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Development and Characterization of Tool Compounds Targeting the
Runt Domain’s interaction With Cbfβ

Abstract
RUNX1 and CBFβ, which encode subunits of the core binding factor, are frequent targets of chromosomal
aberrations in hematological malignancies. We previously determined that CBFβ (encoded by CBFB) is
important for the transforming activity of the chimeric protein AML1-ETO protein (RUNX1-RUNX1T1)
generated by the t(8;21), and other studies showed that normal Runx1 functions are essential for survival and
maintenance of some leukemias lacking RUNX1 or CBFB mutations. Thus, we hypothesized that we could
achieve therapeutic efficacy in multiple leukemias by targeting the Runx1:CBFβinteraction with small
molecules. Using the structural information of the DNA binding Runt domain (RD) of Runx1 and its
interface with CBFβ, we employed a computational screen for a library of 78,000 drug-like compounds, and
further optimized our leads. The Runt domain inhibitors (RDIs) bind directly to the RD and disrupt its
interaction with CBFβ. We showed that the RDIs reduced growth and induced apoptosis of t(8;21) acute
myeloid leukemia (AML) cell lines, and reduced the progenitor activity of mouse and human leukemia cells
harboring the t(8;21), but not normal bone marrow cells. The RDIs had similar effects on murine and human
T cell acute lymphocytic leukemia (T-ALL) cell lines that did not harbor the t(8;21). Furthermore, our
inclusion of a structurally related and weakly active compound as a control strongly support that the efficacies
we observed were due to on target inhibition of RUNX functions. Our results confirmed that the RDIs might
prove efficacious in various AMLs, and that a therapeutic window is available to specifically target malignant
cells. We developed a pro-drug AI-9-59 with improved solubility and pharmacokinetic properties and
assessed whether it has any in vivo efficacies in mouse leukemia models. Our results showed that the pro-drug
was toxic to mice at dosage above 50 mg/kg and had no observable growth inhibitory effect on leukemia cells,
suggesting that the concentration of the pro-drug necessary to inhibit endogenous core binding factor activity
exceeds the maximum tolerated dose in mice. However, the expansion of granulocyte macrophage
progenitors, and the gastrointestinal toxicity phenotype we observed suggested that the effects could be from
on-target repression of RUNX proteins functions.
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ABSTRACT 
	
	

DEVELOPMENT AND CHARACTERIZATION OF TOOL COMPOUNDS 

TARGETING THE RUNT DOMAIN’S INTERACTION WITH CBFβ 

 

Zaw Min Oo 

Nancy A. Speck 

 

RUNX1 and CBFβ, which encode subunits of the core binding factor, are 

frequent targets of chromosomal aberrations in hematological malignancies. We 

previously determined that CBFβ (encoded by CBFB) is important for the transforming 

activity of the chimeric protein AML1-ETO protein (RUNX1-RUNX1T1) generated by the 

t(8;21), and other studies showed that normal Runx1 functions are essential for survival 

and maintenance of some leukemias lacking RUNX1 or CBFB mutations. Thus, we 

hypothesized that we could achieve therapeutic efficacy in multiple leukemias by 

targeting the Runx1:CBFβ interaction with small molecules. Using the structural 

information of the DNA binding Runt domain (RD) of Runx1 and its interface with CBFβ, 

we employed a computational screen for a library of 78,000 drug-like compounds, and 

further optimized our leads. The Runt domain inhibitors (RDIs) bind directly to the RD 

and disrupt its interaction with CBFβ. We showed that the RDIs reduced growth and 

induced apoptosis of t(8;21) acute myeloid leukemia (AML) cell lines, and reduced the 

progenitor activity of mouse and human leukemia cells harboring the t(8;21), but not 

normal bone marrow cells. The RDIs had similar effects on murine and human T cell 

acute lymphocytic leukemia (T-ALL) cell lines that did not harbor the t(8;21). 

Furthermore, our inclusion of a structurally related and weakly active compound as a 
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control strongly support that the efficacies we observed were due to on target inhibition 

of RUNX functions. Our results confirmed that the RDIs might prove efficacious in 

various AMLs, and that a therapeutic window is available to specifically target malignant 

cells. We developed a pro-drug AI-9-59 with improved solubility and pharmacokinetic 

properties and assessed whether it has any in vivo efficacies in mouse leukemia models. 

Our results showed that the pro-drug was toxic to mice at dosage above 50 mg/kg and 

had no observable growth inhibitory effect on leukemia cells, suggesting that the 

concentration of the pro-drug necessary to inhibit endogenous core binding factor 

activity exceeds the maximum tolerated dose in mice. However, the expansion of 

granulocyte macrophage progenitors, and the gastrointestinal toxicity phenotype we 

observed suggested that the effects could be from on-target repression of RUNX 

proteins functions. 
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Introduction 

 

Targeting Protein-protein interaction by small molecules 

The past two decades have witnessed major advances in our understanding of 

the molecular mechanisms of diseases. As a consequence, drug discovery research has 

transitioned from searching for compounds with desired efficacy but against unknown 

targets to a target therapy approach. The aim of targeted therapy is to use our 

understanding of the cellular programs associated with the pathology of disease to 

design treatments with improved therapeutic efficacy. Although the majority of such 

studies have focused on targeting activated components of cytokine receptor signaling 

pathways, interest in targeting protein-protein interactions (PPIs) has grown in the past 

decade. 

Protein-protein interactions play important roles in all aspects of cellular 

processes, particularly in the regulation of transcription where the assembly of protein-

protein complexes is essential for appropriate gene regulation. PPIs, especially those 

involving transcription factors are highly attractive targets for developing inhibitors due to 

their biological importance, as many cancers either directly involve transcription factors, 

or indirectly modulate transcription factor activity. A variety of transcription factors have 

been identified as driving agents promoting tumorigenesis and cancer progression (1). 

Therefore, inhibiting PPIs involving transcription factors has a high therapeutic potential 

(2). However, until recently PPIs were considered undruggable due to several 

challenges. First, the contact surfaces involved in PPIs are large and lack the grooves 

and pockets for small molecule binding. Second, PPIs do not have natural small 

molecule substrate or ligand that can serve as starting scaffold for drug discovery. 
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Despite these challenges, research in identifying small molecule inhibitors of 

PPIs has made considerable progress in the past decade. Several recent technological 

advances facilitate this trend and provide hope for finding small molecules that target 

PPIs. We now have a better understanding of binding energetics at the macromolecular 

interface of PPIs. Although the protein-protein interfaces are large, mutational studies 

show that only a small subset of the residues involved contributes to most of the free 

energy of binding (3-5). The presence of such “hotspots” makes PPIs amenable to small 

molecule perturbations, and disrupting the interactions mediated by these hotspot 

residues proves to be effective in inhibiting PPIs. The identification of hotspot residues in 

turn allows for structure-based virtual screening to identify novel bioactive molecules. In 

virtual screening, large libraries of drug-like compounds that are commercially available 

are computationally screened against targets of known structure, and those that are 

predicted to bind well are experimentally tested. Structure-based virtual screening 

provides a more efficient and cost-effective approach over high-throughput screening 

(HTS) for identifying new lead compounds as it utilizes the knowledge of the three-

dimensional (3D) structure of the biological target. I will provide several examples of 

small molecules targeting PPIs in distinct biological pathways.  

 

MDM2-p53 inhibitors: a breakthrough in targeting PPI 

One recent success story in targeting PPI is the development of small molecules 

that inhibit the interaction of MDM2 with p53 (6). p53 is a tumor suppressor gene that 

normally triggers growth arrest, senescence or apoptosis in response to cellular stress. 

p53 activation increases the expression of E3 ligase MDM2, which in turn binds p53, 

directly represses p53 DNA binding ability and tags p53 for proteasomal degradation (7). 

p53 mutations, detected in a variety of human cancers, disrupt p53’s DNA binding and 
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transcriptional activity (8). Structurally, the N-terminal domain of MDM2 has a well-

defined hydrophobic pocket that mediates p53 binding, suggesting that the pocket could 

be targeted with small molecule drugs to block the MDM2-p53 interaction (9). Nutlins, a 

family of cis-imidazoline analogs, were identified by screening for compounds that 

disrupt the MDM2-p53 interaction (10). Nutlins inhibit the interaction of MDM2 with p53, 

leading to stabilization of p53 levels, and restore p53 mediated apoptosis (10-13). The 

success of MDM2-p53 PPI inhibitors has significantly accelerated studies to target other 

PPIs with small chemical compounds as anticancer drugs. 

 

STATs inhibitors 

Signal transducers and activators of transcription (STATs) are a family of 

cytoplasmic transcription factors. One of the key structural features of STATs is the Src 

homology (SH) 2 domain, the phosphorylation of which activates STATs. Activated 

STATs form dimers that translocate to the nucleus and regulate transcription of target 

genes controlling cell growth, differentiation, and survival (14). In normal cells, STAT 

signaling is transient and tightly regulated. However, cancer cells frequently have 

persistent STATs activation from hyper-activation, overexpression of upstream tyrosine 

kinases, or loss of function of negative regulators. As activated STATs, particularly 

STAT3, drive the expression of genes involved in cell proliferation and survival, blocking 

STAT3 activity presents a useful strategy for drug discovery (14). The availability of the 

three-dimensional (3D) structure of phosphorylated STAT3 (15), and the existence of a 

clearly defined binding pocket for small molecules in the SH2 domain allowed virtual 

screening of chemical databases for the identification of small molecule inhibitors of the 

STAT3 SH2 domain (16, 17). The most recent compound discovered by this route, S3I-

201, inhibits dimerization and DNA binding of pre-phosphorylated STAT3 and displayed 
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STAT3-dependent cellular effects in transcription, transformation, and apoptosis. 

Furthermore, S3I-201 is effective against a tumor cell line displaying constitutive STAT3 

activity in a mouse model xenograft model (17). 

 

BCL6 inhibitor 

BCL6 (B cell lymphoma 6) is the most frequently involved oncogene in diffuse 

large B cell lymphomas (DLBCLs) (18). BCL6 is required for B cell maturation, during 

which BCL6 represses genes involved in sensing DNA damage or their downstream 

checkpoints (19-21). BCL6 is constitutively expressed in the majority of patients with 

aggressive B cell lymphomas (18), and mice engineered to constitutively express BCL6 

in B cells develop DLBCL similar to the human disease (22, 23). BCL6 knockdown or 

peptide inhibitors kill DLBCL cells, demonstrating that BCL6 is required for survival of 

lymphoma cells and suggesting that BCL6 is a bone fide therapeutic target for DLBCL 

(19, 24, 25). 

 BCL6 is a member of the BTB/POZ family of transcription factors (26). BCL6 acts 

as a sequence specific transcription repressor by recruiting SMRT, N-CoR, and BCOR 

corepressors through its BTB domain (27, 28). Using structured-based virtual screening, 

a potent inhibitor of BCL6 BTB domain repressor activity was identified. The inhibitor 

binds to the BCL6 BTB domain, specifically inhibits BCL6, disrupts BCL6 transcriptional 

complexes and reactivates BCL6 target genes. The inhibitor selectively kills BCL6-

dependent DLBCL cells, and suppresses human DLBCL xenografts in mice (29).   

 

Menin-MLL inhibitors 

Translocations involving the mixed lineage leukemia (MLL) gene are frequently 

found in acute myeloid leukemia (AML) and are associated with poor prognosis (30, 31). 
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The MLL protein is a histone H3 lysine 4 (H3K4) methyltransferase required for the 

expression of HOX family genes during hematopoietic differentiation (32, 33). Fusion of 

MLL with one of numerous partner genes results in chimeric proteins that upregulate 

MLL target gene expression, block hematopoietic differentiation, and promote 

proliferation (33-35). The function of the wildtype MLL as well as MLL fusion requires 

interaction between MLL and menin, a tumor suppressor encoded by MEN1 (multiple 

endocrine neoplasia 1) (36). Loss of menin binding eliminates the oncogenic potential of 

MLL fusions (37, 38), and therefore targeting the menin-MLL interaction represents a 

potential therapeutic approach for the treatment of AML with the MLL translocation. 

A single point mutation in the high-affinity menin-binding motif 1 (MBM1) in MLL 

is sufficient to abolish the menin-MLL interaction, suggesting the existence of a hotspot 

residue for this interaction (39, 40). Subsequently, Grembecka et al (41) reported the 

identification of a family of small molecules that inhibit the menin-MLL interaction. One of 

the compounds, MI-2 binds to menin, disrupts the menin-MLL interaction and 

downregulates the expression of the MLL target genes essential for leukemogenesis. 

MI-2 inhibits the proliferation of several leukemia cell lines harboring MLL translocation 

but has minimal anti-proliferation effect on leukemia cell lines without MLL fusions. 

Subsequent structure-based design resulted in MI-2-2 with improved binding affinity for 

menin and enhanced cellular potency (42). Therefore, the inhibitor represents a 

promising lead that may be developed into a new antileukemic drug for MLL leukemia. 

 

CBFβ-SMMHC inhibitor 

The chromosome inversion 16 inv(16)(p13;q22) is one of the most common 

chromosomal rearrangements in acute myeloid leukemia. The rearrangement fuses the 

core binding factor β (CBFB) gene to the myosin heavy chain (MYH11) gene and 
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generates the chimeric transcription factor fusion CBFβ-SMMHC. CBFβ-SMMHC 

cooperates with activating mutations in components of cytokine signaling pathways in 

leukemia transformation (43-46). Studies in mice and patient samples support the 

concept that inv(16) is a driver mutation that generates preleukemic progenitor cells that, 

upon acquisition of additional cooperating mutations, progress to leukemia (44, 45, 47, 

48). CBFβ-SMMHC outcompetes wildtype CBFβ for binding to transcription factor 

RUNX1 (49), deregulates RUNX1-mediated transcription in hematopoiesis, and induces 

AML. Most recently, Illendula et al. reported the development of a PPI inhibitor that 

selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1 (50). Using a 

fluorescent resonance energy transfer (FRET) assay, the authors identified a lead 

compound that blocks the interaction of CBFβ-SMMHC with the Runt domain of RUNX1. 

As CBFβ-SMMHC is oligomeric in solution, the authors designed a bivalent analog of the 

lead compound with a seven-atom polyethylene glycol linker, resulting in the drug AI-10-

49. AI-10-49 specifically binds to CBFβ-SMMHC, restores RUNX1 transcriptional activity 

and delays leukemia progression in mice. Treatment of primary inv(16) AML patient 

blasts with AI-10-49 triggers selective cell death (50). The work provides additional 

support for targeted therapy against transcription factor drivers of cancers.  

These results demonstrate that targeting transcription factors with small 

molecules is feasible, and provide validation for our proposal to develop a novel class of 

small molecule inhibitors that target the RUNX proteins, a small family of DNA binding 

transcription factors, by interfering with their interaction with the non-DNA binding 

subunit core binding factor β (CBFβ).  
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Core-binding factor in development 

RUNX proteins are members of the core-binding factor (CBF), a family of 

heterodimeric transcription factors that play major roles in hematopoiesis. The CBF 

family consists of three distinct DNA binding CBFα subunits (RUNX1, RUNX2, and 

RUNX3), and a common non-DNA binding CBFβ subunit (encoded by CBFB) (Figure 1).  

 
Figure 1. The core binding factor subunits and genes. 
Shown is the structure of the DNA binding Runt domain of Runx1 (gray) and the CBFβ subunit (blue) bound 

to DNA. 

 

 

 

RUNX1, also known as acute myeloid leukemia 1 (AML1) or core-binding factor 

subunit alpha-2 (CBFA2), was initially identified from chromosome 21 in the t(8;21) 

(q22;q22) chromosomal translocation, frequently found in acute myeloid leukemia (AML) 

(51). RUNX proteins are evolutionally conserved (Figure 2). There are two well-studied 

RUNX homologs in Drosophila: runt and lozenge (52, 53). runt is a pair-rule gene 

involved in embryonic patterning and also plays a role in sex determination, 

segmentation and neural development (54, 55). lozenge is involved in hematopoiesis 

Runx
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and eye development (56). Subsequent work established that the RUNX proteins are 

sequence-specific DNA-binding proteins that bind to the polyomavirus enhancer and 

Moloney murine leukemia virus enhancer core sites, hence the name core-binding 

factors (57-61). All RUNX proteins have a highly conserved 128-amino-acid Runt 

domain in their N-terminal portion, which mediates both DNA binding and CBFβ 

heterodimerization (Figure 2). Through the Runt domain, RUNX proteins recognize the 

consensus sequence PyGPyGGT. The CBFβ subunit does not touch DNA but enhances 

the affinity of RUNX proteins for DNA (62), and protects them from ubiquitination and 

proteasomal degradation (63). 

 

Figure 2. A diagrammatic representation of the structure of RUNX1, RUNX2 and RUNX3 

together with Drosophila runt and lozenge. 
The Runt domain, the activation domain (AD), and C terminal VWRPY motif, along with the size of each 

protein are indicated. m: mouse RUNX, h: human RUNX 
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Numerous studies established that both Runx1 and CBFβ are critical for 

hematopoietic development. Runx1 is constitutively expressed in all hematopoietic 

lineages, except mature erythroid cells (64). In the conceptus, Runx1 is expressed in all 

sites of hematopoietic cell formation, including the vitelline and umbilical arteries, the 

yolk sac, the placenta, and the ventral portion of the dorsal aorta in the aorta-gonad-

mesonephros (AGM) region (65-67) (Figure 3). In the embryo, hematopoietic stem and 

progenitor cells (HSPCs) emerge from Runx1-expressing vascular-endothelial-cadherin-

positive endothelial cells called hemogenic endothelium, and Runx1 activity is essential 

for HSPC formation from these cells (65, 68-72). Thus RUNX1 is recognized as a 

mandatory transcription factor in embryonic hematopoiesis. 

 

Figure 3. Schematic diagram of an E10.5 mouse embryo. 
Sites of Runx1 expression in hemogenic endothelium are colored in red. These include the ventral aspect of 

the dorsal aorta in the aorta/gonad/mesonephros region, the umbilical artery, vitelline artery, and in areas of 

the yolk sac.  
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system, and mid-gestation embryonic lethality between embryonic day 12.5-13.5 (73-

76). Runx1 or Cbfb deficient mouse embryos lack definitive hematopoietic progenitors, 

definitive enucleated erythrocytes, and mature myeloid-lineage cells (73-77), and the 

lack of definitive hematopoietic cells is observed in all sites of hematopoiesis (65, 67, 69, 

70, 78) (Table 1). In addition, no transplantable hematopoietic stem cell (HSC) activity is 

found in the AGM region of Runx1 deficient embryos (79). Chimeric animals made from 

Runx1 or Cbfb deficient embryonic stem (ES) cells and wild type mouse blastocysts 

contain no ES-derived cells in adult hematopoietic tissues, which indicates that both 

genes are required in a cell-autonomous fashion (73, 75, 80). Therefore, both Runx1 

and CBFβ are required to establish HSPCs during embryonic development. 

Runx2, another member of the RUNX family, is primarily associated with 

osteoblast differentiation and bone formation (81, 82) (Table 1). Runx2 null mice died 

soon after birth, and the embryos and newborns showed a complete lack of bone 

formation and ossification, and the development of cartilage in Runx2 null mice was 

delayed (81, 82). Further studies established RUNX2 as a master transcription factor of 

osteoblast differentiation that controls both osteoblast differentiation and expression of 

osteoblast specific genes (83, 84). 

The knockout of RUNX3 caused phenotypes in several different tissues (Table 

1). Germline Runx3 knockout led to mice with defects in T-cell development, as well as 

gastrointestinal and neural disorders (85-88). During T-lymphocyte development, Runx3 

is essential for silencing of CD4 expression and maturation of single positive CD8+ T 

cells. The absence of Runx3 results in defective cytolytic activity of T lymphocytes (86, 

89). As Runx3 deficient mice spontaneously develop tumors in the intestine, lung and 

breast (90), RUNX3 may play a tumor suppressor role during the early stages of solid 

tumor formation. 
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Table 1. Knockout phenotypes of the core binding factor genes in mouse. 
 

