

Proof. This proof follows the same structure as that of Theorem 10.

As before, we define continuous co-states (λS, λP , λZ , λ0) such that at points of

continuity of the controls:

λ̇S = (λS − λP )βGuP + (λS − λZ)[βGuZ + γβZ]

λ̇Z = λ0g
′(Z)− λ0f

′(Z + P ) + (λS − λZ)γβS + (λZ − λP )πβGuh

λ̇P = −λ0f
′(Z + P ), (4.4.18)

with final state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (4.4.19)
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To characterize optimal controls, we define the Hamiltonian to be:

H(t) =λ0(f(Z + P )− g(Z)) + (λP − λZ)πβGZuh + (λZ − λS)[βGSuZ + γβZS]

+ (λP − λS)βGSuP . (4.4.20)

Pontryagin’s Maximum Principle again gives the following necessary conditions

for an optimal control vector u∗:

(λS, λP , λZ , λ0) 6= ~0, (4.4.21)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t)

≥ H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (4.4.22)

λ0 ∈ {0, 1} (4.4.23)

Again, if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

Now, we have:

λ̇P − λ̇Z = −g′(Z)− (λS − λZ)γβS − (λZ − λP )πβGuh

λ̇S − λ̇Z = f ′(Z + P )− g′(Z) + (λS − λP )βGuP + (λS − λZ)βGuZ

+ (λS − λZ)γβ(Z − S)− (λZ − λP )πβGuh

λ̇S − λ̇P = f ′(Z + P ) + (λS − λZ)[βGuZ + γβZ] + (λS − λP )βGuP ,
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Structure of the optimal control

If we define:

ϕP = (λP − λS)βGS (4.4.24a)

ϕZ = (λZ − λS)βGS (4.4.24b)

ϕh = (λP − λZ)πβGZ, (4.4.24c)

then, the Hamiltonian becomes:

H(t) = f(Z + P )− g(Z) + ϕPuP + ϕZuZ + ϕhuh + (λZ − λS)γβZS. (4.4.25)

Also notice that:

ϕh = π
Z

S
(ϕP − ϕZ). (4.4.26)

The maximization of the Hamiltonian (4.4.22), added to the sum constraints

for the controls (4.3.2a), leads to the following optimality conditions for the con-

trols:

(uP , uZ) =



(0, 0) ϕP < 0, ϕZ < 0 (4.4.27a)

(1, 0) ϕP > 0, ϕP > ϕZ (4.4.27b)

(0, 1) ϕZ > 0, ϕZ > ϕP (4.4.27c)

(?, ?) ϕZ = ϕP ≥ 0 (4.4.27d)

(?, 0) ϕP = 0, ϕZ < 0 (4.4.27e)

(0, ?) ϕZ = 0, ϕP < 0 (4.4.27f)
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Furthermore,

ϕZ(t) > 0 or ϕP (t) > 0⇒ uP (t) + uZ(t) = 1, (4.4.28)

as if that is not true, we can increase H(t) by adding to either uP (t) or uZ(t),

a contradiction with the Hamiltonian maximization condition of the Maximum

Principle (4.4.22).

Also,

uh =



0 ϕh < 0

1 ϕh > 0

? ϕh = 0

. (4.4.29)

Using (4.4.26), we can rewrite (4.4.29) as:

uh =


0 ϕP < ϕZ & Z(t) > 0 (4.4.30a)

1 ϕP > ϕZ & Z(t) > 0 (4.4.30b)

? ϕP = ϕZ or Z(t) = 0 (4.4.30c)

. From (4.4.24) and the state and costate evolution equations and after trite
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manipulation, we have:

ϕ̇P = −βGSf ′(Z + P ) + βGuZ(ϕZ − ϕP ) + γβZ(ϕZ − ϕP ) (4.4.31a)

ϕ̇Z = βGS(kg − f ′(Z + P ))− γβSϕZ + βG(uP − πuh)(ϕP − ϕZ)

(4.4.31b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βGuZ + γβZ + βGuP − βGuh)− βGSkg + γβSϕZ

(4.4.31c)

ϕ̇h = −πβGZkg + πβGuZ(ϕP − ϕZ) + πγβZϕP . (4.4.31d)

From here on, the proof follows the same outline laid out in §4.4.2 (in terms of

finding t∗ and t′′ and proving t′′ = 0); however, the algebraic expressions for ϕ̇Z ,

ϕ̇P are different and ϕh(t) is introduced in the dynamics, necessitating the use of

different and context-specific analytical arguments.

Time interval leading up to T and the existence of t∗

We follow the evolution of ϕZ , ϕP , and ϕh for a time interval leading to T and

prove the existence of t∗ such that we have uP (t) = 1, uZ(t) = 0, and, if Z(T ) > 0,

uh(t) = 1 for all t ∈ (t∗, T ) (otherwise, uh can be arbitrary over this interval).
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From the terminal time costate conditions (4.4.19):

ϕP (T ) = ϕZ(T ) = ϕh(T ) = 0, (4.4.32a)

ϕ̇P (T−) = −f ′((Z + P )(T−))βGS(T−) < 0, (4.4.32b)

ϕ̇P (T−)− ϕ̇Z(T−) = −βGS(T−)kg < 0, (4.4.32c)

ϕ̇h(T
−) = −πβGZ(T−)kg ≤ 0. (4.4.32d)

Now, we may either have Z(T ) = 0 or Z(T ) > 0 due to Theorem 9.

We start by considering the case where Z(T ) = 0. From (4.3.3b) we have

Ż ≥ Z(γβS−πβGuh) ≥M6Z

for t ∈ [0, T ], whereM6 > 0 is an upper-bound on the γβS over the whole interval.

Therefore, Z(t)eM6(t−T ) ≤ Z(T ) = 0. Thus we must have Z(t) = 0 for all t ∈ [0, T ].

This means that Ż(t) = βGSuZ = 0 over this interval, which from Theorem 9

leads to uZ(t) = 0 for all t ∈ [0, T ]. Furthermore, as Z(t) is never positive, uh(t)

will have no effect on the dynamics of the system, and can thus be arbitrary.

Finally, (4.4.31a) and (4.4.32a) tell us that ϕP (T ) = 0 and ϕ̇P (t) = −βGSf ′(P ) <

0 over this interval, which leads to ϕP (t) > 0 for t ∈ [0, T ) due to continuity of the

states and co-states and the differentiability of ϕP (t) using an integral argument.

This, along with uZ(t) = 0 for all t ∈ [0, T ] and (4.4.28) leads to uP (t) = 1 for all

t ∈ [0, T ) (and therefore t∗ = 0). So in sum, for all t ∈ [0, T ), uP (t) = 1, uZ(t) = 0,

with uh(t) taking any arbitrary value. This agrees with the structure set forth in

Theorem 11.
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Henceforth, we examine the case where Z(T ) > 0. From (4.4.32a) and

(4.4.32c), as before, ϕP (t) > max{ϕZ(t), 0} for some interval leading up to T

due to the continuity of the states and costates and using the definition of a left

derivative. Let (t∗, T ) be the largest interval over which this holds for t ∈ (t∗, T )

for some t∗ < T , leading to the fact that for all such t, uP (t) = 1 and uZ(t) = 0

due to (4.4.27b).

