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Monocular 3d Object Recognition

Abstract
Object recognition is one of the fundamental tasks of computer vision. Recent advances in the field enable
reliable 2D detections from a single cluttered image. However, many challenges still remain. Object detection
needs timely response for real world applications. Moreover, we are genuinely interested in estimating the 3D
pose and shape of an object or human for the sake of robotic manipulation and human-robot interaction.

In this thesis, a suite of solutions to these challenges is presented. First, Active Deformable Part Models
(ADPM) is proposed for fast part-based object detection. ADPM dramatically accelerates the detection by
dynamically scheduling the part evaluations and efficiently pruning the image locations. Second, we unleash
the power of marrying discriminative 2D parts with an explicit 3D geometric representation. Several methods
of such scheme are proposed for recovering rich 3D information of both rigid and non-rigid objects from
monocular RGB images. (1) The accurate 3D pose of an object instance is recovered from cluttered images
using only the CAD model. (2) A global optimal solution for simultaneous 2D part localization, 3D pose and
shape estimation is obtained by optimizing a unified convex objective function. Both appearance and
geometric compatibility are jointly maximized. (3) 3D human pose estimation from an image sequence is
realized via an Expectation-Maximization algorithm. The 2D joint location uncertainties are marginalized out
during inference and 3D pose smoothness is enforced across frames.

By bridging the gap between 2D and 3D, our methods provide an end-to-end solution to 3D object
recognition from images. We demonstrate a range of interesting applications using only a single image or a
monocular video, including autonomous robotic grasping with a single image, 3D object image pop-up and a
monocular human MoCap system. We also show empirical start-of-art results on a number of benchmarks on
2D detection and 3D pose and shape estimation.
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ABSTRACT

MONOCULAR 3D OBJECT RECOGNITION

Menglong Zhu

Kostas Daniilidis

Object recognition is one of the fundamental tasks of computer vision. Recent advances

in the field enable reliable 2D detections from a single cluttered image. However, many

challenges still remain. Object detection needs timely response for real world applications.

Moreover, we are genuinely interested in estimating the 3D pose and shape of an object

or human for the sake of robotic manipulation and human-robot interaction.

In this thesis, a suite of solutions to these challenges is presented. First, Active De-

formable Part Models (ADPM) is proposed for fast part-based object detection. ADPM

dramatically accelerates the detection by dynamically scheduling the part evaluations and

efficiently pruning the image locations. Second, we unleash the power of marrying dis-

criminative 2D parts with an explicit 3D geometric representation. Several methods of

such scheme are proposed for recovering rich 3D information of both rigid and non-rigid

objects from monocular RGB images. (1) The accurate 3D pose of an object instance is

recovered from cluttered images using only the CAD model. (2) A global optimal solu-

tion for simultaneous 2D part localization, 3D pose and shape estimation is obtained by

optimizing a unified convex objective function. Both appearance and geometric compat-

ibility are jointly maximized. (3) 3D human pose estimation from an image sequence is

realized via an Expectation-Maximization algorithm. The 2D joint location uncertainties

are marginalized out during inference and 3D pose smoothness is enforced across frames.

By bridging the gap between 2D and 3D, our methods provide an end-to-end solution

to 3D object recognition from images. We demonstrate a range of interesting applications

using only a single image or a monocular video, including autonomous robotic grasping

with a single image, 3D object image pop-up and a monocular human MoCap system. We

also show empirical start-of-art results on a number of benchmarks on 2D detection and

3D pose and shape estimation.
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Chapter 1

Introduction

There is no royal road to geometry [other than the Elements].

— Euclid, on if there is an easier way of learning geometry.

The idea of autonomous robots being able to interact with its surroundings, serving hu-

man beings in various tasks, dates back to the ancient Greek mythologies. The depiction

of the mechanical servants built by the Greek god Hephaestus is one of the earliest expres-

sions of such dream of human kind. This dream has long been fascinating and nowadays

extended far beyond the form of mere humanoid robot servants but as autonomous vehi-

cles, flying drones, Internet connected devices and smart wearable gadgets, etc. A key

component of such intelligent robotic systems lies in their capacities of 3D object recog-

nition, i.e., the ability to localize, identify and infer the 3D geometry of massive amount

of different objects including us, human, in an unknown environment.

Object recognition is one of the holy grails of computer vision and a vital step towards

true intelligence. Much has been achieved over the past decade within the computer vision

community in terms of identifying objects in 2D imageries. As soon as massive image ex-

emplars became available on the Internet and through industrious annotation (Deng et al.,

2



2009; Everingham et al., 2010), the community has harnessed fruitful results as the state

of the art in detecting object categories has improved dramatically (Felzenszwalb et al.,

2010b; Girshick et al., 2014).

However, recognition means more than just high precision and recall in detection or

classification in 2D. The ultimate goal of recognition is to enable robots to take mean-

ingful actions in 3D. Both accuracy, efficiency and the level of details captured by the

vision systems are crucial. Firstly, fast and robust object recognition assures the robots to

perform tasks reliably in a reasonable amount of time without appearing dumb or over-

thinking. In general, there exists a trade-off between efficiency and accuracy, given limited

computational resource. It is meaningful to consider striking a balance between these two

factors and build a fast system that only tolerances bounded error. Secondly and more

importantly, the images are flat but our world is not. It is the reasoning of detailed object

3D geometry that lays the foundation of robotic interactions, such as manipulation, in the

real world. The link between 2D and 3D recognition is not yet well established within the

community. Designing algorithms that extend beyond recognition in 2D into estimating

the 3D information of the objects from images is thus desirable.

Despite the availability of 3D sensors such as laser scanners, stereo cameras and in-

frared RGB-D sensors, the goal of recovering 3D geometry out of 2D RGB imaginary is

still extremely appealing not only intellectually but also for practical reasons. The prob-

lem of recovering 3D from 2D is ill-posed because of the lost of dimensionality during

image formation. Nonetheless, having a strong prior of the world, human are capable of

perceiving the 3D geometry with only one eye. Thus, although remaining a challenging

problem, it still seems viable for machines. In addition, the existing billions of images

and videos created by consumer cameras and smart phones provide a valuable source of

data for developing machine intelligence in preparing for real world scenarios. The excit-

ing and perceivable future with augmented reality devices, autonomous cars and drones

calls for smarter computer vision systems that can reason the 3D structure from images

efficiently with the minimum sensor load.
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Perhaps the most intriguing aspect of the quest is that bridging the gap between 2D and

3D recognition requires more than just learning and matching patterns but jointly reason-

ing with the prior knowledge of the 3D world geometry. That draws analogy to the actual

human thinking process (Kahneman, 2011), in which both the instinct system – fast and

mostly pattern matching – and the logical system – slow but deliberate – work cohesively

together for a final decision. The hope here is to peak into the essence of true intelligence

following such direction. With all the challenges present and fascinating future awaits, 3D

object recognition is a key step to take along the journey towards realizing the dream of

intelligent robots.

1.1 Problem Statement

Problem 1 (Monocular 3D Object Recognition).

Input: A single RGB image or RGB video sequence of arbitrary scene. The images could

contain arbitrary number of objects including human.

Output: (1) 2D bounding boxes indicating the detected objects and human; (2) 3D ori-

entation, translation and surface mesh model of the objects; 3D orientation, trans-

lation and skeletal pose of human.

Complexity: Polynomial computational time and space in the number of input pixels and

number of output detections and number of object categories.

More specifically, the problem can be split into the following two separate tasks:

• 2D Detection: identify and localize a particular object.

• 3D Recognition: estimate detailed 3D geometric information of the detected objects.

The input images can contain arbitrary scenes with or without objects. In the task

of detection, the objects of interest include any categories of objects with bounding box
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Figure 1.1: Overview of the 3D object recognition problem. Column-wise from left to

right: (1) the input image or image sequence; (2) the first task of the problem is to detect

the objects and output 2D bounding boxes indicating the location and the scale of the

detections; (3) the 3D models of the objects are given; (4) the second task of the problem

is to estimate 6-DOF pose and 3D shape mesh model for objects and 3D skeletal pose for

human.

annotated training examples available. The algorithm should output the same number of

detections as the objects present in the image. If there is no object of interest present,

the output of the algorithm should be empty. In the task of recognition, the objects are

assumed to be detected and roughly localized. It is also assumed that the 3D object CAD

models are available, or the 3D skeleton models in the case of human. The goal of the

algorithms is to reason about the 3D geometry and output both 6-DOF (degree of freedom)

pose and 3D shape mesh of the objects or 3D skeleton joint positions for human. Figure

1.1 illustrates the problem on which this thesis focuses.
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1.2 Challenges

The challenges in 3D object recognition can be roughly classified into three categories,

namely the appearance variation, depth uncertainty and computational complexity. The

appearance variation casts difficulties in localizing and identifying the objects. The depth

uncertainty of each pixel is caused by the image formation process itself in which 3D ob-

jects are projected into 2D. The lost in depth dimension creates impediments in recovering

the original 3D pose and shape of the object. Another challenge lies in the computational

complexity as detectors should be efficient enough for real applications. Each challenge

is discussed in detail in the following sections.

1.2.1 Appearance Variation

The appearance of an object can be affected by different aspects, such as inter class vari-

ation, lightening changes, pose variation etc. In terms of detection the following factors

cast the most challenges.

Intra-class differences First, because of the hierarchical structure of object category

taxonomy, object instances of the same category may belong to different sub-categories

that can appear quite differently. For example, the car category can be further separated

into sedan, hatchback, truck etc. The overall shape of a sedan is largely different from that

of a truck. Second, even the same object instance can appear drastically different due to

changes in lightening, covering material and texture etc. For example, a person wearing

different clothings varies a lot in appearance.

Viewpoint and articulation change Another important factor of appearance variation

is viewpoint from which the object is observed. The occlusion boundary of an object

changes dramatically between different viewing angles. This effect is the inspiration of

the aspect graph representation (Plantinga and Dyer, 1990) in the early days of computer

vision. The challenge here is that it is hard to represent an object category with a single
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rigid template. For non-rigid object such as human, self occlusion cause by the articulation

of body pose also changes the appearances.

Background clutter and occlusion The surrounding background of an object can cause

trouble in detecting an object. Just imagine playing the game of “Where’s Waldo?”. The

presented noisy clutter background overwhelms the presence of the object and usually

triggers false positive detections from the detector. An ideal detector should reliably tell

the differences between foreground and background. In addition, occlusion by other ob-

jects alters the perceived silhouette shape of an object. It is already hard for me to find

the red-white-strip shirt of Waldo among the enormous crowd, not to mention when he is

partially blocked by someone else!

1.2.2 Depth Uncertainty

The biggest hurdle in 3D object recognition from 2D is the depth uncertainly raised natu-

rally from the image formation process. In the classic pinhole camera model, each image

coordinate (u, v) is associated with a ray λ(X, Y, Z) in 3D passing through the camera

center, where λ is a the positive unknown scaling factor inverse proportional to depth

Z. Here we assume the focal length is f and the radial distortion is not considered for

simplicity of discussion. The relation between 2D and 3D can be expressed as



u

v

1


 ∼ λ




f 0 0

0 f 0

0 0 1







X

Y

Z


 .

Lifting 2D to 3D If there are multiple views of the same scene, depth can be estimated

by matching 2D features in the images and triangulating the corresponding rays in 3D

(Hartley and Zisserman, 2004). Recovering the lost depth dimension from a single view-

point cannot be accomplished by triangulation. It requires carefully incorporating geo-

metric prior to explain the observed scene or object.
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Non-rigid human pose Comparing to rigid pose and shape estimation problem, recov-

ering non-rigid pose or motion from images is more daunting. First, it is challenging to

accurately localize the human joints due to the lack of distinctive texture, appearance vari-

ation, foreshortening and occlusion, etc. Second, each joint angle in 3D is ambiguous

even given the perfectly localized 2D position. Either pointing inwards or outwards can

result in the same projection. The lack of the rigidity constrains makes the problem much

harder to solve.

1.2.3 Computational Issues

Computational complexity is another practical concern of the object recognition algo-

rithms. Both the learning and inference algorithms should complete within a reasonable

amount of computational time and space. Both the model and algorithmic complexity

require careful design.

Efficiency and accuracy When dealing with 2D object detection task, a sliding window

approach is usually adopted. The detector searches over the entire 2D image location and

scale space, or the image pyramid. Each location is examined one after another with an

object specific classifier to see if there exists an object or not. The computational time of

such approach grows as the time for evaluating each classifier increases. This approach

becomes more computationally intense as the classifier requires more processing time. On

the other hand, better recognition accuracy is usually achieved with more sophisticated

model which requires longer time to evaluate. The challenge here is to strike a balance

between the efficiency and accuracy.

Search over rotations The 3D pose estimation problem encompasses a parameter search

space over the 3D rotation group SO(3). SO(3) is the special orographic orthogonal in

three dimensions. It has a natural structure as a manifold for which the group operations

are smooth. And it turns out that performing efficient search over the group is rather hard.
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One would either follow the geodesic on the manifold from certain initialization or resort

to an exhaustive search approach. The former approach suffers poor initialization and the

latter has difficulties in handling practical problems as the exhaustive search is too time

consuming.

Search over instances In the task of 3D shape estimation, recovering an accurate shape

is relatively easy when the instance is known. In that case, the shape estimation problem

is reduced to a nearest neighbor problem given the database of known instance. The most

trivial approach means searching over all the instances of an object category to find the

matching one. Linearly searching over the models can be very inefficient and quickly

becomes infeasible for practical problems. Therefore the model representation should be

compact, i.e. sub-linear or even constant w.r.t. the number of instances, and still represent

the entire object category. However, if the instance is unknown or not exactly covered by

the model database, estimating the accurate shape is quite challenging.

1.3 Contributions

Deformable part model (DPM) (Felzenszwalb et al., 2010c), arguably one of the most

successful object detectors in the past decade, represents the object as a union of parts

connected in a star structure.DPM and its variants achieved the state-of-art object detec-

tion results on the most popular object recognition benchmarks such as PASCAL VOC

(Everingham et al., 2010) and ImageNet (Deng et al., 2009). The key to such success lies

in the combination between rigid parts and 2D deformation. The part appearances learned

from data are discriminative enough to handle intra-class variation and the 2D deformation

of the parts allow flexibility to deal with inter-class variation.

There have been several directions to which the researchers extended the powerful

DPM models. One is to accelerate the detection process of DPM. By incorporating the idea

of cascade (Dollár et al., 2012; Felzenszwalb et al., 2010a; Sapp et al., 2010; Weiss et al.,

2012) or Branch-and-Bound (Kokkinos, 2011), those methods reduce the image locations
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to actually evaluate the full model during inference; Another is to increase the model

complexity to deal with structured output problems other than the binary classification

problem as usually presented in object detection. For example, more parts are added to

form a tree-structure model for human pose estimation (Yang and Ramanan, 2011) or

facial landmarks localization (Zhu and Ramanan, 2012); Generic 3D object recognition is

pioneered by Savarese and Fei-Fei (2007). More recently, researchers have been focused

on combining part models with 3D geometry to build more powerful object detectors that

are also able to provide 3D information such as viewpoint (Hu and Zhu, 2014; Liebelt

et al., 2008b; Pepik et al., 2012b,c; Zia et al., 2013). Few efforts have been devoted to the

combined estimation of pose and shape from a single image (Hejrati and Ramanan, 2012;

Lin et al., 2014; Xiang and Savarese, 2012).

This thesis advances the start-of-art in the following two directions.

First, the proposed Active Deformable Part Models (ADPM) pushes the DPM accel-

eration further by considering part evaluation as a planning problem. An active inference

process decides at each image location whether to evaluate more parts and in what order or

to stop and predict a label. A policy is learned off-line to balance the trade-off between the

acceleration gain and detection accuracy loss across the entire training set. The result pol-

icy leads to a three times speed-up versus the prior work of Cascade DPM (Felzenszwalb

et al., 2010a).

Second, a suite of methods to estimate rich 3D information from 2D images are pre-

sented. The proposed methods can solve both instance and category, rigid and articu-

lated 3D recognition problems from singe images. The methods achieve a wide range of

successful applications including robot grasping with only a single image; single image

pop-up via accurate 3D shape reconstruction of object categories; a monocular video Mo-

Cap system through 3D articulated human pose recovery. The essence of our approaches

is marrying the power of discriminative learning with 3D geometrical constrains into a

unified objective function that considers simultaneously appearance and geometric com-

patibility.
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Figure 1.2: Active DPM Overview: A deformable part model is shown with colored root

and parts in the first column. The second column contains an input image and the original

DPM scores as a baseline. The rest of the columns illustrate the inference process of the

Active DPM, which proceeds in rounds. The foreground probability is maintained at each

image location (top row) and is updated sequentially. A policy (learned off-line) is used

to select the best sequence of parts to apply at different locations. The bottom row shows

the part filters applied at consecutive rounds with colors corresponding to the parts on the

left. For more detailed explanation, see §5

1.3.1 Efficient 2D Object Detection, §5

At each location in the image pyramid, a part-based object detector has to make a decision:

whether to evaluate more parts and in what order or to stop and predict a label. This

decision can be regarded as a planning problem, whose state space consists of the set of

previously used parts and the confidence of whether an object is present or not. While

existing approaches rely on a predetermined sequence of parts, our approach optimizes

the order in which to apply the part filters so that a minimal number of part evaluations

provides maximal classification accuracy at each location. Our second idea is to use a

decision loss in the optimization, which quantifies the trade-off between false positive

and false negative mistakes, instead of the threshold-based stopping criterion utilized by

most other approaches. These ideas have enabled us to propose a novel object detector,
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Active Deformable Part Models (ADPM), named so because of the active part selection.

The detection procedure consists of two phases: an off-line phase, which learns a part

scheduling policy from the training data and an online phase (inference), which uses the

policy to optimize the detection task on test images. During inference, each image location

starts with equal probabilities for object and background. The probabilities are updated

sequentially based on the responses of the part filters suggested by the policy. At any time,

depending on the probabilities, the policy might terminate predicting either a background

label (which is what most cascaded methods take advantage of) or a positive label, in

which case all unused part filters are evaluated in order to obtain the complete DPM score.

Fig. 1.2 exemplifies the inference process. The main contributions can be summarized as

the following:

• We obtain an active part selection policy which optimizes the order of the filter

evaluations and balances number of evaluations used with the classification accuracy

based on the scores obtained during inference.

• The proposed detector achieves a significant speed-up versus the cascade DPM with-

out sacrificing accuracy.

• The approach can be generalized to any detection problem, which involves a linear

additive score and uses several parts (stages) even if they are just SIFT points.

1.3.2 3D Pose Estimation of Object Instances, §6

The goal is to detect and localize objects in single view RGB images of environments

containing arbitrary ambient illumination and substantial clutter for the purpose of au-

tonomous grasping. Objects can be of arbitrary color and interior texture and, thus, we

assume knowledge of only their 3D model without any appearance or texture information.

Using 3D models makes an object detector immune to intra-class texture variations. We

further abstract the 3D model by only using its 2D silhouette and thus detection is driven

by the shape of the 3D object’s projected occluding boundary.
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Figure 1.3: Overview of the proposed 3D pose estimation of object instances approach.

From left-to-right: a) The input image. b) S-DPM detection hypothesis on the image

contours. c) The hypothesis bounding box (red) is segmented into superpixels. d) The set

of superpixels with the closest chordiogram distance to the model silhouette is selected.

Pose is iteratively refined such that the model projection aligns well with the foreground

mask silhouette. e) Three textured synthetic views of the final pose estimate are shown.

Object silhouettes with corresponding viewpoints that are tightly clustered on the

viewsphere are used as positive exemplars to train the state-of-the-art Deformable Parts

Model (DPM) (Felzenszwalb et al., 2010c). We term this shape-aware version S-DPM.

S-DPM simultaneously detects the object and coarsely estimates the object’s pose. We

propose to apply an S-DPM classifier on image contours as a first high recall step yield-

ing several bounding box hypotheses. Given these hypotheses, we solve for segmentation

and localization simultaneously. After over-segmenting the hypothesis region into super-

pixels, the superpixels that best match a model boundary are selected using a shape-based

descriptor, the chordiogram (Toshev et al., 2012). A chordiogram-based matching distance

is used to compute the foreground segment and rerank the hypotheses. Finally, using the

full 3D model we estimate all 6-DOF of the object by efficiently iterating on the pose and

computing matches using dynamic programming.

We also demonstrate our approach with a (PR2) robot grasping 3D objects on a clut-

tered table based on a single view RGB image. We report 3D pose accuracy by comparing

the estimated pose rendered by the proposed approach with a ground truth point cloud re-

covered with a RGB-D sensor. Such grasping capability with accurate pose is crucial for
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robot operation, where popular RGB-D sensors cannot be used (e.g., outdoors) and stereo

sensors are challenged by the uniformity of the object’s appearance within their boundary.

Fig. 1.3 exemplifies the inference process. The main contributions can be summarized as

the following.

• In terms of assumptions, our approach is among the few in the literature that can

detect 3D objects in single images of cluttered scenes independent of their appear-

ance.

• It combines the high recall of an existing discriminative classifier with the high

precision of a holistic shape descriptor achieving a simultaneous segmentation and

detection reranking.

• Due to the segmentation, it selects the correct image contours to use for 3D pose

refinement, a task that was previously only possible with stereo or depth sensors.

1.3.3 3D Pose and Shape Estimation of Object Categories, §7

We propose a novel approach that marries the power of discriminative parts with an ex-

plicit 3D geometric representation with the goal to infer 3D shape and continuous pose of

an object (or pop-up) from a single image. Part descriptors are discriminatively learned in

training images. Such parts are centered around projections of 3D landmarks which are

given in abundance on the training 3D models. To establish a compact representation we

minimize the number of needed landmarks by solving a facility-location problem.

To deal with geometric deformation, we summarize the training set of 3D models into

a shape dictionary from which we can generalize by linear combination. Given a test

image we detect top location hypotheses of each part. The challenge is how to fit best

these parts by maximizing the geometric consistency. This entails the selection among the

hypotheses of each part and the shape/pose computation. Unlike other approaches which

rely on local optimization and initialize pose by DPM-based discretized pose estimation

(Lin et al., 2014; Zia et al., 2013), we compute the selection as well as the shape and
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Figure 1.4: Illustrative summary of the single image popup approach: 3D Landmarks on

a 3D model are associated with discriminatively learned part descriptors (left). Intra-class

shape variation is captured with linear combinations of a sparse shape basis (2nd left).

Learned part descriptors produce multiple maximum responses for each part in a testing

image (3rd from left). The selection of the part hypotheses, 3D pose and 3D shape are

simultaneously estimated and the result is illustrated through a popup (right).

pose parameters in one step using a convex program solved with the alternating direction

method of multipliers (ADMM). Fig. 1.4 exemplifies the inference process. The main

contributions can be summarized as the following.

• A convex optimization framework for joint landmark localization, fine grained 3D

shape and continuous pose estimation from a single image.

• Our convex objective does not require viewpoint or detection initialization.

• An automatic landmark selection method considering both discriminative power in

appearance and spatial coverage in geometry.

1.3.4 Articulated 3D Pose Estimation from Image Sequences, §8

This chapter is concerned with the challenge of recovering the 3D full-body human pose

from a monocular RGB image sequence. Potential applications of the presented research
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Figure 1.5: Overview of the proposed articulated 3D Pose Estimation approach. (top-left)

Input image sequence, (top-right) CNN-based heat map outputs representing the soft lo-

calization of 2D joints, (bottom-left) 3D pose dictionary, and (bottom-right) the recovered

3D pose sequence reconstruction.

include human-computer interaction (cf. (Shotton et al., 2011)), surveillance, video brows-

ing and indexing, and virtual reality.