 

 

Core-binding factor in adult hematopoiesis 

As will be discussed later, we developed small molecule inhibitors of the RUNX 

proteins that disrupt the Runt domain’s interaction with CBFβ. These function as pan-

RUNX/CBFβ inhibitors. In order to anticipate and interpret the inhibitors’ on-target 

activities, it is worth reviewing the murine phenotypes associated with Runx and CBFβ 

mutations, alone or in combinations. Conditional deletion of Runx1 in hematopoietic cells 

using the interferon inducible Mx1-Cre or pan-hematopoietic Vav1-Cre shows that once 

definitive hematopoiesis develops in the embryos, RUNX1 expression is not required to 

maintain HSCs (Table 2). Conditional knockout (cKO) of Runx1 does not cause 

hematopoietic failure in adult mice (94-96) but results in multi-lineage blocks in 

Gene Phenotype References 

Runx1 -/- Lethal at embryonic day (E) 11.2-12.5. Absence of definitive 
hematopoiesis. (73, 74) 

 Absence of intra-aortic hematopoietic clusters. (65) 

Runx2 -/- Lethal at birth, failure of osteoblast differentiation and bone 
formation. (81, 82) 

 Perturbation of chondrocyte differentiation. (91, 92) 

Runx3 -/- Hyperplastic gastric epithelia due to excessive proliferation. (87) 

 Loss of dorsal-root ganglion proprioceptive neuron function 
and ataxia. (85, 88) 

 Loss of homeostatic control of dendritic-cell function and lung 
inflammation. (93) 

Cbfb -/- Lethal at E11.5-13.5. Failure of definitive hematopoiesis. (75, 76) 
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lymphocyte and megakaryocyte development, and increase in the number of committed 

erythroid/myeloid progenitors.  Runx1 deletion in the adult results in expansion of the 

lineage negative Sca1+ Kit+ (LSK) phenotypic HSPC population in the bone marrow (94, 

97, 98) in a cell autonomous manner and reduces the frequency of functional long-term 

repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow by 3-fold without 

affecting their self-renewal properties (97-99).  

Runx1 loss in adult mice does not cause acute myeloid leukemia (AML) but 

establishes a pre-leukemic state that predisposes to AML following the acquisition of 

secondary mutations (99, 100). At the cellular level, Runx1-deficient HSPCs have slow 

growth, low biosynthesis and markedly reduced ribosome biogenesis (Ribi) (Figure 4). 

Runx1-deficient HSPCs have lower p53 levels, reduced apoptosis, an attenuated 

unfolded protein response, and are resistant to genotoxic and endoplasmic reticulum 

(ER) stress. The low biosynthetic activity and corresponding stress resistance provide a 

selective survival advantage to Runx1-deficient HSPCs, allowing them to expand in the 

bone marrow and outcompete normal HSPCs (101). 

Young Runx3 cKO mice do not display gross hematopoietic abnormalities, and 

aged Runx3 cKO mice show a mild expansion of the LSK compartment, partially 

phenocopying Runx1 cKO mice (102) (Table 2). In contrast, Runx1;Runx3 double 

knockout (DKO) mice exhibited much more severe phenotypes. The DKO mice had 

decreased white blood cell and platelet counts, developed anemia, and died within 18 

weeks post deletion. The DKO mice showed differentiation blocks in all hematopoietic 

lineages, and a 48-fold expansion in the LSK fraction that is followed by subsequent 

exhaustion in the HSPC compartment (103). Transplant experiments showed that the 

differentiation blocks and stem cell exhaustion in the DKO mice are cell autonomous 

(103). Therefore, Runx1;Runx3 double knockout mice show more pronounced 
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hematopoietic defects than Runx1 cKO mice, suggesting that RUNX family genes have 

compensatory mechanisms in hematopoiesis. 

 Conditional deletion of CBFβ, which should affect the activity of all three RUNX 

proteins, also shows more pronounced defects in hematopoiesis than Runx1 cKO mice 

(Table 2). Cbfb cKO mice have marked differentiation blocks in all hematopoietic 

lineages and significant expansion of LSK and short-term HSCs (ST-HSCs) in the bone 

marrow (BM). Cbfb cKO mice showed progressive decreases in leukocyte, hemoglobin, 

and platelet counts, and died by 6 months of age due to bone marrow failure (104). 

Although fetal liver and BM cells from Cbfb cKO mice show significant increase in colony 

forming activity, recipient mice transplanted with Cbfb deficient cells have extremely low 

donor chimerism in the hematopoietic tissues, including HSPC fractions in the BM. 

These results showed that while the progenitors in the Cbfb cKO mice possess greater 

proliferative capacity, Cbfb-deficient HSCs were incapable of long-term engraftment 

(104, 105). In addition, Cbfb cKO mice are not born at Mendelian ratios. The fact that 

CBFβ deficient HSCs are much more severely compromised than Runx1 deficient HSCs 

suggests Runx2 and/or Runx3 contribute substantially to HSC functions and also 

suggests the existence of functional compensation by the remaining two Runx genes for 

Runx1 loss. 
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Table 2 . Conditional knockout phenotypes of the core binding factor genes in mouse. 

  

Targeted 
Gene Phenotype of conditional knockout References 

Runx1 Mx1-Cre 
Normal HSC numbers.  
Normal myeloid cell compartment. 
Defective B and T cell differentiation. 

(95) 

 Mx1-Cre 
Reduced competitive repopulating ability. 
Myeloid expansion in spleen and liver. 

(94) 

 
Mx1-Cre 
Vav1-Cre 

Expands phenotypic stem and progenitor population. 
Three-fold reduction in frequency of long term 
repopulating HSC but showed no exhaustion. 
Runx1 loss slowed HSC proliferation and reduced 
apoptosis. 

(97) 

 Vav1-Cre 
Runx1 deficient HSPCs have slow growth, low 
biosynthesis, and markedly reduced ribosome 
biogenesis. 

(101) 

Runx3 Mx1-Cre 
Old Runx3 KO mice shows expanded LSK 
compartment. 

(102) 

Runx1 
and 
Runx3 

Mx1-Cre 

The majority of double knock out mice developed 
bone marrow failure (BMF) and died within 18 
weeks. 
BMF preceded by drastic expansion of the LSK 
compartment, followed by exhaustion. 
Differentiation blocks in all hematopoietic lineages. 

(103) 

Cbfb 
Mx1-Cre 
Vav1-Cre 

Differentiation blocks in all hematopoietic lineages. 
Significant expansion of LSK and ST-HSC 
populations. 
Stem cells incapable of long engraftment. 

(104) 

 Vav1-Cre 
No significant perturbation in E14.5 fetal liver LSK 
and phenotypic long-term HSCs populations. 
Long term repopulating ability severely diminished. 

(105) 
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Figure 4. Impact of loss of function Runx1 mutations in hematopoietic stem cells (HSCs). 
Runx1 directly occupies genes involved in ribosome biogenesis (Ribi). Loss of Runx1 results in decreased 

ribosome biogenesis, and other phenotypes thought to be secondary to decreased ribosome biogenesis that 

are listed.  From Cai et al. (101). 

	
 
Core-binding factors in hematological diseases  

The importance of the core binding factors in hematopoiesis is further 

underscored by the fact that both Runx1 and CBFβ are frequent targets of mutations and 

chromosomal aberrations in various hematological malignancies (Table 3). 

Characteristic genetic abnormalities include the t(8;21) and inv(16) in RUNX1 and CBFB 
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respectively. Each defines subgroups within the category of recurrent cytogenetic 

abnormalities, and confers a favorable prognosis. 

 

Table 3. Chromosomal translocations and mutations affecting Runx1 and CBFβ in various 

hematological diseases. 

 
Abbreviations: AML, acute myeloid leukemia; AML-M0, minimally differentiated acute myeloid leukemia; 

AML-M1, acute myeloid leukemia without maturation; AML-M2, acute myeloid leukemia with maturation; 

AML-M4Eo, acute myeloid leukemia with bone marrow eosinophilia; CMML, chronic myelomonocytic 

leukemia; FPD/AML, familial platelet disorder with predisposition to acute myeloid leukemia; MDS, 

myelodysplastic syndrome. 

	  

Gene Hematological 
disease Mutations 

RUNX1 
 AML-M2 

AML1-ETO: t(8;21)(q22;q22) 
AML1-LRP16: t(11;21)(q13;q22) 
AML1-MTG16: t(16;21)(q24;q22) 

 MDS 

AML1-EVI: t(3;21)(q26.2;q22) 
AML1-MDS1: t(3;21)(q26.2;q22) 
AML1-EAP:  t(3;21)(q26.2;q22) 
AML1-PRM6: t(1;21)(p36;q22)  

 B-ALL TEL-AML1: t(12;21)(p13;q22) 

 AML-M0 Mono- or bi-allelic loss of function RUNX1 mutation 

 AML-M1 Loss of function RUNX1 mutation 

 CMML Loss of function RUNX1 mutation 

 FPD/AML Mono-allelic RUNX1  mutation 

CBFB AML-M4 Eo CBFB-MYH11: Inv(16)(p13;q22) 
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t(8;21) AML and AML1-ETO 

The 8;21 translocation t(8;21)(q22;q22) is one of the most common chromosomal 

aberrations in de novo AML, occurring in 10% of adult and 12% of pediatric AMLs (96, 

106, 107). The t(8;21) breaks the RUNX1 gene in intron 5, resulting in fusion of the N-

terminal 177 amino acids of Runx1 (including the runt domain) to ETO (eight twenty-one,  

encoded by RUNX1T1) (108-112). This generates the chimeric protein AML1-ETO 

(Figure 5). ETO has no known role in hematopoiesis: homozygous loss of Runx1t1 in 

mice resulted in gastrointestinal defects, but no hematopoietic deficiencies (113, 114). 

ETO contains four domains conserved with its Drosophila homologue nervy. Thus the 

chimeric protein AML1-ETO consists of the intact Runt domain and almost the entire 

coding region of ETO, including 4 functional domains named Nervy homology region 

(NHR) 1, NHR2, NHR3, and NHR4, the structures for all of which, along with their 

interacting proteins or peptides from those proteins, have been solved (115-120). 

Although AML1-ETO is an essential causative factor of t(8;21)-positive AML, the full 

length chimeric protein is not leukemogenic by itself, and can only induce AML in mice 

when combined with an additional oncogene such as an activated kinase, including 

Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD), TEL-PDGFBR, or 

activated KIT (121-123). AML1-ETO confers phenotypes different from loss of function 

Runx1 mutations. Genetic experiments in Drosophila showed that AML1-ETO acts as a 

constitutive repressor of Runx1 homologue lozenge (124). The phenotype of conditional 

knock-in mice in which AML1-ETO expression is activated in the adult bone marrow 

resembles a milder version of Runx1 loss, including increased numbers of granulocyte-

monocyte (GM) progenitors and enhanced serial replating activity (125).  
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Figure 5. Schematic for AML1-ETO and its interacting proteins. 
On top is a schematic diagram of RUNX1 in grey and ETO sequences in gold and orange. t(8;21) generates 

AML1-ETO which fuses the Runt domain to nearly all of ETO. Structures of conserved domains (grey or 

orange) and their interacting proteins or peptides from those proteins (blue), and DNA (purple) are shown 

below. 

 

 

 

 

Clinically, t(8;21)-positive leukemia is associated with favorable prognosis, with 

70% of patients achieving complete remission following standard therapy (126, 127) 

(Figure 6). However, many patients retain AML1-ETO expressing cells in their bone 

marrow due to incomplete eradication of the leukemic cells (128, 129). As a result 35-

40% of these patients relapse within five years and have poor long-term survival (126, 

127).  
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Figure 6. Survival curves of core binding factor leukemias compared to other leukemia 
types. 
Favorable prognosis is associated with t(15;17), t(8;21), or inv(16) whether alone or in combination with 

other chromosomal abnormalities, with the possible exception of inv(16) or t(8;21) with complex karyotype. 

From Gulley et al. 2010 (128). 

 
 

 

 

 

 

 

 

 

 

 

Mutations that specifically disrupt the interaction between individual domains in 

AML1-ETO and their associated proteins revealed that the Runt domain and the NHR2 

domain (also known as hydrophobic heptad repeat or HHR) are essential for AML1-

ETO’s leukemogenic activity (130-133). The Runt domain of AML1-ETO mediates DNA 

binding and CBFβ binding, and both interactions are essential for AML1-ETO’s 

leukemogenic activities (130, 132, 133). Amino acid substitutions in the Runt domain 

that either disrupt AML1-ETO’s DNA binding or AML1-ETO’s interaction with CBFβ 

severely impaired AML1-ETO’s ability to transform hematopoietic cells, and abolished 

AML1-ETO’s ability to initiate leukemia in cooperation with activated kinase TEL-

PDGFBR in mice (130, 132) (Figure 7). Collectively these data demonstrated that 
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oligomerization and both DNA and CBFβ binding are required for AML1-ETO’s 

leukemogenic activity.  

 

Figure 7. Mutations that disrupt DNA or CBFβ binding impair AML1-ETO’s leukemogenic 

activity. From Roudaia et al, 2009 (132). 
A. Structures of the Runt domain and CBFβ are shown in gray and blue respectively, and the DNA is purple. 

The R174 residue in the Runt domain is shown in green, and the T161 and Y113 residues are in orange.  

B. Schematic of transplantation. Bone marrow mononuclear cells harvested from 5-fluorouracil treated 

C57BL/6 mice were co-infected with MigR1 expressing AML1-ETO (or its mutated derivatives) and TEL-

PDGFβR. IRES-mediated expression of EGFP marked AML1-ETO expressing cells while hCD4 marked 

TEL-PDGFβR expressing cells. One million transduced cells were transplanted along with 200,000 normal 

bone marrow cells into lethally irradiated mice. 

C. Kaplan-Meier survival curve of mice after transplantation with retroviruses expression AML1-ETO (AE) or 

its mutated derivatives and TEL-PDGFβR (TP).  
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The NHR2 mediates tetramer (dimer of dimers) formation, and mutations that 

reduced the tetramer to a dimer abrogated AML1-ETO’s leukemogenic activity (116, 

131). Substitution of NHR2 by an oligomerization domain from the forkhead binding 

protein retained AML1-ETO’s ability to confer serial replating activity to primary bone 

marrow cells, demonstrating that oligomerization per se is important for AML1-ETO’s 

transforming ability (134). 

On the other hand, NHR1, NHR3 and NHR4 are not essential for AML1-ETO’s 

leukemogenic activity. The NHR1 (also known as the eTAFH domain) is homologous to 

several TATA binding protein-associated factors (TAFs) and interacts with E proteins 

(E2A and HEB). It has been proposed that AML1-ETO mediated silencing of E protein 

functions is important for t(8;21) leukemogenesis (119, 135). However, amino acid 

substitutions that disrupt NHR1’s association with HEB did not impair AML1-ETO’s 

ability to confer serial replating to primary mouse bone marrow cells (117), and deletion 

of the entire NHR1 domain had no effect on AML1-ETO’s leukemogenic activity (130). 

The NHR3 (also known as the Nervy domain) shares homology with A-Kinase Anchoring 

Proteins (AKAPs) and interacts with the regulatory subunit of type II cAMP-dependent 

Protein Kinase (PKA RIIα) (136). Amino acid substitutions that disrupt the interaction of 

NHR3 with PKA RIIα did not affect AML1-ETO’s ability to transform primary mouse bone 

marrow cells nor its leukemogenic activity (136). 

The NHR4 (also known as the myeloid-Nervy-DEAF-1, MYND) appears to 

restrain AML1-ETO’s leukemogenic activity, as mutations of NHR4 promote AML1-

ETO’s activity (137). NHR4 binds the silencing mediator of retinoid and thyroid hormone 

receptor (SMRT) and nuclear receptor co-repressor (N-CoR) complexes, as well as the 

DNA binding protein SON (138-140). Deletion of the C-terminal NCoR/SMRT interacting 

domain of AML1-ETO resulted in the formation of a more potent leukemogenic protein 
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(141). Interestingly, an alternative splice form of AML1-ETO that results in the formation 

of a C-terminal truncated protein called AML1-ETO9 (142). AML1-ETO9a is found in 

human leukemia cells, and introducing AML1-ETO9a alone into mouse hematopoietic 

cells results in the rapid development of leukemia in transplanted mice, suggesting that 

AML1-ETO9a does not require additional cooperating mutations (142). 

Therefore, AML1-ETO has several interactions that may be targeted with small 

molecule inhibitors: the Runt domain:DNA interface, the Runt domain:CBFβ interface, 

and NHR2 mediated oligomerization. The interaction of CBFβ with the Runt domain is 

essential for the ability of TEL-AML1 (ETV6-RUNX1), frequently found in B-ALL, to 

promote the serial replating of B cell progenitors in vitro (132). This suggests that the 

interaction with CBFβ may be important for the activity of multiple chimeric Runx1 

proteins. 

Interestingly, no loss of function (LOF) RUNX1 mutations in the remaining 

RUNX1 allele were found in the favorable risk group with the characteristic genetic 

abnormality (8;21) (143, 144). Similarly, no LOF RUNX1 mutations were found in AMLs 

containing the inv(16) (143, 144). These data suggest either that the t(8;21) and inv(16) 

were redundant with LOF RUNX1 mutations, or that they were synthetically lethal. In 

support of the latter interpretation, recent studies have provided evidence that wildtype 

CBF functions are required for the maintenance and survival of leukemia cells. 

Specifically, knock down of wild type Runx1 reduced growth and induced apoptosis in 

t(8;21) cell lines, and also in AML1-ETO transformed human CD34 positive cells (145, 

146). Knock down of Runx1 also induced apoptosis of MLL-AF9 transformed cells, and 

deletion of Runx1 and CBFβ extended the disease latency in a mouse MLL-AF9 model 

(146), suggesting that a subset of AMLs that do not harbor mutations in the CBF genes 
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may rely on continuous CBF function. T cell acute lymphocytic leukemia (T-ALL) also 

appears to rely on sustained Runx1 activity. A small molecule targeting cyclin-dependent 

kinase 7 displayed activity in a subset of cancer cell lines, including T-ALL, and its 

mechanism of action appeared to involve the down regulation of Runx1 expression 

(147). Taken together, these findings strongly suggest that, despite the proposed tumor 

suppressor function of Runx1 in normal hematopoiesis, a continued low level of normal 

Runx1 function is required to maintain cell growth or viability in a certain subset of 

leukemia. We hypothesize that these leukemias may be more sensitive to perturbations 

in the RUNX proteins’ functions, and therefore small molecules interfering with 

Runx1:CBFβ interaction may achieve therapeutic efficacy in a wide range of leukemia. 

In summary, we established the RD:CBFβ interface as viable drug target. In a 

previous study, we carried out structure-based mutagenesis study at the Runt domain of 

Runx1 to determine the energetic contribution of the amino acids in the Runt domain that 

contact CBFβ for heterodimerization. We identified two energetic hot spots at the 

heterodimerization interface of the Runt domain that contribute to the bulk of binding 

energy for heterodimerization with CBFβ (148). Herein we describe the identification 

small molecule inhibitors by screening for a library of compounds against the hot spot 

residues at the Runt domain:CBFβ interface, and the  development of a tool compound 

that binds to the Runt domain of RUNX proteins and inhibits their interaction with CBFβ.  
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Abstract 

 

RUNX1 and CBFB, which encode subunits of the core binding factor, are 

frequent targets of chromosomal aberrations in hematological malignancies. We 

previously determined that CBFβ  (encoded by CBFB) is important for the transforming 

activity of the chimeric protein AML1-ETO protein (RUNX1-RUNX1T1) generated by the 

t(8;21), and other studies showed that normal Runx1 functions are essential for survival 

and maintenance of some leukemias lacking RUNX1 or CBFB mutations. Thus, we 

hypothesized that we could achieve therapeutic efficacy in multiple leukemias by 

targeting the Runx1:CBFβ interaction with small molecule inhibitors. Using the structural 

information of the DNA binding Runt domain (RD) of Runx1 and its interface with CBFβ, 

we employed a computational screen for a library of 78,000 drug-like compounds, and 

further optimized our lead compounds. The Runt domain inhibitors (RDIs) bind directly to 

the RD and disrupt its interaction with CBFβ compounds reduced growth and induced 

apoptosis of t(8;21) acute myeloid leukemia (AML) cell lines, and reduced the progenitor 

activity of mouse and human leukemia cells harboring the t(8;21), but not normal bone 

marrow cells. The RDIs had similar effects on murine and human T cell acute 

lymphocytic leukemia (T-ALL) cell lines that did not harbor the t(8;21). Our results 

confirmed that the RDIs might prove efficacious in various AMLs, and that a therapeutic 

window is available to specifically target malignant cells. 
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Introduction 

 

Acute myeloid leukemia (AML) often harbors non-random clonal chromosomal 

aberrations. Among them, the 8;21 translocation t(8;21)(q22;q22) is one of the most 

common in de novo AML, occurring in 10% of adult and 12% of pediatric AMLs (96, 106, 

107). The translocation fuses the N-terminal 177 amino acids of Runx1 (also known as 

AML1, encoded by RUNX1) to ETO (eight twenty-one, encoded by RUNX1T1), 

generating the chimeric protein AML1-ETO, an essential causative factor of t(8;21)-

positive AML (107). Runx1 is a sequence-specific DNA binding transcription factor and 

member of heterodimeric core binding factors (CBFs) that play important roles in 

hematopoiesis (106, 107). Loss of Runx1 during embryonic development results in a 

failure of hematopoietic stem cell (HSC) emergence, whereas loss in adult HSCs leads 

to a pre-leukemic state (79, 94, 96, 97, 99, 100). ETO, on the other hand, has no known 

role in normal hematopoiesis. Homozygous loss of Runx1t1 in mice resulted in 

gastrointestinal defects, but no hematopoietic deficiencies (113, 114). 

