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Abelian Gauge Symmetries in F-Theory and Dual Theories

Abstract
In this dissertation, we focus on important physical and mathematical aspects, especially

abelian gauge symmetries, of F-theory compactifications and its dual formulations

within type IIB and heterotic string theory.

F-theory is a non-perturbative formulation of type IIB string theory which enjoys important

dualities with other string theories such as M-theory and E8 × E8 heterotic string

theory. One of the main strengths of F-theory is its geometrization of many physical problems

in the dual string theories. In particular, its study requires a lot of mathematical tools

such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests

among mathematicians, and is a vivid area of research within both the physics and

the mathematics community.

Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory

has been rarely studied, until recently. Within the mathematics community, in 2009,

Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties

with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison

and Park first made a major advancement by constructing general F-theory compactifications

with U(1) abelian gauge symmetry. They found that in such cases, the ellipticallyfibered

Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a

generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point.

Subsequent developments have been made by Cvetiˇc, Klevers and Piragua extended the works of Morrison
and Park and constructed general F-theory compactifications with U(1)

U(1) abelian gauge symmetry. They found that in the U(1) × U(1) abelian gauge symmetry

case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified

on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of

this dissertation, I bring this a step further by constructing general F-theory compactifications

with U(1) × U(1) × U(1) abelian gauge symmetry. I showed that in the case with three

U(1) factors, the general elliptic fiber is a complete intersection of two quadrics in P3, and
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the general elliptic fiber in the fully resolved elliptic fibration is embedded as the generic

Calabi-Yau complete intersection into Bl3P3, the blow-up of P3 at three generic points.

This eventually leads to our analysis of representations of massless matter at codimension

two singularities of these compactifications. Interestingly, we obtained a tri-fundamental

representation which is unexpected from perturbative Type II compactifications, further

illustrating the power of F-theory.

In chapter 1 of this dissertation, I proved finiteness of a region of the string landscape in

Type IIB compactifications. String compactifications give rise to a collection of effective

low energy theories, known as the string landscape. However, it is not known whether the

number of physical theories we can derive from the string landscape is finite. The vastness

of the string landscape also poses a serious challenge to attempts of studying it. A

breakthrough was made by Douglas and Taylor in 2007 when they studied the landscape of

intersecting brane models in Type IIA compactifications on a particular Z2× Z2 orientifold.

They found that two consistency conditions, namely the D6-brane tadpole cancellation

condition, and the conditions on D6-branes that were required for N = 1 supersymmetry in

four dimensions, only permitted a finite number of D6-brane configurations. These finite

number of allowed D6-brane configurations thus result in only a finite number of gauge

sectors in a 4D supergravity theory, allowing them to be studied explicitly. Douglas and

Taylor also believed that the phenomenon of using tadpole cancellation and supersymmetry consistency
conditions to restrict the possible number of allowed configurations to a

finite one is not a mere coincidence unique to their construction; they conjectured that this

phenomenon also holds for theories with magnetised D9- or D5-branes compactified on

elliptically fibered Calabi-Yau threefolds. Indeed, this was what my collaborators and I

also felt. To this end, I showed, using a mathematical proof, that their conjecture is indeed

true for elliptically fibered Calabi-Yau threefolds p X B whose base B satisfy a

few easily-checked conditions (summarized in chapter 1 of this dissertation). In particular,

these conditions are satisfied by, although not limited to, the almost Fano twofold bases

B given by the toric varieties associated to all 16 reflexive two-dimensional polytopes and
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the del Pezzo surfaces dPn for n = 0;1; :::; 8. This list, in particular, also includes the Hirzebruch

surfaces F0 = P1 ×P1;F1 = dP1;F2. My proof also allowed us to derive the explicit

and computable bounds on all flux quanta and on the number of D5-branes. These bounds

only depends on the topology of the base B and are independent on the continuous moduli

of the compactification, in particular the Kahler moduli, as long as the supergravity approximation

is valid. Physically, my proof showed that these compactifications only give rise

to a finite number of four-dimensional N = 1 supergravity theories, and that these theories

only have finitely many gauge sectors with finitely many chiral spectra. Such finiteness

properties are not observed in generic quantum field theories, further fortifying superstring

theory as a more promising theory.

In chapter 3 of this dissertation, I study abelian gauge symmetries in the duality

between F-theory and E8 × E8 heterotic string theory. It is conjectured that F-theory, when

compactified on an elliptic K3-fibered (n + 1)-dimensional Calabi-Yau manifold X B,

and heterotic string theory when compactified on an elliptically fibered n-dimensional

Calabi-Yau manifold Z B with the same base B, are dual to each other. Thus under such

duality, in particular, if the F-theory compactification admits abelian gauge symmetries,

the dual heterotic string theory must admit the same abelian gauge symmetry as well. However, how abelian
gauge symmetries can arise in the dual heterotic string theory has

never been studied. The main goal of this chapter is to study exactly this. We start with

F-theory compactifications with abelian gauge symmetry. With the help of a mathematical

lemma as well as a computer code that I came up with, I was able to construct a rich list of

specialized examples with specific abelian and nonabelian gauge groups on the F-theory

side. The computer code also directly computes spectral cover data for each example

constructed, allowing us to further analyze how abelian gauge symmetries arise on

heterotic side. Eventually, we found that in general, there are three ways in which U(1)-s

can arise on the heterotic side: the case where the heterotic theory admits vector bundles

with S(U(1) ×U(m)) structure group, the case where the heterotic theory admits vector

bundles with SU(m)×Zn structure group, as well as the case where the heterotic theory
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admits vector bundles with structure groups having a centralizer in E8 which contains a

U(1) factor. Another important achievement was my discovery of the non-commutativity

of the semi-stable degeneration map which splits a K3 surface into two half K3 surfaces,

and the map to Weierstrass form, which was not previously known in the literature.
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ABSTRACT

ABELIAN GAUGE SYMMETRIES IN F-THEORY

AND DUAL THEORIES

Peng Song

Mirjam Cvetič

In this dissertation, we focus on important physical and mathematical aspects, espe-

cially abelian gauge symmetries, of F-theory compactifications and its dual formulations

within type IIB and heterotic string theory.

F-theory is a non-perturbative formulation of type IIB string theory which enjoys im-

portant dualities with other string theories such as M-theory and E8 × E8 heterotic string

theory. One of the main strengths of F-theory is its geometrization of many physical prob-

lems in the dual string theories. In particular, its study requires a lot of mathematical tools

such as advanced techniques in algebraic geometry. Thus, it has also received a lot of in-

terests among mathematicians, and is a vivid area of research within both the physics and

the mathematics community.

Although F-theory has been a long-standing theory, abelian gauge symmetry in F-

theory has been rarely studied, until recently. Within the mathematics community, in 2009,

Grassi and Perduca first discovered the possibility of constructing elliptically fibered vari-

eties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morri-

son and Park first made a major advancement by constructing general F-theory compactifi-

cations with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-

fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a

generic elliptic curve in the blow-up of the weighted projective space P(1,1,2) at one point.

Subsequent developments have been made by Cvetič, Klevers and Piragua extended the
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works of Morrison and Park and constructed general F-theory compactifications with U(1)

× U(1) abelian gauge symmetry. They found that in the U(1) × U(1) abelian gauge symme-

try case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified

on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of

this dissertation, I bring this a step further by constructing general F-theory compactifica-

tions with U(1) × U(1) × U(1) abelian gauge symmetry. I showed that in the case with three

U(1) factors, the general elliptic fiber is a complete intersection of two quadrics in P3, and

the general elliptic fiber in the fully resolved elliptic fibration is embedded as the generic

Calabi-Yau complete intersection into Bl3P3, the blow-up of P3 at three generic points.

This eventually leads to our analysis of representations of massless matter at codimension

two singularities of these compactifications. Interestingly, we obtained a tri-fundamental

representation which is unexpected from perturbative Type II compactifications, further

illustrating the power of F-theory.

In chapter 1 of this dissertation, I proved finiteness of a region of the string landscape in

Type IIB compactifications. String compactifications give rise to a collection of effective

low energy theories, known as the string landscape. However, it is not known whether the

number of physical theories we can derive from the string landscape is finite. The vast-

ness of the string landscape also poses a serious challenge to attempts of studying it. A

breakthrough was made by Douglas and Taylor in 2007 when they studied the landscape of

intersecting brane models in Type IIA compactifications on a particular Z2×Z2 orientifold.

They found that two consistency conditions, namely the D6-brane tadpole cancellation

condition, and the conditions on D6-branes that were required for N = 1 supersymmetry in

four dimensions, only permitted a finite number of D6-brane configurations. These finite

number of allowed D6-brane configurations thus result in only a finite number of gauge

sectors in a 4D supergravity theory, allowing them to be studied explicitly. Douglas and

Taylor also believed that the phenomenon of using tadpole cancellation and supersymme-
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try consistency conditions to restrict the possible number of allowed configurations to a

finite one is not a mere coincidence unique to their construction; they conjectured that this

phenomenon also holds for theories with magnetised D9- or D5-branes compactified on

elliptically fibered Calabi-Yau threefolds. Indeed, this was what my collaborators and I

also felt. To this end, I showed, using a mathematical proof, that their conjecture is in-

deed true for elliptically fibered Calabi-Yau threefolds π ∶ X → B whose base B satisfy a

few easily-checked conditions (summarized in chapter 1 of this dissertation). In particular,

these conditions are satisfied by, although not limited to, the almost Fano twofold bases

B given by the toric varieties associated to all 16 reflexive two-dimensional polytopes and

the del Pezzo surfaces dPn for n = 0,1, ...,8. This list, in particular, also includes the Hirze-

bruch surfaces F0 = P1 ×P1,F1 = dP1,F2. My proof also allowed us to derive the explicit

and computable bounds on all flux quanta and on the number of D5-branes. These bounds

only depends on the topology of the base B and are independent on the continuous moduli

of the compactification, in particular the Kähler moduli, as long as the supergravity approx-

imation is valid. Physically, my proof showed that these compactifications only give rise

to a finite number of four-dimensional N = 1 supergravity theories, and that these theories

only have finitely many gauge sectors with finitely many chiral spectra. Such finiteness

properties are not observed in generic quantum field theories, further fortifying superstring

theory as a more promising theory.

In chapter 3 of this dissertation, I study abelian gauge symmetries in the duality

between F-theory and E8 × E8 heterotic string theory. It is conjectured that F-theory, when

compactified on an elliptic K3-fibered (n+ 1)-dimensional Calabi-Yau manifold X → B,

and heterotic string theory when compactified on an elliptically fibered n-dimensional

Calabi-Yau manifold Z → B with the same base B, are dual to each other. Thus under such

duality, in particular, if the F-theory compactification admits abelian gauge symmetries,

the dual heterotic string theory must admit the same abelian gauge symmetry as well.
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However, how abelian gauge symmetries can arise in the dual heterotic string theory has

never been studied. The main goal of this chapter is to study exactly this. We start with

F-theory compactifications with abelian gauge symmetry. With the help of a mathematical

lemma as well as a computer code that I came up with, I was able to construct a rich list of

specialized examples with specific abelian and nonabelian gauge groups on the F-theory

side. The computer code also directly computes spectral cover data for each example

constructed, allowing us to further analyze how abelian gauge symmetries arise on

heterotic side. Eventually, we found that in general, there are three ways in which U(1)-s

can arise on the heterotic side: the case where the heterotic theory admits vector bundles

with S(U(1)×U(m)) structure group, the case where the heterotic theory admits vector

bundles with SU(m)×Zn structure group, as well as the case where the heterotic theory

admits vector bundles with structure groups having a centralizer in E8 which contains a

U(1) factor. Another important achievement was my discovery of the non-commutativity

of the semi-stable degeneration map which splits a K3 surface into two half K3 surfaces,

and the map to Weierstrass form, which was not previously known in the literature.
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Chapter 1
On finiteness of Type IIB

compactifications: Magnetized

branes on elliptic Calabi-Yau

threefolds

1.1 Introduction

M-theory or superstring compactification to four dimensions remains the most promising

framework for the unification of the fundamental forces in Nature. The set of associated

low energy effective theories which can arise in consistent compactifications is known as

the string landscape. There have been many efforts to quantify this space, with the hope

of uncovering observable properties shared by large classes of vacua which lead to novel

insights in particle physics or cosmology. However, this has proven to be a very difficult

problem deserving a multi-faceted approach.

The traditional one is to study the effective scalar potential on moduli space and to ex-
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amine its associated vacua; in general a variety of perturbative and non-perturbative effects

are utilized to this end. For example, in the much studied moduli stabilization scenarios of

Type IIB compactifications [1, 2], these effects include superpotential contributions from

background Ramond-Ramond flux and D-instanton effects. Increasingly more detailed re-

alizations of these constructions have been studied in recent years; for progress on vacua

with explicit complex structure moduli stabilization, see [3, 4], and on constructing explicit

de Sitter flux vacua with a chiral spectrum, see the recent [5]. While this progress is signif-

icant and provides excellent proofs of principle, a clear caveat to the explicit construction

of vacua is the enormity of the landscape.

Another approach is to study properties of the landscape more broadly. In Type IIB flux

compactifications this has included, for example, the importance of four-form fluxes in ob-

taining the observed value of the cosmological constant [6]; issues of computational com-

plexity, including finding vacua in agreement with cosmological data [7] and the systematic

computation of non-perturbative effective potentials [8]; and the distribution and number

of various types of supersymmetric and non-supersymmetric vacua [9, 10]. Progress has

also been made in understanding vacua in strongly coupled corners of the landscape. For

example there has been much progress in F-theory, beginning with [71, 72].

A final approach, which will be the one utilized in this paper, is to understand how

consistency conditions and properties of the landscape differ from those of generic quantum

field theories. The former case is motivated in part by the existence of a swampland [13] of

consistent effective theories which do not admit a string embedding. There are a number

of examples of limitations on gauge theories in the landscape not present in generic gauge

theories. In weakly coupled theories with D-branes, Ramond-Ramond tadpole cancellation

places stronger constraints [14, 15, 16, 17] on low energy gauge theories than anomaly

cancellation, which include additional anomaly nucleation constraints [18] on SU(2) gauge

theories; see also [120] for a recent analysis of anomalies at strong coupling in F-theory;
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ranks of gauge groups are often bounded [20, 21]; and the matter representations are limited

by the fact that open strings have precisely two ends. While more matter representations are

possible at strong coupling, the possibilities are still limited. For example, in F-theory the

possible non-Abelian [89, 23, 24, 188, 26, 93, 28, 29, 30] and Abelian [154, 155, 156, 129,

123, 157, 158, 159, 160] matter representations are limited by the structure of holomorphic

curves in the geometry.

In [40], Douglas and Taylor studied the landscape of intersecting brane models1 in

Type IIA compactifications on a particular Z2×Z2-orientifold2. They found that the condi-

tions on D6-branes necessary for N = 1 supersymmetry in four dimensions, together with

the D6-brane tadpole cancellation condition required for consistency of the theory, allow

only a finite number of such D6-brane configurations3. In each configuration, the four-

dimensional gauge group and matter spectrum can be determined explicitly. Thus, the

finite number of D6-brane configurations gives a finite number of gauge sectors in a 4D

supergravity theory that arise from these compactifications, and their statistics were stud-

ied explicitly. It is expected that the finiteness result which they obtained is a much more

general consequence of supersymmetry and tadpole cancellation conditions, rather than a

phenomenon specific to their construction. In fact, they proposed a potential generalization

of their result to theories with magnetized D9- and D5-branes on smooth elliptically fibered

Calabi-Yau threefolds, which can also be motivated by mirror symmetry, for example.

In this paper, we demonstrate that finiteness results are indeed much more general phe-

nomena, providing further evidence that the string landscape itself is finite. Specifically, in

large volume Type IIB compactifications on many smooth elliptically fibered Calabi-Yau

threefolds π ∶ X→B, we prove that there are finitely many configurations of magnetized D9-

1See [41, 42, 43] for reviews of these compactifications and their implications for particle physics.
2See [44, 21] for a finiteness proof of the number of supersymmetric D-branes for fixed complex structures

of this orientifold and [45, 17] for a first construction of chiral N = 1 supersymmetric three-family models.
3See [46] for a counting of three family vacua, that yields eleven such vacua.
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and D5-branes satisfying Ramond-Ramond tadpole cancellation and the conditions neces-

sary for N = 1 supersymmetry in four dimensions. We formulate a general, mathematical

proof showing the existence of computable, explicit bounds on the number of magnetic

flux quanta on the D9-branes and on the number of D5-branes, which only depends on the

topology of the manifold B and is in particular independent of its Kähler moduli, as long

as they are in the large volume regime of X . These bounds involve simple geometric quan-

tities of the twofold base B of X and the proof applies to any base B that satisfies certain

geometric conditions, that are easy to check and summarized in this paper. Furthermore,

we show that these conditions are met by the almost Fano twofold bases B given by the

toric varieties associated to all 16 reflexive two-dimensional polytopes and the generic del

Pezzo surfaces dPn for n = 0, . . . ,8. This list in particular includes also the Hirzebruch sur-

faces F0 = P1×P1, F1 = dP1, and F2. In this work, we focus on the finiteness question only,

leaving the analysis of gauge group and matter spectra for this finite set of configurations

to future work.

This paper is organized is follows. In section 1.2 we provide the relevant background

on Type IIB compactifications with magnetized D9- and D5-branes and elliptically fibered

Calabi-Yau threefolds at large volume. We first discuss the tadpole and supersymmetry con-

ditions of general such setups, then present a basic account on elliptically fibered Calabi-

Yau threefolds and end with a detailed discussion of the geometries of the twofold bases

B = Fk, dPn and the 16 toric twofolds. In section 1.3 we prove the finiteness of such D-

brane configurations. We begin by rewriting the tadpole and supersymmetry constraints

in a useful form for the proof and make some definitions, then show the power of these

definitions by proving finiteness on P2. Finally, we prove the existence of explicit bounds

on the number of fluxes and D5-branes, that apply certain geometric conditions on B are

satisfied. In section 1.4 we conclude and discuss possibilities for future work. In appendix

1.5 we discuss the detailed structure of the Kähler cone of generic del Pezzo surfaces dPn
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and give the proof of positive semi-definiteness of certain intersection matrices on these

Kähler cones, which is essential for the proof. In appendix 1.6 we summarize the geomet-

rical data of the considered almost Fano twofolds which is necessary to explicitly compute

the bounds derived in this work.

While finishing this manuscript we learned about the related work [47] in which het-

erotic compactifications and their F-theory duals are constructed systematically.
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1.2 Magnetized Branes on Elliptically Fibered Calabi-

Yau Manifolds

We consider anN = 1 compactification of Type IIB string theory on a Calabi-Yau threefold

X with spacetime-filling D5-branes, magnetized D9-branes, i.e. D9-branes with magnetic

fluxes4, and an O9-plane. We group the D9-branes into stacks of Nα branes and their

orientifold image branes. The corresponding line bundle magnetic fluxes in H(1,1)(X ,Z)

are denoted by Fα , respectively, −Fα for the image brane. In addition, we add stacks of

D5-branes wrapping a curve ΣD5.

In the following discussion of these models5 we mainly follow the notations and con-

ventions of [40], to which we also refer for more details. For a concise review see [42].

1.2.1 Tadpole Cancellation and SUSY Conditions

D-branes carry Ramond-Ramond charge and source flux lines that must be cancelled in

the compact extra dimensions, in accord with Gauss’ law. These give rise to the so-called

tadpole cancellation conditions. The D5-brane tadpole cancellation conditions are

nD5
I −TI =∑

α

NαK(Fα ,Fα ,DI) , ∀DI ∈H(1,1)(X) (1.1)

(we note a sign difference between the D5-tadpoles6 in [40] and [42]; here, we use the sign

in [42]) where DI is a basis of divisors on X , K(⋅, ⋅, ⋅) is the classical triple intersection of

three two-forms or their dual divisors, where we denote, by abuse of notation, a divisor DI

4For the generic case of gauge bundles with non-Abelian structure groups, see [48].
5These models were first proposed for model-building in [49].
6We thank Washington Taylor and Michael Douglas for helpful correspondence related to this issue.
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and its Poincaré dual by the same symbol. Furthermore, we define the curvature terms

TI = ∫
DI

c2(X) , nD5
I = Σ

D5 ⋅DI , (1.2)

where c2(X) is the second Chern-class on X and ΣD5 is the curve wrapped by all D5-branes.

The integral wrapping numbers nD5
I are positive if ΣD5 is a holomorphic curve and the DI

are effective divisors. Following [42], the D9-brane tadpole cancellation condition reads

16 =∑
α

Nα . (1.3)

Compactification of Type IIB string theory on a Calabi-Yau manifold gives rise to a

four-dimensional N = 2 supergravity theory. An O9-orientifold breaks half of these su-

persymmetries and give rise to an N = 1 supergravity theory at low energies. Only D9-

and D5-branes can be added in a supersymmetric way to this orientifold. However, this

requires aligning the central charges Z(Fα) of the branes appropriately with the O9-plane.

For consistency with the supergravity approximation, we have to assume that the Kähler

parameters of the Calabi-Yau threefold X are at large volume. In this case, the conditions

on the central charges7 necessary for N = 1 supersymmetry, with J denoting the Kähler

form on X , reduce to

3K(J,J,Fα) =K(Fα ,Fα ,Fα) , K(J,J,J) > 3K(J,Fα ,Fα) , (1.4)

to which we will refer in the following as the SUSY equality and the SUSY inequality

respectively.

7In general, the central charge (and also the Kähler potential on the Kähler moduli space) receives per-
turbative and non-perturbative α

′ corrections. Recently it has been understood [50, 51, 52, 53] that these
corrections are captured by the so-called Gamma class Γ̂X on X rather than

√
T dX . Since we study compact-

ifications at large volume, these corrections can be neglected.
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1.2.2 Smooth Elliptic Calabi-Yau Threefolds

We study compactifications where X is a smooth elliptically fibered Calabi-Yau threefold

over a complex two-dimensional base B, π ∶ X → B, with a single section σ ∶ B→ X , the

zero-section. The class of the section σ is the base B. By the adjunction formula and the

Calabi-Yau condition, the section σ obeys the relation

σ
2 = −c1σ , (1.5)

where c1 denotes the first Chern class of the base B. For a smooth threefold the second co-

homology is given by H(1,1)(X)=σH0(B)⊕π∗H(1,1)(B). A basis of H(1,1)(X) generating

the Kähler cone of X is given by

DI = (D0,Di) , D0 = σ +π
∗c1 , I = 0,1, . . . , p ≡ h(1,1)(B) (1.6)

with Poincaré duality implied when discussing divisors. The divisors Di, i = 1, . . . , p, are

inherited from generators of the Kähler cone of the base, by abuse of notation denoted by

the same symbol as their counterparts in B. The divisor D0 is dual to the elliptic fiber E

in the sense that it does not intersect any curve in B, i.e. D0 ⋅σ ⋅Di = 0 by (1.5), and obeys

D0 ⋅E = 1. We note that E is an effective curve.

We emphasize that the requirement of a smooth elliptically fibered X , which means

that the fibration can at most have I1-fibers, restricts the choice of two-dimensional bases

B. The bases we consider here are smooth almost Fano twofolds, which are the nine del

Pezzo surfaces dPn, n = 0, . . . ,8, that are the blow-ups of P2 at up to eight generic points,

the Hirzebruch surfaces Fk, k = 0,1,2 and the toric surfaces described by the 16 reflexive

two-dimensional polytopes. For these bases, the elliptic fibration X is smooth.

We abbreviate the triple intersections of three divisors on X as KIJK =K(DI,DJ,DK).
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In the particular basis (1.6), we obtain the following structure of the triple intersections,

Ki jk = 0 , K00i =
p

∑
j

b jK0i j , K000 =
p

∑
i, j

bib jK0i j =
p

∑
i

biK00i , (1.7)

where the first equation is a property of the fibration and the second and third relations can

be derived using (1.5). We also introduce the p× p-matrix

(C)i j ∶=K(D0,Di,D j) =K0i j , (1.8)

which defines a bilinear pairing on divisors on the base B. For the cases we consider here

its signature is (1, p−1) for Fk and dPn, n = 1, . . . ,8, and C = 1 for P2 = dP0. Note that it

will be convenient at some places in this work to view H(1,1)(B) as a p-dimensional vector

space equipped with an inner product (1.8). We denote the inner product of two vectors v,

w in H(1,1)(B) simply by C(v,w). In addition, we view the first Chern class c1 of B, the

fluxes Fα and the Kähler form J as column vectors

j =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

j1

.

.

.

jp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

mα =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mα
1

.

.

.

mα
p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

b =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1

.

.

.

bp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.9)

Here the components of these vectors are defined via the expansion w.r.t. the DI in (1.6),

π
∗c1 =

p

∑
i=1

biDi , Fα =mα
0 D0+

p

∑
i=1

mα
i Di , J = j0D0+

p

∑
i=1

jiDi , (1.10)

9



where bi ∈Q+, mα
I ∈Q and jI ∈R+.8

We emphasize that the flux quantization condition Fα ∈ H(1,1)(X ,Z) can be equiva-

lently written as

∫
C

Fα ∈Z , ∀C ∈H2(X ,Z) , (1.11)

where C is any curve in X . Noting that the elliptic fiber E and the Kähler generators Di of

B are integral curves in X , this implies, using (1.10),

∫E
Fα =mα

0 ∈Z , ∫
Di

Fα =
p

∑
j

Ci jmα
j ∈Z . (1.12)

We conclude by noting that for smooth elliptically fibered Calabi-Yau threefolds, the

second Chern class c2(X) can be computed explicitly, see e.g. [139] for a derivation. By

adjunction one obtains c2(X) = 12σ ⋅c1+π∗(c2+11c2
1) with c2 the second Chern class on

B, employing the relation (1.5). Using this and (1.7) we evaluate the curvature terms in

(1.2) as

T0 = ∫
B
(c2+11c2

1) , Ti = 12∫
Di

c1 = 12K00i , (1.13)

which is straightforward to evaluate for concrete bases B.

1.2.3 Basic Geometry of Almost Fano Twofolds

In this section we briefly discuss the geometrical properties of the almost Fano twofolds

B = Fk, dPn and the toric surfaces. The discussion in this section is supplemented by the

explicit computations of the Kähler cones of dPn in appendix 1.5 and the summary of the

key geometric data of Fk, dPn in Appendix 1.6, which is critical for the proof in Section

1.3.
8We allow here for rational coefficients mα

I , bi in the expansion of Fα , π
∗c1 that are in the integral homol-

ogy H(1,1)(X ,Z) in order to account for the possibility of Kähler generators DI that only span a sublattice of
H(1,1)(X ,Z) of index greater than one. This can happen for non-simplicial Kähler cones.
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Hirzebruch Surfaces

The Hirzebruch surfaces Fk are P1-bundles over P1 of the form Fk = P(O⊕O(k)). There

is an infinite family of such bundles for every positive k ∈Z≥0.

The isolated section of this bundle, S, and the fiber F are effective curves generating

the Mori cone and spanning the entire second homology

H2(Fk,Z) = ⟨S,F⟩ . (1.14)

Their intersections read

S2 = −k , S ⋅F = 1 , F2 = 0 . (1.15)

From this we deduce that the generators Di, i = 1,2, of the Kähler cone, which are defined

to be dual to the generators in (1.14), read

D1 = F , D2 = S+kF . (1.16)

The Chern classes on Fk read

c1(Fk) = 2S+(2+k)F = (2−k)D1+2D2 , c2(Fk) = 4 , (1.17)

which implies that the vector b in (1.9) is b = (2−k,2)T .

Using (1.15), we compute the triple intersections in (1.7), in particular (1.8), as

C =

⎛
⎜
⎜
⎝

0 1

1 k

⎞
⎟
⎟
⎠

, K001 = 2 , K002 = 2+k , K000 = 8 , (1.18)
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from which the curvature terms in (1.13) immediately follow as

T0 = 92 , T1 = 24 , T2 = 24+12k (1.19)

We emphasize that Fk by means of (1.17) is Fano for k < 2 and almost Fano for k = 2,

since the coefficient b1 = 2−k ≥ 0. The general elliptic Calabi-Yau fibration X over Fk with

k = 0,1,2 is smooth and develops I3-singularities for k = 3 up to II∗-singularities for k = 12,

before terminal singularities occur for k > 12 [136]. Thus, we focus on the Hirzebruch

surfaces with k = 0,1,2.

Del Pezzo Surfaces

The Fano del Pezzo surfaces dPn are the blow-up of P2 at up to eight generic points.9

Their second homology group is spanned by the pullback of the hyperplane on P2,

denoted by H, and the classes of the exceptional divisors, denoted as Ei, i = 1, . . . ,n,

H2(dPn,Z) = ⟨H,Ei=1,...,n⟩ . (1.20)

The intersections of these classes read

H2 = 1 , H ⋅Ei = 0 , Ei ⋅E j = −δi j . (1.21)

The Chern classes on dPn read

c1(dPn) = 3H −
n
∑
i=1

Ei , c2(dPn) = 3+n . (1.22)

9See [94, 57] for recent computations of refined BPS invariants on del Pezzo surfaces as well as their
interpretation in M-/F-theory.
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The Mori cone of dPn for n > 1 is spanned by the curves Σ obeying [58, 59]

Σ
2 = −1 , Σ ⋅ [K−1

dPn
] = 1 , (1.23)

where [K−1
dPn

] is the anti-canonical divisor in dPn, which is dual to c1(dPn). By adjunction,

we see that the curves obeying (1.23) obey the necessary condition for being P1’s. By

solving the conditions (1.23) with the ansatz a0H +∑
n
i=1 aiEi for a0, ai ∈ Z, we obtain a

cone that is simplicial, i.e. generated by h(1,1,)(B) = 1+ n generators, for n = 0,1,2 and

non-simplicial for n > 2. The number of generators, beginning with dP2, furnish irreducible

representations of A1, A1×A2, A4, D5, En, for n = 6,7,8, which concretely are 3, 2⊗3, 10,

16, 27, 56, 248.10 For the simplicial cases the Mori cone reads

P2 ∶ ⟨H⟩ , dP1 ∶ ⟨E1,H −E1⟩ , dP2 ∶ ⟨E1,E2,H −E1−E2⟩ (1.24)

and we refer to appendix 1.5 for more details on the non-simplicial cases.

Consequently, also the Kähler cones of the dPn, which are the dual of the Mori cones

defined by (1.23), are non-simplicial for n > 2. The Kähler cone is spanned by rational

curves Σ obeying

Σ
2 = 0 , Σ ⋅ [K−1

dPn
] = 2 or Σ

2 = 1 , Σ ⋅ [K−1
dPn

] = 3 , (1.25)

which again implies by adjunction that Σ = P1. The solutions over the integers of these

conditions yield the generators of the Kähler cone of dPn which again follow the represen-

tation theory of the above mentioned Lie algebras. The number of generators, starting with

dP0, is 1, 2, 3, 5, 10, 26, 99, 702 and 19440, see appendix 1.5. In the simplicial cases, the

10The genuine roots in H2(dPn) are the −2-curves orthogonal to [K−1
dPn

], i.e. αi = Ei −Ei+1, i = 1, . . . ,n−1,
αn =H −E1−E2−E3 for n > 2. These act on H2(dPn) by means of the Weyl group, cf. [58].
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Kähler cone generators read

P2 ∶ D1 =H , dP1 ∶ D1 =H−E1, D2 =H , dP2 ∶ D1 =H−E1, D2 =H−E2, D3 =H (1.26)

Generically, for n ≥ 2 the vector c1(dPn) is the center both of the Kähler and Mori cone.

This implies that for all del Pezzo surfaces, the coefficients bi are positive. For the sim-

plicial Kähler cones, this can be computed explicitly. For the non-simplicial cases we will

argue in appendix 1.5, that a covering of the Kähler cone by simplicial subcones, i.e. sub-

cones with h(1,1) generators, with all bi ≥ 0 always exists. We note that for all dPn, the

defining property of the Kähler cone (1.25), together with (1.7), implies the intersections

K00i = 2,3 , K000 = 9−n . (1.27)

In addition, by explicit computations we check in general that all Ci j ≥ 0 for all pairs of

Kähler cone generators. The intersections (1.27) together with (1.21), (1.22) further imply

that the curvature terms in (1.13) read

T0 = 102−10n , Ti = 24, 36 (1.28)

For the three simplicial cases of P2, dP1 and dP2, we compute the matrices (1.8) in the basis

(1.26) as

CP2 = 1 , CdP1 =

⎛
⎜
⎜
⎝

0 1

1 1

⎞
⎟
⎟
⎠

, CdP2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1

1 0 1

1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.29)

We emphasize that the del Pezzos dPn by means of (1.27) are Fano for n < 9 and almost

Fano for n = 9, since c2
1 = 0. The surface dP9 is the rational elliptic surface. Its Mori cone

is the Mordell-Weil group of rational sections by (1.23). Thus, it as well as its dual Kähler
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cone is infinite dimensional. We will only consider the Fano del Pezzo surfaces dPn, n < 9.

Toric Surfaces from Reflexive Polytopes

Toric surfaces obtained from fine star triangulations of reflexive polytopes are smooth al-

most Fano twofolds.11 There are 16 such polytopes in two dimensions, which are displayed

in Figure 1.1.

A number of these twofolds are simply toric descriptions of previously described sur-

faces. Specifically, these are P2, dP1, dP2, dP3, F0 and F2 which are described by polytopes

1, 3, 5, 7, 2 and 4, respectively. From the form of some of the other polytopes it is clear that

they can be obtained from P2,dP1,dP2, or dP3 via toric blow-up. For example, reflecting

polytope 7 through the vertical axis going through its center and performing a toric blow-

up associated to the point (−1,1), one obtains polytope 12. Thus, the smooth Fano surface

associated to polytope 12 is a toric realization of dP4 at a non-generic point in its complex

structure moduli space.

The toric varieties associated to all these 16 reflexive polytopes can be constructed

explicitly using the software package Sage [61]. The intersections (1.7), (1.8) are readily

constructed in a given fine star triangulation and the Kähler cone can be obtained. We

summarize the geometric data necessary for the computation of the bounds derived below

in the proof in Appendix 1.6.

11See the recent [60] for a systematic study of the quantum geometry of the elliptically fibered Calabi-Yau
manifolds over these bases.
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9 10 11 12

5 6 7 8

1 2 3 4

Figure 1.1: The sixteen two-dimensional reflexive polytopes which define the almost Fano
toric surfaces via their fine star triangulations.

1.3 Finiteness of Magnetized D9- & D5-brane Configura-

tions

In this section we bound the number of possible gauge sectors arising in the considered

compactifications of Type IIB string theory.

As emphasized in section 1.2, the number Nα of branes in a stack and their associated

magnetic fluxes Fα are subject to the consistency conditions imposed by tadpole cancel-

lation conditions (1.1), (1.3) and the SUSY conditions (1.4). Since the numbers Nα of

D9-branes are bounded by (1.3), it is therefore the goal of this proof to bound the flux

quanta Fα and the number of D5-branes in ΣD5.
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Most of the proofs in this work have the same basic structure. The key point is to find a

bound on the number of different flux configurations Fα and D5-branes ΣD5 at an arbitrary

point in the large volume regions of Kähler moduli space, i.e. a bound that is independent

of the Kähler moduli. As we will see, proving this requires an intriguing interplay between

both the tadpole conditions (1.1), (1.3) and the SUSY conditions (1.4), a general rubic

which was also used in the proof of [40]12. In addition, the following proof applies if a list

of geometrical properties, listed at the beginning of Section 1.3.3, are satisfied. These are

obeyed for the considered examples B = Fk, dPn and the toric surfaces.

Before delving into the details of the proof, let us introduce a very important notation.

Because of their fundamentally different contributions to (1.1), (1.3) and (1.4) it is useful

to split D9-brane stacks into to qualitatively different types according to their flux quanta.

We denote D9-brane stacks with mα
0 ≠ 0 as β -branes, and those with mα

0 = 0 as γ-branes:

D9-branes

((vv

β -branes: mβ

0 ≠ 0 γ-branes: mγ

0 = 0

(1.30)

In addition, in the rest of this section we label fluxes of a β - and γ-brane by mβ

I and mγ

I ,

respectively.

We begin in Section 1.3.1 by preparing for the general finiteness proof by writing out

the tadpoles and SUSY conditions of Section 1.2 for elliptically fibered Calabi-Yau three-

folds X . We also make certain definitions and deduce a number of simple inequalities and

bounds, that will be essential for the later discussion. Then, in Section 1.3.2 we prove

finiteness for the special base B = P2, which will demonstrate the usefulness of the def-

initions of the previous section and serve as a warm-up for the general proof in Section

12The interplay between SUSY and tadpole conditions has also been used in [44, 21] for rigid Z2 ×Z2-
orientifolds and for other models in [62, 63].
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1.3.3.

1.3.1 Prerequisites: Definitions & Basic Inequalities

In this section we make some general definitions and observations necessary to formulate

and organize the proof in Section 1.3.3.

As a starting point, we observe that the SUSY conditions (1.4) must be satisfied by

each brane stack, but only involve the direction along the Kähler class j, whereas the tad-

pole conditions (1.1) have to be obeyed for each divisor DI , but are summed across brane

stacks. Thus, in order to bound each component mα
I of every flux vector mα , labelled by

the brane stack α , it is crucial to identify quantities, that enter both types of constraints,

when rewritten in a particular form.

To this end, we write out the tadpole conditions explicitly in the basis of divisors (1.6).

The conditions (1.1) for I = 0, to which we will refer in the future as the 0th-tadpole, reads

0th-tadpole ∶ nD5
0 −T0 =∑

β

NβC
⎛

⎝
b+

mβ

mβ

0

,b+
mβ

mβ

0

⎞

⎠
(mβ

0 )
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β brane contributions

+∑
γ

NγC(mγ ,mγ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ brane contributions

(1.31)

where we used (1.8) and (1.9) and emphasized the respective contributions from β -branes

and γ-branes. For I = i, to which we will refer as the ith-tadpole, the tadpole (1.1) reads

ith-tadpole ∶ nD5
i −Ti = ∑

β

Nβ tβ

i (mβ

0 )
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β brane contributions

with tβ

i ≡ 2
p

∑
j=1

Ci j

⎛
⎜
⎝

b j

2
+

mβ

j

mβ

0

⎞
⎟
⎠
. (1.32)

We note that the first term in tβ

k can be written as ∑ j b jCi j = K00i which is an integer

by (1.18), (1.27) and Table 1.5. The quantities tβ

i can be defined for β -branes and play

an important in the proof, because they naturally appear in the SUSY constraints. We
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emphasize that while both β -branes and γ-branes contribute to the 0th-tadpole condition,

only β -branes contribute to the ith-tadpole as is indicated by the braces in (1.31), (1.32).

We note that one can immediately deduce a lower bound on the left hand side of (1.31)

and (1.32) by setting the positive numbers nD5
I = 0:

−T0 ≤∑
β

NβC
⎛

⎝
b+

mβ

mβ

0

,b+
mβ

mβ

0

⎞

⎠
(mβ

0 )
2+∑

γ

NγC(mγ ,mγ) , −Ti ≤∑
β

Nβ tβ

i (mβ

0 )
2 . (1.33)

These lower bounds on the ith-tadpoles imply, as we will see, that if the tβ

i are bounded

above, then they are automatically bounded below. This can be seen by bringing the

bounded positive contribution to the left hand side of (1.33).

For β -branes, which have mβ

0 ≠ 0, it useful to divide the SUSY equality (1.4) by mβ

0 .

Using again (1.8) and (1.9), we write the first condition in (1.4) to obtain

⎡
⎢
⎢
⎢
⎢
⎣

3C(
j
j0
,

j
j0
)+6C

⎛

⎝

b
2
+

j
j0
,b+

mβ

mβ

0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

j2
0 =

⎡
⎢
⎢
⎢
⎢
⎣

1
4
K000+3C

⎛

⎝

b
2
+

mβ

mβ

0

,
b
2
+

mβ

mβ

0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβ

0 )
2. (1.34)

The SUSY inequality in (1.4) for β -branes can be combined with the SUSY equality (1.34)

as follows. By dividing the SUSY inequality in (1.4) by j0 and subtracting the SUSY

equality (1.34), we obtain after a few lines of algebra the following inequality:

0 >
1
2
K000+6C

⎛

⎝

b
2
+

mβ

mβ

0

,
b
2
+

j
j0

⎞

⎠
. (1.35)

This can equivalently be written in the form

0 >
1
2
K000+3

p

∑
i

tβ

i (
bi

2
+

ji
j0
) (1.36)

and we see that the expression tβ

i , which explicitly appears in the ith-tadpole conditions in

(1.13), appears also in this manipulation of the SUSY constraints.
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We note that (1.36) can be related to the tadpole conditions. By multiplying (1.36) by

Nβ (mβ

0 )
2 and summing over β , we employ the right hand side of (1.32) to obtain

0 >
1
2
K000∑

β

Nβ (mβ

0 )
2+3

p

∑
i=1

(nD5
i −Ti)(

bi

2
+

ji
j0
) ≥

1
2
K000∑

β

Nβ (mβ

0 )
2−3

p

∑
i=1

Ti(
bi

2
+

ji
j0
) ,

(1.37)

where we set nD5
i = 0 in the last inequality. This condition is used throughout the proof.

Next, we demonstrate that it is possible to also rewrite the SUSY equality (1.34) and

the 0th-tadpole (1.31) in a form that manifestly contains the quantities tβ

i . To this end, we

first define for each distinct pair of indices {i,k}, i ≠ k, the matrix M{i,k} whose ( j, l)-th

entry in the basis Di is:

(M{i,k}) jl = x{i,k}Ci jCkl +x{i,k}CilCk j −C jl (1.38)

where x{i,k} ∈Q+ is a non-negative rational number. This number has to be chosen such

that its corresponding M{i,k} is positive semi-definite. We note, that the matrices M{i,k}

resemble the stress energy tensor of a system of free particles, c.f. Appendix 1.7. We use

this to show that, if the first condition in Section 1.3.3 is met, there always exists an x{i,k} so

that these matrices are positive semi-definite, see Appendices 1.5 and 1.7. Thus, throughout

the rest of this proof we assume that all matrices M{i,k} are positive semi-definite.

With this definition, the SUSY equality (1.34) and 0th-tadpole (1.31) can be written as

[3C( j
j0
, j

j0
)+6C(b

2+
j
j0
,b+mβ

mβ

0

)] j2
0 =[

1
4K000+

3
2x{i,k}tβ

i tβ

k −3M{i,k}(
b
2+

mβ

mβ

0

, b
2+

mβ

mβ

0

)](mβ

0 )
2
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and

nD5
0 −T0 =∑

β

Nβ

⎡
⎢
⎢
⎢
⎢
⎣

1
2

x{i,k}t̃β

i t̃β

k −M{i,k}
⎛

⎝
b+

mβ

mβ

0

,b+
mβ

mβ

0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβ

0 )
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β− brane contributions

+∑
γ

NγC(mγ ,mγ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ− brane contributions

,

(1.39)

respectively, where we indicated the contributions from β− and γ-branes by braces and

used the short hand notation

t̃β

i =K00i+ tβ

i . (1.40)

As we will see, the proof of Section 1.3.3 applies whenever the M-matrices in (1.38)

are all positive semi-definite. In fact, for all the bases B of the threefold X considered,

this matrix is positive semi-definite. For P2,P1×P1,dP1,dP2, and F2 the M-matrix can be

readily computed in the Kähler cone basis, and indeed, it is positive semi-definite. How-

ever, for dPn with n ≥ 3 there exists a significant complication since in these examples,

the Kähler cone is non-simplicial, as mentioned in Section 1.2. In these cases, we cover

the Kähler cone by simplicial subcones consisting of h(1,1) generators and compute the

M-matrix (1.38) for this choice. As demonstrated in Appendix 1.5, for dPn, n < 9, the M-

matrices are positive semi-definite for all such subcones. For the toric surfaces, we refer to

Appendix 1.6 for positive semi-definiteness of the matrices (1.38). Thus, for the rest of the

paper we can assume that all M{i,k} are positive semi-definite for these bases.

1.3.2 Warm Up: Finiteness for Elliptic Fibrations over P2

Before proceeding on to more difficult examples, let us prove finiteness in the simplest

example of B = P2. In particular, in this example we will demonstrate the usefulness of the

derived inequality (1.35) and (1.37).

For an elliptically fibered Calabi-Yau threefold X over B = P2, the relevant geometrical
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data following from (1.22), (1.27), (1.28) and (1.29) is:

K000 = 9 , K001 = 3 , K011 ≡C11 = 1 , b1 = 3 , T1 = 36 . (1.41)

Using this the inequality (1.35) reduces to

0 >K001(mβ

0 )
2+2K011mβ

0 mβ

1 . (1.42)

The tadpole for D1 reads

nD5
1 −T1 =∑

β

Nβ [K001 (mβ

0 )
2+2K011 mβ

0 mβ

1 ] . (1.43)

By (1.42), the right hand side of (1.43) must be negative. Thus we have a bound for

nD5
1 , given by

nD5
1 < T1. (1.44)

In addition, for each β -brane we deduce from (1.42) that

0 < ∣mβ

0 ∣∣K001mβ

0 +2K011mβ

1 ∣ = ∣K001(mβ

0 )
2+2K011mβ

0 mβ

1 ∣

≤ ∑
β

Nβ ∣K001(mβ

0 )
2+2K011mβ

0 mβ

1 ∣ ≤ T1 . (1.45)

Notice that ∣K001mβ

0 +2K011mβ

1 ∣ is a non-zero integer by virtue of the strict inequality (1.42).

This implies the bound

∣mβ

0 ∣ ≤ T1 . (1.46)
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Next, since ∣K001mβ

0 +2K011mβ

1 ∣ ≤ T1/∣m
β

0 ∣ and ∣mβ

0 ∣ is bounded, mβ

1 is also bounded as

∣mβ

1 ∣ ≤
1

2K011
(

T1

∣mβ

0 ∣
+K001∣m

β

0 ∣) . (1.47)

Thus we have shown that the magnetic flux quanta mβ associated to β -branes are bounded.