A 3D pose recovery framework that consists of a novel synthesis between discrim-

inative image-based and 3D reconstruction approaches is presented. In particular, the

approach reasons jointly about image-based 2D part location estimates and model-based

3D pose reconstruction, so that they can benefit from each other. Further, to improve

the approach’s robustness against detector error, occlusion, and reconstruction ambiguity,

temporal smoothness is imposed on the 3D pose and viewpoint parameters.

In the light of previous research, this chapter makes the following contributions. Given

a monocular video, two novel approaches for recovering the 3D human pose sequence are

presented. The first approach assumes that the 2D poses are provided and proceeds by

combining a sparse representation of 3D pose with temporal smoothness in the 3D do-

main to estimate the 3D poses. The second approach generalizes the first approach by
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relaxing the common but restrictive assumption that the 2D poses are provided or explic-

itly estimated (cf. (Wang et al., 2014)) and instead treats the 2D pose as a latent variable. A

CNN-based body joint detector is used to learn the uncertainty map for the image location

of each joint. To estimate the 3D pose, an efficient EM algorithm is proposed, where the

latent joint positions are marginalized to fully account for the uncertainty in the 2D joint

locations. Finally, empirical evaluation demonstrates that the proposed approaches are

more accurate compared to extant approaches. In particular, in the case where 2D joint

locations are provided, the proposed approach exceeds the accuracy of the state-of-the-

art NRSFM baseline (Dai et al., 2012) on the Human3.6M dataset (Ionescu et al., 2014).

In the case where the 2D landmarks are unknown, empirical results on the Human3.6M

dataset demonstrate overall improvement over published results. Further, the proposed

approach is shown to outperform a publicly available 2D pose estimation baseline on the

challenging PennAction dataset (Zhang et al., 2013). Fig. 1.5 exemplifies the inference

process.

1.3.5 Published Work Supporting This Thesis

Active Deformable Part Models (§5) is presented in (Zhu et al., 2014a) for fast object

detection. Single Image 3D Object Pose Estimation (§6) first appeared in (Zhu et al.,

2014b) that enables robots grasping different objects by only taking a single image of the

scene. The method of 3D pop-up from single images (§7) extended the scope of single

image grasping to deal with object categories and recover surface shapes appeared in (Zhu

et al., 2015). A further extension to articulated 3D human pose estimation from monocular

videos (§8) is recently accepted to CVPR 2016. In addition, the Active Deformable Part

Models contribute to the success in our recent work of semantic localization (Atanasov

et al., 2015).
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Chapter 2

Related Work

2.1 Accelerated Object Detection

We will refer to work on object detection that optimizes the inference stage rather than

the representations since our representation is identical with DPM (Felzenszwalb et al.,

2010b). Our method is inspired by an acceleration of the DPM object detector, the cas-

cade DPM (Felzenszwalb et al., 2010a). However, while the sequence of parts evaluated

in the cascade DPM is pre-defined and a set of thresholds has to be determined empiri-

cally, our approach selects the part order and the stopping time at each location based on

an optimization criterion. We find the next closest approach to be (Sznitman et al., 2013),

which maintains a foreground probability at each stage of a multi-stage ensemble classifier

and determines a stopping time based on the corresponding entropy. The difference of our

approach is that it jointly optimizes the stage order and the stopping criterion. Kokkinos

(Kokkinos, 2011) uses Branch-and-Bound (BB) to prioritize the search over image loca-

tions driven by an upper bound on the classification score. It is related to our approach in

that object-less locations are easily detected and the search is guided in location space but

with the difference that our policy proposes the next part to be tested in cases that no la-

bel can yet be given to a particular location. Earlier approaches (Lampert, 2010; Lampert

et al., 2008; Lehmann et al., 2011b) relied on BB to constrain the search space of object
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detectors based on a sliding window or a Hough transform but without deformable parts.

Another related group of approaches focuses on learning a sequence of object template

tests in position, scale, and orientation space that minimizes the total computation time

through a coarse-to-fine evaluation (Fleuret and Geman, 2001; Pedersoli et al., 2011).

The classic work by Viola and Jones (Viola and Jones, 2001) introduced a cascade of

classifiers whose order was determined by importance weights learned by AdaBoost. The

approach was studied extensively in (Bourdev and Brandt, 2005; Brubaker et al., 2008;

Gualdi et al., 2012; Lehmann et al., 2011a; Zhang et al., 2011). Recently, Dollar et al.

(Dollár et al., 2012) introduced cross-talk cascades which allow detector responses to trig-

ger or suppress the evaluation of weak classifiers in their neighborhood by exploiting the

correlation of the classifier responses in the neighboring positions and scales. Weiss et

al. (Weiss et al., 2012) used structured prediction cascades to optimize a function with

two objectives: pose refinement and minimum filter evaluation cost. Sapp et al. (Sapp

et al., 2010) learn a cascade of pictorial structures with increasing pose resolution by pro-

gressively filtering the pose state space. Its emphasis is on pre-filtering structures through

max-margin scoring rather than part locations so that human poses with weak individ-

ual part appearances can still be recovered. Rahtu et al. (Rahtu et al., 2011) use general

“objectness” filters to produce location proposals which are fed into a cascade, designed

to maximize the quality of the locations that advance to the next stage. Our approach is

also related to and could be combined with active learning using Gaussian processes for

classification (Kapoor et al., 2010).

Similarly to the closest approaches above (Felzenszwalb et al., 2010a; Kokkinos, 2011;

Sznitman et al., 2013), our method aims to balance the number of part filter evaluations

with the classification accuracy in part-based object detection. The novelty and the main

advantage of our approach is that in addition it optimizes the part filter ordering. Since our

“cascades” still run only on parts, we do not expect the approach to show higher accuracy

than structured prediction cascades (Sapp et al., 2010) which consider more sophisticated

representations that the pictorial structures in the DPM.
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2.2 Rigid Object Pose Estimation

Early approaches based on using explicit 3D models are summarized in Grimson’s book

(Grimson, 1990) and focus on efficient techniques for voting in pose space. Horaud (Ho-

raud, 1987) investigated object recognition under perspective projection using a construc-

tive algorithm for objects that contain straight contours and planar faces. Hausler (Häusler

and Ritter, 1999) derived an analytical method for alignment under perspective projection

using the Hough transform and global geometric constraints. Aspect graphs in their strict

mathematical definition (each node sees the same set of singularities) were not considered

practical enough for recognition tasks but the notion of sampling of the view-space for

the purpose of recognition was introduced again in (Cyr and Kimia, 2001) which were

applied in single images with no background. A Bayesian method for 3D reconstruction

from a single image was proposed based on the contours of objects with sharp surface in-

tersections (Han and Zhu, 2003). Sethi et al. (Sethi et al., 2004) compute global invariant

signatures for each object from its silhouette under weak perspective projection. This ap-

proach was later extended (Lazebnik et al., 2002) to perspective projection by sampling a

large set of epipoles for each image to account for a range of potential viewpoints. Liebelt

et al. work with a view space of rendered models in (Liebelt et al., 2008a) and a genera-

tive geometry representation is developed in (Liebelt and Schmid, 2010). Villamizar et al.

(Villamizar et al., 2011) use a shared feature database that creates pose hypotheses veri-

fied by a Random Fern pose specific classifier. In (Glasner et al., 2011a), a 3D point cloud

model is extracted from multiple view exemplars for clustering pose specific appearance

features. Others extend deformable part models to combine viewpoint estimates and 3D

parts consistent across viewpoints, e.g., (Pepik et al., 2012a). In (Hao et al., 2013), a novel

combination of local and global geometric cues was used to filter 2D image to 3D model

correspondences.

Others have pursued approaches that not only segment the object and estimate the 3D

pose but also adjusts the 3D shape of the object model. For instance, Gaussian Process

Latent Variable Models were used for the dimensionality reduction of the manifold of
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shapes and a two-step iteration optimizes over shape and pose, respectively (Prisacariu

et al., 2013). The drawback of these approaches is that in the case of scene clutter they

do not consider the selection of image contours. Further, in some cases tracking is used

for finding the correct shape. This limits applicability to the analysis of image sequences,

rather than a single image, as is the focus in the current paper.

Our approach resembles early proposals that avoid appearance cues and uses only the

silhouette boundary, e.g., (Cyr and Kimia, 2001). None of the above or the exemplar-

based approaches surveyed below address the amount of clutter considered here and in

most cases the object of interest occupies a significant portion of the field of view.

Early view exemplar-based approaches typically assume an orthographic projection

model that simplifies the analysis. Ullman (Ullman and Basri, 1991) represented a 3D

object by a linear combination of a small number of images enabling an alignment of the

unknown object with a model by computing the coefficients of the linear combination,

and, thus, reducing the problem to 2D. In (Basri, 1993), this approach was generalized to

objects bounded by smooth surfaces, under orthographic projection, based on the estima-

tion of curvature from three or five images. Much of the multiview object detector work

based on discrete 2D views (e.g., (Gu and Ren, 2010a)) has been founded on successful

approaches to single view object detection, e.g., (Felzenszwalb et al., 2010c). Savarese

and Fei-Fei Savarese and Fei-Fei (2007) presented an approach for object categorization

that combines appearance-based descriptors including the canonical view for each part,

and transformations between parts. This approach reasons about 3D surfaces based on

image appearance features. In (Payet and Todorovic, 2011), detection is achieved simulta-

neously with contour and pose selection using convex relaxation. Hsiao et al. (Hsiao et al.,

2010) also use exemplars for feature correspondences and show that ambiguity should be

resolved during hypothesis testing and not at the matching phase. A drawback of these ap-

proaches is their reliance on discriminative texture-based features that are hardly present

for the types of textureless objects considered in the current paper.
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As far as RGB-D training and test examples are concerned, the most general and rep-

resentative approach is (Lai et al., 2011). Here, an object-pose tree structure was proposed

that simultaneously detects and selects the correct object category and instance, and refines

the pose. In (Rusu et al., 2010), a viewpoint feature histogram is proposed for detection

and pose estimation. Several similar representations are now available in the Point Cloud

Library (PCL) (Rusu and Cousins, 2011). We will not delve here into approaches that

extract the target objects during scene parsing in RGB-D images but refer the reader to

(Koppula et al., 2011) and the citations therein.

The 2D-shape descriptor, chordiogram (Toshev et al., 2012), we use belongs to ap-

proaches based on the optimal assembly of image regions. Given an over-segmented

image (i.e., superpixels), these approaches determine a subset of spatially contiguous re-

gions whose collective shape (Toshev et al., 2012) or appearance (Vijayanarasimhan and

Grauman, 2011) features optimize a particular similarity measure with respect to a given

object model. An appealing property of region-based methods is that they specify the im-

age domain where the object-related features are computed and thus avoid contaminating

objected-related measurements from background clutter.

2.3 3D Shape Reconstruction

The most related work includes the family of methods that estimate an object shape by

aligning a deformable shape model to image features. This idea originated from the active

shape model (ASM) (Cootes et al., 1995a), which was originally proposed for segmenta-

tion and tracking based on low-level image features. Cristinacce and Cootes (Cristinacce

and Cootes, 2006) proposed the constrained local models (CLM), which combined ASM

with local appearance models for 2D feature localization in face images. Gu and Kanade

(Gu and Kanade, 2006) presented a method to align 3D deformable models to 2D images

for 3D face alignment. The similar methods were also proposed for 3D car modeling
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(Hejrati and Ramanan, 2012; Hu and Zhu, 2014; Lin et al., 2014; Zia et al., 2013) and hu-

man pose estimation (Ramakrishna et al., 2012; Zhou and De la Torre, 2014). Our method

differs in that we use a data-driven approach for discriminative landmark selection and

we solve landmark localization and shape reconstruction in a single convex framework,

which enables a global solution.

The representation of our model is inspired by recent advances in part-based modeling

(Felzenszwalb et al., 2010b; Hariharan et al., 2012; Kokkinos, 2011; Singh et al., 2012),

which models the appearance of object classes with a collection of mid-sized discrimi-

native parts. Our optimization approach is related to the previous work on using convex

relaxation techniques for object matching (Jiang et al., 2011; Li et al., 2011; Maciel and

Costeira, 2003). These methods focused on finding the point-to-point correspondence

between an object template and an image in 2D, while our method considers 3D to 2D

matching as well as shape variability.

Our paper is also related to recent work on 3D pose estimation which encodes the

geometric relations among local parts and achieved continuous pose estimation. Several

work leveraged 3D models to warp features or parts into their canonical view (Savarese

and Li, 2007; Xiang and Savarese, 2012; Yan et al., 2007). Other work rendered local

appearances and depth from 3D models and subsequently encoded in a 3D voting scheme

(Glasner et al., 2011b; Liebelt et al., 2008b; Sun et al., 2010). DPM was further lifted

to 3D deformable models (Fidler et al., 2012; Pepik et al., 2012b) to predict continuous

viewpoint. Instance models were also used to recover 3D pose of an object (Aubry et al.,

2014; Lim et al., 2013). But this line of work focused on pose estimation and either used

generic class models or instance-based models. Our approach differs in that we not only

provide a detailed shape representation but also consider intra-class variability.
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2.4 Articulated 3D Pose Estimation

Considerable research has addressed the challenge of 3D human motion capture from

video (Brubaker et al., 2010; Moeslund et al., 2006; Sminchisescu, 2007). Early research

on 3D monocular pose estimation in videos largely centred on incremental frame-to-frame

pose tracking, e.g., (Bregler and Malik, 1998; Sigal et al., 2012; Sminchisescu and Triggs,

2003). These approaches rely on a given pose and dynamic model to constrain the pose

search space. Notable drawbacks of this approach include: the requirement that the initial-

ization be provided and their inability to recover from tracking failures. To address these

limitations, more recent approaches have cast the tracking problem as one of data asso-

ciation across frames, i.e., “tracking-by-detection”, e.g., (Andriluka et al., 2010). Here,

candidate poses are first detected in each frame and subsequently a linking process at-

tempts to establish temporally consistent poses.

Another strand of research has focused on methods that predict 3D poses by searching

a database of exemplars (Jiang, 2010; Mori and Malik, 2006; Shakhnarovich et al., 2003)

or via a discriminatively learned mapping from the image directly or image features to

human joint locations (Agarwal and Triggs, 2006; Ionescu et al., 2014; Salzmann and

Urtasun, 2010; Tekin et al., 2015; Yu et al., 2013). Recently, deep convolutional networks

(CNNs) have emerged as a common element behind many state-of-the-art approaches,

including human pose estimation, e.g., Li and Chan (2014); Li et al. (2015); Tompson et al.

(2014); Toshev and Szegedy (2014). Here, two general approaches can be distinguished.

The first approach casts the pose estimation task as a joint location regression problem

from the input image (Li and Chan, 2014; Li et al., 2015; Toshev and Szegedy, 2014). The

second approach uses a CNN architecture for body part detection (Chen and Yuille, 2014;

Jain et al., 2014; Pfister et al., 2015; Tompson et al., 2014) and then typically enforces

the 2D spatial relationship between body parts as a subsequent processing step. Similar

to the latter approaches, the proposed approach uses a CNN-based architecture to regress

confidence heat maps of 2D joint position predictions.

Most closely related to the present paper are generic factorization approaches for
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recovering 3D non-rigid shapes from image sequences captured with a single camera

(Akhter et al., 2011; Bregler et al., 2000; Cho et al., 2015; Dai et al., 2012; Zhu et al.,

2014c), i.e., non-rigid structure from motion (NRSFM), and human pose recovery models

based on known skeletons (Lee and Chen, 1985; Park and Sheikh, 2011; Taylor, 2000;

Valmadre and Lucey, 2010) or sparse representations (Akhter and Black, 2015; Fan et al.,

2014; Ramakrishna et al., 2012; Zhou et al., 2015b,c). Much of this work has been real-

ized by assuming manually labeled 2D joint locations; however, there is some recent work

that has used a 2D pose detector to automatically provide the input joints (Wang et al.,

2014) or solves the correspondence problem by matching a spatio-temporal pose model to

candidate trajectories extracted from a video (Zhou and la Torre, 2014).
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Part II

Preliminaries
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Chapter 3

Discriminative Learning

In this chapter, we briefly cover the basics of discriminative learning and introduce two

successful methods on which this thesis is based.

In the machine learning literature, classifiers generally fall into two categories: gener-

ative classifiers and discriminative classifiers. Generative classifiers learn the joint distri-

bution p(y, x) of the input x and the label y. Combined with the prior distribution p(x) of

the label, the posterior distribution p(y|x) is then derived using Bayes rules. Discrimina-

tive classifiers learn the posterior distribution p(y|x) directly by modeling the distribution

with a parametric model and optimizes the parameters using a training set. In the seminal

work of (Ng and Jordan, 2002), the two types of classifiers are compared and the results

suggest that discriminative models have lower asymptotic error given large training data.

In recent years, discriminative models have taken large strides in computer vision

as more large-scale datasets are becoming available annotated with class labels, object

bounding boxes and even detailed segmentation masks. Several discriminative models

quickly become very successful with applications to object recognition. Among them are

Support Vector Machine (Cortes and Vapnik, 1995; Vapnik and Kotz, 1982) and Deep

Neural Networks (Krizhevsky et al., 2012; LeCun et al., 1998) which underpin the latest

advances in the field.
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3.1 Support Vector Machine

One particularly successful discriminative model is Support Vector Machine (SVM), with

many applications to document classification, object classification etc. SVM was orig-

inally started when statistical learning theory was developed further by Vapnik (Vapnik

and Kotz, 1982) and later extended closer to its current form (Cortes and Vapnik, 1995).

For simplicity, we only discuss the linear SVM. The non-linear SVM extends the linear

case and builds on the idea of kernel methods, which is out of the scope of this thesis.

The linear SVM learns a separating hyperplane wTx + b = 0 from labeled examples

D = {〈x1, y1〉, ..., 〈xn, yn〉}, where yi ∈ {−1, 1}. In order to achieve robustness to noise

and gain better generalization to unseen data, SVM maximizes the margin of the separating

hyperplane to the examples. Formally, linear SVM can be formulated as the following

optimization problem,

min
w,b,ξ≥0

1

2
wTw + C

∑

i

ξi (3.1)

s.t. yi(wTxi + b) ≥ 1− ξi, i = 1, ..., n, (3.2)

where ξi is called the slack variable, introduced for penalizing the incorrectly classified

examples, C is the weight on the penalty cost.

By taking the gradient w.r.t. w and b on the corresponding Lagrangian, we can derive

the equivalent dual problem as,

max
α≥0

∑

i

αi −
1

2
αiαjyiyjx

T
i xi (3.3)

s.t.
∑

i

αiyi = 0, αi ≤ C, i = 1, ..., n, (3.4)

where αi is the Lagrange multiplier for the inequality constrain 3.2 in the primal form.

The resulting dual form of SVM is a quadratic optimization problem easier than the pri-

mal problem. The optimal solution can be derived from the KKT condition (Boyd and

Vandenberghe, 2004). Both specialized solvers, e.g. SMO (Platt et al., 1998), and generic

primal-dual optimization algorithms, e.g. ADMM (Boyd et al., 2011), have been designed
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Figure 3.1: GoogleNet desgined by (Szegedy et al., 2015): an example of modern deep

convolutional neural network with many layers of convolutions, where the blue boxes are

the convolution layers.

to tackle the problem, and we refer curious readers to an excellent tutorial by Burges

(1998) for more details.

3.2 Deep Neural Networks

The development of neural networks dates back to 1957 when Frank Rosenblatt invented a

linear classifier called the perceptron (Rosenblatt, 1961). One of the early success of neu-

ral networks was when convolutional neural networks (LeCun et al., 1989) was invented

and successfully applied to handwritten digit recognition in the 90s. After the initial hype

the related research went mostly under the radar of the computer vision community par-

tially due to the success of SVMs. Until recently, with the advances of computing hard-

ware especially Graphics Processing Units (GPU), convolutional neural netwroks staged

a huge comeback after winning the 2012 ImageNet Challenge (Krizhevsky et al., 2012).

Interestingly, despite the differences of modern deep learning models with many more lay-

ers 3.1 than their predecessors, the learning algorithm of the neural networks has remain

the same, namely back-propagation Rumelhart et al. (1988).

Most neural networks are organized into groups of units called layers. Most neural

network architectures arrange these layers in a chain structure, with each layer being a
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function of the layer that precedes it. In this structure, the each layer i ∈ {1, ..., n} is

given by

h(i) = g(i)(W (i)Th(i−1) + b(i)) (3.5)

where h(i) is the activation of each layer and h(0) = x is the input data. Note in the case of

convolutional neural network, convolutions can be rearranged as matrix multiplications.

g(i) is a nonlinear function applied after the linear transform of the activations from the

previous layer. The choice of nonlinear activation functions can be Rectified Linear Units

(ReLU), logistic, max pooling etc.

The universal approximation theorem (Hornik et al., 1989) states that under mild as-

sumptions on the activation mapping, neural networks with a single hidden layers can

approximate continuous functions on compact sets of Rn. Modern multi-layered deep

neural networks have much bigger capacity but the nonlinearity still poses a big challenge

to learning such complex model.

In general, the cost function of a network is a non-convex function w.r.t. to input,

thus learning the parameters of a neural network is usually resorted to gradient decent.

The minimization of the cost function is generally carried out via error back-propagation

(Rumelhart et al., 1988), or in other words, propagating the gradients using the chain rule.

More specifically, the following derivation

∂h(n)

∂h(i)
=

∂h(n)

∂h(n−1)

∂h(n−1)

∂h(i)
(3.6)

can be recursively expanded to compute the gradient the cost function w.r.t. the input layer.

The gradient of layer n w.r.t. the activations of layer i can be expressed as the products of

gradients between the intermediate layers. The challenges in learning large network is that

the cost function landscape is generally highly non-linear and exists many local minima

and saddle points.
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3.3 Stochastic Gradient Descent

The robustness of discriminative classifiers generally improves as more training examples

are exposed. However, as the datasets grow larger in scale, parameter learning with gra-

dient descent via batch optimization usually cannot be directly applied due to machine

memory limitations and computational efficiency reasons. In such cases, stochastic gra-

dient descent is deployed iteratively to approximate the gradient that would be computed

from the whole dataset.

In general, the learning algorithm minimizes the sum of empirical losses over a dataset,

more specifically an objective function of the form,

J(θ) =
n∑

i=1

Ji(θ), (3.7)

where θ is the parameter to be estimated. A standard batch gradient descent method would

update θ as the following,

θ = θ − η
n∑

i=1

∇Ji(θ) (3.8)

With stochastic gradient descent, the batch gradient is approximated with the gradient at a

single example,

θ = θ − η∇Ji(θ). (3.9)

In practice, the gradient is computed on a mini-batch of examples. In additional many

methods study the effect of mini-batch updates and provide solution to regularize the gra-

dient for better convergence. In the literature of deep learning, for example, momentum

(Krizhevsky et al., 2012), RMSProp (Tieleman and Hinton., 2012) and AdaGrad (Duchi

et al., 2011) etc, are invented to accelerate the learning of neural networks. Bootstrapping

or hard-negative mining (Felzenszwalb et al., 2010b) etc. are introduced for training SVM

faster on the large-scale dataset.
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Chapter 4

Convex Optimization

In this chapter, we discuss a class of optimization methods that are most related to this

thesis called Proximal Algorithms. This class of optimization algorithms are designed for

challenges raise in constrained convex optimization problems with non-smooth objective

function. First, we discuss the general concepts and underlying theory of Proximal Al-

gorithms. Then we focus our discussion on a powerful subclass: Alternating Direction

Method of Multipliers.

