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ABSTRACT

EXPLORING LINGUISTIC ASPECTS IN NLP APPLICATIONS

Qiuye Zhao

Mitchell P. Marcus

The key argument of this dissertation is that the success of an Natural

Language Processing (NLP) application depends on a proper representation

of the corresponding linguistic problem. This theme is raised in the context

that the recent progress made in our field is widely credited to the effec-

tive use of strong engineering techniques. However, the intriguing power

of highly lexicalized models shown in many NLP applications is not only

an achievement by the development in machine learning, but also impos-

sible without the extensive hand-annotated data resources made available,

which are originally built with very deep linguistic considerations. More

specifically, we explore three linguistic aspects in this dissertation: the dis-

tinction between closed-class vs. open-class words, long-tail distributions

in vocabulary study and determinism in language models. The first two as-

pects are studied in unsupervised tasks, unsupervised part-of-speech (POS)
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tagging and morphology learning, and the last one is studied in supervised

tasks, English POS tagging and Chinese word segmentation. Each linguis-

tic aspect under study manifests itself in a (different) way to help improve

performance or efficiency in some NLP application.
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Chapter 1

Introduction

The key argument of this dissertation is that the success of a Natural Language Process-

ing (NLP) application depends on a proper representation of the corresponding linguistic

problem. This theme is raised in the context that the recent progress made in our field

is widely credited to the effective use of strong engineering techniques. However, the in-

triguing power of highly lexicalized models shown in many NLP applications, is not only

an achievement by the development in machine learning, but also impossible without the

extensive hand-annotated data resources available. In the original work on building data

resources, e.g. (Marcus et al., 1993; Miltsakaki et al., 2004), deep concerns in linguistic

aspects are well addressed. Then the representations used in these data resources somehow

standardize the formulation of many NLP problems. Therefore, follow-up work is more

concentrated on the engineering aspects than the linguistic aspects of NLP problems.

Besides my own curiosity in language (and taking my engineering work as an approach

to explore linguistic phenomena), this dissertation is devoted to the study of several funda-
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mental linguistic aspects in NLP applications for at least two practical reasons:

1. Unsupervised learning. Acquiring linguistic structures from raw data with little or

minimal supervision should never be a less important task than its supervised coun-

terpart that takes sufficient training examples as granted. The study of unsupervised

learning is not only for a cognitive interest or because of under-resourced languages,

but also for complementing supervised learning. As in (semi-)supervised tasks, we

may use unsupervised learning techniques to acquire a different form of representa-

tion than provided or to make use of raw materials in addition to limited resources.

As shown by our study, when data resource is limited, the success of learning is more

sensitive to a proper linguistic understanding of the corresponding problem.

2. Efficiency. Even though a trade-off between accuracy and efficiency is commonly

accepted, we never sacrifice efficiency for accuracy, or vice versa! So as to achieve

this goal, for various tasks, we propose to decompose the problem in a linguistical-

ly sensible way, thus constraining the searching space but avoiding the pruning of

good hypotheses. This advantage in efficiency suggests that the application of strong

engineering techniques does not prevent us from getting a cognitive sense of the cor-

responding study of language. Moreover, our contribution to efficiency is based on

our study of fundamental linguistic constraints, thus is in addition to the traditional

techniques for seeding-up searching.

More specifically, we explore three linguistic aspects: the distinction between closed-

vs. open-class words, long-tail distributions in vocabulary study and determinism in lan-
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guage models. The first two aspects are studied in two unsupervised tasks respectively and

the last one is studied in supervised tasks.

Functional elements and unsupervised POS tagging.

Functional words are usually considered as closed-class words in the sense that they can

be enumerated in a short list. When there is no such a list provided, functional words are

usually approximated by the most frequent words. These two views are taken as granted in

our field without further consideration, since functional words do not play any particularly

interesting role in highly lexicalized models. From a syntactic point of view, functional

words occur more often at the edge of elementary linguistic structures, thus observed in

more diverse contexts due to the compositionality of language. We propose to distinguish

functional words by their distinctively high contextual diversity, and propose a bootstrap-

ping algorithm acquiring functional words from raw text only (Zhao and Marcus, 2011).

This bootstrapping algorithm can also be applied to morphology learning, thus able to ac-

quire functional elements in both free and bound morphemes.

Furthermore, we propose a feature-based analysis of part-of-speech (POS) tags, then

the tagging problem is not necessarily formulated as a sequence labeling problem. Instead,

we argue that, if we only concern with coarse lexical tags, except for one binary syntac-

tic feature that needs to be disambiguated during tagging, all other features of POS tags,

such as semantic and morphological features, can be settled by global learning processes

(as opposed to locally disambiguation). For example, semantic features can be set by POS

induction and morphological features can be set by morphology learning. The distinction

3



between closed- and open-class words is then crucial in practicing such a feature-based

view for unsupervised POS tagging. First of all, the decomposing story is only for lexical

categories, i.e. open-class words, in contrast, closed-class words are much more ad-hoc but

enumerable. Second, in a distributional clustering for POS induction, we only use func-

tional elements in the local context of a word to represent it in the feature space. Third, so

as to make a better use of unambiguous cases to establish disambiguation rules, the tagging

system is designed to learn and tag open-class words first and dealing with closed-class

words afterwards. Finally, the disambiguation rules for open-class words are conditioned

on closed-class words in their local contexts.

Without any lexicon input, the totally unsupervised POS tagging system tags 6 lexi-

cal categories with a rather promising performance, and with the input of a closed-class

lexicon, which contains only about 0.6% word types of the full lexicon, the proposed two-

stage unsupervised POS tagging system can achieve a tagging accuracy comparable to the

so-called unsupervised models that requires the input of full lexicons. Moreover, since we

first highlighted the distinction between closed- and open-class words in (Zhao and Mar-

cus, 2009), the idea of distinguishing closed-class words from other words has achieved

more and more attention in following works on unsupervised POS tagging by others, such

as (Graca et al., 2009; Teichert and Daume, 2010; Moon et al., 2010) etc.

Long-tail distribution.

The algorithm we propose for acquiring functional words can be generalized to acquire

either functional words or morphological endings in English, with different definitions of

4



’contexts’. This bootstrapping algorithm is motivated by Chan (2008)’s work on morpholo-

gy learning , which utilizes the long-tail patterns observed in word distribution as well as in

morphology. In previous study of vocabulary or morphology, such a long-tail distribution

is usually considered as power-law, also known as Zipf’s law (Zipf, 1949).

So as to deal with real text input, which reflects long-tail word distribution, we have

been open to rule-based methods, maximum likelihood methods and Bayesian methods.

And only the last proposed Bayesian model with log-normal assumptions handles token-

based input well (Zhao and Marcus, 2012b). Even though previously proposed Bayesian

models that generate power-law distributions can also transforming away word frequencies,

e.g. (Goldwater et al., 2006; Chahuneau et al., 2013), our proposed model is the first one

that actually takes advantage of word frequencies for a toke-based evaluation and performs

better with real text input than with type-based input. Since word distribution is conven-

tionally studied by power-law distributions, we devote a section to examine whether there

is any theoretical aspect favoring Zipf’s law over log-normal distributions in vocabulary

study, and discover none.

More specifically, for learning inflections on English verbs, we first try a rule-based ap-

proach, which utilizes the acquired morphological transformations by the proposed boot-

strapping algorithm. This rule-based approach learns from type-based input only, i.e. the

input of distinct word types. Then we try both the Expectation Maximization (EM) learn-

ing and Gibbs sampling for the estimation of our morphology models. When multinomial

distributions are assumed for the sake of simplicity in computation, both inferences suc-

ceed with type-based input only, but not handling real text input that reflects the long-tail

5



word distribution. Thus we propose to assume log-normal distributions for morpheme and

word frequency, and run Gibbs sampling for inference.

Deterministic constraints.

From an engineering point of view, searching the hypothesis space in a ’deterministic’ way

is no more than a special case of pruning. From a linguistic point of view, the syntactic

structures of language are deterministic in a sense of being universally hard-coded, and

nondeterminism of language only lies in the ambiguity of lexical items. In highly lexical-

ized statistical models, this understanding is hard to be implemented and in non-lexicalized

models, the stat-of-art performance is hard to be achieved. Therefore, our interest in the

determinism of language leads to a study of deterministic constraints.

More specifically, we propose to learn deterministic constraints by data-driven train-

ing and use them to constrain probabilistic inference. When the deterministic constraints

are learnt from the same representation as the probabilistic model, this idea appears non-

distinguishable with pruning. However, when the deterministic constraints are learnt from

a different representation of the problem, they may be used to constrain probabilistic infer-

ences that are not suitable for direct pruning.

Whether deterministic constraints can be learnt are very sensitive to the way they are

represented; and if the hypothesis space of one representation is hard to be pruned directly,

we need to explore other representations of the same problem for learning deterministic

constraints. For example, for the problem of Chinese word segmentation, we propose to

reconsider the word-based model, which draws much less attention than the character-
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based model in recent works. We propose an Integer Linear Problem (ILP) formulation for

the word-based model of the word segmentation problem, and constrain the inference of

valid segmentations by character-based constraints. This model (Zhao and Marcus, 2012a)

achieves the state-of-art performance for Chinese word segmentation, and by applying the

deterministic constraints, the ILP solver is speeded-up by 107 times. We have also applied

the same idea to supervised POS tagging (Zhao and Marcus, 2012a). Even for a searching

with beam-size 5, which is already much faster than a full searching, the overall tagging

can still be speeded-up by another 10 times, by applying the deterministic constraints.

We are going to explore the distinction between closed- and open-class words for the

unsupervised POS tagging problem in Chapter 2, explore long-tail distributions for mor-

phology learning in Chapter 3, and explore deterministic constraints in Chapter 4 on En-

glish POS tagging and Chinese word segmentation.
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Chapter 2

Functional elements & Unsupervised

POS tagging

2.1 Introduction

In this chapter 1 , we are going to describe a bootstrapping algorithm acquiring functional

elements from raw text input only. There are two forms of functional elements considered:

• closed-class words (vs. open-class words), and

• morphological transformations, e.g. inflectional endings in English.

We are not aware of any previous work exploring the acquisition of closed-class words;

instead, closed-class words are usually considered as the most frequent words in text. In

1This chapter extends (Zhao and Marcus, 2011), which are re-organized to Section 2.4,2.5 and 2.8, and

(Zhao and Marcus, 2009), which is basically Section 2.7.
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this work, we show that, as compared to the most frequent words, the set of words acquired

by our proposed algorithm makes much more sense as closed-class words. More important,

the acquired set of words can serve as input to more advanced acquisition tasks, and this

idea is shown to work with our experiments on unsupervised POS tagging. We propose

to build an unsupervised POS tagging system based on the distinction between closed- vs.

open-class words. With the experiments on this unsupervised system, we show that

1. given a minimized dictionary containing closed-class words only, we can

build a POS tagging system comparable to the state-of-art unsupervised taggers

that require the input of a full dictionary;

2. and when pipelined with the acquisition of functional elements, we can build

a totally unsupervised system that achieves a POS tagging accuracy above 85%

for open-class words, requiring no other input than raw text.

Note that, for historical reasons, when we talk about ’unsupervised’ POS tagging, the use

of word ’unsupervised’ emphasizes the lack of token-based annotation data in the contrast

to supervised learning. Thus, in earlier literature on unsupervised POS tagging, e.g. (Smith

and Eisner, 2005) and (Goldwater and Griffiths, 2007), a dictionary containing possible

POS tags for each word is usually assumed to be provided. However, if the available

resource is limited to raw text only, we consider the learning as ’totally unsupervised’ in

our context. Totally unsupervised POS tagging attracts more and more attention recently,

e.g. (Abend et al., 2010), (Reichart et al., 2010), (Moon et al., 2010) etc.
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The acquisition of morphological transformations is better known as morphological

learning. There is a wealth of literature on it, e.g. (Chan, 2008), (Lignos, 2010) etc.,

however, we are the first to consider the homogeneous relationship between morpholog-

ical learning and the acquisition of closed-class words. When instantiated with a proper

definition of ’contextual diversity’, the proposed algorithm is able to acquire closed-class

words or morphological transformations correspondingly, thus exhibiting the relationship

between the free and bound forms of functional elements. The acquisition output of mor-

phological transformations may also be used in experiments on unsupervised POS tagging.

First, we give a rough overview on the distinction between closed- and open-class words

in Section 2.3. In Section 2.4, we propose a bootstrapping algorithm acquiring closed-

class words from raw text only. In Section 2.5, we show how the proposed bootstrapping

algorithm is applied to morphological learning. In Section 2.7, we propose an unsupervised

POS tagging system based on the distinction between closed- vs. open-class words. Finally,

in Section 2.8, we integrate the acquisition of functional elements and unsupervised POS

tagging, delivering a totally unsupervised POS tagging system that requires raw text only.

2.2 Related work

Acquisition of the closed-class lexicon is not a widely-studied research topic, since the dis-

tinction between closed- and open-class words is not that interesting in lexicalized models,

which are the mainstream models for supervised learning. However, we argue that this

categorical distinction deserves attention in unsupervised learning systems, and propose
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a state-of-art unsupervised POS tagging system to support our argument. We immediate-

ly have followers that incorporate this distinction in their models for unsupervised POS

tagging. For example, two distributional properties of closed-class words are captured by

Crouching Dirichlet, Hidden Markov Model (CDHMM) in (Moon et al., 2010): higher

variance across contexts (e.g. documents) and more peaked emission properties. A state

alphabet, which is mapped to POS tags later for evaluation, is a union of disjoint content

(open-class) states and function (closed-class) states, and in such a composite model, the

priors for the emission and transition at each step depend on the category of the generated

state. Similarly, in (Teichert and Daume, 2010), the generative process is also modified

to incorporate a binary variable for openness, and if a word is sampled from the closed-

class, the smoothing parameter is smaller. In these works, the binary categorical distinction

is estimated as part of the generative model, thus there is no need for building a closed-

class lexicon. Our experiments on acquisition of the closed-class lexicon was compared to

the token-based evaluated result in (Graça, 2011), which uses this task for exploring their

learning framework on mapping annotations of other languages to the target language.

Furthermore, we propose to evaluate acquired closed-class lexicons in the task of unsu-

pervised POS tagging. Our unsupervised POS tagging system consists of two parts: POS

induction on lexical categories and the learning of a POS disambiguation model without

labeled data. There are quite a few previous works on the learning of POS disambiguation

models from unlabeled data, but taking a complete or partial dictionary as input. The state-

of-art performance in this line of work is achieved by Ravi and Knight (2009), which con-

strains the EM learning of a HMM-based tag model with the smallest grammar acquired by
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solving an Integer Programming (IP) problem whose objective function is explicitly coded

to minimize the grammar size. There are also other efforts on using the EM algorithm for

training HMM-based tag models when labeled data are not available, for example, Gold-

berg et al. (2008) intervene with expert knowledge to set up good initial conditions for EM

learning, Bayesian framework is also very popular in use so that high-level beliefs about the

tag model can be incorporated. For example, in (Goldwater and Griffiths, 2007; Toutano-

va and Johnson, 2008) Dirichlet priors favoring sparse multinomial distributions are used.

Except for the generative tagging models, Smith and Eisner (2005) proposes contrastive

estimation for training discriminative tagging models from unlabeled data.

A well-known limitation of above systems is that their learning heavily relies on the

input of a dictionary specifying possible tags for each word. When the input dictionary is

complete, the unsupervised system proposed in (Ravi and Knight, 2009) even achieves a

tagging accuracy comparable to supervised models. However, when the input dictionary is

reduced to contain words with a count above a given threshold, tagging performance goes

quickly down as the size of the dictionary goes down. Toutanova and Johnson (2008) dealt

with incomplete dictionary input by explicitly include a variable of ambiguity class in their

generative model and achieved the best performance with incomplete dictionary before us

(Zhao and Marcus, 2009). We propose to reduce the input of a dictionary as minimized as

a closed-class lexicon containing less than 300 hundred words, and outperforms the best

can be achieved with a partial dictionary of more than 2000 words in previous work.

Other than complete or partial dictionaries, other kinds of information are also consid-

ered in unsupervised POS tagging. For example, Haghighi and Klein (2006) provide seed
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words for each gold POS tag in their prototype-driven learning; and Garrette and Baldridge

(2013) constrain the learning by annotations produced in a rush. Moreover, Reichart et al.

(2010) add a Zipfian constraint to the class n-gram model described in (Clark, 2003), and

we also pay special attention to Zipf’s law in word distribution and will discuss it for mor-

phology learning in Chapter 3.

Finally, we plug the acquired closed-class lexicons into our unsupervised POS tag-

ging system and obtain a ’totally’ unsupervised tagging system that requires no input of

dictionary but raw text data only. The so-called ’totally’ unsupervised tagging task is also

explored as the problem of POS induction. We also have a POS induction model in our sys-

tem for building a open-class dictionary, before the learning of POS disambiguation rules.

Following a classic work (Schütze, 1993), we simply employ a basic k-means method for

clustering lexical categories, since our distributional representation of words is rather com-

pact. Distributional clustering is recently re-considered in (Lamar et al., 2010) and achieves

the state-of-art totally unsupervised tagging performance with a one-to-one mapping from

induced clusters to gold POS tags. Unlike our representation of words (to be clustered) that

depend on distributional statistics of each word only, Lamar et al. (2010) propose latent

descriptors of words that also depend on clustering assignment. HMM-based tag models

with Bayesian inference are also very popular in this line of work. Besides aforementioned

works (Teichert and Daume, 2010; Moon et al., 2010; Toutanova and Johnson, 2008; Gold-

water and Griffiths, 2007), Blunsom and Cohn (2011) proposes Pitman-Yor processes for

smoothing priors and achieves the state-of-art totally unsupervised tagging performance

with many-to-one mapping from induced states to gold POS tags. Sparsity can also be
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achieved by posterior regularization as shown in (Graca et al., 2009).

As one may have noticed, it is very confusing to compare works on POS induction

and works titled as unsupervised POS tagging. The confusion is caused by the use of

tagging-based evaluation measures in literature. As we have mentioned, we can map in-

duced clusters/states to gold POS tags and evaluate the tagged sequences created by the

cluster identifiers. There are two mapping strategies popular in use, many-to-one that al-

lows more than one clusters mapped to the same gold tag and one-to-one that allows at

most one cluster mapped to each tag. So as to map each induced cluster to the gold tag

that is preferred by most of its words, the mappings are actually taking advantage of more

information than these unsupervised systems claimed, and that is why we propose to in-

duce clusters corresponding to disjoint lexical categories only. Since most previous work

on POS induction use finer tags than we do here, we may appear to be reporting on a sim-

pler task. However, it has proven difficult for these systems to use further agglomerative

processing to induce simple distinct syntactic categories which map to POS tags naturally

(Christodoulopoulos et al., 2010). Therefore, achieving high accuracy with a smaller tag

set is the harder, not easier, task for those systems. On the other hand mapping our output

of 6 main lexical categories to an artificial POS tagset requires detailed and ad-hoc supervi-

sion beyond what we consider ’natural’ assumptions. We leave it to future work to explore

which form of output is favorable by more advanced unsupervised tasks.
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2.3 Closed-class vs. open-class words

Closed-class words are named so because languages rarely add new items to this vocab-

ulary. They are considered as the bound forms of functional elements, because closed-

class words serve to structure a sentence syntactically. In the contrast to open-class words,

closed-class words do not have referential meanings that refer to objects or notions. Instead,

closed-class words carry grammatical functions and hold the content words together. For

English, we consider words of four lexical categories as open-class words: nouns, verbs,

adjectives and adverbs. All other categories of words are considered as closed-class words,

such as determiners, prepositions, pronouns, conjunctions, auxiliary verbs, and particles.

Besides the closed nature and grammatical roles, closed-class words also have some

special phonological characteristics. For example, in English, a lexical word cannot consist

of a light syllable alone, but there are closed-class words that do not obey this minimal

word constraint, e.g. I, the, a, etc... This economical representation may correlate with the

fact that these closed-class words are highly frequently used in all occurrences, and a few

types of closed-class words account for a large portion of the word count. For example,

with the help of the gold annotation of Part-of-speech tags, we collected 288 closed-class

words from the WSJ Penn Treebank. This set is rather small compared to the open-class set

containing more than 40000 words; but it accounts for about one-third of the word count

in the WSJ corpus. Observing the closed nature and the distinctively high token/type ratio

of closed-class words, we propose to consider a set of closed-class words as a minimally

required input to unsupervised learning tasks, and explore this idea with experiments on
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unsupervised POS Tagging in Section 2.7.

We are not the first interested in making use of the distinction between closed- and

open-class words for NLP tasks. For example, it is argued that closed-class words ”carry

an array of psychological meanings and set the tone for social interactions” (Chung and

Pennebaker, 2007); therefore, closed-class word frequencies are often used as features in

authorship attribution. In code-switching models, it is proposed to put special constraints

on the switchability of closed-class items, observing that a bilingual speaker may switch

her language for open-class words but not for closed-class words (Joshi, 1982). Moreover,

for information retrieval, closed-class words are usually contained in a list of ”stop words”,

so that to be excluded as index terms in the semantic representation of documents.