A bound on the flux quanta of γ-branes is straightforward to obtain. The SUSY equality

in (1.4) for each γ-brane is K011(
b1
2 +

j1
j0
)mγ

1 = 0. Since K011 ≠ 0 and (b1
2 +

j1
j0
) is strictly

positive, we must have mγ

1 = 0. Since a γ-brane by definition has mγ

0 = 0, the flux quanta of

γ-branes are trivially bounded. This completes the proof for B = P2.

1.3.3 Proving Finiteness for Two-Dimensional Almost Fano Bases

In this section we present the general proof of the finiteness of the number of consis-

tent Type IIB compactification with magnetized D9-branes on smooth elliptically fibered

Calabi-Yau threefolds. As discussed before the bases B for which the presented proof has

been developed are the two-dimensional almost Fano varieties. These are the del Pezzo sur-

faces dPn, n = 0, . . . ,8, with the case of dP0 = P2 discussed in the previous section 1.3.2, the

Hirzebruch surfaces Fk, k = 0,1, including the almost Fano F2, as well as the toric surfaces.

The geometrical properties that are essential for the following proof are the smooth-

ness of the generic elliptic Calabi-Yau fibration over them, as well as the following list of

properties:

(1) all Kähler cone generators of B are time- or light-like vectors in the same light-cone.

(2) positivity of the coefficients bi in (1.10), i.e. bi ≥ 0 for all i.

(3) positivity and integrality of K00i as defined in (1.7), i.e. K00i ∈Z≥0 for all i.

(4) the signature of the matrix Ci j defined in (1.8) is (1,n), where n+ 1 = h(1,1)(B),

i.e. has one positive and n negative eigenvalues.
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(5) positivity of the Kähler parameters ji and validity of the large volume approximation,

i.e. ji ≫ 1 for all i.

We claim that the proof presented below applies to all bases B that obey these conditions.

We note that properties (4) and (5) are automatically satisfied for all the surfaces we

consider: the signature of the matrix Ci j defined in (1.8) is (1,n), cf. Section 1.2.3, and

ji ≫ 1 always holds in the Kähler cone basis at large volume for any B. The validity of

properties (1)-(3) for the considered bases is shown in the Appendices 1.5 and 1.6. As

discussed there, the only subtlety arises for the higher del Pezzos dPn, n > 2, which have

non-simplicial Kähler cones. In this case, the indices i refer to the generators of a suitably

chosen simplicial subcone, such that properties (1)-(3) hold. As argued in appendix 1.5

there always exists a covering of the Kähler cones of the dPn by simplicial subcones, such

that for each subcone in the covering properties (1)-(3) hold.

The following proof is organized as follows. We already introduced the two types of

branes, denoted β - and γ-branes, to distinguish between branes with and without fluxes

along the fiber E , i.e. ∫E Fβ ≠ 0 and ∫E Fγ = 0, respectively. First we prove in Section 1.3.3

that there is only a finite number of flux configurations on β -branes. Then in Section 1.3.3

we show finiteness of the numbers of D5-branes nD5
I . Finally, we conclude the proof in

Section 1.3.3 by showing finiteness of the number of flux configurations on γ-branes.

Bounds on β -branes

Bounds on mβ

0

In the following we obtain a bound on the flux component mβ

0 for all β -branes. The result

is

∣mβ

0 ∣ ≤max(Ti) , (1.48)
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where the maximum is taken over all generators of the specific subcone of the Kähler cone.

We note that here and in the rest of the paper, all minima and maxima on Ti and x{i,k} are

taken across generators of the specific subcone we are in. However, except the minimum on

Ti in theorem 4, the reader is free to take all other maxima and minima across all generators

of the entire Kähler cone, for easy computation purposes. For del Pezzo surfaces this

yields max(Ti) = 36, for the Hirzebruch surfaces Fk it is max(Ti) = 24+ 12k and for the

toric surfaces we can read off this bound from Table 1.5.

We begin by considering inequality (1.36). In fact, since K000 ≥ 0, (1.36) implies

0 >
p

∑
i

tβ

i (
bi

2
+

ji
j0
) (1.49)

Next we multiply this by Nβ (mβ

0 )
2 and sum over β to obtain, using (1.32),

0 >∑
β

p

∑
i

Nβ tβ

i (mβ

0 )
2(

bi

2
+

ji
j0
) =

p

∑
i
(nD5

i −Ti)(
bi

2
+

ji
j0
) ≥

p

∑
i
(−Ti)(

bi

2
+

ji
j0
) (1.50)

where we set the positive nD5
i = 0 for all i in the last inequality. This lower bound on the

sum over β also implies

0 >
p

∑
i=1

Nβ tβ

i (mβ

0 )
2(

bi

2
+

ji
j0
) ≥

p

∑
i=1

(−Ti)(
bi

2
+

ji
j0
) . (1.51)

because by (1.49) all summands are negative. This motivates the following definition:

Definition 1. A special brane is a β -brane with tβ

i < 0 for all i. A mixed brane is a β -brane

which is not a special brane (i.e. there exists an i such that tβ

i ≥ 0).

Remark 1. By (1.49), there does not exist a mixed brane with ti ≥ 0 ∀i, since bi, ji ≥ 0.

Hence for a mixed brane, we cannot have ti of the same sign ∀i, they must be of mixed

signs. This motivates its name.
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For special branes, we immediately conclude from (1.51) that

max(Ti)
p

∑
i=1

(
bi

2
+

ji
j0
) ≥

p

∑
i=1

Ti(
bi

2
+

ji
j0
) ≥

p

∑
i=1

Nβ ∣t
β

i ∣(mβ

0 )
2(

bi

2
+

ji
j0
) (1.52)

=
p

∑
i=1

Nβ ∣t
β

i mβ

0 ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈N, ≥ 1

∣mβ

0 ∣(
bi

2
+

ji
j0
) ≥ ∣mβ

0 ∣
p

∑
i=1

(
bi

2
+

ji
j0
) .

Here we have used (1.51) in the second inequality, and that tβ

i mβ

0 =∑ jCi j(b jm
β

0 +2mβ

j ) is

a non-zero positive integer, cf. (1.32) in the last inequality: it is an integer because both

its first term, K00im
β

0 , and the second term, the flux Fβ integrated over the integral class

Di, are integers by (1.12). It is non-zero because tβ

i is non-zero by the definition of special

branes, and mβ

0 is non-zero by the definition of β -branes. Thus for special branes, the flux

quantum mβ

0 is bounded as

∣mβ

0 ∣ ≤max(Ti) . (1.53)

We will show that mixed branes have a even smaller bound for their ∣mβ

0 ∣.

Let us first make an observation that will facilitate the identification of special branes.

Lemma 1. A β -brane which satisfies 0 ≤C(b
2 +

j
j0
,b+ mβ

mβ

0

) is a special brane.

Proof. For any β brane with 0≤C(b
2 +

j
j0
,b+ mβ

mβ

0

), consider its SUSY equality (1.39). Then

LHS of (1.39) ≥ 3C(
j
j0
,

j
j0
) j2

0 . (1.54)

Suppose it is not a special brane. Then by definition we cannot have tβ

i < 0 ∀i. Remark

1 also forbids tβ

i ≥ 0 ∀i. Thus there exists a pair of i,k such that tβ

i and tβ

k are of opposite

signs (the following argument still applies if one of them is zero). Writing the RHS of
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(1.39) in terms of this particular pair of tβ

i ,t
β

k , we observe that

RHS of (1.39) ≤
1
4
K000(mβ

0 )
2 ≤

1
4
K000∑

β

Nβ (mβ

0 )
2 <

3
2

p

∑
i=1

(Ti)(
bi

2
+

ji
j0
) (1.55)

where in the first inequality we dropped all negative terms on the RHS of (1.39) and in the

last inequality we employed the lower bound on (1.37). Now (1.54) shows that the LHS

of (1.39) is at least quadratic in the ji’s and grows as the Kähler volume of B. However,

inequality (1.55) implies that the RHS of (1.39) is at most on the order of ji/ j0. In the limit

of all jI large, which in particular implies large volume of B, the LHS of (1.39) has to be

greater than the RHS of (1.39). Thus, the SUSY equality (1.39) is violated. Our initial

assumption that this β -brane is not a special brane must be wrong; it must be a special

brane.

Remark 2. The argument in Lemma 1 about the growth of the two sides of the SUSY

equality (1.39) can be further substantiated for concrete bases B. For all Fk, we can check

that we have LHS of (1.39)> RHS of (1.39) when jI ≥ 3 ∀I. This is clearly the case if

the supergravity approximation is supposed to be valid. For dPn, the matrix C(⋅, ⋅) has

signature (1,n), i.e. we can have C( j, j) = 0 for j ≠ 0 and the above argument might be

invalidated. However, we can only have C( j, j) = 0 if the Kähler form jB =∑i jiDi on B

is on the boundary of the Kähler cone. This means that the Kähler volume of B is zero or

cycles in B have shrunk to zero which clearly invalidates the supergravity approximation.

Thus, it remains to bound mβ

0 for β -branes satisfying 0 ≥C(b
2 +

j
j0
,b+ mβ

mβ

0

). For such

β -branes, we observe

0 ≥C
⎛

⎝

b
2
+

j
j0
,b+

mβ

mβ

0

⎞

⎠
=

1
2

p

∑
i=1
K00i(

bi

2
+

ji
j0
)+

1
2

p

∑
i=1

tβ

i (
bi

2
+

ji
j0
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0 by (1.49)

(1.56)
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using (1.7) and the definition of tβ

i (1.32). Next, label all β -branes with 0≥C(b
2 +

j
j0
,b+ mβ

mβ

0

)

by β ′, multiply the above inequality by Nβ
′

(mβ
′

0 )2 and sum over β ′:

0 ≥
1
2

p

∑
i=1
K00i(

bi

2
+

ji
j0
)∑

β ′

Nβ
′

(mβ
′

0 )2+
1
2
∑
β ′

Nβ
′

(mβ
′

0 )2
p

∑
i=1

tβ
′

i (
bi

2
+

ji
j0
)

≥
1
2

p

∑
i=1
K00i(

bi

2
+

ji
j0
)∑

β ′

Nβ
′

(mβ
′

0 )2+
1
2
∑
β

Nβ (mβ

0 )
2

p

∑
i=1

tβ

i (
bi

2
+

ji
j0
)

=
1
2

p

∑
i=1
K00i(

bi

2
+

ji
j0
)∑

β ′

Nβ
′

(mβ
′

0 )2+
1
2

p

∑
i=1

(nD5
i −Ti)(

bi

2
+

ji
j0
)

≥
1
2

p

∑
i=1
K00i(

bi

2
+

ji
j0
)∑

β ′

Nβ
′

(mβ
′

0 )2+
1
2

p

∑
i=1

(−Ti)(
bi

2
+

ji
j0
) . (1.57)

Here in the second line we extended the sum over β ′ to the sum over all β -branes; by (1.49)

each summand is negative, thus, extending the sum only decreases it. In the third line we

have used (1.32). With (1.13) and the last line of the above inequality we obtain

12
p

∑
i=1
K00i(

bi

2
+

ji
j0
) ≥∑

β ′

Nβ
′

(mβ
′

0 )2
p

∑
i=1
K00i(

bi

2
+

ji
j0
) (1.58)

Comparing coefficients, we see ∑β ′ Nβ
′

(mβ
′

0 )2 ≤ 12 which implies the bound

∣mβ
′

0 ∣ ≤ 3 . (1.59)

This is an even smaller bound than (1.53) derived previously for special branes satis-

fying 0 ≤C(b
2 +

j
j0
,b+ mβ

mβ

0

) because each Ti = 12K00i is a integer multiple of 12. Thus, the

overall bound on mβ

0 for a β -brane is still ∣mβ

0 ∣ ≤max(Ti).

Recall γ branes by definition have mγ

0 = 0. Thus we are done bounding mα
0 , where (1.48)

is the concrete, computable bound. In summary, we have found the precise bounds in Table

1.1.
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Branes Special branes with Special branes with Mixed branes γ-branes

0 ≤C(b
2 +

j
j0
,b+ mβ

mβ

0

) 0 ≥C(b
2 +

j
j0
,b+ mβ

mβ

0

)

mα
0 -bound ∣mβ

0 ∣ ≤max(Ti) ∣mβ

0 ∣ ≤ 3 ∣mβ

0 ∣ ≤ 3 mγ

0 = 0

Table 1.1: Summary of bounds on mα
0 .

Bounds on the number of Solutions to the Vector mβ

We begin by noting that (1.32) can be viewed as the following matrix multiplication equa-

tion

tβ ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tβ

1

⋅

⋅

⋅

tβ
p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 2C ⋅
⎛

⎝

b
2
+

mβ

mβ

0

⎞

⎠
. (1.60)

The invertible matrix 2C gives a 1-1 correspondence between the vector mβ and the vector

tβ . Thus, in order to show that there are finitely many solutions for the vector mβ , we can

equivalently show that there are finitely many solutions for the vector tβ .

We can accomplish this by showing each component tβ

i is bounded. We recall that it

suffices to prove each tβ

i is bounded above: since (mβ

0 )
2 is bounded as we have just shown,

an upper bound also implies a lower bound by the second inequality in (1.33). Since the tβ

i

of special branes are by definition bounded above by 0, see Definition 1, we only have to

bound the tβ

i of mixed branes.

It is important for finding this upper bound on the tβ

i , to first analyze how each type of

branes contribute to the sign of a tadpole. We obtain the table 1.2, where we have indicated

in parenthesis where the corresponding result will be proven in this work.

Next, we proceed with proving the results of this table. We begin with the following
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Special branes Mixed branes γ-branes

0th-tadpole positive negative negative negative
(⇒ ∀ t̃β

i < 0 by Cor. 1) (by Prop. 2) (by Prop. 1)
ith-tadpole negative sign(tβ

i ) 0
(by (1.32) and Def. 1) (by (1.32))

Table 1.2: Summary of the contributions of the different types of branes to the different
tadpoles.

Proposition 1. γ-branes only contribute negatively to the 0th-tadpole (1.31). Furthermore,

any γ-brane contributing zero to the 0th-tadpole is the trivial brane, i.e. mγ

I = 0 for all I.

Proof. A γ-brane’s contribution to the 0th-tadpole is proportional to C(mγ ,mγ) by (1.31).

In addition, for γ-branes, the SUSY equality in (1.4) reads

C((
b
2
+

j
j0
) ,mγ) = 0 , (1.61)

as can be seen by setting mγ

0 = 0 and using the intersection relations (1.7).

We recall that C has Minkowski signature (1,1) for Fk and (1,n) for dPn and the toric

surfaces. The vector b
2 +

j
j0

is time-like, since

C((
b
2
+

j
j0
) ,(

b
2
+

j
j0
)) =

1
4
K000+

p

∑
i=1
K00i

ji
j0
+C(

j
j0
,

j
j0
) > 0 . (1.62)

Here, the first term on the RHS of (1.62) is positive because K000 = 8 for Fn, 9−n for dPn

and Table 1.5 applies for toric surfaces. The second term is positive because jI > 0 and for

Fk, K001 = 2, K002 = 2+k; for dPn, K00i = 2,3; for toric surfaces, all relevant entries in Table

1.5 are positive. Finally, the third term is positive because it is proportional to the volume

of B. By (1.61) the vector mγ is orthogonal to a time-like vector, thus, it is space-like, i.e.

0 >C(mγ ,mγ), unless it is the zero vector, which trivially has C(mγ ,mγ) = 0.
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Proposition 2. Only special branes contribute positively to the 0th-tadpole. This is equiv-

alent to the fact, that mixed branes only contribute negatively to the 0th-tadpole.

Proof. We recall that the 0th-tadpole can be written in the form (1.39) for arbitrary choices

of {i,k}, i ≠ k. Focusing on its RHS, we note that the second term is always negative by

the positive semi-definiteness of the matrices M{i,k}. Furthermore, the third term is always

negative by Proposition 1. Thus, the RHS of (1.39) can only be positive, if the first term on

the RHS is positive. This implies that all t̃β

i =K00i+ tβ

i , cf. (1.40), have to be of the same

sign: if not, there exists a pair t̃β

i , t̃β

k of opposite sign. Writing the RHS of (1.39) in terms

of this pair, the first term is negative and the entire RHS of (1.39) would be negative.

If all t̃β

i are negative, all tβ

i have to be strictly negative since each K00i are strictly

positive. By Definition 1, a β -brane with this property is a special brane. If the t̃β

i are all

positive, then we have 1
2∑

p
i=1 t̃β

i (bi
2 +

ji
j0
) =C(b

2 +
j
j0
,b+ mβ

mβ

0

) ≥ 0, and by Lemma 1 it is also

a special brane.

Corollary 1. A special brane that contributes positively to the 0th-tadpole must have t̃β

i < 0

for all i.

Proof. Recall from the proof of Proposition 1 that a special brane which contributes posi-

tively to the 0th-tadpole must have all t̃β

i of the same sign. If they are all negative, we are

done. Thus, assume all t̃β

i ≥ 0. We prove this is not possible using a similar argument as in

the proof of Lemma 1.

Since K00i > 0 ∀i and we are considering a special brane, i.e. all tβ

i < 0, hav-

ing t̃β

i = (K00i + tβ

i ) ≥ 0 ∀i means ∣tβ

i ∣ ≤ K00i ∀i. Now consider the SUSY equality

(1.39). Since the M-matrix is positive semi-definite, the RHS of (1.39) is at most

[1
4K000+

3
2x{i,k}K00iK00k](mβ

0 )
2. Also, by the last inequality in (1.37), we have

6
p

∑
i=1

Ti(
bi

2
+

ji
j0
) >K000∑

β

Nβ (mβ

0 )
2 , (1.63)
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i.e. (mβ

0 )
2 is smaller than a linear combination of ji/ j0, so is

[1
4K000+

3
2x{i,k}K00iK00k](mβ

0 )
2, since the prefactor [1

4K000+
3
2x{i,k}K00iK00k] ∼ K000.

However, t̃β

i > 0 for all i means 1
2∑

p
i=1 t̃β

i (bi
2 +

ji
j0
) =C(b

2 +
j
j0
,b+ mβ

mβ

0

) ≥ 0, which implies

that the LHS of (1.39) is at least 3C( j, j) which is quadratic in the ji.

Thus, in the limit that all jI are large, the LHS of (1.39) will always be greater than its

RHS, thus violating the SUSY equality.13

This concludes the proof of the results in Table 1.2. We prove three more important

Lemmas before we finally derive the bounds on tβ

i .

For the rest of the proof, we will label special branes that contribute positively to the

0th-tadpole by βs, and mixed branes by βm. We also use the simplified notation

∑
βm,+

≡ ∑
βm, t̃

βm
i ≥0

. (1.64)

The index i is omitted in this simplified notation when it is clear from the context to which

i we are referring.

Lemma 2. For any index i, we have the following inequality:

∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2 < ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 +Ti . (1.65)

Proof. By (1.33), we have a lower bound for the ith-tadpole. Thus, we have the following

13The precise value of the jI at which the SUSY equality is violated can be computed as mentioned in
Remark 2. For example, for Fk, we find that the SUSY equality is violated for jI ≥ 10 ∀I.
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inequality for the ith-tadpole:

Ti ≥ ∑
β ,tβ

i <0

Nβ ∣tβ

i ∣(mβ

0 )
2− ∑

βm,t
βm
i ≥0

Nβmtβm
i (mβm

0 )2 ≥∑
βs

Nβs ∣tβs
i ∣(mβs

0 )2− ∑
βm,t

βm
i ≥0

Nβmtβm
i (mβm

0 )2

>∑
βs

Nβs ∣tβs
i ∣(mβs

0 )2− ∑
βm,t

βm
i ≥0

Nβmtβm
i (mβm

0 )2−∑
βs

NβsK00i(mβs
0 )2− ∑

βm,t
βm
i ≥0

NβmK00i(mβm
0 )2

− ∑
βm,t

βm
i <0, t̃βm

i ≥0

Nβm t̃βm
i (mβm

0 )2

=∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2− ∑
βm,t

βm
i ≥0

Nβm t̃βm
i (mβm

0 )2− ∑
βm,t

βm
i <0, t̃βm

i ≥0

Nβm t̃βm
i (mβm

0 )2

=∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2− ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 , (1.66)

where in the first inequality, we split terms in the sum of (1.33) into positive and negative

contributions, as indicated in the summation by tβm
i ≥ 0 and tβm

i < 0. In the second inequality,

in the first term, we only kept those special branes in the sum that contribute positively to

the 0th-tadpole, which are labelled by βs. In the second line, we added three more negative

terms and in the next equality, we combined them into three sums using (1.40), that yield

the two sums in the last line.

Lemma 3. For any pair of a special brane that contributes positively to the 0th-tadpole

and a mixed brane, there exists an index k such that t̃βm
k is strictly negative and ∣t̃βm

k ∣ > ∣t̃βs
k ∣.

In particular

∣t̃βm
k ∣− ∣t̃βs

k ∣ ≥
1
3
. (1.67)

Proof. Suppose the converse is true, i.e. for some pair of a special brane that contributes

positively to the 0th-tadpole and a mixed brane, there does not exist an index k such that

t̃βm
k is strictly negative and ∣t̃βm

k ∣ > ∣t̃βs
k ∣. Then, consider the difference of the SUSY equality
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(1.39) for the mixed brane and for the special brane:

LHS of (1.39) for the mixed brane - LHS of (1.39) for the special brane

= RHS of (1.39) for the mixed brane - RHS of (1.39) for the special brane (1.68)

We will show that (1.68) will be violated. To simplify our notation, we will in the

following denote the difference of the LHS and RHS in (1.68) by ∆LHS and ∆RHS, respec-

tively. First consider the difference ∆LHS. The first term, 3C( j
j0
, j

j0
) j2

0, is the same for both

branes. Thus, by expanding everything out and using (1.32) and (1.40), we obtain

∆LHS = 6C
⎛

⎝

b
2
+

j
j0
,b+

mβm

mβm
0

⎞

⎠
j2
0 −6C

⎛

⎝

b
2
+

j
j0
,b+

mβs

mβs
0

⎞

⎠
j2
0

= 3
p

∑
i=1

t̃βm
i (

bi

2
+

ji
j0
) j2

0 −3
p

∑
i=1

t̃βs
i (

bi

2
+

ji
j0
) j2

0 . (1.69)

By Corollary 1, since the special brane contributes positively to the 0th-tadpole, t̃βs
i < 0

for all i. Also notice that the mixed brane must have at least one i for which t̃βm
i > 0, because

by definition, a mixed brane must have at least one i for which tβm
i ≥ 0, and for this i, by

(1.40) and the positivity of K00i, t̃βm
i > 0. Labelling those i for which t̃βm

i > 0 as i+, and those

i for which t̃βm
i ≤ 0 as i−, (1.69) becomes

∆LHS =3 j2
0[∑

i+
t̃βm
i+ (

bi+
2
+

ji+
j0

)+∑
i−

(∣t̃βs
i− ∣− ∣t̃βm

i− ∣)(
bi−
2
+

ji−
j0

)+∑
i+

∣t̃βs
i+ ∣(

bi+
2
+

ji+
j0

)]

≥3 j2
0 [∑

i+
t̃βm
i+ (

bi+
2
+

ji+
j0

)+∑
i+

∣t̃βs
i+ ∣(

bi+
2
+

ji+
j0

)] . (1.70)

Here in the last step we dropped the second sum, which is positive, because by assumption

there does not exist an index k such that t̃βm
k is strictly negative and ∣t̃βm

k ∣ > ∣t̃βs
k ∣.
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Notice, by (1.32), t̃βs
i , t̃βm

i are rational numbers a
mβs

0

, b
mβm

0

with a, b ∈ 2Z.14 By Table 1.1,

we have ∣mβm
0 ∣ ≤ 3. For the special brane, since t̃βs

i < 0 for all i, we have

0 >
1
2

p

∑
i=1

t̃βs
i (

bi

2
+

ji
j0
) =C

⎛

⎝

b
2
+

j
j0
,b+

mβs

mβs
0

⎞

⎠
. (1.71)

Thus, the bound ∣mβs
0 ∣≤ 3 in the third column of Table 1.1 applies. This implies both ∣t̃βs

i ∣> 0,

t̃βm
i+ > 0 are either integers or a third of integers:

3t̃βm
i+ > 1 , 3∣t̃βs

i ∣ > 1 . (1.72)

Hence, (1.70) becomes

∆LHS ≥ ∑
i+

3t̃βm
i+ (

bi+
2
+

ji+
j0

) j2
0 +∑

i+
3∣t̃βs

i+ ∣(
bi+
2
+

ji+
j0

) j2
0 ≥ 2∑

i+
(

bi+
2
+

ji+
j0

) j2
0

≥ 2∑
i+

ji+ j0 , (1.73)

where in the last step we dropped the term containing the positive bi. We have discussed

that at least one index i+ exists. With jI ≫ 1 for all I, (1.73) shows that the difference

between the LHS of (1.39) for the two branes is large.

Next, we show that the difference ∆RHS between the RHS of (1.39) for the two branes

is much smaller. Starting from the RHS of (1.39) for the special brane we note the identity

3[1
2x{i,k}t̃β

i t̃β

k −M{i,k}(b+ mβ

mβ

0

,b+ mβ

mβ

0

)](mβ

0 )
2 (1.74)

=[1
4K000+

3
2x{i,k}tβ

i tβ

k −3M{i,k}(
b
2 +

mβ

mβ

0

, b
2 +

mβ

mβ

0

)](mβ

0 )
2+ 3

2

p

∑
i=1

bit̃
β

i (mβ

0 )
2−K000(mβ

0 )
2 .

Since the special brane contributes positively to the 0th-tadpole, the LHS of (1.74) is pos-

14By (1.32), we have t̃βs
k = 2K00k +2∑ j Ck j

mβs
j

mβs
0

= a
mβs

0

, t̃βm
k = 2K00k +2∑ j Ck j

mβm
j

mβm
0

= b
mβm

0

for a,b ∈ 2Z.
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itive. We also recall that t̃β

i < 0 for all i by Corollary 1, which implies that the second last

term on the RHS of (1.74) is strictly negative, as bi ≥ 0. In addition, the last term on the

RHS is always negative for the bases B we consider. Thus, the term in square brackets on

the RHS of (1.74), which is the RHS of (1.39), must be strictly positive. In particular, it

must have a bigger magnitude than that of (the next to last term and) the last term:

RHS of (1.39) for the special brane >K000(mβs
0 )2.

Next, consider the RHS of (1.39) for the mixed brane. Since it is a mixed brane, we

can pick a pair of tβm
i , tβm

k of opposite signs to make the second term of the RHS of (1.39)

negative. By the positive semi-definiteness of the M-matrix, the third term of the RHS of

(1.39) is always negative. Thus

RHS of (1.39) for the mixed brane ≤
1
4
K000(mβm

0 )2.

Hence, we obtain, using again the bounds on mβ

0 from Table 1.1,

∆RHS <
1
4
K000(mβm

0 )2−K000(mβs
0 )2 ≤

1
4
K000(3)2−K000(1)2 =

5
4
K000 . (1.75)

By comparison of (1.73) and (1.75), using the property jI ≫ 1 for all I, we see that we will

always have

∆LHS > ∆RHS , (1.76)

which clearly violates (1.68).

Finally we prove (1.67). Recall both t̃βs
k , t̃βm

k are either integers or a third of an integer.

Since ∣t̃βm
k ∣ > ∣t̃βs

k ∣, their difference is at least a non-zero integer divided by their common

denominator, which is 3, i.e. (1.67) applies.
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We make two useful definitions for the next lemma before stating it. Recall that the

contribution of a mixed brane to the 0th-tadpole is negative, cf. Table 1.2, and is given by

the first term in (1.39):

0 ≥ Rβm ≡Nβm

⎡
⎢
⎢
⎢
⎢
⎣

1
2

x{i,k}t̃βm
i t̃βm

k −M{i,k}
⎛

⎝
b+

mβm

mβm
0

,b+
mβm

mβm
0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβm
0 )2 . (1.77)

Similarly, for a special brane that contributes positively to the 0th-tadpole, its contribution

is also given by the first term in (1.39):

0 ≤ Sβs ≡Nβs

⎡
⎢
⎢
⎢
⎢
⎣

1
2

x{i,k}t̃βs
i t̃βs

k −M{i,k}
⎛

⎝
b+

mβs

mβs
0

,b+
mβs

mβs
0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβs
0 )2 . (1.78)

Thus, the total positive contribution to the 0th-tadpole, and part of the total negative contri-

butions to the 0th- tadpole from mixed branes with t̃βm
i ≥ 0 are

∑
βs

Sβs ≥ 0 , ∑
βm,+

Rβm ≤ 0 . (1.79)

Lemma 4. Given h1,h2 ∈Q+, 0 < h1,h2 ≤ 1, so that for some index i

h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 = h2∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2 (1.80)

holds, then h1∑βm,+ ∣R
βm ∣ > h2∑βs Sβs . In particular,

h1 ∑
βm,+

∣Rβm ∣−h2∑
βs

Sβs ≥
1
6

min(x{i,k})h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 , (1.81)

where the minimum and maximum is taken over all pairs {i,k} of indices of Kähler cone

generators in the subcone, but can also be taken across the entire Kähler cone.

Proof. We introduce a partition of unity { f βs}βs , and, for every index βs, a partition of
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unity {gβs,βm}βm,+,15 i.e.

∑
βs

f βs = 1 , ∑
βm,+

gβs,βm = 1 , f βs, gβs,βm ∈Q+ , 0 < f βs,gβs,βm ≤ 1 , (1.82)

defined by the property

f βsh1Nβm t̃βm
i (mβm

0 )2 = gβs,βmh2Nβs ∣t̃βs
i ∣(mβs

0 )2 . (1.83)

Inserting unity as 1 =∑βs f βs =∑βm,+,g
βs,βm , we obtain the obvious identity

h1 ∑
βm,+

∣Rβm ∣−h2∑
βs

Sβs = (∑
βs

f βs)h1 ∑
βm,+

∣Rβm ∣−h2∑
βs

( ∑
βm,+

gβs,βm)Sβs

=∑
βs

∑
βm,+

( f βsh1∣Rβm ∣−gβs,βmh2Sβs) . (1.84)

For each summand in the sum of the last line of (1.84), we have

f βsh1∣Rβm∣−gβs,βmh2Sβs=f βsh1Nβm ∣1
2x{i,k} t̃βm

i
¯
≥0

t̃βm
k
¯
<0

−M{i,k}(b+ mβm

mβm
0

,b+ mβm

mβm
0

)∣(mβm
0 )2

−gβs,βmh2Nβs[
1
2

x{i,k} t̃βs
i
¯
<0

t̃βs
k
¯
<0

−M{i,k}(b+ mβs

mβs
0

,b+ mβs

mβs
0

)](mβs
0 )2. (1.85)

Here, the pair {i,k} is chosen so that the index i is the one for which (1.80) holds, and

the index k is chosen such that the inequality ∣t̃βm
k ∣− ∣t̃βs

k ∣ ≥ 1
3 of Lemma 3 holds for the pair

(βs,βm) of special and mixed brane in (1.85). We emphasize that the choice of this index k

depends on the brane pair (βs,βm) and thus might be different for each summand in (1.84).

15We emphasize that the index βm on gβs,βm is only limited to mixed branes with t̃βm
i ≥ 0.
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Next, we drop the positive semi-definite M-matrix terms in (1.85) to get

f βsh1∣Rβm ∣−gβs,βmh2Sβs≥
1
2

x{i,k}[f βsh1Nβm t̃βm
i (mβm

0 )2∣t̃βm
k ∣−gβs,βmh2Nβs ∣t̃βs

i ∣(mβs
0 )2∣t̃βs

k ∣]

=
1
2

x{i,k}( f βsh1Nβm t̃βm
i (mβm

0 )2)(∣t̃βm
k ∣− ∣t̃βs

k ∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1/3

≥
1
6

min(x{i,k}) f βsh1Nβm t̃βm
i (mβm

0 )2 , (1.86)

where we have used that the coefficients of ∣t̃βm
k ∣, ∣t̃βs

k ∣ in the first line are equal by (1.83).

In addition, we have removed the aforementioned implicit dependence of the index k on

(βs,βm) by taking the minimum over all {i,k}.

Thus, plugging (1.86) into (1.84) we obtain

h1 ∑
βm,+

∣Rβm ∣−h2∑
βs

Sβs ≥
1
6

min(x{i,k})h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 , (1.87)

where we performed the sum over βs and used ∑βs f βs = 1, cf. (1.82).

Now we are finally ready to show that every tβ

i has an upper bound.

Theorem 2. For all i and β , tβ

i are bounded from above as

tβ

i ≤
6T0+3Ti ⋅max(x{i,k}) ⋅max(Tl)

min(x{i,k})
, (1.88)

where the minimum and maximum is taken over all pairs {i,k} of indices of Kähler cone

generators in the subcone, but can also be taken across the entire Kähler cone.

Proof. We derive the above bound for tβ

i for an arbitrary index i. By Lemma

2, we either have ∑βs Nβs ∣t̃i
βs ∣(mβs

0 )2 ≤ ∑βm,+Nβm t̃βm
i (mβm

0 )2, or ∑βm,+Nβm t̃βm
i (mβm

0 )2 <

∑βs Nβs ∣t̃i
βs ∣(mβs

0 )2 <∑βm,+Nβm t̃βm
i (mβm

0 )2+Ti. We consider each case separately:

Case 1: ∑βs Nβs ∣t̃i
βs ∣(mβs

0 )2 ≤∑βm,+Nβm t̃βm
i (mβm

0 )2.
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In other words, we have a relation as in (1.80) with h1 ≤ 1, h2 = 1,

h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 =∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2 . (1.89)

Starting with the first inequality in (1.33) and employing (1.77), (1.78), we obtain

T0 ≥ ∑
βm,+

∣Rβm ∣−∑
βs

Sβs = (1−h1) ∑
βm,+

∣Rβm ∣+h1 ∑
βm,+

∣Rβm ∣−∑
βs

Sβs

≥(1−h1) ∑
βm,+

∣Rβm ∣+
1
6

min(x{i,k})h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2

≥(1−h1) ∑
βm,+

Nβm
1
2

x{i,k}t̃βm
i ∣t̃βm

k ∣
±
≥1/3

(mβm
0 )2+

1
6

min(x{i,k})h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2

≥(1−h1)
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2+h1
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2

=
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 , (1.90)

where in the first inequality we only kept negative contributions to the 0th-tadpole from

mixed branes with t̃βm
i ≥ 0 (see Table 1.2). In the second line we used Lemma 4. In the

third line we plugged in the definition (1.77) of Rβm , where we picked our choice of the

pair {i,k} so that i is the same index i that we want to derive a bound for tβ

i , and k such

that ∣t̃βm
k ∣ ≥ 1

3
16, and dropped the M-matrix term. The remaining two lines of (1.90) are just

algebra. Thus, we have the following bound on ti:

T0 ≥
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2, Ô⇒ tβ

i < ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 ≤
6T0

min(x{i,k})
. (1.91)

16Indeed, since a non-zero t̃βm
k is at least a third of an integer, we only have to argue that a k with a non-zero

t̃βm
k exists. But this is true since otherwise C( b

2 +
j
j0
,b+ mβm

mβm
0

) = 1
2∑

p
i=1 t̃βm

i (
bi
2 +

ji
j0
) ≥ 0, which by Lemma 1

implies that this brane would be a special, not a mixed brane.
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Case 2: ∑βm,+Nβm t̃βm
i (mβm

0 )2 <∑βs Nβs ∣t̃i
βs ∣(mβs

0 )2 <∑βm,+Nβm t̃βm
i (mβm

0 )2+Ti.

In this case we are in a special case of (1.80) with h1 = 1, h2 ≤ 1 and

∑
βm,+

Nβm t̃βm
i (mβm

0 )2 = h2∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2 (1−h2)∑
βs

Nβs ∣t̃βs
i ∣(mβs

0 )2 < Ti . (1.92)

Analogous to (1.90) of Case 1, we obtain

T0 ≥ ∑
βm,+

∣Rβm ∣−∑
βs

Sβs = ∑
βm,+

∣Rβm ∣−h2∑
βs

Sβs −(1−h2)∑
βs

Sβs

≥
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2−(1−h2)∑
βs

Sβs . (1.93)

We digress to consider the following inequality:

p

∑
i
∑
βs

Nβs t̃i
βs(mβs

0 )2(
bi

2
+

ji
j0
) =∑

βs

p

∑
i

Nβs(tβs
i +K00i)(mβs

0 )2(
bi

2
+

ji
j0
) (1.94)

≥∑
βs

p

∑
i

Nβstβs
i (mβs

0 )2(
bi

2
+

ji
j0
) ≥∑

β

p

∑
i

Nβ tβ

i (mβ

0 )
2(

bi

2
+

ji
j0
) ≥

p

∑
i
(−Ti)(

bi

2
+

ji
j0
) ,

where in the first equality we used (1.40), in the second inequality, we extended the sum

across βs to the sum across all β because each summand is negative by (1.51), and in the

last inequality we used (1.50). Comparing coefficients of bi
2 +

ji
j0

between the first and last

term in (1.94), we note that there has to exist an index k such that

Tk ≥∑
βs

Nβs ∣t̃k
βs ∣(mβs

0 )2 ≥ ∣t̃k
βs ∣ . (1.95)

If the index i for which we want to bound tβ

i coincides with such an index k, we have

an obvious bound on tβ

i

Ti ≥∑
βs

Nβs ∣t̃i
βs ∣(mβs

0 )2 > ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 > tβ

i , (1.96)
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where in the first inequality, we used (1.95) with k = i, and in the second inequality we used

the assumption that ∑βs Nβs ∣t̃βs
i ∣(mβs

0 )2 >∑βm,+Nβm t̃βm
i (mβm

0 )2.

Thus we only need to consider i ≠ k with k satisfying (1.95). Then, the last term on the

second line of (1.93) becomes

(1−h2)∑
βs

Sβs ≤ (1−h2)∑
βs

Nβs
1
2

x{i,k}∣t̃
βs
i ∣(mβs

0 )2∣t̃βs
k ∣

≤
1
2

x{i,k} (1−h2)∑
βs

Nβs ∣t̃βs
i ∣(mβs

0 )2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<Ti

⋅Tk <
1
2

max(x{i,k}) ⋅Ti ⋅Tk (1.97)

where in the first inequality we plugged in the definition (1.78) of Sβs and picked the pair

{i,k} such that i is the index for which we want to show boundedness for tβ

i , k is the

index such that (1.95) is satisfied and dropped the negative M-matrix term. In the second

inequality we used (1.95) for t̃βs
k , as well as the second inequality in (1.92). Combining

(1.93) and (1.97), we obtain

T0 > ∑
βm,+

∣Rβm ∣−∑
βs

Sβs ≥
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2−
1
2

max(x{i,k})Ti ⋅ Tk
®

≤max(Tl)

(1.98)

and arrive at the final bound

tβ

i < ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 <
6T0+3Ti ⋅max(x{i,k}) ⋅max(Tl)

min(x{i,k})
. (1.99)

Bounds on nD5
I

In this section, we employ the results from the previous Section 1.3.3 to derive bounds on

the numbers nD5
I of D5-branes. These bounds are formulated in two theorems.
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Theorem 3. For all i we have the following bound on nD5
i :

nD5
i <

6T0

min(x{i,k})
+Ti , (1.100)

where the minimum is taken over all pairs {i,k} of indices of Kähler cone generators in the

subcone, but can also be taken across the entire Kähler cone.

Proof. From (1.32), we obtain

nD5
i =∑

β

Nβ tβ

i (mβ

0 )
2+Ti <∑

β

Nβ tβ

i (mβ

0 )
2+Ti+∑

β

NβK00i(mβ

0 )
2 =∑

β

Nβ t̃β

i (mβ

0 )
2+Ti ,

(1.101)

where in the last equality we used (1.40). If ∑β Nβ t̃β

i (mβ

0 )
2 ≤ 0, then we have the obvious

bound nD5
i < Ti. Conversely if 0 <∑β Nβ t̃β

i (mβ

0 )
2, we have

0 <∑
β

Nβ t̃β

i (mβ

0 )
2 ≤ ∑

βm,+
Nβm t̃βm

i (mβm
0 )2−∑

βs

Nβs ∣t̃βs
i ∣(mβs

0 )2 , (1.102)

where we dropped negative terms in the last inequality. Thus, we are in case 1 in the proof

of Theorem 2, i.e. ∑βs Nβs ∣t̃βs
i ∣(mβs

0 )2 ≤∑βm,+Nβm t̃βm
i (mβm

0 )2 , and can use results derived

previously for that case. Using the fraction h1 defined in (1.89), (1.102) becomes

∑
β

Nβ t̃β

i (mβ

0 )
2 ≤ ∑

βm,+
Nβm t̃βm

i (mβm
0 )2−∑

βs

Nβs ∣t̃βs
i ∣(mβs

0 )2 = (1−h1) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 .

(1.103)

By the third line of (1.90), we obtain

T0 ≥(1−h1) ∑
βm,+

Nβm
1
2

x{i,k}t̃βm
i ∣t̃βm

k ∣
±
≥1/3

(mβm
0 )2+

1
6

min(x{i,k})h1 ∑
βm,+

Nβm t̃βm
i (mβm

0 )2

≥
1
6

min(x{i,k})(1−h1) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2 (1.104)
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by dropping the second term on the RHS of the first line. By rearranging and combining

with (1.103), we arrive at

∑
β

Nβ t̃β

i (mβ

0 )
2 ≤ (1−h) ∑

βm,+
Nβm t̃βm

i (mβm
0 )2 ≤

6T0

min(x{i,k})
, (1.105)

which in combination with (1.101) gives the desired bound (1.100).

Remark 3. We note also, that the first inequality of (1.37) forbids (nD5
i −Ti) ≥ 0 for all i,

i.e. although each nD5
i is bounded above by (1.100), together they are further constrained

by this condition.

Theorem 4. We have the following bound on nD5
0 :

nD5
0 ≤

1
2

max(x{i,k}) ⋅min(Ti) ⋅max(Ti)+T0 , (1.106)

where the minimum and maximum is taken over all pairs {i,k} of indices of Kähler cone

generators in the subcone. The maximum can also be taken across the entire Kähler cone.

Proof. Using (1.39), we obtain

nD5
0 =∑

β

Nβ

⎡
⎢
⎢
⎢
⎢
⎣

1
2

x{i,k}t̃β

i t̃β

k −M{i,k}
⎛

⎝
b+

mβ

mβ

0

,b+
mβ

mβ

0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβ

0 )
2+∑

γ

NγC(mγ ,mγ)+T0

≤∑
βs

Sβs − ∑
βm,+

∣Rβm ∣+T0 (1.107)

where we dropped some negative contributions of the first term on the RHS of the first line

as well the negative γ-brane contribution and used Sβs , Rβm as defined in (1.78), (1.77),

respectively. We see that the coarsest bound on nD5
0 occurs when ∑βs Sβs −∑βm,+ ∣R

βm ∣ is

maximized. By (1.90), since its last line is positive, this expression is always negative in

case 1 of Theorem 2. To maximize it, we look at case 2 of Theorem 2. Starting from (1.93)

in case 2 of Theorem 2, we obtain
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∑
βm,+

∣Rβm ∣−∑
βs

Sβs ≥
1
6

min(x{i,k}) ∑
βm,+

Nβm t̃βm
i (mβm

0 )2−(1−h2)∑
βs

Sβs

≥−(1−h2)∑
βs

Sβs ≥ −(1−h2)∑
βs

Nβs
1
2

x{i,k}∣t̃
βs
i ∣(mβs

0 )2∣t̃βs
k ∣

≥−
1
2

max(x{i,k})(1−h2)∑
βs

Nβs ∣t̃βs
i ∣(mβs

0 )2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<Ti

⋅Tk > −
1
2

max(x{i,k}) ⋅Ti ⋅Tk

≥−
1
2

max(x{i,k}) ⋅min(Tl) ⋅max(Tl) , (1.108)

where in the second inequality, we dropped the positive first term. In the third inequality,

we plugged in the definition (1.78) of Sβs and picked the pair {i,k} such that k is an index

so that (1.95) is satisfied, and i is the particular index such that Ti = min(Tl) if this i ≠ k. If

i = k, pick any other index as i, and drop the M-matrix term. In the fourth inequality we

used the second inequality in (1.92). In the last inequality, we note that if we have used the

first way of choosing the pair {i,k}, then Ti = min(Tl) and Tk ≤ max(Tl); if we have used

the second way of choosing the pair {i,k}, then Ti ≤max(Tl) and Tk =min(Tl). Combining

this result with (1.107), we get the desired bound (1.106) on nD5
0 .

Bounds on γ-branes

Finally, we derive a bound on the number of γ-brane configurations, i.e. we bound the flux

quanta mγ .

The contribution of γ-branes to the 0th-tadpole is fixed by (1.39) as

−∑
γ

NγC(mγ ,mγ) = T0−nD5
0 +∑

β

Nβ

⎡
⎢
⎢
⎢
⎢
⎣

1
2

x{i,k}t̃β

i t̃β

k −M{i,k}
⎛

⎝
b+

mβ

mβ

0

,b+
mβ

mβ

0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(mβ

0 )
2 .

(1.109)

As by Proposition 1, the LHS of this equation is positive, a solution to it only exists if the
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right hand side is also positive. Thus, this is the equation of an ellipsoid and the vector mγ

of discrete flux quanta is given by the finite number of integral points on this ellipsoid. We

denote the positive RHS of (1.109) by r2 with r ∈R.

Consequently, the question of boundedness of mγ translates into showing boundedness

of r2. By (1.109) we have

r2 = −∑
γ

NγC(mγ ,mγ)=T0−nD5
0 +∑

β

Nβ [1
2x{i,k}t̃β

i t̃β

k −M{i,k}(b+ mβ

mβ

0

,b+ mβ

mβ

0

)](mβ

0 )
2

≤ T0+∑
βs

Sβs − ∑
βm,+

∣Rβm ∣ ≤ T0+
1
2

max(x{i,k}) ⋅min(Ti) ⋅max(Ti) , (1.110)

where we set nD5
0 = 0 and dropped some negative terms in the sum over β to obtain the

second line and used (1.108) for the last inequality.