4.1 Proximal Algorithms

Newton’s method provides a standard tool for solving unconstrained smooth minimiza-

tion problems of modest size. In this section, we briefly discuss a class of algorithms

called proximal algorithms (Parikh and Boyd, 2013). Proximal algorithms are analogous

to Newton’s method but for solving non-smooth, constrained, large-scale, or distributed

versions of these problems.
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4.1.1 Proximal Operator

Definition 1. The proximal operator proxf : Rn → Rn of f is defined by

proxf (v) = arg min
x

(
f(x) + (1/2)‖x− v‖2

2

)
. (4.1)

The function minimized on the right-hand side is strongly convex w.r.t. v and not every-

where infinite, so it has a unique minimizer for every v ∈ Rn.

The proximal operator of the scaled function λf , where λ > 0, is expressed as

proxλf (v) = arg min
x

(
f(x) + (1/2λ)‖x− v‖2

2

)
. (4.2)

Proposition 1. The point x∗ minimizes f if and only if

x∗ = proxf (x
∗),

i.e., if x∗ is a fixed point of proxf .

This fundamental property gives a link between proximal operators and fixed point

theory; e.g., many proximal algorithms for optimization can be interpreted as methods for

finding fixed points of appropriate operators. For the proof of the proposition we refer to

(Parikh and Boyd, 2013).

4.1.2 Moreau Decomposition

The convex conjugate (Boyd and Vandenberghe, 2004) of a function f is defined as,

f ∗(y) = sup
x

(
yTx− f(x)

)
. (4.3)

The following equality always holds:

v = proxf (v) + proxf∗(v) (4.4)

This property, known as Moreau decomposition gives a simple way to obtain the proximal

operator of a function f in terms of the proximal operator of f ∗. For example, if f = ‖ · ‖
is a general norm, then f ∗ = IB, where

B = {x | ‖x‖∗ ≤ 1}
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is the unit ball of the dual norm ‖ · ‖∗, defined by

‖z‖∗ = sup{zTx | ‖x‖ ≤ 1}.

By Morean decomposition, this implies that

v = proxf (v) + ΠB(v). (4.5)

We can see that, evaluating proxf (v) is easy if we know how to project one to B.

4.1.3 Proximal Operator of the Spectral Norm

Part of this thesis regarding 3D reconstruction from single image builds on the following

proposition (Zhou et al., 2015c) which states the proximal operator of the spectral norm.

Proposition 2. The solution to the following problem

min
X

1

2
‖Y −X‖2

F + λ‖X‖2 (4.6)

is given by X∗ = Dλ(Y), where

Dλ(Y) = UY diag [σY − λPl1(σY/λ)] VT
Y, (4.7)

UY, VY and σY denote the left singluar vectors, right singular vectors and singular

values of Y, respectively. Pl1 is the projection of a vector to the unit l1-norm ball.

Proof The problem in (4.6) is a proximal problem. The associated proximal operator is

the solution to the following minimization problem

proxλF (Y) = arg min
X

1

2
‖Y −X‖2

F + λF (X). (4.8)

In this case, F (X) = ‖X‖2 = ‖σX‖∞, where ‖ · ‖∞ denotes the l∞-norm. Based on the

property of spectral functions (Parikh and Boyd, 2013), we have

proxλF (σY) = UY diag [proxλf (σY)] VT
Y, (4.9)
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where f is the l∞-norm. The poximal operator of the l∞-norm can be computed by Meo-

reau decomposition §4.1.2:

proxλf (σY) = σY − λPl1(σY/λ), (4.10)

given that the l1-norm is the dual norm of the l∞-norm.

4.1.4 Proximal Gradient Descent

Consider a general problem of the form

min
x

f(x) + g(x), (4.11)

where f : Rn → R and g : Rn → R ∪ {+∞} are closed proper convex and f is

differentiable. The optimality condition is satisfied when x∗ minimizes 4.11 such that the

following equivalent statements hold for any fixed scalar λ > 0

0 ∈ λ∇f(x∗) + λ∂g(x∗),

0 ∈ λ∇f(x∗)− x∗ + x∗ + λ∂g(x∗),

(I + λ∂g)(x∗) ∈ (I − λ∇f)(x∗),

x∗ = (I + λ∂g)−1(I − λ∇f)(x∗). (4.12)

Equation 4.12 leads to an fixed point iterative update scheme:

xk = (I + λ∂g)−1(I − λ∇f)(xk−1), (λ > 0) (4.13)

which is equivalent to

xk = proxλg(xk−1 − λ∇f(xk−1)) (4.14)

4.2 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011) is an impor-

tant class of proximal algorithms. ADMM can be viewed as a primal-dual method, which
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solves for the saddle point of the augmented Lagrangian associated with the constrained

optimization problem. ADMM has a rather long history in optimzation but recently rec-

ognized as a powerful tool to solve many non-smooth, constrained and large scale opti-

mization problem. ADMM is also known as Split Bregman method (Goldstein and Osher,

2009).

ADMM solves problems in the form

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c.

(4.15)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. Both f

and g are assumed to be convex.

4.2.1 Augmented Lagrangian

Consider the following problem

min
x

f(x)

s.t. Ax = b,

(4.16)

with variable x ∈ Rn, where A ∈ Rm×n and f : Rn → R is convex. The Lagrangian of

problem (4.16) is

L(x, y) = f(x) + yT (Ax− b).

Now let us look at an equivalent problem

min
x

f(x) +
ρ

2
‖Ax− b‖2

2

s.t. Ax = b.

(4.17)

The equivalence is clear since for any feasible x, the added (ρ/2)‖Ax−b‖2
2 term is always

zero. The associated Lagrangian

Lρ(x, y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖2

2. (4.18)

is called the augmented Lagrangian of the problem (4.16).
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4.2.2 Alternating Direction Minimization

The augmented Lagrangian associated with the problem (4.15) is

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − z) +
ρ

2
‖Ax+Bz − c‖2

2.

ADMM minimizes the objective function by alternatively optimizing the augmented

Lagrangian with respect to variable x and z with method of multipliers. Formally, ADMM

consists of the following iterations

xk+1 := arg min
x

Lρ(x, z
k, yk) (4.19)

zk+1 := arg min
z

Lρ(x
k+1, z, yk) (4.20)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c), (4.21)

where ρ > 0. The algorithm consists of an x-minimization step (4.19)), a z-minimization

step (4.20), and a dual variable update (4.21). The step size of dual update is equal to the

augmented Lagrangian parameter ρ.

ADMM is a class of proximal algorithm because the x-update step (4.19) and the z-

update step (4.20) is closely related to the proximal update of f and g. For simplicity, let

us consider the case when A = I, B = I and c = 0. Then the problem reduced to

min
x,z

f(x) + g(z)

s.t. x− z = 0.

(4.22)

The associated augmented Lagrangian is

Lρ(x, z, y) = f(x) + g(z) + yT (x− z) +
ρ

2
‖x− z‖2

2.

Then the corresponding ADMM iteration can be expressed as

xk+1 := proxλf (z
k − uk) (4.23)

zk+1 := proxλg(x
k+1 + uk) (4.24)

yk+1 := yk + (xk+1 + zk+1). (4.25)
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Convergence Under rather mild assumptions: 1) Function f and g are closed, proper

and convex; 2) The unaugmented Lagrangian L0 has a saddle point; The ADMM iterations

satisfy the following:

• Residual convergence. rk → 0 as k →∞, i.e., the iterates approach feasibility.

• Objective convergence. f(xk) + g(xk)→ p∗ as k →∞, i.e., the objective function

of the iterates approaches the optimal value.

• Dual variable convergence. yk → y∗ as k →∞, where y∗ is a dual optimal point.

The convergence proof is detailed in (Boyd et al., 2011). In practice, ADMM converges to

sufficient accuracy within a few tens of iterations, although convergence to high accuracy

can be very slow.
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Part III

Models and Methods
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Chapter 5

Active Deformable Part Models

5.1 Introduction

Part-based models such as deformable part models (DPM) Felzenszwalb et al. (2010b)

have become the state of the art in today’s object detection methods. They offer powerful

representations which can be learned from annotated datasets and capture both the appear-

ance and the configuration of the parts. DPM-based detectors achieve unrivaled accuracy

on standard datasets but their computational demand is high since it is proportional to the

number of parts in the model and the number of locations at which to evaluate the part fil-

ters. Approaches for speeding-up the DPM inference such as cascades, branch-and-bound,

and multi-resolution schemes, use the responses obtained from initial part-location evalu-

ations to reduce the future computation. This paper introduces two novel ideas, which are

missing in the state-of-the-art methods for speeding up DPM inference.

First, at each location in the image pyramid, a part-based detector has to make a de-

cision: whether to evaluate more parts and in what order or to stop and predict a label.

This decision can be regarded as a planning problem, whose state space consists of the set

of previously used parts and the confidence of whether an object is present or not. While

existing approaches rely on a predetermined sequence of parts, our approach optimizes

the order in which to apply the part filters so that a minimal number of part evaluations
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provides maximal classification accuracy at each location. Our second idea is to use a

decision loss in the optimization, which quantifies the trade-off between false positive and

false negative mistakes, instead of the threshold-based stopping criterion utilized by most

other approaches. These ideas have enabled us to propose a novel object detector, Active

Deformable Part Models, named so because of the active part selection. The detection

procedure consists of two phases: an off-line phase, which learns a part scheduling policy

from the training data and an online phase (inference), which uses the policy to optimize

the detection task on test images. During inference, each image location starts with equal

probabilities for object and background. The probabilities are updated sequentially based

on the responses of the part filters suggested by the policy. At any time, depending on

the probabilities, the policy might terminate predicting either a background label (which

is what most cascaded methods take advantage of) or a positive label, in which case all

unused part filters are evaluated in order to obtain the complete DPM score. Fig. 5.1

exemplifies the inference process.

We evaluated our approach on the PASCAL VOC 2007 and 2010 datasets Everingham

et al. (2010) and achieved state of the art accuracy but with a 7 times reduction in the

number of part-location evaluations and an average speed-up of 3 times compared to the

cascade DPM Felzenszwalb et al. (2010a). This paper makes the following contributions

to the state of the art in part-based object detection:

1. We obtain an active part selection policy which optimizes the order of the filter

evaluations and balances number of evaluations used with the classification accuracy

based on the scores obtained during inference.

2. The proposed detector achieves a significant speed-up versus the cascade DPM with-

out sacrificing accuracy.

3. The approach can be generalized to any detection problem, which involves a linear

additive score and uses several parts (stages) even if they are just SIFT points.
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Figure 5.1: Active DPM Overview: A deformable part model trained on the PASCAL

VOC 2007 horse class is shown with colored root and parts in the first column. The

second column contains an input image and the original DPM scores as a baseline. The

rest of the columns illustrate the inference process of the Active DPM, which proceeds in

rounds. The foreground probability (of a horse being present) is maintained at each image

location (top row) and is updated sequentially based on the responses of the part filters

(high values are red; low values are blue). A policy (learned off-line) is used to select the

best sequence of parts to apply at different locations. The bottom row shows the part filters

applied at consecutive rounds with colors corresponding to the parts on the left. The policy

decides to stop the inference at each location based on the confidence of foreground. As a

result, the complete sequence of part filters is evaluated at very few locations, leading to a

significant speed-up versus the traditional DPM inference. Our experiments show that the

accuracy remains unaffected.

5.2 Related Work

We will refer to work on object detection that optimizes the inference stage rather than

the representations since our representation is identical with DPM (Felzenszwalb et al.,

2010b). Our method is inspired by an acceleration of the DPM object detector, the cas-

cade DPM (Felzenszwalb et al., 2010a). However, while the sequence of parts evaluated
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in the cascade DPM is pre-defined and a set of thresholds has to be determined empiri-

cally, our approach selects the part order and the stopping time at each location based on

an optimization criterion. We find the next closest approach to be (Sznitman et al., 2013),

which maintains a foreground probability at each stage of a multi-stage ensemble classifier

and determines a stopping time based on the corresponding entropy. The difference of our

approach is that it jointly optimizes the stage order and the stopping criterion. Kokkinos

(Kokkinos, 2011) uses Branch-and-Bound (BB) to prioritize the search over image loca-

tions driven by an upper bound on the classification score. It is related to our approach in

that object-less locations are easily detected and the search is guided in location space but

with the difference that our policy proposes the next part to be tested in cases that no la-

bel can yet be given to a particular location. Earlier approaches (Lampert, 2010; Lampert

et al., 2008; Lehmann et al., 2011b) relied on BB to constrain the search space of object

detectors based on a sliding window or a Hough transform but without deformable parts.

Another related group of approaches focuses on learning a sequence of object template

tests in position, scale, and orientation space that minimizes the total computation time

through a coarse-to-fine evaluation (Fleuret and Geman, 2001; Pedersoli et al., 2011).

The classic work by Viola and Jones (Viola and Jones, 2001) intorduced a cascade of

classifiers whose order was determined by importance weights learned by AdaBoost. The

approach was studied extensively in (Bourdev and Brandt, 2005; Brubaker et al., 2008;

Gualdi et al., 2012; Lehmann et al., 2011a; Zhang et al., 2011). Recently, Dollar et al.

(Dollár et al., 2012) introduced cross-talk cascades which allow detector responses to trig-

ger or suppress the evaluation of weak classifiers in their neighborhood by exploiting the

correlation of the classifier responses in the neighboring positions and scales. Weiss et

al. (Weiss et al., 2012) used structured prediction cascades to optimize a function with

two objectives: pose refinement and minimum filter evaluation cost. Sapp et al. (Sapp

et al., 2010) learn a cascade of pictorial structures with increasing pose resolution by pro-

gressively filtering the pose state space. Its emphasis is on pre-filtering structures through
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max-margin scoring rather than part locations so that human poses with weak individ-

ual part appearances can still be recovered. Rahtu et al. (Rahtu et al., 2011) use general

“objectness” filters to produce location proposals which are fed into a cascade, designed

to maximize the quality of the locations that advance to the next stage. Our approach is

also related to and could be combined with active learning using Gaussian processes for

classification (Kapoor et al., 2010).

Similarly to the closest approaches above (Felzenszwalb et al., 2010a; Kokkinos, 2011;

Sznitman et al., 2013), our method aims to balance the number of part filter evaluations

with the classification accuracy in part-based object detection. The novelty and the main

advantage of our approach is that in addition it optimizes the part filter ordering. Since our

“cascades” still run only on parts, we do not expect the approach to show higher accuracy

than structured prediction cascades (Sapp et al., 2010) which consider more sophisticated

representations that the pictorial structures in the DPM.

5.3 Technical approach

The state-of-the-art performance in object detection is obtained by star-structured models

such as DPM Felzenszwalb et al. (2010b). A star-structured model of an object with n

parts is formally defined by a (n+ 2)-tuple (F0, P1, . . . , Pn, b), where F0 is a root filter, b

is a real-valued bias term, and Pk are the part models. Each part model Pk = (Fk, vk, dk)

consists of a filter Fk, a position vk of the part relative to the root, and the deformation

coefficients dk of a quadratic function specifying a deformation cost for placing the part

away from vk.

The object detector is applied in a sliding window fashion and outputs a prediction,

score(x), at each location x in an image pyramid, where x = (r, c, l) specifies a position

(r, c) in the l-th level (scale) of the pyramid. The space of all possible locations (position-

scale tuples) in the image pyramid is denoted by X . The response of the detector at a
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given root location x = (r, c, l) ∈ X is:

score(x) = F ′0 · φ(H, x)

+
n∑

k=1

max
xk

(
F ′k · φ(H, xk)− dk · φd(δk)

)
+ b,

where φ(H, x) is the histogram of oriented gradients (HOG) feature vector at location x

and δk := (rk, ck) − (2(r, c) + vk) is the displacement of the k-th part from its anchor

position vk relative to the root location x. Each term in the above sum implicitly depends

on x since the part locations xk are chosen relative to root location at x. The score can be

written as:

score(x) =
∑n

k=0 mk(x) + b, (5.1)

wherem0(x) := F ′0 ·φ(H, x) and for k > 0, mk(x) := maxxk
(
F ′k ·φ(H, xk)−dk ·φd(δk)

)
.

From this perspective, there is no difference between the root and the parts and we can

think of the model as one consiting of n+ 1 parts.

5.3.1 Score Likelihoods for the Parts

The object detection task requires labeling every x ∈ X with a label y(x) ∈ {	,⊕}. The

traditional approach is to compute the complete score in (5.1) at every position-scale tuple

x ∈ X . In this paper, we argue that it is not necessary to obtain all n + 1 part responses

in order to label a location x correctly. Treating the part scores as noisy observations of

the true label y(x), we choose an effective order in which to receive observations and an

optimal time to stop. The stopping criterion is based on a trade-off between the cost of

obtaining more observations and the cost of labeling the location x incorrectly.

Formally, the part scores m0, . . . ,mn at a fixed location x are random variables, which

depend on the input image, i.e. the true label y(x). To emphasize this we denote them

with upper-case letters Mk and their realizations with lower-case letters mk. In order to

predict an effective part order and stopping time, we need statistics which describe the part

responses. Let h⊕(m0,m1, . . . ,mn) and h	(m0,m1, . . . ,mn) denote the joint probability
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aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

0.36 0.37 0.14 0.18 0.24 0.29 0.40 0.16 0.13 0.17 0.44 0.11 0.23 0.21 0.14 0.21 0.26 0.22 0.24 0.20 0.23

Table 5.1: Average correlation coefficients among pairs of part responses for all 20 classes

in the PASCAL 2007 dataset

density functions (pdf) of the part scores conditioned on the true label being positive y = ⊕

and negative y = 	, respectively. We make the following assumption.

Assumption. The responses of the parts of a star-structured model with a given root

location x ∈ X are independent conditioned on the the true label y(x), i.e.

h⊕(m0,m1, . . . ,mn) =
∏n

k=0 h
⊕
k (mk), (5.2)

h	(m0,m1, . . . ,mn) =
∏n

k=0 h
	
k (mk),

where h⊕k (mk) is the pdf of Mk | y = ⊕ and h	k (mk) is the pdf of Mk | y = 	.

We learn non-parametric representations for the 2(n+1) pdfs {h⊕k , h	k } from an anno-

tated set D of training images. We emphasize that the above assumption does not always

hold in practice but simplifies the representation of the score likelihoods significantly1.

Our algorithm for choosing a part order and a stopping time can be used without the

independence assumption. However, we expect the performance to be similar while an

unreasonable amount of training data would be required to learn a good representation of

the joint pdfs. To evaluate the fidelity of the decoupled representation in (5.2) we com-

puted correlation coefficients between all pairs of part responses (Table 5.1) for the classes

in the PASCAL 2007 dataset. The mean over all classes, 0.23, indicates a weak correla-

tion. We observed that the few highly correlated parts have identical appearances (e.g. car

wheels) or a spatial overlap.

To learn representations for the score likelihoods, {h⊕k , h	k }, we collected a set of

scores for each part from the the training set D. Given a positive example I⊕i ∈ D

1Removing the independence assumption would require learning the 2 joint (n+ 1) dimensional pdfs of
the part scores in (5.2) and extracting the 2(n+ 1) marginals and the 2(n+ 1)(2n − 1) conditionals of the
form h(mk | mI), where I ⊆ {0, . . . , n} \ {k}.
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Figure 5.2: Score likelihoods for several parts from a car DPM model. The root (P0) and

three parts of the model are shown on the left. The corresponding positive and negative

score likelihoods are shown on the right.

of a particular DPM component, the root was placed at the scale and position x∗ of the

top score within the ground-truth bounding box. The response mi
0 of the root filter was

recorded. The parts were placed at their optimal locations relative to the root location x∗

and their scores mi
k, k > 0 were recorded as well. This procedure was repeated for all

positive examples in D to obtain a set of scores {mi
k | ⊕} for each part k. For negative

examples, x∗ was selected randomly over all locations in the image pyramid and the same

procedure was used to obtain the set {mi
k | 	}. Kernel density estimation was applied to

the score collections in order to obtain smooth approximations to h⊕k and h	k . Fig. 5.2

shows several examples of the score likelihoods obtained from the part responses of a car

model.
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5.3.2 Active Part Selection

This section discusses how to select an ordered subset of the n + 1 parts, which when

applied at a given location x ∈ X has a small probability of mislabeling x. The detection

at x proceeds in rounds t = 0, . . . , n + 1. The DPM inference applies the root and parts

in a predefined topological ordering of the model structure. Here, we do not fix the order

of the parts a priori. Instead, we select which part to run next sequentially, depending on

the part responses obtained in the past. The part chosen at round t is denoted by k(t) and

can be any of the parts that have not been applied yet. We take a Bayesian approach and

maintain a probability pt := P(y = ⊕ | mk(0), . . . ,mk(t−1)) of a positive label at location

x conditioned on the part scores from the previous rounds. The state at time t consists

of a binary vector st ∈ {0, 1}n+1 indicating which parts have already been used and the

information state pt ∈ [0, 1]. Let St := {s ∈ {0, 1}n+1 | 1T s = t} be the set2 of possible

values for st. At the start of a detection, s0 = 0 and p0 = 1/2, since no parts have been

used and we have an uninformative prior for the true label.

Suppose that part k(t) is applied at time t and its score is mk(t). The indicator vector

st of used parts is updated as:

st+1 = st + ek(t). (5.3)

Due to the independence of the score likelihoods (5.2), the posterior label distribution is

computed using Bayes rule:

pt+1 =
h⊕k(t)(mk(t))

h⊕k(t)(mk(t)) + h	k(t)(mk(t))
pt. (5.4)

In this setting, we seek a conditional plan π, which chooses which part to run next or stops

and decides on a label for x. Formally, such a plan is called a policy and is a function

π(s, p) : {0, 1}n+1 × [0, 1] → {	,⊕, 0, . . . , n}, which depends on the previously used

parts s and the label distribution p. An admissible policy does not allow part repetitions

2Notation: 1 denotes a vector with all elements equal to one, 0 denotes a vector with all elements equal
to zero, and ei denotes a vector with one in the i-th element and zero everywhere else.
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and satisfies π(1, p) ∈ {	,⊕} for all p ∈ [0, 1], i.e. has to choose a label after all parts

have been used. The set of admissible policies is denoted by Π.

Let τ(π) := inf{t ≥ 0 | π(st, pt) ∈ {	,⊕}} ≤ n + 1 denote the stopping time of

policy π ∈ Π. Let ŷπ ∈ {	,⊕} denote the label guessed by policy π after its termination.

We would like to choose a policy, which decides quickly and correctly. To formalize this,

define the probability of making an error as Pe(π) := P(ŷπ 6= y), where y is the hidden

correct label of x.

Problem 2 (Active Part Selection). Given ε > 0, choose an admissible part policy π with

minimum expected stopping time and probability of error bounded by ε:

min
π∈Π

E[τ(π)] (5.5)

s.t. Pe(π) ≤ ε,

where the expectation is over the hidden label y and the part scores Mk(0), . . . ,Mk(τ−1).

Note that if ε is chosen too small, (5.5) might be infeasible. In other words, even the

best sequencing of the parts might not reduce the probability of error sufficiently. To avoid

this issue, we relax the constraint in (5.5) by introducing a Lagrange multiplier λ > 0 as

follows:

min
π∈Π

E[τ(π)] + λPe(π). (5.6)

The Lagrange multiplier λ can be interpreted as a cost paid for choosing an incorrect label.