Perhaps, since the stop-word list can also be built with high-frequency words (Luhn,

1958), high-frequency words are considered as a convenient approximation of closed-class

words in NLP applications. However, as we are going to see in Section 2.4 and Section 2.8,

for language acquisition tasks, this approximation doesn’t lead to the best result. On the

other hand, we also have theoretical reasons to distinguish the concept of closed-class word-

s from the observation of high frequency. There is an extensive cognitive literature on the

distinction between closed- and open-class words. Their experimental methods include the

traditional behavioral study (Bradley, 1978; Gordon and Caramazza, 1982; Biassou et al.,

1997), as well as high-tech ways to measure brain responses such as event-related poten-

tials (ERP) (Friederici et al., 1993; Neville et al., 1992), functional magnetic resonance

imaging (fMRI) (Friederici et al., 2003) and magnetoencephalography(MEG) (Wang et al.,

2008). Both normal subjects and aphasics are studied, and especially, it is the interesting
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data on Broca’s aphasia that invoke the original study of this topic (Friederici and Schoen-

le, 1980; Bates and Wulfeck, 1989). It receives so broadly research interests in cognitive

science, because this categorical distinction between closed- and open-class words raises

issues that are independent of those raised by word frequency effects. Word frequency may

be the most studied factor in lexical access and production, however, the aforementioned

studies show that word frequency effect does not explain the whole story without consid-

ering the distinction between closed- and open-class words. Similar interests can also be

found in the study of child language acquisition. Regardless of the high-frequency uses of

closed-class words in mother language, the child doesn’t use closed-class words until they

master a base vocabulary of hundreds of nouns and verbs (Goodman et al., 2008).

As discussed above, the distinction between closed- and open-class words is of both

theoretical and practical interests. Thus, it is to our surprise that we are not aware any

previous work that take the acquisition of closed-class words as a serious problem. In the

next section, we are going to describe a bootstrapping algorithm acquiring closed-class

words from raw text only, and in later sections, we will show that this result can be used in

further acquisition tasks.

2.4 The acquisition of closed-class words

In this section, we are going to acquire a set of words that distinguish themselves by the

diverse types of contexts they can occur in. Inclined to occur in highly diverse contexts

is a well-known distributional property of functional elements. For example, determiner
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’the’ in English may be followed by almost any noun or adjective in text, and inflectional

ending ’-ed’ can be concatenated to most verbs to derive past forms. In contrast, content

words tent to occur in much more limited contexts. For example, noun ’Fannie’ occurs

52 times in the WSJ corpus but only in one proper noun phrase ”Fannie Mae”. It is not

a surprise to see closed-class words occur in more diverse contexts, since they provide

structural bones to compose expressions. For example, verb ’compared’ is almost always

followed by prepositions ’to’ or ’with’, but the prepositions themselves may be followed

by various word types.

2.4.1 The measurement of contextual diversity

We have argued that, as compared to high frequency, high contextual diversity is the prop-

erty that distinguishes closed-class words better. On the other hand, we have implicitly

considered the types of words that ever follow a word w in text as the contextual diver-

sity of the word w. According to this measurement, as measured in the WSJ corpus, the

contextual diversity of ’Fannie’ is 1 and the contextual diversity of ’compared’ is 2. More

formally, given a corpus C of sequences of tokens, for each word type w, we compute its

type-based contextual diversity according to the following words as follows:

typeCfollowing(w,C) =
∑
w′∈C

# occur. of w′ following w > 0

i.e. with function typeCfollowing, we count all the word types that are ever seen following a

given word type. Even if we only consider contextual relationships between two adjacent

words, there is still another alternative to measure the type-based contextual diversity of a
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word: we can also count the types of words that are ever seen preceding a word, i.e.

typeCpreceding(w,C) =
∑
w′∈C

# occur. of w′ preceding w > 0.

Similarly, for each word type w, if we consider its following words as contexts, we can

compute its frequency as follows:

tokenCfollowing(w,C) =
∑
w′∈C

# occur. of w′ following w.

When we consider the preceding word as a word’s context in sequence, word frequency

can also be computed as

tokenCpreceding(w,C) =
∑
w′∈C

# occur. of w′ preceding w .

We now have four kinds of diversity measurements, by which we can rank the word

types and distinguish the top words from others. Note that when there is no constraints

imposed on which words are justified as proper contexts in computation, measurement

tokenCfollowing(w,C) equals tokenCpreceding(w,C), both of which computes word fre-

quency tokenC(w,C). Thus, in Table 2.1, we present three lists of words: the first column

contains the top 100 most frequent words in the WSJ corpus, i.e. ranked by tokenC(w,C);

the second column contains the top 100 words ranked by typeCfollowing(w,C); and the third

one contains the top 100 words ranked by typeCpreceding(w,C). As shown in Table 2.1, the

top 10 words of all three lists are heavily used closed-class words (and interestingly, the

top 8 words of each list constitute a permutation of each other). Going down to the bottoms

of these lists, more and more words fall in the open-class category, but the second colum-

n, ranked by typeCfollowing(w,C), seems contain more closed-class words. If we assume
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Table 2.1: Top 100 words in the WSJ corpus ranked by different diversity measurements

(open-class words are printed in bold).
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theses lists as closed-class words, for all three columns, commonly used nouns constitute

the majority of errors. Fairly speaking, it is not convincing to take any list in Table 2.1

as a closed-class lexicon, therefore, we need a better mechanism to acquire closed-class

words other than by ranking only. In the next section, we are going to show that, we need

to measure contextual diversities according to proper contexts only, and in Section 2.4.3,

we are going to show how these ideas are manifested in a bootstrapping algorithm.

2.4.2 The proper contexts

It is proposed in (Chan, 2008) that morphological transformations should be discovered

with respect to ’base forms’, i.e. regarding properly justified word stems only. In this

work, we generalize this idea to measure contextual diversities of closed-class words as

well. More specifically, we would like to acquire a set of ’justified’ contexts, and compute

contextual diversities of the words to be classified according to the justified contexts only.

We consider a word as a proper context for the words to be classified, only if it has ever been

seen as context of more than one (already recognized) closed-class words. For example,

suppose that we consider the following word as a word’s context. Assume that we have

already acquired words the and a as closed-class words, then only the set of words that

have ever been seen following both of them should be considered as justified contexts while

measuring contextual diversities of other word types to be classified. More formally, given

a set of justified contexts B, as well as a corpus C, we re-write the four types of diversity
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measurements as follows:

typeCfollowing/preceding(w,B) =
∑
w′∈B

# occur. of w′ following/preceding w > 0;

tokenCfollowing/preceding(w,B) =
∑
w′∈B

# occur. of w′ following/preceding w .

When the set of justified context words does not contain all the word types in corpus,

measurement tokenCfollowing(w,B) no longer equals tokenCpreceding(w,B).

Given a diversity measurement function div for ranking closed-class words, we can

use the symmetric type-based measurement div′ to compute set B that contains justified

contexts. When the measurement function div = tokenCfollowing or typeCfollowing, the

justified contexts contain words that have ever been seen following more than one words in

the acquired output, i.e. the symmetric measurement function for context words is div′ =

typeCpreceding. When the measurement function div = tokenCpreceding or typeCpreceding,

the justified contexts contain words that have ever been seen preceding more than one

words in the acquired output, i.e. the symmetric measurement function for context words

is div′ = typeCfollowing. More formally, given a set of acquired words F, and a type-based

measurement function div′, the set of justified contexts B consists of those elements that

has a type-based diversity greater than one, i.e.

B = {w|div′(w) > 1}.

To make a coherent reference to the two kinds of contextual directionality, we intro-

duce some notations here. If an in-context relationship holds between two adjacent words

(wi, wi+1), then there is a as-context relationship holds between (wi+1, wi). Symmetrically,

22



if an in-context relationship holds between two adjacent words (wi+1, wi), then there is a as-

context relationship holds between (wi, wi+1). In other words, if the following word is con-

sidered as-context of the preceding word, then the preceding word is considered in-context

of the following word. Symmetrically, if the preceding word is considered as-context of the

following word, then the following word is considered in-context of the preceding word.

Given these notations, we rank the words by measurement token/typeCin-context to distin-

guish closed-class words, and correspondingly compute the set of justified contexts by

measurement typeCas-context. Therefore, we can view the set of acquired output F and the

set of justified contexts B as two complementary sets, both of which justify proper contexts

for each other. So as to iteratively generate these two complementary sets, we propose a

bootstrapping algorithm as described in the next section.

2.4.3 The bootstrapping algorithm

The proposed bootstrapping algorithm in Algorithm 1 generates two complementary

sets during the bootstrapping process, both of which justify proper contexts for each other

to compute contextual diversity . As the two complementary sets updated during the boot-

strapping process, the diversity measurements of the items in the other set are expected to

be more and more accurate. Inputs to this algorithm are a dataset of words S and a pair of

diversity measurements as defined in the above section. For each word in the input dataset,

the number of its occurrences following/preceding other words are also provided.

Based on the idea that closed-class words can be distinguished by higher contextual
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Algorithm 1 The bootstrapping algorithm for acquiring functional elements
Require: a data set S to be classified

Require: a pair of diversity measurement functions div and div′

initialize set F and set R to be empty and initialize set B to be S

for k iterations do

let F be the top k most diverse elements with respect to div(e,B), for e in S− R

let B be those elements with a diversity greater than one, i.e. div′(e,F) > 1, for e in S

let R be those elements too often as/in-context of any element in F

end for

return F and B

diversity, we explicitly let a set F contain the most diverse elements ranked by the chosen

measurement with respect to its complementary set B. More specifically, at the k + 1

iteration, we recompute the acquired set Fk+1 of the top k + 1 words according to the set

of justified contexts Bk. And the set of justified contexts Bk is computed according to the

acquired output Fk from the k iteration, which contains top k most diverse words. Since

the ranking order of words varies over iterations, with respect to the update of justified

contexts, a word that is acquired into F at some iteration is not guaranteed to be acquired

into F in the following iterations. In addition, since we are generating two complementary

sets by this bootstrapping algorithm, we do not want these two sets overlap too much. In

other words, if a word is often seen as-context of already acquired closed-class words, it

should not be considered as acquired output in the following iteration. Symmetrically, we

also filter out those words that are too often seen in-context of already acquired closed-class
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words. More specifically, we maintain a set R containing elements to be excluded from the

acquired closed-class set. After the update of F at each iteration, we update the filtering

set R with those words r that are too often seen in/as-context of acquired words in F, i.e.

given a threshold number THR, tokenCin/as-context(r,F)/tokenC(r) > THR.

Since it is very common to see two closed-class words in adjacency, it seems no harm

to let two words in the acquired output form in-context relationships. By imposing the con-

straint that no two acquired words form in-context relationships we are actually acquiring

’first-order’ closed-class words such as determiners and auxiliary verbs. In a morpholog-

ically poor language such as English, it is the first-order closed-class words that bare the

syntactic roles that may also be reflected with morphological transformations. And in a

language observing no morphology, such as Chinese, it is the first-order closed-class word-

s that are also put silent. Even though the linguistic idea behind the filtering step is too

vague to be clearly presented, this step is finally kept in the proposed algorithm due to the

improvement of performance it introduces to our experiments.

We also need to decide when the bootstrapping stops. Theoretically, we would like

to stop the bootstrapping process when the last word wk of the acquired list doesn’t show

in diverse enough contexts, i.e. given a measurement div and a threshold d, the boot-

strapping stops when div(wk) < d. In practice, for the sake of comparison, we simply

let the bootstrapping stops after 25 iterations. As shown in Table 2.2, by all four types

of diversity measurements, most of the acquired output fall in the closed-class category.

However, only with the type-based measurement regarding the following word as context,

i.e. typeCfollowing, the acquisition output are actually ’first-order’ closed-class words, i.e.
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determiners, possessive pronouns and modal verbs in English.

2.5 The acquisition of morphological transformations

In this section, we are going to apply Algorithm 1 to acquire morphological transformation-

s, especially morphological stems and suffixes for English, thus the proposed bootstrapping

algorithm is applied to acquire both free and bound forms of functional elements. We are

aware of the bulk of literature on morphological learning and in this section, we merely

focus on the application of a general bootstrapping algorithm to this classic problem. In

Chapter 3, we will dig this problem further and make more comments on the literature.

The first key idea behind the proposed algorithm is that functional elements, including

morphological transformations and closed-class words, tend to occur in more diverse con-

texts than other elements. As in the case of morphology learning, we expect to see that

morphological endings can be combined with various types of stems to form legal words,

but arbitrary suffixes can be found in few word types only. For example, an inflectional

ending ’-ed’ can be concatenated to most verb stems to derive past tense forms, compared

to which a non-sense suffix ’-roached’ can only be seen in few particular word types.

Second, we still have options to choose between token-based or type-based diversity

measurements, but contextual directionality doesn’t bother any more. For any division of

a legal word, the stem is considered as-context of the suffix and the suffix is considered

in-context of the stem. Similar with the acquisition of closed-class words, the baseline

model is not very sensitive to the choice of token-based or type-based measurements. For
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diversity acquistion output

tokenCfollowing

the[48759] , a[18889] , it[5641] , he[3842] , its[3519]

an[3080] , this[2603] , they[2540] , their[1737] , who[1705]

his[1691] , some[1614] , we[1246] , i[1134] , there[955]

no[869] , any[858] , york[812] , you[732] , these[601]

she[559] , according[497] , several[437] , our[406] , another[402]

tokenCpreceding

the[43826] , a[18596] , it[4715] , its[4071] , an[2967]

this[2002] , they[1850] , their[1849] , his[1755] , he[1657]

some[1266] , york[1118] , any[857] , no[710] , we[676]

there[622] , you[571] , those[560] , i[470] , these[433]

officer[394] , another[377] , several[375] , our[350] , due[326]

typeCfollowing

the[3143] , a[1989] , its[1188] , their[792] , his[706]

some[575] , will[470] , an[444] , any[430] , would[401]

can[299] , could[298] , these[282] , those[278] , our[275]

another[269] , may[225] , her[223] , several[185] , york[181]

my[155] , might[136] , each[133] , whose[133] , your[129]

typeCpreceding

in[2679] , to[2452] , of[1955] , for[1806] , on[1382]

by[1213] , from[1088] , with[1058] , would[678] , could[451]

after[405] , into[399] , can[395] , under[315] , before[299]

during[286] , since[272] , against[234] , says[189] , might[185]

without[180] , among[149] , wo[125]

Table 2.2: Acquisition output of the bootstrapping algorithm over the WSJ corpus. Those

acquired words that are not considered as first-order closed-class words are printed bold.

Contextual diversities of each acquired item at the final iteration are given in [].
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example, the top three most frequent suffixes in the WSJ corpus are ’-s’, ’-d’ and ’-e’, and

the top three suffixes that occur in most word types happen to be ’-s’, ’-d’ and ’-e’ as well.

The last key idea behind the bootstrapping algorithm is even more crucial for morphol-

ogy learning: contextual diversity should be measured according to justified stems only.

During the acquisition process, the most simple way of justifying a stems as a proper con-

text is to check whether it forms legal words with more than one of the acquired suffixes.

For example, when suffixes -ed and -s have been acquired as morphological suffixes, stem

lie- should not be justified as a proper context yet, given that it can only form legal words

with a single suffix -s; but stem laugh- can be considered as a proper context, since it can

form legal words with more than one acquired suffixes. When suffix -d is also acquired as a

morphological suffix during the bootstrapping process, stem lie- can then be justified. This

idea of measuring contextual diversity regarding proper contexts only relates to the use of

’base form’ for morphology learning in (Chan, 2008), but in a more abstract way.

More formally, given a set of justified stems B and a corpus C , we measure the type-

based contextual diversity of a suffix f as

typeC(f,B) =
∑
t∈B

1C(t.f),

where 1C(t.f) is set to 1 if t.f forms any legal word in C, otherwise 0. For example, if we

are given a set of justified stems, including ’laugh-’ but not ’b-’, the diversity measurement

of ’-ing’ will increase by one given the existence of word ’laughing’ but not by the existence
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of word ’bing’. Similarly, the token-based contextual diversity can be computed as follows:

tokenC(f,B) =
∑
w∈C

1B(w = (t.f)),

where 1B(w = (t.f)) is set to 1 if w = (t.f) for any stem t in B, otherwise 0. We also need

to update the set of justified stemsB at each bootstrapping iteration. Given a set of acquired

suffixes F , we measure the contextual diversity for a stem t as typeC(t,F) =
∑
f∈F

1(t.f).

As the same with the acquisition of closed-class words, when typeC(t,F) > 1, t can be

justified as a proper context.

Recall that, for the acquisition of closed-class words, set B is initialized as the whole

word set at the beginning of bootstrapping, which is also the fixed set of contexts for the

baseline models. For morphology learning, we try two different sets for initialization: set

B1 that contains all possible suffixes and set B2 that contains legal words as proper stems

only. As shown in Table 2.3, bootstrapping with measurement typeC is also the best model

for morphological learning, and this model performs stably with different initializations.

2.6 Experiments on acquiring a closed-class lexicon

Our proposed bootstrapping algorithm is applied to acquire the first-order closed-class

words in Section 2.4, and applied to acquire morphological endings in Section 2.5. Sup-

pose that we acquire the first-order closed-class words with diversity measurement function

div. Both morphological and word-based acquisition outputs can be put together to build a

closed-class lexicon in the following way:
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alg. div. init. output at the 10th iteration

baseline

tokenC
B1 ’-e’, ’-s’, ’-t’, ’-d’, ’-n’, ’-he’, ’-r’, ’-y’, ’-o’, ’-ed’

B2 ’-s’, ’-d’, ’-n’, ’-nd’, ’-t’, ’-ed’, ’-e’, ’-ing’, ’-y’, ’-.’

typeC
B1 ’-s’, ’-e’, ’-d’, ’-ed’, ’-g’, ’-n’, ’-ng’, ’-y’, ’-ing’, ’-t’

B2 ’-s’, ’-ing’, ’-ed’, ’-d’, ’-ly’, ’-er’, ’-5’, ’-0’, ’-y’, ’-e’

bootstrap

tokenC
B1 ’-e’, ’-ed’, ’-s’, ’-f ’, ’-ing’, ’-es’, ’-r’, ’-ion’, ’-or’, ’-at’

B2 ’-s’, ’-n’, ’-t’, ’-f ’, ’-nd’, ’-r’, ’-re’, ’-ll’, ’-’’, ’-d’

typeC
B1 ’-ed’, ’-ing’, ’-e’, ’-es’, ’-s’, ’-er’, ’-ers’, ’-ion’, ’-ions’, ’-y’

B2 ’-ed’, ’-ing’, ’-e’, ’-es’, ’-s’, ’-er’, ’-ers’, ’-ion’, ’-ions’, ’-y’

Table 2.3: The acquisition outputs over WSJ corpus. Set B1 contains all possible suffixes

and B2 contains legal words as proper stems only.

rank all the word types by div, and from the word with highest diversity, go

through this list until we get enough words for the lexicon:

• if a word is acquired as first-order closed-class, thrown to the lexicon ;

• if a word contains an acquired morphological ending (with the corre-

sponding stem of a reasonable length), then excluded from the lexicon;

• if a word occurs too often as-context of acquired first-order closed-class

words, then excluded from the lexicon;
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• otherwise, add the current word to the lexicon.

In the following experiments, we varies the acquisition model for closed-class words, but

stick to the morphological model that produces the best result as shown in Table 2.3, i.e.

the one with type-based diversity measurement.

So as to evaluate the acquired lexicons, we collected a gold closed-class lexicon from

the WSJ corpus with the help of POS annotations. The gold lexicon contains 288 words

whose primary POS category is closed-class. More specifically, we consider 6 open-class

categories and each of them covers a set of Penn Treebank POS tags considered as open-

class, and all other tags are considered as falling in the closed-class category.

• Nouns: (’NN’, ’JJ’,’JJS’,’JJR’,’NNS’,’NNP’,’NNPS’,’FW’,’LS’,’SYM’, ’UH’);

• Verbs: (’VB’, ’VBD’,’VBP’,’VBZ’);

• Present participle: (’VBG’,);

• Past participle: (’VBN’,);

• Adverbs:(’RB’ ’WRB’,’RBR’,’RBS’);

• Numbers: (’CD’, ).

Given the gold lexicon containing 288 words, we can now compute fscore for each ac-

quired lexicon. Let goodc be the count of the overlap words of the acquisition output and

the gold lexicon, let errc be the count of words in the acquisition output that are not in the

gold lexicon, and let missc be the count of words that are in the gold lexicon but not in the

acquisition output. Then we compute fscore as follows:
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prec =
goldc

errc+ goldc
recall =

goldc

missc+ goldc
fscore =

2 ∗ prec ∗ recall
prec+ recall

Figure 2.1: The fscore of each acquired lexicon with respect to different lexicon sizes.

In Figure 2.1, we plot fscore with respect to lexicon sizes. As discussed above, we fix

the morphological model to build the closed-class lexicon but vary the acquisition model

for first-order closed-class words. The lines in Figure 2.1 thus correspond to the first-order

acquisition output in Table 2.2. For the baseline models, type-based diversity measure-

ments introduces slightly fewer errors in output. However, the bootstrap algorithm is much

more sensitive to the choice of diversity measurement. With this experiment, we can draw a
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algorithm measurement token-based acc.

baseline

tokenC 87.01%

typeC 88.83%

bootstrap

tokenC 92.37%

typeC 90.74%

(Graça 2011) 92%

Table 2.4: Token-based evaluation of the close- vs. open- class distinction.

preliminary conclusion that our proposed bootstrapping algorithm generates better outputs

than the baseline model when the choice of diversity measurement is proper.

