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Topological Insulators and Superconductors

Abstract
We study theoretical properties of robust low energy electronic excitations associated with topological
insulators and superconductors. The bulk materials are described by non-interacting single particle band
Hamiltonians with a finite excitation gap. Their topological phases are classifed according to symmetries and
dimensions, characterized by discrete bulk invariants, and correspond to topologically protected gapless
excitations bounded to boundaries, interfaces or other kinds of defects. In particular, we study the metallic
surface states of the three dimensional topological insulator Bi1-xSbx, critical edge transport behavior of
quantum spin Hall insulators (QSHI) using point contact geometry, Majorana bound states in three
dimensions and their resemblance to Ising statistics, and various gapless modes accompanying topological
defects in insulators and superconductors. We illustrate the topological phase of Bi1-xSbx by calculating its
surface energy spectrum numerically from a previously proposed tight binding model. An odd number of
surface Dirac cones occupy the surface Brillouin zone and exhibit the strong topological nature of the
material. We investigate the critical conductance behavior of a point contact in QSHI using a spinful Luttinger
liquid description along the edges. For weak interactions, a novel intermediate fixed point controls the pinch-
off transition, and the universal crossover scaling function of conductance is extracted from the solvable limits
for the Luttinger parameter g=1-ɛ, g=1/2+ɛ, and g=1/31/2. Majorana fermions are studied as zero energy
quasiparticle excitations associated with pointlike topological defects in 3D superconductors. The low energy
modes are described phenomenologically in a Dirac-type Bogoliubov de Gennes (BdG) framework, and the
Majorana bound states are shown to exhibit Ising non-Abelian statistics despite living in (3+1) dimensions. In
particular, novel braidless operations are shown to be responsible for fermion parity pumping processes, and
are unique features in 3D. A unified framework to classify topological defects in insulators and
superconductors is developed. A 2+8-fold periodic classification is discovered. A generalized bulk-boundary
correspondence equates the topology to robust gapless defect modes. Physical proposals are made especially
using heterostructures to achieve desirable low energy electronic excitations in line and point defects as well as
adiabatic cycles.
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ABSTRACT

TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS

Jeffrey C.Y. Teo

Charles L. Kane

We study theoretical properties of robust low energy electronic excitations as-

sociated with topological insulators and superconductors. The bulk materials are

described by non-interacting single particle band Hamiltonians with a finite ex-

citation gap. Their topological phases are classifed according to symmetries and

dimensions, characterized by discrete bulk invariants, and correspond to topologi-

cally protected gapless excitations bounded to boundaries, interfaces or other kinds

of defects. In particular, we study the metallic surface states of the three dimen-

sional topological insulator Bi1−xSbx, critical edge transport behavior of quantum

spin Hall insulators (QSHI) using point contact geometry, Majorana bound states

in three dimensions and their resemblance to Ising statistics, and various gapless

modes accompanying topological defects in insulators and superconductors.

We illustrate the topological phase of Bi1−xSbx by calculating its surface energy

spectrum numerically from a previously proposed tight binding model. An odd

number of surface Dirac cones occupy the surface Brillouin zone and exhibit the

strong topological nature of the material. We investigate the critical conductance

behavior of a point contact in QSHI using a spinful Luttinger liquid description

along the edges. For weak interactions, a novel intermediate fixed point controls the
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pinch-off transition, and the universal crossover scaling function of conductance is

extracted from the solvable limits for the Luttinger parameter g = 1−ǫ, g = 1/2+ǫ,

and g = 1/
√
3.

Majorana fermions are studied as zero energy quasiparticle excitations associated

with pointlike topological defects in 3D superconductors. The low energy modes

are described phenomenologically in a Dirac-type Bogoliubov de Gennes (BdG)

framework, and the Majorana bound states are shown to exhibit Ising non-Abelian

statistics despite living in (3 + 1) dimensions. In particular, novel braidless oper-

ations are shown to be responsible for fermion parity pumping processes, and are

unique features in 3D.

A unified framework to classify topological defects in insulators and supercon-

ductors is developed. A 2+8-fold periodic classification is discovered. A generalized

bulk-boundary correspondence equates the topology to robust gapless defect modes.

Physical proposals are made especially using heterostructures to achieve desirable

low energy electronic excitations in line and point defects as well as adiabatic cycles.
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subjects of the dissertation. Contents in the other sections are mostly originated

from the four articles unless specifically referred otherwise.
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Chapter 1

Introduction

One of the greatest triumphs of physics in modern history is the discovery of quan-

tum Hall effect [Klitzing, Dorda and Pepper, 1980]. The quantized Hall conductivity

is measured with remarkable accuracy (∼1 part in 109) and sets the standard for

the universal constant e2/h of conductivity. Surprisingly, the integer Hall plateaus

are measured by relatively dirty samples of semiconductors. This rules out the pos-

sibility of broken symmetry phases as there are no order parameters in the system.

Quantum Hall effect thus gives rise to a new generation of phases of matter, known

as topological phases [Thouless et.al., 1982; Wen, 1995]. They are characterized

by the topology of their ground state, in the sense that certain quantities (con-

ductivity, charge and statistics of excitations, ground state degeneracies, etc) are

invariant under small perturbations (such as disorder and interaction) and cannot

change without closing the energy gap of excitations in the bulk of the material.

All quantum Hall phases are two dimensional time reversal breaking phases.

1



Electrons are effectively trapped on a 2D plane such as a stratified GaAs het-

erostructure or a layer of graphene, and experience a magnetic field perpendicular

to the surface. For a semiconductor with ∼1012 number of charge carriers per cm2,

one typically needs a field of ∼10T to observe the first few Hall plateaus. The energy

scale is set by the cyclotron frequency, which then falls in the temperature scale of

a few Kelvin. All these are probably not the most appealing aspects of quantum

Hall physics to a semiconductor engineer who works in room environment.

Roughly a quarter of a century after the discovery of quantum Hall effect, a new

category of topological phases was proposed theoretically [Kane and Mele, 2005a,b;

Fu, Kane and Mele, 2007; Moore and Balents, 2007; Roy, 2006b] then followed

swiftly by experimental realization [König et.al., 2007; Hsieh et.al., 2008; Xia et al.,

2009a]. These are called topological insulators (TI) [Qi and Zhang, 2010a; Moore,

2010; Hasan and Kane, 2010; Kane and Moore, 2011]. They are topological phases

that exist in both two and three dimensional spin-orbit coupled materials, preserve

time reversal symmetry and hence do not require an external field, and occur in

room temperature bulk insulators (band gap up to ∼300meV).

Similar to a quantum Hall insulator, a topological insulator necessarily carries

metallic gapless boundary excitations. The boundary energy spectrum can be ex-

perimentally observed via angle resolved photoemission spectroscopy (ARPES) and

forms the signature of this type of topological phases.1 The equality between the

topological characteristics of a bulk gapped material and its gapless boundary states

is known as bulk-boundary correspondence. In particular, the topological nature of

the bulk is measured by the violation of fermion doubling theorem [Nielssen and
1See definition 1.1.1 and remarks thereafter.
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Ninomiya, 1983] on the boundary, i.e. the boundary states cannot be reproduced

by any pure (d− 1)-dimensional lattice fermion theory.

The bulk-boundary correspondence will be the main theme of this thesis. Al-

though it could be mathematically reformulated as a generalization to the Atiyah-

Singer index theorem [Atiyah and Singer, 1963, 1968; Atiyah and Segal, 1968], a

rigorous proof of that inevitably requires the language of topological K-theory as

well as some heavy machinery in differential operator theory. These would be be-

yond the scope of this dissertation. Physical argument will however be used to

affirm the correspondence. In particular, bulk-boundary correspondence has been

proven or verified in many special cases such as integer quantum Hall effect [Volovik,

2003], Su-Schrieffer-Heeger model [Su, Schrieffer and Heeger, 1980], Kitaev’s Majo-

rana chain [Kitaev, 2001], Jackiw-Rossi model [Jackiw and Rossi, 1981], and many

more.

The main focus of this thesis is to explore the physical nature and implications

of robust boundary gapless excitations [Teo, Fu and Kane, 2008; Teo and Kane,

2009, 2010a,b]. A review on topological insulators will first be given in section 1.1.

It will cover the basic ideas of integer quantum Hall effects [Thouless et.al., 1982;

Halperin, 1982; Haldane, 1988] that leads to the study of topology of valence states.

The theory of topological insulators in two and three dimensions will be reviewed

[Kane and Mele, 2005a,b; Fu, Kane and Mele, 2007; Moore and Balents, 2007;

Fu and Kane, 2007; Roy, 2006a,b; Qi, Hughes and Zhang, 2008]. Z2-topological

invariants will be introduced to characterize a time reversal symmetric spin-orbit

coupled insulator and related to robust gapless boundary excitations.
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It will be followed by the study of surface states of a 3D topological insulator

[Teo, Fu and Kane, 2008]. A tight binding model generated surface spectrum of

the 3D material bismuth-antimony (Bi1−xSbx) alloy will be shown in chapter 2. It

carries the signature of a strong topological insulator by exhibiting an odd number

of Dirac cones on the surface Brillouin zone. The surface spectrum structure of

a general inversion symmetric insulator will be investigated using surface Fermion

parity. A new invariant known as Mirror chirality ηM will be introduced to explain

the band crossings and hole pockets in the surface excitations.

Chapter 3 will focus on electrical transport behavior of a quantum spin Hall in-

sulator using a quantum point contact [Teo and Kane, 2009]. The effect of electron-

electron interactions on the gapless edge modes of a 2D quantum spin Hall insulator

can be qualitatively captured in a spinful Luttinger liquid (SLL) description [Kane

and Fisher, 1992a; Hou et.al., 2009]. In the weak interaction limit 1/2 < g < 2, it

will be shown that the stable phases of the point contact are either completely closed

or open. The pinch-off transition behavior is determined by a novel intermediate

fixed point. It controls the critical behavior of conductance, which collapses onto

a single universal scaling function capturing its dependence on temperature and

gate voltage. These can be analytically studied at the solvabale regimes g = 1 − ǫ,

g = 1/2 + ǫ, and g = 1/
√
3.

The massless surface state of a topological insulator (TI) can be gapped by

breaking either time reversal or charge conservation symmetry. Chapter 4 will focus

on the consequences of the latter. A pairing gap can be introduced due to proximity

with a superconductor (SC) [Fu and Kane, 2008]. This provides a new platform for
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realizing Majorana fermions in condensed matter systems. Although the Majorana

excitations at a TI-SC heterostructure can be understood by an effective surface

theory, Majorana fermions actually live in 3D along a smooth TI-SC transition

interface. Therefore, unlike a pure 2D topological phase such as the non-Abelian 5/2

fractional quantum Hall state [Moore and Read, 1991; Nayak et.al., 2008], p-wave

superconductor [Das Sarma, Nayak and Tewari, 2006] or the Kitaev honeycomb

model [Kitaev, 2006], a 3D theory is essential for a satisfactory understanding of

Majorana fermions in heterostructures [Teo and Kane, 2010a].

Section 4.2 will begin by explaining the topological origin of Majorana fermions

as excitations at a point defect. A Z2 invariant will be introduced based on the

modulation of a Bogoliubov de Gennes (BdG) Hamiltonian around the defect. The

existence of Majorana zero modes will be illustrated by an exact solvable minimal

Dirac model. The phase of the zero mode will be controlled by the mass term of

the Dirac Hamiltonian. The configuration of the mass term is a non-local degree of

freedom originating from the gapped BdG Hamiltonian throughout the entire 3D

system, and will be discussed in section 4.3. This allows the possibility of realizing

Ising anyonic statistics in three dimensions and new kinds of operations that do not

rely on braiding of physical positions of Majorana fermions.

After the discussion on the boundary states of topological insulators and Majo-

rana zero modes of superconductors, chapter 5 will focus on describing a general

framework to classify topological defects in insulators and superconductors, and

their associated robust gapless excitations [Teo and Kane, 2010b]. An introduc-

tion on the 2+8 fold periodic topological classification of band Hamiltonians with
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full crystalline translational symmetries will be given [Schnyder et.al., 2008, 2009;

Kitaev, 2009], resembling the Bott periodicity in stable homotopy groups of sym-

metric spaces [Cartan, 1926; Bott, 1956]. It will be followed by the generalization to

topological defects in section 5.2. Topological invariants will be constructed in the

form of explicit integral formulae that could be used to determine the topological

phases of any given band theory. A generalization of bulk-boundary correspondence

will be introduced in section 5.3 and this will relate the topological classes of defect

Hamiltonians to the presence of protected gapless modes at defects. An abundant

amount of old and new examples of point defects, line defects and temporal cy-

cles will be studied. Many of them exhibit desirable electronic transport properties

including chiral/helical Dirac/Majorana modes in three dimensions.

1.1 Single particle topological insulating phases

Many electronic properties of a semiconductor can be captured by an effective sin-

gle particle non-interacting Hamiltonian [Bloch, 1929]. In principle, this can be

constructed via a pseudo-potential approximation in the free electron limit [Phillips

and Kleinman, 1959], an LCAO approximation in the tight binding limit [Slater

and Koster, 1954], or a density functional calculation [Kohn and Sham, 1965]. In a

crystalline material, the Hamiltonian respects discrete translational symmetry and

energy states are labeled by crystal momentum k which lives in a toric Brilloun zone

T d = U(1)d. The Bloch Hamiltonian H(k) is a matrix, whose eigenstates |um(k)〉

are called Bloch states and momentum labeled eigenvalues Em(k) are called energy

bands.
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An insulator is described by a gapped band Hamiltonian with a non-zero energy

gap separating the occupied valence bands and unoccupied conduction bands. While

the kinematics of quasi-particles, such as the effective mass tensor, are described

by the dispersion of the band spectrum, the topology of an insulator is encoded

in its Bloch states [Thouless et.al., 1982]. It reflects certain robust properties of

the material that cannot be changed without going through a metallic transition

that closes the energy gap. A more precise notion of a topological phase can be

formulated as the following.

Definition 1.1.1. (Topological equivalence) Two gapped band Hamiltonians

are topologically equivalent if they can be smoothly deformed into one another while

maintaining the energy gap and respecting the prescribed symmetries (time reversal,

particle-hole, sublattice, inversion, rotation, mirror, etc.).

Moreover, two band models should be treated as topologically equivalent if they

differ from each other only by the number of trivial low lying or high energy bands,

such as core atomic orbitals or energetically irrelevant excitations. These models

will be treated as stably topologically equivalent, and the collection of such an

equivalent class of Hamiltonians will be referred in this thesis as a topological phase.

The study of topological phases of gapped band Hamiltonians is called topological

band theory, and applies not only to insulators but also to superconductors [Hasan

and Kane, 2010; Qi and Zhang, 2010b].

Remarks on terminology

1. Not all topological phases carry robust gapless boundary excitations, especially
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those associated with non-local point group symmetries that would be broken

by spatially terminating the material. These phases will not be addressed in

this dissertation.

2. Although formulated as a theory on a lattice, translation symmetry is not

absolutely essential in a topological phase of matter. One could in fact extend

definition 1.1.1 to incorporate weak disorder using the language of C∗-algebras

[Bellissard, van Elst and Schulz-Baldes, 1994] or almost commuting matrices

[Hasting and Loring, 2010]. Topological invariants could be written down but

would involve cumbersome expressions of certain trace-class operators. These

would not be covered in the thesis, however only topological phases that are

stable under weak disorder will be considered.

3. The notion of topological phase in this dissertation concerns single particle non-

interacting Hamiltonians only. It should not be confused with topological order

in a many-body interacting system [Wen, 1995] that indicates other topological

information, such as the ground state degeneracy [Wen and Niu, 1990] and

fusion properties of excitations [Moore and Read, 1991; Read and Rezayi, 1999;

Kitaev, 2006], which are only relevant in a many-body context.

Integer quantum Hall states are topologcal insulating phases that break time

reversal symmetry, while topological insulators are time reversal symmetric topo-

logical phases. Their topologies rely on the non-trivialities of occupied states or

valence bands in the bulk, and are revealed by gapless excitations that are robust

against backscattering and localization. These properties are going to be reviewed

below.
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1.1.1 Integer quantum Hall effect

An analytic derivation of the quantized Hall conductivity in a periodic potential

was given by Thouless, Kohmoto, Nightingale and den Nijs (TKNN) in 1982. They

considered a two dimensional electron gas (2DEG) under a uniform perpendicular

magnetic field and an arbitrary commensurating2 lattice potential described by

a single particle Hamiltonian. The conductivity was expressed using the Kubo

formula of linear response as an integral involving valence band states.

σxy = ν
e2

h
(1.1.1)

ν =
i

2π

∫

BZ

d2k
∑

Em<Ef

2iIm

〈
∂

∂kx
um(k)

∣∣∣∣
∂

∂ky
um(k)

〉
(1.1.2)

=
i

2π

∫

BZ

Tr (F) ∈ Z (1.1.3)

Here the summation is taken over the occupied electron subbands and the integral

is over the magnetic Brillouin zone (BZ) [Zak, 1964]. And F is Berry curvature

[Berry, 1984] defined by the Cartan’s structure formula

F = dA + A ∧ A (1.1.4)

associated to the Berry connection

Amn(k) = 〈um(k)|dun(k)〉 (1.1.5)

2The magnetic flux per unit cell is assumed to be an integer multiple of the magnetic flux quantum φ0 = hc/e.
This is to ensure a non-zero excitation gap in the non-interactng theory, and to guarantee the commutativity of
the discrete magnetic translation group [Zak, 1964] so that a magnetic Brillouin zone can be defined.
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constructed from occupied subbands um(k).

The topology of occupied bands is characterized by the TKNN integer ν, also

known as the first Chern number3 [Chern, 1946; Nakahara, 1990]. This integral

invariant carries only information about the occupied states, and therefore is in-

sensative to perturbations that alter the energy spectrum of the system. Being

discrete, it is impossible for the number to change upon a continuous deformation

of the system. Eq.(1.1.2) is invalid only when the system is undergoing a quantum

phase transition where the excitation gap vanishes. Hence, the TKNN integer labels

a topological phase of matter according to definition 1.1.1.

The integer quantum Hall effect can also be understood by looking at edge

excitations [Halperin, 1982]. Under a perpendicular magnetic field, a 2DEG splits

into Landau levels with spatially separated linear momentum modes. The TKNN

integer is given by the filling fraction, which is the number of filled Landau levels.

ν =
Ne

NB

=
number of electrons

number of magnetic flux quanta
(1.1.6)

Mid-gap excitations arise due to band bending at the boundary (figure 1.1), and

these are unidirectional modes exponentially localized along the edges known as

chiral modes. The integer quantum Hall effect can also be mimicked by a time

reversal breaking tight binding model on the graphene lattice [Haldane, 1988], where

gapless chiral edge excitations can be solved exactly (figure 1.2). In general, there

ν chiral modes along each edge and there is alway a pair of edges connecting two

3The magnetic Brillouin zone is topologically a torus. At each momentum k in the Brillouin zone, the valence
band states span a vector space Vk. The collection of these forms a vector bundle over the Brillouin zone. Vector
bundles over a torus are stably classified by the first Chern number.
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Figure 1.1: (A) Spatial configuration of momentum eigenstates in a Landau level; (B) Landau
levels and band bending at edges.
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Figure 1.2: (A) A graphene slab terminating along the zig-zag edge; (B) chiral boundary excita-
tions (solid red: right-moving mode along top edge, dotted red: left-moving mode along bottom
edge).

charge reservoirs. This recovers the quantized Hall conductance eq.(1.1.1).

This brings us to the bulk-boundary correspondence that equates the TKNN

integer ν, a topological property of the bulk insulating state, and the chirality of

the gapless excitations along a single edge.

ν = NR −NL = number of right movers − number of left movers (1.1.7)

It is a special case of the Atiyah-Patodi-Singer index theorem [Atiyah, Patodi and

Singer, 1973]. The general proof of this involves equating the chirality of the edge

mode and the spectral flow in a semi-infinite system, which can be expressed as the
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winding number of a single particle Green’s function [Volovik, 2003].

NR −NL =
1

2
(η|kx=−∞ − η|kx=+∞) (1.1.8)

=
i

2π

∮
dωTr

(
Ĝ(ω, kx)

)∣∣∣∣
kx=+∞

kx=−∞
(1.1.9)

=
1

24π2

∮
dω

∫
d2kTr

(
εµνλG−1∂µGG−1∂νGG−1∂λG

)
(1.1.10)

Eq.(1.1.10) coincides with the 1-loop term corresponding to parity anomaly in

(2+1) dimensions [Alvarez-Gaumé, et.al., 1985; Nakahara, 1990]. By substituting

G(ω,k) = [ω −H(k)]−1, it reduces to the TKNN integer in eq.(1.1.2).

1.1.2 Topological insulators in two and three dimensions

In two dimensions, time reversal symmetry guarantees the vanishing of the TKNN

invariant since,

Tr(F(−k)) = Tr(F(k))∗ = −Tr(F(k)) (1.1.11)

A new invariant is needed for the topological classification of time reversal symmet-

ric band Hamiltonians [Kane and Mele, 2005b; Fu and Kane, 2006, 2007; Fukui and

Hatsugai, 2007; Moore and Balents, 2007; Fukui, Fujiwara and Hatsugai, 2008; Qi,

Hughes and Zhang, 2008; Roy, 2006a; Wang, Qi and Zhang, 2010].

In a spin-orbit coupled system, the canonical time reversal operator is Θ =

iσyK, where σy operates on spin and K is complex conjugation under the | ↑〉, | ↓〉

basis. The Kramer’s theorem states that energy eigenstates must come in pairs

{|ψ〉,Θ|ψ〉}, or else Θ would square to +1 in the eigenspace. This implies at a time

reversal invariant momentum (TRIM) where k = −k+G, for G a reciprocal lattice
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vector, Bloch states |um(k)〉 are doubly degenerate.

Assuming the bulk-boundary correspondence, topological invariants can be for-

mulated by the boundary spectral behavior. For a d-dimensional bulk material, the

boundary spectrum is defined on a (d− 1)-dimensional projected surface Brillouin

zone (fig.1.3), in which there are 2d−1 number of surface TRIM. A mid-gap Fermi

Γ

Γ

Γ

Γ

Γ

Figure 1.3: Projected surface Brillouin zone (black) and the bulk Brillouin zone (blue) of a 2D
honeycomb lattice with a zig-zag edge and a 3D trigonal lattice terminated along the (111)-surface

energy εf cuts across the boundary spectrum to form a boundary Fermi surface

in the projected surface Brillouin zone. Time reversal symmetry requires that the

boundary Fermi surface must enclose a region in the surface Brillouin zone. The

Z2-index is determined by whether the number of enclosed TRIM is even or odd.

ν ≡ number of enclosed TRIM in the boundary Fermi surface (mod 2) (1.1.12)

Since the energy bands at the TRIM must form Kramer’s doublets, any deformation

of the surface bands or the Fermi energy can only alter the number ν by a multiple

of 2. Therefore the Z2-index is robust against any perturbation that respects time

reversal symmetry and maintains the bulk gap.4

4The Z2-index eq.(1.1.12) works only for the physical bulk dimensions d = 2, 3. For d = 1, the boundary
spectrum is removable by surface potential. For d = 4, a Z-index can be defined by the Chern invariant

ν =
i

2π

∫

boundary Fermi surface
Tr(F) ∈ Z (1.1.13)
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Figure 1.4: Edge spectrum of a 2D insulator. Fermi energy εf cuts Fermi points (blue dots)
across the edge bands (green). TRIM are 0 and π. Degeneracies at the TRIM are protected due
to Kramer’s theorem. (A) Helical edge mode of a topological insulator. Fermi points enclose an
odd number of TRIM, ν = 1. (B) Non-helical edge mode of a trivial insulator. Fermi points
enclose an even number of TRIM, ν = 2.
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Figure 1.5: (Left) Surface Dirac cone spectrum of a 3D topological insulator. Degeneracy at the
Dirac cone center is protected by Kramer’s theorem. (Right) Fermi energy cuts a Fermi arc (blue
loop) in the surface Brillouin zone. The TRIM Γ̄ is enclosed and ν = 1.
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Perturbation and gauge insensitive bulk Z2-topological invariants can be con-

structed with the Bloch states |ui(k)〉 of the bulk [Fu and Kane, 2006; Fu, Kane

and Mele, 2007].

(−1)ν =
∏

TRIM k

Pf(w(k))√
det(w(k))

, wij(k) = 〈ui(k)|Θuj(−k)〉 (1.1.14)

Here the product is taken over the TRIM at which the Pfaffian can be defined for

the antisymmetric wij(k). The sign of the square root is defined consistently so

that
√
det(w(k)) lives on the same branch across the whole Brillouin zone.5

In two dimensions, the Z2-invariant eq.(1.1.14) can be shown to be identical to

the integral invariant [Fu and Kane, 2006]

ν ≡ i

2π

[∫

BZ1/2

Tr(F) −
∮

∂BZ1/2

Tr(A)

]
(mod 2) (1.1.16)

where BZ1/2 denotes half of the Brillouin zone and is chosen so that its boundary

∂BZ1/2 is closed under time reversal, and the gauge dependent Berry connection

Aij = 〈ui|duj〉 [Berry, 1984] is defined by a valence frame |ui(k)〉 that satisfies a

gauge constraint

w(k) ≡ constant, k ∈ ∂BZ1/2. (1.1.17)

In three dimensions, the Z2-invariant eq.(1.1.14) can be shown indirectly to be

identical to the Chern-Simons invariant [Qi, Hughes and Zhang, 2008; Wang, Qi

where F is the Berry curvature [Berry, 1984] of boundary states. For d ≥ 5, the number of enclosed TRIM must
be even.

5In 2 and 3D, one can always choose a continuous valence frame |ui(k)〉 over the entire Brillouin zone because
the topological obstruction, the 1st Chern number, is killed by time reversal symmetry. Eq.(1.1.14) can be gauged

away in 1D, and
√

det(w(k)) cannot be continuously defined for d ≥ 4 when there is a non-vanishing higher Chern
invariant. In fact, the Z-invariant ν in 4D is defined by the second Chern number

ν =
1

8π2

∫

BZ
Tr(F ∧ F) (1.1.15)
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and Zhang, 2010]

ν0 =
θ

π
≡ 1

4π2

∫

BZ

Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
(mod 2) (1.1.18)

Both invariants (1.1.16, 1.1.18) are integer-valued because of time reversal symme-

try, and any gauge transformation or perturbation can only alter them by integral

multiples of 2.

Weak topological insulators The Z2-index ν0 in eq.(1.1.18) (or equivalently eq.(1.1.14))

for a 3D insulator is called a strong topological invariant. It is inherited from the

true 3D nature of the material as the Chern-Simons invariant involves a 3D integra-

tion. There are other types of invariants originating from layered structures, where

2D topological insulators are stacked along some normal direction. In momentum

space, these lower dimensional invariants arise from the Z2-indices of 2D momentum

planes closed under time reversal symmetry in the Brillouin zone. Since planes can

be stacked in three directions, there are three weak indices (ν1ν2ν3), which form a

Z2-valued reciprocal lattice vector6 [Fu, Kane and Mele, 2007; Fu and Kane, 2007]

Gν = ν1b1 + ν2b2 + ν3b3 (1.1.20)

6Definition of weak indices A primitive Bravais lattice vector R = m1a1+m2a2+m3a3, for relatively prime
m1,m2,m3, defines a stratification of sub-tori T 2 in the Brillouin zone. A more sophisticated way to rephrase this
is by identifying the Bravais lattice with the 2nd-homology H2(BZ), which contains classes of non-trivial 2-cocycles.
The usual physical convention is to take the sub-torus T 2

R perpendicular to R, which is closed under time reversal,
and does not contain the origin Γ in the Brillouin zone. The weak index vector Gν is defined so that

1

2π
Gν ·R =

i

2π

[∫

(T2
R

)1/2

Tr(F)−
∮

∂(T2
R

)1/2

Tr(A)

]
(mod 2) (1.1.19)
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Figure 1.6: Diagrams of four phases with indices (ν0; ν1ν2ν3). (A) Values of δ(Γi) =
Pf(w(Γi))/

√
det(w(Γi)) at the 8 TRIM. (B) Surface band Fermi arcs along the (001) surface.

1.1.3 Inversion symmetry

Inversion symmetry helps in determining the topological phase of insulators [Fu

and Kane, 2007]. It greatly reduces the computation effort of calculating the Z2-

invariants (ν0; ν1ν2ν3) by only requiring the knowledge of parity eigenvalues at the

inversion symmetric momenta (a.k.a. TRIM). This avoids solving a continuous set

of Bloch wave functions across the Brillouin zone.

Inversion symmetry is represented by a non-local unitary operator P . By a

gauge transformation if necessary, we may assume P 2 = 1. In an insulator, the

parity of an inversion symmetric momentum Γi is given by a product of inversion

eigenvalues of valence states |ui(Γi)〉. The simplest topological non-trivial inversion

symmetric band theory is given by the Su-Schrieffer-Heeger model of polyacetylene

[1980]. Depending on the relative strength of the bonds and position of the inversion

t1 t2
unit cell

Figure 1.7: Su-Schrieffer-Heeger model: H(k) = (t1 + t2 cos k)σx + t2 sin kσy and P = σx with
inversion center at the weak bond or P ′ = eikσx with inversion center at the strong bond.

center, the parity at k = 0, π can be the same or opposite.
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Inversion commutes with time reversal, and therefore the inversion eigenvalues

are the same in a Kramer’s doublet {|u2m−1(Γi)〉, |u2m(Γi)〉 = Θ|u2m−1(Γi)〉}. The

parity invariant is defined by taking the product over half the valence states

δ(Γi) =
∏

E2m<Ef

ξ2m(Γi), ξ2m(Γi) = 〈u2m(Γi)|Pu2m(Γi)〉 (1.1.21)

The time reversal Z2-invariant can be deduced from the parity eigenvalues at the

inversion fixed points.

(−1)ν =
∏

TRIM Γi

δ(Γi) (1.1.22)
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Chapter 2

Surface spectrum of bismuth

antimony alloy

Pure Bi or Sb are semimetals [Golin, 1968a,b; Liu and Allen, 1995; Lenoir et.al.,

1996]. They have distinct conduction and valence bands, being separated by a

direct gap but overlap in energies at different momenta. An insulator phase was

discovered for the Bi1−xSbx, for 0.07 . x . 0.22 [Lenoir et.al., 1996]. A metallic

phase transition occurs at x ≈ 0.04 where bands invert at the three L points of the

Brillouin zone, and this changes the topology. The topological phase can be read off

from the parity of the inversion fixed points of the materials, and it was predicted

that the insulating alloy Bi1−xSbx was a strong topological insulator [Fu and Kane,

2007]. Here we provide numerical calculation on surface excitations that support

the prediction [Teo, Fu and Kane, 2008].

The electronic surface band spectrum of bismuth antimony alloy Bi1−xSbx is
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δ(Γ) δ(L) δ(T ) δ(X) (ν0; ν1ν2ν3)

Bi −1 −1 −1 −1 (0;000)

Sb −1 1 −1 −1 (1;111)

Bi1−xSbx −1 1 −1 −1 (1;111)

Table 2.1: Parity invariants δ(Γi) at the TRIM (see fig.1.3 for the Brillouin zone of the trigonal
lattice) and Z2-indices (ν0; ν1ν2ν3) for bismuth, antimony [Liu and Allen, 1995], and Bi1−xSbx
[Fu and Kane, 2007].

studied using a tight binding model proposed by Liu and Allen [1995], and is solved

by us numerically in a semi-infinite geometry. The main conclusions include the

following.

1. Topological structure of surface bands The alloy is shown to be a strong

topological insulator by the Dirac spectrum along the (111) trigonal surface.

2. Inversion symmetry and Fermi surfaces The bulk parity invariants δ(Γi)

of the 8 TRIM determines topologically how the 4 surface TRIM are enclosed

by the Fermi arcs along an arbitrary surface.

3. Mirror Chirality A new topological invariant known as mirror Chern number

is introduced using mirror symmetry of the material, and a sign inconsistency

is discovered when compared with an earlier pseudo-potential results and first

principle calculation on pure Bi. This is due to an artifact of the tight binding

model that focuses on the energy spectrum rather than the topology of states.
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Figure 2.1: (A) Tight-binding generated surface band spectrum of Bi1−xSbx, for x = 0.08, along
the bisectrix Γ̄M̄ direction. Surface bands Σ1,Σ2 are labeled by opposite mirror eigenvalues, and
have opposite chirality: Σ1 is forward moving and Σ2 is backward moving. (B) Electron pocket
(blue) and hole pockets (red) on the surface Brillouin zone.

2.1 Topological structure of surface bands

The surface spectrum predicted by the tight binding model shows 7 Dirac cones

on the surface Brillouin zone. One of them sits at the TRIM Γ̄, and the other 6

are located midway along the bisectrix directions related to each other by 3-fold

and time reversal symmetries. The odd number of surface Dirac conse Bi1−xSbx

suggests it is a strong topological insulator. The Dirac cone at Γ̄ is protected by

Kramer’s theorem and is submersed in the valence band (fig.2.1(A)). This forms an

electron pocket surrounding Γ̄ in the surface Brillouin zone (fig.2.1(B)). The surface

band crossings (fig2.1(A)) above Fermi energy midway along Γ̄M̄ is protected by

mirror symmetry, and these forms the 6 Dirac cones that surrounds 6 hole pockets

on the surface Brillouin zone.

The surface states are not spin eigenstates, but they have a non-zero spin expec-

tation value as a function of momentum, forming a spin texture around the Dirac

cones (fig.2.2). Along the mirror symmetric bisectrix Γ̄M̄ axis (the y-axis), the

spin expectation must be proportional to the perpendicular binary x-axis 〈~S〉 ∝
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Figure 2.2: Schematic of spin texture around the electron and hole pockets (not to scale).

i〈M〉x̂ ∝ −(+)x̂ for mirror eigen-sectors Σ1(2). This is because the mirror op-

erator M = P exp(−iπ(Lx + Sx)/~) anticommutes with the other spin operators

M †Sy/zM = −Sy/z. Spins rotate by 2π around the electron and hole pockets, and

this confirms the Dirac structure by the π Berry phase.

Shortly after the tight binding derivation of surface spectrum, an ARPES exper-

iment was carried out on BiSb alloy and showed the strong topological signature of

the insulator [Hsieh et.al., 2008, 2009].

deg
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Figure 2.3: Surface spectrum of BiSb alloy from ARPES experiment [Hsieh et.al., 2008].
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2.2 Inversion symmetry and Fermi surfaces

The configuration of electron or hole pockets at the surface TRIM is set by inversion

symmetry. The bulk parity invariants eq.(1.1.21) determines the surface fermion

parity at the surface TRIM Λ̄

π(Λ̄) = (−1)N(Λ̄) = (−1)nδ(Γ1)δ(Γ2) (2.2.1)

where the bulk TRIM Γ1,Γ2 project to the surface TRIM Λ̄, and n is the number

of bulk Kramer’s degenerate valence bands. Here N(Λ) counts the surface fermion

number1 with momentum Λ̄ below the Fermi energy. And therefore the surface

fermion parity π(Λ̄) tells us the eveness or oddness of the number of electron or

hole pockets surrounding Λ̄ in the surface Brillouin zone.

The bulk parity invariants δ(Γi) are defined by an inversion center lying on the

crystal boundary surface. For example, a dangling bound state appears at the end

of a Su-Schrieffer-Heeger model (fig.1.7) when it is terminated at a strong bond.

The boundary fermion parity is therefore −1, which agrees (2.2.1).

The surface fermion parity gives extra knowledge that cannot be extracted just

from the topological phase of the insulator. For example, pure Bi is in the trivial

phase with indices (0; 000). But its bulk parity invariants predict all surface TRIM

of the (111) surface are enclosed by electron or hole pockets. This ensures the

existence of surface bands if there is no surface reconstruction and no net charge

1This number is an integer because of inversion and time reversal symmetry. Consider a periodic crystal of finite
number of unit cells. The surface states at some inversion symmetric cut plane of the crystal are shared equally by
both sides of the plane due to inversion symmetry. Since bands are doubly degenerate due to time reversal, N is
an integer.
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Figure 2.4: (A) Surface fermion parities of BiSb alloy or pure Bi cleaving at 4 boundary surfaces.
(111)′ is the energetically unfavored cleavage along the (111) direction, where strong bonds are
cut in between a bilayer. (B) Schematic showing which TRIM are enclosed by an odd number of
electron or hole pockets for the 4 boundary surfaces of BiSb alloy.

accumulated on the surface, although the surface bands may not connect the bulk

conduction and valence bands and they are removable by surface potential.

2.3 Mirror chirality

The crossing in figure 2.1(A) midway between Γ̄M̄ and the 6 Dirac hole pockets in

fig.2.1(B) are protected from Mirror symmetry. The trigonal lattice of Bi1−xSbx has

mirror planes normal to the binary x-axis. Hence the bisectrix-trigonal yz-plane

in the Brillouin zone is mirror invariant. Bloch states along the kykz-plane can be

labeled by their mirror eigenvalues M = P exp(−iπ(Lx + Sx)/~) = ±i, each being

time reversal of the other since [Θ,M ] = 0.

Analogous to spin Chern number [Sheng et.al., 2006; Fu and Kane, 2006], a

mirror Chern number nM can be defined by one of the mirror eigensector, say
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Figure 2.5: Schematic of a more realistic surface band spectrum with the correct mirror Chern
number. (A) The chirality of the mirror bands are reversed, and there is no midway crossing in
between Γ̄M̄ . (B) There is only one Dirac cone sitting at Γ̄. The Berry phase around the hole
pockets (red) is zero.

M = +i. (The Chern number of the other sector M = −i is negative of that of

+i due to time reversal.) The eveness and oddness of the mirror Chern number

determines the strong topological phase of the 3-fold symmetric insulator. Indeed,

this is shown by the chirality of the mirror surface modes in fig.2.1(A) so that

nM = +1 (2.3.1)

This however contradicts with a pseudopotential result [Golin, 1968a] and 1st

principle calculations on pure Bi [Hirahara et.al., 2007; Koroteev et.al., 2008] that

suggests a different sign of the mirror Chern number. As confirmed in the later

ARPES observation on BiSb alloy [Hsieh et.al., 2008], the mirror Chern number

should instead be opposite nM = −1. Although this does not affect the topological

phase of the material, the number of surface Dirac cones reduces as the 6 hole

pockets are no longer protected from the π Berry phase.
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Chapter 3

Point contact in a quantum spin

Hall insulator

QSHI

E

k

Figure 3.1: Spin polarized helical edge modes of a quantum spin Hall insulator (QSHI).

VG

VG

VG

VG

QSHI QSHI QSHI QSHI

1 2

34

1 2

34

(A) (B)

Figure 3.2: A quantum point contact in a QSHI controlled by a gate voltage VG that closes in (A)
for VG < V ∗

G or opens in (B) for VG > V ∗
G. 1,2,3,4 mark the four terminals that connect to the

point contact.

The edge of a quantum spin Hall insulator (QSHI) carries spin polarized helical

modes [Kane and Mele, 2005a,b; Wu, Bernevig and Zhang, 2006; Xu and Moore,

2006; König et.al., 2007], being essentially half of a metallic 1D electronic mode with

spin. With electron-electron interaction, the edge mode is described by a helical

Luttinger liquid theory [Hou et.al., 2009; Ström and Johannesson, 2009], which is
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like a spinless Luttinger liquid except localization is impossible as backscattering

is forbidden by time reversal. A pair of edge modes are described by a spinful

Luttinger liquid (SLL) theory [Kane and Fisher, 1992a; Furusaki and Nagaosa, 1993],

in which the charge and spin Luttinger parameters are reciprocal to each other

g = gρ = 1/gσ.
1 A powerful tool for probing edge transport behavior is by using a

quantum point contact (fig.3.2), where 4 terminal conductance can be measured as

a function of temperature T and the gate voltage VG that control the opening and

closing of the contact.

With time reversal and spin rotational symmetry, the 4 terminal conductance

matrix Gij (defined by Ii = GijVj, i = 1, . . . , 4) can be re-expressed by 3 conduc-

tances GXX , GY Y and GXY = GY X .




IX

IY

IZ




=




GXX GXY 0

GY X GY Y 0

0 0 2e2/h







VX

VY

VZ




(3.0.1)

where the directional currents and potential differences are defined according to

figure 3.3. The diagonal conductances GXX and GY Y are simply the 2 horizontal

1

4 3

2

IX

1

4 3

2

IY

1

4 3

2

IZ

Figure 3.3: Currents IX , IY , IZ across the 4 terminal point contact.

or vertical terminal conductances, and they are identical

G∗
XX = G∗

Y Y = G∗ (3.0.2)

1The Luttinger parameter indicates the strength of electrons interaction, g = 1 for no interaction, g < 1 (g > 1)
for repulsive (attractive) interaction.
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at the transition V ∗
G between pinching off and openning the point contact. The skew

conductanceGXY is killed by mirror symmetry about the horizontal or vertical axis,2

but when present, has different temperature exponent dependence (even for weak

interaction g ∼ 1) from the diagonal conductances [Teo and Kane, 2009]. This

feature is unique in a spin-filtered helical mode, and thus provides a diagnostic for

the topological nature of QSHI.

We are interested in critical conductance behavior [Teo and Kane, 2009]. The

issue is to (i) identify the stable transport phases associated with the point contact,

and (ii) investigate the crossover of conductance in between the stable phases. The

foundation on studying these is the SLL theory of the gapless edge helical modes.

The point contact is described by quantum Brownian motions [Yi and Kane, 1998],

sine-Gordon type potentials of the bosonic charge and spin fields, that describe

backscattering or tunneling of charge or spin across the contact. A renormalization

group (RG) calculation then identifies the phases by determining the relevance of

the fixed points of the theory.

3.1 Stable transport phases

With spin rotation symmetry, there are 4 stable phases listed in table 3.1. They

describe the transport behavior of charge and spin across the QSHI in the X-

direction. For example when the point contact is completely open (fig.3.2(A)), it is

in the charge conducting/spin conducting (CC) phase; or when the point contact is

2Mirror symmetry will in general be absence in a real life point contact. But an emergent Mirror symmetry
arises in the low energy effective theory of the stable fixed points.
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phases II CC IC CI

charge insulating conducting insulating conducting

spin insulating conducting conducting insulating

g g < 1/2 1/2 < g < 2 1/2 < g < 2 g > 2

GXX 0 2e2/h 0 2e2/h

GY Y 2e2/h 0 0 2e2/h

GXY 0 0 0 0

Table 3.1: Stable phases of QSHI point contact (with spin rotation symmetry), the stability region
for the Luttinger parameter g, and the zero temperature directional conductances across the point
contact.

v

t

g
1/2 1 2

IC

II

CC CC

II

CI
t

v

~

~

P P

Figure 3.4: Phase diagram for a point contact in a QSHI as a function of the Luttinger parameter
g. The arrows indicate the stability of the CC, II, CI and IC phases, as well as the critical fixed
point P . v, ṽ, t, t̃ are backscattering and tunneling terms of the point contact.

completely pinched-off, it is in the charge insulating/spin insulating (II) phase.

The II and CC phases are both stable for weak interaction, where the Luttinger

parameter lies between 1/2 < g < 2. This means that in between the pinch-off

to the open limit, the point contact must go through an intermediate phase that

is characterized by an intermediate fixed point3 [Kane and Fisher, 1992a; Furusaki

and Nagaosa, 1993]. The critical behavior of this intermediate fixed point controls

the crossover conductance, and it is solvable in the three limits: (i) g = 1 − ǫ, (ii)

g = 1/2+ ǫ and (iii) g = 1/
√
3 (results of g > 1 can be extracted from that of g < 1

by a duality).

3This feature is novel and is absent in a typical Luttinger liquid [Kane and Fisher, 1992a,b; Furusaki and
Nagaosa, 1993] or fractional quantum Hall point contact [Moon et.al., 1993; Milliken et.al., 1996].
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ve or vρ vσ

te

or

tρtσ

Figure 3.5: Least irrelevant electronic backscattering and tunneling terms of a point contact in
the CC (top) and II (bottom) phase. (Top left to right) ve backscatters a charge and a spin; vρ
backscatters 2 charges no spin; vσ backscatters no charge 2 spins. (Bottom left to right) te tunnels
a charge and a spin; tσ tunnels no charge 2 spins; tρ tunnels 2 charges no spin.

phases II CC IC CI

δGXX ∼





T g+g−1−2, g <
√
3

T 4/g−2, g >
√
3

∼





−T g+g−1−2, g > 1/
√
3

−T 4g−2, g < 1/
√
3

∼ T g−1−2 ∼ T g−2

δGY Y ∼





−T g+g−1−2, g > 1/
√
3

−T 4g−2, g < 1/
√
3

∼





T g+g−1−2, g <
√
3

T 4/g−2, g >
√
3

∼ T g−1−2 ∼ T g−2

δGXY ∼ T g+g−1 ∼ T g+g−1 ∼ T 2g−1−2 ∼ T 2g−2

Table 3.2: Low temperature dependence of conductances at the stable phases.

The low energy behavior of the point contact can be described by electronic

backscattering and tunneling terms in the SLL theory (such as in fig.3.5). They

are all irrelevant perturbations of the stable fixed points of the point contact, but

contribute to conductances in finite temperature. For example, the backscattering

potential ve gives a perturbation proportional to v2e in the diagaonal conductances

GXX and GY Y (from the Fermi golden rule), and this coupling constant flows ac-

cording to the energy scale of the system. The small temperature dependence at the

stable phases can therefore be read off from the scaling dimensions ∆(v) (or ∆(t))

of the least irrelevant backscattering (or tunneling) operators and the RG equation

dv

dl
= (1 − ∆(v))v (3.1.1)
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Figure 3.6: Conductance GXX as a function of gate voltage VG for different temperatures. As the
temperature is lowered, the pinch-off curve sharpens up with a width Tαg . The curves cross at a
critical conductance G∗

g, and the shape of the curve has the universal scaling form (3.2.3).

Finally, if spin rotation symmetry is broken (by spin orbit interaction or multiple

spin flip processes), the system flows to a time reversal breaking phase at low energy

for strong interaction g < 1/2. A 2 spin flip term becomes relevant for g < 1/2 and

gaps out the the helical modes. The two edges of the QSHI becomes insulating so

that the entire 4 terminal conductance Gij matrix vanishes at zero temperature.

3.2 Critical behavior of conductance

Critical behavior of the crossover conductance GXX(VG, T ) (plotted in fig.3.6) be-

tween the pinch-off and open limit of the point contact is controlled by the intemedi-

ate fixed point P midway between the II and CC phase (fig.3.4). The temperature

and gate voltage dependence of the conductance collapse onto a single universal

scaling function Gg.

lim
∆VG,T→0

GXX(VG, T ) =
2e2

h
Gg

(
c
∆VG
T αg

)
(3.2.3)
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Figure 3.7: Universal crossover scaling functions Gg(X) for g = 1 − ǫ and g = 1/2 + ǫ. On the
right, dotted line is for g = 1/2+ ǫ and solid line is at g = 1/2. Graphs are plotted from the exact
results

G1−ǫ(X) =
1

2

(
1 +

X√
1 +X2

)
, G1/2+ǫ(X) =

X

X + 1 − e−X/(π2ǫ)
(3.2.1)
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Figure 3.8: (A) Critical conductance (in units of 2e2/h) at critical gate voltage V ∗
G and (B) critical

exponent αg as functions of g. The curves are polynomial fits, which incorporate the exact results
at g = 1 − ε, g = 1/2 + ε and g = 1/

√
3.

G∗
g =





1/2 +O(ǫ3) for g = 1 − ǫ

(
√
3 − 1)/2 for g = 1/

√
3

π2ǫ for g = 1/2 + ǫ
, αg =

{
ǫ2/2 for g = 1 − ǫ
4ǫ for g = 1/2 + ǫ

(3.2.2)
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where ∆VG = VG − V ∗
G and c is some non-universal constant.4 The scaling function

is symmetric about g = 1 by

G1/g(X) = 1 − Gg(−X) (3.2.4)

due to the duality of the II and CC phase. This allows us to consider only repulsive

interactions g ≤ 1.

The universal scaling function Gg(X) is determined by the intermediate fixed

point P in between the stable II and CC phases. It is solvable at the three limits:

(1) g = 1 − ǫ, (2) g = 1/2 + ǫ and (3) g = 1/
√
3. Perturbative RG analysis

predicts the scaling behavior eq.(3.2.1) and the critical conductances G∗
g = Gg(0)

in eq.(3.2.2). The exact scaling behavior in the two solvable limits are plotted in

fig.3.2. The critical conductance is fitted as a function of g using a minimal degree

polynomial and is plotted in fig.3.7.

1. g = 1 − ǫ At the non-interacting limit, the 4 terminal conductances Gij can

be expressed in form of the scattering matrix

Gij =
e2

h
(δ − |Sij|2), |Sij|2 =




0 T F R

T 0 R F

F R 0 T

R F T 0




(3.2.5)

where the S-matrix relates incomming and outgoing modes at leads i, j. A

perturbative analysis up to second order in interaction ǫ = 1− g gives the RG

4The other diagonal conductance is given by GY Y (VG, T ) = (2e2/h)Gg(−X) for X = cVG/Tαg .
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equations for the S-matrix parameters and predicts the critical behavior of the

crossover conductance eq.(3.2.1) at g = 1 − ǫ.

II CC

F = 1

P

R = 1 T = 1T = R = 1/2

Figure 3.9: RG flow of the S-matrix parameters for weak interaction g = 1− ǫ. The point contact
lies on the bottom line when there is spin symmetry, where the stable fixed points II and CC are
separated by an intermediate fixed point P.

2. g = 1/2 + ǫ The IC ↔ CC/II phase transition occurs at g = 1/2. The most

relevant perturbations of the IC fixed point are ṽσ, the backscattering of a

spin, and t̃ρ, the tunneling of a charge across the point contact. They become

relevant when g > 1/2 and the system flows to the CC or II fixed point at low

energy. A perturbative analysis up to second order in the perturbations gives

the RG equation that locate the intermediate fixed point P at ǫ = g−1/2, and

the Kubo formula predicts the conductance around the P

G1/2+ǫ(X) =
X

1 − e−X/(π2ǫ)
, for small X = ∆VG/T

4ǫ (3.2.6)

For large X, the point contact will lie on the horizontal axis of fig.3.10, where

the entire IC to CC crossover can be derived by a fermionization procedure.

The scaling function is

G1/2+ǫ(X) = θ(X)
X

X + 1
, for large X = ∆VG/T

4ǫ (3.2.7)
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Eq.(3.2.6) and (3.2.7) combines into (3.2.1) at g = 1/2 + ǫ.

tρ vρ
~

II

CCIC

tσ

vσ
~

2ε P

2ε

Figure 3.10: RG flow of for g = 1/2 + ǫ.

3. g = 1/
√
3 The QBM model at g = 1/

√
3 has a triangular lattice symmetry,

which implies the intermediate fixed point is self-dual under the II ↔ CC

duality. The critical conductance G∗
1/

√
3
can then be solved self-consistently.
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Chapter 4

Majorana fermions in three

dimensions

Majorana fermion (or real fermion) is a fermion that is its own anti-particle [Majo-

rana, 1937]. Neutrino could theoretically be an elementary particle in the standard

model that behaves as a Majorana fermion, but its nature is still not completely clear

as the observation of neutrinoless double beta decay has not been settled [Aalseth

et.al., 2002; Avignone, Elliott and Engel, 2008]. Another approach of studying Ma-

jorana fermions is through emergent quasiparticle excitations in condensed matter

systems [Wilczek, 2009; Franz, 2010; Service, 2011]. Current promising candidates

include half vortex excitation on a chiral p-wave superconducductor [Caroli, de

Gennes and Matricon, 1964; Volovik, 1999; Read and Green, 2000; Kitaev, 2001;

Ivanov, 2001; Stern, von Oppen and Mariani, 2004; Das Sarma, Nayak and Tewari,

2006; Stone and Chung, 2006; Nayak et.al., 2008], surface excitation of the super-

fluid 3He-B [Kopnin and Salomaa, 1991; Volovik, 2003; Chung and Zhang, 2009],
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quasihole excitation on a non-Abelian 5/2 fractional quantum Hall fluid [Moore

and Read, 1991; Greiter, Wen and Wilczek, 1992; Read and Green, 2000], and

the recently proposed topological insulator - superconductor heterostructures [Fu

and Kane, 2008] and strongly spin-orbit coupled semiconductor - superconductor

heterostructures [Sau, et.al., 2010; Alicea, 2010].

Majorana excitations have the desirable property of being robust against acci-

dental measurements [Kitaev, 2003]. Unlike a Dirac fermion (or complex fermion),

a pair of Majorana fermions is required to define a two level system. A quantum

state cannot be measured unless the pair of Majorana fermions is brought together

in space and allowed to fuse [Kitaev, 2006]. This means that quantum information

is stored coherently by spatially separated Majorana excitations. Unitary opera-

tions can be constructed by manipulating the physical locations of the Majorana

fermions (or by non trivial cycles in the configuration space). In (2+1)D, these are

known to include the non-Abelian Ising exchange statistics [Moore and Read, 1991;

Nayak and Wilczek, 1996; Ivanov, 2001]. These are the essential ingredients for

constructing a topological quantum computer1 [Das Sarma, Freedman and Nayak;

Nayak et.al., 2008].

The non-local nature of quantum states makes Majorana fermions hard to detect.

There are multiple proposals for experimental observations in various electronic

systems using techniques in interferometry or point contact [Das Sarma, Freedman

and Nayak; Stern and Halperin, 2006; Akhmerov, Nilsson and Beenakker, 2009; Fu

and Kane, 2009b], although indisputable evidence of the exotic excitation is still not

1(2 + 1)D Ising anyons are still not sufficient to generate enough unitary operations for a universal quantum
computer [Freedman, Larsen and Wang, 2002].
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yet available. The issue of detection will not be addressed in the thesis. Instead,

the main focus will be on the physical nature of Majorana fermions as an excitation

in three dimensions [Teo and Kane, 2010a].

1. What is the topological criterion for having a Majorana fermion?

2. What are the topologically protected unitary operations on a collection of

Majorana fermions in 3D?