To elaborate on this, we rewrite the cost function as follows:

E
[
τ + λEy

[
1{ŷ 6=y} |Mk(0), . . . ,Mk(τ−1)

]]

= E
[
τ + λ1{ŷ 6=⊕}P

(
y = ⊕ |Mk(0), . . . ,Mk(τ−1)

)

+ λ1{ŷ 6=	}P
(
y = 	 |Mk(0), . . . ,Mk(τ−1)

)]

= E
[
τ + λpτ1{ŷ=	} + λ(1− pτ )1{ŷ=⊕}

]
.
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The term λpτ above is the cost paid if label ŷ = 	 is chosen incorrectly. Similarly,

λ(1 − pτ ) is the cost paid if label ŷ = ⊕ is chosen incorrectly. To allow flexibility, we

introduce separate costs λfp and λfn for false positive and false negative mistakes. The

final form of the Active Part Selection problem is:

min
π∈Π

E
[
τ + λfnpτ1{ŷ=	} + λfp(1− pτ )1{ŷ=⊕}

]
. (5.7)

Computing the Part Selection Policy Problem (5.7) can be solved using Dynamic

Programming Bertsekas (1995). For a fixed policy π ∈ Π and a given initial state

s0 ∈ {0, 1}n+1 and p0 ∈ [0, 1], the value function:

Vπ(s0, p0) := E
[
τ + λfnpτ1{ŷ=	} + λfp(1− pτ )1{ŷ=⊕}

]
,

is a well-defined quantity. The optimal policy π∗ and the corresponding optimal value

function are obtained as:

V ∗(s0, p0) = min
π∈Π

Vπ(s0, p0),

π∗(s0, p0) = arg max
π∈Π

Vπ(s0, p0).

To compute π∗ we proceed backwards in time. Suppose that the policy has not terminated

by time t = n + 1. Since there are no parts left to apply the policy is forced to terminate.

Thus, τ = n+ 1 and sn+1 = 1 and for all p ∈ [0, 1] the optimal value function becomes:

V ∗(1, p) = min
ŷ∈{	,⊕}

{
λfnp1{ŷ=	} + λfp(1− p)1{ŷ=⊕}

}

= min{λfnp, λfp(1− p)}. (5.8)

The intermediate stage values for t = n, . . . , 0, st ∈ St, and pt ∈ [0, 1] are:

V ∗(st, pt) = min

{
λfnpt, λfp(1− pt), (5.9)

1 + min
k∈A(st)

EMk
V ∗
(
st + ek,

h⊕k (Mk)pt

h⊕k (Mk) + h	k (Mk)

)}
,
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where A(s) := {i ∈ {0, . . . , n} | si = 0} is the set of available (unused) parts3. The

optimal policy is readily obtained from the optimal value function. At stage t, if the first

term in (5.9) is smallest, the policy stops and chooses ŷ = 	; if the second term is smallest,

the policy stops and chooses ŷ = ⊕; otherwise, the policy chooses to run the part k, which

minimizes the expectation.

Alg. 14 summarizes the steps necessary to compute the optimal policy π∗ using the

score likelihoods {h⊕k , h	k } from Sec. 5.3.1. The one dimensional space [0, 1] of label

probabilities p can be discretized into d bins in order to store the function π returned

by Alg. 14. The memory required is O(d2n+1) since the space {0, 1}n+1 of used-part

indicator vectors grows exponentially with the number of parts. Nevertheless, in practice

the number of parts in a DPM is rarely more than 20 and Alg. 14 can be executed.

5.3.3 Active DPM Inference

A policy π is obtained offline using Alg. 14. In the online phase, π is used to select a

sequence of parts to apply at each location x ∈ X in the image pyramid. Note that the

labeling of each location is treated as an independent problem and proceeds in parallel.

Alg. 24 summarizes the Active DPM inference process. Fig. 5.3 illustrates the policy

making decisions at different image locations.

At the start of a detection at location x, s0 = 0 since no parts have been used and

p0 = 1/2 since we have an uninformative label prior (Line 5). At each round t, the policy

is queried to obtain either the next part to run or a predicted label for x (Line 7). Note

that querying the policy is an O(1) operation since it is stored as a lookup table. If the

policy terminates and labels y(x) as foreground (Line 8), all unused part filters are applied

in order to obtain the final discriminative score in (5.1). On the other hand, if the policy

terminates and labels y(x) as background, no additional part filters are evaluated and the

final score is set to−∞ (Line 18). In this case, our algorithm makes computational savings

3Each score likelihood was discretized using 201 bins to obtain a histogram. Then, the expectation in
(5.9) was computed as a sum over the bins. Alternatively, Monte Carlo integration can be performed by
sampling from the Gaussian mixtures directly.
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Figure 5.3: The detection process of ADPM is treated as a planning problem. At each

location in the image pyramid, ADPM makes a decision: whether to evaluate more parts

and in what order or to stop and predict a label. Such decision is based on a learned policy

and determined on-the-fly conditioned on the history of part evaluations and the current

foreground probability at each location.

compared to the DPM. The potential speed-up and the effect on accuracy are discussed in

the Sec. 5.4. Finally, if the policy returns a part index k, the corresponding score mk(x) is

computed by applying the part filter (Line 21). This operation is O(|∆|), where ∆ is the

space of possible displacements for part k with respect to the root location x. Following

the analysis in Felzenszwalb et al. (2010a), searching over the possible locations for part

k is usually no more expensive than evaluating its linear filter Fk once because the spatial

extent of the filter is of similar size as its range of displacement. This is the case because

once Fk is applied at some location xk, the resulting response Φk(xk) = F ′k · φ(H, xk) is

cached to avoid recomputing it later. The use of a memorized version Φ̃k(xk) of Φk(xk)

amortizes the complexity of the search over ∆. The score mk of part k is used to update

the total score at x (Line 22). Then, the dynamics in (5.3) and (5.4) are used to update

the state (st, pt) (Line 23 - 24). Since the policy lookups and the state updates are all of

O(1) complexity, the worst-case complexity of Alg. 24 is O(n|X ||∆|). The worst-case
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complexity is the same as that of the DPM and the cascade DPM. The average running

time of our algorithm depends on the total number of score mk evaluations, which in turn

depends on the choice of the parameters λfn and λfp and is the subject of the next section.

5.4 Experiments

5.4.1 Speed-Accuracy Trade-Off

The two parameters of the Active DPM (ADPM) method are the penalty, λfp, for incor-

rectly predicting background as foreground and the penalty, λfn, for incorrectly predicting

foreground as background. The accuracy and the speed of the ADPM inference depend

on these parameters. To get an intuition, consider making both λfp and λfn very small.

The cost of an incorrect prediction will be negligible, thus encouraging the policy to sacri-

fice accuracy and stop immediately. In the other extreme, when both parameters are very

large, the policy will delay the prediction as much as possible in order to obtain more

information.

To evaluate the effect of the parameters, we compared the average precision (AP) and

the number of part evaluations of Alg. 24 to those of the traditional DPM as a baseline.

Let RM be the total number of score mk(x) evaluations for k > 0 (excluding the root)

over all locations x ∈ X performed by method M. For example, RDPM = n|X | since

the DPM evaluates all parts at all locations in X . We define the relative number of

part evaluations (RNPE) of our method (ADPM) versus method M as the ratio of RM

to RADPM . The AP and the RNPE versus DPM of APDM were evaluated on several

classes from the PASCAL VOC 2007 training set. Fig. 5.4 shows the performance as

the parameter λ = λfn = λfp is varied. As expected, the AP increases while the RNPE

decreases as the penalty of an incorrect declaration λ grows because ADPM evaluates

more parts. The dip in RNPE for very low λ values is due to fact that ADPM starts

reporting too many false-positives. In the case of a positive declaration all part responses

need to be computed, which reduces the speed-up versus DPM.
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Figure 5.4: Average precision and relative number of part evaluations versus DPM as a

function of the parameter λ = λfn = λfp on a log scale. The curves are reported on the

bus class from the VOC 2007 training set.

Since a positive declaration always requires n+1 part evaluations, we limit the number

of false positive mistakes made by the policy by setting λfp > λfn. While this might hurt

the accuracy, it will certainly result in significantly less part evaluations. To verify this

intuition we performed experiments with λfp > λfn on the PASCAL VOC 2007 dataset.

Table 5.2 reports the AP and the RNPE versus DPM from a grid search over the parameter

space. Generally, as the ratio between λfp and λfn increases, the RNPE increases while

the AP decreases. Notice, however, that the increase in RNPE is significant, while the hit

in accuracy is negligible.

5.4.2 Results

In this section we compare ADPM4 versus two baselines, the DPM and the cascade DPM

(Cascade) in terms of average precision (AP), relative number of part evaluations (RNPE),

and relative wall-clock time speedup (Speedup). Experiments were carried out on all 20

classes in the PASCAL VOC 2007 and 2010 datasets. Publicly available PASCAL 2007

4ADPM code and trained policies are available at:
http://cis.upenn.edu/˜menglong/adpm.html
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and 2010 DPM and Cascade models were used for all three methods.

ADPM vs DPM: The inference process of ADPM is shown in detail on two input

images in Fig. 5.1 and Fig. 5.5. The probability of a positive label pt (top row) becomes

more contrasted as additional parts are evaluated. The number of locations at which the

algorithm has not terminated decreases rapidly as the time progresses. Visually, the loca-

tions with a maximal posterior are identical to the top scores obtained by the DPM. The

order of parts chosen by the policy is indicative of their informativeness. For example, in

Fig. 5.5 the wheel filters are applied first which agrees with intuition. In this example, the

probability pt remains low at the correct location for several iterations due to the occlu-

sions. Nevertheless, the policy recognizes that it should not terminate and as more parts

are evaluated, the posterior reflects the correct location of the highest DPM score.

ADPM was compared to DPM in terms of AP and RNPE to demonstrate the ability of

ADPM to reduce the number of necessary part evaluations with minimal loss in accuracy

irrespective of the features used. The ADPM parameters were set to λfp = 20 and λfn = 5

based on the analysis in Sec. 5.4.1. Table 5.3 shows that ADPM achieves a significant

decrease (about 90 times on average) in the number of evaluated parts compared to DPM,

while the loss in accuracy is negligible. The precision-recall curves of the two methods

are shown for several classes in Fig. 5.6.

ADPM vs Cascade: The improvement in detection speed achieved by ADPM is

demonstrated via a comparison to Cascade in terms of AP, RNPE, and wall-clock time

(in seconds). Note that Cascade’s implementation makes use of PCA-projected (top five

dimensions) HOG features, which are very fast to compute. During inference, Cascade

prunes the image locations in two passes. In the first pass, the locations are filtered using

the PCA-projections and the low-scoring ones are discarded. In the second pass, the re-

maining locations are filtered using the full-dimensional features. To make a fair compar-

ison, we adopted a similar two-stage approach for the active part selection. An additional

policy was learned using PCA score likelihoods and was used to schedule PCA filters dur-

ing the first pass. The locations, which were selected as foreground in the first stage, were
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filtered again, using the original policy to select the order of the full-dimensional filters.

The parameters λfp and λfn were set to 20 and 5 for the PCA policy and to 50 and 5 for

the full-dimensional policy. A higher λfp was chosen to make the prediction more pre-

cise (albeit slower) during the second stage. Deformation pruning was not used for either

method. Table 5.4 summarizes the results.

A discrepancy in the speedup of ADPM versus Cascade is observed in Table 5.4. On

average, ADPM is 7 times faster than Cascade in terms of RNPE but only 3 times faster

in seconds. A breakdown of the computational time during inference on a single image

is shown in Table 5.5. We observe that the ratios of part evaluations and of seconds

are consistent within individual stages (PCA and full). However, a single filter evaluation

during the full-filter stage is significantly slower than one during the PCA stage. This does

not affect the cumulative RNPE but lowers the combined seconds ratio. While ADPM is

significanlty faster than Cascade during the PCA stage, the speedup (in seconds) is reduced

during the slower full-dimensional stage.
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(a) class: car

(b) class: aeroplane

(c) class: motorbike

Figure 5.5: Illustration of the ADPM inference process on a car example. The DPM model

with colored root and parts is shown on the left. The top row on the right consists of the

input image and the evolution of the positive label probability (pt) for t ∈ {1, 2, 3, 4} (high

values are red; low values are blue). The bottom row consists of the full DPM score(x)

and a visualization of the parts applied at different locations at time t. The pixel colors

correspond to the part colors on the left. In this example, despite the car being heavily

occluded, ADPM converges to the correct location after four iterations.
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Algorithm 1: Active Part Selection
Input: Score likelihoods {h	k , h⊕k }nk=0 for all parts,

false positive cost λfp, false negative cost λfn

Output: Policy π : {0, 1}n+1 × [0, 1]→ {	,⊕, 0, . . . , n}
1 St := {s ∈ {0, 1}n+1 | 1T s = t};
2 A(s) := {i ∈ {0, . . . , n} | si = 0}, ∀s ∈ {0, 1}n+1;

3 V (1, p) := min{λfnp, λfp(1− p)}, ∀p ∈ [0, 1];

4 π(1, p) :=





	, λfnp ≤ λfp(1− p),

⊕, otherwise;

5 for t = n, n− 1, . . . , 0 do

6 for s ∈ St do

7 for k ∈ A(s) do

8 Q(s, p, k) := EMk
V

(
s+ ek,

h⊕k (Mk)p

h⊕k (Mk)+h	k (Mk)

)
;

9 end

10 V (s, p) :=min

{
λfnp, λfp(1− p), 1 + min

k∈A(s)
Q(s, p, k)

}
;

11 π(s, p) :=





	, V (s, p) = λfnp,

⊕, V (s, p) = λfp(1− p),

arg min
k∈A(s)

Q(s, p, k), otherwise;

12 end

13 end

14 return π;
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Algorithm 2: Active DPM Inference
Input: Image pyramid, model (F0, P1, . . . , Pn, b),

score likelihoods {h	k , h⊕k }nk=0 for all parts, policy π

Output: score(x) at all locations x ∈ X in the image pyramid

1 for x ∈ 1 . . . |X | do

2 s0 := 0 ; p0 = 0.5 ; score(x) := 0;

3 for t = 0, 1, . . . , n do

4 k := π(st, pt) ; // Lookup next best part

5 if k = ⊕ then

// Labeled as foreground

6 for i ∈ {0, 1, . . . , n} do

7 if st(i) = 0 then

8 Compute score mk(x) for part k ; // O(|∆|)
9 score(x) := score(x) +mk(x);

10 end

11 end

12 score(x) := score(x) + b ; // Add bias to final score

13 break;

14 else if k = 	 then

15 score(x) := −∞ ; // Labeled as background

16 break;

17 else

18 Compute score mk(x) for part k ; // O(|∆|)
19 score(x) := score(x) +mk(x);

20 pt+1 :=
h⊕k (mk(x))pt

h⊕k (mk(x))+h	k (mk(x))
; // Update probability

21 st+1 = st + ek;

22 end

23 end

24 end
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Average Precision RNPE vs DPM

λfp/λfn 4 8 16 32 64 λfp/λfn 4 8 16 32 64

4 70.3 4 40.4

8 70.0 71.0 8 80.7 61.5

16 69.6 71.1 71.5 16 118.6 74.5 55.9

32 70.5 70.7 71.6 71.6 32 178.3 82.1 59.8 37.0

64 67.3 69.6 71.5 71.6 71.4 64 186.9 96.4 56.2 34.5 20.8

Table 5.2: Average precision and relative number of part evaluations versus DPM obtained

on the bus class from PASCAL VOC 2007 training set. A grid search over the parameter

space (λfp, λfn) ∈ {4, 8, . . . , 64} × {4, 8, . . . , 64} with λfp ≥ λfn is shown.

(a) class: bicycle (b) class: car (c) class: person (d) class: horse

Figure 5.6: Precision recall curves for bicycle, car, person, and horse classes from PAS-

CAL 2007. Our method’s accuracy ties with the baselines.
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VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 102.8 106.7 63.7 79.7 58.1 155.2 44.5 40.0 58.9 71.8 69.9 49.2 51.0 59.6 45.3 49.0 62.6 68.6 79.0 100.6 70.8

DPM AP 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

ADPM AP 33.5 59.8 9.8 15.3 27.6 52.5 57.6 22.1 20.1 24.6 24.9 12.3 57.6 48.4 42.8 12.0 20.4 35.7 46.3 43.2 33.3

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 110.0 100.8 47.9 98.8 111.8 214.4 75.6 202.5 150.8 147.2 62.4 126.2 133.7 187.1 114.4 59.3 24.3 131.2 143.8 106.0 117.4

DPM AP 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

ADPM AP 45.3 49.1 10.2 12.2 26.9 50.6 41.9 22.7 16.5 22.8 10.6 19.7 40.8 44.5 36.8 8.3 29.1 18.6 39.7 34.5 29.1

Table 5.3: Average precision (AP) and relative number of part evaluations (RNPE) of

DPM versus ADPM on all 20 classes in PASCAL VOC 2007 and 2010.

VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 5.93 5.35 9.17 6.09 8.14 3.06 5.61 4.51 6.30 4.03 4.83 7.77 3.61 6.67 17.8 9.84 3.82 2.43 2.89 6.97 6.24

ADPM Speedup 3.14 1.60 8.21 4.57 3.36 1.67 2.11 1.54 3.12 1.63 1.28 2.72 1.07 1.50 3.59 6.15 2.92 1.10 1.11 3.26 2.78

Cascade AP 33.2 60.8 10.2 16.1 27.3 54.1 58.1 23.0 20.0 24.2 26.8 12.7 58.1 48.2 43.2 12.0 20.1 35.8 46.0 43.4 33.7

ADPM AP 31.7 59.0 9.70 14.9 27.5 51.4 56.7 22.1 20.4 24.0 24.7 12.4 57.7 48.5 41.7 11.6 20.4 35.9 45.8 42.8 33.0

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 7.28 2.66 14.80 7.83 12.22 5.47 6.29 6.33 9.72 4.16 3.74 10.77 3.21 9.68 21.43 12.21 3.23 4.58 3.98 8.17 7.89

ADPM Speedup 2.15 1.28 7.58 5.93 4.68 2.79 2.28 2.44 3.72 2.42 1.52 2.76 1.57 2.93 4.72 8.24 1.42 1.81 1.47 3.41 3.26

Cascade AP 45.5 48.9 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.1 10.7 20.5 42.4 44.5 41.3 8.7 29.0 18.7 40.1 34.4 29.6

ADPM AP 44.5 49.2 9.5 11.6 25.9 50.6 41.7 22.5 16.9 22.0 9.8 19.8 41.1 45.1 40.2 7.4 28.5 18.3 38.0 34.5 28.8

Table 5.4: Average precision (AP), relative number of part evaluations (RNPE), and rel-

ative wall-clock time speedup (Speedup) of ADPM versus Cascade on all 20 classes in

PASCAL VOC 2007 and 2010.
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PCA no cache PCA cache PE Full no cache Full cache PE Total no cache Total cache Total PE

CASCADE 4.34s 0.67s 208K 0.13s 0.08s 1.1K 4.50s 0.79s 209K

ADPM 0.62s 0.06s 36K 0.06s 0.04s 0.6K 0.79s 0.19s 37K

Table 5.5: An example demonstrating the computational time breakdown during inference

of ADPM and Cascade on a single image. The number of part evaluations (PE) and the

inference time (in seconds) is recorded for the PCA and the full-dimensional stages. The

results are reported once without and once with cache use. The number of part evaluations

is independent of caching. The total times are not equal to the sum of the two stages

because of the additional but minimal time spent in I/O operations.
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Chapter 6

3D Object Detection and Pose

Estimation of Object Instances

6.1 Introduction

In this paper, we address the problem of a robot grasping 3D objects of known 3D shape

from their projections in single images of cluttered scenes. In the context of object grasp-

ing and manipulation, object recognition has always been defined as simultaneous de-

tection and segmentation in the 2D image and 3D localization. 3D object recognition

has experienced a revived interest in both the robotics and computer vision communities

with RGB-D sensors having simplified the foreground-background segmentation prob-

lem. Nevertheless, difficulties remain as such sensors cannot generally be used in outdoor

environments yet.

The goal of this paper is to detect and localize objects in single view RGB images

of environments containing arbitrary ambient illumination and substantial clutter for the

purpose of autonomous grasping. Objects can be of arbitrary color and interior texture

and, thus, we assume knowledge of only their 3D model without any appearance/texture

information. Using 3D models makes an object detector immune to intra-class texture

variations.
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b ca

Sunday, February 16, 14

Figure 6.1: Demonstration of the proposed approach on a PR2 robot platform. a) Single

view input image, with the object of interest highlighted with a black rectangle. b) Object

model (in green) is projected with the estimated pose in 3D, ready for grasping. The

Kinect point cloud is shown for the purpose of visualization.

Figure 6.2: Overview of the proposed approach. From left-to-right: a) The input image.

b) S-DPM inferences on the gPb contour image yielding an object detection hypothesis.

c) The hypothesis bounding box (red) is segmented into superpixels. d) The set of su-

perpixels with the closest chordiogram distance to the model silhouette is selected. Pose

is iteratively refined such that the model projection aligns well with the foreground mask

silhouette. e) To visualize the pose accuracy, the side of the 3D model facing the camera is

textured with the corresponding 2D pixel color; three textured synthetic views of the final

pose estimate are shown.

We further abstract the 3D model by only using its 2D silhouette and thus detection is

driven by the shape of the 3D object’s projected occluding boundary. Object silhouettes
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with corresponding viewpoints that are tightly clustered on the viewsphere are used as pos-

itive exemplars to train the state-of-the-art Deformable Parts Model (DPM) discriminative

classifier (Felzenszwalb et al., 2010c). We term this shape-aware version S-DPM. This

detector simultaneously detects the object and coarsely estimates the object′s pose. The

focus of the current paper is on instance-based rather than category-based object detection

and localization; however, our approach can be extended to multiple instance category

recognition since S-DPM is agnostic to whether the positive exemplars are multiple poses

from a single instance (as considered in the current paper) or multiple poses from multiple

instances.

We propose to use an S-DPM classifier as a first high recall step yielding several

bounding box hypotheses. Given these hypotheses, we solve for segmentation and lo-

calization simultaneously. After over-segmenting the hypothesis region into superpixels,

we select the superpixels that best match a model boundary using a shape-based descrip-

tor, the chordiogram (Toshev et al., 2012). A chordiogram-based matching distance is

used to compute the foreground segment and rerank the hypotheses. Finally, using the

full 3D model we estimate all 6-DOF of the object by efficiently iterating on the pose and

computing matches using dynamic programming.

Our approach advances the state-of-the-art as follows:

• In terms of assumptions, our approach is among the few in the literature that can

detect 3D objects in single images of cluttered scenes independent of their appear-

ance.

• It combines the high recall of an existing discriminative classifier with the high

precision of a holistic shape descriptor achieving a simultaneous segmentation and

detection reranking.

• Due to the segmentation, it selects the correct image contours to use for 3D pose

refinement, a task that was previously only possible with stereo or depth sensors.

An overview of the components of our approach is shown in Fig. 6.2. In the video
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supplement, we demonstrate our approach with a (PR2) robot grasping 3D objects on

a cluttered table based on a single view RGB image. Figure 6.8 shows an example of

the process. We report 3D pose accuracy by comparing the estimated pose rendered by

the proposed approach with a ground truth point cloud recovered with a RGB-D sensor.