We report a type-based evaluation in Figure 2.1, and in Table 2.4, we evaluate the acqui-

sition outputs with token-based accuracy. With a token-based evaluation, word frequencies

are weighted in and predictions on frequent words affects results more. More specifically,

to perform a token-based evaluation, we consider a tagging problem with a tagset of two

tags: closed- vs. open-class. The gold POS annotations of the WSJ corpus are transformed

to binary tags according to our classification on the POS tags described above. Tagging

predictions are made by looking up the acquired closed-class lexicon: if a word is in the

closed-class lexicon, the closed-class tag is assigned to each of its occurrences; otherwise,

an open-class tag is assigned. The tagging accuracy is then computed as percentage of

correct predictions out of all words, as usual. In Table 2.4, we stick to the context of a

word as its following word, since as shown in Figure 2.1, models that assume the context

33



of a word as its preceding word perform the worst. Then both the bootstrapping algorithm

and the baseline counting varies their diversity measurement functions, either type-based or

token-based. It is worth special attention that, even though with the type-based evaluation

(Figure 2.1), the bootstrapping model with a type-based diversity measurement performs

the best, with a token-based evaluation, it is the bootstrapping model with a token-based

diversity measurement that performs the best. Therefore, it is important to try different

evaluation criteria, since different aspects of alternative models may be better revealed in

different experiments. The results of our models are compared to the token-based accuracy

reported in (Graça, 2011), which acquires close- vs. open- class distinction in one language

from annotated corpora of other language. Our bootstrapping model requires much less re-

source, but achieves the same level of performance. In section 2.8, we are going to plug the

acquired lexicons into a two-stage POS tagging system (Section 2.7) and obtain a totally

unsupervised tagging model achieving very promising performance.

2.7 Functional elements and POS tagging

In this section, we propose a new model for unsupervised POS tagging based on the lin-

guistic distinction between open- and closed-class items. In a supervised POS tagging task,

a tagger is trained on labeled sequences; however, in an unsupervised POS tagging task,

there is no gold predictions to learn from.

As in the context of this work (Zhao and Marcus, 2009), it is a common assumption for

an unsupervised POS tagging system to take a dictionary or a partial dictionary as given,
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which specifies possible tags for all or some of the word types. In previous work such as

(Smith and Eisner, 2005) and (Goldwater and Griffiths, 2007), the tagging performance al-

ways goes down very quickly as the size of the given dictionary goes down. Therefore, one

of our contributions by this work is reducing the requirement of large input dictionaries by

unsupervised taggers, which require either expertise or annotated copora to build. Provided

with only a closed-class lexicon of 288 words, about 0.6% of a full lexicon, our tagging sys-

tem first acquires a large open-class lexicon and then acquires disambiguation rules for both

closed- and open-class words, achieving a tagging accuracy of 90.6% for a 24k dataset, not

far from the state-of-art performance (93.4%) achieved with a full dictionary (Toutanova

and Johnson, 2008).

2.7.1 A feature-based analysis of POS tags

All recent research on unsupervised tagging, as well as the majority of work on supervised

taggers, views POS tagging as a sequence labeling problem and treats all POS tags as equiv-

alently meaningless labels. However, the engineering concept of POS tags actually derives

from the linguistic notion of syntactic category which specifies the combinatorial proper-

ties of a word in an underlying (syntactic) structure. For example, When an occurrence of

word composed is tagged by ’VBD’ (past tense), we know that it can take arguments as a

verb in this context; however, if another occurrence of the same word is tagged by ’VBN’

(past participle), we know that it functions as adjectives in this context.

With either tag ’VBN’ or ’VBD’, a word is labeled as semantically verbal, thus the
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lexical information of the word itself doesn’t suffice to disambiguate these two tags. The

feature that distinguishes between ’VBN’ and ’VBD’ is whether the word is syntactically

nominal or not as imposed by the local context. For example, if we see an occurrence

of word composed following a determiner, we know that it is functioning as nominals, so

it should be tagged by ’VBN’; however, if we see another occurrence of the same word

following a subject pronoun, we know that it is functioning as a verb, so it should be

tagged by ’VBD’. Motivated by this observation, we propose a feature-based analysis of 6

open-class categories as depicted in Table 2.5, each of which covers a set of POS tags.

Nominal Verbal inflection

Nouns + - (’-’, ’-s’, ’-er’, ’-est’)

Verbs - + (’-’, ’-s’, ’-ed’, ’-ing’)

Past participles + + (’-ed’,)

Present participles + + (’-ing’,)

Adverbs - - (’-’,)

Numbers + - (’[0-9.]+’,)

Table 2.5: A feature-based analysis of the open-class categories.

As shown in Table 2.5, we have introduced two binary features:

• Syntactically nominal or not in local context, to be disambiguated in tagging.

• Semantically verbal or not, to be induced by distributional clustering.

Since POS tags in Penn Treebank tagset are encoded with inflectional information as well,
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an inflection feature is also introduced in our analysis. Given such a feature-based analysis,

the tagging task can be decomposed into subtasks setting these features.

Whether a word is semantically verbal or not doesn’t depend on the local context it

occurs in. Setting this feature is equal to inducing two lexical categories: verbal and nom-

inal. Following previous work on POS induction, e.g. (Clark, 2003) and (Schütze, 1993),

we also base our work on distributional clustering. Combining this binary clustering with

inflection feature together, we can compute possible POS tags for each open-class word.

We will discuss more about acquiring the open-class lexicon in Section 2.7.3. In contrast,

whether an occurrence of a word is syntactically nominal or not is imposed by its local

context. Instead of formulating it as a sequential labeling problem with a tagset of two

tags, we propose to set this local feature by a rule-based disambiguation model. In Section

2.7.4, we show the advantage of using such a simple model for unsupervised tagging.

2.7.2 The two-stage system design

Figure 2.2: The two-stage unsupervised tagging system.
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As one may have noticed, along with introducing a feature-based analysis of open-

class POS tags, we have drafted a plan for acquiring open-class lexicon and learning the

disambiguation model. On the other hand, closed-class tags are much more ad-hoc than

open-class tags, and many of them label a couple of words only, such as ’EX’ for there,

’DT’ for determiners and so on. In this work, we assume the input of a closed-class lexi-

con, the gold one described in Section 2.6. This closed-class lexicon tells apart closed-class

words from open-class words, and specifies all possible POS tags (without frequency in-

formation) for each closed-class word. Furthermore, we acquire the disambiguation model

for closed-class words with a similar learning schema as for open-class words.

Overall, based on the distinction between open- and closed-class words, we propose

a two-stage unsupervised tagging system. First, we acquire possible tags for each open-

class words by distributional clustering and learn a rule-based model to disambiguate open-

class words. Both of these tasks require the input of a closed-class lexicon to specify the

distinction between open- and closed-class. Second, with the help of the acquired open-

class tagger, we learn another rule-based model to disambiguate closed-class words. In

Figure 2.2, we depict the structure of this two-stage unsupervised tagging system.

2.7.3 Acquiring open-class lexicon

Inducing lexical categories is a language acquisition task on which there has been extensive

research. Following a classic work (Schütze, 1993), we also base our work on distributional

clustering. More specifically, each word type, w, is represented by a feature vector of
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length m, i.e. <count(w,C1),...,count(w,Ci),...,count(w,Cm)>, where each component of

the feature vector is a count of the occurrences of w in context Ci. These feature vectors

are then to be clustered according to similarity.

As is well known, distributional clustering of all word types results in a high number

of clusters, for example, Schütze (1993) induces 200 clusters. Most of these induced cat-

egories are difficult to associate with a specific POS tag, therefore, Chan (2008) argues

that the restriction to cluster base forms onlyis crucial to induce clusters more in line with

lexical categories, i.e. the open-class categories we care about here. As discussed in Sec-

tion 2.5, base forms are justified contexts for morphological transformations; however, in

this application, we simply extract base forms by stripping three inflectional endings, -s,

-ing and -ed from open-class words. Furthermore, in previous work, the contextual fea-

tures coded in clustering vectors are usually lexical, so a typical feature vector contains

hundreds to thousands of components. A chosen clustering algorithm then runs over this

high-dimensional space, thus computationally quite intensive. Instead, we propose to rep-

resent base forms by functional elements in their local contexts only, and each base form is

represented by a feature vector of five components:

• the count of preceding determiners in all its occurrences,

• the count of following determiners in all its occurrences,

• the count of its -ed inflections in the whole corpus,

• the count of its -ing inflections in the whole corpus, and
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• the count of its -s inflections in the whole corpus.

This radical reduction of the feature space enables a substantial improvement in efficiency,

but doesn’t hurt the performance at all. Also for such a simple clustering task, there is no

need resorting to sophisticated techniques. We use a basic k-means clustering algorithm

which allows us to specify the number of output clusters (Maffi, 2007).

Combining this binary clustering with inflection features, we can compute possible

tags for each open-class word now, as depicted in Figure 2.3. For example, if the base

form start is classified into the verbal class, then both its inflections starts and start will

receive one possible tag ’VB’; its inflection starting will receive one possible tag ’VBG’;

but its inflection started will receive two possible tags ’VBN’ and ’VB’. In this example,

the nominal senses of start and starts are missing. For such cases, we introduce a simple

supplemental process : if a base form is ever seen following a determiner, it will be included

in the nominal class as well.

Figure 2.3: Compute possible POS tags for each open-class word.
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2.7.4 Unsupervised POS Tagging

Taking a dictionary as input, the task of unsupervised POS tagging is to learn a disam-

biguation model from unannotated data and then use this model for decoding. We will

first introduce our design of the disambiguation model for open-class words and then the

corresponding model for disambiguating closed-class words.

Disambiguation model for open-class words

Given the feature-based analysis of open-class POS tags, we only need to make a binary

decision for the disambiguation of open-class words: whether the word is imposed syn-

tactically nominal or verbal by the local context. Therefore, we propose a rule-based dis-

ambiguation model with each rule conditioned on functional contexts, and predicts the

Nominal/Verbal category imposed by this context. More specifically, each disambiguation

rule is written as r = (con : cat), with con and cat the functional context and categori-

cal information (N/V) respectively. While disambiguating an open-class word, functional

context con is checked against the preceding closed-class word (if any), and N/V category

cat of the following open-class word is predicted. For example, a disambiguation rule for

open-class words, he:V, says that if an open-class token follows the closed-class item he,

then a verbal tag should be assigned to this token.

Although there is no annotated data available for learning, we can use the unambiguous

occurrences in data to establish disambiguation rules and apply the rules to ambiguous

occurrences. For open-class words, disambiguation rules are extracted from raw data. A
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pair of adjacent words (Wl,Wr) is considered observing an unambiguous application of

a disambiguation rule if it satisfies the following two conditions: 1. the context word Wl

falls in the closed-class category; and 2. all possible tags of the current word Wr fall in the

same N/V category (Nominal or Verbal but not mixed). If (Wl,Wr) is unambiguous in this

sense, then extract rule r = (con : cat), where con is Wl, and cat is the N/V category of

Wr. For example, in the sequence (...he has claimed..), the pair of adjacent words (he, has)

can be used in that he is a closed-class item and has has only one possible tag, ’VB’, so a

rule (he : V ) is extracted; but (has, claimed) is not usable since claimed has two incoherent

possible tags: ’VB’ of category V and ’VBN’ of category N.

In a counting step, a set of rules R is first initialized to be empty, and then, as each

disambiguation rule r is generated while passing through the data, if not already in R, it

is added with an initial count of one; otherwise, Nr, the count of rule r, is increased by

one. Since we know that for a rule, (con : cat), the prediction cat can only be either N

or V, thus for each context con, there are only two forms of rules counted, (con : N) or

(con : V ). After the counting step, we select the rule with a greater count for each context,

thus guarantee that the resulting disambiguation model is deterministic.

Given our rule-based, deterministic disambiguation model, tagging is a straightforward

process decoding the rules. For each ambiguous open-class word w in sequence if the pre-

ceding closed-class word (if any) invokes a disambiguation rule, r = (con : cat), then pick

a possible tag of w that falls in cat (N or V). Since each open-class word may have mostly

one tag in either N/V category, as discussed in Section 2.7.3, any invoked disambiguation

rule gives a deterministic result. If no rule is triggered then our default choice is ’NN’; but
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if ’NN’ is not a possible tag for the current word, we assume the local domain is verbal. In

Figure 2.4, we give a couple of examples of tagging open-class words.

Figure 2.4: Examples of tagging open-class words.

Disambiguation model for closed-class words

As depicted in Figure 2.4, after tagging open-class words, besides raw data, we also have

open-class tags available to help learning disambiguation models for closed-class words.

The disambiguation rules for closed-class words are conditioned on Nominal/Verbal

categories and predicts closed-class POS tags, thus in exactly the symmetric form of the

disambiguation rules for open-class words. After all open-class words are tagged, a pair of

adjacent words (Wl,Wr) is considered observing an unambiguous application of a closed-

class disambiguation rule, if it satisfies the following two conditions: 1. the current word

Wl is in the closed-class lexicon and has only one possible tag; and 2. the context word

Wr is either open-class (thus already tagged) or having all possible tags fall in the Nominal
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category2. If a pair (Wl,Wr) is unambiguous in the above sense, then extract rule r =

(con : cat), where the prediction cat is the single POS tag of the current word Wl, and

context cat is the N/V category of the context word Wr. For example, in the sequence

”...for his stepping...”, the pair (for his) is unambiguous in that for has only one possible

tag ’IN’ and both possible tags of his, ’PRP’ and ’PRP$’, fall into the Nominal category,

so a rule (N : IN) is extracted; but (his stepping) is not usable since his has more than one

possible tag even though stepping is already tagged.

By selecting the rule with a greater count for each context, we guarantee that the re-

sulting disambiguation model is deterministic, the same strategy as for open-class words.

Thus the application of these deterministic rules are also very straightforward for disam-

biguating closed-class words. For each ambiguous closed-class word w in sequence, if

it is followed by a word of category con (N/V), pick a possible tag of w, cat, such that

(con : cat) is a rule learned for disambiguating closed-class words. If no tag is picked, a

random choice is made. We show some examples of tagging closed-class words in Figure

2.5. Even though there are residual cases where no functional context can help with tag-

ging, the disambiguation strategy proposed here combined with random choices results in

a good overall performance, as we are going to show in section 2.7.5.

2For Penn Treebank tagset, we consider 8 closed-class POS tags falling in the Nominal category: ’DT’,

’PRP’, ’PRP$’, ’WDT’, ’WP’, ’WP$’, ’$’, and ’#’, and all other closed-class POS tags has no category.
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Figure 2.5: Examples of tagging closed-class words.

2.7.5 Experiemnts

As reported in (Banko and Moore, 2004), the quality of the lexicon made available to unsu-

pervised learners made the greatest difference to tagging accuracy. Recall that, as described

in section 2.6, our closed-class lexicon is automatically constructed from the WSJ corpus;

therefore, we only compare our experiments to recent work built over automatically extract-

ed lexicons from the same corpus. The proposed unsupervised tagging system is compared

to the following models: CRF/CE (Smith and Eisner, 2005) which proposes contrastive

estimation (CE) for log-linear models; BHMM2 (Goldwater and Griffiths, 2007) which

uses Gibbs sampling for the inference of HMM-based generative models; and LDA+AC

(Toutanova and Johnson, 2008) which extends the Latent Dirichlet Allocation model and

incorporates the intuition that words’ distributions over tags are sparse, achieving the cur-

rent state-of-the-art performance.

As discussed in Section 2.6, we reduce the 22 open-class POS tags in Penn Treebank
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tagset to 6 open-class categories, and in practice, we also ignore the difference between

closed-class tags ’RP’ and ’IN’, or ’DT’ and ’PDT’. As a result, our unsupervised tagging

system runs over a reduced tagset of 27 tags. This is not unusual to use a reduced tagset for

unsupervised tagging, and the models we are going to compare with use a reduced tagset

of 17 tags (Smith and Eisner, 2005). In addition to reporting on our own tagset of 27 tags,

we also map the tagging results onto the 17 tags used in other models for comparison3.

Unsupervised POS tagging with partial dictionaries

dict. with words of count > d

d 1 2 3 ∞ #tag

(part lex.) (100%) (55%) (41%) (0.1%) -

BHMM2 87.3 79.6 65.0 - 17

CRF/CE 90.4 77.0 71.7 - 17

LDA+AC 93.4 91.2 89.7 - 17

our model 91.8 ... ... 90.6 17

our model 93.2 ... ... 92.1 27

Table 2.6: Tagging accuracy with partial dictionaries over 24k dataset; our closed-class

lexicon is the closest approximation to the∞ column .

3So as to map coarser categories to finer POS tags, random choices are made among all the possible POS

tags corresponding to the coarser category. For example, tags ’RP’ and ’IN’ are reduced to one category in

our tagset but kept distinct in the tagset of 17 tags; then for mapping the coarser category ’RP|IN’ of a word,

we need to make a random choice between ’RP’ and ’IN’.
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We use the same split of the dataset as previous work: the tagging model is trained

over a 96k dataset and evaluated on a 24k dataset (Smith and Eisner, 2005). Again, tag-

ging accuracy is calculated as the percentage of correctly tagged words out of all words in

corpus. As shown in Table 2.6, if we want to accomplish the unsupervised tagging task

with as little information as possible, reducing the dictionary by filtering rare words (with

count<= d) has not been a promising track to follow. On the other hand, our system pre-

dicts tags with an accuracy of 90.6% for the 24K test data without any expert knowledge of

open-class words. This result is achieved with only a minimal lexicon of closed-class items

(about 0.6% of the full lexicon), and is not far from the best previous performance of 93.4%

achieved with a full lexicon (LDA+AC with d = 1). One other work that investigates re-

duced lexicons is (Haghighi and Klein, 2006), which develops a prototype-drive approach

to propagate categorical properties using distributional similarity features. Using only three

exemplars of each tag in the full Treebank tagset, they achieve a tagging accuracy of 80.5%

using a larger dataset.

Unsupervised POS tagging with a full dictionary

Even though our system is primarily proposed for reducing the information available to

unsupervised tagging, it also works well with the knowledge of a full lexicon. According

to a full lexicon, there may be more than one possible tags falling in the same N/V category

for a word. However, disambiguating between tags in the same N/V category is beyond the

ability of our disambiguation model. Thus during tagging, when more than one possible

tags fall in the predicted N/V category according to a full dictionary, we simply make a
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size 12K 24k 48k 96K #tag lex.

BHMM2 85.8 84.4 85.7 85.8 17 full

CRF/CE 86.2 88.6 88.4 89.4 17 full

our model 91.0 91.6 91.6 91.5 17 full

our model 93.1 93.6 93.5 93.4 27 full

our model 88.9 89.3 90.2 90.4 17 closed

our model 90.9 91.2 92.0 92.2 27 closed

Table 2.7: Tagging Accuracy of models trained over dataset varying in sizes.

random choice. Although not as constrained as the acquired lexicon, the use of a full

lexicon does help improve tagging performance, since the acquired lexicons are still far

from perfect. As shown in Table 2.7, our system learns very fast with a full lexicon, but

when only a closed-class lexicon is provided, more training data does help improve tagging

accuracy, the same learning pattern as other models.

Error Analysis

There are certainly contexts where no functional elements can help with tagging, in such

cases our system simply leaves it to chance. Furthermore, if the gold prediction is not

listed as a possible tag for a word in the acquired lexicon, then no disambiguation model

can correct these errors due to imperfect lexicons. We show in Table 2.8 the number of

errors made by the disambiguation model for open-class, by the disambiguations model for

closed-class, by random choices and those due to imperfect lexicon. Moreover, in Table
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system with system with

closed-class lexicon full lexicon

sub-model #errors accuracy #errors accuracy

open-class 1089 87.3% 3546 78.9%

closed-class 1694 89.6% 1709 89.7%

random 1148 44.2% 981 44.9%

recall 3650 - 75 -

total 7581 75.2% 6311 82.1%

#ambiguous 30563 35229

Table 2.8: The number of errors and percent ambiguous tokens tagged correctly in the 96k

dataset with 27 tags. Note that the statistics are over ambiguous tokens only.

2.8, we show the disambiguation accuracy of ambiguous words only by each model as well.

2.8 Totally unsupervised POS tagging

Finally, to achieve a totally unsupervised tagging system with no input of any form of

lexicon, we plug the acquired lexicon of closed-class words (Section 2.4), into the two-stage

unsupervised tagging system (Section 2.7). Since we still lack the information on possible

tags for closed-class words, tagging is evaluated for open-class words only, i.e. for all

words that are not in the acquired closed-class lexicon. Tagging accuracy is calculated by

the percentage of correctly tagged words out of all words that are not in the acquired closed-
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algorithm measurement tagging acc. totally tagged

baseline

tokenC 81.97% 604287

typeCfollowing 82.79% 618975

typeCpreceding 81.64% 624964

bootstrap

tokenC 83.06% 631610

typeCfollowing 86.54% 618005

typeCpreceding 72.80% 749482

gold closed-class lexicion 91.54% 611028

Table 2.9: The percentage of correctly tagged tokens out of all predictions. The system

tags open-class words only and distinguishes 6 POS categories.

class lexicon. So as to compare with recent work on totally unsupervised POS tagging, we

experiment over the whole WSJ corpus. The total number of tagging predictions may vary

according to acquired closed-class lexicons by different models.