We now prove that for t ∈ [t∗, T ], Z(t) > 0. If Z(τ) = 0 at any τ ∈ (t∗, T ), as

uZ(t) = 0 in this interval and from (4.3.3b) we will have Ż = Z(γβS−πβGuh) <

M7Z for t ∈ [τ, T ] and for some M7 > 0 which is an upper-bound to γβS. This

leads to Z(t) ≤ Z(τ)eM7(t−τ) = 0, or Z(t) = 0 for all t ∈ [τ, T ] and especially

Z(T ) = 0 which is a contradiction. The same reasoning also applies to t = t∗ due

to continuity. So for t ∈ [t∗, T ], Z(t) > 0. Thus, from (4.4.30b) and the definition

of t∗, we have uh(t) = 1 for all t ∈ (t∗, T ).

So if t∗ = 0, we have uP (t) = 1, uZ(t) = 0, and uh(t) = 1 for all t ∈ [0, T ),

which agrees with Theorem 11. Now we consider t∗ > 0.

Time interval leading up to t∗ > 0 and the existence of t′′

We now look at the evolution of ϕZ , ϕP , and ϕh for a time interval leading to

t∗ > 0, and show t′′ exists such that for t ∈ (t′′, t∗) we must have uP (t) = 0,

uh(t) = 0, and uZ(t) = 1. For t ∈ (t∗, T ), and after replacing optimal controls,
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(4.4.31) becomes:

ϕ̇P = −βGSf ′(Z + P ) + γβZ(ϕZ − ϕP ) (4.4.33a)

ϕ̇Z = βGS(kg − f ′(Z + P )) + βG(1− π)(ϕP − ϕZ)− γβSϕZ (4.4.33b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(γβZ + βG(1− π))− βGSkg + γβSϕZ , (4.4.33c)

ϕ̇h = πZ(γβϕP − βGkg). (4.4.33d)

It can be seen that ϕ̇P (t) < 0 for t ∈ (t∗, T ) (as ϕP (t) > ϕZ(t) and f ′(Z(t) +

P (t)) > 0 in this interval). This, coupled with ϕP (T ) = 0 ((4.4.32a)) leads to

ϕP (t∗) > 0 due to continuity and an integral argument. Thus, we must have

ϕZ(t∗) = ϕP (t∗) > 0 for t∗ > 0.

For t ∈ (t∗, T ):

Ż + Ṗ = βGS + γβZS > 0. (4.4.34)

Now, if kg − f ′((Z + P )(t∗)) ≥ 0, then kg − f ′((Z + P )(t)) ≥ 0 for all t ∈ (t∗, T )

due to the convexity of kg − f(·) in its argument and as Z + P is strictly in-

creasing in this interval (from (4.4.34)). From (4.4.33b), ϕ̇Z > −γβSϕZ ≥

−M8ϕZ for all t ∈ (t∗, T ), with M8 being an upper-bound on γβS. Therefore,

ϕZ(t∗) < ϕZ(T )e−M8(t∗−T ) = 0 due to an integral argument, which means that

ϕP (t∗) > 0 ≥ ϕZ(t∗). This contradicts the starting assumption of this argument,

which was ϕP (t∗) = ϕZ(t∗).

Therefore, from here on we will consider kg < f ′((Z+P )(t∗)). At such a point
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t∗, from (4.4.33b) and the continuity of the states and co-states:

(ϕ̇P (t∗+)− ϕ̇Z(t∗+)) = βS(t∗)[γϕZ(t∗)−Gkg]. (4.4.35)

Now, (4.4.35) should be positive, because if this derivative was strictly neg-

ative, the definition of the right-derivative would show that ϕZ(t) > ϕP (t) for t

in an interval starting from t∗, a contradiction with the definition of t∗. So, as

S(t∗) > 0 from Theorem 9:

βS(t∗)[γϕZ(t∗)−Gkg] ≥ 0⇒ ϕZ(t∗) ≥ Gkg
γ
. (4.4.36)

Now, we can see from a continuity argument on (4.4.33b) (given that ϕZ(t∗) =

ϕP (t∗) > 0) that ϕ̇Z(t∗−) < 0. Thus ϕZ(t) > ϕZ(t∗) > 0 for some interval leading

up to t∗ due to the definition of a left-derivative. Thus, from (4.4.36) we must

have: ϕZ(t) >
Gkg
γ

(and therefore also ϕZ(t) > 0) for t in some interval leading

up to t∗. Let (t′, t∗) be the maximal such interval. In this interval, from (4.4.33c),

we have

ϕ̇P − ϕ̇Z > −(ϕP − ϕZ)(γβZ + βG(1− π)) ≥ −M9(ϕP − ϕZ),

where M9 > 0 is an upper-bound on the continuous expression γβZ + βG(1− π).

So for any t in this interval, (ϕP (t)− ϕZ(t)) < (ϕP (t∗)− ϕZ(t∗))e−M9(t−t∗) = 0.

Thus, ϕP (t) < ϕZ(t) for t ∈ (t′, t∗). As ϕZ(t∗) > 0, due to the continuity of

the states and co-states, there exists a maximal interval (t′′, t∗) such that ϕZ(t) >

max{ϕP (t), 0}. Following from (4.4.27c) , for t ∈ (t′′, t∗) we must have uP (t) = 0

and uZ(t) = 1.

201



As ϕZ(t) > ϕP (t), from (4.4.30a) and (4.4.30c) we have Z(t)uh(t) = 0 for

t ∈ (t′′, t∗). This leads to Ż(t) > 0 in this interval (from (4.3.3b)), which combined

with Theorem 9 leads to Z(t) > 0 in this interval. Therefore, from (4.4.30a) we

can also conclude that in this interval, uh(t) = 0.

Proof of t′′ = 0

If t′′ = 0, this concludes our specification of the structure, which agrees with

Theorem 11. Thus, henceforth we consider the case where t′′ > 0, and thus

either ϕZ(t′′) = ϕP (t′′) or ϕZ(t′′) = 0.