Such grasping capability with accurate pose is crucial for robot operation, where popular

RGB-D sensors cannot be used (e.g., outdoors) and stereo sensors are challenged by the

uniformity of the object’s appearance within their boundary. We also document an exten-

sive evaluation on outdoor imagery with diverse backgrounds. The dataset contains a set

of 3D object models, annotated single-view imagery of heavily cluttered outdoor scenes1,

and indoor imagery of cluttered tabletops in RGB-D images.

6.2 Related Work

Geometry-based object recognition arguably outdates appearance-based approaches. A

major advantage of these approaches is their invariance to material properties, viewpoint

and illumination. We first survey approaches that use a 3D model, either synthetic or

obtained from 3D reconstruction. Next, we describe approaches using multiple view ex-

emplars annotated with their pose. We close with a brief description of 2D shape-based

approaches and approaches applied to RGB-D test data.

Early approaches based on using explicit 3D models are summarized in Grimson’s

book (Grimson, 1990) and focus on efficient techniques for voting in pose space. Ho-

raud (Horaud, 1987) investigated object recognition under perspective projection using a

constructive algorithm for objects that contain straight contours and planar faces. Hausler

(Häusler and Ritter, 1999) derived an analytical method for alignment under perspective

projection using the Hough transform and global geometric constraints. Aspect graphs in

their strict mathematical definition (each node sees the same set of singularities) were not

1The annotated dataset and 3D models are available at the project page: http://www.seas.upenn.
edu/˜menglong/outdoor-3d-objects.html
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considered practical enough for recognition tasks but the notion of sampling of the view-

space for the purpose of recognition was introduced again in (Cyr and Kimia, 2001) which

were applied in single images with no background. A Bayesian method for 3D reconstruc-

tion from a single image was proposed based on the contours of objects with sharp surface

intersections (Han and Zhu, 2003). Sethi et al. (Sethi et al., 2004) compute global invariant

signatures for each object from its silhouette under weak perspective projection. This ap-

proach was later extended (Lazebnik et al., 2002) to perspective projection by sampling a

large set of epipoles for each image to account for a range of potential viewpoints. Liebelt

et al. work with a view space of rendered models in (Liebelt et al., 2008a) and a genera-

tive geometry representation is developed in (Liebelt and Schmid, 2010). Villamizar et al.

(Villamizar et al., 2011) use a shared feature database that creates pose hypotheses veri-

fied by a Random Fern pose specific classifier. In (Glasner et al., 2011a), a 3D point cloud

model is extracted from multiple view exemplars for clustering pose specific appearance

features. Others extend deformable part models to combine viewpoint estimates and 3D

parts consistent across viewpoints, e.g., (Pepik et al., 2012a). In (Hao et al., 2013), a novel

combination of local and global geometric cues was used to filter 2D image to 3D model

correspondences.

Others have pursued approaches that not only segment the object and estimate the 3D

pose but also adjusts the 3D shape of the object model. For instance, Gaussian Process

Latent Variable Models were used for the dimensionality reduction of the manifold of

shapes and a two-step iteration optimizes over shape and pose, respectively (Prisacariu

et al., 2013). The drawback of these approaches is that in the case of scene clutter they

do not consider the selection of image contours. Further, in some cases tracking is used

for finding the correct shape. This limits applicability to the analysis of image sequences,

rather than a single image, as is the focus in the current paper.

Our approach resembles early proposals that avoid appearance cues and uses only the

silhouette boundary, e.g., (Cyr and Kimia, 2001). None of the above or the exemplar-

based approaches surveyed below address the amount of clutter considered here and in
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most cases the object of interest occupies a significant portion of the field of view.

Early view exemplar-based approaches typically assume an orthographic projection

model that simplifies the analysis. Ullman (Ullman and Basri, 1991) represented a 3D

object by a linear combination of a small number of images enabling an alignment of the

unknown object with a model by computing the coefficients of the linear combination,

and, thus, reducing the problem to 2D. In (Basri, 1993), this approach was generalized to

objects bounded by smooth surfaces, under orthographic projection, based on the estima-

tion of curvature from three or five images. Much of the multiview object detector work

based on discrete 2D views (e.g., (Gu and Ren, 2010a)) has been founded on successful

approaches to single view object detection, e.g., (Felzenszwalb et al., 2010c). Savarese

and Fei-Fei (Savarese and Fei-Fei, 2007) presented an approach for object categorization

that combines appearance-based descriptors including the canonical view for each part,

and transformations between parts. This approach reasons about 3D surfaces based on

image appearance features. In (Payet and Todorovic, 2011), detection is achieved simulta-

neously with contour and pose selection using convex relaxation. Hsiao et al. (Hsiao et al.,

2010) also use exemplars for feature correspondences and show that ambiguity should be

resolved during hypothesis testing and not at the matching phase. A drawback of these ap-

proaches is their reliance on discriminative texture-based features that are hardly present

for the types of textureless objects considered in the current paper.

As far as RGB-D training and test examples are concerned, the most general and rep-

resentative approach is (Lai et al., 2011). Here, an object-pose tree structure was proposed

that simultaneously detects and selects the correct object category and instance, and refines

the pose. In (Rusu et al., 2010), a viewpoint feature histogram is proposed for detection

and pose estimation. Several similar representations are now available in the Point Cloud

Library (PCL) (Rusu and Cousins, 2011). We will not delve here into approaches that

extract the target objects during scene parsing in RGB-D images but refer the reader to

(Koppula et al., 2011) and the citations therein.
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The 2D-shape descriptor, chordiogram (Toshev et al., 2012), we use belongs to ap-

proaches based on the optimal assembly of image regions. Given an over-segmented

image (i.e., superpixels), these approaches determine a subset of spatially contiguous re-

gions whose collective shape (Toshev et al., 2012) or appearance (Vijayanarasimhan and

Grauman, 2011) features optimize a particular similarity measure with respect to a given

object model. An appealing property of region-based methods is that they specify the im-

age domain where the object-related features are computed and thus avoid contaminating

objected-related measurements from background clutter.

6.3 Technical approach

An overview of the components of our approach is shown in Fig. 6.2. 3D models are

acquired using a low-cost depth sensor (Sec. 6.3.1). To detect an object robustly based

only on shape information, the gPb contour detector Arbelaez et al. (2011) is applied

to the RGB input imagery (Sec. 6.3.2). Detected contours are fed into a parts-based

object detector trained on model silhouettes (Sec. 6.3.3). Detection hypotheses are over-

segmented and shape verification simultaneously computes the foreground segments and

reranks the hypotheses (Sec. 6.3.5). Section 6.3.4 describes the shape descriptor used

for shape verification. The obtained object mask enables the application of an iterative

3D pose refinement algorithm to accurately recover the 6-DOF object pose based on the

initial coarse pose estimate rendered by the object detector (Sec. 6.3.6).

6.3.1 3D model acquisition and rendering

3D CAD models have been shown to be very useful for object detection and pose estima-

tion both in 2D images and 3D point clouds. We utilize a low-cost RGB-D depth sensor

and a dense surface reconstruction algorithm, KinectFusion Izadi et al. (2011), to effi-

ciently reconstruct 3D object models from the depth measurements of real objects. The

3D object model is acquired on a turntable with the camera pointing in a fixed position.
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Figure 6.3: Comparison of the two edge detection results on same image. (left-to-right)

Input image, Canny edge and gPb, respectively.

After the model is reconstructed with the scene, we manually remove the background and

fill holes in the model.

To render object silhouettes from arbitrary poses, we synthesize a virtual camera at

discretized viewpoints around the object center at a fixed distance. Each viewpoint is

parameterized by the azimuth, a, elevation, e, and distance, d, of the camera relative to

the object. Viewpoints are uniformly sampled on the viewsphere at a fixed distance and at

every ten degrees for both the azimuth and elevation.

6.3.2 Image feature

Our approach to shape-based recognition benefits from recent advances in image contour

detection. In unconstrained natural environments, the Canny edge detector Canny (1986)

generally responds uniformly to both object occlusion boundaries and texture. One can

falsely piece together the silhouette of a target object from a dense set of edge pixels.

The state-of-the-art contour detection algorithm gPb Arbelaez et al. (2011) computes the

likelihood of each pixel being an object contour and thus suppresses many edges due to

texture/clutter. Figure 6.3 shows an example of Canny edge detection and gPb on the same

input image. Compared to Canny edges, gPb suppresses ubiquitous edge responses from

background clutter.

Given detected contours in the image, we seek to localize the subset of contour pixels
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that best represent the object silhouette. We will show that for cluttered scenes, discrimi-

native power is essential to achieve high recall with desired precision.

6.3.3 Object detection

The Deformable Parts Model (DPM) Felzenszwalb et al. (2010c) is one of the most suc-

cessful object detector. DPM is a star-structured conditional random field (CRF), with a

root part, F0, capturing the holistic appearance of the object and several parts (P0, . . . , Pn)

connected to the root where Pi = (Fi, vi, si, ai, bi). Each model part has a default relative

position (the anchor point), vi, with respect to the root position. Parts are also allowed to

translate around the anchor point with a quadratic offset distance penalty, parameterized

by the coefficients ai and bi. The anchor points are learned from the training data and the

scales of the root and parts, si, are fixed. The detection score is defined as:

n∑

i=0

Fi · φ(H, pi)−
n∑

i=1

ai · (x̃i, ỹi) + bi · (x̃i2, ỹi2), (6.1)

where φ(H, pi) is the histogram of gradients (HOG) Dalal and Triggs (2005a) feature

extracted at image location pi, and (x̃i, ỹi) is the offset to the part anchor point with respect

to the root position p0. At test time, the root and part model weights are each separately

convolved with the HOG feature of the input image. Due to the star structure of the model,

maximizing the above score function at each image location can be computed efficiently

via dynamic programming. To deal with intra-class variation, DPM is generalized by

composing several components, each trained on a subset of training instances of similar

aspect ratio. We refer to Felzenszwalb et al. (2010c) for more details.

To simultaneously detect an object and coarsely estimate its pose from the edge map

using only model silhouette shape information, we train a shape-aware modified version

of DPM, which we term S-DPM. Each component of the learned S-DPM corresponds to

a coarse pose of the object. More specifically, the silhouettes of the synthetic views of

the object are clustered into 16 discrete poses by grouping nearby viewpoints. An S-DPM

component is trained based on the silhouettes of a coarse pose cluster used as positive
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Figure 6.4: Spray bottle detection using S-DPM. (first row, left-to-right) Root appearance

model, part appearance models centered at their respective anchor points and the quadratic

deformation cost; brighter regions indicate larger penalty cost. (second row) Input image

and detection response map of the spray-bottle; red, yellow and blue indicate large, inter-

mediate and low detection responses, respectively.

training data and silhouettes of other poses and objects and random background edges

used as negatives. Figure 6.4 shows an example of a trained spray bottle model. During

inference, each of the model components are evaluated on the input contour imagery and

the hypotheses with a detection score above a threshold are retained. Detections of dif-

ferent components are combined via non-maximum suppression. This step retains high

scoring detections and filters out neighboring lower scoring ones whose corresponding

2D bounding box overlaps with that of the local maximum by greater than 50% (PASCAL

criteria Everingham et al. (2010)). The coarse pose of the object is determined by the

maximum scoring component at each image location.

6.3.4 Shape descriptor

We represent the holistic shape of each S-DPM detected object with the chordiogram

descriptor Toshev et al. (2012). Given the object silhouette, this representation captures

the distribution of geometric relationships (relative location and normals) between pairs of

boundary edges, termed chords. Formally, the chordiogram is a K-dimensional histogram

of all chord features on the boundary of a segmented object. A chord is a pair of points

(p, q) on the boundary points. Chord feature dpq = (lpq, ψpq, θp−ψpq, θq−ψpq)> is defined
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Figure 2. Left: Example of a configuration feature fpq (see
Sec. 3.1); Right: A chordiogram d of the figure segmentation (we
plot only the length l and orientation  dimensions of the descrip-
tor). d can be decomposed as the sum of the descriptors of indi-
vidual chords (bottom right).

terms:

EBoSS(s) = match(s, m) + group(s) (1)

In the following, we describe our shape representation and
the terms of the model.

3.1. Chordiograms as Shape Representation

To evaluate the similarity between a figure/ground seg-
mentation and the model mask we use a global boundary-
based shape descriptor, called the chordiogram. It is in-
spired by the Gestalt principle postulating that shape is per-
ceived as whole [18], as well as by the success of contour-
based shape descriptors [1].

To define a chordiogram, consider all possible pairs of
boundary edges of a segmented object, called chords. Each
chord captures the geometric configuration of two bound-
ary edges, and their distribution can be used to describe
the global shape. More precisely, for each chord (p, q),
its configuration is described as: the length lpq and the
orientation  pq of the vector connecting p and q as well
as the orientations ✓p and ✓q of the normals to the seg-
mentation boundary at p and q (see Fig. 2, left). The lat-
ter orientations are defined such that they point towards
the object interior. Note that in this way we capture not
only the boundary but also the object interior. Thus, the
configuration features of a chord (p, q) can be written as:
fpq = (✓p� pq, ✓q� pq, lpq,  pq)

T , where the normal ori-
entations are w. r. t.  pq. We describe the set of all configu-
rations, by defining the chordiogram d as a K-dimensional
histogram of the above features for all chords:

dk = #{(p, q)|fp,q 2 bin(k)} k = 1 . . . K (2)

The lengths lpq are binned together in a log space, which
allows for larger shape deformation between points lying
further apart, while all the angles are binned uniformly.

In terms of the definition of the pair configurations, the
above descriptor is similar to Shape Context [1], which cap-
tures the relation of contour edges only to a fixed offset
and is not global. The lack of an offset makes our descrip-
tor translation invariant; however, it is not scale or rotation

Figure 3. The top 2 principal components of chordiograms com-
puted using PCA for objects in the ETHZ Shape dataset (see
Sec. 5). (We omit the class ’Applelogos’ for the sake of cleaner
illustration ).

invariant. The descriptor is also inspired by Carlsson [2],
which captures topological properties of set of points.

Another important difference is that we capture the con-
tour orientation relative to object interior. Orienting the
boundary normals with respect to the interior contributes
to better discrimination, for example, between concave and
convex structures (configurations fpq and fp0q0 respectively
in Fig. 2), which otherwise would be indistinguishable. The
discriminative power can be seen on the right side of Fig. 3,
where objects of four different types are well separated us-
ing chordiograms, provided we compute it on segmented
objects. If, however, we use all image contours inside
the object bounding box, we obtain cluttered descriptors
(Fig. 3, left), which are much harder to separate. This moti-
vates the coupling of the chordiogram with figure segmen-
tation, as explained next. This coupling allows us to use
descriptor support which covers the whole object, thus the
descriptor is used globally.

3.2. Boundary Structure Matching

The matching term in Eq. (1) compares the chordiograms
of the model and an image segmentation. To formalize
the matching model, we need to express the descriptor as
a function of the object segmentation s. It will prove use-
ful to provide an equivalent definition to Eq. (2). Suppose
the contribution of a chord (p, q) to the descriptor is de-
noted by a chord descriptors dpq 2 {0, 1}K : (dpq)k = 1
iff fpq 2 bin(k). Then Eq. (2) can be expressed as a lin-
ear function of the chord contributions: d =

P
p,q dpq (see

Fig. 2, right). Hence, if we can express the selection of
chord descriptors as a function of s, then we can express the
chordiogram in terms of s. The main difficulty in the selec-
tion of chords lies, as we can see in Fig. 4, in the fact that
each chord can result in four different configuration features
depending on the position of the object interior with respect
to the chord edges: each edge has two possible normal ori-
entations depending on the object interior.

To relate this phenomenon to the figure/ground segmen-
tation, we express the descriptor in terms of a selection of
segment boundaries, which are related to the figure in the
image by assigning the boundaries to the segments compris-
ing the figure. This is motivated by the idea of figure/ground
organization of the image, where the figure is defined as re-
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Figure 6.5: Chordiogram construction. The bold boundary in the image on the left de-

notes the correct superpixel boundary of the object. Gray highlighted regions denote the

foreground superpixels under consideration. At the two chords, pq and p′q′, the features,

fpq and fp′q′ , fall into different bins of the histogram, i.e., the chordiogram shown on the

right. At each boundary point, the foreground selection of bordering superpixels defines

the normal direction.

by chord vector length lpq, orientation ψpq and normals θp and θq of the object boundary at

p and q. The edge normal direction points towards the segment interior to distinguish the

same edge with different foreground selection of bordering superpixels. Figure 6.5 shows

two examples of chord features and their corresponding chordiogram feature bins when

the bordering foreground superpixels differ. The chordiogram is translation invariant since

it only relates the relative position of boundary pixels rather than the absolute position in

the image.
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6.3.5 Shape verification for silhouette extraction

We use the chordiogram descriptor for two tasks: (i) to recover the object foreground mask

(i.e., the silhouette) for accurate 3D pose estimation and (ii) to improve detection precision

and recall by verifying that the shape of the foreground segmentation resembles the model

mask.

The fact that S-DPM operates on HOG features provides flexibility in dealing with

contour extraction measurement noise and local shape variance due to pose variation.

However, S-DPM only outputs the detections of the object hypotheses rather than the

exact location of the object contour. Even in the object hypothesis windows, the sub-

set of edge pixels that correspond to the object silhouette is not apparent. In addition,

contour-based object detection in cluttered scenes is susceptible to false detections caused

by piecing together irrelevant contours.

To recover exact object contour pixel locations and reduce false positives, an additional

shape matching step is required on top of the object hypotheses. Here, we propose using

the collective shape of a subset of superpixels within each hypothesis region to verify the

presence of an object.

For each detection hypothesis region, superpixels are computed directly from gPb Ar-

belaez et al. (2011). Searching over the entire space of superpixel subsets for the optimal

match between the collective shape of the superpixels and the object model is combi-

natorial and impractical. Instead, we use a greedy algorithm to efficiently perform the

search. In practice, with limited superpixels to select from, our greedy approach recov-

ers the correct region with high probability. Figure 6.6 shows example results of shape

verification. The greedy algorithm begins with a set of connected superpixels as a seed

region and greedily searches over adjacent superpixels, picking the superpixel that yields

the smallest χ2 distance to the chordiogram of model silhouette. Intuitively, if we have a

set of superpixels forming a large portion of the object with a few missing pieces, adding

these pieces yields the best score. The initial seeds are formed by choosing all triplets of

adjacent superpixels, and limiting examination to the top five seeds that yield the smallest
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Figure 6.6: Shape descriptor-based verification examples. (left-to-right) Detection hy-

pothesis window of the object, superpixel over-segmentation of the hypothesis region,

visualization of the coarse object pose from the object detector and selected foreground

mask.
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χ2 distance. The connectivity graph of superpixels is a planar graph with limited node

degrees. The complexity of finding triplets in such a planar graph is O(N logN) in the

number of nodes.

Once the correct foreground superpixels are selected, the detection bounding box is re-

cropped to reflect the recovered foreground mask. Empirically, this cropping step yields a

better localization of the detection result over the S-DPM, as measured in terms of preci-

sion and recall, see Sec. 6.4 Edges of the foreground mask are extracted and used in the

subsequent processing stage for accurate 6-DoF continuous pose estimation.

6.3.6 Pose refinement

Robotic grasping requires an accurate estimate of an object’s 3D pose. To improve upon

the coarse pose estimate provided by the S-DPM, we perform a final iterative pose refine-

ment step to recover the full continuous 6-DoF pose. This step is restricted to the region

of the verified superpixel mask.

Our iterative refinement process consists of two steps: (i) determining the correspon-

dence between the projected occluding boundary of the 3D model and the contour points

along object segmentation mask, and (ii) estimating an optimal object pose based on the

correspondences.

The contour correspondences are estimated using dynamic programming (DP) to en-

sure local matching smoothness. Given the initial (coarse) pose output from the object

detection stage, the 3D object model is rendered to the image and its corresponding pro-

jected occluding boundary is extracted. Each point on the contour is represented by a

descriptor capturing close-range shape information. The 31-dimensional contour descrip-

tor includes the gradient orientation of a contour point (the central point) and the gradient

orientations of the nearest 15 points on each side of the central point along the contour.

The gradient orientation of the central point is subtracted from all elements of the descrip-

tor, which gives in-plane rotation invariance. The matching cost between each pair is set

to be the l2 distance of the feature descriptor extracted at each point. DP is then used to
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establish the correspondences between contour points.

To estimate the refined pose we use the motion field equation Horn (1986):

u(x, y) =
1

Z
(xtz − tx) + ωx(xy)− ωy(x2 + 1) + ωz(y)

v(x, y) =
1

Z
(ytz − ty)− ωx(y2 + 1)− ωy(xy) + ωz(x),

where u(x, y), v(x, y) denote the horizontal and vertical components of the displacement

vectors, respectively, between the model and matched image contour points, computed by

DP, Z(x, y) denotes the depth of the 3D model point for the current pose estimate and the

Euler angles (ωx, ωy, ωz) and 3D translation vector (tx, ty, tz) denote the (locally) optimal

motion of the object yielding the refined pose. The motion update of the current pose

is recovered using least squares. This procedure is applied iteratively until convergence.

In practice, we usually observe fast convergence with only three to five iterations. The

running time of the pose refinement is about one second on an Intel 2.4GHz i7 CPU.

6.4 Experiments

Outdoor detection evaluation We introduce a challenging outdoor dataset for 3D object

detection containing heavy background clutter. This dataset was collected from a moving

robot and consists of eight sequences containing a total of 3403 test images; the dimen-

sions of each image are 512× 386. Figure 6.7 shows a set of representative imagery from

the introduced dataset. The scenes contain a variety of terrains (e.g., grass, rock, sand, and

wood) observed under various illumination conditions. The dataset represents the task of a

robot navigating a complex environment and searching for objects of interest. The objects

of interest are mostly comprised of textureless daily equipment, such as a watering pot,

gas tank, watering can, spray bottle, dust pan, and liquid container. For each frame, 2D

bounding boxes that tightly outline each object are provided. Further, the dataset includes

the corresponding 3D model files used in our empirical evaluation.

On the outdoor dataset, we performed a shape-based object detection evaluation. We

compared four methods, DOT Hinterstoisser et al. (2010), S-DPM with only the root
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Figure 6.7: Representative images from the introduced outdoor dataset. The dataset was

captured using a ground robot and includes diverse terrains, e.g., rocks, sand and grass,

with illumination changes. Portions of the terrain are non-flat. Objects are scattered

around the scene and typically do not occupy a major portion of the scene.
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model, full S-DPM with root and parts, and the full S-DPM plus shape verification (pro-

posed approach), on a detection task on the introduced dataset. Both DOT and S-DPM

used the same training instances from Sec. 6.3.1 with a slight difference. For S-DPM, we

trained one model component for each of 16 discrete poses. For DOT, we used the same

quantization of the viewsphere but trained with 10 different depths ranging from close to

far in the scene. During testing, S-DPM is run on different scales by building an image

pyramid. The input to both methods were the same gPb thresholded images. In all our

experiments, the threshold is set to 40 (gPb responses range between 0 and 255), where

edges with responses below the threshold were suppressed. The default parameters of gPb

were used. We did not observe a noticeable difference in the detection and pose estimate

accuracy with varying the gPb parameter settings.