This section will be organized in the following way. It will begin by reviewing

the structure of Majorana fermions and their origins in some previous condensed

matter systems. More elaborate description will be given on topological insulator

- superconductor heterostructures, which is one of the prime subjects in the thesis.

A Z2 topological index will be introduced in the Bogoliubov de Gennes (BdG)

description of the system, and it will serve as a mathematical indicator for the

existence of a Majorana zero mode. The configuration space of a collection of

spatially separated Majorana excitations will then be described with the help of an

effective minimal 8 band model. It will be showed that Majorana fermions are inter-

connected through a 3-component vector field in real space, and its non-local nature

opens the possibilty of topologically non-trivial exchange and braidless operations

of Majorana fermions in three dimensions.
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4.1 Majorana fermions in condensed matter systems

Majorana fermion operators are hermitian operators γj = γ†j , that obey the canon-

ical anticommutation relation for fermions

{γi, γj} = γiγj + γjγi = 2δij (4.1.1)

Majorana fermions always come in pairs in a finite physical system, and 2N of

them with (4.1.1) generate a real Clifford algebra [Lawson and Michelsohn, 1989].

γ1, . . . , γ2N together with the fermion parity operator

(−1)F = (−i)Nγ1 . . . γ2N (4.1.2)

can be represented by a maximal set of anticommuting operators in su(2)⊗N , and

therefore act on a 2N dimensional Fock space. In a closed system, the fermion

parity cannot change, and the Fock space decomposes into even and odd irreducible

components, each being 2N−1 dimenional.

The Fock states can also be understood as occupation states
∏N

j=1(c
†
j)

nj |0〉, for

nj = 0 or 1, of Dirac fermions

cj =
1

2
(γ2j−1 + iγ2j) (4.1.3)

with fermion parity (−1)F = (−1)
∑N

j=1 nj . A two-level quantum state a0|0〉+a1|1〉 is

therefore non-locally carried by a pair of Majorana fermions that could be spatially

far apart and cannot be measured independently [Kitaev, 2003]. The Majorana
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excitations considered in this section are distinct point-like low energy quasiparticles

inside a bulk gapped material. The wavefunction overlapping and electron tunneling

between any two quasiparticles is exponentially suppressed in separation distance

by the finite bulk excitation energy gap. The Fock space dimension 2N−1 thus

corresponds to the ground state degeneracy of such a closed system in the infinite

separation/gap limit.

4.1.1 Majorana fermions in low dimensions

The appearance of low energy Majorana bound state can be most easily illustrated

by a chiral 1D superconductor (a.k.a. Kitaev’s Majorana chain) [Kitaev, 2001].

There is a positive excitation energy gap unless the Fermi energy µ and hopping t

j j+1

t c c†
j j-1

∆ c cj j+1

j  1

h J

2j  1

(A) (B)

γ
2j

γ
2j+1

γ

H(A) − µN =
∑

j

t(c†jcj+1 + h.c.) − µ

2
(c†jcj − cjc

†
j) − ∆(cjcj+1 + h.c.) (4.1.4)

H(B) − µN =
∑

j

iJγ2jγ2j+1 + ihγ2j−1γ2j (4.1.5)

Figure 4.1: (A) 1D chiral p-wave superconductor with hopping t, pairing ∆ and Fermi energy µ.
(B) Kitaev’s Majorana chain.

satisfy |µ| = 2|t|. The relative magnitude of hopping and Fermi energy thus defines

two superconducting phases. The parameters can be tuned continuously in the

same phase without closing the excitation gap. In the limit |∆| → |t|, the model

changes to the Kitaev’s Majorana chain using (4.1.3), for |h| = |µ|/2 and |J | = |t|.2
2The Kitaev’s Majorana chain (4.1.5) is identical to the quantum Ising model in 1D (or equivaletly the classical

Ising model in 2D by transfer matrix [Baxter, 1982])

H = −J
∑

j

σj
xσ

j+1
x − h

∑

j

σj
z (4.1.6)
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The Kitaev’s chain (or the 1D superconductor) is in the topological phase when

|h| < |J | (or |µ| < 2|t|). Just like the Su-Schrieffer-Heeger model [1980] (fig.1.7),

there are dangling states left at the terminals of a finite chain (see fig.4.2). The

2N
γ

1
γ

h J

h J

Figure 4.2: (Top) Trivial phase for |h| > |J |. (Bottom) Topological phase for |h| < |J | with
Majorana bound states (yellow) at the ends.

Majorana bound states are zero energy modes of the Hamiltonian in the thermo-

dynamic limit. They are protected from a particle-hole (or charge conjugation)

symmetry and they represent the ground states of the system. A Dirac fermion can

be constructed by the pair of Majorana end states c = (γ1 + iγ2N)/2 and defines a

two level system. The two-fold degeneracy corresponds to the two ordered ground

states of the Ising model.

QSHI

SCFM FM

Figure 4.3: Majorana fermions (yellow) at quantum spin Hall insulator (QSHI) - ferromagnet
(FM) - superconductor (SC) interface [Fu and Kane, 2009a,b; Teo and Kane, 2010a,b].

Majorana fermions have Ising non-Abelian statistics in (2+1)-dimensions [Nayak

and Wilczek, 1996; Ivanov, 2001]. Unlike ordinary bosons, fermions or Abelian

anyons [Wilczek, 1982; Wilczek and Zee, 1983; Halperin, 1984; Arovas, Schrieffer

and Wilczek, 1984], the exchange operator between a pair of non-Abelian anyons is

represented by a unitary matrix that does not commute with exchange operators of

other pairs of anyons. This means that different orderings of exchange operations

in general give different final states.

by the Jordan-Wigner transformation γ2j−1 = σj
x
∏

i<j σ
i
z and γ2j = σj

y
∏

i<j σ
i
z . This explains the alternative

terminology Ising anyons for Majorana fermions.
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=    i J 

=    i δh 

=    i δh 

= + i J

γ   γ
j j+1

γ   γ
i j

γ   γ
j j+1

γ   γ
i j δh 

BZ

E

Figure 4.4: Fermionization of the Kitaev’s honeycomb B-model with a magnetic field [Kitaev,
2006]. γ◦

i , γ
•
j are Majorana operators on the A,B-sublattice. Majorana bound state (orange dots)

are located at plaquettes with π-flux (yellow hexagons). Solid black lines represent (−1)’s of the
Z2-gauge field, and they form a string connecting the Majorana fermions (shaded hexagons).

Φ = h/2e
Φ = h/2e

chiral p-superconductor

kθ kθ

Φ = 0 Φ = h/2e

(A) (B)

Figure 4.5: (A) Chiral p-wave superconductor with h/2e vortices [Volovik, 1999; Read and Green,
2000]. (B) Discrete energy spectrum of chiral Majorana mode along a circular hole boundary.
Flux Φ = h/2e shifts the states by π/N and a Majorana bound state (yellow) sits exactly at zero
energy.

Ising anyons are non-Abelian anyons so that when one circles around the other,

both of them accumulate a minus sign. This means that the exchange operators is

not simply interchanging 2 Majorana operators but it also changes the sign of one

of them.

The minus sign of the exchange operator (4.1.8) comes from the π-flux associated

with each Majorana fermions. A Berry phase of eiπ = −1 is accumulated when one

adiabatically circles around the other. For example, the Majorana fermions in the

Kitaev’s honeycomb B-model [Kitaev, 2006] are connected by strings of (-1)-links

(fig.4.4), and Majorana fermions appear at h/2e vortex cores of a superconductor
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j
j+1

j

j+1

T j X  = Tj j
2

ti
m

e

Tj = exp (πγjγj+1/4) , Xj = T 2
j = γjγj+1, (up to a U(1) phase) (4.1.7)

{
TjγjT

−1
j = −γj+1

Tjγj+1T
−1
j = γj

and

{
XjγjX

−1
j = −γj

Xjγj+1X
−1
j = −γj+1

(4.1.8)

Figure 4.6: Exchange and double exchange operators of Ising anyons.

[Volovik, 1999; Read and Green, 2000] with odd Chern invariant (fig.4.5). The π-

Berry phase is topologically protected by non-trivial braiding of the quasiparticles.

Figure 4.7: Example of a braid.

The exchange operators Tj = exp(πγjγj+1/4), for j = 1, . . . , 2N − 1, generates a

collection of non-commuting unitary operations. They form a representation of the

Braid group3 B2N with the relation

TjTj+1Tj = Tj+1TjTj+1 and TiTj = TjTi, for |i− j| ≥ 2 (4.1.9)

The topology of braiding is unique in (2+1) dimensions. All braids with the same

end points are topologically equivalent in higher dimensions as there are more space

3Defined as the fundamental group B2N = π1(C2D
2N ) of the configuration space C2D

2N of the positions of 2N distinct
indistinguishable points in R2. It is the group generated by Tj , j = 1, . . . , 2N − 1, with the relation (4.1.9), and
has infinitely many elements.
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for them to continuously deform into one another without crossing. So the braid

group in higher dimensions are just the symmetric group S2N of permutation. How-

ever, the principle of locality suggests that the Hilbert space must decompose into

tensor products of local Hilbert spaces associated to individual particles [Doplicher,

Haag and Roberts, 1971, 1973], essentially bosons and fermions. This forbids for

instance the non-local storage of quantum information between two spatially sepa-

rated Majorana fermions. This seemingly prohibits Ising non-Abelian statistics in

higher dimensions, but can in fact be circumvented by a more careful look at the

configuration space of Majorana excitations [Teo and Kane, 2010a; Freedman et.al.,

2011].

4.2 Topological point defect in 3D

Before the discovery of topological insulators, non-Abelian anyons in electronic

systems are mostly investigated in 2D chiral p-wave superconductor [Volovik, 1999;

Read and Green, 2000; Ivanov, 2001] or various fractional quantum Hall states, such

as the Pfaffian state [Moore and Read, 1991], Read-Rezayi states [Read and Rezayi,

1999] and the non-Abelian spin-singlet state [Ardonne and Schoutens, 1999]. While

strontium ruthenate Sr2RuO4 is a chiral p-wave superconductor [Das Sarma, Nayak

and Tewari, 2006], experimentally creating Majorana bound excitations on the ma-

terial involves complication of stablizing half vortices on a thin film [Jang et.al.,

2011]. The non-Abelian fraction quantum Hall states on the other hand requires a

very clean sample with high mobility and exceptionally low temperature. Topolog-

ical insulator (TI) - superconductor (SC) heterostructures could in theory provide
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an alternative arena for Majorana excitations and manipulations that circumvent

these difficulties.

In a BCS mean field description of superconductivity, excitations are understood

by the Bogoliubov de Gennes (BdG) Hamiltonian [De Gennes, 1966]

H − µN =
∑

k>0

~ξ†−kHBdG(k)~ξk (4.2.1)

under the Nambu basis ~ξk = (ck, c
†
−k)

T that incorporates both creation and annihi-

lation operators. An artificial particle-hole (PH) symmetry

Ξ−1HBdG(k)Ξ = −HBdG(−k) (4.2.2)

always arises in the BdG Hamiltonian due to a double counting of degrees of free-

dom: Ξ : ck ↔ c†−k. As a charge conjugation symmetry, the PH operator Ξ must

be antiunitary, and due to the fermionic nature of electrons, Ξ2 = +1.

The parameters in the BdG Hamiltonian may undergo a slow spatial modulation,

say the paring term ∆eiφcjcj + h.c. away from a vortex line or in the presence of a

spatially varying Fermi energy µ(r). The spatial modulation is treated as adiabatic

perturbation so that the superconductor still maintains a local translation symmetry,

and crystal momentum k is defined semi-classically. Since PH symmetry is local, it

requires

Ξ−1HBdG(k, r)Ξ = −HBdG(−k, r) (4.2.3)

A notion of topological defect4 can be defined by how the semi-classical BdG

4For more, see Teo and Kane [2010b] or section 5.3.2 in the next chapter.
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Hamiltonian behaves as a function of distance r wrapping around the defect. Given

any closed surface Σ in real 3D space, the number of Majorana excitations enclosed

(mod 2) is given by a Z2 Chern-Simons invariant [Teo and Kane, 2010a,b].

ν ≡ 2

3!

(
i

2π

)3 ∫

BZ×Σ

Q5 (mod 2) (4.2.4)

where the Chern-Simons 5-form (omitting wedge products ∧ between A’s) [Chern

and Simons, 1974; Nakahara, 1990]

Q5 = Tr

(
A ∧ (dA)2 +

3

2
A3 ∧ dA +

3

5
A5

)
(4.2.5)

is defined by the Berry connection

Amn = 〈um(k, r)|dun(k, r)〉 = 〈um(k, r)|∂run(k, r)〉 · dr+ 〈um(k, r)|∂kun(k, r)〉 · dk

(4.2.6)

constructed from the “valence” band um(k, r) of the BdG Hamiltonian HBdG(k, r).

PH symmetry guarantees that the Chern-Simons integral (4.2.4) is an integer. And

because of the factor of 2 in front of the integration, a large gauge transformation

can only alter the invariant by an integral multiple of 2.

The correlation of the Z2 invariant and the existence of a Majorana bound state

is a generalization of the bulk boundary correspondence. It can be proven rigorously

using heat kernel techniques in showing the Atiyah-Singer index theorem [Atiyah

and Singer, 1968; Nakahara, 1990; Berline, Getzler and Vergne, 2004]. A verification

of the correspondence is given in the following using a minimal 8 band model that

capture the low energy physics at a TI-SC interface. The interface should not
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SC

TI

h/2e

SC

TI

I

(A) (B)
h/2e

Figure 4.8: Majorana fermions (yellow) in 3D. (A) A h/2e flux vortex across a topological in-
sulator (TI) - type-II superconductor (SC) interface. (B) A flim of superconductor (SC) sand-
whiched between a topological insulator (TI) and a trivial insulator (I). Majorana zero mode is
3-dimensionally located somewhere in the superconducting film.

be treated as a distinct surface. Cooper pairs can tunnel a certain depth into

the insulator, and the BdG Hamiltonian remains gapped throughout. If a h/2e

flux passes across the interface, low energy excitations near the vortex core can be

qualitatively studied by the continuum BdG model

H(k, r) =
(
~vfk · ~σµx + (m(r) + ǫk2)µz

)
τz +∆x(r)τx +∆y(r)τy (4.2.7)

Here the τ matrices act on the Nambu basis, σ’s and µ’s are spin-orbital coupled

degrees of freedom. ∆(r) = ∆x(r) + i∆x(r) is the SC pairing parameter and it

winds 2π around the vortex in the superconductor. The coefficient of τz in the first

term is a 4-band model describing a topological insulator (TI) to trivial insulator

(I) band inversion, where the mass term m(r) changes sign along the vertical axis.5

The model has PH symmetry according to Ξ = τyσyK and the vortex pairing term

∆y(r)τy breaks time reversal symmetry Θ = iσyK.6

If we name the Dirac matrices by ~γ = ~σµxτz and (Γx,Γy,Γz) = (τx, τy, µzτz), the

5The second order term ǫk2 compactifies the Brillouin zone into a sphere S3 = R3 ∪ {∞} and the relative signs
between m and ǫ determines the topological phase of the insulator. In the context of defect, it is not essential to
know whether the top or bottom insulator (fig.4.8(B)) is topological as long as there is a phase transition across.
The k2 term therefore can be dropped.

6There is an artificial chiral symmetry Π = µyτz in the model but this would be killed by a non-zero Fermi
energy term µτz .
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Figure 4.9: Unit winding degree hedgehogs in real space and Majorana bound states (yellow) at
point defects.

BdG Hamiltonian has the simple form

H(k, r) = ~vfk · ~γ + ~n(r) · ~Γ, ~n(r) = (∆x(r),∆y(r),m(r)) (4.2.8)

Here the 3-component vector field ~n(r) controls the spatial modulation of the Hamil-

tonian. Its magnitude determines the energy gap for local bulk excitation. The

singular points (such as sources and drains) of the vector field are the point de-

fects of the system, and acquire hedgehog configurations (fig.4.9). The topology of

a hedgehog is given by the Chern-Simons integral (4.2.4) over an enclosing sphere

Σ = S2, which simplifies to the winding integer

ν =
1

8π

∫

S2
ω · dA, ωi =

1

8π
n̂ · ∂jn̂× ∂kn̂ (4.2.9)

where n̂ = ~n/|n| is the unit direction. Treating n̂(r) as a map sending a point in

the enclosing surface sphere Σ = S2 in real space to a unit vector in the parameter

space, the winding degree (4.2.9) counts the number of times n̂ : S2 → S2 wraps

the first sphere around the second one. Mathematically, it integrally represents

the hedgehog n̂ in the homotopy group [Hatcher, 2002] π2(S2) ∼= Z of topologically

equivalent maps S2 → S2.7

7A general isotropic Dirac-type BdG Hamiltonian has the following form

H(k, r) = ~vfk · ~γ +mΓ(r) (4.2.10)

where the mass term Γ(r) is a hermitian matrix anticommutes with the Dirac matrices γx, γy , γz and the PH
operator Ξ. All matrices are 2n× 2n for a 2n-band model. Symmetry requires [Ξ, γi] = 0, and the exitation gap is
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In particular, a unit winding linear hedgehog would take the form of a monopole

ni(r) =Mijrj, where the non-singular matrix M decomposes into

M = OT
1




M1 0 0

0 M2 0

0 0 M3



O2 (4.2.13)

for some positive numbers Ma and orthogonal matrices O1, O2 that diagonalize

MMT ,MTM . The semi-classical description breaks down at the center of the

monopole. By replacing k ↔ −i∇, the BdG Hamiltonian (4.2.8) becomes a Dirac

operator

Ĥ = −i~vf~γ · ∇ + ΓiMijrj (4.2.14)

Eigenstates can be solve exactly by noticing that the square of the operator is a 3D

harmonic oscillator (a.k.a. Laplacian)

Ĥ2 = −~2v2f∇2 + |Mr|2 + i~vfΓiMijγj (4.2.15)

= ~vf
∑

a=1,2,3

Ma(2na + 1 − ξa) (4.2.16)

where na = 0, 1, 2, . . . are the oscillator quantum numbers and ξa = ±1 are the

eigenvalues of the commuting Dirac matrices i(O2aiγi)(O1ajΓj). A unique zero en-

ergy mode is given by na = 0 and ξa = 1 and describes a low energy Majorana

finite if Γ(r) is non-singular. Choose a gauge so that Ξ = σyτyK, ~γ = ~στz . The mass term satisfies

Γ(r) = 11⊗ (τx ⊗ gx(r) + τy ⊗ gy(r)), g = gT = gx + igy ∈ GL(n/2;C) (4.2.11)

A symmetric invertible complex matrix can be decomposed into g = GTG = GTOTOG, where G ∈ GL(n/2;C) is
defined up to O ∈ O(n/2;C). Hence the parameter space for the mass term is the symmetric space [Cartan, 1926]

Γ(r) ∈ GL(n/2;C)
O(n;C)

≃ U(n/2)

O(n/2)
(4.2.12)

which has stable homotopy groups [Bott, 1956] π1(U/O) = Z, π2(U/O) = Z2 corresponding to topological line and
point defects.
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bound state.

4.3 Non-abelian statistics in 3D

Low energy Majorana bound states in 3D can be understood by the Dirac-type

model Hamiltonian (4.2.8) (or the more general (4.2.10)) as point defects associated

with a hedgehogs of the vector field ~n(r) (resp. the mass parameter mΓ(r)). The

configuration space of the system thus not only consists of the locations of the 2N

distinct indistinguishable Majorana fermions but also the non-singular vector field

~n(r) throughout real space. It is a feature that leads to non-Abelian statistics [Teo

and Kane, 2010a; Freedman et.al., 2011].

4.3.1 Fermion parity pump

The origin of Ising statistics is a minus sign in the exchange operator (4.1.8). The

minus sign can be identified with a π-Berry phase of a 360◦ rotation. Consider an

adiabatic evolution

Hφ(k, r) = H0(k, Rφr) = UφH0(k, r)U
†
φ (4.3.1)

where Uφ is a unitary (rotation) operator on the Hilbert space representing Rφ, and

φ = φ(t) is some adiabatic (angle) evolution. PH symmetry requires [Ξ, Uφ] = 0

since rotation never mixes c, c†. Suppose |ψ0〉 is a non-degenerate Majorana zero

mode with its phase fixed so that Ξ|ψ0〉 = +|ψ0〉.8 PH symmetry then ensures
8This is possible only when Ξ2 = +1 so that there is no Kramer’s degeneracy in the zero energy eigenspace.

The PH operator Ξ then form a real structure on zero modes.
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0 2̟

Figure 4.10: Skyrmion-like evolution of the vector field ~nφ(r) = MRφr. The Majorana zero mode
(yellow) acquires a minus sign after a cycle.

Ξ|ψφ〉 = ΞUφ|ψ0〉 = +|ψφ〉 throughout the cycle. And therefore the zero mode can

only accumulate a discrete Z2 phase after one complete cycle,

|ψ2π〉 = ±|ψ0〉 (4.3.2)

if it is the only Majorana zero mode in the system. The π-Berry phase is topological

in the sense that it cannot be accumulated from a trivial contractible adiabatic cycle.

The sign in eq.(4.3.2) then signifies a topological Z2 classification for PH-symmetric

adiabatic cycles, also known as fermion parity pumps.

To show that a π-Berry phase can be achieved, we consider a 360◦ rotation of

the hedgehog ~nφ(r) = Rφ~n0(r) = MRφr. Say Rφ rotates about the z-axis. The

minimal 8-band model (4.2.8) evolves according to

Hφ = −i~vf~γ · ∇ +M~Γ ·Rφr = UφH0U
†
φ (4.3.3)

for Uφ = exp(φΓxΓy/2). Thus |ψ2π〉 = U2π|ψ0〉 = −|ψ0〉.

The π-Berry phase is topological protected by the skyrmion-like evolution the

vector field ~nφ(r) undergoes (fig.4.10). Treat the vector field as a map n̂ = ~n/|n| :

S1
φ ×S2

r → S2 where the angle parameter φ lives in S1
φ, S2

r is a 2-sphere in real space

enclosing the Majorana bound state, the target S2 parametrizes the uni direction
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of ~n = (∆1,∆2,m). We therefore seek the topological classification of homotopy

classes of general maps from S1 × S2 to S2. This has been studied mathematically

by Pontrjagin [1941].

The existence of Majorana bound state requies the winding degree of the hedge-

hog configuration n̂φ : S2
r → S2 to be odd, say deg(n̂φ) = p, for all φ. Pontryagin

asserted that the classification with this degree constraint is

[S1 × S2, S2]deg=p = Z2p (4.3.4)

For unit degree, we may well assume the vector field takes the linear form n̂φ(r) =

Rφr̂, where Rφ is some rotation in SO(3).9 Then the topological classification is

simply

[S1 × S2, S2]deg=1 = π1(SO(3)) = Z2 (4.3.7)

which also accounts for the minus sign in 360◦ rotation of a fermion. We therefore

see that the skyrmion cycle is a topologically non-trivial evolution.10

There must be an even number of Majorana fermions in a closed system and any

rotation of the vector field must change the signs of a pair or pairs of them. An

example is shown in fig.4.11 for a single pair. In order for the fermion parity pump

9It is easiest to understand in the degree one scenario by the following conceptual but non-rigorous series of
identifications.

Map(S1 × S2, S2)deg=1 ∼ Map
(
S1,Map(S2, S2)deg=1

)
∼ Map(S1, SO(3)) (4.3.5)

Here the first equality is simply saying n̂φ is a φ-parametrized collection of maps from S2 to S2. The second equality
can be understood by assuming an analytic structure to the maps.

Map(S2, S2)deg=1 ∼ Aut(S2) = SL(2;C) ≃ SO(3) (4.3.6)

where Aut(S2) are complex analytic automorphisms on the Riemann sphere, which deformation retract onto the
rotation group SO(3).

10This topology is not specific to an 8-band model. In a general Dirac-type model, the mass term mΓφ(r) in
eq.(4.2.10) can undergoes a non-trivial cycle stably classified by [Bott, 1956; Freedman et.al., 2011]

[S1 × S2, U/O] ∼ π3(U/O) = Z2 (4.3.8)

In fact, the adiabatic cycle falls in the Z2-classification of topological δ = 0 defects of class D [Teo and Kane, 2010b].
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φ
0 2̟

~nφ(r) ∝
(
x cosφ+ y sinφ,−x sinφ+ y cosφ,

1 − r2

2

)
, ~nφ(r → ∞) ∝ e3

Figure 4.11: Skyrmion evolution of a pair of hedgehogs in a closed system. ~nφ points at a
constant direction (colored arrow) along a colored line. Both Majorana bound states (yellow) at
r = (0, 0,±1) pick up minus signs.

to be physically measurable, there must be at least two pairs of Majorana fermions.

So that two local fermion parity operators can be defined, and a single (or an odd

number of) fermion is pumped across the two spatially separated regions. Say we

have 2NL Majorana bound states on one side and 2NR on the other. Local fermion

parity operators are defined according to

(−1)Fa = (−i)Naγa1 . . . γ
a
2Na

, a = L/R (4.3.9)

The two sides are interconnected throught the vector field ~n(r), and suppose a

certain evolution changes the signs of a pair of Majorana fermions γLi , γ
R
j between

the two sides. The unitary operator is represented by

X = γLi γ
R
j (up to a U(1) phase) (4.3.10)

so that XγLi′X
† = (−1)δii′γLi′ and XγRj′X

† = (−1)δjj′γRj′ . X anticommutes with

the local fermion parity operators but commutes with the total fermion parity

(−1)FL+FR . This shows that after a cycle, a single (or an odd number of) fermion
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Figure 4.12: Fermion parity pumps controlled by phase ϕ(t) of superconductors. (A) Quantum
spin Hall insulator (QSHI) - magnetic insulator (M) - superconductor (SC) interface. Left and
right edges are similar to fig.4.3, each bounds two Majorana bound states (orange). γL

2 and γR
1

changes signs after a cycle of relative SC phase evolution. A single (or an odd number of) fermion
is pump between the left and right systems. (B) Phase evolution of SC chain. HBdG(k, ϕ) =
(t cos k − µ)τz + ∆sin k(cosϕτx + sinϕτy). (C) Energy levels associated with electron tunneling
across the non-superconducting gaps between γa

1 and γa
2 , for a = L,R. Crossing is protected by

topology of the adiabatic cycle (see eq.(5.3.25) in section 5.3.3).

has traveled across the two sides through the bulk.

4.3.2 Braidless operations (a.k.a. double exchanges)

Braidless operations are generalizations of fermion parity pumps [Teo and Kane,

2010a; Bonderson, Freedman and Nayak, 2008]. Given a system with 2N distinct

Majorana bound states, each associated with a hedgehog in the vector field ~n(r)

(or point defect in the mass term mΓ(r)), braidless operations are topological non-

trivial adiabatic cycles ~nt(r) without moving the hedgehogs, i.e. stationary Majo-

rana fermions. Fermions are pumped in between pairs of Majorana bound states

and altering parity of local pairs.

In a closed system with fixed boundary condition ~n(r → ∞) = constant, the

topology of the vector field ~n(r) is specified on a bouquet of spheres ∧2N−1S2 (see

fig.4.13), each enclosing one Majorana fermion. The topology around the remaining
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Figure 4.13: 2N Majorana fermions in a closed system with fixed boundary condition. Blue dotted
loops denote a bouquet of (2N − 1) number of spheres ∧2N−1S2 enclosing all but one hedgehogs.

unenclosed one is specified by the rest and the boundary condition. The configura-

tion space is therefore11

Map
(
∧2N−1S2, S2

)
= Map

(
S2, S2

)2N−1

deg=1
∼ SO(3)2N−1 (4.3.12)

Adiabatic cycles ~nt(r) (or mass term mΓt(r)) are topologically classified by the

fundamental group

π1(SO
2N−1) = π1(SO)

2N−1 = (Z2)
2N−1 (4.3.13)

It is more convenient to represent the group as the even part of (Z2)
2N , which is

generated by xij = (x1ij , . . . , x
2N
ij ), xlij = (−1)δil+δjl . They have the Abelian group

relation

xijxkl = xklxij , x2ij = 1 (4.3.14)

Physically, xij represents the adiabatic cycle where the ith and jth Majorana

fermions undergo 360◦ rotation similar to fig.4.11. Hence, both of them change

11A general Dirac-type model would have configuration space

Map
(
∧2N−1S2, U/O

)
= Map

(
S2, U/O

)
deg=1

∼ SO2N−1 (4.3.11)
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Figure 4.14: Deforming a double exchange T 2
12 (far left) into a braidless operation X12 (far right)

in 3D. A single (or odd number of) fermion parity is pumped between the top and bottom super-
conducting spheres.

signs and it is represented by the unitary operator

Xij = γiγj (up to a U(1) phase) (4.3.15)

so that XijγlX
†
ij = xlijγl = (−1)δil+δjlγl. Interestingly, they form a non-commuting

set of operators which differ from (4.3.14) by a sign

XijXkl = (−1)δik+δjk+δil+δjlXklXij , X2
ij = −1 (4.3.16)

Braidless operations are therefore projective representations of adiabatic cycles.

±Xij generate a non-Abelian double cover Z̃2N−1
2 , which is a non-split central ex-

tention of (4.3.13)

1 → Z2 → Z̃2N−1
2 → Z2N−1

2 → 1 (4.3.17)

4.3.3 Exchange operations

Exchange in (3 + 1)D is different from (2 + 1)D. Double exchange of Majorana

fermions in (3+1)D can always be deformed away and left with a braidless operation
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(fig.4.14). In other words, an exchange Tij is half of a braidless operation Xij ∝

γiγj = exp(πγiγj/2). This suggests (up to a U(1) phase) either

Tij = exp(πγiγj/4) or (4.3.18a)

Tij = exp(−πγiγj/4) (4.3.18b)

The Ising exchange operator (4.3.18) can be illustrated explicitly by keeping

track of the vector field ~nt(r) in the bulk. Fig.4.15 are snapshots of an exchange

between γ1 and γ2. ~nt(r) points constantly at two distinct directions along the solid

and dotted brown lines. Continuity of the vector field forbids crossing between a

solid and a dotted line. A 2π twist always remains (see (t4)) if the orientation of

the hedgehogs are fixed. It can be untwisted by rotating a hedgehog hence resulting

in a π-Berry phase at one Majorana fermion. The exchange operation in fig.4.15

therefore coincide with (4.3.18) so that T12γ1T
†
12 = −γ2 and T12γ2T

†
12 = γ1 for

sequence (a), or T12γ1T
†
12 = γ2 and T12γ2T

†
12 = −γ1 for sequence (b). The sign that

distinguish (4.3.18a) from (4.3.18b) is determined at step (t3), which results in a

2π phase twist along either γ2, γ3 or γ1, γ4. The difference between (4.3.18a) and

(4.3.18b) is a braidless operation, and therefore the sign difference is topologically

protected by the inequivalent vector field evolution for (a) and (b).

The topology of the configuration space K3D
2N is harder to describe when the Ma-

jorana fermions are allowed to move. It has been studied by Freedman et.al. [2011]

and the fundamental group that topologically classified adiabtic cycles contains the
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Figure 4.15: Evolution of ~nt(r) in an exchange. Solid and dotted lines denote path of constant
n̂(r). Orientation of hedgehogs are kept fixed throughtout t0 to t4. The 2π phase twist is elimnated
at t5 by rotating γ2 resulting in a minus sign. (a) Tij = exp(πγ1γ2/4); (b) Tij = exp(−πγ1γ2/4).

essential piece

π1(K
3D
2N ) ⊇ E((Z2)

2N ⋊ S2N) (4.3.19)

the even part of (Z2)
2N ⋊ S2N , called a ribbon permutation group. Note that the

subgroup E((Z2)
2N) = (Z2)

2N−1 contains the braidless cycles (4.3.13), and the

permutation group S2N is responsible for exchanges. Exchange operations ±Tij

generate a projective representation of the ribbon permutation group. They satisfies

the Yang-Baxter equation of the braid group

TijTjkTij = TjkTijTjk, for distinct i, j, k (4.3.20)

with an extra constraint T 4
ij = −1.12

12The Yang-Baxter equation holds for exchanges in the permutation group and the ribbon permutation group
as well. The extra constraint is σ2

ij = 1 for permutation group, and t4ij = 1 for ribbon permutation group. Both
groups are finite.
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Chapter 5

Electronic band theory and

topological defects

The topological classification of electronic phases is a powerful tool in predicting

the behavior of matter, especially along interfaces where gapless modes appear

[Thouless et.al., 1982; Halperin, 1982; Volovik and Yakovenko, 1989; Volovik, 1999;

Read and Green, 2000; Kitaev, 2001; Volovik, 2003; Kane and Mele, 2005a; Kitaev,

2006; Fu, Kane and Mele, 2007; Volovik, 2009; Qi et.al., 2009]. These robust mid-

gap states, though exponentially localized at interface, cannot exist on their own

or otherwise would violate the fermion doubling theorem [Nielssen and Ninomiya,

1983] and therefore must be connected with the bulk. They are irremovable by

perturbation unless the energy gap or relevant symmetry of the bulk is destroyed.

This accords with the definition 1.1.1 of bulk topological phases. The relationship

between the topological class of the bulk system and the presence of robust mid-gap

interface excitations, known as bulk-boundary correspondence, has been extensively
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explored and verified in many electronic systems. An non-exhaustive list of them

is given below.

TR breaking

(class A)

2D: QHE
chiral Dirac edge mode

Haldane graphene model

TR symmetric

(class AII)

2D: QSHI helical Dirac edge mode

3D: topological insulator surface Dirac cone

PH symmetric

(class D)

1D: quantum Ising model degenerate ordered ground state

Kitaev’s SC chain Majorana zero mode

2D: chiral p-wave SC
chiral Majorana edge mode

Kitaev’s honeycomb B-model

TR&PH symmetric

(class DIII)

3D: topological SC
surface Majorana cone

3He-B

Table 5.1: Examples of bulk topological phases and boundary gapless modes. Abbreviations: TR
= time reversal, PH = particle-hole, QHE = quantum Hall effect, QSHI = quantum spin Hall
insulator, SC = superconductor.

A boundary gapless mode is a topological soliton associated with a domain wall

separating a topological phase from a trivial one. A domain wall is the simplest kind

of topological defect. It has co-dimension one in the sense that the boundary has

one less dimensions than the bulk. There are other types of classical defects with

different co-dimenions, such as vortices in the XY-model, half-vortices in smectics,

dislocation in crystals, etc [Chaikin and Lubensky, 2000]. There is always a classical

order parameter space M usually coming from symmetry breaking, and defects are

classified by the homotopy group πD(M) = [SD,M], where SD is some hypershere

that wraps the defect.

In a topological band theory, there is in general no order parameter since topo-

logical insulating or superconducting phases are not described by spontaneous sym-

metry breaking. However, there is a topological description of how a band theory
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(A) (B) (C)

Figure 5.1: Classical topological defects. (A) ±1 vortices in XY-model, order parameter θ ∈ U(1),
π1(U(1)) = Z; (B) half vortex in smectics, order parameter [±n̂] = S1/±1, π1(S1/±1) = Z; (C)
edge dislocation in crystal, order parameter [r] ∈ R3/Z3, π1(R3/Z3) = Z3.

evolves around a defect [Teo and Kane, 2010a,b]. For instance, a topological invari-

ant eq.(4.2.4) was used previously in section 4.2 to characterize a point defect in a

superconductor and to indicate the presence of a Majorana bound state. This sec-

tion will generalize this idea to topological defects in electronic band theory. It will

focus on the topological classifications of spatially or temporally modulated band

Hamiltonian, and the appearance of robust mid-gap defect excitation as a result of

non-trivial modulations.

It will begin by providing a short review on the topological classification of single

particle band Hamiltonians with full crystal translation symmetry. The 2+8 Atland

Zirnbauer (AZ) symmetry classes [Cartan, 1926; Altland and Zirnbauer, 1997] and

the periodic topological classification [Schnyder et.al., 2008, 2009; Kitaev, 2009]

will be introduced. A general framework describing topological defects in electronic

band theory will be constructed in section 5.2. The classification in a symmetry

class, whether it is 0, Z2 or Z, will be shown to depend only on a single parameter

δ = d − D, called the defect dimension. Physical defects in low dimensions will

be studied in the subsequent sections. This includes line defects, point defects and

adiabatic pumps.
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5.1 Topological band theory

A Bloch Hamiltonian of an insulator or a Bogoliubov de Gennes (BdG) Hamilto-

nian of a superconductor is a momentum parametrized matrix Hamiltonian H(k)

with a Fermi energy lying in a gapped energy spectrum. A local symmetry is rep-

resented by a unitary or antiunitary operator that commute or anticommute with

the band Hamiltonian.1 Local antiunitary symmetries involve complex conjugation

O−1eik·rO = e−ik·r, and therefore operates on the Brillouin zone by the involution

k → −k.

1. (Time reversal) Any antiunitary operator Θ that commutes with the band

Hamiltonian according to

Θ−1H(k)Θ = H(−k) (5.1.1)

qualifies as a time reversal (TR) symmetry.

2. (Particle-hole) Any antiunitary operator Ξ that anticommutes with the band

Hamiltonian according to

Ξ−1H(k)Ξ = −H(−k) (5.1.2)

qualifies as a particle-hole (PH) symmetry.

1

(i) Only local symmetry will be considered here as space group symmetries are usually broken microscopically
by defects.

(ii) Given a symmetry O such that O†HO = eiφH, hermitianity of Hamiltonian requires eiφ = ±1.

(iii) There is no need considering a local unitary symmetry that commutes with H since all it does is decompose
H into independent eigen-blocks.
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Figure 5.2: The 2+8 Altland Zirnbauer (AZ) symmetry classes of band Hamiltonians [Altland and
Zirnbauer, 1997], labeled according to Cartan’s classification of symmetric spaces [Cartan, 1926].
(Left) The 8 real symmetry classes that involve the antiunitary symmetries Θ (time reversal)
and/or Ξ (particle-hole) are specified by the values of Θ2 = ±1 and Ξ2 = ±1. They can be
visualized on an eight hour “clock” [Teo and Kane, 2010b]. s = 0, . . . , 7 (mod 8) numerically
labels the “hours”. (Right) The 2 complex symmetry classes that does not involve antiunitary
symmetries.

3. (Chiral) Any unitary operator Π anticommutes with the band Hamiltonian

Π−1H(k)Π = −H(k) (5.1.3)

qualifies as a chiral symmetry, such as the composition ΞΘ.

The square of any local symmetry operator O2 is a unitary operator that com-

mutes with the Hamiltonian and therefore can be assumed to be constant by diag-

onalization. For antiunitary symmetries, O−1(O2)O = O2 requires O2 = ±1; while

for unitary symmetries, one can always assume O2 = 1 by redefining the operator

by a phase factor. The presence or absence of the symmetries therefore form a total

of 2+8 combinations, called symmetry classes due to Altland and Zirnbauer [1997].

The 8 real symmetry classes can be arranged on an eight hour “clock” (see fig.5.2)

according to the signs of Θ2 and Ξ2 [Teo and Kane, 2010b]. The four chiral classes

with both TR and PH symmetries are on the corners (e.g. class CI has Θ2 = +1 and
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Ξ2 = −1), while the other four non-chiral classes with either TR or PH symmetry

are on the axes (e.g. class D has Ξ2 = +1 but without TR symmetry). If both

TR and PH are present, we may assume they commute [Θ,Ξ] = 0. In general,

U = Ξ−1Θ−1ΞΘ is a unitary operator that commute with the Hamiltonian and

therefore can be taken to be a constant. Hermitianity requires U = ±1. Θ and Ξ

can then be made to commute by multiplying a factor of i.

5.1.1 Periodic classifications

The set of stably topologically equivalent gapped band Hamiltonians within an AZ

symmetry class s and in a certain dimension d form a topological phase (see definition

1.1.1 and the paragraph thereafter). Topological classification refers to the discrete

collection of topological phases. The collection inherit an addition structure from

direct sum of Hamiltonian matrices H1 ⊕ H2.
2 The trivial phase corresponds to

the additive identity, and the additive inverse of any Hamiltonian is the inversion

between the conduction and valence bands about the Fermi energy. The collection

of topological phases thus forms a discrete group, known as a topological K-group

[Atiyah, 1994; Karoubi, 1978; Lawson and Michelsohn, 1989; Kitaev, 2009], denoted

by Ks(BZ) as it depends on the symmetries and the Brillouin zone.

The momentum space of a crystalline theory is a torus T d. It contains many non-

trivial lower dimensional cycles (sub-tori). These generates weak topologies as seen

in the three weak indices of a 3D TR symmetric insulator [Fu, Kane and Mele, 2007].

2Given Hamiltonian matrices H1 and H2 with finite energy gaps, assuming they have the same Fermi energy,

H1 ⊕H2 =

(
H1 0
0 H2

)
(5.1.4)

is another gapped band Hamiltonian with the same Fermi energy and symmetries.
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Weak topologies can be neglected by considering a continuum theory regularized at

large momentum. The momentum space is compactified to a sphere Sd = Rd∪{∞}.

Since there are no lower dimension cycles, only the strong topology remains. The

group of strong topological classification will be denoted by K(s; d) = Ks(Sd).3

The topological classification was derived separately by Kitaev [2009] using Clif-

ford algebra and Schnyder et.al. [2008, 2009] using random matrices. It is easiest to

understand the stable classification by assuming the Hamiltonian has the Dirac-type

structure4 [Freedman et.al., 2011; Stone, Chiu and Roy, 2011]

H(k) = ~vfk · ~γ +mΓ (5.1.6)

where γ1, . . . , γd,Γ are hermitian anticommuting 2n× 2n Dirac matrices that obey

the TR and/or PH symmetry, and n → ∞ for stability. The symmetry allowed

mass terms mΓ parametrize a manifold called a classifying space [Steenrod, 1999],

denoted by Rs−d for the real classes and Cs−d for the complex ones. For instance,

the mass term mΓ(r) (c.f. vector field ~n(r)) that describes the hedgehog around a

Majorana fermion was shown to belong in U/O from eq.(4.2.12).

The stable classification is given by counting the number of connected compo-

nents in classifying space.

K(s; d) = π0(Rs−d) or π0(Cs−d) (5.1.7)

3The total group of classification over a toric Brillouin zone can be deduced combinatorically using the Cd
r =

d!
r!(d−r)!

independent sub-tori that generates HrT d [Kitaev, 2009].

Ks(T
d) = Ks(Sd)⊕Ks(Sd−1)⊕Cd

d−1 ⊕ . . .⊕Ks(S1)⊕Cd
1 ⊕Ks(S0) (5.1.5)

The addition structure however can be highly non-trivial and will not decompose into direct sume in general due
to sub-tori intersection [Ran, 2010].

4This can be justified by a Morse theory argument given in our paper [Teo and Kane, 2010b].
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for real or complex classes respectively. Bott periodicity theorem [Bott, 1956] tells

Classifying spaces π0

C0

⋃
m>0 U(2m)/(U(m) ⊕ U(m)) Z

C1 (U(n) × U(n))/U(n) 0
R0

⋃
m>0 O(2m)/(O(m) ⊕ O(m)) Z

R1 (O(n) × O(n))/O(n) Z2

R2 O(2n)/U(n) Z2

R3 U(2n)/Sp(n) 0
R4

⋃
m>0 Sp(2m)/(Sp(m) ⊕ Sp(m)) 2Z

R5 (Sp(n) × Sp(n))/Sp(n) 0
R6 Sp(n)/U(n) 0
R7 U(n)/O(n) 0

Table 5.2: Classifying spaces Rs−d and Cs−d for mass terms mΓ of Dirac-type Hamiltonians and
their connected components.

us the classifying spaces are related to each other by looping

ΩRs−d = Map(S1,Rs−d) = Rs−d+1, Ω8Rs−d = Rs−d (5.1.8a)

ΩCs−d = Map(S1, Cs−d) = Cs−d+1, Ω2Cs−d = Cs−d (5.1.8b)

This explains the group structure of (5.1.7) and the complex 2, real 8-periodicity

in table 5.3.

Symmetry d
s AZ Θ2 Ξ2 Π2 0 1 2 3 4 5 6 7
0 A 0 0 0 Z 0 Z 0 Z 0 Z 0
1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0
5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0
6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0
7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z

Table 5.3: Periodic table for the stable topological classification K(s; d) of crystalline insulators
and superconductors [Schnyder et.al., 2008, 2009; Kitaev, 2009]. The rows correspond to the
different Altland Zirnbauer (AZ) symmetry classes s (mod 2 or 8), while the columns distinguish
different dimensionalities d (mod 2 or 8).
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Figure 5.3: Topological defects characterized by a D parameter family of d dimensional Bloch-
BdG Hamiltonians. Line defects correspond to δ = d − D = 2, while point defects correspond to
δ = d − D = 1. Temporal cycles for point defects correspond to δ = dd = 0.

5.2 Defect classification

Topological defect in electronic band theory is desribed by a spatially and/or tem-

porally modulated band Hamiltonian H(k, r) around the defect. For instance, a

point defect in a superconductor was illustrated in eq.(4.2.8) (and (4.2.10)) with

a position dependent vector field ~n(r) (resp. mass term mΓ(r)). Momentum k

always lives in a crystalline Brillouin zone T d or a continuum compactified space

Sd = Rd ∪{∞}. Position r lives away an ǫ-neighborhood off the defect in real space

Rd − Sǫ so that a semi-classical description holds and k and r can be treated as

commuting variables. This compliment of the ǫ-neighborhood deformation retract

onto some submanifold (or cycles) Σ that wraps around the defect in real space.

For example, a point defect is surround by a sphere Σ = Sd−1 and a line defect is

wrapped by a hypersphere Σ = Sd−2. We are interested in local defect excitations

and therefore can assume the defects to be linear subspaces: points, lines, planes,

etc. They are always wrapped by hyperspheres Σ = SD. A time dependent adia-

batic cycle depends on an extra temporal parameter and therefore Σ = SD−1 × S1.
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We define the defect dimension

δ = d−D (5.2.1)

and we will show that the stable topological classification of a symmetry class

depends only on this dimension parameter.

Time reversal and particle-hole are local symmetries and therefore are unbroken

by any spatial or adiabatic temporal defect. Eq.(5.1.1), (5.1.2) and (5.1.3) change

according to

Θ−1H(k, r)Θ = H(−k, r), Ξ−1H(k, r)Ξ = −H(−k, r),

and Π−1H(k, r)Π = −H(k, r) (5.2.2a)

The stable classification of topological defect in band theory can then be formulated

similar to that of the crystalline case. The collection of defect topological classes, i.e.

stably equivalent classes of defect Hamiltonians, defines a additive group Ks(BZ ×

SD). The defect topology is carried by the highest dimension cycle in the base space

BZ × SD, analogous to the strong topology in crystalline band theory. This can be
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singled out by compactifying the base space onto a sphere5

(k1, . . . , kd; r1, . . . , rD) ∈ Sd+D = Rd+D ∪ {∞} (5.2.6)

and denote the defect classification by K(s; d,D) = Ks(Sd+D).

By assuming a Dirac-type defect Hamiltonian

H(k, r) = ~vfk · ~γ +mΓ(r) (5.2.7)

the defect classification can be deduced by the homotopy groups of the classifying

spaces

KR(s; d,D) = [SD,Rs−d] = π0(Ω
DRs−d) = π0(Rs−d+D) (5.2.8)

and similarly for the other 2 complex classes KC(s; d,D) = π0(Cs−d+D). Hence, this

suggests that in a given symmetry class, the stable defect classification depends

only on the dimension difference δ = d − D rather than the dimension d of the

ambient material the defect lives in. For instance, this asserts the classification of

a point defect of any symmetry would be the same in any dimension since a point

defect has constant δ = dD = 1. Or in particular, line defects in 3D should have the
5The total group of defect classification is

Ks(T
d × SD) = K(s; d,D)⊕

d−1∑

r=0

K(s; r,D)⊕Cd
r ⊕

d∑

r=0

K(s; r, 0)⊕Cd
r (5.2.3)

for time independent defects, or

Ks(T
d × SD−1 × S1) = K(s; d,D) ⊕

d−1∑

r=0

K(s; r,D)⊕Cd
r ⊕

d∑

r=0

K(s; r, 0)⊕Cd
r

⊕
d∑

r=0

K(s; r,D − 1)⊕Cd
r ⊕

d∑

r=0

K(s; r, 1)⊕Cd
r (5.2.4)

for adiabatic cycles. A lower dimension weak topology can be removed from H(k, r) by subtraction

H0(k, r) = H(k, r)⊕−H′(k′, r) (5.2.5)

where H′(k′, r) carries the weak topology for k′ lives in some sub-torus T r ⊆ T d. The remaining Hamiltonian
H0(k, r) after removing all the weak topologies can then be compactified on a sphere T d × SD → Sd+D since
H0(k → ∞, r → ∞) →constant.
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Symmetry δ = d − D
s AZ Θ2 Ξ2 Π2 0 1 2 3 4 5 6 7
0 A 0 0 0 Z 0 Z 0 Z 0 Z 0
1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0
5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0
6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0
7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z

Table 5.4: Periodic table for the classification K(s; d,D) of topological defects in insulators and
superconductors. The original periodic table 5.3 is a particular case of this with δ = d − 0.

same classification as 2D crystalline band theories, since the edge of a 2D system is

also line defect with δ = 2.

The classification according to classifying space of mass term of a Dirac-type

Hamiltonian is flawed in the following two ways. (i) A defect band Hamiltonian in

general is not of Dirac-type, and it is not immediately obvious how the topological

classification K(s; d,D) equates to the homotopy groups of symmetric spaces. (ii)

A computational scheme of determining the defect topological class of a specific

non-Dirac-type Hamiltonian is missing. These two issues will be addressed in the

following subsections 5.2.1 and 5.2.2.

5.2.1 Bott periodicity

The topological defect classification K(s; d,D) contains the following symmetries

K(s; d,D) ∼= K(s+ 1; d+ 1, D) ∼= K(s− 1; d,D + 1) (5.2.9)
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For instances, it accounts for the diagonal recurrent pattern in the periodic table

5.4 and it also shows that the classification only depends on the defect dimension

δ = d−D since K(s; d,D) ∼= K(s+1; d+1, D) ∼= K(s; d+1, D+1). The complex 2

and real 8-periodicities are built-in because the symmetry label s is defined modulo

8.

K(s; d,D) ∼= K(s; d+ 8, D) ∼= K(s; d,D + 8) (5.2.10)

The isomorphisms in (5.2.9) can be constructed by simple explicit mappings between

defect Hamiltonians Hs(k, r) 7→ Hs+1(k, k
′, r) and Hs(k, r) 7→ Hs−1(k, r, r

′). By

studying these, it will be shown that essentially all defect Hamiltonians can be

deformed to have a Dirac-type structure (5.2.7). For simplicity, all Hamiltonians in

this subsection is assumed to be flattened so that H2 = 11 and the Fermi energy lies

at 0.6

The symmetry classes are divided into chiral and non-chiral ones depending on

the presence or absence of chiral symmetry Π. A chiral Hamiltonian Hc can be map

to a non-chiral one Hnc (fig.5.4 (left)) by adding an extra chiral symmetry breaking

term

Hnc(k, r, θ) = cos θHc(k, r) + sin θΠ (5.2.11)

while a non-chiral Hamiltonian Hnc can be promoted into a chiral one Hc (fig.5.4

(right)) by doubling the number of bands

Hc(k, r, θ) = cos θHnc(k, r) ⊗ τz + sin θ11 ⊗ τa, (5.2.12)

6Band flattening can be achieved by deforming all the conduction (valence) bands to have energy +1 (resp.
−1), and if necessary, add a number of trivial conduction or valence band so that there are equal number of bands
below and above the Fermi energy. Given a Hamiltonian H, the flattened version H then loses all information on
energetics, but preserves the topological phase. H = 11− 2Pv , where Pv is the projection operator onto the valence
band.
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Figure 5.4: Hamiltonian mappings (5.2.11) and (5.2.12) are drawn on the left and right clocks
respectively. Solid (dotted) arrows represents addition of one momentum (spatial) dimension.
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compactify
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T d S D×

Σ(T d S    )D×

Figure 5.5: Supension Σ(T d × SD). The top and bottom of the cylinder (T d × SD) × [−π/2, π/2]
are identified into two points.

with chiral operator Π = iτzτa, for a = x or y. The extra parameter θ in both

of the equations can be either a momentum or spatial degree of freedom and lives

in [−π/2, π/2]. Since the Hamiltonians are constant at θ = ±π/2, the parameter

space for (k, r, θ) is compactified at the two points (see fig.5.5).

Depending on whether θ is a momentum parameter Θ,Ξ : θ → −θ or spatial

parameter Θ,Ξ : θ → θ, the extra term sin θΠ in eq.(5.2.11) either destroys the TR

or PH symmetry of the orginal Hamitonian Hc(k, r); while the second term sin θ11⊗

τa in eq.(5.2.12) must preserve the original symmetry of the original Hamltonian

Hnc(k, r). This fixes τa = τx or τy and determines the symmetry class of Hc(k, r, θ).

It turns out that the addition of a momentum parameter θ always corresponds to

a forward motion on the clock (solid arrow in fig.5.4) while a position parameter θ

corresponds a backward motion (dotted arrows).
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Eq.(5.2.11) and (5.2.12) can be shown, using an energy functional argument (ap-

pendix in [Teo and Kane, 2010b]), to be isomorphisms (invertible maps preserving

group addition structure) in K-theory

K(s; d,D)
∼=−→ K(s+ 1; d+ 1, D) and K(s; d,D)

∼=−→ K(s− 1; d,D − 1) (5.2.13)

In particular this means that any continuum Hamiltonian Hs is stable equivalent

to either of the following form

Hs(k1, . . . , kd, r) ≃ Hs−1(k1, . . . , kd−1, r) + kdΠ+O(k2d) (5.2.14)

Hs(k1, . . . , kd, r) ≃ Hs−1(k1, . . . , kd−1, r) ⊗ τz + kdτa +O(k2d) (5.2.15)

depending whether the symmetry class s is chiral or non-chiral. Here the parameter

space is compactified as (k, r) ∈ Sd+D and the trigonometric functions can be Taylor

expand around the origin to be cos θ = 1 + O(k2d) and sin θ = kd + O(k3d). Given a

sufficient number of bands, this identification process can be iterated so that

Hs(k1, . . . , kd, r) ≃ Hs−1(k1, . . . , kd−1, r) + kdΠ+O(k2d)

≃ Hs−2(k1, . . . , kd−2, r) ⊗ τz + kd−1τa + kdΠ

≃ . . .