This argument and also Proposition 1 require that the matrix C is of negative signature

(0,n) when restricted to the subspace of vectors obeying (1.61). As we have argued before,

for the bases B =Fk, dPn, n > 1 and the toric surfaces the matrix C is of Minkowski signature

and the vector b
2 +

j
j0

is time-like. Thus, the above argument applies.

1.4 Conclusions

We have studied Type IIB compactifications on smooth Calabi-Yau elliptic fibrations over

almost Fano twofold bases B with magnetized D9-branes and D5-branes. We have proven

that the tadpole cancellation and SUSY conditions imply that there are only finitely many

such configurations. We have derived explicit and calculable bounds on all flux quanta

(Table 1.1, Theorem 2, Section 1.3.3) as well as the number of D5-branes (Theorem 3,

Theorem 4), which are independent on the continuous moduli of the compactification, in

particular the Kähler moduli, as long as the supergravity approximation is valid.

The presented proof applies for any geometry that meets the geometric conditions listed
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at the beginning of Section 1.3.3. We have shown explicitly in Section 1.2.3 and Appendix

1.5 that these geometric conditions are obeyed for the twofold bases B given by the Hirze-

bruch surfaces Fk, k =0,1,2, the generic del Pezzos dPn, n=0, . . . ,8 as well all toric varieties

associated to the 16 reflexive two-dimensional polytopes. This in particular required show-

ing the positive semi-definiteness of the matrices M{i,k} defined in (1.38). To this end we

studied the Kähler cones of the generic dPn and explicitly constructed their Kähler cone

generators, which are listed in Table 1.3 and reveal useful geometric properties of these

Kähler cones.

Physically, we have proven that there exists a finite number of four-dimensional N = 1

supergravity theories realized by these compactifications. Most notably, there arise only

finitely many gauge sectors in these theories with finitely many different chiral spectra. The

details of these gauge sectors are determined by the bounded number of branes in a stack

and the bounded magnetic flux quanta. Concretely, this means that the ranks of the gauge

groups are bounded, that only certain matter representations with certain chiral indices

exist (which is always true in weakly coupled Type IIB) and that for fixed gauge group

there exist only a finite set of possible multiplicities for the matter fields. These finiteness

properties, and more broadly similar results elsewhere in the landscape, are particularly

interesting when contrasted to generic quantum field theories.

While we have shown finiteness of these compactifications and provided explicit

bounds, we have not explicitly constructed all of these compactifications. It would be

interesting to systematically construct this finite set of configurations and extract generic

features of the four-dimensional effective theories in this corner of the landscape. In ad-

dition, we have not systematically explored the bases B for which the proof applies, i.e.

there may exist additional algebraic surfaces satisfying the geometric conditions of Section

1.3.3. Other points of interest would be to determine whether a simple modification of our

proof exists for blow-ups of singular elliptic fibrations or elliptically fibered Calabi-Yau
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manifolds which do not satisfy the supergravity approximation; in the latter case the super-

symmetry conditions receive corrections of various types. Of most interest would be to find

a general proof for a general Calabi-Yau threefold X . It seems plausible that there are even

more general proof techniques which utilize SUSY and tadpole cancellation conditions to

prove finiteness for a general X . For example, some of the arguments in the proof presented

here, e.g. the ones used to eliminate the dependence of the SUSY conditions (1.4) on the

Kähler moduli, should still apply for general Calabi-Yau manifolds X . In addition, string

dualities of the considered Type IIB configurations extend our finiteness proof to the dual

theories, for example to the heterotic string on certain elliptic fibrations with specific vec-

tor bundles and to F-theory on certain elliptic K3-fibered fourfolds. It is very important to

work out the details of the duality maps and the analogs of the bounds we found in the dual

theories.

The presented proof is based on tadpole and supersymmetry conditions at weak cou-

pling and large volume of X . It is crucial for a better understanding of the string landscape

to understand string consistency conditions away from large volume and weak coupling.

This requires the understanding of perturbative and non-perturbative corrections17 both

in α ′ and in gS; for example, the supersymmetry conditions receive α ′-corrections from

worldsheet instantons. Avenues towards a better understanding might be provided by ap-

plications of N = 1 mirror symmetry, i.e. mirror symmetry, and S-duality.

It is particularly interesting that the finiteness results we have proven and similar results

elsewhere in the landscape do not have known analogs in generic quantum field theories.

Such differences are one of the hallmarks of string compactifications, and it seems rea-

sonable to expect that similar finiteness results can be proven for even the most general

string compactifications, in particular those at small volume and strong coupling. This

17See [64, 65, 66, 67] for recent computations of corrections toN = 1 couplings in M-/F-theory compacti-
fications.
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would have profound implications for our picture of the landscape: while it is larger than

originally thought, our results provide further evidence that it may, in fact, be finite.
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1.5 Kähler Cones of del Pezzo Surfaces & their M{i,k}-

Matrices

In this Appendix we discuss in detail the structure of the Kähler cone of the del Pezzo

surfaces dPn for n ≤ 8. We are interested in the extremal rays, i.e. the generators, of these

in general non-simplicial cones, and the existence of coverings of these cones by simplicial

subcones so that conditions (1)-(3) listed at the beginning of Section 1.3.3 are obeyed.

First, we expand the Kähler cone generators Di of dPn in the basis (1.20) of H2(dPn,Z)

Di = (vi)
1H +

n
∑
j=1

(vi)
jE j , (1.111)

which maps every Di to a vector vi in Zn+1. With this definition, we obtain the matrices

(1.38) in this basis as

M{i,k} = η ⋅ [x{i,k}(vi ⋅vT
k +vk ⋅vT

i )−η] ⋅η , (1.112)

where i ≠ k, vT denotes the transpose of a vector, ’⋅’ denotes the matrix product and η =
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diag(1,−1, . . . ,−1) is the standard Minkowski matrix in n+1 dimensions. We note that in

order to check positive semi-definiteness of the matrices in (1.112), it suffices to prove it

for the matrices η ⋅M{i,k} ⋅η , which is the matrix in the square brackets in (1.112).

Next, we need the explicit form for the Kähler generators of dPn. We present these by

listing the corresponding vectors vi defined via (1.111). We explicitly solve (1.25) over the

integers to obtain the Kähler cone generators. For the simplicial cases dP0, dP1, dP2 we

obtain (1.26) as discussed earlier. In the non-simplicial cases dPn, n > 2, we summarize the

generators in Table 1.3.

Here, the second column contains the schematic form of the vectors vi, with each row

containing all vectors of the same particular form. In each row, the explicit expressions for

the vi are obtained by inserting the values listed in the third column for the place holder

variables in the entries of vi in that row and by permuting the underlined entries of the

vector vi. The number of different vectors in each row is given in the fourth column, where

the two factors are given by the number of elements in the list in the third column and

the number of permutations of the entries, respectively. The fifth column contains a list

of the Minkowski length of all vectors in a given row. We note that this column precisely

contains the self-intersection of the curves associated to the Di. All are either 0 or 1 and

it can be checked that the intersections of the vi with c1(dPn) = 3H −∑i Ei ≡ (3,−1, . . . ,−1)

are precisely 2 or 3, respectively, as required by (1.25).

For example, in the second row of Table 1.3, all vectors vi are of the form vi = (a,b,b,b)

by the second column. By the third column, there are two different vectors of this type,

namely v1 = (2,−1,−1,−1) and v2 = (1,0,0,0). Thus, there are precisely 2 vectors as indi-

cated in the fourth column and the Minkowski length of the two vectors is 1, 1, respectively,

as in the last column of the second row.

We note that the Kähler cone generators and their grouping as in Table 1.3 can be under-

stood by representation theory, recalling that the Weyl group naturally acts on H2(dPn,Z).
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Kähler cone generators vi # η(vi,vi)

dP3

(a,b,b,b) (a,b) ∈ {(2,-1),(1,0)} 2 ⋅1 {1,1}
(c,d,e,e) (c,d,e) ∈ {(1,-1,0)} 3 0

Total number of Kähler generators = 5

dP4

(a,b,b,b,b) (a,b) ∈ {(2,-1),(1,0)} 2 ⋅1 {0,1}
(c,d,e,e,e) (c,d,e) ∈ {(2,0,-1),(1,-1,0)} 2 ⋅4 {1,0}

Total number of Kähler generators = 10

dP5

(a,b,b,b,b,b) (a,b) ∈ {(1,0)} 1 1
(c,d,e,e,e,e) (c,d,e) ∈ {(3,-2,-1),(2,0,-1),(1,-1,0)} 3 ⋅5 {0,0,1}
( f ,g,g,g,h,h) ( f ,g,h) ∈ {(2,-1,0)} 10 0

Total number of Kähler generators = 26

dP6

(a,b,b,b,b,b,b) (a,b) ∈ {(1,0),(5,−2)} 2 ⋅1 {1,1}
(c,d,e,e,e,e,e) (c,d,e) ∈ {(1,-1,0),(3,-2,-1)} 2 ⋅6 {0,0}
( f ,g,g,g,g,h,h) ( f ,g,h) ∈ {(2,-1,0)} 15 0
(i, j, j, j,k,k,k) (i, j,k) ∈ {(2,-1,0),(4,-2,-1)} 2 ⋅20 {1,1}
(l,m,n,n,n,n,o) (l,m,n,o) ∈ {(3,-2,-1,0)} 30 1

Total number of Kähler generators = 99

dP7

(a,b,b,b,b,b,b,b) (a,b) ∈ {(8,-3),(1,0)} 2 ⋅1 {1,1}
(c,d,e,e,e,e,e,e) (c,d,e) ∈{(5,0,-2),(5,-1,-2),(4,-3,-1),(1,-1,0)} 4 ⋅7 {1,0,1,0}
( f ,g,g,g,h,h,h,h) ( f ,g,h) ∈{(7,-2,-3),(4,-2,-1),(2,0,-1),(2,-1,0)} 4 ⋅35 {1,0,0,1}
(i, j,k, l, l, l, l, l) (i, j,k, l) ∈ {(3,0,-2,-1)} 42 0

(m,n,o,o, p, p, p, p) (m,n,o, p) ∈ {(6,-1,-3,-2),(3,-2,0,-1)} 2 ⋅105 {1,1}
(q,r,s,s,s,t,t,t) (q,r,s,t) ∈ {(5,-3,-2,-1),(4,0,-2,-1)} 2 ⋅140 {1,1}

Total number of Kähler generators = 702

dP8

(a,b,b,b,b,b,b,b,b) (a,b) ∈ {(17,-6),(1,0)} 2 ⋅1 {1,1}
(c,d,e,e,e,e,e,e,e) (c,d,e) ∈{(11,-3,-4),(10,-6,-3),(8,-1,-3),(8,0,-3),

(4,-3,-1),(1,−1,0)}

6 ⋅8 {0,1,0,1,0,0}

( f ,g,g,h,h,h,h,h,h) ( f ,g,h) ∈ {(13,-6,-4),(5,0,-2)} 2 ⋅28 {1,1}
(i, j, j, j,k,k,k,k,k) (i, j,k) ∈ {(16,-5,-6),(2,-1,0)} 2 ⋅56 {1,1}
(l,m,n,o,o,o,o,o,o) (l,m,n,o)∈{(14,-3,-6,-5),(7,-4,-3,-2),(5,-1,0,-2),

(4,-3,0,-1)}

4 ⋅56 {1,0,0,1}

(p,q,q,q,q,r,r,r,r) (p,q,r)∈{(10,-4,-3),(9,-4,-2),(2,-1,0)} 3 ⋅70 {0,1,0}
(s,t,u,u,v,v,v,v,v) (s,t,u,v) ∈{(10,-2,-5,-3),(10,-1,-3,-4),(9,-2,-4,-3),

(8,-5,-3,-2),(8,-4,-1,-3),(3,-2,0,-1)}

6 ⋅168 {1,1,0,1,1,0}

(w,x,y,y,y,z,z,z,z) (w,x,y,z) ∈{(15,-4,-6,-5),(12,-4,-3,-5),

(12,-2,-5,-4),(11,-6,-4,-3),

(8,-4,-2,-3),(7,-1,-2,-3),(7,0,-2,-3),

(6,-4,-1,-2),(6,-2,-3,-1),(5,-3,-2,-1),

(4,0,-2,-1),(3,-2,0,-1)}

12 ⋅280 {1,1,1,1,0,0,

1,1,1,0,0,1}

(ã, b̃, b̃, c̃, c̃, d̃, d̃, d̃, d̃) (ã, b̃, c̃, d̃) ∈ {(6,-1,-3,-2)} 420 0
(ẽ, f̃ , f̃ , g̃, g̃, g̃, h̃, h̃, h̃) (ẽ, f̃ , g̃, h̃) ∈ {(14,-6,-5,-4),(4,0,-1,-2)} 2 ⋅560 {1,1}
(ĩ, j̃, k̃, l̃, l̃,m̃,m̃,m̃,m̃) (ĩ, j̃, k̃, l̃,m̃) ∈ {(12,-6,-5,-3,-4),(6,0,-1,-3,-2)} 2 ⋅840 {1,1}
(ñ, õ, p̃, q̃, q̃, q̃, r̃, r̃, r̃) (ñ, õ, p̃, q̃, r̃) ∈{(13,-3,-6,-5,-4),(9,-5,-4,-3,-2),

(9,-2,-1,-4,-3),(5,-3,0,-2,-1)}

4 ⋅

1120

{1,1,1,1}

(s̃, t̃, ũ, ũ, ṽ, ṽ,w̃,w̃,w̃) (s̃, t̃, ũ, ṽ,w̃) ∈{(11,-2,-3,-5,-4),(10,-5,-2,-3,-4),

(8,-1,-4,-3,-2),(7,-4,-3,-1,-2)}

4 ⋅

1680

{1,1,1,1}

Total number of Kähler generators = 19440

Table 1.3: Kähler cone generators for dPn. The underlined entries of the vi are permuted.

For instance the Kähler cone generators of dPn, n = 2, . . . ,6 form the representations 3,
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(3̄⊗1)⊕ (1⊗2), 5⊕ 5̄, 16⊕10 and 78⊕27 under the corresponding groups A1, A2 ×A1,

A4, D5 and E6, respectively. Here the first representation in all direct sums is formed

by all generators with Minkowski length 1 and the second one is formed by generators

with Minkowski length 0. These results can be worked out explicitly by computing the

Dynkin labels of the generators in Table 1.3 for the canonical roots αi, which are the −2-

curves in H2(dPn,Z) orthogonal to c1(dPn). Thus, the zero weight vector is identified

with c1(dPn). For dP7 only the union of the generators of the Kähler and Mori cone have a

representation theoretical decomposition as 912⊕133 (some of the weights of the 912 have

higher multiplicities yielding only 576 different weights), where the first representation

contains the length 1 and the second one the length 0 Kähler cone generators.

Next, we make one important observation. As one can check explicitly from Table 1.3

and (1.26), for every del Pezzo dPn with n > 1, the first Chern class c1(dPn) ≡ (3,−1, . . . ,−1)

is proportional to the sum of all Kähler cone generators vi

c1(dPn) ≡ (3,−1, . . . ,−1) =
1

An ⋅N

N
∑
i=1

vi (1.113)

where N denotes the total number of Kähler cone generators of dPn, cf. Table 1.3. The

positive proportionality factor An depends on n and reads

A3 =
2
5
, A4 =

1
2
, A5 =

17
26

, A6 =
10
11

, A7 =
55
39

, A8 =
26
9

(1.114)

for dP3, dP4, dP5, dP6, dP7 and dP8, respectively. This means that c1(dPn) is in the center

of the Kähler cone of all del Pezzo surfaces with n > 1.

This implies that we can find a cover of the Kähler cone by simplicial subcones so

that properties (1)-(3) at the beginning of section 1.3.3 are satisfied. We present two such

covers:
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Cover 1: Intersect the Kähler cone with a hyperplane that is normal to c1(dPn) and passes

through c1(dPn). This yields an n-dimensional polytope with vertices corresponding to the

generators of the Kähler cone. Triangulate this polytope with star being c1(dPn). This

triangulation induces a decomposition of the Kähler cone into simplicial subcones. As the

generators of one simplicial subcone, take c1(dPn) and those generators vi of the Kähler

cone that go through the vertices of an n-dimensional cone of the triangulated polytope.

In this covering of the Kähler cone, properties (2) and (3) are satisfied: we obviously

have bi all positive, because c1(dPn) is one of the generators in every simplicial subcone.

From (1.10) we get bi = 0 for all Di ≠ c1(dPn) and bK = 1, where K denotes the index such

that DK = c1(dPn). In addition, we have CKK =K000 = 9−n and CiK =K00i = 2, 3 for i ≠ K

by (1.7) and (1.27) and TK = 12∫B c2
1 = 12K000 = 12(9−n) by (1.13) and (1.27). We discuss

why property (1) is satisfied later.

Cover 2: Although the above cover 1 obeys all the required properties listed at the begin-

ning of Section 1.3.3, it slightly increases the bounds because it increases max(Ti) for n ≤ 6

in which case max(Ti) = TK = 12(9−n) is larger than the Ti found in (1.28).

Thus, we provide the following alternative cover which exists if the Kähler cone is

sufficiently symmetric, in addition to c1(dPn) being its center. Take a vertex of the polytope

constructed in cover 1. Construct the line through that vertex and the star, i.e. c1(dPn).

This line has to intersect the boundary of the polytope at another point. This point lies on

a certain facet of this polytope. Take the vertices of this facet together with the original

vertex we have started with to define a simplicial subcone of the Kähler cone. Notice that

this subcone contains c1(dPn) and the cone formed by the vertices of this facet and c1(dPn),

i.e. a subcone in cover 1. Repeat this procedure for all vertices of the polytope. If the Kähler

cone is sufficiently symmetric, each facet will be hit exactly once. Thus, each subcone in

cover 1 is contained in a corresponding subcone defined in this way. Consequently, since
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cover 1 covers the Kähler cone completely, so does cover 2.

This cover also satisfies conditions (1)-(3) at the beginning of Section 1.3.3. We again

leave the discussion of condition (1) for later. Conditions (2) and (3) are satisfied since

c1(dPn) is contained in each subcone, which implies bi ≥ 0 for all i, and by (1.27) all K00i

are positive integers. In addition, the advantage of this cover is that all generators of all

simplicial subcones are generators of the Kähler cone. Thus in all bounds derived in this

work, we have that max(Ti) is given precisely by (1.28). Given the fact that the generators

of the Kähler cone sit in representations of Lie algebras, which implies that the Kähler

cone is symmetric, and that c1(dPn) lies in its center, we expected this cover 2 to exist.

Finally, we discuss why condition (1), i.e. the positive semi-definiteness of the matrices

M{i,k} in (1.38), is satisfied in both Cover 1 and Cover 2. We notice the following fact: for

both covers, in order to show that the matrices (1.38) are positive semi-definite, we only

have to prove that these matrices written in the form (1.112) are positive semi-definite for

all possible choices of two vectors vi, v j of Table 1.3. This is clear for Cover 2, because

the generators of all simplicial subcones are generators of the Kähler cone. For Cover 1, in

every simplicial subcone, all matrices M{i, j} with i, j ≠K involve only the generators vi, v j.

Thus, we only have to consider the matrices M{i,K} with i ≠ K (recall that we only have to

show positive semi-definiteness of the matrices M{i, j} for i ≠ j). For these we use

Lemma 5. In Cover 1, let K be the index corresponding to c1(dPn), then the matrices

M{i,K} for all i≠K are positive semi-definite, if all matrices M{i, j} for all pairs of generators

vi, v j of the Kähler cone are positive semi-definite.

Proof. Using the first Chern class c1(dPn) ≡ (3,−1, . . . ,−1) and λ j =
1

An⋅N , we obtain

M{i,K} = x{i,K}(vi ⋅c1(dPn)
t +c1(dPn) ⋅vt

i)−η =
N
∑
j=1

λ jx{i,K}(vi ⋅vt
j +v j ⋅vt

i)−η , (1.115)
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where we used (1.113). Choose x{i,K} for every i so that the following equality is satisfied

N
∑
j=1

λ j
x{i,K}

x{i, j}
= x{i,K}

N
∑
j=1

λ j

x{i, j}
= x{i,K}

1
An

⟨
1

x{i, j}
⟩

j

!
= 1 , (1.116)

where ⟨ 1
x
{i, j}

⟩ j denotes the average of 1
x
{i, j}

with i kept fixed and j varied over all Kähler

cone generators. Then, (1.115) can be written as

M{i,K} =
N
∑
j=1

λ j
x{i,K}

x{i, j}
x{i, j}(vi ⋅vt

j +v j ⋅vt
i)−η =

N
∑
j=1

λ j
x{i,K}

x{i, j}
(x{i, j}(vi ⋅vt

j +v j ⋅vt
i)−η)

=
N
∑
j=1

λ
′
j(x{i, j}(vi ⋅vt

j +v j ⋅vt
i)−η) =

N
∑
j=1

λ
′
jM{i, j} , (1.117)

where we set λ ′
j = λ j

x
{i,K}

x
{i, j}

. We note that M{i,K} is defined in terms of generators of the

Kähler cone and λ ′
j ≥ 0 for all j = 1, . . . ,N. Thus, if all the M{i, j} are positive semi-definite,

then M{i,K} will be automatically positive semi-definite because it is just a positive lin-

ear combination of the M{i, j} by (1.117). A positive linear combination of positive semi-

definite matrices is again positive semi-definite.

Thus, it only remains to show positive semi-definiteness of the matrices M{i,k} defined

in (1.112) for any choice of two Kähler cone generators of dPn from Table 1.3. We note

that the Kähler cone generators of dPn are obtained by permutations of the vectors in Table

1.3. Most of these permutations simply interchange the rows and columns of the matrices

(1.112), which does not affect their eigenvalues. Thus, we only have to consider matrices

(1.112) that do not differ only by such a permutation. We provide an efficient algorithm

making use of this permutation symmetry to generate all matrices (1.112) with different sets

of eigenvalues. Recall that to check positive-semi-definiteness for any M{i,k}, it suffices to

check positive-semi-definiteness for M̃{i,k}, defined as

M̃{i,k} = x{i,k}(vi ⋅vT
k +vk ⋅vT

i )−η . (1.118)
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For each M̃{i,k} define (vi,vk) as the pair of Kähler cone generators in its definition

(1.118). By definition of M{i,k}, we have i ≠ k in (vi,vk). For each dPn, we define an

equivalence relation on the set of all pairs (vi,vk) and show if (vi,vk) ∼ (v′i,v
′
k) and x{i,k} =

x′{i,k}, the corresponding matrices M̃{i,k} and M̃′
{i,k} have the same sets of eigenvalues.

Definition 2. For each dPn, let {(vi,vk)}, i ≠ k, be the set of all pairs of its Kähler cone

generators. The symmetric group Sn of degree n acts on the Kähler cone generator vi ∈

Z1+n by permuting its last n components, cf. the second column of Table 1.3. Define an

equivalence relation ∼ on {(vi,vk)} by (vi,vk)∼ (v′i,v
′
k) if (v′i,v

′
k)= (σ(vi),σ(vk)), for some

σ ∈ Sn.

Lemma 6. Suppose (vi,vk)∼ (v′i,v
′
k). Let M̃{i,k} and M̃′

{i,k} be the matrix defined by (vi,vk)

and (v′i,v
′
k), respectively, with x{i,k} = x′{i,k}, in (1.118). Then M̃{i,k} and M̃′

{i,k} have the

same set of eigenvalues.

Proof. Let σ ∈ Sn so that (v′i,v
′
k) = (σ(vi),σ(vk)). Denote the permutation matrix that

permutes the jth and lth rows/columns by Pjl . Since any σ ∈ Sn can be written as a product

of such permutation matrices, we can WLOG assume σ = Pjl . Then we have

M̃′
{i,k} = x{i,k}(PjlvivT

k PT
jl +PjlvkvT

i PT
jl )−η = x{i,k}(PjlvivT

k PT
jl +PjlvkvT

i PT
jl )−PjlηPT

jl

= Pjl[x{i,k}(vivT
k +vkvT

i )−η]PT
jl = PjlM̃{i,k}PT

jl . (1.119)

This implies that the characteristic polynomials of M̃{i,k} and M̃′
{i,k} are the same,

det(M̃′
{i,k}−λ I) = det(PjlM̃{i,k}PT

jl −λPjlIPT
jl) = det(Pjl(M̃{i,k}−λ I)PT

jl)

= det(Pjl)det(M̃{i,k}−λ I)det(PT
jl ) = det(M̃{i,k}−λ I) . (1.120)
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Lemma 6 shows that for each equivalence class [(vi,vk)], we just need to pick any

representative (vi,vk) and check if there exists an x{i,k} ∈ Q+ such that (vi,vk) and x{i,k}

defines a positive semi-definite matrix M̃{i,k} according to (1.118). If such an x{i,k} exists,

any M̃′
{i,k} with (v′i,v

′
k) ∼ (vi,vk) will be automatically positive semi-definite for x′{i,k} =

x{i,k}. For each dPn, in order to find all different equivalence classes, we start by picking

an arbitrary pair (vi,vk) from Table 1.3 and carry out the following algorithm:

(1) Fix vi and only permute the entries of vk. Indeed, if v′i = σ(vi),v′k = τ(vk), then

(v′i,v
′
k) ∼ (vi,σ−1τ(vk)). Let τ ′ = σ−1τ , then we have [(v′i,v

′
k)] = [(vi,τ ′(vk))].

(2) Only permute those entries in vk for which the corresponding entries in vi are different

from each other. Permuting two entries in vk when the corresponding two entries in

the fixed vector vi are the same is equivalent to the action of permuting these two

entries for both vectors. Thus, the resulting pair of vectors (vi,v′k) ∼ (vi,vk).

Pick a different pair (wi,wk) of Kähler cone generators from Table 1.3 and repeat (1), (2).

For example, consider dP8. Suppose we begin by picking vi = (a,b,b,b,b,b,b,b,b)

and vk = (s,t,u,u,v,v,v,v,v) from the second column of Table 1.3. By (1) above, we can

fix vi and only consider permutations in the last eight entries of vk. By (2), however, we

do not need to consider any permutation in the last eight entries in vk, because the last

eight entries in the fixed vector vi are the same; they are all equal to b. Thus, there is

only one equivalence class [(vi,vk)]. From the third column of Table 1.3, there are two

sets of different values for vi = (a,b,b,b,b,b,b,b,b), and six sets of different values for

vk = (s,t,u,u,v,v,v,v,v). Thus there will be 2 ⋅6 = 12 different M̃′
{i,k} matrices to check for

positive semi-definiteness. Next pick a different pair of (wi,wk) and repeat this process.

We obtain that the matrices (1.112) are positive semi-definite for any choice of two
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Kähler cone generators in Table 1.3 and x{i,k} of the form

x{i,k} =
1
a

for a ∈ {1,2, . . . ,19} . (1.121)

More precisely, for dP2 and dP3 all x{i,k} = 1, for dP4 and dP5 we have x{i,k} = 1, 1
2 , for dP6

we have x{i,k} =
1
a with a ∈ {1,2, . . . ,4}, for dP7 we find x{i,k} =

1
a with a ∈ {1,2, . . . ,7} and

for dP8 all values in (1.121) are assumed.

1.6 Geometric Data of almost Fano Twofolds for comput-

ing Explicit Bounds

In this appendix, we summarize the geometric data of Hirzebruch surfaces Fk, k = 0,1,2,

the del Pezzo surfaces dPn, n = 2, . . . ,8, and the toric varieties associated to the 16 reflexive

polytopes that is necessary to explicitly compute the various bounds derived in this paper.

We begin with the bases Fk and dPn. The following results in Table 1.4 are derived em-

ploying (1.19), (1.28), the two covers of the Kähler cones of dPn constructed in Appendix

1.5, (1.114) and the values of x{i,k} listed below (1.121).

First, we list the maximal and minimal values of x{i,k} and Ti for the bases Fk and

dP2 that have a simplicial Kähler cone. For the non-simplicial Kähler cones, we obtain

different results for the two different covers of their Kähler cones. We note that for both

cover 1 and 2 the values below (1.121) apply. Indeed, this is precisely what we get in the

second and third column under cover 2. However, for cover 1, these numbers have to be

multiplied by appropriate An in (1.114). Indeed, by (1.116) we have x{i,K} =An(⟨x{i,k}⟩ j)−1.

By (1.114), we have An ≤ 1 for n ≤ 6, i.e. the minimum value of x{i,K} is bounded by

An ⋅min(x{i,K}), but the maximum is unaffected, as indicated in the first four rows of the

second and third column in Table 1.4 under cover 1. For dP7 and dP8, we have An > 1, thus
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x{i,K} ≤ Anmax(x{i,k}) = An and the minimum is unaffected, as displayed in the last two

rows of the second and third column in Table 1.4 for cover 1.

max(x{i,k}) min(x{i,k}) max(Ti) min(Ti)

Fk 1 1 24+12k 24

dP2 1 1 36 24

Cover 1 of Kähler cone of dPn

dP3 1 A3 ≤ 72 24, 36

dP4 1 1
2A4 ≤ 60 24, 36

dP5 1 1
2A5 ≤ 48 24, 36

dP6 1 1
4A6 ≤ 36 24, 36

dP7 A7 ≥
1
7 36 24

dP8 A8 ≥
1

19 36 12

Cover 2 of Kähler cone of dPn

dP3 1 1 36 24, 36

dP4 1 1
2 36 24, 36

dP5 1 1
2 36 24, 36

dP6 1 1
4 36 24, 36

dP7 1 1
7 36 24, 36

dP8 1 1
19 36 24, 36

Table 1.4: Key geometrical data for the computation of the explicit bounds derived in the
proof.

In addition, without knowing every simplicial subcone in the two covers explicitly, we

can not determine the explicit value min(Ti) for both covers. Therefore, depending on

the chosen subcone, employing (1.28), we either obtain 24 or 36 as indicated in the last
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Polytope ∫ c2 ∫ c2
1 ∣K.C. Gens∣ List of Ti = 12 ∫Di

c1

2 4 8 2 (24,24)
3 4 8 2 (24,36)
4 4 8 2 (24,48)
5 5 7 3 (24,24,36)
6 5 7 3 (24,36,48)
7 6 6 5 (24,24,24,36,36)
8 6 6 4 (24,36,24,48)
9 6 6 5 (24,36,24,48,36)

10 6 6 4 (24,48,72,36)
11 7 5 7 (24,36,48,24,36,72,48)
12 7 5 8 (24,24,36,36,48,48,24,36)
13 8 4 10 (24,48,36,72,48,36,24,72,48,48)
14 8 4 13 (24,24,36,48,36,48,24,72,36,48,72,48,36)
15 8 4 12 (24,36,24,48,36,48,36,48,48,24,24,36)
16 9 3 21 (24,24,36,72,48,36,48,36,48,36,48,72,72,72,36,48,24,36,72,48,72)

Table 1.5: Displayed are some of the relevant data for the smooth almost Fano toric surfaces
obtained from fine star triangulations of the two-dimensional reflexive polytopes in Figure
1.1.

column of Table 1.4. However, in the case of cover 1 we have TK = 24, 12 for dP7 and dP8,

respectively. Since by construction, the first Chern class c1(dPn) is in every subcone, we

know that min(Ti) = TK = 24, 12 for dP7 and dP8, respectively.

Finally, in Table 1.5 we display the relevant topological data of the toric varieties con-

structed from the 16 reflexive two-dimensional polytopes which is relevant to our finiteness

proof in section 1.3.3. We confirmed that the first Chern class c1(B) is inside the Kähler

cone in all these cases, i.e. Cover 1 constructed in Appendix 1.5 exists for these non-

simplicial Kähler cones. As explained there, in this cover the conditions (2) and (3) listed

at the beginning of Section 1.3.3 are obeyed. We also checked that the matrices (1.112) are

all positive semi-definite for x{i,k} of the form x{i,k} =
1
a with a ∈ {1, . . . ,6}, i.e. condition

(1) listed in Section 1.3.3 is also satisfied.
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1.7 An analytic proof of positive semi-definiteness of the

M{i,k}-Matrices

In this section we provide an alternative general proof of positive semi-definiteness of the

M{i,k}-matrices, in comparison to the numerical proof given in Appendix 1.5 for specific B.

We recall that to check positive-semi-definiteness for any M{i,k} defined in (1.112) it

suffices to check positive semi-definiteness for the matrix M̃{i,k} defined in (1.118). The

advantage of the following general proof is that it predicts a precise value of x{i,k} for which

each M{i,k} is positive semi-definite. Thus, we do not have to search for the existence of

such an x{i,k} numerically. To be precise, we will show that we can always choose

x{i,k} =
1

Cik
(1.122)

to make each M{i,k} positive semi-definite. We note, however, that such a choice may not

produce the best bounds (since the various bounds derived depend on x{i,k}). Hence, in

order to minimize the various bounds we may still want to numerically find alternative

values for x{i,k}, for which the matrices (1.112), (1.118) are also positive semi-definite.

The correctness of the value (1.122) can be motivated physically as follows. Consider

a system of two particles with masses m = 1 with the Lorentz-invariant Lagrangian

Li,k = pi ⋅ pk , i ≠ k , (1.123)

where pi for every i,k = 1, . . . ,N are the particle momenta. Due to space-time invariance,

the respective Noether currents are stress-energy tensors,

T i,k
µ,ν = pi

µ pk
ν + pk

µ pi
ν −Li,k

ηµν , i ≠ k . (1.124)
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With the identification 1
xi,k ≡ Li,k, these stress-energy tensors are precisely the matrices

(1.118) multiplied by 1
xi,k . By the positive energy theorem in general relativity the T i,k

µ,ν

are positive semi-definite for every chosen pair of time- or light-like (n+1)-vectors pi, pk.

In the following, we prove explicitly that the the matrices in (1.118), i.e. the stress

energy tensors (1.124), are indeed positive semi-definite for time- or light-like (n+ 1)-

vectors pi, pk. To this end, we will need the following general fact:

Lemma 7. For any n×n matrix M and any invertible n×n matrix A, M is positive semi-

definite if and only if AT MA is positive semi-definite.

Using of Lemma 7, we can prove positive semi-definiteness of M̃{i,k} by instead

proving positive semi-definiteness of AT M̃{i,k}A, where A is a suitably chosen invertible

matrix so that AT M̃{i,k}A takes a simpler form than M̃{i,k}. We will discuss how to choose

A shortly. First, recall from Table 1.3 that each Kähler cone generator vi is either time-like

or light-like with Minkowski inner product η(vi,vi) either 1 or 0, and all the Kähler cone

generators belong to the same light cone (the future-directed light cone). We choose A as

follows:

Case 1. Suppose M̃{i,k}, defined in (1.118), has at least one of its vi,vk with Minkowski

inner product 1. WLOG say η(vi,vi) = 1. Then there is a matrix A ∈O(1,n) such that

AT vi = (1,0, ...,0)T . (1.125)

We note that this is just a Lorentz transformation to the rest frame. Pick this matrix as the

invertible matrix A in Lemma 7.

Case 2. Suppose M̃{i,k}, defined in (1.118), has both of its vi,vk with Minkowski inner

product 0. Then there exists a Lorentz transformation A′ ∈O(1,n) such that
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A
′T vi = (a0,a0,0, ...,0)T , vT

k A′ = (b0,b1,b2,0, ...,0) , (1.126)

where a0,b0,b1,b2 ∈Q and b2
0−b2

1−b2
2 = 0. Pick A′ as the invertible matrix in Lemma 7.

The above mentioned matrices in O(1,n) exist because of the following general lemma:

Lemma 8. For any vector v ∈R1,n which Minkowski inner product η(v,v) = 1, there exists

a matrix A ∈ O(1,n) such that AT v = (1,0, ...,0)T . For any pair of vector vi,vk ∈R1,n both

with Minkowski inner product η(vi,vi) = η(vk,vk) = 0, there exists a matrix A′ ∈ O(1,n)

such that A
′T vi = (a0,a0,0, ...,0)T , vT

k A′ = (b0,b1,b2,0, ...,0) where a0,b0,b1,b2 ∈ R and

b2
0−b2

1−b2
2 = 0.

Proof. First consider any v ∈ R1,n with Minkowski inner product η(v,v) = 1. Since

η(v,v) = 1 ≠ 0, we can carry out the Gram-Schmidt process starting with v as the first vector

to generate an orthonormal basis {e1 = v,e2, ...,en+1} for R1,n. Define the (1+n)× (1+n)

matrix B whose i-th column is ei, and define A = ηB. Then AT v = (1,0, ...,0)T by orthonor-

mality. Both B and η are in O(1,n) because each has its columns orthonormal to one

another under the (1,n) Minkowski metric. Thus A = ηB ∈O(1,n).

Next consider any pair of vector vi,vk ∈ R1,n, both with Minkowski inner product

η(vi,vi) = η(vk,vk) = 0. If both are equal to the trivial vector (0, ...,0)T , let A′ be any

matrix in O(1,n) and we are done with a0 = b0 = b1 = b2 = 0. Thus assume at least one of

them, WLOG say vi, is not the trivial vector. Let vi = (a0,a)T where a = (a1, ...,an)T ∈Rn.

Since η(vi,vi) = 0 and vi is not the trivial vector, the Euclidean norm of a, ∣a∣ = a0 ≠ 0 (a0

is positive because vi is in the positive light cone). We can thus use a/∣a∣ as the first vector

in the Gram-Schmidt process on Rn to generate an orthonormal basis {e1 = a/∣a∣,e2, ...,en}

for Rn. Define the n×n matrix B′ whose i-th column is ei. Then define the (1+n)×(1+n)

block diagonal matrix B
′′

by
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B
′′

=

⎛
⎜
⎜
⎝

1 0

0 B′

⎞
⎟
⎟
⎠

. (1.127)

B
′′

∈ O(1,n) because its columns are orthonormal. Also B
′′T vi = (a0,a0,0, ...,0)T . Let

vT
k B

′′

= (b0,b1,b′) where b′ = (b′2, ...,b
′
n) ∈Rn−1. If b′ is the trivial vector in Rn−1, we are

done by setting A′ = B
′′

and b2 = 0. If b′ is not the trivial vector, we can again use b′/∣b′∣

as the first vector in the Gram-Schmidt process on Rn−1 to generate an orthonormal basis

{e1 = b′/∣b′∣,e2, ...,en−1} for Rn−1. Define the (n−1)×(n−1) matrix C′ whose i-th column

is ei. Then define the (1+n)×(1+n) block diagonal matrix C
′′

by

C
′′

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0 C′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.128)

C
′′

∈ O(1,n) because its columns are orthonormal. Let A′ = B
′′

C
′′

. A′ ∈ O(1,n) because

B
′′

,C
′′

are. We also have A
′T vi = (a0,a0,0, ...,0)T , vT

k A′ = (b0,b1,b2,0, ...,0) where b2 = ∣b′∣.

Notice that b2
0−b2

1−b2
2 = η(A

′T vk,A
′T vk) = η(vk,vk) = 0, where in the second equality we

used the facts that O(1,n) is closed under transposition, so A
′T ∈ O(1,n), and that the

Lorentz group O(1,n) preserves η(⋅, ⋅).

Before justifying the choice x{i,k} = 1/Cik, we need to show Cik ≠ 0 for i≠ k (by definition

we always have i ≠ k in x{i,k} and M{i,k}). Also recall that in (1.38), we require x{i,k} ∈Q+.

Thus a prerequisite for the choice x{i,k} = 1/Cik to make sense is that Cik > 0 for i ≠ k (Cik is

already an integer since it is an intersection number). We have the following lemma:

Lemma 9. Cik ≥ 0. Furthermore, Cik > 0 if i ≠ k; Cii = 0 if and only if vi is lightlike; i.e.

η(vi,vi) = 0.
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Proof. Recall we have

Cik = η(vi,vk) . (1.129)

Also, by Table 1.3, all the Kähler cone generators vi,vk are either time-like or light-like

vectors belonging to the same light cone. In addition, of course neither of them is the

trivial vector 0, because they generate the Kähler cone. This means all their inner products

are non-negative, i.e. Cik = η(vi,vk) ≥ 0, where equality Cik = η(vi,vk) = 0 holds only when

vi and vk are parallel light-like vectors. This implies that vi and vk are not independent, so

they must be the same Kähler cone generator vi = vk.

With this, we can prove the following theorem:

Theorem 5. Let x{i,k} = 1/Cik. Then M{i,k} is positive semi-definite.

Proof. It is equivalent to prove that with x{i,k} = 1/Cik, AT M̃{i,k}A or A
′T M̃{i,k}A′, depend-

ing on which case above we are refering to is positive semi-definite, where A (or A′) is the

appropriately chosen matrix in O(1,n) discussed above.

Case 1. Suppose M̃{i,k}, defined in (1.118), has at least one of its vi,vk with Minkowski

inner product 1. WLOG say η(vi,vi) = 1. Then

AT M̃{i,k}A = x{i,k}AT (vi ⋅vT
k +vk ⋅vT

i )A−η

=
1
c0

((1,0, ...,0)T (c0,c1, ...,cn)+(c0,c1, ...,cn)
T (1,0, ...,0))−η

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 c1
c0

c2
c0

c3
c0

... cn
c0

c1
c0

1 0 0 ... 0

c2
c0

0 1 0 ... 0

. . . . . .

cn
c0

0 0 . . 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.130)
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where in the first equality, we used the fact that A ∈ O(1,n) if and only if AT ηA = η . In

the second equality, we used (1.125) and let AT vk = (c0,c1, ...,cn)T , so Cik = η(vi,vk) =

η(AT vi,AT vk) = η((1,0, ...,0)T ,(c0,c1, ...,cn)T ) = c0 (notice that O(1,n) is closed under

transposition, so AT ∈O(1,n) and thus AT preserves the inner product η(⋅, ⋅)). It is not hard

to see that the characteristic equation of AT M̃{i,k}A is

det(AT M̃{i,k}A−λ I) = (1−λ)n−1⎛

⎝
λ

2−2λ +1−
1
c2

0

n
∑
j=1

c2
j
⎞

⎠
= 0 , (1.131)

so the eigenvalues are

λ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, ...1
²

n−1

,
⎛
⎜
⎝

1±

¿
Á
Á
ÁÀ

n
∑
j=1

c2
j

c2
0

⎞
⎟
⎠

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (1.132)

Since

0 ≤ 0 or 1 = η(vk,vk) = η(AT vk,AT vk) = η((c0,c1, ...,cn)
T ,(c0,c1, ...,cn)

T ) = c2
0−

n
∑
j=1

c2
j ,

(1.133)

we must have

1 ≥

¿
Á
Á
ÁÀ

n
∑
j=1

c2
j

c2
0
, (1.134)

so all the eigenvalues in (1.132) are non-negative. In particular, if η(vk,vk) = c2
0−∑

n
j=1 c2

j =

1, the eigenvalues will be

λ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, ...1
²

n−1

,
⎛

⎝
1±

¿
Á
ÁÀ1−

1
c2

0

⎞

⎠

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (1.135)

If η(vk,vk) = c2
0−∑

n
j=1 c2

j = 0, the eigenvalues will be

λ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, ...1
²

n−1

,0,2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (1.136)
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Case 2. Suppose M̃{i,k}, defined in (1.118), has both of its vi,vk with Minkowski inner

product 0. Then

A
′T M̃{i,k}A′ = x{i,k}A

′T (vi ⋅vT
k +vk ⋅vT

i )A′−η

=
1

b0−b1
((1,1,0, ...,0)T (b0,b1,b2,0...,0)+(b0,b1,b2,0, ...,0)T (1,1,0, ...,0))−η

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0+b1
b0−b1

b0+b1
b0−b1

b2
b0−b1

0 ... 0

b0+b1
b0−b1

b0+b1
b0−b1

b2
b0−b1

0 ... 0

b2
b0−b1

b2
b0−b1

1 0 ... 0

0 . 0 1 . .

. . . . . .

0 . 0 . . 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.137)

where in the second equality we used (1.126) and Cik = η(vi,vk) = η(A
′T vi,A

′T vk) =

η((a0,a0,0, ...,0)T ,(b0,b1,b2,0, ...,0)T ) = a0(b0−b1). Letting

s ≡
b0+b1

b0−b1

√
s =

b2

b0−b1
, (1.138)

where in the second equation we used the relationship b2
0−b2

1−b2
2 = 0, it is not hard to see

that the characteristic equation of A
′T M̃{i,k}A′ is

det(A
′T M̃{i,k}A′−λ I) = (1−λ)n−2

λ
2(2s+1−λ) = 0 , (1.139)

so the eigenvalues are

λ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, ...1
²

n−2

,0,0,
3b0+b1

b0−b1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (1.140)

The last eigenvalue 3b0+b1
b0−b1

is positive because b2
0−b2

1−b2
2 = 0, so ∣b0∣ > ∣b1∣.
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Notice that the only required condition for this general proof is that all the Kähler cone

generators vi,vk are either time-like or light-like, and belong to the same light cone. This

light cone does not need to be the positive one. Indeed, it is not hard to see that if all the

Kähler cone generators were to belong to the negative light cone, the proof still holds with

slight modifications at the relevant parts. Also, the time-like Kähler cone generators can

always be rescaled to have Minkowski inner product η(vi,vi) = 1. In summary, we have the

following corollary:

Corollary 6. If all the Kähler cone generators vi,vk are either time-like or light-like, and

belong to the same light cone, then each matrix M{i,k} will be positive semi-definite by

setting x{i,k} = 1/Cik.
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Chapter 2
Elliptic fibrations with rank three

Mordell-Weil group: F-theory with

U(1) × U(1) × U(1) gauge symmetry

2.1 Introduction and Summary of Results

Compactifications of F-theory [135, 137, 136] are a very interesting and broad class of

string vacua, because they are on the one hand non-perturbative, but still controllable, and

on the other hand realize promising particle physics. In particular, F-theory GUTs have

drawn a lot of attention in the recent years, first in the context of local models follow-

ing [71, 72, 73, 74] and later also in compact Calabi-Yau manifolds [167, 76, 77, 78, 79],

see e.g. [80, 81, 82] for reviews. Both of these approaches rely on the well-understood

realization of non-Abelian gauge symmetries that are engineered by constructing codimen-

sion one singularities of elliptic fibrations [135, 137, 136, 173] that have been classified in

[174, 180].1 In addition, the structure of these codimension one singularities governs the

1A toolbox to construct examples of compact Calabi-Yau manifolds with a certain non-Abelian gauge
group is provided by toric geometry, see [142, 87, 88].
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pattern of matter that is localized at codimension two singularities of the fibration [89], with

some subtleties of higher codimension singularities uncovered recently in [90, 91, 92].2

Abelian gauge symmetries are crucial ingredients for extensions both of the standard

model as well as of GUTs. However, the concrete construction of Abelian gauge sym-

metries as well as their matter content has only recently been addressed systematically in

global F-theory compactifications. This is due to the fact that U(1) gauge symmetries in

F-theory are not related to local codimension one singularities but to the global properties

of the elliptic fibration of the Calabi-Yau manifold. Concretely, the number of U(1)-factors

in an F-theory compactification is given by the rank of the Mordell-Weil group of the el-

liptic fibration3 [137, 136], see [97, 98, 99, 100, 101] for a mathematical background. The

explicit compact Calabi-Yau manifolds with rank one [154] and the most general rank two

[155, 156] Abelian sector have been constructed recently. In the rank two case, the general

elliptic fiber is the generic elliptic curve in dP2 and its Mordell-Weil group is rank two with

the two generators induced from the ambient space dP2. The full six-dimensional spec-

trum of the Calabi-Yau elliptic fibrations with elliptic fiber in dP2 has been determined in

[156, 159] and chiral compactifications to four dimensions on Calabi-Yau fourfolds with

G4-flux were constructed in [157, 158]. We note, that certain aspects of Abelian sectors in

F-theory could be addressed in local models [108, 166, 76, 110, 111, 112, 113, 114, 115].