Clinically, t(8;21)-positive leukemia is associated with favorable prognosis, with 

70% of patients achieving complete remission following standard therapy (126, 127). 

However, many patients retain AML1-ETO expressing cells in their bone marrow due to 

incomplete eradication of the leukemic cells (128, 129). As a result 35-40% of these 

patients relapse within five years and have poor long-term survival (126, 127). We 

hypothesize that direct therapeutic targeting of the chimeric protein AML1-ETO may 

reduce the rate of relapse and improve long-term survival. 

AML1-ETO has five domains conserved with its Drosophila homologues: the 

Runt domain (RD) from Runx1, and four from ETO (eTAFH, HHR, Nervy, MYND) (107). 

We and others solved the structures of all five domains and their interacting partners, 
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and introduced amino acid substitutions to assess their contribution to AML1-ETO’s 

transforming ability (62, 115-118, 120, 132, 134, 149-151). We determined that the 

interaction between the Runt domain of AML1-ETO and CBFβ, the non-DNA binding 

partner of all three RUNX proteins, is important for AML1-ETO mediated 

leukemogenesis (132). We introduced a single amino acid substitution into the Runt 

domain that disrupted DNA, but not CBFβ binding (R174Q), and a pair of mutations that 

impaired CBFβ but not DNA binding (Y113A/T161A). Both sets of mutations severely 

impaired AML1-ETO’s ability to transform hematopoietic cells. Most importantly, both 

DNA and CBFβ binding were essential for AML1-ETO’s ability to cooperate with the 

activated kinase TEL-PDGFβR to promote leukemia in mice. Collectively these data 

demonstrated that both DNA and CBFβ binding are critical for AML1-ETO’s activity, and 

validated the AML1-ETO:CBFβ interaction as a viable drug target. 

In addition, we determined that the interaction of CBFβ with the Runt domain is 

essential for the ability of TEL-AML1 (ETV6-RUNX1), frequently found in B-ALL, to 

promote the serial replating of B cell progenitors in vitro (132). This suggests that CBFβ 

may be important for the activity of multiple chimeric Runx1 proteins. 

Recent studies have provided additional evidence that normal CBF functions are 

required for the maintenance and survival of certain leukemia cells. Specifically, knock 

down of wild type Runx1 reduced growth and induced apoptosis in t(8;21) cell lines, and 

also in AML1-ETO transformed human CD34 positive cells (145, 146). Knock down of 

Runx1 also induced apoptosis of MLL-AF9 transformed cells, and deletion of Runx1 and 

CBFβ extended the disease latency in a mouse MLL-AF9 model (146), suggesting that a 

subset of AMLs that do not harbor mutations in the CBF genes may rely on continuous 

CBF function. T cell acute lymphocytic leukemia (T-ALL) also appears to rely on 
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sustained Runx1 activity. A small molecule targeting cyclin-dependent kinase 7 

displayed activity on a subset of cancer cell lines, including T-ALL, and its mechanism of 

action appeared to involve the down regulation of Runx1 expression (147). 

Taken together, these findings strongly suggest that normal CBF function is 

required for the maintenance of leukemic stem cell functions in a certain subset of 

leukemia. We hypothesize that these leukemias may be more susceptible to 

perturbations in normal CBF functions. Therefore, small molecules interfering with 

Runx1:CBFβ interaction may achieve therapeutic efficacy in a wide range of leukemia. 

We have established the RD:CBFβ interface as viable drug target and have developed 

small molecules interfering with the RD:CBFβ interaction. 

Herein we describe the development of a tool compound that binds to the Runt 

domain of RUNX proteins and inhibits their interaction with CBFβ. We also developed a 

pro-drug version of this tool compound to improve solubility and thereby potential utility 

in vivo. These Runt domain inhibitors (RDIs) inhibit growth in culture as well as 

clonogenic potential of AML1-ETO and T-ALL leukemia cell lines. The tool compounds 

show clear effects on the expression of well-characterized RUNX1 target genes. 

Analysis of genome-wide changes in gene expression identified lipid and sterol 

biosynthesis and ribosome biogenesis pathways, which are RUNX regulated (152, 153), 

as significantly affected by inhibitor treatment. 
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Materials and Methods 

 

Virtual screening 

Details of the virtual screen are described in the Supplemental Methods. In brief, the 

computer program LUDI/InsightII (154) was applied for virtual screening of CAP 

(Chemicals Available for Purchase, 78,000 compounds) library to the CBFβ binding 

interface on the Runt domain structure. Compounds from CAP library were docked and 

ranked by the scoring function (Energy Estimate 1) implemented in the LUDI program 

(155). The 500 best-scored hits (compounds with the predicted binding affinity < 300 µM 

as evaluated by LUDI’s empirical scoring function) were subjected to visual inspection of 

their potential interactions with the Runt domain. Compounds with diverse scaffolds and 

involved in at least two hydrogen bonds with the Runt domain were selected for 

experimental evaluation. 

 

Fluorescence resonance energy transfer (FRET) assays 

Cerulean-Runt domain and Venus-CBFβ were expressed, purified and used in FRET 

assays as described previously (50, 156). Cerulean-Runt domain and Venus-CBFβ 

proteins were used at a concentration of 100 nM for all assays. 

 

Saturation transfer difference NMR 

Saturation transfer difference (STD) NMR experiments (157, 158) were performed with 

30 µM Cerulean-Runt domain or Venus-CBFβ, 800 µM AI-7-54 or AI-8-45, 10% D2O, 

and 5% DMSO in 50 mM KPi, 100 mM KCl, 10 mM K2SO4, 2 mM MgSO4, pH 7.5 in a 

final volume of 200 µL. All STD experiments were performed using a 600 MHz Bruker 
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NMR spectrometer at 25°C with saturation times of 500, 750, 1000, 1500, and 2000 ms. 

Samples were irradiated at 0.4 ppm (protein) and 30 ppm (off-resonance control) and 

the difference spectra calculated using MestReNovaChemical  

 

Chemical synthesis 

Details of the chemical synthesis including relevant NMR and mass spec data are 

provided in Supplementary Information. 

 

Pharmacokinetics 

Detailed methods are provided in the Supplemental Methods.  

 

Mice 

All mouse procedures were approved by the University of Pennsylvania University 

Animals Resource Center (ULAR) and Institutional Animal Care and Use Committees 

(IACUC) of the University of Pennsylvania and the University of Kansas. C57BL/6 mice 

were used in all studies. 

 

Human samples 

Patient AML specimen pheresis and bone marrow mononuclear cells were obtained 

from the University of Pennsylvania Stem Cell and Xenograft Core, under the approval 

from the University of Pennsylvania Institutional Review Board (IRB). 

 

Mouse and human cell lines 

Kasumi-1 (ATCC), Jurkat E6-1 (ATCC), 8946 T-ALL, and 720 T-ALL cell lines were 

cultured in RPMI 1640 (Corning Cellgro) supplemented with 10% fetal bovine serum 
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(FBS) and 1% penicillin/streptomycin at 37°C under 5% CO2. K562 (ATCC) cell line is 

cultured in Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% FBS. 

720 T-ALL cells were derived from a Tcf12+/- mouse expressing a Tal1 transgene under 

the control of the Lck promoter (159).  8946 T-ALL cells are derived from a murine T-ALL 

induced with a doxycycline-repressible human c-MYC transgene (160). 

 

MTT Cell Proliferation Assay 

Mouse and human leukemia cell lines (104 cells/200 µl) were plated in a 96-well flat-

bottom plate and cultured with DMSO (vehicle), 1 µM Staurosporine, or RDIs (12.5, 25, 

50, or 100 µM) for 24, 48, and 72 hours. After treatment, 10 µl of 5 mg/ml MTT solution 

(3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (Sigma-Aldrich) was 

added to each well cultured at 37°C for 4 hours. The plate was centrifuged at 300 g for 5 

minutes, the media removed, and 100 µl of DMSO (Sigma-Aldrich) was added to 

solubilize the resulting reagent formazan and incubated at room temperature for 10 

minutes. The plate was then analyzed by measuring absorbance at 540 nm wavelength 

in a SpectraMax plate reader (Molecular Devices). Data are plotted as percentage of 

viable cells relative to DMSO. 

 

CFU-C Assay 

Frozen human AML samples, and mouse leukemic bone marrow cells were thawed and 

cultured in RPMI 1640 with 10% FBS for two hours. Live cells were washed and 

recovered, and subsequently plated in Human Methylcellulose Complete Media HSC003 

(R&D Systems) in 5% CO2 at 37°C for 14 days, or in Methocult GF M3434 (Stem Cell 

Technologies) and incubated in 5% CO2 at 37°C for 7 days, for human and mouse cells, 

respectively. All classes of myeloid and/or erythroid colonies consisting of at least 40 
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cells were counted according to manufacturer’s recommendations. 

 

Western blotting 

Murine leukemic cells treated with RDIs or DMSO were harvested and lysed with RIPA 

buffer (25mM Tris•HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% 

SDS). Total protein lysates were resolved on 4-12% SDS-PAGE gels, transferred to a 

nitrocellulose membrane (GE Life Sciences), and probed with primary antibodies. 

Proteins of interest were visualized by chemi-luminescence (Pierce). The following 

antibodies were used for immunoblotting: caspase-3 (Cell Signaling, #9662), p53 (Santa 

Cruz, DO-1; Leica, CM5), and actin (Santa Cruz, N21). 

 

Flow cytometry 

Cells were stained with fluorochrome-conjugated antibodies for 30 minutes at 4°C and 

washed with 2% FBS in PBS prior to analysis. Apoptosis analysis (Annexin V-APC; BD 

Biosciences) was performed according to the manufacturer’s recommendations on a 

LSR II flow cytometer (BD Biosciences). The data were analyzed using FlowJo v.9.8 

(TreeStar). 

 

Gene expression analysis (quantitative real-time PCR and microarrays). 

 RNA for quantitative real-time PCR (qRT-PCR) was isolated with the RNeasy Kit 

(QIAGEN), and total RNA was reverse-transcribed using cDNA Reverse Transcription 

Kit (Applied Biosystems). The cDNA produced was used for quantitative real-time PCR  

using SYBR Green technology (Applied Biosystems). Primers are listed below: 
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Gene expression analysis (microarrays) 

RNA for microarray was isolated with the RNeasy Kit (QIAGEN). Total RNA quantity and 

integrity were verified using Bioanalyzer (Agilent Technologies), and amplified using 

Ambion WT Expression Kit (Applied Biosystems). Microarray experiments were 

performed on GeneChip Mouse Gene 2.0 ST Array (Affymetrix) at the University of 

Pennsylvania Molecular Profiling Facility, according to the manufacturer’s instructions. 

 

Affymetrix probe intensity (cel) files were analyzed using Partek Genomics Suite (v6.6, 

Partek, Inc., St. Louis, MO). The data was normalized using Robust Multichip Average 

Algorithm (RMA), and technical controls were excluded to leave 34,365 transcript IDs 

available for statistical analysis. A one-way ANOVA followed by 3 pairwise comparisons 

(t-tests) were performed across the samples, each yielding a p-value for each transcript 

ID. The p-values were further corrected using the Benjamini-Hochberg procedure for 

false discovery rate (FDR). Fold-change in expression level for each transcript ID was 

calculated for the 3 pairwise comparisons. 

 Sybr green primer set  

Gene Forward Reverse 

Dhcr24 CAT CGT CCC ACA AGT ATG CTC TAC GTC GTC CGT CA 

Cdkn1a TTC CGC ACA GGA GCA AAG T CGG CGC AAC TGC TCA CT 

Deptor TTG TCG TCT CTG TCA ATG GCC TCA TTG TCC TTG GGC CTG TCA GAA TCA 

Csf1r ACC AAA TGG CCC AGC CTG TAT TTG TGC TTG GCA GGT TAG CAT AGT CCT 

Cebpa TGA GAA AAA TGA AGG GTG CAG CGG GAT CTC AGC TTC CTG T 

Hprt CTC CTC AGA CCG CTT TTT GC TAA CCT GGT TCA TCA TCG CTA ATC 
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To identify genes that are differentially expressed following treatment, the data was 

filtered to retain transcript IDs that demonstrated a false discovery rate of 5% and have a 

mean fold change of at least 1.5, up or down in AI-7-54 vs AI-8-45 treated cells. 87 IDs 

(78 unique genes) met these cutoffs. Hierarchical clustering was performed using 

Pearson correlation and average linkage. The colors red and blue are used to indicate 

the log-2 intensity of each gene relative to the mean of AI-7-54 treatment. 

 

Microarray experiments were performed according to the manufacturer’s instructions 

using GeneChip Mouse Gene 2.0 ST Array (Affymetrix) at the University of Pennsylvania 

Molecular Profiling Facility. Detailed methods, including data analysis for the microarray 

are provided in the Supplemental Methods. Significantly perturbed KEGG pathways 

(161) were identified using the functional annotation tool available at DAVID 

(http://david.abcc.ncifcrf.gov/summary.jsp) (162). 

 

Statistical analyses 

Statistical analyses were performed using the Graph Pad Prism 6.0 software package.  
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Results 

 

Virtual screening to identify lead compounds targeting the Runt domain  

We conducted a virtual screen utilizing the computer program LUDI (154) to 

identify initial lead compounds that bind to the Runt domain at the CBFβ interface (62, 

150)  and inhibit CBFβ binding. We employed the LUDI/CAP (Chemicals Available for 

Purchase) library containing 78,000 commercially available drug-like compounds, i.e. 

compounds that meet Lipinski’s Rule of Five (163), which states that drug-like 

compounds should have molecular weight lower than 500, lipophilicity (logP) lower than 

5, less than five hydrogen bond donors, and less than ten hydrogen bond acceptors. 

These compounds were docked to the CBFβ binding surface on the Runt domain using 

LUDI and ranked by the scoring function implemented in the program (164) for 

theoretical binding efficacy estimation. Based on the LUDI results and a visual inspection 

of the predicted interactions with the protein for the 500 top scoring compounds, we 

selected 100 compounds with diverse molecular scaffolds for experimental screening.  

 

Evaluation of compound efficacy using a fluorescence resonance energy transfer 

(FRET) assay 

We used Cerulean-Runt domain and Venus-CBFβ fusion proteins at a 100 nM 

concentration for compound screening by fluorescence resonance energy transfer 

(FRET) (50, 156) (Figure 1). Compounds were screened at 200 µM in a competition 

experiment using the fluorescence emission ratio (emission intensity at 525 nm / 

emission intensity at 474 nm, FRET ratio) as a read-out. The dynamic range for the 

FRET assay was determined by adding a 20-fold excess of untagged CBFβ and the 
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associated change in the FRET ratio was defined as 100% inhibition. Five compounds 

showed 20% - 60% inhibition of the Runt domain - CBFβ interaction at 200 µM. Four of 

these compounds were discontinued due to toxicity, covalent binding to the protein, or 

promiscuous inhibition. The fifth compound, the aminotriazole AI-9-76 (Figure 2, Scheme 

1) was identified as an initial hit. As the hydrazine moiety in AI-9-76 is a potential source 

of toxicity, we made O (oxadiazole2-thione) and S (thiadiazole2-thione) substitutions 

(Figure 2, Scheme 1).  While the O substitution (AI-9-75) resulted in a loss of activity, the 

compound with an S substitution (AI-7-54) retained activity in the FRET assay. 

 

Figure 1. Schematic diagram of FRET assay. From Matheny et al, 2007 (165). 
A. Cerulean is excited at 433 nm and emission from Cerulean and Venus detected at 474 nm and 525 nm, 

respectively. 

B. Fluorescence spectra of Cerulean-Runt domain and Venus-CBFß showing the FRET effect. The black 

curve is the spectrum of Cerulean-Runt domain + Venus-CBFß at a concentration ~4-fold below Kd.  The red 

curve is the spectrum of Cerulean-Runt domain + Venus-CBFß at a concentration ~4-fold above the Kd. 
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Figure 2. Library of analogs synthesized.  
Schemes 1-5 illustrate the synthetic routes used for library generation and refer to sets of compounds 

described in the main text. 
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Verification of ligand binding to the Runt domain by Nuclear Magnetic Resonance (NMR) 

spectroscopy 

The FRET assay detects inhibition of CBFβ – Runt domain binding by small 

molecules, but cannot determine to which protein the compound binds. In order to 

establish that the lead compound does indeed bind to the Runt domain, we employed 

Nuclear Magnetic Resonance (NMR) spectroscopy. Two-dimensional 15N-1H 

heteronuclear single quantum coherence (2D 15N-1H HSQC) spectra have been used 

very effectively to detect binding to proteins as well as to localize the site of binding. 

However, 15N-1H HSQC spectra of the Runt domain are very poor and missing almost 

half of the peaks due to exchange broadening (166), thus we were not able to detect any 

chemical shift changes upon addition of AI-7-54 (not shown). Spectra of the Runt 

domain bound to DNA are of good quality but the addition of our inhibitors resulted in 

precipitation. To overcome these obstacles, we utilized saturation transfer difference 

(STD) experiments (157, 158) that rely on the transfer of saturation from the protein to 

bound ligand to detect binding. To enhance the sensitivity of the experiment, we 

increased the size of the proteins by using Cerulean-RD and Venus-CBFβ, the same 

protein constructs that were used in the FRET assay. A saturation transfer effect was 

observed only for the AI-7-54 plus Cerulean-Runt domain mixture (Figure 3A), indicating 

that AI-7-54 binds to the Runt domain. Importantly, the absence of signals on the Venus-

CBFβ STD spectrum confirms that AI-7-54 does not interact with either CBFβ or Venus 

(nor by analogy to Cerulean which has a very similar primary sequence). To confirm this, 

we collected high quality 15N-1H HSQC spectra for CBFβ in the presence of AI-7-54 and 

observed no chemical shift changes (not shown). Taken together, these results confirm 

that the Runt domain is the protein to which AI-7-54 binds.   
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Development of inhibitors with increased potency  

The STD NMR and FRET data confirmed that the AI-7-54 scaffold is a valid initial 

lead. Indeed, the 1,3,4-thiadiazole heterocyclic ring system has been reported to have a 

wide range of pharmacological activities in the literature (167). To further develop this 

class of compounds, we performed a structure activity relationship (SAR) analysis, first 

by replacing the furan ring in AI-7-54 with thiophene, phenyl, 6-methyl-2-pyridyl, and 

pyrazine (Figure 2, Scheme 2).  The phenyl substitution (4b, yielding 5-phenyl-1,3,4-

thiadiazole-2(3H)-thione) improved the activity (IC50 = 11 ± 1.3 µM), whereas other 

substitutions yielded compounds that were inactive or weaker than AI-7-54. The addition 

of several substitutions into the phenyl ring based on the 4b scaffold did not improve 

activity (Figure 1, Scheme 3). Based on this initial round of synthesis, we further 

elaborated the molecule as shown in Figure 2, Scheme 4. Methylation of the thioamide 

in compound 5a yielding 2-(2-fluorophenyl)-5-(methylthio)-1,3,4-thiadiazole (Figure 2, 

Scheme 4, 6a) resulted in a complete loss of activity, clearly defining the importance of 

the thioamide moiety. We then introduced a series of substitutions for the phenyl ring 

(Figure 2, Scheme 4). Substitution with benzofuran (6b), and replacement of the furan 

ring with an oxadiazole (6d) resulted in a complete loss of activity. On the other hand, 

compound 6c in which a benzene ring was added to the furan of AI-7-54 was active (IC50 

= 13 ± 1.9 µM). We explored the SAR around compound 6c by introducing a series of 

substitutions into the phenyl ring (Figure 2, Scheme 5). Introduction of a 3-Cl yielding the 

compound 5-(5-(3-chlorophenyl)furan-2-yl)-1,3,4-thiadiazole-2(3H)-thione (AI-8-45) (7f) 

improved the activity, however AI-8-45 has somewhat limited solubility. STD NMR 

analysis of AI-8-45 showed that protons in the furan ring as well as protons on the 

phenyl ring are in close contact with the protein (Figure 3B), consistent with the SAR. To 

improve the solubility we introduced 3-Cl pus 4-methoxyethyl ether yielding AI-9-54 (7k) 
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that had similar activity as AI-8-45 in the FRET assay (Figure 3D). The SAR for this 

library of analogs was somewhat flat with no dramatic improvements in activity, so we 

selected two of the most active compounds (Table 1), AI-8-45 (IC50 = 2.0 ± 1.1 µM) and 

AI-9-54 (IC50 = 1.8 ± 0.6 µM) for use as tool compounds for biological studies. We used 

the starting scaffold AI-7-54 that has a 12-fold higher IC50 (24 ± 7µM, Figure 3C) as a 

negative control. 