≃ Hs−d(r) ⊗ Γ + k1γ1 + . . .+ kdγ (5.2.16)

a Dirac-type Hamiltonian. The mass term Hs−d(r) ⊗ Γ can then be classified ac-

cording to the homotopy groups of classifying space πD(Cs−d).
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5.2.2 Integral formulae

The defect topological class of most Hamiltonians can be determined using certain

integral formulae, known as topological invariants. Examples include the Chern

invariant of an integer quantum Hall state eq.(1.1.2), the Z2-invariant for topological

insulators in 2 and 3D eq.(1.1.14, 1.1.16, 1.1.18), and the Chern-Simons invariant for

Majorana bound state eq.(4.2.4). In general, the topological invariant can mostly

be universally written down according to the dimension hierachy [Qi, Hughes and

Zhang, 2008; Ryu et.al., 2010] along rows in the periodic table 5.4

2nd descendant 1st descendant

Z2 Z2 Z
s − d + D ≡ −2 −1 0

oo i∗

∼=
oo i∗

mod 2
(5.2.17)

Here i∗ restricts a model on a sphere (k, r) ∈ Sd+D onto its equator S(d−1)+D.

For simplicity, all Hamiltonians H(k, r) are assumed to be compactified so that

(k, r) ∈ Sd+D (see footnote below eq.(5.2.6)). The invariants are constructed by the

valence states |um(k, r)〉 and the Berry connection A(k, r) eq.(4.2.6). Chiral and

non-chiral models (resp. odd and even s) have different types of invariants. For

chiral classes, it is most convenient to assume Π = τz (by a gauge transformation

in general) so that the flattened Hamiltonian takes the off-block diagonal form

Hc(k, r) =




0 q(k, r)

q(k, r)† 0


 , q(k, r) ∈ U(n) (5.2.18)

For non-chiral classes, the topological invariants are often composed of the gauge
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covariant Berry curvature

F = dA + A ∧ A (5.2.19)

2nd Z2 descendant 1st Z2 descendant Z or 2Z

non-chiral Fu-Kane Chern-Simons Chern character

chiral Chern-Simons Fu-Kane winding number

Table 5.5: Universal topological invariants.

1. (Z-invariants) This applies to s− d+D ≡ 0 (mod 4). For non-chiral classes,

the integral invariant is given by the Chern character that classifies the vector

bundle of valence states

NC: n =
1

(∆/2)!

(
i

2π

)∆/2 ∫

Sd+D

Tr[F ∧ . . . ∧ F︸ ︷︷ ︸
∆/2

] (5.2.20)

while for chiral classes, the invariant is given by the winding number that

characterized the stable homotopty of g(k, r) in πd+D(U(n))

C: n =

(
∆−1
2

)
!

∆!(2πi)
∆+1
2

∫

Sd+D

Tr[(qdq†) ∧ . . . ∧ (qdq†)︸ ︷︷ ︸
∆

] (5.2.21)

where ∆ = d+D is the total dimension and n is an integer for both of them.

n must be even for s − d + D ≡ 4 (mod 8). The two invariants (5.2.21) and

(5.2.20) are interchangeable by the isomorphisms (5.2.11) and (5.2.12) that

relates chiral and non-chiral classes.

2. (1st Z2 descendant) This applies to s−d+D ≡ −1 (mod 8). For non-chiral
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classes, dimension hierachy (5.2.17) imposes a Chern-Simons invariant

NC: ν ≡ 2(
∆+1
2

)
!

(
i

2π

)∆+1
2
∫

Sd+D

Q∆ mod 2 (5.2.22)

where Q∆ is the Chern-Simons ∆-form [Chern and Simons, 1974; Nakahara,

1990]

Q∆ =
∆+ 1

2

∫ 1

0

dtTr
[
A
(
tdA + t2A ∧ A

)∆−1
2

]
(5.2.23)

The defect classification of a chiral class s is identical to that of the 2nd de-

scendant in the non-chiral class s+ 1. This is established from the dimension

hierachy and the isomorphism (5.2.11).

Z2 Z2 Z

Z2 Z2 Z

oo i∗

__

��
❄❄

❄❄
❄❄

❄❄
❄

∼=

oo i∗

__

��
❄❄

❄❄
❄❄

❄❄
❄

∼=

oo i∗ oo i∗

(5.2.24)

where the top row is the chiral class s and the bottom one is the non-chiral

s + 1. This is essentially treating the chiral Hamiltonian as a non-chiral one

by forgetting either TR or PH symmetry. The subsequent non-chiral model is

characterized by the Fu-Kane invariant (5.2.25) below.

3. (2nd Z2 descendant) This applies to s− d+D ≡ −2 (mod 8). The integral

invariants for both non-chiral and chiral cases involve the Berry connection A.

It has to be constructed from valence states |um(k, r)〉 that obey a certain gauge

constraint, or otherwise the invariant would be vacuous. For non-chiral classes,

the invariant is given by a formula that resemblant the Fu-Kane invariant
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(1.1.16) for 2D topological insulators

NC: ν̃ ≡ i∆/2

(∆/2)!(2π)∆/2

[∫

Sd+D
1/2

Tr(F∆/2) −
∮

∂Sd+D
1/2

Q∆−1

]
mod 2

(5.2.25)

where Sd+D
1/2 is a hemisphere, and ∂Sd+D

1/2 = S(d−1)+D is its equatorial boundary

that is closed under the involution (k, r) → (−k, r). The Chern-Simons (∆−1)-

form is constructed with a gauge that satisfies constraint (5.2.27) or (5.2.30)

along the equator. For chiral classes, they are classified by a Chern-Simons

invariant that differs (5.2.22) by a factor of 2,

C: ν̃ ≡ 1(
∆+1
2

)
!

(
i

2π

)∆+1
2
∫

Sd+D

Q∆ mod 2 (5.2.26)

with the gauge constraint taken over the base space Sd+D. The gauge constraint

depends on the symmetry class. For class AI, DIII, AII and CI (s = 0, 3, 4, 7),

a time reversal constraint should be taken

wmn(k, r) = 〈um(k, r)|Θun(−k, r)〉 ≡ constant (5.2.27)

while for class BDI, D, CII and C (s = 1, 2, 5, 6), a more complicated and non-

deterministic particle-hole constraint should be used. Given the conduction

and valence frame uc and uv, one may combine them to form a unitary matrix

Gk,r =




| |

uv(k, r) uc(k, r)

| |




(5.2.28)
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The orthogonality of conduction and valence band states implies that

G†
k,rΞG−k,r = 0 (5.2.29)

The particle-hole gauge constraint requires the matrix G to be homotopically

trivial

Gk,r ≃ constant (5.2.30)

i.e. G†
k,r should be able to deformed continuously into a constant matrix while

maintaining (5.2.29) along the deformation.

5.3 Physical defects in low dimensions

The topology of defect Bloch-BdG Hamiltonian H(k, r) is physically revealed by

robust low energy defect excitations that violates the fermion doubling theorem

[Nielssen and Ninomiya, 1983]. These include boundary excitations such as the

surface Dirac cone of a topological insulator in section 2 or the helical edge mode

of a quantum spin Hall insulator in section 3. Majorana zero modes in chapter 4

are low energy excitations associated to a point defect, and braidless operations are

consequence of non-trivial adiabatic cycles.

Various topological defect excitations associated to line, point defects and adi-

abatic cycles will be investigated below. Explicit examples will be introduced as

theoretical proposals or be revisited as illustrations of the generalized bulk-boundary

correspondence. In particular, the semi-classical approach of defect band Hamil-
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Symmetry Topological classification 1D Gapless Fermion modes

A Z Chiral Dirac

D Z Chiral Majorana

DIII Z2 Helical Majorana

AII Z2 Helical Dirac

C 2Z Chiral Dirac

Table 5.6: Symmetry classes that support topologically non trivial line defects and their associated
protected gapless modes.

tonians H(k, r) will be applied to understand heterostructures and lattice defects.

The topological classification and characterization of defect band Hamiltonians then

becomes a powerful tool in predicting the existence of topological defect modes.

5.3.1 Line defects

A line defect has dimension δ = d − D = 2. (k, r) lives in the base space T d ×

Sd−2 with Sd−2 wrapping the defect line in real d-space. Robust low energy line

excitations are characterized according to the non-zero entries along the δ = 2

column of the periodic table 5.4. Line defects in 2 dimensions can be realized as

edges of a bulk material and have already been extensively studied. It will therefore

be more interesting to consider line defects in 3 dimensions instead. In fact, it may

even be technological more feasible to manufacture a 3 dimensional structure than

a 2 dimensional one.
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Figure 5.6: 1D Gapless excitations. (Left to right) chiral Dirac mode (n = 3), helical Dirac mode,
chiral Majorana mode (n = 3), helical Majorana mode. k‖ is momentum along the line defect.

Heterostructures

A line defect is bounded in 3D at the interface between three different bulk gapped

electronic materials (see fig.5.7) such as trivial insulators (air or vacuum) - I, topo-

logical insulators - TI, (anti)ferromagnets - AM/FM, superconductors - SC with

different pairing phases. In the vicinity of the line interface, the defect can be

modeled by a semi-classical Dirac type Hamiltonian

H(k, s) = ~vfk · ~γ +mΓ(s) (5.3.1)

on a circle surrounding the line. The mass term differs in the three materials, and

would be discontinuous across sharp surface interfaces. However, by requiring the

absence of phase transition across any pair of materials, the surface interfaces must

remain gapped and therefore can be smoothened out (c.f. the smooth interface

across the TI-SC-I junction in fig.4.8). The defect topology is described by the

winding of the mass termmΓ(s) around the line junction and corresponds to gapless

1D excitation. It must be emphasized that gapped surface interfaces between pairs

are necessary conditions in hosting a topological line excitation. Or otherwise the

gapless mode could escape along the surfaces, and in fact the geometry could no

longer be considered as a line defect since the mass term mΓ(s) would be singular
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Figure 5.7: Line defect at a heterostructure. A, B and C are different bulk gapped materials put
together so that there is no gapless surface modes along interfaces of any pairs. The mass term
mΓ(s) wraps non-trivially around the line interface corresponding to a gapless 1D excitation.

AF-I AF-I

TI θ = π

θ = −ε θ = +ε
AF-TI AF-TI

I θ=0

θ = π−ε θ = π+ε

F-I    F-I

TI θ = π

θ = 0   θ = 0
F-TI  F-TI

I θ=0

θ = π θ = π

S M

TI

M M

TS
S S

TI

φ=π φ=0

(A) (B) (C)

(a)

(b)

Figure 5.8: Heterostructures’ topologies and excitations. Abbreviations: AF = antiferromagnetic,
F = ferromagnetic, I = trivial insulator, TI = topological insulator, S = superconductor, TS =
TR-symmetric topological superconductor, M = magnet. (A) Chiral Dirac mode protected by
winding of the magnetoelectric θ-angle. (B) Chiral Majorana mode protected by a second Chern
number. (C) Helical Majorana mode protected by a Fu-Kane invariant.

across a phase transition.

A few theoretical proposals on heterostructures are given below. Although one

would have to overcome the technological difficulty of manufacturing smooth surface

interfaces with an appropriate gap, the 1D gapless excitations are otherwise robust

and guaranteed by topology. In a realistic system, the topology is characterized by

the Z or Z2 invariants layed down previously in section 5.2.2. And these identify

with the winding of mΓ(s) in the phenomenological Dirac-type model.

A) [(Anti)ferromagnetic topological insulator] The geometries are specified

by fig.5.8(A), and the charge conservation symmetry is specified by the complex
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AZ class A. They can be approximated by the Dirac Hamiltonians close to the

line interface

H(k, s) = ~vfµx~σ · k+m(s)µz +





haf (s)µy

~hf (s) · ~σ
(5.3.2)

Here m(s) describes the topological to trivial band inversion as it changes signs

along the vertical axis. haf and ~hf are TR-breaking (anti)ferromagnetic param-

eters, distinguished by behavior under inversion µz. It is easiest to understand

in the AF-case, where the antiferromagnet orientation switches across the hori-

zontal axies and haf (s) simply changes signs. Phenomenologically,

mΓ(s) ∼ (m0 sin s)µz + (h0 cos s)µy (5.3.3)

which is a 360◦ rotation in the µ degree of freedom. This winding number can

be identified with the circulation of the magnetoelectric θ-angle (1.1.18) [Qi,

Hughes and Zhang, 2008]. In general, the number of 1D chiral Dirac modes is

given by how many times the θ-angle winds around the line junction.

n =
1

2π

∫

S1
dθ(s) =

−1

4π

∫

BZ×S1
Tr[F ∧ F ] (5.3.4)

The heterostructure therefore supports a local unidirectional transport channel

of charge in three dimensions with e2/2h conductance that is robust against

backscattering and localization.

B) [Magnetic topological superconductor] The heterostructure geometries are

given by fig.5.8(B)7 with the superconductor breaking charge conservation. The

7In (a), the 3D bulk TR-preserving superconductor is assumed to carry n = 1 topology in class DIII. This is to
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defects are described by the Dirac-type BdG Hamiltonians in class D

H(k, s) = ~vfτz~σ · k+∆(s)τx + h(s)τy (5.3.5a)

H(k, s) = τz
[
~vfµx~σ · k+m(s)µz

]
+∆(s)τx + h(s)µy (5.3.5b)

respectively for (a) and (b) in fig.5.8(B).8 The first Hamiltonian has the same

form of the antiferromagnetic Hamiltonian (5.3.2), and therefore carries the

same unit winding mΓ(s) = (∆0 sin s)τx + (h0 cos s)τy that guarantees a single

chiral Majorana mode along the line interface. The three mass m,∆, h terms

in the second Hamiltonian are controlled by the I-TI transition, supconducting

and magnetic strength. m(s) changes signs along the vertical axis. Supercon-

ductivity dominates ∆ ≫ h for x < 0 and magnetism dominates ∆ ≪ h for

x > 0. The Hamiltonian can be decomposed H = H+ ⊕ H− according to the

good quantum number τxµy = ±1, and only one of the sector carries non-trivial

topology.

H−(k, s) = ~vf τ̃z~σ · k+m(s)τ̃x + (∆(s) − h(s))τ̃y (5.3.6)

Again (m,∆−h) winds 360◦ around the line junction. Thus both heterostructure

(a) and (b) support local unidirectional transport channel of neutral Majorana

fermions and provide possible ways of manipulating the exotic excitation in 3D.

C) [Josephson junction over topological insulator] The details are specified

in fig.5.8(C) [Fu, Kane and Mele, 2007]. Time reversal symmetry is preserved

when the superconducting phase is tuned at exactly ϕ = ±π. It can be modeled

guarantee a single chiral Majorana channel.
8We assume antiferromagnetic coupling h(s) for simplicity.

83



B

s

B

Figure 5.9: Edge and screw dislocations with their Burger’s vector (red) perpendicular and parallel
to the line defect (green). A general dislocation can be a linear combination of the two, and the
bulk crystal do not have to be stratified in any particular direction.

by the minimal BdG Dirac Hamiltonian in class DIII

H(k, s) = τz
[
~vfµx~σ · k+m(s)µz

]
+∆(s)τx (5.3.7)

The phenomenological mass term mΓ(s) = (m0 sin s)τzµz+(∆0 cos s)τx has unit

winding.9 The topology can be more generally characterized by the Z2 Fu-Kane

invariant (5.2.25). The non-triviality of that ensures the existence of helical

Majorana mode.

Dislocations

Dislocations are classical topological line defects in 3D crystals. Each is charac-

terized by a Burger’s vector, a Bravais lattice vector B = m1a1 + m2a2 + m3a3,

that measures the displacement of a density wave along a cycle around the line de-

fect.10 A dislocation in an electronic material with non-trivial topology could carry

a gapless 1D excitation.

9To be precise, mΓ(s) lives in the classifying space R0 = O(2m)/O(m)× O(m), the real Grassmann manifold.
The winding is defined modulo 2 as π1(R0) = Z2.

10A density wave has order parameter in R3/L, L ∼= Z3 is the Bravais lattice. B ∈ π1(R3/L) = L.
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A line defect in a TR-breaking 3D material is characterized by a second Chern

number (5.3.4). For a dislocation in a three dimensional quantum Hall state, this

invariant can be simplified into a dot product

n =
1

2π
B · Gc (5.3.8)

where Gc is the reciprocal lattice vector that characterized the 3D quantum Hall

state

Gc =
1

2π

∫

BZ

dk ∧ Tr[F0] (5.3.9)

F0(k) is the Berry curvature for the crystalline bulk material. The integral invariant

n determines the number of chiral Dirac excitation running along the dislocation.

Dislocations in weak topological insulators were studied by Ran [Zhang and

Vishwanath]. This could be understood as a defect band theory in class AII and

characherized using the Fu-Kane Z2 invariant from (5.2.25).

ν̃ ≡ 1

8π2

(∫

1
2
T 3×S2

Tr[F ∧ F ] −
∫

∂ 1
2
T 3×S2

Q3

)
mod 2 (5.3.10)

It can be simplified into a dot product similar to (5.3.8)

ν̃ ≡ 1

2π
B · Gν mod 2 (5.3.11)

whereGν is the Z2-valued reciprocal lattice vector that characterized weak topolgies

Gν =

∫

1
2
T 3

Tr[F0] ∧ dk −
∫

∂ 1
2
T 3

Tr[A0] ∧ dk (5.3.12)
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A0(k) and F0(k) are the Berry connection and curvature for the crystalline bulk.

The Z2-invariant indicates the existence or absence of a helical Dirac mode along

the line dislocation.

Other 1D gapless excitations are associated with dislocations in different crys-

talline electronic materials. Chiral Majorana mode could appear in a 3D chiral

p-wave superconductor such as Sr2RuO4, and helical Majorana mode could exist in

a weak TR-symmetric topological superconductor.

5.3.2 Point defects

A point defect has dimension δ = d−D = 1. (k, r) lives in the base space T d×Sd−1

with Sd−1 wrapping the point defect in real d-space. Robust zero energy bound

states are characterized according to the non-zero entries along the δ = 1 column of

the periodic table 5.7. Chiral Dirac terminal mode of the Su-Schrieffer-Heeger model

[1980] and the Jackiw-Rebbi model [1976], Majorana zero modes at the ends of the

Kitaev’s superconducting chain [Kitaev, 2001], at vortex cores of a chiral p-wave

superconductor [Volovik, 1999; Read and Green, 2000] and the Jackiw-Rossi model

[1981] are examples of robust bound states associated with a point defect. The

system always has a chiral or particle-hole symmetry that anticommute with the

Bloch-BdG Hamiltonian so that a bound state with Π|ψ0〉 = ±|ψ0〉 or Ξ|ψ0〉 = |ψ0〉

is pinned exactly at zero energy. A non-degenerate zero energy bound state is

irremovable unless the symmetry is broken or the bulk gap closes.
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Symmetry Topological classification E = 0 Bound States

AIII Z Chiral Dirac

BDI Z Chiral Majorana

D Z2 Majorana

DIII Z2 Majorana Kramers doublet (= Dirac)

CII 2Z Chiral Majorana Kramers doublet (= Chiral Dirac)

Table 5.7: Symmetry classes supporting non trivial point topological defects and their associated
E = 0 modes.

0 0

E E

Figure 5.10: Particle-hole symmetric bound states of a point defect. (Left) Zero energy bound
state (red) at a topological point defect. (Right) Removable (+E,−E)-pair of bound states at a
trivial point defect.
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Chiral zero mode Given a chiral symmetry in the system, the zero energy bound

states decompose according to their chirality, i.e. eigenvalues of the chiral operator

π = ±1. Setting Π = τz, the defect Hamiltonian operator11 takes the off-block

diagonal form

Ĥ = ĥ+ ĥ†, ĥ = q̂ ⊗ τ+ (5.3.13)

where τ± = (τx ± iτy)/2, q̂ is an invertible operator. ĥ is known mathematically as

a Dirac operator [Nakahara, 1990; Berline, Getzler and Vergne, 2004]. It sends a

negative chiral state to a positive one while annihilating all positive chiral states.

The chirality of zero energy bound states are defined as an analytic index

ind(Ĥ) = dimker(ĥ†) − dimker(ĥ) (5.3.14)

which is the difference between the number of positive and negative chiral zero

modes.12 Since a pair of zero modes could splits into ±E pairs only when they have

opposite chirality, the analytic index (chirality) is robust against any perturbations

on the Hamiltonian operator as long as the chiral symmetry and its ellipticity (bulk

gap) is maintained.

The topology of the defect is described by the semi-classical theory H(k, r). The

topological index is given by the winding number (5.2.21). It is an integral invariant

11Given a semi-classical band Hamiltonian H(k, r) away from a point singularity, a defect Hamiltonian operator

Ĥ can be defined essentially by replacing k ↔ −i∇. This can be made mathematically by introducing pseudo-
differential operators using Fourier transform, and the ellipticity of the operator comes from the energy gap of
H(k, r).

12The kernel ker(ĥ†) is the subspace that is annihilated by the operator ĥ. In general, this is an infinite dimensional

space. However, one can define the Laplacian ∆ = ĥ†ĥ, and it can be shown that the chirality is given by the finite
difference

ind(Ĥ) = dimker(∆)− dimker(ĥ) (5.3.15)

= dimker(∆)− dimker(ĥ) (5.3.16)

where the Laplacian operator ∆ is Fredholm and has finite dimensional kernel [Nakahara, 1990; Berline, Getzler

and Vergne, 2004]. This is guaranteed by the ellipticity of Ĥ, i.e. the bulk gap of H(k, r).
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representing a winding number in the stable homotopy group π2d−1(U). It is a con-

sequence of the Atiyah-Singer index theorem [Atiyah and Singer, 1968; Nakahara,

1990; Berline, Getzler and Vergne, 2004] that the analytical and topological index

equate [Jackiw and Rebbi, 1976; Jackiw and Rossi, 1981; Goldstone and Wilczek,

1981; Weinberg, 1981; Witten, 1982; Davis, Davis and Perkins, 1997; Volovik, 2003]

ind(Ĥ) =
(d− 1)!

(2d− 1)!(2πi)d

∫

BZ×Sd−1

Tr[(qdq†)2d−1] (5.3.17)

where q(k, r) are the off-diagonal component of the flattened Hamiltonian (5.2.18).

Majorana zero mode It has been already shown previously in section 4.1 the ap-

pearance of low energy Majorana bound excitations at (i) the ends of the Kitaev’s

1D superconducting chain (fig.4.1 and 4.2), (ii) a 1D SC-FM domain wall on top

of a QSHI edge (fig.4.3), (iii) a π-flux plaquette of the Kitaev’s honeycomb model

(fig.4.4), and (iv) a vortex core of a 2D chiral p-wave superconductor (fig.4.5). In

the subsequent section 4.2, low energy Majorana bound excitations are shown to be

associated with hedgehog defects ~n(r) in eq.(4.2.8) and fig.4.9 (or mass term mΓ(r)

in (4.2.10)) and can be realized theoretically by a TI-SC heterostructure fig.4.8.

All these are zero energy excitations associated to topological point defects de-

scribed by semi-classical BdG Hamiltonians in symmetry class D. The low energy

Hamiltonian away from the point singularity can all be expressed phenomenologi-

cally as the Dirac-type model

H(k, r) = ~vf
d∑

i=1

kiγi +mΓ(r) (5.3.18)
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where the mass term mΓ(r) lives in the classifying space R2−d.
13 The existence

of robust Majorana zero mode is indicated by the winding of the mass term mΓ :

S2 → R2−d in the stable homotopy group πd−1(R2−d) = Z2.

In general, all point defects of symmetry class D in any dimensions are charac-

terized by the Chern-Simons Z2-invariant (5.2.22)

ν ≡ 2

d!

(
i

2π

)d ∫

BZ×Sd−1

Q2d−1 (mod 2) (5.3.19)

In particular a 2πm pairing vortex across a chiral 2D TR-breaking superconductor

with Chern invariant p ∈ Z is a point defect in 2D with Chern-Simons invariant

ν ≡ pm (mod 2) (5.3.20)

And this counts the number of Majorana zero modes bounded at the vortex core.

Majorana Kramer’s doublet The excitation appears at a topological point defect

in the time reversal symmetric class DIII. Kramer’s theorem requires any Majorana

zero modes to be doubly degenerate and have opposite chirality according to Π =

iΘΞ. This theoretically arise at a π-Josephson junction in proximity with the edge

of an QSHI [Fu and Kane, 2008, 2009a]. Its topology is characterized by another

Chern-Simons Z2-invariant (5.2.26)

ν̃ ≡ 1

d!

(
i

2π

)d ∫

BZ×Sd−1

Q2d−1 (mod 2) (5.3.21)

13For d=3, it has been worked out that R2−d is the symmetric space U/O. (See below eq.(4.2.10))
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SC SCφ = 0 φ = ̟

QSHI

Figure 5.11: A π-Josephson junction on top of a quantum spin Hall edge. A Kramer’s doublet of
Majorana zero modes is bounded at the interface.

which differs from (5.3.19) by a factor of 2 and the Berry connection is chosen with

a TR gauge constraint

wmn(k, r) = 〈um(k, r)|Θun(−k, r)〉 ≡ constant (5.3.22)

where um are valence states of the band Hamiltonian. In one dimension such as the

QSHI edge, this can be simplified into a Pfaffian invariant [Qi, Hughes and Zhang,

2008]

(−1)ν̃ =
Pf[q(π)]

Pf[q(0)]

√
det[q(0)]

det[q(π)]
(5.3.23)

where q(k) is the off-diagonal component of the 1D BdG Hamiltonian H(k) that

anticommute with Π = τz, and the sign of the square root is chosen so that the

branch
√

det[q(k)] is continuously defined in between k = 0, π.

5.3.3 Adiabatic pumps

An adiabatic pump here refers to a time dependent cycle with multiple point defects.

It has dimension δ = d−D = 0. (k, r, t) lives in the base space T d×(∧N−1Sd−1)×S1.

∧N−1Sd−1 is a bouquet of (N − 1) spheres, each enclosing a point defect in real d-

space and S1 represents the time cycle. The topological signature of an adiabatic

cycle involve pumping charge in between point defects or fermion parity in between
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Symmetry Topological classification Adiabatic Pump

A Z Charge

AI Z Charge

BDI Z2 Fermion Parity

D Z2 Fermion Parity

AII 2Z Charge Kramers Doublet

Table 5.8: Symmetry classes that support non trivial charge or fermion parity pumping cycles.

pairs. The possible topological cycles are listed in table 5.8. The 1D Thouless pump

[Thouless, 1983] and the 2D Laughlin’s argument [Laughlin, 1981] of integer QHE

are typical examples that falls into the catergory of charge pumps. Fermion parity

pumps (a.k.a. braidless operations) were previously studied in detail in section 4.3.

The topologies were characterized by a Pontryagin invariant [S2 × S1, S2]deg=1 = Z2

(or the stable homotopy π3(U/O)) with the help of a Dirac-type low energy model.

In the framework of topological defect, it is characterized by the more general Fu-

Kane Z2-invariant (5.2.25), although it could be computationally difficult to satisfies

the PH gauge constraint (5.2.30).

In the 1D case (see fig.4.12(B)), it is possible to apply (5.2.25) because the

Dirac-type Hamiltonian of the chiral 1D superconductor

HBdG(k, ϕ(t)) = (t cos k − µ)τz +∆sin k(cosϕ(t)τx + sinϕ(t)τy) (5.3.24)

is time independent at k = 0, π, which means that the PH gauge constraint (5.2.30)

is automatically satisfied. Moreover, the Chern-Simons integral in the Fu-Kane

formula is identically zero and therefore the adiabatic cycle is topologically charac-
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terized by

ν̃ ≡ i

2π

∫ π

0

dk

∫ 2π

0

dϕTr(F) (mod 2) (5.3.25)

which can be checked straightforwardly to be unity.
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Chapter 6

Conclusion and outlook

Single particle topological phases of insulators and superconductors were studied,

the bulk-boundary correspondence was generalized and established in the context of

topological defects in band theory, and properties of gapless excitations associated

with interfaces and more general defects were investigated. Surface Dirac cone spec-

trum of the topological insulator Bi1−xSbx was derived using a tight binding model

in chapter 2. It exhibited the strong Z2 signature of the material as well as infor-

mation regarding inversion and mirror symmetry of the occupied states. Transport

characteristics of helical edge modes of QSHI were theoretically analyized in a quan-

tum point contact in chapter 3. Critical conductivity behavior was predicted using

a spinful Luttinger liquid theory that incorporates electron-electron interactions.

Low energy Majorana quasiparticle excitations were shown to exist at certain point

defect configurations in a 3D superconductor in chapter 4. Interconnecting through

a non-local bulk parameter, they carried Ising non-Abelian statistics in (3 + 1)D.

The classification of insulators and superconductors was generalized to topological
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defects in chapter 5. The topologies of defect band theory in different dimensions

and symmetry classes were characterized by universal integral invariants. Physical

situations in line and point defects as well as adiabatic cycles were proposed or

revisited and the topological nature of their corresponding defect excitations were

shown.

The study of topological phases in single particle theories was pioneered by Thou-

less, Kohmoto, Nightingale and den Nijs [1982] to understand the integer quantum

Hall effect. The discovery of time reversal symmetric topological insulators [Kane

and Mele, 2005a,b; Bernevig, Hughes and Zhang, 2006; Fu, Kane and Mele, 2007;

Moore and Balents, 2007; Qi, Hughes and Zhang, 2008; Roy, 2006a,b] stimulated

the theoretical developments in topological band theory [Schnyder et.al., 2008, 2009;

Kitaev, 2009; Teo and Kane, 2010b; Stone, Chiu and Roy, 2011]. The exploration of

topological phases of matter is far from complete. Additionally there are numerous

theoretical challenges in further understanding topological order and experimental

challenges in realizing topological phases.

The fractional quantum Hall effect [Tsui, Stormer and Gossard, 1982] could not

be understood without using a many-body theory that describes electron-electron

interactions [Laughlin, 1983; Halperin, 1984]. This leads to a higher notion of topo-

logical order [Wen and Niu, 1990; Wen, 1995], such as a fractional quantum spin Hall

insulator [Levin and Stern, 2009]. The theory of a fractional time reversal symmet-

ric but spin-orbit coupled insulator has not been established. A non-perturbative

framework incorporating time reversal symmetry (or other kind of symmetries) into

an interacting many-body system is needed to describe a more general notion of
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topological order.

Although the time reversal symmetric topological insulating phases in 2 and

3 dimensions are robust against interactions [Kane, 2008; Qi, Hughes and Zhang,

2008] due to charge or fermion parity conservation, the effect of interactions on single

particle topological phases could be highly non-trivial in general in a 1D theory of

Majorana fermions [Fidkowski and Kitaev, 2011; Turner, Pollmann and Berg, 2011],

or be completely benign in an electromagnetic and gravitational response theory

[Ryu, Moore and Ludwig, 2011]. The role of interactions for a bulk topological

band theory for d ≥ 2 or a defect theory in general needs to be carefully addressed

and explored.

A lot of ARPES experiments have been carried out on the topological insulators

Bi2Se3 and Bi2Te3 [Xia et al., 2009a; Hor et.al., 2009; Hsieh et.al., 2009a,b]. Trans-

port experiments are however more difficult due to the slightly conducting nature

of the bulk material. 3D topological superconductors on the other hand are rela-

tively uncharted experimentally. Cu-doped Bi2Se3 has been studied as a candidate

[Hor et.al., 2010; Fu and Berg, 2010; Wray et.al., 2011]. It would be interesting to

observe a Majorana Dirac surface excitation in an electronic system. The manip-

ulation of Majorana bound states leads to Ising statistics. It would be interesting

to carry out the proposals put forward by Fu and Kane [2008] and Alicea [2010] on

superconductor heterostructures.
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We study the electronic surface states of the semiconducting alloy bismuth antimony �Bi1−xSbx�. Using a
phenomenological tight-binding model, we show that the Fermi surface for the 111 surface states encloses an
odd number of time-reversal-invariant momenta �TRIM� in the surface Brillouin zone. This confirms that the
alloy is a strong topological insulator in the �1;111� Z2 topological class. We go on to develop general
arguments which show that spatial symmetries lead to additional topological structure of the bulk energy
bands, and impose further constraints on the surface band structure. Inversion-symmetric band structures are
characterized by eight Z2 “parity invariants,” which include the four Z2 invariants defined by time-reversal
symmetry. The extra invariants determine the “surface fermion parity,” which specifies which surface TRIM
are enclosed by an odd number of electron or hole pockets. We provide a simple proof of this result, which
provides a direct link between the surface-state structure and the parity eigenvalues characterizing the bulk.
Using this result, we make specific predictions for the surface-state structure for several faces of Bi1−xSbx. We
next show that mirror-invariant band structures are characterized by an integer “mirror Chern number” nM,
which further constrains the surface states. We show that the sign of nM in the topological insulator phase of
Bi1−xSbx is related to a previously unexplored Z2 parameter in the L point k ·p theory of pure bismuth, which
we refer to as the “mirror chirality” �. The value of � predicted by the tight-binding model for bismuth
disagrees with the value predicted by a more fundamental pseudopotential calculation. This explains a subtle
disagreement between our tight-binding surface-state calculation and previous first-principles calculations of
the surface states of bismuth. This suggests that the tight-binding parameters in the Liu-Allen model of bismuth
need to be reconsidered. Implications for existing and future angle-resolved photoemission spectroscopy
�ARPES� experiments and spin-polarized ARPES experiments will be discussed.

DOI: 10.1103/PhysRevB.78.045426 PACS number�s�: 73.20.�r, 73.43.�f, 73.61.Le

I. INTRODUCTION

A topological insulator is a material with a bulk electronic
excitation gap generated by the spin-orbit interaction, which
is topologically distinct from an ordinary insulator.1–8 This
distinction, characterized by a Z2 topological invariant, ne-
cessitates the existence of gapless electronic states on the
sample boundary. In two dimensions, the topological insula-
tor is a quantum spin Hall insulator,1–3,8 which is a close
cousin of the integer quantum Hall state. The edge states
predicted for this phase have recently been observed in trans-
port experiments on HgCdTe quantum wells.9 In three di-
mensions there are four Z2 invariants characterizing a time-
reversal-invariant band structure.5–7 One of these
distinguishes a strong topological insulator, which is robust
in the presence of disorder. The strong topological insulator
is predicted to have surface states whose Fermi surface en-
closes an odd number of Dirac points and is associated with
a Berry’s phase of �. This defines a topological metal surface
phase, which is predicted to have novel electronic
properties.7,10,11

In Ref. 12 we predicted that the semiconducting alloy
Bi1−xSbx is a strong topological insulator using a general ar-
gument based on the inversion symmetry of bulk crystalline
Bi and Sb. The surface states of Bi have been studied for
several years. Experimentally there are several photoemis-
sion studies of Bi crystals and films which have probed the
surface states.13–22 There are fewer studies of Bi1−xSbx,

23 but
in a very recent work, Hsieh et al.24 mapped the �111� sur-

face states and verified the topological structure predicted for
a strong topological insulator.

First-principles calculations provide a clear picture of the
surface-state structure of Bi,19–22,25 which captures many of
the experimental features, including their spin structure.22

For the alloy Bi1−xSbx, one expects the surface states to
evolve smoothly from Bi, at least for small x. The alloy
presents two difficulties for these calculations, though. First,
since these calculations must be done on relatively thin slabs,
features near the small band gap are inaccessible because
finite-size quantization mixes the bulk and surface states.
Moreover, describing the alloy would require some kind of
mean-field treatment of the substitutional disorder.

In this paper we study the surface states of Bi1−xSbx first
by developing a phenomenological tight-binding model
which can be solved numerically and then by developing
general arguments that exploit spatial symmetries and ex-
plain a number of model independent features of the surface
states. Our phenomenological tight-binding model is based
on an interpolation of a model developed by Liu and Allen.26

This model has the advantage that it can be solved in a semi-
infinite geometry, which allows the surface-state features
near the small band gap to be calculated. Our aim is not to
perform a quantitatively accurate calculation of the surface
states, but rather to provide a concrete calculation in which
robust, model independent features of the surface states can
be identified and characterized. Here we list our main con-
clusions:
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�1� We find that the Fermi surface of the 111 surface of

Bi1−xSbx consists of an electron pocket centered around the �̄
point and six elliptical hole pockets centered a point in be-

tween �̄ and the M̄ point. �Here the bar refers to symmetry
points in the 111 surface Brillouin zone.� This is similar to
the surface states in Bi. Unlike the alloy, however, Bi has

bulk states at the Fermi energy: hole states near �̄ and elec-

tron states near M̄. This calculation verifies the topological
structure of the surface states predicted in Ref. 12. In that
work we showed that the four Z2 invariants ��0 ;�1�2�3� char-
acterizing the valence bands of pure Bi and Sb are �0;000�
and �1;111�, respectively. The semiconducting alloy Bi1−xSbx
was argued to be in the same class as Sb, which is a strong
topological insulator. These invariants determine the number
of surface bands crossing the Fermi energy modulo 2 be-
tween each pair of time-reversal-invariant momenta �TRIM�
in the surface Brillouin zone. Specifically, it predicts that for
the 111 surface, an odd number of Fermi surface lines sepa-

rate the �̄ point from the three equivalent M̄ points. This is
consistent with both our calculation and with experiment.24

�2� We will show that for crystals with inversion symme-
try, there is an additional topological structure in the bulk
band structure, which further constrains the surface band
structure. At each of the eight TRIM, �i in the bulk Brillouin
zone, the product of the parity eigenvalues of the occupied
bands defines a parity invariant ���i�, which is a topological
invariant in the space of inversion-symmetric Hamiltonians.
The four Z2 invariants, which require only time-reversal
symmetry are determined by these eight signs and determine
the number of Fermi surface lines separating two surface
TRIM. They do not, however, specify which of the TRIM are
inside of the surface Fermi surface and which are outside.
We will show that the bulk parity invariants ���i� provide
that information. Specifically, for each surface TRIM we will
define the surface fermion parity as the parity of the number
of Fermi lines that enclose that TRIM. This distinguishes the
TRIM that are outside the Fermi surface from those that are
inside a �single� electron or hole pocket. For a crystal termi-
nated on an inversion plane, we will establish a theorem
which relates the surface fermion parity to the bulk parity
invariants. Thus, for inversion-symmetric crystals, the eight
bulk parity invariants provide more information about the
surface states than just the four Z2 invariants. We will give a
simple proof of this theorem in the Appendix, which estab-
lishes a more direct connection between the bulk parity ei-
genvalues and the surface-state structure than that presented
in Ref. 12. For the 111 surface of Bi1−xSbx, our general theo-
rem is consistent with both our surface-state calculation and
with experiment. We will also apply this result to make pre-
dictions about the other surfaces of Bi1−xSbx. In addition, our
theorem has implications for inversion-symmetric crystals
which are ordinary insulators. In particular, we will show
that it has nontrivial implications for the surface states of
pure Bi, whose valence band is in the trivial �0;000� topo-
logical class.

�3� In addition to inversion symmetry, the crystal lattices
of Bi and Sb have a mirror symmetry. We will show that the
presence of mirror symmetry leads to a further topological

classification of the bulk band structure in terms of an integer
nM, which we refer to as a mirror Chern number. This inte-
ger is similar to the spin Chern number, which occurs in the
quantum spin Hall effect when spin is conserved,27 and its
parity is related to the Z2 invariant.28 The valence band of
pure Bi, which has the �0;000� Z2 class,12 has nM=0. The
semiconducting alloy is a topological insulator with Z2 class
�1;111�. There are two possibilities for the mirror Chern
number nM= �1, however, which correspond to topologi-
cally distinct phases. We will show that the sign of nM in the
topological insulator phase further constrains the behavior of
the surface states. The transition between the �0;000� and
�1;111� classes in Bi1−xSbx occurs for small x� .03 because
pure Bi is very close to a band inversion transition where the
Ls valence band and La conduction band cross. The k ·p
theory of these states has been studied extensively in the
literature29–33 and has the form of a nearly massless three-
dimensional Dirac point. We will show that the change �nM
in the mirror Chern number at the band inversion transition
is determined by a previously unexplored parameter in that
theory: a sign �= �1, which we will refer to as the mirror
chirality. � is related to the sign of the g factor, which relates
the magnetic moment to the angular momentum in a particu-
lar direction. For �= +1 the g factor is like that of a free
electron, while for �=−1 it is anomalous. We will use this
result to interpret our surface-state calculation and to provide
guidance for how � can be measured. In addition to the

Dirac point enclosed by the surface Fermi surface at �̄, our
tight-binding surface band calculations for both pure Bi and
Bi1−xSbx predict that the six hole pockets also enclose Dirac

points which reside at points along the line between �̄ and

M̄. Unlike the Dirac points at the surface TRIM, the degen-
eracy at these Dirac points is not protected by time-reversal
symmetry, but rather by mirror symmetry. This prediction is
inconsistent with first-principles calculations of the surface
states in Bi,22,25 which do not find a band crossing inside the
hole pocket. Since the Dirac point occurs above the Fermi
energy, angle-resolved photoemission spectroscopy
�ARPES� experiments do not directly probe this issue. None-
theless, spin-resolved ARPES experiments on Bi provide
evidence that the surface band structure is consistent with the
first-principles calculations.22 We will show that this incon-
sistency can be traced to the mirror chirality and the mirror
Chern number. The mirror chirality in the topological insu-
lator phase of Bi1−xSbx can be determined from the structure
of the k ·p perturbation theory of the energy bands in the
vicinity of the L point in pure Bi. We find that the Liu-Allen
model predicts that nM= +1. This value implies that the
surface-state bands in the alloy cross in such a way as to
establish the presence of the Dirac points in the hole pockets
in agreement with our surface-state calculation. In contrast,
we find that an earlier but more fundamental pseudopotential
calculation by Golin34 predicts that nM=−1. This value pre-
dicts that the bands do not cross and that there are no extra
Dirac points, which is consistent with the presently available
experimental results as well as first-principles
calculations.22,25 The Liu-Allen tight-binding parameters
were chosen to reproduce the energy of the bands computed
using first-principles calculations, incorporating available ex-
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perimental constraints. Therefore, there is no reason to ex-
pect that it gets nM right. We conclude that the inconsistency
in our surface-state calculation is an artifact of the Liu-Allen
tight-binding model, which could be corrected with a suit-
able choice of new parameters.

The outline of the paper is as follows: In Sec. II we will
review the salient features of bulk Bi1−xSbx and describe our
phenomenological tight-binding model. In Sec. III we will
describe our surface-state calculations for Bi1−xSbx. In Sec.
IV we will establish the relationship between the surface
fermion parity and the bulk parity eigenvalues and use that
result to analyze the surfaces of Bi1−xSbx. In Sec. V we will
discuss the mirror Chern number and show that it is related
to the mirror chirality of the k ·p theory of pure Bi. In Sec.
VI we will conclude with a discussion of the relevance of our
results to existing and future experiments. Finally, in the Ap-
pendix we provide a simple proof of the theorem relating the
surface fermion parity to the bulk parity eigenvalues.

II. BULK Bi1−xSbx

A. Introduction

Bismuth and antimony are group-V semimetals. They
have the rhombohedral A7 structure shown in Fig. 1�a�,
which can be viewed as a distorted simple cubic lattice in
which the triangular �111� lattice planes �which we will refer
to as monolayers� are paired to form bilayers. The trivalent
s2p3 atoms tend to form strong covalent bonds directed to the
three nearest neighbors within a bilayer. Different bilayers
are more weakly coupled. The primitive unit cell consists of
two atoms in different monolayers, and each bilayer has a
structure similar to a honeycomb lattice. The Brillouin zone
for this lattice is shown in Fig. 1�b�. It contains eight special
points which are invariant under inversion and time reversal,
denoted by �, T, and three equivalent L and X points.

Both Bi and Sb have a finite direct energy gap throughout
the Brillouin zone, but they have a negative indirect gap. In
Bi the conduction-band minimum at L is below the valence-
band maximum at T, which gives rise to an anisotropic hole

pocket and three electron pockets with small effective
masses.31 At L the conduction-band minimum, which has
even-parity Ls symmetry, nearly touches the valence-band
maximum, with odd-parity La symmetry, forming a three-
dimensional Dirac point with a small mass gap Eg
�11 meV. In Sb, the conduction-band minimum at L has La
symmetry and is below the valence-band maximum at the
lower-symmetry H point.

The alloy Bi1−xSbx retains the rhombohedral A7 crystal
structure. The evolution of its band structure has been stud-
ied experimentally.35,36 As x is increased from zero, two
things happen. First, the small gap at L closes and then re-
opens. The Ls and La bands switch places, and the mass of
the three-dimensional Dirac point changes sign. Second, the
top of the valence band at T descends below the bottom of
the conduction band, resulting in a semimetal-semiconductor
transition. For 0.09	x	0.18, the alloy is a direct-gap semi-
conductor, with a gap on order of 30 meV at the L points.

B. Topological invariants

Time-reversal-invariant band structures are classified to-
pologically by four Z2 invariants.5–7 In Ref. 12 we exploited
inversion symmetry to show that these four invariants can be
determined by the parity 
m��i� of the occupied bands at the
eight TRIM �i, via the quantities

���i� = �
n


2n��i� , �2.1�

which we will refer to as parity invariants. Here the product
includes each Kramer pair �which satisfy 
2n=
2n−1� only
once. For an inversion-symmetric crystal, all eight of the
parity invariants are topological invariants in the following
sense: If the crystal Hamiltonian is smoothly deformed, pre-
serving the inversion symmetry, then the only way any of the
���i� can change is if the gap at �i goes to zero, so that states
with opposite parities can be exchanged between the conduc-
tion and valence bands. If inversion symmetry is relaxed,
then the eight invariants lose their meaning. However, in
Ref. 12 we showed that provided time-reversal symmetry is
preserved, four combinations of the ���i� remain robust and
define the four Z2 invariants denoted by ��0 ;�1�2�3�. The
most important invariant, �0, distinguishes the strong topo-
logical insulator and survives even in the presence of
disorder.7,12 �−1��0 is given simply by the product of all eight
���i�.

Pure Bi and Sb have inversion symmetry. The parity ei-
genvalues for inversion about the point O in Fig. 1�a� are
tabulated in the literature.26,34,37 Based on these data, we dis-
play ���i� in Table I, along with the predicted Z2 invariants
for pure Bi, pure antimony, and the alloy. The valence band
of pure Bi is characterized by the trivial class �0;000�, while
antimony has the �1;111� class. The difference is due to the
inversion of the Ls and La bands, which changes the sign of
��L�. The alloy inherits its topological class from antimony
and is a strong topological insulator.

C. Pure Bi, Sb: Liu-Allen model

Liu and Allen26 developed a third-neighbor tight-binding
model for the electronic structure of Bi and Sb, which de-
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FIG. 1. �Color online� �a� Crystal structure of Bi. �b� Three-
dimensional �3D� Brillouin zone and its projection onto the �111�
surface. Also displayed is the choice of coordinate system through-

out the paper: z is along the �111� direction, y is along the �̄ to M̄
direction, and O is a center of inversion.

SURFACE STATES AND TOPOLOGICAL INVARIANTS… PHYSICAL REVIEW B 78, 045426 �2008�

045426-3

110



scribes the atomic s and p orbitals nearest to the Fermi en-

ergy. The Bloch Hamiltonian Ĥ�k�=e−ik·rHeik·r has the form

Ĥ�k� = �H11�k� H12�k�
H21�k� H22�k�

� . �2.2�

Here Hab�k� are 8�8 matrices describing the coupling be-
tween the 2s states and 6p states on the a and b sublattices of
the crystal. The explicit form of these matrices is given in
Tables IX and X in the appendix of Ref. 26.

H11=H22 describe the coupling within the same sublattice.
These terms involve the on site energies Es and Ep as well an
on site spin-orbit coupling �. The closest neighbor on the
same sublattice is the third neighbor, which resides in the
same monolayer as the origin. The third-neighbor hopping
involves four parameters Vc�, with c=ss, sp
, pp
, and pp�,
describing the hopping between the s and p states. Since
further neighbor hopping is not included in this model,
H11�k� and H22�k� describe decoupled monolayers and de-
pend only on the momentum q=k� in the plane of the mono-
layer.

H12=H21
† describes the coupling between the sublattices.

These involve two terms: First-neighbor hopping terms Vc
couples atoms within the same bilayer, and second-neighbor
hopping terms Vc� couple atoms in neighboring bilayers. In
the following it will be useful to separate these two contri-
butions by writing k= �q ,kz�,

H12�q,kz� = H12
�1��q�eikzc1 + H12

�2��q�e−ikzc2, �2.3�

where c1 and c2 are the spacing between the monolayers
within a bilayer and between different bilayers, and q and kz
are the momenta parallel and perpendicular to the surface.
H12

�1� and H12
�2� can be extracted from Table X of Ref. 26 by

noting that they are the terms which involve the parameters
g0−g12 and g13−g26, respectively.

The 12 hopping parameters and 3 on site parameters make
a total of 15 parameters specifying this model. These were
chosen to reproduce the energies predicted by first-principles
calculations, as well as details of the band gaps and
effective-mass tensors which are known experimentally. The
values of the parameters for both Bi and Sb are listed in
Table II of Ref. 26.

D. Tight-binding model for alloy

In order to describe the electronic structure of the alloy
Bi1−xSbx, we wish to develop a “virtual-crystal” approxima-
tion which treats the substitutional disorder in mean-field
theory and results in a translationally invariant effective
Hamiltonian. Since the regime of interest is x�0.1, the ef-

fective Hamiltonian should be close to that of pure Bi. The
effect of small x will be to modify the band energies, but not
drastically change the wave functions. The effective Hamil-
tonian should reproduce two essential features: �1� the inver-
sion of the Ls and La bands �which are nearly degenerate in
pure Bi�; and �2� the descent of the valence band at T below
the conduction band at L, as x is increased, which leads to
the transition between the semimetal and the semiconductor.

The simplest approach would be to simply interpolate be-
tween the tight-binding parameters for bismuth and anti-
mony. For each of the 15 tight-binding parameters �c, we
could define

�c�x� = x�c
Sb + �1 − x��c

Bi. �2.4�

However, for this simple interpolation the inversion between
Ls and La occurs at a rather large value x�0.4, which occurs
after the semimetal-semiconductor transition. We found that
this could be corrected if each of the hopping terms �but not
the other terms� are revised such that

Vc�x� = xVc
Sb + �1 − x2�Vc

Bi. �2.5�

This approach is admittedly ad hoc, but it is sufficient for our
purposes because it correctly accounts for the most important
features of the band evolution. In Fig. 2 we plot the energies
of T45

− , Ls, and La as a function of x for this model. The
qualitative behavior of the known band evolution is repro-
duced, including the decent of the hole pocket at T and the
inversion of the conduction and valence bands at L. This
should not, however, be interpreted as a quantitative descrip-
tion of the band evolution of Bi1−xSbx.

TABLE I. Parity invariants ���i� and Z2 topological invariants ��0 ;�1�2�3� for bismuth, antimony, and
Bi1−xSbx determined from the product of parity eigenvalues 
m��i� at each bulk TRIM �i.

���� ��L� ��T� ��X� ��0 ;�1�2�3�

Bismuth −1 −1 −1 −1 �0;000�
Antimony −1 1 −1 −1 �1;111�
Bi1−xSbx −1 1 −1 −1 �1;111�

0 .05 .10 .15 .20

-.15

-.10

-.05

.0

.05
E(eV)

x

T45
+

T45
+

Ls

Ls

La

La

HTopological
Insulator

FIG. 2. Band evolution of interpolated tight-binding model us-
ing the parameters in Eqs. �2.4� and �2.5�.
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III. SURFACE STATES OF Bi1−xSbx

In this section we describe our calculation of the 111 sur-
face band structure for a semi-infinite lattice in the half plane
z	0 described by the interpolated tight-binding model de-
scribed above. We begin with a brief discussion of our
method, which is based on a transfer-matrix scheme,38 and
then go on to discuss the results.

A. Transfer-matrix method

The electronic states of a semi-infinite crystal can be rep-
resented as �n,a�q� in a basis of states which are plane waves
with momentum q in the plane of the surface, but are local-
ized on the a=1,2 monolayer of the nth bilayer. Each �na
has eight components associated with the eight atomic orbit-
als. The time independent Schrödinger equation, written in
this basis, may be expressed in the form

��n+1,1

�n+1,2
� = T�q,E���n,1

�n,2
� , �3.1�

where the transfer matrix is given by T�q ,E�
= t11�q ,E�t22�q ,E�, with

t11 = �H21
�2�−1�E − H22� − H21

�2�−1H21
�1�

1 0
� , �3.2�

and

t22 = �H12
�1�−1�E − H11� − H12

�1�−1H12
�2�

1 0
� . �3.3�

Any bulk state is an eigenstate of the 16�16 transfer matrix
with unimodular eigenvalues. For E within the energy gap,
T�q ,E� has exactly eight eigenvalues with modulus larger

than 1. These correspond to states that decay exponentially in
the −z direction. E�q� will correspond to a surface state lo-
calized at the top surface in Fig. 3�a� near z=0 provided
there is a linear combination of the decaying states which
vanish on the monolayer n=0, a=1 just outside the surface:
�0,1=0. The surface states are thus determined by forming an
8�8 matrix M�q ,E� composed of the eight components of
�0,1 for each of the eight decaying states. E�q� is then deter-
mined by solving det	M�q ,E�
=0.