In addition, special Calabi-Yau geometries realizing one U(1)-factor have been studied in

[168, 117, 118, 119, 120, 121].4

In this work we follow the systematic approach initiated in [154, 156] to construct el-

liptic curves with higher rank Mordell-Weil groups and their resolved elliptic fibrations,

that aims at a complete classification of all possible Abelian sectors in F-theory. We con-

2For a recent approach based on deformations, cf. [93]. See also [94] for a determination of BPS-states,
including matter states, of (p,q)-strings using the refined topological string.

3See also [169, 96] for the interpretation of the torsion subgroup of the Mordell-Weil group as inducing
non-simply connected non-Abelian group in F-theory.

4For a systematic study of rational sections on toric K3-surfaces we refer to [164].
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struct the most general F-theory compactifications with U(1)×U(1)×U(1) gauge symmetry

by building elliptically fibered Calabi-Yau manifolds with rank three Mordell-Weil group.

Most notably, we show that this forces us to leave the regime of hypersurfaces to represent

these Calabi-Yau manifolds explicitly. In fact, the general elliptic fiber in the fully resolved

elliptic fibration is naturally embedded as the generic Calabi-Yau complete intersection into

Bl3P3, the blow-up of P3 at three generic points. We show that this is the general elliptic

curve E with three rational points and a zero point. We determine the birational map to its

Tate and Weierstrass form. All generic Calabi-Yau elliptic fibrations of E over a given base

B are completely fixed by the choice of three divisors in the base B. Furthermore, we show

that every such F-theory vacuum corresponds to an integral in certain reflexive polytopes5,

that we construct explicitly.

As a next step, we determine the representations of massless matter in four- and six-

dimensional F-theory compactifications by thoroughly analyzing the generic codimension

two singularities of these elliptic Calabi-Yau manifolds. We find 14 different matter rep-

resentations, cf. table 2.1, with various U(1)3-charges. Note, that the construction leads

to representations that are symmetric under permutations of the first two U(1) factors,

but not the third one. Interestingly, we obtain three representations charged under all

U(1)×U(1)×U(1)-charged matter

(1,1,1), (1,1,0), (1,0,1), (0,1,1), (1,0,0), (0,1,0), (0,0,1),

(1,1,−1), (−1,−1,−2), (0,1,2), (1,0,2), (−1,0,1), (0,−1,1), (0,0,2)

Table 2.1: Matter representation for F-theory compactifications with a general rank-three
Mordell-Weil group, labeled by their U(1)-charges (q1,q2,q3).

three U(1)-factors, most notably a tri-fundamental representation. Matter in these rep-

5The correspondence between F-theory compactifications and (integral) points in a polytope has been
noted in the toric case [123] and in elliptic fibrations with a general rank two Mordell-Weil group [157].

71



resentations is unexpected in perturbative Type II compactifications and might have in-

teresting phenomenological implications. These results, in particular the appearance of

a tri-fundamental representation, indicate an intriguing structure of the codimension two

singularities of elliptic fibration with rank three Mordell Weil group.

Furthermore, we geometrically derive closed formulas for all matter multiplicities of

charged hypermultiplets in six dimensions for F-theory compactifications on elliptically

fibered Calabi-Yau threefolds over a general base B. As a consistency check, we show that

the spectrum is anomaly-free. Technically, the analysis of codimension two singularities

requires the study of degenerations of the complete intersection E in Bl3P3 and the com-

putation of the homology classes of the determinantal varieties describing certain matter

loci.

Along the course of this work we have encountered and advanced a number of technical

issues. Specifically, we discovered three birational maps of the generic elliptic curve E in

Bl3P3 to a non-generic form of the elliptic curve of [155, 156] in dP2. These maps are

isomorphisms if the elliptic curve E does not degenerate in a particular way. The dP2-

elliptic curves we obtain are non-generic since one of the generators of the Mordell-Weil

group of E , with all its rational points being toric, i.e. induced from the ambient space

Bl3P3, maps to a non-toric rational point. It would be interesting to investigate, whether

any non-toric rational point on dP2 can be mapped to a toric point of E in Bl3P3. In addition,

we see directly from this map that the elliptic curve in dP3 can be obtained as a special case

of the curve E in Bl3P3 .

This work is organized as follows. In section 2.2 we construct the general elliptic curve

E . From the existence of the three rational points alone, we derive that E is naturally rep-

resented as the complete intersection of two non-generic quadrics in P3, see section 2.2.1.

The resolved elliptic curve E is obtained in section 2.2.2 as the generic Calabi-Yau com-

plete intersection in Bl3P3, where all its rational points are toric, i.e. induced from the
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ambient space. In section 2.2.3 we construct three canonical maps of this elliptic curve to

the non-generic elliptic curves in dP2. In section 2.2.4 we find the Weierstrass form of the

curve E along with the Weierstrass coordinates of all its rational points. We proceed with

the construction of elliptically fibered Calabi-Yau manifolds X̂ with general elliptic fiber in

Bl3P3 over a general base B in section 2.3. First, we determine the ambient space and all

bundles on B relevant for the construction of X̂ in section 2.3.1. We discuss the basic gen-

eral intersections of X̂ in section 2.3.2 and classify all Calabi-Yau fibrations for a given base

B in section 2.3.3. In section 2.4 we analyze explicitly the codimension two singularities

of X̂ , which determine the matter representations of F-theory compactifications to six and

four dimensions. We follow a two-step strategy to obtain the charges and codimension two

loci of the 14 different matter representations of X̂ in sections 2.4.1 and 2.4.2, respectively.

We also determine the explicit expressions for the corresponding matter multiplicities of

charged hypermultiplets of a six-dimensional F-theory compactification on a threefold X̂3

with general base B. Our conclusions and a brief outlook can be found in 2.5. This work

contains two appendices: in appendix 2.6 we present explicit formulae for the Weierstrass

form of E , and in appendix 2.7 we give a short account on nef-partitions, that have been

omitted in the main text.

2.2 Three Ways to the Elliptic Curve with Three Rational

Points

In this section we construct explicitly the general elliptic curve E with a rank three Mordell-

Weil group of rational points, denoted Q, R and S.

We find three different, but equivalent representations of E . First, in section 2.2.1 we

find that E is naturally embedded into P3 as the complete intersection of two non-generic

quadrics, i.e. two homogeneous equations of degree two. Equivalently, we embed E in sec-
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tion 2.2.2 as the generic complete intersection Calabi-Yau into the blow-up Bl3P3 of P3 at

three generic points, which is effectively described via a nef-partition of the corresponding

3D toric polytope. In this representation the three rational points of E and the zero point P

descend from the four inequivalent divisors of the ambient space Bl3P3. Thus, the Mordell-

Weil group of E is toric. Finally, we show in section 2.2.3 that E can also be represented

as a non-generic Calabi-Yau hypersurface in dP2. In contrast to the generic elliptic curve

in dP2 that has a rank two Mordell-Weil group [155, 156] which is toric, the onefold in dP2

we find here exhibits a third rational point, say S, and has a rank three Mordell-Weil group.

This third rational point, however, is non-toric in the presentation of E in dP2. We note that

there are three different maps of the quadric intersection in Bl3P3 to an elliptic curve in dP2

corresponding to the different morphisms from Bl3P3 to dP2.

We emphasize that in the presentation of E as a complete intersection in Bl3P3 the

rank four Mordell-Weil group is toric. Thus, as we will demonstrate in section 2.3 this

representation is appropriate for the construction of resolved elliptic fibrations of E over a

base B.

2.2.1 The Elliptic Curve as Intersection of Two Quadrics in P3

In this section we derive the embedding of E with a zero point P and the rational points Q,

R and S into P3 as the intersection of two non-generic quadrics. We follow the methods

described in [154, 156] used for the derivation of the general elliptic curves with rank one

and two Mordell-Weil groups.

We note that the presence of the four points on E defines a degree four line bundle

O(P+Q+R+S) over E . Let us first consider a general degree four line bundleM over E .

Then the following holds, as we see by employing the Riemann-Roch theorem:

1. H0(E ,M) is generated by four sections, that we denote by u′, v′, w′, t′.

74



2. H0(E ,M2) is generated by eight sections. However we know ten sections of M2, the

quadratic monomials in [u′ ∶ v′ ∶w′ ∶ t′], i.e. u′2, v′2, w′2, t′2, u′v′, u′w′, u′t′, v′w′, v′t′,

w′t′.

The above first bullet point shows that [u′ ∶ v′ ∶ w′ ∶ t′] are of equal weight one and can be

viewed as homogeneous coordinates on P3. The second bullet point implies that H0(2M)

is generated by sections we already know and that there have to be two relations between

the ten quadratic monomials in [u′ ∶ v′ ∶w′ ∶ t′], that we write as

s1t′2+ s2u′2+ s3v′2+ s4w′2+ s5t′u′+ s6u′v′+ s7u′w′+ s8v′w′ = s9v′t′+ s10w′t′ , (2.1)

s11t′2+ s12u′2+ s13v′2+ s14w′2+ s15u′t′+ s16u′v′+ s17u′w′+ s18v′w′ = s19v′t′+ s20w′t′ ,

Now specialize toM =O(P+Q+R+S) and assume u′ to vanish at all points P,Q,R,S.

By inserting u′ = 0 into (2.1) we should then get four rational solutions corresponding to the

four points, i.e. other words (2.1) should factorize accordingly. However, this is not true for

generic si taking values e.g. in the ring of functions of the base B of an elliptic fibration6

Thus, we have to set the following coefficients si to zero,

s1 = s3 = s4 = s11 = s13 = s14 = 0 . (2.3)

As we see below in section 2.2.2, this can be achieved globally, by blowing up P3 at three

generic points.

For the moment, let us assume that (2.3) holds and determine P,Q,R,S. First we note
6In contrast, if we were considering an elliptic curve over an algebraically closed field, we could set some

si = 0 by using the PGL(4) symmetries of P3 to eliminate some coefficients si. For example, s3 = 0 can be
achieved by making the transformation

u′↦ u′+kv′ , with k obeying (s2k2
+ s6k+ s3) = 0 . (2.2)

Solving this quadratic equation in k will, however, involve the square roots of si, which is only defined in
an algebraically closed field. In particular, when considering elliptic fibrations the coefficients si will be
represented by polynomials, of which a square root is not defined globally.
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that the presentation (2.1) for the elliptic curve E now reads

s2u′2+ s5u′t′+ s6u′v′+ s7u′w′ = s9v′t′+ s10w′t′− s8v′w′ , (2.4)

s12u′2+ s15u′t′+ s16u′v′+ s17u′w′ = s19v′t′+ s20w′t′− s18v′w′ ,

which is an intersection of two non-generic quadrics in P3. Setting u′ = 0 we obtain

0 = s9v′t′+ s10w′t′− s8v′w′ , 0 = s19v′t′+ s20w′t′− s18v′w′ , (2.5)

which has in the coordinates [u′ ∶ v′ ∶w′ ∶ t′] the four solutions

P = [0 ∶ 0 ∶ 0 ∶ 1] , Q = [0 ∶ 1 ∶ 0 ∶ 0] , R = [0 ∶ 0 ∶ 1 ∶ 0] ,

S = [0 ∶ ∣MS
1 ∣∣M

S
3 ∣ ∶ −∣M

S
1 ∣∣M

S
2 ∣ ∶ −∣M

S
3 ∣∣M

S
2 ∣] . (2.6)

Here we introduced the determinants ∣MS
i ∣ of all three 2×2-minors MS

i reading

∣MS
1 ∣ = s9s20− s10s19 , ∣MS

2 ∣ = s8s19− s9s18 , ∣MS
3 ∣ = s8s20− s10s18 , (2.7)

that are obtained by deleting the (4− i)-th column in the matrix

MS =

⎛
⎜
⎜
⎝

s9 s10 −s8

s19 s20 −s18

⎞
⎟
⎟
⎠

, (2.8)

where MS is the matrix of coefficients in (2.5).

It is important to realize that the coordinates of the rational point S are products of

determinants in (2.7), in particular when studying elliptic fibrations at higher codimension

in the base B, cf. section 2.4. On the one hand, the vanishing loci of the determinant of

a single determinant ∣MS
i ∣ with i = 1,2,3 indicates the collisions of S with P, Q and R,
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respectively, i.e.

∣MS
1 ∣ = 0 ∶ S = P , ∣MS

2 ∣ = 0 ∶ S =Q , ∣MS
3 ∣ = 0 ∶ S = R . (2.9)

On the other hand the simultaneous vanishing of all ∣MS
i ∣ is equivalent to the two constraints

in (2.4) getting linearly dependent. Then, the elliptic curve E degenerates to an I2-curve,

i.e. two P1’s intersecting at two points, see the discussion around (2.27), with the point S

becoming the entire P1 = {u = s9v′t′ + s10w′t′ − s8v′w′ = 0}7. We note that this behavior of

S indicates that in an elliptic fibration the point S will only give rise to a rational, not a

holomorphic section of the fibration.

In summary, we have found that the general elliptic curve E with three rational points

Q, R, S and a zero point P is embedded into P3 as the intersection of the two non-generic

quadrics (2.4).

2.2.2 Resolved Elliptic Curve as Complete Intersection in Bl3P3

In this section we represent the elliptic curve E with a rank three Mordell-Weil group as a

generic complete intersection Calabi-Yau in the ambient space Bl3P3. As we demonstrate

here, the three blow-ups in Bl3P3 remove globally the coefficients in (2.3). In addition, the

three blow-ups resolve all singularities of E , that can appear in elliptic fibrations. Finally,

we emphasize that the elliptic curve E is a complete intersection associated to the nef-

partition of the polytope of Bl3P3, where we refer to appendix 2.7 for more details on

nef-partitions.

First, we recall the polytope of P3 and its nef-partition describing a complete intersec-

tion of quadrics. The polytope ∇P3 of P3 is the convex hull ∇P3 = ⟨ρ1,ρ2,ρ3,ρ4⟩ of the four

7This curve can be seen to define a P1 either using adjunction or employing the Segre embedding of
P1×P1 into P3.
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vertices

ρ1 = (−1,−1,−1) , ρ2 = (1,0,0) , ρ3 = (0,1,0) , ρ4 = (0,0,1) , (2.10)

corresponding to the homogeneous coordinates u′, v′, w′ and t′, respectively. The anti-

canonical bundle of P3 is K−1
P3 =O(4H), where H denotes the hyperplane class of P3. Two

generic degree two polynomials in the class O(2H) are obtained via (2.135) from the nef-

partition of the polytope of P3 into ∇1, ∇2 reading

∇P3 = ⟨∇1∪∇2⟩ , ∇1 = ⟨ρ1,ρ2⟩ , ∇2 = ⟨ρ3,ρ4⟩ , (2.11)

where ∪ denotes the union of sets of a vector space. This complete intersection defines the

elliptic curve in (2.1) with only the origin P.

Next, we describe the elliptic curve E as a generic complete intersection associated to

a nef-partition of Bl3P3, the blow-up of P3 at three generic points, that we choose to be P,

Q and R in (2.6). We first perform these blow-ups and determine the proper transform of E

by hand, before we employ toric techniques and nef-paritions.

The blow-up from P3 to Bl3P3 is characterized by the blow-down map

u′ = e1e2e3u , v′ = e2e3v , w′ = e1e3w , t′ = e1e2t . (2.12)

It maps the coordinates [u ∶ v ∶ w ∶ t ∶ e1 ∶ e2 ∶ e3] on Bl3P3 to the coordinates on [u ∶ v ∶ w ∶ t]

on P3. Here the ei = 0, i = 1,2,3, are the exceptional divisors Ei of the the blow-ups at

the points Q, R and P, respectively. We summarize the divisor classes of all homogeneous

coordinates on Bl3P3 together with the corresponding C∗-actions that follow immediately
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from (2.12) as

divisor class C∗-actions

u H −E1−E2−E3 1 1 1 1

v H −E2−E3 1 0 1 1

w H −E1−E3 1 1 0 1

t H −E1−E2 1 1 1 0

e1 E1 0 −1 0 0

e2 E2 0 0 −1 0

e3 E3 0 0 0 −1

(2.13)

Here H denotes the pullback of the hyperplane class H on P3. The coordinates [u ∶ w ∶ t],

[u ∶ v ∶ t] and [u ∶ v ∶w] are the homogeneous coordinates on each Ei ≅ P2, respectively, and

can not vanish simultaneously. Together with the pullback of the Stanley-Reissner ideal of

P3 this implies the following Stanley Reisner ideal on Bl3P3,

SR = {uvt,uwt,uvw,e1v,e2w,e3t,e1e2,e2e3,e1e3} . (2.14)

This implies the following intersections of the four independent divisors on Bl3P3,

H3 = E3
i = 1 , Ei ⋅H = Ei ⋅E j = 0 , i ≠ j . (2.15)

The proper transform under the map (2.12) of the constraints (2.4) describing E read

p1 ∶= s2e1e2e3u2+ s5e1e2ut + s6e2e3uv+ s7e1e3uw− s9e2vt − s10e1wt + s8e3vw , (2.16)

p2 ∶= s12e1e2e3u2+ s15e1e2ut + s16e2e3uv+ s17e1e3uw− s19e2vt − s20e1wt + s18e3vw .

We immediately see that this complete intersection defines a Calabi-Yau onefold in Bl3P3
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employing (2.13), adjunction and noting that the anti-canonical bundle of Bl3P3 reads

KBl3P3 =O(4H −2E1−2E2−2E3) . (2.17)

From (2.6), (2.12) and (2.16) we readily obtain the points in P, Q, R and S on Bl3P3.

They are given by the intersection of (2.16) with the four inequivalent toric divisors on

Bl3P3, the divisor Du ∶= {u = 0} and the exceptional divisors Ei. Their coordinates read

E3∩E ∶ P = [s10s19− s20s9 ∶ s10s15− s20s5 ∶ s19s5− s15s9 ∶ 1 ∶ 1 ∶ 1 ∶ 0] ,

E1∩E ∶ Q = [s19s8− s18s9 ∶ 1 ∶ −s19s6+ s16s9 ∶ −s18s6+ s16s8 ∶ 0 ∶ 1 ∶ 1] ,

E2∩E ∶ R = [s10s18− s20s8 ∶ −s10s17+ s20s7 ∶ 1 ∶ s18s7− s17s8 ∶ 1 ∶ 0 ∶ 1] ,

Du∩E ∶ S = [0 ∶ 1 ∶ 1 ∶ 1 ∶ s19s8− s18s9 ∶ s10s18− s20s8 ∶ s10s19− s20s9] .

(2.18)

Here we made use of the Stanley-Reissner ideal (2.14) to set the coordinates to one that can

not vanish simultaneously with u = 0, respectively, ei = 0.

We emphasize that the coordinates (2.18) are again given by determinants of 2× 2-

minors. Indeed, we can write (2.18) as

P = [−∣MP
3 ∣ ∶ ∣M

P
2 ∣ ∶ −∣M

P
1 ∣ ∶ 1 ∶ 1 ∶ 1 ∶ 0] , Q = [−∣MQ

3 ∣ ∶ 1 ∶ ∣MQ
2 ∣ ∶ −∣MQ

1 ∣ ∶ 0 ∶ 1 ∶ 1] ,

R = [∣MR
3 ∣ ∶ −∣M

R
2 ∣ ∶ 1 ∶ ∣M

R
1 ∣ ∶ 1 ∶ 0 ∶ 1] , S = [0 ∶ 1 ∶ 1 ∶ 1 ∶ −∣MQ

3 ∣ ∶ ∣MR
3 ∣ ∶ −∣M

P
3 ∣] (2.19)

Here we defined the matrices

MP =

⎛
⎜
⎜
⎝

−s5 s9 s10

−s15 s19 s20

⎞
⎟
⎟
⎠

, MQ =

⎛
⎜
⎜
⎝

−s6 −s8 s9

−s16 −s18 s19

⎞
⎟
⎟
⎠

, MR =

⎛
⎜
⎜
⎝

−s7 −s8 s10

−s17 −s18 s20

⎞
⎟
⎟
⎠

(2.20)
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with their 2× 2-minors MP,Q,R
i defined by deleting the (4− i)-th column. We emphasize

that the minors of the matrix MS in (2.7) can be expressed by the minors of the matrices in

(2.20) and, thus, MS does not appear in (2.19). The matrices MP,Q,R describe the two linear

equations that we obtain by setting e3 = 0, e2 = 0 and e1 = 0 in (2.16), respectively.

It is important to realize that the points P, Q and R are always distinct, as can be seen

from (2.19) and the Stanley-Reissner ideal (2.14) since the exceptional divisors do not

mutually intersect. However, the point S can agree with all other points, if the appropriate

minors in (2.19) vanish. In fact, we see the following pattern,

∣MP
3 ∣ = 0 ∶ S = P , ∣MQ

3 ∣ = 0 ∶ S =Q , ∣MR
3 ∣ = 0 ∶ S = R , (2.21)

which will be relevant to keep in mind for the study of elliptic fibrations.

We note that the elliptic curve E degenerates into an I2-curve if, as explained before

below (2.8), the rank of one of the matrices in (2.8) and (2.20) is one8. In addition, one

particular intersection in (2.18) no longer yields a point in E , but an entire P1. As discussed

below in section 2.4 the points on E , thus, will only lift to rational sections of an elliptic

fibration of E .

Finally, we show that the presentation of E as the complete intersection (2.16) can be

obtained torically from a nef-partition of the Bl3P3. For this purpose we only have to

realize that the blow-ups (2.12) can be realized torically by adding the following rays to the

polytope of P3 in (2.10),

ρe1 = (−1,0,0) , ρe2 = (0,−1,0) , ρe3 = (0,0,−1) . (2.22)

The rays of the polytope of Bl3P3 are illustrated in the center of figure (2.1).

8We emphasize that the complete intersection (2.4) in P3 degenerates into only one P1 and becomes
singular if one matrices in (2.20) has rank one, in contrast to the smooth I2-curve obtained from (2.16).
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Figure 2.1: Toric fan of Bl3P3 and the 2D projections to the three coordinate planes, each
of which yielding the polytope of dP2.

Here the ray ρei precisely corresponds to the exceptional divisor Ei = {ei = 0}. Then

we determine the nef-partitions of this polytope ∇Bl3P3 of Bl3P3. We find that is admits a

single nef-partition into ∇1, ∇2 reading

∇Bl3P3 = ⟨∇1∪∇2⟩ , ∇1 = ⟨ρ1,ρ4,ρe1,ρe2⟩ ∇2 = ⟨ρ2,ρ3,ρe3⟩ . (2.23)

It is straightforward to check that the general formula (2.135) for the nef-partition at hand

reproduces precisely the constraints (2.16).
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2.2.3 Connection to the cubic in dP2

In this section we construct three equivalent maps of the elliptic curve E given as the inter-

section (2.16) in Bl3P3 to the Calabi-Yau onefold in dP2. The elliptic curve we obtain will

not be the generic elliptic curve in dP2 found in [155, 156] with rank two Mordell-Weil

group, but non-generic with a rank three Mordell-Weil group with one non-toric generator.

The map of the toric generator of the Mordell-Weil group in Bl3P3 to a non-toric generator

in dP2 will be manifest.

The presentation of E as a non-generic hypersurface in dP2 with a non-toric Mordell-

Weil group allows us to use the results of [156] from the analysis of the generic dP2-

curve. On the one hand, we can immediately obtain the birational map of E in (2.16) to

the Weierstrass model by first using the map to dP2 and then by the map from dP2 to the

Weierstrass form. We present this map separately in section 2.2.4. On the other hand,

the study of codimension two singularities in section 2.4 will essentially reduce to the

analysis of codimension two singularities in fibrations with elliptic fiber in dP2. However,

the additional non-toric Mordell-Weil generator as well as the non-generic hypersurface

equation in dP2 will give rise to a richer structure of codimension two singularities.

Mapping the Intersection of Two Quadrics in P3 to the Cubic in P2

As a preparation, we begin with a brief digression on the map of an elliptic curve with a

single point P0 given as a complete intersection of two quadrics in P3 to the cubic in P2,

where we closely follow [124, 125].

Let us assume that there is a rational point P0 on the complete intersection of two

quadrics with coordinates [x0 ∶ x1 ∶ x2 ∶ x3] = [0 ∶ 0 ∶ 0 ∶ 1] in P3.9 This implies the quadrics

9We choose coordinates [x0 ∶ x1 ∶ x2 ∶ x3] on P3 in order to keep our discussion here general. We will
identify the xi with the coordinates used in sections 2.2.1 and (2.2.2) in section 2.2.3.
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must have the form

Ax3+B = 0 , Cx3+D = 0 , (2.24)

where A, C are linear and B, D are quadratic polynomials in the variables x0, x1, x2. Assum-

ing that A, C are generic, we obtain a cubic equation in P2 with coordinates [x0 ∶ x1 ∶ x2]10

by solving (2.24) for x3,

AD−BC = 0 , (2.25)

Here we have to require that [x0 ∶ x1 ∶ x2] ≠ [0,0,0], because x3 = −
B
A = −D

C has to be well-

defined. Then, the inverse map from the cubic in P2 to the complete intersection (2.24)

reads

[x0 ∶ x1 ∶ x2]↦ [x0 ∶ x1 ∶ x2 ∶ x3 = −
B
A = −D

C ] . (2.26)

The original point P0 = [0 ∶ 0 ∶ 0 ∶ 1] is mapped to the rational point given by the intersection

of the two lines A = 0, C = 0. This can be seen by noting that A =C = 0 in (2.24) implies also

B =D = 0 which is only solved if [x0 ∶ x1 ∶ x2] = [0 ∶ 0 ∶ 0].

We note that the case when A and C are co-linear, i.e. A ∼C, is special because the curve

(2.24) describes no longer a smooth elliptic curve, but a P1. Indeed, if A = aC for a number

a we can rewrite (2.24) as

B−aD = 0 , Cx3+D = 0 , (2.27)

where we can solve the second constraint for x3, given C ≠ 0, so that we are left with the

quadratic constraint B− aD = 0 in P2, which is a P1. This type of degeneration of the

complete intersection (2.24) will be the prototype for the degenerations of the elliptic curve

(2.16), that we find in section 2.4.
10We can think of this P2 as being obtained from P3 via a toric morphism defined by projection along one

toric ray. In the case at hand this is the ray corresponding to x3 = 0.
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Mapping the Intersection in Bl3P3 to the Calabi-Yau Onefold in dP2

Next we apply the map of section 2.2.3 to the elliptic curve E with three rational points.

Since (2.4) is linear in all three coordinates v′, w′ and t′ we will obtain according to the

discussion below (2.24) three canonical maps to a cubic in P2. In fact, these maps lift

to maps of the elliptic curve (2.16) in Bl3P3 to elliptic curves presented as Calabi-Yau

hypersurfaces in dP2, as we demonstrate in the following.

We construct the map from the complete intersection (2.16) to the elliptic curve in dP2

explicitly for the point R in (2.6), i.e. we identify P0 ≡R and [x0 ∶ x1 ∶ x2 ∶ x3] = [u′ ∶ v′ ∶ t′ ∶w′]

in the coordinates on P3 before the blow-up for the discussion in section 2.2.3. Next, we

compare (2.24) to the complete intersection (2.16). After the blow-up (2.12), the point R is

mapped to e2 = 0 as noted earlier in (2.18). This allows us to identify A, C in (2.24) as those

terms in (2.16) that do not vanish, respectively, B, D as the terms that vanish for e2 = 0.

Thus we effectively rewrite (2.16) in the form (2.24) with x3 ≡ w after the blow-up, since

w = 1 follows from (2.14) for e2 = 0, and obtain

A = s7e1e3u+ s8e3v− s10e1t , C = s17e1e3u+ s18e3v− s20e1t , (2.28)

B = e2(s2e1e3u2+ s5e1ut + s6e3uv− s9vt) , D = e2(s12e1e3u2+ s15e1ut + s16e3uv− s19vt) .

In particular, this identification implies that R = {e2 = 0} is mapped to A =C = 0 on dP2 as

required. Then, we solve both equations for w and obtain the hypersurface equation of the

form

u(s̃1u2e2
1e2

3+ s̃2uve1e2
3+ s̃3v2e2

3+ s̃5ute2
1e3+ s̃6vte1e3+ s̃8t2e2

1)+ s̃7v2te3+ s̃9vt2e1 = 0 , (2.29)

where we have set e2 = 1 using one C∗-action on Bl3P3 as B, D ∼ e2 and e2 = 0 implies

w = −B
A = −D

C = 0 which is inconsistent with the SR-ideal (2.14) . The coefficients s̃i in
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(2.29) read

coefficients in dP2-curve projected along [w ∶ e2]

s̃1 −s17s2+ s12s7

s̃2 −s18s2− s17s6+ s16s7+ s12s8

s̃3 −∣MQ
1 ∣ = s16s8− s18s6

s̃5 −s10s12+ s2s20− s17s5+ s15s7

s̃6 −s10s16− s18s5+ s20s6− s19s7+ s15s8+ s17s9

s̃7 ∣MQ
3 ∣ = s18s9− s19s8

s̃8 −∣MP
2 ∣ = −s10s15+ s20s5

s̃9 −∣MP
3 ∣ = s10s19− s20s9

(2.30)

Here we have used the minors introduced in (2.7) and in (2.19), (2.20).

We note that the ambient space of (2.29) is dP2 with homogeneous coordinates [u ∶

v ∶ w ∶ t ∶ e1 ∶ e3]. The relevant dP2 is obtained from Bl3P3 by a toric morphism that is

defined by projecting the polytope of Bl3P3 generated by (2.10), (2.22) onto the plane that

is perpendicular to the line through the rays ρ3 and ρe2 . The rays of the fan are shown in the

figure on the right of 2.1 that is obtained by the projection of the rays on the face number

two of the cube. This can also be seen from the unbroken C∗-actions in (2.13) and the

SR-ideal (2.14) for e2 = 1 and w = 0, or e2 = 0 and w = 1. Then, the cubic (2.29) is a section

precisely of the anti-canonical bundle of this dP2 surface.

The general elliptic curve in dP2 was studied in [156, 155] and shown to have a rank

two Mordell-Weil group. However, the elliptic curve (2.29) has by construction a rank three

Mordell-Weil group. Indeed, we see that the coefficients s̃i are non-generic and precisely

allow for a fourth rational point. This fourth point, however, does not descend from a

divisor of the ambient space dP2 and is not toric. In fact, the mapping of the four rational
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points (2.18) in the coordinates on dP2 reads

P = [−∣MP
3 ∣ ∶ ∣M

P
2 ∣ ∶ −∣M

P
1 ∣ ∶ 1 ∶ 1 ∶ 1 ∶ 0] ↦ [∣MP

3 ∣ ∶ −∣M
P
2 ∣ ∶ 1 ∶ 1 ∶ 0] , (2.31)

Q = [−∣MQ
3 ∣ ∶ 1 ∶ ∣MQ

2 ∣ ∶ −∣MQ
1 ∣ ∶ 0 ∶ 1 ∶ 1] ↦ [−∣MQ

3 ∣ ∶ 1 ∶ −∣MQ
1 ∣ ∶ 0 ∶ 1] ,

R = [∣MR
3 ∣ ∶ −∣M

R
2 ∣ ∶ 1 ∶ ∣M

R
1 ∣ ∶ 1 ∶ 0 ∶ 1] ↦ [∣MR

3 ∣ ∶ −∣M
R
2 ∣ ∶ ∣M

R
1 ∣ ∶ 1 ∶ 1] ,

S = [0 ∶ 1 ∶ 1 ∶ 1 ∶ −∣MQ
3 ∣ ∶ ∣MR

3 ∣ ∶ −∣M
P
3 ∣] ↦ [0 ∶ 1 ∶ 1 ∶ −∣MQ

3 ∣ ∶ −∣MP
3 ∣] .

We see, that the points P, Q and S are mapped to the three toric points on the elliptic curve

in dP2 studied in [156], whereas the points R is mapped to a non-toric point.

The map from the complete intersection in Bl3P3 to the elliptic curve (2.29) in dP2

implies that the results from the analysis of [156], where the generic elliptic curve in dP2

was considered, immediately apply. More precisely, renaming the coordinates [u ∶ v ∶ t ∶ e1 ∶

e3] in (2.29) as [u ∶ v ∶ w ∶ e1 ∶ e2] we readily recover equation (3.4) of [156]. Furthermore,

the points P, Q and S in (2.31) immediately map to the origin and the two rational points

of the rank two elliptic curve in dP2, that we denote in the following as P̃, Q̃ and R̃. In the

notation of [156] we thus rewrite (2.31) using (2.30) as

P ↦ P̃ ∶= [−s̃9 ∶ s̃8 ∶ 1 ∶ 1 ∶ 0] , Q ↦ Q̃ ∶= [−s̃7 ∶ 1 ∶ s̃3 ∶ 0 ∶ 1] ,

S ↦ R̃ ∶= [0 ∶ 1 ∶ 1 ∶ −s̃7 ∶ s̃9] . (2.32)

We emphasize that the origin P in the complete intersection in (2.16) is mapped to the

origin P̃, which implies that the Weierstrass form of the curve in dP2 will agree with the

Weierstrass form of the curve (2.16), cf. section 2.2.4.

As we mentioned before, the point R is mapped to a non-toric point in dP2. This com-

plicates the determination of the Weierstrass coordinates for R, for example. Fortunately,

there are two other maps of the elliptic curve (2.16) to a curve in dP2 in which the point R
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is mapped to a toric point and another point, either Q or P, are realized non-torically. Thus,

we construct in the following a second map to an elliptic curve in dP2, where R is toric.

Since the logic is completely analogous to the previous construction, we will be as brief as

possible.

We choose P0 ≡Q for the map to dP2. We recall from (2.18) that Q is realized as e1 = 0

on the elliptic curve in Bl3P3. Thus, we write (2.16) as

Av+B = 0 , Cv+D = 0 , (2.33)

where, as before, A and C are obtained by setting e1 = 0 and B, D are the terms proportional

to e1,

A = −s9e2t + s6e2e3u+ s8e3w , C = −s19e2t + s16e2e3u+ s18e3w , (2.34)

B = e1(s2e2e3u2+ s5e2ut + s7e3uw− s10wt) , D = e1(s12e2e3u2+ s15e2ut + s17e3uw− s20wt) .

Thus, we obtain an elliptic curve in dP2 with homogeneous coordinates [u ∶w ∶ t ∶ e2 ∶ e3] by

solving (2.33) for v and by setting e1 = 1 as required by the SR-ideal (2.14). The hypersur-

face constraint (2.25) takes the form

u(ŝ1u2e2
2e2

3+ ŝ2uwe2e2
3+ ŝ3w2e2

3+ ŝ5ute2
2e3+ ŝ6wte2e3+ ŝ8t2e2

2)+ ŝ7w2te3+ ŝ9wt2e2 = 0 ,

(2.35)
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with coefficients ŝi defined as

coefficients in dP2-curve projected along [v ∶ e1]

ŝ1 −s16s2+ s12s6

ŝ2 −s18s2+ s17s6− s16s7+ s12s8

ŝ3 −∣MR
1 ∣ = −s18s7+ s17s8

ŝ5 s19s2− s16s5+ s15s6− s12s9

ŝ6 s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9

ŝ7 ∣MR
3 ∣ = s10s18− s20s8

ŝ8 −∣MP
1 ∣ = s19s5− s15s9

ŝ9 ∣MP
3 ∣ = −s̃9 = −s10s19+ s20s9

(2.36)

where we have used (2.30). Analogously to the previous map, the ambient space of the

hypersurface (2.35) is the dP2 with homogeneous coordinates [u ∶ w ∶ t ∶ e2 ∶ e3] that is ob-

tained from Bl3P3 by the toric morphism induced by projecting along the line through the

rays ρ2 and ρe1 . The rays of the fan are shown in the left figure of 2.1 that corresponds to

the projection of the rays on the face number one. Then, the three rational points on E and

the origin get mapped, in the coordinates [u ∶w ∶ t ∶ e2 ∶ e3] of dP2, to

P = [−∣MP
3 ∣ ∶ ∣M

P
2 ∣ ∶ −∣M

P
1 ∣ ∶ 1 ∶ 1 ∶ 1 ∶ 0] ↦ [−∣MP

3 ∣ ∶ −∣M
P
1 ∣ ∶ 1 ∶ 1 ∶ 0] , (2.37)

Q = [−∣MQ
3 ∣ ∶ 1 ∶ ∣MQ

2 ∣ ∶ −∣MQ
1 ∣ ∶ 0 ∶ 1 ∶ 1] ↦ [−∣MQ

3 ∣ ∶ ∣MQ
2 ∣ ∶ −∣MQ

1 ∣ ∶ 1 ∶ 1] ,

R = [∣MR
3 ∣ ∶ −∣M

R
2 ∣ ∶ 1 ∶ ∣M

R
1 ∣ ∶ 1 ∶ 0 ∶ 1] ↦ [∣MR

3 ∣ ∶ 1 ∶ ∣M
R
1 ∣ ∶ 0 ∶ 1] ,

S = [0 ∶ 1 ∶ 1 ∶ 1 ∶ −∣MQ
3 ∣ ∶ ∣MR

3 ∣ ∶ −∣M
P
3 ∣] ↦ [0 ∶ 1 ∶ 1 ∶ ∣MR

3 ∣ ∶ −∣M
P
3 ∣] .

As before, it is convenient to make contact to the notation of [156]. After the renaming

[u ∶ w ∶ t ∶ e2 ∶ e3] → [u ∶ v ∶ w ∶ e1 ∶ e2] we obtain the hypersurface constraint (2.35) takes

the standard form of eq. (3.4) in [156]. In addition, we see that the points P, R and S get
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mapped to the toric points on dP2, whereas Q maps to a non-toric point. Denoting the origin

of the dP2-curve by P̂ and the two rational points by Q̂, R̂ in order to avoid confusion, we

then write (2.37) as

P ↦ P̂ ∶= [−ŝ9 ∶ ŝ8 ∶ 1 ∶ 1 ∶ 0] , R ↦ Q̂ = [−ŝ7 ∶ 1 ∶ ŝ3 ∶ 0 ∶ 1] ,

S ↦ R̃ = [0 ∶ 1 ∶ 1 ∶ ŝ7 ∶ −ŝ9] . (2.38)

We note that there is a third map from (2.16) to dP2 by solving for the variable t,

respectively, e3 (its fan would correspond to the upper figure in figure 2.1 that shows the

projection of the rays in the face number three). Although this map is formally completely

analogous to the above the maps, it is not very illuminating for our purposes since the

chosen zero point P on E maps to a non-toric point in dP2. In particular, the Weierstrass

model with respect to P can not be obtained from this elliptic curve in dP2 by simply

applying the results of [156], where P by assumption has to be a toric point.

2.2.4 Weierstrass Form with Three Rational Points

Finally, we are prepared to obtain the Weierstrass model for the elliptic curve E in (2.16)

with respect to the chosen origin P along with the coordinates in Weierstrass form for

the three rational points Q, R and S. We present three maps to a Weierstrass model in

this work, each of which yielding an identical Weierstrass form, i.e. identical f , g in y2 =

x3+ f xz4+gz6. The details of the relevant computations as well as the explicit results can

be found in appendix 2.6.

The simplest two ways to obtain this Weierstrass from is by first exploiting the two pre-

sentations of the elliptic curve E as the hypersurfaces (2.29) and (2.35) in dP2 constructed

in section 2.2.3 and by then using the birational map of [156] of the general elliptic curve

in dP2 to the Weierstrass form in P2(1,2,3). In summary, we find the following schematic
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coordinates for the coordinates in Weierstrass form of the rational points Q, R and S

Q = [gQ
2 ∶ g

Q
3 ∶ 1] , R = [gR

2 ∶ g
R
3 ∶ 1] , S = [gS

2 ∶ g
S
3 ∶ (s10s19− s9s20)] (2.39)

with the explicit expressions for gQ,R,S
2 and gQ,R,S

3 given in (2.127-2.131) in appendix 2.6.

The explicit form for f and g, along with the discriminant follow from the formulas in

[156] in combination with (2.30), respectively, (2.36). In fact, we obtain (2.39) for Q and

S by using the presentation (2.29) along with the maps (2.32) of the rational points Q and

S onto the two toric points in the dP2-elliptic curve, denoted by Q̃ and R̃ in this context.

Then, we apply Eqs. (3.11) and (3.12) of [156] for the coordinates in Weierstrass form of

the two toric rational points on the elliptic curve in dP2. For concreteness, for the curve

(2.29) the coordinates in Weierstrass form of the two points read

[gQ
2 ∶ g

Q
3 ∶ zQ] = [ 1

12(s̃2
6−4s̃5s̃7+8s̃3s̃8−4s̃2s̃9),

1
2(s̃3s̃6s̃8− s̃2s̃7s̃8− s̃3s̃5s̃9+ s̃1s̃7s̃9) ∶ 1] (2.40)

for the point Q̃ = [−s̃7 ∶ 1 ∶ s̃3 ∶ 0 ∶ 1] and

gS
2 = 1

12(12s̃2
7s̃2

8+ s̃2
9(s̃2

6+8s̃3s̃8−4s̃2s̃9)+4s̃7s̃9(−3s̃6s̃8+2s̃5s̃9)) ,

gS
3 = 1

2(2s̃3
7s̃3

8+ s̃3s̃3
9(−s̃6s̃8+ s̃5s̃9)+ s̃2

7s̃8s̃9(−3s̃6s̃8+2s̃5s̃9)

+s̃7s̃2
9(s̃2

6s̃8+2s̃3s̃2
8− s̃5s̃6s̃9− s̃2s̃8s̃9+ s̃1s̃2

9) ,

zS = s̃9 (2.41)

for the point R̃ = [0 ∶ 1 ∶ 1− s̃7 ∶ s̃9], where we apply (2.30). The explicit result in terms of

the coefficients si for both Q, S can be found in (2.127), respectively, (2.131).

In order to obtain the Weierstrass coordinates for the point R in (2.39) we invoke the

map R↦ Q̂ in (2.38) for the elliptic curve (2.35) in dP2. Here, the coordinates of R↦ Q̂

are again given by (2.40) after replacing s̃i→ ŝi. The explicit form for these coordinates in

91



terms of the si is obtained using (2.36) and can be found in (2.129). We emphasize that the

coordinates in Weierstrass form for S can also be obtained from the map S↦ R̂ in (2.38) in

combination with (2.36). They precisely agree with those in (2.131) deduced from the map

S↦ R̃ and (2.30).

Alternatively, one can directly construct the birational map from (2.16) to the Weier-

strass form by extension of the techniques of [154, 156], where x and y in P2(1,2,3) are

constructed as sections of appropriate line bundles that vanish with appropriate degrees at

Q, R and S. However, the corresponding calculations are lengthy and the resulting Weier-

strass model is identical to the one obtained from dP2. Thus, we have opted to relegate this

analysis to appendix 2.6.

2.3 Elliptic Fibrations with Three Rational Sections

In this section we construct resolved elliptically fibered Calabi-Yau manifolds E → X̂
π
→ B

over a base B with a rank three Mordell-Weil group. The map π denotes the projection

to the base B and the general elliptic fiber E = π−1(pt) over a generic point pt in B is the

elliptic curve with rank three Mordell-Weil group of section 2.2. An elliptic Calabi-Yau

manifold X̂ with all singularities at higher codimension resolved is obtained by fibering E

in the presentation (2.16). In addition, in this representation for E the generators of the

Mordell-Weil group are given by the restriction to X̂ of the toric divisors of the ambient

space Bl3P3 of the fiber, i.e. the Mordell-Weil group of the generic X̂ is toric.

We begin in section 2.3.1 with the construction of Calabi-Yau elliptic fibrations X̂ with

rank three Mordell-Weil group over a general base B with the elliptic curve (2.16) as the

general elliptic fiber. We see that all these fibrations are classified by three divisors in

the base B. Then in section 2.3.2 we compute the universal intersections on X̂ , that hold

generically and are valid for any base B. Finally, in section 2.3.3 we classify all generic
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Calabi-Yau manifolds X̂ with elliptic fiber E in Bl3P3 over any base B. Each such F-theory

vacua X̂ is labeled by one point in a particular polytope, that we determine.

The techniques and results in the following analysis are a direct extension to the ones

used in [156, 157, 159] for the case of a rank two Mordell-Weil group.

2.3.1 Constructing Calabi-Yau Elliptic Fibrations

Let us begin with the explicit construction of the Calabi-Yau manifold X̂ . Abstractly, a

general elliptic fibration of the given elliptic curve E over a base B is given by defining

the complete intersection (2.16) over the function field of B. In other words, we lift all

coefficients si as well as the coordinates in (2.16) to sections of appropriate line bundles

over B.