For t ∈ (t′′, t∗), (4.4.31) becomes:

ϕ̇P = −βGSf ′(Z + P ) + βG(ϕZ − ϕP ) + γβZ(ϕZ − ϕP ) (4.4.37a)

ϕ̇Z = βGS(kg − f ′(Z + P ))− γβSϕZ (4.4.37b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βG+ γβZ)− βGSkg + γβSϕZ (4.4.37c)

ϕ̇h = −πβGZkg + πβG(ϕP − ϕZ) + πγβZϕP , (4.4.37d)

Now, for t ∈ (t′′, t∗),

kg − f ′((Z + P )(t)) < kg − f ′((Z + P )(t∗)) < 0 (4.4.38)

as kg−f(·) is convex and in this interval and Ṗ (t)+Ż(t) = Ż(t) = βGS+γβZS > 0

as uZ(t) = 1, and uP (t) = uh(t) = 0. So from (4.4.37b), ϕ̇Z < −γβSϕZ ≤ −M10ϕZ

with M10 > 0 being the upper-bound of the continuous γβS, and therefore for all

t ∈ (t′′, t∗), ϕZ(t) ≥ ϕZ(t∗)e−M10(t−t∗). As ϕZ(t∗) > 0, ϕZ(t) is bounded away from
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zero, which leads to ϕZ(t′′) > 0 due to continuity.

So we must have ϕP (t′′) = ϕZ(t′′). In this case, from (4.4.37c) we have

(ϕ̇P (t′′+)− ϕ̇Z(t′′+)) ≤ 0, as if it is strictly positive, an integral argument will lead

to a contradiction with ϕP (t) < ϕZ(t) for t ∈ (t′′, t∗). Using the continuity of the

states and co-states, as well as the fact that S(t′′) > 0 from Theorem 9, (4.4.15b)

becomes:

ϕ̇P (t′′+)− ϕ̇Z(t′′+) = βS(t′′)[γϕZ(t′′)−Gkg] ≤ 0 ⇒ ϕZ(t′′) ≤ Gkg
γ
, (4.4.39)

From (4.4.38) and (4.4.37b), ϕ̇Z < −γβSϕZ < −M10ϕZ < 0. So,

ϕZ(t′′) > ϕZ(t∗). (4.4.40)

But (4.4.36) and (4.4.39) lead to ϕZ(t′′) ≤ ϕZ(t∗), which contradicts (4.4.40).

Thus t′′ = 0, and this concludes our specification of the structure of the optimal

controls which conform to the structure set out in Theorem 11.

4.4.5 Results for the adaptive defense model

Theorem 10 holds (with the difference that t∗ ∈ [0, T ]) for constant, affine, and

sigmoid β(Z). This is remarkable given that here, β changes as a function of Z.

This result is proved in §4.4.6.
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4.4.6 Proof of Theorem 10 for the adaptive defense model

Proof. We first provide a general framework (akin to the one presented for The-

orem 10), and then we differentiate the analysis based on the type of adaptive

defense used by the network: Constant β(Z) in §4.4.6, affine β(Z) in §4.4.6, and

sigmoid β(Z) in §4.4.6

As before, define the continuous co-states (λS, λP , λZ , λ0) such that at points

of continuity of the controls:

λ̇S = β(Z)[(λS − λP )GuP + (λS − λZ)(GuZ + γZ)]

λ̇Z = −λ0f
′(Z + P ) + (λS − λZ)γβ(Z)S + β′(Z)[(λS − λP )GSuP

+ (λS − λZ)GSuZ + (λS − λZ)γZS]

λ̇P = −λ0f
′(Z + P ), (4.4.41)

with final co-state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (4.4.42)

To characterize optimal controls, we define the Hamiltonian:

H(t) :=λ0f(Z + P ) + (λP − λS)β(Z)GSuP + (λZ − λS)β(Z)GSuZ

+ (λZ − λS)γβ(Z)ZS (4.4.43)

Pontryagin’s Maximum Principle [78, p.182] gives us the following necessary
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conditions for optimality for an optimal control vector u∗:

(λS, λP , λZ , λ0) 6= ~0, (4.4.44)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t)

≥ H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (4.4.45)

λ0 ∈ {0, 1} (4.4.46)

But if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

General structure of the optimal control

If we define:

ϕP = (λP − λS)β(Z)GS (4.4.47a)

ϕZ = (λZ − λS)β(Z)GS, (4.4.47b)

then, the Hamiltonian becomes:

H(t) = f(Z + P ) + ϕPuP + ϕZuZ + (λZ − λS)γβ(Z)ZS. (4.4.48)

The maximization of the Hamiltonian (4.4.45), added to the sum constraints

for the controls (4.3.2a), leads to (4.4.9) as the optimality conditions for the

controls:

ϕZ(t) > 0 or ϕP (t) > 0⇒ uP (t) + uZ(t) = 1, (4.4.49)

as if that is not true, we can add to the instantaneous value ofH(t) by adding to ei-

ther uP (t) or uZ(t), a contradiction with the Hamiltonian maximization condition

(4.4.45).

205



From (4.4.47) and the state (4.3.5) and costate (4.4.41) evolution equations

and after some manipulation, we have:

ϕ̇P = −β(Z)GSf ′(Z + P ) + β′(Z)SϕP [GuZ + γZ]−(ϕP − ϕZ)β(Z)[GuZ + γZ]

(4.4.50a)

ϕ̇Z = −β(Z)GSf ′(Z + P )− ϕPGuPβ′(Z)S−ϕZβ(Z)γS + (ϕP − ϕZ)β(Z)GuP ,

(4.4.50b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+ϕPS
[
γβ(Z) + β′(Z)[G(uZ + uP ) + γZ]

]
(4.4.50c)

Again, the proof follows the outline laid out in §4.4.2 (i.e., proving the existence

of t∗ and t′, which are, however, defined differently, and proving t′ = 0 for t∗ > 0),

with the difference that the algebraic expressions for ϕ̇Z and ϕ̇P , and therefore all

subsequent analytical arguments, will change.

Time interval leading up to T and the existence of t∗

We follow the evolution of ϕZ and ϕP for a time interval leading to T and prove

the existence of t∗ such that we have uP (t) = 1, and uZ(t) = 0 for all t ∈ (t∗, T ).

From the terminal time costate conditions (4.4.42) and their directional deriva-

tives (4.4.50), we have:

ϕP (T ) = ϕZ(T ) = 0, (4.4.51a)

ϕ̇P (T−) = ϕ̇Z(T−) = −β(Z)GSf ′(Z + P ) < 0. (4.4.51b)
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So, due to continuity of the states and co-states, there is an interval leading up to

T, over which we have ϕP (t) > 0 and ϕZ(t) > 0. Let (t∗, T ) be the maximal length

interval with this property. Equation (4.4.49) leads to

uZ(t) + uP (t) = 1 (4.4.52)

for t ∈ (t∗, T ).