B. Electronic structure of (111) surface

Figure 3�c� shows the energy spectrum of the �111� sur-
face states of Bi1−xSbx for x=0.08 calculated along the line

connecting q= �̄=0 to M̄ along the +ŷ axis using the
transfer-matrix method for the interpolated tight-binding
model. Figure 3�b� shows the Fermi surface. We find two
bound surface states within the bulk energy gap. Along the
line qx=0, these states are labeled by their symmetry under
the mirror M�x̂�, which takes x to −x. Since the mirror op-
eration also operates on the spin degree of freedom, it is
important to be specific about its definition. We write M�x̂�
= PC2�x̂�, where P is inversion and C2�x̂� is a 180° counter-
clockwise rotation about the positive x̂ axis. P does not affect
the spin degree of freedom, but the C2 rotation does. The
resulting eigenvalues of M�x̂� are +i and −i, which we label

as �̄1 and �̄2. These mirror eigenvalues are correlated with
the spin Sx. For a free spin, eigenstates with M�x̂�= � i cor-
respond to spin eigenstates with Sx= �� /2. The surface
states are not spin eigenstates, but on the line kx=0,0	ky

	ky�M̄�, the expectation value of the spin satisfies �S��
� i�M�x̂��x̂�−�+�x̂, for �1�2�, as indicated in Fig. 3�a�.

The Fermi surface shown in Fig. 3�b� consists of electron

and hole pockets. A single electron pocket surrounds �̄. This
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FIG. 3. �Color online� �a� Geometry for our
surface-state calculations, which defines our co-
ordinate system and specifies the spin directions

of the �̄1 and �̄2 bands, which have mirror eigen-
values +i and −i, respectively. �b� Brillouin zone
for the �111� face of Bi1−xSbx with the electron
pocket and six hole pockets predicted by our
tight-binding calculation. �c� Surface band struc-

ture along the line between �̄ and M̄ predicted by
the tight-binding model. The shaded regions are
the bulk states projected onto the surface. �d�
Schematic illustration of experimental surface
band structure and Fermi surface probed by
angle-resolved photoemission spectroscopy �Ref.
24�. The top shows the Fermi surface in a slice of
the Brillouin zone near kx=0, and the bottom
shows the surface-state dispersion. Compared

with �c�, there are two additional bands near M̄.
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Fermi surface is nondegenerate, and opposite sides of the
Fermi surface are Kramers pairs with opposite spins. The
electronic states pick up a Berry’s phase of � when they are
adiabatically transported around the Fermi surface. This can
be understood to be a consequence of the 360° rotation of the
spin going around the Fermi surface. The Fermi surface is
thus spin filtered, in the sense that the spin of the electron is
correlated with its propagation direction, roughly satisfying

�S��� q̂� ẑ for an electron propagating in the q̂ direction in
the plane. In addition, there are six elliptical hole pockets

centered along the six lines connecting �̄ to M̄. These are
also nondegenerate, though unlike the electron pocket, the
time reverse of a hole pocket is a different hole pocket. The

crossing of the �̄1 and �̄2 bands is protected by the mirror
symmetry for qx=0. The degeneracy will be lifted for finite
qx, so the crossing describes a two-dimensional Dirac point,
which is enclosed by the hole pocket.

C. Comparison with topological predictions

A single band of surface states connects the valence and

conduction bands between �̄ and M̄ in Fig. 3�d�. This con-
firms the topological predictions for the connectivity of the
surface-state bands. In Ref. 7 we showed that the number of
times �N��a ,�b� the surface states intersect the Fermi en-
ergy between two surface TRIM �a and �b satisfies

�− 1��N��a,�b� = ���a����b� , �3.4�

where

���a� = �− 1�nb���a1����a2� . �3.5�

Here �a1 and �a2 are the two bulk TRIM which project to the
surface TRIM �a. The eight parity invariants ���i�, defined
in Eq. �2.1�, are products of parity eigenvalues. This defini-
tion of ���a� differs slightly from the one introduced in
Refs. 7 and 12 because of the additional factor �−1�nb. nb is
the number of occupied Kramers degenerate pairs of energy
bands, which is equal to the number of terms in the product
of Eq. �2.1�. For Bi1−xSbx, nb=5. This factor does not affect
�N��a ,�b� in Eq. �3.4�. However, this modification simpli-
fies our further results, discussed below.

For ���a����b�=−1, there will be an odd number of
crossings between �a and �b, guaranteeing the presence of
the gapless surface states. In the Appendix we will provide a
derivation of this connection between the surface states and
the bulk parity eigenvalues which is simpler and more direct
than our previous proof.12 This will show that with inversion
symmetry the eight parity invariants ���i� contain more in-
formation about the surface-state structure than just the num-
ber of crossings, a fact we will exploit in Sec. IV to make
general predictions about the locations of electron and hole
pockets in the surface Brillouin zone.

From Fig. 1, Table I, and Eq. �3.5�, it can be seen that for
the alloy,

���̄� = − ������T� = − 1, �3.6�

��M̄� = − ��X���L� = + 1. �3.7�

This predicts that there should be an odd number of cross-

ings between �̄ and M̄, which is confirmed both by our ex-
plicit calculation and, as we will discuss below, by experi-
ment.

D. Comparison with experiment

Before comparing our calculation to experiment and other
calculations, it is worthwhile to discuss what our calculation
does not include. In addition to our approximate treatment of
the alloy’s bulk electronic structure, we have made no at-
tempt to self-consistently describe the potential near the sur-
face. This will be modified by relaxation of the bonds near
the surface. More importantly, the population of the surface
states determines the electric charge distribution near the sur-
face, which leads to Hartree and exchange contributions to
the potential. We assume that the surface is electrically neu-
tral. We will argue in Sec. III that this means that the area of
the electron pocket is equal to the total area of the six hole
pockets. However, the potential due to a surface dipole layer
is not included in our calculation. The effect of such a sur-
face potential will be to modify the energies of the bands and
perhaps to split off additional surface-state bands from the
continuum. However, the topological connectivity of the
surface-state bands will not be altered.

In their recent ARPES experiment, Hsieh et al.24 mea-
sured the spectrum of Bi.9Sb.1 �111� surface states below EF

between �̄ and M̄. The observed spectrum, which we have
sketched schematically in Fig. 3�d�, resembles Fig. 3�c�,
though there are some important differences. As in Fig. 3�c�,
two surface-state bands emerge from the bulk valence band

near �̄. The first intersects the Fermi energy forming the

electron pocket centered on �̄, while the second intersects
the Fermi energy forming a hole pocket. A third band crosses
EF from above, forming the opposite side of the hole pocket,

and merges with the bulk valence band near M̄. Unlike our
calculation, the observed spectrum includes an additional

electron pocket near M̄. A Kramers degenerate pair of sur-

face states is found in the gap at M̄. Away from M̄ these
states split to form two surface bands, which both cross EF
near the end of the hole pocket. Thus there are a total of five

bands crossing EF between �̄ and M̄, which is consistent
with the prediction for a �1;111� topological insulator. The
discrepancy between our calculation and the experiment is
most likely a consequence of our neglect of the self-
consistent surface potential, which could lead to a Kramers
pair of bound states to be split off from the conduction band

at M̄.
It is also instructive to compare our calculation with pre-

vious experimental and theoretical results for pure Bi. In Fig.
4�a� we show the surface-state spectrum for pure Bi calcu-
lated using the transfer-matrix method for the Liu-Allen
tight-binding model. The number of band crossings is con-
sistent with the trivial �0;000� topological structure of the Bi
valence band. Since the Fermi energy of semimetallic Bi is
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fixed by the bulk, our calculated surface states violate surface
charge neutrality: too many surface states are occupied, so
the surface will have a negative charge. Hartree effects will
push the surface states up in energy, but they will not alter
the topological connectivity of the surface states. This allows
us to deduce qualitative conclusions from the calculation.

First, as in our alloy calculation, two surface bands

emerge from the bulk valence band near �̄. These are also
seen in photoemission experiments as well as first-principles
calculations on pure Bi.25 Moreover, the spin �Sx� of those
surface states has been both calculated and measured using
spin polarized ARPES.22 We have checked that the spin di-
rection predicted by our tight-binding calculation for each of
these bands agrees with the experimental and first-principles

theory results. Thus, the behavior near �̄, including the or-

dering in which the �̄2 emerges first and forms the electron
pocket, appears to be robust, with all calculations in agree-
ment with each other and with experiment.

There is a discrepancy, however, between the tight-
binding calculation and the first-principles calculation.22,25

The crossing between the �̄1 and �̄2 bands in Figs. 3�c� and
4�a� is not found in the first-principles calculation. Since it is
likely that this crossing would be pushed above the Fermi
energy by Hartree corrections �so that the crossing occurs
inside a hole pocket�, the tight-binding model predicts that
the hole pockets of Bi �111� enclose a Dirac point, as shown
schematically in Fig. 4�b�. The existence of this band cross-
ing is not directly probed by ARPES, which only probes
occupied states, though it could be probed using inverse pho-
toemission. There is, however, indirect experimental evi-
dence that the crossing does not occur. Spin polarized
ARPES measurements22 have measured the spin on both
sides of the hole pocket. Though the signal appears weak, the
sign of the spin is resolved and determined to be the same on
both sides, indicating that there is no crossing, as shown
schematically in Fig. 4�c�. This agrees with the predictions of
the first-principles calculations that both sides are in the

same �̄1 band. In contrast, our tight-binding model predicts
that the opposite sides of the hole pockets correspond to the

�̄1 and �̄2 bands, which have opposite spins.
It thus appears likely that the prediction of the level cross-

ing which implies that the hole pockets enclose a Dirac point
is an artifact of the tight-binding model. This brings into
question the related prediction of the tight-binding model

that the hole pockets of the alloy also enclose a Dirac point.
In Sec. V we will argue that this artifact is a consequence of
a subtle error in the Liu-Allen tight-binding model.

IV. INVERSION SYMMETRY AND THE SURFACE
FERMION PARITY

An inversion-symmetric crystal can have no bulk electric
polarization. In this section we show that this fact in combi-
nation with surface charge neutrality has nontrivial implica-
tions for the surface-state structure because it allows the out-
side of the surface Fermi surface to be unambiguously
defined. It is then possible to define electron pockets to be
regions in the surface Brillouin zone where an extra band is
occupied and hole pockets as regions where an otherwise
occupied band is empty. Charge neutrality dictates that the
area of the electron pockets should equal that of the hole
pockets. We will show that the locations of the electron and
hole pockets in the surface Brillouin zone are topologically
constrained by the bulk parity invariants ���i�. In addition to
fixing the number of Fermi energy crossings, we find that
���i� determine which TRIM are on the inside of an electron
or hole pocket and which TRIM are on the outside. We de-
fine the surface fermion parity, which specifies whether a
given surface TRIM is enclosed by an even or an odd num-
ber of Fermi lines. We will begin with a general discussion
of the relationship between the surface fermion parity to the
bulk parity invariants. We will then apply our general result
to the surfaces of Bi1−xSbx and Bi.

A. Surface fermion parity

The total surface charge density may be expressed as a
sum over the surface Brillouin zone �SBZ�,


 = e

SBZ

d2q

�2��2N�q� , �4.1�

where the surface fermion number N�q� represents the ex-
cess charge in the vicinity of the surface due to states with
momentum q in the plane of the surface. If we assume that
the bulk Fermi energy is inside the gap, then there will be
two contributions, N�q�=Nbulk�q�+Nsurface�q�. Nsurface�q� is
an integer which counts the occupied discrete surface states
inside the energy gap. Nbulk�q� is the total surface charge in
the continuum valence-band states. For a crystal with inver-
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FIG. 4. �Color online� �a� Bi surface states

between �̄ and M̄ calculated using tight-binding
model. �b� Schematic picture of Bi bands in �a� in
which Hartree effects raise the bands to accom-
modate charge neutrality. The crossing of �1 and
�2 results in a Dirac point enclosed by a hole
pocket. �c� Schematic picture without the cross-
ing between �1 and �2, which resembles a first-
principles calculation of surface states in Bi
�Refs. 22 and 25�.
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sion symmetry, there can be no bulk electric polarization,
and Nbulk�q� will also be quantized. In the Appendix we will
show that it must be an integer.39

The integer values of N�q� allow us to unambiguously
define the “outside” of the surface Fermi surface to be the
region for which N�q�=0. N�q�= + �−�1 define electron
�hole� pockets. N�q�= + �−�2 is a double electron �hole�
pocket, and so on. From Eq. �4.1�, charge neutrality implies
that the total area of the electron pockets equals that of the
hole pocket provided that the double pockets are appropri-
ately counted.

Kramers’ theorem requires that the surface states be two-
fold degenerate at the TRIM q=�a in the surface Brillouin
zone. Provided the Fermi energy is not exactly at the degen-
eracy point, this means that Nsurface��a� is even, so that the
parity of N��a� is equal to the parity of Nbulk��a�. In the
Appendix we will show that the surface fermion parity is
determined by the bulk parity invariants,

�− 1�N��a� � ���a� = �− 1�nb���a1����a2� . �4.2�

Equation �4.2� determines whether the TRIM �a is enclosed
by a single �or odd number� of Fermi lines, or whether it is
outside the Fermi surface �or enclosed by an even number�.
In the special case that the Fermi energy is exactly at a Dirac
point at �a, �a should be interpreted to be inside an electron
�or hole� pocket with vanishing size.

Equation �4.2� is a central result of this paper which pro-
vides information about the structure of the surface Fermi
surface beyond that determined by the Z2 invariants
��0 ;�1�2�3�. We will show below that this result can have
nontrivial consequences even in materials which are not to-
pological insulators. For example, we will see that Eq. �4.2�
constrains the surface states of pure Bi.

In order to apply Eq. �4.2�, it is essential to use the parity
eigenvalues associated with an inversion center in the plane
on which the crystal is terminated. As a simple example, Fig.
5 shows a one-dimensional inversion-symmetric lattice,
which has two distinct inversion points. In general, a three-
dimensional inversion-symmetric crystal has eight distinct
inversion centers, which are related to each other by half a
Bravais lattice vector: c�=c+R /2. The parity eigenvalues
associated with inversion center c� will be related to those
associated with c by


m� ��i� = 
m��i�ei�i·R = � 
m��i� . �4.3�

An inversion plane will contain four of those points. For a
given surface orientation, there are two distinct parallel in-
version planes. For a surface terminated on one of those

inversion planes, ���a� does not depend on which of the
four inversion centers within the inversion plane are used.
This can be seen by noting that

����a� = ���a�exp	inb��a1 − �a2� · R
 , �4.4�

where nb is the number of occupied bands. When c and c�
are in the plane of the surface, the dot product in the expo-
nent is zero. Crystals terminated on inequivalent inversion
planes, however, will have different N��a�. For odd nb,
����a�=−���a�, so that the parity of N��a� changes at all
four �a. Thus, changing the inversion plane amounts to fill-
ing �or emptying� a single surface band throughout the sur-
face Brillouin zone. Since N��a� depends on how the crystal
is terminated, it is not a bulk property. However,
�N��a ,�b�=N��a�−N��b�mod 2 is a bulk property, which
is determined by the Z2 invariants ��0 ;�1�2�3�.

B. Application to Bi1−xSbx

We now apply our general result to Bi1−xSbx surfaces. In
order to apply Eq. �4.2�, it is necessary to identify the appro-
priate inversion centers. The eight inversion centers of the
rhombohedral A7 lattice are the following:

�1� c0=0, the origin in Fig. 1, which is between two bi-
layers.

�2�–�4� c j=1,2,3=a j /2. Here a j are the three rhombohedral
primitive Bravais lattice vectors, which connect an atom to
the nearest three atoms on the same sublattice of the neigh-
boring bilayer.13 These points are at the center of a nearest-
neighbor bond in the middle of a bilayer.

�5�–�7� cij ��ai+a j� /2 for i� j. These three points are at
the center of a second-neighbor bond between two bilayers.

�8� c123= �a1+a2+a3� /2, which is directly above the ori-
gin in Fig. 1, in the middle of a bilayer. For a given surface
orientation, these inversion centers are divided into two
groups of four, which reside in two possible cleavage planes.

In Ref. 13, the �111�, �110�, and �100� faces of Bi are
discussed, where the Miller indices �mno� refer to the rhom-
bohedral reciprocal-lattice vector mb1+nb2+ob3 with ai ·b j
=2��ij. In these cases the preferred cleavage plane is the one
which minimizes the number of broken first-neighbor bonds.
In Table II we list the four inversion centers in the cleavage
plane for each of these faces. For comparison, we have also
included the �111�� face, which is terminated in the middle
of a bilayer �breaking three nearest-neighbor bonds�. Table II
also shows how the bulk TRIM project onto the surface
TRIM, using the notation �a= ��a1�a2�. These data, com-
bined with Table II, are sufficient to determine the surface
fermion parity ���a� for both the alloy Bi1−xSbx �BiSb� and
pure Bi for each surface, as shown in Table II.

First, consider the 111 surface. The parity eigenvalues
quoted in the literature, which determined Eq. �2.1� in Table
I, are with respect to an inversion center between two bilay-
ers 	point O in Fig. 1�a�
. Thus, for a crystal cleaved between
two bilayers, N��a� can be deduced by combining Eq. �4.2�
with

c c'

R/2

FIG. 5. Two inequivalent inversion centers c and c� in an
inversion-symmetric crystal, which differ by half a lattice vector.
The parity eigenvalues of Bloch state at momentum k=� /R with
inversion center chosen at c and c� are different. Crystals termi-
nated at c and c� will have surface charges that differ by an odd
integer.
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���a� = − ���a1����a2� , �4.5�

as shown in Table II. This implies the surface Fermi surface

encloses �̄, but not M̄, as shown schematically in Fig. 6�a�.
Equation �4.2� says nothing about either the hole pockets
seen in experiment and our calculation or the double electron

pocket at M̄ observed in experiment24 on Bi1−xSbx but not in
our calculation. In order for the surface to be neutral, how-

ever, the Fermi energy must either be at a Dirac point at �̄
�so that the Fermi surface has vanishing area� or there must
also be compensating electron/hole pockets elsewhere in the

surface Brillouin zone �but not enclosing M̄�.
It is also instructive to first consider a �111�� face cleaved

between the monolayers in a bilayer, despite the fact that
such a surface would likely be unstable. Since the origin c0 is
not in the cleavage plane, the parity eigenvalues in Eq. �2.1�
need to be modified using Eq. �4.4�. This has the effect of
changing the sign of all of the ���a�, so that

����a� = + ���a1����a2� . �4.6�

From Table II we thus conclude that the three M̄ points are

enclosed by the Fermi surface, but not �̄, as shown in Fig.
6�b�.

For the 110 surface the cleavage plane with one broken
bond includes the origin c0. Thus ���a� can be determined
with Eq. �4.5� along with the projections of the bulk TRIM
shown in Table II. This leads to the predictions for the sur-
face Fermi surface shown in Fig. 6�c�. Experimental data for
this face of Bi1−xSbx are currently unavailable. However, it is
instructive to compare this prediction with experiments on

pure Bi. In Ref. 15, single hole pockets are clearly seen at �̄

and M̄, and at X1 single surface Dirac point is present inside

the bulk gap. The situation at X̄2 is obscured due to the
overlap of the bulk conduction and valence bands at L and T.

For the 100 surface the cleavage plane with one broken
bond does not include c0. Thus, as was the case for the
�111�� surface, the surface fermion parity follows from Eq.
�4.6�. The surface Brillouin zone shown in Fig. 6�d� has

TRIM �̄, M̄, and two equivalent M̄�. Again, there are pres-
ently no data for this surface of Bi1−xSbx. The �100� face of
pure Bi is discussed in Ref. 20 and appears to be consistent
with the prediction of Table II that none of the TRIM are
enclosed by a Fermi surface.

TABLE II. For each crystal face �hkl�, we list the four inversion centers cj on the cleavage plane along
with the projections relating the four surface TRIM �a to the bulk TRIM �a1,2. For each � we list the surface
fermion parity ���a� for both Bi1−xSbx and Bi. ���a� is a product of parity invariants at �a1,2.

Face c j �a= ��a1�a2� �BiSb��a� �Bi��a�

�111� c0 c12 �̄= ��T� −1 −1

c13 c23 3M̄ = �LX� +1 −1

�111�� c1 c2 �̄= ��T� +1 +1

c3 c123 3M̄ = �LX� −1 +1

�110� c0 c3 �̄= ��X� −1 −1

c12 c123 X̄1= �LL� −1 −1

X̄2= �LT� +1 −1

M̄ = �XX� −1 −1

�100� c1 c13 �̄= ��L� −1 +1

c23 c123 M̄ = �TX� +1 +1

2M̄�= �LX� −1 +1

Γ
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FIG. 6. �Color online� Schematic diagram showing which sur-
face TRIM are enclosed by an odd number of electron or hole
pockets for different faces of Bi1−xSbx predicted by the surface fer-
mion parity in Table II. �a�–�d� show the �111�, �111��, �110�, and
�100� faces. The �111�� surface is a hypothetical surface cleaved in
the middle of a bilayer.
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V. MIRROR CHERN NUMBER AND THE MIRROR
CHIRALITY AT THE L POINT OF BISMUTH

In this section we will explore the consequences of mirror
symmetry on the band structure of Bi and Bi1−xSbx. This will
address the disagreement between our calculation of the sur-
face band structure and previous experimental and theoreti-
cal results. As discussed in Sec. III, the tight-binding model
predicts that the hole pockets enclose Dirac points, while
experiment and first-principles calculations suggest that they
do not. Here we will show that the presence of this crossing
probes a fundamental, but previously unexplored, property of
the bulk electronic structure of Bi.

We will begin by pointing out that the mirror symmetry of
the rhombohedral A7 structure leads to an additional topo-
logical structure of the energy bands which we refer to as a
mirror Chern number. We will then show that the value of
this integer in the topological insulator phase depends on the
structure of the nearly degenerate Ls and La bands in pure Bi.
We will identify a previously unexplored parameter in the
k ·p theory of Bi, which we refer to as the mirror chirality.
We will show that the mirror chirality at the L point in Bi
determines the value of the mirror Chern number in the to-
pological insulator phase of Bi1−xSbx.

We find that the value of the mirror chirality predicted by
the Liu-Allen tight-binding model26 disagrees with the value
predicted by a more fundamental calculation by Golin.34

This, combined with the disagreement with the surface-state
experiments and first-principles calculations, suggests that
the Liu-Allen tight-binding model has a subtle but topologi-
cal error.

A. Mirror Chern number

The Dirac points in the hole pockets in our tight-binding

calculation arise because the �̄1 and �̄2 bands cross on the

line connecting �̄ and M̄ in Fig. 3�b�. This crossing is pro-
tected by the invariance of the Hamiltonian under the mirror

operation M�x̂�= PC2�x̂�, which takes x to −x. �̄1��̄2� trans-
form under different representations of M�x̂� with eigenval-
ues +i�−i�. This mirror symmetry implies that all the bulk
electronic states in the plane kx=0 can be labeled with a
mirror eigenvalue �i. Within this two-dimensional plane in
momentum space, the occupied energy bands for each mirror
eigenvalue will be associated with a Chern invariant n�i.
Time-reversal symmetry requires that n+i+n−i=0, but the dif-
ference defines a nontrivial mirror Chern number,

nM = �n+i − n−i�/2. �5.1�

The situation is analogous to the quantum spin Hall state in
graphene,1,2 where the conservation of spin Sz in the two
band model leads to the definition of a spin Chern number,27

whose parity is related to the Z2 topological invariant. Since
mirror symmetry is a physical lattice symmetry, the mirror
Chern number is a fundamental characterization of a band
structure. This distinguishes it from the spin Chern number,
which is a property of a simplified model. Since the mirror
Chern number relies on a spatial symmetry, it is a “weak”
topological invariant in the sense discussed in Refs. 7 and

12. It loses its meaning in the presence of symmetry-
breaking disorder. In principle there is a second mirror Chern
number associated with the mirror-invariant plane kx=� /a in
the Brillouin zone. For the band structures considered in this
paper, this second invariant is zero, and will not be consid-
ered further.

The mirror Chern number determines how the surface
states connect the valence and conduction bands along the

line qx=0 between �̄ to M̄. To see this, consider the M
= � i sectors independently. The bulk states with kx=0 are
then analogous to a two-dimensional integer quantum Hall
state with Hall conductivity n�ie

2 /h. The sign of n�i deter-
mines the direction of propagation of the edge states, which
connect the valence and conduction bands. Thus, the sign of

nM determines whether the �̄1 band or the �̄2 band connects

the valence and conduction bands between �̄ and M̄ �which
we take to be in the +ŷ direction�. For nM= +1 �−1� we find

that the �̄1 ��̄2� band crosses.
The predictions of the tight-binding model are more likely

to be robust near �̄ than near M̄, because near �̄ they are not
sensitive to the detailed treatment of the small bulk energy
gap at the L point. This is supported by the fact that the

ordering of the �̄1 and �̄2 bands near �̄ predicted by the

tight-binding model �in which �̄2 emerges first� agrees with
other calculations and experiment. Given this ordering near

�̄, the mirror Chern number determines whether or not the
�1 and �2 bands have to cross. Referring to Fig. 3�c�, if the
mirror Chern number were to have the opposite sign, then

the �̄2 band would connect to the conduction band rather

than the �̄1 band, and the bands would not have to cross.
Pure Bi is very close to the transition between the �0;000�
and �1;111� phases. Therefore, it is likely that the presence of

the crossing between �̄1 and �̄2 will be unaffected by the
transition. Therefore, the sign of the nM in the topological
insulator phase of Bi1−xSbx should be correlated with the
alternatives shown in Fig. 4, with nM= + �−�1 corresponding
to Fig. 4�b� 	Fig. 4�c�
.

Since the valence band of pure Bi is in the trivial �0;000�
topological class, pure Bi does not have surface states which
connect the valence and conduction bands. Thus the mirror
Chern number for the kx=0 plane of the valence band of pure
Bi is nM=0. The transition to the strong topological insulator
in Bi1−xSbx occurs for small x because the Ls and La bands in
pure Bi are nearly degenerate. At the transition to the topo-
logical insulator, the two bands cross and form a three-
dimensional Dirac point at L. At this transition both the Z2
topological invariants ��0 ;�1�2�3� and the mirror Chern
number nM change. The change �nM across this transition
is an intrinsic property of this Dirac point. Thus the value of
nM in the topological insulator phase can be determined by
studying the properties of this Dirac point. Since pure Bi is
very close to this transition, this information can be extracted
from the structure of the k ·p Hamiltonian for pure Bi in the
vicinity of the L point.

In Sec. V B we will analyze the k ·p theory and show that
the value of �nM predicted by the Liu-Allen tight-binding
model disagrees with the value predicted by an earlier
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pseudopotential calculation by Golin.34 This provides evi-

dence that the crossing of the �̄1 and �̄2 bands is an artifact
of the incorrect sign of nM predicted by the tight-binding
model.

B. k·p theory and the mirror chirality

The k ·p analysis of Bi near the L point has a long history.
Originally developed by Cohen and Blount29 in 1960, the
theory was given an particularly elegant formulation by
Wolff,30 who emphasized the similarity with the relativistic
Dirac equation. This theory and its refinements31–33 played
an important role in the early development of band theory,
and formed the framework for interpreting a large body of
magnetic, transport, and optical data. In this section we point
out a previously unexplored sign which characterizes this
theory: the mirror chirality. We show that it is this sign which
determines the sign of nM in the topological insulator phase.

The four relevant states at the L point are denoted
	Ls ,La
= 	�L6 ,L5� , �L7 ,L8�
.37 The two states comprising Ls
and La are degenerate due to time-reversal symmetry. These
states are distinguished by their symmetry under parity P
�with eigenvalues 	�1,1� , �−1,−1�
�, under the twofold rota-
tion C2�x̂� �with eigenvalues 	�−i , i� , �i ,−i�
� and under the
mirror M�x̂�= PC2�x̂� �with eigenvalues 	�−i , i� , �−i , i�
�. We
have chosen the unconventional order of the states to sim-
plify the mirror operator, which makes the connection with
the mirror Chern number in Sec. V C the most transparent. In
this basis the inversion, rotation, and mirror operators have
the direct product form

P = �z � 1 ,

C2�x̂� = − i�z � �z,

M�x̂� = − i1 � �z, �5.2�

while the time-reversal operator can be chosen as

� = i1 � �yK , �5.3�

where K is complex conjugation. �� and �� are Pauli matrices
operating within and between the Ls and La blocks, and 1 is
the identity matrix. In the following we will simplify the
notation by omitting the � and the 1.

To first order in k the k ·p Hamiltonian has the form

H�k� = m�z + kx�x + ky�y + kz�z, �5.4�

where EG=2m is the energy gap �positive for Bi� and �a are
4�4 matrices. Invariance of H�k� under P and � requires
��a , P�= ��a ,��=0, and invariance under M�x̂� requires
��x ,M�x̂��= 	�y,z ,M
=0. The allowed terms are thus

�x = t1�x�x + t2�x�y ,

�y = u11�x�z + u12�y ,

�z = u21�x�z + u22�y , �5.5�

where ti and uij are real numbers. Equations �5.4� and �5.5�
are equivalent to the k ·p theory introduced by Cohen and

Blount,29 who expressed the Hamiltonian in terms of the
complex vectors t and u. These are related to our parameters
via t= �t1+ it2�x̂ and u= �−u11+ iu12�ŷ+ �−u21+ iu22�ẑ. In the
following it will be useful to express these in terms of three
complex numbers t= x̂ · t and u�= �ŷ� iẑ� ·u.

Equation �5.4� has a simpler form when expressed in
terms of the principle axes in both momentum space and spin
space. We thus perform a rotation �ky + ikz�=ei��ky�+ ikz��
along with a unitary transformation ���=exp	i�z��
+��z�
����. These transformations have the effect of chang-
ing the phases, t→ tei� and u�→u�e−i�����. For appropri-
ately chosen �, � and �, t and �u� can be made real and
positive. The Hamiltonian then takes the diagonal form

H = m�z + v1kx�x�x + �v2ky��x�z + v3kz��y , �5.6�

where

v1 = �t� ,

�v2 = ��u+� − �u−��/2,

v3 = ��u+� + �u−��/2. �5.7�

Here we have defined v2 to be positive and introduced a
previously unexplored quantity �= �1, which is simply
given by �=sgn�det	uij
�. � is a mirror chirality, which dis-
tinguishes two topologically distinct classes of Dirac Hamil-
tonians.

For a system with full rotational symmetry, � must be
equal to +1. This can be seen by noting that the twofold
rotation operator specifies the generator of continuous rota-
tions about x̂ via C2�x̂�=exp	−i�Sx
. Since C2�x̂�=−i�z�z,
this implies Sx=�z�z /2. When �=−1, Eq. �5.6� is not invari-
ant under continuous rotations generated by Sx even when
v2=v3, since the spin and orbital degrees of freedom are
rotated in opposite directions. The twofold rotational symme-
try, however, remains intact. �= +1 corresponds to the be-
havior of a free electron and should be considered normal
behavior. �=−1 is anomalous.

The sign of � is not ordinarily discussed in the k ·p theory
of Bi because it has no effect on the electronic dispersion
E�k�, which depends only on �va�. � does, however, have a
subtle effect in the presence of a magnetic field. A magnetic
field in the x̂ direction leads to a splitting of states according
to their spin angular momentum Sx, which can be defined as
above in terms of the twofold rotation operator C2�x̂�. This
defines a magnetic moment, which symmetry restricts to be
either parallel or antiparallel to x̂. The form of this magnetic
moment is discussed in Refs. 30 and 31, and it is straightfor-
ward to show that �� ��Sxx̂. This means � determines the
sign of the g factor, which describes the relation between the
magnetic moment and angular momentum. For �= +1 the
sign is the same as that for a free electron, while for �=−1
the sign is opposite.

Unfortunately, this sign is difficult to probe experimen-
tally. In addition to complications which arise due to the
presence of three equivalent L points, measurement of the
sign requires measurement of the spin angular momentum in
addition to the change in energy with magnetic field. The
selection rules discussed in Ref. 30 are unaffected by the
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sign. We are not aware of any experiments on Bi which
directly probe this sign.

C. Relation between mirror chirality, mirror Chern number,
and surface states

We will now argue that the sign of � determines the sign
of the mirror Chern number in the topological insulator
phase of Bi1−xSbx. This leads to an experimentally testable
prediction regarding the crossing of the surface states. Thus,
probing the surface states of the topological insulator may
well be the best experimental method for determining this
fundamental parameter of the k ·p theory of Bi.

The connection between � and the mirror Chern number
can be established by considering the mirror plane kx=0. H
then decouples into two independent two band Hamiltonians
for M�x̂�=−i�z= � i with the form

h = m�z + sv2ky��x + v3kz��y , �5.8�

where s=��z. m=0 describes a transition where the Chern
number n−i�z

changes. When m changes sign from negative
to positive, �n−i�z

=��z. Thus, the change in the mirror
Chern number,

�nM = nM�m � 0� − nM�m 	 0� = − � , �5.9�

depends on the mirror chirality �. Since nM=0 for Bi �with
m�0�, we conclude that the topological insulator, with m
	0, has

nM = � . �5.10�

nM determines the direction of propagation of the �̄1 and

�̄2 surface states along the mirror line qx=0. The direction of
propagation of the surface states on the top surface which
connect the valence and conduction bands can be determined
by solving Eq. �5.8� with a z dependent mass m�z�
=m sgn�z� with m�0. The bound state at the surface has a
wave function proportional to exp�−�mz� /v3�. The dispersion
for the surface states on the top surface along qx=0 is

E�qy� = − ��zvqy , �5.11�

with v�0. This means that the �1 band, which has �z=−1,
propagates in the +�ŷ direction, while the �2 band, with
�z= +1, propagates in the −�ŷ direction. Therefore, the sur-
face state connecting the valence band to the conduction
band which has the positive velocity in the ŷ direction will be
�1 for �= +1 and �2 for �=−1.

D. Comparison of tight-binding and pseudopotential models
with experiment

In this subsection we show that the value of � predicted
by the Liu-Allen tight-binding model26 disagrees with that
predicted by an early calculation by Golin.34 Specifically, we
find that the Liu-Allen model predicts the conventional value
�=1, while the Golin model predicts the anomalous value
�=−1. We will then argue that the value of � can be ex-
tracted from the structure of the surface-state spectrum. The
presently available spin polarized ARPES data on the Bi 111

surface22 provide indirect evidence that the mirror chirality
has the anomalous value �=−1.

The k ·p parameters can be determined by evaluating the
matrix elements

�a
ij = ��Li�v̂a�Lj��k=L, �5.12�

where v̂= ��kH�k��k=L is determined by the Bloch Hamil-
tonian H�k�. From this it follows that

t = �x
57, �5.13�

u� = − �y
67 � i�z

67. �5.14�

These matrix elements are listed in Table II of Golin’s
paper34 �the relevant band is j= j�=3�. They may also be
extracted from the Liu-Allen tight-binding model. In Table
III we compare the values of v1, v2, v3, and � computed
from these matrix elements. The signs of � predicted by the
two theories disagree. Since the parameters of the Liu-Allen
model were simply fitted to reproduce the energies of the
bands, there is no reason to expect that it gets � right. In
contrast, Golin’s calculation,34 which is based on a pseudo-
potential approach, starts from more fundamental premise.

In Sec. V C we showed that provided there is only a
single transition between pure Bi and the topological insula-
tor phase of Bi1−xSbx, the mirror chirality deduced from the
pure Bi band structure determines the mirror Chern number
in the topological insulator. This, in turn, determines the di-

rection of propagation of the �̄1 and �̄2 states along the line
qx=0. The surface-state structure predicted by the tight-
binding model is shown in Fig. 3�c�. The crossing of the �1
band is consistent with �= +1. This crossing guarantees that
there is a Dirac point enclosed by the hole pocket. This can
be probed either by inverse photoemission or by spin polar-
ized photoemission. In the latter case, the presence of the
Dirac point would lead to a change in the sign of the spin on
either side of the hole pocket. It will be interesting to experi-
mentally determine this property for Bi1−xSbx using spin po-
larized ARPES.

Currently available spin polarized photoemission data on
the 111 surface of pure Bi �Ref. 22� provide an indirect probe

of �. Hole pockets are observed along the line from �̄ to M̄
in both Bi1−xSbx and pure Bi. Provided we make the plau-
sible assumption that no additional level crossings occur near
the transition to the topological insulator, then the presence
or absence of Dirac points in the hole pockets should be the
same on both sides of the transition. In Ref. 22, the spin in
either side of the hole pocket was found to point in the same
direction, which indicates that in pure Bi, the hole pockets do

TABLE III. Parameters of the k ·p theory, Eq. �5.6�, extracted
from the pseudopotential model �Ref. 34� and the tight-binding
model �Ref. 26�.

v1 �eV Å� v2 v3 �

Golin pseudopotential 4.16 1.37 7.01 −1

Liu-Allen tight-binding 5.89 0.92 9.67 +1
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not enclose a Dirac point. This conclusion was supported by
first-principles surface-state calculations, which also find no
crossing.22 This suggests that in the alloy, it should be the �2
band which connects the conduction and valence bands,
which is consistent with �=−1.

It thus appears likely that the mirror chirality in Bi has the
anomalous sign, �=−1. This conclusion contradicts the pre-
diction of the tight-binding model, but it is supported by �1�
the pseudopotential band structure of pure Bi and �2� the
observed and calculated surface-state structures of pure Bi.
Spin polarized ARPES experiments on the topological insu-
lator Bi1−xSbx could more directly determine this sign by
probing the mirror Chern number nM.

VI. CONCLUSION

In this paper we have analyzed the surface-state structure
of the topological insulator Bi1−xSbx. Using a simple tight-
binding model based on Liu and Allen’s26 tight-binding pa-
rameterization, we confirmed that the surface states have the
signature of the strong topological insulator by showing that
the surface Fermi surface encloses an odd number of Dirac
points. The tight-binding model also predicts that the surface

is semimetallic, with an electron pocket centered on �̄ along
with six hole pockets.

Using general arguments based on inversion symmetry,
we showed that the location of electron and hole pockets in
the surface Brillouin zone is constrained by a quantity which
we defined as the surface fermion parity. This quantity is
determined by the parity invariants of the bulk band struc-
ture, and for a given surface it determines which surface
TRIM are enclosed by an odd number of Fermi surface lines.
This argument establishes a simple and direct connection be-
tween the bulk electronic structure and the surface electronic
structure for crystals with inversion symmetry. Using this
general principle, we predicted the structure of the surface
states for several different faces of Bi1−xSbx. For the 111
face, these predictions agree both with our surface-state cal-
culations and with experiment. It will be interesting to test
these predictions experimentally on other faces of Bi1−xSbx.

Finally, we showed that the mirror symmetry present in
the rhombohedral A7 lattice leads to additional topological
structure in the bulk energy bands. We defined an integer
mirror Chern number nM, whose value is nonzero in the
topological insulator phase. The sign of nM determines the
direction of propagation of each of the surface states along
the mirror plane, and thus determines which surface states
connect the conduction and valence bands. We find that the
crossing of the �1 band predicted by the tight-binding model,
which leads to a Dirac point in the hole pockets, disagrees
with the natural extrapolation of experiments and first-
principles calculations on pure Bi, which find no Dirac point
in the hole pockets.

We traced this discrepancy to a previously unexplored
property of the k ·p band structure of pure Bi, which we
defined as the mirror chirality �. We showed that � in pure
Bi determines nM in the topological insulator. Moreover, we
showed that the Liu-Allen model predicts the conventional
value �= +1, while an earlier pseudopotential calculation by

Golin34 predicts the anomalous value �=−1. The latter value
is consistent with the available experimental data on Bi,
though the connection is rather indirect. A more direct test
would be to directly measure the mirror chirality nM in the
topological insulator by probing the surface states with spin
polarized ARPES.

It would be interesting to check that the value of � pre-
dicted by more accurate first-principles calculations of Bi
agrees with the pseudopotential prediction. Since the tight-
binding model was designed only to get the energies of the
bands right, there is no reason to expect that it would get �
right. It should be possible to come up with a new param-
etrization of the Liu-Allen model which would have �=−1.
We expect that the surface states computed within this model
would have band crossings which agree with experiment and
first-principles calculations, though of course a quantitative
description of the surface states requires an accurate descrip-
tion of the surface potential.

An important lesson to be learned from this paper is that
in addition to time-reversal symmetry, spatial symmetries
can play an important role in topologically constraining bulk
and surface band structures. Our analysis of these symme-
tries has not been exhaustive. A complete theory of topologi-
cal band theory, which accounts for the full point group
symmetry of a crystal, is called for.
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APPENDIX: SURFACE FERMION PARITY FROM BULK
PARITY INVARIANTS

In this Appendix we show that for an inversion- and time-
reversal-invariant crystal, the surface fermion number N�q
=�a� discussed in Sec. IV is an integer, whose parity is
determined by the product of bulk parity invariants ���a1,2�,
which are products of parity eigenvalues given in Eqs. �2.1�
and �3.5�. The simple proof outlined here provides a direct
connection between the topological structure of the surface
states and the parity eigenvalues characterizing the bulk crys-
tal.

The Bloch Hamiltonian H��a ,kz� describes a parity- and
time-reversal-invariant one-dimensional system. In the fol-
lowing we will suppress the dependence on �a and consider
a purely one-dimensional system. To determine the end
charge N, we introduce the “cutting procedure” depicted in
Fig. 7�a�. We begin with a large but finite system with peri-
odic boundary conditions. We then replace the hopping am-
plitudes ti for all bonds that cross the cleavage plane z=0 by
�ti, where � is real. Provided z=0 corresponds to an inver-
sion plane, the one-dimensional Hamiltonian retains inver-
sion and time-reversal symmetry for all �. The fully cleaved
crystal corresponds to �=0.
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For �=1 the system is translationally invariant, so the
excess charge near z=0 is Q��=1�=0. Since the insulator
can have no bulk currents, the only way Q��� can change is
if a state localized near z=0 crosses the Fermi energy. Thus
Q�0� will be the difference between the number of states that
cross EF from above and from below for �� 	0,1
. Kramers’
theorem requires that every state is at least twofold degener-
ate, so the number of states crossing EF will be an even
integer. Since the charge will be divided evenly between the
two sides, N=Q�0� /2 is an integer, which may be written as

N = �N+ − �N−, �A1�

where �N� is the number of Kramers pairs that cross EF
from above or below.

We now relate the parity of N to the bulk parity eigenval-
ues. To this end it is useful to consider the evolution of the
spectrum for �� 	−1,1
 and to define

P��� = �
E2����	EF


2� �A2�

as the product of the parities of all of the occupied states,
where each Kramers pair ��2� ,�2�−1� is included only once.
This quantity is well defined because 
2�=
2�−1. Our proof
consists of two steps. We will first show that

P�1�P�− 1� = �− 1�N. �A3�

We will then show that

P�1�P�− 1� = �
m=1

nb

	− 
2m��1�
2m��2�
 � � . �A4�

Here 
2m��i� are the parity of the Bloch states in the mth
Kramers degenerate band at the TRIM kz=�i, and again each
Kramers pair is included only once. nb is the number of
occupied Kramers degenerate bands. Taken together, Eqs.
�A3� and �A4� establish the relationship summarized by Eqs.
�2.1� and �3.5� between the bulk parity eigenvalues and the
surface fermion parity.

Equation �A3� follows from the symmetry of the end-state
spectrum about �=0. The Hamiltonian H�−�� differs from
H��� only by a phase twist of � across z=0. This twist can
be spread over the entire circumference L by performing the
gauge transformation

���− ��� = ei�z/L��̃�− ��� �A5�

for 0	z	L. When L→� the Hamiltonian for ��̃�−��� near
z=0 becomes identical to H���. Thus every bound state
��l���� satisfies El�−��=El���. Since Eq. �A5� changes the
parity, ��l���� and ��l�−��� have opposite parities.

It follows that every Kramers pair that crosses the EF at
�0� 	1,0
 has a partner with opposite parity that crosses EF
in the opposite direction at −�0 as shown in Fig. 7�b�. Thus
between �=1 and �=−1, the conduction and valence bands
exchange two Kramers pairs with opposite parities, leading
to a change in the relative sign between P�1� and P�−1�. We
conclude that P�1�P�−1�= �−1��N++�N−, which leads directly
to Eq. �A3�.

Equation �A4� follows from a consideration of the parities
of the Bloch wave functions. Consider first the simplest case
where there is a single Kramers degenerate occupied band, as
shown in Figs. 7�c� and 7�d�. At �=1 the single-particle
states are labeled by momentum kz=2m� /L with m=−M /2
+1, . . . ,M /2, where M is the number of unit cells. At the two
TRIM �1=0 and �2=M� /L, the parity eigenvalues are

��1,2�. Every other kz has a partner −kz, and even- and odd-
parity combinations of the two can be formed. The M /2−1
�kz ,−kz� pairs thus each contribute −1 to the product in Eq.
�A2�. Therefore,

P�1� = �− 1�M/2−1
��1�
��2� . �A6�

For �=−1 gauge transformation �A5� leads to a periodic
Hamiltonian identical to H�1�, but with momenta shifted by
� /L, as shown in Fig. 7�d�. Thus all the momenta are paired,
so that

P�− 1� = �− 1�M/2. �A7�

Combining Eqs. �A6� and �A7� leads directly to Eq. �A4�,
which is straightforwardly generalized to the case of nb
Kramers degenerate bands.

t λ t

E E

E

k kΓ1 Γ2 Γ1 Γ2

0-1 1λ

+ξ−ξ

λ= −1λ= +1

EF

(a) (b)

(c) (d)

FIG. 7. �Color online� �a� A one-dimensional inversion-
symmetric insulator cut at z=0 by replacing hopping amplitudes t
across z=0 by �t. The fully cleaved crystal corresponds to �=0. �b�
Energy spectrum as a function of � between −1 and 1. The conduc-
tion and valence bands exchange a Kramers pair of states with
opposite parities. 	�c� and �d�
 The bulk energy levels at �= �1. For
�=−1 �d� every state at k has a partner at −k with the same energy
and opposite parity. For �= +1 �c� the states at k=�1 and k=�2 are
not paired.
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Critical behavior of a point contact in a quantum spin Hall insulator
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We study a quantum point contact in a quantum spin Hall insulator. It has recently been shown that the
Luttinger liquid theory of such a structure maps to the theory of a weak link in a Luttinger liquid with spin with
Luttinger liquid parameters g�=1 /g�=g�1. We show that for weak interactions, 1 /2�g�1, the pinch-off of
the point contact as a function of gate voltage is controlled by a novel quantum critical point, which is a
realization of a nontrivial intermediate fixed point found previously in the Luttinger liquid model with spin. We
predict that the dependence of the conductance on gate voltage near the pinch-off transition for different
temperatures collapses onto a universal curve described by a crossover scaling function associated with that
fixed point. We compute the conductance and critical exponents of the critical point as well as the universal
scaling function in solvable limits, which include g=1−�, g=1 /2+�, and g=1 /�3. These results, along with
a general scaling analysis, provide an overall picture of the critical behavior as a function of g. In addition, we
analyze the structure of the four-terminal conductance of the point contact in the weak tunneling and weak
backscattering limits. We find that different components of the conductance can have different temperature
dependences. In particular, we identify a skew conductance GXY, which we predict vanishes as T� with �
�2. This behavior is a direct consequence of the unique edge state structure of the quantum spin Hall insulator.
Finally, we show that for strong interactions, g�1 /2, the presence of spin nonconserving spin-orbit interac-
tions leads to a novel time-reversal-symmetry breaking insulating phase. In this phase, the transport is carried
by spinless chargons and chargeless spinons. These lead to nontrivial correlations in the low frequency shot
noise. Implications for experiments on HgCdTe quantum well structures will be discussed.

DOI: 10.1103/PhysRevB.79.235321 PACS number�s�: 71.10.Pm, 72.15.Nj, 85.75.�d

I. INTRODUCTION

A quantum spin Hall insulator �QSHI� is a time-reversal
invariant two-dimensional electronic phase which has a bulk
energy gap generated by the spin-orbit interaction.1,2 It has a
topological order3 which requires the presence of gapless
edge states similar to those that occur in the integer quantum
Hall effect. In the simplest version, the QSHI can be under-
stood as two time reversed copies of the integer quantum
Hall state4 for up and down spins. The edge states, which
propagate in opposite directions for the two spins, form a
unique one-dimensional �1D� system in which elastic back-
scattering is forbidden by time-reversal symmetry.1 This state
occurs in HgCdTe quantum well structures,5 and experiments
have verified the basic features of the edge states, including
the Landauer conductance6 2e2 /h, as well as the nonlocality
of the edge state transport.7

In the presence of electron interactions, the edge states
form a Luttinger liquid.8–14 For strong interactions �when the
Luttinger liquid parameter g�3 /8� random two particle
backscattering processes destabilize the edge states, leading
to an Anderson localized phase. For g�3 /8 �or a sufficiently
clean system�, however, one expects the characteristic
power-law behavior for tunneling of a Luttinger liquid.

A powerful tool for probing edge state transport experi-
mentally is to make a quantum point contact. As depicted in
Figs. 1�a� and 1�b�, a gate voltage controls the coupling be-
tween edge states on either side of a Hall bar as the point
contact is pinched off. Recently, the point contact problem
for a QSHI has been studied.10,11 Hou et al.10 made the in-
teresting observation that the QSHI problem maps to an ear-
lier studied model15,16 of a weak link in a spinful Luttinger

liquid �SLL�, in which the charge and spin Luttinger param-
eters are given by g�=g and g�=1 /g.17 For sufficiently
strong interactions �g�1 /2� they found that the simple per-
fectly transmitting and perfectly reflecting phases are both
unstable. They showed that as long as spin is conserved at
the junction the low energy behavior is dominated by a non-

VG

VG

VG

VG

QSHI QSHI QSHI QSHI

1 2

34

1 2

34

VG

VG
*

G*

2e2/h

G

T
α

(a) (b)

(c)

FIG. 1. A quantum point contact in a QSHI, controlled by a gate
voltage VG. In �a� VG�VG

� and the point contact is pinched off. The
spin filtered edge states are perfectly reflected. In �b� VG�VG

� and
the point contact is open. The edge states are perfectly transmitted.
In �c� we plot the conductance �later defined as GXX� as a function
of VG for different temperatures. As the temperature is lowered, the
pinch-off curve sharpens up with a width T	. The curves cross at a
critical conductance G�, and the shape of the curve has the universal
scaling form �1.1�. The plotted curves are based on Eq. �3.9�, valid
for g=1−�, which is computed in Sec. III C.
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trivial “mixed” fixed point of the SLL, in which charge is
reflected but spin is perfectly transmitted. This charge
insulator/spin conductor �IC� phase leads to a novel structure
in the four-terminal conductance of the point contact.

In this paper, we will focus on the QSHI point contact for
weaker interactions when 1 /2�g�1. In this regime the
open limit �or weak backscattering, “small v”� and the
pinched-off limit �or weak tunneling, “small t”� are both
stable perturbatively. This is different from the behavior in
an ordinary Luttinger liquid15,16,18 or a fractional quantum
Hall point contact.19,20 In those cases the perfectly transmit-
ting limit is unstable for g�1. Weak backscattering is rel-
evant and grows at low energy, leading to a crossover to the
stable perfectly reflecting fixed point. The fact that both the
small v and the small t limits are stable for the QSHI point
contact means that there must be an intermediate unstable
fixed point which separates the flows to the two limits. This
unstable fixed point describes a quantum critical point where
the point contact switches on as a function of the pinch-off
gate voltage. We will argue that in the limit of zero tempera-
ture the point contact switches on abruptly as a function of
gate voltage VG, with conductances G=0 for VG�VG

� and
G=2e2 /h for VG�VG

� . At finite but low temperature T, the
shape of the pinch-off curve G�VG ,T� is controlled by the
crossover between the unstable and stable fixed points and is
described by a universal crossover scaling function,

lim

VG,T→0

G�VG,T� =
2e2

h
Gg�c


VG

T	g
� . �1.1�

Here 
VG=VG−VG
� and c is a nonuniversal constant. 	g is a

critical exponent describing the unstable intermediate fixed
point. Gg�X� is a universal function which crosses over be-
tween 0 and 1 as a function of X. 	g and Gg�X� are com-
pletely determined by the Luttinger liquid parameter g. This
behavior means that as temperature is lowered, the pinch-off
curve as a function of VG sharpens up with a characteristic
width which vanishes as T	g, as shown schematically in Fig.
1�c�. The curves at different low temperatures cross at Gg

�

=Gg�0�, the conductance of the critical point. Equation �1.1�
predicts that data from different temperatures can be rescaled
to lie on the same universal curve.

The crossover scaling function Gg�X� is similar to the
scaling function that controls the line shape of resonances in
a Luttinger liquid16,21 and in a fractional quantum Hall point
contact.19 That scaling function was computed exactly for all
g by Fendley et al.22 using the thermodynamic Bethe ansatz.
That problem, however, was simpler than ours because the
critical point occurs at the weak backscattering limit, which
is described by a boundary conformal field theory with a
trivial boundary condition.23 The intermediate fixed point
relevant to our problem has no such simple description.
Thus, even the critical point properties 	g and Gg

� �which
were simple for the resonance problem� are highly nontrivial
to determine.

Intermediate fixed points in Luttinger liquid problems
were first discussed in Refs. 15 and 16 in the context of
SLLs. However, for that problem they occur in a rather un-
physical region of parameter space g��2 because spin rota-

tional invariance requires g�=1. The QSHI point contact
provides a physically viable system to directly probe these
nontrivial fixed points.

The existence of the intermediate fixed points can be in-
ferred from the stability of the simple perfectly transmitting
or reflecting fixed points.15,16 However their properties are
difficult to compute, and a general characterization of these
critical points remains an unsolved problem in conformal
field theory.24 Two approaches have been used to study their
properties. In Ref. 16, a perturbative approach was intro-
duced which applies when the Luttinger parameters are close
to their critical values g�

� and g�
�, where the simple fixed

points become unstable. �For instance, for the weak back-
scattering limit, g�

�=1 /2, g�
� =3 /2.� For g�,�=g�,�

� −�, the
fixed point is accessible in perturbation theory about the
simple fixed point, and its properties can be computed in a
manner analogous to the � expansion in statistical mechanics.