Table 6.3 shows a comparison of the average precision for detection on the outdoor

dataset. The proposed approach consisting of the full S-DPM plus shape verification

achieves the best mean average precision. It demonstrates that using shape verification

improves detection due to the refinement of the bounding box to reflect the recovered sil-

houette. Full S-DPM outperforms both the root only S-DPM and DOT. This shows the

benefit of the underlying flexibility in S-DPM.

Table top evaluation We evaluated our pose refinement approach under two settings.

First, we recorded an indoor RGB-D dataset, with multiple objects on a table, from a

head mounted Kinect on a PR2 robot. The RGB-D data is used as ground truth. We

evaluated using three objects, watering can, gas tank, watering pot, placed at two different

distances from the robot on the table and two different poses for each distance. For each

scene, the target object was detected among all objects on the table and segmented using

shape verification, and then the 6-DoF pose was estimated, as described in Sec. 6.3.6.

The model point cloud was projected into the scene and Iterative Closest Point (ICP) Besl

and McKay (1992) was performed between the model point cloud and the Kinect point

cloud. We report ICP errors for both rotation and translation in Tables 6.1 and 6.2, resp.

Errors in the rotations and translations are small for different angles and different depth.
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Estimated Rotation Error

Roll Pitch Yaw Roll Pitch Yaw

dist1
1.65 48.44 -145.37 0.99 3.57 -1.63

watering 5.50 50.73 -22.37 -3.20 -3.92 -0.07

can
dist2

-4.33 41.93 48.78 -3.20 -3.92 -0.07

2.44 49.60 -54.82 -0.12 1.95 -1.92

dist1
-0.43 59.20 -73.00 -1.25 -0.28 1.36

watering 0.69 51.90 156.86 -1.82 -0.63 -3.48

pot
dist2

-10.43 66.93 38.28 -1.078 -6.67 -2.43

-0.633 52.24 -131.94 -0.21 1.14 -0.88

dist1
-0.15 50.58 -136.17 1.43 2.73 -4.58

gas 2.84 50.15 -51.15 -2.63 3.20 2.79

tank
dist2

-2.44 48.24 129.43 -3.57 0.02 -2.14

-7.40 45.22 109.90 -1.55 -1.79 -1.03

Table 6.1: Estimated absolute rotation of the object and error in degrees.

Translation errors in the X and Y directions are smaller than in Z direction. Since Z is

the depth direction, it is most affected by the 3D model acquisition and robot calibration.

Both measurements show our method is robust and suitable for grasping task.

In addition, using the object pose estimated from our approach, we demonstrate with

a PR2 robot successful detections and grasps of various objects from a cluttered table. In

Fig. 6.8, we show qualitative results of the PR2 successfully grasping various objects on a

cluttered table.
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Estimated Translation Error

X Y Z X Y Z

dist1
-46.5 -82.3 -1023.6 -1.14 -0.7 -2.8

watering -57.1 -86.4 -1023.2 -1.2 2.8 -7.2

can
dist2

-85.1 183.2 -1182.9 3.6 3.6 4.8

-114.9 186.0 -1200.3 4.5 2.2 -5.1

dist1
16.4 -154.0 -1020.9 2.8 1.0 0.06

watering -117.6 -112.4 -1028.3 0.4 0.2 2.2

pot
dist2

-6.8 32.7 -1051.2 2.0 -2.9 -3.5

-106.5 -6.6 -1053.1 -0.5 -0.2 -1.9

dist1
-23.8 21.2 -1061.2 -1.8 -0.9 -3.2

gas 19.5 -116.0 -958.8 -0.4 1.7 -3.2

tank
dist2

-77.0 6.7 -1064.6 0.4 -0.9 -2.0

-111.3 178.9 -1200.8 0.6 -0.4 -1.4

Table 6.2: Estimated absolute translation of the object and error in centimeters.

watering pot gas tank watering can spray bottle dust pan liquid container average AP

S-DPM full+shape 0.686 0.645 0.523 0.515 0.429 0.506 0.5507

S-DPM full 0.688 0.610 0.547 0.507 0.387 0.509 0.5413

S-DPM root only 0.469 0.535 0.433 0.436 0.295 0.436 0.4340

DOT 0.407 0.412 0.340 0.089 0.111 0.188 0.2578

Table 6.3: Average precision on the introduced outdoor dataset.
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Figure 6.8: PR2 grasping process for two example input images. Top panel for gas tank

and bottom for dust pan. a) S-DPM detection bounding boxes ordered by the detection

score in decreasing order. b) Corresponding pose output from S-DPM for each detection.

c) Segmentation of top scored detection window. d) Foreground mask selected by shape

verification. e) Three iterations in pose refinement, alignments (shown in color) between

curves are computed using DP. f) Visualization of PR2 model with the Kinect point cloud.

Notice that the estimated model given in light green is well aligned with the point cloud.

Grasping points are indicated by arrow. g) Another view of the same scene.
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Chapter 7

3D Pose Estimation and Shape

Reconstruction of Object Categories

7.1 Introduction

Recovering 3D geometry from 2D imaginary of an object is one of the most fundamental

and challenging problems in computer vision. Geometric features were the main represen-

tation of objects in the 20th century and have long been used to establish correspondence

between vertices and edges of a 3D model and their image projections Grimson (1990).

Although such representation was successful with geometric invariance it could not cope

with the complexity of appearance of 3D object categories in the real world which could

only be learned from exemplars.

As soon as massive 2D image exemplars became available on the Internet and through

tedious annotation, the computer vision community has harnessed fruitful results as the

state of the art in detecting object categories has improved dramatically Felzenszwalb et al.

(2010b); Girshick et al. (2014). More recently, researchers have focused on combining

such approaches with 3D geometry to build more powerful object detectors that are also

able to provide weak 3D information such as viewpoint Hu and Zhu (2014); Liebelt et al.

(2008b); Pepik et al. (2012b,c); Zia et al. (2013). In this paper, we go beyond viewpoint
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Figure 7.1: Illustrative summary of our approach: 3D Landmarks on a 3D model are as-

sociated with discriminatively learned part descriptors (left). Intra-class shape variation is

captured with linear combinations of a sparse shape basis (2nd left). Learned part descrip-

tors produce multiple maximum responses for each part in a testing image (3rd from left).

The selection of the part hypotheses, 3D pose and 3D shape are simultaneously estimated

and the result is illustrated through a popup (right).

estimation to establishing the actual 3D shape of an object for the sake of fine grained

classification or 3D interaction such as grasping and manipulation. Very few efforts have

been devoted to such combined estimation of pose and shape from a single image Hejrati

and Ramanan (2012); Lin et al. (2014).

Recent advances in recognition have opened doors to better understanding of 3D in

the wild, but there are three main challenges in the marriage of 2D appearance and 3D ge-

ometry: (1) how to learn a representation that captures appearance variation of geometric

features across instances and poses, (2) how to establish the 3D shape of an object without

exhaustively comparing to all possible instances or when that instance has not been seen

before, and (3) how to optimize for appearance and correspondence compatibility as well

as 3D shape and pose at the same time, without splitting the problem into subproblems.

In this paper, we propose a novel approach that marries the power of discriminative

parts with an explicit 3D geometric representation with the goal to infer 3D shape and

continuous pose of an object (or pop-up) from a single image. Part descriptors are dis-

criminatively learned in training images. Such parts are centered around projections of 3D
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landmarks which are given in abundance on the training 3D models. To establish a com-

pact representation we minimize the number of needed landmarks by solving a facility-

location problem. To deal with geometric deformation, we summarize the training set of

3D models into a shape dictionary from which we can generalize by linear combination.

Given a test image we detect top location hypotheses of each part. The challenge is how

to fit best these parts by maximizing the geometric consistency. This entails the selection

among the hypotheses of each part and the shape/pose computation. Unlike other ap-

proaches which rely on local optimization and initialize pose by DPM-based discretized

pose estimation Lin et al. (2014); Zia et al. (2013), we compute the selection as well as the

shape and pose parameters in one step using a convex program solved with the alternating

direction method of multipliers (ADMM).

Figure 7.1 illustrates the outline of our approach. In summary, the major technical

contributions are:

• A convex optimization framework for joint landmark localization, fine grained 3D

shape and continuous pose estimation from a single image.

• Our convex objective does not require viewpoint or detection initialization.

• An automatic landmark selection method considering both discriminative power in

appearance and spatial coverage in geometry.

7.2 Related Work

The most related work includes the family of methods that estimate an object shape by

aligning a deformable shape model to image features. This idea originated from the active

shape model (ASM) (Cootes et al., 1995a), which was originally proposed for segmenta-

tion and tracking based on low-level image features. Cristinacce and Cootes (Cristinacce

and Cootes, 2006) proposed the constrained local models (CLM), which combined ASM

with local appearance models for 2D feature localization in face images. Gu and Kanade
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(Gu and Kanade, 2006) presented a method to align 3D deformable models to 2D images

for 3D face alignment. The similar methods were also proposed for 3D car modeling

(Hejrati and Ramanan, 2012; Hu and Zhu, 2014; Lin et al., 2014; Zia et al., 2013) and hu-

man pose estimation (Ramakrishna et al., 2012; Zhou and De la Torre, 2014). Our method

differs in that we use a data-driven approach for discriminative landmark selection and

we solve landmark localization and shape reconstruction in a single convex framework,

which enables a global solution.

The representation of our model is inspired by recent advances in part-based modeling

(Felzenszwalb et al., 2010b; Hariharan et al., 2012; Kokkinos, 2011; Singh et al., 2012),

which models the appearance of object classes with a collection of mid-sized discrimi-

native parts. Our optimization approach is related to the previous work on using convex

relaxation techniques for object matching (Jiang et al., 2011; Li et al., 2011; Maciel and

Costeira, 2003). These methods focused on finding the point-to-point correspondence

between an object template and an image in 2D, while our method considers 3D to 2D

matching as well as shape variability.

Our paper is also related to recent work on 3D pose estimation which encodes the

geometric relations among local parts and achieved continuous pose estimation. Several

work leveraged 3D models to warp features or parts into their canonical view (Savarese

and Li, 2007; Xiang and Savarese, 2012; Yan et al., 2007). Other work rendered local

appearances and depth from 3D models and subsequently encoded in a 3D voting scheme

(Glasner et al., 2011b; Liebelt et al., 2008b; Sun et al., 2010). DPM was further lifted

to 3D deformable models (Fidler et al., 2012; Pepik et al., 2012b) to predict continuous

viewpoint. Instance models were also used to recover 3D pose of an object (Aubry et al.,

2014; Lim et al., 2013). But this line of work focused on pose estimation and either used

generic class models or instance-based models. Our approach differs in that we not only

provide a detailed shape representation but also consider intra-class variability.
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7.3 Shape Constrained Discriminative Parts

Our proposed method models both 2D appearance variation and 3D shape deformation of

an object class. The 2D appearance is modeled as a collection of discriminatively trained

parts. Each part is associated with a 3D landmark point on a deformable 3D shape.

Unlike the previous works that manually define landmarks on the shape model, we

propose an automatic selection scheme: we first learn the appearance models for all points

on the 3D model, evaluate their detection performance, and select a subset of them as our

part models based on their detection performance in 2D and the spatial coverage in 3D.

7.3.1 Learning Discriminative Parts

One of the main challenges in object pose estimation rises from the fact that due to per-

spective transform and self occlusions, even the same 3D position of an object has very

different 2D appearances in the image observed from different viewpoints. We tackle

this problem by learning a mixture of discriminative part models for each point in the 3D

model to capture the variety in appearance. Each part detector consists of a simple but fast

HOG detector Dalal and Triggs (2005b) and a more sophiscated but slow deep classifiers

trained with deep Convolutional Neural Net (CNN) Krizhevsky et al. (2012). The HOG

detectors provide location proposals to deep classifiers. Such design is chosen to balance

speed versus accuracy.

Given a training set D, each training image Ii ∈ D is associated with the 3D points of

the object shape S ∈ R3×p, their 2D projections Li ∈ R2×p annotated in the image.

HOG Part Detectors We bootstrap the learning of a discriminative mixture model for

each part via clustering whitened HOG (WHO) features Hariharan et al. (2012); Singh

et al. (2012). Denote φ(Lij) as the HOG feature of the positive image patch centered at

Lij and φbg as the mean of background HOG features. We compute the WHO feature as

Σ−1/2(φ(Lij)− φbg), where Σ is the shared covariance matrix computed from all positive
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and negative features. Then we cluster the WHO features of each part j into m clusters

using K-means.

A linear classifier Wcj is trained for each cluster c of a part j. We apply linear discrim-

inant analysis due to efficiency in training and limited loss in detection accuracy Girshick

and Malik (2013); Hariharan et al. (2012),

Wcj = Σ−1
(
φ(Lij; zij = c)− φbg

)
, (7.1)

where zij ∈ {1, . . . ,m} is the cluster assignment for each feature, and φ(Lij; zij = c) is

the mean feature over all Lij of cluster c. Let x = (x, y) be the position (x, y) in the image.

The response of part j at a given location x is the max response over all its c components:

scorej(x) = maxc{Wcj · φ(x)}.
We introduce a latent variable for each training patch, rij ∈ R2 to represent the rel-

ative center location to the annotated landmark location Lij . We improve the classifiers

learned from (7.1) by repositioning the patch center in the neighborhood ∆(Lij) of Lij

and retrain the classifiers. Note that the latent update procedure is similar to that of DPM

Felzenszwalb et al. (2010b) with the difference that we do not apply generalized distance

transform to filter responses but only consider maximum responses within a local region.

The reason is that our model, as will be discussed in Section 7.3.3, is constrained by the

3D shape space instead of learned 2D deformations. We want, thus, to obtain accurate

part localization to estimate the object pose and shape. A 2 × 2 covariance matrix Dj is

estimated for each landmark j from latent variables rij , to model the uncertainty of the

detected landmark position x∗ij relative to the ground truth.

Deep Part Classifiers HOG part detections serve as part proposals and are subsequently

re-ranked by forwarding through a CNN and applying SVM on the extracted Pool5 layer

features. During training, Pool5 features were extracted for both positive and negative

patches and an SVM is trained for each part mixture. During our experiments, we ob-

served that 1) fine-tuning from pre-trained AlexNet Krizhevsky et al. (2012) with part

patches of the same object category improves part detection accuracy, 2) Pool5 has better
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Method HOG-SVM CNN

mAP 0.41 0.53

Table 7.1: Comparison of CNN and HOG-SVM in part localization. Mean average preci-

sion (mAP) of localizing the 12 parts of PASCAL3D car category are shown.

performance than fully connected layers (fc6, fc7) for mid-level patches, 3) training sep-

arate classifiers for each part mixture component outperform a combined classifier. We

used publicly available deep learning toolbox Caffe Jia et al. (2014) in our experiments.

The performance of deep part classifiers is evaluated by comparing against SVM

trained HOG filters (HOG-SVM) with hard negative mining. Localization accuracy is

measured by the average precision of detecting the part within the close vicinity of the

groundtruth location. Table 7.1 shows performance comparison of CNN and HOG-SVM

on the 12 parts of PASCAL3D dataset car category.

7.3.2 Selecting Discriminative Landmarks

Seeking a compact representation of the object, we try to select only a small subset of

discriminative landmarks SD among all 3D landmarks S. We want the selected landmarks

SD to be both associated with discriminative part models and have a good spatial coverage

of the object shape model in 3D. The selection problem is formulated as a facility location

problem,

min
yu,xuv

∑

u

zuyu + λ
∑

uv

duvxuv, (7.2)

s.t.
∑

v

xuv = 1,

xuv ≤ yv, ∀u, v,

xuv, yu ∈ {0, 1}, ∀u, v,

where the interpretations of each symbol are presented in Table 7.2.
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Symbol Interpretation

zu cost of selecting landmark u

yu binary landmark selection variable

duv cost of landmark v “serving” u

xuv binary variable for landmark v “serving” u

λ trade off between unary costs and binary costs

Table 7.2: Notations interpretation in (7.2)

The cost zu for a landmark u should be lower if the associated part model is more

discriminative. We model the discriminativeness by evaluating the Average Precision (AP)

of detecting each landmark in the training set. For any landmark u, we perform detection

with the learned part model in the training set S to generate a list of location hypotheses

Hu. A hypothesis h ∈ Hu is considered as true positive if the ground truth location Liu

is within a small radius δ. Let the computed AP for a part u be APu, we set zu = 1 −
APu. The costs of “serving” (or suppressing) other landmarks are set to be the euclidean

distance between landmarks in 3D, i.e., duv = ||Su − Sv||2. The value of λ is set to

1 in our experiments. The minimization problem 7.2 is a Mixed Integer Programming

(MIP) problem, which is known to be NP-hard. But a good approximation solution can

be obtained by relaxing the integer constrains to be xuv ∈ [0, 1], yu ∈ [0, 1], solving the

relaxed Linear Programming problem, and thresholding the solution. Figure 7.2 visualizes

an example result of MIP optimization for landmark selection.

7.3.3 3D Shape Model

We start our description by explaining how we would estimate the shape of an object if

2D part - 3D landmark correspondences were known. We represent a 3D object model as

a linear combination of a few basis shapes to constrain the shape variability. This assump-

tion has been widely used in various shape-related problems such as object segmentation
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Figure 7.2: Visualization of the landmark selection optimization result. All 256 landmark

points of a car are shown in circle markers. The color of the markers represents the Av-

erage Precision(AP) of the landmark part detection on the training set, red means higher

AP and blue means lower AP. The size of the landmark represents the selection result, the

larger ones are selected via the MIP optimization and the smaller ones are not selected.

The red landmarks are preferred since they have higher detection accuracy, but only a

subset of red landmarks are selected because they are close in 3D.
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Cootes et al. (1995a), nonrigid structure from motion Bregler et al. (2000) and single

image-based shape recovery Gu and Kanade (2006); Zia et al. (2013). We use a weak-

perspective model, which is a good approximation when the depth of the object is smaller

than the distance from the camera. With these two assumptions, the 2D shape P ∈ R2×p

can be described by

P = R

k∑

i=1

ciBi + t1T , (7.3)

where Bi ∈ R3×p denotes the i-th basis shape, R ∈ R2×3 represents the first two rows of

camera rotation, and t ∈ R2 is the translation vector. In model inference, the reprojection

error is minimized to find the optimal parameters.

However, the model in (7.3) is bilinear in R and cis yielding a nonconvex problem. In

order to have a linear representation, we use the method proposed in Zhou et al. (2015a),

which assumes that the unknown shape is a linear combination of scalable and rotatable

basis shapes:

P =
k∑

i=1

TiBi + t1T , (7.4)

where Ti ∈ R2×3 denotes the first two rows of a similarity transformation matrix. In order

to enforce Ti to be orthogonal, the spectral norms of Tis are minimized during model

inference. The spectral norm is the largest singular value of a matrix, and minimizing

it enforces the two singular values of Ti to be equal, which yields an orthogonal matrix

Zhou et al. (2015a). After Tis are estimated, the third rows of Tis can be recovered from

the orthogonality and then the estimated 2D shape can be lifted to 3D.

7.4 Model Inference

Finally, we obtain global geometry-constrained local-part models, in which the unknowns

are the 2D part locations as well as the 3D pose and shape. In model inference, we maxi-

mize the detector responses over the part locations while minimizing the geometric repro-

jection error.
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7.4.1 Objective Function

We try to locate a part by finding its correspondence in a set of hypotheses given by the

trained detector. The cost without geometric constraints is

fscore(x1, · · · ,xp) = −
p∑

j=1

rTj xj, (7.5)

where xj ∈ {0, 1}l is the selection vector and rj ∈ Rl is the vector of the detection scores

for all hypotheses for the j-th part.

Geometric consistency is imposed by minimizing the following reprojection error:

fgeom(x1, · · · ,xp, T1, · · · , Tk, t) =

1

2

p∑

j=1

∥∥∥∥∥∥
D
− 1

2
j


LTj xj −

[
k∑

i=1

TiBi

]

j

− t



∥∥∥∥∥∥

2

, (7.6)

where we concatenate the 2D locations of hypotheses for part j in Lj ∈ Rl×2 and denote

the covariance estimated in training as Dj .

As introduced in Section 7.3.3, we add the following regularizer to enforce the orthog-

onality of Ti:

freg(T1, · · · , Tk) =
k∑

i=1

‖Ti‖2, (7.7)

where we use ‖Ti‖2 to represent the spectral norm of Ti, i.e., the largest singular value.

To simplify the computation, we relax the binary constraint on xi and allow it to be a

soft-assignment vector xi ∈ A, where A = {x ∈ [0, 1]l| ∑l
i=1 xi = 1.}.

Finally, the objective function reads

min
X,T ,t

fgeom(X,T , t) + λ1fscore(X) + λ2freg(T ), (7.8)

s.t. xj ∈ A, ∀j = 1 : p,

where X and T represent the unions of x1, · · · ,xp and T1, · · · , Tk, respectively. After

solving (7.8), we recover the 3D shape S and pose θ = (R, t) from Tis, as introduced in

Section 7.3.3.
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t← arg min
t
L, (7.11)

X ← arg min
X
L, (7.12)

T ← arg min
T
L, (7.13)

Z ← arg min
Z
L, (7.14)

Y ← ρ(T − Z). (7.15)

7.4.2 Optimization

The problem in (7.8) is convex since fscore is a linear term, fgeom is the sum of squares of

linear terms, and freg is the sum of norms of unknown variables. We use the alternating di-

rection method of multipliers (ADMM) Boyd (2010) to solve the convex problem in (7.8).

Since freg is nondifferentiable, which is not straightforward to optimize, we introduce an

auxiliary variable Z and reformulate the problem as follows:

min
X,T ,t,Z

fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z),

s.t. T = Z, xj ∈ A, ∀j = 1 : p. (7.9)

The corresponding augmented Lagrangian is:

L = fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z)

+
〈
Y, T − Z

〉
+
ρ

2
‖T − Z‖2

F . (7.10)

The ADMM algorithm iteratively updates variables by the following steps to find the

stationary point of (7.10):

It can be shown that (7.11), (7.12) and (7.13) are all quadratical programming prob-

lems, which have closed-form solutions or can be solved efficiently using existing convex

solvers. (7.14) is a spectral-norm regularized proximal problem, which also admits a

closed-form solution Zhou et al. (2015a).
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7.4.3 Visibility Estimation

In model inference, only visible landmarks should be considered. To estimate the un-

known visibility, we adopt the following strategy. We first assume that all landmarks are

visible and solve our model in (7.8) to obtain a rough estimate of the viewpoint. Since

the landmark visibility of a car only depends on the aspect graph, the roughly estimated

viewpoint can give us a good estimate of the landmark visibility. We observed that our

model could reliably estimate the coarse view by assuming the full visibility, which might

be attributed to the global optimization. After obtaining the visibility, we solve our model

again by only considering the visible landmarks. The full shape can be reconstructed by

the linear combination of full meshes of basis shapes after the coefficients are estimated.

7.4.4 Successive Refinement

The relaxation of binary selection vectors xjs in (7.8) may yield inaccurate localization,

since it allows the landmark to be located inside the convex hull of the hypotheses. To

improve the precision, we apply the following scheme: we solve our model in (7.8) re-

peatedly, and in each iteration we define a trust region based on the previous result for

each landmark and merely keep the hypotheses inside the trust region as the input to fit

the model again. We use three iterations. We can start from a large trust region to achieve

global fitting and gradually decrease the trust region size in each iteration to reject outliers

and improve localization. This successive refinement scheme has been widely-used for

feature matching Jiang et al. (2011); Li et al. (2011).