Since the key theme of the whole chapter is about the distinction between closed- vs.

open-class words, whether the proposed algorithm works well for acquiring closed-class

words is our main interest. Thus, in Table 2.9, we vary models for acquiring closed-class

words in the totally unsupervised tagging experiments, and compare these results to the

system with a gold closed-class lexicon. Recall that, as discussed in Section 2.4, for the

baseline model we have three alternative diversity measurements to choose from, but for the

proposed bootstrapping algorithm, there are four alternatives. For the sake of comparison,

we only consider one token-based diversity, tokenCfollowing written as tokenC in Table 2.9,
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and ignore the other token-based measurement that takes the preceding word as context. As

shown in Table 2.9, the best performance is achieved with the closed-class lexicon acquired

by the proposed bootstrapping algorithm, using a type-based diversity measurement which

considers the following word as context. Similar with the results reported in Figure 2.1, the

baseline model is not that sensitive to the choice of diversity measurement, however, the

bootstrapping algorithm works well only with a carefully designed measurement function.

In recent work on totally unsupervised POS tagging, the state-of-art tagging accuracy

is reported by Blunsom and Cohn (2011) as 77.5% with a many-to-one mapping of in-

duced clusters to gold POS tags, and comparable results are also reported in (Teichert and

Daume, 2010; Abend et al., 2010; Graca et al., 2009; Moon et al., 2010). Such a many-

to-one mapping maps each induced cluster to the gold tag that is preferred by most words

in that cluster, thus frequency information that are obtained from annotated corpora is un-

fairly used. If each word forms a cluster by itself, then this many-to-one mapping actually

assigns the most frequent tag to each word type, a well-known good baseline model to the

supervised POS tagging problem. By a more constrained mapping of the induced clusters,

the state-of-art performance is reported by (Lamar et al., 2010) as 59.3%. Compared to

these results, the tagging performance reported here, 86.5% for open-class words of six

categories, is quite promising. Since these works use finer tags than we do here, we may

appear to be reporting on a simpler task. However, it has proven difficult for these sys-

tems to use further agglomerative processing to induce simple distinct syntactic categories

which map to POS tags naturally (Christodoulopoulos et al., 2010). Therefore, achieving

high accuracy with a smaller tag set is the harder, not easier, task for those systems.
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2.9 Conclusion

We propose a bootstrapping algorithm acquiring functional elements in both free and bound

forms. After applying this algorithm to acquire closed-class words and morphological end-

ings in different experiments, we use the acquisition outputs to build a totally unsupervised

POS tagging system. Without any lexicon input, the totally unsupervised POS tagging

system tags 6 lexical categories with a rather promising performance, and with the input

of a closed-class lexicon, which contains only about 0.6% word types of the full lexicon,

the proposed two-stage unsupervised POS tagging system can achieve a tagging accuracy

comparable to the so-called unsupervised models that requires the input of full lexicons.

Even though we have emphasized the theme of this chapter as capturing the distinction

between closed- and open-class words, the deeper motivation of this series of work is ac-

tually the feature-based analysis of part-of-speech tags. Given our feature-based view of

POS tags, the tagging problem is not necessarily formulated as a sequence labeling prob-

lem. Instead, we argue that, if we only concern with coarse lexical tags, except for one

binary syntactic feature that needs to be disambiguated during tagging, all other features of

POS tags, such as semantic and morphological features, can be settled by global learning

processes (as opposed to locally disambiguation). For example, semantic features can be

set by POS induction and morphological features can be set by morphology learning.

The distinction between closed- and open-class words is then crucial in practicing such

a feature-based view for unsupervised POS tagging. First of all, the decomposing story is

only for lexical categories, i.e. open-class words, in contrast, closed-class words are much

52



more ad-hoc but enumerable. Second, in a distributional clustering for POS induction, we

only use functional elements in the local context of a word to represent it in the feature

space. Third, so as to make a better use of unambiguous cases to establish disambiguation

rules, the tagging system is designed to learn and tag open-class words first and dealing

with closed-class words afterwards. Finally, the disambiguation rules for open-class words

are conditioned on closed-class words in their local contexts. Moreover, since we first

highlighted the distinction between closed- and open-class words in (Zhao and Marcus,

2009), the idea of distinguishing closed-class words from other words has achieved more

and more attention in following works on unsupervised POS tagging by others, such as

(Graca et al., 2009; Teichert and Daume, 2010; Moon et al., 2010) etc.

Neither a feature-based view of lexical categories nor the distinction between closed-

and open-class words is new to linguists, but both of them have been neglected for engineer-

ing use. By exploring these linguistic aspects, we decompose the POS tagging problem to

subproblems of (globally) POS induction and (locally) binary feature disambiguation, thus

reduce the resource required for learning an overall tagging model. All recent research on

tagging, either supervised or unsupervised work, views POS tagging as a sequence labeling

problem and treats all POS tags as equivalently meaningless labels. We are not aware of

any other effort on exploring the POS tagging problem with a new formulation. Given the

successful application of statistical models in supervised POS tagging, one may wonder

why we are interested in exploring new formulations of POS tagging, but noticing that how

severe the lack of supervision affects the performance of unsupervised POS tagging, we do

need to open our mind to new angles of the POS tagging problem.
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Chapter 3

Long-tail Distributions and Morphology

Learning

3.1 Introduction

A 4 morphological analyzer takes words as input and gives morphological analysis to each

word. For example, suppose we describe morphological structures of English words with a

segmentation-based model, then for word giving, the output analysis is composed of a stem

giv- and a suffix -ing. Most work on morphology learning is unsupervised, thus, in this

work, when we talk about morphology learning, it is implicitly assumed to be unsupervised.

Unsupervised morphology learning acquires morphological analyzers from raw text only.

We are aware of descriptions of word structures in other levels than just the segment-

based model. For example, one may be only interested in deciding whether two words

4This paper extends (Zhao and Marcus, 2012b), which is basically Section 3.7.
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are inflections or derivations of the same word stem, then we do not need a analyzer that

clearly draws a boundary between their stems and suffixes. Or, one may be interested in

describing word structures as a result of transformations. For example, for word giving, a

morphological rule e→ing can be inferred, which tells that giving is an inflectional form

of give and describes how the bare form is inflected according to the transformation rule.

Moreover, when we generally talk about word structures, we are not making distinctions

between inflections, derivations, or word formations. When a word undergoes an inflection,

only the associated syntactic category is changed, i.e. the word is expected to occur in a new

syntactic context, but preserves the same lexical meaning. For example, when the ’-ing’

inflectional rule applies, giving, the present progressive form of give, no longer functions as

a (non-)finite verb. In contrast, if we add a prefix be- to word give, then a new word begive,

taking a new lexical meaning, is composed by derivation. Moreover, when a new word is

composed of two or more words, such as laptop or nevertheless, it is usually considered as

word formation, but less as undergoing a morphological transformation.

In this work, we will stick with the segmentation model of morphology, so as to com-

pare with previous work of interest. Following (Goldwater et al., 2006), we will also focus

our experiments on inflectional morphology, and try various approaches to acquire mor-

phological models that segment verbs into stems and suffixes. This chapter organizes as:

• Random guesses and the experimental setup: Section 3.2.

• A rule-based approach given acquired suffixes: Section 3.3.

• Learning with the Expectation Maximization (EM) algorithm: Section 3.4.
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• Gibbs sampling from multinomial distributions: Section 3.5.

• Gibbs sampling from log-normal distributions: Section 3.7.

3.2 The first guesses and experimental setup

So as to set up the experiment framework for other approaches, let us first see how simple

guesses work for this problem. The first thought is to segment each word randomly. For

example, considering word giving again, we may randomly pick one out of the 7 possible

analyses with equally likely chances. Moreover, if we know that, in English, it is suffixes

but prefixes of words that reflect inflections, and word stems usually contain at least 3

characters, then we can reduce the number of possible segmentations of giving from 7 to 4.

Instead of the random guess, we can also simply leave all the words alone, i.e. output

the word itself as the stem together with an empty suffix. With this rather conservative

guess, all the verbs with no inflections are guaranteed to receive the correct analyses, but

all the inflected forms of verbs will always receive wrong analyses.

3.2.1 Evaluation criteria

It is hard to tell which one of the above guesses leads to better morphological analyses. We

will consider two criteria to evaluate the prediction accuracy:

• Type-based accuracy: the percentage of correctly analyzed word types out of all

distinct word types in the data.
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• Token-based accuracy: the percentage of correctly analyzed tokens (word occur-

rences) out of all tokens in the data.

Even though type-based evaluations have been used more in previous work, there are

at least two advantages of the token-based criterion. With a random guess, there may be

different analyses given to the different occurrences of the same word type in the input

data. This randomness can be captured by a token-based evaluation but not a type-based

evaluation, since with a type-based evaluation, only one analysis is considered for each

word type. Secondly, a token-based criterion gives more weights to more frequent words,

thus respects more of the real distribution of unprocessed text data.

3.2.2 Prepare gold data

Following (Goldwater et al., 2006), we will evaluate inflectional analyses of all the verbs

in the WSJ corpus. With respect to the Penn Treebank guideline (Marcus et al., 1993), we

consider words that are associated with POS tags of ’VB’, ’VBP’, ’VBZ’, ’VBD’, ’VBN’

or ’VBG’ as verbs. Then using the gold POS annotations, we extracted 137,899 verbs from

the whole WSJ corpus which belong to 7,708 distinct word types. With heuristics based

on POS tags and spellings, we automatically segment each verb into a stem, which cannot

be empty, and an inflectional suffix, which may be empty, and use these segmentations as

gold standards to evaluate our experiments on morphology learning.

More specifically, to automatically segment each verb, for a verb tagged as ’VBZ’, if it

ends with -s then divide the word at -s, except for goes, does and words ending in -xes or
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type-based acc. token-based acc.

random guess with all possibilities 12.27% 18.39 %

random guess with constrained possibilities 22.11% 46.71%

conservative guess 30.53% 56.99%

Table 3.1: Evaluate the first guesses with both type-based and token-based criteria.

-ches which are divided at -es. For a verb tagged as ’VBD’ or ’VBN’, if it ends with -ed

then divide the word at -ed; or if it is an irregular verb and ends with -en or -n, then divide

the verb at -en or -n respectively. 5 By default, each word has an empty suffix.

3.2.3 Preliminary Experiments

So as to get a preliminary sense of inflectional analyses of the verbs, we compare the

conservative guess with the random guess. Moreover, for the random guess, we experiment

with two implementations of this idea: 1) randomly picks one segmentation out of all

possible segmentations including those of empty prefix; and 2) consider only the possible

segmentations that consist of prefixes containing at least 3 characters.

As shown in Table 3.2.3, none of these first thoughts works well, but we can still read

interesting patterns from the comparison. Firstly, we have discussed that, with random

guesses, different occurrences of the same word type may receive different analyses. Thus

the difference between the random guess and the conservative guess is more distinctive-

ly shown with a token-based evaluation than a type-based evaluation. Secondly, since a

5We use the list of irregular verbs provided by http://www.englishpage.com
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token-based evaluation gives more weights to more frequent words, the improvement in-

troduced by the conservative guess is much better realized with a token-based evaluation.

This pattern complies with our knowledge of English that irregular verbs, such as ran and

said, most of which have an empty suffix according to our gold data, tend to be of high

frequency. Finally, when we constrain the possible segmentations for random guesses,

the resulting improvement is also more distinctively shown with a token-based evaluation.

Overall, even though type-based evaluations are more popular in literature, we have shown

that a token-based evaluation does help distinguish a better model.

3.3 A rule-based approach

If lists of ’justified’ stems and suffixes are given, we can divide each word by a very simple

rule: a legal segmentation must be composed of a justified stem and a justified suffix. More

formally, given a set of stems T and a set of suffixes F, we can divide a word w into stem t

and suffix f , only if t ∈ T, f ∈ F and w = t.f . For example, if T = {’laugh-’, ’analyz-’},

and F = {’-ed’, ’-s’}, then ’analyzed’ can be segmented into ’analyz-’ and ’-ed’, but ’red’

won’t be segmented. Thus, with this rule-based approach, morphology learning can be

considered acquiring sets of justified stems and suffixes.

When the acquired set of stems or suffixes is imperfect, by this simple segmentation

rule, it is certainly possible to give a word more than one legal analyses. For example,

if T = {’laugh-’, ’analyz-’, ’analyze-’}, and F = {’-ed’, ’-s’, ’-d’}, where ending ’-d’ is

wronly acquired as a justified suffix, then the proposed segmentation rule allows for two
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possible segmentations: analyz-ed or analyze-d. In practice, our analyzer produces the

segmentation that contains the suffix with a higher diversity. However, with perfect sets of

justified stems and suffixes, we are not aware any English word that is ambiguous regarding

this segmentation model. On the other hand, in theory, a word may be composed of a justi-

fied stem and a justified suffix, but the stem and suffix do not form a proper morphological

segmentation. However, for English verbs, we are not aware of such particular examples.

Recall that, in Section 2.5, we have already dealt with the acquisition of morphological

suffixes. The proposed bootstrapping algorithm is originally designed for the acquisition

of closed-class words, but perfectly applicable to morphology learning. In addition to a list

of suffixes, the algorithm also generates a complementary set of proper contexts, i.e. a set

of justified stems ready for our use in the case of morphology learning. We are going to

elaborate the bootstrapping algorithm as a complete story for morphology learning below.

3.3.1 A bootstrapping algorithm acquiring morphological units

In this section, we are going to describe a bootstrapping algorithm for acquiring morpho-

logical units, especially stems and suffixes for English. In Section 2.4, the proposed boot-

strapping algorithm was originally developed for the acquisition of closed-class words, and

in Section 2.5, we introduced how it is applied to morphology learning. Briefly speaking,

the bootstrapping algorithm is designed based on the following two main ideas:

• Diversity measurement: functional elements, including morphological units and

functional words, tend to occur in more diverse contexts.
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• Proper contexts: the computation of diversity for each item should be carried out

according to properly justified contexts only.

The algorithm iteratively generates a set of functional elements and a set of justified

contexts, and for either set, diversity measurements of its items are computed according to

the other set. As the bootstrapping proceeds, either set becomes more and more accurate

and so the diversity measurement of the items in the other set. For both the acquisition

of closed-class words and morphological units, we experiment with two kinds of diversity

measurement: type-based or token-based. With the former counting the distinct types of

justified contexts an item ever occurs in, and the latter counting the total occurrences of an

item occurring in justified contexts. The main difference between the two applications of

the same bootstrapping algorithm is that for acquiring closed-class words, we need to con-

sider either the preceding word or the following word as the context of a word in sequence;

however, for acquiring suffixes, we only consider the corresponding stem as the context of

the suffix given any division of a legal word. Therefore the filtering step that keeps the two

generated sets as complementary as possible is no longer required for morphology learning,

even though no harm will be done with this redundant step.

More formally, given a corpus C and the set of all word types in the corpus W. Re-

garding a set of acquired stems T, we measure the contextual diversity of a suffix f with

a measurement function div, which can be either type-based or token-based as discussed
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above, i.e.

div(f,T) =



∑
w∈W

1(w = t.f) for type-based measurement

∑
w∈C

1(w = t.f) for token-based measurement

1(w = t.f) =


1 if t ∈ T

0 if t /∈ T

Similarly, regarding a set of acquired suffixes F, the diversity of a stem t is measured as

div(t,F) =



∑
w∈W

1(w = t.f) type-based

∑
w∈C

1(w = t.f) token-based

1(w = t.f) =


1 if f ∈ F

0 if f /∈ F

According to our assumption, when div(t,F) > 1, t can be justified as a proper context.

Algorithm 2 The algorithm for acquiring morphological stems and suffixes
Require: A corpus C containing raw text only.

Require: A total number of acquired suffixes K.

Initialize set F0 to be empty.

Initialize set T0 to contain all possible suffixes.

for k = 1...K do

Let Fk contain k suffixes with the highest diversities measured by div(f,Tk−1).

Let Tk contain such stems that div(t,Fk) > min(k − 1, 1).

end for

return FK and TK
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We repeat Algorithm 1 as Algorithm 2 here with different notations, so as to make a

coherent story with other approaches in this chapter. The corpus C required by the algo-

rithm contains raw text only without any form of annotation. Besides, we also need a total

number of iterations K to control the stop condition, i.e. to specify how many suffixes we

wan to acquire from the input corpus. Set F0 is initialized to be empty and set T0 may

be simply initialized to contain all possible suffixes of all words in the corpus C. At the

kth bootstrapping iteration, k > 0, we compute set Fk as the top k suffixes of the highest

contextual diversity according to set Tk−1. Accordingly, at the kth bootstrapping iteration,

k > 1, we compute set Tk of such stems that can form legal words with more than one

acquired suffixes in Fk. Since the diversity measurement of suffixes varies over iterations

with respect to the updated set of stems, the ordering of the acquired suffixes may also vary.

Acquisition output

In Section 2.5, we have shown the acquisition output by the bootstrapping algorithm over

the whole WSJ corpus, however, in this chapter, we focus on the learning result over verbs

only in the WSJ corpus. Moreover, so as to compare with other models more fairly, we are

not implementing special mechanisms for removing complex suffixes such as -ers, -ions

or -ings, neither the trick for removing the most noisy suffix -e (Zhao and Marcus, 2011).

Even without these special treatments, as shown in Table 3.2, most acquired suffixes make

sense as morphological units.

To show more examples of acquisition output, we can alternate the choice of diversity
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kth iter. set Fk size of set Tk

1st ’-d’ 0

2nd ’-d’, ’-s’ 2481

3rd ’-s’, ’-d’, ’-ing’ 407

4th ’-s’, ’-d’, ’-ing’, ’-ed’ 806

5th ’-ing’, ’-ed’, ’-s’, ’-d’, ’-e’ 1824

6th ’-ed’, ’-ing’, ’-s’, ’-e’, ’-d’, ’-es’ 2068

7th ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-en’ 2155

8th ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-en’, ’-t’ 2165

9th ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-t’, ’-en’, ’-n’ 2185

10th ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-n’, ’-t’, ’-en’, ’-ned’ 2210

Table 3.2: The acquisition output by Algorithm 2 with type-based diversity measurement

over all verbs in the WSJ corpus.

measurement as well as the choice of initialization condition. And the baseline model we

compare with simply ranks the suffixes according to a fixed set of stems. As shown in Table

3.3, by either the bootstrapping algorithm or baseline model, learning with the type-based

measurement performs better. Moreover, both the learning over the whole WSJ corpus

(Table 2.3) and the learning over the verbs only (Table 3.3) shows the same preference

of model. With experiments over different corpora, the proposed bootstrapping algorithm

with the type-based measurement is shown to be the best model for morphological learning,
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alg. div. init. output at the 10th iteration

baseline

token
B1 ’-d’, ’-ed’, ’-s’, ’-e’, ’-g’, ’-ng’, ’-ing’, ’-as’, ’-id’, ’-re’

B2 ’-ed’, ’-d’, ’-s’, ’-ing’, ’-aid’, ’-ays’, ’-re’, ’-en’, ’-n’, ’-ay’

type
B1 ’-d’, ’-ed’, ’-g’, ’-ng’, ’-ing’, ’-s’, ’-e’, ’-ted’, ’-es’, ’-ting’

B2 ’-s’, ’-ing’, ’-ed’, ’-d’, ’-es’, ’-n’, ’-ting’, ’-ping’, ’-ped’, ’-ted’

bootstrap

token
B1 ’-d’, ’-s’, ’-re’, ’-id’, ’-ve’, ’-ys’, ’-t’, ’-y’, ’-es’, ’-ing’

B2 ’-ed’, ’-s’, ’-d’, ’-ing’, ’-e’, ’-as’, ’-ve’, ’-es’, ’-ere’, ’-t’

type
B1 ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-n’, ’-t’, ’-en’, ’-ned’

B2 ’-ed’, ’-ing’, ’-s’, ’-e’, ’-es’, ’-d’, ’-n’, ’-t’, ’-en’, ’-ned’

Table 3.3: The acquisition output learnt from all verbs only in WSJ corpus. Set B1 contains

all possible suffixes and B2 contains legal words as proper stems only.

and this bootstrapping model performs stably with different initializations.

3.3.2 Experiments

Given acquired stems and suffixes, we can build a simple rule-based model to segment

words. Besides the more conservative strategy discussed at the beginning of this section,

we also have a more greedy strategy as an alternative to build the segmentation model.

• Greedy strategy: given a set of acquired suffixes F only, we can divide a word w
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into t+ f , as long as w = t.f and f ∈ F.

• Conservative strategy: given both a set of acquired suffixes F and a set of acquired

stems T, we may divide a word w into t+ f , only if w = t.f , f ∈ F and t ∈ T.

Without the set of justified stems, the segmentation model applies in a more greedy way

and may cause more false positive errors due to the over-segmentation of irregular verbs.

On the other hand, constrained by a set of acquired stems as well as a set of acquired

suffixes, we may be too conservative and miss segmentations of many regular verbs. As

shown in Table 3.4, the rule-based model with a more conservative strategy performs better

with the toke-based evaluation, but the one with a more greedy strategy performs better

with the type-based evaluation. This pattern is consistent with our previous experiments

on the random guess and the conservative guess. Given that irregular verbs in English

tend to be of high frequency, a more conservative segmentation model, which generates

less false positive errors by avoiding the over-segmentation of irregular verbs, performs

better with the token-based evaluation.On the other hand, regular verbs form the majority

of the verb types, thus a greedy application of the rules, which aggressively predicts more

segmentations, performs better with the type-based evaluation. For a more straightforward

look into the errors, confusion matrices are shown in Figure 3.1 and Figure 3.2.