An alternative approach is to map the theory for specific
values of g� and g� onto solvable models. In Ref. 25, Yi and
Kane recast the Luttinger liquid barrier problem as a problem
of quantum Brownian motion �QBM� in a two-dimensional
periodic potential. When g�=1 /3, g�=1 and the potential has
minima with a honeycomb lattice symmetry, a stable inter-
mediate fixed point which occurs in that problem was iden-
tified with that of the three-channel Kondo problem. This, in
turn, is related to the solvable SU�2�3 Wess-Zumino-Witten
model,26 allowing for a complete characterization of the
fixed point. This idea was further developed by Affleck et
al.,24 who provided a more general characterization of the
fixed point in terms of the boundary conformal field theory
of the three-state Pott’s model. For g�=1 /�3 and g�=�3 the
QBM model with triangular lattice symmetry has an unstable
intermediate fixed point, which we will see is related to the
fixed point of the QSHI problem. In Ref. 25 symmetry argu-
ments were exploited to determine the critical conductance
G� in that case.

In this paper we will compute 	g and Gg�X� �along with a
multiterminal generalization of the conductance� in three
solvable limits:

�i� For g=1−�, we will perform an expansion for weak
electron interactions. For noninteracting electrons the point
contact can be characterized in terms of a scattering matrix
Sij for arbitrary transmission. Weak interactions lead to a
logarithmic renormalization of Sij. Following the method de-
veloped by Matveev et al.,27 this allows Gg�X� and 	g to be
calculated exactly in the limit g→1.

�ii� For g=1 /2+�, we find that the intermediate fixed
point approaches the charge insulator/spin conductor fixed
point, allowing for a perturbative calculation of the fixed
point properties Gg

� and 	g to leading order in �. Moreover,
for g=1 /2 the Luttinger liquid theory can be fermionized,
which allows the full crossover function Gg�X� to be deter-
mined in that limit.

�iii� For g=1 /�3, the self-duality argument developed in
Ref. 25 allows us to compute the fixed point conductance G�

exactly.
These three results, along with the general scaling analy-

sis, provide an overall picture of the critical behavior of the
QSHI point contact as a function of g.

In addition to the analysis of the pinch-off transition dis-
cussed above, we will touch on two other issues in this paper.
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First, we will introduce a convenient parametrization of the
four-terminal conductance as a 3�3 conductance matrix. In
this form symmetry constraints on the conductance are re-
flected in a natural way. Moreover, we will predict that dif-
ferent components of the conductance matrix have different
temperature dependences at the low temperature fixed points.
In particular, we will introduce a “skew” conductance GXY,
which is predicted to vanish as T� with ��2. For noninter-
acting electrons we will show that GXY =0 and for weak in-
teractions �=2. This behavior is a direct consequence of the
spin filtered nature of the edge states and does not occur in a
generic four-terminal conductance device. It is thus a pow-
erful diagnostic for the edge states.

Second, we will examine the role of spin-orbit terms at
the point contact which respect time-reversal symmetry but
violate spin conservation. For g�1 /2 we will provide evi-
dence that such terms are irrelevant at the intermediate criti-
cal fixed point, so that they are unimportant for the critical
behavior of the point contact. However, for g�1 /2, such
terms are relevant. Hou et al.10 pointed out that these terms
are relevant perturbations at the charge insulator/spin con-
ductor fixed point for g�1 /2, but they did not identify the
stable phase to which the system flows at low energy. We
will argue that the system flows to a time-reversal-symmetry
breaking insulating state in which the four-terminal conduc-
tance Gij =0. Since spin-orbit interaction terms will generi-
cally be present in a point contact, the true low energy be-
havior of a point contact will be described by this phase. An
interesting consequence of the broken time-reversal symme-
try of this phase is that the weak tunneling processes which
dominate the conductance at low but finite temperature are
not electron tunneling processes. Rather, they involve the
tunneling of neutral spinons and spinless chargons. This has
nontrivial implications for four-terminal noise correlation
measurements. A related effect has been predicted by Macie-
jko et al.12 for the insulating state of a single impurity on a
single edge of a QSHI. This insulating state, however, re-
quires stronger electron-electron interactions. It occurs in the
regime g�1 /4, where weak disorder already leads to Ander-
son localization.

This paper is organized as follows. In Sec. II we discuss
our model and analyze five stable phases. In addition to the
simple fixed points, where charge and spin are either per-
fectly reflected or perfectly transmitted, we discuss the time-
reversal-symmetry breaking insulating phase which occurs
for strong interactions with spin orbit. In Sec. III we discuss
the critical behavior of the conductance at the pinch-off tran-
sition. We will begin in Sec. III A with a general discussion
of the scaling theory and phase diagram along with a sum-
mary of our results. Readers who are not interested in the
detailed calculations can go directly to this section. In the
following sections we describe the calculations for g=1 /�3,
g=1−�, and g=1 /2+� in detail. In Sec. IV we conclude
with a discussion of experimental and theoretical issues
raised by this work. In the Appendix we describe our param-
etrization of the four-terminal conductance and show that in
this representation symmetry constraints have a simple form.

II. MODEL AND STABLE PHASES

In this section we will describe the Luttinger liquid theory
of the QSHI point contact. We will begin in Sec. II A by

describing the Luttinger liquid model first for a single edge
and then relating the four edges to the theory of the SLL. We
then discuss the four-terminal conductance. In Sec. II B we
describe the simple limits of our model which correspond to
stable phases. The simplest limits are the perfect transmis-
sion limit or charge conductor/spin conductor �CC� and the
perfect reflection limit or charge insulator/spin insulator �II�.
In addition we will discuss the “mixed” phases, including the
IC and the charge conductor/spin insulator �CI�.

For most of this section we will assume that spin is con-
served. While spin nonconserving spin-orbit interactions are
allowed and will generically be present we will argue that
they are irrelevant for the fixed points and crossovers of
physical interest. An exception to this, however, occurs for
strong interactions when g�1 /2. This will be discussed in
Sec. II B 5, where we will show that there are relevant spin-
orbit terms which destabilize the CC, II, and IC phases. We
will argue that these perturbations flow to a different low
temperature phase, which we identify as a time-reversal-
symmetry breaking insulator �TBI�. In that section we will
explore the transport properties of that state.

Much of the theory presented in this section is contained
either explicitly or implicitly in the work of Hou et al.,10 as
well as in Refs. 11, 15, and 16. We include it here to estab-
lish our notation and to make our discussion self-contained.
We will highlight, however, three results of this section
which are original to this work. They include �1� our analysis
of the four-terminal conductance, which predicts that differ-
ent components of the conductance matrix have different
temperature dependences. In particular, we find that the skew
conductance GXY vanishes at low temperature as T� with �
�2. �2� In Sec. II B 5 we introduce the TBI phase discussed
above. �3� We introduce a perturbative analysis of the IC and
CI phases in Secs. II B 3 and II B 4. While this was partially
discussed in Ref. 16, we will show that a full analysis re-
quires the introduction of a pseudospin degree of freedom in
the perturbation theory. This new pseudospin does not affect
the lowest order stability analysis of the IC phase, but it will
prove crucial for the second-order renormalization group
flows, which will be used in the � expansion in Sec. III D.

A. Model

The edge states on the four edges in Figs. 1�a� and 1�b�
emanating from the point contact may be described by the
Hamiltonian

H0 = �
i=1

4 �
0

�

dxiH0
i , �2.1�

with

H0
i = iv0�
i,in

† �x
i,in − 
i,out
† �x
i,out� + u2
i,in

† 
i,in
i,out
† 
i,out

+
1

2
u4��
i,in

† 
i,in�2 + �
i,out
† 
i,out�2	 . �2.2�

Here 
i,in and 
i,out are a time reversed pair of fermion op-
erators with opposite spin which propagate toward and away
from the junction. v0 is the bare Fermi velocity and u is
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electron interaction strength. u2 and u4 are forward scattering
interaction parameters. The boundary condition on the fermi-
ons at x=0 is determined by the transmission of the point
contact and will be discussed in various limits below.

1. Bosonization of a single edge

We first consider the Luttinger liquid theory for a single
edge. We thus bosonize according to


i,a =
1

�2�xc

ei�i,a, �2.3�

where a=in,out and xc is a short distance cutoff. 
i,a obey
the Kac Moody commutation algebra,

��i,a�x�,� j,b�y�	 = i��ij�ab
z sgn�x − y� . �2.4�

Then,

H0
i =

v0

4�

�1 + �4����x�i,in�2 + ��x�i,out�2	 − 2�2�x�i,in�x�i,out� ,

�2.5�

where �i=ui / �2�v0�. Changing variables

� �i,in

�i,out
� =

1

2g
�1 + g 1 − g

1 − g 1 + g
�� �̃i,in

�̃i,out

� �2.6�

transforms Eq. �2.5� into a theory of decoupled chiral
bosons,

H0 =
v

4�g
���x�̃i,in�2 + ��x�̃i,out�2	 , �2.7�

where �̃i,a obey

��̃i,a�x�,�̃ j,b�y�	 = i�g�ij�ab
z sgn�x − y� . �2.8�

Here v=v0
��1+�4�2−�2

2 and

g =�1 + �4 − �2

1 + �4 + �2
. �2.9�

The Luttinger liquid parameter g determines the power-law
exponents for various quantities. For instance, the tunneling
density of states scales as ��E��E�g+1/g�/2−1.

2. Mapping to spinful Luttinger liquid

Consider an open point contact in a Hall bar geometry
with edge states on the top and bottom edges which continu-
ously connect leads 1 and 2 and leads 3 and 4. We then
define left and right moving fields with spin ↑ ,↓ as

�R↑ = �1,in�− x���− x� + �2,out�x���x� ,

�L↓ = �2,in�x���x� + �1,out�− x���− x� ,

�L↑ = �3,in�x���x� + �4,out�− x���− x� ,

�R↓ = �4,in�− x���− x� + �3,out�x���x� . �2.10�

It is then useful to define sum and difference fields as

�a� =
1

2
��� + ��� + a�� + a���� , �2.11�

where a=R ,L=+,− and �= ↑ , ↓ =+,−. Then, �	 and �	

obey

��	�x�,���y�	 = 2�i�	���x − y� , �2.12�

and Eqs. �2.3� and �2.5� become10

H0 = �
−�

�

dx �
a=�,�

v
4�

�ga��x�a�2 +
1

ga
��x�a�2
 , �2.13�

where

g� = g, g� = 1/g , �2.14�

and g and v are given in Sec. II A 1.
It is useful to list the effect of symmetry operations on the

charge-spin variables because symmetries constrain the al-
lowed tunneling operators. Charge conservation leads to
gauge invariance under the transformation ��→��+��. The
conservation of spin Sz leads to invariance under ��→��

+��. The effects of time-reversal and mirror symmetries are
shown in Table I. Time-reversal symmetry is specified by the
operation �
a��−1= i�
ā�̄. The mirror MX interchanges
leads 14↔23 while MY interchanges leads 12↔34.

3. Four-terminal conductance

The central measurable quantity is the four-terminal con-
ductance, defined by

Ii = �
j

GijVj , �2.15�

where Ii is the current flowing into lead i. Gij is in general
characterizing by nine independent parameters. In the Ap-
pendix we introduce a convenient representation for these
parameters, which simplifies the representation of symmetry
constraints. Here we will summarize the key points of that
analysis.

The presence of both time-reversal symmetry and spin
conservation considerably simplifies the conductance. It is
characterized by three independent conductances,

�IX

IY
� = �GXX GXY

GYX GYY
��VX

VY
� . �2.16�

Here IX= I1+ I4 is the current flowing from left to right in Fig.
1, while IY = I1+ I2 is the current flowing from top to bottom.
Similarly, VX is a voltage biasing lead �2.14� relative to Eq.

TABLE I. The effect of discrete symmetry operations on the
boson fields �� and ��.

O �O�−1 MXOMX
−1 MYOMY

−1

�� �� −�� ��

�� −�� �� ��

�� −�� �� −��

�� ��+� −�� −��
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�2.23� and VY biases lead �2.12� relative to Eq. �2.34�. GXX is
thus the two-terminal conductance measured horizontally,
while GYY is the two-terminal conductance measured verti-
cally. GXY =GYX is a “skew conductance,” which vanishes in
the presence of mirror symmetry. Given these three param-
eters, the full four-terminal conductance matrix Gij can be
constructed using Eq. �A6�.

A second consequence of spin conservation is the quanti-
zation of a particular combination of Gij. In particular, in the
Appendix we define a third current IZ= I1+ I3 and a third
voltage VZ which biases lead �2.13� relative to Eq. �2.24�.
Spin conservation then requires

IZ = GZZVZ, �2.17�

with

GZZ = 2
e2

h
. �2.18�

Since spin nonconserving spin-orbit terms are allowed, spin
conservation will not be generically present in the micro-
scopic Hamiltonian of the junction. Nonetheless, we will ar-
gue that the low temperature fixed points possess an emer-
gent spin conservation, as well as mirror symmetry, so that
Eq. �2.18� should hold, albeit with corrections which vanish
as a power of temperature.

B. Stable phases

In this section we describe various stable fixed points
which admit simple descriptions using bosonization. We will
first focus on the limit in which spin is conserved at the
junction. There are then four simple fixed points.15,16 These
include the perfectly transmitting �CC� limit, in which both
charge and spin conduct, and the perfectly reflecting limit
�II�, in which both charge and spin are insulating. The mixed
fixed points, denoted IC �CI�, are perfectly reflecting for
charge �spin� and perfectly transmitting for spin �charge�.

In the presence of spin nonconserving spin-orbit terms
�which preserve time-reversal symmetry� an additional fixed
point is possible in which time-reversal symmetry is sponta-
neously broken. We will see that in the presence of spin-orbit
terms this TBI phase is the stable phase when g�1 /2.

1. Weak backscattering (CC) limit

We first consider the limit where the point contact is
nearly open and assume spin is conserved. It will prove use-
ful to follow Ref. 16 and write Eq. �2.13� as a 0+1 dimen-
sional Euclidean path integral for ��,�������,��x=0,��. This
formulation is not essential for carrying out the perturbative
analysis of this fixed point. However, it is of conceptual
value for discussing the duality between different phases,
which can be understood in terms of instanton processes in
which ��,���� tunnels between degenerate minima at strong
coupling. This is accomplished by setting up the path integral
for ����x ,�� and then integrating out ��,��x ,�� for x�0. The
resulting theory for ��,���� has the form of a quantum
Brownian motion model24,25,28–30 described by the Euclidean
action

SCC =
1

�
�
	,�n

1

2�g	

��n���a��n��2 − �
0

� d�

�c
VCC���,��� ,

�2.19�

where �n=2�n /� are Matsubara frequencies and �=1 /kBT.
We have included the short time cutoff �c=xc /v in the sec-
ond term to make the potential V��� ,��� dimensionless. The
theory can be regularized by evaluating frequency sums with
a exp�−��n��c� convergence factor.

The potential V��� ,��� is given by an expansion in terms
of tunneling operators, which represent the processes de-
picted in Figs. 2�a�–2�c�,

VCC = ve cos��� + ���cos �� + v� cos 2�� + v� cos 2��.

�2.20�

ve represents the elementary backscattering of a single elec-
tron across the point contact. The phase of cos �� in that term
is fixed by time-reversal symmetry. The phase �� of cos �� is
arbitrary, though mirror symmetry, if present, requires ��

=n�. In addition we include compound tunneling processes.
v� represents the backscattering of a pair of electrons with
opposite spins. We have chosen to define �� such that the
phase of this term is zero. Note that this process involves the
tunneling of spin �not charge� between the top and bottom
edges. Similarly, v� represents the transfer of a unit of spin
from the right to the left moving channels and involves the
tunneling of charge 2e between the top and bottom edges. In
general higher order terms could also be included. However,
those terms are less relevant.

The low energy stability of this fixed point is determined
by the scaling dimensions 
�v	� of the perturbations, which
determine the leading order renormalization group flows,

dv	/d� = �1 − 
�v	�	v	. �2.21�

These are given by


�ve� = �g� + g��/2 = �g + g−1�/2,


�v�� = 2g� = 2g ,


�v�� = 2g� = 2g−1. �2.22�

It is therefore clear that all operators are irrelevant for 1 /2
�g�2, so that the CC phase is stable. For g�1 /2 v� be-

ve or vρ vσ

te

or

tρtσ

(a) (b) (c)

(d) (e) (f)

FIG. 2. Schematic representation of tunneling processes in
��a�–�c�	 the CC phase �small v� and ��c�–�e�	 the II phase �small t�.
�a� and �d� describe single electron processes, while the others are
two particle processes. The duality relating ve↔ te, v�↔ t�, and
v�↔ t� can clearly be seen.
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comes relevant and for g�2 v� becomes relevant.
At the fixed point the conductance matrix elements are

GXX = 2e2/h ,

GYY = GXY = 0. �2.23�

At finite temperature, there will be corrections to these val-
ues. The leading corrections will depend on the least irrel-
evant operators. We find

�GXX = �− c1ve
2Tg+g−1−2, g � 1/�3

− c2v�
2T4g−2, g � 1/�3,

�
�GYY = �c3ve

2Tg+g−1−2, g � �3

c4v�
2T4/g−2, g � �3,

� �2.24�

where ci are nonuniversal constants. Note that for g�1 /�3
the exponents for GXX and GYY are different. In addition,
there will be power-law corrections to GXY when the mirror
symmetries Mx ,My are violated. However, this correction
is zero when computed from Eqs. �2.19� and �2.20� even
when ���0 due to the symmetry of Eq. �2.20� under ��→
−��. Computing GXY requires a higher order irrelevant op-
erator. For instance, �1�x�� sin �� cos �� and
�2�x�� cos �� sin �� break both MX and MY while preserv-
ing time reversal. This leads to

�GXY = c5�1�2Tg+g−1
. �2.25�

Note that the temperature exponent of GXY is at least 2 even
for weak interactions g�1. This is because the tunneling
terms �1 and �2 include an extra derivative term. This is
related to the fact �which we will show in Sec. III C� that for
noninteracting electrons GXY =0. Weak interactions then in-
troduce inelastic processes which give GXY �T2. The vanish-
ing of GXY is a unique property of the spin filtered edge
states of the QSHI, which does not occur for a generic four-
terminal conductance.

2. Weak tunneling (II) limit

When the point contact is pinched off, ��,� are effectively
pinned, and a theory can be developed in terms of electron
tunneling process across the point contact. This theory is
most conveniently expressed in terms of the discontinuity

�̃�,����,�
right−��,�

left across the junction.31 The theory takes the
form

SII =
1

�
�
	,�n

g	

2�
��n���̃a��n��2 − �

0

� d�

�c
VII��̃�, �̃�� ,

�2.26�

with

VII = te cos��̃� + ���cos �̃� + t� cos 2�̃� + t� cos 2�̃�.

�2.27�

As depicted in Figs. 2�d�–2�f� te represents the tunneling of a
single electron from left to right across the junction. t� de-

scribes the transfer of a unit of spin across the junction. t�

describes the tunneling of a pair of electrons with opposite
spins.

The relationship between SII and SCC can be understood
into two ways. First, since both SII and SCC describe tunnel-
ing between the middles of two disconnected Luttinger liq-
uids �either on the top and bottom of the junction or the left
and right� the two theories are identical. It is straightforward
to see that if we make the identification

�� ↔ �̃�,

�� ↔ �̃�, �2.28�

it follows that

SII�g�,g�,te,t�,t�� = SCC�g�,g�,ve,v�,v�� . �2.29�

Thus, the small v and small t theories are dual to each other,
with the identification

ve ↔ te,

v� ↔ t�,

v� ↔ t�,

g ↔ g−1. �2.30�

Using this identification, the scaling dimensions 
�t	� can be
read off from Eq. �2.22�. Thus, like the CC phase, the II
phase is stable when 1 /2�g�2. The low temperature con-
ductance can also be read from Eqs. �2.23�–�2.25� using the
identification

GXX ↔ GYY . �2.31�

Another way to understand this duality, which will prove
useful below, is to consider an instanton expansion for strong
coupling. For large ve ��� ,��� will be tightly bound at the
minima of V��� ,���, shown in Fig. 3�a�. �Here we assume
for simplicity ��=0.� The partition function describing the
path integral of Eq. �2.19� can then be expanded in instanton
processes, in which ��� ,��� switches between nearby
minima at discrete times. Evaluating the first term in Eq.
�2.19� for a configuration of instantons leads to an interaction
between the instantons which depends logarithmically on
time. The expansion describes the partition function for a
one-dimensional “Coulomb gas,” where the “charges” corre-
spond to the tunneling events. This Coulomb gas has exactly
the same form as the expansion of Eq. �2.26� in powers of te,
t�, and t�. Thus, we can identify te, t�, and t� as the fugacities
of the instantons.

This duality argument also works in reverse. Starting from
Eq. �2.26� we can derive Eq. �2.19� by considering large te

and expanding in instantons in �̃� and �̃� connecting minima
in Fig. 3�b�, which have fugacities ve, v�, and v�.

3. Charge insulator/spin conductor (IC)

We next study the mixed charge insulator spin conductor
phase. To generate the effective action for this phase, includ-
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ing the leading relevant operators, it is useful to use the
instanton analysis discussed at the end of Sec. II B 2. Con-
sider Eqs. �2.26� and �2.27� for large v�, keeping ve and v�

small. �� will be pinned in the minima of −cos 2��, ��=n�,
while �� remains free to fluctuate. ��� ,��� are thus confined
to “valleys” along the vertical lines in Fig. 3�c�.

There are two types of perturbations to be considered.
First, ve will lead to a periodic potential along the vertical
lines, with minima at the dots. Note, however, that on alter-
nate lines the sign of the periodic potential changes since
cos �� cos ����−1�n cos �� for ��=n�.

Next consider an instanton process where �� tunnels be-
tween neighboring valleys. In this process, ��→����, but
�� is unchanged. It follows that the ve perturbation discussed
above changes sign. Thus, the instanton process does not
commute with the ve term.

The expansion of the partition function in both instantons
and ve can be generated by the action for the IC phase given
by SIC=SIC

0 +SIC
1 with

SIC
0 =

1

�
�
�n

g�

2�
��n���̃���n��2 +

1

2�g�

��n������n��2

�2.32�

and

SIC
1 = �

0

� d�

�c
�t̃��x cos �̃� + ṽ��z cos ��	 . �2.33�

Here t̃� describes the instanton tunneling process. The tilde
distinguishes it from the ordinary charge tunneling process,
which involves charge 2e. t̃� describes a tunneling of charge
e without spin. ṽ� describes the periodic potential as a func-
tion of �� generated by ve. We have introduced a pseudospin
degree of freedom �z= �1 to account for the sign of cos ��

in the different valleys. Since the instanton process switches
the sign, it is associated with �x. Expanding the partition
function defined by Eqs. �2.32� and �2.33� in powers of t̃�

and ṽ� precisely generates the expansion of Eqs. �2.19� and
�2.20� in instantons.

It is also instructive to derive Eqs. �2.32� and �2.33� start-
ing from the opposite limit of the II phase described by Eqs.
�2.26� and �2.27�. In this case, consider large t�, which leads

to the horizontal valleys as a function of �̃� and �̃� in Fig.
3�d�. The roles of the two terms in Eq. �2.33� are thus re-
versed. t̃� describes the periodic potential along the valleys,
which has a sign specified by �x= �1. ṽ� describes the in-
stanton processes which switch the sign of �x.

The lowest order renormalization group flows depend
only on the scaling dimensions of t̃� and ṽ� and are unaf-
fected by the pseudospin �x,z. We find


�t̃�� =
1

2g�

=
1

2g
,


�ṽ�� =
g�

2
=

1

2g
. �2.34�

Thus, the IC phase is stable when g�1 /2.
In Sec. III D we will require the renormalization group

flow to third order in t̃� and ṽ�. There, the nontrivial inter-
action between them introduced by the pseudospin will play
a crucial role.

The conductivity at the IC fixed point is given by

GXX = GYY = GXY = 0. �2.35�

This, however, does not mean that the full four-terminal con-
ductance is zero because spin conservation still requires
GZZ=2e2 /h. This leads to the nontrivial structure in the four-
terminal conductance predicted in Ref. 10.

At finite temperature, there will be corrections to the con-
ductance. We find

�GXX = d1t̃�
2Tg−1−2,

�GYY = d2ṽ�
2Tg−1−2. �2.36�

As in this section the corrections to GXY will depend on a
higher order irrelevant operator. For instance,

�1�y sin �̃� sin �� and �2�y cos �̃� cos �� lead to

θρ

θσ

te

tρ

tσ ve

vρ

vσ

2π

2π

2π

2π
θσ
∼

θρ
∼

(a) (b)

θρ

θσ

2π

2π

2π

2π

τz=1τz=-1
τx=1

τx=-1

tρ
∼

θσ
∼

θρ
∼

vσ
∼

(d)(c)

FIG. 3. �a� Positions of the minima of V��� ,��� in Eq. �2.20�.
When the minima are deep instanton tunneling events between the
minima, denoted by te, t�, and t�, correspond to the transfer of
charge and spin across the junction and define the dual theory �Eqs.

�2.26� and �2.27�	. �b� Positions of the minima of V��̃� , �̃�� in the
dual theory �Eqs. �2.26� and �2.27�	. Instanton process ve, v�, and
v� correspond to backscattering of charge and spin in the original
theory. �c� The IC phase viewed from the CC limit. When v� is
large and v�=0, the minima of V��� ,��� in Eq. �2.20� are on one-
dimensional valleys and define the IC phase. When v� is small but
finite the valleys have a periodic potential ṽ��z cos ��, with oppo-
site signs �z= �1 in neighboring valleys. Instanton tunneling pro-
cesses between the valleys, denoted t̃�, switch the sign of �z. �d� The
IC phase viewed from the II limit, in which t�=0 and t� is large.

The valleys have periodic potential t̃��x cos �̃� with �x= �1, whose
sign is switched by instanton processes ṽ�.
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�GXY = d3�1�2T2g−1−2. �2.37�

As in Eq. �2.25�, GXY is suppressed more strongly at low
temperature than GXX and GYY, and the exponent is larger
than 2 for g�1 /2.

4. Charge conductor/spin insulator (CI)

For g�2 the perturbation v� cos 2�� in Eq. �2.20� be-
comes relevant and drives the system to the CI phase. This
may be described in a manner similar to the IC phase. It is
described by the action SCI=SCI

0 +SCI
1 with

SCI
0 =

1

�
�
�n

g�

2�
��n���̃���n��2 +

1

2�g�

��n������n��2

�2.38�

and

SCI
1 = �

0

� d�

�c
�t̃��z cos��̃� + ��� + ṽ��x cos��� + ���	 .

�2.39�

The leading relevant operators have dimensions


�t̃�� =
1

2g�

=
g

2
,


�ṽ�� =
g�

2
=

g

2
. �2.40�

This phase is thus stable when g�2 and has conductances

GXX = GYY = 2e2/h ,

GXY = 0. �2.41�

5. Spin-orbit interactions and T-breaking insulator

In this section we consider the role of spin-orbit interac-
tion terms which violate the conservation of spin Sz but re-
spect time-reversal symmetry. We will argue that such terms
are irrelevant for the critical behavior of the point contact
when g�1 /2, but they are relevant for g�1 /2 and drive the
system at low energy to a TBI.

Time-reversal symmetry allows the following terms in the
expansion about CC fixed point �2.19�:

SCC
SO = �

0

� d�

�c
�vso cos �� sin �� + vsf cos�2�� + �sf�	 .

�2.42�

The first term is a single electron process 
R↑
† 
R↓ �Fig. 4�a�	

in which an electron flips its spin and crosses the junction.
The second term is a correlated tunneling process

R↑

† 
L↑
† 
R↓
L↓ �Fig. 4�b�	, where a left and right moving pair

of up spins flip into a left and right moving pair of down
spins. Referring to Table I, it is clear that both terms respect
time-reversal symmetry. �sf is allowed by time-reversal sym-
metry but violates both mirrors Mx and My. Higher order

processes are also possible, though they will be less relevant
perturbatively.

It is straightforward to determine the scaling dimensions
of these perturbations. We find


�vso� =
1

2
�g� + g�

−1� =
1

2
�g + g−1� ,


�vsf� =
2

g�

= 2g . �2.43�

For g�1 the single particle spin-orbit term vso is always
irrelevant. However, vsf becomes relevant when g�1 /2.

At finite temperature these lead to corrections to the con-
ductance of the CC phase. To lowest order they do not affect
GXX, GXY, and GYY. However we find

�GZZ � �Tg+g−1−2, g � 1/�3

T4g−2, g � 1/�3.
� �2.44�

Like GXY, GZX and GZY are zero unless higher order irrel-
evant operators, which involve extra powers of �x�	 or �x�	,
are included. We find

�GZX � T2g,

�GZY � Tg+g−1
. �2.45�

For weak interactions, g�1, these conductances vanish for
T→0 as T2.

For g�1 /2 there are two relevant perturbations about the
CC limit. To study their effects we consider a model in
which only the relevant perturbations appear. Since these
perturbations involve the commuting operators �� and ��, it
is useful to study the 0+1 dimensional field theory of those
variables,

SCC
0 = �

�n

1

2�g�

��n������n��2 +
g�

2�
��n������n��2,

�2.46�

with

SCC
1 = �

0

� d�

�c
�v� cos�2�� + ��� + vsf cos�2�� + �sf�	 .

�2.47�

The low temperature behavior of this theory can be studied
by the duality arguments of Sec. II B 2. When v� and vsf are
both large, ��� ,��� will be stuck in the deep minima of
VCC��� ,��� shown in Fig. 5. In this phase, the four-terminal
conductance is zero,

vso or vsf(a) (b)

FIG. 4. Tunneling processes in the CC limit allowed by spin
nonconserving spin-orbit interactions. vso is a single particle pro-
cess where a single spin is flipped, while vsf is a two particle pro-
cess, flipping two spins.
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GAB = 0. �2.48�

This can be seen most simply by renaming the variables

�� → �1 + �2,

�� → �1 − �2,

�� → �1 + �2,

�� → �1 − �2. �2.49�

The interpretation of �1�2� and �1�2� is simple. They are the
usual Luttinger liquid charge and phase variables for the top
�bottom� edges in Figs. 2�a�–2�c�. In the strong coupling
phase �1 and �2 are both pinned, so that any current flowing
in from any lead is perfectly reflected back into that lead.
The four leads are completely decoupled.

This is the same perfectly reflecting phase that would
arise if we had a single particle backscattering term on each
edge vback�cos 2�1+cos 2�2�=2vback cos �� cos ��, which
would be relevant for g�1. However in our problem that
term is forbidden by time-reversal symmetry. It is thus clear
that time-reversal symmetry is violated by the strong cou-
pling fixed point. It is useful to see this from Fig. 5. Note that
since under time reversal ��→��+�. Thus pinning �� vio-
lates time reversal. There are two sets of minima of V��� ,���
which are interchanged by the time-reversal operation.

At finite temperature tunneling processes between the two
sets of minima of V��� ,��� will restore time-reversal sym-
metry. These instanton processes correspond to tunneling of
charge from one lead to another. Interestingly, the lowest
order instanton processes, denoted t̃� and t̃�, do not corre-
spond to tunneling of electrons but rather spinless charge e
“chargons” or charge neutral “spinons.”

The scaling dimensions of these instanton processes can
be deduced from Eqs. �2.46� and �2.47�. We find


�t̃�� =
1

2g�

=
1

2g
,


�t̃�� =
g�

2
=

1

2g
. �2.50�

Thus, both processes are irrelevant for g�1 /2, and the TBI
phase is stable. These processes lead to power-law tempera-
ture behavior,

�GXX = c1t̃�
2T1/g−2,

�GYY = c1t̃�
2T1/g−2. �2.51�

When the t̃�,� processes dominate, there will be nontrivial
noise correlations in the current. The t̃� process involves
transferring charge e /2 from lead 1 to lead 2 and another e /2
from lead 4 to lead 3. This leads to correlations in the low
frequency noise defined by

Sij��� =� dtei�t�Ii�t�Ij�0� + Ij�0�Ii�t�� . �2.52�

Consider the two-terminal geometry IX=GXXVX. The current
IX will be carried by the t̃� processes, so that I1= I4= IX /2.
The shot noise correlations in the limit �→0 will be

S11 = S44 = S14 = S41 = 2e�I1 �2.53�

with e�=e /2. Thus, the currents are all perfectly correlated,
and the current in each lead is carried by fractional charges,
e /2.

III. CRITICAL BEHAVIOR OF CONDUCTANCE

In this section we describe the critical behavior of the
conductance at the pinch-off transition of the point contact.
We will compute the critical conductance Gg

�, the critical
exponent 	g, and the scaling function Gg�X� in certain solv-
able limits. We will begin in Sec. III A with a discussion of
the general properties of the scaling function and a summary
of our calculated results. Then in the following sections we
will describe in detail our calculations for g=1−�, g=1 /�3,
and g=1 /2+�.

A. Scaling behavior and summary of results

The stability analysis of the previous sections leads to the
phase diagram as a function of g depicted in Fig. 6�a�. The
top line depicts the CC phase and the bottom line depicts the
II phase, and the arrows denote the stability associated with
the leading relevant operators. Since the II and CC phases
are both stable for 1 /2�g�2 they are separated by an in-
termediate unstable fixed point P, denoted by the dashed cen-
tral line. For g�1 /2 the II and CC phases become unstable,
and when spin is conserved the flow is toward the IC phase.
We will see in Sec. III D that the unstable critical fixed point
matches smoothly onto the IC fixed point at g=1 /2. Simi-
larly, the CI fixed point is stable for g�2 and connects to the
critical fixed point at g=2.

For 1 /2�g�2 the unstable intermediate fixed point P
describes the critical behavior of the pinch-off transition of
the point contact. We will argue that this fixed point is char-
acterized by a single relevant operator, which allows us to

θρ

ϕσ

te 2π

2π

tρ
∼

tσ
∼

FIG. 5. Minima of the potential V��� ,��� in Eq. �2.47�. Large v�

and vso define the time-reversal breaking insulating phase. Instanton
processes t̃� and t̃� restore time-reversal invariance. They corre-
spond to tunneling of spinless chargons or chargeless spinons.
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formulate a single parameter scaling theory for the pinch-off
transition. If we denote u as the relevant operator, then the
leading order renormalization group flow near the fixed point
has the form

du/d� = 	gu , �3.1�

where 	g is a critical exponent to be determined. By varying
a gate voltage VG it is possible to cross from the region of
stability of the II phase to the region of stability of the CC
phase. In the process one must pass through the fixed point
u=0 at VG=VG

� . Near the transition, we thus have u�
VG
=VG−VG

� . Under a renormalization group transformation in
which energy, length and time are rescaled by b, we have

u→ub	g and T→Tb. Invariance under this transformation
requires that physical quantities can only depend on u and T
in the combination u /T	g. Close to the transition we thus
have

lim
T,
VG→0

GAB�T,
VG� = 2
e2

h
Gg,AB�c


VG

T	g
� , �3.2�

where c is a nonuniversal constant and Gg,AB is a universal
crossover scaling function which varies between 0 and 1.

We will argue that the critical point characterizing the
pinch-off transition has emergent spin conservation as well
as mirror symmetry, so that the only nonzero elements of the
conductance matrix are GXX and GYY. Moreover, the duality
considerations discussed in Sec. III C require that Gg,YY�X�
and Gg,XX�X� are related, so that they are both determined by
the same universal scaling function,

Gg,XX�X� = Gg�X� ,

Gg,YY�X� = Gg�− X� . �3.3�

The scaling function Gg�X� has some general properties
which are easy to deduce. First, the equivalence between the
CC theory at g with the II theory at 1 /g leads to the relation

G1/g�X� = 1 − Gg�− X� . �3.4�

Second, when T→0 for fixed 
VG the system flows to either
the CC or the II phase, where the temperature dependence of
the conductance is given by Eq. �2.24�. The behavior of the
scaling function for large X then follows

Gg�X → + �� = 1 − ag
+X−�g

+
,

Gg�X → − �� = ag
−X−�g

−
. �3.5�

The coefficients ag
� depend on the normalization of X but can

be fixed if we specify Gg��X=0�=1 /2. The exponents obey
the relations

�g
+ = ��4g − 2�/	g, 1/2 � g � 1/�3

�g + g−1 − 2�/	g, 1/�3 � g � 1,
�

�g
− = �g + g−1 − 2�/	g 1/2 � g � 1. �3.6�

The behavior of �g
� for 1�g�2 can be deduced using Eq.

�3.4�.
In the following sections we compute properties of the

scaling function at g=1−�, g=1 /�3, and g=1 /2+�. From
Eq. �3.4� we can deduce corresponding results at g=1+�,
g=�3, and g=2−�. First consider the critical conductance
Gg

�=Gg�X=0�. We find

Gg
� = �1/2 + O��3� , g = 1 − �

��3 − 1�/2, g = 1/�3

�2� , g = 1/2 + � .
� �3.7�

These results are summarized in Fig. 6�b�. The curve is a
polynomial fit of G��ln g� which incorporates the data in Eq.
�3.7� and the g↔1 /g symmetry. It is satisfying that the
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FIG. 6. �a� Phase diagram for a point contact in a QSHI as a
function of the Luttinger liquid parameter g. The arrows indicate
the stability of the CC, II, CI, and IC phases, as well as the critical
fixed point P. This figure assumes spin conservation. In the presence
of spin-orbit interactions, the IC phase is unstable for g�1 /2. This
leads to the TBI phase discussed in Sec. II B 5. �b� Conductance G�

of the critical fixed point as a function of g. The curve is a fit, which
incorporates the data in Eq. �3.7�. �c� Critical exponent 	g as a
function of g. The curve is a fit incorporating the data in Eq. �3.8�.
g is plotted on a logarithmic scale in all three panels to emphasize
the g↔1 /g symmetry.
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curve is smooth and monotonic, which indicates a consis-
tency between the slopes at g=1 /2,1 and the value at g
=1 /�3.

We are able to deduce the critical exponent 	g for g=1
−� and g=1 /2+�. We find

	g = ��2/2, g = 1 − �

4� , g = 1/2 + � .
� �3.8�

These results are summarized in Fig. 6�c�. The curve is a
polynomial fit of 	�ln g�. It is suggestive that in this fit 	g
exhibits a maximum near g=1 /�3 with a value 	1/�3
=0.123�1 /8. It is possible, however, that 	g exhibits a cusp
at g=1 /�3 analogous to the behavior of �g in Eq. �3.6�.

In Secs. III C and III D we compute the full scaling func-
tion Gg�X� in the limits g=1−� and g=1 /2+� to lowest or-
der in �. For g=1+�, �→0 we find

G1�X� =
1

2�1 +
X

�1 + X2� . �3.9�

For g=1 /2+�, �→0,

G1/2�X� = ��X�
X

1 + X
. �3.10�

The singular behavior near X=0 in Eq. �3.10� is rounded for
finite �. The perturbative analysis in Sec. III D 1 shows that
for �X��1

G1/2+��X� =
X

1 − e−X/��2��
. �3.11�

G1−��X� and G1/2+��X� are plotted in Figs. 7�a� and 7�b�. For g
close to 1 the pinch-off curve is symmetrical about G�

=e2 /h. However, for stronger repulsive interactions it be-
comes asymmetrical, as G� is reduced, approaching 0 at g
=1 /2.

The asymptotic �X�→� behavior �3.5� of G1�X� and G1/2+�

can also be determined from Eqs. �3.9� and �3.10� though a
separate calculation �see Sec. III D 3� is required for
G1/2+��X→−��. The results, which are consistent with Eq.
�3.6�, are shown in Table II.

B. Quantum Brownian motion model, duality, and g=1 Õ�3

In this section we recast the Luttinger liquid model as a
model of QBM in a periodic potential. This mapping eluci-
dates the duality between the CC and II limits and exposes
an extra symmetry, the problem at g=1 /�3, which allows us
to deduce the critical conductance at that point. We begin
with a brief review of the QBM model and then derive its
consequences for the scaling functions Gg�X� and G1/�3

� .

1. Quantum Brownian motion model

The QBM model28–30 was originally formulated as a
theory of the motion of a heavy particle coupled to an Ohmic
dissipative environment modeled as a set of Caldeira-Leggett
oscillators.32 Though the applicability of this model to the
motion of a real particle coupled to phonons or electron-hole
pairs has been questioned,33,34 it was later shown that this
model is directly relevant to quantum impurity problems.
Specifically, the QBM model in a one-dimensional periodic
potential is equivalent to the theory of a weak link in a
single-channel Luttinger liquid.16,18 In this mapping the
QBM takes place in an abstract space where the “coordinate”
of the “particle” is the number of electrons that have tun-
neled past the weak link. The periodic potential is due to the
discreteness of the electron’s charge. The low energy excita-
tions of the Luttinger liquid play the role of the dissipative
bath, and the strength of the dissipation is related to the
Luttinger liquid parameter g. The one-dimensional QBM
model has two phases: a localized phase with conductance
G=0 stable for g�1 and a fully coherent phase with perfect
conductance stable for g�1.

The SLL model corresponds to a QBM model in a two-
dimensional periodic potential, where the coordinates are the
spin and charge variables ��,�. This model is richer than its
one-dimensional counterpart because it admits additional
fixed points which are intermediate between localized and
perfect. These fixed points were first found in the Luttinger
liquid model15,16 and later formulated in terms of the QBM.25

For certain values of g� and g� these intermediate fixed
points are related to the three-channel Kondo problem25 and
the three state Potts models.24 However, those limits are not

0

X

0

X

1

1

G1−ε(X)

G1/2+ε(X)

G*=1/2

G*= π2 ε

(a)

(b)

FIG. 7. The universal scaling function Gg�X� for �a� g=1−� �Eq.
�3.9�	 and �b� g=1 /2+� �Eq. �3.10�	. In �b� the solid line is �→0,
and the dashed line shows the approximate behavior for �� .02.

TABLE II. Parameters in Eq. �3.5� for the asymptotic behavior
of the scaling function Gg�X� in the solvable limits g→1, g→1 /2.

g �g
+ ag

+ �g
− ag

−

1−� 2 1/4 2 1/4

1 /2+� 1 1 1 / �8�� �2.75�1/�8��
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directly applicable to the QSHI model, where g�=1 /g�=g.
We will show that when g=1 /�3 the critical fixed point of
the QSHI point contact corresponds to the intermediate point
discussed in Ref. 25 for a QBM model on a triangular lattice.

To formulate the QBM model we begin with action �2.19�
and define new rescaled variables,

�	 = ��2g	r	. �3.12�

Then Eq. �2.19� takes the form

S =
1

4��
�

n

��n��r��n��2 −� d�

�c
�
G

vGe2�iG·r���.

�3.13�

The periodic potential is characterized by reciprocal lattice
vectors G=m1b1+m2b2. The primitive reciprocal lattice vec-
tors b1,2 correspond to the single electron back scattering
processes and are given by

b1 =
1
�2

��g�,�g��, b2 =
1
�2

��g�,− �g�� . �3.14�

The Fourier components of the periodic potential are vb1
=vb2

=vee
i�� /4, vb1+b2

=v� /2, and vb1−b2
=v� /2.

The dual theory is obtained by expanding the partition
function for large vG in powers of instantons. When vG is
large, the potential has minima on a real space lattice R
=n1a1+n2a2. The primitive lattice vectors satisfy ai ·b j =�ij
and are given by

a1 =
1
�2

� 1
�g�

,
1

�g�

�, a2 =
1
�2

� 1
�g�

,−
1

�g�

� .

�3.15�

The expansion in instantons connecting these minima is gen-
erated by the action

S =
1

4��
�

n

��n��k��n��2 − �
R
� d�

�c
tRe2�iR·k���.

�3.16�

This is equivalent to Eqs. �2.26� and �2.27� with k	

=��g	 /2�̃	 and ta1
= ta2

= tee
i�� /4, ta1+a2

= t� /2, and ta1−a2
= t� /2.

With the above normalizations for r and k the scaling
dimensions of the potential perturbations are


�vG� = �G�2, 
�tR� = �R�2. �3.17�

Since operators are relevant when 
�1, the most relevant
potentials are those with the smallest lattice �reciprocal lat-
tice� vectors �Rmin� ��Gmin��. As shown in Refs. 16 and 25
there are ranges of g� and g� where both �Rmin� and �Gmin�
�1, so that both phases are perturbatively stable. An un-
stable intermediate fixed point must therefore be present be-
tween them.

This fixed point can be accessed perturbatively when
�Rmin� and �Gmin� are close to 1. While this does not occur in
the regime g�=1 /g� relevant to the QSHI problem, it is in-
structive to study this perturbation theory because it provides

evidence that the critical fixed point has emergent mirror and
spin conservation symmetry.

When g�=1 /2+�� and g�=3 /2+�� the period potential
has triangular symmetry, which is slightly distorted if ��

�3��. If we denote the relevant variables as v1=vb1
=vb2

=vee
i�� /4 and v2=vb1+b2

=v� /2, the second-order renormal-
ization group flow equations are16

dv1/d� =
1

2
��� + ���v1 − 2v1

�v2,

dv2/d� = 2��v2 − 2v1
2. �3.18�

These equations describe an intermediate fixed point with a
single unstable direction at v1=������+��� /2 and v2= ���

+��� /4. Note that at the critical point v1 is real, so that ��

=0. Thus the critical point has an emergent mirror symmetry
even if the bare parameters in the model do not. Moreover,
the flow out of the fixed point along the single unstable di-
rection is also along a line with v1 real. Thus the crossover
between the intermediate fixed point and the trivial fixed
point, which determines the crossover scaling function, also
has emergent mirror symmetry. Mirror symmetry breaking is
an irrelevant perturbation at the critical fixed point.

If ��=3�� then the lattice vectors have a triangular sym-
metry. In this case, the fixed point is at v1=v2=��. This
means that the periodic potential at the fixed point has emer-
gent triangular symmetry even when the bare potential does
not. The unstable flow out of the fixed point is also along the
high symmetry line v1=v2.

It seems quite likely that the critical fixed point and un-
stable flows connecting it to the trivial fixed points retain
their high symmetry even outside the perturbative small �
regime. This suggests that in general the critical fixed point
has mirror symmetry and that at g=1 /�3 it has triangular
symmetry. We will use this fact below to determine the criti-
cal conductance at g=1 /�3.

2. Kubo conductance, mobility, and duality relations

The spin and charge conductances in the Luttinger liquid
model computed by the Kubo formula are given by a re-
tarded current-current correlation function. For the present
discussion it is useful to write this as an imaginary time
correlation function, which can be analytically continued to
real time via i�→�+ i� before taking the �→0 limit. Then

G	�
K �i�n� =

1

���n�� d�ei�n��J	���J��0�� , �3.19�

where the spin and charge currents are J	=e�t�	 /�
=e�� ,H	 / �i���. This may be expressed as

G	�
K ��n� = 2

e2

h
�g	g��	���n� , �3.20�

where the mobility of the QBM model is

�	���n� = 2���n��r	�− �n�r���n�� . �3.21�

�	� is normalized so that when vG=0 �	�=�	�.
The conductance or equivalently �	� can also be com-

puted from the dual model. It is given by
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�	� = �	� − �̃	�, �3.22�

where the dual mobility is

�̃	���n� = 2���n��k	�− �n�k���n�� . �3.23�

Equations �3.22� and �3.23� are obvious in the perfectly
transmitting and perfectly reflecting limits. They can be de-
rived more generally by starting with a Hamiltonian formu-
lation of the action, analogous to Eq. �2.13�, which involves
both r and k. �	� can then be computed either by first inte-
grating out k to obtain Eq. �3.21� or first integrating out r to
obtain Eq. �3.23�.

Since g�=1 /g�=g, the dual theory depicted in Fig. 8�b� is
identical to the original theory shown in Fig. 8�a� with the
identification r�↔k�, r�↔k�. It follows that the mobility
�	�

� of the fixed point satisfies

�	�
� = ��x�̃��x		�. �3.24�

In addition, if u parametrizes the relevant direction at the
critical fixed point, then under the duality u→−u. It follows
that slightly away from the critical fixed point we have

�	��u� = ��x�̃�− u��x		�. �3.25�

Properties �3.22� and �3.25� imply that ����u�=1−����−u�.
Using Eqs. �3.2�, �3.20�, and �A15�, this leads directly to
property �3.3� of the crossover scaling function.

An additional set of relations follows from the equiva-
lence between the theory characterized by g and the dual
theory characterized by 1 /g. From this we conclude that

�g,	��u� = �̃1/g,	��u� . �3.26�

This, combined with Eqs. �3.2�, �3.20�, �3.22�, and �A15�
leads to Eq. �3.4�.

3. Conductance at g=1 Õ�3

When g=1 /�3 the lattice generated by b1 and b2 has
triangular symmetry. In Sec. III B 1 we argued that this
means that at the critical fixed point the periodic potential
also has triangular symmetry. The C6 rotational symmetry of
the triangular lattice requires that the mobility is isotropic,

�	� = �0�	�. �3.27�

Combining Eqs. �3.22�, �3.24�, and �3.27� requires that

�0 =
1

2
. �3.28�

It follows from Eq. �3.20� that the Kubo formula spin and
charge conductances are given by

G��
K = �3

e2

h
, G��

K =
1
�3

e2

h
. �3.29�

It is well known that the physical conductance measured
with leads is not given by the Kubo conductance.35–39 Rather,
the Kubo conductance needs to be modified to account for
the contact resistance between the Luttinger liquid and the
leads. In the Appendix we review the relation between the
physical four-terminal conductance and the Kubo conduc-
tance. From Eq. �A19� we conclude that

GXX = GYY = ��3 − 1�
e2

h
. �3.30�

C. Weak interactions: g=1−�

In this section we develop a perturbative expansion for
weak interactions to compute exactly the crossover scaling
function Gg�X� as well as the critical exponent 	g for g=1
−�. A similar approach was employed by Matveev et al.27 to
compute the scaling function for the crossover between the
weak barrier and strong barrier limits in a single-channel
Luttinger liquid. In the single-channel problem the transmis-
sion for noninteracting electrons is characterized by a trans-
mission probability T. Weak forward scattering interactions
lead to an exchange correction to T at first order in the inter-
actions. This correction diverges for E→EF as ln�E−EF�.
Matveev et al.27 used a renormalization group argument to
sum the logarithmic divergent corrections to all orders to
obtain the exact transmission T �E�.
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(b)
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FIG. 8. �a� Minima of the periodic potential V�r� in Eq. �3.13�.
�b� Minima of V�k� in dual theory �3.16�. When g�=3g� both pe-
riodic potentials have triangular symmetry at the critical point,
which implies that the mobility �	�

� is isotropic. This occurs at g
=1 /�3.
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For noninteracting electrons, the QSHI point contact is
characterized by a 4�4 scattering matrix Sij which relates
the incoming wave in lead i to the outgoing wave in lead j,

�
i,out� = Sij�
 j,in� . �3.31�

In terms of Sij the four-terminal conductance is

Gij =
e2

h
��ij − �Sij�2� . �3.32�

Under time reversal ��
i,out�in��=+�−�Qij�
 j,in�out��,
where Q=diag�1,−1,1 ,−1�. This leads to the constraint S
=−QSTQ. This combined with unitarity S†S=1 allows S to be
parametrized as

S = U†�
0 t f r

t 0 r� − f�

− f r� 0 − t�

r f� − t� 0
�U , �3.33�

where Uij =�ije
i�i is an unimportant gauge transformation.

The complex numbers t and r describe the amplitudes for
spin conserving transmission and reflection across the point
contact, while f describes the amplitude for tunneling across
the junction, combined with a spin flip. f =0 if spin is con-
served. The conductance can be expressed in terms of the
transmission probabilities R= �r�2, T= �t�2, and F= �f �2, which
satisfy R+T+F=1. We find

GXX =
2e2

h
�T + F� ,

GYY =
2e2

h
�R + F� ,

GZZ =
2e2

h
�1 − F� ,

GAB = 0 for A � B . �3.34�

For a generic four-terminal conductance device time-reversal
symmetry guarantees only the reciprocity relation40 Gij =Gji
�or equivalently GAB=GBA�. For the QSHI point contact, the
spin filtered nature of the edge states leads to additional con-
straints. First, the amplitude for an electron to be reflected
back into the lead it came from is Sii=0. Thus Gii=e2 /h. A
second less obvious constraint is that G13=G24, which when
combined with reciprocity and unitarity is equivalent to
G12=G34 and G14=G23. This leads to the vanishing of the
skew conductance GXY, as well as GXZ and GYZ even when
mirror symmetries MX and MY are explicitly violated. This
is a property of the noninteracting electron model and can be
violated with electron electron interactions if the mirror sym-
metries are absent.

In order to compute the renormalization of the S matrix
due to interactions it is useful to study the perturbative ex-
pansion of the single electron thermal Green’s function,
which can be represented as a matrix in the lead indices i, j
as well as the channel labels a=in /out. Here,

Gij
ab�x,�;x�,��� = − i�T��
i,a�x,��
 j,b

† �x�,���	� , �3.35�

where T� denotes imaginary time ordering. For noninteract-
ing electrons we have

Gij�z,z�� =
1

2�i�
�ij

z − z�

Sji
�

z − z̄�

Sij

z̄ − z�

�ij

z̄ − z̄�
� , �3.36�

where z=�+ ix and z̄=�− ix, and the a=in /out indices are
displayed in matrix form.