Now, for t ∈ (t∗, T ), (4.4.50c) becomes:

ϕ̇P (t)− ϕ̇Z(t) =− (ϕP − ϕZ)β(Z)[G+ γ(Z + S)] + ϕPS
[
γβ(Z) + β′(Z)[G+ γZ]

]
(4.4.53)

The rest of the analysis depends on the β(Z) function - we present different argu-

ments for β(Z)’s that are constant, affine, and sigmoid (§Appendices 4.4.6, 4.4.6,

and 4.4.6, respectively). For the affine case (§4.4.6), the analysis needs to be bro-

ken down into different cases according to the value of Z(T ) in relation to the con-

stant 1
2
[
βmax

a
−G
γ

]. When β(Z) is a sigmoid (§4.4.6), we use different analytical ar-

guments to prove the result depending on whether eα(Z(T )−Zth)(1− α
γ
G−αZ(T ))+1

is less than, equal to, or greater than zero. For the simple case of constant β(Z)

(§4.4.6), no such conditional arguments are needed.

Constant β(Z)

Assume β(Z) = β.7 In this case, there is no penalty for creating zombies, and

we expect zombies to be created for the whole time period. Then for t ∈ (t∗, T ),

7Note that this is a case of the model in §4.4.5 with g ≡ 0.
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(4.4.53) becomes:

(ϕ̇P − ϕ̇Z)(t) =ϕPSγβ − (ϕP − ϕZ)β[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M11,

for all t ∈ (t∗, T ) and for some M11 > 0 that is an upper-bound for β(G+γ(Z+S)),

as ϕP (t)S(t)γβ > 0 in this interval. Therefore, for t ∈ (t∗, T ), ϕP (t) − ϕZ(t) <

[ϕP (T ) − ϕZ(T )]e−M11(t−T ) = 0 (from (4.4.51a)), and thus ϕP (t) < ϕZ(t) for t ∈

(t∗, T ).

Due to the continuity of the states and co-states and from the definition of t∗,

there exists an interval (t′, T ), with t′ ≤ t∗ such that ϕZ > ϕP and ϕZ > 0. These

conditions, coupled with (4.4.9c) lead to uP (t) = 0 and uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = ϕP (t′) or ϕZ(t′) = 0

for some t′ > 0 due to continuity of the states and co-states.

Since uP (t) = 0 for t ∈ (t′, T ), (4.4.50b) becomes:

ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0,

which leads to ϕZ(t′) > ϕZ(T ) = 0. Thus, ϕZ(t′) cannot be equal to zero.

If ϕZ(t′) = ϕP (t′), then from (4.4.50c), β′(Z) = 0 for constant β(Z), and the

continuity of the states and co-states:

(
ϕ̇P − ϕ̇Z

)
(t′+) =ϕP (t′)S(t′)γβ = ϕZ(t′)S(t′)γβ > 0,

leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contra-

diction with the definition of t′.
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Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the

statement of Theorem 10 and our intuition that zombies will be created for the

entire period.

Affine β(Z)

Assume β(Z) = −aZ + βmax, with 0 < a ≤ βmax (as βmax is an upperbound on this

β(Z) and β(Z) > 0). Then, for t ∈ (t∗, T ), (4.4.53) becomes:

ϕ̇P (t)− ϕ̇Z(t) =− aϕPS
[
γ(2Z − βmax

a
) +G

]
−(ϕP − ϕZ)(−aZ + βmax)[G+ γ(Z + S)] (4.4.54)

Now we break down the situations that can arise based on the value of Z(T )

with respect to the fixed 1
2
[βmax

a
− G

γ
]:

Z(T ) ≤ 1
2
[
βmax

a
− G

γ
] Note that for this case, we must have 1

2
[βmax

a
− G

γ
] ≥ 0 due

to Theorem 9.

We first consider the sub-case where Z(T ) = 1
2
[βmax

a
− G

γ
] = 0. Here, we must

have Ż(t) = 0 for all t as Ż(t) ≥ 0 for all t and as states are continuous. The only

way for Ż(t) = 0 for all t is for us to have Z0 = 0 and uZ(t) = 0 for all t < T (due

to Theorem 9). This leads to (4.4.50a) becoming ϕ̇P (t) = −β(0)GS(t)f ′(P (t)) < 0

for all t < T , and thus ϕP (t) > 0. This fact, combined with uZ(t) = 0 for all t and

(4.4.9b) leads to uP (t) = 1 for all t (i.e., t∗ = 0 in the statement of Theorem 10).

Otherwise, we either have (i) Z(T ) = 1
2
[βmax

a
−G

γ
] > 0 or (ii) Z(T ) < 1

2
[βmax

a
−G

γ
].
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(i) In this case, from (4.3.5) (for which β(Z) > 0 and G > 0), Theorem 9

(which specifies S(T ) > 0), and continuity of the states, we have Ż(T−) > 0.

Thus Z(t) < 1
2
[βmax

a
− G

γ
] for some (t′′, T ). Therefore, as Ż(t) ≥ 0 for all t, so

Z(t) < 1
2
[βmax

a
− G

γ
] for all t < T .

(ii) Since Ż ≥ 0 from (4.3.5) and Theorem 9, in this case we also have Z(t) <

1
2
[βmax

a
− G

γ
] for all t < T .

Therefore for both (i) and (ii), γβmax − 2γaZ(t)−Ga > 0 for all t < T .

From (4.4.54) and for all t ∈ (t∗, T ):

ϕ̇P (t)− ϕ̇Z(t) >− (ϕP − ϕZ)β(Z)[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M12,

for some M12 > 0 which is an upper-bound to the continuous β(Z)[G + γ(Z +

S)] over this interval. Therefore, for t ∈ (t∗, T ), ϕP (t) − ϕZ(t) < [ϕP (T ) −

ϕZ(T )]e−M12(t−T ) = 0, and thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and because for t ∈ (t∗, T ),

ϕZ(t) > 0, there exists an interval (t′, T ), with t′ ≤ t∗ such that both ϕZ(t) > ϕP (t)

and ϕZ(t) > 0. These conditions, coupled with (4.4.9c) lead to uP (t) = 0 and

uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = 0 or ϕZ(t′) = ϕP (t′)

for some t′ > 0 due to continuity of the states and co-states.

For t ∈ (t′, T ) (4.4.50b) becomes:

ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0,
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which leads to ϕZ(t′) > ϕZ(T ) = 0.

So we must have ϕZ(t′) = ϕP (t′) for t′ > 0. From (4.4.54) and the continuity

of the states and co-states:

(
ϕ̇P − ϕ̇Z

)
(t′+) = ϕP (t′)S(t′)

[
γβmax − 2γaZ(t′)−Ga

]
= ϕZ(t′)S(t′)

[
γβmax − 2γaZ(t′)−Ga

]
> 0,

leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contra-

diction with the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the

statement of Theorem 10.

Z(T ) > 1
2
[
βmax

a
− G

γ
] Due to the continuity of the states, Z(t) > 1

2
[βmax

a
− G

γ
] for

t ∈ (t1, T ) for some t1. Recall that for t ∈ (t∗, T ), ϕP (t) > 0. Thus, for t ∈ (t2, T ),

where t2 = max{t∗, t1} and with M12 again defined as the upper-bound to the

continuous β(Z)[G+ γ(Z + S)], (4.4.54) leads to:

ϕ̇P (t)− ϕ̇Z(t) < −(ϕP − ϕZ)β(Z)[G+ γ(Z + S)] ≤ −(ϕP − ϕZ)M12.