To each of the homogeneous coordinates on Bl3P3 we assign a different line bundle

on the base B. However, we can use the (C∗)4-action in (2.13) to assign without loss of

generality the following non-trivial line bundles

u ∈OB(Du) , v ∈OB(Dv) , w ∈OB(Dw) , (2.42)

with all other coordinates [t ∶ e1 ∶ e2 ∶ e3] transforming in the trivial bundle on B. Here KB

denotes the canonical bundle on B, [KB] the associated divisor and Du, Dv and Dw are

three, at the moment, arbitrary divisors on B. They will be fixed later in this section by

the Calabi-Yau condition on the elliptic fibration. The assignment (2.42) can be described

globally by constructing the fiber bundle

Bl3P3 // Bl3P3
B(Du,Dv,Dw)

��

B

(2.43)
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The total space of this fibration is the ambient space of the complete intersection (2.16),

that defines the elliptic fibration of E over B.

Next, we require the complete intersection (2.16) to define a Calabi-Yau manifold in

the ambient space (2.43). To this end, we first calculate the anti-canonical bundle of

Bl3P3
B(Du,Dv,Dw) via adjunction. We obtain

K−1
Bl3P3

B
= 4H −2E1−2E2−2E3+ [K−1

B ]+Du+Dv+Dw , (2.44)

where we suppressed the dependence on the vertical divisors Du, Dv and Dw for brevity of

our notation and H as well as the Ei are the classes introduced in (2.13). For the complete

intersection (2.16) to define a Calabi-Yau manifold X̂ in (2.43) we infer again from adjunc-

tion that the sum of the classes of the two constraints p1, p2 has to be agree with [K−1
Bl3P3

B
].

Thus, the Calabi-Yau condition reads

[p1]+ [p2]
!
= 4H −2E1−2E2−2E3+ [K−1

B ]+Du+Dv+Dw . (2.45)

We see from (2.13) that both constraints in (2.16) are automatically in the divisor class

2H −E1 −E2 −E3 w.r.t. the classes on the fiber Bl3P3. Thus, (2.45) effectively reduces to

a condition on the class of (2.16) in the homology of the base B. Denoting the part of the

homology classes of the [pi] in the base B by [p1]b and [p2]b+Dv+Dw, we obtain

[p1]
b+ [p2]

b !
= [K−1

B ]+Du . (2.46)

Here we shifted the class [p2]b → Dv +Dw + [pb
2] for reasons that will become clear in

section 2.3.3.

Using this information we fix the line bundles on B in which the coefficients si take

values. We infer from (2.16), (2.42) and the Calabi-Yau condition (2.46) the following
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assignments of line bundles,

section line-bundle

s2 O([K−1
B ]−Du− [p2]

b)

s5 O([K−1
B ]− [p2]

b)

s6 O([K−1
B ]− [p2]

b−Dv)

s7 O([K−1
B ]− [p2]

b−Dw)

s8 O([K−1
B ]− [p2]

b+Du−Dv−Dw)

s9 O([K−1
B ]− [p2]

b+Du−Dv)

s10 O([K−1
B ]− [p2]

b+Du−Dw)

section line-bundle

s12 O(−2Du+Dv+Dw+ [p2]
b)

s15 O(−Du+Dv+Dw+ [p2]
b)

s16 O(−Du+Dw+ [p2]
b)

s17 O(−Du+Dv+ [p2]
b)

s18 O([p2]
b)

s19 O(Dw+ [p2]
b)

s20 O(Dv+ [p2]
b)

(2.47)

We also summarize the complete line bundles of the homogeneous coordinates on Bl3P3

by combining the classes in (2.13) and (2.42),

section bundle

u O(H −E1−E2−E3+Du)

v O(H −E2−E3+Dv)

w O(H −E1−E3+Dw)

t O(H −E1−E2)

e1 O(E1)

e2 O(E2)

e3 O(E3)

(2.48)

For later reference, we point out that the divisors associated to the vanishing of the

coefficients s̃7, ŝ7 and s̃9 = −ŝ9, denoted as S̃7, Ŝ7 respectively S9, in the two presentations
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(2.29) and (2.35) in dP2 of the elliptic curves E are given by

S̃7 ∶= [−s19s8+ s18s9] = [K−1
B ]+Du−Dv , Ŝ7 ∶= [s10s18− s20s8] = [K−1

B ]+Du−Dw ,

S9 ∶= [s̃9] = [ŝ9] = [−s10s19+ s20s9] =Du+ [K−1
B ] . (2.49)

Here we have used the definitions in (2.30), respectively, (2.36) together with (2.47) and

denoted the divisor classes of a section si by [⋅].

It is important to notice that the line bundles of the si admit an additional degree of

freedom due to the choice of the class [p2]b, the divisor class of the second constraint

p2 in the homology of B. This is due to the fact that the Calabi-Yau condition (2.46)

is a partition problem, that only fixes the sum of the classes [p1]b, [p2]b but leaves the

individual classes undetermined. For example, in complete intersections in a toric ambient

space (2.43) the freedom of the class [p2]b is fixed by finding all nef-partitions of the toric

polytope associated to (2.43) that are consistent with the nef-partition (2.23) of the Bl3P3-

fiber. We discuss the freedom in [p2]b further in section 2.3.3.

2.3.2 Basic Geometry of Calabi-Yau Manifolds with Bl3P3-elliptic

Fiber

Let us next discuss the basic topological properties of the Calabi-Yau manifold X̂ .

We begin by constructing a basis DA of the group of divisors H(1,1)(X̂) on X̂ that is

convenient for the study of F-theory on X̂ . A basis of divisors on the generic complete

intersection X̂ is induced from the basis of divisors of the ambient space Bl3P3(S̃7, Ŝ7,S9)

by restriction to X̂ . There are the vertical divisors Dα that are obtained by pulling back

divisors Db
α on the base B as Dα = π∗(Db

α) under the projection map π ∶ X̂ →B. In addition,

each point P, Q, R and S on the elliptic fiber E in (2.16) lifts to an in general rational

section of the fibration π ∶ X̂ → B, that we denote by ŝP, ŝQ, ŝR and ŝS, with ŝP the zero
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section. The corresponding divisor classes, denoted SP, SQ, SR and SS, then follow from

(2.18) and (2.48) as

SP = E3 , SQ = E1 , SR = E2 , SS =H −E1−E2−E3+S9+ [KB] , (2.50)

where we denote, by abuse of notation, the lift of the classes H, E1, E2, E3 of the fiber Bl3P3

in (2.13) to classes in X̂ by the same symbol. For convenience, we collectively denote the

generators of the Mordell-Weil group and their divisor classes as

ŝm = (ŝQ, ŝR, ŝS) , Sm = (SQ,SR,SS) m = 1,2,3 . (2.51)

The vertical divisors Dα together with the classes (2.50) of the rational points form a

basis of H(1,1)(X̂). A basis that is better suited for applications to F-theory, however, is

given by

DA = (S̃P,Dα ,σ(ŝm)) , A = 0,1, . . . ,h(1,1)(B)+4 , (2.52)

where the Hodge number h(1,1)(B) of the base B counts the number of vertical divisors Dα

in X̂ . Here we have introduced the class [126, 127]

S̃P = SP+
1
2
[K−1

B ] , (2.53)

and have applied the Shioda map σ that maps the Mordell-Weil group of X̂ to a certain

subspace of H(1,1)(X̂). The map σ is defined as

σ(ŝm) ∶= Sm− S̃P−π(Sm ⋅ S̃P) , (2.54)

where π , by abuse of notation, denotes the projection of H(2,2)(X̂) to the vertical homology
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π∗H(1,1)(B) of the base B. For every C in H(2,2)(X̂) the map π is defined as

π(C) = (C ⋅Σα)Dα , (2.55)

where we obtain the elements Σα = π∗(Σα

b ) in H4(X̂) as pullbacks from a dual basis Σα

b to

the divisors Db
α in B, i.e. Σα

b ⋅D
b
β
= δ α

β
.

Next, we list the fundamental intersections involving the divisors SP, SQ and SR in

(2.50), that will be relevant throughout this work:

Universal intersection:

Rational sections:

Holomorphic sections:

Shioda maps:

SP ⋅F = Sm ⋅F = 1 with general fiber F ≅ E , (2.56)

π(S2
P+ [K−1

B ] ⋅SP) = π(S2
m+ [K−1

B ] ⋅Sm) = 0 , (2.57)

S̃7 = π(SQ ⋅SS) , Ŝ7 = π(SR ⋅SS) , S9 = π(SP ⋅SS) ,

S2
P+ [K−1

B ] ⋅SP = S2
m+ [K−1

B ] ⋅Sm = 0 , (2.58)

σ(ŝQ) = SQ−SP− [K−1
B ] ,

σ(ŝR) = SR−SP− [K−1
B ] , (2.59)

σ(ŝR) = SS−SP− [K−1
B ]−S9 ,

The first line (2.56) and the second line (2.57) are the defining property of a section

of a fibration, whereas the fourth line only holds for a holomorphic section. The third

line holds because the collision pattern of the points in (2.21) directly translates into

intersections of their divisor classes Sm, where we made use of (2.30) and (2.36). In

other words, (2.57) states that divisors S̃7, Ŝ7, S9 are the codimension one loci where the

sections collide with each other in the fiber E . Finally, the result for the Shioda maps of
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the sections follows from their definitions in (2.54) and the intersections in (2.57).

For later reference, we also compute the intersection matrix of the Shioda maps σ(ŝm),

i.e. the height pairing, as

π(σ(ŝm)⋅σ(ŝn)) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2[KB] [KB] −S9+ S̃7+ [KB]

[KB] 2[KB] −S9+ Ŝ7+ [KB]

−S9+ Ŝ7+ [KB] −S9+ Ŝ7+ [KB] 2(−S9+ [KB])

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

mn

. (2.60)

which readily follows from (2.59) and (2.57).

We note that all the above intersections (2.56) , (2.57), (2.58), (2.59) and (2.60) are

in completely analogous to the ones found in [120, 156, 157] for the case of an elliptic

Calabi-Yau manifold with rank two Mordell-Weil group, see also [128, 154, 121, 129] for

a discussion of intersections in the rank one case.

2.3.3 All Calabi-Yau manifolds X̂ with Bl3P3-elliptic fiber over B

Finally, we are equipped to classify the generic Calabi-Yau manifolds X̂ with elliptic fiber

in Bl3P3 and base B. This task reduces to a classification of all possible assignments of

line bundles to the sections si in (2.47) so that the Calabi-Yau manifold X̂ is given by the

generic complete intersection (2.16). Otherwise we expect additional singularities in X̂ ,

potentially corresponding to a minimal gauge symmetry in F-theory, either from non-toric

non-Abelian singularities or from non-toric sections. We prove in the following that a

generic Calabi-Yau manifold X̂ over a base B corresponds to a point in a certain polytope,

that is related to the single nef-partition of the polytope of Bl3P3 as explained below. The

following discussion is similar in spirit to the one in [157, 155], that can agree with the

toric classification of [123].
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We begin with the basis expansion

Du = nα
u Dα , Dv = nα

v Dα , Dw = nα
wDα , (2.61)

into vertical divisors Dα , where the nα
u , nα

v and nα
w are integer coefficients. For X̂ to be

generic these coefficients are bounded by the requirement that all the sections si in (2.47)

are generic, i.e. that the line bundles of which the si are holomorphic sections admit holo-

morphic sections. This is equivalent to all divisors in (2.47) being effective.

First, we notice that effectiveness of the sum [si]+ [si+10] ≥ 0 in (2.47) is guaranteed

if the vector of integers nα = (nα
u ,nα

v ,nα
w) is an integral point in the rescaled polytope of

Bl3P3. Indeed, we can express the conditions of effectiveness of the divisors [si]+ [si+10]

as the following set of inequalities in R3,

1
−Kα

nα ⋅νi ≥ −1 , i = 1, . . . ,7 , (2.62)

where we also expand the canonical bundle KB of the base B in terms of the vertical divisors

Dα as

[KB] =KαDα (2.63)

with integer coefficients Kα . The entries of the vectors νi are extracted by first summing

the rows of the two tables in (2.47), requiring the sum to be effective and then taking the

coefficients of the the divisors Du, Dv, Dw. The νi span the following polytope

∆3 ∶= ⟨νi⟩ = ⟨

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

−1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

1

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−1

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

1

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⟩ . (2.64)

This is precisely the dual of the polytope ∇Bl3P3 of Bl3P3, where the latter polytope is the
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convex hull of the following vertices,

∇Bl3P3 = ⟨−ρ1, ρe1, ρ4, ρ3, ρe2, ρe3 , ρ1⟩ . (2.65)

We note that these vertices are related to the vertices in (2.10) and (2.22) by an SL(3,Z)

transformation. Thus, we confirm that the solutions to (2.62), for which all divisors [si]+

[si+10] are effective, are precisely given by vectors nα that take values for all α in the

polytope of Bl3P3 rescaled by the factor −Kα .

Next we determine the conditions inferred from each individual class [si] in (2.47)

being effective. We obtain the following two sets of conditions, whose solutions, given also

below, yield the set of all generic elliptic fibrations X̂ with a general rank three Mordell-

Weil group over a given base B:

1) 0 ≤ ([p2]b)α ≤ −Kα
B , (2.66)

2) nα ⋅νi ≥Kα +([p2]b)α , νi ∈∇1 , nα ⋅νi ≥ −([p2]b)α , νi ∈∇2 .

These conditions are solved by any nα being integral points in the following

Minkowski sum of the polyhedra ∇1, ∇2 defined in (2.70),

nα ∈ −(Kα +([p2]
b)α)∇1+([p2]

b)α∇2 , ∀α = 1, . . . ,h(1,1)(B) . (2.67)

Here the two conditions for [p2]b in the first line of (2.66) follow from [s5], [s18] ≥ 0

and the first, respectively, second set of conditions in the second line follow from the first,

respectively, second table in (2.47). In addition, we have expanded the class [p2]b into a

basis Dα as

[p2]
b = ([p2]

b)αDα (2.68)
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and have introduced the points νi that define two polytopes

∆1 ∶= ⟨νi⟩0≤i≤6 = ⟨

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−1

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⟩ ,

∆2 ∶= ⟨νi⟩7≤i≤12 = ⟨

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⟩ . (2.69)

Next, we show how we have constructed the solutions (2.67) to (2.66). To this end, it

we only have to notice that the two polytopes ∆1, ∆2 are the duals in the sense of (2.134)

of the following two polytopes ∇1, ∇2,

∇1 = ⟨−ρ1,ρe1 ,ρ4,ρ3⟩ , ∇2 = ⟨ρe2 ,ρe3,ρ1⟩ , (2.70)

where the vectors ρi, ρei were defined in (2.10), (2.22). These two polytopes correspond

to the unique nef-partition of (2.65). Now, we first fix the class [p2]b such that the first

conditions in (2.66) are met. Second, for each allowed class for [p2]b we solve the second

set of conditions in (2.66) for the vectors nα . However, these are just the duality relations

between the ∆i and ∇ j, rescaled by appropriate factors. Consequently, the solutions are

precisely given by the integral points in the Minkowski sum of the polyhedra in (2.67).

Here we emphasize again that both coefficients in (2.67) are positive integers by means of

the first condition in (2.66).

In summary, we have shown that for a given base B a generic elliptically fibered Calabi-

Yau manifold X̂ with general elliptic fiber E given by (2.16) in Bl3P3 corresponds to an

integral point nα in the polyhedron (2.67) for every α and for every class [p2]b obeying

0 ≤ [p2]b ≤ [K−1
B ]. The coordinates of the point nα are the coefficients of the divisors Du,
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Dv, Dw in the expansion (2.61) into vertical divisors Dα .

2.4 Matter in F-Theory Compactifications with a Rank

Three Mordell-Weil Group

In this section we analyze the codimension two singularities of the elliptic fibration of X̂

to determine the matter representations of corresponding F-theory compactifications to six

and four dimensions. We find 14 different singlet representations in sections 2.4.1 and

2.4.2. Then, we determine the explicit matter multiplicities of these 14 matter fields in

six-dimensional F-theory compactification on a Calabi-Yau threefold X̂3 with a general

two-dimensional base B in section 2.4.3. The following discussion is based on techniques

developed in [156, 157, 159] for the case of a rank two Mordell-Weil group, to which we

refer for more background on some technical details.

We begin with an outline of the general strategy to determine matter in an F-theory

compactification on a Calabi-Yau manifold with a higher rank Mordell-Weil group. First,

we recall that in general rational curves cmat obtained from resolving a singularity of the

elliptic fibration at codimension two in the base B give rise to matter in F-theory due to

the presence of light M2-brane states in the F-theory limit. In elliptically fibered Calabi-

Yau manifolds with a non-Abelian gauge symmetry in F-theory, these codimension two

singularities are located on the divisor in the base B, which supports the 7-branes giving

rise to the non-Abelian gauge group. Technically, the discriminant of the elliptic fibration

takes the form ∆ = zn(k +O(z)), where z vanishes along the 7-brane divisor and k is a

polynomial independent of z. Then, the codimension two singularities are precisely given

by the intersections of z = 0 and k = 0.

This is in contrast to elliptic fibrations with only a non-trivial Mordell-Weil group,

i.e. only an Abelian gauge group, since the elliptic fibration over codimension one has
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only I1-singularities and the discriminant does not factorize in an obvious way. Thus, the

codimension two codimension singularities are not contained in a simple divisor in B and

have to be studied directly. In fact, the existence of a rational section, denoted by say ŝQ,

means that there is a solution to the Weierstrass form (WSF) of the form [xQ ∶ yQ ∶ zQ] = [gQ
2 ∶

gQ
3 ∶ 1].11 Here gQ

2 and gQ
3 are sections of K−2

B and K−3
B , respectively.12. Thus, the presence

of ŝQ implies the factorization

(y−gQ
3 z3)(y+gQ

3 z3) = (x−gQ
2 z2)(x2+gQ

2 xz2+gQ
4 z4) (2.71)

for appropriate gQ
4 . Parametrizing the discriminant ∆ in terms of the polynomials in (3.5),

we see that it vanishes of order two at the codimension two loci in B reading

gQ
3 = 0 , ĝQ

4 ∶= gQ
4 +2(gQ

2 )2 = 0 . (2.72)

These two conditions lead to a factorization of both sides of (3.5), so that a conifold singu-

larity is developed at y = (x−gQ
2 z2) = 0.

It is evident that the section ŝQ passes automatically through the singular point of the el-

liptic curve. Thus, in the resolved elliptic curve E where the singular point y = (x−gQ
2 z2) = 0

is replaced by a Hirzebruch-Jung sphere tree of intersecting P1’s,13 the section ŝQ automat-

ically intersects at least one P1. This implies that the loci (2.72) in the base contain matter

11Sections with zQ = b for a section b of a line bundle O([b]) on the base B and with gQ
2 , gQ

3 sections of
K−2

B ⊗O(2[b]), respectively, K−3
B ⊗O(3[b]), can be studied similarly. We only have to assume that we are at

a locus with b ≠ 0. Then we can employ the C∗-action to set zQ = 1, xQ =
gQ

2
b2 , yQ =

gQ
3

b3 .
12For concreteness and for comparison to [154, 156], in the special case of the base B = P2, the sections

gQ
2 = g6, gQ

3 = g9 are polynomials of degree 6, respectively, 9
13In F-theory compactifications with only Abelian groups the resolved elliptic fibers are expected to be

I2-curves, i.e. two P1’s intersecting at two points.
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charged under U(1)Q associated to ŝQ, as can be seen from the charge formula

qQ = cmat ⋅(SQ−SP) . (2.73)

Here SQ, SP denote the divisor classes of ŝQ and the zero section ŝP, respectively. In fact,

the locus (2.72) contains the codimension two loci supporting all matter charged under

U(1)Q, without distinguishing between matter with different U(1)Q-charges. The loci of

the different matter representations correspond to the irreducible components of (2.72), that

can in principle be obtained by finding all associated prime ideals of (2.72) of codimension

two in B. Unfortunately, in many concrete setups this is computationally unfeasible and we

have to pursue a different strategy to obtain the individual matter representations that has

already been successful in the rank two case in [154, 156].

For the following analysis of codimension two singularities of X̂ we identify the ir-

reducible components of (2.72) corresponding to different matter representations in two

qualitatively different ways:

1) One type of codimension two singularities corresponds to singularities of the sections

ŝm and ŝP. This analysis, see section 2.4.1, is performed in the presentation of E as

the complete intersection (2.16) in Bl3P3, where the rational sections are given by

(2.19). In fact, when a rational section ŝm or the zero section ŝP is ill-defined, the

resolved elliptic curve splits into an I2-curve with one P1 representing the original

singular fiber and the other P1 representing the singular section.

2) The second type of codimension two singularities has to be found directly in the

Weierstrass model. The basic idea is isolate special solutions to (2.72) by supple-

menting the two equations (2.72) by further constraints that have to vanish in addition

in order for a certain matter representation to be present. We refer to section 2.4.2

for concrete examples. It is then possible to find the codimension two locus along
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which all these constraints vanish simultaneously. We note that for the geometry X̂

there are three rational sections, thus, three factorizations of the form (3.5) and loci

(2.72), that have to be analyzed separately.

A complete analysis of codimension two singularities following the above two-step

strategy should achieve a complete decomposition of (2.72) for all sections of X̂ into irre-

ducible components. It would be interesting to prove this mathematical for the codimen-

sion two singularities of X̂ we find in this section. As a consistency check of our analysis

of codimension two singularities we find, we determine the full spectrum, including mul-

tiplicities, of charged hypermultiplets of a six-dimensional F-theory compactification and

check that six-dimensional anomalies are cancelled, cf. section 2.4.3.

2.4.1 Matter at the Singularity Loci of Rational Sections

Now that the strategy is clear, we will look for the first type of singularities in this subsec-

tion. These are the codimension two loci in the base where the rational sections are singular

in Bl3P3. This precisely happens when the coordinates (2.18), (2.19) of any of the rational

sections take values in the Stanley-Reisner ideal (2.14) of Bl3P3.

There are two reasons why codimension two loci with singular rational sections are

good candidates for I2-fibers. First, the elliptic fibration of X̂ is smooth14, thus, the inde-

terminacy of the coordinates of the sections in the fiber may imply that the section is not

a point, but an entire P1. Second, as was remarked in [154] and [156], if we approach the

codimension two singularity of the section along a line in the base B the section has a well

defined coordinate given by the slope of the line. Thus, approaching the singularity along

lines of all possible slopes the section at the singular point is identified with the P1 formed

by all slopes. In fact, specializing the elliptic curve to each locus yielding a singularity of

14This is clear for toric bases B.
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a rational section we observe a splitting of the elliptic curve into an I2-curve. We note that

it is crucial to work in Bl3P3, because only in this space the fiber is fully resolved space by

the exceptional divisors Ei, in contrast to the curve (2.4) in P3.

The vanishing of two minors: special singularities of ŝS

In order to identify singularities of rational sections, let us take a close look at the Stanley-

Reisner ideal (2.14). It contains monomials with two variables of the type eie j and mono-

mials with three variables of the type uXY , where X and Y are two variables out of the set

{v,w,t}. In this subsection we look for singular sections whose coordinates are forbidden

by the elements eie j.

From the coordinates (2.19) of the rational sections we infer that this type of singular

behavior can only occur for the section ŝS, whose coordinates in the fiber E are

S = [0 ∶ 1 ∶ 1 ∶ 1 ∶ s19s8− s18s9 ∶ s10s18− s20s8 ∶ s10s19− s20s9] . (2.74)

There are three codimension two loci where S is singular, reading

{s8 = s18 = 0} , {s9 = s19 = 0} , {s10 = s20 = 0} . (2.75)

It is important to note that the matrices (2.8), (2.20) retain rank two at these loci, since

only two of their 2×2-minors, being identified with the coordinates (2.19), have vanishing

determinant. Next, we inspect the constraint (2.16) of the elliptic curve at these loci.

At all these three codimension two loci, we see that the elliptic curve in (2.16) takes the

common form

Au+BY = 0 , Cu+DY = 0 . (2.76)

Here Y is one of the variables {v,w,t} and the polynomials B, D are chosen to be indepen-
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dent of u and Y , which fixes the polynomials A, C uniquely. This complete intersection

describes a reducible curve. This can be seen by rewriting it as

(AD−BC)u = 0 , Au+BY =Cu+DY = 0 , (2.77)

which we obtained by solving for the variable Y in the first equation of (2.76) and requiring

consistency with the second equation.

Now, we directly see that one solution to (2.77) is given by {u = 0,Y = 0}. This is a

P1 as is clear from the remaining generators of the SR-ideal after setting the coordinates

that are not allowed to vanish to one using the C∗-actions. The second solution, which also

describes a P1, is given by the vanishing of the determinant in the first equation in (2.77),

which implies that the two constraint in the second equation become dependent. Thus, the

two P1’s of the I2-curve are given by

c1 = {u = 0,Y = 0} , c2 = {AD−BC = 0,Cu+DY = 0} . (2.78)

As an example, let us look at the loci {s8 = s18 = 0} in (2.75) in detail. In this case the

elliptic curve E given in (2.16) takes the form

u(s2e1e2e3u+ s5e1e2t + s6e2e3v+ s7e1e3w) = t(s9e2v+ s10e1w) , (2.79)

u(s12e1e2e3u+ s15e1e2t + s16e2e3v+ s17e1e3w) = t(s19e2v+ s20e1w) .

This complete intersection is in the form (2.76) by identifying Y = t and setting

A = (s2e1e2e3u+ s5e1e2t + s6e2e3v+ s7e1e3w) , B = −(s9e2v+ s10e1w) , (2.80)

C = (s12e1e2e3u+ s15e1e2t + s16e2e3v+ s17e1e3w), D = −(s19e2v+ s20e1w) .
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Then the two P1’s of the I2-curve are given by c1, c2 in (2.78).

Equipped with the equations for the individual curves c1, c2 we can now calculate the

intersections with the sections and the charge of the hypermultiplet that is supported there.

The intersections of the curve defined c1 can be readily obtained from the toric intersections

of Bl3P3. It has intersection −1 with the section SS, intersection one with the sections SQ,

SR and zero with SP, where the last intersection is clear from the existence of the term e3t in

the Stanley-Reisner ideal (2.14). The intersections with c2 can be calculated either directly

from (2.78) or from the fact, that the intersections of a section with the total class F = c1+c2

have to be one.

We summarize our findings as:

Loci Curve ⋅SP ⋅SQ ⋅SR ⋅SS

s8 = s18 = 0 c1 = {u = t = 0} 0 1 1 −1

c2 1 0 0 2

s9 = s19 = 0 c1 = {u =w = 0} 1 1 0 −1

c2 0 0 1 2

s10 = s20 = 0 c1 = {u = v = 0} 1 0 1 −1

c2 0 1 0 2

(2.81)

Here we denoted the intersection pairing by ‘⋅’ and we also computed the intersections of

the sections with the I2-curves at the other two codimension two loci in (2.75). In these

cases, we identified Y =w, respectively, Y = v.

We proceed with the calculation of the charges in each case employing the charge for-

mula (2.73). We note that the isolated curve cmat is always the curve in the I2-fiber that that
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does not intersect the zero section SP. We obtain the charges:

Loci qQ qR qS

s8 = s18 = 0 1 1 −1

s9 = s19 = 0 0 1 2

s10 = s20 = 0 1 0 2

(2.82)

The vanishing of three minors: singularities of all sections

The remaining singularities of the rational sections occur if the three of the determinants of

the minors of the matrices (2.8), (2.20) vanish. This implies that three coordinates (2.19)

of a section are forbidden by the SR-ideal (2.14), which happens also for the sections ŝP,

ŝQ, ŝR, in addition to ŝS, due to the elements uXY with X , Y in {v,w,t}.

Before analyzing these loci, we emphasize that the three vanishing conditions are a

codimension two phenomenon because the vanishing of the determinants of three minors

of the same matrix is not independent. In fact, these codimension two loci can be viewed as

determinantal varieties describing the loci where the rank of each of the matrices in (2.8),

(2.20) jump from two to one, which is clearly a codimension two phenomenon.

Concretely, for the section ŝP to be singular, the three minors that have to vanish are

∣MP
3 ∣ = ∣MP

2 ∣ = ∣MP
1 ∣ = 0, which implies the conditions

s5

s15
=

s10

s20
=

s9

s19
. (2.83)

Similarly, for ŝQ to be singular, we impose ∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0, which yields

s6

s16
=

s8

s18
=

s9

s19
. (2.84)
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For a singular section ŝR, we require ∣MR
3 ∣ = ∣MR

2 ∣ = ∣MR
1 ∣ = 0, which is equivalent to

s10

s20
=

s8

s18
=

s7

s17
. (2.85)

Finally, the section ŝS is singular at ∣MQ
3 ∣ = ∣MR

3 ∣ = ∣MP
3 ∣ = 0, or equivalently at

s10

s20
=

s8

s18
=

s9

s19
. (2.86)

We remark that the vanishing of the three minors in all these cases excludes the loci (2.75)

of the previous subsection.

All these singularities imply a reducible curve of a form similar to (2.27), however,

adapted to the ambient space Bl3P3. In fact, at each of the loci (2.83)-(2.86) the complete

intersection (2.16) takes the form

AX +BY = 0 , CX +DY = 0 , (2.87)

for appropriate polynomials A, B, C, D with A and C collinear, that is A = aC, and the pair

of coordinates [X ∶Y ] forming a P1.15 Then, we can multiply the second equation by a and

subtract from the first equation, to obtain

(B−aD)Y = 0 , AX +BY = 0 . (2.88)

From this we see that the two solutions are given by

c1 = {Y = A = 0} , c2 = {B−aD = AX +BY = 0} , (2.89)

15When ŝS becomes singular, we identify Y = u and X = 1. However, A, C still become collinear and the
argument applies.
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that describe two P1’s intersecting at two points. Thus the complete intersection (2.88) is

an I2-curve.

One example in detail

Let us focus on the locus in (2.84) where the section ŝQ is singular. The complete intersec-

tion (2.16) then takes the form

v(−e2s9t +e2e3s6u+e3s8w)+e1(e2s5tu+e2e3s2u2− s10tw+ s7e3uw) = 0 ,

v(−e2s19t +e2e3s16u+e3s18w)+e1(e2s15tu+e2e3s12u2− s20tw+e3s17uw) = 0 .

This is of the form (2.87) as we see by identifying X = v and Y = e1 and by setting

A = −e2s9t +e2e3s6u+e3s8w , B = e2s5tu+e2e3s2u2− s10tw+ s7e3uw , (2.90)

C = −e2s19t +e2e3s16u+e3s18w , D = e2s15tu+e2e3s12u2− s20tw+e3s17uw

with A = (s8/s18)C collinear at the locus (2.84) . Then, the two P1’s in this I2-curve are

given by (2.89) with the identifications (2.90).

Next, we obtain the intersections of the curves c1, c2 with the rational sections, that

follow directly from the toric intersections of Bl3P3. We find the intersections

Loci Curve ⋅SP ⋅SQ ⋅SR ⋅SS

∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0 c1 0 −1 0 1

c2 1 2 1 0

(2.91)

As expected, the total fiber F = c1+c2 has intersections Sm ⋅F = 1 with all sections.

Repeating the procedure with the other codimension two loci (2.83), (2.85) and (2.86),
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we obtain the intersections of the split elliptic curve with the sections as

Loci Curve ⋅SP ⋅SQ ⋅SR ⋅SS

∣MR
3 ∣ = ∣MR

2 ∣ = ∣MR
1 ∣ = 0 c1 0 0 −1 1

c2 1 1 2 0

∣MP
3 ∣ = ∣MP

2 ∣ = ∣MP
1 ∣ = 0 c1 −1 0 0 1

c2 2 1 1 0

∣MQ
3 ∣ = ∣MR

3 ∣ = ∣MP
3 ∣ = 0 c1 1 1 1 −1

c2 0 0 0 2

(2.92)

With these intersection numbers and the charge formula (2.73) we obtain the charges

Loci qQ qR qS

∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0 −1 0 1

∣MR
3 ∣ = ∣MR

2 ∣ = ∣MR
1 ∣ = 0 0 −1 1

∣MP
3 ∣ = ∣MP

2 ∣ = ∣MP
1 ∣ = 0 −1 −1 −2

∣MQ
3 ∣ = ∣MR

3 ∣ = ∣MP
3 ∣ = 0 0 0 2

(2.93)

Relation to dP2

In section 2.2.3 we saw that the elliptic curve E can be mapped to two16 non-generic anti-

canonical hypersurfaces in dP2. It is expected that some of the singularities we just found

map to the singularities in the dP2-elliptic curve. We recall from [156, 155], that the Calabi-

Yau hypersurfaces (2.29), (2.35) in dP2 have singular sections at the codimension two loci

given by s̃3 = s̃7 = 0 (ŝ3 = ŝ7 = 0), s̃8 = s̃9 = 0 (ŝ8 = ŝ9 = 0) and s̃7 = s̃9 = 0 (ŝ7 = ŝ9 = 0), respec-

tively.

In tables (2.30) and (2.36) we readily identified the minors of the matrices in (2.20)

16There are actually three dP2 maps if we are willing to give up the zero point as a toric point. See section
2.2.3 for more details.
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with the some of the coefficients s̃i and ŝ j. This implies a relationship between the singular

codimension two loci of the elliptic curves in Bl3P3 and in the two dP2-varieties, that we

summarize in the following table:

Bl3P3-singularity Singularity of Singularity of

curve in (2.29) curve in (2.35)

∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0 s̃3 = s̃7 = 0 Q non-toric

∣MR
3 ∣ = ∣MR

2 ∣ = ∣MR
1 ∣ = 0 R non-toric ŝ3 = ŝ7 = 0

∣MP
3 ∣ = ∣MP

2 ∣ = ∣MP
1 ∣ = 0 s̃8 = s̃9 = 0 ŝ8 = ŝ9 = 0

∣MQ
3 ∣ = ∣MR

3 ∣ = ∣MP
3 ∣ = 0 s̃7 = s̃9 = 0 ŝ7 = ŝ9 = 0

(2.94)

In each case, three out of the four singular loci (2.93) yield singularities of the toric sections

in the dP2-elliptic curve. The other singular locus in the curve in Bl3P3 is not simply

given by the vanishing of two coefficients s̃i, respectively ŝ j, because the non-toric rational

sections becomes singular. Nevertheless, the elliptic curve in dP2 admits a factorization

at the singular locus of the non-toric section, i.e. it splits into an I2-curve, due to the non-

genericity of the corresponding coefficients s̃i or ŝ j.

2.4.2 Matter from Singularities in the Weierstrass Model

As mentioned in the introduction of this subsection, all the loci of matter charged under a

section ŝm satisfy the equations gm
3 = 0 and ĝm

4 = 0. Since we have three rational sections ŝm,

the WSF admits three possible factorizations of the form (3.5), each of which implying a

singular elliptic fiber at the loci gQ,R,S
3 = ĝQ,R,S

4 = 0 with ĝR,S
4 defined analogous to (2.72). In

this subsection we separate solutions to these equations by requiring additional constraints

to vanish.

We can isolate matter with simultaneous U(1)-charges. The idea is the following. If the
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matter is charged under two sections, both sections have to pass through the singularity in

the WSF. This requires the x-coordinates gm1
2 , gm2

2 of the sections to agree17,

δgm1,m2
2 ∶= gm1

2 −gm2
2

!
= 0, (2.95)

for any two sections ŝm1 and ŝm2 . The polynomial (2.95) has a smaller degree than the other

two conditions (2.72) and in fact it will be one of the two polynomials of the complete

intersection describing the codimension two locus. The other constraint will be gm
3 = 0 for

m either m1 or m2.

If we solve for two coefficients in these two polynomials and insert the solution back

into the elliptic curve (2.16) we observe a reducible curve of the form (2.88). In this I2-

curve, one P1 is automatically intersected once by both sections ŝm1 and ŝm2 . This means

that a generic solution of equations (2.72), (2.95) support matter with charges one under

U(1)m1×U(1)m2 .

Let us be more specific for matter charged under the sections ŝQ and ŝR, that is matter

transforming under U(1)Q×U(1)R. The conditions (2.72) and (2.95) read

δgQR
2 ∶= gQ

2 −gR
2

!
= 0 , gQ

3 = 0 , ĝQ
4 = 0 , (2.96)

and the codimension to locus is given by the complete intersection δgQR
2 = gQ

3 = 0. In fact

the constraint ĝQ
4 , ĝR

4 are in the ideal generate by ⟨δgQR
2 ,gQ

3 ⟩.

We proceed to look for matter charged under U(1)Q×U(1)S. In this case, because of

the section ŝS having a non-trivial z-component, the right patch of the WSF is z ≡ z̃S =

s10s19− s20s9, c.f. (2.39). Thus, the constrains (2.72) and (2.95) take the form

δgQS
2 ∶= gS

2−(z̃S)2gQ
2

!
= 0 , gS

3 = 0 , ĝS
4 = 0 . (2.97)

17Here we assume that the z−-coordinates of both sections are z = 1, for simplicity.
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Instead of using these polynomials, we will use two slightly modified polynomials that

generate the same ideal. They were defined in [156] where they were denoted by δg′6 and

g′9 and defined as

δ(gQS
2 )′ ∶= s̃7s̃2

8+ s̃9(−s̃6s̃8+ s̃5s̃9) = 0, (gQS
3 )′ ∶= s̃3s̃2

8− s̃2s̃8s̃9+ s̃1s̃2
9 = 0 , (2.98)

Here we have to use the map (2.30) to obtain these polynomials in terms of the coefficients

si. We will see in section 2.4.3 that these polynomials are crucial to obtain the matter

multiplicities of this type of charged matter fields.

Similarly, for matter charged under U(1)R×U(1)S we demand

δgRS
2 ∶= gS

2−(z̃S)2gR
2

!
= 0 , gS

3 = 0 , ĝS
4 = 0 . (2.99)

For this type of locus we will also use the modified polynomials δ(gRS
2 )′ and δ(gRS

3 )′ that

can be obtained from (2.98) by replacing all the coefficients s̃i→ ŝi and by using (2.36).

Next, we look for matter charged under all U(1) factors U(1)Q×U(1)R×U(1)S. This

requires the three sections to collide and pass through the singular point y = 0 in the WSF,

at codimension two. The four polynomials that are required to vanish simultaneously are

δgQS
2 = 0 , (z̃S)2

δgRS
2 = 0 , gS

3 = 0 , ĝS
4 = 0 , (2.100)

where the first two conditions enforce a collision of the three sections in the elliptic fiber.

In order for a codimension two locus to satisfy all these constraints simultaneously, all the

polynomials (2.100) should factor as

p = h1 p1+h2 p2 , (2.101)
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where h1 and h2 are the polynomials whose zero-locus defines the codimension two locus

in question. To obtain the polynomials we use the Euclidean algorithm twice. We first

divide all polynomials in (2.100) by the lowest order polynomial available, which is δgQR
2

and take the biggest common factor from all residues. This is the polynomial h1 and it

reads

h1 = (s2
10s15s16s19+ s2

10s12s2
19+ s10s15s18s19s5+ s10s17s2

19s5− s10s16s19s20s5

−s18s19s20s2
5− s10s2

15s18s9− s10s15s17s19s9− s10s15s16s20s9−2s10s12s19s20s9

+s15s18s20s5s9− s17s19s20s5s9+ s16s2
20s5s9+ s15s17s20s2

9+ s12s2
20s2

9) . (2.102)

The knowledge of h1 allows us to repeat the Euclidean algorithm. We reduce the polyno-

mials (2.100) by (2.102) and again obtain the second common factor from the residues of

all polynomials reading

h2 = s2
10s19(s15s16+ s12s19)− s10[s2

15s18s9+ s19(−s17s19s5+ s16s20s5+2s12s20s9)

+s15(−s18s19s5+ s17s19s9+ s16s20s9)]+ s20[s18s5(−s19s5+ s15s9)

+s9(−s17s19s5+ s16s20s5+ s15s17s9+ s12s20s9)] . (2.103)

To confirm that these polynomials define the codimension two locus we were looking for,

we check that all the constraints (2.100) are in the ideal generated by ⟨h1,h2⟩.

Finally, if there are no more smaller ideals, i.e. special solutions, of gm
3 = ĝm

4 = 0 we

expect its remaining solutions to be generic and to support matter charged under only the

section ŝm, i.e. matter with charges qm = 1, and qn = 0 for n ≠ m. In summary, we find that
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matter at a generic point of the following loci has the following charges,

Generic point in locus qQ qR qS

gQR
2 = gQ

3 = 0 1 1 0

(gQS
2 )′ = (gS

3)
′ = 0 1 0 1

(gRS
2 )′ = (gS

3)
′ = 0 1 0 1

h1 = h2 = 0 1 1 1

gQ
3 = ĝQ

4 = 0 1 0 0

gR
3 = ĝR

4 = 0 0 1 0

gS
3 = ĝS

4 = 0 0 0 1

(2.104)

In each of these six cases we checked explicitly the factorization of the complete intersec-

tion (2.27) for E into an I2-curve, then computed the intersections of the sections ŝP, ŝm,

m =Q, R, S and obtained the charges by applying the charge formula (2.73).

2.4.3 6D Matter Muliplicities and Anomaly Cancellation

In this section we specialize to six-dimensional F-theory compactifications on an ellipti-

cally fibered Calabi-Yau threefolds X̂3 over a general two-dimensional base B with generic

elliptic fiber given by (2.16). We work out the spectrum of charged hypermultiplets, that

transform in the 14 different singlet representations found in sections 2.4.1 and 2.4.2. To

this end, we compute the explicit expressions for the multiplicities of these 14 hypermulti-

plets. We show consistency of this charged spectrum by checking anomaly-freedom.

The matter multiplicities are given by the homology class of the irreducible locus that

supports a given matter representation. As discussed above, some of these irreducible mat-

ter loci can only be expressed as prime ideals, of which we can not directly compute the

homology classes. Thus, we have to compute matter multiplicities successively, starting
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from the complete intersections LocCI in (2.104) that support multiple matter fields of dif-

ferent type. We found, that at the generic point of the complete intersection LocCI one type

of matter is supported, but at special points Loci
s different matter fields are located. We

summarize this as

∪i Loci
s ⊂ LocCI . (2.105)

Thus, first we calculate all multiplicities of matter located at all these special loci Loci
s and

then subtract them from the complete intersection LocCI in which they are contained with a

certain degree. This degree is given by the order of vanishing of resultant, that has already

been used in a similar context in [156]. It is defined as follows. Given two polynomials

(r,s) in the variables (x,y), if (0,0) is a zero of both polynomials, its degree is given by

the order of vanishing of the resultant h(y) ∶=Resx(r,s) at y = 0.

This is a straightforward calculation when the variables (x,y) are pairs of the coef-

ficients si. However, for more complicated loci we will need to treat full polynomials

(p1, p2) as these variables, for example x = s̃7, y = s̃9 or x = δg6, y = g9. In this case we

have to solve for two coefficients si, s j from {p1 = x, p2 = y}, then replace them in (r,s) and

finally proceed to take the resultant in x and y.

There is one technical caveat, when we are considering polynomials (p1, p2) that con-

tain multiple different matter multiplets. We choose the coefficients si, s j in such a way

that the variables (x,y) only parametrize the locus of the hypermultiplets we are interested

in. This is achieved by choosing si, s j we are solving for so that the polynomials of the

locus we are not interested in appear as denominators and are, thus, forbidden. For exam-

ple, let us look at the loci ∣MQ
3 ∣ = ∣MP

3 ∣ = 0. This complete intersection contains the loci of

the hypermultiplets with charges (0,0,2) at the generic point and with charges (0,1,2) at

the special locus s9 = s19 = 0, c.f. (2.82), respectively, (2.93). Let us focus on the former
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hypermultiplets. We set

∣MQ
3 ∣ = s18s9− s19s8 ≡ x , ∣MP

3 ∣ = s10s19− s20s9 ≡ y , (2.106)

and solve for s8 and s20 to obtain

s8 =
(s18s9−x)

s19
, s20 =

(s10s19+y)
s9

. (2.107)

From this, it is clear the locus s9 = s19 = 0 corresponding to hypermultiplets with charges

(0,1,2) is excluded because of the denominators. Thus, (x,y) indeed parametrize the locus

of the hypermultiplets of charges (0,0,2).

We begin the computation of multiplicities with the simplest singularities in 2.4.1 lo-

cated at the vanishing-loci of two coefficients si = s j = 0. Their multiplicities are directly

given by their homology classes, that are simply the product of the classes [si], [s j]. We

obtain

Loci qQ qR qS Multiplicity

s8 = s18 = 0 1 1 −1 [s8] ⋅ [s18]

s9 = s19 = 0 0 1 2 [s9] ⋅ [s19]

s10 = s20 = 0 1 0 2 [s10] ⋅ [s20]

(2.108)

Next we proceed to calculate the multiplicities of the loci given by the vanishing of three

minors given in (2.93). The most direct way of obtaining these multiplicities is by using

the Porteous formula to obtain the first Chern class of a determinantal variety. However,

we will use here a simpler approach that yields the same results.

It was noted in section 2.4.1, that the locus described by the vanishing of the three

minors can be equivalently represented as the vanishing of only two minors, after excluding

the zero locus from the vanishing of the two coefficients si, s j that appear in both two

minors. Thus, the multiplicities can be calculated by multiplying the homology classes of
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the two minors and subtracting the homology class [si] ⋅ [s j] of the locus si = s j = 0.