We have used the acquisition output by the bootstrapping algorithm with type-based

diversity measurement to build rule-based segmentation models. As shown in Table 3.2, all

inflected endings are acquired at the 10th iteration, as well as noisy outputs ’-e’ and ’-d’.
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type-based acc. token-based acc.

random guess with all possibilities 12.27% 18.39 %

random guess with constrained possibilities 22.11% 46.71%

conservative guess 30.53% 56.99%

rule-based with acquired stems (conservative) 69.75% 73.98%

rule-based without acquired stems (greedy) 79.01% 49.55%

Table 3.4: Evaluate rule-based models with both type-based and token-based criteria.

3.3.3 Randomness and Learning

Besides the random guess, both the conservative guess and the rule-based models give a

certain morphological analysis to all occurrences of the same word type. Even though it

complies with our common sense to assign one certain analysis to a word type, the ran-

domness allowed in a morphological model is crucial for probabilistic learning. In the

contrast of the proposed bootstrapping algorithm, which requires a special stop condition,

a successful probabilistic learning process is expected to converge to a stable state. For

example, a Markov Chain Monte Carlo (MCMC) method constructs a Markov chain with

the desired distribution as its equilibrium distribution. In Section 3.4 and Section 3.5, we

assume multinomial distributions of segmentations, and learn with the Expectation Maxi-

mization algorithm (EM) and a MCMC method, Gibbs sampling, respectively. In Section

3.7, we assume log-normal distributions instead and use Gibbs sampling for learning.

When randomness is allowed, besides type-based input that has been assumed so far

, a probabilistic learning may also observe token-based input. In the contrast of the type-
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Figure 3.1: The confusion matrices for the greedy rule-based model.

Figure 3.2: The confusion matrices for the conservative rule-based model.

based input, in which each word type occurs only once, token-based input reflects the real

distribution of word frequency. It may be worth pointing out that there is no according

relation between the two forms of input and the two evaluation criteria. In other words,

a morphology model trained over token-based input can also be evaluated with the type-

based criterion, or vice versa (with four variations in total).
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3.4 EM learning

It is to our surprise that, the Expectation Maximization (EM) algorithm, which is exten-

sively used for unsupervised learning, is not applied for morphology learning as widely

as one may expect. Instead, Bayesian inference approaches seem much more popular on

this topic, e.g. a maximum a posteriori (MAP) probability estimate in (Goldsmith, 2001)

and (Creutz and Lagus, 2007) and Gibbs sampling in (Goldwater et al., 2006), (Lee et al.,

2011), (Moon et al., 2009) and etc. However, as we are going to show, EM is, again, a base-

line model worth exploration, which performs very well for this task considering its simple

implementation. Moreover, since we are usually more familiar with EM then Bayesian

approaches, applying EM first help understand the MCMC method (Gibbs sampling) we

are going to introduce in the next section. After all, EM can be viewed as a forerunner of

MCMC methods in that its data augmentation step replaces simulation in MCMC methods

by maximization.

3.4.1 EM for multinomial

In morphology learning, we aim to learn a joint distribution of segmentations and words

P (S,W|θ), but only observe unprocessed words P (W). In other words, both segmenta-

tions, S, and parameters θ are hidden. Therefore, we may resort to the EM algorithm that

enables parameter estimation with incomplete data. Each iteration of the EM algorithm

consists of an expectation step (E-step) followed by a maximization step (M-step). E-step

estimates the sufficient statistics of the complete data given the observed data. Then M-
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step takes the estimated complete data and estimates θ by maximum likelihood (MLE) as

though the estimated data were the observed data (Dempster et al., 1977).

In our case, denote πt the probability of stem t given parameters π, i.e. πt = P (t|π);

and φf the probability of suffix f given parameters φ, i.e. φf = P (f |φ). Assume that stems

and suffixes are independently distributed, then we have

P (s = (t, f)|π, φ) = P (t|π)|P (f |φ) = πt × φf ,

where segment s = (t, f) indicates that a word is composed of stem t and suffix f . Denote

the number of stem t as Nt and number of suffix f as Nf in the estimated complete data.

Assume that both suffixes and stems are multinomially distributed, then, at each M-step,

MLE estimates the current parameters π and φ by exact solutions as follows:

π̂t = P (t|π̂) =
E[Nt]∑
t

E[Nt]
for each stem t, and

φ̂f = P (f |φ̂) =
E[Nf ]∑
f

E[Nf ]
for each suffix f.

Then at each E-step, we compute sufficient statistics of the estimated complete data using

the current parameters φ̂ and π̂. The expected value of Nt is calculated as

E[Nt] =
∑

suffix f

P (s = (t, f)|π̂, φ̂)× n(w=s)

=
∑

suffix f

π̂t × φ̂f × n(w=(t,f)) given our independence assumption.

where denote as n(w=s) the number of observed words that can be segmented as s or when

s = (t, f), n(w=(t,f)) denotes the name number. Similarly, the expected value of Nf is
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calculated as follows:

E[Nf ] =
∑
stem t

π̂t × φ̂f × n(w=(t,f)).

3.4.2 Experiments

Following the experiment framework described in Section 3.2.3, we also evaluate EM

learning with both the type-based and token-based criteria. The learning curves are shown

in Figure 3.3 and 3.4, for type-based and token-based evaluation respectively.

Type-based vs. Token-based input. As discussed in Section 3.3.3, besides the type-based

input, which contains distinct word types only, we may also run EM over token-based input,

which contains the raw text data that reflects the real distribution of word frequency. As

shown with both the type-based and token-based evaluation, the from of the input data to

EM does matter. For both evaluations, EM learns well with type-based input and converges

to a stable distribution; however, given the token-based input, the EM algorithm is not able

to jump out of a local maximum, for which we are not sure how to help.

Constraints on possible segmentations. At each expectation step, the EM algorithm com-

putes probabilities for each possible completion of the missing data, instead of picking the

single most likely completion. In our case, when we compute the expected value of the

count of stems or suffixes, all possible segmentations of each word are weighted in. Given

a list of suffixes, e.g. the acquisition output of the proposed bootstrapping algorithm in

Section 3.3.1, we may allow only the divisions of the word that produces the suffixes in the

given list as legal segmentations. Constraining the possible completions of data does speed
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Figure 3.3: The type-based accuracy of EM.

Figure 3.4: The token-based accuracy of EM.

convergence, as shown in both Figure 3.3 and 3.4, however, the level of performance is not

affected with either type-based or token-based evaluation.

As shown in Table 3.5, EM outperforms the rule-based models with both the type-based
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and token-based evaluation. We show confusion matrices for EM in Figure 3.5, and for a

easier comparison, we repeat Figure 3.1 as Figure 3.6, which depicts confusion matrices

for the rule-based model with the greedy strategy. As shown in these confusion matrices,

EM makes much less mistakes on verbs that are not inflected 6.

type-based acc. token-based acc.

rule-based with acquired stems (conservative) 69.75% 73.98%

rule-based without acquired stems (greedy) 79.01% 49.55%

EM with type-based input and not constrained 82.19% 83.50%

Table 3.5: Evaluate EM with both type-based and token-based criteria.

3.5 Gibbs sampling from multinomial distributions

In the last section, for morphology learning, we use the EM algorithm to learn from incom-

plete data . The EM algorithm iteratively proceeds with the following two steps:

• computes sufficient statistics of the complete data given the current parameters.

• estimates parameters by maximization as though the estimated data were observed.

By using the EM algorithm to find maximum likelihood estimates of π and φ, we maxi-

mizes the likelihood of observed words given the segmentation model, i.e. P (W |π, φ). As
6In (Zhao and Marcus, 2012b), a higher type-based accuracy (83.59%) is reported for the greedy rule-

based model, trained over the whole WSJ corpus by the bootstrapping algorithm.
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Figure 3.5: The confusion matrices for EM.

Figure 3.6: The confusion matrices for the greedy rule-based model.

we have seen in Figure 3.3 and 3.4, using EM may encounter the problem of local maxi-

mums. Thus we can also try Markov Chain Monte Carlo (MCMC) methods, which relate

to EM in that its data augmentation step replaces maximization in EM by simulation.

Suppose that we are able to generate random draws from the target distribution, θ, of

segmentations, corresponding to i.i.d. random variables. The obvious estimate of E[θs] is
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the empirical average:

θ̂s =
1

m

m∑
t=1

θ(t)
s ,

where θ(t)
s can be directly computed with the complete data observed in the tth draw from

the target distribution. This is the ordinary Monte Carlo estimation. However, to draw a

perfect random sample from a target distribution is usually impractical. Instead, while using

Markov Chain Monte Carlo (MCMC) methods, we construct a ergodic Markov chain with

the limit distribution θ, and draw samples from the Markov chain. Each state of the Markov

chain is an assignment of values to the variables being sampled. By Gibbs sampling, the

next state is reached by sequentially sampling all variables from their distribution when

conditioned on the current values of all other variables and the data. Then with a sufficiently

large m, the probability values are independent of the starting values and approaches the

stationary distribution.

In this work, we use Gibbs sampling to construct a Markov chain S1,S2, · · · ,Sm, · · · ,

whose stationary distribution is the joint distribution of segmentations and words, P (S,W).

The joint distribution P (S,W) can be specified by a generative model, which randomly

generates data from its posterior distribution. In this section, we are going to review a gen-

erative model with multinomial distributions, which is studied in (Goldwater et al., 2006).

In Section 3.7, we propose a generative model with log-normal distributions, so as to ac-

count for the real distribution of word frequency.
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3.5.1 The probability model

Assume that both stems t and suffices f are multinomially-distributed, with parameters π

and φ respectively, i.e.

ti|π, fi|φ ∼ Multinomial(π), Multinomial(φ).

This assumption is mainly made for the sake of simplicity in computations, the same reason

as for EM. So as to have conjugacy, we assume Dirichlet priors for both stems and suffixes,

generated with hyperparameters α and β respectively, i.e.

π, φ ∼ Dirichlet(α), Dirichlet(β).

Moreover, given our independence assumption,

P (s = (t, f)|π, φ) = P (t|π)|P (f |φ) = πt × φf . (3.5.1)

3.5.2 Sampling process

Denote as s1...sN the sampled segmentations of words w1, ..., wN . Assume morphological

analyses are independently and identically distributed. Then a weaker assumption directly

follows: the finite set of segmentations {s1, ..., sN} is exchangeable, i.e. Pr(s1, ..., sN) =

Pr(sΣ(1), ..., sΣ(N)), where Σ is a permutation of the integers from 1 to N . Given the

assumption of exchangeability, we can use a simple and widely-used Markov Chain Monte

Carlo method, Gibbs sampling, for the inference of generative models.

By Gibbs sampling, we alternatively sample all variables specified in the probability

model, with conditional probabilities conditioned on the current values of all other variables
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and the data. In our case, denote S−i the segmentations of all words but the ith word, i.e.

S−i = {s1, · · · , si−1, si+1, · · · , sN}. According to the probability model defined above,

for each word wi, in theory, we need to first sample Dirichlet prior parameters conditioned

on S−i and then sample segmentation si conditioned on the current parameters.

Furthermore, the parameters π and φ can be integrated out, resulting in a more efficient

inference procedure. Consider

P (fi = f |S−i) =

∫
P (fi = f |π)P (π|S−i)dπ, (3.5.2)

where π denotes a multinomial distribution over suffixes and the integral is over all such

distributions. By Bayes’ rule, we have

P (π|S−i) ∝ P (S−i|π)P (π).

Since P (π) ∼ Dirichlet(α) and conjugate to P (S−i|π), the posterior distribution P (π|S−i)

will be Dirichlet(α + Nf ), where Nf is the number of segmentations that contain suffix f

in S−i . The integration in 3.5.2 is simply the expected value of this posterior Dirichlet

distribution, which is calculated as

P (fi = f |S−i) =
α +Nf

α+ +N
,

where α+ = α × kF , if we assume symmetric Dirichlet priors and the number of distinct

stem types is kF . Similarly, φ can also be integrated out and we have

P (ti = t|S−i) =
β +Nt

β+ +N
,
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where β+ = β × kT . Putting together the results, we obtain the conditional probability to

sample segmentation si for word wi as follows:

P (si = s = (t, f)|wi,S−i) ∝ 1(wi = t.f)
α +Nt

α× kT +N

β +Nf

β × kF +N
.

where 1(w = t.f) takes on value 1 if concatenation t.f forms word w, otherwise 0.

Since the parameters are integrated out and do not need to be sampled, we only need

to sequentially sample the morphological analysis of each word from its conditional prob-

ability given all other analyses. More specifically, to reach the next state of the Markov

chain by the collapsed Gibbs sampling, sample s′1 given S−1, then go to {s′1, s′2, s3, ..., sN}

and so on until {s′1, s′2, ..., s′N} = S′. It can be shown that this sampling process defines a

Markov chain on S,S′,S′′, ...whose stationary distribution is the joint posterior distribution

P (S,W), regardless of the initialization of the starting state.

3.5.3 Experiments

Following the experiment framework described in Section 3.2.3, we also evaluate Gibbs

sampling with both the type-based and token-based criteria. The learning curves are shown

in Figure 3.7 and 3.8, for type-based and token-based evaluation respectively.

As discussed in Section 3.3.3, besides the type-based input, we may also run Gibbs

sampling over token-based input. As shown with both the type-based and token-based

evaluation, the from of the input data to Gibbs sampling does matter, the same pattern

as we have already seen for EM. Also, with the same strategy as for EM, given a list of

suffixes, we may allow only the divisions of the word that produces the suffixes in the given
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Figure 3.7: The type-based accuracy of Gibbs sampling with multinomial models.

Figure 3.8: The token-based accuracy of Gibbs sampling with multinomial models.

list as legal segmentations. As shown in both Figure 3.7 and 3.8, constraining possible

segmentations does speed convergence, but the level of performance is not affected with

either type-based or token-based evaluation, again, the same pattern as of EM. It is not a
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type-based acc. token-based acc.

rule-based with acquired stems (conservative) 69.75% 73.98%

rule-based without acquired stems (greedy) 79.01% 49.55%

EM with multinomial distributions 82.19% 83.50%

Gibbs sampling with multinomial distributions 79.98% 81.06%

Table 3.6: Morphology learning with type-based input.

surprise at all to see such similar learning patterns of EM and Gibbs sampling, since they

only differ in their way to deal with data augmentation.

In Table 3.6, we summarize the models we have discussed so far. Gibbs sampling out-

performs the rule-based models but is worse than EM for this experiment. This degree of

difference in performance between EM and Gibbs sampling does not decide which algo-

rithm should receive more consideration. The most important thing to read from this table

is that none of these models handles token-based input well, so we report only the results

of these models running over type-based input. As noticed in (Goldwater et al., 2006), even

though not receiving much attention in previous work on morphology learning, token-based

input is still worth exploration, since it reflects the real distribution of word frequency. In

the next section, we will discuss the long-tail distribution of word frequency, and propose

a new model which learns from token-based input in Section 3.7.
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3.6 Long-tail distributions

3.6.1 Plotting long-tail distributions

rank frequency word type
1 52963 the
2 25285 of
3 24460 to

...
16749-22699 2 zurn ...
22700-41233 1 zygmunt ...

total word types: 41233
total word occurrences: 907777

Table 3.7: Rank words by word frequency in the whole Penn Treebank WSJ corpus. Punc-
tuations are excluded as words. All text strings are lower-cased.

Given a certain corpus, we can compute the word frequency of each word type by

counting its occurrences in the corpus. Words in a corpus can then be ranked according

to their word frequencies. For example, as computed from Penn Treebank WSJ corpus

(Marcus et al., 1993) and shown in Table 3.7, the most frequent word is the occurring

52963 times and the second most frequent word is of with a count of 25285. If we plot

word frequency against word rank, as shown in Figure 3.9-a, there is a long tail of the curve

corresponding to the large number of words that occur in low frequency. For example, as

shown in Table 3.7, there are 18534 types of words that only occur once in the whole

WSJ corpus, and 5950 types occur twice, thus nearly 60% of the total word types occur

in low frequency, once or twice. More formally, if a large portion of the population are

composed of low-frequency events, forming a longer tail on a rank-frequency plot than

normal (Gaussian) distributions, the corresponding distribution is considered as long-tail.
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(a) The rank-frequency plot. (b) The log-log rank-frequency plot.

(c) Logarithmically binning log-log rank-freq. (d) The cumulative distribution function.

Figure 3.9: Rank-frequency plots of words in WSJ Penn Treebank.

If we plot word frequency against word rank on logarithmic scales, as shown in Figure

3.9-b, it behaves like a straight line, except for the noisy part at the right-hand end of the

curve. When we see such a characteristic straight-line on logarithmic scales, it usually

suggest that a power law is observed, i.e.

f(x) = Cx−α, constants C > 0 and α > 0.

Especially, when we study vocabulary distributions, word frequency is usually said to fol-

low the Zipf’s law (Zipf, 1949), which states that (word) frequency is inversely proportional
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to its rank, i.e. the exponent α is close to unit. For example, the ratio between frequencies

of word the and of, with rank 1 and 2 respectively, is 2.09, fits Zipf’s assumption perfectly.

However, the ration between frequencies of word the and to, with rank 1 and 3 respectively,

is 2.16, not very close to 3 as predicted by Zipf’s law. Thus we need careful plotting of the

data to show its characteristics as we expect.

As shown in Table 3.7, there are many words occur only once or twice. It explains the

pattern of the right-hand end in Figure 3.9-b. For low frequency values, there are several

wide intervals of ranks in which the points form horizontal lines. So as to let words of the

same or close frequency values to be represented by one single point, we need to bin the

ranks. For each bin, we normalize the frequencies by the width of the bin they fall in. That

is, for the ith bin of interval [ri, ri + 1), we compute the corresponding averaged frequency

as

∑
ri≤r<ri+1Nr

ri+1 − ri
, where Nr is the count of the rth most frequent word. Moreover, so as

to obtain constant widths of bins on logarithmic scales and to increase the width of bins

near the end of the curve more than those at beginning of the curve, we create bins with a

constant multiplier m such that each bin is m times wider of the one before it. When the

multiplier is fixed as 2 and the first bin is [1, 2), the following bins are created as [2, 4),

[4, 8), [8, 16) and so forth. As shown in Figure 3.9-c, logarithmically binning does help

smooth the data. but a lot of information of individual frequency values is missing.

Instead of rank-frequency plots, we can also draw the Cumulative Distribution Function

(CDF). Let F be the discrete random variable that denotes word frequency, and Nr be the

count of the rth most frequent word. If there is no tie in ranking, which is true for frequent
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words, i.e. true for large Nr, then there are r values of F that are greater or equal to Nr, i.e.

Pr[F >= Nr] ∼
1

Z
r, Z a normalizing constant,

where f(x) ∼ g(x) represents that the limit of the ratio goes to 1 as x grows large. If the

frequency distribution follows a power low, i.e. Nr = Cr−α, then Pr[F >= Cr−α] ∼ 1
Z
r.

With the change of variables, we get

Pr[F >= f ] ∼ C2f
−β, β = 1/α,

where C2 is a constant. Therefore, if F is of a power-law distribution, its CDF also has a

power-law form 7. Thus, in a log-log plot of CDP, a straight line is also expected, as shown

in Figure 3.9-d. Especially, if the frequency distribution follows Zipf’s law, i.e. α = 1,

then β = 1/α = 1, i.e. the slope of the log-log plot of CDF is also close to unit.

For each log-log plot in Figure 3.9, the data are fit into straight lines by least-square

linear regression. Correspondingly, slope α and coefficient of determination R2 are com-
7If we know that CDF follows a power law, it is easier to infer that the corresponding probability dis-

tribution function (PDF) also has a power-law form, since PDF is the derivative of CDF. However, given

that the PDF is power-law, we cannot simply state that CDF is also power-law, because the integral fails to

converge when α ≤ 1. For example, the following formula in (Newman, 2005) is safe with the assumption

of 2 ≤ α ≤ 3 in their context,

P (x) = C

∫ ∞
x

x′−αdx′ =
C

α− 1
x−(α−1),

but it is not safe in our context since we are especially interested in the case of α = 1. This discussion of

the power-law PDF and CDF is similar to the discussion in a tutorial by (Lada, 2002). However, with ties in

ranking, it is inaccurate to state Pr[F >= Nr] =
1
Z r. Thus not following either this work, we have given

our own induction on the statement that CDF is power-law if probability function is power-law.
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puted. For the original log-log rank-frequency plot in Figure 3.9-b, the approximated slope

is −1.36, i.e. α = 1.36, and R2 = 0.975. After smoothing by logarithmically binning,

as shown in Figure 3.9-c, the slope is −0.95 and R2 = 0.973. Finally, in the log-log plot

of CDF, the slope is −1.02, thus α = 1/1.02 = 0.98, which is the closest to 1. Also the

coefficient of determination R2(= 0.99) is higher with this plot of CDF. Therefore, in the

following discussions of other data, we will only use the log-log pot of the corresponding

CDF to reveal the power-law form. Moreover, the terms ’power-law’ and ’Zipf’s law’ will

be used interchangeably from now on, i.e. the assumption of α = 1 is implicitly made.

3.6.2 Log-normal distributions

Even though Zipf’s law is massively used to analyze word frequency, long-tail distributions

can also be analyzed by log-normal distributions, whose logarithms are normally distribut-

ed. When analyzed by log-normal distributions, frequency against rank satisfies

f(r) =
1

rσ
√

2π
e−

(ln r−µ)2

2σ2 , r > 0

where µ is the mean and σ the standard deviation of the normally distributed log(f).