Therefore, in this interval, ϕP (t) − ϕZ(t) > [ϕP (T ) − ϕZ(T )]e−M12(t−T ) = 0, and

thus ϕP (t) > ϕZ(t) and ϕP (t) > 0 for t ∈ (t2, T ).

Now, due to the continuity of the states and co-states, define (t3, T ) to be

the maximal length interval over which ϕP (t) > max{ϕZ(t), 0}. Note that for

t ∈ (t3, T ) we have uZ(t) = 0 and uP (t) = 1 due to (4.4.9b).
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Due to continuity of the states and co-states, either t3 = 0, in which case

uZ(t) = 0 and uP (t) = 1 for all t (agreeing with the structure of Theorem 10), or

we have a t3 > 0 such that ϕP (t3) = 0 or ϕP (t3) = ϕZ(t3) > 0.

From (4.4.50a), Theorem 9, and from the definition of t3, for t ∈ (t3, T ) we

have:

ϕ̇P = −β(Z)GSf ′(Z + P )− (ϕP − ϕZ)β(Z)γZ − aSϕPγZ

< −aSϕPγZ ≤ −M13ϕP ,

for some M13 > 0 that is an upper-bound to the continuous a1SγZ over this

interval. Thus,

ϕP (t3) > ϕP (T )e−M13(t3−T ) = 0.

So for t3 > 0, we must have ϕP (t3) = ϕZ(t3) > 0. From the continuity of

the states and co-states, there must exist an interval leading up to t3 such that

ϕZ(t) > 0 and ϕP (t) > 0. Let (t4, t3) be the maximal-length interval with such

a property. Notice that (4.4.49) also applies, leading to uP (t) + uZ(t) = 1 for

t ∈ (t4, t3).

Furthermore, also from continuity, (4.4.54) becomes:

(ϕ̇P − ϕ̇Z)(t+3 ) = −aϕP (t3)S(t3)
[
γ(2Z(t3)− βmax

a
) +G

]
(4.4.55)

But if ϕ̇P (t+3 ) − ϕ̇Z(t+3 ) < 0, then due to continuity and the definition of the

derivative, we must have an interval starting from t3 where ϕZ(t) > ϕP (t), which

contradicts the definition of t3 (which stated that over an interval starting at t3,
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ϕP (t) > max{ϕP (t), 0}). So we must have ϕ̇P (t+3 ) − ϕ̇Z(t+3 ) ≥ 0. From (4.4.55)

this is equivalent to [γ(2Z(t3)− βmax

a
) +G

]
≤ 0, or Z(t3) ≤ 1

2
[βmax

a
− G

γ
].

Following the same set of arguments as presented in §4.4.6 for the case of

Z(T ) ≤ 1
2
[βmax

a
− G

γ
] and retracing them for Z(t3) ≤ 1

2
[βmax

a
− G

γ
] (with t3 replacing

T in all arguments) shows that the structure postulated in Theorem 10 holds.

Thus, all possible state and co-state trajectories lead to the structure postulated

in Theorem 10.

Sigmoid β(Z)

Assume βZ =
β0

1 + eα(Z−Zth)
, with 0 < Zth < 1 being a fixed threshold and α > 0

denoting the sharpness of the cut-off. This simulates a threshold-like detection of

zombies by a network administrator. In this case, (4.4.50c) becomes:

ϕ̇P − ϕ̇Z =−(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+
β0γϕPS

[
eα(Z−Zth)(1− α

γ
G(uz + uP )− αZ) + 1

]
(1 + eα(Z−Zth))2

(4.4.56)

Define: Ψ(Z, uZ + uP ) := eα(Z−Zth)(1 − α
γ
G(uz + uP ) − αZ) + 1. Then (4.4.56)

becomes:

ϕ̇P − ϕ̇Z =−(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+
β0γϕPS

(1 + eα(Z−Zth))2
Ψ(Z, uZ + uP ) (4.4.57)

Now, for possible intervals where uZ +uP is a constant c ∈ [0, 1], Ψ(Z, c) is a func-

tion of one variable (Z). We can see that at points of continuity of the controls and
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in intervals where it is defined, Ψ(Z, c) is also continuous and differentiable. Fur-

thermore, we can see that at points of continuity of the controls in these intervals,

we have:

dΨ(Z, c)

dZ
= −α2eα(Z−Zth)(

G

γ
c+ Z) < 0 (4.4.58)

Now we break down the situations that can arise based on the value of Ψ(Z(T ), 1):

Ψ(Z(T ), 1) > 0 From Ż ≥ 0 ((4.3.5) and Theorem 9) and the continuity of the

states, we have Z(t) ≤ Z(T ) for all t. Now for t ∈ (t∗, T ), as the sum of the

controls is constant and equal to one due to (4.4.52), we will have Ψ(Z(t), 1) ≥

Ψ(Z(T ), 1) > 0 due to (4.4.58). Thus from (4.4.57) and for all t ∈ (t∗, T ) at which

the controls are continuous:

ϕ̇P (t)− ϕ̇Z(t) >− (ϕP − ϕZ)β(Z)[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M14,

for some M14 > 0 which is an upper-bound to the continuous β(Z)[G+ γ(Z +S)].

Therefore, for t ∈ (t∗, T ), ϕP (t)−ϕZ(t) < [ϕP (T )−ϕZ(T )]e−M14(t−T ) = 0, and thus

ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and from the definition of t∗,

there exists an interval (t′, T ), with t′ ≤ t∗ such that ϕZ(t) > ϕP (t) and ϕZ(t) > 0.

These conditions, coupled with (4.4.9c) lead to uP (t) = 0 and uZ(t) = 1 for all

t ∈ (t′, T ), with the corollary that uP (t) + uZ(t) = 1.

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = 0 or ϕZ(t′) =

ϕP (t′) > 0 for t′ > 0 due to continuity of the states and co-states.
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For t ∈ (t′, T ), as uP (t) = 0, (4.4.50b) becomes:

ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0,

as each term in the right hand side is strictly positive in the interval. Now, if

we have ϕZ(t′) = 0, from this time-derivative and continuity of the states and

co-states we must have ϕZ(t′) > ϕZ(T ) = 0. Thus, ϕZ(t′) = 0 is ruled out.

On the other hand, if ϕZ(t′) = ϕP (t′) > 0, then from (4.4.57) and the continu-

ity of the states and co-states:

(
ϕ̇P − ϕ̇Z

)
(t′+) =

β0γϕP (t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1) > 0

leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contra-

diction with the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the

statement of Theorem 10.