We now compute the perturbative corrections to Gij
out,in

using the standard diagrammatic technique. For simplicity,
we adopt a model in which u4=0, so that the only interaction
term involves u2�
in

† 
in��
out
† 
out�. This considerably simpli-

fies the analysis because many of the diagrams are zero. For
instance, the exchange diagram shown in Fig. 9�a�, which
was responsible for the renormalization in the single-channel
Luttinger liquid problem, is zero because it must involve
Gkk

in,out. This off-diagonal Green’s function depends on Skk
which is zero due to the time-reversal-symmetry constraint.
From Eq. �2.9�, g=��2�vF−�2� / �2�vF+�2��1
−�2 / �2�vF�. Thus for g=1−� we may replace u2 by 2�vF�.
The nonzero diagrams at second order in u2 are shown in
Figs. 9�b�–9�e�. Evaluating the second-order diagrams gives
a Green’s function of the form

Gij
out,in =

1

2�i

Sij�

z̄ − z�
�3.37�

with

Sij� = Sij +
�2

4
ln

�

E �SijSjiSji
� − �

kl

SikSklSlk
� Skl

� Slj
 ,

�3.38�

where � are E are ultraviolet and infrared cutoffs, respec-
tively. The first term in the brackets was due to the diagram

i,in j,out i,in j,out

i,in j,out i,in j,out

k,in k,out

k,out l,out

k,out l,out

k,in l,in

i,in j,out

k,in l,in

k,in

l,in

l,out

k,out

k,out

l,outk,in

l,in

(a)

(c)(b)

(e)(d)

FIG. 9. Feynman diagrams for the single electron Green’s func-
tion. The dashed line is the interaction u2�
in

† 
in��
out
† 
out�. The

exchange diagram �a� vanishes because it involves Skk and diagrams
�b� and �c� cancel one another. �d� and �e� lead to a logarithmic
correction to the S matrix given in Eq. �3.38�.
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in Fig. 9�d�, while the second term was from Fig. 9�e�. Dia-
grams in Figs. 9�b� and 9�c� canceled each other. Rescaling
the cutoff �→�e−� leads to a renormalization group flow
equation for Sij,

dSij

d�
=

�2

4 �SijSjiSji
� − �

kl

SikSklSlk
� Skl

� Slj
 . �3.39�

It is useful to rewrite this in terms of the transmission prob-
abilities T , R , F. The renormalization group flow equation
then can be written in the form

dT /d� = �2T �T − T 2 − R2 − F2� ,

dR/d� = �2R�R − T 2 − R2 − F2� ,

dF/d� = �2F�F − T 2 − R2 − F2� . �3.40�

The flow diagram as a function of R, T, and F is shown in
Fig. 10. There are seven fixed points. The bottom corners of
the triangle are the stable fixed points at R=1, T=F=0 �the
II phase� and T=1, R=F=0 �the CC phase�. The third stable
fixed point at the top of the triangle with F=1, T=R=0
corresponds to the case where an incident electron is trans-
mitted perfectly with a spin flip. This is presumably difficult
to access physically. On the edges of the triangle are unstable
fixed points describing transitions between the different
stable phases. The critical fixed point P of interest in this
paper is the one on the bottom of the triangle at R=T=1 /2,
F=0. Note that at this fixed point the spin nonconserving
spin-orbit processes, represented by F, are irrelevant. At the
center of the triangle, at R=T=F=1 /3 is an unstable fixed
point describing a multicritical point.

To describe the critical fixed point P and the crossover to
the II and CC phases we now specialize to F=0 and consider
the flow equation for the single parameter T characterizing
the point contact

dT /d� = − �2T �1 − T ��1 − 2T � . �3.41�

Equation �3.41� can be integrated to determine the crossover
scaling function. If at �=0, T=T 0, then,

T ��� =
1

2�1 +
T 0 − 1/2

��T 0 − 1/2�2 + T 0�1 − T 0�e−�2�
 .

�3.42�

As the gate voltage VG is adjusted through the pinch-off
transition, T 0 passes through 1/2 at VG=VG

� , so T 0−1 /2
�
VG. At temperature T we cut off the renormalization
group flow at �e−��T. The conductance is then given by
GXX=2�e2 /h�T ��=ln�� /T �	. For 
VG ,T→0 we define X
= �2T 0−1�e�2�/2�
VG /T�2/2 and write the conductance in the
scaling form,

GXX�
VG,T� = 2
e2

h
G1−��c


VG

T	g
� , �3.43�

where c is a nonuniversal constant, the critical exponent is

	1−� = �2/2, �3.44�

and

G1−��X� =
1

2�1 +
X

�1 + X2
 . �3.45�

We find that the logarithmic renormalization to the S ma-
trix accounts for the only correction to the conductance to
linear order in �. In principle one must consider a “random-
phase-approximation-type” diagram for the conductance
evaluated by the Kubo formula. While this gives a correction
for an infinite Luttinger liquid at finite frequency, the correc-
tion is zero for a finite Luttinger liquid connected to leads in
the �→0 limit.35–38 Since the critical conductance satisfies
Gg

�=1−G1/g
� it follows that G1−�

� =1 /2+O��3�.

D. g=1 Õ2+�

g=1 /2 is at the boundary where the CC and II phases
become unstable and the IC phase becomes stable. We will
show that when g=1 /2+� the critical fixed point describing
the transition between the CC and II phases approaches the
IC fixed point and can be accessed perturbatively using
theory developed in Sec. II B 3. In addition, when g=1 /2,
the marginal operators v� cos 2�� at the CC fixed point and

t̃ cos �̃� at the IC fixed point can be expressed in terms of
fictitious fermion operators. This fermionization process al-
lows the entire crossover between the CC and IC phases to
be described using a noninteracting fermion Hamiltonian. A
similar fermionization procedure can be used to describe the
crossover between the II and IC phases, which connect the

marginal operators ṽ� cos �� and t̃� cos 2�̃�. This will allow
us to compute the full crossover scaling function Gg�X� for
g=1 /2+�.

We will begin by discussing the perturbative analysis of
the IC fixed point and then go on to describe the fermioniza-
tion procedure.

1. Perturbative analysis

The IC fixed point is described by Eqs. �2.32� and �2.33�.
When g=1 /2+� the perturbations t̃��x cos �̃� and t̃��z cos ��

II CC

R=1 T=R=1/2 T=1

F=1

P

FIG. 10. Renormalization group flow diagram for the transmis-
sion probabilities T, R, and F based on Eq. �3.40� represented in a
ternary plot. The CC, II, and P fixed points of interest in this paper,
which have F=0 are on the bottom of the triangle.
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both have scaling dimension 
=1−2�, so the IC fixed point
is weakly unstable. When ṽ�=0, nonzero t̃� is expected to
drive the system to the CC phase, while for t̃�=0 nonzero ṽ�

will drive the system to the II phase. Thus, when both t̃� and
ṽ� are nonzero there must be an unstable fixed point which
separates the two alternatives. This fixed point can be de-
scribed by considering the renormalization group flow equa-
tions to third order in ṽ� and t̃�.

The first-order renormalization group equation for t̃� is
determined by the scaling dimension 
�t̃��. The next nonzero
term occurs at order t�v�

2 . To compute this term it is sufficient
to use the theory at �=0. Consider the third-order term in the
cumulant expansion of the partition function when fast de-
grees of freedom integrated out,

1

2
� d�1d�2
�T��O����O���1�O���2�	��

− �O�������T��O���1�O���2�	��� . �3.46�

Here O�= �t̃� /�c��x cos �̃� and O�= �ṽ� /�c��z cos ��. T� indi-
cates time ordering, and � · �� denotes a trace over degrees of
freedom with � /b����, and we assume for simplicity b

 1. Since �̃� and �� are independent and commute with one
another the other disconnected terms all cancel. Moreover,
the two terms in Eq. �3.46� will cancel each other unless the
time ordering of the �x and �z operators leads to a relative
minus sign between them,

�T��O����O���1�O���2�	��

= s��O�������T��O���1�O���2�	��, �3.47�

where s�=sgn��−�1���−�2�. Thus the pseudospin operators
in Eq. �2.33� play a crucial role in the renormalization of t̃�.
Using the fact that �T��O���1�O���2�	��= ṽ�

2 /2��1−�2�2

for �=0 we find that the third-order correction to t̃� is �t̃�

=−t�v�
2 ln b. This leads to the renormalization group flow

equation for t̃� along with a corresponding equation for ṽ�,

dt̃�/d� = 2�t̃� − t̃�ṽ�
2 ,

dṽ�/d� = 2�ṽ� − ṽ�t̃�
2. �3.48�

The renormalization group flow diagram is shown in Fig. 11.
There is an unstable fixed point P at t̃�= ṽ�=�2�, with a
single relevant operator. P separates the flows to the CC and
II phases for which t̃� or ṽ� grows. Note that spin-orbit terms
such as vso and vsf discussed in Sec. II B 5 are irrelevant at P
�see Eq. �2.43�	. This perturbative calculation provides fur-
ther evidence that P exhibits emergent spin conservation, as
well as emergent mirror symmetry. The critical exponent as-
sociate with the single relevant operator P is

	1/2+� = 4� . �3.49�

The Kubo conductance G��
K at the fixed point can be com-

puted from Eq. �3.19� by identifying the current operator

I� = �t̃�/�c�sin �̃�. �3.50�

This leads to

G��
K =

e2

h
�2t̃�

2. �3.51�

It is useful to define T�=�2t̃�
2. We will see in Sec. III D 2 that

this can be interpreted as a transmission probability for fic-
titious free fermions that describe the problem at g=1 /2. In
terms of T� �noting that T��1 in this perturbative regime�
we may use Eq. �A19� to write the physical conductance as

GXX =
e2

h
T�. �3.52�

A similar calculation gives

GYY =
e2

h
R�, �3.53�

where R�=�2ṽ�
2 can similarly be interpreted as a reflection

probability for a different fictitious free fermion at g=1 /2.
At the critical fixed point T�=R�=2�2�. Thus,

GXX
� = GYY

� = 2
e2

h
�2� ,

GXY
� = 0. �3.54�

The behavior away from the critical point can be deter-
mined by integrating Eq. �3.48�. To this end it is helpful to
rewrite Eq. �3.48� in terms of T� and R� in the following
forms:

d�T� − R��/d� = 4��T� − R�� ,

d ln�T�/R��/d� = �2/�2��T� − R�� . �3.55�

If �T� ,R��= �T�
0 ,R�

0� for �=0, then we find

tρ vρ
~

II

CCIC

tσ

vσ
~

2ε

2ε P

FIG. 11. Renormalization group flow diagram characterizing the
critical fixed point P for g=1 /2+�. When ṽ� and t̃� are small, the
flows are given by Eq. �3.48�. On the axis ṽ�=0 the fermionization
procedure outlined in Sec. III D 2 determines the entire crossover
between the IC and CC fixed points. A similar theory describes the
crossover between the IC and II fixed points for t̃�=0.
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T���� =
�T�

0 − R�
0�e4��

1 −
R�

0

T�
0 exp�−

T�
0 − R�

0

2�2�
�e4�� − 1�
 ,

R���� =
�R�

0 − T�
0�e4��

1 −
T�

0

R�
0 exp�−

R�
0 − T�

0

2�2�
�e4�� − 1�
 . �3.56�

At the pinch-off transition VG=VG
� , R0=T0. Thus, T0

−R0�
VG. At temperature T we cut off the renormalization
group flow at �e−��T. Thus, in the limit 
VG ,T→0 we
define X= �T�

0−R�
0�e4�� /2�
VG /T4�. The conductance then

has the form

GXX�
VG,T� = 2
e2

h
Gg�c


VG

T	g
� ,

GYY�
VG,T� = 2
e2

h
Gg�− c


VG

T	g
� , �3.57�

with

G1/2+��X� =
X

1 − e−X/��2��
. �3.58�

This perturbative calculation is only valid when T� ,R�

�1. Thus Eq. �3.58� breaks down at low temperature since
as the energy is lowered either T� or R� grows. Equation
�3.58� is valid as long as �X��1. Note, however, that when
��1 we have G1/2+��X�=X��X� when ��X�1. In this re-
gime, the smaller of T and R has gone to zero. Thus we have

�T���� = �T�
0 − R�

0�e4��

R���� = 0
��T�

0 − R�
0� � 0,

�T���� = 0

R���� = �R�
0 − T�

0�e4����R�
0 − T�

0� � 0, �3.59�

and the unstable flow is either on the x or y axis of Fig. 11.
In Sec. III D 2 we will solve the crossover exactly on these
lines. This will allow us to compute the G1/2+��X� exactly for
all X.

2. Fermionization

In this section we study the crossover between the IC
fixed point and the CC and II fixed points for g=1 /2+�.
There are two cases to consider. First, for 
VG�0 we will
study the crossover between the IC and CC on the horizontal
axis of Fig. 11 with ṽ�=0. This problem can be mapped to a
single-channel one-dimensional Fermi gas with weak
electron-electron interactions proportional to �. This allows
us to use the method of Matveev et al.27 to compute the
crossover scaling functions Gg,XX�X� and Gg,YY�X� for X�0
exactly. For 
VG�0 the crossover between the IC and II
fixed points is on the vertical axis of Fig. 11 with t̃�=0. This
can be fermionized by introducing a different set of free fer-
mions to compute the scaling functions for X�0. The latter

calculation �which is virtually identical to the former� is un-
necessary, however, because we can use Eq. �3.3� to deduce
the scaling functions for X�0. We will therefore focus on
the IC to CC crossover.

The crossover between the IC and the CC fixed points can
be described by the action in the CC limit,

SCC =
1

�
�

n

1

2�g
��n������n��2 +� d�v� cos 2��.

�3.60�

v��1 describes the CC phase. When v� 1 the dual theory,
formulated as in Sec. II B 3 in terms of instantons with am-
plitude t̃�, describes the IC phase. When ṽ�=0 at the IC fixed
point we can safely ignore the pseudospin and set �x=1.

For g=1 /2 this model is equivalent to the bosonized rep-
resentation of a weak link in a single-channel noninteracting
fermion with weak backscattering. Here,

H f = − iv
̃†�x�
z
̃ + v f
̃

†�x
̃��x� , �3.61�

where 
̃= �
̃R , 
̃L�T is a two component fermion operator de-
scribing right and left movers. Using bosonization relation
�2.3� we identify 2��=�R−�L and v f =�v� /v. The free fer-
mion problem is solvable and characterized by a transmis-
sion probability T�=sech2�v f /v�. The free fermion solution
therefore connects the CC limit �T�=1� with the IC limit
�T�=0�.

The Kubo conductance G��
K may be computed with the

identification J�=�t�� /�=v
̃†�z
̃, giving

G��
K =

e2

h
T�. �3.62�

Note that this is the same as Eq. �3.52�, derived in the oppo-
site limit near the IC fixed point. When v� is large, T��1,
and we can identify T�= ��t̃��2. The physical conductance,
measured with leads, can be determined following the analy-
sis in the Appendix. From Eq. �A19� we find

GXX = 2
e2

h

T�

2 − T�

. �3.63�

Since v�=0 in Eq. �3.60�, we have

GYY = 0. �3.64�

For g=1 /2+� the IC fixed point becomes slightly un-
stable, while the CC fixed point becomes slightly stable. In
this case the free fermion problem includes a weak attractive
interaction

H f
int = − uf�
̃L

†
̃L��
̃R
†
̃R� , �3.65�

with uf =2�v�. This leads to a logarithmic renormalization
of T�, which drives a crossover to the CC limit. The correc-
tion to T� occurs at first order in uf and is due to the ex-
change diagram, shown in Fig. 9�a�. The analysis is exactly
the same as that performed by Matveev et al. As in Sec. III C
the result can be cast in terms of a renormalization group
flow equation for T�,
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dT�/d� = 4�T��1 − T�� . �3.66�

Integrating Eq. �3.66� gives

T���� =
T�

0e4��

1 + T�
0�e4�� − 1�

, �3.67�

where T�
0=T���=0�. The scaling function for 
VG�0 then

follows by using the initial condition from Eq. �3.59�, so that
T�

0�
VG. Then, for 
VG ,T→0 we define X=T�
0e4�� /2

�
VG /T4�. Using Eqs. �3.63�, �3.64�, and �3.67�, the con-
ductance has the scaling form for X�0,

GXX,1/2+��X� =
X

X + 1
,

GYY,1/2+��X� = 0. �3.68�

Using Eq. �3.3�, we may deduce the corresponding behavior
for 
VG�0 �or X�0�. The scaling function then has the
form

G1/2+��X� = ��X�
X

X + 1
. �3.69�

Note that for X�1, G1/2+��X�=X��X�, in agreement with the
limiting behavior of Eq. �3.58� for X �. These two expres-
sions can thus be combined to give

G1/2+��X� =
X

X + 1 − e−X/��2��
, �3.70�

which reproduces Eq. �3.58� when �X����1 and Eq. �3.69�
when �X� �. This function is plotted in Fig. 7�b�. Note, how-
ever, that this formula does not correctly capture the leading
behavior for X�0 when �X� �. In particular, it misses the
X→−� behavior, which Eqs. �3.5� and �3.6� predict is pro-
portional to �X�−1/�8��. This regime is analyzed in Sec. III D 3.

3. Rebosonization

We now analyze the leading behavior of G1/2+��X� for X
�0 and �X� � when � is small. Equivalently, we consider
G1/2+�,YY�X� for X�0. This requires extending the renormal-
ization group flow equation for ṽ� given in Eq. �3.48� to all
t̃� �or equivalently T��. This can be done by using the fermi-

onized representation of t̃��x cos �̃� in Eq. �2.33�. The key
point is that the presence of the pseudospin operator �x

means that the operator ṽ��z cos �� changes the sign of the

transmission amplitude for the fermions 
̃. This results in an
x-ray edge-like contribution to the renormalization of ṽ�.
This can be computed by a method analogous to that used by
Schotte and Schotte41 to solve the x-ray edge problem, which
involves transforming the noninteracting fermions to even
and odd parity scattering states and then rebosonizing. This
approach was used to study the x-ray edge problem in a
Luttinger liquid in Ref. 42.

We begin by writing Eq. �2.33�, H=H�+H�, with

H� = H�
0 + ṽ��z cos �� �3.71�

and

H� = − iv
̃†�z�x
̃ + tf�
x
̃†�x
̃��x� . �3.72�

Here H�
0 is the � part of Eq. �2.13�, and we explicitly ac-

count for the pseudospin �x. Equation �3.72� can be re-
bosonized by first replacing 
2�x�→
2�−x�, which trans-
forms the nonchiral fermions to chiral fermions, eliminating
the �z in the first term but leaving the second term alone.

Then we perform a SU�2� rotation �
̃1 , 
̃2�→ �
̃e , 
̃o�, which

changes �x in the second term into �z. 
̃e�o� describe the even
�odd� parity scattering states characterized by scattering

phase shifts �e=−�o that specify 
̃e�o��x�0�=e2i�e�o�
̃e�o��x
�0�. We next bosonize 
̃e,o→ei�e,o /�2�xc and define ��

=�e��o. Then

H� =
v

8�
���x�+�2 + ��x�−�2	 +

v
2�

�−�x��x�−���x� ,

�3.73�

where �� obey, ����x� ,���x��	=2�i sgn�x−x��. �−=�e
−�o is related to the transmission probability by

T� = sin2 �−. �3.74�

�− can be eliminated from Eq. �3.73� by the canonical trans-
formation U=exp�i�x�−�−�x=0� / �2��	, which shifts �−
→�−+sgn�x��−�x. This transformation also rotates �z in Eq.
�3.71�, which becomes

H� = H�
0 + ṽ���+ei�−�−/� + �−e−i�−�−/�	cos ��, �3.75�

where ��=�z� i�y. The renormalization of ṽ� can then easily
be determined for arbitrary �−. We find

dṽ�

d�
= �2� − ��−

�
�2�ṽ�. �3.76�

For small t̃�, �−=�t̃�, and Eq. �3.76� reproduces Eq. �3.48�.
However, Eq. �3.76� remains valid to lowest order in � for all
T�.

We now integrate Eq. �3.55� to a scale �0 where from Eq.
�3.56� T���0�=2X0 and R���0�=2X0e−X0/��2�� are small.
�Here X0= �T�

0−R�
0�e4��0 /2.	 We then use that as an initial

value for Eq. �3.76�, which we integrate assuming T���� is
given by Eq. �3.67� and is unaffected by the small R�. Ex-
pressing Eq. �3.67� in terms of Eq. �3.74� we have

�−��� = tan−1��−��0�e2���−�0�	 , �3.77�

where �−��0�=sin−1�T���0���2X0. As before, we define X
= �T�

0−R�
0�e4�� /2. We may express GYY = �e2 /h�R� with

R�=�2ṽ�
2 . Integrating Eq. �3.76� we then find

GYY�X� = 2
e2

h
Xe−F�X�/�, �3.78�

where

F�X� =
1

�2�
0

�2X dx

x
�tan−1 x�2. �3.79�
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Thus, for X�0, �X� �, and �→0 we find

G1/2+��X� = �X�e−F��X��/�. �3.80�

The asymptotic behavior F�X�=X /�2 for �X��1 reproduces
Eq. �3.58� when �X� �. For �X� 1 we find

F�X → �� =
1

8
ln 2X −

7!�3�
4�2 , �3.81�

where !�3�=1.20 is the Riemann zeta function. This gives
the asymptotic behavior

G1/2+��X → − �� = � e14!�3�/�2

2�X�
�1/8�

, �3.82�

which is quoted in Table II.

IV. DISCUSSION AND CONCLUSION

In this paper we have examined several properties of a
point contact in a QSHI. We showed that the pinch-off as a
function of gate voltage is governed by a nontrivial quantum
phase transition, which leads to scaling behavior of the con-
ductance as a function of temperature and gate voltage char-
acterized by a universal scaling function. We computed this
scaling function and other properties of the critical point in
certain solvable limits which provide an overall picture of
the behavior as a function of the Luttinger liquid parameter
g.

In addition, we showed that the four-terminal conductance
has a simple structure when expressed in terms of the natural
variables, GAB, and that at the low temperature fixed points,
the leading corrections to the different components of GAB
can have different temperature dependences. In particular,
we showed that the skew conductance GXY vanishes as T�

with ��2.
Finally, we showed that for strong interactions, g�1 /2,

the stable phase is the time-reversal breaking insulating
phase. Transport in that phase occurs via novel fractionalized
excitations that have clear signatures in noise correlations.

There are a number of problems for future research that
our work raises. We will divide the discussion into experi-
mental and theoretical issues.

A. Experimental issues

The QSHI has been observed in transport experiments on
HgTe/HgCdTe quantum well structures. A crucial issue is the
value of the interaction parameter g. A simple estimate can
be developed based on the long range Coulomb interaction.43

First consider the limit " w, where w is the quantum well
width and " is the evanescent decay length of the edge state
wave function into the bulk QSHI. We model the edge state
as a two-dimensional charged sheet with a charge density
profile proportional to ��x�exp�−2x /"�, a distance d above a
conducting ground plane. The long range interaction then
leads to u2=u4= �2e2 /��ln�4e�d /"�, where � is the dielectric
constant and �=0.577 is Euler’s constant. As a second
model, assume "�w and model the edge state as a uniformly
charged two-dimensional strip of width w perpendicular to a

ground plane a distance d away. This gives u2=u4
= �2e2 /��ln�2e3/2d /w�. The intermediate regime "�w can be
solved numerically, and we find that it is accurately de-
scribed by a simple interpolation between the above limits
with 4d / �"e−�+2we−3/2� in the logarithm. This leads to44

g = �1 +
2

�

e2

��vF
ln� 7.1d

" + 0.8w
�
−1/2

. �4.1�

For �=15, �vF=.35 eV nm, "=2�vF /Egap�30 nm �Egap is
the gap of the bulk QSHI�, w=12 nm, and d=150 nm �Ref.
45� this predicts g�0.8. The critical exponent governing the
temperature dependence of pinch-off curve �1.1� is then 	g
�0.02. In the CC and II phases the conductance vanishes as
T� with �g=g+g−1−2�0.05.

The good news is that since g is close to 1 the low tem-
perature scaling behavior should be accurately described by
scaling function �3.9� computed in the limit g→1. The bad
news is that the smallness of 	g and �g means that it will be
difficult to see much dynamic range in the conductance as a
function of temperature. Nonetheless, it may be possible to
observe logarithmic corrections to the conductance as a func-
tion of temperature, and by comparing pinch-off curves at
different temperatures it may be possible to observe the pre-
dicted sharpening of the transition as temperature is lowered.

The skew conductance GXY is predicted be zero for non-
interacting electrons and with weak interactions vanishes as
T2. This is a consequence of the unique edge state structure
of the QSHI and remains robust when the interactions are
weak.

To probe the critical behavior of the pinch-off transition,
as well as the more exotic strong interaction phases it would
be desirable to engineer structures with smaller g. Perhaps
this could be accomplished by modifying either the dielectric
environment or the bare Fermi velocity of the edge states.
Maciejko et al.12 suggested that this may be possible using
InAs/GaSb/AlSb type-II quantum wells.46,47

B. Theoretical issues

Our work points to a number of theoretical problems for
future study. It would be very interesting if the powerful
framework of conformal field theory can be used to analyze
the intermediate critical fixed point as well as the crossover
scaling function. Perhaps the first place to look is g=1 /�3.
Maybe it is possible to take advantage of the triangular sym-
metry of the QBM problem to develop a complete descrip-
tion of the critical fixed point, analogous to the mapping to
the three-channel Kondo problem25 and the three state Potts
model24 that apply in a different regime. In the absence of an
analytic solution, this problem is amenable to a numerical
Monte Carlo analysis analogous to the calculation of the
resonance crossover scaling function performed in Ref. 19.

In addition, there are a number of other fixed points which
we did not analyze in detail in this paper. �Recall for g=1
−� we found seven.� It would be of interest to develop a
more systematic classification of all of the fixed points,
analogous to the analysis of three coupled Luttinger liquids
performed by Chamon and co-workers.39,48
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APPENDIX: FOUR-TERMINAL CONDUCTANCE

The electrical response of the point contact can be char-
acterized by a four-terminal conductance,

Ii = �
j

GijVj , �A1�

where Ii is the current flowing into lead i and Vj is the volt-
age at lead j. In this appendix we will develop a convenient
representation for Gij. In the Appendix, Sec. I shows that Gij
can be characterized by a 3�3 matrix, whose entries have a
clear physical meaning. This representation allows con-
straints due to symmetry to be expressed in a simple way,
which reduces the number of independent parameters char-
acterizing the conductance. Finally, in the Appendix, Sec. III
we show how Gij is related to the conductance of the SLL
model computed by the Kubo formula.

1. Conductance matrix

The 4�4 matrix Gij is constrained by current conserva-
tion to satisfy �iGij =� jGij =0. In the absence of any sym-
metry constraints, there are thus nine independent parameters
characterizing Gij. In this section we will cast these nine
numbers as a 3�3 matrix, in which each of the entries has a
clear physical meaning. In this representation constraints due
to symmetry have a simple form.

Since the four currents Ii satisfy �iIi=0, they are deter-
mined by three independent currents, which we define as
IA= �IX , IY , IZ� and satisfy

Ii = �
	

MiAIA, �A2�

where the 4�3 matrix MiA is

M =
1

2�
1 1 1

− 1 1 − 1

− 1 − 1 1

1 − 1 − 1
� . �A3�

IX= I1+ I4 is the total current flowing from left to right along
the Hall bar, whereas IY = I1+ I2 is the current flowing from
top to bottom. The third current IZ= I1+ I3 is the current flow-
ing in on opposite leads �1 and 3� and flowing out in leads 2
and 4. Similarly, the voltages Vi, which are defined up to an
additive constant, define three independent voltage differ-
ences V�= �VX ,VY ,VZ�, with

VB = �
j

MBj
T Vj . �A4�

VX biases leads 1 and 4 relative to leads 2 and 3, VY biases
leads 1 and 2 relative to leads 3 and 4, and VZ biases leads 1
and 3 relative to leads 2 and 4.

The new currents and voltages are then related by a
3�3 conductance matrix,

IA = �
�

GABVB. �A5�

The nine elements of GAB determine the four-terminal con-
ductance matrix,

Gij = �
AB

MiAGABMBj
T . �A6�

The elements of GAB have a simple physical interpretation.
GXX is the “two-terminal” conductance measured horizon-
tally in Fig. 1 by applying a voltage to leads 1 and 4 and
measuring the current I1+ I4. Similarly GYY is a two-terminal
conductance measured vertically. GZZ describes a two-
terminal conductance defined by combining the opposite
leads 1 and 3 together into a single lead �and similarly for
leads 2 and 4�. GXY is a skew conductance describing the
current I1+ I4 in response to voltages applied to leads 1 and
2. The other off-diagonal conductances can be understood
similarly.

2. Symmetry constraints

The form of GAB simplifies considerably in the presence
of symmetries.

a. Time-reversal symmetry

In the presence of time-reversal symmetry the four-
terminal conductance obeys the reciprocity relation,40 Gij
=Gji. This implies GAB=GBA. Thus, with time-reversal sym-
metry the conductance has six independent components.

b. Spin rotational symmetry

When the spin Sz is conserved the current of up and down
spins flowing into the junction must independently be con-
served. It follows that

I1,in + I3,in = I2,out + I4,out,

I2,in + I4,in = I1,out + I3,out. �A7�

Since in the Fermi liquid lead �where the interactions have
been turned off� we have Ii,in= �e2 /h�Vi, this implies that

I1 + I3 = − I2 − I4 =
e2

h
�V1 + V3 − V2 − V4� . �A8�

It then follows that

GZZ = 2e2/h ,

GZX = GZY = 0. �A9�

Thus, with spin conservation the conductance is character-
ized by three components: the two-terminal conductances
GXX, GYY and the skew conductance GXY.

The quantization of GZZ and vanishing of GZB are there-
fore a diagnostic for the conservation of spin. Though spin-
orbit terms violating Sz conservation are generically present,
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we will argue that at the low energy fixed points of physical
interest the conservation of spin is restored.

c. Mirror symmetry

If the junction has a mirror symmetry under interchanging
leads �1,2�↔ �3,4� or �1,4�↔ �2,3�, it follows that

GXY = 0. �A10�

Though mirror symmetry is not generically present in a point
contact we will argue that that symmetry is restored in the
low energy fixed points of interest. Moreover, the crossover
between the critical fixed point and the stable fixed point
described by Eq. �1.1� is also along a line with mirror sym-
metry. Thus the crossover conductance is characterized by
two parameters, GXX and GYY, which are simply the two-
terminal conductances.

d. Critical conductance

At the transition, where the point contact is just being
pinched off the two-terminal conductances must be equal,

GXX = GYY � G�. �A11�

In addition, we will argue that this fixed point also has spin
rotational symmetry and mirror symmetry. Thus, the critical
four-terminal conductance Gij depends on a single parameter
G�.

3. Relation to Kubo conductance

In this section we relate the conductance matrix GAB to
the conductances of the SLL model, which can be computed
with the Kubo formula. There are two issues to be addressed.
First is to translate GAB into the spin and charge conduc-
tances of the SLL model. Second, we must relate the physi-
cal conductance measured with leads to the conductance
computed with the Kubo formula. The Kubo conductance
describes the response of an infinite Luttinger liquid, where
the limit L→� is taken before �→0. This does not take into
account the contact resistance between the Luttinger liquid
and the electron reservoir where the voltage is defined. An
appropriate model to account for this is to consider a 1D
model for the leads in which the Luttinger parameter g=1 for
x�L.35,36

In this section we assume time-reversal symmetry and
that spin is conserved. In this case we may define the charge
and spin currents in the Fermi liquid leads �x�L� to be

I� = I1,in + I4,in − I1,out − I4,out,

I� = I1,in − I4,in + I1,out − I4,out. �A12�

Similarly, we define charge and spin voltages,

V� = �V1 + V4 − V2 − V3�/2,

V� = �V1 − V4 + V2 − V3�/2. �A13�

These are related by the conductance matrix

I	 = G	�V�, �A14�

where 	 ,�=� ,�. By comparing Eqs. �A5� and �A14� it is
clear that

GXX = G��,

GYY = 2e2/h − G��,

GXY = G�� = − G��. �A15�

G	� can be computed using the Kubo formula using the
model in which the interactions are turned off for x�L. It is
useful, however, to relate this to the Kubo conductance G	�

K

of an infinite Luttinger liquid. This can be done by relating
the voltage V	=�,� of the Fermi liquid leads with g�=g�=1 to
the voltage V̄	 of the incoming chiral modes of the Luttinger
liquid with g�=g and g�=1 /g. By matching the boundary
conditions at x=L this contact resistance has the form

Ṽ	 − V	 = R	�
c I� �A16�

with

R	�
c =

h

e2

g	 − 1

2g	

�	�. �A17�

The Kubo formula with infinite leads relates I	=G	�
K V�.

Eliminating V̄	 from Eqs. �A16� and �A17� gives the matrix
relation39

G	� = ��I − RcG
K�−1GK		�. �A18�

When there is mirror symmetry, so that GXY =���=0, the
conductance matrix is diagonal, so that Eq. �A18� simplifies.
In that case we find

GXX =
G��

K

1 − R��G��
K ,

GYY = 2
e2

h
−

G��
K

1 − R��G��
K . �A19�
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We show that three dimensional superconductors, described within a Bogoliubov–de Gennes frame-

work, can have zero energy bound states associated with pointlike topological defects. The Majorana

fermions associated with these modes have non-Abelian exchange statistics, despite the fact that the braid

group is trivial in three dimensions. This can occur because the defects are associated with an orientation

that can undergo topologically nontrivial rotations. A feature of three dimensional systems is that there are

‘‘braidless’’ operations in which it is possible to manipulate the ground state associated with a set of

defects without moving or measuring them. To illustrate these effects, we analyze specific architectures

involving topological insulators and superconductors.
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A fundamental feature of quantum theory is the quantum
statistics obeyed by identical particles. For ordinary parti-
cles, Bose and Fermi statistics are the only possibilities.
Emergent excitations in correlated many particle systems,
however, can exhibit fractional [1–4] and non-Abelian [5]
statistics. The simplest non-Abelian excitations, known as
Ising anyons [6], are Majorana fermion states associated
with zero energy modes that occur in the Bogoliubov–
de Gennes (BdG) description of a paired condensate [7].
They have been predicted in a variety of two dimensional
(2D) electronic systems, including the � ¼ 5=2 quantum
Hall effect [8], chiral p-wave superconductors (SCs) [9],
and SC-topological insulator (TI) structures [10]. The
ground state of 2N Ising anyons has a 2N degeneracy,
and when identical particles are exchanged the state under-
goes a non-Abelian unitary transformation [11,12]. Recent
interest in non-Abelian statistics has been heightened by
the proposal to use these features for topological quantum
computation [13].

Fractional and non-Abelian statistics are usually asso-
ciated with 2D because in 3D, performing an exchange
twice is topologically trivial. In this Letter, we show that in
3D, Majorana fermion states are associated with pointlike
topological defects, and that they obey non-Abelian ex-
change statistics, despite the triviality of braids. Our mo-
tivation came from the study of 3D SC-TI structures, where
Majorana fermions arise in a variety of ways, such as
(i) vortices at SC-TI interfaces [10], (ii) SC-magnet inter-
faces at the edge of a 2D TI [14–16], and (iii) band
inversion domain walls along a SC vortex line. While the
Majorana fermions in these cases can be identified using
1D or 2D effective theories, they must occur in a more
general 3D theory. To unify them, we introduce a Z2

topological index that locates the zero modes in a generic
3D BdG theory. We then study a minimal 8-band model in
which the defects can be understood as hedgehogs in a
three component vector field. Ising non-Abelian exchange
statistics arise because the hedgehogs have an orientation
that can undergo nontrivial rotations. We will illustrate the

intrinsic three dimensionality of the Majorana states by
considering specific architectures involving SCs and TIs. A
feature in 3D is the existence of ‘‘braidless’’ operations, in
which the quantum information encoded in the Majorana
states can be manipulated without moving or measuring
[17] them.
To determine whether a Majorana mode is enclosed in

a volume V, we topologically classify BdG Hamiltonians
on @V, the 2D surface V. We assume the Hamiltonian
varies slowly, so we can consider adiabatic changes as a
function of two parameters r characterizing @V. The prob-
lem is then to classify particle-hole (PH) symmetric BdG
Hamiltonians H ðk; rÞ, where k is defined in a 3D
Brillioun zone (a torus T3) and r is defined on a 2-sphere
S2. PH symmetry is defined by an antiunitary operator �
satisfying �2 ¼ 1 and H ðk; rÞ ¼ ��H ð�k; rÞ��1.
Assuming no other symmetries, this corresponds to class
D of the general scheme [18,19]. Since V may or may not
enclose a zero mode, we expect a Z2 classification—a fact
that can be established using methods of K theory.
A formula for the topological invariant can be derived

using a method similar to Qi, Hughes, and Zhang’s [20]
formulation of the invariant characterizing a 3D strong TI
[21]. We introduce a one parameter deformation
~H ð�;k; rÞ that adiabatically connects H ðk; rÞ at � ¼ 0
to a trivial Hamiltonian independent of k and r at � ¼ 1,
while violating PH symmetry. PH symmetry can then be

restored by including a mirror image ~H ð�;k; rÞ ¼
�� ~H ð��;�k; rÞ��1 for �1< �< 0. For � ¼ �1, k,
r can be replaced by a single point, so the 6 parameter
space ð�;k; rÞ � �ðT3 � S2Þ (� denotes the suspension)

has no boundary. ~H defined on this space is characterized
by its integer valued third Chern character [22],

Ch 3½F � ¼ 1

3!

�
i

2�

�
3 Z

�ðT3�S2Þ
Tr½F ^F ^F �: (1)

Here, F ¼ dAþA ^A follows from the non-Abelian
Berry’s connection Aij ¼ huijdjuji associated with the
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negative energy eigenstates of ~H . Because of PH symme-
try, the contributions to (1) for � > 0 and � < 0 are equal.
Moreover, since it is a total derivative, Tr½F 3� ¼ dQ5

(omitting the ^’s), where the Chern-Simons 5 form is [22]

Q 5 ¼ Tr½A ^ ðdAÞ2 þ ð3=2ÞA3 ^ dAþ ð3=5ÞA5�:
(2)

The integral over � > 0 can be then be pushed to the
boundary � ¼ 0 so that

Ch 3½F � ¼ 2

3!

�
i

2�

�
3 Z

T3�S2
Q5: (3)

A different deformation ~H can change Ch3½F �, but PH
symmetry requires the change is an even integer. Likewise,
the right hand side of (3) is only gauge invariant up to an
even integer. The parity of (3) defines a Z2 topological
invariant. We write it as

� ¼
Z
S2
!ðrÞ � dA mod 2 (4)

where the gauge dependent Chern-Simons flux ! ¼
ð!1; !2; !3Þ is defined by integrating out k,

1

2
�ijk!

iðrÞdxj ^ dxk ¼ 1

3

�
i

2�

�
3 Z

T3
Q5: (5)

It is natural to associate � with the presence of a zero
mode—a fact that will be checked explicitly below.

We now introduce a minimal model that leads to an
appealing physical interpretation for !ðrÞ. Since � is
based on Ch3½F �, we expect a minimum of 8 bands is
required. Consider a model parameterized by a three com-
ponent vector field n of the form,

H ¼ �i�a@a þ �anaðrÞ: (6)

Here, �a and �a (a ¼ 1, 2, 3) are 8� 8 Dirac matrices
satisfying f�a;�bg ¼ f�a; �bg ¼ 2�ab and f�a; �bg ¼ 0.
H respects PH symmetry provided ��a�

�1 ¼ ��a

and ��a�
�1 ¼ �a. For nðrÞ ¼ n0, H has eigenvalues

EðkÞ ¼ �ðjkj2 þ jn0j2Þ1=2 so that for n0 � 0, there is a
gap 2jn0j. The seventh Dirac matrix �5 � i

Q
a�a�a is not

an allowed mass term because ��5�
�1 ¼ �5. A more

general Hamiltonian could also involve products of the
Dirac matrices, but such Hamiltonians can be homotopi-
cally deformed to the form of (6) without closing the gap
[19]. To regularize (6) at jkj ! 1, we include an addi-
tional term �jkj2�3, so k can be defined on a compact
Brillouin zone S3. The analysis is simplest for � ! 0,
where the low energy properties are isotropic in n.

H can be physically motivated by considering a BdG
Hamiltonian describing ordinary and topological insulators
coexisting with superconductivity. The Dirac matrices are
specified by three sets of Pauli matrices: ~� for PH space, ~	
for spin, and ~� for an orbital degree of freedom. We
identify ~� ¼ �z�z ~	, �1 ¼ �x, �2 ¼ �y, and �3 ¼ �z�x,

along with � ¼ 	y�yK. n is then (�1, �2, m), where � ¼
�1 þ i�2 is a SC order parameter and m is a mass describ-
ing a band inversion. For� ¼ 0, (6) is a doubled version of
the model for a 3D TI discussed in Ref. [20]. For � > 0,
m> 0 describes a trivial insulator, whilem< 0 describes a
TI with a band inversion near k ¼ 0. An interface wherem
changes sign corresponds to the surface of a TI, which has
gapless surface states. Introducing � � 0 to the interface
then describes the proximity induced SC state [10].
To locate the zero modes, we take nðrÞ to vary slowly

with r and evaluate!ðrÞ using (1)–(5). This can be done by
noting that H defines a 6 component unit vector given by

the direction d̂5ðk; rÞ of (k1, k2, k3, n1 þ �jkj2, n2, n3) on
S5. The deformed Hamiltonian ~H can be defined by add-

ing ��5 to H so that ~H defines a vector on S6 given by

d̂6 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
d̂5; �Þ. Ch3½F � is the volume on S6 swept

out by d̂6ð�;k; rÞ. Then, RQ5 is the volume in the ‘‘north-

ern hemisphere’’ of S6 swept out by d̂5ðk; rÞ, which is
confined to the ‘‘equator,’’ � ¼ 0. This is then related to

the area on S5 swept out by d̂5ðk; rÞ. Performing the
integral on k for � ! 0 gives

!iðrÞ ¼ 1

8�
�ijkn̂ � @jn̂� @kn̂; (7)

where n̂ ¼ n=jnj. Thus, the topological charge that signals
a zero mode inside V is the parity of the S2 winding number
of n̂ on @V. Zero modes are associated with hedgehogs in
n̂ðrÞ. A simple example of a hedgehog is an SC vortex at
the interface between a TI and an insulator. Though the
hedgehog topological charge can be any integer, an even
integer in (4) can be unwound by a k and r dependent
gauge transformation.
The presence of a zero mode associated with a hedgehog

can be demonstrated with a simple linear model naðrÞ ¼
Mabrb, which has a hedgehog with charge sgnðdet½M�Þ at
r ¼ 0. This is solved by expressing M in terms of its
principle axes: M ¼ OT

1 diagðM1;M2;M3ÞO2, where O1

and O2 are orthogonal matrices that diagonalize MMT

and MTM, respectively. Defining r0a ¼ O1abrb, n0a ¼
O2abnb, �

0
a ¼ OT

1ab�b, and �0
a ¼ OT

2ab�b, it is straightfor-

ward to express H 2 as three independent harmonic oscil-
lators,

H 2 ¼ X
a

Mað2na þ 1� 
aÞ (8)

where na are oscillator quantum numbers and 
a ¼ i�0
a�

0
a

are commuting operators. There is a single zero energy
state with na ¼ 0 and 
a ¼ 1. This zero mode is the non-
degenerate eigenstate with eigenvalue 3 of

P
a
a ¼

i
P

a;b�aOab�b, where O ¼ O1OT
2 .

A key feature of the zero mode is its dependence on the
relative orientation O of the principle axes in r and n
space. This can lead to a non trivial holonomy when M
(and hence O) varies. We construct the zero mode by
starting with j�0i which satisfies

P
ai�a�aj�0i ¼ 3j�0i
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and then doing a unitary transformation that takes �a to
Oab�b. If we parameterize the rotation O with a vector �
specifying the axis and angle j�j � �, then

j�ð�Þi ¼ e�abc�a�b�c=4j�0i: (9)

This gauge satisfies h�ð�Þjd�ð�Þi ¼ 0 for j�j<� but
is not globally defined because j�ð�Þi ¼ �j�ð��Þi
when j�j ¼ �. This reflects the nontrivial topology of
SOð3Þ, characterized by the homotopy �1½SOð3Þ� ¼ Z2.
When O varies along a nontrivial loop in SOð3Þ, the wave
function of the zero mode changes sign. The associated
Majorana operator �i (not to be confused with the Dirac
matrix �a) also changes sign. This is one of our central
results, and it is this fact that allows Ising non-Abelian
statistics in 3D. A simple example of a nontrivial loop
is the 2� rotation that occurs when the SC phase advances
by 2�.

Though we derived it with the linear 8 band model, our
conclusion that there is nontrivial holonomy for defects is
more general. A formulation based on (4) will appear
elsewhere. In the 8-band model, a general defect history
is characterized by nðr; tÞ, where r is on a surrounding
surface S2 and t varies on a closed path S1. These are
classified by the homotopy of maps S2 � S1 ! S2, which
were first analyzed by Pontrjagin [23], and have appeared
in other physical contexts [24]. When the hedgehog’s
topological charge is �p, the classification is Z2p. This

is related to the integer Hopf invariant for maps S3 ! S2

which applies when p ¼ 0. Like the Hopf invariant, it can
be understood in terms of the linking of curves in S2 � S1

[25]. The discussion below resembles the analysis of
Wilczek and Zee [2] of the statistics of Skyrmions in the
ð2þ 1ÞD nonlinear 	 model with a Hopf term.

To study the exchange statistics of the Majorana modes,
we consider the adiabatic evolution of the state when they
are exchanged. We thus consider a 3þ 1D history n̂ðr; tÞ
satisfying n̂ðr; TÞ ¼ n̂ðr; 0Þ with hedgehogs at friðtÞg with
r1ð2ÞðTÞ ¼ r2ð1Þð0Þ. To visualize n̂ðr; tÞ, it is useful to con-

sider the inverse image paths in r space that map to two
specific points on S2. Such paths begin and end on hedge-
hogs, and a crucial role will be played by their linking
properties. Figure 1 depicts four hedgehogs, where the top
two (positive) hedgehogs are interchanged. At the first step
in (b), the locations of the hedgehogs have been inter-
changed. Since the inverse image paths have been
‘‘dragged,’’ n̂ðrÞ is not the same as its original configura-
tion. Panels (c)–(f) show a sequence of smooth deforma-
tions that untangle n̂ðrÞ. The key point is that the two paths
(which map to different points on S2) can never cross each
other. However, a path can cross itself and ‘‘reconnect,’’ as
in (c), (d), (e). The deformations from (a)–(e) preserve the
orientation of the hedgehogs, but leave behind a twist. To
return n̂ðrÞ to its original configuration in (f) requires a 2�
rotation of one of the hedgehogs. This results in an inter-
change rule for the Majoranas,

T12: �1 ! �2; �2 ! ��1 (10)

analogous to the rules [11,12] for braiding vortices in 2D
and can be represented by T12 ¼ exp½��1�2=4�. Note that
in (d), (e), the twist could have been left on the other side,

which would have led to T21 ¼ Ty
12. The two choices for

T12 correspond to physically distinct interchange trajecto-
ries that generalize the right- and left-handed braiding
operations in 2D.
Performing the same interchange twice leads to a non-

trivial operation, since T2
ij ¼ �i�j changes the sign of both

�i and �j. This is natural in 2D because it is a noncon-

tractable braid. In 3D, however, T2
ij can be smoothly de-

formed into an operation in which all particles are held
fixed. Thus, there is an operation, specified by a history
n̂ðr; tÞ, that rotates any pair of stationary hedgehogs by 2�,
and implements the operation �i�j. The existence of such

‘‘braidless’’ operations is a feature of Ising non-Abelian
statistics in 3D. Although these operations form an admit-
tedly limited Abelian subgroup, they nonetheless offer a
method for manipulating the quantum information en-
coded in the Majorana fermions without moving or mea-
suring them.
We now illustrate these effects using specific architec-

tures involving TIs and SCs. It is easiest to engineer
Majorana modes using structures involving interfaces or
vortex lines, where ! is confined to lines or planes.
Nonetheless, such structures can exhibit intrinsically 3D
effects. Consider first the structure in Fig. 2(a), which
involves two disconnected spherical TIs surrounded by a
SC and connected to each other by a Josephson junction.
Suppose that each sphere has a single� pair of vortices so
that there are 4Majorana states on the spheres. The internal
state of the Majorana fermions can be represented in a
basis of eigenstates of n ¼ i�1�2 and n0 ¼ i�3�4. For an
isolated system, the parity of nþ n0 is fixed so the system
is a single qubit with basis vectors jnn0 ¼ 00; 11i. The state
can be initialized and measured in this basis with a probe
that couples to both �1 and �2. Suppose �3 is adiabatically
transported around �1 as shown. This is similar to a 2D
braid, and it implements T2

13, which interchanges j00i and

γ1 γ2

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

−γ2 γ1

γ3 γ4

+ +

− −

+ +

− −

+ +

− −

+ +

− −

+ +

− −

+ +

− −

)c()b()a(

(f))e()d(

FIG. 1 (color online). Inverse image paths depicting the inter-
change of two hedgehogs, as described in the text. (a)–(e) show a
sequence of continuous deformations of nðrÞ that preserve the
orientation of the hedgehogs. In (f), a 2� rotation is required to
return to the original configuration.
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j11i. Note, however, that this ‘‘braid’’ can be smoothly
contracted to zero by sliding the path around the other side
of the sphere. In the process, however, the path crosses the
junction connecting the spheres, resulting in a 2� phase
slip. Thus, the braiding operation can be smoothly de-
formed into a ‘‘braidless’’ operation, where �1, �3 are
held fixed, but the phase difference between the two SCs
advances by 2�.

A similar but more feasible version of the braidless
operation occurs for the Josephson junction structure in
Fig. 2(b), which involves Majorana modes at a SC-magnet
interface at the edge of a 2D TI. As argued in Ref. [15],
when the phase difference across the junction is advanced
by 2�, the fermion parity associated with i�1�2 changes,
resulting in a fractional Josephson effect.

Figure 2(c) shows a TI coated on the top and bottomwith
SC films. In a magnetic field, Majorana states occur at
vortices on both the top and bottom. If the SC films are
thinner than the penetration depth, the field is constant, so
the top and bottom vortices are independent. If the TI is
thin, there will be a weak vertical coupling that splits
nearby Majorana modes according to n ¼ i�1�2 and n0 ¼
i�3�4. The states jnn0i will have slightly different charges,
which may allow n, n0 to be measured with a sensitive
charge detector. Suppose the state is initially j00i.
Interchanging �1, �3 on the top keeping the bottom fixed

leads to the entangled state ðj00i þ j11iÞ= ffiffiffi
2

p
. A variant on

this geometry [Fig. 2(d)] is a thin film of a bulk SC weakly
doped TI, in which the surface states acquire SC similar to
the proximity induced state. In this case, the interchange of
�1, �3 involves a reconnection of the vortex lines (which in
principle have a finite energy gap) connecting them.

Recently, SC has been observed in CuxBi2Se3 for
x� 0:15 [26]. It will be interesting to determine whether
this material is in the weakly doped regime, with Majorana
modes at the ends of vortex lines, or a more conventional

SC, which could be used in Fig. 2(c). There are certainly
technical challenges associated with manipulating the vor-
tices and measuring their charge state. Nonetheless, we
hope that the prospect of detecting 3D non-Abelian statis-
tics in such a system will provide motivation for further
exploration.
We thank Liang Fu for insightful discussions and Bryan

Chen and Randy Kamien for introducing us to the
Pontrjagin invariant. This work was supported by NSF
Grant No. 0906175.

[1] J.M. Leinaas and J. Myrheim, Nuovo Cimento Soc. Ital.
Fis. B 37, 1 (1977).

[2] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[3] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[4] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev.

Lett. 53, 722 (1984).
[5] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[6] C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[8] M. Greiter, X.G. Wen, and F. Wilczek, Nucl. Phys. B374,

567 (1992).
[9] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,

220502(R) (2006).
[10] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[11] C. Nayak and F. Wilczek, Nucl. Phys. B479, 529 (1996).
[12] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[13] A. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[14] A. Kitaev, arXiv:cond-mat/0010440.
[15] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R) (2009).
[16] J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker, Phys.

Rev. Lett. 101, 120403 (2008).
[17] P. Bonderson, M. Freedman, and C. Nayak, Phys. Rev.

Lett. 101, 010501 (2008).
[18] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008); AIP Conf. Proc. 1134, 10
(2009).

[19] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009);
arXiv:0901.2686.

[20] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,
195424 (2008).

[21] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007); J. E. Moore and L. Balents, Phys. Rev. B
75, 121306(R) (2007).

[22] M. Nakahara, Geometry, Topology and Physics (Adam
Hilger, Bristol, 1990).

[23] L. S. Pontrjagin, Rec. Math. [Mat. Sbornik] N.S. 9, 331
(1941); http://mi.mathnet.ru/eng/msb6073.
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FIG. 2 (color online). Architectures demonstrating 3D
Majorana states using SCs and TIs. (a) Braiding 3 around 1
can be deformed into a braidless operation. (b) A geometry for
implementing braidless operations with a Josephson junction
device [15]. (c), (d) Thin film geometries for interchanging
and measuring Majorana states. (c) shows a layered SC-TI-SC
structure, while (d) shows a thin film of a SC weakly doped TI.
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We develop a unified framework to classify topological defects in insulators and superconductors described
by spatially modulated Bloch and Bogoliubov de Gennes Hamiltonians. We consider Hamiltonians H�k ,r� that
vary slowly with adiabatic parameters r surrounding the defect and belong to any of the ten symmetry classes
defined by time-reversal symmetry and particle-hole symmetry. The topological classes for such defects are
identified and explicit formulas for the topological invariants are presented. We introduce a generalization of
the bulk-boundary correspondence that relates the topological classes to defect Hamiltonians to the presence of
protected gapless modes at the defect. Many examples of line and point defects in three-dimensional systems
will be discussed. These can host one dimensional chiral Dirac fermions, helical Dirac fermions, chiral Majo-
rana fermions, and helical Majorana fermions, as well as zero-dimensional chiral and Majorana zero modes.
This approach can also be used to classify temporal pumping cycles, such as the Thouless charge pump, as well
as a fermion parity pump, which is related to the Ising non-Abelian statistics of defects that support Majorana
zero modes.

DOI: 10.1103/PhysRevB.82.115120 PACS number�s�: 73.20.�r, 73.43.�f, 71.10.Pm, 74.45.�c

I. INTRODUCTION

The classification of electronic phases according to topo-
logical invariants is a powerful tool for understanding and
predicting the behavior of matter. This approach was pio-
neered by Thouless, et al.1 �TKNN�, who identified the inte-
ger topological invariant characterizing the two-dimensional
�2D� integer quantum-Hall state. The TKNN invariant n
gives the Hall conductivity �xy =ne2 /h and characterizes the
Bloch Hamiltonian H�k�, defined as a function of k in the
magnetic Brillouin zone. It may be expressed as the first
Chern number associated with the Bloch wave functions of
the occupied states. A fundamental consequence of this topo-
logical classification is the bulk-boundary correspondence,
which relates the topological class of the bulk system to the
number of gapless chiral fermion edge states on the sample
boundary.