If a random variable has a log-normal distribution and especially its variance is large,

then in a log-log plot of its CDF, the behavior will also appear to be nearly a straight line

for a large portion of the body of the distribution, as shown in Figure 3.10 and 3.11.

Furthermore, we can take advantage of the multiplicative property of log-normal dis-

tributions, which states that the product of two log-normal random variables is also log-

normally distributed. For example, given that word frequency is log-normal, we can pre-
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dict that bigrams are log-normal, trigrams are log-normal and ngrams are log-normal as

well. As shown in Figure 3.10, for both bigrams and trigrams on log-log plots, the CDF

behaves a straight line, thus can be analyzed by either log-normal or power-law. However,

for 4-grams, only part of the curve behaves straightly, so log-normal fits better here.

(a) The log-log CDF plot of bi-

gram frequency.

(b) The log-log CDF plot of tri-

gram frequency.

(c) The log-log CDF plot of 4-

gram frequency.

Figure 3.10: Distributions of bigrams, 3-grams and 4-grams in the WSJ corpus.

(a) English nouns, verbs and adverbs. (b) Chinese words, nouns and characters.

Figure 3.11: Observing long-tail distributions for lexical categories in English and Chinese.

Besides word frequency, we also observe long-tail distributions for individual lexical

categories, such as verbs, nouns and adverbs, as shown in Figure 3.11-a. Besides English,
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we also observe long-tail distributions for Chinese words, nouns and characters, as shown

in Figure 3.11-b, which are computed from Chinese Treebank 5.0. Even though, with a

glance at the shape of these curves, log-normal distributions seem fits better, it is still hard

to say which model works better. Before stating our reason to use log-normal distributions

in our morphology learning experiments in Section 3.7, we are going to review some gen-

erating processes that generate power-law data or log-normal data in the following section.

3.6.3 Generating power-law and log-normal distributions

Based on the idea of preferential attachment, i.e. a ’richer-get-richer’ process, we can gen-

erate long-tail distributions. More specifically, if we generate new word occurrences more

likely of popular word types in previous process than rarely seen word types, then word

frequency of the generated data may exhibit Zipf’s law or log-normal distributions. Sup-

pose that we are given i words for a start, i ≥ 1. Let nik denote the number of occurrences

of all the words that occur exactly k times in the previous i words. Let Pr(wi = k) denote

the probability that the ith occurrence is a word that has already appeared k times in the

previous i− 1 words. Consider the following process as described by Simon (1955),

Pr(wi = k) = αn0 + Fi−1n
i
k,

where n0 and α are constants. If Fi−1 = (1−α)
i−1

, then asymptotically Pr(wi = k) will

approach a pow-law distribution. On the other hand, if the constant item is removed from

the above process, i.e.

Pr(wi = k) = Fi−1n
i
k,
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where Fi are independent and identically distributed variables with finite mean and vari-

ance, then asymptotically Pr(wi = k) will approach a log-normal distribution.

A even more naive generating process for Zipf’s law is Miller (1957)’s monkey, who

can not only type with a keyboard, but also distinguish space bar from other keys. If

Miller’s monkey manages to hit the space bar with a constant probability and never hits the

space bar twice subsequently, then the word frequency in the monkey’s output follows a

power law. One crucial assumption in Miller’s demonstration is that all non-space letters

are hit with equal probability. In the case that any two letters may be hit with different

probabilities, Perline Perline (1996) argues that for all words of length up to a constant,

their frequency-rank distribution converges to a log-normal distribution.

After reviewing a brief history of generating processes for power-law and log-normal

distributions, Mitzenmacher (2004) suggests that ”It might be reasonable to use which ever

distribution makes it easier to obtain results.” As also pointed out in (Mitzenmacher, 2004),

if a power-law distribution can have infinite mean and variance, it is inaccurate to analyze

it as log-normal. In present examples, we assume α > 0 in f(x) = Cx−α, thus it is safe for

us to assume either distribution. In the following section , for the sake of building proper

statistical models, we assume log-normal distributions for morphology learning, because

the assumption of power-law distribution does not quite work through.
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3.7 Gibbs sampling from log-normal distributions

In both Section 3.4 and 3.5, we assume stems, suffixes and segmentations are multinomially

distributed. With this assumption, as we have seen in Section 3.4.2 and 3.5.3, the inference

by either EM or Gibbs sampling does not converge over token-based input. We certainly

can pre-process token-based input into type-based so that the algorithms can work; how-

ever, the frequency information in token-based input will be lost. We have discussed in

the above section that, word frequency exhibits a long-tail distribution in real text data,

and we agree with Goldwater et al. (2006) that this special distribution of word frequency

should be captured in a generative model. After all, for both the EM algorithm and Gibbs

sampling, we only assume multinomial distribution so as to take advantage of its simplicity

in computation. For EM, the MLE solution has a simple closed-form; and for Gibbs sam-

pling, Dirichlet parameters can be integrated out. If we switch to a distribution modeling

long tails, we will need one that also aids the computation.

Word frequency is considered as exhibiting Zipf’s law in (Goldwater et al., 2006), fol-

lowing a traditional convention in literature. So as to generate power-law distributions, they

propose a Bayesian model composed of two successive generating processes. On the other

hand, as discussed in the above section, we argue that there is no theoretical aspect favoring

Zipf’s law over log-normal distributions in vocabulary study. Thus, to capture the long-tail

distribution of word frequency in morphology model, there are at least four alternative

models worth consideration: non-Bayesian model for power-law; non-Bayesian model for

log-normal; Bayesian model for power-law; and Bayesian model for log-normal. Even
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though, for the last experiment in Section 3.5.3, Gibbs sampling performs a little worse

than EM, this degree of difference in performance does not decide our choice of inference

algorithms in practice. In fact, one main reason for MCMC methods to become so popular,

even given the kind of success EM has gained in a long history, is because replacing max-

imization with simulation for data augmentation reduces the required computation, which

may not even be computationally tractable. Besides, Bayesian models for power-law dis-

tributions have been studied in (Goldwater et al., 2006), therefore, in this section, we will

explore the last alternative, employing a Bayesian inference method, Gibbs sampling, to

learn from log-normal data. Furthermore, compared to power-law distributions, we found

the following characteristics of log-normal distributions are very useful:

• the conjugate priors of log-normal distributions are known,

• the product of two log-normal random variables is also log-normal,

• log-normal are more flexible to model scatter points.

3.7.1 The probability model

A variable x has a log-normal distribution if log(x) is normally distributed. The probability

density function of a log-normal distribution is:

f(x|µ, σ) =
1

xσ
√

2π
e−

(ln(x−µ)2

2σ2
, x>0,

where µ is the mean and σ the standard deviation of the normally distributed logarithm of

the variable, and are usually referred as the location and scaler parameter on the logarithmic
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scale. Assume that stems t and suffixes f are generated from log-normal distributions with

parameters (µT , σT ) and (µF , σF ) respectively, then we we have

t|(µT , σT ), f |(µF , σF ) ∼ Log-normal(µT , σT ), Log-normal(µF , σF ).

So as to have conjugacy, we assume the priors, logarithm of mean log(µ) and precision τ

(=1/σ2), are generated by a Normal-Gamma process with hyperparameters m, p, α, β, i.e.

log(µT ), τT ∼ Normal-Gamma(mT , pT , αT , βT )

log(µF ), τF ∼ Normal-Gamma(mF , pF , αF , βF )

Again, given our independence assumption,

P (s = (t, f)|w, µT , τT , µF , τF ) = 1(w = t.f)P (t|µT , τT )P (f |µF , τF ), (3.7.1)

where 1(w = t.f) takes on value 1 if concatenation t.f forms word w, otherwise 0.

3.7.2 Sampling process

By Gibbs sampling, we alternatively sample all variables specified in the probability model,

conditioned on the current values of all other variables and the data. In our case, denote S−i

the segmentations of all words but the ith word, i.e. S−i = {s1, · · · , si−1, si+1, · · · , sN}.

According to the probability model defined above, for each word wi, we need to first gen-

erate parameters by the Normal-Gamma process conditioned on S−i, and then generate

segmentation si from log-normal distributions conditioned on the current parameters.

More specifically, given a fixed precision and constant priors, the posterior probability
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of mean can be computed as follows,

log(µT ) ∼ Normal(
NN̄T +mTpT

N + pT
, ((N + pT ) · τT )−

1
2 ),

log(µF ) ∼ Normal(
NN̄F +mFpF

N + pF
, ((N + pF ) · τF )−

1
2 ),

whereN is the number of samples, N̄T the sample mean of stem counts, and N̄F the sample

mean of suffix counts in S−i. Then given a fixed mean and constant priors, the posterior

probability of precision can be computed as follows,

τT ∼ Gamma(αT +
N

2
, (β−1

T +
1

2

N∑
i=1

(Nti − N̄T )2 +
pTN(N̄T − µT )2

2(pT +N)
)−1),

τF ∼ Gamma(αF +
N

2
, (β−1

F +
1

2

N∑
i=1

(Nfi − N̄F )2 +
pFN(N̄F − µF )2

2(pF +N)
)−1).

Finally, we sample segmentations for each word with the following conditional probability,

P (s = (t, f)|w,S−1, µT , τT , µF , τF ) = 1(w = t.f)× fµT ,τT (rt)× fµF ,τF (rf ), (3.7.2)

where rt and rf denote the frequency rank of stem t and suffix f respectively, and fµ,τ

computes the log-normal probability with location and precision parameters µ, τ .

3.7.3 Experiments

Following the experiment framework described in Section 3.2.3, we also evaluate log-

normal model with both the type-based and token-based criteria. The learning curves are

shown in Figure 3.12 and 3.13, for type-based and token-based evaluation respectively.

We can constrain possible segmentations of a word, by allowing only the divisions that

produces the suffixes in a given list as legal segmentations. Even though this trick does
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Figure 3.12: The type-based accuracy of Gibbs sampling with log-normal models.

Figure 3.13: The token-based accuracy of Gibbs sampling with log-normal models.

speed convergence, as for the multinomial model, the level of performance is not affected.

Therefore, for the sake of clarity, we are not showing this variation in above figures. The

most important variation we show in Figure 3.12 and 3.13, is the different forms of input.
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As discussed in Section 3.3.3, besides the type-based input, which contains distinct word

types only, we can also run the proposed model over token-based input, which is the text

data that reflects the real distribution of word frequency.

Recall that, none of the models that have been discussed so far successfully learns

from token-based input, but finally, as shown in Figure 3.12 and 3.13, the proposed log-

normal model can take advantage of the form of input that reflect real word frequency

distribution. When the input is type-based, both the multinomial model and the log-normal

model perform indistinguishably well with either the type-based or token-based evaluation.

Whereas, when the input is token-based, the multinomial model fails and the log-normal

model performs the best with either the type-based or token-based evaluation. Moreover,

when the evaluation is also token-based, the log-normal model takes a great advantage

of handling token-based input, distinctively outperforms its own running over type-based

input. We compare the errors of log-normal models trained over token-based or type-based

input, The confusion matrices for the log-normal model trained over type-based input is

shown in 3.14-a and the confusion matrices for token-based input is shown in 3.14-b.

In Table 3.8, we summarize the models we have discussed so far for morphology learn-

ing. The rule-based models don’t show attractive results in this experiment; however, as

shown in (Zhao and Marcus, 2011) and (Zhao and Marcus, 2012b), when learning from the

whole WSJ corpus, the rule-based model achieves rather good performance comparable

to the state-of-art. It is to our surprise that the EM algorithm is not applied to morphol-

ogy learning as widely as we expect. But this (generally) widely used algorithm shows

its strength again in our experiments. When the evaluation is type-based, EM performs
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(a) Log-normal over type-based input.

(b) Log-normal over token-based input.

Figure 3.14: Confusion matrices for log-normal models over different forms of input.

the best. The problem is, when multinomial distributions of stems, suffixes and segmen-

tations are assumed for the sake simplicity in computation, neither the EM algorithm nor

the Gibbs sampling learns from token-based input. As noticed in (Goldwater et al., 2006),

token-based input usually does not bother researchers on morphology learning, but we a-

gree with them that the real distribution of word frequency should be captured. Goldwater

et al. (2006) introduced an additional generating process to transform the multinomial sam-
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type-based acc. token-based acc.

types input tokens input types input tokens input

rule-based (conservative) 69.75% - 73.98% -

rule-based (greedy) 79.01% - 49.55% -

EM for multinomial 82.19% - 83.50% -

Gibbs for multinomial 79.98% - 81.06% -

Gibbs for log-normal 79.72% 77.89% 83.61% 89.53%

Table 3.8: Morphology learning with either type-based or token-based input.

ples to exhibit Zipf’s law; thus even though the token-based input can be generated by their

model, the overall performance is not improved. Instead, we first argues that it is not neces-

sary to follow the convention of analyzing word frequency with Zipf’s law (or power-law).

Then we propose a log-normal model that directly generates long-tail distributions. So as

to avoid mathematically complex computations, we use Gibbs sampling for inference. Fi-

nally, our effort on capturing the real distribution of word frequency pays back and leads to

the best model with token-based evaluation.

3.8 related work

Our main focus of this work is to capture a linguistic aspect for improving morpholo-

gy learning. This is a fundamental effort in work on morphology learning, and actually,

compared to supervised work, unsupervised work pay much more attention to capturing
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linguistic aspects in their models. The most popular way to incorporate more linguistic

features is to add more components to the probability model or generative process. For ex-

ample, in a widely used benchmark Morfessor (Creutz and Lagus, 2007), the probability of

a morpheme lexicon is the product of three factors: 1) the prior probability that the lexicon

is of the exact size; 2) the joint probability of generating all the morphemes in the lexicon;

and 3) the number of permutations of this lexicon. Furthermore, the generating probability

of each morpheme, is the product of form probability and usage probability, each of which

is of multiple components that can be decomposed further. In this way, properties of each

morpheme, such as frequency, length, left or right perplexity and so on are carefully consid-

ered. Similarly, when syntactic context is considered to help morphology learning in (Lee

et al., 2011), besides the basic lexicon and segmentation model, the generative process also

contains a model capturing the dependencies between the syntactic categories of adjacent

words and a model capturing morphological agreement between adjacent segmentations.

So as to leverage arbitrarily overlapping features, Poon et al. (2009) proposed a log-

linear model for morphology learning and achieves the state-of-the art performance. It is

also not uncommon to introduce a special step for massaging the intermediate output, for

example, Lignos et al. (2009) proposed a post-processing step to break compound words

after the induction of morpheme lexicons. And even though we only tried two simple s-

trategies, the decision process to segment words with acquired morphemes could be rather

complex as in (Dasgupta and Ng, 2007), carefully designed with linguistic knowledge on

morphology. Compared to these efforts, we are not only trying to capture the signature dis-

tributions of natural language, but also challenging the conventional linguistic story about
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it, making the modeling of this linguistic aspect more straightforward and improving per-

formance.

The experimental framework of this chapter closely follows Goldwater et al. (2006)’s

experiments on capturing the long-tail distribution of word frequency in morphology learn-

ing. Word frequency is considered as exhibiting Zipf’s law in (Goldwater et al., 2006),

following a traditional convention in literature. So as to generate power-law distribution-

s, they propose a Bayesian model composed of two successive generating processes. A

generalized Chinese restaurant process (Aldous, 1985), Pitman-Yor process (Ishwaran and

James, 2003) is exploited for producing power-law distributions in their work. Pitman-

Yor process is also based on the principle of preferential attachment (discussed in Section

3.6.3), moreover, the outcomes remain exchangeable (Pitman and Yor, 1997), i.e. the order-

ing of events does not affect their cumulative probability, and only the number of events of

each type does. This generating process is used as an ’adaptor’ for transforming outcomes

of any morphology model to exhibit Zipf’s law. The morphology model they experiment

with is exactly the one we described in Section 3.5, Gibbs sampling for multinomial.

We have experimented with both Bayesian and non-Bayesian approaches for morphol-

ogy learning in this work, even though Bayesian approaches become more and more popu-

lar recently. Even in earlier works that are not labeled as Bayesian, the Bayesian notion of

probability is quite often assumed, since one’s assumption of morphology model usually

affects the learning. For example, in a widely-used benchmark, Linguistica (Goldsmith,

2001), the principles of the minimum description length (MDL) framework is invoked, so

that an morphology model is not only judged by its ability to approximate data, but also on
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its complexity as a theory. This MDL framework is equivalent to a maximum a posteriori

(MAP) model, which is used to estimate the language model in another widely-used bench-

mark, Morfessor (Creutz and Lagus, 2007). However, MAP estimation is not considered

as a representative Bayesian method, since MAP estimates are point estimates. In more

recent works, such as (Goldwater et al., 2006; Lee et al., 2011; Chahuneau et al., 2013)

etc., Markov Chain Monte Carlo methods, such as Gibbs sampling, are used to simulate

posterior distributions. By the way, we figure out the full posterior analysis of Normal

distributions with the help of a lecture note by Jordan (2010).

Finally, we are not the only one trying to capture the long-tail distribution of word fre-

quency in morphology learning, even though we seem the only one managing to take ad-

vantage of this distribution. Besides the aforementioned work by Goldwater et al. (2006),

Chahuneau et al. (2013) also uses Pitman-Yor processes for their language model as power-

law generators. Creutz (2003) incorporates the Zipf’s law in their morphology model once,

but not in their following works. Moreover, as discussed in Chapter 2, the bootstrapping

algorithm proposed to acquire functional elements, including morphological endings for

English, is motivated by Chan (2008)’s work on morphology learning. Zipf’s law in mor-

phology is considered as the basic observation that motivates Chan (2008)’s work, however,

we didn’t introduce our algorithm based on the understanding of any particular distribution.
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3.9 Conclusion

Morphology learning is a widely studied topic and in this work, we focus on capturing

long-tail distributions in morphology models, and even manage to take advantage of this

signature distribution of natural language, improving the performance by a significant mar-

gin for a token-based evaluation. Compared to previous attentions to some linguistic aspect

in morphology learning, we are not only trying to capture it but also challenging the con-

ventional story about it, so as to really take advantage of the linguistic aspect of interest.

So as to deal with real text input, which reflects long-tail word distribution, we have

been open to rule-based methods, maximum likelihood methods and Bayesian methods.

And only the last proposed Bayesian model with log-normal assumptions handles token-

based input well. Even though previously proposed Bayesian models that generate power-

law distributions can also explain off word frequencies, our proposed model is the first one

that actually takes advantage of word frequencies for a toke-based evaluation and performs

better with real text input than with type-based input. Since word distribution is convec-

tionally studied by power-law distributions, we have devoted a section to examine whether

there is any theoretical aspect favoring Zipf’s law over log-normal distributions in vocabu-

lary study, and have discovered none. Thus, our contribution is not to report on a successful

play with Bayesian inference for another mathematically complex model, but is our will-

ingness to dive deep enough in linguistic theories and adapt them for our engineering use.
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Chapter 4

Determinism in POS tagging and

Chinese word segmentation

4.1 Introduction

In 8 recent work, interesting results are reported for applications of integer linear program-

ming (ILP) such as semantic role labeling (SRL) (Roth and Yih, 2005), dependency parsing

(Martins et al., 2009) and so on. In an ILP formulation, ’non-local’ deterministic constraints

on output structures can be naturally incorporated, such as ”a verb cannot take two subject

arguments” for SRL, the projectivity constraint for dependency parsing and so on. In the

contrast of probabilistic constraints that are estimated from training examples, this type of

non-local constraints is usually hand-written reflecting one’s linguistic knowledge.

Dynamic programming techniques based on Markov assumptions, such as Viterbi de-

8This chapter extends (Zhao and Marcus, 2012a) with elaborations but little extra work.
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coding, cannot handle those ’non-local’ constraints as discussed above. However, it is

possible to constrain Viterbi decoding by ’local’ deterministic constraints, e.g. ”assign la-

bel t to word w” for POS tagging. This type of constraint may come from human input

solicited in interactive inference procedure (Kristjansson et al., 2004).

In this work, we explore deterministic constraints for two fundamental NLP problems,

English POS tagging and Chinese word segmentation. We show by experiments that, with

proper representation, large number of deterministic constraints can be learned automati-

cally from training data, which can then be used to constrain probabilistic inference.

For POS tagging, the learned constraints are directly used to constrain Viterbi decod-

ing. The corresponding constrained tagger is 10 times faster than searching in a raw space

pruned with beam-width 5. Tagging accuracy is moderately improved as well. For Chi-

nese word segmentation (CWS), which can be formulated as character tagging, analogous

constraints can be learned with the same templates as English POS tagging. High-quality

constraints can be learned with respect to a special tagset, however, with this tagset, the

best segmentation accuracy is hard to achieve. Therefore, these character-based constraints

are not directly used for determining predictions as in English POS tagging. We propose

an ILP formulation of the CWS problem. By adopting this ILP formulation, segmentation

F-measure is increased from 0.968 to 0.974, as compared to Viterbi decoding with the same

feature set. Moreover, the learned constraints can be applied to reduce the number of pos-

sible words over a character sequence, i.e. to reduce the number of variables to set. This

reduction of problem size immediately speeds up an ILP solver by a factor of 100.

In the next section, we are going to explore deterministic constraints for English POS
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tagging. In Section 4.3, we explore deterministic constraints for Chinese word segmenta-

tion. We review related work in Section 4.4 and conclude in Section 4.5.