 

Figure 3. NMR STD and FRET data for Runt domain inhibitors.  
A.  Results of NMR saturation transfer (STD) analysis for AI-7-54. The structure of AI-7-54 is 

shown with a 1D 1H NMR spectrum of the compound below. Arrows indicate resonance assignments. 

The middle spectrum shows 1D difference spectrum for Cerulean-Runt domain + AI-7-54.  Bottom 

spectrum shows 1D difference spectrum for Venus-CBFβ, demonstrating a lack of binding.  

B.  Results of STD analysis for AI-8-45, as in panel A.  

C,D.  Results of FRET analysis for the initial lead AI-7-54 (C) and optimized compounds AI-8-45 

and AI-9-54 (D). Calculated IC50 values are shown. 

 

1.00

0.95

0.90

0.85

0.80

0.75

1 10 100

FR
E

T 
R

at
io

1.00

0.95

0.90

0.85

0.80

1 10 100
RDI (+M)

FR
E

T 
R

at
io

RDI (+M)

1.05

1D NMR 

Venus-CBFȕ STD

Cerulean-Runt domain STD 

O
S

N

H

H

H

NH

S

1H (ppm)
8.0 7.5 7.0 6.5

H

H
H

H

1D NMR 

Cerulean-Runt domain STD 

Cl

O
S

N

H H

NH

S

A B
AI-8-45AI-7-54

C D

Venus-CBFȕ STD

1H (ppm)
8.0 7.5 7.0

AI-7-54 IC50 = 24 ���ȝ0� 
AI-8-45 IC50 = 2.0 ± 1.1 +M 
AI-9-54 IC50 = 1.8 ± 0.6 +M 



	

	41 

Table 1. Structures and FRET IC50 values for selected inhibitors    
The numbers in parentheses under compound number refer to the compounds as they appear in 

Figure 2. 

Compound 

name 
Compound Structure 

 

FRET IC50 (µM) 

AI-7-54 

   (3) 
 

       

         24 ± 7 

AI-8-153 

(6e) 
 

                    

         13 ± 1.9 

AI-8-45 

   (7f)  
 

       

         2.0 ± 1.1 

AI-9-13 

(7c) 
 

      

         6.2 ± 0.5 

AI-9-24 

(7b) 
 

      

         3.7 ± 1.6 

AI-9-27 

(7l) 
        

      

         9.5 ± 1.4 

AI-8-117 

(7g) 
       

      

         3.0 ± 0.3 
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AI-9-23 

(7e) 
 

      

         17 ± 3.9 

AI-9-54 

 (7m) 
 

  

      1.8 ± 0.6 

 

 

Development of pro-drug for improved solubility 

To address the somewhat limited solubility of these compounds and facilitate 

their ability to be employed in vivo, we tested a pro-drug approach by masking different 

functional groups: alkylcarbonyloxymethyl for the thione functionality, and N-Mannich 

bases for thioamide (Figure 4A).  The use of N-Mannich base of a thioamide as a pro-

drug was demonstrated previously to improve the solubility as well as enhance oral 

bioavailability (168) . We synthesized two classes of compounds and evaluated them for 

aqueous solubility.  We found that the N-Mannich base compound AI-9-59 had greater 

solubility than the alkylcarbonyloxymethyl (243 µM versus 1 µM).  AI-9-59 also showed 

improved solubility over the lead compound AI-8-45. The pro-drug undergoes a non-

enzymatic cleavage at both acidic and basic pH, releasing the amine, amide, and 

formaldehyde. Consistent with previous studies, pharmacokinetics analysis after 

administration of AI-9-54 and the pro-drug AI-9-59 showed that the pro-drug reached a 

higher concentration and had an enhanced lifetime in plasma (Figure 4). 
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Figure 4. Pharmacokinetics data for AI-9-54 and the AI-9-59 prodrug in mice.  
A. Structure of AI-9-54 and the prodrug AI-9-59.  

B. Plasma concentration data as a function of time.  

C.        Chart showing pharmacokinetic parameters calculated from fit of the data in B.  
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Tcf12+/- mouse expressing a Tal1 transgene under the control of the Lck promoter (159), 

Jurkat, and 8946 (murine T-ALL induced with doxycycline-repressible MYC transgene 

(160)). AI-8-45 significantly reduced the growth of all three T-ALL cell lines, and to an 

even greater extent of the 720 T-ALL line than of Kasumi-1 cells, indicating that the RDIs 

have activity in non-t(8;21) leukemia (Figure 5B-D). AI-9-54 reduced the growth of two of 

the three T-ALL cell lines (720 and 8946, but not Jurkat). In contrast, the growth of K562, 

a human CML cell line positive for BCR-ABL, was not inhibited by RDIs at 48 hours 

(Figure 5E).  

We assessed whether the reduction in cell growth was accompanied by 

increased apoptosis. After 48 hours in culture, Kasumi-1 cells treated with AI-8-45 and 

AI-9-54, but not the less active compound AI-7-54, showed a statistically significant and 

dose-dependent increase in the percentage of DAPI-positive dead cells (Figure 5F). This 

was accompanied by an increase in the level of cleaved caspase-3 (Figure 5G). Taken 

together, these results showed that RDIs cause growth arrest, leading to caspase-3 

mediated apoptosis in leukemia cells in vitro. 
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Figure 5. Runt inhibitors reduce cell growth and induce apoptosis in leukemia cells.  
A-E.  RDIs AI-8-45 (8-45) and AI-9-54 (9-54) inhibit proliferation of the AML cell line Kasumi-1 and 

the T-ALL lines 720, Jurkat (8-45 only), and 8946, but not K562 as detected by MTT cell viability 

assay. AI-7-54 (7-54) is the negative control, and staurosporine (Stauro) is a positive control. Data 

represent mean values for triplicates ± standard deviation (SD) (two independent experiments). P 

values were calculated by one-way ANOVA (staurosporine-treated cells were not included in the 

ANOVA analysis). Dunnett’s Multiple Comparison test was performed using DMSO treated cells as the 

comparator (#); horizontal lines above columns indicate significant differences from DMSO treated 

cells (P ≤ 0.05).   

F.  RDIs reduce the percentage of live (DAPI negative) Kasumi-1 cells as measured by flow 

cytometry. Data represents mean values of two independent experiments; statistical analysis as in A-

E. 

G.  RDI treatment results in increased caspase-3 cleavage in 720 T-ALL cells (48 hrs). 
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In vivo FACS/FRET assay in 293T cells 

We adapted an in vivo fluorescence activated cell sorting (FACS) /FRET assay to 

assess whether our inhibitors could both enter cells and inhibit their target. HEK293 cells 

were transfected with Cerulean-Runt domain (C-RD) and Venus-CBFβ (V-CBFβ) or 

Venus-CBFβ with two mutations (G61A/N104A) that reduce binding to the Runt domain 

by 500 fold (V-CBFβmut). The cells were cultured in the presence of RDIs or vehicle 

(0.2% DMSO vol/vol) for 6 hours, and cells that are expressing both Cerulean and 

Venus were further analyzed for FRET signal. We determined that both of our lead 

compounds AI-8-45 and AI-9-54 exhibited auto-fluorescence that interfered strongly with 

the Cerulean signal (Figure 6). To bypass the interference from auto-fluorescence, we 

adjusted our gating strategy to include cells that are expressing high level of both 

Cerulean and Venus (Figure 6). Analysis of the mean fluorescence intensity of the FRET 

signal revealed that both AI-8-45 and AI-9-54, but not weakly active compound AI-7-54, 

significantly reduced FRET activity, nearly to the level of Venus-CBFβmut that has 500-

fold reduction in its ability to interact with the Runt domain (Figure 7). The data 

demonstrates that the RDIs severely disrupt CBFβ-Runt interaction. 
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Figure 6. FACS/FRET analysis strategy for assessing the efficacy the Runt domain 
inhibitors. 
HEK293 cells were transfected with Cerulean-Runt alone (C-RD), Venus-CBFβ alone (V-CBFβ), or 

both Cerulean-Runt and Venus-CBFβ (C-RD + V-CBFβ). The cells were cultured in the presence of 

RDIs or vehicle (0.2% DMSO vol/vol) for 6 hours, and FRET activity analyzed by flow cytometry. The 

presence of Runt domain inhibitors (RDIs) induced auto-fluorescence that caused the population to up-

shift in the Cerulean signal from its original position (denoted by solid and dotted boxes, respectively). 

To avoid the interference from auto-fluorescence, only cells that are expressing high level of both 

Cerulean and Venus were gated (denoted with the oval) and analyzed for mean fluorescence intensity 

of the FRET signal. 
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Figure 7. FACS/FRET analysis of the Runt domain inhibitors. 
HEK293 cells were transfected with Cerulean-Runt domain (C-RD) and Venus-CBFβ (V-CBFβ) or 

Venus-CBFβ with two mutations (G61A/N104A) that reduce binding to the Runt domain by 500-fold (V-

CBFβmut). The cells were cultured in the presence of RDIs or vehicle (0.2% DMSO vol/vol) for 6 hours, 

and cells that are expressing both Cerulean and Venus were further analyzed for FRET signal. Data 

represents mean fluorescence intensity of the FRET signal values for duplicates ± SD, n= three 

experiments. Significance was determined by one-way ANOVA, and Dunnett’s Multiple Comparison 

test was performed using DMSO treated cells as the comparator; asterisks above columns indicate 

significant differences from DMSO treated cells (P < 0.001). 
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Runt domain inhibitor (RDI) effect on clonogenic potential 

We assessed the activity of RD:CBFβ inhibitors on the clonogenic potential of 

murine AML cells. The AML cells were isolated from a secondary recipient of spleen 

cells transplanted from a primary recipient that had received fetal liver cells transduced 

with retroviruses expressing AML1-ETO9a and NRasG12D (169). AML1-ETO9a is a 

shortened form of AML1-ETO lacking the C-terminal MYND domain, and is more potent 

at inducing leukemia than full length AML1-ETO (142).  The active compounds AI-8-45 

and AI-9-54, but not the control compound AI-7-54 significantly reduced colony formation 

of the AML1-ETO9a + NRasG12D AML cells (Figure 8A). Neither AI-8-45 nor AI-9-54 had 

any effect on colony formation by normal mouse bone marrow cells (Figure 8A). These 

data demonstrate that the RDIs reduce the clonogenic potential of AMLs transformed 

with the AML1-ETO fusion protein, but do not affect normal bone marrow progenitors at 

the same concentrations, indicating that a therapeutic window is available.  

We also determined the effect of RDIs on the clonogenic potential of primary 

human t(8;21) AML. AI-8-45 and AI-9-54 significantly reduced the colony numbers of five 

t(8;21) positive human AML samples, but not that of normal bone marrow mononuclear 

cells (BM-MNCs) (Figure 8B). The control compound AI-7-54 had no effect on colony 

numbers in either the primary AML samples or normal bone marrow cells. We also 

examined the effect of AI-8-45 and AI-9-54 on colony formation by AML cells that do not 

harbor the t(8;21). The RDIs reduced the progenitor activity of some but not all human 

AML cell samples, indicating that they may have efficacy in a subset of AML not 

associated with Runx1 mutations (Figure 8C). 
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Figure 8. Effect of Runt inhibitors on colony formation by normal and leukemic mouse 
bone marrow cells, and in human AML samples.  
A. Various concentrations of compound were added to methylcellulose cultures containing 

20,000 wild type bone marrow cells or 20,000 leukemic mouse cells transformed with AE9a and 

NRasG12D. All compounds were dissolved in DMSO (final concentration 0.2%). Colonies were counted 

7 days after plating. Shown is a representative experiment (n=3 per compound concentration, two 

experiments). Error bars represent SD. Significance relative to DMSO was determined by one-way 

ANOVA and Dunnett’s multiple-comparison test as in Figure 5.  

B-C.  Various concentrations of compound were added to methylcellulose cultures containing bone 

marrow mononuclear cells (MNC) or primary AML samples. Colonies were counted 14 days after 

plating. Shown is a representative experiment (n=3 per compound concentration, two experiments). 

Significance relative to DMSO treatment was determined by one-way ANOVA and Dunnett’s multiple-

comparison test as in Figure 5. 
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Molecular pathways affected by Runt domain inhibitors (RDIs) 

To gain a better understanding of the mechanism of action of the RDIs we 

performed global gene expression analysis of the highly responsive 720 T-ALL cells 

following treatment. 720 T-ALL cells were treated with RDIs and harvested 8 hours later, 

before they underwent apoptosis, and expression was analyzed using microarrays. 

Overall, we detected only modest changes in expression levels after short-term inhibitor 

treatment (Figure 9A and Table 2). Pathway analysis revealed that genes involved in 

lipid and sterol biosynthesis, and in ribosome biogenesis to be among the most 

significantly down-regulated (Figure 9B). Both of these processes are regulated by 

RUNX proteins, and therefore are likely to reflect on-target effects (101, 152, 170). We 

confirmed the microarray data for several genes, including Deptor, which encodes an 

mTOR inhibitor; Cdkn1a, encoding the cell cycle inhibitor p21; Dhcr24 (encoding for 24-

dehydrocholesterol reductase); as well as known Runx1 targets, Cebpa and Csf1r 

(encoding a transcription factor and cytokine receptor, respectively) (171, 172) by qPCR. 

The expression of all five genes was affected by treatment with AI-8-45 and AI-9-45, but 

not by the control compound AI-7-54 (Figure 9C,D), validating the microarray data for 

these genes.  
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Figure 9. Microarray analysis of gene expression changes induced by RDIs.  
A.  Hierarchical clustering of 87 transcript IDs (78 genes) differentially expressed (False Discovery 

Rate 5%) among 720 T-ALL cells treated for 8 hrs with AI-7-54 (100 µM), AI-8-45 (100 µM), or AI-9-54 (50 

µM). Red represents genes up-regulated relative to mean expression level in AI-7-54 treated cells; blue 

represents genes down-regulated relative to mean expression level in AI-7-54 treated cells.   

B.  KEGG pathways down-regulated following RDI treatment from functional annotation clustering.  

C.  Relative expression of genes in 720 T-ALL cells treated with RDIs for 8 hours, measured by qPCR. 

Data represents mean values for triplicates ± SD, n= two experiments. Significance relative to DMSO 

treatment was determined by one-way ANOVA. Dunnett’s Multiple Comparison test was performed using 

DMSO treated cells as the comparator (#); horizontal lines above columns indicate significant differences 

from DMSO treated cells (P ≤ 0.05). 

D.  Relative expression of Runx1-regulated differentiation genes, as in panel C. 
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Table 2. A list of 87 unique transcript IDs that are differentially expressed as shown in Figure 9A. 

 

Transcript 
ID 

Gene 
Symbol 

FDR corrected 
p-value (one-
way ANOVA) 

Fold-Change in 
Expression (8-
45 vs. 7-54) 

Fold-Change 
in Expression 
(9-54 vs. 7-54) 

17324745 Bex6 0.00158259 -7.33049 -4.59099 
17344126 Hspa1b 0.00208463 -3.85817 -2.78074 
17257593   0.0140458 -2.48142 -2.89427 
17365098 Scd1 0.0114199 -2.19999 -1.83458 
17311807 Sqle 0.000316021 -2.09513 -2.44847 
17445308 Cyp51 0.00141668 -2.04547 -1.87648 
17234552 Lss 0.0026575 -2.00389 -1.81637 
17509629 Sc4mol 0.000572807 -2.00125 -2.08763 
17349549 Mir1949 0.000114828 -1.98977 -2.94092 
17280836 Gm889 0.00470562 -1.94203 -2.03616 
17307623 Blk 0.00305562 -1.92455 -2.5523 
17307588 Fdft1 0.00148624 -1.91859 -1.97777 
17406921   0.00213029 -1.88603 -1.68628 
17344122   0.0020357 -1.87296 -2.29642 
17456772 Fam40b 0.0169496 -1.84721 -1.80436 
17344120 Snord52 0.00120916 -1.81659 -2.23537 
17548102 Cycs 0.00208463 -1.80698 -2.05337 
17548541 Cycs 0.00208463 -1.80698 -2.05337 
17429632 Mfsd2a 0.00292244 -1.79145 -2.03065 
17515315 Ldlr 0.00214274 -1.78586 -2.01483 
17239755   0.00378979 -1.78358 -2.32985 

17379871 
1500012F01
Rik 0.00952348 -1.78219 -2.19481 

17347448 Cyp1b1 0.000851483 -1.74606 -1.67507 
17550454   0.00104124 -1.7441 -2.40136 
17406908 Fdps 0.00281772 -1.71251 -1.61226 
17416325 Dhcr24 0.000460707 -1.69904 -1.84433 
17290173 Hmgcs1 0.0194626 -1.66754 -1.61855 
17218653 Gas5 0.00284469 -1.6535 -1.71731 
17291854 Rpp40 0.00159662 -1.6511 -1.81983 
17523158 Ccr8 0.0105598 -1.64633 -1.74329 
17535434 Nsdhl 0.0210565 -1.62866 -1.8 
17440812 Ung 0.00141668 -1.62221 -1.89276 
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17222800 Slc39a10 0.00548836 -1.61642 -1.91869 
17295233 Hmgcr 0.00037293 -1.61557 -1.65871 
17285056 Idi1 0.000316021 -1.61548 -1.83259 
17229466 Hsd17b7 0.00180875 -1.6134 -1.77216 
17223863 Idh1 0.00654201 -1.60528 -1.55718 
17435584 Insig1 0.00596369 -1.60416 -1.39698 
17364725 Rrp12 0.00367186 -1.59873 -1.87371 
17421694 Srm 0.000354355 -1.5965 -1.96059 
17305980 Ccnb1ip1 0.000851483 -1.59228 -1.75214 
17518314   0.00216582 -1.58966 -2.02006 
17362050 Rps6ka4 0.0095345 -1.57325 -1.47591 
17345696 Bysl 0.00423671 -1.57092 -1.67243 
17550390   0.00225426 -1.57007 -1.67173 
17353358 Stard4 0.0122649 -1.56525 -1.47024 
17344132 Hspa1a 0.0493048 -1.56121 -1.32975 
17442719 Aacs 0.00082026 -1.5585 -1.67379 
17301247 Pinx1 0.0023485 -1.55258 -1.71709 
17472903 Pthlh 0.000851483 -1.5512 -2.04757 
17376096 Polr1b 0.00195718 -1.54927 -1.76023 
17490599 Rps11 0.00931748 -1.54753 -1.78074 
17480636 Lipt2 0.000759223 -1.54596 -1.58125 
17279190 Trmt61a 0.0095652 -1.54222 -1.70026 
17437072 Lyar 0.000460707 -1.53944 -1.68586 
17319405 Snord43 0.0010542 -1.51936 -1.87934 
17394063 Ada 0.0050235 -1.51748 -1.75846 
17276520 Mthfd1 0.000446191 -1.51489 -1.89582 
17263673 Shmt1 0.000851483 -1.51387 -1.8391 
17435978 Cad 0.00011807 -1.51309 -1.71437 
17530669 Acy1 0.00732517 -1.50854 -1.61375 
17463108 Nop2 0.000468005 -1.50599 -1.67526 
17408483 Ptgfrn 0.0014939 -1.50166 -1.93036 

17526929 
1110032A03
Rik 0.000721408 1.50259 1.65712 

17285834 Hist1h2bg 0.0186052 1.51234 1.60026 
17391521 AI847159 0.0107837 1.5188 1.56051 
17241660 Arid5b 0.00796933 1.53632 1.77653 
17307354 Atp8a2 0.0156396 1.54025 1.69427 
17225413 Col6a3 0.000199369 1.54863 1.79992 
17288876 Arrdc3 0.00017328 1.5539 2.7608 
17289602 Adamts6 0.0392261 1.56898 1.5612 
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17408940 
2010016I18R
ik 0.00547947 1.56985 1.99763 

17537118 P2ry10 0.00267586 1.57185 1.931 

17295295 
5330416C01
Rik 0.00547947 1.57232 2.09707 

17288859 
A830082K12
Rik 0.00109846 1.58813 1.93409 

17303754 Gm20140 0.00715448 1.59205 1.61842 
17294547 Nr2f1 0.000851483 1.63396 1.83083 
17547877 Deptor 0.00277628 1.64108 1.88287 
17335770 Abcg1 0.000603849 1.64666 1.53691 
17478301 Nav2 0.00215804 1.65932 2.11262 
17450461 Gbp4 0.00383816 1.7043 2.10835 
17336052 Zfp563 0.000153365 1.72516 2.34173 
17445525 Rundc3b 0.000108158 1.73525 2.49975 
17405458 Gpr171 0.000169931 1.77936 2.57798 
17550428   0.00102227 1.88884 2.75584 
17434555 Abcb1b 0.000120667 2.14534 4.36667 
17537936 Tceal1 8.87E-06 3.80708 6.02176 
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Discussion 

 

Based on an initial hit from a virtual screening approach, we developed tool 

compounds that bind to the Runt domain and are low µM inhibitors of the CBFβ-Runt 

domain interaction. We also developed a pro-drug based on this structural scaffold that 

enhances the solubility of the inhibitor and should facilitate its use in vivo. Frye recently 

outlined the key properties of a high quality chemical probe (173), including a clear 

molecular profile of activity, mechanism of action, identity of active species, and proven 

utility. The RDIs meet all of these criteria. Furthermore, the inclusion of a weakly active 

control compound in all the biological evaluations provides high confidence that the 

observed activities derive from on-target activity rather than other activities of this class 

of molecules. As the Runt domain is highly conserved and CBFβ binds all three RUNX 

proteins, it is important to keep in mind that the effect of the RDIs likely reflects inhibition 

of CBFβ binding to all RUNX proteins in a particular cell type. Recently, it has been 

reported that the benzodiazepine Ro5-3335 is also an inhibitor of CBFβ-Runx (174), with 

in vivo activity consistent with predicted on-target effects. However direct binding of Ro5-

3335 to RUNX or CBFβ was not well documented, thus the biochemical direct target of 

Ro5-3335 remains to be established.    