For example the multiplicity of the locus ∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0 can be obtained from

multiplying the classes of ∣MQ
3 ∣ = ∣MQ

1 ∣ = 0 and subtracting the multiplicity of the locus

s8 = s18 = 0 that satisfies these two equations, but not MQ
2 = −s6s19+ s9s16:

x(−1,0,1) = [∣MQ
3 ∣] ⋅ [∣MQ

1 ∣]− [s8] ⋅ [s18] (2.109)

= ([p2]
b)2+ [p2]

b ⋅(Ŝ7+ ⋅S̃7−3S̃9)+ [K−1
B ] ⋅ S̃7+ S̃

2
7 − Ŝ7 ⋅S9−2S̃7 ⋅S9+2S2

9 ,

Here we denote the multiplicity of hypermultiplets with charge (qQ,qR,qS) by x(qQ,qR,qS),

indicate homology classes of sections of line bundles by [⋅], as before, and employ (2.47),

(2.30) and the divisors defined in (2.49) to obtain the second line. Calculating the other

multiplicities in a similarly we obtain

Charges Loci Multiplicity

(−1,0,1) ∣MQ
3 ∣ = ∣MQ

2 ∣ = ∣MQ
1 ∣ = 0 x(−1,0,1) = [∣MQ

1 ∣] ⋅ [∣MQ
3 ∣]− [s8] ⋅ [s18]

(0,−1,1) ∣MR
3 ∣ = ∣MR

2 ∣ = ∣MR
1 ∣ = 0 x(0,−1,1) = [∣MR

1 ∣] ⋅ [∣M
R
3 ∣]− [s8] ⋅ [s18]

(−1,−1,−2) ∣MP
3 ∣ = ∣MP

2 ∣ = ∣MP
1 ∣ = 0 x(−1,−1,−2) = [∣MP

2 ∣] ⋅ [∣M
P
3 ∣]− [s10] ⋅ [s20]

(0,0,2) ∣MP
3 ∣ = ∣MQ

3 ∣ = ∣MR
3 ∣ = 0 x(0,0,2) = [∣MQ

3 ∣] ⋅ [∣MP
3 ∣]− [s19][s9]

(2.110)

It is straightforward but a bit lengthy to use (2.47) in combination with (2.30), (2.36) to

obtain, as demonstrated in (2.109), the expressions for the multiplicities of all these mat-

ter fields explicitly. We have shown one possible way of calculating the multiplicities in

(2.110), i.e. choosing one particular pair of minors. We emphasize that the same results for

the multiplicities can be obtained by picking any other the possible pairs of minors.

Finally we calculate the hypermultiplets of the matter found in the WSF, as discussed

in section 2.4.2. In each case, in order to calculate the multiplicity of the matter located

at a generic point of the polynomials (2.104) we need to first identify all the loci, which
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solve one particular constraint in (2.104), but support other charged hypermultiplets. Then,

we have to find the respective orders of vanishing of the polynomial in (2.104) at these

special loci using the resultant technique explained below (2.105). Finally, we compute

the homology class of the complete intersection under consideration in (2.104) subtract the

homology classes of the special loci with their appropriate orders.

We start with the matter with charges (1,1,1) in (2.104) which is located at a generic

point of the locus h1 = h2 = 0. In this case, the degree of vanishing of the other loci are given

by

Charge x(1,1,−1) x(0,1,2) x(1,0,2) x(−1,0,1) x(0,−1,1) x(−1,−1,−2) x(0,0,2)

(1,1,1) 0 1 1 0 0 4 0
(2.111)

Here we labeled the loci that are contained in h1 = h2 = 0 by the multiplicity of matter which

supported on them. We note that the other six matter fields in (2.104) do not appear in this

table, because the matter with charges (1,1,1) is contained in their loci, as we demonstrate

next. This implies that the multiplicity of the hypermultiplets with charge (1,1,1) is given

by

x(1,1,1) = [h1] ⋅ [h2]−x(0,1,2)−x(1,0,2)−4x(−1,−1,−2) ,

= 4[K−1
B ]2−3([p2]

b)2−2[K−1
B ]Ŝ7−3([p2]

b) ⋅ Ŝ7−2[K−1
B ] ⋅ S̃7−3([p2]

b) ⋅ S̃7

−2Ŝ7 ⋅ S̃7+2[K−1
B ]S9+9([p2]

b)S9+5Ŝ7 ⋅S9+5S̃7 ⋅S9−8S2
9 , (2.112)

where the first term is the class of the complete intersection h1 = h2 = 0 and the three follow-

ing terms are the necessary subtractions that follow from (2.111). The homology classes of

h1, h2 can be obtained by determining the class of one term in (2.102), respectively, (2.103)

using (2.47).

Proceeding in a similar way for the hympermultiplets with charges (1,0,1), (0,1,1)
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and (1,1,0) we get the following orders of vanishing of the loci supporting the remaining

matter fields:

Charges x(1,1,−1) x(0,1,2) x(1,0,2) x(−1,0,1) x(0,−1,1) x(−1,−1,−2) x(0,0,2) x(1,1,1)

(1,0,1) 0 0 4 0 0 4 0 1

(0,1,1) 0 4 0 0 0 4 0 1

(1,1,0) 1 0 0 0 0 1 0 1
(2.113)

We finally obtain the multiplicities of these matter fields by computing the homology class

of the corresponding complete intersection in (2.104) and subtracting the multiplicities

the matter fields contained in these complete intersections with the degrees determined in

(2.113). We obtain

x(1,0,1) = 2[K−1
B ]2+3([p2]

b)2+2[K−1
B ]Ŝ7+3([p2]

b)Ŝ7−3[K−1
B ]S̃7+3([p2]

b)S̃7

+2Ŝ7S̃7+ S̃
2
7 +2[K−1

B ]S9−9([p2]
b)S9−5Ŝ7S9−4S̃7S9+6S2

9 ,

x(0,1,1) = 2[K−1
B ]2+3([p2]

b)2−3[K−1
B ]Ŝ7+3([p2]

b)Ŝ7+ Ŝ
2
7 +2[K−1

B ]S̃7

+3([p2]
b)S̃7+2Ŝ7S̃7+2[K−1

B ]S9−9([p2]
b)S9−4Ŝ7S9−5S̃7S9+6S2

9 ,

x(1,1,0) = 2[K−1
B ]2+3([p2]

b)2+2[K−1
B ]Ŝ7+3([p2]

b)Ŝ7+2[K−1
B ]S̃7+3([p2]

b)S̃7

+Ŝ7S̃7−3[K−1
B ]S9−9([p2]

b)S9−4Ŝ7S9−4S̃7S9+7S2
9 . (2.114)

Finally for the hypermultiplets of charges (1,0,0), (0,1,0) and (0,0,1) we obtain the

following degrees of vanishing of the loci supporting the other matter fields:

Charges x(1,1,−1) x(0,1,2) x(1,0,2) x(−1,0,1) x(0,−1,1) x(−1,−1,−2) x(0,0,2) x(1,0,1) x(0,1,1) x(1,1,0) x(1,1,1)

(1,0,0) 1 0 1 1 0 1 0 1 0 1 1

(0,1,0) 1 1 0 0 1 1 0 0 1 1 1

(0,0,1) 1 16 16 1 1 16 16 1 1 0 1

(2.115)
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Again we first computing the homology class of the complete intersection in (2.104) sup-

porting the hypermultiplets with charges (1,0,0), (0,1,0), respectively, (0,0,1) and sub-

tracting the multiplicities the matter fields contained in these complete intersections with

the degrees determined in (2.115). We obtain

x(1,0,0) = 4[K−1
B ]2−3([p2]

b)2−2[K−1
B ]Ŝ7−3([p2]

b)Ŝ7+2[K−1
B ]S̃7−3([p2]

b)S̃7

−Ŝ7S̃7−2S̃2
7 −2[K−1

B ]S9+9([p2]
b)S9+4Ŝ7S9+5S̃7S9−6S2

9 ,

x(0,1,0) = 4[K−1
B ]2−3([p2]

b)2+2[K−1
B ]Ŝ7−3([p2]

b)Ŝ7−2Ŝ2
7 −2[K−1

B ]S̃7

−3([p2]
b)S̃7− Ŝ7S̃7−2[K−1

B ]S9+9([p2]
b)S9+5Ŝ7S9+4S̃7S9−6S2

9 ,

x(0,0,1) = 4[K−1
B ]2−4([p2]

b)2+2[K−1
B ]Ŝ7−4([p2]

b)Ŝ7−2Ŝ2
7 +2[K−1

B ]S̃7−4([p2]
b)S̃7

−2Ŝ7S̃7−2S̃2
7 +2[K−1

B ]S9+12([p2]
b)S9+6Ŝ7S9+6S̃7S9s−10S2

9 .

We conclude by showing that the spectrum of the theory we have calculated is anomaly-

free, which serves also as a physically motivated consistency check for the completeness

of analysis of codimension two singularities presented in sections 2.4.1 and 2.4.2. We refer

to [130, 131] for a general account on anomaly cancellation and to [128, 154, 156] for the

explicit form of the anomaly cancellation conditions adapted to the application to F-theory,

c.f. for example Eq. (5.1) in [156]. Indeed, we readily check that the spectrum (2.108),

(2.110), (2.112), (2.114) and (2.116) together with the height pairing matrix bmn reading

bmn = −π(σ(ŝm)⋅σ(ŝn)) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2[KB] −[KB] S9− S̃7− [KB]

−[KB] −2[KB] S9− Ŝ7− [KB]

S9− Ŝ7− [KB] S9− Ŝ7− [KB] 2(S9− [KB])

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

mn

.(2.116)

with m,n=1,2,3 all mixed gravitational-Abelian and purely-Abelian anomalies in Eq. (5.1)

of [156] are canceled.
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2.5 Conclusions

In this work we have analyzed F-theory compactifications with U(1)×U(1)×U(1) gauge

symmetry that are obtained by compactification on the most general elliptically fibered

Calabi-Yau manifolds with a rank three Mordell-Weil group. We have found that the nat-

ural presentation of the resolved elliptic fibration with three rational sections is given by a

Calabi-Yau complete intersection X̂ with general elliptic fiber given by the unique Calabi-

Yau complete intersection in Bl3P3. We have shown that all F-theory vacua obtained by

compactifying on a generic X̂ over a given general base B are classified by certain reflexive

polytopes related to the nef-partition of Bl3P3.

We have analyzed the geometry of these elliptically fibered Calabi-Yau manifolds X̂ in

detail, in particular the singularities of the elliptic fibration at codimension two in the base

B. This way we could identify the 14 different matter representations of F-theory com-

pactifications on X̂ to four and six dimensions. We have found three matter representations

that are simultaneously charged under all three U(1)-factors, most notably a tri-fundamental

representation. This unexpected representation is present because of the presence of a codi-

mension two locus in B, along which all the four constraints in (2.100), δgQR
2 , δgQS

2 , gQ
3 and

ĝQ
4 , miraculously vanish simultaneously. We could explicitly identify the two polynomials

describing this codimension two locus algebraically in (2.102), (2.103) by application of

the Euclidean algorithm. These results point to an intriguing structure of codimension two

singularities encoded in the elliptic fibrations with higher rank Mordell-Weil groups.

We also determined the multiplicities of the massless charged hypermultiplets in six-

dimensional F-theory compactifications with general two-dimensional base B. The key to

this analysis was the identification of the codimension two loci of all matter fields, which

required a two-step strategy where first the singularities of the rational sections in the re-

solved fibration with Bl3P3-elliptic fiber have to be determined and then the remaining
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singularities that are visible in the singular Weierstrass form. We note that the loci of the

former matter are determinantal varieties, whose homology classes we determine in gen-

eral. The completeness of our strategy has been cross-checked by verifying 6D anomaly

cancellation.

We would like to emphasize certain technical aspects in the analysis of the elliptic

fibration. Specifically, we constructed three birational maps of the elliptic curve E in Bl3P3

to three different elliptic curves in dP2. On the level of the toric ambient spaces Bl3P3 and

dP2 these maps are toric morphisms. The general elliptic curves in these toric varieties

are isomorphic, whereas the map breaks down for the degenerations of E in section 2.4.1.

Besides loop-holes of this kind, we expect the degeneration of Bl3P3-elliptic fibrations to

be largely captured by the degenerations of the non-generic dP2-fibrations.

It would be important for future works to systematically add non-Abelian gauge groups

to the rank three Abelian sector of F-theory on X̂ . This requires to classify the possible

ways to engineer appropriate codimension one singularities of the elliptic fibration of X̂ . A

straightforward way to obtain many explicit constructions of non-Abelian gauge groups is

to employ the aforementioned birational maps to dP2, because every codimension one sin-

gularity of the dP2-elliptic fibration automatically induces an according singularity of the

Bl3P3-elliptic fibration. In particular, many concrete I4-singularities, i.e. SU(5) groups, can

be obtained by application of the constructions of I4-singularities of dP2-elliptic fibrations

in [155, 156, 121]. However, it would be important to analyze whether all codimension one

singularities of X̂ are induced by singularities of the corresponding dP2-elliptic fibrations.

For phenomenological applications, it would then be relevant to determine the matter repre-

sentations for all possible SU(5)-GUT sectors that can be realized in Calabi-Yau manifolds

X̂ with Bl3P3-elliptic fiber. Compactifications with Bl3P3-elliptic fiber might lead to new

implications for for particle physics: e.g., the appearance of 10-representations with dif-

ferent U(1)-factors, which does not seem to appear in the rank-two Mordell-Weil construc-
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tions, and the intriguing possibility for the appearance of 5-representations charged under

all three U(1)-factors, i.e. quadruple-fundamental representations, which are not present in

perturbative Type II compactifications.

Furthermore, for explicit 4D GUT-model building, it would be necessary to combine

the analysis of this work with the techniques of [157] to obtain chiral four-dimensional

compactifications of F-theory. The determination of chiral indices of 4D matter requires

the determination of all matter surfaces as well as the construction of the general G4-flux on

Calabi-Yau fourfolds X̂ with general elliptic fiber in Bl3P3, most desirable in the presence

of an interesting GUT-sector. Furthermore the structure of Yukawa couplings should to be

determined by an analysis of codimension three singularities of the fibration.
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2.6 The Weierstrass Form of the Elliptic Curve with

Three Rational Points

The main text made extensive use of the mapping of the elliptic curve E with Mordell-

Weil rank three to the Calabi-Yau hypersurface in dP2. Specifically, the calculation of
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the coordinates of the rational points, the Weierstrass form and the discriminant were all

performed employing the results for the dP2-elliptic curve in [156]. Following [154, 156],

that we refer when needed, in this appendix we calculate the Weierstrass form and the

coordinates of the three ratinal points directly from the three elliptic curve E .

In order to motivate the approach below, we briefly summarize how to obtain the Tate

form of an elliptic curve with the zero point P. Given an elliptic curve with one marked

point P, we can obtain the Tate equation with respect to this point by finding the sections

of O(kP), k = 1, ...,6. The coordinate z will be the only section of O(P), the coordinate x

is a section of O(2P) independent of z2, and y is a section of O(3P) independent of z3 and

xz. The Tate equation is obtained from the linear relation between the sections of O(6P).

Coordinates x, y and z

To obtain the birational map from the complete intersection (2.4) in P3 to the Tate form,

we need to construct the Weierstrass coordinates x, y and z as sections of the line bundles

O(kP) on E with k = 1,2,3. In section 2.2.1 we found a basis for the bundleM =O(P+

Q+R+S), as well as a basis forM2 and a choice of basis forM3. The sections of O(kP)

are obtained from linear combinations of O(kM) that vanish with degree k at the points Q,

R and S.

From the discussion in section 2.2.1, the section z can be taken to be z ∶= u′. To find

x, we take an eight-dimensional basis of H0(E ,M2) and construct the most general linear

combination. The coefficient of u′2 is set to zero in order for x to be independent of z2.

Thus, the ansatz for the variable x reduces to

x ∶= at′2+cv′2+dw′2+et′u′+ f u′v′+gu′w′+hv′w′ . (2.117)

Six out of the seven coefficients are fixed by imposing zeroes of order two at the three
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points Q, R and S. The last coefficient can be eliminated by an overall scaling. Solving the

constraints but keeping h as the overall scaling coefficient, we obtain

a = h(s10s19−s20s9)2

(s10s18−s20s8)(−s19s8+s18s9)
, c = d = 0 , f = h(s19s6−s16s9)

s19s8−s18s9
, g = h(s10s17−s20s7)

s10s18−s20s8
,

e = −hs10
s18s19s5− s19s20s6+ s2

19s7+ s15s19s8−2s15s18s9− s17s19s9− s16s20s9

(s10s18− s20s8)(−s19s8+ s18s9)

−h
s2

10s16s19+ s20[s9(s18s5+ s20s6+ s15s8+ s17s9)− s19(2s5s8+ s7s9)]

(s10s18− s20s8)(−s19s8+ s18s9)
.

Finally consider y ∈O(3P) as a section linearly independent of u3 and ux. We make the

ansatz

y ∶= ãt′3+ c̃v′3+ d̃w′3+ f̃ t′u′2+ g̃u′2v′+ h̃u′2w′+ ĩu′v′2+ j̃u′w′2+ k̃u′v′w′+ l̃v′2w′ , (2.118)

where again, all but one of the coefficients can be fixed by demanding y to have zeroes of

degree three at Q, R and S and the free coefficient is an overall scaling. The solutions of

these coefficients are long and not illuminating, thus we will not be presented here but can

be provided on request.

Tate equations and Weierstrass form

Once the sections x, y and z are known, we impose the Tate form

y2+a1yxz+a3yz3 = x3+a4x2z4+a6z6 (2.119)

to hold in the ideal generated by the complete intersection (2.4). First we exploit the free

scalings of x and y to obtain coefficients equal to one in front of the monomials x3 and y2 in

(2.117) and (2.118). Then we compute all the monomials in equation (2.119) after inserting
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z = u′, (2.117) and (2.118) and reduce by the ideal generated by the polynomials (2.4). Fi-

nally, from a comparison of coefficient, we obtain 23 equations that can be solved uniquely

for the five Tate coefficients ai. Unfortunately the results are long and not illuminating and

are again provided on request.

From the Tate form (2.119), the Weierstrass form

y2 = x3+ f xz4+gz6 (2.120)

is obtained by the variable transformation

x↦ x+ 1
12b2z2 , y↦ y+ 1

2a1xz+ 1
2a3z3 (2.121)

with the following definitions

f = − 1
48(b2

2−24b4) , g = − 1
864(−b3

2+36b2b4−216b6) ,

b2 = a2
1+4a2 , b4 = a1a3+2a4 , b6 = a2

3+4a6 ,

∆ = −16(4 f 3+27g2) = −8b3
4+

1
4b2

2b2
4+9b2b4b6−

1
4b6b3

2−27b6 . (2.122)

Rational points in the Weierstrass form

Equipped with the Weierstrass form (2.120) of the curve, we calculate the coordinates

[xm ∶ ym ∶ zm] = [gm
2 ∶ gm

3 ∶ bm] of all the rational points m = P,Q,R,S. By construction the

point P is mapped to the zero section, that is the point [λ 2 ∶ λ 3 ∶ 0].

The coordinates of the other points are all obtained through the following procedure:

Let us call the generic point N with Tate coordinates [xN ∶ yN ∶ zN]. First, we find a section

of degree two, denoted x′, that vanishes with degree three at the point N. In this case we

need to make use of the full basis of O(2M) that includes u2. The vanishing at degree two
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already fixes most of the coefficients as in (2.117). The condition of vanishing at degree

three fixes the new coefficient of u2. Restoring the variables x and z we obtain

x′∣N = x+ g̃mz2 . (2.123)

Then, the coordinate xN of N is given in terms of zN by requiring x′∣N = 0. The coordinate

yN is determined by inserting the values for zN , xN into the Tate form (2.119). Finally, the

coordinates in Weierstrass form are obtained by the transformations (2.121).

We summarize our results for the coordinates of the rational points Q, R and S in the

following. We obtain the coordinates of the form

[xQ,yQ,zQ] = [gQ
2 ∶ g

Q
3 ∶ 1] , (2.124)

[xR,yR,zR] = [gR
2 ∶ g

R
3 ∶ 1] , (2.125)

[xS,yS,zS] = [gS
2 ∶ g

S
3 ∶ (s10s19− s20s9)] , (2.126)

where we have made the following definitions:

gQ
2 =

1
12

[8(s10s15− s20s5)(s18s6− s16s8)+(s10s16+ s18s5− s20s6+ s19s7− s15s8− s17s9)
2

−4(s10s12− s2s20+ s17s5− s15s7)(s19s8− s18s9)

+4(s18s2+ s17s6− s16s7− s12s8)(s10s19− s20s9)] , (2.127)

gQ
3 =

1
2
[(−s10s15+ s20s5)(−s18s6+ s16s8)(−s10s16− s18s5+ s20s6− s19s7+ s15s8+ s17s9)

−(s10s15− s20s5)(s18s2+ s17s6− s16s7− s12s8)(−s19s8+ s18s9)

−(s10s12− s2s20+ s17s5− s15s7)(s18s6− s16s8)(s10s19− s20s9)

+(s17s2− s12s7)(s19s8− s18s9)(s10s19− s20s9)] , (2.128)
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gR
2 =

1
12

[−4(s10s18− s20s8)(s19s2− s16s5+ s15s6− s12s9)

+8(−s18s7+ s17s8)(s19s5− s15s9)+(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)
2

−4(s18s2− s17s6+ s16s7− s12s8)(s10s19− s20s9)] , (2.129)

gR
3 =

1
2
[(s18s2− s17s6+ s16s7− s12s8)(s10s18− s20s8)(s19s5− s15s9)

+(s18s7− s17s8)(s19s5− s15s9)(−s10s16+ s18s5+ s20s6− s19s7− s15s8+ s17s9)

+(s16s2− s12s6)(s10s18− s20s8)(s10s19− s20s9)

−(s18s7− s17s8)(s19s2− s16s5+ s15s6− s12s9)(s10s19− s20s9)] , (2.130)

gS
2 =

1
12

{12(s10s18− s20s8)
2(s19s5− s15s9)

2

+(s10s19− s20s9)
2[8(−s18s7+ s17s8)(s19s5− s15s9)

+(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)
2

−4(s18s2− s17s6+ s16s7− s12s8)(s10s19− s20s9)]

+4(s10s18− s20s8)(−s10s19+ s20s9)× [

−3(s19s5− s15s9)(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)

+2(s19s2− s16s5+ s15s6− s12s9)(−s10s19+ s20s9)]} , (2.131)
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gS
3 =

1
2
{2(s10s18− s20s8)

3(s19s5− s15s9)
3 (2.132)

+(s10s18− s20s8)(s10s19− s20s9)
2[2(−s18s7+ s17s8)(s19s5− s15s9)

2

+(s19s5− s15s9)(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)
2

−(s18s2− s17s6+ s16s7− s12s8)(s19s5− s15s9)(s10s19− s20s9)

+(s19s2− s16s5+ s15s6− s12s9)(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)×

(s10s19− s20s9)+(−s16s2+ s12s6)(s10s19− s20s9)
2]

+(−s18s7+ s17s8)(−s10s19+ s20s9)
3×

[−(s19s5− s15s9)(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)

+(s19s2− s16s5+ s15s6− s12s9)(−s10s19+ s20s9)]

+(s10s18− s20s8)
2(s19s5− s15s9)(−s10s19+ s20s9)×

[−3(s19s5− s15s9)(s10s16− s18s5− s20s6+ s19s7+ s15s8− s17s9)

+2(s19s2− s16s5+ s15s6− s12s9)(−s10s19+ s20s9)]}. (2.133)

2.7 Nef-partitions

Here we recall the very basic definitions and results about nef-Partitions. We refer for

example to [132] for a detailed mathematical account.

Definition Let X = P∇ be a toric variety with a corresponding polytope ∇, a normal

fan of the polytope ∇ and rays ρ ∈ Σ(1) with associated divisors Dρ . Given a partition of

Σ(1) = I1∪⋯∪ Ik, into k disjoint subsets, there are divisors E j =∑ρ∈I j Dρ such that −KX =

E1 +⋯+Ek. This decomposition is called a nef-partition if for each j, E j is a a Cartier

divisor spanned by its global sections.

We denote the convex hull of the rays in I j as ∇ j and their dual polytopes by ∆ j, which
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are defined as

∆ j = {m ∈Z3∣⟨m,ρi⟩ ≥ −δi j for ρi ∈∇ j}. (2.134)

The generic global sections, h j of D j are computed according to the expression

h j = ∑
m∈∆ j∩Z3

am

k
∏
j=1
∏

ρi∈∇ j

x⟨m,ρ i⟩+δi j
i , δi j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 for ρi ∈∇ j

0 else.
(2.135)
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Chapter 3
Origin of abelian gauge symmetries

in heterotic/F-theory duality

3.1 Introduction and Summary of Results

The study of effective theories of string theory in lower dimensions with minimal super-

symmetry are both of conceptual and phenomenological relevance. Two very prominent

avenues to their construction are Calabi-Yau compactifications of the E8 ×E8 heterotic

string and of F-theory, respectively. The defining data of the two compactifications are

seemingly very different. While a compactification to 10−2n dimensions is defined in the

heterotic string by a complex n-dimensional Calabi-Yau manifold Zn and a holomorphic,

semi-stable vector bundle V [133, 134], in F-theory one needs to specify a complex (n+1)-

dimensional elliptically-fibered Calabi-Yau manifold Xn+1 [135, 136, 137]. For an elliptic

K3-fibered Xn+1 and an elliptically fibered Zn, however, both formulations of compactifica-

tions of string theory are physically equivalent. The defining data of both sides are related

to each other by heterotic/F-theory duality [135, 136, 137]. Most notably, this duality al-

lows making statements about the heterotic vector bundle V in terms of the controllable
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geometry of the Calabi-Yau manifold Xn+1 on the F-theory side. Studying the structure of

the heterotic vector bundle V is crucial for understanding the gauge theory sector of the

resulting effective theories. In this note, we present key steps towards developing the geo-

metrical duality map between heterotic and F-theory compactifications with Abelian gauge

symmetries in their effective theories.

Since the advent of F-theory, the matching of gauge symmetry and the matter content

in the effective theories has been studied in heterotic/F-theory duality [135, 136, 137].

Mathematically, the duality astonishingly allows to use the data of singular Calabi-Yau

manifolds Xn+1 in F-theory to efficiently construct vector bundles V on the heterotic side,

which is typically very challenging. The duality can be precisely formulated in the so-

called stable degeneration limit of Xn+1 [138], in which its K3-fibration degenerates into

two half K3-fibrations X±
n+1,

Xn+1 → X+
n+1∪Zn X−

n+1 , (3.1)

that intersect in the heterotic Calabi-Yau manifold, X+
n+1 ∩X−

n+1 = Zn. It can be shown

that X±
n+1 naturally encode the heterotic vector bundle V on elliptically fibered Calabi-Yau

manifolds Zn [139]. The most concrete map between the data of Xn+1 in stable degen-

eration and the heterotic side is realized if V is described by a spectral cover employing

the Fourier-Mukai transform [139, 140] (for more details see e.g. [141] and references

therein). Heterotic/F-theory duality has been systematically applied using toric geometry

for the construction of vector bundles V with non-Abelian structure groups described both

via spectral covers and half K3 fibrations, see e.g. [142, 143] for representative works.

More recently, heterotic/F-theory duality has been used to study the geometric constraints

on both sides of the duality in four-dimensional compactifications and to characterize the

arising low-energy physics [144], see also [145]. Furthermore, computations of both vector

bundle and M5-brane superpotentials could be performed by calculation of the F-theory su-
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perpotential using powerful techniques from mirror symmetry [146, 147, 148]. In addition,

the heterotic/F-theory duality has been recently explored for studies of moduli-dependent

prefactor of M5-instanton corrections to the superpotential in F-theory compactifications

[149, 150]. The focus of all these works has been on vector bundles V with non-Abelian

structure groups, see however [151, 152] for first works on aspects of heterotic/F-theory

duality with U(1)’s.

In this work, we will apply the simple and unifying description on the F-theory side

in terms of elliptically fibered Calabi-Yau manifolds Xn+1 to study explicitly, using stable

degeneration, the structure of spectral covers yielding heterotic vector bundles that give rise

to U(1) gauge symmetry in the lower-dimensional effective theory, continuing the analysis

explained in the 2010 talk [153].1

Abelian gauge symmetries are desired ingredients for controlling the phenomenology

both of extensions of the standard model as well as of GUT theories. Recently, there has

been tremendous progress on the construction of F-theory compactifications with Abelian

gauge symmetries based on the improved understanding of elliptically fibered Calabi-Yau

manifold Xn+1 with higher rank Mordell-Weil group of rational sections, see the repre-

sentative works [154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. In contrast, it has

been long known that Abelian gauge symmetries in the heterotic theory can for example

be constructed by considering background bundle V with line bundle components [133].

The setup we are studying in this work is the duality map between the concrete and known

geometry of the Calabi-Yau manifold Xn+1 with a rank one Mordell-Weil group in [154]

on the F-theory side and the data of the Calabi-Yau manifold Zn and the vector bundle V

defining the dual heterotic compactification. We will demonstrate, at the hand of a number

of concrete examples, the utility of the F-theory Calabi-Yau manifold Xn+1 for the construc-

tion of vector bundles with non-simply connected structure groups that arise naturally in

1We have recently learned that A. Braun and S. Schäfer-Nameki have been working on similar techniques.
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this duality. In particular, the F-theory side will guide us to the physical interpretation of

less familiar or novel structures in the heterotic vector bundle.

There are numerous key advancements in this direction presented in this work:

• We rigorously perform the stable degeneration limit of a class of F-theory Calabi-Yau

manifolds Xn+1 with U(1) Abelian gauge symmetry using toric geometry, applying

and extending the techniques of [164]. We explicitly extract the data of the two half-

K3 surfaces inside X±
n+1, the spectral covers and the heterotic Calabi-Yau manifold

Zn. We point out the non-commutativity of the stable degeneration limit and bira-

tional maps, such as the one to the Weierstrass model. The stable degeneration limit

we perform, which we denote as “toric stable degeneration”, preserves the structure

of the Mordell-Weil group of rational sections before and after the limit, which is,

in contrast, obscured in the stable degeneration limit performed in the Weierstrass

model. We apply our general techniques to Calabi-Yau manifolds with elliptic fiber

in Bl1P2(1,1,2), which yield one U(1) in F-theory [154].

• We illuminate the systematics in the mapping under heterotic/F-theory duality be-

tween F-theory with a Mordell-Weil group and heterotic vector bundles with non-

simply connected structure groups leading to U(1)’s in their effective theories. We

find that a single type of F-theory geometry Xn+1 can be dual to a whole range of dif-

ferent phenomena in the heterotic string, at the hand of numerous concrete examples.

We find three different classes of examples of how a U(1) gauge group is obtained in

the heterotic string: one class of examples has a split spectral cover, which is a well-

known ingredient for obtaining U(1) gauge groups in the heterotic literature starting

with [165] and the F-theory literature, see e.g. [166, 167, 168]; another class of mod-

els have a spectral cover containing a torsional section of the heterotic Calabi-Yau

manifold Zn, where, duality suggests that this should describe zero-size instantons of
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discrete holonomy, as considered in [169]; in a last set of examples, the U(1) arises as

the commutant inside E8 of vector bundles with purely non-Abelian structure groups.

We analyze the emerging spectral covers by explicit computations in the group law

on the elliptic curve in Zn. In the first two classes of examples, it is crucial that the

heterotic elliptic fibration Zn exhibits rational sections, as also found in [170]. In

addition, in certain examples, the U(1) is only visible in the half K3 fibration (and in

Zn), but not in the spectral cover.

• Whereas the number of massless U(1)’s on the F-theory side equals the Mordell-

Weil rank of Xn+1, it is on the heterotic side a mixture of geometry and effective field

theory effects: while the analysis of the spectral cover can be performed already in

8D, in 6D and lower dimensions U(1)’s can be lifted from the massless spectrum by

a Stückelberg effect, i.e. gaugings of axions [133]. We understand explicitly in all

three classes of examples how these gaugings arise and what is the remaining number

of massless U(1) fields.

We note that although our analysis is performed in 8D and 6D, it is equally applicable also

to heterotic/F-theory duality for compactifications to 4D.

This paper is organized in the following way: In Section 3.2, we provide a brief review

of the key points of heterotic/F-theory duality as well as a discussion of the new insights

gained in this work into spectral covers and half K3-fibrations for vector bundles with non-

simply connected structure groups. We review and discuss heterotic/F-theory duality in

eight and six dimensions, the spectral cover construction for SU(N) bundles, specializations

thereof giving rise to U(1) factors in the heterotic string and the Stückelberg mechanism

rendering certain U(1) gauge fields massive. Section 3.3 contains the toric description of a

class of F-theory models Xn+1 for which we describe a toric stable degeneration limit. We

specialize to the toric fiber Bl1P2(1,1,2) and obtain the half K3-fibrations as well as the
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dual heterotic geometry and spectral cover polynomial. In Section 3.4, we present selected

examples of F-theory/heterotic dual compactifications. We illustrate the three different

classes of examples with heterotic vector bundles of structure groups S(U(n)×U(1)) and

S(U(n)×Zk), as well as purely non-Abelian ones having a centralizer in E8 with one U(1)

factor. There we also illustrate the utility of the Stückelberg mechanism to correctly match

the number of geometrically massless U(1)’s on both sides of the duality. In Section 3.5,

we conclude and discuss possibilities for future works. This work has four Appendices:

we present the birational map of the quartic in P2(1,1,2) to Tate and Weierstrass form in

Appendix 3.6); Appendix 3.7 contains examples with no U(1) factor, consistently repro-

ducing [136]; in Appendix 3.8 we state the condition for the existence of two independent

rational sections and Appendix 3.9 illustrates explicitly the non-commutativity of the stable

degeneration limit and the birational map to Weierstrass form.

3.2 Heterotic/F-theory Duality and U(1)-Factors

The aim of this section is two-fold: On the one hand, we review those aspects of heterotic/F-

theory duality in eight and six dimensions that are relevant for the analyses performed in

this work. On the other hand, we point out subtleties and new insights into heterotic/F-

theory duality with Abelian U(1) factors. In particular, we discuss in detail split spectral

covers for heterotic vector bundles with non-simply connected gauge groups and the het-

erotic Stückelberg mechanism.

In Section 3.2.1, we discuss the fundamental duality in 8d, the standard stable degen-

eration limit in Weierstrass form and the principal matching of gauge groups and moduli.

There, we also discuss a subtlety in performing the stable degeneration limit of F-theory

models with U(1) factors due to the non-commutativity of this limit with the map to the

Weierstrass model. Section 3.2.2 contains a discussion of the spectral cover construction
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for SU(N) bundles as well as of split spectral covers giving rise to S(U(N−1)×U(1)) and

S(U(N −1)×Zk) bundles. In Section 3.2.3 we briefly review heterotic/F-theory duality in

6d, before we discuss the Stückelberg effect in the effective theory of heterotic compactifi-

cations with U(1) bundles as well as the relation to gluing condition of rational sections in

Section 3.2.4.

In the review part, we mainly follow [171, 139, 141], to which we refer for further

details.

3.2.1 Heterotic/F-Theory duality in eight dimensions

The basic statement of heterotic/F-Theory duality is that the heterotic String (in the fol-

lowing, we always concentrate on the E8 ×E8 string) compactified on a torus, which we

denote by Z1, is equivalent to F-Theory compactified on an elliptically fibered K3 surface

X2. The first evidence is that the moduli spacesM of these two theories coincide and are

parametrized by

M = SO(18,2,Z)/SO(18,2,R)/(SO(18)×SO(2)) ×R+. (3.2)

From a heterotic perspective this is just the parametrization of the complex and Kähler

structure of the torus Z1 as well as of the 24 Wilson lines. On the F-Theory side it corre-

sponds to the moduli space of algebraic K3 surfaces X2 with Picard number two. The last

factor corresponds to the vacuum expectation value of the dilaton and the size of the base

P1 of X2, respectively.

Lower-dimensional dualities are obtained, applying the adiabatic argument [172], by

fibering the eight-dimensional duality over a base manifold Bn−1 of complex dimension

n−1 that is common to both theories of the duality.

141



The standard stable degeneration limit

In order to match the moduli on both sides of the duality, the K3 surface X2 has to undergo

the so-called stable degeneration limit. In this limit it splits into two half K3 surfaces X+
2 ,

X−
2 as

X2 → X+
2 ∪Z1 X−

2 . (3.3)

Each of these are an elliptic fibration π± ∶ X±
2 Ð→ P1 over a P1. These two P1 intersect in

precisely one point so that the two half K3 surfaces intersect in a common elliptic fiber

which is identified with the heterotic elliptic curve, X+
2 ∩X−

2 = Z1. On the heterotic side, the

stable degeneration limit corresponds to the large elliptic fiber limit of Z1.

Matching the gauge groups

The F-theory gauge group is given by the singularities of the elliptic fibration of X2, de-

termining the non-Abelian part G, and its rational sections, which correspond to Abelian

gauge fields [135, 137, 173]. In stable degeneration the non-Abelian gauge group of F-

theory is distributed into the two half K3 surfaces X±
2 and matched with the heterotic side

as follows.

It is a well-known fact that the homology lattice of a half K3 surface X±
2 is given in

general by

H2(X±
2 ,Z) = Γ8⊕U (3.4)

Here, U contains the classes of the elliptic fiber as well as of the zero section. Γ8 equals

the root lattice of E8 and splits into a direct sum of two contributions: the first contribution

is given by the Mordell-Weil group of the rational elliptic surface while the second con-

tribution is given by a sub-lattice which forms, for the half K3 surfaces X±
2 at hand, the

root-lattice of the part G± of the non-Abelian F-theory gauge group G = G+×G− that is of

ADE type. In the F-Theory limit all fiber components are shrunken to zero size and the half
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K3 surface develops a singularity of type G±. The possible ADE-singularities in the case

of complex surfaces have been classified by Kodaira [174]. Thus, one can always read off

the corresponding gauge group from the order of vanishings of f ,g and ∆ once the half K3

has been brought into affine Weierstrass normal form

y2z = x3+ f xz2+gz3, ∆ = f 3+27g2 , (3.5)

with f and g in O(4) and O(6) of P1, respectively. For convenience of the reader, we

reproduce Kodaira’s classification in Table 3.1.

order ( f ) order (g) order (∆) singularity
≥ 0 ≥ 0 0 none
0 0 n An−1
≥ 1 1 2 none
1 ≥ 2 3 A1
≥ 2 2 4 A2
2 ≥ 3 n+6 Dn+4
≥ 2 3 n+6 Dn+4
≥ 3 4 8 E6
3 ≥ 5 9 E7
≥ 4 5 10 E8

Table 3.1: The Kodaira classification of singular fibers. Here f and g are the coefficients of
the Weierstrass normal form, ∆ is the discriminant as defined in (3.95) and order refers to
their order of vanishing at a particular zero.

In contrast, the gauge group on the heterotic side is encoded in two vector bundles

V1,V2 that generically carry the structure group E8. Their respective commutants inside

the two ten-dimensional E8 gauge groups of the heterotic string are to be identified with

the F-theory gauge group. As observed in [139], the moduli space of semi-stable E8-

bundles on an elliptic curve E corresponds to the complex structure moduli space of a half

K3 surface S whose anti-canonical class is given by E. Furthermore, if S has an ADE

singularity of type G̃± then the structure group of V1, V2 is reduced to the centralizer H± of
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G̃± within E8, respectively. In heterotic/F-theory duality, a matching of the gauge group is

then established by identifying S ≡ X±
2 yielding G̃± ≡G±.

Notice that the full eight-dimensional gauge group is given by G×U(1)16−rk(G)×U(1)4.

Here, the last factor accounts for the reduction of the metric and the Kalb Ramond B-field

along the two one-cycles of the torus in the heterotic string. From the F-theory perspective,

all U(1) factors arise from the reduction of the C3 field along those 2-forms in the full K3

surface X2 that are orthogonal to the zero section and the elliptic fiber. In particular, the

U(1)16−rk(G) arises from the generators of the Mordell-Weil group of the half K3 surfaces.

For a derivation in Type IIB string theory, see the recent work [175].

Matching complex structure and bundle moduli

In this section, we discuss how the heterotic moduli can be recovered from the data of

the F-theory K3 surface [136, 176]. Here we restrict the discussion to the moduli of the

heterotic torus Z1 and the vector bundle (i.e. Wilson line) moduli, ignoring the heterotic

dilaton modulus.

So far, this discussion has been restricted to the case that the elliptic fibration of the K3

surface is described by a Weierstrass model. In this case, the standard stable degeneration

procedure applies. Given the Weierstrass form (3.5) for X2 with f , g sections of O(8) and

O(12) on P1, respectively, we can expand these degree eight and twelve polynomials in

the affine P1-coordinate u as

f =
8
∑
i=0

fiui , g =
12
∑
i=0

giui . (3.6)

Then, the two half K3 surfaces X±
2 arising in the stable degeneration limit, given as the

Weierstrass models

X± ∶ y2z = x3+ f ±z+g±z3, (3.7)
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can be obtained from (3.6) by the split

f + =
4
∑
i=0

fiui , f − =
8
∑
i=4

fiui , g+ =
6
∑
i=0

giui , g− =
12
∑
i=6

giui , (3.8)

The ”middle” polynomials f4 and g6 correspond to the heterotic elliptic curve, which then

reads

y2z = x3+ f4xz2+g6z3, (3.9)

while the ”upper” and ”lower” coefficients correspond to the moduli of the two E8-bundles.

Stable degeneration with other elliptic fiber types

The focus of the present work are F-theory compactifications with one U(1) gauge group

arising from elliptically fibered Calabi-Yau manifolds with two rational sections. These are

naturally constructed using the fiber ambient space Bl1P(1,1,2) [154]. More precisely, we

will consider K3 surfaces given as sections χ of the anti-canonical bundle −KP1×Bl1P(1,1,2)

of P1×Bl1P(1,1,2) reading

χ =∑
i

siχ
i . (3.10)

Here si and χ i are sections of the anti-canonical bundles −KP1 = O(2) and −KBl1P(1,1,2) ,

respectively.

Then, analogously to the above construction, one can perform a stable degeneration

limit for these hypersurfaces as well. However, it is crucial to note here that we can perform

the stable degeneration limit in two possible ways, as shown in Figure 3.1: one way is to

first take the Weierstrass normal form Wχ (upper horizontal arrow) of the full Bl1P(1,1,2)-

model and then apply the split (3.8) to obtain two half K3 surfaces (right vertical arrow); a

second way is to first perform stable degeneration (left vertical arrow), yielding two half K3

surfaces χ± with elliptic fibers in Bl1P(1,1,2), and then compute their Weierstrass normal
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Section χ of −KP(1,1,2)×P1

χ =∑
8
i=1 siχ

i si ∈OP1(2)
//

��

Weierstrass normal form

Wχ ∶ y2z = x3+ fχxz2+gχz3

��

ý

Two half K3 surfaces χ±

χ± =∑
8
i=1 s±i χ i s±i ∈OP1(1)

//

Two half K3 surfaces W±
χ

W±
χ ∶ y2z = x3+ f ±χ xz2+g±χz3

Figure 3.1: Computing the Weierstrass normal form (horizontal arrows) and taking the
stable degeneration limit (vertical arrows) does not commute.

forms W±
χ (lower horizontal arrow). It is important to realize, however, that these two

possible paths in the diagram 3.1 do not commute, as explicitly shown in Appendix 3.9.

We propose and demonstrate in Section 3.3 that the natural order to perform heterotic/F-

theory duality for models with U(1) factors and different elliptic fiber types than the Weier-

strass model is to first perform stable degeneration with the other fiber type (left vertical

arrow) and then compute the Weierstrass model of the resulting half K3-fibrations (lower

horizontal arrow) in order to analyze the physics of the model.

3.2.2 Constructing SU(N) bundles on elliptic curves and fibrations

While the description of the structure group of the vector bundle via half K3 surfaces as

reviewed above is of high conceptual importance, it is in practice often easier to construct

vector bundles with the desired structure group directly. In the following section, we review
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this construction for SU(N) bundles and specializations thereof which has been studied first

in [177] and was further developed in [140, 139, 178].

In this section E always denotes an elliptic curve with a marked point p. The curve is

defined over a general field K, which does not necessarily have to be algebraically closed.

It is well-known that an elliptic curve with a point p has a representation in the Weierstrass

normal form (3.5), where p reads [x ∶ y ∶ z] = [0 ∶ 1 ∶ 0]. In general, a degree zero line bundle

LÐ→ E, i.e. a U(1)-bundle, takes the form

L =O(q)⊗O(p)−1 =O(q− p) , (3.11)

where q denotes another arbitrary rational point on E (note that over K =C every point is

rational). Furthermore, we note that there is a bijective map φ from the elliptic curve E

onto its Picard group of degree zero which is defined by

φ ∶ E Ð→ Pic0(E) , q↦ q− p . (3.12)

In particular, this extends to an isomorphism from the space of line bundles onto Pic0(E),

defined by div(L) = q− p. To be more precise, the divisor map ‘div’ is to be applied to

a meromorphic section2 of L. For later purposes, we also recall that the addition law

in Pic0(E) can be identified with the group law on E, which we denote by ⊞, via this

isomorphism.

A semi-stable SU(N) vector bundle of degree zero V is then given as the sum3 of

N holomorphic line bundles Li, i.e. we have V = ⊕N
i=1Li = ⊕

N
i=1O(qi − p), such that the

2This map is independent of the section chosen.
3If two or more points coincide, the situation is a bit more subtle. In this case the bundle is given by

⊕N
i=1O(qi− p)Iri , where ri denotes the multiplicity of the point qi and Ir is inductively defined by the extension

sequence 0Ð→O Ð→ Ir−1 Ð→O Ð→ 0. However, one usually only considers bundles up to S-equivalence
which identifies Ir with O⊕r.
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determinant of V is trivial. The latter implies that

⊗N
i=1O(qi− p) =O ⇔ ⊞N

i=1qi = 0 . (3.13)

An SU(N) vector bundle is therefore determined by the choice of N points on E that

sum up to zero. Any such N-tupel is determined by a projectively unique element of

H0(E,O(N p)), i.e. a function with N zeros and a pole of order N at p. Thus, the moduli

space of SU(N) vector bundles is given by

MSU(N) = PH0(E,O(N p)) . (3.14)

In the affine Weierstrass form of E, given by (3.5), the coordinates x, y have a pole of order

two and three at p, respectively. Accordingly, any element of PH0(E,O(N p)) enjoys an

expansion

w = c0+c1x+c2y+c3x2+ . . .+

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cNx
N
2 if N is even ,

cNx
N−3

2 y if N is odd ,
(3.15)

with ci ∈ K. The section w is called the spectral cover polynomial and has N common

points with E, called the spectral cover, which define the desired SU(N) bundle. Counting

parameters of (3.15), one is lead to the conclusion that

MSU(N) = PN−1 . (3.16)

Finally, a comment on rational versus non-rational points is in order. Generically, p is

the only point on E over a general field K. However, in such a situation, it is possible to

mark N points in a rational way by the polynomial w=0 which give rise to an SU(N) bundle

in the way just described. Nevertheless, under the circumstances that there are additional

rational points on E and the spectral cover polynomial w = 0 specializes appropriately, the
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structure group reduces in a certain way, as discussed next.