4.2 English POS tagging

It may help to get a preliminary sense of the determinism in POS tagging, if we con-

sider a feature-based representation of POS tags. Suppose that, following (Chomsky,

1970), we distinguish major lexical categories (Noun, Verb, Adjective and Adverb) by

two binary features: +|− N and +|− V. Let (+N, −V)=Noun, (−N, +V)=Verb, (+N,

+V)=Adjective, and (−N, −V)=Adverb. As depicted in Table 4.1, this is a much more

reduced feature-based analysis of lexical categories, compared to what we proposed in Sec-

tion 2.7.1. In this simple example illustrating determinism in language, we only show how

syntactic features are deterministically imposed by local context. For example, given this

feature-based analysis, a word occurring in between a preceding word the and a following

word of always bears the feature +N.

Nouns +N -V

Verbs -N +V

Adjectives +N +V

Adverbs -N -V

Table 4.1: A (reduced) feature-based analysis of the main lexical categories.

On the other hand, consider the annotation guideline of English Treebank (Marcus et al.,
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1993), according to which the POS tag VBG tags verbal gerunds, NNS tags nominal plurals,

DT tags determiners and so on. Following this POS representation, there are as many as

10 possible POS tags that may occur in between the–of, as estimated from the WSJ corpus

of Penn Treebank, including NN, NNS, JJ, VBG etc. At the first glance, the principle of

determinism does not necessarily lead to determinacy in POS tagging. However, for a

specific word, the context the–of is usually enough to decide a tag for it. Therefore, in

an engineering-oriented representation, an abstract property such as determinism may not

realize itself as generally as in linguistic studies, but we can always try lexicalized models

as NLPers usually do.

4.2.1 Templates of deterministic constraints

To explore determinacy in the distribution of POS tags in Penn Treebank, we need to con-

sider that a POS tag marks the basic syntactic category of a word, such as nominal, verbal

etc., as well as its morphological features, such as a gerund form, a plural form etc. Thus,

a constraint that may determine a word occurrence’s POS category should reflect both the

contextual and the morphological features of the corresponding word. For example, we

observe that a word ending with -es and occurring in the context of the–of is always tagged

with NNS in the WSJ corpus of Penn Treebank.

The practical difficulty in representing such deterministic constraints is that we do not

have a perfect mechanism to analyze morphological features of a word. Endings or prefixes

of English words do not deterministically mark their morphological transformations. For
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example, ending -s marks the plural form in word trades but not in word miss. We propose

to compute the morph feature of a word as the set of all of its possible tags, i.e. all tag

types that are assigned to the word in training data. For example, the morphological feature

of trades is computed as {NNS, VBZ}, and the morphological feature of miss is computed

as {NN, VB, VBP}, avoiding the complexity in morphological analyses. Furthermore, we

approximate unknown words in testing data by rare words in training data. For a word that

occurs less than 5 times in the training corpus, we compute its morph feature as its last two

characters, which is also conjoined with binary features indicating whether the rare word

contains digits, hyphens or upper-case characters respectively. For both frequent words and

rare words, we show examples of their morphological features in Table 4.2.

(frequent) (set of possible tags of the word)

w0=trades m0={NNS, VBZ}

(rare) (the last two characters...)

w0=time-shares m0={-es, HYPHEN}

Table 4.2: Morphological features of frequent words and rare words.

Furthermore, we consider bigram and trigram templates for generating potentially de-

terministic constraints, as described in Table 4.3. Let wi denote the ith word (i = −1, 1)

relative to the current word w0; and mi denote the morphological feature of wi. A bigram

constraint includes the current word w0 or its morphological feature m0 as well as one con-

textual word (w−1or w1) or its morphological feature (m−1 or m1). A trigram constraint

includes both contextual words or their morphological features.
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bigram
w−1w0, w0w1, m−1w0, w0m1

w−1m0, m0w1, m−1m0, m0m1

trigram
w−1w0w1, m−1w0w1, w−1m0w1, m−1m0w1

w−1w0m1, m−1w0m1, w−1m0m1, m−1m0m1

Table 4.3: The templates for deterministic constraints of POS tagging.

4.2.2 Learning and decoding of deterministic constraints

Given the templates proposed above, we can learn deterministic constraints by counting

and thresholding. In a given corpus, if a constraint c relative to w0 ’always’ assigns a

certain POS category t∗ to w0, with respect a threshold value thr, i.e.

count(c ∧ t0 = t∗)

count(c)
> thr,

we consider c a deterministic constraint. A cutoff number is also introduced to filter out

rarely seen patterns. For example, by the above definition, the constraint (w−1 = the, m0 =

{NNS, VBZ}, and w1 = of ) is deterministic, and it determines the tag of w0 to be NNS.

Given the deterministic constraint (w−1 = the, m0 = {NNS, VBZ}, and w1 = of ),

when we see the word trades, whose morph feature is {NNS, VBZ}, occurring between the-

of, this occurrence of trades should be tagged with NNS. However, there may be more

than one constraint invoked by the same sequence of words, and so as to achieve a higher

precision, rather than a higher recall, we make a tag decision by deterministic constraints

only if all relative constraints agree on the same tag. This way of decoding is purely rule-

based and involves no probabilistic inference. And this tagging process only produces tags
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where deterministic constraints apply, but doesn’t affect those ambiguous contexts.

4.2.3 Search in a constrained space

Following most previous work on supervised POS tagging, we consider tagging as a se-

quence classification problem and decompose sequence score over the linear structure, i.e.

t̂ = arg max
t∈tagGEN(w)

n∑
i=1

score(ti) (4.2.1)

where function tagGEN maps input sentence w = w1...wn to the set of tag sequences

that are of length n. A given score function score(ti) computes the score of tag ti in a

sequence regarding some model. If the number of possible tags for each word is a constant

T , the space of tagGEN is as large as T n. On the other hand, if we constrain tagGEN by

deterministic constraints, i.e. for some words, the number of possible tags is reduced to 1,

the search space is reduced to Tm, where m is the number of (unconstrained) words that

are not subject to any deterministic constraints.

In practice, brute-force searching the space of tagGEN is intractable. Thus dynamic

programming techniques are widely used for tagging, e.g. the Viterbi algorithm that runs

in O(nT 2). When searching in a constrained space by Viterbi, suppose that among the

m unconstrained words, m1 of them follow a word that has been tagged by deterministic

constraints and m2 (=m-m1) of them follow another unconstrained word. Viterbi decoder

runs in O(m1T +m2T
2). We compare this constrained search with beam search, a popular

pruning technique widely-used for tagging. If we only memorize the top B paths for each

state, i.e. beam width is B, then Viterbi runs in O(nBT ). As depicted in Figure 4.1, the
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constrained search and beam search can perfectly work together, since they are guided by

different standards. During a Viterbi beam search with beam B, when there is no deter-

ministic constraint applied, the search algorithm explores each word by expanding only B

most promising paths, however, when there is a deterministic constraint applied, no sort-

ing is required for pruning and all paths in the enumeration are simply appended by the

same successor state. Moreover, as we are going to discuss in the following section, the

deterministic constraints not only constrain the search space, but also provide additional

lookahead features to tagging models.

Figure 4.1: Beam search that is also constrained by deterministic constraints.

Lookahead features

The scores of tag predictions are usually computed in a high-dimensional feature space.

Besides lexicalized features, the tagging history also constitutes an important part of the
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feature space. By the Viterbi algorithm, we may look up the preceding tags in the dynamic

path, however, we cannot rely on the categorical information of the following words to

predict for the current word. On the other hand, when a Viterbi decoder searches in a

constrained space, the following words may have already been tagged by the deterministic

constraints, thus our feature space can be extended by lookahead features as well. More

specifically, we use the following templates to generate lookahead features:

t0&t1, t0&t1&t2, and t−1&t0&t1

where ti denotes the tag of the ith word relative to the current word w0. Putting these

templates together with those used in (Ratnaparkhi, 1996), we replicate the feature set

B in (Shen et al., 2007). As discussed in (Shen et al., 2007), categorical information of

neighbouring words on both sides of w0 helps resolve POS ambiguity of w0. So as to have

lookahead features available, Shen et al. (2007) proposed a bidirectional search instead of

left-to-right as in Viterbi decoding. In this work, we stick to the more straightforward left-

to-right search strategy, but lookahead features are still made available where deterministic

constraints are invoked. As we will see in the following section, using both bigram and

trigram templates discussed in Section 4.2.1, the deterministic constraints learnt from the

WSJ corpus cover more than 80% of the input tokens. Given that more than 80% words

have been tagged when we conduct the Viterbi decoding, the lookahead features made

available at this stage do help improve the tagging performance.
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precision recall F1

bigram 0.993 0.841 0.911

trigram 0.996 0.608 0.755

bi+trigram 0.992 0.857 0.920

Table 4.4: POS tagging with deterministic constraints.

4.2.4 Experiments on deterministic predictions of POS tags

In this section, we show how well the learnt deterministic constraints predict POS tags and

in the next section, we use these constraints to constrain probabilistic POS tagging. We

follow the conventional split of the Penn WSJ corpus, as in (Collins, 2002), (Shen et al.,

2007) etc, dividing this corpus into training set (sections 0-18), development set (sections

19-21) and the final test set (sections 22-24). The development set is used to choose training

iterations and other parameters, and the experiments in both this section and the next section

are done on the final test set.

For English POS tagging, we evaluate the deterministic constraints generated by the

templates described in Section 4.2.1. Since this tagging process only produces tags where

deterministic constraints apply, leaving alone those ambiguous contexts, we report F-measure

for tagging performance. Following the convention, precision p is defined as the percent-

age of correct predictions out of all predictions, and recall r is defined as the percentage of

correctly tagged words out of all words. Then F-measure F1 is computed by 2pr/(p+ r).

As shown in Table 4.4, deterministic constraints learned with both bigram and trigram
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m0={VBN, VBZ} & m1={JJ, VBD, VBN} → VBN

w0=also & m1={VBD, VBN} → RB

m0=−es & m−1={IN, RB, RP} → NNS

w0=last & w−1= the→ JJ

m0 = {NNS, VBZ} & w−1 =the & w1=of→ NNS

m0 = {NN, VBP} & w−1 =the & w1=of→ NN

Table 4.5: Examples of deterministic constraints for POS tagging.

templates are all very accurate in predicting POS tags for target words. Constraints gen-

erated by the bigram template alone can already cover 84.1% of the input words with a

high precision of 0.993. By adding the constraints generated by trigram template, recall

is increased to 0.857 with little loss in precision. Since these deterministic constraints are

applied before the decoding of probabilistic models, reliably high precision of their pre-

dictions is crucial. For all above experiments, we set the cutoff number as 5 and use a

threshold value of 0.99 to ensure highly precise predictions.

There are 114589 bigram deterministic constraints and 130647 trigram constraints

learned from the training data. We show a couple of examples of learnt constraints in

Table 4.5. A constraint is composed of the preceding word w−1, the current word w0 and

the following w1, as well as the morph features m−1, m0 and m1. For example, the first

constraint in Table 4.5 predicts tag VBN for w0, if the set of possible tags of w0 contain-

s {VBN, VBZ} and its following word w1 has possible tags of {JJ, VBD, VBN}. And as we

expect at the beginning of this section, the context the-of predicts different nominal tags
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for words with different morphological features. Thus we have proposed to calculate the

morphological feature of a word to be the set of its possible tags. In such a way, the abstract

understanding of determinism in the relationship between the syntactic feature of a word

and its local context is instantiated as determinacy in POS tagging.

4.2.5 Experiments on constrained English POS tagging

We replicate the English POS tagger described in (Collins, 2002) as the baseline model in

this work, which uses a perceptron like learning schema and the classic Viterbi algorithm

for decoding. As discussed in Section 4.2.3, we adopt a very compact feature set for English

POS tagging, the one used in (Ratnaparkhi, 1996)9. While searching in a constrained space,

we can also extend this feature set with some basic lookahead features and replicates the

feature set B used in (Shen et al., 2007). For both feature sets, we show the corresponding

tagging accuracy by the constrained search using the Viterbi algorithm, which takes the

tagging output of the deterministic process as input. With the feature set of (Ratnaparkhi,

1996), we also report for the unconstrained search that takes raw data as input, and use it

as a baseline model. However, with the feature set B in Shen et al. (2007) that contains

lookahead features, we can only run the constrained search, since without the input of

deterministically predicted POS tags, a left-to-right Viterbi decoder cannot look ahead at

the following words. Moreover, we vary the beam width, 1 or 5, for beam search. These

tagging results are shown in Table 4.6.

9The only modification is that we use the lowercase of the current word w0 instead of w0. Our implemen-

tation of this feature set is basically the same as the version used in (Collins, 2002).
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Ratnaparkhi (1996)’s feature

Beam=1 Beam=5

raw 96.46%/3× 97.05/1×

constrained 96.80%/14× 97.16/10×

Feature B in (Shen et al., 2007)

(Shen et al., 2007) 97.15% (Beam=3)

constrained 97.03%/11× 97.20/8×

Table 4.6: POS tagging accuracy and speed. The baseline for speed in all cases is the un-

constrained tagger using (Ratnaparkhi, 1996)’s feature and conducting a beam (=5) search.

Improved performance. English (supervised) POS tagging is a very well studied prob-

lem, and a English POS tagger with an accuracy above 97% can be easily built in a couple

of hours, e.g. the baseline model (beam = 5) in our work. When there is no further input

of unlabeled data, the state-of-art tagging accuracy is 97.33% (Shen et al., 2007), which is

achieved by using a much more complex feature set than the one replicated here. In this

work, we focus on two basic feature sets only, and show that the proposed system achieves

a higher performance compared to other systems with the same feature set. As shown in Ta-

ble 4.6, even without lookahead features, e.g. Ratnaparkhi (1996)’s feature, overall tagging

accuracy can be improved by conducting a deterministic process first, during which more

than 80% input are confidently tagged with very high precision. When a feature set with

lookahead features is used, e.g. Feature B in (Shen et al., 2007), the proposed search algo-
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rithm, which adopts the more straightforward left-to-right search strategy, performs better

than Shen et al. (2007)’s bidirectional search, achieving a tagging accuracy of 97.20%.

Improved efficiency. The proposed constrained search has even bigger advantage in ef-

ficiency than in performance. For example, our baseline model, which conducts a beam

(=5) search in a unconstrained space, can be speeded up by reducing the beam width, by

searching in a constrained space, or by both. As shown in in Table 4.6, by reducing the

beam width from 5 to 1, the system is 3 times fast; by searching in a constrained space, the

system is 10 times fast; and by both, the system is 14 times fast. Even with a more complex

feature set, searching in a constrained space is still 7 times faster than the baseline model.

NO trade-off between performance and efficiency. Pruning is usually employed when

efficiency is the priority to consider but the sacrifice in performance is also acceptable.

However, the proposed constrained search has shown to improve the efficiency without

hurting the performance. Consider Ratnaparkhi (1996)’s feature set. As shown in Table

4.6, when the beam-width is reduced from 5 to 1, the tagger (beam=1) is 3 times fast but

the tagging accuracy is badly hurt. In contrast, the constrained search with beam width 5 is

10 times fast, but the tagging accuracy is even moderately improved, increased to 97.16%.

4.3 Chinese Word Segmentation (CWS)

Given a sequence of Chinese characters with no spaces as delimiters of words, the task of

Chinese Word Segmentation (CWS) is to segment this sequence of characters into legal
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words. Considering the ambiguity problem that a Chinese character may appear in any

relative position in a word and the out-of-vocabulary (OOV) problem that it is impossible

to observe all words in training data, research on CWS are active.

In Section 4.3.1, we will first consider a character-based model for word segmentation,

in which way CWS can be solved as a sequence labeling problem. In Section 4.3.2, we

use the same templates for English POS tagging to generate deterministic constraints for

the character-based CWS model, and show that whether highly precise constraints can be

learnt is very sensitive to the representation of character tags.

In Section 4.3.3, we consider the word-based model for CWS and then in Section 4.3.4,

we propose an Integer Linear Programming (ILP) formulation of the word segmentation

problem. As shown with experiments in Section 4.3.5, when the joint inference of CWS

with POS tagging is not considered, solving CWS as an ILP problem achieves the state-of-

art performance. Furthermore, the deterministic constraints learnt with the character-based

CWS model can be applied to constrain word-based CWS models, e.g. the ILP formulation

in our work, and improve the efficiency by more than 100 times.

4.3.1 Word segmentation as character-based tagging

The Chinese word segmentation (CWS) problem is widely formulated as a character-based

tagging problem (Xue, 2003). The tag of each character represents its relative position in a

word. There are two popular tagsets considered in literature for tagging characters,

• IB: tag B tags the beginning of a word and I all other positions;
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• BMES: tag B, M and E represent the beginning, middle and end of a multi-character

word respectively, and S tags a single-character word.

For example, with tagset BMES, a word can be unambiguously composed by four consec-

utive characters that are associated with the tag sequence BMME. However, with tagset IB,

four consecutive characters that are associated with a tag sequence BIII may compose a

word if the following tag is B, or only form part of a word if the following tag is I. Even

though the character-based tagging accuracy is usually higher with tagset IB, tagset BMES is

more popular in use since the corresponding performance of CWS is usually higher, which

is, after all, the concerned problem.

A character-based CWS decoder is to find the highest scored tag sequence t̂, given the

input character sequence c, the same formulation for POS tagging, i.e.

t̂ = arg max
t∈tagGEN(c)

n∑
i=1

score(ti). (4.3.1)

4.3.2 Experiments on character-based deterministic constraints

We can use the same templates as described in Table 4.3 to generate potentially deter-

ministic constraints for character-based tagging, except that there are no morphological

features computed for Chinese characters. In this section, we are going to evaluate how

well these deterministic constraints predict relative positions of Chinese characters. We

run experiments of the Chinese word segmentation problem on the Penn Chinese Treebank

5.0. Following (Jiang et al., 2008a), we divide this corpus into training set (chapters 1-260),

development set (chapters 271-300) and the final test set (chapters 301-325).
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Recall that we discussed two tagsets IB and BMES in the above section. With respect to

either tagset, we use both bigram and trigram templates to learn character-based determin-

istic constraints, with the same cutoff number 5 and threshold value 0.99. These constraints

are then deterministically decoded to predict tags for sequences of Chinese characters. In

the experiments of this section, tagging output are evaluated by the F-measure of the tagged

character sequences, i.e. the same evaluation with the experiments on English POS tagging,

instead of by the F-measure of the word segmentation problem.

As shown in Table 4.7, when tagset IB is used for character-based tagging, highly

precise deterministic constraints can be learned. However, when tagset BMES is used, the

learned constraints do not always make reliable predictions, and the overall precision is

not high enough to constrain a following probabilistic model. Therefore, we will only use

the deterministic constraints that predict IB tags in the following CWS experiments. It is

interesting but not surprising to notice, again, that the determinacy of a problem is sensitive

to its representation. Since it is hard to achieve the best segmentations with tagset IB,

we propose an indirect way to use these constraints in the following section, instead of

applying these constraints as straightforwardly as in English POS tagging.

tagset precision recall F1

BMES 0.989 0.566 0.720

IB 0.996 0.686 0.812

Table 4.7: Character-based tagging with deterministic constraints.
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4.3.3 Word-based segmentation model

In this section, we are going to describe a word-based segmentation model. The output

of a character-based tagging process is a sequence of characters with tags indicating their

relative positions in words. And a post-processing step is required for the composition of

words according to these output tags. Thus the choice of character-based tagset is sensitive.

However, with a word-based model, the output are directly word segmentations, thus no

post-processing step is required.

Suppose that function segGEN computes all possible segmentations of an input se-

quence. Given a sequence of characters c, function segGEN maps c to sequences of words

that form a segmentation of c. For example, w = (c1..cl1)...(cn−lk+1...cn) represents a seg-

mentation of k words, and the lengths of the first and last word are l1 and lk respectively. A

word-based CWS decoder finds the highest scored word sequence ŵ in segGEN(c), i.e.

ŵ = arg max
w∈segGEN(c)

|w|∑
i=1

score(wi), (4.3.2)

In the contrast of character-based models, a word-based CWS model directly computes

output of words, thus no further errors may be made in the transformation of representa-

tions. In early work, rule-based models are proposed to find words one by one based on

heuristics such as forward maximum match (Sproat et al., 1996). In more recent work,

Viterbi-like exact search or beam search are more favorable, e.g. (Zhang and Clark, 2007)

and (Jiang et al., 2008a). We propose an Integer Linear Programming (ILP) formulation of

the word segmentation problem, which naturally provides a word-based model for CWS.

Moreover, character-based deterministic constraints, as discussed in Section 4.3.1, can be
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easily applied to constrain the solution of this ILP problem.

4.3.4 An ILP formulation of CWS

Given a character sequence c=c1...cn, there are s(= n(n + 1)/2) possible words that are

contiguous subsets of c, i.e. w1, ..., ws ⊆ c. Our goal is to find an optimal solution

x = x1...xs that maximizes
s∑
i=1

score(wi) · xi, (4.3.3)

subject to

(1)
∑
i:c∈wi

xi = 1, ∀c ∈ c;

(2)xi ∈ {0, 1}, 1 ≤ i ≤ s.

The boolean value of xi, as guaranteed by constraint (2), indicates whether wi is selected in

the segmentation solution or not. Constraint (1) requires every character to be included in

exactly one selected word, thus guarantees a proper segmentation of the whole sequence.

Take n = 2 for example, i.e. c = c1c2, the set of possible words is {c1, c2, c1c2}, i.e.

s = |x| = 3. There are only two possible solutions subject to constraints (1) and (2),

x = 110 giving an output set {c1, c2}, or x = 001 giving an output set {c1c2}.