Based on our finding that the Runt domain’s interaction with CBFβ is critical for 

t(8;21) positive leukemia (132) as well as several recent reports that normal Runx1 

function is required for the maintenance of some leukemias (145-147), we hypothesized 

that molecules targeting the RD:CBFβ interaction might achieve therapeutic efficacy 

against multiple leukemias. Indeed, we showed that the RDIs induced growth arrest and 

apoptosis not only in t(8;21) leukemia cells but also in a subset of non t(8;21) leukemia 

cells. Interestingly, the RDIs showed marked efficacy against the T-ALL cell lines that 
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overexpress Tal1. RUNX1 was shown to form an auto-regulatory loop with TAL1 and 

GATA3 in TAL1 overexpressing T-ALL cells, and knocking down RUNX1 inhibited cell 

growth and induced apoptosis (175). In addition, RUNX1 was recently shown to be part 

of a complex that forms at a super enhancer created by somatic mutations in T-ALL 

(176). Thus RUNX1 appears to serve as a key member of an interconnected auto-

regulatory loop involved in reinforcing and stabilizing the malignant cell state. In contrast, 

BCR-ABL positive K562 cells were minimally affected by the RDIs, as were multiple 

human primary AML cells.  

RUNX proteins have now been implicated in numerous developmental pathways. 

Their role in leukemia is well established. In addition, there is emerging evidence for 

roles in various epithelial cancers. The tool compounds we have developed provide 

reagents to study the function of RUNX proteins in various settings. The advantage of 

such small molecule tools, unlike genetic approaches, is the rapid inhibition of the target, 

the ability to monitor time-dependent effects, and the opportunity to withdraw inhibitor 

and monitor the return to the previous state. Therefore, these compounds could be very 

useful reagents for studying the effects of core binding factor loss in specific processes 

or developmental stages. For all these reasons, the RDIs provide a unique tool for 

studying RUNX protein function. 
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Appendix:  

 

Luciferase reporter assay 

We employed a previously characterized luciferase reporter system in which the 

firefly luciferase gene is driven by the enhancer element of T cell receptor beta chain 

(TBRβ). First, we showed Runx1 activated the luciferase reporter in a dose dependent 

manner, whereas the mutant Runx1 with reduced DNA binding had no effect on the 

luciferase activity (Figure 10A). We showed that treatment with the Runt domain inhibitor 

AI-8-45 inhibited the Runx1 dependent activation of target promoter transcription, while 

DMSO and inactive control AI-7-54 had no effect (Figure 10B). The luciferase activity 

was not affected by our other lead compound AI-9-54. These data demonstrate that the 

Runt domain inhibitor AI-8-45 reduced the RUNX1 dependent activation of target gene 

transcription. 
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Figure 10. Runt domain inhibitor reduced luciferase activity of Runx1 in transient co-
transfection experiments. 
A. P19 cells were transfected with the TCRβ-LUC as well as various concentrations of Runx1 or Runx1 

R174Q, the mutant Runx1 with reduced DNA binding. The fold activation was calculated as the luciferase 

activity induced by Runx1 relative to the empty expression vector pcDNA3.1. Significance relative to DMSO 

treatment was determined by one-way ANOVA and Dunnett’s multiple-comparison test. 

B. Various concentrations of the Runt domain inhibitors, weakly active control AI-7-54 or DMSO were added 

to the TCRβ-LUC system as described in 9A. The fold activation was calculated as the luciferase activity 

induced by Runx1 relative to the empty expression vector pcDNA3.1. Significance relative to DMSO 

treatment was determined by one-way ANOVA and Dunnett’s multiple-comparison test. 
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Co-immunoprecipitation of Runx1 and CBFβ 

We conducted a co-immunoprecipitation experiment to assess whether our lead 

compounds could disrupt CBFβ’s interaction with RUNX1. We transfected 720 T-ALL 

cells with FLAG-CBFβ or FLAG-CBFβG61A/N104A that has 500-fold reduction in its ability to 

interact with the Runt domain, and conducted immunoprecipitation in the nuclear extract 

using antibodies against FLAG. By Western Blot, we were unable to detect any 

significant reduction in the relative level of RUNX1 that were bound to CBFβ in cells that 

are cultured in the presence of the Runt domain inhibitors compared to DMSO or weakly 

active control AI-7-54 (Figure 11). Therefore, we were unable to demonstrate that the 

Runt domain inhibitors reduced the level of RUNX1 bound to CBFβ. 

 

Figure 11. Effect of the Runt domain inhibitors on CBFβ-RUNX1 binding at 16 hours in 720 
T-ALL cells, measured by co-immunoprecipitation.  
720 T-ALL cells were transfected with FLAG-CBFβ or FLAG-CBFβG61A/N104A that has 500-fold reduction in its 

ability to interact with the Runt domain. GFP positive cells were sorted to purify successfully transduced 

cells. 5 x 107 ~ 1 x 108 cells were cultured in the presence of RDIs or DMSO (0.2% DMSO vol/vol) for 16 

hours, and proteins from the nuclear fraction harvested for immunoprecipitation using antibodies against 

FLAG. Proteins of interest were visualized by Western Blot.  
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Validation of gene expression affected by RDIs in FDC-P1 cells. 

We validated our finding from the microarray analysis in the FDC-P1 cells. FDC-

P1 cells were cultured with RDIs or DMSO, mRNA harvested 12 hours later, and gene 

expressions determined by RT-PCR. Similar to our finding in 720 T-ALL cells, the 

expression of Dhcr24 and Cdkn1a are affected following exposure to AI-8-45 and AI-9-

45, but not by the weakly active control AI-7-54 (Figure 12). However, expression of 

mTOR inhibitor Deptor was not affected by treatment with the Runt domain inhibitors. 

Therefore, we demonstrated the similarity of RDI-induced changes in gene expressions 

in two different cell lines. The finding further support that this is due to on-target effects 

of our inhibitors. 

 

Figure 12. Relative expression of genes in FDC-P1 cells. 
FDC-PI cells were treated with RDIs for 16 hours, measured by qPCR. Data represents mean values for 

triplicates ± SD, n= two experiments. Significance relative to DMSO treatment was determined by one-way 

ANOVA. Dunnett’s Multiple Comparison test was performed using DMSO treated cells as the comparator; 

asterisks above columns indicate significant differences from DMSO treated cells (P ≤ 0.05). 
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Supplemental Methods 

 

Virtual screening 

The coordinates of the RUNX1 Runt domain (1EAN) were obtained from the PDB. The 

hydrogen atoms were added in InsightII/Builder (Accelrys) program (Insight 2005 

Molecular Modelling Program Package; Molecular Simulations Inc., San Diego) using 

the protonation states of protein residues at pH = 7.0. The computer program 

LUDI/InsightII (154) was applied for virtual screening of CAP (Chemicals Available for 

Purchase, 78,000 compounds) library to the CBFβ binding interface on the Runt domain 

structure. Compounds from CAP library were docked and ranked by the scoring function 

(Energy Estimate 1) implemented in the LUDI program (155). The values of the most 

important LUDI parameters used for virtual screening searches were as follows: Min 

Separation = 3; Link, Lipo and H-Bond Weights were set to 1.0; Aliphatic_Aromatic and 

Reject Bifurcated parameters were turned off; No_Unpaired_Polar, Electrostatic_Check 

and Invert parameters were turned on; Es Dist = 2.5Å; Max RMS = 0.8 Å; Number of 

Rotatable Bonds: two at a time, Radius of Search was 10Å. The 500 best scored hits 

(compounds with the predicted binding affinity < 300 µM as evaluated by LUDI’s 

empirical scoring function) were subjected to visual inspection of their potential 

interactions with the Runt domain. Compounds with diverse scaffolds and involved in at 

least two hydrogen bonds with the Runt domain were selected for experimental 

evaluation. 

 

 

 



	

	64 

Chemical synthesis 

Commercially obtained reagents were used as received.  Progress of reactions was 

monitored by TLC performed on Analtech 250micron silica gel GF plates visualized with 

254 nm UV light and also by mass spectrometry using a Waters single-quadrupole 

LCMS.  All compounds were purified on Biotage Isolera Four Flash Chromatography 

system, using SNAP cartridges.  All final compounds were also purified by HPLC.  

Melting points were determined on a Mel-Temp manual melting point apparatus with a 

Fluke 51II thermocouple.  1H and 13C NMR spectra were recorded on a Bruker NMR 

spectrometer at 600 MHz in CDCl3 and DMSO-d6, with TMS as internal standard.   

Chemical shift values are reported in ppm units.  Mass spectra were recorded on a 

Micromass AutoSpec Ultima Magnetic sector mass spectrometer in both positive and 

negative ESI mode at the University of Michigan Department of Chemistry mass spec 

facility. 

 

The compounds 4a-4d, 5a-f and 6a-b were prepared as described previously (177-179). 

 

5-(thiophen-2-yl)-1,3,4-thiadiazole-2(3H)-thione  (4a) CAS Registry Number  41526-33-4 

5-phenyl-1,3,4-thiadiazole-2(3H)-thione  (4b) CAS Registry Number 5585-19-3 

5-(6-methylpyridin-2-yl)-1,3,4-thiadiazole-2(3H)-thione (4c)  CAS Registry Number 

1093390-88-5 

5-(pyrazin-2-yl)-1,3,4-thiadiazole-2(3H)-thione (4d) CAS Registry Number 37545-34-9 

5-(2-fluorophenyl)-1,3,4-thiadiazole-2(3H)-thione (5a)  CAS Registry Number 108413-

60-1 

5-(3-fluorophenyl)-1,3,4-thiadiazole-2(3H)-thione (5b) CAS Registry Number 276254-76-

3 
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5-(4-fluorophenyl)-1,3,4-thiadiazole-2(3H)-thione (5c) CAS Registry Number 108413-72-

5 

5-(o-tolyl)-1,3,4-thiadiazole-2(3H)-thione (5d) CAS Registry Number 76779-96-9 

5-(2-methoxyphenyl)-1,3,4-thiadiazole-2(3H)-thione (5e) CAS Registry Number 108413-

63-4 

5-(4-fluoro-2-methylphenyl)-1,3,4-thiadiazole-2(3H)-thione (5f) CAS Registry Number 

1093390-85-2 

2-(2-fluorophenyl)-5-(methylthio)-1,3,4-thiadiazole (6a) CAS Registry Number 276254-

77-4 

5-(benzofuran-2-yl)-1,3,4-thiadiazole-2(3H)-thione (6b) CAS Registry Number 130967-

94-1 

 

5-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)-1,3,4-thiadiazole-2(3H)-thione (6d) 

 

The title compound prepared as described previously (180). 

 

1H-NMR (300 MHz, DMSO): δ 7.66-7.71 (1H, dd, J=6.00 Hz, J=9.00 Hz), 7.77-7.80 (1H, 

d, J=9.00 Hz), 8.04-8.07 (2H, d, 9.00 Hz); 13C-NMR (600 MHz, DMSO): δ 125.08, 

126.50, 127.17, 132.38, 133.32, 134.90, 144.66, 157.08, 164.33, and 189.13 

 

General Synthetic procedure for the Key Intermediates in Scheme 5 

The compounds, methyl 5-aryl furan-2-carboxylates in step 1 and 5-arylfuran-2-

carbohydrazides in step 2 of Scheme 5, were prepared as described previously (181-

183). 



	

	66 

 

General procedure for the synthesis of Potassium 2-(5-arylfuran-2-carbonyl) 

hydrazine carbodithioate:  To a solution of potassium hydroxide in ethanol (0.5M) was 

added 2-carbohydrazide fallowed by carbon disulfide.  The resulting solution was 

allowed to stir overnight at room temperature.   The precipitate was diluted with ether, 

filtered, washed with ether (3X), dried and used in the next step without further 

purification. 

 

General procedure for the synthesis of 5-(5-(aryl) furan-2-yl)-1, 3, 4-thiadiazole- 2 

(3H) - thione  

Potassium hydrazine carbodithioate (1 mmol) was added to concentrated sulfuric acid 

(1mL) at -10oC under argon and stirred at the same temperature for 30 min.  The 

reaction mixture was warmed to 0oC and stirred at that temperature for 2h.  The cold 

reaction mixture was poured over crushed ice, the solid thus separated was filtered, 

washed with water, and dried.   The dried compound was stirred with DL-dithiothreitol 

(DTT) in ethanol for 3h at room temperature.  The resulting solution was diluted with 

water and solid thus separated was filtered, dried and purified by mass directed HPLC 

using water/acetonitrile as solvent system on a Waters Sun Fire column.   
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Compound physical properties and spectral data  

 

Name Structure MP 
(oC) 

1H-NMR 
(δ in 
ppm) 

13C-
NMR (δ 
in ppm) 

HRMS 

AI-7-
54 
(3) 

 

214-
215 

1H-NMR 
(800 
MHz, 
DMSO): 
δ6.76-
6.77 (1H, 
dd, J = 
1.76, 
3.52 Hz), 
7.20-7.21 
(1H, d, J 
= 3.28 
Hz), 
7.98-7.99 
(1H, d, J 
= 1.36 
Hz), 
14.78 
(1H, s) 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ112.90, 
113.22, 
143.57, 
146.66, 
150.64, 
187.33  
 

m/z [M+H]+ 
calcd for  
C6H4N2OS2; 
184.9843; 
found: 184.9837 

AI-8-
153 
(6c) 

 

237-
238 

1H-NMR 
(800 
MHz, 
DMSO): 
δ7.25-
7.26 (1H, 
d, J = 
3.60 Hz), 
7.33-7.34 
(1H, d, J 
= 3.68 
Hz), 
7.40-7.42 
(1H, dd, 
J = 7.36, 
7.36 Hz), 
7.49-7.51 
(2H, dd, 
J = 7.68, 
7.68 Hz), 
7.81-7.82 
(2H, d, J 
= 7.76 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ108.88, 
115.29, 
124.47, 
129.29, 
129.33, 
129.57, 
142.78, 
150.37, 
156.01, 
187.26 

m/z [M-H]- calcd 
for C12H8N2OS2; 
259.0005; 
found: 259.0005 
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Hz), 
14.10 
(1H, s) 

AI-9-
24 

(7a) 

 

176-
178 

1H-NMR 
(800 
MHz, 
DMSO): 
δ2.38 
(3H, s), 
7.22-7.23 
(2H, m), 
7.32-7.33 
(1H, d, J 
= 2.48 
Hz), 
7.37-7.39 
(1H, dd, 
J = 7.64, 
7.64 Hz), 
7.61-7.62 
(1H, d, J 
= 7.76 
Hz), 7.64 
(1H, s), 
14.80 
(1H, s) 

13C-
NMR 
(800 
MHz, 
DMSO): 
δ21.46, 
109.03, 
115.46, 
121.89, 
125.04, 
129.23, 
129.50, 
130.08, 
138.90, 
142.88, 
150.60, 
156.23, 
187.15 

m/z [M-H]- calcd 
for 
C13H10N2OS2; 
273.0162; 
found: 273.0163 

AI-9-
13 

(7b) 

 

222-
225 

1H-NMR 
(600 
MHz, 
DMSO): 
δ7.23-
7.26 (1H, 
m), 7.34-
7.36 (2H, 
m), 7.53-
7.56 (1H, 
m), 7.65-
7.67 (2H, 
m), 14.81 
(1H, s) 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ110.43, 
111.29, 
115.24, 
115.96, 
120.70, 
131.48, 
143.27, 
150.58, 
154.54, 
162.34, 
163.52, 
187.26 

m/z [M-H]- calcd 
for 
C12H7FN2OS2; 
276.9911; 
found: 276.9913 

AI-9-
23 

(7c) 

 

211-
212 

1H-NMR 
(800 
MHz, 
DMSO): 
δ3.80 

1C-NMR 
(800 
MHz, 
DMSO): 
δ55.77, 

m/z [M-H]- calcd 
for 
C13H10N2O2S2; 
289.0111; 
found: 289.0112 
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(3H, s), 
7.04-7.05 
(3H, m), 
7.25-7.26 
(1H, d, J 
= 3.68 
Hz), 
7.73-7.74 
(2H, d, J 
= 8.88 
Hz), 
14.84 
(1H, s) 

107.41, 
115.07, 
115.66, 
122.02, 
126.35, 
142.09, 
150.82, 
156.40, 
160.26, 
187.00 

AI-8-
117 
(7d) 

 

>250 1H-NMR 
(800 
MHz, 
DMSO): 
δ7.24-
7.25 (1H, 
d, J = 
3.68 Hz), 
7.30-7.31 
(1H, d, J 
= 3.28 
Hz), 
7.54-7.55 
(2H, d, J 
= 8.64 
Hz), 
7.81-7.82 
(2H, d, J 
= 8.56 
Hz), 
14.84 
(1H, s) 

13C-
NMR 
(800 
MHz, 
DMSO): 
δ109.76, 
115.48, 
126.26, 
127.97, 
129.55, 
133.66, 
143.02, 
150.53, 
154.88, 
187.16 
 

m/z [M-H]- calcd 
for 
C12H7ClN2OS2; 
292.9616; 
found: 292.9615 

AI-9-
28 

(7e) 

 

223-
228 

1H-NMR 
(800 
MHz, 
DMSO): 
δ7.37-
7.38 (1H, 
d, J = 
3.68 Hz), 
7.49-7.50 
(1H, d, J 
= 3.68 
Hz), 
7.73-7.77 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ110.80, 
115.38, 
120.98, 
123.50, 
125.54, 
128.35, 
130.27, 
130.58, 

m/z [M-H]- calcd 
for 
C13H7F3N2OS2; 
326.9879; 
found: 326.9881 
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(2H, m), 
8.12-8.13 
(2H, m), 
14.86 
(1H, s) 

130.82, 
143.68, 
150.33, 
154.31, 
187.37 

AI-8-
45 
(7f) 

 