Vector bundles with reduced structure groups

As described in the previous section, the choice of N points on E describes an SU(N)

bundle. If we consider just an elliptic curve E over C, which is the geometry relevant

for the construction of heterotic compactifications to eight dimensions, the spectral cover

(3.15) can be factorized completely. This corresponds to the 16 possible Wilson lines on

T 2.

In contrast, if we consider an elliptic curve over a function field, as it arises in elliptic

fibrations Zn of E over a base Bn−1 used for lower-dimensional heterotic compactifcations,

the N points are the zeros of (3.15), which defines an N-section of the fibration. In non-

generic situations, where subsets of the N sheets of this N-section are well-defined globally,

i.e. are monodromy invariant, the structure group of the vector bundle is reduced. For

example, a separation into two sets of k and l sheets (with k+ l =N), respectively, results in

the structure group S(U(k)×U(l)). The spectral cover defined by (3.15) is called “split”

and defines a reducible variety inside Zn, see e.g. [165, 166, 167, 168]. In the most extreme

case, one could have k = 1 and l = N − 1. In this case, the elliptic fibration of Zn has to

necessarily have another well-defined section in addition to the section induced by the

rational point p: it is the one marked by the component of the spectral cover w = 0 with just

one sheet [170]. Thus, the fiber E has a rational point, which we denote by q and one can,

as discussed above, define a U(1) line bundle L via (3.11). As this fiberwise well-defined

line bundle is also well-defined globally, it will induce a line bundle on Zn, whose first

Chern class is given, up to vertical components, by the difference of the sections induced

by q and p, cf. [179]. The structure group H of the vector bundle is in this case given by

H = S(U(N −1)×U(1)) . (3.17)
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We will see later that this situation will be relevant situation for the construction of U(1)

gauge groups in the heterotic string.

We emphasize that for a U(1)-bundle alone there is no spectral cover polynomial (3.15)

that would be able to detect this additional rational point. This is due to the fact that there is

no function that has only one zero on an elliptic curve E . However, if the rational point is

accompanied by further points, rational or non-rational points over the field K, it can very

well be seen by the spectral cover. For instance, one could construct a spectral cover from

q and −q, which would describe a bundle of structure group S(U(1)×U(1)).

Finally, it needs to be discussed what interpretation should be given to the case that the

rational point q on the curve E happens to be torsion of order k. In this case the structure

group H reduces further to S(U(N)×Zk). To argue for this, we invoke again a fiberwise

argument. The fiber at a generic point in Bn−1 admits a line bundle L = O(q− p) with

the property that Lk = O. This is clear as the transition functions gi j will be subject to

gk
i j = 1 in Čech cohomology as k times the Poincaré dual of its first Chern class is trivial.

However, this is just the statement that the fiberwise structure group of L is contained in Zk.

Employing that p and q are globally well-defined sections then suggests that this argument

also holds on Zn.

3.2.3 Heterotic/F-Theory duality in six dimensions

Six-dimensional heterotic/F-Theory duality arises by fibering the eight-dimensional duality

over a common base B1 = P1, employing the adiabatic argument [172]. Thus, the heterotic

string gets compactified on an elliptically fibered K3 surface Z2 while F-Theory is com-

pactified on an elliptically fibered Calabi-Yau threefold X3 over a Hirzebruch surface Fn.

Our presentation will be brief and focused on the later applications in this work. For a

more detailed discussion we refer to the classical reference [137, 136, 139] or the reviews

[171, 141].
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On the F-theory side, the non-Abelian gauge content originates from the codimension

one singularities of the elliptic fibration π ∶ X3→ Fn. The singularity is generically of type

G′, which gets broken down to G ⊂ G′ by monodromies corresponding to outer automor-

phisms of the Dynkin diagram of G′ [173]. The resulting gauge symmetry is encoded in

the order of vanishing of the coefficients a0,a1,a2,a3,a4,a6 in the Tate form of the elliptic

fibration

y2+a1xy+a2 = x3+a3x2+a4x+a6 . (3.18)

In addition, we introduce the Tate vector t⃗X which encodes the orders of vanishing of

the coefficients ai along the divisor defined by the local coordinate X :

t⃗X = (ordX (a0) , ordX (a1) , ordX (a2) , ordX (a3) , ordX (a4) , ordX (a6) , ordX (∆)) . (3.19)

The results of the analysis of singularities, known as Tate’s algorithm, are summarized in

Table 3.2 [180, 173], see, however, [181] for subtleties.

On the heterotic side, the gauge theory content is encoded in a vector bundle V where

the following discussion restricts itself to the case of SU(N) bundles. The six-dimensional

bundle is defined in terms of two pieces of data, the spectral cover curve C as well as

a line bundle N which is defined on C. Here, the spectral curve C is the 6d analog of

the points defined by the section of PH0(E,O(np)) which has been discussed in 3.2.2.

In six dimensions, the elliptic curve Z1 ≅ E gets promoted to an elliptic fibration, which

can again be described by a Weierstrass form (3.5) with coordinates x, y,z being sections

of L2, L2, O, respectively, for L = K−1
P1 = O(−2) and coefficients f , g being in L4, L6,

respectively. Accordingly, the coefficients ci entering the spectral cover (3.15) are now

sections ofM⊗L−i,M being an arbitrary line bundle on P1 and C is defined as the zero

locus of the section of (3.15). Thus, C defines an N-sheeted ramified covering of P1, i.e. a

Riemann surface. The spectral cover C defines the isomorphism class of a semi-stable
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vector bundle above each fiber. The line bundle N describes the possibility to twist the

vector bundle without changing its isomorphism class. It is usually fixed, up to a twisting

class γ , by the condition c1(V) = 0 for an SU(N) bundle, see [139] for more details.

3.2.4 Massless U(1)-factors in heterotic/F-theory duality

As previously discussed, the perturbative heterotic gauge group is obtained by commuting

the structure group H of the vector bundle V within the two E8-bundles. We propose three

possibilities, how U(1) gauge groups can arise from this perspective:

• H contains a U(1) factor, i.e. it is of the form H =H1×U(1), or S(U(M)×U(1)),

• H contains a discrete piece, i.e. a part taking values in Zk,

• or H is non-Abelian and is embedded such that its centralizer in E8 necessarily con-

tains a U(1)-symmetry.

The construction of a vector bundle for these three different cases employing spectral cov-

ers has been discussed in Section 3.2.2.

In general, we emphasize that U(1)-factor which arises from a split spectral cover is

usually massive due to a Stückelberg mass term which is induced by the first Chern class of

the U(1) background bundle, as we review next. However, if the U(1) term originates from a

background bundle with non-Abelian structure group there is tautologically no U(1) back-

ground factor which could produce a mass term and therefore the six-dimensional U(1)

field is expected to be massless. Finally, we propose, for consistency with heterotic/F-

theory duality, that a six-dimensional torsional section gives rise to a point-like instanton

with discrete holonomy, as introduced in [169]. Indeed, we will show in several examples

in Section 3.4 that all three cases naturally appear in heterotic duals of F-theory compact-

ifications with one U(1) and that a matching of the corresponding gauge groups is only

possible if the arising spectral covers are interpreted as suggested here.
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The heterotic Stückelberg mechanism

In six and lower dimensions, it is well-known that a geometric Stückelberg effect can render

a U(1) gauge field massive [133]. To identify the mass term of the six- (or lower-) dimen-

sional U(1), one considers the modified ten-dimensional kinetic term of the Kalb-Ramond

field B2 which reads, up to some irrelevant proportionality constant, as

L10d
kin =H ∧⋆10dH, H = dB2−

α ′

4
(ω3Y (A)−ω3L(Ω)) . (3.20)

Here, ⋆10d is the ten-dimensional Hodge-star and ω3Y , ω3L denote the Chern-Simons terms

of the gauge field and the spin connection, respectively. The physical effect we want to

discuss here arises from the former one, which is given explicitly by

ω3Y = Tr(A∧dA+
2
3

A∧A∧A) . (3.21)

Now, we perform a dimensional reduction of the kinetic term (3.20) in the background

of a U(1) vector bundle on the heterotic compactification manifold Zn, ignoring possible ad-

ditional non-Abelian vector bundles for simplicity. On such a background, we can expand

the ten-dimensional field strength F10d
U(1) of the U(1) gauge field as

F10d
U(1) = FU(1)+F = FU(1)+kαω

α . (3.22)

Here F = 1
2πic1(L) is the background field strength, i.e. the first Chern class c1(L) of the

corresponding U(1) line bundle L, and FU(1) is the lower-dimensional gauge field. We have

also introduced a basis ωα , α = 1, . . . ,b2(Zn), of harmonic two-forms in H(2)(Zn), where

b2(Zn) is the second Betti number of Zn, along which we have expanded F into the flux
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quanta kα . We also expand the ten-dimensional Kalb-Ramond field as

B2 = b2+ραω
α , (3.23)

where b2 is a lower-dimensional two-form and ρα are lower-dimensional axionic scalars .

We readily insert this reduction ansatz into the ten-dimensional field strength H in (3.20),

where we only take into account the gauge part, to arrive, dropping unimportant prefactors,

at the lower-dimensional kinetic term for the axions ρα of the form

LStück. =Gαβ (dρα +kαAU(1))∧⋆(dρβ +kβ AU(1)) . (3.24)

Here we introduced the kinetic metric

Gαβ = ∫
Zn

ω
α ∧⋆ω

β . (3.25)

It is clear from (3.24) that a single U(1) gauge field will be massive if we have a non-

trivial c1(L) ≠ 0. However, we note that in the presence of multiple massive U(1) gauge

fields, appropriate linear combinations of them in the kernel of the mass matrix can remain

massless U(1) fields. A computation similar to the one above has appeared in e.g. [165],

where also the case of multiple U(1)’s is systematically discussed.

U(1)-factors from gluing conditions in half K3-fibrations

We conclude this section by discussing the connection between the previous field theoretic

considerations that lead to a massive U(1) via the Stückelberg action (3.24) on the heterotic

side and geometric glueing conditions of the sections of half K3 surfaces to global sections

of the two half K3-fibrations X±
n that arise in stable degeneration as well as of the full

Calabi-Yau manifold Xn. We illustrate this in six dimensions for concreteness, i.e. for F-
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theory on a Calabi-Yau threefold X3 and the heterotic string on a K3 surface Z2, although

the arguments hold more generally.

It is well known that the number of U(1) factors in F-theory is given by the rank of

the Mordell-Weil group, i.e. by the number of independent global rational sections of the

elliptic fibration X3 in addition to the zero section. As discussed in Section 3.2.1, a half

K3 surface with ADE singularity of rank r has an (8−r)-dimensional Mordell-Weil group.

Promoting the half K3 surface to a fibration of half K3 surfaces over the base P1, such as

the threefolds X±
3 , these sections need not necessarily give rise to sections of the arising

three-dimensional elliptic fibrations. Considering the half K3 surfaces arising in the stable

degeneration limit of F-theory, there are those sections which also give rise to sections of

e.g. the full half K3 fibration X+
3 . These sections will induce a U(1)-factor on the heterotic

side which is embedded into one E8-bundle and which is generically massive with a mass

arising via the Stückelberg action (3.24). If there is also a globally well-defined section

of the other half K3 fibration X−
3 and this section glues with the section in the first half

K3 fibration X+
3 , then there is a linear combination of U(1)’s that remains massless in the

Stückelberg mechanism on the heterotic side. This is clear from the F-theory perspective,

as these two sections can then be glued along the heterotic two-fold Z2 to a section of the

full Calabi-Yau threefold X3, i.e. give rise to an element in its Mordell-Weil group and a

massless U(1).

3.3 Dual Geometries with Toric Stable Degeneration

In this section, we describe a toric method in order to study the stable degeneration limit

of an elliptically fibered K3 surface. This stable degeneration limit will be at the heart of

the analysis of the examples of heterotic/F-theory dual geometries in Section 3.4. In a first

step in Section 3.3.1, we construct an elliptically fibered K3 surface. Afterwards in Section
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3.3.2, we fiber this K3 surface over another P1 which is used to investigate the splitting

of the K3 surface into two rational elliptic surfaces, as discussed in Section 3.3.3. In the

concluding Section 3.3.4, we prove that the surfaces arising in the stable degeneration of

the K3 surface indeed define rational elliptic surfaces, i.e. half K3 surfaces.

3.3.1 Constructing an elliptically fibered K3 surface

We start by constructing a three-dimensional reflexive polytope ∆○3 given as the convex hull

of vertices that are the rows of the following matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 b1 0 x1

⋮ 0 xi

an bn 0 xn

0 0 1 U

0 0 −1 V

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.26)

Here (ai bi) denote the points of a two-dimensional reflexive polytope ∆○2, which will spec-

ify the geometry of the elliptic fiber E. It is embedded into ∆○3 in the xy-plane, see the first

picture in Figure 3.2. The last column contains the homogeneous coordinate associated to

a given vertex. We label the rays of the two-dimensional polytope counter-clockwise by

the coordinates x1, . . .xn. In addition, we assign the coordinates U , V to the points (001)

and (00 −1) which correspond to the rays of the fan of the P1-base. We use the shorthand

notation P1
[U ∶V ] to indicate its homogeneous coordinates. Finally, we use the notation ρH

for the ray with corresponding homogeneous coordinate H. We denote by Σ3 the natural

simplicial fan associated to ∆○3 and denote the corresponding toric variety over the fan of ∆○

as PΣ3 . Provided a fine triangulation of the polytope ∆○3 has been chosen, the toric ambient

space PΣ3 will be Gorenstein and terminal.
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A general section χ of the anti-canonical bundle OPΣ3
(−KPΣ3

) defines a smooth ellipti-

cally fibered K3 surface X2. The ambient space of its elliptic fiber E is the toric variety PΣ2

that is constructed from the fan Σ2 of the polytope ∆○2 induced by Σ3. As the toric fibration

of Σ2 over ΣP1 is direct, the section χ takes the form

χ = siη
i for si = s0

i U2+ s1
i UV + s2

i V 2. (3.27)

Here η i are the sections of the anti-canonical bundle of OPΣ2
(−KPΣ2

), i.e. the range of

the index i is given by the number of integral points in ∆2, and sk
i , k = 1,2,3, are con-

stants. Note that, for a very general4 X2, the dimension h(1,1)(X), of the cohomology group

H(1,1)(X2,C) can be computed combinatorically from the pair of reflexive polyhedra ∆3,

∆○3 by a generalization of the Batyrev’s formula [182]:

h(1,1)(X) = l(∆
○)−n−1−∑

Γ○

l∗(Γ
○)+∑

Θ○

l∗(Θ
○)l∗(Θ̂

○) . (3.28)

Here l(∆) (l∗(∆)) denote the number of (inner) points of the n-dimensional polytope ∆. In

addition, Γ (Γ○) denote the codimension one faces of ∆ (∆○), while Θ denotes a codimension

two face with Θ̂ being its dual.

3.3.2 Constructing K3 fibrations

As a next step, we fiber this ambient space over a second P1
[λ1,λ2]

with homogeneous co-

ordinates λ1, λ2. The following construction is such that the generic fiber consists of a

smooth K3 surface X2 over a generic point of P1
[λ1,λ2]

and a split fiber, i.e. a splitting into

two half K3 surfaces, over a distinguished point of P1
[λ1,λ2]

, as explained below.

4A point is very general if it lies outside a countable union of closed subschemes of positive codimension
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Figure 3.2: On the left we show the reflexive polytope ∆○3, while its dual ∆3 is shown on
the right. In this example, the ambient space for the elliptic fiber, specified by ∆○2, is given
by Bl1P(1,1,2).

The four-dimensional polytope which describes this construction is given by

∆4 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(m1,m2,m3,m4) ∈Z4 ∣ (m1,m2,m3) ∈ ∆3, −1 ≤m4 ≤ 1,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

m4 ≥ −1 if m3 ≤ 0 ,

m4 ≥m3−1 if m3 ≥ 0 .

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

.

(3.29)

Here, ∆3 denotes the dual polytope of ∆○3, cf. the second picture in Figure 3.2. The faces of

∆4 are given by the (intersection of the) hyperplanes

m4 = 1 , m4 = −1 , m4 = −1+m3 , m3 = −1 , m3 = 1 ,
2
∑
j=0

a j
i m j = 1 , (3.30)

where the last expression is given by the the defining hyperplanes of ∆2, the dual of ∆○2.

We denote by Σ4 the fan associated to the dual polytope ∆○4 of ∆4. In particular, the normal

vectors of the facets of ∆4 give the rays of Σ4. To be explicit, the rays of Σ4 are given by
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the rows of the matrix
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 b1 0 0 x1

⋮ 0 0 xi

an bn 0 0 xn

0 0 1 0 U

0 0 0 1 λ1

0 0 −1 1 µ

0 0 −1 0 V

0 0 0 −1 λ2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.31)

We note that the coordinates assigned to its rays as displayed in (3.31) transform as follows

under the C∗-actions

(U ∶ λ1 ∶ µ ∶V ∶ λ2) ∼ (a−1U ∶ ab−1
λ1 ∶ a−1bc−1

µ ∶ b−1cV ∶ c−1
λ2) (3.32)

with a,b,c ∈C∗.

In analogy to the discussion in the previous section, a section χ4 of the anti-canonical

bundle −KPΣ4
of the toric variety PΣ4 defines a three-dimensional smooth Calabi-Yau man-

ifold X. In particular, the Calabi-Yau constraint (3.27) generalizes as

χ4 = siη
i, (3.33)

where the η i are given as before and the coefficients si now read

si(U,V,λ1,λ2,µ) = s1
i λ1λ2U2+ s2

i λ
2
1 µU2+ s3

i λ
2
2 UV + s4

i λ1λ2µUV + s5
i λ

2
1 µ

2UV

+s6
i λ

2
2 µV 2+ s7

i λ1λ2µ
2V 2+ s8

i λ
2
1 µ

3V 2 (3.34)

with constants s j
i ∈C.
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Figure 3.3: The toric morphism f2.

We proceed by observing that the projection on the last two columns in (3.31) yields

the polytope ∆○dP2
of the toric variety dP2, cf. Figure 3.3. Denoting the fan of ∆○dP2

by ΣdP2

this projection gives rise to a toric map

f1 ∶ Σ4Ð→ ΣdP2 . (3.35)

In addition, dP2 is fibered over the P1
[λ ′1∶λ

′

2]
as can be seen by projecting onto the fourth

column of ∆4, cf. Figure 3.3, i.e. there is a toric map

f2 ∶ ΣdP2 Ð→ ΣP1 , (3.36)

where ΣP1 is the fan of P1
[λ ′1∶λ

′

2]
. Note that this P1 is isomorphic to P1

[λ1∶λ2]
. We denote the

composition map of the two by f = f2 ○ f1.

In summary, we have the following diagram of toric morphisms and induced maps on
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X:

PΣ4

f
//

f1

��

f
// P1

[λ ′1∶λ
′

2]

dP2

f2 <<

dP2
π2

""

X
?�

OO

π1

??

π // P1
[λ ′1∶λ

′

2]

≅

OO

Here we denote the toric maps f1, f2, f and their induced morphisms of toric varieties by

the same symbol, respectively. Note that for a generic point, the fiber of π is given by a

smooth K3 surface X2.

In order to prepare for the discussion of the stable degeneration limit, we proceed by

discussing the fibration map in more detail. For this purpose, we note the correspondence of

facets and rays as displayed in Table 3.3. The dual ∆dP2 of ∆○dP2
with associated monomials

is shown in Figure 3.4. These monomials are the global sections of KdP2 and are constructed

according to [183]

χdP2 = ∑
P∈∆dP2

∏
P∗∈∆∗dP2

aPx⟨P∣,P∗∣+⟩1
P∗ . (3.37)

Here xP∗ denotes the coordinate which is associated to the corresponding ray of the toric

diagram and aP are constants.
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Figure 3.4: The dual polytope ∆dP2 and the associated monomials.

By the correspondence between cones of ∆○dP2
and vertices of ∆dP2 the vertex corre-

sponding to the monomial V 2λ 2
2 µ is dual to the cone spanned by the rays ρU and ρλ1

. We

denote the coordinates associated to the two rays of P1
[λ1∶λ2]

inside ∆0
dP2

appearing in (3.36)

by ρλ ′1
and ρλ ′2

. Note that f −1
2 (ρλ ′1

) = {ρλ1
,ρµ}, while f −1

2 (ρλ ′2
) = {ρλ2

}.

3.3.3 The toric stable degeneration limit

In the following, we aim to show that the general fiber of the map π gives rise to a smooth

K3 surface while the pre-image of the point [λ ′
1 ∶λ

′
2]= [1 ∶0] gives rise to a degeneration into

two half K3 surfaces X±
2 that intersect in the elliptic fiber Z1 over the point of intersection

of the two P1 which are the respective bases of their elliptic fibrations.

Let us first consider the toric variety f −1
2 (λ ′

2 = 0) corresponding to the pre-image in ∆0
dP2

of ρλ ′2
. It is given by the star of ρλ2

in ∆0
dP2

which is just the generic fiber of f2. Indeed,

if λ2 = 0, the coordinates µ and λ1 are non-vanishing due to the Stanley-Reisner ideal.

Two of the scaling relations (3.32) can be used in order to eliminate the latter two variables

while the remaining (linear combination) endows the coordinates U , V with the well-known

scaling relations of P1
[U,V ]. In addition, the monomials associated to the vertices of the dual
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facet of ρλ2
give rise to the following sections

sλ2
∶= s2

i U2+ s5
i UV + s8

i V 2 , (3.38)

as follows from (3.34) by setting λ2 = 0. These provide precisely the global sections of

OP1(2) that are needed for the Veronese embedding, i.e. the embedding of P1
[U,V ] into P2

as a conic

[U ∶V ]z→ [U2 ∶UV ∶V 2] . (3.39)

In contrast, the preimage of ρλ ′1
consists of the two divisors λ1 = 0 and µ = 0. In this

case the Stanley-Reisner ideal forbids the vanishing of the coordinates V , λ2 and U , λ2

respectively. Taking again into account the scaling relations (3.32), one observes that the

pre-image of the divisor λ ′
1 = 0 consists of two P1’s that are given by

Dλ1
= [U ∶ 0 ∶ µ ∶ 1 ∶ 1], Dµ = [1 ∶ λ1 ∶ 0 ∶V ∶ 1] . (3.40)

These intersect in precisely one point given by [1 ∶ 0 ∶ 0 ∶ 1 ∶ 1]. One identifies the dual facets

of ρλ1
and ρµ as m4 = −1 and m4 =m3−1. In this case the global sections are given by

sλ1
∶= s3

i U + s6
i µ , sµ ∶= s1

i λ1+ s3
i V , (3.41)

as follows again from (3.34). This induces in this case only the trivial embedding via the

identity map. Note that the union of the two divisors Dλ1
and Dµ is given by a degenerate

conic

z1z3 = z2
2λ1µ , with (V 2

µ,UV,U2
λ1)↦ [z1 ∶ z2 ∶ z3] ∈ P2 , (3.42)

which splits as just observed into the two lines z1 = 0, z3 = 0 at λ1 = 0 and µ = 0.

A similar reasoning applies to the pre-image of ρλ ′1
under the composite map f . As
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noted above, we have f −1(ρλ ′1
) = {ρµ ,ρλ1

}, which implies that the pre-image is given by

the two divisors PΣ+3
= {µ = 0} and PΣ−3

= {λ1 = 0} in PΣ4 . They are obtained as the star

of ρµ and ρλ1
in ∆0

4, respectively, with their fans Σ±3 induced by Σ4. The corresponding

respective dual facets are given by the three-dimensional facets m4 = −1 and m4 =m3−1 in

∆4. In addition, this gives rise to a splitting of ∆3 as

∆
+
3 = {(m1,m2,m3) ∈Z3 ∣ (m1,m2) ∈ ∆2, m3 ∈ {0,1}} , (3.43)

∆
−
3 = {(m1,m2,m3) ∈Z3 ∣ (m1,m2) ∈ ∆2, m3 ∈ {−1,0}} , (3.44)

which is also referred to as the top and bottom splitting [142], c.f. Figure 3.2. Thus, the

section of the anti-canonical bundle O(−KPΣ3
) in (3.27) in the limit becomes the sum of

χX+

2
∶= s+i η

i , with s+i = s+0
i V + s+1

i λ1 ,

χX−

2
∶= s−i η

i , with s−i = s−0
i U + s−1

i µ , (3.45)

so that we can define the two surfaces X±
2 as

X+
2 = X2∣P

Σ+3
= {χ = µ = 0} , X−

2 = X2∣P
Σ−3
= {χ = λ1 = 0}. (3.46)

As we will prove in the next subsection, X+
2 and X−

2 are two rational elliptic surfaces (half

K3 surfaces).

In contrast, the pre-image of ρλ ′2
is given by the whole three-dimensional fan Σ3 as it is

also for a generic point in P1
[λ1∶λ2]

. To justify the latter statement inspect the fiber above the

origin 0 of the fan ΣP1 corresponding to a generic point in P1
[λ1∶λ2]

.

Finally, we remark that the two rational elliptic surfaces X+
2 , X−

2 that arise at the loci

{µ = 0} and {µ = 0}, respectively, are independent of the K3 surface which appears over

the locus {λ2 = 0}. In the following, we explain how the half K3 surfaces can be obtained
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from the data of the K3 surface X2 directly. As the notation used so far is rather heavy,

which is unfortunately necessary, we introduce a slightly easier notation that will be used

in the discussion of explicit examples in section 3.4. We rewrite a general hypersurface

constraint as

χ = siη
i, si = s0

i1U2+ s1
i2UV + s2

i3V 2 , (3.47)

which requires, depending on the situation at hand, the following identifications between

the coefficients of (3.47) and of (3.34):

si1 ≡ s2
i , si2 ≡ s5

i , si3 ≡ s8
i ,

or si1 ≡ s1
i , si2 ≡ s3

i , si3 ≡ s6
i . (3.48)

However, it is crucial to note that the pair of coordinates U,V is only suited to describe the

base P1 of the K3 surface X2, while the base coordinates P1’s of X+
2 and X−

2 are given by

λ1, V and U , µ , respectively.

3.3.4 Computing the canonical classes of the half K3 surfaces X±
2

In this subsection, we discuss how the half K3 surfaces X±
2 can be re-discovered in the toric

stable degeneration limit. Note that the two components PΣ+3
and PΣ−3

of the degenerate

fiber, as divisors in PΣ4 , should equal the generic fiber PΣ3 :

PΣ+3
+PΣ−3

≅ PΣ3 . (3.49)

In addition, we have

PΣ3 ⋅PΣ±3
= 0 (3.50)
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as the generic fiber can be moved away from the locus λ ′
1 = 0, cf. Figure 3.3. This allows

us to compute the canonical bundle of PΣ±3
using adjunction in PΣ4 as

KP±
Σ3
= (KPΣ4

⊗OPΣ4
(PΣ±3

))∣
P±

Σ3

= KPΣ4
∣
P±

Σ3

⊗OP±
Σ3
(−PΣ±3

⋅PΣ∓3
) , (3.51)

where we used (3.49) and (3.50). Note that the divisor corresponding to the last term equals

the class of the ambient space PΣ2 of elliptic fiber of X2, i.e. PΣ+3
⋅PΣ−3

= PΣ2 . Making one

more time use of the adjunction formula, one finally arrives at

KX±

2
= (KP

Σ±3
⊗OP

Σ±3
(X±

2 ))∣
X±

2

= ( KPΣ4
∣
P±

Σ3

⊗OP±
Σ3
(−PΣ2)⊗OP

Σ±3
(X±

2 ))∣
X±

2

= OP±
Σ3
(−PΣ2)∣

X±

=OX±

2
(−E) ,

where we used (3.51) in the second equality and KPΣ4
∣P±

Σ3
= OP

Σ±3
(X±

2 ). Thus, the anti-

canonical class of X±
2 is given by that of the elliptic fiber E which leads to the conclusion

that X±
2 is indeed a rational elliptic surface.

3.4 Examples of Heterotic/F-Theory Duals with U(1)’s

In the section, we use the tools of Section 3.3 to construct explicit elliptically fibered

Calabi-Yau two- and threefolds whose stable degeneration limit is well under control. Our

geometries have generically two sections, which give rise to a U(1)-factor in the corre-

sponding F-Theory compactification. Performing the toric symplectic cut allows us to

explicitly track these sections through the stable degeneration limit and to make non-trivial

statements about the vector bundle data on the heterotic side in which the U(1)-factor in

the effective theory is encoded. Finally, after having performed the stable degeneration

limit as discussed in section 3.3.3, we split the resulting half K3 surfaces into the spectral

166



cover polynomial and the constraint for the heterotic elliptic curve. Then, we determine the

common solutions of the latter two constraints which encode the data of a (split) spectral

cover. The general geometries we consider as well as the procedure we apply their analysis

is discussed in Section 3.4.1. Despite the fact that we do not determine the embedding of

the structure group into E8 directly, we are able to match the spectral cover with the result-

ing gauge group in all cases. In particular, we consider three different classes of examples.

In subsection 3.4.2 we investigate a number of examples whose heterotic dual gives rise

to a split spectral cover. This class of examples has generically one U(1) factor embedded

into both E8-bundles of which only a linear combination is massless. The next class of ex-

amples considered in subsection 3.4.3 displays torsional points in its spectral cover. There

is one example with a U(1)-factor on the F-theory side which is found to be only embedded

into one E8-bundle while the other E8-bundle is kept intact. Finally, in the last subsection

3.4.4 we consider an example where the structure group reads SU(2) × SU(3). However,

we argue that it is embedded in such a way that its centralizer necessarily contains a U(1)

factor.
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3.4.1 The geometrical set-up: toric hypersurfaces in P1×Bl1P(1,1,2)

For convenience, we recall the three-dimensional polyhedron ∆○3 for the resolved toric am-

bient space PΣ3 = P1×Bl1P(1,1,2). It is given by the points

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 x1

−1 −1 0 x2

1 0 0 x3

0 1 0 x4

−1 0 0 x5

0 0 1 U

0 0 −1 V

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.52)

Here, x1, . . .x5 are homogeneous coordinates on the resolved variety Bl1P(1,1,2), while U,V

denote the two homogeneous coordinates of P1. In particular, x5 resolves the A1-singularity

of the space Bl1P(1,1,2).

A generic section of the anti-canonical bundle of the ambient space PΣ3 takes the form

χ ∶= s1x4
1x3

4x2
5+ s2x3

1x2x2
4x2

5+ s3x2
1x2

2x4x5+ s4x1x3
2x2

5+ s5x2
1x3x2

4x5

+s6x1x2x3x4x5+ s7x2
2x3x5+ s8x2

3x4 = 0 , (3.53)

where the coefficients si are homogeneous quadratic polynomials in U,V . An elliptically

fibered K3 surface is defined by X2 = {χ = 0}. As can be seen for example its Weierstrass

form, the K3 surface generically has a Kodaira fiber of type I2 at the locus s8 = 0. It is

resolved by the divisor {x5 = 0}∩X2 as mentioned above.5 In addition, X2 generically has a

Mordell-Weil group of rank one. A choice of zero section S0 and generator of the Mordell-

5As the details of the resolution are not important, we can set x5 = 1 in most computations performed here.
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Weil group S1 are given by

S0 = X2∩{x1 = 0}, S1 = X2∩{x4 = 0} . (3.54)

Explicitly, their coordinates read

S0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 ∶ 1 ∶ 1 ∶ s7 ∶ −s8] generically ,

[0 ∶ 1 ∶ 1 ∶ 0 ∶ 1] if s7 = 0 ,

[0 ∶ 1 ∶ 1 ∶ 1 ∶ 0] if s8 = 0 ,

S1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s7 ∶ 1 ∶ −s4 ∶ 0 ∶ 1] generically ,

[0 ∶ 1 ∶ 1 ∶ 0 ∶ 1] if s7 = 0 ,

[1 ∶ 1 ∶ 0 ∶ 0 ∶ 1] if s4 = 0 .
(3.55)

Here we distinguished the special cases with s7 = 0 and s8 = 0, respectively, from the generic

situation. Using the fact that the generic K3 surface X2 has h(1,1) = 5 [182], we, hence,

conclude that the full F-theory gauge group GX2 is6

GX2 = SU(2)×SU(2)×U(1) . (3.56)

We note that if s7 = 0, one observes that the two sections coincide, as was also employed in

[184]. That the converse is true is shown in Appendix 3.8. This is expected as the vanishing

of s7 can be interpreted as a change of the toric fibre ambient space from Bl1P(1,1,2) to

P(1,2,3), which has a purely non-Abelian gauge group [162].

6We note that s8 = 0 has two solutions on P1. If we consider higher dimensional bases of the elliptic
fibration, we will just have one SU(2) factor as s8 = 0 is in general an irreducible divisor.
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Engineering gauge symmetry: specialized sections of −KP1×Bl1P(1,1,2)

In order to construct examples with higher rank gauge groups, we tune the coefficients of

χsing further. To be concrete, every si in (3.53) takes the form

si = si1U2+ si2UV + si3V 2 (3.57)

and a specialization corresponds to the identical vanishing of some si j. This specialization

of coefficients implies that ∆, the dual polyhedron of P1 ×Bl1P(1,1,2), gets replaced by

the Newton polytope ∆spec. of the specialized constraint,compare also Figure 3.5. As a

technical side-remark we note that we strictly speaking refer with ∆spec. to the convex hull

of the points defined by the non-vanishing monomials in (3.57) respectively (3.53). As

a consequence, also ∆○ changes to the dual of ∆○spec.. Thus, we have secretly changed the

toric ambient space by this specialization of coefficients. It is crucial to note that only those

polyhedra ∆spec. give rise to consistent geometries which are reflexive.

Figure 3.5: This figure illustrates a specialization of the coefficients of the hypersurface
χ = 0 such that the resulting gauge group is enhanced to E7 × E6 × U(1), see also the
discussion in Section 3.4.2. In the left picture, the non-vanishing coefficients are marked
by a circle in the polytope ∆3. In the right figure the new polytope, i.e. the Newton polytope
of the specialized constraint χ = 0, is shown.

In order to determine the gauge group of this specialized hypersuface, we need to trans-

form χ = 0 into its corresponding model into Tate or Weierstrass normal form. For conve-
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nience, we provide the Weierstrass as well as the Tate form of the most general hypersurface

in Appendix 3.6.

Stable degeneration and the spectral cover polynomial

As a next step, we show how the K3 surface X2 defined via (3.53) can be decomposed into

the two half K3 surfaces X±
2 and the heterotic elliptic curve as well as the two spectral cover

polynomials, respectively. First, we write the Calabi-Yau hypersurface equation (3.54) for

X2 as

χ = p+(xi,s j1)U2+ p0(xi,s j2)UV + p−(xi,s j3)V 2 , (3.58)

for appropriate polynomials p+, p0 and p− depending on the fiber coordinates. By the

results of the previous section, the K3 surface X2 in the semistable degeneration limit can

be described by the half K3 surfaces X±
2 with defining equations

X+
2 ∶ p+(xi,s j1)U + p0(xi,s j2)V = 0, X−

2 ∶ p−(xi,s j3)V + p0(xi,s j2)U = 0 . (3.59)

It follows that generically the two linearly independent sections (3.55) of the K3 become

independent sections in the half K3s, which we denote, by abuse of notation, by the same

symbols. They intersects along the common (heterotic) elliptic curve. This is a novel

property of our toric degeneration.

In addition, the heterotic elliptic curve is given as p0(xi,s j) = 0 while the data of the

two background bundles are given by the spectral cover polynomials p+(xi,s j1) = 0 and

p−(xi,s j3) = 0. The structure group of the two heterotic bundles is then determined by the

common solutions of p0(xi,s j) = 0 with p±(xi,s j1/3) = 0 using the results and techniques

from Section 3.2.2.
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Promotion to elliptically fibered threefolds

Eventually, we are interested in examples of six-dimensional heterotic/F-Theory duality.

In order to promote the K3 surfaces X2 constructed above to elliptically fibered threefolds

we promote the coefficients si j, defined in (3.57), to sections of a line bundle of another P1

with homogeneous coordinates R,T . The base of the previously considered K3 surface and

the new P1 form a Hirzebruch surface Fn. At this point, we only consider base geometries

which are Fano and restrict our discussion to F0 and F1 for simplicity, avoiding additional

singularities in the heterotic elliptic fibration. For these two geometries, the explicit form

of the si j reads

si j = si j1R2+ si j2RT + si j3T 2 , (3.60)

for F0 and

si = si11R+ si12T + si21R2+ si22RT + si23T 2+ si31R3+ si32R2T + si33RT 2+ si34T 3 , (3.61)

for the geometry F1.

Next, we observe that the explicit expression of the discriminant of the heterotic Calabi-

Yau manifold Zn, which is given by p0 = 0, contains a factor of s2
82. While this is certainly

not a problem in eight dimensions, as s82 is just a constant there, it gives rise to an SU(2)-

singularity at co-dimension one in the heterotic K3 surface Z2. This can be cured by a

resolution of this singularity through an exceptional divisor E, which is the analog of x5

in (3.52). In particular, the solutions to the spectral cover constraint will pass through the

singular point in the fiber. Thus, one expects that the spectral cover curve will pick up

contributions from the class E in general. A similar situation has been analyzed in [185]

where it has been argued that the introduction of this exceptional divisor will not change the

structure of the spectral cover as an N-sheeted branched cover of the base except for a finite
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number of points where it wraps a whole new fiber component over the base. As discussed

in [185], this introduces more freedom in the construction of the heterotic vector bundle V .

As this work focuses on the mapping of U(1)-factors under the heterotic/F-theory duality,

we only concentrate on the generic structure of the spectral cover and leave the resolution

of this singularity as well as an exploration of the freedom in the construction of V to future

works.

3.4.2 U(1)’s arising from U(1) factors in the heterotic structure group

In this section, we consider examples that have an additional rational section in the dual

heterotic geometry. We consider K3 surfaces in F-theory, which are given as hypersurfaces

in Bl1P(1,1,2) ×P1 with appropriately specialized coefficients generating a corresponding

gauge symmetry. Elliptic K3 fibered Calabi-Yau threefolds are constructed straightfor-

wardly as described in section 3.4.1. Thus, our following discussion will be equally valid

in six dimensions, although, in order to avoid confusion, we present our geometric dis-

cussions in eight dimensions. Having this in mind we, therefore, drop here in the rest of

this work the subscripts on all considered manifolds Xn+1, X±
n+1 and Zn, respectively, . In

the following, we discuss the main geometric properties of the Calabi-Yau manifold X ,

demonstrate heterotic/F-theory duality and relations among different examples by a chain

of Higgsings.

We begin by a summary of key results and by setting some notation. As we will see,

all considered examples have the same heterotic Calabi-Yau manifold Z in common. It is

given by the most generic section of the anti-canonical bundle in Bl1P(1,1,2) reading

Z ∶ s12x4
1+ s22x3

1x2+ s32x2
1x2

2+ s42x1x3
2+ s52x2

1x3+ s62x1x2x3+ s72x2
2x3+ s82x2

3 = 0 . (3.62)

The examples considered here only differ among each other by the spectral covers, i.e. by
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the choice of the coefficients si1 and si3 in (3.47), which will be different in each case.

Generically, all examples will have a U(1)-factor embedded into the structure groups of

both heterotic vector bundles V1, V2. Thus, the maximal non-Abelian gauge group deter-

mining any chain of Higgsings is given by E7 × E7. For later reference we also note the

Weierstrass normal form of (3.62) is given by

WZ ∶ y2 = x3+(−
1

48
s4

62+
1
6

s52s2
62s72−

1
3

s2
52s2

72−
1
2

s42s52s62s82+
1
6

s32s2
62s82

+
1
3

s32s52s72s82−
1
2

s22s62s72s82+ s21s2
72s82−

1
3

s2
32s2

82+ s22s42s2
82)x

+(
1

864
s6

62−
1

72
s52s4

62s72+
1

18
s2

52s2
62s2

72−
2

27
s3

52s3
72+

1
24

s42s52s3
62s82

−
1

72
s32s4

62s82−
1
6

s42s2
52s62s72s82+

1
36

s32s52s2
62s72s82+

1
24

s22s3
62s72s82

+
1
9

s32s2
52s2

72s82−
1
6

s22s52s62s2
72s82−

1
12

s21s2
62s2

72s82+
1
3

s21s52s3
72s82

+
1
4

s2
42s2

52s2
82−

1
6

s32s42s52s62s2
82+

1
18

s2
32s2

62s2
82−

1
12

s22s42s2
62s2

82

+
1
9

s2
32s52s72s2

82−
1
6

s22s42s52s72s2
82−

1
6

s22s32s62s72s2
82+ s21s42s62s72s2

82

+
1
4

s2
22s2

72s2
82−

2
3

s21s32s2
72s2

82−
2

27
s3

32s3
82+

1
3

s22s32s42s3
82− s21s2

42s3
82) .

(3.63)

Also, the two generic sections of the heterotic geometry Z, denoted by SZ
0 and SZ

1 read in

Weierstrass normal form as

SZ
0 = [1 ∶ 1 ∶ 0] , (3.64)

SZ
1 = [

1
12

(s2
62s2

72−4s52s3
72−12s42s62s72s82+8s32s2

72s82+12s2
42s2

82) ∶
1
2

s82 (s42s2
62s2

72

−s42s52s3
72− s32s62s3

72+ s22s4
72−3s2

42s62s72s82+2s32s42s2
72s82+2s3

42s2
82) ∶ s7] .

(3.65)

Here, the first section SZ
0 is the point at infinity, while the second section SZ

1 can be seen also

174



in the affine chart. We note that SZ
0 can be obtained by a simple coordinate transformation7

from S0 defined in (3.54), while SZ
1 needs to be constructed using the procedure of Deligne

applied in [154].

Structure group U(1)×U(1): E7 × E7×U(1) gauge symmetry

We start with a model which has a heterotic vector bundle of structure group U(1)×U(1).

Upon commutation within the group E8 ×E8, the centralizer is given as E7 ×U(1)×E7 ×

U(1). On the heterotic side, the two U(1) factors acquire a mass term so that only a linear

combination of them is massless. This matches the F-theory gauge group given by E7 ×

E7×U(1).

Our example is specified by the following non-vanishing coefficients:

Coefficient X X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s11λ1+ s12V

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

Here, the first columns denotes the coefficient in the Calabi-Yau constraint (3.27), the sec-

ond column indices the chosen specialization and the third as well as fourth column contain

the resulting coefficient in the half K3 fibrations X±, respectively.

Using the identities (3.41) and (3.46), we readily write down the defining equations for

7To be more precise, we refer in this case to (3.54) as a section of the heterotic geometry.
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Figure 3.6: This figure shows the stable degeneration limit of a K3 surface which has
E7×E7×U(1) gauge symmetry. There are the two half K3 surfaces, X+ and X− which have
both an E7 singularity and intersect in a common elliptic curve. Both have two sections, S0
and S1 which meet in the common elliptic curve. Thus, there are two global sections in the
full K3 surface and therefore a U(1) factor.

the half K3 surfaces X±
2 obtained via stable degeneration explicitly. They read

X+ ∶ (s11λ1+ s12V)x4
1+ s22V x3

1x2+ s32V x2
1x2

2+ s42V x1x3
2

+s52V x2
1x3+ s62V x1x2x3+ s72V x2

2x3+ s82V x2
3 = 0 ,

X− ∶ (s12U + s13µ)x4
1+ s22Ux3

1x2+ s32Ux2
1x2

2+ s42Ux1x3
2

+s52Ux2
1x3+ s62Ux1x2x3+ s72Ux2

2x3+ s82Ux2
3 = 0 . (3.66)

By explicitly evaluating the Tate coefficients (3.92), one obtains the following orders of

vanishing for the Tate vector at the loci U = 0 and V = 0 for the full K3 surface,

t⃗U = t⃗V = (1,2,3,3,5,9) , (3.67)

which reveal two E7 singularities. Also, the two half K3 surfaces inherit an E7 singularity

each, which are located at U = 0, V = 0, respectively. Thus, the non-Abelian part of the

gauge group is given by E7×E7. Both half K3 surfaces have two rational sections given by

SX±

0 = [0 ∶ 1 ∶ 0] and SX+

1 = [0 ∶ s82V ∶ −s72s82V 2] and SX−

1 = [0 ∶ s82U ∶ −s72s82U2], respectively.
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In the intersection point of the two half K3’s given by [U ∶ λ1 ∶ µ ∶ V ∶ λ2] = [1 ∶ 0 ∶ 0 ∶ 1 ∶

1], the sections SX±

0 from both half K3’s intersect and meet each other, and similarly the

sections SX±

1 from both half K3’s intersect and meet each other, cf. Figure 3.6. Thus, the

six-dimensional gauge group contains a U(1) factor.

However, if one evaluates the spectral cover, as described in section 3.4.1, one obtains8

p+ = s11x4
1, p− = s13x4

1 . (3.68)

which is mapped by use of the transformations (3.98) onto

pW
+ = s11z4, pW

− = s13z4 . (3.69)

These expressions gives rise to a constant spectral cover in affine Weierstrass coordinates

x,y defined by z = 1. However, on an elliptic curve there does not exist any function which

has exactly one zero at a single point, in this case S1.9 Nevertheless, one can use the

two points SZ
0 and SZ

1 on the heterotic elliptic curve in order to construct the bundle L =

O(SZ
1 −SZ

0) fiberwise, which is symmetrically embedded into both E8-bundles. As argued

in [179], this bundle promotes to a bundle L6d in six dimensions whose first Chern class is

given by the difference of the two sections c1(L6d) = σSZ
1
−σSZ

0
, up to fiber contributions.

Thus, the heterotic gauge group is given by E7 × E7 × U(1) × U(1). Due to the background

bundle L6d , these two U(1)’s seem both massive according to the Stückelberg mechanism

discussed in Section 3.2.4. However, due to the symmetric embedding into both E8’s their

sum remains massless. Thus, one obtains a perfect match with the F-theory gauge group.