7.5 Experiments

In this section, we evaluate our method (PopUp) in terms of both shape and pose esti-

mation accuracy. The experiments are carried out on the Fine Grained 3D Car dataset

(FG3DCar) Lin et al. (2014) and PASCAL3D Xiang et al. (2014). Both datasets have

landmark locations in the image and pose annotation for 3D objects.
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7.5.1 FG3D Car Dataset

FG3DCar dataset consists of 300 images with 30 different car models of 6 car types under

different viewing angles. Each car instance is associated a shape model of 256 3D land-

mark points and their projected 2D locations annotated in the image as well as 3D pose

annotation. We perform the following evaluations: First, we compare the accuracy of pose

and shape estimation to the iterative model fitting method of Lin et al. (2014) (FG3D) in

terms of 2D landmark projection error. Second, we compare the coarse viewpoint esti-

mation error to viewpoint-DPM (VDPM) Gu and Ren (2010b); Xiang et al. (2014). In

addition, since our viewpoint estimation is continuous, we also show the angular errors

comparing to the groundtruth annotation. Through out the experiments, we follow the

same training-testing split as Lin et al. (2014).

We learn a mixture of discriminative part models of three components for each of 256

landmark points as described in Section 7.3. The Average Precision (AP) of the landmark

detection is evaluated on the training set. We count a detection as true positive only if the

detected location is close to the annotated location. We optimize the landmark selection

with unary cost as 1 - AP of each landmark and pairwise cost as the average pairwise

3D distance over all the 3D models. 52 out of 256 landmark points are selected with

MIP optimization while FG3DCar provides 62 manually selected landmark. To build the

shape models, we learned a dictionary consisting of 10 basis shapes from the 3D models

provided in the FG3DCar dataset.

Note that, unlike FG3D, our method does not need an external object detector to ini-

tialize either the location and scale in the image or coarse landmark locations. We perform

pose and shape estimation on the original image with background clutter.

3D Shape Estimation 3D Shape estimation accuracy is evaluated in terms of meanAPD

which is the average landmark projection error in pixels over the landmarks and the test

instances. In the following experiments, we investigate the effect of using different 3D

shapes on the model fitting error. We compare three setups with different basis shapes:
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Method meanAPD (SL) meanAPD

PopUp Mean shape 16.5 20.6

PopUp Class mean 15.4 18.9

PopUp Shape space 14.6 17.7

FG3D Class mean - 18.1

FG3D Shape space - 20.3

Table 7.3: Model fitting error of PopUp versus FG3D in terms of mean APD in pixels

evaluated on 52 selected landmarks (SL) and 64 landmarks provided in the dataset.
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Figure 7.3: Car type specific meanAPD of PopUp versus FG3D with mean prior and class

prior. Comparing to the FG3D method, our method achieves lower meanAPD on most car

types. For the type of pickup truck, our method significantly outperforms FG3D.
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Accuracy

Method 40◦ per view 20◦ per view

VDPM 82.7% 71.3%

PopUp 89.3% 84.7%

Table 7.4: Coarse viewpoint estimation accuracy versus VDPM evaluated on the FG3DCar

dataset. Accuracies are compared with two discretization schemes, 20 degrees per coarse

viewpoint and 40 degrees per coarse viewpoint.

0 10 20 30 40 50 60 70 80
Degree

Figure 7.4: Continuous viewpoint (azimuth) error comparing to the groundtruth on all 150

test images in the FG3DCar dataset. The mean error is 3.4 in degrees.
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only the mean shape, class-mean shapes and the learned shape space (10 basis shapes).

The middle column of Table 7.3 shows the fitting error on selected discriminative land-

marks. The fitting error decreases when we use the shape space instead of the mean shape

or the class mean, which validates the use of shape space to express intra-class shape

variation.

Since the selected discriminative landmarks are not identical to the landmarks provided

in the FG3DCar dataset, we also compare the meanAPD on the landmarks provided in the

dataset. Our method outperforms FG3D using the shape space without knowing the class

type. Note that, their detectors are trained on the manually selected 64 landmarks provided

in the dataset while our detectors are trained on the 52 automatic selected discriminative

landmarks.

Although our objective is to optimize the projection error on the discriminative land-

marks, the fitting error on the dataset provided landmarks is also minimized. This shows

the effectiveness of the landmark selection process. The error is reported on the same scale

as FG3D. Figure 7.3 shows the per class 3D model fitting error. Our method outperforms

FG3D on most class types with particular success on the pickup trucks.

Viewpoint Estimation We compare PopUp to VDPM in discrete viewpoint estimation

accuracy. For VDPM we train two sets of baseline VDPM with coarse viewpoints (az-

imuth) of every 20 degrees and every 40 degrees for each view. Each component of VDPM

corresponds to a viewpoint label. During inference, the viewpoint of the test car instance

is predicted as the training viewpoint of the max scoring component. For PopUp, the esti-

mated continuous viewpoint is discretized in the same way as VDPM. Table 7.4 shows the

comparison of the two methods. In both two cases, PopUp outperforms VDPM. We fur-

ther analyze the estimation error of PopUp by looking at continuous viewpoint estimation

error and show that the majority error is introduced by discretization. We compare our

estimation to the ground-truth viewpoint (azimuth) and report the absolute angular value

in Figure 7.4. The mean error over the whole test set is only 3.4 in degree.
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Number of basis 10 6 3

meanAPD 17.7 18.4 19.1

Table 7.5: Model fitting error of PopUp with different different number of shape basis in

terms of mean APD in pixels evaluated on 64 landmarks provided in the dataset.

Selection Method Optimized Greedy Uniform

meanAPD 17.7 20.1 22.9

Table 7.6: Model fitting error of PopUp with different landmark selection methods in

terms of mean APD in pixels evaluated on 64 landmarks provided in the dataset.

In addition to the quantitative evaluations, we show qualitative results on the test im-

ages from FG3DCar in Figure 7.6, where we project the 3D model wireframe with the

estimated pose and shape on to the image. We also show the textured model rendered at

novel views.

7.5.2 Sensitivity Analysis

In order to gain a better insight to the modeling and the optimization, we investigate the

model sensitivity under different conditions. First, we model sensitivity with different

number of shape basis. Table 7.5 shows the meanAPD using different number of basis,

10, 6 and 3. In the case of 6 basis, all car types have at least one corresponding basis.

In the case of 3 basis, we only kept sedan, SUV and pickup truck. The results show ro-

bustness to the number of shape basis. Second, we compare the 2D landmark localization

error related to different landmark sampling method. Table 7.6 shows the meanAPD by

using optimized selection in Section 7.3.2, greedy selection of the most discriminative

landmarks and uniform sampling of the landmarks. The optimized selection outforms

both greedy selection and uniform sampling.
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Method Views bicycle bus car mbike

PopUp (ours) 4 42.6 49.3 29.8 39.9

8 33.2 36.7 27.4 24.4

16 16.9 40.7 21.4 16.6

24 13.0 31.5 16.0 11.3

VDPM Xiang et al. (2014) 4 41.7 26.1 20.2 30.4

8 36.5 35.5 23.5 25.1

16 18.4 46.9 18.1 16.1

24 14.3 39.2 13.7 10.1

Ghodrati et al. Ghodrati et al. (2014) 4 34.4 50.7 28.9 29.4

8 27.6 50.3 26.6 24.7

16 18.0 42.9 19.6 15.9

24 12.6 40.2 15.9 13.2

DPM-3D Pepik et al. (2012c) 4 43.9 50.7 36.9 31.8

8 40.3 50.3 36.6 32.0

16 22.9 42.9 29.6 16.7

24 16.7 42.1 24.6 10.5

Table 7.7: Average (discrete) Viewpoint Accuracy on four categories of PASCAL3D

dataset.
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Figure 7.5: Precision recall curves for continuous viewpoint estimation on four categories

of PASCAL3D, occluded instances are excluded. The horizontal axis is the tolerance of

viewpoint error to count a prediction as correct, in the range of [0, π/4]. The vertical axis

shows the precision.

7.5.3 PASCAL3D Dataset

The PASCAL3D dataset augments a subset of PASCAL dataset Everingham et al. (2010)

with 3D models and pose annotations. PASCAL3D consists of images captured under

various natural conditions. Occlusions and various object sizes cast great challenges to 3D

estimation. We validate our method on four categories of PASCAL3D (test set): bicycle,

bus, car and motorbike. Both discrete and continuous viewpoint accuracies are evaluated.

Part Detectors are trained on the PASCAL3D training set. We use the provided landmarks

and 3D models.

For discrete viewpoint accuracy, we compare Average Viewpoint Accuracy to recently

reported state-of-art results on the benchmark Ghodrati et al. (2014); Pepik et al. (2012c);

Xiang et al. (2014). We use VDPM as base detector and estimate viewpoint within each
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detection hypothesis and quantize our continuous viewpoint output into discrete bins. Ta-

ble 7.7 shows the accuracy of viewpoint prediction with different quantization of the az-

imuth angle, namely 4, 8, 16 and 24 views. Our results are comparable on different cate-

gories. While our model-based method performs well on larger objects, statistical learning

based approaches as Pepik et al. (2012c) have advantages on small and heavily occluded

instances in terms of viewpoint prediction.

We evaluated the continuous viewpoint accuracy on non-occluded instances within

groundtruth bounding boxes. Figure 7.5 shows the precision-recall curves for four cat-

egories as the viewpoint error tolerance changes within [0, π/4]. We can observe that

for bus and car the precision increases quickly as the angular tolerance increases from

0 to 10 degrees, meaning that the majority angular errors are less than 10 degrees. Bus

and car outperform bicycle and motorbike with our method because their landmarks have

larger appearance variation. Figure 7.7 shows qualitative results with estimated visible

landmarks reprojected.

We break down the running time of our system on a 3.3Ghz Intel i7 CPU and an Nvidia

TitanZ GPU as the following. Estimating a single object instance in a PASCAL3D image

(500x300 pixels) requires: 0.08 seconds building HOG pyramid; 1.41 seconds in filters

convolution; 3.76 seconds in CNN classification and 1.52 seconds in ADMM.
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Figure 7.6: Example 3D estimation results from FG3DCar are shown. In the first two

rows, the 3D wire frame of the car model is projected on the image with estimated pose

and shape. Red solid lines represent visible wire frames and blue dotted lines represent

invisible wire frames. In the last row, the textured 3D reconstructions of the cars in the

second row are rendered at novel viewpoints. (We use symmetry to texture the invisible

faces).
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Figure 7.7: Examples of landmark localization results from different categories of PAS-

CAL3D are shown in the first two rows. Visible 3D landmarks are projected back to the

image. The yellow dots are groundtruth locations and the green dots are the estimation.

The last row shows example pop-up results of different object classes.
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Chapter 8

Articulated 3D Pose Estimation from

Image Sequences

8.1 Introduction

This paper is concerned with the challenge of recovering the 3D full-body human pose

from a monocular RGB image sequence. Potential applications of the presented research

include human-computer interaction (cf. Shotton et al. (2011)), surveillance, video brows-

ing and indexing, and virtual reality.

From a geometric perspective, 3D articulated pose recovery is inherently ambigu-

ous from monocular imagery Lee and Chen (1985). Further difficulties are raised due

to the large variation in human appearance (e.g., clothing, body shape, and illumina-

tion), arbitrary camera viewpoint, and obstructed visibility due to external entities and

self-occlusions. Notable successes in pose estimation consider the challenge of 2D pose

recovery using discriminatively trained 2D part models coupled with 2D deformation pri-

ors, e.g., Andriluka et al. (2014); Xiaohan Nie et al. (2015); Yang and Ramanan (2011),

and more recently using deep learning, e.g., Toshev and Szegedy (2014). Here, the 3D

pose geometry is not leveraged. Combining robust image-driven 2D part detectors, ex-

pressive 3D geometric pose priors and temporal models to aggregate information over
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EM……

Figure 8.1: Overview of the proposed approach. (top-left) Input image sequence,

(top-right) CNN-based heat map outputs representing the soft localization of 2D joints,

(bottom-left) 3D pose dictionary, and (bottom-right) the recovered 3D pose sequence re-

construction.

time is a promising area of research that has been given limited attention, e.g., Andriluka

et al. (2010); Zhou and la Torre (2014). The challenge posed is how to seamlessly inte-

grate 2D, 3D and temporal information to fully account for the model and measurement

uncertainties.

This paper presents a 3D pose recovery framework that consists of a novel synthesis

between discriminative image-based and 3D reconstruction approaches. In particular, the

approach reasons jointly about image-based 2D part location estimates and model-based

3D pose reconstruction, so that they can benefit from each other. Further, to improve

the approach’s robustness against detector error, occlusion, and reconstruction ambiguity,

temporal smoothness is imposed on the 3D pose and viewpoint parameters. Figure 8.1

provides an overview of the proposed approach. Given the input video (Fig. 8.1, top-left),
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2D joint heat maps are generated with a deep convolutional neural network (CNN) (Fig.

8.1, top-right). These heat maps are combined with a sparse model of 3D human pose

(Fig. 8.1, bottom-left) within an Expectation-Maximization (EM) framework to recover

the 3D pose sequence (Fig. 8.1, bottom-right).

8.1.1 Related work

Considerable research has addressed the challenge of 3D human motion capture from

video (Brubaker et al., 2010; Moeslund et al., 2006; Sminchisescu, 2007). Early research

on 3D monocular pose estimation in videos largely centred on incremental frame-to-frame

pose tracking, e.g., (Bregler and Malik, 1998; Sigal et al., 2012; Sminchisescu and Triggs,

2003). These approaches rely on a given pose and dynamic model to constrain the pose

search space. Notable drawbacks of this approach include: the requirement that the initial-

ization be provided and their inability to recover from tracking failures. To address these

limitations, more recent approaches have cast the tracking problem as one of data asso-

ciation across frames, i.e., “tracking-by-detection”, e.g., (Andriluka et al., 2010). Here,

candidate poses are first detected in each frame and subsequently a linking process at-

tempts to establish temporally consistent poses.

Another strand of research has focused on methods that predict 3D poses by searching

a database of exemplars (Jiang, 2010; Mori and Malik, 2006; Shakhnarovich et al., 2003)

or via a discriminatively learned mapping from the image directly or image features to

human joint locations (Agarwal and Triggs, 2006; Ionescu et al., 2014; Salzmann and

Urtasun, 2010; Tekin et al., 2015; Yu et al., 2013). Recently, deep convolutional networks

(CNNs) have emerged as a common element behind many state-of-the-art approaches,

including human pose estimation, e.g., (Li and Chan, 2014; Li et al., 2015; Tompson et al.,

2014; Toshev and Szegedy, 2014). Here, two general approaches can be distinguished.

The first approach casts the pose estimation task as a joint location regression problem

from the input image (Li and Chan, 2014; Li et al., 2015; Toshev and Szegedy, 2014). The

second approach uses a CNN architecture for body part detection (Chen and Yuille, 2014;
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Jain et al., 2014; Pfister et al., 2015; Tompson et al., 2014) and then typically enforces

the 2D spatial relationship between body parts as a subsequent processing step. Similar

to the latter approaches, the proposed approach uses a CNN-based architecture to regress

confidence heat maps of 2D joint position predictions.

Most closely related to the present paper are generic factorization approaches for

recovering 3D non-rigid shapes from image sequences captured with a single camera

(Akhter et al., 2011; Bregler et al., 2000; Cho et al., 2015; Dai et al., 2012; Zhu et al.,

2014c), i.e., non-rigid structure from motion (NRSFM), and human pose recovery models

based on known skeletons (Lee and Chen, 1985; Park and Sheikh, 2011; Taylor, 2000;

Valmadre and Lucey, 2010) or sparse representations (Akhter and Black, 2015; Fan et al.,

2014; Ramakrishna et al., 2012; Zhou et al., 2015b,c). Much of this work has been real-

ized by assuming manually labeled 2D joint locations; however, there is some recent work

that has used a 2D pose detector to automatically provide the input joints (Wang et al.,

2014) or solves the correspondence problem by matching a spatio-temporal pose model to

candidate trajectories extracted from a video (Zhou and la Torre, 2014).

8.1.2 Contributions

In the light of previous research, the current paper makes the following contributions.

Given a monocular video, two novel approaches for recovering the 3D human pose se-

quence are presented. The first approach assumes that the 2D poses are provided and

proceeds by combining a sparse representation of 3D pose with temporal smoothness in

the 3D domain to estimate the 3D poses. The second approach generalizes the first ap-

proach by relaxing the common but restrictive assumption that the 2D poses are provided

or explicitly estimated (cf. Wang et al. (2014)) and instead treats the 2D pose as a latent

variable. A CNN-based body joint detector is used to learn the uncertainty map for the

image location of each joint. To estimate the 3D pose, an efficient EM algorithm is pro-

posed, where the latent joint positions are marginalized to fully account for the uncertainty
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in the 2D joint locations. Finally, empirical evaluation demonstrates that the proposed ap-

proaches are more accurate compared to extant approaches. In particular, in the case

where 2D joint locations are provided, the proposed approach exceeds the accuracy of

the state-of-the-art NRSFM baseline Dai et al. (2012) on the Human3.6M dataset Ionescu

et al. (2014). In the case where the 2D landmarks are unknown, empirical results on the

Human3.6M dataset demonstrate overall improvement over published results. Further, the

proposed approach is shown to outperform a publicly available 2D pose estimation base-

line on the challenging PennAction dataset Zhang et al. (2013). The code will be made

publicly available upon publication.

8.2 Models

In this section, the models that describe the relationships between 3D poses, 2D poses and

images are introduced.

8.2.1 Sparse representation of 3D poses

The 3D human pose is represented by the 3D locations of a set of p joints, which is denoted

by St ∈ R3×p for frame t. To reduce the ambiguity for 3D reconstruction, it is assumed

that a 3D pose can be represented as a linear combination of predefined basis poses:

St =
k∑

i=1

citBi, (8.1)

where Bi ∈ R3×p denotes a basis pose and cit the corresponding weight. The basis poses

are learned from training poses provided by a motion capture (MoCap) dataset. Instead

of using the conventional active shape model Cootes et al. (1995b), where the basis set is

small, a sparse representation is adopted which has proven in recent work to be capable of

modelling the large variability of human pose, e.g., Akhter and Black (2015); Ramakrishna

et al. (2012); Zhou et al. (2015b). That is, an overcomplete dictionary, {B1, · · · ,Bk}, is

learned with a relatively large number of basis poses, k, where the coefficients, cit, are
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assumed to be sparse. In the remainder of this paper, ct denotes the coefficient vector

[c1t, · · · , ckt]T for frame t and C denotes the matrix composed of all ct.

8.2.2 Dependence between 2D and 3D poses

The dependence between a 3D pose and its imaged 2D pose is modelled with a weak

perspective camera model:

Wt = RtSt + Tt1
T , (8.2)

where Wt ∈ R2×p denotes the 2D pose in frame t, and Rt ∈ R2×3 and Tt ∈ R2 denote

the camera rotation and translation, respectively. Note, the scale parameter in the weak

perspective model is removed because the 3D structure, St, can itself be scaled. In the

following, W, R and T denote the collections of Wt, Rt and Tt for all t, respectively.

Considering the observation noise and model error, the conditional distribution of the

2D poses given the 3D pose parameters is modelled as

Pr(W|θ) ∝ e−L(θ;W), (8.3)

where θ = {C,R,T} is the union of all the 3D pose parameters and the loss function,

L(θ;W), is defined as

L(θ;W) =
ν

2

n∑

t=1

∥∥∥∥∥Wt −Rt

k∑

i=1

citBi −Tt1
T

∥∥∥∥∥

2

F

, (8.4)

with ‖·‖F denoting the Frobenius norm. The model in (8.3) states that, given the 3D poses

and camera parameters, the 2D location of each joint belongs to a Gaussian distribution

with a mean equal to the projection of its 3D counterpart and a precision (i.e., the inverse

variance) equal to ν.
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8.2.3 Dependence between pose and image

In the case where the 2D poses are given, it is assumed that the distribution of 3D pose

parameters is conditionally independent of the image data. Therefore, the likelihood func-

tion of θ can be factorized as

Pr(I,W|θ) = Pr(I|W)Pr(W|θ), (8.5)

where I = {I1, · · · , In} denotes the input images and Pr(W|θ) is given in (8.3). Pr(I|W)

is difficult to directly model, but it is proportional to Pr(W|I) by assuming uniform priors

on W and I, and Pr(W|I) can be learned from data.

Given the image data, the 2D distribution of each joint is assumed to be only dependent

on the current image. Thus,

Pr(I|W) ∝ Pr(W|I) = ΠtΠjhj(wjt; It), (8.6)

where wjt denotes the image location of joint j in frame t, and hj(·;Y) represents a

mapping from an image Y to a probability distribution of joint location (termed heat

map). For each joint j, the mapping hj is approximated by a CNN learned from training

data. The details of CNN learning are described in Section 8.4.

8.2.4 Prior on model parameters

The following penalty function on the model parameters is introduced:

R(θ) = α‖C‖1 +
β

2
‖∇tC‖2

F +
γ

2
‖∇tR‖2

F , (8.7)

where ‖·‖1 denotes the `1-norm (i.e., the sum of absolute values), and∇t the discrete tem-

poral derivative operator. The first term penalizes the cardinality of the pose coefficients

to induce a sparse pose representation. The second and third terms impose first-order

smoothness on both the pose coefficients and rotations.
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8.3 3D pose inference

In this section, the proposed approach to 3D pose inference is described. Here, two cases

are distinguished: (i) the image locations of the joints are provided (Section 8.3.1) and (ii)

the joint locations are unknown (Section 8.3.2).

8.3.1 Given 2D poses

When the 2D poses, W, are given, the model parameters, θ, are recovered via penalized

maximum likelihood estimation (MLE):

θ∗ = arg max
θ

ln Pr(W|θ)−R(θ)

= arg min
θ

L(θ;W) +R(θ). (8.8)

The problem in (8.8) is solved via block coordinate descent, i.e., alternately updating C,

R or T while fixing the others. The update of C needs to solve:

C← arg min
C

L(C;W) + α‖C‖1 +
β

2
‖∇tC‖2

F , (8.9)

where the objective is the composite of two differentiable functions plus an `1 penalty.

The problem in (8.9) is solved by accelerated proximal gradient (APG) Nesterov (2007).

Since the problem in (8.9) is convex, global optimality is guaranteed. The update of R

needs to solve:

R← arg min
R

L(R;W) +
γ

2
‖∇tR‖2

F , (8.10)

where the objective is differentiable and the variables are rotations restricted to SO(3).

Here, manifold optimization is adopted to update the rotations using the trust-region solver

in the Manopt toolbox Boumal et al. (2014). The update of T has the following closed-

form solution:

Tt ← row mean

{
Wt −Rt

k∑

i=1

citBi

}
. (8.11)
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Algorithm 3: Block coordinate descent to solve (8.8).

Input: W ; // 2D joint locations

Output: C,R,T ; // pose parameters

1 initialize the parameters ; // Section 8.3.3

2 while not converged do

3 update C by (8.9) with APG;

4 update R by (8.10) with Manopt;

5 update T by (8.11);

6 end

The entire algorithm for 3D pose inference given the 2D poses is summarized in Al-

gorithm 3. The iterations are terminated once the objective value has converged. Since

in each step the objective function is non-increasing, the algorithm is guaranteed to con-

verge; however, since the problem in (8.8) is nonconvex, the algorithm requires a suitably

chosen initialization (described in Section 8.3.3).