220-
222 

1H-NMR 
(800 
MHz, 
DMSO): 
δ7.35-
7.36 (1H, 
d, J = 
3.68 Hz), 
7.38-7.39 
(1H, d, J 
= 3.68 
Hz), 
7.46-7.47 
(1H, ddd, 
J = 0.88, 
2.00, 
7.96 Hz), 
7.52-7.54 
(1H, dd, 
J = 7.88, 
7.88 Hz), 
7.78-7.79 
(1H, dt, J 
= 1.24, 
7.76 Hz), 
7.89-7.90 
(1H, dd, 
J = 1.80, 
1.80 Hz), 
14.80 
(1H, s) 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ110.30, 
115.15, 
123.04, 
124.03, 
128.90, 
131.11, 
131.53, 
134.34, 
143.46, 
150.34, 
154.37, 
187.32 
 

m/z [M+H]+ 
calcd for 
C12H7ClN2OS2; 
294.9767; 
found: 294.9761 

AI-9-
27 

(7g) 

 

226-
227 

1H-NMR 
(600 
MHz, 
DMSO): 
δ7.34-
7.35 (1H, 
d, J = 
3.66 Hz), 
7.39-7.41 
(2H, m), 
7.62-7.65 
(1H, dd, 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ110.73, 
115.27, 
117.13, 
119.54, 
121.38, 
123.51, 
131.29, 

m/z [M-H]- calcd 
for 
C13H7F3N2O2S2; 
342.9828; 
found: 342.9830 
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J = 8.04, 
8.04 Hz), 
7.78 (1H, 
s), 7.84-
7.86 (1H, 
d, J = 
7.38 Hz), 
14.83 
(1H, s) 

131.64, 
143.61, 
149.33, 
150.37, 
154.15, 
187.36 

AI-8-
57 

(7h) 

 

202-
204 

1H-NMR 
(800 
MHz, 
DMSO): 
δ7.39-
7.40 (1H, 
d, J = 
3.86 Hz), 
7.42-7.43 
(1H, d, J 
= 3.76 
Hz), 
7.52-7.54 
(1H, dd, 
J = 7.96, 
7.96 Hz), 
7.73-7.74 
(1H, dd, 
J = 1.44, 
8.00 Hz), 
7.87-7.88 
(1H, dd, 
J = 1.44, 
7.92 Hz), 
14.88 
(1H, s) 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ114.67, 
114.76, 
127.83, 
128.39, 
129.17, 
129.91, 
130.95, 
133.67, 
143.63, 
150.22, 
151.53, 
187.55 
 

m/z [M+H]+ 
calcd for 
C12H6Cl2N2OS2; 
327.9299; 
found: 327.9293 

AI-8-
103 
(7i) 

 

212-
214 

1H-NMR 
(600 
MHz, 
DMSO): 
δ3.91 
(3H, s), 
7.21-7.22 
(1H, d, J 
= 3.66 
Hz), 
7.28-7.29 
(1H, d, J 
= 8.10 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ56.67, 
108.46, 
113.61, 
115.49, 
122.10, 
123.01, 
124.89, 
125.87, 

m/z [M-H]- calcd 
for 
C13H9ClN2O2S2; 
322.9721; 
found: 322.9720 
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Hz), 
7.30-7.31 
(1H, d, J 
= 3.66 
Hz), 
7.76-7.77 
(1H, dd, 
J = 2.07, 
8.61 Hz), 
7.89-7.90 
(1H, d, J 
= 2.16 
Hz), 
14.77 
(1H, s) 

142.57, 
154.54, 
155.31, 
187.05 
 
 

AI-8-
89 
(7j) 

 

>250 1H-NMR 
(800 
MHz, 
DMSO): 
δ7.34-
7.35 (1H, 
d, J = 
3.76 Hz), 
7.35-7.36 
(1H, d, J 
= 3.68 
Hz), 
7.55-7.57 
(1H, m), 
7.82-7.84 
(1H, m), 
8.06-8.07 
(1H, m), 
14.84 
(1H, s) 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ110.08, 
115.17, 
118.32, 
121.08, 
125.35, 
126.53, 
127.39, 
143.63, 
150.65, 
153.44, 
156.96, 
158.53, 
187.13 

m/z [M-H]- calcd 
for 
C12H6ClFN2OS2; 
310.9521; 
found: 310.9520 

AI-9-
54 

(7k) 

 

175- 
177 

1H-NMR 
(800 
MHz, 
DMSO): 
δ3.36 
(3H, s), 
3.72-3.73 
(2H, t), 
4.26-4.27 
(2H, t), 
7.22-7.23 
(1H, d, J 
= 3.60 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ58.68, 
68.88, 
70.47, 
108.39, 
114.47, 
115.21, 
122.35, 
122.88, 

m/z [M-H]- calcd 
for 
C15H13ClN2O3S2; 
366.9983; 
found: 366.9986 



	

	73 

Hz), 
7.28-7.29 
(1H, d, J 
= 8.80 
Hz), 
7.31-7.32 
(1H, d, J 
= 3.12 
Hz), 
7.73-7.74 
(1H, dd, 
J = 2.20, 
8.60 Hz), 
7.89-7.90 
(1H, d, J 
= 2.24 
Hz), 
14.80 
(1H, s) 

124.83, 
125.89, 
142.71, 
150.43, 
154.69, 
154.83, 
187.07 
 

AI-9-
59 

 

134-
135 

1H-NMR 
(600 
MHz, 
DMSO): 
δ2.77-
2.78 (4H, 
t), 3.57-
3.59 (4H, 
t), 5.24 
(2H, s), 
7.35-7.36 
(1H, d, J 
= 3.30 
Hz), 
7.37-7.38 
(1H, d, J 
= 3.54 
Hz), 
7.44-7.46 
(1H, dd, 
J = 1.11, 
8.07 Hz), 
7.50-7.53 
(1H, dd, 
J = 7.92, 
7.92 Hz), 
7.76-7.77 
(1H, d, J 
= 7.80 

13C-
NMR 
(600 
MHz, 
DMSO): 
δ50.76, 
66.56, 
70.80, 
110.53, 
115.81, 
123.20, 
124.27, 
129.06, 
131.16, 
131.55, 
134.14, 
143.49, 
154.61, 
186.58 

293 as neg. ion 
 
C17H16ClN3O2S2 
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Hz), 7.87 
(1H, dd, 
J = 1.68, 
1.68 Hz)  

  AI-
9-63  

 
 
 

85-
87 

1H-NMR 
(800 
MHz, 
CDCl3): 
δ2.19 
(3H, s), 
5.81 (2H, 
s), 6.88-
6.89 (1H, 
d, J = 
3.60 Hz), 
7.29-7.30 
(1H, d, J 
= 3.44 
Hz), 
7.34-7.36 
(1H, ddd, 
J = 0.96, 
2.04, 
7.96 Hz), 
7.39-7.41 
(1H, dd, 
J = 8.04, 
8.04 Hz), 
7.64-7.65 
(1H, dt, J 
= 1.24, 
7.76 Hz), 
7.75-7.76 
(1H, dd, 
J = 1.88, 
1.88 Hz) 

13C-
NMR 
(800 
MHz, 
CDCl3): 
δ20.90, 
65.44, 
108.75, 
113.79, 
122.43, 
124.32, 
128.64, 
130.24, 
130.97, 
135.04, 
144.91, 
155.04, 
159.57, 
161.57, 
170.22 
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Pharmacokinetics 

Test Compound Formulation 

All dosing solutions were formulated in-house and passed through 0.22-micron sterile 

filters prior to use. Solutions were stable over two weeks at 25°C as assessed by HPLC. 

Detailed procedures for each compound are provided below. 

 

AI-9-54 

A dosing nanosuspension was prepared at 19.15 mg/mL in 0.05% Tween 80 in 0.9% 

NaCl. Briefly, 46 mg AI-9-54 and 460 mg yttrium stabilized zirconia grinding media (0.5 

mm; Inframat Advanced Materials LLC, Manchester, CT, USA) were added to a 5 mL 

PTFE bottle and shaken on a Wig-L-Bug mixer (DENTSPLY, York, PA,USA) until the 

mean square particle size was less than 0.5 µM (Brookhaven zetaPALS analyzer, 

Brookhaven Instruments Corporation, Holtsville, NY, USA). 

 

AI-9-59 

A dosing solution 25 mg/mL in 0.2 M Captisol (Ligand Pharmacueticals, La Jolla, CA, 

USA) was prepared with the in situ formed hydrochloride salt of AI-9-59.  

 

Pilot Pharmacokinetic Studies 

The University of Kansas Institutional Animal Care and Use Committee approved this 

study and appropriate guidelines for the use of animals were observed during all aspects 

of the study. Prior to the study, mice were fasted at least three hours and water was 

available ad libitum. Animals were housed on a 12-hour light/dark cycle at 72-74°C and 

30-50% relative humidity. 
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For IP dosing 24-28 gm male C57BL/6 mice (Harlan Laboratories, USA) were manually 

restrained and injected in the peritoneal cavity midway between the sternum and pubis 

and slightly off the midline of the mouse. A 1-cc syringe with a 27-gauge needle was 

used for each injection. Blood was collected from the animals according to scheduled 

time points. Animals were anesthetized with isoflurane and blood drawn via cardiac 

puncture. Blood was immediately transferred to 1.5 mL heparinized microcentrifuge 

tubes and centrifuged at 4000 rpm for ten minutes. Plasma was then transferred to clean 

tubes and frozen. Due to exsanguination, the animals did not wake from the anesthesia 

and death was insured while under anesthesia by thoracotomy. This method is 

consistent with the recommendations of the AVMA Guidelines on Euthanasia for use of 

exsanguination as a means of euthanasia. 

Noncompartmental pharmacokinetic analysis of the test compound plasma 

concentration-time data was conducted using PK Solutions 2.0 (Summit Research 

Services, Montrose, CO, USA).  

 

Bioanalysis 

Materials – Methyl-t-butyl ether (MtBE) and HPLC grade acetonitrile (ACN) were 

obtained from Fisher (NJ, USA).  Trifluoroacetic acid (TFA) and formic acids was from 

Fluka (St. Louis, MO, USA). Dimethylsulfoxide (DMSO) was obtained from Sigma (St. 

Louis, MO, USA) and was Hybri-Max grade. 

 

General Equipment - A VX-2500 multi-tube vortexer from VWR (West Chester, PA, 

USA) and an accuSpin Micro 17 centrifuge from Fisher (NJ, USA) were used in the 

sample preparation. Solvent evaporation was carried out on a CentriVap concentrator 

from Labconco (Kansas City, MO, USA) with a Büchi V-800 vacuum controller 
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(Switzerland). Samples were analyzed on an Applied Biosystems 3200 QTRAP (Grand 

Island, NY, USA) operated in negative ion mode with a Shimadzu SCL-10A vp controller, 

SIL-20AC autosampler, LC-20AD pumps and CTO-20A column oven (Kyoto, Japan). 

 

AI-9-54 – An LC/MS/MS method was developed for AI-9-54 using external standards. 

LC/MS chromatography conditions included a Zorbax SB C18 2.1 x 50 mm at 45°C with 

a mobile phase flow rate of 0.20 mL/min. The gradient elution consisted of solvents A 

and B with A) 10 mM ammonium acetate pH 8.0, and B) acetonitrile. The gradient 

consisted of 10-95% B in four minutes, 95% B for two minutes, 95-10% B in 0.5 minutes, 

and 10% B for three minutes. Samples were held at 8°C and 2 µL were injected. The 

retention time of AI-9-54 is 3.0 minutes.  

 

Mass spectrometry conditions consisted of a curtain gas of 14 xx, a temperature of 

650°C, GS1 & GS2 of 50 and 45 xx, respectively. Monitored AI-9-54 transitions were 

367.127/58.000, DP = -45, EP = -3.3, CEP = -16, CE = -48, CXP = -8. Two sets of 

standards and samples, a high concentration and a low concentration range were run. 

Extraction of plasma samples was conducted on 50 µL of the respective samples using 

0.2 mL of MtBE after adding 10 µL of AI-9-54 spiking solution (10X), vortexing, and 

allowing the sample sit at room temperature for five min. The two-phase mixture was 

vortexed for five min then centrifuged at 12,000 rpm for five min. 190 µL of the MtBE 

layer was transferred to clean tubes and evaporated to dryness. The resulting residue 

was reconstituted in 100 µL of 50/50 ACN/H2O and vortexed followed by centrifugation 

at 12,000 rpm for five min. 90 µL of the supernatant was transferred to autosampler vials 

with polypropylene inserts and analyzed. 
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The validation sets consisted of blank plasma and a standard curve with the range of 25, 

50, 100, 250, 500, and 1000 ng/mL AI-9-54 (r > 0.9933). 

 

AI-9-59 - An LC/MS/MS method was developed for AI-9-59 using external standards. 

LC/MS chromatography conditions included a Zorbax SB C18, 5 µm, 2.1 x 50 mm at 

50°C with a mobile phase flow rate of 0.20 mL/min. The gradient elution consisted of 

solvents A and B with A) 10 mM ammonium acetate pH 8.0, and B) acetonitrile. The 

gradient consisted of 5-95% B in three minutes, 95% B for 1.5 minutes, 95-5% B in 0.5 

minutes, and 5% B for 3.5 minutes. Samples were held at 8°C and 5 µL were injected. 

The retention time of AI-9-59 is 4.3 minutes. 

 

Mass spectrometry conditions consisted of a curtain gas of 12 xx, a temperature of 

650°C and GS1 & GS2 of 30 xx. Monitored AI-9-59 transitions were 292.94/89.1, DP = -

40, EP = -4, CEP = -12, CE = -19, CXP = -2. Two sets of standards and samples, a high 

concentration and a low concentration range were run. Following the addition of 50 µL of 

external standard, the standards prepared in plasma and samples were charged with 

acetonitrile, vortexed, centrifuged and the supernatant transferred to clean tubes, which 

were then dried under vacuum. The standards and samples were reconstituted in 50 µL 

50/50 acetonitrile/water, vortexed, centrifuged, and the supernatant transferred to 

autosampler vials for analysis. The validation sets consisted of blank plasma and a 

standard curve with the range of 2, 5, 10, 20 50, 100 and 200 ng/mL AI-9-59 (r > 

0.9993). 
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MTT Cell Proliferation Assay 

A 12 mM stock solution of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium 

bromide) (Invitrogen) was prepared by dissolving 5 mg MTT in 1 mL of sterile PBS. 10 µl 

of the MTT stock solution was added to each well of the 96-well culture plate, and 

incubated at 37°C for 4 hours. The plate was centrifuged at 300 g for 5 minutes, the 

media removed, and 100 µl of DMSO (Sigma-Aldrich) was added to solubilize the 

resulting reagent formazan and incubated at room temperature for 10 minutes. The plate 

was then analyzed by measuring absorbance at 540 nm wavelength in a SpectraMax 

plate reader (Molecular Devices). Data are plotted as percentage of viable cells relative 

to DMSO. 

 

Gene expression analysis (microarray) 

RNA for microarray was isolated with the RNeasy Kit (QIAGEN). Total RNA quantity and 

integrity were verified using Bioanalyzer (Agilent Technologies), and amplified using 

Ambion WT Expression Kit (Applied Biosystems). Microarray experiments were 

performed on GeneChip Mouse Gene 2.0 ST Array (Affymetrix) at the University of 

Pennsylvania Molecular Profiling Facility, according to the manufacturer’s instructions. 

Affymetrix probe intensity (cel) files were analyzed using Partek Genomics Suite (v6.6, 

Partek, Inc., St. Louis, MO). The data was normalized using Robust Multichip Average 

Algorithm (RMA), and technical controls were excluded to leave 34,365 transcript IDs 

available for statistical analysis. A one-way ANOVA followed by 3 pairwise comparisons 

(t-tests) were performed across the samples, each yielding a p-value for each transcript 

ID. The p-values were further corrected using the Benjamini-Hochberg procedure for 

false discovery rate (FDR). Fold-change in expression level for each transcript ID was 

calculated for the 3 pairwise comparisons. 
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To identify genes that are differentially expressed following treatment, the data was 

filtered to retain transcript IDs that demonstrated a false discovery rate of 5% and have a 

mean fold change of at least 1.5, up or down in AI-7-54 vs AI-8-45 treated cells. 87 IDs 

(78 unique genes) met these cutoffs. Hierarchical clustering was performed using 

Pearson correlation and average linkage. The colors red and blue are used to indicate 

the log-2 intensity of each gene relative to the mean of AI-7-54 treatment. 
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Introduction 

 

In the previous chapter, we established that the Runt domain inhibitors 

demonstrated good efficacy in mouse t(8;21) leukemia bone marrow cells and in human 

patient samples of both t(8;21)  and non t(8;21) leukemias. In addition, the RDIs did not 

affect normal bone marrow progenitors at the same concentrations, indicating that a 

therapeutic window is available. Furthermore, our inclusion of a structurally related and 

weakly active compound as a control strongly support that the efficacies we observed 

were due to on target inhibition of RUNX proteins functions. 

Beyond the in vitro efficacies described above, we wished to demonstrate the 

inhibitors’ in vivo efficacies in order to establish clinical applicability. To this end, we 

have developed a pro-drug AI-9-59 that has improved solubility and pharmacokinetic 

properties. We also needed to adopt a mouse model that reproduces the characteristics 

of the t(8;21) AML. Numerous studies have demonstrated that full-length AML1-ETO is 

not capable of initiation leukemia on its own (184-188). The chimeric transcription factor 

was shown to cooperate with activating mutations in the receptor tyrosine kinases (189-

192), including activated form of platelet-derived growth factor receptor-β (TEL-

PDGFβR) (121) and RAS (193) in t(8;21) AML. 

In our previous effort to examine the contribution of various protein-protein 

interactions towards AML1-ETO’s leukemogenic capability, we generated a mouse 

model of t(8;21) leukemia through retroviral expression of AML1-ETO and TEL-PDGFβR 

in mouse bone marrow cells (132). In this model, the transduced bone marrow cells 

were transplanted into lethally irradiated primary recipients, all of whom developed a 

completely penetrant lethal leukemia and succumbed to disease within 4 weeks. While 

this model was useful for studying the role of each of AML1-ETO’s interaction partners 
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towards leukemogenesis, it did not faithfully recapitulate the human disease, as the 

t(5;12) that generates TEL- PDGFβR and the t(8;21) were rarely found together in AML 

patients (194). Furthermore in this retrovirus-mediated model, TEL-PDGFβR 

independently generated a chronic myeloproliferative disorder (CMPD). As a result, the 

presence of mixed diseases makes this model a less optimal model for studying the in 

vivo efficacy of the Runt domain inhibitors. 

More recently, a similar mouse model of t(8;21) AML using retroviral expression 

was reported. In this model, MSCV-based retroviral constructs with GFP and luciferase 

markers were used to co-express AML1-ETO9a and NRASG12D in fetal liver cells that are 

embryonic day 13.5-15 old (169). AML1-ETO9a is a form of AML1-ETO lacking the C-

terminal MYND domain, and is more potent at inducing leukemia than full length AML1-

ETO (142). The infected fetal liver cells were transplanted into lethally irradiated 

recipient mice, which were monitored for development of leukemia. Mice reconstituted 

with one million AML1-ETO9a + NRASG12D fetal liver cells had a mean survival of 84 

days. End point analysis showed that the bone marrow of the recipient mice contain 

immature blasts that could be immuno-phenotyped as c-Kit+, Mac-1-, Gr-1-, CD3e-, and 

CD19-. The blast cells were also positive for GFP and the luciferase markers, validating 

the cooperation between AML1-ETO9a and NRASG12D in generating leukemia. The 

leukemia cells could be transplanted into secondary recipients to reproduce the same 

disease. 

Additionally, the GFP and luciferase markers allowed for studying leukemia 

burden in the recipients by flow cytometry and bioluminescent imaging. The AML1-

ETO9a + NRASG12D leukemia cells were also responsive to standard chemotherapy 

(cytarabine combined with doxorubicin) used to treat AML in human patients (169). 

Under combination chemotherapy, the leukemia regressed and lead to complete 
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remission. Therefore, this represents a well-characterized model of t(8;21) AML suitable 

for our in vivo studies for determining the single agent efficacy of the Runt domain 

inhibitor pro-drug, as well as potential synergy of the pro-drug in combination with 

chemotherapy. 