We conclude with the remark that one can interpret this model also as a Higgsing of a

model with E8 ×E8 gauge symmetry as presented in the Appendix 3.7.1. Here, the Hig-

8Here, and in the following we set x4→ 1, x5→ 1 for convenience.
9However, note that the homogeneous expression x4

1 vanishes indeed at the loci of SZ
0 and of SZ

1 .
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gsing corresponds to a geometrical transition from the ambient space geometry P(1∶2∶3)

to Bl1P(1,1,2) where the vacuum expectation value of the Higgs corresponds to the non-

vanishing coefficient s72.

Structure group S(U(2)×U(1)): E7 × E6×U(1) gauge symmetry

As a next step, we investigate an example which has E7×E6×U(1) gauge symmetry. On

the heterotic side we find an U(1)×SU((2)×U(1)) structure group which directly matches

the non-Abelian gauge group and gives rise to one massless as well as one massive U(1).

The model is specified by the following non-vanishing coefficients:

Coefficient X X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s11λ1+ s12V

s2 s21U2+ s22UV s22U s21λ1+ s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

The evaluation of the order of vanishing of the Tate coefficients is summarized in the two

Tate vectors

t⃗V = (1,2,2,3,5,8) t⃗U = (1,2,3,3,5,9) . (3.70)

It signal one E6 singularity at V = 0 and one E7 singularity at U = 0. The E7 singularity

is inherited by the half K3 surface X− while the E6 singularity is contained in the half K3

surface X+ after stable degeneration.

Next, we turn to the heterotic side. Here, the analysis of sections and U(1) symmetries
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Figure 3.7: The interpretation of this figure is similar to Figure 3.6. The additional structure
arises from two sections shown in yellow which form together with ⊟S1 the zeros of the
spectral cover.

from the perspective of the gluing condition is completely analogous to the geometry with

E7 × E7 ×U(1) gauge symmetry discussed in the previous Section 3.4.2. The situation at

hand is summarized in Figure 3.7. However, there is a crucial difference in the evaluation

of the spectral cover which we discuss next.

The corresponding split of the two half K3 surfaces into a spectral cover polynomial

and the heterotic elliptic curve results in

p+ = s11x4
1+ s21x3

1x2 , p− = s13x4
1 . (3.71)

Again, in order to evaluate the spectral cover information, one needs to transform both

constraints into Weierstrass normal form. p− is again just a constant and its interpretation

is along the lines of the previous example in Section 3.4.2. However, in the case of p+
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something non-trivial happens. Its transform into Weierstrass coordinates reads explicitly

p+W = (s21s3
62s72−4s21s52s62s2

72−2s11s2
62s2

72+8s11s52s3
72−2s21s42s2

62s82

−4s21s42s52s72s82−4s21s32s62s72s82+24s11s42s62s72s82+12s21s22s2
72s82

−16s11s32s2
72s82+8s21s32s42s2

82−24s11s2
42s2

82−12s21s62s72x

+24s11s2
72x+24s21s42s82x+24s21s72y)/(2(−s2

62s2
72+4s52s3

72

+12s42s62s72s82−8s32s2
72s82−12s2

42s2
82+12s2

72x)) . (3.72)

In contrast to the well-known case of the spectral cover in the P(1,2,3)-model which

takes only poles at infinity, one observes that the denominator of (3.72) has two zeros at SZ
1

and at ⊟SZ
1 , the negative of SZ

1 in the Mordell-Weil group of Z. In addition, the numerator

has zeros at two irrational points Q1, Q2 and at ⊟S1. Finally, there is a pole of order one

at SZ
0 . Here, SZ

0 and SZ
1 refer to the two sections (3.64), (3.65). Thus, the divisor of p−W is

given by

div(p+W ) =Q1+Q2−S1−S0 . (3.73)

Clearly, in order to promote the points defined by the spectral cover polynomial in eight

dimensions to a curve in six dimensions, the current form of p−W is not suitable due to its

non-trivial denominator. However, one observes that the polynomial given by the numera-

tor of p+W gives rise to the divisor

div(Numerator(p+W )) =Q1+Q2+⊟S1−3S0 (3.74)

which is, however, linearly equivalent10 to the divisor (3.73). Consequently, a spectral

cover, valid also for the construction of lower-dimensional compactifications, is defined by

10To see this, one notices that the element −S1 + S0 in Pic0(E) is equivalent to −S1 + S0 + f where f is
defined as x−xS1 on E with xS1 denoting the x-coordinate of S1. It holds that div( f ) = S1 +⊟S1 −2S0. Thus,
−S1+S0 maps to ⊟S1 on E under the map (3.12).
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the numerator of (3.72).

Thus, the three zeros Q1,Q2 and ⊟S1 form, following Section 3.2.2, a split SU(3) spec-

tral cover, i.e. an S(U(2)×U(1)) spectral cover. All three points extend as sections into the

half K3 surface X+, cf. Figure 3.7. Two of these sections are linearly independent and are

in eight dimensions the generators of the rank two Mordell-Weil group corresponding to a

rational elliptic surface with an E6 singularity. However, due to monodromies of Q1 and

Q2 only ⊟S1 survives in six dimensions as a rational section.

In conclusion, this spectral cover gives rise to an S(U(2)×U(1)) background bundle

which is embedded into the E8 factor corresponding to X+. The centralizer of this is given

by E6× U(1). The latter factor seems again massive due to the U(1) background bundle.

However, this U(1) forms together with the seemingly massive U(1) of the half K3 surface

X− a massless linear combination. In conclusion, there is a perfect match with the F-theory

analysis of the low energy gauge group. Analogously to the previous case in Section 3.4.2,

this model can be understood as arising by Higgsing the non-Abelian model 3.7.2 with

gauge symmetry E8 × E7. Here, a (massive) U(1) factor is embedded minimally into both

factors. Again, the vacuum expectation value of the Higgs corresponds to the coefficient

s72. In addition, we can view this model also as arising by a Higgsing process from a

compactification with E7×E7×U(1) gauge group where a vacuum expectation value of the

Higgs corresponds to s21.

Structure group SU(2)×SU(2)×U(1): E7×SO(9)×U(1) gauge symmetry

The final example in this chain of Higgsings is given by a model with E7 ×SO(9)×U(1)

gauge symmetry. On the heterotic side we find an U(1)×(SU(2)×SU(2)×U(1)) structure

group which matches the non-Abelian gauge content. Also in this case we find one massless

as well as one massive U(1) on the heterotic side.

As before, we define the model by the following choice of coefficients in X :
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Figure 3.8: The half K3 surface X− only exhibits the section S1 in addition to the zero
section. In contrast, X+ gives rise to a spectral cover polynomial that has two pairs of
irrational solutions Q1,Q2, R1,R2 that sum up to SZ

1 each.

Coefficient X X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s11λ1+ s12V

s2 s21U2+ s22UV s22U s21λ1+ s22V

s3 s31U2+ s32UV s32U s31λ1+ s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s72UV s72U s72V

s8 s82UV s82U s82V

Once again we begin the analysis on the F-theory side with the evaluation of the order of

vanishing of the Tate coefficients. We obtain the Tate vectors

t⃗V = (1,1,2,3,4,7) , t⃗U = (1,2,3,3,5,9) , (3.75)

which signal one SO(9) singularity at V = 0 and one E7 singularity at U = 0, each of which

being inherited by one half K3 surface.

For the analysis of the heterotic side, we split the two half K3 surfaces into a spectral
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cover polynomial and the heterotic elliptic curve. We obtain

p+ = s11x4
1+ s21x3

1x2+ s31x2
1x2

2 , p− = s11x4
1 , (3.76)

from which we see that p− is again a trivial spectral cover. Again, in order to evaluate

the non-trivial spectral cover p+, one needs to transform both constraints into Weierstrass

normal form. The interpretation of p+ is as in the previous cases. We again obtain a

Weierstrass form p+W with a denominator. The explicit expression is rather lengthy and can

be provided upon request. Its divisor is given by

div(p+W ) =Q1+Q2+R1+R2−2S1−2S0 , (3.77)

Here Q1, Q2 and R1, R2 are two pairs of irrational points which obey Q1⊞Q2⊟S1 = 0 and

R1⊞R2⊟S1 = 0. The divisor of p+W is again equivalent to the divisor of its numerator reading

div(Numerator(p+W )) =Q1+Q2+R1+R2+2⊟S1−6S0 . (3.78)

By a similar token as before, we thus drop the denominator and just work with the numer-

ator of p+W .

All the points appearing here extend to sections of the half K3 surface X+. However,

while Q1,Q2,R1,R2 extend to rational sections of the half K3 surface they do not lift to

rational sections of the fibration of the rational elliptic surface over P1. Altogether, we

obtain as in the previous examples two rational sections in both half K3 surfaces which

glue to global sections and therefore give rise to a U(1) factor. Besides that the spectral

cover is split and describes a vector bundle with structure group S(U(2)×U(1))×S(U(2)×

U(1)), where the U(1) part in both factors needs to be identified. This is due to the fact

that in both cases the same point, ⊟SZ
1 , splits off. Thus, the spectral cover is isomorphic
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to SU(2)×SU(2)×U(1) whose centralizer11 within E8 is given by SO(9)×U(1). Thus

we obtain again two seemingly massive U(1)’s which give rise to one massless linear

combination.

This model can be understood by a Higgsing mechanism. Either it can be viewed as

arising from the non-Abelian model in Section 3.7.3 with E8×SO(11) gauge symmetry, by

giving a vacuum expectation value to a Higgs corresponding to s72, or from the previous

example in Section 3.4.2, by giving a vacuum expectation value to a Higgs associated to

s31.

Example with only one massive U(1): S(U(1)×U(1)) structure group

Finally, we conclude the list of examples with a model which has only one U(1)-bundle

embedded into one of its E8 factors while the other E8 stays untouched. Accordingly there

is only one massive U(1) symmetry. On the F-theory side we obtain an E8 ×E6 ×SU(2)

gauge symmetry which matches the findings on the heterotic side.

The model is defined by the following specialization of the coefficients in the constraint

(3.53):

Coefficient X X− X+

s1 s13V 2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U2+ s42UV s42U s42V + s41λ1

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

11We employ here the breaking E8 Ð→ SO(9)×SU(2)×SU(2)×SU(2).
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Figure 3.9: The half K3 surface X− has only one section SX−

0 which merges with the section
SX+

0 from the other half K3 surface X+. X+ has in addition also the section SX+

which does
not merge with a section of X−. Thus, there is no U(1)-factor on the F-theory side.

First of all, we note that the coefficient s7 vanishes identically. Thus, we have changed

the ambient space of the fiber from Bl1P(1,1,2) to P(1,2,3). Therefore, we do not expect to

see another section besides the zero section on the F-theory side and therefore no U(1),

cf. Appendix 3.8.

First, we determine the gauge group on the F-theory. As before, we evaluate the Tate

coefficients along the singular fibers which are in the case at hand located at U = 0, V = 0

and s41U + s42V = 0. One obtains the Tate vectors

t⃗U = (1,2,3,4,5,10) , t⃗V = (1,2,2,3,5,8) , t⃗s41U+s42V = (0,0,1,1,2,2) . (3.79)

Clearly, these signal an E8 ×E6 ×SU(2) gauge group in F-Theory. Also, after the stable

degeneration limit, one obtains one half K3 surface X− with an E8 singularity and one, X+,

with an E6×SU(2) singularity.

For the further analysis we remark that there is the zero section S0 = [0 ∶ 1 ∶ 0] in the

K3 surface only. Here and in the following, we refer to the P(1,1,2) coordinates [x1 ∶ x2 ∶ x3]

only, i.e. we work in the limit x4 → 1, x5 → 1. For the two half K3s one finds that X− has

only a zero section. In contrast, one observes the sections12 SX+

= [1 ∶ 0 ∶ 0] and ⊟SX+

=

12Clearly, as the rank of the Mordell Weil group of X+ is positive, there are in fact infinitely many sections.
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[s82V ∶ 0 ∶ −s52s82V 2] in the other half K3 surface X+. However, these sections do not glue

with another section of X− and therefore do not give rise to a U(1) symmetry from the

F-theory perspective. However, from the heterotic perspective they should give rise to a

massive U(1) which upon commutation within E8 leaves an E6×SU(2) gauge symmetry.

This result is in agreement with the spectral cover analysis. One evaluates the spectral

cover polynomials as

p− = s13x4
1 p+ = s41x1x3

2 . (3.80)

As observed already before, the Weierstrass transform p−W of p−W does not have any com-

mon solution with the heterotic elliptic curve and therefore the E8-symmetry does not get

broken. For the half K3 surface X+, the common solutions to p+W and the heterotic elliptic

curve are given in Weierstrass coordinates [x ∶ y ∶ z] as

SZ
W = [

1
12

(s2
62−4s32s82) ∶ −

1
2

s42s52s82 ∶ 1] ,

⊟SZ
W = [

1
12

(s2
62−4s32s82) ∶

1
2

s42s52s82 ∶ 1] . (3.81)

Here, SZ
W and ⊟SZ

W denote the intersections of SX+

and ⊟SX+

with the heterotic geometry

Z respectively, in Weierstrass coordinates. Thus, we observe a split spectral cover pointing

towards the structure group S(U(1)×U(1)). Using the breaking E8Ð→E6×SU(2)×U(1),

this spectral cover matches with the observed gauge group. The U(1) is decoupled from

the massless spectrum via the Stückelberg effect of Section 3.2.4.

3.4.3 Split spectral covers with torsional points

In the following, we discuss examples which exhibit a torsional section in their spectral

covers. As mentioned before, heterotic/F-theory duality suggests that the structure group

of the heterotic vector bundle should contain a discrete part.
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Figure 3.10: The stable degeneration limit of a K3 surface with E8×(E7×SU(2))/Z2. The
half K3 surface X− has trivial Mordell-Weil group, while the half K3 surface X+ has a
torsional Mordell-Weil group Z2.

Structure group Z2: E8×E7×SU(2) gauge symmetry

We consider a model which arises by the following specialization of coefficients in (3.53):

Coefficient X X− X+

s1 s13V 2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U2+ s42UV s42U s42V + s41λ1

s5 0 0 0

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

We start the analysis with the gauge group on the F-theory side first. There are three

singular loci of the fibration at U = 0, V = 0 and s41U + s42V . The evaluation of the Tate

coefficients reveals the Tate vectors

t⃗U = (1,2,∞,4,5,10) , tV = (1,2,∞,3,5,9) , t⃗s41U+s42V = (0,0,∞,1,2,2) . (3.82)
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Figure 3.11: The left picture shows the specialized two-dimensional polytope ∆2 corre-
sponding to the half K3 surface X+. The right figure shows its dual, ∆○2, which specifies the
ambient space of the elliptic fiber of X+.

Thus, there are an E8 singularity as well as an E7 and an SU(2) singularity. The E8 sin-

gularity is inherited by the half K3 surface X− while X+ gets endowed with an E7 and an

SU(2) singularity.

As a next step, we observe that there is only one section given by [1 ∶ 0 ∶ 0] in the half K3

surface X− and two sections given by [x1 ∶ x2 ∶ x3] = [0 ∶ 1 ∶ 0] and [x1 ∶ x2 ∶ x3] = [1 ∶ 0 ∶ 0] in

the half K3 surface X+. Here, we work again in the limit x4 = x5 = 1. In contrast, the full K3

surface has only one section namely the point at infinity. Moreover, a transformation into

Weierstrass coordinates shows that the generic section SX+

1 has specialized into a torsional

section of order two as can be checked using the results of [169]. This is expected, as

the centralizer of the gauge algebra13 E7 ×SU(2) within E8 is given by Z2, which is also

expected from the general analysis of [186]. In contrast, the full K3 surface X does not

seem to exhibit a torsional section of order two.

Finally, we turn towards the analysis of the gauge group from the heterotic side. Here,

the spectral cover is given by

p− = s13x4
1, p+ = s41x1x3

2 . (3.83)

After transformation to Weierstrass normal coordinates p−W is given by a constant which

13To be precise, E8 only contains the group (E7×SU(2))/Z2 as a subgroup.
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has no common solution with the elliptic curve. In contrast, the transformed quantity p+W

gives rise to the point

[x ∶ y ∶ z] = [
1
3
(

s2
62
4
− s32s82) ∶ 0 ∶ 1] . (3.84)

which is a torsion point of order two. In other words we see that the spectral cover is just

given by a torsional point.

In [169] it has been suggested that an F-theory compactification with a torsional section

in an elliptically fibered Calabi-Yau manifold and its stable degeneration limit should be

dual to pointlike instantons with discrete holonomy on the heterotic side. Due to the simi-

larity to the considered example, we propose that the spectral cover p+W is to be interpreted

as describing such a pointlike instanton with discrete holonomy. In addition, as pointed

out above, the matching of gauge symmetry on both sides of the duality only works if the

spectral cover p+W is interpreted in this way. It would be important to confirm this pro-

posal further by a more detailed analysis of the spectral cover, computation of the heterotic

tadpole, or an analysis of codimension two singularities in F-theory.

Structure group S(U(2) ×Z2): E8 × E6 × U(1) gauge symmetry

In this section we present another example whose spectral cover polynomial containing a

torsional point and leading to an E8×E6×U(1) gauge symmetry. As one E8 factor is left

intact, the U(1) factor needs to be embedded solely into one E8 bundle.

The starting point of our analysis is the following specialization of coefficients in (3.53):
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Coefficient X X− X+

s1 s13V 2 s13µ 0

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s41U2+ s42UV s42U s42V + s41λ1

s5 0 0 0

s6 s62UV s62U s62V

s7 s71U2 0 s71λ1

s8 s82UV s82U s82V

As in the previous cases, we compute the orders of vanishing of the Tate coefficients in

order to determine the gauge group on the F-theory side. The computed Tate vectors signal

an E8 symmetry at U = 0 and an E6 symmetry at V = 0. As a next step, we investigate the

rational sections of X . As the coefficient s7 does not vanish for the full K3 surface, there

are the two generic sections S0,S1 realized in this model. However, the half K3 surface X−

only has the zero section S0. In contrast, the half K3 surface X+ has two sections given by

S0, S1, which unify in the heterotic elliptic curve and continue as one section into the other

half K3 surface, see Figure 3.12. This behavior of rational sections explains the origin of

the U(1)-factor from the gluing condition discussed in Section 3.2.4.

As a further step, we investigate how this U(1) factor is reflected in the spectral cover

on the heterotic side. The spectral cover polynomials computed by stable degeneration read

p− = s13x4
1, p+ = s41x1x3

2+ s71x2
2x3 . (3.85)

The interpretation of p− is as in all the other cases just a trivial spectral cover. The common

solution to p+ and the heterotic Calabi-Yau manifold Z is given by a pair of irrational points
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Figure 3.12: The half K3 surface X− exhibits only the zero section, while the half K3
surface X+ has also the section SX+

1 which merges with the section SX−

0 along the heterotic
geometry. Thus there are two independent sections in the full K3 surface giving rise to a
U(1) gauge group factor. In addition, the inverse of SX+

1 becomes a torsion point of order
two when hitting the heterotic geometry.

R1,R2 as well as a further point Tt which has in Weierstrass normal form coordinates

Tt = [
1
3
(

1
4

s2
62− s32s82) ∶ 0 ∶ 1] . (3.86)

Thus, it is a torsion point of order two. However, it does not extend as a full torsional

section into the half K3 surface X+. The corresponding section is rather the inverse of S1.

Again we see that the split spectral cover p+ contains a torsional section. Let us com-

ment on the interpretation of this for the structure group of the heterotic vector bundle.

Heterotic/F-theory duality implies that the low-energy effective theory contains a massless

U(1)-symmetry. However, as we have seen in Section 3.2.4, a U(1) background bundle

in the heterotic theory has a non-trivial field strength and thus a non-vanishing first Chern

class, which would yield a massive U(1) in the effective field theory. Thus, we can not

interpret the torsional component Tt to the spectral cover as a U(1) background bundle.

By the arguments of Section 3.2.2 and the similarity to the setups considered in [169], it

is tempting to identify this torsional component Tt as a pointlike heterotic instanton with

discrete holonomy. In order to justify this statement, it would be necessary to compute
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the first Chern class of a heterotic line bundle that is defined in terms of components to

the cameral cover given by rational sections of the half K3 fibrations arising in stable de-

generation. In [179], it has been argued that the first Chern class is given, up to vertical

components, by the difference of the rational section and the zero section. If the first Chern

class were completed into the Shioda map of the rational section, which we conjecture to

be the case, it would be zero precisely for a torsional section [187]. Consequently, the U(1)

in the commutant of E8 would remain massless as the gauging in (3.24) would be absent.

It would be important to confirm this conjecture by working out the missing vertical part in

the formula for the first Chern class of a U(1) vector bundle.

3.4.4 U(1) factors arising from purely non-Abelian structure groups

In this final section, we present an example in which the heterotic vector bundle has only

purely non-Abelian structure group, while the F-Theory gauge group analysis clearly sig-

nals a U(1) factor.

As in the previous cases, we start by specifying the specialization of the coefficients in

the defining hypersurface equation for X :

Coefficient X X− X+

s1 s12UV + s13V 2 s12U + s13µ s12V

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 s71U2 0 s71λ1

s8 s82UV s82U s82V
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Figure 3.13: The half K3 surface X− exhibits only the zero section, while the half K3
surface X+ has also the section SX+

1 which merges with the section SX−

0 in the heterotic
geometry. Thus, there are two independent sections in the full K3 surface giving rise to a
U(1) gauge group factor.

We determine the gauge symmetry of the F-theory side by analysis of the Tate coefficients.

We obtain the Tate vectors

t⃗U = (1,2,3,4,5,10) t⃗V = (1,1,2,2,4,6) , (3.87)

which reveals an E8 singularity at U = 0 and an SO(7) singularity at V = 0. We note that it

is not directly possible to distinguish an SO(7) singularity from an SO(8) singularity using

the Tate table 3.2 only. To confirm that the type of singularity is indeed SO(7) we have to

investigate the monodromy cover [188] which is for an I∗0 fiber given by

A ∶ ψ
3+(

f
v2 ∣v=0

)ψ +(
g
v3 ∣v=0

) . (3.88)

Here, v is the affine coordinate V /U and f ,g are the Weierstrass coefficients. An I∗0 fiber is

SO(7) if the monodromy cover A factors into a quadratic and a linear constraint, which is

indeed the case for the example at hand.

The stable degeneration limit yields two half K3 surfaces, X+ and X−, cf. Figure 3.13.

There only exists the zero section in X−. In contrast, X+ has two sections which are given
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by SX+

0 and SX+

1 . As in the previously considered case in Section 3.4.3, SX+

1 unifies with SX−

0

on the heterotic elliptic curve. Thus, there are two global sections in the full K3 surface

and therefore a U(1) factor in the F-theory compactification.

Turning towards the discussion of the heterotic gauge bundles, one finds that the U(1)

factor is encoded in the data of the spectral cover polynomial as follows. We observe that

the spectral covers following X+ and X−, respectively, are given by

p− = s13x4
1 , p+ = s71x2

2x3 . (3.89)

The intersection of its Weierstrass transform p+W with the heterotic elliptic curve gives five

irrational points R1,R2,T1,T2,T3 with R1⊕R2 = 0 and T1⊕T2⊕T3 = 0. Thus we have a het-

erotic vector bundle with SU(2) × SU(3). As the spectral cover p+ has one free parameter

only, namely s71, this model does not seem to have any moduli.

As our understanding of the precise embedding of the structure group into E8 is limited,

we have checked all possible ways to embed the group SO(7) × SU(2) × SU(3) into E8.

Independently of the chosen embedding, there is always a U(1) in all possible breakings.

Thus, we are led to conclude that the centralizer of SU(2) × SU(3) necessarily produces a

U(1) factor which matches with the F-theoric analysis.

3.5 Conclusions and Future Directions

In this paper we have presented a first explicit analysis of the origin of Abelian gauge

symmetries for string theory compactifications within the duality between the E8 ×E8

heterotic string and F-theory. Here we summarize the framework of the analysis, highlight

the key advancements, and conclude with future directions.
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Framework

We have focused on F-theory compactifcations with a rank one Mordell-Weil group of ra-

tional sections both for compactifications to D=8 and D=6. We have systematically studied

a broad class F-theory compactifications on elliptically fibered Calabi-Yau (n+ 1)-folds

(with n = 1,2, respectively) with rational sections and rigorously performed the stable de-

generation limit to dual heterotic compactifications on elliptically fibered Calabi-Yau n-

folds. All considered examples are toric hypersurfaces and the stable degeneration limit is

performed as a toric symplectic cut.

The key aspects of the analysis are the following:

• We have carefully investigated the solutions of the spectral cover polynomial and the

hypersurface for the heterotic elliptically fibered Calabi-Yau manifold. We have used

the group law of the elliptic curve in Weierstrass normal form in order to determine

the structure group of the heterotic background bundle.

• We have analyzed the origin of the resulting gauge group. In D=6 this involves in-

corporation of the massive U(1) gauge symmetries, due to the heterotic Stückelberg

mechanism, that are not visible in F-theory.

Key Results

While the F-theory side provides a unifying treatment of Abelian gauge symmetries, as en-

coded in the Mordell-Weil group of elliptically fibered Calabi-Yau (n+1)-folds, a detailed

analysis of a broad classes of toric F-theory compactifications has resulted in the proposal

of three different classes of heterotic duals that give rise to U(1) gauge group factors:

• Split spectral covers describing bundles with S(U(m)×U(1)) structure group. Ex-

amples of this type have been discussed in Section 3.4.2.
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• Spectral covers containing torsional sections giving rise to bundles with SU(m)×Zn

structure group. Classes of examples with this structure group have been presented

in Section 3.4.3.

• The appearance of bundles with structure groups of the type SU(m)×SU(n) whose

commutants inside E8 contain a U(1)-factor. Explicit examples of this form can be

found in Section 3.4.4.
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Future Directions

While the work presents a pioneering effort, addressing comprehensively the origin of

Abelian gauge group factors in heterotic/F-theory duality for a class of compactifications,

the analysis provides a stage for further studies, both by extending the systematics of the

analysis and by further detailed studies of the dual heterotic geometry and vector bundle

data.

• It would be important to extend the studies to examples within larger classes of pairs

of dual toric varieties as well as of more general elliptically fibered Calabi-Yau man-

ifolds, respectively. In particular, this would allow to account for studies of dual

geometries with broader classes of complex structure moduli spaces, and thus for an

analysis of more general spectral covers of dual heterotic vector bundles. In D=6 our

analysis has been limited to a specific elliptically fibered Calabi-Yau (n+1)-folds,

which has resulted in constrained appearances of non-Abelian gauge symmetries and

additional U(1)’s. In particular, it would be illuminating to elaborate on the stable

degeneration limit for general toric fibrations of two-dimensional polyhedra over P1

in eight dimensions and, in addition, over Hirzebruch surfaces in six dimensions.

• It would be interesting to have the tools to study the spectral cover directly in the

Bl1P(1,1,2) model or more generally for fiber geometries which are given by the six-

teen two-dimensioal reflexive polyhedra. This would require in particular a notion of

the group law for these representations of elliptic curves.

• The study of the properties of the spectral cover was primarily confined to the deriva-

tion of the resulting gauge symmetries and the structure groups of the heterotic vector

bundles. Further analysis of the spectral cover in compactifications to D=6 (and ex-

tensions to D=4) is needed; it should shed light on the further spectral cover data,
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which enter Chern classes, anomaly cancellation and matter spectrum calculations.

This study is complicated by the resolution of singularities of the heterotic geome-

try that may have to be performed, resulting in spectral covers, which are not finite

[185].

• Our analysis has been primarily constrained to studies of Abelian gauge symme-

tries in the language of a perturbative heterotic dual. Although we have encountered

spectral covers which seem to describe small instantons, i.e. non-perturbative M5-

branes, with discrete holonomy, we have not systematically analyzed their effect.

In F-theory, M5-branes are visible as non-minimal singularities which occur at co-

dimension two loci that have to be blown up. It would be interesting to thoroughly

perform this geometric analysis. We expect in addition rich structures of Abelian

gauge symmetry factors in F-theory whose heterotic duals are due to other types of

non-perturbative M5-branes. Furthermore, it would be interesting to study the ge-

ometric transitions between F-theory geometries with different numbers of tensor

multiplets, whose discussion is again related to this resolution process.
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3.6 Weierstrass and Tate form of the hypersurface χ sing

In this appendix, we summarize the Weierstrass normal form as well as the Tate coefficients

of the χsing model. For convenience, we recall the most general form of the hypersurface

χsing which reads

χ
sing ∶= s1x4

1+ s2x3
1x2+ s3x2

1x2
2+ s4x1x3

2+ s5x2
1x3+ s6x1x2x3+ s7x2

2x3+ s8x2
3 = 0, si ∈OP1(2) .

(3.90)

This can be brought in the so-called Tate form

y2+a1xy+a3y = x3+a2+a4x+a6 . (3.91)
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The Tate coefficients are explicitly given as [162]

a1 = s6 ,

a2 = −s5s7− s3s8 ,

a3 = −s4s5s8− s2s7s8 ,

a4 = s3s5s7s8+ s1s2
7s8+ s2s4s2

8 ,

a6 = −s1s3s2
7s2

8− s1s2
4s3

8+ s4s7 (−s2s5s2
8+ s1s6s2

8) . (3.92)

In addition, it is useful, to introduce the quantities

b2 = a2
1+4a2 ,

b4 = a1a3+2a4 ,

b6 = a2
3+4a6 . (3.93)
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The Weierstrass normal form of χsing reads

f = (−
1

48
s4

62+
1
6

s52s2
62s72−

1
3

s2
52s2

72−
1
2

s42s52s62s82+
1
6

s32s2
62s82

+
1
3

s32s52s72s82−
1
2

s22s62s72s82+ s21s2
72s82−

1
3

s2
32s2

82+ s22s42s2
82) .

g = (
1

864
s6

62−
1

72
s52s4

62s72+
1

18
s2

52s2
62s2

72−
2

27
s3

52s3
72+

1
24

s42s52s3
62s82

−
1

72
s32s4

62s82−
1
6

s42s2
52s62s72s82+

1
36

s32s52s2
62s72s82+

1
24

s22s3
62s72s82

+
1
9

s32s2
52s2

72s82−
1
6

s22s52s62s2
72s82−

1
12

s21s2
62s2

72s82+
1
3

s21s52s3
72s82

+
1
4

s2
42s2

52s2
82−

1
6

s32s42s52s62s2
82+

1
18

s2
32s2

62s2
82−

1
12

s22s42s2
62s2

82

+
1
9

s2
32s52s72s2

82−
1
6

s22s42s52s72s2
82−

1
6

s22s32s62s72s2
82+ s21s42s62s72s2

82

+
1
4

s2
22s2

72s2
82−

2
3

s21s32s2
72s2

82−
2

27
s3

32s3
82+

1
3

s22s32s42s3
82− s21s2

42s3
82) . (3.94)

In particular, the discriminant reads

∆ = 4 f 3+27g2 =
1

48
s2

82 (. . .) . (3.95)

where the expression in the bracket denotes a generic polynomial.

3.6.1 The map to Weierstrass normal form

In this subsection we discuss the bi-rational map of (3.90) to Weierstrass normal form. As

a first step, we transform (3.53) into the form

s̃1x4
1+ s̃2x3

1x2+ s̃3x2
1x2

2+ s̃4x1x3
2+ s7x2

2x3+x2
3 = 0 . (3.96)
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Here, we have introduced the new quantities

s̃1 = −
1
4

s2
5+S0s8, s̃2 = −

1
2

s5s6+S1s8, s̃3 = −
1
4

s2
6−

1
2

s5s7+ s3s8, s̃4 = −
1
2

s6s7+ s4s8

(3.97)

Next, one uses the transformations provided in [154]

x1 z→ z

x2 z→
6s7y+6s̃4xz+2s̃3s̃4z3+3s̃2s2

7z3

2(3s2
7x−3s̃2

4z2−2s̃3s2
7z2)

x3 z→ (108s3
7x3−108s3

7y2−108s̃4s2
7xyz−216s̃2

4s7x2z2−108s̃3s3
7x2z2−108s̃3

4yz3

−144s̃3s̃4s2
7yz3−108s̃2s4

7yz3−36s̃3s̃2
4s7xz4−54s̃2s̃4s3

7xz4+12s̃2
3s̃2

4s7z6

−54s̃2s̃3
4s7z6+16s̃3

3s3
7z6−72s̃2s̃3s̃4s3

7z6−27s̃2
2s5

7z6)/

12(3s2
7x−3s̃2

4z2−2s̃3s2
7z2)

2
(3.98)

in order to finally bring (3.96) into Weierstrass normal form in P(1,2,3). We also note that

the transformations (3.98) simplify in the case s7 = 0, in particular their denominators loose

their dependence on x,y.

3.7 Spectral Cover Examples with no U(1)

For convenience and to demonstrate how our formalism works in a well-understood sit-

uation, we analyze several examples with pure non-Abelian gauge content only. These

are related to the examples 3.4.2, 3.4.2 and 3.4.2 by a Higgsing process which gives s72 a

vacuum expectation value.
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3.7.1 Trivial structure group: E8 × E8 gauge symmetry

As described in the previous section, we can obtain examples with higher rank gauge sym-

metry by specializing the coefficients of chising. Aiming for a model with E8 × E8 gauge

symmetry, one obtains the following coefficients.

Coefficient K3 X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s12V + s11λ1

s2 s22UV s22U s22V

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

Here the second row displays the coefficients of the full K3 surface while the coeffi-

cients of the two half K3 surfaces are displayed in row three and four. In particular, one

notices that the coefficient s7 is missing which means that one is passing from the toric

ambient space Bl1P(1,1,2)×P1 to the ambient space P(1,2,3)×P1. Clearly, a generic section

of the anti-canonical bundle of P(1,2,3) does not have a second section, so there is also no

reason to expect any U(1).

We proceed by analyzing the F-Theory gauge group. The analysis of the Tate vectors

reveals that

t⃗U = t⃗V = (1,2,3,4,5,10) (3.99)

and thus there is an E8×E8 gauge symmetry. After the stable degeneration limit, both half

K3 surfaces X+ and X− obtain one E8 singularity each.
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Finally, we turn to the Heterotic side. The splitting of the two half K3’s into the Het-

erotic elliptic curve and the spectral cover contributions reveals that

p+ = s11x4
1, p− = s13x4

1 . (3.100)

After transforming these expression into the affine Weierstrass coordinates x,y, one obtains

p+W = s11, p−W = s13 (3.101)

In both cases,one obtains an SU(1) spectral cover. However, the centralizer of the identity

in E8 is E8 and one obtains a perfect match with the F-theory calculation.

3.7.2 Structure group SU(1) × SU(2): E8 × E7 gauge symmetry

We consider the following model which is specified by the following coefficients in (3.53).

Coefficient K3 X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s12V + s11λ1

s2 s21U2+ s22UV s22U s22V + s21λ1

s3 s32UV s32U s32V

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

This time, we obtain the following Tate vectors

t⃗V = (1,2,3,3,5,9) , t⃗U = (1,2,3,4,5,10) (3.102)
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which signal an E7 singularity at V = 0 as well as an E8 singularity at U = 0. The former

one is inherited by the half K3 surface X− while the latter one moves into X+.

The spectral cover is in this case given by

p+ = x3
1 (s11x1+ s21x2) , p− = s11x4

1 . (3.103)

We only comment on the non-trivial spectral cover. After applying the transformation

(3.98), it reads

p+W = c0+c1x (3.104)

which defines an SU(2) spectral cover and is precisely what is expected. Explicitly, the ai’s

read

c0 = s21s2
62−4s21s32s82+12s11s42s82 c1 = −s21 (3.105)

Note that the ai are indeed proportional to s11, s21 which define the spectral cover. Thus,

we obtain an SU(2) spectral cover in the case of X+ and a trivial structure group for the

case of X−. In conclusion, there is a perfect match with the F-theory analysis.

3.7.3 Example with gauge group E8 × SO(11)

We consider the following model which is specified by the following coefficients in (3.53).
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Coefficient K3 X− X+

s1 s11U2+ s12UV + s13V 2 s12U + s13µ s12V + s11λ1

s2 s21U2+ s22UV s22U s22V + s21λ1

s3 s31U2+ s32UV s32U s32V + s31λ1

s4 s42UV s42U s42V

s5 s52UV s52U s52V

s6 s62UV s62U s62V

s7 0 0 0

s8 s82UV s82U s82V

This time, we obtain the following Tate vectors

t⃗V = (1,1,3,3,5,8) , t⃗U = (1,2,3,4,5,10) (3.106)

which signal an SO(11) singularity at V = 0 as well as an E8 singularity at U = 0. The former

one is inherited by the half K3 surface X+ while the latter one moves into X−.

The spectral cover is in this case given by

p+ = x2
1 (s11x2

1+ s21x1x2+ s31x2
2) , p− = s11x4

1 . (3.107)

We only comment on the non-trivial spectral cover. After applying the transformation

(3.98), it reads

p+W = c0+c1x+c2x2 (3.108)

which defines an Sp(2) ≅ SO(5) spectral cover14 [139] and is precisely what is expected.

Thus, we obtain an Sp(2) spectral cover in the case of X+ and a trivial structure group for

the case of X−. The commutant of SO(5) within E8 is given by SO(11).

14Sometimes, Sp(N) is denoted by Sp(2N).
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3.8 Tuned models without rational sections

In this appendix we reproduce [154, 184] the following

Lemma 10. The two sections denoted by x1 = 0 and x4 = 0 in (3.54) merge into a single

section if and only if s7 = 0 in (3.53). Furthermore, the single section is given by [x1 ∶ x2 ∶

x3 ∶ x4 ∶ x5] = [0 ∶ 1 ∶ 1 ∶ 0 ∶ 1].

Proof. Suppose the two sections x1 = 0 and x4 = 0 merge into a single section. Then this

single section obeys both x1 = 0 and x4 = 0, everywhere. Thus the Stanley-Reisner ideal

requires x2 ≠ 0, x3 ≠ 0 and x5 ≠ 0 everywhere. Making use of the skaling relations of the

resolved space Bl1P(1,1,2), one obtains that this section is indeed given by [x1 ∶ x2 ∶ x3 ∶ x4 ∶

x5] = [0 ∶ 1 ∶ 1 ∶ 0 ∶ 1].

Suppose now that s7 = 0. Setting x1 in (3.53) to zero, results in the equation s8x2
3x4 = 0.

As x3 ≠ 0 due to the Stanley Reisner ideal, x4 has to vanish as well resulting in the merging

of the two sections. Similarly, x4 = 0 requires that s4x1x3
2x2

5 = 0. The Stanley Reisner ideal

requires x2 and x5 to be non-vanishing. Thus, there is also in this case only one section

given by [x1 ∶ x2 ∶ x3 ∶ x4 ∶ x5] = [0 ∶ 1 ∶ 1 ∶ 0 ∶ 1].

3.9 Non-commutativity of the semi-stable degeneration

limit and the map to Weierstrass form

We illustrate the non-commutativity of the diagram (3.1) using the above example with

gauge group E7 × SO(9) × U(1). To be precise, on the top left corner of the diagram, the

section χ of −KP(1,1,2)×P1 is given by
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χ ∶ s1x4
1+ s2x3

1x2+ s3x2
1x2

2+ s4x1x3
2+ s5x2

1x3+ s6x1x2x3+ s7x2
2x3+ s8x2

3 = 0 ,

where s1 = s11U2+ s12UV + s13V 2 , si = si1U2+ si2UV for 2 ≤ i ≤ 3 ,

si = si2UV for 4 ≤ i ≤ 8 . (3.109)

Under the stable degeneration limit, denoted by the left map in the diagram (3.1), χ is split

into χ±, which are in turn defined by

χ
± ∶ s±1 x4

1+ s±2 x3
1x2+ s±3 x2

1x2
2+ s±4 x1x3

2+ s±5 x2
1x3+ s±6 x1x2x3+ s±7 x2

2x3+ s±8 x2
3 = 0 ,

where s+1 = s12U + s13µ , s−1 = s11λ1+ s12V ,

s+i = si2U and s−i = si1λ1+ si2V for 2 ≤ i ≤ 3 ,

s+i = si2U and s−i = si2V for 4 ≤ i ≤ 8 . (3.110)

We further map χ±, under the bottom map of the diagram (3.1), into their respective Weier-

strass forms

W±
χ ∶ y2 = x3+ f ±χ xz4+g±χz6 . (3.111)

We can show that W±
χ obtained in this way is different compared to W

′±
χ obtained by taking

the other route in diagram (3.1), namely start from χ on the top left corner of the diagram,

first map χ into its Weierstrass form Wχ using the map on top of (3.1), and then use the

map on the right of (3.1) to split Wχ into

W
′±
χ ∶ y2 = x3+ f

′±
χ xz4+g

′±
χ z6 . (3.112)
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Indeed,

W+
χ ≠W

′+
χ , W−

χ ≠W
′−
χ . (3.113)

To be precise,

f ±χ = f
′±
χ but g±χ ≠ g

′±
χ , g+χ −g

′+
χ =

2
3

U6s13s31s2
72s2

82 , g−χ −g
′−
χ =

2
3

V 6s13s31s2
72s2

82 .

(3.114)
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Type Group a1 a2 a3 a4 a6 ∆

I0 {e} 0 0 0 0 0 0
I1 {e} 0 0 1 1 1 1
I2 SU(2) 0 0 1 1 2 2
I3 SU(3) 0 1 1 2 3 3

I2k,k ≥ 2 Sp(k) 0 0 k k 2k 2k
I2k+1,k ≥ 1 Sp(k) 0 0 k+1 k+1 2k+1 2k+1

In,n ≥ 4 SU(n) 0 1 [n
2] [n+1

2 ] n n
II {e} 1 1 1 1 1 2
III SU(2) 1 1 1 1 2 3
IV Sp(1) 1 1 1 2 2 4
IV SU(3) 1 1 1 2 3 4
I∗0 G2 1 1 2 2 3 6
I∗0 Spin(7) 1 1 2 2 4 6
I∗0 Spin(8) 1 1 2 2 4 6
I∗1 Spin(9) 1 1 2 3 4 7
I∗1 Spin(10) 1 1 2 3 5 7
I∗2 Spin(11) 1 1 3 3 5 8
I∗2 Spin(12) 1 1 3 3 5 8

I∗2k−3,k ≥ 3 SO(4k+1) 1 1 k k+1 2k 2k+3
I∗2k−3,k ≥ 3 SO(4k+2) 1 1 k k+1 2k+1 2k+3
I∗2k−2,k ≥ 3 SO(4k+3) 1 1 k+1 k+1 2k+1 2k+4
I∗2k−2,k ≥ 3 SO(4k+4) 1 1 k+1 k+1 2k+1 2k+4

IV∗ F4 1 2 2 3 4 8
IV∗ E6 1 2 2 3 5 8
III∗ E7 1 2 3 3 5 9
II∗ E8 1 2 3 4 5 10

non-min - 1 2 3 4 6 12

Table 3.2: Results from Tate’s algorithm.

ray facet constraint
ρλ1

m4 = −1 sλ1
= s3

i U + s6
i µ

ρµ m4 =m3−1 sµ = s1
i λ1+ s3

i V
ρλ2

m4 = 1 sλ2
= s2

i U2+ s5
i UV + s8

i V 2

Table 3.3: The correspondence between the rays of ∆○dP2
and the facets of ∆dP2 . The last

column displays the global sections that embed the associated divisor into P1 and P2, re-
spectively. The coefficients on the right-hand side refer to equation (3.34).
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Chapter 4
Conclusion

Finally, we summarize the main results of this dissertation.

In chapter 1 of this dissertation, I proved finiteness of a region of the string landscape in

Type IIB compactifications. I showed, using a mathematical proof, that Type IIB theories

when compactified on elliptically fibered Calabi-Yau threefolds π ∶ X → B whose base B

satisfy a few easily-checked conditions (summarized in chapter 1 of this dissertation), only

give rise to a finite number of four-dimensional N = 1 supergravity theories, and that these

theories only have finitely many gauge sectors with finitely many chiral spectra. Some

examples of the bases B includes the del Pezzo surfaces dPn for n = 0,1, ...,8, and the

Hirzebruch surfaces F0 = P1 ×P1,F1 = dP1,F2. My proof also allowed us to derive the

explicit and computable bounds on all flux quanta and on the number of D5-branes. These

bounds only depends on the topology of the base B and are independent on the continuous

moduli of the compactification, in particular the Kähler moduli, as long as the supergravity

approximation is valid.

In chapter 2 of this dissertation, I constructed general F-theory compactifications with

U(1) × U(1) × U(1) abelian gauge symmetry. I showed that in the case with three U(1)

factors, the general elliptic fiber is a complete intersection of two quadrics in P3, and
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the general elliptic fiber in the fully resolved elliptic fibration is embedded as the generic

Calabi-Yau complete intersection into Bl3P3, the blow-up of P3 at three generic points.

This eventually leads to our analysis of representations of massless matter at codimension

two singularities of these compactifications. Interestingly, we obtained a tri-fundamental

representation which is unexpected from perturbative Type II compactifications, further

illustrating the power of F-theory.

In chapter 3 of this dissertation, I study abelian gauge symmetries in the duality

between F-theory and E8 × E8 heterotic string theory. We found that in general, there are

three ways in which U(1)-s can arise on the heterotic side: the case where the heterotic

theory admits vector bundles with S(U(1)×U(m)) structure group, the case where the

heterotic theory admits vector bundles with SU(m)×Zn structure group, as well as the case

where the heterotic theory admits vector bundles with structure groups having a centralizer

in E8 which contains a U(1) factor. Another important achievement was my discovery of

the non-commutativity of the semi-stable degeneration map which splits a K3 surface into

two half K3 surfaces, and the map to Weierstrass form, which was not previously known

in the literature.
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[39] M. Cvetič, D. Klevers, H. Piragua, and P. Song, Elliptic Fibrations with Rank Three

Mordell-Weil Group: F-theory with U(1) x U(1) x U(1) Gauge Symmetry,

arXiv:1310.0463.

[40] M. R. Douglas and W. Taylor, The Landscape of Intersecting Brane Models, JHEP

0701 (2007) 031, [hep-th/0606109].
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