Recent interest in topological states2–4 has been stimu-
lated by the realization that the combination of time-reversal
symmetry and the spin-orbit interaction can lead to topologi-
cal insulating electronic phases5–10 and by the prediction11–13

and observation14–26 of these phases in real materials. A to-
pological insulator is a two- or three-dimensional material
with a bulk energy gap that has gapless modes on the edge or
surface that are protected by time-reversal symmetry. The
bulk boundary correspondence relates these modes to a Z2
topological invariant characterizing time-reversal invariant
Bloch Hamiltonians. Signatures of these protected boundary
modes have been observed in transport experiments on 2D
HgCdTe quantum wells14–16 and in photoemission and scan-
ning tunnel microscope experiments on three-dimensional
�3D� crystals of Bi1−xSbx,

17–19 Bi2Se3,20 Bi2Te3,22,23,25 and
Sb2Te3.26 Topological insulator behavior has also been pre-
dicted in other classes of materials with strong spin-orbit
interactions.27–33

Superconductors, described within a Bogoliubov de
Gennes �BdG� framework can similarly be classified
topologically.34–37 The Bloch-BdG Hamiltonian HBdG�k� has

a structure similar to an ordinary Bloch Hamiltonian, except
that it has an exact particle-hole symmetry that reflects the
particle-hole redundancy inherent to the BdG theory. Topo-
logical superconductors are also characterized by gapless
boundary modes. However, due to the particle-hole redun-
dancy, the boundary excitations are Majorana fermions. The
simplest model topological superconductor is a weakly
paired spinless p wave superconductor in one-dimensional
�1D�,38 which has zero-energy Majorana bound states at its
ends. In 2D, a weakly paired px+ ipy superconductor has a
chiral Majorana edge state.39 Sr2RuO4 is believed to exhibit a
triplet px+ ipy state.40 The spin degeneracy, however, leads to
a doubling of the Majorana edge states. Though undoubled
topological superconductors remain to be discovered experi-
mentally, superfluid 3He B is a related topological
phase34,35,37,41,42 and is predicted to exhibit 2D gapless Ma-
jorana modes on its surface. Related ideas have also been
used to topologically classify Fermi surfaces.43

Topological insulators and superconductors fit together
into an elegant mathematical framework that generalizes the
above classifications.35,36 The topological classification of a
general Bloch or BdG theory is specified by the dimension d
and the ten Altland-Zirnbauer symmetry classes44 character-
izing the presence or absence of particle-hole, time-reversal,
and/or chiral symmetry. The topological classifications,
given by Z, Z2, or 0 show a regular pattern as a function of
symmetry class and d, and can be arranged into a periodic
table of topological insulators and superconductors. Each
nontrivial entry in the table is predicted, via the bulk-
boundary correspondence, to have gapless boundary states.

Topologically protected zero modes and gapless states can
also occur at topological defects, and have deep implications
in both field theory and condensed matter physics.41,45–47 A
simple example is the zero-energy Majorana mode that oc-
curs at a vortex in a px+ ipy superconductor.39 Similar Majo-
rana bound states can be engineered using three dimensional
heterostructures that combine ordinary superconductors and
topological insulators,48 as well as semiconductor structures
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that combine superconductivity, magnetism, and strong spin-
orbit interactions.49–52 Recently, we showed that the exis-
tence of a Majorana bound state at a point defect in a three
dimensional Bogoliubov de Gennes theory is related to a Z2
topological invariant that characterizes a family of Bogoliu-
bov de Gennes Hamiltonians HBdG�k ,r� defined for r on a
surface surrounding the defect.53 This suggests that a more
general formulation of topological defects and their corre-
sponding gapless modes should be possible.

In this paper we develop a general theory of topological
defects and their associated gapless modes in Bloch and
Bloch-BdG theories in all symmetry classes. As in Ref. 53,
we assume that far away from the defect the Hamiltonian
varies slowly in real space, allowing us to consider adiabatic
changes in the Hamiltonian as a function of the real space
position r. We thus seek to classify Hamiltonians H�k ,r�,
where k is defined in a d-dimensional Brillouin zone �a torus
Td�, and r is defined on a D-dimensional surface SD sur-
rounding the defect. A similar approach can be used to clas-
sify cyclic temporal variations in the Hamiltonian, which de-
fine adiabatic pumping cycles. Hereafter we will drop the
BdG subscript on the Hamiltonian with the understanding
that the symmetry class dictates whether it is a Bloch or BdG
Hamiltonian.

In Fig. 1 we illustrate the types of topological defects that
can occur in d=1, 2, or 3. For D=0 we regard S0 as two
points ��−1,+1��. Our topological classification then classi-
fies the difference of H�k ,+1� and H�k ,−1�. A nontrivial
difference corresponds to an interface between two topologi-
cally distinct phases. For D=1 the one parameter families of
Hamiltonians describe line defects in d=3 and point defects
in d=2. For d=1 it could correspond to an adiabatic tempo-
ral cycle H�k , t�. Similarly for D=2, the two parameter fam-
ily describes a point defect for d=3 or an adiabatic cycle for
a point defects in d=2.

Classifying the D parameter families of d-dimensional
Bloch-BdG Hamiltonians subject to symmetries leads to a
generalization of the periodic table discussed above. The
original table corresponds to D=0. For D�0 we find that for
a given symmetry class the topological classification �Z, Z2,
or 0� depends only on

� = d − D . �1.1�

Thus, all line defects with �=2 have the same topological
classification, irrespective of d, as do point defects with �
=1 and pumping cycles with �=0. Though the classifications
depend only on �, the formulas for the topological invariants
depend on both d and D.

This topological classification of H�k ,r� suggests a gen-
eralization of the bulk-boundary correspondence that relates
the topological class of the Hamiltonian characterizing the
defect to the structure of the protected modes associated with
the defect. This has a structure reminiscent of a mathematical
index theorem54 that relates a topological index to an analyti-
cal index that counts the number of zero modes.41,45,46,55–59

In this paper we will not attempt to prove the index theorem.
Rather, we will observe that the topological classes for
H�k ,r� coincide with the expected classes of gapless defect
modes. In this regards the dependence of the classification on
� in Eq. �1.1� is to be expected. For example, a point defect
at the end of a one-dimensional system ��=1−0� has the
same classification as a point defects in two dimensions ��
=2−1� and three dimensions ��=3−2�.

We will begin in Sec. II by describing the generalized
periodic table. We will start with a review of the Altland
Zirnbauer symmetry classes44 and a summary of the proper-
ties of the table. In Appendix A we will justify this generali-
zation of the table by introducing a set of mathematical map-
pings that relate Hamiltonians in different dimensions and
different symmetry classes. In addition to establishing that
the classifications depend only on �=d−D, these mappings
allow other features of the table, already present for D=0 to
be easily understood, such as the pattern in which the clas-
sifications vary as a function of symmetry class as well as the
Bott periodicity of the classes as a function of d.

In Secs. III and IV we will outline the physical conse-
quences of this theory by discussing a number of examples
of line and point defects in different symmetry classes and
dimensions. The simplest example is that of a line defect in a
3D system with no symmetries. In Sec. III A we will show
that the presence of a 1D chiral Dirac fermion mode �analo-
gous to an integer quantum-Hall edge state� on the defect is
associated with an integer topological invariant that may be
interpreted as the winding number of the “�” term that char-
acterizes the magnetoelectric polarizability.10 This descrip-
tion unifies a number of methods for “engineering” chiral
Dirac fermions, which will be described in several illustra-
tive examples.

Related topological invariants and illustrative examples
will be presented in Secs. III B–III E for line defects in other
symmetry classes that are associated with gapless 1D helical
Dirac fermions, 1D chiral Majorana fermions, and 1D helical
Majorana fermions. In Sec. IV we will consider point defects
in 1D models with chiral symmetry such as the Jackiw-Rebbi
model45 or the Su, Schrieffer, Heeger model,47 and in super-
conductors without chiral symmetry that exhibit Majorana
bound states or Majorana doublets. These will also be related
to the early work of Jackiw and Rossi46 on Majorana modes
at point defects in a model with chiral symmetry.

t

t

d=1 d=2 d=3

D=0

D=1

D=2

FIG. 1. �Color online� Topological defects characterized by a D
parameter family of d-dimensional Bloch-BdG Hamiltonians. Line
defects correspond to d−D=2 while point defects correspond to d
−D=1. Temporal cycles for point defects correspond to d−D=0.
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and �=0 �d=D=1�. A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H�k ,r�, that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by �k ,r� to a classifying
space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe �i� the
symmetry classes, �ii� the base space, �iii� the classifying
space, and �iv� the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D�0.

A. Symmetry classes

The presence or absence of time reversal symmetry,
particle-hole symmetry, and/or chiral symmetry define the
ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that

H�k,r� = �H�− k,r��−1, �2.1�

where the antiunitary time reversal operator may be written
�=ei�Sy/	K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, �2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator ��=K to be defined, which
satisfies ��2=+1.

Particle-hole symmetry is expressed by

H�k,r� = − 
H�− k,r�
−1, �2.2�

where 
 is the antiunitary particle-hole operator. Fundamen-
tally, 
2=+1. However, as was the case for �, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy 
2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor �, satisfying

H�k,r� = − �H�k,r��−1. �2.3�

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry �=ei��
. The
phase � can be chosen so that �2=1.

Specifying �2=0 , 
1, 
2=0 , 
1, and �2=0 ,1 �here 0
denotes the absence of symmetry� defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
� and or 
 plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of 
2 and �2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other

TABLE I. Periodic table for the classification of topological defects in insulators and superconductors. The rows correspond to the
different Altland Zirnbauer �AZ� symmetry classes while the columns distinguish different dimensionalities, which depend only on �=d
−D.

Symmetry �=d−D

s AZ �2 
2 �2 0 1 2 3 4 5 6 7

0 A 0 0 0 Z 0 Z 0 Z 0 Z 0

1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0

3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0

5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0

6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0

7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z
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classes Clifford algebra elements are constrained to anticom-
mute with q positive generators. The two formulations are
related by s=q+2 mod 8. The complex symmetry classes
can similarly be indexed by an integer s defined modulo 2.
For all classes, the presence of chiral symmetry is associated
with odd s.

B. Base space, classifying space and stable equivalence

The Hamiltonian is defined on a base space composed of
momentum k, defined in a d-dimensional Brillouin zone Td

and real-space degrees of freedom r in a sphere SD �or
SD−1�S1 for an adiabatic cycle�. The total base space is
therefore Td�SD �or Td�SD−1�S1�. As in Ref. 36, we will
simplify the topological classification by treating the base
space as a sphere Sd+D. The “strong” topological invariants
that characterize the sphere will also characterize Td�SD.
However, there may be additional topological structure in
Td�SD that is absent in Sd+D. These correspond to “weak”
topological invariants. For D=0 these arise in layered struc-
tures. A weak topological insulator, for example, can be un-
derstood as a layered two dimensional topological insulator.
There are similar layered quantum-Hall states. For D�0,
then there will also be a weak invariant if the Hamiltonian
H�k ,r0� for fixed r=r0 is topologically nontrivial. As is the
case for the classification of bulk phases D=0, we expect
that the topologically protected gapless defect modes are as-
sociated with the strong topological invariants.

The set of Hamiltonians that preserve the energy gap
separating positive and negative energy states can be simpli-
fied without losing any topological information. Consider the
retraction of the original Hamiltonian H�k ,r� to a simpler
Hamiltonian whose eigenvalue spectrum is “flattened” so
that the positive- and negative-energy states all have the
same energy 
E0. The flattened Hamiltonian is then speci-
fied the set of all n eigenvectors �defining a U�n� matrix�
modulo unitary rotations within the k conduction bands or
the n−k valence bands. The flattened Hamiltonian can thus
be identified with a point in the Grassmanian manifold

Gn,k = U�n�/U�k� � U�n − k� . �2.4�

It is useful to broaden the notion of topological equiva-
lence to allow for the presence of extra trivial energy bands.

Two families of Hamiltonians are stably equivalent if they
can be deformed into one another after adding an arbitrary
number of trivial bands. Thus, trivial insulators with different
numbers of core energy levels are stably equivalent. Stable
equivalence can be implemented by considering an expanded
classifying space that includes an infinite number of extra
conduction and valence bands, C0=U /U�U��k=0

� G�,k.
With this notion of stable equivalence, the equivalence

classes of Hamiltonians H�k ,r� can be formally added and
subtracted. The addition of two classes, denoted �H1�
+ �H2� is formed by simply combining two independent
Hamiltonians into a single Hamiltonian given by the matrix
direct sum, �H1 � H2�. Additive inverses are constructed
through reversing conduction and valence bands, �H1�
− �H2�= �H1 � −H2�. �H � −H� is guaranteed to the be trivial
class �0�. Because of this property, the stable equivalence
classes form an Abelian group, which is the key element of K
theory.63–65

Symmetries impose constraints on the classifying space.
For the symmetry classes with chiral symmetry, Eq. �2.3�
restricts n=2k and the classifying space to a subset C1
=U����U /U�U. The antiunitary symmetries in Eqs. �2.1�
and �2.2� impose further constraints. At the special points
where k and −k coincide, the allowed Hamiltonians are de-
scribed by the 8 classifying spaces Rq of real K theory.

C. Properties of the periodic table

For a given symmetry class s, the topological classifica-
tion of defects is given by the set of stable equivalence
classes of maps from the base space �k ,r��SD+d to the clas-
sifying space, subject to the symmetry constraints. These
form the K group, which we denote as KC�s ;D ,d� for the
complex symmetry classes and KR�s ;D ,d� for the real sym-
metry classes. These are listed in Table I.

Table I exhibits many remarkable patterns. Many can be
understood from the following basic periodicities:

KF�s;D,d + 1� = KF�s − 1;D,d� , �2.5�

KF�s;D + 1,d� = KF�s + 1;D,d� . �2.6�

Here s is understood to be defined modulo 2 for F=C and
modulo 8 for F=R. We will establish these identities math-
ematically in Appendix A. The basic idea is to start with
some Hamiltonian in some symmetry class s and dimension-
alities D and d. It is then possible to explicitly construct two
new Hamiltonians in one higher dimension which have ei-
ther �i� d→d+1 or �ii� D→D+1. These new Hamiltonians
belongs to new symmetry classes that are shifted by 1 “hour”
on the symmetry clock and characterized by �i� s→s+1 or
�ii� s→s−1. We then go on to show that this construction
defines a 1–1 correspondence between the equivalence
classes of Hamiltonians with the new and old symmetry
classes and dimensions, thereby establishing Eqs. �2.5� and
�2.6�.

The periodicities in Eqs. �2.5� and �2.6� have a number of
consequences. The most important for our present purposes
is they can be combined to give

2

107

6

5 4 3

AI BDI

D

DIIIAIICII

C

CI

Θ2

Ξ2

FIG. 2. The eight real symmetry classes that involve the anti-
unitary symmetries � �time reversal� and/or 
 �particle hole� are
specified by the values of �2= 
1 and 
2= 
1. They can be vi-
sualized on an eight-hour “clock.”
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KF�s;D + 1,d + 1� = KF�s;D,d� . �2.7�

This �1,1� periodicity shows that the dependence on the di-
mensions d and D only occurs via �=d−D. Thus the depen-
dence of the classifications on D can be deduced from the
table for D=0. This is one of our central results.

In addition, the periodicities in Eqs. �2.5� and �2.6� ex-
plain other features of the table that are already present for
D=0. In particular, the fact that s is defined modulo 2 �8� for
the complex �real� classes leads directly to the Bott period-
icity of the dependence of the classifications on d

KC�s;D,d + 2� = KC�s;D,d� , �2.8�

KR�s;D,d + 8� = KR�s;D,d� . �2.9�

Moreover, Eqs. �2.5� and �2.6� show that Ka�s ;D ,d� depends
only on d−D−s. This explains the diagonal pattern in Table
I, in which the dependence of the classification on d is re-
peated in successive symmetry classes. Thus, the entire table
could be deduced from a single row.

Equations �2.5� and �2.6� do not explain the pattern of
classifications within a single row. Since this is a well-
studied math problem there are many routes to the
answer.64,66,67 One approach is to notice that for d=0,
KF�s ,D ,0� is simply the Dth homotopy group of the appro-
priate classifying space which incorporates the symmetry
constraints. For example, for class BDI �s=1, 
2=+1, and
�2=+1� the classifying space is the orthogonal group O���.
Then, KR�1,D ,0�=�D�O����, which are well known. This
implies

KR�s;D,d� = �s+D−d−1�O���� . �2.10�

Additional insight can be obtained by examining the in-
terconnections between different elements of the table. For
example, the structure within a column can be analyzed by
considering the effect of “forgetting” symmetries. Hamilto-
nians belonging to the real chiral �nonchiral� classes are au-
tomatically in complex class AIII �A�. There are therefore K
group homomorphisms that send any real entries in Table I to
complex ones directly above. In particular, as detailed in
Appendix B this distinguishes the Z and 2Z entries, which
indicate the possible values of Chern numbers �or U�n�
winding numbers� for even �or odd� �. In addition, the di-
mensional reduction arguments given in Refs. 10 and 68 lead
to a dimensional hierarchy, which helps to explain the pattern
within a single row as a function of d.

III. LINE DEFECTS

Line defects can occur at the edge of a 2D system ��=2
−0� or in a 3D system ��=3−1�. From Table I, it can be seen
that there are five symmetry classes which can host non-
trivial line defects. These are expected to be associated with
gapless fermion modes bound to the defect. Table II lists
nontrivial classes, along with the character of the associated
gapless modes. In the following sections we will discuss
each of these cases, along with physical examples.

A. Class A: Chiral Dirac fermion

1. Topological invariant

A line defect in a generic 3D Bloch band theory with no
symmetries is associated with an integer topological invari-
ant. This determines the number of chiral Dirac fermion
modes associated with the defect. Since H�k ,r� is defined on
a compact four-dimensional space, this invariant is naturally
expressed as a second Chern number

n =
1

8�2�
T3�S1

Tr�F ∧ F� , �3.1�

where

F = dA + A ∧ A �3.2�

is the curvature form associated with the non-Abelian Ber-
ry’s connection Aij = 	ui 
duj� characterizing the valence-band
eigenstates 
uj�k ,s�� defined on the loop S1 parameterized by
s.

It is instructive to rewrite this as an integral over s of a
quantity associated with the local band structure. To this end,
it is useful to write Tr�F∧F�=dQ3, where the Chern-Simons
3 form is

Q3 = Tr�A ∧ dA +
2

3
A ∧ A ∧ A
 . �3.3�

Now divide the integration volume into thin slices, T3

��S1, where �S1 is the interval between s and s+�s. In
each slice, Stokes’ theorem may be used to write the integral
as a surface integral over the surfaces of the slice at s and
s+�s. In this manner, Eq. �3.1� may be written

n =
1

2�
�

S1
ds

d

ds
��s� , �3.4�

where

��s� =
1

4�
�

T3
Q3�k,s� . �3.5�

Equation �3.5� is precisely the Qi, Hughes, and Zhang
formula10 for the “�” term that characterizes the magneto-
electric response of a band insulator. �=0 for an ordinary
time reversal invariant insulator, and �=� in a strong topo-
logical insulator. If parity and time-reversal symmetry are
broken then � can have any intermediate value. We thus
conclude that the topological invariant associated with a line

TABLE II. Symmetry classes that support topologically non-
trivial line defects and their associated protected gapless modes.

Symmetry Topological classes 1D gapless Fermion modes

A Z Chiral Dirac

D Z Chiral Majorana

DIII Z2 Helical Majorana

AII Z2 Helical Dirac

C 2Z Chiral Dirac
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defect, which determines the number of chiral fermion
branches is given by the winding number of �. We now
consider several examples of 3D line defects that are associ-
ated with chiral Dirac fermions.

2. Dislocation in a 3D integer quantum-Hall state

A three-dimensional integer quantum-Hall state can be
thought of as a layered version of the two-dimensional inte-
ger quantum-Hall state. This can be understood most simply
by considering the extreme limit where the layers are com-
pletely decoupled 2D systems. A line dislocation, as shown
in Fig. 3 will then involve an edge of one of the planes and
be associated with a chiral fermion edge state. Clearly, the
chiral fermion mode will remain when the layers are
coupled, provided the bulk gap remains finite. Here we wish
to show how the topological invariant in Eq. �3.1� reflects
this fact.

On a loop surrounding the dislocation parameterized by
s� �0,1� we may consider a family of Hamiltonians H�k ,s�
given by the Hamiltonian of the original bulk crystal dis-
placed by a distance sB, where B is a lattice vector equal to
the Burgers vector of the defect. The corresponding Bloch
wave functions will thus be given by

umk,s�r� = umk
0 �r − sB� , �3.6�

where umk
0 �r� are Bloch functions for the original crystal. It

then follows that the Berry’s connection is

A = A0 + B · �k − ap�k��ds , �3.7�

where

Amn
0 �k� = 	umk

0 
�k
unk
0 � · dk

and

amn
p �k� = 	umk

0 
��r + k�
unk
0 � . �3.8�

With this definition, ap�k� is a periodic function: ap�k+G�
=ap�k� for any reciprocal lattice vector G.69

If the crystal is in a three dimensional quantum-Hall state,
then the nonzero first Chern number is an obstruction to
finding the globally continuous gauge necessary to evaluate
Eq. �3.5�. We therefore use Eq. �3.1�, which can be evaluated
by noting that

Tr�F ∧ F� = Tr�B · �2F0 ∧ dk − d�F0,ap�� ∧ ds� . �3.9�

Upon integrating Tr�F∧F� the total derivative term vanishes
due to the periodicity of ap. Evaluating the integral is then
straightforward. The integral over s trivially gives 1. We are
then left with

n =
1

2�
B · Gc, �3.10�

where

Gc =
1

2�
�

T3
dk ∧ Tr�F0� . �3.11�

Gc is a reciprocal lattice vector that corresponds to the triad
of Chern numbers that characterize a 3D system. For in-
stance, in a cubic system Gc= �2� /a��nx ,ny ,nz�, where, for
example nz= �2��−1�Tr�Fxy

0 �dkx∧dky, for any value of kz.
An equivalent formulation is to characterize the displaced

crystal in terms of �. Though Eq. �3.5� cannot be used, Eqs.
�3.1� and �3.4� can be used to implicitly define � up to an
arbitrary additive constant

��s� = sB · Gc. �3.12�

3. Topological insulator heterostructures

Another method for engineering chiral Dirac fermions is
use heterostructures that combine topological insulators and
magnetic materials. The simplest version is a topological in-
sulator coated with a magnetic film that opens a time-
reversal symmetry breaking energy gap at the surface. A do-
main wall is then associated with a chiral fermion mode. In
this section we will show how this structure, along with
some variants on the theme, fits into our general framework.
We first describe the structures qualitatively and then analyze
a model that describes them.

Figure 4 shows four possible configurations. Figures 4�a�
and 4�b� involve a topological insulator with magnetic mate-

s

B

FIG. 3. A line dislocation in a three-dimensional quantum-Hall
state characterized by Burgers vector B.

AF-I AF-I

TI θ = π

θ = −ε θ = +ε
F-I F-I

TI θ = π

θ = 0 θ = 0

(a) (b)

AF-TI AF-TI

I θ=0

θ = π−ε θ = π+ε
F-TI F-TI

I θ=0

θ = π θ = π

(c) (d)

FIG. 4. Heterostructure geometries for chiral Dirac fermions. �a�
and �b� show antiferromagnetic or ferromagnetic insulators on the
surface of a topological insulator with chiral Dirac fermions at a
domain wall. �c� and �d� show a domain wall in an antiferromag-
netic or ferromagnetic topological insulator. Chiral fermion modes
are present when the domain wall intersects the surface.
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rials on the surface. The magnetic material could be either
ferromagnetic or antiferromagnetic. We distinguish these two
cases based on whether inversion symmetry is broken or not.
Ferromagnetism does not violate inversion symmetry while
antiferromagnetism does �at least for inversion about the
middle of a bond�. This is relevant because �, discussed
above, is quantized unless both time reversal and inversion
symmetries are violated. Of course, for a noncentrosymmet-
ric crystal inversion is already broken so the distinction is
unnecessary.

Figure 4�a� shows a topological insulator capped with an-
tiferromagnetic insulators with �= 
� separated by a domain
wall. Around the junction where the three regions meet �
cycles between �, +�, and −�. Of course this interface struc-
ture falls outside the adiabatic regime that Eq. �3.5� is based
on. However, it is natural to expect that the physics would
not change if the interface was “smoothed out” with � taking
the shortest smooth path connecting its values on either side
of the interface.

Figure 4�b� shows a similar device with ferromagnetic
insulators, for which �=0 or �. In this case the adiabatic
assumption again breaks down, however, as emphasized in
Ref. 10, the appropriate way to think about the surface is that
� connects 0 and � along a path that is determined by the
sign of the induced gap, which in turn is related to the mag-
netization. In this sense, � cycles by 2� around the junction.

In Figs. 4�c� and 4�d� we consider topological insulators
which have a weak magnetic instability. If in addition to
time-reversal, inversion symmetry is broken, then ���
�.
Recently Li, Wang, Qi, and Zhang70 have considered such
materials in connection with a theory of a dynamical axion
and suggested that certain magnetically doped topological
insulators may exhibit this behavior. They referred to such
materials as topological magnetic insulators. We prefer to
call them magnetic topological insulators because as mag-
netic insulators they are topologically trivial. Rather, they are
topological insulators to which magnetism is added. Irre-
spective of the name, such materials would be extremely
interesting to study, and as we discuss below, may have im-
portant technological utility.

Figure 4�c� shows two antiferromagnetic topological insu-
lators with �=�
� separated by a domain wall, and Fig.
4�d� shows a similar device with ferromagnetic topological
insulators. They form an interface with an insulator, which
could be vacuum. Under the same continuity assumptions as
above the junction where the domain wall meets the surface
will be associated with a chiral fermion mode. Like the struc-
ture in Fig. 4�a�, this may be interpreted as an edge state on
a domain wall between the “half-quantized” quantum-Hall
states of the topological insulator surfaces. However, an
equally valid interpretation is that the domain wall itself
forms a single two-dimensional integer quantum-Hall state
with an edge state. Our framework for topologically classi-
fying the line defects underlies the equivalence between
these two points of view.

Mong, Essen, and Moore71 have introduced a different
kind of antiferromagnetic topological insulator that relies on
the symmetry of time reversal combined with a lattice trans-
lation. Due to the necessity of translation symmetry, how-
ever, such a phase is not robust to disorder. They found that

chiral Dirac modes occur at certain step edges in such crys-
tals. These chiral modes can also be understood in terms of
the invariant in Eq. �3.1�. Note that these chiral modes sur-
vive in the presence of disorder even though the bulk state
does not. Thus, the chiral mode, protected by the strong in-
variant in Eq. �3.1�, is more robust than the bulk state that
gave rise to it.

If one imagines weakening the coupling between the two
antiferromagnetic topological insulators �using our terminol-
ogy, not that of Mong, et al.71� and taking them apart, then at
some point the chiral mode has to disappear. At that point,
rather than taking the “shortest path” between �
�, � takes
a path that passes through 0. At the transition between the
“short-path” and the “long-path” regimes, the gap on the
domain wall must go to zero, allowing the chiral mode to
escape. This will have the character of a plateau transition in
the 2D integer quantum-Hall effect.

Structures involving magnetic topological insulators
would be extremely interesting to study because with them it
is possible to create chiral fermion states with a single ma-
terial. Indeed, one can imagine scenarios where a magnetic
memory, encoded in magnetic domains, could be read by
measuring the electrical transport in the domain wall chiral
fermions.

To model the chiral fermions in these structures we begin
with the simple three-dimensional model for trivial and to-
pological insulators considered in Ref. 10

H0 = v�x�� · k + �m + �
k
2��z. �3.13�

Here �� represents spin and �z describes an orbital degree of
freedom. m�0 describes the trivial insulator and m�0 de-
scribes the topological insulator. An interface where m
changes sign is then associated with gapless surface states.

Next consider time-reversal symmetry-breaking perturba-
tions, which could arise from exchange fields due to the pres-
ence of magnetic order. Two possibilities include

Haf = haf�y , �3.14�

H f = h� f · �� . �3.15�

Either haf or hf ,z will introduce a gap in the surface states but
they have different physical content. H0 has an inversion
symmetry given by H0�k�= PH0�−k�P with P=�z. Clearly,
H f respects this inversion symmetry. Haf does not respect P
but does respect P�. We therefore associate H f with ferro-
magnetic order and Haf with antiferromagnetic order.

Within the adiabatic approximation, the topological in-
variant in Eq. �3.1� can be evaluated in the presence of either
Eq. �3.14� or �3.15�. The antiferromagnetic perturbation in
Eq. �3.14� is most straightforward to analyze because H0
+Haf is a combination of five anticommuting Dirac matrices.
On a circle surrounding the junction parameterized by s it
can be written in the general form

H�k,s� = h�k,s� · �� , �3.16�

where �� = ��x�x ,�x�y ,�x�z ,�z ,�y� and h�k ,s�= �vk ,m�s�
+�
k
2 ,haf�s��. For a model of this form, the second Chern
number in Eq. �3.1� is given simply by the winding number
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of the unit vector d̂�k ,s�=h / 
h
�S4 as a function of k and s.
This is most straightforward to evaluate in the limit �→0,

where d̂ is confined to the “equator” �d1 ,d2 ,d3 ,0 ,0� every-
where except near k�0 and 
k
�1 /�. The winding number
is determined by the behavior at k�0, and may be expressed
by Eq. �3.4� with � given by

ei� =
m + ihaf

�m2 + haf
2

. �3.17�

We therefore expect a topological line defect to occur at
an intersection between planes where m and haf change sign.
The chiral fermion mode associated with this defect can seen
explicitly if we solve a simple linear model, m= fzz, haf
= fyy. This model, which has the form of a harmonic oscilla-
tor, is solved in Appendix C, and explicitly gives the chiral
Dirac fermion mode with dispersion

E�kx� = v sgn�fzfy�kx. �3.18�

B. Class D: Chiral Majorana fermions

1. Topological invariant

A line defect in a superconductor without time-reversal
symmetry is characterized by an integer topological invariant
that determines the number of associated chiral Majorana
fermion modes. Since the BdG Hamiltonian characterizing a
superconductor has the same structure as the Bloch Hamil-
tonian, we can analyze the problem by “forgetting” about the
particle-hole symmetry and treating the BdG Hamiltonian as
if it was a Bloch Hamiltonian. The second Chern number,
given by Eq. �3.1� can be defined. It can be verified that any
value of the Chern number is even under particle-hole sym-
metry so that particle-hole symmetry does not rule out a
nonzero Chern number. We may follow the same steps as
Eqs. �3.1�–�3.5� to express the integer topological invariant
as

ñ =
1

8�2�
T3�S1

Tr�F̃ ∧ F̃� , �3.19�

where F̃ is the curvature form characterizing the BdG theory.
As in Eq. �3.4�, ñ may be expressed as a winding number of

�̃, which is expressed as an integral over the Brillouin zone
of the Chern-Simons 3 form. The difference between n and ñ
is that ñ characterizes a BdG Hamiltonian. If we considered
the BdG Hamiltonian for a nonsuperconducting insulator,
then due to the doubling in the BdG equation, we would find

ñ = 2n . �3.20�

In this case, the chiral Dirac fermion that occurs for a 2�

�n=1� winding of � corresponds to a 4� �n=2� winding of �̃.
Superconductivity allows for the possibility of a 2� winding

in �̃: a chiral Dirac fermion can be split into a pair of chiral
Majorana fermions.

2. Dislocation in a layered topological superconductor

The simplest example to consider is a dislocation in a
three-dimensional superconductor. The discussion closely
parallels Sec. III A 2 and we find

ñ =
1

2�
B · G̃c, �3.21�

where B is the Burgers vector of the dislocation and G̃c
characterizes the triad of first Chern numbers characterizing
the 3D BdG Hamiltonian. A 3D system consisting of layers
of a 2D topological superconductor will be characterized by

a nonzero G̃c. Since, as a 3D superconductor, the layered
structure is in the topologically trivial class, such a state
could be referred to as a weak topological superconductor.

The simplest model system in this class is a stack of 2D
px+ ipy superconductors. A dislocation would then have ñ
=1 and a single chiral Majorana fermion branch. A possible
physical realization of the weak topological superconductor
state is Sr2RuO4, which may exhibit triplet px+ ipy pairing.
Since the spin-up and spin-down electrons make two copies
of the spinless state, a dislocation will be associated with ñ
=2. Thus, we predict that there will be two chiral Majorana
modes bound to the dislocation, which is the same as a single
chiral Dirac fermion mode.

3. Superconductor heterostructures

We now consider heterostructures with associated chiral
Majorana modes. The simplest to consider is a BdG analog
of the structures considered in Fig. 5. These would involve,
for example, an interface between a 3D time-reversal invari-
ant topological superconductor with a magnetic material with
a magnetic domain wall. The analysis of such a structure is
similar to that in Eq. �3.13� if we replace the Pauli matrices
describing the orbital degree of freedom �� with Pauli matri-
ces describing Nambu space ��. Protected chiral Majorana
fermion modes of this sort on the surface of 3He-B with a
magnetic domain wall have been recently discussed by
Volovik.72

In Ref. 48 a different method for engineering chiral Ma-
jorana fermions was introduced by combining an interface
between superconducting and magnetic regions on the sur-
face of a topological insulator. To describe this requires the
eight-band model introduced in Ref. 53

H = �z�x�� · k + �m + �
k
2��z�z + ��x + h�y . �3.22�

�Here, for simplicity we consider only the antiferromagnetic
term�. The surface of the topological insulator occurs at a

M M

TS
(a)

S M

TI
(b)

FIG. 5. Heterostructure geometries for Chiral Majorana fermi-
ons. �a� shows a magnetic domain wall on the surface of a topo-
logical superconductor while �b� shows an interface between a su-
perconductor and a magnet on the surface of a topological insulator.
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domain wall �say, in the x-y plane�, where m�z� changes sign.
The superconducting order parameter � and magnetic pertur-
bation h both lead to an energy gap in the surface states. This
Hamiltonian is straightforward to analyze because
�H ,�x�y�=0, which allows the 8�8 problem to be divided
into two 4�4 problems, which have superconducting/
magnetic mass terms �
h. Near a defect where �=h the
�+h gap never closes while the �−h gap can be critical.
��h leads to a superconducting state while ��h leads to a
quantum-Hall-type state. There is a transition between the
two at �=h.

An explicit model for the line defect can be formulated
with m�z�= fzz, �−h= fyy and �+h=M. The topological in-
variant in Eq. �3.19� can be evaluated using a method similar
to Eq. �3.16� and the chiral Majorana states can be explicitly
solved along the lines of Eq. �3.18�.

C. Class AII: Helical Dirac fermions

1. Topological invariant

Line defects for class AII are characterized by a Z2 topo-
logical invariant. To develop a formula for this invariant we
follow the approach used in Ref. 73 to describe the invariant
characterizing the quantum spin-Hall insulator.

As in the previous section, a line defect in three dimen-
sions is associated with a four parameter space �k ,r��T3

�S1. Due to time-reversal symmetry, the second Chern num-
ber that characterized the line defects in Eq. �3.1� must be
zero. Thus there is no obstruction to defining Bloch basis
functions 
u�k ,r�� continuously over the entire base space.
However, the time reversal relation between �−k ,r� and
�k ,r� allows for an additional constraint so that the state is
specified by the degrees of freedom in half the Brillouin
zone.

As in Ref. 73 it is useful to define a matrix

wmn�k,r� = 	um�k,r�
�
un�− k,r�� . �3.23�

Because 
um�k ,r�� and 
un�−k ,r�� are related by time-
reversal symmetry w�k ,r� is a unitary matrix that depends
on the gauge choice for the basis functions. Locally it is
possible to choose a basis in which

w�k,r� = w0, �3.24�

where w0 is independent of k and r so that states at �
k ,r�
have a fixed relation. Since for k=0 w=−wT, w0 must be
antisymmetric. A natural choice is thus w0= i�2 � 1.

The Z2 topological invariant is an obstruction to finding
such a constrained basis globally. The constrained basis can
be defined on two patches but the basis functions on the two
patches are necessarily related by a topologically nontrivial
transition function. In this sense, the Z2 invariant resembles
the second Chern number in Eq. �3.1�.

In Appendix E we will generalize the argument developed
in Ref. 73 to show that the transition function relating the
two patches defines the Z2 topological invariant, which may
be written74

� =
1

8�2��
�1/2�T3�S1

Tr�F ∧ F� − �
��1/2�T3�S1

Q3�mod 2,

�3.25�

where F and Q3 are expressed in terms of the Berry’s con-
nection A using Eqs. �3.2� and �3.3�. The integral is over half
of the base space �1 /2��T3�S1�, defined such that �k ,r� and
�−k ,r� are never both included. The second term is over the
boundary of �1 /2��T3�S1�, which is closed under �k ,r�
→ �−k ,r�. Equation �3.25� must be used with care because
the Chern Simons form in the second term depends on the
gauge. A different continuous gauge can give a different �,
but due to Eq. �3.24�, they must be related by an even inte-
ger. Thus, an odd number is distinct.

In addition to satisfying Eq. �3.24�, it is essential to use a
gauge in which at least Q3 is continuous on � 1

2T3�S1

�though not necessarily on all of 1
2T3�S1�. This continuous

gauge can always be found if the base space is a sphere S4.
However for T3�S1, the weak topological invariants can
pose an obstruction to finding a continuous gauge. We will
show how to work around this difficulty at the end of the
following section.

2. Dislocation in a weak topological insulator

Ran, Zhang, and Vishwanath recently studied the problem
of a line dislocation in a topological insulator.75 They found
that an insulator with nontrivial weak topological invariants
can exhibit topologically protected helical modes at an ap-
propriate line dislocation. In this section we will show that
these protected modes are associated with a nontrivial Z2
invariant in Eq. �3.25�. In addition to providing an explicit
example for this invariant, this formulation provides addi-
tional insight into why protected modes can exist in a weak
topological insulator. As argued in Ref. 9 and 12, the weak
topological invariants lose their meaning in the presence of
disorder. The present considerations show that the helical
modes associated with the dislocation are protected by the
strong topological invariant associated with the line defect.
Thus if we start with a perfect crystal and add disorder, then
the helical modes remain, even though the crystal is no
longer a weak topological insulator. The helical modes re-
main even if the disorder destroys the crystalline order, so
that dislocations become ill defined, provided the mobility
gap remains finite in the bulk crystal. In this case, the Hamil-
tonian has a nontrivial winding around the line defect, even
though the defect has no obvious structural origin. Thus, the
weak topological insulator provides a route to realizing the
topologically protected line defect. But once present, the line
defect is more robust than the weak topological insulator.

To evaluate the Z2 invariant in Eq. �3.25� for a line dislo-
cation we repeat the analysis in Sec. III A 2. Because of the
subtlety with the application of Eq. �3.25� we will first con-
sider the simplest case of a dislocation in a weak topological
insulator. Afterward we will discuss the case of a crystal with
both weak and strong invariants.

The Bloch functions on a circle surrounding a dislocation
are described by Eq. �3.6� and the evaluation of Tr�F∧F�
proceeds exactly as in Eqs. �3.7�–�3.9�. To evaluate the sec-
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ond term in Eq. �3.25� we need the Chern-Simons 3 form.
One approach is to use Eqs. �3.3� and �3.7�. However, this is
not continuously defined on ��1 /2��T3�S1� because A has a
term B ·kds that is discontinuous at the Brillouin zone
boundary. An alternative is to write

Q3 = Tr�B · �2A0 ∧ dk − �F0,ap�� ∧ ds� . �3.26�

From Eq. �3.9� this clearly satisfies Tr�F∧F�=dQ3 and it is
defined continuously on ��1 /2��T3�S1� as long as A0 is
continuously defined on ��1 /2�T3. For a weak topological
insulator this is always possible, provided �1 /2�T3 is defined
appropriately. Equation �3.26� differs from Eq. �3.3� by a
total derivative.

Combining Eqs. �3.9�, �3.25�, and �3.26�, the terms in-
volving ap cancel because ap is globally defined. �Note that
ap is unchanged by a k-dependent—but
r-independent—gauge transformation�. This cannot be said
of the term involving A0, however, because in a weak topo-
logical insulator A0 is not globally defined on �1 /2�T3. Per-
forming the trivial integral over s we then find

� =
1

2�
B · G� mod 2, �3.27�

where

G� = �
1/2T3

Tr�F0� ∧ dk − �
�1/2T3

Tr�A0� ∧ dk .

�3.28�

The simplest case to consider is a weak topological insu-
lator consisting of decoupled layers of 2D quantum spin-Hall
insulator stacked with a lattice constant a in the z direction.
In this case F0=F0�kx ,ky� is independent of kz so the kz
integral can be performed trivially. This leads to G�

= �2� /a��ẑ, where

� =
i

2���1/2T2
Tr�F0� − �

�1/2T2
Tr�A0�
 �3.29�

is the 2D Z2 topological invariant characterizing the indi-
vidual layers.

Equation �3.28� also applies to a more general 3D weak
topological insulator. A weak topological insulator is charac-
terized by a triad of Z2 invariants ��1�2�3� that define a mod
2 reciprocal lattice vector9,12

G� = �1b1 + �2b2 + �3b3, �3.30�

where bi are primitive reciprocal lattice vectors correspond-
ing to primitive lattice vectors ai �such that ai ·b j =2��ij�.
The indices �i can be determined by evaluating the 2D in-
variant in Eq. �3.29� on the time-reversal invariant plane
k ·ai=�.

To show that G� in Eqs. �3.28� and �3.30� are equivalent,
consider G� ·a1 in Eq. �3.28�. If we write k=x1b1+x2b2
+x3b3, then the integrals over x2 and x3 have the form of Eq.
�3.29�. Since this is quantized, it must be independent of x1
and will be given by its value at x1=1 /2. This then gives
G� ·a1=2��1. A similar analysis of the other components
establishes the equivalence. A nontrivial value of Eq. �3.27�

is the same as the criterion for the existence of protected
helical modes on a dislocation Ran, Zhang, and
Vishwanath75 derived using a different method.

Evaluating Eq. �3.28� in a crystal that is both a strong
topological insulator and a weak topological insulator �such
as Bi1−xSbx� is problematic because the 2D invariants evalu-
ated on the planes x1=0 and x1=1 /2 are necessarily different
in a strong topological insulator. This arises because a non-
trivial strong topological invariant �0 is an obstruction to
continuously defining A0 on ��1 /2�T3 so Eq. �3.29� cannot
be evaluated continuously between x1=0 and x1=1 /2. From
the point of view of the topological classification of the de-
fect on T3�S1, �0 is like a weak topological invariant be-
cause it a property of T3 and is independent of the real-space
parameter s in S1. Thus this complication is a manifestation
of the fact that topological classification of Hamiltonians on
T3�S1 has more structure than those on S4. The problem is
not with the existence of the invariant � on T3�S1 but rather
with applying the formulas �3.25� and �3.28�. The problem
can be circumvented with the following trick.

Consider an auxiliary Hamiltonian H̃�k ,r�=H�k ,r�
� HSTI�k�, where HSTI is a simple model Hamiltonian for a
strong topological insulator such as Eq. �3.13�, which can be
chosen such that it is a constant independent of k everywhere
except in a small neighborhood close to k=0 where a band
inversion occurs. Adding such a Hamiltonian that is indepen-
dent of r will have no effect on the topologically protected
modes associated with a line defect so we expect the invari-

ant � to be the same for both H�k ,r� and H̃�k ,r�. If H�k ,r�
has a nontrivial strong topological invariant �0=1 then

H̃�k ,r� will have �0=0, so that Eq. �3.28� can be applied. G�

will then be given by the 2D invariant in Eq. �3.29� evaluated

for H̃, which will be independent of x1. Since HSTI�k� is
k-independent everywhere except a neighborhood of k=0,
this will agree with the 2D invariant evaluated for H at x1
=1 /2, but not x1=0. It then follows that even in a strong
topological insulator the invariant characterizing a line dis-
location is given by Eq. �3.27�, where G� is given by Eq.
�3.30� in terms of the weak topological invariants.

3. Heterostructure geometries

In principle, it may be possible to realize 1D helical fer-
mions in a 3D system that does not rely on a weak topologi-
cal insulating state. It is possible to write down a 3D model,
analogous to Eq. �3.13� that has bound helical modes. How-
ever, it is not clear how to physically implement this model.
This model will appear in a more physical context as a BdG
theory in the following section.

D. Class DIII: Helical Majorana fermions

Line defects for class DIII are characterized by a Z2 topo-
logical invariant that signals the presence or absence of 1D
helical Majorana fermion modes. As in Sec. III B, the BdG
Hamiltonian has the same structure as a Bloch Hamiltonian,
and the Z2 invariant can be deduced by “forgetting” the
particle-hole symmetry, and treating the problem as if it was
a Bloch Hamiltonian in class AII.
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There are several ways to realize helical Majorana fermi-
ons. The simplest is to consider the edge of a 2D time-
reversal invariant superconductor or superfluid, or equiva-
lently a dislocation in a layered version of that 2D state. A
second is to consider a topological line defect in a 3D class
DIII topological superconductor or superfluid. Such line de-
fects are well known in of 3He B �Refs. 41 and 76� and have
recently been revisited in Refs. 37 and 77.

Here we will consider a different realization that uses to-
pological insulators and superconductors. Consider a linear
junction between two superconductors on the surface of a
topological insulator as shown in Fig. 6. In Ref. 48 it was
shown that when the phase difference between the supercon-
ductors is � there are gapless helical Majorana modes that
propagate along the junction. This can be described by an
eight-band minimal model that describes a topological insu-
lator surface with a superconducting proximity effect

H = v�z�x�� · k + �m + �
k
2��z�z + �1�x. �3.31�

Here m is the mass describing the band inversion of a topo-
logical insulator, as in Eq. �3.22�, and �1 is the real part of
the superconducting gap parameter. This model has time re-
versal symmetry with �= i�yK and particle-hole symmetry
with 
=�y�yK. The imaginary part of the superconducting
gap, �2�y violates time-reversal symmetry. A line junction
along the x direction with phase difference � at the surface
of a topological insulator corresponds to the intersection of
planes where m�z� and �1�y� change sign.

The Z2 invariant characterizing such a line defect is
straightforward to evaluate because �H ,�y�x�=0. This extra
symmetry allows a “spin Chern number” to be defined, n�

= �16�2�−1�Tr��y�xF∧F�. Since the system decouples into
two time reversed versions of Eq. �3.13�, n�=1. By repeating
the formulation in Appendix E of the Z2 invariant �, it is
straightforward to show that this means �=1.

The helical modes can be explicitly seen by solving the
linear theory, m= fzz, �1= fyy, which leads to the harmonic
oscillator model studied in Appendix C. In the space of the
two zero modes the Hamiltonian has the form

H = vkx�x �3.32�

and describes 1D helical Majorana fermions.

E. Class C: Chiral Dirac fermions

We finally briefly consider line defects in class C. Class C
can be realized when time-reversal symmetry is broken in a

superconductor without spin orbit interactions that has even
parity singlet pairing. Line defects are characterized by an
integer topological invariant that determines the number of
chiral Majorana fermion modes associated with the line. As
in class D, this may be evaluated by forgetting the particle-
hole symmetry and evaluating the corresponding Chern num-
ber that would characterize class A. The 2Z in Table II for
this case, however, means that the Chern integer computed in
this manner is necessarily even. This means that there will
necessarily be an even number 2n of chiral Majorana fer-
mion modes, which may equivalently viewed as n chiral
Dirac fermion modes. An example of such a system would
be a 2D dx2−y2 + idxy superconductor,78 which exhibits chiral
Dirac fermion edge states, or equivalently a dislocation in a
3D layered version of that state.

IV. POINT DEFECTS

Point defects can occur at the end of a 1D system ��=1
−0� or at topological defects in 2D ��=2−1� or 3D ��=3
−2� systems. From the �=1 column Table I, it can be seen
that there are five symmetry classes that can have topologi-
cally nontrivial point defects. These are expected to be asso-
ciated with protected zero-energy bound states. Table III lists
the nontrivial classes, along with the character of the associ-
ated zero modes. In this section we will discuss each of these
cases.

A. Classes AIII, BDI, and CII: Chiral zero modes

1. Topological invariant and zero modes

Point defects in classes AIII, BDI, and CII are character-
ized by integer topological invariants. The formula for this
integer invariant can be formulated by exploiting the chiral
symmetry in each class. In a basis where the chiral symmetry
operator is �=�z, the Hamiltonian may be written

H�k,r� = � 0 q�k,r�
q�k,r�† 0

� . �4.1�

When the Hamiltonian has a flattened eigenvalue spectrum
H2=1, q�k ,r� is a unitary matrix. For a point defect in d
dimensions, the Hamiltonian as a function of d momentum
variables and D=d−1 position variables is characterized by

S S

TI

ϕ=π ϕ=0

FIG. 6. Helical Majorana fermions at a linear Josephson junc-
tion with phase difference � on the surface of a topological
insulator.

TABLE III. Symmetry classes supporting nontrivial point topo-
logical defects and their associated E=0 modes.

Symmetry Topological classes E=0 bound states

AIII Z Chiral Dirac

BDI Z Chiral Majorana

D Z2 Majorana

DIII Z2

Majorana Kramers doublet
�=Dirac�

CII 2Z Chiral Majorana Kramers

Doublet �=Chiral Dirac�
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the winding number associated with the homotopy
�2d−1�U�n→���=Z, which is given by

n =
�d − 1�!

�2d − 1�!�2�i�d�
Td�Sd−1

Tr��qdq†�2d−1� . �4.2�

For a Hamiltonian that is built from anticommuting Dirac

matrices, H�k ,r�= d̂�k ,r� ·�� , this invariant is given simply

by the winding degree of the mapping d̂�k ,r� from Td

�Sd−1 to S2d−1, which is expressed as an integral of the Jaco-
bian

n =
�d − 1�!

2�d �
Td�Sd−1

ddkdd−1r
�d̂�k,r�
�dk�d−1r

. �4.3�

In class AIII there are no constraints on q�k ,r� other than
unitarity so all possible values of n are possible. There are
additional constraints for the chiral classes with antiunitary
symmetries. As shown in Appendix B, this is simplest to see
by analyzing the constraints on the winding degree discussed
above. n must be zero in classes CI and DIII. There is no
constraint on n in class BDI while n must be even in class
CII.

The topological invariant is related to an index that char-
acterizes the chirality of the zero modes

n = N+ − N−, �4.4�

where N
 are the number of zero modes that are eigenstates
of � with eigenvalue 
1. To see that these zero modes are
indeed protected consider N+=n�0 and N−=0. Any term in
the Hamiltonian that could shift any of the N+ degenerate
states would have to have a nonzero matrix element connect-
ing states with the same chirality. Such terms are forbidden,
though, by the chiral symmetry �H ,��=0. In the supercon-
ducting classes BDI and CII the zero energy states are Ma-
jorana bound states. In class CII, however, since time rever-
sal symmetry requires that n must be even, the paired
Majorana states can be regarded as zero-energy Dirac fer-
mion states.

In the special case where H�k ,r� has the form of a mas-
sive Dirac Hamiltonian, by introducing a suitable regulariza-
tion for 
k
→� the topological invariant in Eqs. �4.2� and
�4.3� can be expressed in a simpler manner as a topological
invariant characterizing the mass term. In the following sec-
tions we consider this in the three specific cases d=1,2 ,3.

2. Solitons in d=1

The simplest topological zero mode occurs in the Jackiw-
Rebbi model,45 which is closely related to the Su, Schrieffer,
and Heeger model.47 Consider

H�k,x� = vk�x + m�y . �4.5�

Domain walls where m�x� changes sign as a function of x are
associated with the well known zero-energy soliton states.

To analyze the topological class requires a regularization
for 
k
→�. This can either be done with a lattice, as in the
Su, Schrieffer, Heeger model or by adding a term �k2�y, as in
Eq. �3.13� so that 
k
→� can be replaced by a single point.

In either case, the invariant in Eq. �4.2� changes by 1 when m
changes sign.

3. Jackiw-Rossi Model in d=2

Jackiw and Rossi introduced a two-dimensional model
that has protected zero modes.46 The Hamiltonian can be
written

H�k,r� = v�� · k + �� · �� �r� , �4.6�

where k= �kx ,ky�, and ��1 ,�2� and ��1 ,�2� are anticommut-
ing Dirac matrices. They showed that the core of a vortex
where �=�1+ i�2 winds by 2�n is associated with n zero
modes that are protected by the chiral symmetry. Viewed as a
BdG Hamiltonian, these zero modes are Majorana bound
states.

This can be interpreted as a Hamiltonian describing su-
perconductivity in Dirac fermions. In this interpretation the
Dirac matrices are expressed as ��1 ,�2�=�z��x ,�y� and
��1 ,�2�= ��x ,�y�, where �� is a Pauli matrix describing spin
and �� describes particle-hole space. The superconducting
pairing term is �=�1+ i�2. In this interpretation a vortex
violates the physical time-reversal symmetry �= i�yK. How-
ever, even in the presence of a vortex this model has a ficti-

tious “time-reversal symmetry” �̃=�x�xK which satisfies

�̃2=+1. This symmetry would be violated by a finite chemi-
cal potential term ��z. Combined with particle-hole symme-

try 
=�y�yK �
2=+1�, �̃ defines the BDI class with chiral
symmetry �=�z�z.

Evaluating the topological invariant in Eq. �4.2� again re-
quires a 
k
→� regularization. One possibility is to add
�
k
2�x so that 
k
→� can be replaced by a single point. In
this case the invariant can be determined by computing the

winding degree of d̂�k ,r� on S3. In the limit �→0 the k
integral can be performed so that Eq. �4.2� can be expressed
as the winding number of the phase of �1+ i�2= 
�
ei�

n =
1

2�
�

S1
d� . �4.7�

4. Hedgehogs in d=3

In Ref. 53 we introduced a three dimensional model for
Majorana bound states that can be interpreted as a theory of
a vortex at the interface between a superconductor and a
topological insulator. In the special case that the chemical
potential is equal to zero, model has the same form as Eq.
�4.6�, except that now all of the vectors are three dimen-
sional. In the topological insulator model we have ��
= ��1 ,�2 ,�3�=�x�z�� and �� = ��1 ,�2 ,�3�= ��z�z ,�x ,�y�. �� and
�� are defined as before while �� describes a orbital degree of
freedom. The chiral symmetry, �=�y�z is violated if a
chemical potential term ��z is included.