Another possible mouse model involved the engraftment of human AML cells in 

immuno-compromised NSG (NOD/LtSz-scid IL2Rγc null) mice (195). The NSG mice 

allowed robust engraftment of primary human AML samples. Out of 35 patient AML 

samples transplanted into NSG mice, 13 samples achieved high (>10%) engraftment 

based on the percentage of human AML cells in NSG bone marrow. Additionally, the 

high-engrafting AML samples could be serially transplanted into secondary and tertiary 

NSG recipient mice. One distinct benefit of the xenograft model is that we will be treating 

leukemia cells immediately derived from human patient samples, and thus the model is 

appropriate for establishing direct clinical relevance; despite the fact that none of the 

serially engraftable samples are t(8;21) positive. Based on our in vitro data which 

showed that the Runt domain inhibitors reduced growth and induced apoptosis in non 

t(8;21) leukemia cells, we believe the xenograft model would allow us to interrogate the 

efficacy of the Runt domain inhibitor beyond CBF leukemias through human AML 

samples. 

Based on the models described above, we selected the AML1-ETO9a + 

NRASG12D model, as it represents a well-characterized model that is genetically relevant 

to our in vivo studies. We set out to determine whether the Runt domain inhibitors could 

reduce the leukemia burden or extend the survival in the mice transplanted with 

leukemia cells.  
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Materials and Methods 

 

Mice 

All mouse procedures were approved by the University of Pennsylvania University 

Animals Resource Center (ULAR) and Institutional Animal Care and Use Committees 

(IACUC) of the University of Pennsylvania. 

 

Transplant 

B6.SJL (CD45.1) mice were used as transplant recipients. Bone marrow chimeras were 

established by injecting donor bone marrow cells from C57BL6/J background (CD45.2) 

along with 2×105 bone marrow cells from C57BL6/J crossed to B6.SJL (competitor 

CD45.1/CD45.2) into lethally irradiated recipients (two doses of 450 cGy each, 4 hours 

apart).  

 

Xenograft in NSG mice 

2 million 720 T-ALL cells were injected subcutaneously into right flank of NSG 

(NOD/LtSz-scid IL2Rγc null) mice. The tumors were allowed to grow to a size of 250 

mm3 after which the mice received DMSO or 50 mg/kg AI-9-59 ip injections. 

 

Flow cytometry 

Flow cytometry analyses were performed on BD LSRII (BD Bioscience, San Jose CA). 

For peripheral blood analysis erythrocytes were lysed in RBC Lysis Buffer (Sigma). The 

following monoclonal antibodies (BD Bioscience and/or eBioscience, San Diego CA) 

were used for staining: FITC-CD16/32 (2.4G2), APC-CD34 (RAM34), APC-Cy7-cKit 

(2B8), PE-Flt3 (A2F10), PE-Cy7-Sca1 (D7), APC-CD45.1 (A20), FITC CD45.2 (104), 
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PE-Cy7-Mac1 (M1/70), PerCP-Cy5.5-Gr1 (RB6-8C5), APC-CD3e (145-2C11), PE-CD19 

(1D3). Dead cells were stained with DAPI. 

 

Data analyses for flow cytometry were carried out using FlowJo (Treestar Inc, Ashland 

OR).  
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Results 

 

Pilot study for efficacy of RDI in AML1-ETO9a + NRASG12D mouse model 

In order to examine the potential in vivo efficacies of the Runt domain inhibitor 

pro-drug, we conducted a pilot experiment using the AML1-ETO9a and NRASG12D 

mouse transplant model of t(8;21) AML (169). We obtained AML1-ETO9a and NRASG12D 

bone marrow leukemia cells harvested from the primary recipients and transplanted into 

lethally irradiated hosts at 250,000 AML cells per mouse. Our results showed all the 

recipients succumbed to leukemia within four weeks. Flow cytometry analysis showed 

high percentage of GFP positive AML cells in the peripheral blood. We observed high 

percentage of GFP positive cells in spleen and bone marrow. The GFP positive cells 

were also positive for c-Kit, a surface marker associated with progenitor cells, and were 

negative for various hematopoietic lineage markers including granulocyte makers Gr-1 

and Mac-1, B lymphocyte marker CD19, and T lymphocyte marker CD3e (Figure 1). 

Thus we showed that AML1-ETO9a and NRASG12D expressing cells were serially 

transplantable and gave a consistent phenotype, and we confirmed that the GFP 

positive cells are myeloid leukemia cells in accordance with the Bethesda proposals for 

classification of nonlymphoid hematopoietic neoplasms in mice (196).  
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Figure 1. Flow cytometry analysis of peripheral blood from mice transplanted with AML1-
ETO9a + NRASG12D bone marrow cells. 
A-B. Peripheral blood (PB) of the mice transplanted with 250,000 AML1-ETO9a + NRASG12D bone marrow 

cells showed engraftment of GFP positive cells that showed higher c-Kit expression. 

C-D. Lineage analysis of GFP positive and GFP negative PB cells using myeloid (Mac1 and Gr1) and 

lymphoid (CD3e and CD19) markers. 
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We isolated splenocytes and bone marrow cells from these recipients and 

transplanted into irradiated host at 250,000 cells per mice. Five days post-transplant, we 

began daily intraperitoneal injections of 50 µl vehicle (DMSO) or 100 mg/kg AI-9-59 

(dissolved in DMSO). After four doses, mice that received 100 mg/kg AI-9-59 showed 

signs of toxicity including lethargy and weight loss, at which point we stopped the 

injections and monitored the mice for recovery. Eight out of ten mice that received the 

100 mg/kg injections died within one week due to toxicity (Figure 2). Therefore we 

determined that the dosage of 100 mg/kg was toxic to the mice, as they did not tolerate 

beyond four doses. 

 

Figure 2. Assessing in vivo efficacy of the pro-drug for the Runt domain inhibitors. 
Kaplan-Meier survival analysis of mice transplanted with 250,000 AML1-ETO9a + NRASG12D mouse AML 

cells, and injected with DMSO (vehicle) or four doses of AI-9-59 100 mg/kg intraperitoneal injections daily. 

P-value was determined by Mantel-Cox test (n=10 for AI-9-59 100 mg/kg and n=5 for DMSO). 
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In order to continue the study, the DMSO control group was split into two groups 

of five mice each: one group received daily IP injection of 50 µl DMSO and the other 

received a lower dose of 25 mg/kg AI-9-59 (Figure 3A). The mice tolerated daily 

injections of 25 mg/kg AI-9-59. Kaplan-Meier analysis showed a small but statistically 

significant improvement in the survival of mice that received AI-9-59, compared to mice 

that received vehicle control (Figure 3B). FACS analysis of the peripheral blood revealed 

a trend towards reduction in the percentage of GFP-positive leukemia cells in the mice 

that received AI-9-59 (Figure 3C). These data suggested the pro-drug AI-9-59 could 

reduce the growth of mouse leukemia cells expressing AML1-ETO9a and NRASG12D in 

vivo and extend the survival in a mouse model of t(8;21) AML. 
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Figure 3. Assessing in vivo efficacy of the pro-drug for the Runt domain inhibitors. 
A. Revised schematics for assessing in vivo efficacy of the pro-drug. The mice from the DMSO control group 

were equally divided into a control (DMSO) and a lower dose of 25 mg/kg IP injections, and studied for 

survival. 

B. Kaplan-Meier survival analysis of mice as described in A. P-value was determined by Mantel-Cox test 

(n=5 per group). The three remaining mice from the 25 mg/kg group was sacrificed at Day 22 as 

recommended by the veterinarian. 

C. FACS analysis of the peripheral blood at Day 19 post-transplant (n=2 for DMSO and n= 4 for 25 mg/kg). 
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Efficacy of RDI in AML1-ETO9a + NRASG12D mouse model 

Based on the preliminary results obtained from the pilot study, we conducted a 

second experiment in which we engrafted 250,000 AML1-ETO9a + NRASG12D leukemia 

cells per recipient using a larger cohort of 40 mice. Five days post-transplant, we began 

the intraperitoneal injections of 50 µl of DMSO, 25 mg/kg, or 50 mg/kg AI-9-59. In order 

to minimize toxicity from the drug, the mice were given three consecutive daily IP 

injections followed by one-day rest. Eighteen days post-transplant, the mice from the 

DMSO group started to show signs of leukemia related sickness, at which point all the 

animals were sacrificed and tissues collected for histology and analysis. 

FACS analysis of the peripheral blood and bone marrow of the mice showed no 

significant change in the percentage of GFP positive leukemia cells (Figure 4A,B), 

suggesting that AI-9-59 did not affect the growth of t(8;21) leukemia cells in vivo. We 

also did not detect any significant difference in the relative spleen weight, although mice 

that received 50 mg/kg injections exhibited a trend towards smaller relative spleen size 

(Figure 4C). Therefore based on the parameters of the analysis, we did not detect any 

significant efficacy in the ability of the pro-drug to reduce the growth of t(8;21) leukemia 

cells expressing AML1-ETO9a and NRASG12D. 
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Figure 4. Efficacy of RDI in AML1-ETO9a; NRASG12D mouse model.  
A-B. Percentage of GFP positive leukemia cells in the peripheral blood cells (A) and bone marrow cells (B) 

harvested from mice transplanted with 250,000 AML1-ETO9a; NRASG12D mouse leukemia cells, and treated 

with DMSO, 25 or 50 mg/kg AI-9-59. (n= 9 for DMSO, n=13 for 25 mg/kg, and n= 10 for 50 mg/kg). 

Significance relative to DMSO treatment was determined by one-way ANOVA followed by Dunnett’s Multiple 

Comparison. 

C. Spleen weight relative to body weight of mice transplanted with 250,000 AML1-ETO9a; NRASG12D mouse 

leukemia cells, and treated with DMSO, 25 or 50 mg/kg AI-9-59 (n= 9 for DMSO, n=13 for 25 mg/kg, and n= 

10 for 50 mg/kg). Significance relative to DMSO treatment was determined by one-way ANOVA followed by 

Dunnett’s Multiple Comparison. 
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Figure 5. Determining the maximum tolerated dose of NSG mice to the pro-drug AI-9-59. 
Kaplan-Meier survival analysis of mice injected with 50 µl of 50 mg/kg or 75 mg/kg AI-9-59 daily (n=5 for 

each group). Mice from the 75 mg/kg group received a total of four i.p. injections, and the experiment was 

terminated for 50 mg/kg group at Day 16, after we determined that the mice tolerated our dosing regimen.   

 

 

 

We injected two million 720 T-ALL cells subcutaneously into NSG mice, and 

allowed the tumors to engraft and grow to the size of approximately 250 mm3. The mice 

were then treated with 50 µl DMSO or 50 mg/kg of AI-9-59. Tumor measurements were 

taken every two days to assess the effect of the pro-drug on tumor growth. Overall, we 

did not detect any difference in tumor growth (Figure 6A). The mice that received 50 

mg/kg injections of AI-9-59 showed signs of drug-related toxicity including weight loss 

(Figure 6B), and reduction in spleen size (Figure 6C). 
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Figure 6. End point analysis of NSG mice engrafted with 720 T-ALL cells and treated with 
DMSO or 50 mg/kg AI-9-59. 
A. Relative tumor growth of NSG treated with 50 µl of 50 mg/kg or DMSO. Linear regression analysis 

showed no significant difference in the rate of tumor growth (n=10 per group). Error bars represent S.D. 

B. Change in body weight of mice before the treatment and 9 days post-treatment (n=10 per group). 

Significance relative to DMSO treatment was determined by two-tailed student t-test. Error bars represent 

S.D. 

C. Change in relative spleen weight of mice post-treatment (n=10 per group). Significance relative to DMSO 

treatment was determined by two-tailed student t-test. Error bars represent S.D. 
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FACS analysis of hematopoietic lineages in the peripheral blood showed that AI-

9-59 had no effect on the percentage distribution of the granulocyte (Figure 8A) and B-

lymphocyte (Figure 8B) populations. Analysis of the bone marrow progenitor populations 

showed that the pro-drug AI-9-59 did not significantly affect the distribution of LK, LSK or 

LKS- progenitor populations (Figure 8C-E). Further analysis of the LKS- cells by surface 

markers CD34 and CD16/32 revealed that AI-9-59 treatment induced a small but 

significant increase in the granulocyte-macrophage progenitors (GMPs) but not in the 

common myeloid progenitors (CMPs) nor in the megakaryocyte-erythrocyte progenitors 

(MEPs) (Figure 8F-H) populations.  

In addition, we continued to observe symptoms of toxicity including unkempt coat 

due to decreased grooming, lethargy, and rapid weight loss. Moreover, in mice that 

received AI-9-59, we observed signs of gastro-intestinal toxicity including dilation of 

small and large intestines as well as abnormal accumulations of food and gas in the 

gastrointestinal tract. Taken together, our findings showed that the pro-drug AI-9-59 had 

toxic effects on mice but did not reduce the growth of leukemia cells in mouse models. 
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Figure 7. Flow cytometry analysis of peripheral blood and bone marrow cells from NSG 
mice engrafted with 720 T-ALL cells and treated with DMSO or 50 mg/kg AI-9-59. 
A. Schematic representing the gating strategy for the FACS analysis of the peripheral blood. 

B. A schematic representing the gating strategy for the FACS analysis of the bone marrow. 
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Figure 8. Toxicity analysis of peripheral blood and bone marrow cells from NSG mice 

engrafted with 720 T-ALL cells and treated with DMSO or 50 mg/kg AI-9-59. 
The specific populations are represented as mean percentage of total live cell (n=10 per group). Error bars 

represents the S.D. Significance relative to DMSO treatment was determined by two-tailed student t-test in 

all comparisons. 

A-B. Percentage of Gr-1 and Mac-1 positive granulocyte population (A) and CD19 positive B lymphocyte 

population (B) in the peripheral blood of NSG mice treated with DMSO or 50 mg/kg AI-9-59. n=10 per group 

in all comparisons and the specific populations are represented as mean percentage of total live cells. Error 

bars represent the S.D. Significance relative to DMSO treatment was determined by two-tailed student t-test 

in all comparisons. 

C-E. Percentage of bone marrow progenitor population in NSG mice treated with DMSO or 50 mg/kg AI-9-

59: (C) lineage negative c-Kit positive (LK) population, (D) lineage negative c-Kit positive and Sca-1 positive 

(LSK) population, and (E) lineage negative c-Kit positive and Sca-1 negative (LKS-) population. 

F-H. Percentage of each progenitor compartment in LKS- progenitor cells from NSG mice treated with 

DMSO or 50 mg/kg AI-9-59: (F) common myeloid progenitors [CMP: LKS- CD34(+) CD16/32(-)], (G) 

megakaryocyte/erythroid progenitors [MEP: LKS- CD34(-) CD16/32(-)], and (H) granulocyte/monocyte 

progenitors [GMP: LKS- CD34(+) CD16/32(+)] populations. 
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Discussion 

 

Based on our findings that the Runt domain inhibitors reduce growth of multiple 

leukemia cell lines and diminish the clonogenic potential in t(8;21) AML patient samples, 

we developed a pro-drug AI-9-59 with improved solubility and pharmacokinetic 

properties to study the potential in vivo efficacies of AI-9-59 in mouse models. In our pilot 

experiment, we determined that daily injections of AI-9-59 at 100 mg/kg was toxic to 

mice by the fourth dose, and observed a small but statistically significant improvement in 

the survival of mice that received 25 mg/kg AI-9-59. However in subsequent experiments 

using two different mouse models, we did not detect any inhibitory effect of AI-9-59 on 

the growth of leukemia cells. Therefore our data suggested that the pro-drug AI-9-59 

was toxic to the mice but had no on-target anti-leukemic effects. 

To further assess whether AI-9-59 had any effect on hematopoietic cells, we 

used flow cytometry to analyze the bone marrow cells of mice that had been xenografted 

subcutaneously with T-ALL cells, and treated with 50 mg/kg AI-9-59. FACS analysis 

revealed no perturbation in the distribution of different hematopoietic lineages, or in the 

frequency of hematopoietic progenitors LK and LSK populations in the bone marrow of 

mice treated with AI-9-59. On the other hand, we observed a small but significant 

increase in the frequency of granulocyte macrophage progenitors (GMPs) in mice that 

received AI-9-59 at 50 mg/kg. Interestingly, deletion of Runx1 was previously reported to 

induce a three-fold expansion in GMPs but not in other progenitors (94). Therefore the 

expansion in GMP population we observed could be the result of AI-9-59’s on-target 

inhibition of Runx1 functions in hematopoietic progenitors.  

Our efforts towards studying the potential efficacy of the pro-drug were further 

hampered by the fact that AI-9-59 was toxic to mice at concentrations above 50 mg/kg. 
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The observed signs of toxicity included lethargy and weight loss. The rapid weight loss 

after four doses suggested that the toxicity could be gastrointestinal. Indeed, in the mice 

that received AI-9-59 we observed signs of gastrointestinal toxicity including dilation of 

small and large intestines, and abnormal accumulations of food and gas in 

gastrointestinal tract. These symptoms were strikingly similar to symptoms described in 

a mouse model of chronic intestinal pseudo-obstruction (CIPO) using smooth muscle 

specific inactivation of the SRF gene (197). Coincidentally, Runx1 levels were reported 

to be significantly reduced in a subset of CIPO patients (198). Furthermore, another 

member of the core binding factors Runx3 is known to play an important role in the 

gastrointestinal development and gastric cancer. Runx3 null mice exhibited 

gastrointestinal hyperplasia due to stimulated proliferation and suppressed apoptosis in 

epithelial cells (87). All the data suggest the possibility the CIPO-like phenotypes 

observed in treated mice could be attributed to AI-9-59’s on-target repression of RUNX 

functions in the gastrointestinal track. 

The lack of growth inhibitory effect on leukemia cells also raised the possibility 

that the concentration of AI-9-59 necessary to inhibit RUNX functions in leukemia cells 

exceeded the maximum tolerated dose in mice. In other words, the lack of efficacy on 

the growth of leukemia cells could be attributed to low level of AI-9-59 in the serum. In 

order to determine the on-target effect of the pro-drug on leukemia cells, I propose a 

future experiment in which we would treat the transplanted mice with DMSO or the pro-

drug AI-9-59 at 50 mg/kg. After the completion of treatment regimen of 9 total doses, we 

would isolate the leukemia bone marrow cells based on GFP as a marker, isolate mRNA 

and conduct RT-PCR to compare the expression of known Runx1 target genes as well 

as the expression of genes identified from our microarray analysis. We could also 

harvest cells from the small and large intestines of mice treated with AI-9-59 to assess 
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the expression of Runx1 and Runx3, in order to determine whether the GI toxicity is 

RUNX-related. 

Furthermore, DMSO was reported to induce apoptosis and in vivo toxicity in mice 

at concentrations lower than 10% vol/vol, and a concentration of less than 1% DMSO 

vol/vol was recommended to dissolve compounds to avoid potential solvent toxicity 

(199). Therefore for future studies, we should explore alternative solubilizing strategies 

for dissolving the pro-drug.  

For future development of the Runt domain inhibitor pro-drugs, a detailed 

toxicology and pharmacokinetic studies would need to be conducted prior to determining 

the in vivo efficacy of the compound. Additionally, the effects on normal mouse 

hematopoietic cells will also need to be assessed through methods such as clinical 

blood counts and gene expression profiling of bone marrow cells harvested from treated 

mice. 
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Introduction 

 

The 8;21 translocation t(8;21)(q22;q22) is one of the most common genetic 

aberrations in de novo AML, occurring in 10% of adult and 12% of pediatric AMLs (96, 

106, 107). The translocation fuses the N-terminal 177 amino acids of Runx1 (also known 

as AML1, encoded by RUNX1) to ETO (eight twenty-one, encoded by RUNX1T1), 

generating the chimeric protein AML1-ETO. Although AML1-ETO is known to be an 

essential causative agent for t(8;21) AML, exactly how it affects hematopoietic stem and 

progenitor populations remains poorly understood. The chimeric protein was known to 

occupy a subset of RUNX1 target genes (200) and blocks differentiation at an early 

myeloid progenitor stage (201). Through its ETO moiety, AML1-ETO is able to recruit co-

repressor proteins including N-CoR (115), and AML1-ETO expression is associated with 

a repressive chromatin structure characterized by reduced levels of histone H3 

acetylation (202). Therefore, the chimeric protein was thought to act as a dominant 

negative inhibitor of Runx1 functions (124), although recent findings are starting to 

challenge this simplistic model (203, 204). Specifically, Mx1-Cre mediated Runx1 

deficient cells exhibit much more severe lineage defects than cells expressing AML1-

ETO (125, 205-207). Furthermore, patients with inactivating Runx1 mutations exhibit 

much severe phenotypes compared to t(8;21) AML patients. 

Numerous studies have demonstrated that full-length AML1-ETO is not capable 

of initiating leukemia on its own (184-188). The requirement of additional cooperating 

mutations commonly in the receptor tyrosine kinases (189-192) for leukemogenesis 

suggested that AML1-ETO induces a pre-leukemic state in hematopoetic cells. 