Ψ(Z(T ), 1) = 0 and Z(T ) > 0 We have Ż(T−) > 0 (from (4.3.5), Theorem 9,

and continuity) which leads to Z(t) < Z(T ) for an interval leading up to t. As

Ż ≥ 0, we can extend Z(t) < Z(T ) to all t. Now for t ∈ (t∗, T ), from (4.4.52), we

will have Ψ(Z(t), 1) > Ψ(Z(T ), 1) = 0 due to (4.4.58). We now prove t′ = 0 and

uZ(t) = 1 and uP (t) = 0 for all t.

From (4.4.52), (4.4.57), for all t ∈ (t∗, T ) (over which ϕP (t) > 0):

ϕ̇P (t)− ϕ̇Z(t) > −(ϕP − ϕZ)β(Z)[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M12,
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for some M12 > 0 which is an upper-bound to the continuous β(Z)[G + γ(Z +

S)] over this interval. Therefore, for t ∈ (t∗, T ), ϕP (t) − ϕZ(t) < [ϕP (T ) −

ϕZ(T )]e−M12(t−T ) = 0, and thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and because for t ∈ (t∗, T ),

ϕZ(t) > 0, there exists an interval (t′, T ), with t′ ≤ t∗ such that both ϕZ(t) > ϕP (t)

and ϕZ(t) > 0. These conditions, coupled with (4.4.9c) lead to uP (t) = 0 and

uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either (i) ϕZ(t′) = 0 or (ii)

ϕZ(t′) = ϕP (t′) for some t′ > 0 due to continuity of the states and co-states.

For t ∈ (t′, T ) (4.4.50b) becomes:

ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0,

which leads to ϕZ(t′) > ϕZ(T ) = 0.

So for t′ > 0 we must have ϕZ(t′) = ϕP (t′). From (4.4.57) and the continuity

of the states and co-states:

(
ϕ̇P − ϕ̇Z

)
(t′+) =

β0γϕP (t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1)

=
β0γϕZ(t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1) > 0,

leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contra-

diction with the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the

statement of Theorem 10.
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Ψ(Z(T ), 1) = 0 and Z(T ) = 0 We must have Ż(t) = 0 for all t as Ż ≥ 0 and as

states are continuous. The only way for Ż(t) = 0 for all t is for us to have Z0 = 0

and uZ(t) = 0 for all t < T (due to Theorem 9). This leads to (4.4.50a) becoming

ϕ̇P (t) = −β(0)GS(t)f ′(P (t)) < 0 for all t < T , and thus ϕP (t) > 0. This fact,

combined with uZ(t) = 0 for all t and (4.4.9b) leads to uP (t) = 1 for all t.

Ψ(Z(T ), 1) < 0 Due to the continuity of the states, Ψ(Z(t), 1) < 0 for t ∈ (t1, T )

for some t1. Thus, (4.4.57) leads to ϕ̇P (t)− ϕ̇Z(t) < −(ϕP − ϕZ)β(Z)[G + γ(Z +

S)] ≤ −(ϕP −ϕZ)M12, for t ∈ (t2, T ), where t2 = max{t∗, t1} and with M12 defined

as before (an upper-bound to the continuous β(Z)[G+γ(Z+S)] over this interval).

Therefore, in this interval, ϕP (t) − ϕZ(t) > [ϕP (T ) − ϕZ(T )]e−M12(t−T ) = 0, and

thus ϕP (t) > ϕZ(t) and ϕP (t) > 0 for t ∈ (t2, T ).

Now, due to the continuity of the states and co-states, define (t3, T ) to be the

maximal length interval over which ϕP (t) > ϕZ(t) and ϕP (t) > 0. Note that for

t ∈ (t3, T ) we have (due to (4.4.9b)) uZ(t) = 0 and uP (t) = 1.

Due to continuity of the states and co-states, either t3 = 0, in which case

uZ(t) = 0 and uP (t) = 1 for all t, or we have a t3 > 0 such that (i) ϕP (t3) = 0 or

(ii) ϕP (t3) = ϕZ(t3) > 0.

From (4.4.50a), Theorem 9, and from the definition of t3, for t ∈ (t3, T ) we
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have:

ϕ̇P = −β(Z)GSf ′(Z + P )− (ϕP − ϕZ)β(Z)γZ − αβ0γe
α(Z−Zth)

(1 + eα(Z−Zth))2
SϕPZ

< −αβ0γe
α(Z−Zth)SZ

(1 + eα(Z−Zth))2
ϕP ≤ −M15ϕP ,

for some M15 > 0 that is an upper-bound to the continuous
αβ0γe

α(Z−Zth)SZ

(1 + eα(Z−Zth))2
.

Thus, ϕP (t3) > ϕP (T )e−M15(t3−T ) = 0.

So for t3 > 0 we must have ϕP (t3) = ϕZ(t3) > 0. From the continuity of

the states and co-states, there must exist an interval leading up to t3 such that

ϕZ(t) > 0 and ϕP (t) > 0. Let (t4, t3) be the maximal-length interval with such

a property. Notice that (4.4.49) also applies, leading to uP (t) + uZ(t) = 1 for

t ∈ (t4, t3).

Furthermore, also from continuity, (4.4.57) becomes:

ϕ̇P (t+3 )− ϕ̇Z(t+3 ) =
β0γϕP (t3)S(t3)

(1 + eα(Z(t3)−Zth))2
Ψ(Z(t3), 1) (4.4.59)

But if ϕ̇P (t+3 )− ϕ̇Z(t+3 ) < 0, then due to continuity and the definition of the deriva-

tive, we must have an interval starting from t3 where ϕZ(t) > ϕP (t), which con-

tradicts the definition of t3. So we must have ϕ̇P (t+3 )− ϕ̇Z(t+3 ) ≥ 0. From (4.4.55)

this is equivalent to Ψ(Z(t3), 1) ≥ 0.

Following the same set of arguments as presented in §4.4.6, §4.4.6, and §4.4.6

for the case of Ψ(Z(T ), 1) ≥ 0 and retracing them for Ψ(Z(t3), 1) ≥ 0 (with t3

replacing T in all arguments) shows that the structure postulated in Theorem 10

holds.
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Thus, all possible state and co-state trajectories lead to the structure postulated

in Theorem 10.

4.5 Simulation

In the preceding sections, we showed that the optimal spreading controls of the

malware in all of the described settings can be fully described by a scalar parame-

ter t∗. In this section, we investigate the variation of t∗ with respect to some system

parameters and then compare the relative performance of the optimal spreading

controls with simple heuristics (§4.5.1). In these studies, the main parameter of

variation is γ, as a higher γ indicates that zombies spread at a faster rate than

infection via germination, and thus γ represents a measure of the virility of the

zombie malware variant. Varying γ changes the relative contact rates internal to

the model and thus represents different possible dynamics of a malware attack. In

contrast, varying β, the contact rate of germinators and susceptibles, changes the

number of contacts across the board, which is equivalent to changing T . Thus any

variation of β would only show how t∗ changes for a specific epidemic. Finally,

we numerically investigate the fragility of the optimal control to network estima-

tion errors in the adaptive defense model and to synchronization errors among

germinators (§4.5.2).