8.3.2 Unknown 2D poses

If the 2D poses are unknown, W is treated as a latent variable and is marginalized during

the estimation process. The marginalized likelihood function is

Pr(I|θ) =

∫
Pr(I,W|θ)dW, (8.12)

where Pr(I,W|θ) is given in (8.5).

Direct marginalization of (8.12) is extremely difficult. Instead, an EM algorithm is

developed to compute the penalized MLE. In the expectation step, the expectation of the

penalized log-likelihood is calculated with respect to the conditional distribution of W
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given the image data and the previous estimate of all the 3D pose parameters, θ′:

Q(θ|θ′) =

∫
{ln Pr(I,W|θ)−R(θ)} Pr(W|I, θ′)dW

=

∫
{ln Pr(I|W) + ln Pr(W|θ)−R(θ)}Pr(W|I, θ′)dW

= const−
∫
L(θ;W)Pr(W|I, θ′)dW −R(θ). (8.13)

It can be easily shown that
∫
L(θ;W)Pr(W|I, θ′)dW = L(θ;E [W|I, θ′]) + const, (8.14)

where E [W|I, θ′] is the expectation of W given I and θ′:

E [W|I, θ′] =

∫
Pr(W|I, θ′) W dW

=

∫
Pr(I|W)Pr(W|θ′)

Z
W dW, (8.15)

and Z is a constant that normalizes the probability. The derivation of (8.14) and (8.15) is

given in the supplementary material. Both Pr(I|W) and Pr(W|θ′) given in (8.6) and (8.3),

respectively, are products of marginal probabilities of wjt. Therefore, the expectation

of each wjt can be computed separately. In particular, the expectation of each wjt is

efficiently approximated by sampling over the pixel grid.

In the maximization step, the following is computed:

θ ← arg max
θ

Q(θ|θ′)

= arg min
θ

L(θ;E [W|I, θ′]) +R(θ), (8.16)

which can be solved by Algorithm 3.

The entire EM algorithm is summarized in Algorithm 4 with the initialization scheme

described next in Section 8.3.3.

8.3.3 Initialization

The convex relaxation approach proposed elsewhere Zhou et al. (2015b,c) is used to ini-

tialize the parameters. In Zhou et al. (2015b), a convex formulation was proposed to solve
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Algorithm 4: The EM algorithm for pose from video.

Input: hj(·; It), ∀j, t ; // heat maps

Output: θ = {C,R,T} ; // pose parameters

1 initialize the parameters ; // Section 8.3.3

2 while not converged do

3 θ′ = θ;

// Compute the expectation of W

4 E [W|I, θ′] =
∫

1
Z

Pr(I|W)Pr(W|θ′) W dW;

// Update θ by Algorithm 3

5 θ = arg min
θ

L(θ;E [W|I, θ′]) +R(θ) ;

6 end

the single-frame pose estimation problem given 2D correspondences, which is a special

case of (8.8). The approach was later extended to handle 2D correspondence outliers

Zhou et al. (2015c). If the 2D poses are given, the model parameters are initialized for

each frame separately with the convex method proposed in Zhou et al. (2015b). Alterna-

tively, if the 2D poses are unknown, for each joint, the image location with the maximum

heat map value is used. Next, the robust estimation algorithm from Zhou et al. (2015c) is

applied to initialize the parameters.

8.4 CNN-based joint uncertainty regression

In this section, the details are provided for using CNNs to learn the mapping Y 7→
hj(·;Y), where Y denotes an input image and hj(·;Y) represents a heat map for joint

j. Instead of learning p networks for p joints, a fully convolutional neural network Long

et al. (2015) is trained to regress p joint distributions simultaneously by taking into account

the full-body information.
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During training, a rectangular patch is extracted around the subject from each image

and is resized to 256 × 256 pixels. Random shifts are applied during cropping and RGB

channel-wise random noise is added for data augmentation. Channel-wise RGB mean val-

ues are computed from the dataset and subtracted from the images for data normalization.

The training labels to be regressed are multi-channel heat maps with each channel corre-

sponding to the image location uncertainty distribution for each joint. The uncertainty is

modelled by a Gaussian centered at the annotated joint location. The heat map resolution

is reduced to 32 × 32 to decrease the CNN model size which allows a large batch size in

training and prevents overfitting.

The CNN architecture used is similar to the SpatialNet model proposed elsewhere

Pfister et al. (2015) but without any spatial fusion or temporal pooling. The network

consists of seven convolutional layers with 5 × 5 filters followed by ReLU layers and a

last convolutional layer with 1× 1× p filters to provide dense prediction for all joints. A

2 × 2 max pooling layer is inserted after each of the first three convolutional layers. The

network is trained by minimizing the l2 loss between the prediction and the label with the

open source Caffe framework Jia et al. (2014). Stochastic gradient descent (SGD) with

momentum of 0.9 and a mini-batch size of 128 is used. During testing, an image patch It

is cropped around the subject in frame t and fed forward through the network to predict

the heat maps, hj(·; It), ∀j = 1, · · · , n.

8.5 Experiments

8.5.1 Datasets and implementation details

Empirical evaluation was performed on two datasets – Human3.6M Ionescu et al. (2014)

and PennAction Zhang et al. (2013). The demonstration videos are provided in the sup-

plementary material.

The Human3.6M dataset Ionescu et al. (2014) is a recently published large-scale dataset

for 3D human sensing. It includes millions of 3D human poses acquired from a MoCap
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system with corresponding images from calibrated cameras. This setup provides synchro-

nized videos and 2D-3D pose data for evaluation. It includes 11 subjects performing 15

actions, such as walking, sitting and discussion. For comparison convenience, the same

data partition protocol as in previous work was used Li et al. (2015); Tekin et al. (2015):

the data from five subjects (S1, S5, S6, S7, S8) was used for training and the data from

two subjects (S9, S11) was used for testing. The original frame rate is 50 fps and is

downsampled to 10 fps.

The PennAction dataset Zhang et al. (2013) is a recently introduced in-the-wild human

action dataset containing 2326 challenging consumer videos. The dataset consists of 15

actions, such as golf swing, bowling, and tennis swing. Each of the video sequences

is manually annotated frame-by-frame with 13 human body joints in 2D. In evaluation,

PennAction’s training and testing split was used which consists of an even split of the

videos between training and testing.

The algorithm in Zhou et al. (2015c) was used to learn the pose dictionaries. The

dictionary size was set to K = 64 for action-specific dictionaries and K = 128 for the

nonspecific action case. For all experiments, the parameters of the proposed model were

fixed (α = 0.1, β = 5, γ = 0.5, ν = 4 in a normalized 2D coordinate system).

8.5.2 Reconstruction with known 2D poses

First, the evaluation of the 3D reconstructability of the proposed method given perfect 2D

poses is presented. The generic approach to 3D reconstruction from 2D correspondences

across a sequence is NRSFM. The proposed method is compared to the state-of-the-art

method for NRSFM Dai et al. (2012) on the Human3.6M dataset.

Performance is evaluated by the mean per joint error (mm) in 3D by comparing the

reconstructed pose against the ground truth. As the standard protocol for evaluating

NRSFM, the error is calculated up to a similarity transformation via the Procrustes anal-

ysis, where a single rotation is applied to the entire sequence instead of frame-by-frame

rotation adjustment. To demonstrate the generality of the proposed approach, a single
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Original Synthesized

NRSFM Dai et al. (2012) 83.04 51.94

Single-frame initialization 56.49 54.14

Optimization by Algorithm 3 54.43 50.97

Table 8.1: 3D reconstruction given 2D poses. Two input cases are considered: original 2D

pose data from Human3.6M and synthesized 2D pose data with artificial camera motion.

The numbers are the mean per joint errors (mm) in 3D.

pose dictionary from all the training pose data, irrespective of the action type, was used,

i.e., a non-action specific model. The method from Dai et al. Dai et al. (2012) requires

a predefined rank K. Here, various values of K were considered with the best result for

each sequence reported.

The 2D joint locations provided in the Human 3.6M dataset were used as the input.

The results are shown in the second column of Table 8.1. The proposed method clearly

outperforms the NRSFM baseline. The reason is that the videos are captured by stationary

cameras. Although the subject is occasionally rotating, the “baseline” between frames is

generally small, and neighboring views provide insufficient geometric constraints for 3D

reconstruction. In other words, NRSFM is very difficult to compute with slow camera

motion. This observation is consistent with prior findings in the NRSFM literature, e.g.,

Akhter et al. (2011). To validate this issue, an artificial rotation was applied to the 3D

poses by 15 degrees per second and the 2D joint locations were synthesized by projecting

the rotated 3D poses into 2D. The corresponding results are presented in the third column

of Table 8.1. In this case, the performance of NRSFM improved dramatically. Overall,

the experiments demonstrate that the structure prior (even a non-action specific one) from

existing pose data is critical for reconstruction. This is especially true for videos with small

camera motion, which is common in real world applications. The temporal smoothness

helps but the change is not significant since the single-frame initialization is very stable
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Directions Discussion Eating Greeting Phoning

LinKDE Ionescu et al. (2014) 132.71 183.55 132.37 164.39 162.12

Li et al. Li et al. (2015) - 136.88 96.94 124.74 -

Tekin et al. Tekin et al. (2015) 102.39 158.52 87.95 126.83 118.37

Proposed 87.36 109.31 87.05 103.16 116.18

Photo Posing Purchases Sitting SittingDown

LinKDE Ionescu et al. (2014) 205.94 150.61 171.31 151.57 243.03

Li et al. Li et al. (2015) 168.68 - - - -

Tekin et al. Tekin et al. (2015) 185.02 114.69 107.61 136.15 205.65

Proposed 143.32 106.88 99.78 124.52 199.23

Smoking Waiting WalkDog Walking WalkTogether

LinKDE Ionescu et al. (2014) 162.14 170.69 177.13 96.60 127.88

Li et al. Li et al. (2015) - - 132.17 69.97 -

Tekin et al. Tekin et al. (2015) 118.21 146.66 128.11 65.86 77.21

Proposed 107.42 118.09 114.23 79.39 97.70

Average

LinKDE Ionescu et al. (2014) 162.14

Li et al. Li et al. (2015) -

Tekin et al. Tekin et al. (2015) 125.28

Proposed 113.01

Table 8.2: Quantitative comparison on Human 3.6M datasets. The numbers are the mean

per joint errors (mm) in 3D evaluated for different actions of Subject 9 and 11.
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S11 S9 Both

Directions 5.58 10.29 7.94

Discussion 6.63 18.33 12.48

Eating 9.93 10.69 10.31

Greeting 9.48 17.38 13.43

Phoning 11.64 15.96 13.80

Photo 17.20 15.84 16.52

Posing 6.46 12.95 9.71

Purchases 13.86 14.07 13.96

Sitting 12.79 19.58 16.19

SittingDown 31.78 47.60 39.69

Smoking 12.70 13.97 13.33

Waiting 7.81 20.63 14.22

WalkTogether 12.22 12.88 12.55

Walking 7.40 10.47 8.93

WalkingDog 15.86 15.45 15.66

Average 12.09 17.07 14.58

Table 8.3: 2D joint error from CNN regression on Human 3.6M datasets. The numbers

are the mean per joint errors in 2D in pixel under the image size of 256 × 256, evaluated

for different actions of Subject 9 and 11.
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3D (mm) 2D (pixel)

Single-frame initialization 143.85 15.00

Optimization by Algorithm 4 125.55 10.85

Perspective adjustment 113.01 10.85

No smoothness 120.99 11.25

No action label 116.49 10.87

Table 8.4: The estimation errors after separate steps and under additional settings. The

numbers are the average per joint errors for all testing data in both 3D and 2D.

given perfect 2D poses. Nevertheless, in the next section it is shown that the temporal

smoothness is important when 2D poses are not given.

8.5.3 Evaluation with unkown poses: Human3.6M

Next, results on the Human3.6M dataset are reported when 2D poses are not given. In

this experiment, the Human3.6M dataset evaluation protocol was adopted, i.e., the recon-

structed pose is compared to the ground truth in the camera frame with their root locations

aligned (rotation is not allowed). Results are compared to three recent baseline methods

based on the mean per joint errors. The first baseline method is LinKDE which is provided

with the Human3.6M dataset Ionescu et al. (2014). This baseline is based on single-frame

regression. The second one is from Tekin et al. Tekin et al. (2015) which extends the first

baseline method by exploring motion information in a short sequence. The third one is a

recently published CNN-based method from Li et al. Li et al. (2015).

In general, it is impossible to determine the scale of the object in monocular images.

The baseline methods learn the scale from training subjects. For a fair comparison, the
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Figure 8.2: Example frame results on Human3.6M, where the errors in the 2D heat maps

are corrected after considering the pose and temporal smoothness priors. Each row in-

cludes two examples from two actions. The figures from left-to-right correspond to the

heat map (all joints combined), the 2D pose by greedily locating each joint separately ac-

cording to the heat map, the estimated 2D pose by the proposed EM algorithm, and the

estimated 3D pose visualized in a novel view. The original viewpoint is also shown.
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reconstructed pose by the proposed method was scaled such that the mean limb length of

the reconstructed pose was identical to the average value of all training subjects. It was

found that the camera model influenced the rotation estimation. To compensate for effects

of the adopted weak-perspective model, the estimated rotation was refined with a perspec-

tive camera model. In particular, the estimated 3D pose was aligned to the estimated 2D

pose by a perspective-n-point (PnP) algorithm Lu et al. (2000).

The results are summarized in Table 8.2. The table shows that the proposed method

achieves the best results on most of the actions except for “walk” and “walk together”,

which involve very predictable and repetitive motions and might favor the direct regression

approach Tekin et al. (2015). In addition, the results of the proposed approach have the

smallest variation across all actions with a standard deviation of 28.75 versus 37.80 from

Tekin et al. The raw 2D joint errors are reported in Table 8.3

In Table 8.4, 3D reconstruction and 2D joint localization results are provided under

several setup variations of the proposed approach. Note that the 2D errors are with re-

spect to the normalized bounding box size 256 × 256. The table shows that the convex

initialization provides suitable initial estimates, which are further improved by the EM al-

gorithm that integrates joint detection uncertainty and temporal smoothness. The perspec-

tive adjustment is important under the Human3.6M evaluation protocol, where Procrustes

alignment to the ground truth is not allowed. The proposed approach was also evaluated

under two additional settings. In the first setting, the smoothness constraint was removed

from the proposed model by setting β = γ = 0. As a result, the average error significantly

increased. This demonstrates the importance of incorporating temporal smoothness. In

the second setting, a single CNN and pose dictionary was learned from all training data.

These models were then applied to all testing data without distinguishing the videos by

their action class. As a result, the estimation error increased, which is attributed to the fact

that the 3D reconstruction ambiguity is greatly enlarged if the pose prior is not restricted

to an action class.

Figure 8.2 visualizes the results of some example frames. While the heat maps may be
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Walking Jogging

S1 S2 S3 S1 S2 S3

Proposed 34.2 30.9 49.1 47.6 33.0 29.7

Simo-Serra et al. Simo-Serra et al. (2013) 65.1 48.6 73.5 74.2 46.6 32.2

Table 8.5: Quantitative results on the HumanEva I dataset Sigal et al. (2010). The numbers

are the mean per joint errors in millimeters.

erroneous due to occlusion, left-right ambiguity, and other uncertainty from the detectors,

the proposed EM algorithm can largely correct the errors by leveraging the pose prior,

integrating temporal smoothness, and modelling the uncertainty.

8.5.4 Evaluation with unkown poses: HumanEva

The evaluation results on the HumanEva I dataset Sigal et al. (2010) are presented. The

evaluation protocol described in Simo-Serra et al. (2013) was adopted. The walking and

jogging sequences from camera C1 of all subjects were used for evaluation. The CNN joint

detectors trained on the Human3.6M dataset were fine-tuned with the training sequences

for each action separately. Each estimated 3D pose was aligned to the ground truth with the

procrustes method. The mean 3D joint errors for the evaluation sequences were reported

in Table 8.5.

8.5.5 Evaluation with unkown poses: PennAction

Finally, the applicability of the proposed approach for pose estimation with in-the-wild

videos is demonstrated. Results are reported using two actions from the PennAction

dataset: “golf-swing” and “tennis-forehand”, both of which are very challenging due

to large pose variability, self-occlusion, and image blur caused by fast motion. For the

proposed approach, the CNN was trained using the annotated training images from the
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Figure 8.3: Example results on PennAction. Each row includes two examples. In each

example, the figures from left-to-right correspond to the ground truth superposed on the

image, the estimated pose from Yang and Ramanan (2011), the estimated pose by the

proposed approach, and the estimated 3D pose visualized in a novel view. The original

viewpoint is also shown.
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PennAction dataset, while the pose dictionary was learned with publicly available MoCap

data1. Due to the lack of 3D ground truth, quantitative 2D pose estimation results are

reported and compared with the publicly available 2D pose detector from Yang and Ra-

manan Yang and Ramanan (2011). The baseline was retrained on the PennAction dataset.

Note that the baseline methods considered in Section 8.5.3 are not applicable here since

they require synchronized 2D image and 3D pose data for training.

To measure joint localization accuracy, both the widely used per joint distance errors

and the probability of correct keypoint (PCK) metrics are used. The PCK metric measures

the fraction of correctly located joints with respect to a threshold. Here, the threshold is

set to 10 pixels which is roughly the half length of a head segment.

Table 8.6 summarizes the quantitative results. The initialization step alone outper-

formed the baseline. This demonstrates the effectiveness of CNN-based approaches,

which has been shown in many recent works Pfister et al. (2015); Toshev and Szegedy

(2014). The proposed EM algorithm further improves upon the initialization results by

a large margin by integrating the geometric and smoothness priors. Table 8.7 shows the

effect of smoothness constrain in EM optimization. Several example results are shown in

Figure 8.3. It can be seen that the proposed method successfully recovers the poses for

various subjects under a variety of viewpoints. In particular, compared to the baseline,

the proposed method does not suffer from the well-known “double-counting” problem for

tree-based models Yang and Ramanan (2011) due to the holistic 3D pose prior.

8.5.6 Running time

The experiments were performed on a desktop with an Intel i7 3.4G CPU, 8G RAM and

a TitanZ GPU. The running times for CNN-based heat map generation and convex ini-

tialization were roughly 1s and 0.6s per frame, respectively; both the steps can be easily

parallelized. The EM algorithm usually converged in 20 iterations with a CPU time less

than 100s for a sequence of 300 frames.

1Data sources: http://mocap.cs.cmu.edu and http://www.motioncapturedata.com
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Baseline Initial Optimized

Golf 24.78 / 0.38 18.73 / 0.45 14.03 / 0.54

Tennis 29.15 / 0.40 25.75 / 0.42 20.99 / 0.45

Table 8.6: 2D pose errors on the PennAction dataset. Each pair of numbers correspond to

the per joint distance error (pixels) and the PCK metric. The baseline is the retrained model

from Yang and Ramanan Yang and Ramanan (2011). The last two columns correspond to

the errors after initialization and EM optimization in our approach.

Baseline Without smoothness With smoothness

Golf 24.78 14.49 14.03

Tennis 29.15 21.37 20.99

Table 8.7: Comparison of 2D pose errors on the PennAction dataset with and without tem-

poral smoothness terms. Each number corresponds to the per joint distance error (pixels).

The baseline is the retrained model from Yang and Ramanan Yang and Ramanan (2011).

The last two columns correspond to the errors with temporal smoothness and without

temporal smoothness in the EM optimization in our approach.
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Part IV

Discussion and Conclusions
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In summary, this thesis presents a suite of solutions for 3D object recognition, includ-

ing 2D detection and 3D pose and shape estimation from single images and articulted pose

estimation from monocular video.

Fast Object Detection First, an active part selection approach which substantially speeds

up inference with pictorial structures without sacrificing accuracy is presented. Statistics

learned from training data are used to pose an optimization problem, which balances the

number of part filter convolution with the classification accuracy. Unlike existing ap-

proaches, which use a pre-specified part order and hard stopping thresholds, the resulting

part scheduling policy selects the part order and the stopping criterion adaptively based

on the filter responses obtained during inference. Potential future extensions include opti-

mizing the part selection across scales and image positions and detecting multiple classes

simultaneously.

3D Object Instance Pose Estimtation Second, we presented an integrated approach

for detecting and localizing 3D objects using pure geometric information derived from

a database of 3D models. We create an initial set of hypotheses with a state-of-the-art

parts-based model trained on clusters of poses. Detection hypotheses are segmented and

reranked by matching subsets of superpixels with model boundary silhouettes using the

chordiogram descriptor. The resulting segmentation enables the refinement of 3D pose in

a small number of steps. Due to the holistic nature of the chordiogram-based superpixel

selection, our approach is resistant to clutter. We demonstrate the grasps of textureless

objects in difficult cluttered environments in the video supplement.

3D Object Category Joint Pose and Shape Estimtation Third, we proposed a novel

approach for estimating the pose and the shape of a 3D object from a single image. Our

approach is based on a collection of automatically-selected and discriminatively-trained

2D parts with a 3D shape-space model to represent the geometric relation. In model

inference, we simultaneously localized the parts, estimated the pose, and recovered the
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3D shape by solving a convex program with ADMM.

Articulated Pose Estimtation Finally, a 3D pose estimation framework from video has

been presented that consists of a novel synthesis between a deep learning-based 2D part re-

gressor, a sparsity-driven 3D reconstruction approach and a 3D temporal smoothness prior.

This joint consideration combines the discriminative power of state-of-the-art 2D part de-

tectors, the expressiveness of 3D pose models and regularization by way of aggregating

information over time. In practice, alternative joint detectors, pose representations and

temporal models can be conveniently integrated in the proposed framework by replacing

the original components. Experiments demonstrated that 3D geometric priors and tempo-

ral coherence can not only help 3D reconstruction but also improve 2D joint localization.

Future extensions may include incremental algorithms for online tracking-by-detection

and handling multiple subjects.
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Part V

Appendix: Additional Results
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Figure 8.4: Example screen shots of PR2 grasping objects from a single image captured

from the ROS visualization view. Each row shows different views of the grasping the same

object. (Section 6)
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Figure 8.5: In practice, due to invisible landmark caused by the self-occlusion the PopUp

method requires iterative optimization to achieve the best results. The intermediate results

are shown. The left column shows the results with all the landmarks including occluded

points. The middle column shows the results after visibility pruning. The right column

shows the final results with local pruning and shape space optimization. (Section 7)
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Figure 8.6: In practice, due to invisible landmark caused by the self-occlusion the PopUp

method requires iterative optimization to achieve the best results. The intermediate re-

sults are shown. The left column shows the optimization results with all the landmarks

including invisible points. The middle column shows the results after visibility pruning.

The right column shows the final results with local pruning and shape space optimization.

(Section 7)
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Figure 8.7: Landmark reprojection results on Pascal3D. (Section 7)
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Figure 8.8: Landmark reprojection results on Pascal3D (continued). (Section 7)
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Figure 8.9: Learned filters and activations in different layers of the CNN on example

training and testing images. The left two columns corresponding to training and right two

columns testing. The first row shows the input images. The second row shows a subset of

learned convolution kernels in the first CNN layer. Row 3-6 show the activation map of

different kernels at each CNN layers. (Section 8)
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Figure 8.10: Additional example results on PennAction. Each row includes two examples.

In each example, the figures from left-to-right correspond to the ground truth superposed

on the image, the estimated pose from Yang and Ramanan (2011), the estimated pose by

the proposed approach, and the estimated 3D pose visualized in a novel view. The original

viewpoint is also shown. (Section 8)
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