The efficiency of solving this problem depends on the number of possible words (con-

tiguous subsets) over a character sequence, i.e. the number of components of x. So as to

reduce the number of components |x|, we use deterministic constraints to predict IB tags

first. Possible words are then generated with respect to the partially tagged character se-

quence. More specifically, a character that is tagged with B should always occur at the
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beginning of a possible word. Suppose that m characters are tagged with B and the maxi-

mum distance from one character of tag B to the next character of tag B is l. The number of

possible words for this input sequence is upper bounded by m(l(l + 1)/2). For example,

for a raw input sequence of characters with length n = 11, the number of possible words is

55, i.e. |x| = 55; in contrast, if four of the input characters are tagged with B as illustrated

in Table 4.8, the number of possible words, i.e. |x|, is reduced from 55 to 18.

Table 4.8: Comparison of raw input and constrained input.

4.3.5 Experiments on Chinese word segmentation

In this section, we experiment with both character-based and word-based models for the

Chinese word segmentation problem. The same dataset with the experiments on character-

based deterministic constraints is used, i.e. the one descried in Section 4.3.2. We evaluate

word segmentations by F-measure that is calculated as follows:

prec =
#correctly predicted words

#all word predictions

recall =
#correctly predicted words

#all words

F-measure =
2 ∗ prec ∗ recall
prec+ recall

.
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One training schema and two decoders

For tagging Chinese characters, we use the same baseline model as for English POS tag-

ging, i.e. a perceptron-like training schema and the Viterbi algorithm for decoding. The

same training schema can also be used to learn word-based CWS models, e.g. the ILP

formulation proposed in this work.

More specifically, we use the following linear model for scoring predictions:

score(y)=θTφ(x, y), (4.3.4)

where φ(x,y) is a high-dimensional binary feature representation of y over input x and θ

contains weights of these features. Parameter θ can be estimated by the averaged perceptron

as described in (Collins, 2002). This training algorithm relies on the choice of decoding

algorithm. When we experiment with different decoders, e.g. a Viterbi decoder or an ILP

solver, the parameter weights in use are trained with the same decoding algorithm.

Like other tagging problems, Viterbi-style decoding is widely used for character-based

tagging for CWS. On the other hand, we proposed an ILP formulation of the CWS problem

in Section 4.3.4, which naturally provides a word-based CWS model. We can easily tag

each character with its relative positions in words, thus the word segmentation output can

be deterministically transformed to character-based tagging output with any selected tagset.

From this view, the highest scoring tagging sequence can be computed as an ILP problem

subject to structural constraints, giving us an inference alternative to Viterbi decoding. For

example, take the example of input character sequence c = c1c2. There are 4 tag sequences

evaluated by a Viterbi decoder in searching of the highest scoring sequence: BI, BB, IB and
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II. In contrast, recall the discussion in Section 4.3.4. There is an extra global constraint

implicitly imposed in word-based CWS models, which requires the output tagged sequence

to form a legal segmentation. Thus, there are only two tag sequences evaluated by an ILP

solver, BB and BI, which correspond to two possible segmentations {c1, c2} and {c1c2}.

Feature sets

Word segmentation output can be deterministically transformed to character-based tagging

sequences, thus character-based CWS features can be directly used in word-based CWS

models. Consider a character-based feature function φ(c, t, c) that maps a character-tag

pair to a high-dimensional feature space, with respect to an input character sequence c.

For a possible word over c of length l , wi = ci0 ...ci0+l−1, tag each character cij in this

word with a character-based tag tij . Character-based features of wi can be computed as

{φ(cij , tij , c)|0 ≤ j < l}. The first row of Table 4.9 illustrates character-based features of

a word of length 3, which is tagged with tagset BMES.

We adopt the ’non-lexical-target’ feature templates used in (Jiang et al., 2008a), which

generate character-based features for learning. Let ci denote the ith character relative to the

current character c0 and t0 denote the tag assigned to c0. The following templates are used:

ci&t0(i = −2...2), cici+1&t0(i = −2...1) and c−1c1&t0.

Word-based feature templates usually include the word itself, sub-words contained in

the word, contextual characters/words and so on. It has been shown that combining the

use of character- and word-based features helps improve performance. However, in the
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character-based tagging formulation, word-based features are non-local. To incorporate

these non-local features and make the search tractable, various efforts have been made. For

example, Jiang et al. (2008a) combine different levels of knowledge in an outside linear

model of a two-layer cascaded model; Jiang et al. (2008b) uses the forest re-ranking tech-

nique (Huang, 2008); and in (Kruengkrai et al., 2009), only known words in vocabulary are

included in the hybrid lattice consisting of both character- and word-level nodes.

When character-based features are incorporated into a word-based model, some word-

based features are no longer of interest, such as the starting character of a word, sub-words

contained in the word, contextual characters and so on. In this work, we only consider

word count as an addition to character-based features, following the idea of using web-

scale features in previous work, e.g. (Bansal and Klein, 2011). For a possible word w,

let count(w) the times word w occurs in training data. The word count number is further

processed following (Bansal and Klein, 2011), wc(w) = floor(log(count(w)) ∗ 5)/5. In

addition to wc(wi), we also use corresponding word count features of possible words that

are composed of the boundary and contextual characters of wi. The specific word-based

feature templates are illustrated in the second row of Table 4.9.

character-based φ(ci0 , B, c), φ(ci1 , M, c), φ(ci2 , E, c)

word-based wc(ci0ci1ci2), wc(clci0), wc(ci2cr)

Table 4.9: Character-based and word-based features of a possible word wi . Suppose that

wi = ci0ci1ci2 , and its preceding and following characters are cl and cr respectively.
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precision recall F-measure

Viterbi 0.971 0.966 0.968

ILP 0.970 0.977 0.974

(Jiang et al., 2008a), POS- 0.971

(Jiang et al., 2008a), POS+ 0.973

Table 4.10: F-measure on Chinese word segmentation. Only character-based features are

used. POS-/+: perceptron trained without/with POS.

Results

Tagset BMES is used for character-based tagging as well as for mapping words to character-

based feature space. We use the same Viterbi decoder as implemented for English POS

tagging and use a non-commercial ILP solver included in GNU Linear Programming Kit

(GLPK), version 4.3. As shown in Table 4.10, when the same feature set is used, the ILP

solver returns more accurate segmentations than the Viterbi decoder. More specifically, the

F-measure is improved by a relative error reduction of 18.8%, from 0.968 to 0.974.

These results are compared to the core perceptron trained without POS in (Jiang et al.,

2008a). They only report results with ’lexical-target’ features, a richer feature set than the

one we use here. As shown in Table 4.10, we achieve higher performance even with more

compact features. Joint inference of CWS and Chinese POS tagging is popularly studied

in recent work, e.g. (Ng and Low, 2004), (Jiang et al., 2008a), and (Kruengkrai et al.,

2009). It has been shown that better performance can be achieved with joint inference, e.g.
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F-measure 0.978 by the cascaded model in (Jiang et al., 2008a). We focus on the task of

word segmentation only in this work and show that a comparable F-measure is achievable

in a much more efficient manner. Sun (2011) uses the stacked learning technique to merge

different levels of predictors, obtaining a combined system that beats individual ones.

Word-based features can be easily incorporated, since the ILP formulation is more nat-

urally viewed as a word-based model. We extend character-based features with the word

count features as described in the above section. Currently, we only use word counts com-

puted from training data, i.e. still a closed test. The addition of these features makes a

moderate improvement on the F-measure, from 0.974 to 0.975.

As discussed in Section 4.3.4, if we are able to determine that some characters always

start new words, the number of possible words is reduced, i.e. the number of variables

in an ILP solution is reduced. As shown in Table 4.11, when character sequences are

partially tagged by deterministic constraints, the number of possible words per sentence,

i.e. avg. |x|, is reduced from 1290.4 to 83.7. This reduction of ILP problem size has a

very important impact on the efficiency. As shown in Table 4.11, when taking constrained

input, the segmentation speed is increased by 107 times over taking raw input, from 113

characters per second to 12,190 characters per second on a dual-core 3.0HZ CPU.

Deterministic constraints predicting IB tags are only used here for constraining possible

words. They are very accurate as shown in Section 4.3.2. Few gold predictions are missed

from the constrained set of possible words. As shown in Table 4.11, F-measure is not

affected by applying these constraints, while the efficiency is significantly improved.
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F-measure avg. |x| #char per sec.

raw 0.974 1290.4 113 (1×)

constrained 0.974 83.75 12190 (107×)

Table 4.11: ILP problem size and segmentation speed.

4.4 Related work

We are going to review related work in three categories for this chapter: previous work on

English POS tagging, previous work on Chinese word segmentation and previous work on

deterministic algorithms.

POS tagging. POS tagging, especially for English, is a very well studied problem and a

English POS tagger with an accuracy above 97% can be easily built in a couple of hours.

More important, this problem has been widely studied for the introduction of new statistical

models of sequence classification problems, the introduction of new learning frameworks

and the introduction of new searching strategies. For example, influent models such as

Hidden Markov Models (HMM) and Conditional Random Fields (CRF) (Lafferty et al.,

2001) are usually introduced to NLPers with experiments on POS tagging; Collins (2002)

proposed a very generally used, perceptron like learning framework with POS tagging as

a main application; I personally get acquainted with the Maximum Entropy framework

(Ratnaparkhi, 1996) and Support Vector Machines (SVM) (Joachims, 2008) through ex-

periments on POS tagging; and search strategies such as bidirectional (Shen et al., 2007)

and easiest-first (Tsuruoka and Tsujii, 2005) are all first studied by the authors in experi-
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ments on POS tagging and then other applications in their following work (Shen and Joshi,

2008; Tsuruoka et al., 2011). Thus, when we are to explore the linguistic concept of de-

terminism as deterministic constraints in NLP applications, the first application came up in

our mind is POS tagging.

Chinese word segmentation. We then explore deterministic constraints for a more chal-

lenging task, Chinese word segmentation. In the earliest work on Chinese word segmenta-

tion, word-based CWS models are more popular, e.g. words are found one by one according

to forward maximum match (Sproat et al., 1996). Since Xue (2003) proposed to tag each

character with relative position information, character-based CWS models become domi-

nant and all popular techniques proposed for sequence classification problem are naturally

applicable to Chinese word segmentation, such as Maximum Entropy approaches (Low

et al., 2005), CRF (Tseng et al., 2005) and so on. Once classified as yet another sequence

classification problem, CWS may lose attention, however, recent research on Chinese word

segmentation are very active, and especially on the joint inference of word segmentation

and POS tagging, e.g. (Jiang et al., 2008a; Kruengkrai et al., 2009; Zeng et al., 2013). In

recent work, word-based models also retrieve certain interests, e.g. (Sun, 2011; Zhang and

Clark, 2007; Ng and Low, 2004). It is to our surprise that, the ILP formulation of this word

segmentation problem has never been tried before, which easily achieves the state-of-art

performance above 97% as we have shown in this work.
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Deterministic algorithms. At least up to our knowledge of syntax-related NLP applica-

tions such as POS tagging and (constituent/dependency) parsing, when deterministic algo-

rithms are considered for probabilistic inference, it always refers to a greedy search, i.e.

a beam search with the beam of one. Since POS taggers already run fast with modern

processors, deterministic search seems mainly interesting for parsing, since speedup for

parsing is still of practical interest (Wang et al., 2006). Furthermore, as argued in (Nivre

and R.McDonald, 2008), with a greedy search, richer features are more easily employed,

thus to some degree compensate the loss of performance due to the approximate search.

As we have already discussed, the deterministic constraints proposed here manifest deter-

minism in language, so they differ with and can work well with deterministic search which

is only a statistical pruning technique. The most similar idea with these deterministic con-

straints, as we found in syntax-related applications, is the hard constraints of chart parsing

proposed by Roark and Hollingshead (2009). They have also noticed that, in a pipeline

system where the following search is constrained by preprocessed constraints, the high

precision of these constraints is crucial to the overall performance. However, they tolerate

much less accurate constraints than us to constrain the following probabilistic search, so the

concept of determinism plays no role in their work. The use of hard constraints is shown

to improve both performance and efficiency in their experiments on parsing, but only com-

pared to a very fundamental baseline model. In contrast, we have applied the deterministic

constraints to the state-of-art POS tagging and Chinese word segmentation models, and

also achieved improvements in both performance and efficiency. In the sense of capturing

determinism in language, this work is mainly motivated by early work on deterministic
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parsing, e.g. Marcus (1980)’s parser which deterministically interprets most context-free

grammars with the help of lookahead features. It may be interesting to note that, NLPers

have been exercising with more and more advanced techniques to deal with ambiguity and

nondeterminism in natural languages, however, linguists are still making effort on invent-

ing new representations of linguistic structures to remove nondeterminism theoretically,

e.g. Chomsky (2007)’s Phase theory.

4.5 Conclusion and future work

We have shown by experiments that large number of deterministic constraints can be

learned from training examples, as long as the proper representation is used. These de-

terministic constraints are very useful in constraining probabilistic search, for example,

they may be directly used for determining predictions as in English POS tagging, or used

for reducing the number of variables in an ILP solution as in Chinese word segmentation.

The most notable advantage in using these constraints is the increased efficiency. The two

applications are both well-studied; there isn’t much space for improving accuracy. Even

so, we have shown that as tested with the same feature set for CWS, the proposed ILP

formulation significantly improves the F-measure as compared to Viterbi decoding.

These two simple applications suggest that it is of interest to explore data-driven de-

terministic constraints learnt from training examples. There are more interesting ways in

applying these constraints, which we are going to study in future work.
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Chapter 5

Conclusion and personal reflections

We have explored the distinction between closed- and open-class words in Chapter 2, long-

tail word distributions in Chapter 3, and deterministic constraints in Chapter 4. In this

chapter, we will first summarize the engineering achievements we obtain through the ex-

ploration of these linguistic aspects and then discuss our lessons in this line of research.

5.1 Engineering achievements

Along our exploration of some linguistic aspects, we achieve the following improvements

for certain NLP applications.

• The distinction between closed-class and open-class words is crucial in practicing a

feature-based view of POS tags, which suggests a new formulation of POS tagging

that requires less resource to learn. As an application of this distinction, we proposed

a totally unsupervised POS tagging system which achieves comparable performance
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with those unsupervised POS tagging systems that require the input of a dictionary.

• Even though we are not the first to explore long-tail distributions for morphology

learning, instead of explaining off this distribution, our proposed model is the first

that can actually take advantage of the real word distribution. By using the log-

normal distribution to model the long-tail distributions, we achieve the state-of-the-

art performance for a token-based evaluation of the English verb inflections.

• In contrast to pruning, deterministic constraints on probabilistic inference speed up

searching without a trade-off in performance. Instead of composing deterministic

constraints with expert knowledge, we propose to learn deterministic constraints in a

data-driven way. For POS tagging, the learnt deterministic constraints resolve more

than 80% of the tagging predictions. These predictions can not only reduce the search

space for the following decoding process but also provide additional features for the

following statistical inference. For the problem of Chinese word segmentation, the

learnt character-based constraints are used to reduce the search space of a word-

based CWS model. So as to use these constraints in a natural way, we propose an

ILP formulation of the word segmentation problem. While matching the state-of-the-

art performance for both applications, the proposed use of deterministic constraints

speeds up the Viterbi decoder for English POS tagging by a factor of 10 and speeds

up the ILP solver for Chinese word segmentation by a factor of 100.

As implied in the above summarization, for supervised NLP tasks, the heavily lexical-

ized models that learn well from large annotated corpora have achieved notable success in
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fundamental applications such as POS tagging and word segmentations. In other words,

it becomes harder and harder to achieve new state-of-the-art performance for these appli-

cations. However, the same problem formulation or selected model that work well for

a supervised learning task may not be appropriate for unsupervised learning of the same

problem. Thus we need to resort to the linguistic aspects of these NLP applications and

consider new approaches to attack these problems.

One engineering difficulty in attacking these unsupervised learning problems is the

chaos in evaluation. For supervised learning tasks, we have become used to using the stan-

dard data resource, following the standard annotation guidelines and playing the standard

games. However, for unsupervised learning, it is hard to produce results in a ’standard’

form to compare, since we are now learning from raw text only but not standardized data.

We argue that, the best way to evaluate the product of a unsupervised learning is to use it

in a more advanced application. For example, we evaluate the acquisition of closed-class

words in unsupervised POS tagging. And we suggest that our (totally) unsupervised POS

tagging of the core lexical categories makes more sense for unsupervised learning of more

complex linguistic structures. Moreover, our work on morphology learning pays attention

to token-based input and token-based evaluations, but there is no token-based data resource

with morphological annotations for English. Thus, following (Goldwater et al., 2006), we

build gold standards for English inflections from the POS annotation of the Penn Treebank.

This makes our work difficult to compare since most work on morphology learning com-

petes for type-based evaluations only. It took us a long time to fully understand why our

unsupervised work was most appreciated by reviewers who share the same strong interest
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in linguistics. And it gradually emerges as a big picture to finish so as to achieve something

not affected by the chaos in evaluation for unsupervised work.

On the other hand, we have also explored linguistic expects for supervised tasks, and

our main contribution lies in the improvement of efficiency. And more importantly, the

proposed deterministic constraints improve efficiency without a trade-off in performance.

Even though in applications such as POS tagging or word segmentation, efficiency does not

bother researchers too much, it is certainly worth further exploration of these deterministic

constraints for more advanced applications such as parsing and machine translation. More-

over, our experiments have led us to consider less popular machine learning frameworks

such as Integer Linear Programming, which has many advantages but not in efficiency.

5.2 Personal reflections on linguistics and engineering

Even though not included in this dissertation, we have a formal syntax study (Zhao, 2010)

of a special functional word in Chinese, BA, which, simply speaking, marks causatives

in Chinese. This work has two important effects on my following work: first, I realized

that I am an engineer and to speak as a linguist is hard; second, it intrigued my interest

in functional words and determinism in language. Then, so as to explore functional words

and determinism in language, I choose unsupervised POS tagging and word segmentation

as the playground. It is not a traditional way to build one’s research line, and I won’t

recommend it. More typically, in our field, one’s dissertation concentrates either on a

specific application or on a specific technique. After reviewing classic work in our field, I
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realize that most breakthroughs are actually motivated by proper linguistic considerations,

so our path does not have any exclusive advantage in getting the linguistic sense.

Then I wonder for a long time whether my training in linguistics helps or not for my

NLP work. It is a real question because a possible answer is that my linguistic background

may actually constrain my steps. For example, if I was not aware that ”Zipf’s law” is

almost interchangeably used with the term ’long-tail distribution’ in vocabulary study, I

won’t devote so much effort to examine whether there is any theoretical aspect favoring

Zipf’s law over log-normal distributions in vocabulary study. Only after this study, we

feel free to propose a new model for long-tail distributions, but for a typical engineering

study, as long as performance is improved, such an exploration is not necessary and to try

a new distribution is a piece of cake for engineers. However, without a formal training

in syntax, I won’t have enough background to challenge the most popular formulation of

POS tagging. Our feature-based view of POS tags not only suggests a new framework for

unsupervised POS tagging but also suggests the patterns to learn deterministic constraints

for supervised POS tagging. As shown by our experiments in Chinese word segmentation,

proper deterministic constraints are not so easy and natural to learn, and that our first try

works in English POS tagging is not luck but a result of our previous work.

Another doubt of my obsession in linguistics comes from its bad effect in my writing.

When presenting my early work to the NLP community, I unintentionally assumed my au-

dience has sympathy for linguistics. Later, I note that it is no longer popular to express

one’s linguistic opinion, instead, linguistic motivations are expressed as formal character-

istics of data. From this point of view, natural language is simply another kind of data, so
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that the experiments on NLP applications with advanced machine learning techniques lead

to more general conclusions. It has been a very effective track, but the problem is that,

compared to the amazing improvements our field achieved when machine learning tech-

niques were first introduced, recent achievements on this track are less and less exciting.

In this context, we may conclude this dissertation by justifying our twisted line of research

from the following angle: explorations (on linguistic aspects) ought to be launched, one of

them may discover the new continent (even though most of them will fail).
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Appendix A

Examples of the deterministic

constraints

In this appendix, we provide more details of the deterministic constraints learnt with bi-

gram and trigram patterns. In Figure A.1, we show the top 10 constraints that actually

resolve ambiguity for English POS tagging. When tagging the 56684 words in the test da-

ta, the average number of deterministic constraints fired for each word is 7.3, e.g. for 6664

words there are 16 deterministic constraints applied to their contexts. For the 48276 words

occurring in the contexts that evoke deterministic rules, only 68 of them are not tagged at

the first stage due to the inconsistency between deterministic rules. On the other hand, s-

ince there is no morphological feature composed in the patterns that generate deterministic

constraints for Chinese word segmentation, the average number of deterministic constraints

fired for each character is only 1.36. When tagging Chinese characters with the IB tagset,

there are at most 3 constraints fired for the same word occurrences, and there are 2502 such
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occurrences. Similar with English POS tagging, there are only 13 word occurrences where

the fired deterministic constraints do not agree on the same prediction. In Figure A.2, we

show the top 10 constraints that predict the beginning of a word.

Figure A.1: Examples of deterministic constraints for English POS tagging, and the count

of how many times each rule is fired when tagging the test data is given in [].

Figure A.2: Examples of deterministic constraints for Chinese word segmentation, and the

count of how many times each rule is fired when tagging the test data is given in [].
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