219



4.5.1 Structure of the optimal malware spread controls and

their performance vs heuristics

We first computed t∗ (the optimal switching time) as a function of the relative

spread rate of the zombies γ for the problems in §4.3.1 and §4.3.2 (with different

values of halting efficacy π), as well as the optimal controls, for a cost function for

which both Theorem 10 and 11 apply (Figure 4.2). As γ increases, zombies are

created for a shorter period due to the rapid explosion of their population later

on. Furthermore, the addition of a halting control and its increased efficacy leads

to the attacker creating zombies for longer, as she can control their spread (and

thus their visibility) later on using the halting control.

We then compared the cost of these two optimal controls to that of simple

heuristics: for the model in §4.3.1, Always Zombie and Always Passive represent

the two most extreme policies - Always Zombie sets uZ(t) = 1 and uP (t) = 0 for

all times, while Always Passive does the exact opposite. Thus, in these heuristics

the germinators only ever propagate one fixed type of malware variant. In the

Optimal Static Mixing heuristic, the attacker chooses a fixed ratio for uZ and uP

at all times. Our optimal controls are titled No Halting and Halting, the latter

indexed by the value of π (which represents the relative success of the germinators

in halting zombies). The efficacy of the policies is evaluated as γ, the relative

propagation rate of the zombies is varied (Figure 4.3, which is presented for the

220



0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

γ

t*

 

 

Halting (Π=0.9)
Halting (Π=0.5)
Halting (Π=0.3)
No Halting

Figure 4.2: We compared t∗ (the length of time the zombie control uZ was equal

to one) for the optiml no halting and halting controls as the secondary rate of

spread of the zombies (γ) was varied. Here, β = 2, T = 5,(S0, G0, Z0, P0) =

(0.99, 0.01, 0, 0), f(x) = x0.5, and g(x) = kgx = 0.7x.
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same parameters as those used in Figure 4.2).

The optimal controls perform much better than the heuristics, with the halting

control outperforming the no-halting control for by as much as 10% for large val-

ues of π (where the halting control is efficient) and γ (where the zombie variant

propagation is rapid), both factors which penalize sub-optimal decision-making.

This vindicates the assumption that the attacker would be wise to utilize the halt-

ing control were it to be available. Out of the simple heuristics, optimal static

mixing has the maximum utility, which is typically 10% below that of even the

no-halting optimal control.
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Figure 4.3: Comparison of the damage utilities across the optimal controls and

heuristics for the parameters of Fig. 4.2.
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4.5.2 Fragility of the optimal damage to network estimation

errors and synchronization errors in the germinators

We then investigated how the optimal control would fare when the network,

which is capable of adaptive defense (i.e., the model in §4.3.3), has an erroneous

estimate of the fraction of zombies, and (Figure 4.4). The optimal attack policy

is derived with the assumption that the network’s defense policy is based on the

correct observation of the visibility of the epidemic (i.e., the fraction of zombies),

information that is rarely available. Figure 4.4 shows that the optimal control is

remarkably robust to the network’s estimation errors up, with an error of 5% even

when the estimation error is 40%. In many cases, the performance is much better.

Finally, we examined how synchronization errors among germinators would

affect the utility of the malware. One of the benefits of the malware spread models

was that they assumed that only this small fraction of nodes, which is under the

direct control of the attacker, has to coordinate their actions. To examine the

fragility of the optimal control to this coordination, once the optimal policy is

derived, random errors are introduced to the clocks of the germinators, and the

resulting utilities are compared over 100 runs of the simulation (Figure 4.5). As

can be seen, the damage of both the no halting (π = 0) and halting (π = 0.5) cases

is distributed around the damage obtained by the calculated optimal control, and

only suffers a 10-15% performance drop for synchronization errors of up to 30%
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Figure 4.4: The network was assumed to make unbiased random estimation er-

rors at each time instant with the range depicted on the x-axis. The solid line

shows the average difference in damage relative to the optimal over 50 runs of

the estimating network. Here, we used an exponential sigmoid β(Z) with β0 = 1,

α = 100, T = 15, γ = 1.4, Zth = 0.01, (S0, G0, Z0, P0) = (0.999, 0.001, 0, 0), and

f(x) = x0.9.
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of t∗ in the small number of germinators.

Furthermore, it can be seen that the synchronized infinite-node optimal con-

trol can actually perform slightly worse than the case where there are synchro-

nization errors on a finite number of nodes, even in the mean. We can explain

this as follows: in the previous sections, we characterized the optimal solution

for the problem in §4.3.6 under the assumption that the number of nodes was

infinite. For a finite number of nodes, even without synchronization errors, the

damage sustained by the simulated network can be different from (and potentially

less than) that computed using the computational optimal control framework.

These studies lead to the conclusion that an adversary will not be deterred by

the possibility of errors in estimation and synchronization of the malware spread,

further sounding the alarm about the emerging trend of visibility-aware malware.

4.6 Conclusion

We investigated the coordinated spread of malware variants in computer networks

by focusing on the heterogeneity of these malware in terms of visibility to the

network. We showed that policies that optimize the stealth-spread trade-off for

a variety of malware variant models and objectives (with and without network

defense) have very simple structures. In such optimal policies, only one variant of

the malware is propagated at each point in time by all nodes under the attacker’s

control. Furthermore, the variant being spread changing abruptly at one and only
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Figure 4.5: Germinators were assumed to have unbiased random synchronization

errors at each time instant with the range depicted on the x-axis. The lines shows

average damage over 100 runs with unsynchronized germinators. Here, β = 2,

γ = 0.5, T = 5, (S0, G0, Z0, P0) = (0.99, 0.01, 0, 0), f(x) = x0.5, and g(x) = kgx =

0.7x, and the simulation was run for 500 nodes (i.e., 5 germinators).
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one instance in time, with spread being prioritized beforehand and stealth being

prioritized afterwards. Finally, we showed through simulations that such optimal

policies that are simple to compute, store, and implement provide a significant

gain over naive heuristics and are also robust to clock synchronization errors and

errors in network defense policies, underlining the threat posed by such policies.
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Chapter 5

Summary and Future Directions

In this thesis, we examined the role of heterogeneity in the spread and control

of epidemics. We first presented a taxonomy of heterogeneity, showing that het-

erogeneity can be manifested in contact rates, resources, and epidemics. In sub-

sequent chapters, we sought to develop a theory of the optimal control of each

of these types of heterogeneous epidemics by focusing on a particular problem

within the domain. We showed that optimal patching controls against malware

in a rate-heterogeneous epidemic, for classes of defenders that have different sen-

sitivities to infection and differing control mechanisms at their disposal follow

simple, implementable structures irrespective of the network topology and can

result in significant benefits to the network. We showed that message delivery in

a a Delay-Tolerant Network can be modeled as a resource-heterogeneous epidemic,

focusing on a case where resource-heterogeneity results from differences in the
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remaining energy of nodes. We proved that in such settings, optimal forward-

ing policies follow simple threshold-based structures, and in certain cases have

an innate ordering. Finally, we showed that the spread of malware variants with

differing visibility to the network can be modeled as a case where the epidemic

itself is heterogeneous. We showed that the stealth-spread trade-off is optimized

by simple threshold-based policies that are robust to errors in implementation and

system parameters.