Therefore a detailed mouse model study of how AML1-ETO affects hematopoietic stem 

and progenitor cells (HSPCs) is needed. The understanding of the cellular processes 
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underlying AML1-ETO mediated transformation of HSPCs would allow us to identify 

novel therapeutic targets for improving the treatment of t(8;21) leukemia. 

In an effort to better understand effects of Runx1 deficiency on HSCs and 

progenitors, we used Vav1-Cre to specifically delete Runx1 in hematopoietic cells and 

study the effects systematically (101). We propose to employ the same Vav1-cre 

mediated excision strategy to examine the impact of a conditionally activated AML1-ETO 

allele (125) on the hematopoietic stem and progenitor cells and their properties. In 

combination with the data from Vav1-Cre mediated Runx1 deletion, our finding from 

AML1-ETO expression may help explain how t(8;21) and Runx1 deficiency each gives 

rise to clinically distinct hematological malignancies. 
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Materials and Methods 

Mice 

All mouse procedures were approved by the University of Pennsylvania University 

Animals Resource Center (ULAR) and Institutional Animal Care and Use Committees 

(IACUC) of the University of Pennsylvania. 

The conditional AML1-ETO knock-in mice and NRASG12D mice were bred and 

maintained as previously described (125, 208). 

 

Transplant 

F1 progeny of C57BL6/J (Ly5.2) females crossed to B6.SJL-PtprcaPepcb/BoyJ males 

were used as transplant recipients. All donor cells were Ly5.2 (CD45.2+). Bone marrow 

chimeras were established by injecting donor bone marrow cells along with 

2×105 B6.SJL (competitor CD45.1/Ly5.1) marrow cells into lethally-irradiated (split dose 

900 cGy 3 hours apart) recipients. Engraftment was scored as ≥1% donor derived cells. 

 

Cell purification and flow cytometry 

Flow cytometry analyses were performed on BD LSRII (BD Bioscience, San Jose CA). 

Subsequent data analyses were carried out using Flowjo (Treestar Inc, Ashland OR). 

Lineage depletion of bone marrow was achieved using the MACS Lineage Cell 

Depletion Kit, MidiMACS LS Separation units, and the QuadroMACS Multistand 

(Miltenyi) according to the manufacturer's instructions. In some cases erythrocytes were 

lysed in an RBC Lysis Buffer (eBioscience, San Diego, CA) prior to lineage depletion.  
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The following monoclonal antibodies (BD Bioscience and/or eBioscience, San Diego CA) 

were used for staining: FITC-CD16/32 (2.4G2), APC-CD34 (RAM34), APC-Cy7-cKit 

(2B8), PE-Flt3 (A2F10), PE-Cy7-Sca1 (D7), APC-CD45.1 (A20), FITC CD45.2 (104), 

PE-Cy7-Mac1 (M1/70), PerCP-Cy5.5-Gr1 (RB6-8C5), APC-CD3e (145-2C11), PE-CD19 

(1D3). Dead cells were stained with DAPI. 

 

Data analyses for flow cytometry were carried out using FlowJo (Treestar Inc, Ashland 

OR). 

 

CFU-C Assay 

Mouse bone marrow cells were thawed and cultured in RPMI 1640 with 10% FBS for 

two hours. Live cells were washed and recovered, and subsequently plated in in 

Methocult GF M3434 (Stem Cell Technologies) and incubated in 5% CO2 at 37°C for 7 

days. All classes of myeloid and/or erythroid colonies consisting of at least 40 cells were 

counted according to manufacturer’s recommendations. 
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Results 

Lineage analysis of bone marrow cells from Vav1-Cre; AML1-ETO mice 

To characterize the effect of AML1-ETO expression on HSCs and committed 

progenitors, we used Vav1-Cre to conditionally activate AML1-ETO expression in 

hematopoietic cells. Flow cytometry analysis of bone marrow cells isolated from 6-8 

week old Vav1-Cre; AML1-ETO mice revealed a slightly lower percentage of CD19+ B-

lymphocytes compared to littermate controls. We detected no significant difference in the 

percentage of Gr-1+ Mac-1+ granulocytes as well as in the CD3e+ T lymphocyte 

populations (Figure 1 A-B). 

 

Figure 1. Lineage analysis of bone marrow cells from Vav1-Cre; AML1-ETO and WT mice. 
A. Schematic representing the gating strategy for the FACS analysis. 

B. Comparisons of granulocytes, B-lymphocytes, and T-lymphocytes populations in the bone marrow of 

Vav1-Cre; AML1-ETO mice and littermate controls (n=8 per group). Error bars represents the S.D. 

Significance relative to WT was determined by two-tailed student t-test in all comparisons. 
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Phenotypic HSC analysis of bone marrow cells from Vav1-Cre; AML1-ETO mice 

AML1-ETO expressing BM cells contain a higher percentage of the lineage- Sca-

1+ cKit+ progenitor populations. Further analysis of the LSK cells by staining for CD34 

and Flt3 revealed a significant increase in the short-term HSCs (ST-HSCs) population 

defined as LSK CD34- Flk2+, but not in the long-term HSCs (LT-HSCs) LSK CD34- Flk2- 

population (Figure 2 A-B). 

 

Figure 2. Phenotypic HSC analysis of bone marrow cells from Vav1-Cre; AML1-ETO and 

WT mice. 
A. Schematic representing the gating strategy for the FACS analysis. 

B. Comparisons of LSK,ST-HSC, and LT-HSC populations in the bone marrow of Vav1-Cre; AML1-ETO and 

WT mice. n=8 per group. Error bars represents the S.D. Significance relative to WT was determined by two-

tailed student t-test in all comparisons. 
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Analysis of functional HSC frequency in AML1-ETO mice 

In order to determine the functional capability and the frequency of hematopoietic 

stem cells in the bone marrow of mice expressing AML1-ETO, we conducted a 

competitive repopulation assay. Peripheral blood FACS analysis revealed that AML1-

ETO expressing donor bone marrow cells had a significant reduction in their ability to 

reconstitute CD3e positive+ T lymphocytes and Gr-1+ and Mac-1+ granulocyte 

populations in the irradiated host (Figure 3 B). We also determined that AML1-ETO 

expressing bone marrow cells contained a lower frequency of functional hematopoietic 

stem cells (Figure 4). 
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Figure 3. Competitive limited dilution transplant to assess the frequency of functional 
HSCs in AML1-ETO expressing mice. 
A. Schematic of the competitive limited dilution transplant. Bone marrow from 6-8 week old AML1-

ETO;Vav1-Cre mice was injected along with 2×105 Ly5.1+ adult bone marrow cells into irradiated Ly5.1/5.2 

recipients. Contribution of Ly5.2+ cells to peripheral blood was assessed. Recipients with ≥1% donor-derived 

cells at ≥16 weeks were deemed reconstituted. 

B. Flow cytometry analysis of peripheral blood from recipient mice transplanted with various numbers of 

Vav1-Cre; AML1-ETO bone marrow cells or WT control cells. Contribution of Ly5.2+ (CD45.2+) cells to 

various lineage compartments of the peripheral blood was assessed at three months post-transplant. 
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Figure 4. Expression of AML1-ETO leads to lower functional HSCs. 
Bone marrow from 6-8 week old AML1-ETO;Vav1-Cre mice was injected along with 2×105 Ly5.1+ adult bone 

marrow cells into irradiated Ly5.1/5.2 recipients. Contribution of Ly5.2+ cells to peripheral blood was 

assessed. Recipients with ≥1% donor-derived cells at ≥16 weeks were deemed reconstituted. 

 

 
 
 

Co-expression of AML1-ETO and activated NRAS (NRASG12D) in hematopoietic 

compartments  

We examined whether the conditional expression of AML1-ETO could cooperate 

with activated NRAS to give leukemia. We crossed AML1-ETO to NRASG12D 

background. Mice expressing both AML1-ETO and NRASG12D developed hematological 

disease around 6 months old. The disease could be successfully transplanted into 

lethally irradiated secondary recipients, and FACS analysis of the peripheral blood 

showed the malignant cells to have expanded Gr1+ Mac1+ granulocyte population but 

negative for T- and B-lymphocyte makers (Figure 5A).  FACS analysis of also revealed 

an increase in the percentage of Lin- c-Kit+ (LK) progenitors in bone marrow and spleens 

of mice transplanted with Vav1-Cre; AML1-ETO; NRASG12D cells (Figure 5B). 
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Figure 5. Co-expression of AML1-ETO and activated NRAS (NRASG12D) in hematopoietic 
compartments leads to development of hematological disorder. 
A. FACS analysis of peripheral blood of mice transplanted with malignant cells from Vav1-Cre; AML1-ETO; 

NRASG12D primary mouse. 

B. FACS analysis of bone marrow and spleen cells of mice transplanted with malignant cells from Vav1-

Cre; AML1-ETO; NRASG12D primary mouse. 
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RDIs reduced progenitor activity in Vav1-Cre; AML1-ETO; NRASG12D bone marrow cells 

We used CFU-C assays to assess whether the malignant bone marrow cells 

expressing AML1-ETO and NRASG12D through Vav1-Cre were sensitive to RDIs. The 

active compounds AI-8-45 and AI-9-54, but not the control compound AI-7-54 

significantly reduced colony formation of the Vav1-Cre; AML1-ETO; NRASG12D malignant 

bone marrow cells (Figure 6). Similar to our previous study, neither AI-8-45 nor AI-9-54 

had any effect on colony formation by normal mouse bone marrow cells. 

 

Figure 6. Malignant hematopoietic cells from Vav1-Cre; AML1-ETO; NRASG12D are 

senstitive to RDIs. 
Various concentrations of compounds were added to methylcellulose cultures containing 20,000 wild type 

bone marrow cells or 20,000 Vav1-Cre; AML1-ETO; NRASG12D malignant mouse bone marrow. All 

compounds were dissolved in DMSO (final concentration 0.2%). Colonies were counted 7 days after plating. 

Error bars represent SD. Significance relative to DMSO was determined by one-way ANOVA and Dunnett’s 

multiple-comparison.  
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Discussion 
 

From our study using Vav1-Cre to conditionally induce AML1-ETO expression in 

hematopoietic cells, we determined that expression of AML1-ETO led to a small 

reduction in the frequency of B lymphocytes marked by CD19, but not in the frequency 

of T lymphocytes and granulocytes in the bone marrow. Similar to our finding, another 

study used a doxycycline-inducible expression of AML1-ETO and also found reduction in 

the frequency of B200+ B lymphocytes in the bone marrow (209). The study proceeded 

to demonstrate that DOX-inducible expression of AML1-ETO did not significantly affect 

hematopoietic stem and progenitor cells, but specifically expanded the GMP population. 

The expansion in the GMP population seemed to be biologically significant, as the study 

proceeded to demonstrate that prolonged expression of AML1-ETO led to a 

myeloproliferative disease (MPD) –like leukemia, and that the leukemic GMP acquired 

leukemia stem cell properties. 

We have previously reported that the frequency of phenotypic HSCs as defined 

by immuno-phenotyping did not necessarily correlate with the actual number of 

functional HSCs (97), which are defined by their ability to reconstitute hematopoiesis in 

irradiated hosts in bone marrow transplantation assays. Indeed, our transplantation 

experiments revealed that AML1-ETO expressing bone marrow cells contained five-fold 

fewer functional hematopoietic stem cells (HSCs). Furthermore, the AM1-ETO 

expressing cells were defective in their ability to generate granulocytes and T 

lymphocytes.  

In addition, we showed that conditional expression of AML1-ETO and NRASG12D 

induced a malignant state marked by abnormal expansion of Mac1+ Gr1+ myeloid cells, 

and that the disease could be transplanted into secondary recipients. One caveat of this 
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study is that we did not confirm the conditional expression of AML1-ETO and NRASG12D 

beyond simple PCR genotyping. Therefore, it is unknown whether the malignant state 

was caused by activation of single or both transgene. However, we detected by CFU-C 

assay that the malignant bone marrow cells were sensitive to the Runt domain inhibitors 

that we described in the previous chapters.   
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Closing Remarks And Future Directions 

 

This thesis project was aimed at developing and characterizing a novel class of 

targeted therapy for leukemia. The goal of targeted therapy is to translate our 

understanding of the molecular programs associated with the pathology of disease into 

treatments with a markedly improved therapeutic index. In the field of leukemia, the 

majority of such studies have focused on targeting components of receptor signaling 

pathways. One major success story is the small molecule imatinib, which acts by 

targeting the ATP binding pocket of the ABL kinase to block the tyrosine kinase activity 

of BCR-ABL in chronic myelogenous leukemia (CML) (210, 211). The development of 

imatinib represented a major improvement in CML treatment, and several tyrosine 

kinase inhibitors (TKIs) have emerged as important therapeutic agents for a variety of 

human malignancies. However the application of this approach in leukemias that harbor 

more complex genetic alterations has been less successful (212). 

Many cancers either directly involve transcription factors, or indirectly modulate 

transcription factor activity; and a variety of transcription factors have been identified as 

driving agents promoting tumorigenesis and cancer progression (1). Therefore, inhibition 

of protein-protein interactions involving transcription factors has a high therapeutic 

potential (2). One recent success story is the development of Nutlin family of small 

molecules (6). Nutlin inhibits the interaction of MDM2 with p53, leading to stabilization of 

p53 level and enhanced p53 mediated apoptosis (10-13). Additionally, several small 

molecule inhibitors targeting the transcription factors such as Notch1 and STAT3 have 

reported (213, 214). These results demonstrate that targeting transcription factors with 

small molecules is feasible and provide validation for our proposal to develop inhibitors 

of the Runt domain:CBFβ interaction for treatment of leukemia cells. 
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Through our functional characterization of the Runt domain:CBFβ complex, we 

identified amino acid residues on the Runt domain that contribute to major binding 

energy of the RD:CBFβ interaction. By mutating these residues on the RD of AML1-ETO, 

we demonstrated that the interaction with CBFβ is required for AML1-ETO’s ability to 

transform hematopoietic cells and induce leukemia in mice. Therefore, we established 

the RD:CBFβ interface as an interface suitable for targeting with small molecules. 

Additionally, recent studies have provided strong experimental evidence that normal 

CBF functions are required for the maintenance of leukemic stem cell functions in a 

certain subset of leukemia, including t(8;21), inv(16), and MLL-AF9 leukemia (145, 146). 

These findings suggest that these leukemias may be particularly sensitive to 

perturbations in CBF activity output and further support our rationale for developing 

small molecules targeting the RD:CBFβ interface. 

Indeed, here we describe the development of a novel class of small molecule 

inhibitors that binds to the Runt domain of RUNX proteins and inhibits their interaction 

with CBFβ. These Runt domain inhibitors reduced growth of multiple leukemia cell lines, 

and decreased the clonogenic potential of t(8;21) patient samples while having little 

effect on normal bone marrow cells. The inhibitors showed clear effects on the 

expression of well-characterized RUNX1 target genes. Analysis of genome-wide 

changes in gene expression identified RUNX regulated pathways to be significantly 

affected by the inhibitors.  

Based on our in vitro findings, we developed a pro-drug AI-9-59 with improved 

solubility and pharmacokinetic properties, and set out to study the potential in vivo 

efficacies of AI-9-59 in mouse leukemia models. However, we did not detect any 

inhibitory effects of AI-959 against the growth of leukemia cells in two different mouse 

models. This suggests that the pro-drug we have developed had no in vivo efficacy. 
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Our efforts towards studying the potential efficacy of the pro-drug were further 

hampered by the fact that AI-9-59 was toxic to mice at concentrations above 50 mg/kg. 

The gastrointestinal toxicity in the mice that received AI-9-59 was strikingly similar to 

symptoms described in a mouse model of chronic intestinal pseudo-obstruction (CIPO) 

(197). Coincidentally, Runx1 levels were significantly reduced in a subset of CIPO 

patients (198). Furthermore, another member of the core binding factors Runx3 is known 

to play an important role in gastrointestinal epithelial cells (87). Therefore, the CIPO-like 

phenotypes observed in AI-9-59 treated mice could be attributed to on-target repression 

of RUNX functions in the gastrointestinal track. Flow cytometry analysis also revealed 

that AI-9-59 induced a small but significant increase in the frequency of granulocyte 

macrophage progenitors (GMPs). Interestingly, deletion of Runx1 was previously 

reported to induce expansion in the GMPs (94), suggesting that the expansion in GMP 

population could be the result of AI-9-59’s on-target inhibition of Runx1 functions. 

Together, the data suggested the possibility that the plasma level of AI-9-59 was too low 

to significantly affect growth of leukemia cells, but high enough to suppress RUNX 

functions in the intestines. This lack of selectivity against leukemia cells could be due to 

the nature of the RDI that we developed: the drug was interfering with RD:CBFβ 

interaction in both AML1-ETO and the wild type core binding factors. 

In order to establish the on-target effect of the pro-drug on leukemia cells, I 

propose future experiments in which we would treat the transplanted mice with DMSO or 

the pro-drug AI-9-59 at 50 mg/kg. After the completion of treatment regimen of 9 total 

doses, we would isolate the leukemia bone marrow cells based on GFP marker, isolate 

mRNA and conduct RT-PCR to compare the expression of known Runx1 target genes 

as well as the expression of genes identified from our microarray analysis. We could 

also harvest cells from the small and large intestines of mice treated with AI-9-59 to 
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assess the expression of Runx1 and Runx3, in order to determine whether the GI toxicity 

is RUNX-related. 

For future development of the Runt domain inhibitor pro-drugs, a detailed 

toxicology and pharmacokinetic studies would need to be conducted prior to determining 

the in vivo efficacy of the compounds. We will also need to assess the effects inhibitors 

have on normal mouse blood cells by using clinical blood counts (CBCs). This will 

provide critical data on potential side effects involving the blood cell lineages. We will 

examine the effects of the compounds on hematopoietic progenitors using gene 

expression profiling. Furthermore, DMSO was reported to induce apoptosis and in vivo 

toxicity in mice at concentrations lower than 10% vol/vol, and a concentration of less 

than 1% DMSO vol/vol was recommended to dissolve compounds to avoid potential 

solvent toxicity (199). Therefore for future studies, we should explore alternative 

solubilizing strategies. 

In order to minimize the side effects of treatment, we propose to develop 

selective inhibitors of AML1-ETO. Our study of the HHR domain of AML1-ETO showed 

that it mediates tetramer formation. Therefore, we could exploit the oligomeric nature of 

AML1-ETO by developing homodimeric inhibitors to achieve specificity towards AML1-

ETO. The development of a homodimeric inhibitor against inv(16) represents one 

successful example (50). The monomeric version of the compound binds to CBFβ and 

disrupts interaction with Runx1, and the homodimeric inhibitor was developed by 

connecting two monomeric compounds through polyethylene glycol based linkers. This 

improved IC50 by 60-fold and enhanced the compound’s specificity for CBFβ-SMMHC, 

the oncogenic transcription factor in inv(16) AML. We could adopt the same strategy to 

develop homodimeric version of RDIs, which should achieve both improvement in IC50 

as well as in selectivity for AML1-ETO. Additionally, we could develop heterodimeric 
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inhibitors of AML1-ETO. In fact, we have screened for small molecules that bind to the 

nearby eTAFH domain and further optimized eTAFH domain inhibitors. It is our 

hypothesis that both the homodimer and heterodimer compounds will achieve greater 

selectivity for AML1-ETO and thereby provide a mechanism to selectively inhibit AML1-

ETO while minimally affecting normal core binding factor function.   

In addition to assessing our inhibitors’ single agent efficacies, we will explore the 

potential of our inhibitors to synergize with other drugs such as imatinib, cytosine 

arabinoside, or vitamin D analogs. All of these drugs are well characterized in preclinical 

mouse leukemia models, thus dosing schedules are readily available. 

RUNX proteins have now been implicated in numerous developmental pathways. 

In addition to their well-established role in leukemia, there is emerging evidence for their 

involvement in epithelial cancers. Although we were unable to demonstrate in vivo 

efficacy, the RDIs we have developed are still useful as tool compounds to study the 

function of RUNX proteins in various settings. The advantage of such small molecule 

tools, unlike genetic approaches, is the rapid inhibition of the target, the ability to monitor 

time-dependent effects, and the opportunity to withdraw inhibitor and monitor the return 

to the previous state. Therefore, these compounds could be very useful reagents for 

studying the effects of core binding factor loss in specific processes or developmental 

stages. For all these reasons, the RDIs provide a unique tool for studying RUNX protein 

function. 
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