In Chapter 2, we proved structure for optimal patching controls regardless of

network topology. The use of information gathered from particular topologies to

restrict the policy search space is a promising avenue for future work. Further-

more, more efficient computational methods to compute the thresholds will also

be crucial in practice. Finally, the contact rates among different types may not

be fully known, so efficient computation of these rates from real-world data and

trading off the estimation error against the sub-optimality losses that would arise

from running our policies on noisy contact-rate data is a critical avenue for future

work.

In Chapter 3, our analysis targeted the transmission of a single message, and

our simulations reveal that a natural generalization of the corresponding opti-

mal policy substantially outperforms heuristics even for sequential transmission

of multiple messages. It would be of interest to characterize the optimal pol-

icy in this case and also for the transmission of multiple messages with overlap-
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ping time-to-live intervals. Next, in order to attain an adequate balance between

tractability and emulation of reality, we abstracted certain features that arise in

practice. A case in point is that we ignored the energy dissipated in scanning the

media in search of new nodes. We also assumed homogeneous mixing, i.e., the

inter-contact times are similarly distributed for all pairs of nodes. Future research

may be directed towards generalizing the analytical results for models that relax

the above assumptions (e.g., with the rate-heterogeneous model of the previous

chapter). Similarly, we demonstrated using simulations that our optimal control

policy is robust to clock synchronization errors and also errors in the determina-

tion of a node’s residual energy level. Designing policies that are provably robust

to the above errors as per some formal robustness metric remains open.

In Chapter 4 we investigated the optimal controls for the SGZP model with and

without halting with no explicit network defense (§4.3.1 and 4.3.2), and without

halting for the case with adaptive network defense (§4.3.3). This leaves open the

case of the SGZP model with halting and adaptive defense. Initial analytical inves-

tigations show that Theorem 11 is likely generalizable to this case, barring some

technical issues that will be investigated in the future. The set-up and formulation

of the visibility problem is, to the best of our knowledge, novel, and thus leads

itself to analysis both in the mean-field regime and in more structured settings.

In particular, in the mean-field case, possible patching will be addressed at a later

stage, as well as the dynamic game that would result from such a competition.
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Another possible direction is to look at the optimal control of such an epidemic in

sub-populations with differentiating characteristics (e.g., location, contact rate).

Such a generalization would better model Stuxnet in particular, with the goal

being to maximize the number of infected agents in a particular region, while

minimizing the total number of detectable zombies.

231



Bibliography

[1] E. Altman, A. P. Azad, T. Basar, and F. De Pellegrini, “Optimal activation

and transmission control in delay tolerant networks,” in INFOCOM, 2010

Proceedings IEEE. IEEE, 2010, pp. 1–5.

[2] E. Altman, G. Neglia, F. De Pellegrini, and D. Miorandi, “Decentralized

stochastic control of delay tolerant networks,” in INFOCOM 2009, IEEE.

IEEE, 2009, pp. 1134–1142.

[3] M. Altunay, S. Leyffer, J. Linderoth, and Z. Xie, “Optimal response to attacks

on the open science grid,” Computer Networks, 2010.

[4] R. Anderson, C. Barton, R. Böhme, R. Clayton, M. van Eeten, M. Levi,

T. Moore, and S. Savage, “Measuring the cost of cybercrime.” in WEIS, 2012.

[5] H. Andersson and T. Britton, Stochastic epidemic models and their statistical

analysis. Springer New York, 2000, vol. 151.

[6] M. Bailey, E. Cooke, F. Jahanian, and D. Watson, “The blaster worm: Then

and now,” Security & Privacy, IEEE, vol. 3, no. 4, pp. 26–31, 2005.

232



[7] A. Balasubramanian, B. Levine, and A. Venkataramani, “Dtn routing as a

resource allocation problem,” in ACM SIGCOMM Computer Communication

Review, vol. 37, no. 4. ACM, 2007, pp. 373–384.

[8] F. Ball and D. Clancy, “The final size and severity of a generalised stochastic

multitype epidemic model,” Advances in applied probability, pp. 721–736,

1993.

[9] N. Banerjee, M. Corner, and B. Levine, “Design and field experimentation of

an energy-efficient architecture for dtn throwboxes,” Networking, IEEE/ACM

Transactions on, vol. 18, no. 2, pp. 554–567, 2010.

[10] H. Behncke, “Optimal control of deterministic epidemics,” Optimal control

applications and methods, vol. 21, no. 6, pp. 269–285, 2000.

[11] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi, “The cousins of stuxnet:

Duqu, flame, and gauss,” Future Internet, vol. 4, no. 4, pp. 971–1003, 2012.

[12] D. Benson, G. Huntington, T. Thorvaldsen, and A. Rao, “Direct trajectory

optimization and costate estimation via an orthogonal collocation method,”

Journal of Guidance Control and Dynamics, vol. 29, no. 6, p. 1435, 2006.

[13] D. Bernoulli and S. Blower, “An attempt at a new analysis of the mortal-

ity caused by smallpox and of the advantages of inoculation to prevent it,”

Reviews in Medical Virology, vol. 14, no. 5, pp. 275–288, 2004.

233



[14] B. Bollobás, Modern graph theory. Springer Verlag, 1998, vol. 184.

[15] T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,” Computer, vol. 44,

no. 4, pp. 91–93, 2011.

[16] Z. Chen and C. Ji, “Spatial-temporal modeling of malware propagation in

networks,” IEEE Transactions on Neural Networks, vol. 16, no. 5, pp. 1291–

1303, 2005.

[17] D. J. Daley, J. Gani, and J. M. Gani, Epidemic modelling: an introduction.

Cambridge University Press, 2001, vol. 15.

[18] D. Daley and D. G. Kendall, “Stochastic rumours,” IMA Journal of Applied

Mathematics, vol. 1, no. 1, pp. 42–55, 1965.

[19] E. de Oliveira and C. de Albuquerque, “Nectar: a dtn routing protocol based

on neighborhood contact history,” in Proceedings of the 2009 ACM symposium

on Applied Computing. ACM, 2009, pp. 40–46.

[20] F. De Pellegrini, E. Altman, and T. Başar, “Optimal monotone forwarding
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