Following the same steps that led to Eq. �4.7� the invari-
ant Eq. �4.2� is given by the winding number of �̂=�� / 
�� 
 on
S2

n =
1

4�
�

S2
�̂ · �d�̂ � d�̂� . �4.8�
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B. Class D: Majorana bound states

1. Topological invariant

Point defects in class D are characterized by a Z2 topo-
logical invariant that determines the presence or absence of a
Majorana bound state associated with the defect. These in-
clude the well-known end states in a 1D p-wave supercon-
ductor and vortex states in a 2D px+ ipy superconductor. In
Ref. 53 we considered such zero modes in a three-
dimensional BdG theory describing Majorana zero modes in
topological insulator structures. Here we develop a unified
description of all of these cases.

For a point defect in d dimensions, the Hamiltonian de-
pends on d momentum variables and D=d−1 position vari-
ables. In Appendix D we show that the Z2 invariant is given
by

� =
2

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2, �4.9�

where Q2d−1 is the Chern Simons form. The specific cases of
interest are

Q1 = Tr�A� , �4.10�

Q3 = Tr�AdA +
2

3
A3
 , �4.11�

Q5 = Tr�A�dA�2 +
3

2
A3dA +

3

5
A5
 . �4.12�

It is instructive to see that Eq. �4.9� reduces to Eq. �4.2� in
the case in which a system also has particle-hole symmetry.
In this case, as detailed in Appendix D it is possible to
choose a gauge in which A=q†dq /2, so that Q2d−1
� �qdq†�2d−1.

2. End states in a 1D superconductor

The simplest example of a point defect in a supercon-
ductor occurs in Kitaev’s model38 of a one-dimensional
p-wave superconductor. This is described by a simple 1D
tight binding model for spinless electrons, which includes a
nearest-neighbor hopping term tci

†ci+1+H.c. and a nearest-
neighbor p-wave pairing term �cici+1+H.c.. The Bogoliubov
de Gennes Hamiltonian can then be written as

H�k� = �t cos k − ���z + � sin k�x. �4.13�

This model exhibits a weak pairing phase for 
�
� t and a
strong pairing phase for 
�
� t. The weak pairing phase will
have zero-energy Majorana states at its ends.

The topological invariant in Eq. �4.9� can be easily evalu-
ated. We find A=d� /2, where � is the polar angle of d�k�
= �t cos k−� ,� sin k�. It follows that for 
�
� t, the topo-
logical invariant is �=1 mod 2.

3. Vortex in a 2D topological superconductor

In two dimensions, a Majorana bound state occurs at a
vortex in a topological superconductor. This can be easily

seen by considering the edge states of the topological super-
conductor in the presence of a hole.39 Particle-hole symmetry
requires that the quantized edge states come in pairs. When
the flux is an odd multiple of h /2e, the edge states are quan-
tized such that a zero mode is present. In this section we will
evaluate the topological invariant in Eq. �4.9� associated with
a loop surrounding the vortex.

We begin with the class D BdG Hamiltonian Hp
0�kx ,ky�

characterizing the topological superconductor when the su-
perconducting phase is zero. We include the subscript p to
denote the first Chern number that classifies the topological
superconductor. We can then introduce a nonzero supercon-
ducting phase by a gauge transformation

Hp�k,�� = e−i��z/2Hp
0�k�ei��z/2, �4.14�

where �z operates in the Nambu particle-hole space. We now
wish to evaluate Eq. �4.9� for this Hamiltonian when phase
��s� winds around a vortex. There is, however, a difficulty
because the Chern Simons formula requires a gauge that is
continuous throughout the entire base space T2�S1. The
nonzero Chern number p characterizing Hp

0�k� is an obstruc-
tion to constructing such a gauge. A similar problem arose in
Sec. III C 2, when we discussed a line dislocation in a weak
topological superconductor. We can adapt the trick we used
there to get around the present problem. We thus double the
Hilbert space to include two copies of our Hamiltonian, one
with Chern number p and one with Chern number −p

H̃0�k� = �Hp
0�k� 0

0 H−p
0 �k�

� . �4.15�

We then put the vortex in only the +p component

H̃�k,�� = e−i�qH̃0�k�ei�q, �4.16�

where

q =
1 + �z

2
�1 0

0 0
� . �4.17�

We added an extra phase factor by replacing �z by 1+�z in
order to make ei�q periodic under �→�+2�.

Since the Chern number characterizing H̃0�k� is zero,
there exists a continuous gauge


ũi�k,��� = ei�q
ũi
0�k�� , �4.18�

which allows us to evaluate the Chern-Simons integral. The

Berry’s connection Ãij = 	ũi 
dũj� is given by

Ã = Ã0 + iQd� , �4.19�

where Ã0�k� is the connection describing H̃0�k� and Qij�k�
= 	ũi

0�k�
q
ũj
0�k��. Inserting this into Eq. �4.11� and rearrang-

ing terms we find

Q3 = Tr�2QF̃0 − d�QÃ0�� ∧ d� , �4.20�

where F̃0=dÃ0+Ã0∧Ã0. Since the second term is a total
derivative it can be discarded. For the first term there are two
contributions from the 1 and the �z in Eq. �4.17�. Upon inte-
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grating over k, the �z term can be shown to vanish as a
consequence of particle-hole symmetry. The 1 term simply
projects out the Berry curvature of the original Hamiltonian
Hp

0�k� so that

Q3 = Tr�F0� ∧ d� . �4.21�

It follows from Eq. �4.9� that the Z2 invariant characterizing
the vortex is

� = pm mod 2, �4.22�

where p is the Chern number characterizing the topological
superconductor and m is the phase winding number associ-
ated with the vortex.

It is also instructive to consider this invariant in the con-
text of the simple two-band model introduced by Read and
Green.39 This can be written as a simple tight-binding model

H0�kx,ky� = �t�cos kx + cos ky� − ���z + ��sin kx�x + sin ky�y� ,

�4.23�

where the superconducting order parameter � is real. As in
Eq. �4.13�, this model exhibits weak and strong pairing
phases for 
�
� t and 
�
� t. These are distinguished by the
Chern invariant, which in turn is related to the winding num-

ber on S2 of the unit vector d̂�k�, where d��k� are the coeffi-
cients of �� in Eq. �4.23�. A nonzero superconducting phase is
again introduced by rotating about �z as in Eq. �4.14�. Here
we wish to show that in this two band model the Z2 invariant
� can be understood from a geometrical point of view.

The Z2 invariant characterizing a vortex can be under-

stood in terms of the topology of the maps d̂�kx ,ky ,��. from
T2�S1 to S2. These maps were first classified by Pontrjagin79

and have also appeared in other physical contexts.53,80,81

Without losing generality, we can reduce the torus T2 to a
sphere S2 so the mappings are S2�S1→S2. When for fixed �

d̂�kx ,ky ,�� has an S2 winding number of 
p, the topological
classification is Z2p. In the case of interest, p=1, so there are
two classes.

This Z2 Pontrjagin invariant can be understood pictorially
by considering inverse image paths in �k ,�� space, which
map to two specific points on S2. These correspond to 1D
curves in S2�S1. Figure 7 shows three examples of such
curves. The inner sphere corresponds to �=0 while the outer
sphere corresponds to �=2�. Since p=1, for every point on
S2 the inverse image path is a single curve connecting the
inner and outer spheres. The key point is to examine the
linking properties of these curves. The Z2 invariant describes
the number of twists in a pair of inverse image paths, which
is 1 in �a�, 2 in �b�, and 0 in �c�. The configuration in �b� can
be continuously deformed into that in �c� by dragging the
paths around the inner sphere. This can be verified by a
simple demonstration using your belt. The twist in �a�, how-
ever, cannot be undone. The number of twists thus defines
the Z2 Pontrjagin invariant.

4. Superconductor heterostructures

Finally, in three dimensions, a nontrivial point defect can
occur at a superconductor heterostructure. An example is a

vortex in the superconducting state at the interface between a
superconductor and a topological insulator. As shown in Ref.
53, this can be described by the simple Hamiltonian

H = v�z�x�� · k − ��z + �m + �
k
2��z�z + �1�x + �2�y .

�4.24�

Here m is a mass which distinguishes a topological insulator
from a trivial insulator, and �=�1+ i�2 is a superconducting
order parameter. For �=0, this Hamiltonian has the form of
the three dimensional version of Eq. �4.6� discussed in Sec.
IV A 4, where the mass term is characterized by the vector
�� = �m ,�1 ,�2�. A vortex in � at the interface where m
changes sign then corresponds to a hedgehog singularity in
�� . From Eq. �4.3�, it can be seen that the class BDI Z invari-
ant is n=1. This then establishes that the class D Z invariant
is �=1. The Z2 survives when a nonzero chemical potential
reduces the symmetry from class BDI to class D.

C. Class DIII: Majorana doublets

Point defects in class DIII are characterized by a Z2 topo-
logical invariant. These are associated with zero modes, but
unlike class D, the zero modes are required by Kramers theo-
rem to be doubly degenerate. The zero modes thus form a
Majorana doublet, which is equivalent to a single Dirac fer-
mion.

In Table I, Class DIII, �=1 is an entry that is similar to
Class AII, �=2. The Z2 for DIII invariant bears a resem-
blance to the invariant for AII, which is a generalization of
the Z2 invariant characterizing the 2D quantum spin-Hall in-
sulator. In Appendix B we will establish a formula that em-
ploys the same gauge constraint

w�k,r� = w0, �4.25�

where w0 is a constant independent of k and r. w�k ,r� re-
lates the time-reversed states at k and −k and is given by Eq.
�3.23�. Provided we choose a gauge that satisfies this con-
straint, the Z2 invariant is given by

φ=0

φ=2π

ν=1 ν=0 ν=0(a) (b) (c)

φ=0

φ=2π

φ=0

φ=2π

FIG. 7. �Color online� Visualization of the Z2 Pontrjagin invari-
ant characterizing maps from �k ,���S2�S1 to S2 when the wind-
ing degree for each � is 1. The inner sphere corresponds to k at
�=0 while the outer sphere is �=2�. The lines depict inverse
images of two specific points on S2, which are lines connecting the
inner and outer spheres. In �a� they have one twist, which cannot be
eliminated. The double twist in �b� can be unwound by smoothly
dragging the paths around the sphere to arrive at �c�, which has no
twist.
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�̃ =
1

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2. �4.26�

This formula is almost identical to the formula for a point
defect in class D but they differ by an important factor of
two. Due to the combination of time-reversal and particle-
hole symmetries the Chern-Simons integral in Eq. �4.26� is
guaranteed to be an integer but the integer is not gauge in-
variant. When the time-reversal constraint is satisfied, the
parity �̃ is gauge invariant. It then follows that the class D
invariant in Eq. �4.9�, �=0 mod 2.

In the special case d=1 there is a formula that does not
rely on the gauge constraint, though it still requires a glo-
bally defined gauge. It is related to the similar “fixed-point”
formula for the invariant for the 2D quantum spin-Hall
insulator,73 and has recently been employed by Qi, Hughes,
and Zhang82 to classify one-dimensional time-reversal in-
variant superconductors. In class DIII, it is possible to
choose a basis in which the time-reversal and particle-hole
operators are given by �=�yK and 
=�xK so that the chiral
operator is �=�z. In this basis, the Hamiltonian has the form
�4.1�, where q�k ,r�→q�k� satisfies q�−k�=−q�k�T. Thus,
Pf�q�k�� is defined for the time-reversal invariant points k
=0 and k=�. q�k� is related to w�k� because in a particular
gauge it is possible to choose w�k�=q�k� /�
Det�q�k��
. The
Z2 invariant is then given by

�− 1��̃ =
Pf�q����
Pf�q�0��

�Det�q�0��
�Det�q����

, �4.27�

where the branch �Det�q�k�� is chosen continuously between
k=0 and k=�. The equivalence of Eqs. �4.26� and �4.27� for
d=1 is demonstrated in Appendix A. Unlike Eq. �4.26�, how-
ever, the fixed-point formula �4.27� does not have a natural
generalization for d�1.

Majorana doublets can occur at topological defects in
time-reversal invariant topological superconductors, or in
Helium 3B. Here we consider a different configuration at a
Josephson junction at the edge of a quantum spin-Hall insu-
lator �Fig. 8�. When the phase difference across the Joseph-
son junction is �, it was shown in Refs. 38 and 83 that there
is a level crossing in the Andreev bound states at the junc-
tion. This corresponds precisely to a Majorana doublet.

This can be described by the simple continuum 1D theory
introduced in Ref. 83

H = vk�z�z + �1�x. �4.28�

Here �z describes the spin of the quantum spin-Hall edge
state and �1 is the real superconducting order parameter.
This model has particle-hole symmetry 
=�y�yK and time-
reversal symmetry �= i�yK and is in class DIII. A � junction
corresponds to a domain wall where �1 changes sign. Fol-
lowing appendix C, it is straightforward to see that this will
involve a degenerate pair of zero modes indexed by the spin
�z and chirality �y constrained by �y�z=−1.

The Hamiltonian �4.28� should be viewed as a low-energy
theory describing the edge of a 2D quantum spin-Hall insu-
lator. Nonetheless, we may describe a domain wall where �1
changes sign using an effective one dimensional theory by
introducing a regularization replacing �1 by �1+�k2. This
regularization will not affect the topological structure of a
domain wall, where �1 changes sign. A topologically equiva-
lent lattice version of the theory then has the form

H = t sin k�z�z + ��1 + u�1 − cos k���x. �4.29�

where we assume 
�1
�2u.
The topological invariant can be evaluated using either

Eq. �4.26� or �4.27�. To use Eq. �4.26�, note that Eq. �4.29�
has exactly the same form as two copies �distinguished by
�z= 
1� of Eq. �4.13�. The evaluation of Eq. �4.26� then
proceeds along the same lines. It is straightforward to check
that in a basis where the time-reversal constraint in Eq.
�4.25� is satisfied �this fixes the relative phases of the �z
= 
1 states�, A=d�, where � is the polar angle of d�k�
= �t sin k ,�1+u�1−cos k��. It follows that a defect where �1
changes sign has �̃=1.

To use Eq. �4.27�, we transform to a basis in which �
=�yK, 
=�xK, and �=�z. This is accomplished by the uni-
tary transformation U=exp�i�� /4��y�z�exp�i�� /4��x�. Then,
H has the form of Eq. �3.13� with q�k�=−i�t sin k�z+ ��1
+u�1−cos k���y�. It follows that det�q�k�� is real and positive
for all k. Moreover, Pf�q�0�� /�det�q�0��=sgn��1� while
Pf�q���� /�det�q����=1. Again, a defect where �1 changes
sign has �̃=1.

V. ADIABATIC PUMPS

In this section we will consider time-dependent Hamilto-
nians H�k ,r , t�, where in additional to having adiabatic spa-
tial variation r there is a cyclic adiabatic temporal variation
parameterized by t. We will focus on pointlike spatial de-
fects, in which the dimensions of k and r are related by
d−D=1.

Adiabatic cycles in which H�k ,r , t=T�=H�k ,r , t=0� can
be classified topologically by considering t to be an addi-

tional “spacelike” variable, defining D̃=D+1. Such cycles
will be classified by the �=0 column of Table I. Topologi-
cally nontrivial cycles correspond to adiabatic pumps. Table
IV shows the symmetry classes which host nontrivial pump-
ing cycles, along with the character of the adiabatic pump.
There are two general cases. Classes A, AI, and AII define a
charge pump, where after one cycle an integer number of
charges is transported toward or away from the point defect.

S Sϕ = 0 ϕ = π

QSHI

FIG. 8. A Josephson junction in proximity with the helical edge
states of a quantum spin-Hall insulator. When the phase difference
is �, there is a zero energy Majorana doublet at the junction.
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Classes BDI and D define a fermion parity pump. We will
discuss these two cases separately.

We note in passing that the �=0 column of Table I also
applies to topological textures, for which d=D. For example,
a spatially dependent three-dimensional band structure
H�k ,r� can have topological textures analogous to Skyrmi-
ons in a 2D magnet. Such textures have recently been ana-
lyzed by Ran, Hosur, and Vishwanath84 for the case of class
D, where they showed that the Z2 invariant characterizing the
texture corresponds to the fermion parity associated with the
texture. Thus, nontrivial textures are fermions.

A. Classes A, AI, and AII: Thouless charge pumps

The integer topological invariant characterizing a pump-
ing cycle in class A is simply the Chern number characteriz-
ing the Hamiltonian H�k ,r , t�.60,61 Imposing time-reversal
symmetry has only a minor effect on this. For �2=−1 �Class
AII�, an odd Chern number violates time-reversal symmetry
so that only even Chern numbers are allowed. This means
that the pumping cycle can only pump Kramers pairs of elec-
trons. For �2=+1 �Class AI� all Chern numbers are consis-
tent with time-reversal symmetry.

The simplest charge pump is the 1D model introduced by
Thouless.60 A continuum version of this model can be written
in the form

H�k,t� = vk�z + �m1�t� + �k2��x + m2�t��y . �5.1�

When the masses undergo a cycle such that the phase of
m1+ im2 a single electron is transmitted down the wire. In
this case, H�k , t� has a nonzero first Chern number. The
change in the charge associated with a point in a 1D system
is given by the difference in the Chern numbers associated
with either side of the point. Thus, after a cycle a charge e
accumulates at the end of a Thouless pump.

A two-dimensional version of the charge pump can be
developed based on Laughlin’s argument85 for the integer
quantum-Hall effect. Consider a 2D �=1 integer quantum-
Hall state and change the magnetic flux threading a hole
from 0 to h /e. In the process, a charge e is pumped to the
edge states surrounding the hole. This pumping process can
be characterized by the second Chern number characterizing
the 2D Hamiltonian H�kx ,ky ,� , t�, where � parameterizes a
circle surrounding the hole. A similar pump in 3D can be
considered and is characterized by the third Chern number.

B. Class D, BDI: Fermion parity pump

Adiabatic cycles of point defects in class D and BDI are
characterized by a Z2 topological invariant. In this section we
will argue that a nontrivial pumping cycle transfers a unit of
fermion parity to the point defect. This is intimately related
to the Ising non-Abelian statistics associated with defects
supporting Majorana bound states.

Like the point defect in class DIII ��=1�, the temporal
pump ��=0� in class D occupies an entry in Table I similar to
the line defect ��=2� in class AII so we expect a formula that
is similar to the formula for the 2D quantum spin-Hall insu-
lator. This is indeed the case, though the situation is slightly
more complicated. The Hamiltonian H�k ,r , t� is defined on a
base space Td�Sd−1�S1. In Appendix F we will show that
the invariant can be written in a form that resembles Eq.
�3.25�

� =
id

d!�2��d��
T1/2

Tr�Fd� − �
�T1/2

Q2d−1
mod 2,

�5.2�

where T1/2 is half of the base manifold, say, k1� �0,��, and
the Chern-Simons form Q2d−1 is generated by a continuous
valence frame uv�k ,r , t� 
k1=0,� that obeys certain particle-
hole gauge constraint. This is more subtle than the time-
reversal gauge condition in Eq. �3.24� for line defects in AII
and point defects in DIII. Unlike Eq. �3.24�, we do not have
a computational way of checking whether or not a given
frame satisfies the constraint. Nevertheless, it can be defined,
and in certain simple examples, the particle-hole constraint is
automatically satisfied.

The origin of the difficulty is that unlike time-reversal
symmetry, particle-hole symmetry connects the conduction
and valence bands. The gauge constraint therefore involves
both. Valence and conduction frames can be combined to
form a unitary matrix

Gk,r,t = � 
 

uv�k,r,t� uc�k,r,t�


 

� � U�2n� . �5.3�

The orthogonality of conduction and valence band states im-
plies that

Gk,r,t
† 
G−k,r,t = 0. �5.4�

In general, we call a frame G :�T1/2→U�2n� particle-hole
trivial if it can continuously be deformed to a constant while
satisfying Eq. (5.4) throughout the deformation. The Chern
Simons term in Eq. �5.2� requires a gauge that is built from
the valence-band part of a particle-hole trivial frame.

Though the subtlety of the gauge condition makes a gen-
eral computation of the invariant difficult, it is possible to
understand the invariant in the context of specific models.
Consider, a theory based on a point defect in the
d-dimensional version of Eq. �4.6�

TABLE IV. Symmetry classes that support nontrivial charge or
fermion parity pumping cycles.

Symmetry Topological classes Adiabatic Pump

A Z Charge

AI Z Charge

BDI Z2 Fermion parity

D Z2 Fermion parity

AII 2Z Charge Kramers doublet
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H�k,r,t� = v�� · k + �� · �� �r,t� . �5.5�

Here �� and �� are 2d�2d Dirac matrices, and we suppose that
for fixed t, the d-dimensional mass vector �� �r , t� has a point
topological defect at r0�t�. If Ref. 53 we argued that adiabatic
cycles for such point defects are classified by a Pontrjagin
invariant similar to that discussed in Sec. IV B 3. This may
also be understood in terms of the rotation of the “orienta-
tion” of the defect. Near the defect, suppose �� �r , t�=O�t��r
−r0�t��, where O�t� is a time-dependent O�d� rotation. In the
course of the cycle, the orientation of the topological defect,
characterized by O�t� goes through a cycle. Since for d�3,
�1�O�d��=Z2, there are two classes of cycles. As shown in
Ref. 53, the nontrivial cycle, which corresponds to a 2�
rotation changes the sign of the Majorana fermion wave
function associated with the topological defect. We will ar-
gue below that this corresponds to a change in the local
fermion parity in the vicinity of the defect. For d=2,
�1�O�2��=Z. However, the change in the sign of the Majo-
rana bound state is given by the parity of the O�2� winding
number. In theories with more bands, it is only this parity
that is topologically robust.

In d=1, the single � matrix in the two-band model does
not allow for continuous rotations. Consider instead Kitaev’s
model38 for a 1D topological superconductor with at time-
dependent phase

H�k,t� = �t cos k − ���z + �1�t�sin k�x + �2�t�sin k�y .

�5.6�

In this case it is possible to apply the formula �5.2� because
on the boundary �T, which is k=0 or k=� the Hamiltonian is
independent of t, so that the gauge condition in Eq. �5.4� is
automatically satisfied. Moreover, the second term in Eq.
�5.2� involving the Chern Simons integral is equal to zero so
that the invariant is simply the integral of F�x , t� over T1/2. It
is straightforward to check that this gives �=1.

In order to see why this corresponds to a pump for fer-
mion parity, suppose a topological superconductor is broken
in two places, as shown in Fig. 9. At the ends where the
superconductor is cut there will be Majorana bound states.
The pair of bound states associated with each cut defines two
quantum states which differ by the parity of the number of
electrons. If the two ends are weakly coupled by electron
tunneling then the pair of states will split. Now consider
advancing the phase of the central superconductor by 2�. As
shown in Refs. 38 and 83, the states interchange as depicted
in Fig. 9. The level crossing that occurs at � phase difference
is protected by the conservation of fermion parity. Thus, at
the end of the cycle, one unit of fermion parity has been
transmitted from one circled region to the other. The pump-
ing of fermion parity also applies to adiabatic cycles of point
defects in higher dimensions and is deeply connected with
the Ising non-Abelian statistics associated with those
defects.53

VI. CONCLUSION

In this paper we developed a unified framework for clas-
sifying topological defects in insulators and superconductors

by considering Bloch/BdG Hamiltonians that vary adiabati-
cally with spatial �and/or temporal� parameters. This led to a
generalization of the bulk-boundary correspondence, which
identifies protected gapless fermion excitations with topo-
logical invariants characterizing the defect. This leads to a
number of additional questions to be addressed in future
work.

The generalized bulk-boundary correspondence has the
flavor of a mathematical index theorem, which relates an
analytic index that characterizes the zero modes of a system
to a topological index. It would be interesting to see a more
general formulation of this relation86,87 that applies to the
classes without chiral symmetry that have Z2 invariants and
goes beyond the adiabatic approximation we used in this
paper. Though the structure of the gapless modes associated
with defects make it clear that such states are robust in the
presence of disorder and interactions, it would be desirable
to have a more general formulation of the topological invari-
ants characterizing a defect that can be applied to interacting
and/or disordered problems.

An important lesson we have learned is that topologically
protected modes can occur in a context somewhat more gen-
eral than simply boundary modes. This expands the possibili-
ties for engineering these states in physical systems. It is thus
an important future direction to explore the possibilities for
heterostructures that realize topologically protected modes.
The simplest version of this would be to engineer protected
chiral fermion modes using a magnetic topological insulator.
The perfect electrical transport in such states could have far
reaching implications at both the fundamental and practical
level. In addition, it is worth considering the expanded pos-
sibilities for realizing Majorana bound states in supercon-
ductor heterostructures, which could have implications for
quantum computing.

Finally, it will be interesting to generalize these topologi-
cal considerations to describe inherently correlated states,
such as the Laughlin state. Could a fractional quantum-Hall
edge state arise as a topological line defect in a 3D system?

ϕ=0 ϕ ϕ=0(t)

E

ϕ (t)

2π0

fermion parity(a)

(b)

FIG. 9. A one-dimensional fermion parity pump based on a 1D
topological superconductor, which has Majorana states at its ends.
When the phase of the central superconductor is advanced by 2�
the fermion parity associated with the pairs of Majorana states in-
side each circle changes. Thus fermion parity has been pumped
from one circle to the other. �b� shows the evolution of the energy
levels associated with a weakly coupled pair of Majorana states as a
function of phase. The level crossing at �=� is protected by the
local conservation of fermion parity.
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Understanding the topological invariants that would charac-
terize such a defect would lead to a deeper understanding of
topological states of matter.
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APPENDIX A: PERIODICITY IN SYMMETRY
AND DIMENSION

In this appendix we will establish the relations in Eqs.
�2.5� and �2.6� between the K groups in different position-
momentum dimensions �D ,d� and different symmetry
classes s. We will do so by starting with an arbitrary Hamil-
tonian in KF�s ;D ,d� and then explicitly constructing new
Hamiltonians in one higher position or momentum dimen-
sion, which have a symmetry either added or removed. The
new Hamiltonians will then belong to KF�s+1;D ,d+1� or
KF�s−1;D+1,d�. The first step is to identify the mappings
and show they preserve the group structure. This defines
group homomorphisms relating the K groups. The next step
is to show they are isomporphisms by showing that the maps
have an inverse, up to homotopic equivalence.

1. Hamiltonian mappings

There are two classes of mappings: those that add sym-
metries and those that remove symmetries. These need to be
considered separately.

We consider first the symmetry removing mappings that
send a Hamiltonian Hc with chiral symmetry to a Hamil-
tonian Hnc without chiral symmetry. Suppose �Hc�k ,r� ,��
=0, where � is the chiral operator. Then define

Hnc�k,r,�� = cos �Hc�k,r� + sin �� �A1�

for −� /2���� /2. This has the property that at �= 
� /2
the new Hamiltonian is 
�, independent of k and r. Thus,
at each of these points we may consider the base space Td

�SD defined by k and r to be contracted to a point. The new
Hamiltonian is then defined on the suspension ��Td�SD� of
the original base space �see Fig. 10�. If we treat the original

base space as a d+D-dimensional sphere, then the suspen-
sion is a d+D+1-dimensional sphere.

Without loss of generality we assume Hc is flattened so
that Hc

2=1. Since �Hc ,��=0 it follows that Hnc
2 =1 as well.

The second term in Eq. �A1� violates the chiral symmetry.
Thus, if Hc belongs to the complex class AIII �with no anti-
unitary symmetries�, then Hnc belongs to class A. Equation
�A1� thus provides a mapping from class AIII to class A.

For the real classes, which have antiunitary symmetries,
the second term will violate either particle-hole symmetry or
time-reversal symmetry, depending on whether � is a mo-
mentum or position-type variable �odd or even under � and

�. This will lead to a new nonchiral symmetry class related
to the original class by either a clockwise or counterclock-
wise turn on the symmetry clock �Fig. 11�. To determine
which it is, note that if we require �� ,
�=0 then ��
�2

=�2
2= �−1��s−1�/2. The unitary chiral symmetry operator
�satisfying �2=1� can then be written

� = i�s−1�/2�
 . �A2�

It follows that if � is momentumlike, then time-reversal sym-
metry is violated when s=1 mod 4, while particle hole is
violated when s=3 mod 4. This corresponds to corresponds
to a clockwise rotation on the symmetry clock, s→s+1. If �
is position like then s→s−1.

We next build a chiral Hamiltonian from a nonchiral one
by adding a symmetry. This is accomplished by doubling the
number of bands in a manner similar to the doubling em-
ployed in the Bogoliubov de Gennes description of a super-
conductor. We thus write

Hc�k,r,�� = cos �Hnc�k,r� � �z + sin �1 � �a, �A3�

where a=x or y. Here �� are Pauli matrices that act on the
doubled degree of freedom. As in Eqs. �A1�, Eq. �A3� gives
a new Hamiltonian defined on a base space that is the sus-
pension of the original base space. If Hnc

2 =1 it follows that
Hc

2=1 so the energy gap is preserved. It is also clear that the
new Hamiltonian has a chiral symmetry because it anticom-
mutes with �= i�z�a. Thus, if Hnc is in class A, then Hc is in
class AIII.

For the real-symmetry classes a=x or y must be chosen so
that the second term in Eq. �A3� preserves the original anti-
unitary symmetry of Hnc. This depends on the original anti-
unitary symmetry and whether � is chosen to be a momen-
tum or a position variable. For example, if Hnc has time-
reversal symmetry, �, and � is a momentum �position�
variable, then we require a=y �a=x�. In this case, Hc has the

θ
�/2

�/2

0

compactify

compactify

T d S D×

Σ(Td S )D×

FIG. 10. Suspension ��Td�SD�. The top and bottom of the
cylinder ��Td�SD�� �−� /2,� /2� are identified to two points.

0 17

4 35

26

0 17

4 35

26

FIG. 11. Hamiltonian mappings in Eqs. �A1� and �A3� are
drawn on the left and right clocks, respectively. Solid �dotted� ar-
rows represent addition of one momentum �spatial� dimension.
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additional particle-hole symmetry 
=�x� �
= i�y�� that
satisfies 
2=�2 �
2=−�2�. A similar analysis when Hnc has
particle-hole symmetry allows us to conclude that the sym-
metry class of Hc is given by a clockwise rotation on the
symmetry clock, s→s+1, when � is a momentum variable.
When � is a position variable, s→s−1 gives a counterclock-
wise rotation.

Equations �A1� and �A3� map a Hamiltonian into a new
Hamiltonian in a different dimension and different symmetry
class. It is clear that two Hamiltonians that are topologically
equivalent will be mapped to topologically equivalent
Hamiltonians since the mapping can be done continuously
on a smooth interpolation between the original Hamiltonians.
Thus, Eqs. �A1� and �A3� define a mapping between equiva-
lence classes of Hamiltonians. Moreover, since the direct
sum of two Hamiltonians is mapped to the direct sum of the
new Hamiltonians, the group property of the equivalence
classes is preserved. Equations �A1� and �A3� thus define a
K-group homomorphism

KF�s;D,d� → KF�s + 1;D,d + 1� , �A4�

KF�s;D,d� → KF�s − 1;D + 1,d� �A5�

for F=R ,C.

2. Invertibility

In order to establish that Eqs. �A4� and �A5� are isomor-
phisms we need to show that there exists an inverse. This is
not true of the Hamiltonian mappings. A general Hamiltonian
cannot be built from a lower dimensional Hamiltonian using
Eqs. �A1� and �A3�. However, we will argue that it is pos-
sible to continuously deform any Hamiltonian into the form
given by Eq. �A1� or �A3�. Thus, the mappings between
equivalence classes have an inverse. To show this we will
use a mathematical method borrowed from Morse theory.67

Without loss of generality we again consider flattened
Hamiltonians having equal number of conduction and va-
lence bands with energies 
1. Consider H�k ,r ,��, where
�� �−� /2,� /2� is either a position or momentum variable
and H is independent of k and r at �= 
� /2. We wish to
show that H�k ,r ,�� can be continuously deformed into the
form �A1� or �A3�. To do so we define an artificial “action”

S�H�k,r,��� =� d�ddkdDr Tr���H��H� . �A6�

S can be interpreted as a “height” function in the space of
gapped symmetry preserving Hamiltonians. Given any
Hamiltonian there is always a downhill direction. These
downhill vectors can then be integrated into a deformation
trajectory. Since the action is positive definite, it is bounded
below. The deformation trajectory must end at a Hamiltonian
that locally minimizes the action.

Under the flatness constraint H2=1, minimal Hamilto-
nians satisfy the Euler-Lagrange equation

��
2H + H = 0. �A7�

The solutions must be a linear combination of sin � and
cos �. The coefficient of sin � must be constant because the

base space is compactified to points at �= 
� /2. A minimal
Hamiltonian thus has the form

H�k,r,�� = cos �H1�k,r� + sin �H0. �A8�

The constraint H�k ,r ,��2=1 requires

H0
2 = H1�k,r�2 = 1, �H0,H1�k,r�� = 0. �A9�

If H�k ,r ,�� is nonchiral, then Eq. �A8� is already in the
form of Eq. �A1� with �=H0 and Hc�k ,r�=H1�k ,r�. H1
automatically has chiral symmetry due to Eq. �A9�. This
shows that Eqs. �A4� and �A5� are invertible when s is odd.

If H�k ,r ,�� is chiral, then both H0 and H1�k ,r� anticom-
mute with the chiral symmetry operator �. Rename H0=�a
and �= i�z�a, where a=x �a=y� when � is a position �mo-
mentum� variable. It follows that �H1 ,�x�= �H1 ,�y�=0 so we
can write

H1�k,r� = h�k,r� � �z. �A10�

Equation �A8� thus takes the form of Eq. �A3� with Hnc=h.
Since �z anticommutes with either � or 
, h�k ,r� carries
exactly one antiunitary symmetry and is therefore nonchiral.
This shows that Eqs. �A4� and �A5� are invertible when s is
even.

APPENDIX B: REPRESENTATIVE HAMILTONIANS
AND CLASSIFICATION BY WINDING NUMBERS

In this appendix we construct representative Hamiltonians
for each of the symmetry classes that are built as linear com-
binations of Clifford algebra generators that can be repre-
sented as anticommuting Dirac matrices. This allows us to
relate the integer topological invariants, corresponding to the
Z and 2Z entries in Table I, to the winding degree in maps
between spheres. Similar construction for defectless bulk
Hamiltonians can be found in Ref. 68 by Ryu, et al.. In
general, Hamiltonians do not have this specific form. How-
ever, since each topological class of Hamiltonians includes
representatives of this form, it is always possible to smoothly
deform H�k ,r� into this form.

The simplest example of this approach is the familiar case
of a two-dimensional Hamiltonian with no symmetries �class
A�. A topologically nontrivial Hamiltonian can be repre-
sented as a 2�2 matrix that can be expressed in terms of
Pauli matrices as H�k�=h�k� ·�� . The Hamiltonian can then

be associated with a unit vector d̂�k�=h�k� / 
h�k�
�S2. It is
then well known that the Chern number characterizing H�k�
in two dimensions is related to the degree, or winding num-
ber, of the mapping from k to S2. This approach also applies
to higher Chern numbers characterizing Hamiltonians in
even dimensions d=2n. In this case, a Hamiltonian that is a
combination of 2n+1 2n�2n Dirac matrices, and can be as-

sociated with a unit vector d̂�S2n.
For the complex chiral class AIII, the U�n� winding num-

ber characterizing a family of Hamiltonians can similarly be
expressed as a winding number on spheres. For example, in
d=1, a chiral Hamiltonian can be written H�k�=hx�k��x

+hy�k��y �so �H ,�z�=0�, and is characterized by d̂�k��S1.
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The integer topological invariant can then be expressed by

the winding number of d̂�k�. Similar considerations apply to
the integer invariants for chiral Hamiltonians in higher odd
dimensions.

For the real symmetry classes we introduce “position-
type” Dirac matrices �� and “momentum-type” Dirac matri-
ces �i. These satisfy ��� ,���=2���, ��i ,� j�=2�ij, and
��� ,� j�=0, and are distinguished by their symmetry under
antiunitary symmetries. If there is time-reversal symmetry
we require

���,�� = ��i,�� = 0 �B1�

while with particle-hole symmetry

���,
� = ��i,
� = 0. �B2�

For a Hamiltonian that is a combination of p momentumlike
matrices �1,. . .,p and q+1 positionlike matrices �0,. . .,q

H�k,r� = R�k,r� · �� + K�k,r� · �� �B3�

the coefficients must satisfy the involution

R�− k,r� = R�k,r� , �B4�

K�− k,r� = − K�k,r� . �B5�

This can be characterized by a unit vector

d̂�k,r� =
�K,R�

�
K
2 + 
R
2
� Sp+q, �B6�

where Sp+q is a �p+q� sphere in which p of the dimensions
are odd under the involution in Eq. �B5�.

The symmetry class s of H�k ,r� is related to the indices
�p ,q� characterizing the numbers of Dirac matrices by

p − q = s mod 8. �B7�

To see this, start with a Hamiltonian H0=R0�k ,r��0 that
involves a single 1�1 position like “Dirac matrix” �0=1 so
�p ,q�= �0,0�. This clearly has time-reversal symmetry, with
�=K, and corresponds to class AI with s=0. Next, generate
Hamiltonians Hs with different symmetries s by using the
Hamiltonian mappings introduced in Appendix A. Both the
mappings in Eqs. �A1� and �A3� define a new Clifford alge-
bra with one extra generator that is either position or mo-
mentum type. The mappings that correspond to clockwise
rotations on the symmetry clock �s→s+1� introduce an ad-
ditional positionlike generator �p→p+1� while the map-

pings that correspond to counterclockwise rotations �s→s
−1� introduce an additional momentumlike generator �q
→q+1�. Equation �B7� follows because this procedure can
be repeated to generate Hamiltonians with any indices �p ,q�.
Some examples are listed in Table V.

The integer topological invariants in Table I �which occur
when s−� is even� can be related to the winding degree of

the maps d̂ :SD+d→Sp+q. This can be nonzero when the
spheres have the same total dimensions. In light of Eq. �B7�,
�p ,q� can always be chosen so that d+D= p+q. The antiuni-
tary symmetries impose constraints on the possible values of
these winding numbers, which depend on the relation be-
tween �=d−D and s= p−q.

The involutions on Sd+D and Sp+q have opposite orienta-
tions when �−s�2 or 6 mod 8, and therefore an involution
preserving map Sd+D→Sp+q can have nonzero winding de-
gree only when �−s�0 or 4 mod 8. Symmetry gives a fur-
ther constraint on the latter case. Consider a sphere map
S�,�

2 →S�,�
2 , where the involutions on the spheres send

�� ,��� �� ,�+�� and �� ,��� �� ,��. In order for ��� ,��
=��� ,�+��, the winding number must be even. Together,
these show

deg � � Z for � − s � 0�mod 8�
2Z for � − s � 4�mod 8�
0 otherwise.

� �B8�

This gives a topological understanding of the Z’s and 2Z’s on
the periodic table in terms of winding number, which can be
identified with the more general analytic invariants, namely,
Chern numbers for nonchiral classes

n =
1

�d + D

2
�!
� i

2�
��d+D�/2�

Td�SD
Tr�F�d+D�/2� �B9�

and winding numbers of the chiral flipping operator q�k ,r�
for chiral ones �see Eqs. �4.1� and �4.2��.

n =
�d + D − 1

2
�!

�d + D�!�2�i��d+D+1�/2�
Td�SD

Tr��qdq†�d+D� .

�B10�

The Z2’s on the periodic table are not directly characterized
by winding degree but rather through dimensional reduction.

TABLE V. Examples of Dirac matrices for �p ,q�= �s ,0�.

Classes Dirac matrices Symmetry operators

s AZ �0 �� � 
 �

0 AI 1 K

1 BDI �z �y K �xK �x

2 D �z �y �x �xK

3 DIII �z�z �z�y �z�x �x i�y�xK �xK �y

4 AII �z�z �z�y �z�x �x �y i�y�xK
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Given a Hamiltonian H�k ,k1 ,k2 ,r� with s�� mod 8, its
winding degree mod 2 determines the Z2 classification of
its equatorial offspring Hk2=0�k ,k1 ,r� and Hk1,2=0�k ,r�. For
example, topological insulators in two and three dimensions
are equatorial restrictions of a four-dimensional model

d̂ :S4→
=

S4 with unit winding number. Around the north pole,
the Hamiltonian has the form

H�k,k4� = �m +  k2��1 + k · �3�� + k4�2 �B11�

and on the equator k4=0, this gives a three-dimensional
Dirac theory of mass m around k=0 that locally describes
3D topological insulators Bi2Se3 and Bi2Te3 around �.

APPENDIX C: ZERO MODES IN THE HARMONIC
OSCILLATOR MODEL

We present exact solvable soliton states of Dirac-type de-
fect Hamiltonians. These include zero modes at a point de-
fect of a Hamiltonian in the chiral class AIII and chiral
modes along a line defect of a Hamiltonian in the nonchiral
class A. We establish the connection between the two kinds
of boundary modes through the Hamiltonian mapping in Eq.
�A1�.

A nontrivial chiral Hamiltonian isotropic around a point
defect at r=0 is a Dirac operator

H = − i�� · �+ r · �� , �C1�

where the chiral operator is �= id� j=1
d � j� j and its adiabatic

limit e−ik·rHeik·r=k ·�� +r ·�� has unit winding degree on
S2d−1= ��k ,r� :k2+r2=1�.

H2 = − �2 + r2 − i�� · �� �C2�

and the spectrum is determined by the quantum numbers nj
�0 of the harmonic oscillator and the parities ! j of the mu-
tually commuting matrices i� j� j, for j=1, . . . ,d.

E2 = �
j=1

d

2nj + 1 − ! j . �C3�

The unique zero-energy state 
"0�, indexed by nj =0 and ! j
=1, has positive chirality �=+1, and is exponentially local-
ized at the point defect as "0�r��e−1/2r2

.
Next we consider a nonchiral Hamiltonian isotropic along

a line defect.

H�k�� = k�� − i�� · �+ r · �� , �C4�

where k� is parallel to the defect line, r and � are normal
position and derivative. Its adiabatic limit e−ik·rH�k��eik·r

=k��+k ·�� +r ·�� is related to that of Eq. �C1� by �1,1� peri-
odicity and has unit winding degree on S2d= ��k� ,k ,r� :k�

2

+ 
k
2+ 
r
2=1�. The zero mode 
"0� of Eq. �C1� gives rise
to a positive chiral mode, H�k��
"0�=k��
"0�=+k�
"0�
�Fig. 12�.

The two examples verified bulk-boundary correspondence
through identifying analytic information of the defect-bound
solitons and the topology of slowly spatial modulated theo-

ries far away from the defect. The single zero mode of Eq.
�C1� and spectral flow of Eq. �C4� are equated to unit wind-
ing degree of an adiabatic limit. In general, bulk-boundary
correspondence is mathematically summarized by index
theorems that associate certain analytic and topological indi-
ces of Hamiltonians.41,45,46,56,86,87

APPENDIX D: INVARIANT FOR POINT DEFECTS
IN CLASS D AND BDI

We follow the derivation given in Ref. 53, which was
based on Qi, Hughes, and Zhang’s formulation of the topo-
logical invariant characterizing a three-dimensional topologi-
cal insulator.10 For a point defect in d dimensions, the Hamil-
tonian H�k ,r� depends on d momentum variables and d−1
position variables. We introduce a one parameter deforma-

tion H̃�# ,k ,r� that connects H̃�k ,r� at #=0 to a constant
Hamiltonian at #=1 while breaking particle-hole symmetry.
The particle-hole symmetry can be restored by including a

mirror image H̃�# ,k ,r�=−
H�−# ,k ,r�
−1 for −1�#�0.
For #=
, �k ,r� can be replaced by a single point, so the 2d
parameter space �# ,k ,r� is the suspension ��Td�Sd−1� of
the original space. The Hamiltonian defined on this space is
characterized by its dth Chern character

� =
1

d!
� i

2�
�d�

��Td�Sd−1�
Tr�Fd� . �D1�

Due to particle-hole symmetry, the contributions from the
two hemispheres #�0, #�0 are equal. Using the fact that
the integrand is the derivative of the Chern Simons form,
Tr�Fd�=dQ2d−1, we can therefore write

� =
2

d!
� i

2�
�d�

Td�Sd−1
Q2d−1. �D2�

As was the case in Refs. 10 and 53, � can be different for
different deformations H�# ,k ,r�. However, particle-hole
symmetry requires the difference is an even integer. Thus,
the parity of Eq. �D2� defines the Z2 invariant.

The Chern Simons form Q2d−1 can be expressed in terms
of the connection A via the general formula

k

E

FIG. 12. �Color online� Energy spectrum of Hamiltonian �C4�.
The zero mode 
"0� of positive chirality at k� =0 corresponds the
chiral mode that generates the midgap k�-linear energy spectrum.
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Q2d−1 = d�
0

1

dt Tr�A�tdA + t2A2�d−1� . �D3�

In the addition of time-reversal symmetry �2=1 or equiva-
lently a chiral symmetry �=��=�z, a valence frame of the
BDI Hamiltonian �4.1� can be chosen to be

u�k,r� =
1
�2

�q�k,r�
− 1

� , �D4�

where q is unitary and 1 is the identity matrix. This corre-
sponds the Berry connection A=u†du= 1

2q†dq and Chern-
Simons form

Q2d−1 =
d

2
�

0

1

dt� t

2
� t

2
− 1�
d−1

Tr��q†dq�2d−1�

=
�− 1�d

2

d!�d − 1�!
�2d − 1�!

Tr��q†dq�2d−1� . �D5�

This equates the winding number of q in Eq. �4.2� to the
Chern Simons invariant in Eq. �4.9�.

APPENDIX E: INVARIANT FOR LINE DEFECTS
IN CLASS AII AND POINT DEFECTS IN DIII

We formulate a topological invariant that characterizes
line defects in class AII in all dimensions that is analogous to
the integral formula invariant characterizing the quantum
spin-Hall insulator introduced in Ref. 73. This can be applied
to weak topological insulators in three dimensions with dis-
location around a line defect. The invariant can be indirectly
applied to strong topological insulators through decomposi-
tion into strong and weak components. As a consequence of
the Hamiltonian mapping in Eq. �A1� that identifies �s
=4, �=2� and �s=3, �=1�, this gives a new topological
invariant that classified point defects in class DIII in all di-
mensions.

1. Line defects in class AII

The base space manifold is T2d−2=Td�Sd−2, where Td is
the Brillouin zone and Sd−2�R is a cylindrical neighborhood
that wraps around the line defect in real space. Divide the
base space into two pieces, T1/2

2d−2 and its time reversal coun-
terpart �see Fig. 13�a��. We will show the Z2 invariant

� =
id−1

�d − 1�!�2��d−1��
T1/2

2d−2
Tr�Fd−1� − �

�T1/2
2d−2

Q2d−3

�E1�

topologically classifies line defects in AII, where the Chern-
Simons form, defined by Eq. �D3�, is generated by the Berry
connection Amn= 	um�k ,r� 
dun�k ,r��, and the valence frame
um�k ,r� satisfies the gauge condition

wmn�k,r� = 	um�k,r�
�un�− k,r�� = constant �E2�

on the boundary �k ,r���T1/2
2d−2.

The nontriviality of the Z2 invariant is a topological ob-
struction to choosing a global continuous valence frame

um�k ,r�� that satisfies the gauge condition in Eq. �E2� on the
whole base space T2d−2. If there is no topological obstruction
from the bulk,88 the gauge condition forces the valence frame
to be singular at two points, depicted in Fig. 13�b�, related to
each other by time reversal. One removes the singularity by
picking another valence frame locally defined on two small
balls enclosing the two singular points, denoted by B in Fig.
13�b�. We therefore have two valence frames 
um

A/B�k ,r�� de-
fined on two patches of the base space, A=T2d−2 \B and B,
each obeying the gauge condition in Eq. �E2�.

The wave functions on the two patches translate into each
other through transition function

tmn
AB�k,r� = 	um

A�k,r�
un
B�k,r�� � U�k� �E3�

on the boundary �B�S2d−3�S2d−3. The function behavior on
the two disjoint �2d−3� spheres is related by time reversal.
The topology is characterized by the winding of tAB :S2d−3

→U�k� on one of the spheres

� =
�d − 2�!

�2d − 3�!�2�i�d−1�
S2d−3

Tr��tABd�tAB�†�2d−3� , �E4�

=
�− 1�d

�d − 1�!�2�i�d−1�
S2d−3

�Q2d−3
A − Q2d−3

B � . �E5�

The two integrals can be evaluated separately. Since
dQ2d−3=Tr�Fd−1�, Stokes’ theorem tells us

�
A�T1/2

2d−2
Tr�Fd−1� = ��

�T1/2
2d−2

− �
S2d−3

�Q2d−3
A ,

�
B�T1/2

2d−2
Tr�Fd−1� = �

S2d−3
Q2d−3

B .

Combining these into Eq. �E5� identifies the Z2 invariant in
Eq. �E1� with the winding number of the transition function.

The curvature term in Eq. �E1� is gauge invariant. Any
gauge transformation on the boundary �T1/2

2d−2 respecting the
gauge condition in Eq. �E2� has even winding number and
would alter the Chern-Simons integral by an even integer.
The gauge condition is therefore essential to make the for-
mula nonvacuous.

A

B

1/2
2d–2

∂T

B

(a) (b)

k = 0d k = �dk = -�d

T

1/2
2d–2

T
d
−1

×
S

d
−2

FIG. 13. �a� Schematic of the base space T2d−2=Td�Sd−2, split
into two halves. �b� Division of T2d−2 into patches A and B, each
closed under TR and has an individual valence frame 
um

A/B� that
satisfies the gauge condition in Eq. �E2�.
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Spin Chern number

A quantum spin-Hall insulator is characterized by its spin
Chern number n�= �n↑−n↓� /2. We generalize this to time-
reversal invariant line defects of all dimensions by equating
it with Eq. �E1�. This applies in particular to a model we
considered for a linear Josephson junction in Sec. III D.

A spin operator S is a unitary operator, square to unity,
commutes with the Hamiltonian, and anticommutes with the
time reversal operator. The valence spin frame


um
↓ �k,r�� = �
um

↑ �− k,r�� �E6�

automatically satisfies the time reversal gauge constraint in
Eq. �E2�. It is straightforward to check that the curvature and
Chern-Simons form can be split as direct sums according to
spins.

F�k,r� = F↑�k,r� � F↑�− k,r��, �E7�

Q2d−3�k,r� = Q2d−3
↑ �k,r� � Q2d−3

↑ �− k,r��. �E8�

Again assuming that there is no lower dimensional “weak”
topology, the ↑ frame can be defined everywhere on T2d−2

with a singularity at one point, say, in T1/2
2d−2, and the ↓ frame

is singular only at the time reversal of that point.
The curvature term of Eq. �E1� splits into two terms

�
T1/2

2d−2
Tr�Fd−1� = ��

T1/2
2d−2

− �
T2d−2\T1/2

2d−2

Tr�F↑

d−1� �E9�

and the two spin components of the Chern-Simons term
��T1/2

2d−2Q2d−3 add up into

2�
�T1/2

2d−2
Q2d−3

↑ = − 2�
T2d−2\T1/2

2d−2
Tr�F↑

d−1� �E10�

by Stokes theorem.
Combining these two, we equate Eq. �E1� to the spin

Chern number

n↑ =
id−1

�d − 1�!2�d−1�
T2d−2

Tr�F↑
d−1� . �E11�

Time reversal requires ntot=n↑+n↓=0 and therefore n�= �n↑
−n↓� /2=n↑.

2. Point defects in class DIII

The base space manifold is T2d−1=Td�Sd−1. The Hamil-
tonian mapping in Eq. �A1� relates a point-defect Hamil-
tonian H�k ,r� in class DIII to a line-defect Hamiltonian
H�k ,r ,��=cos �H�k ,r�+sin �� in class AII, where �
= i�
 is the chiral operator, �k ,r ,����T2d−1 �see Fig.
14�a�� and � is odd under time reversal. The line defect
Hamiltonian H�k ,r ,�� is topologically characterized by the
generalization of Eq. �E1�, which was proven to be identical
to the winding number in Eq. �E4� of the transition function
tAB �see Fig. 14�b� for the definition of patches A and B�. We
will utilize this to construct a topological invariant that char-
acterizes point defects in class DIII.

Set �=�yK and 
=�xK under an appropriate choice of
basis. A canonical valence frame of H�k ,r ,�� can be chosen
to be

u+
B�k,r,�� =�sin��

4
−

�

2
�q�k,r�

− cos��

4
−

�

2
�1 � , �E12�

where q�k ,r��U�k� is from the canonical form of the chiral
Hamiltonian H�k ,r� in Eq. �4.1�, 1 is the k�k identity ma-
trix, and the valence frame is nonsingular everywhere except
at �=−� /2. There is a gauge transformation u+

B→uA=u+
BtBA

everywhere except �= 
� /2 such that the new frame uA

satisfies the gauge condition in Eq. �E2�.89 A valence frame
on patch B can be constructed by requiring u−

B���=�u+
B�−��

around �=−� /2.
The Z2 topology is characterized by the evenness or odd-

ness of the winding number of tAB as in Eq. �E4�. This can be
evaluated by the integral along the equator �=0

�̃ =
�d − 1�!

�2d − 1�!�2�i�d�
Td�Sd−1

Tr��tABd�tAB�†�2d−1� ,

�E13�

where uA=u+
BtBA is a solution to the gauge condition in Eq.

�E2� or equivalently tBA satisfies

q�k,r� = tBA�− k,r��yt
BA�k,r�T, �E14�

where the constant in Eq. �E2� is chosen to be i�y.
The winding number in Eq. �E13� can also be expressed

as a Chern-Simons integral.

�̃ =
id

d!�2��d�
Td�Sd−1

�Q2d−1
B − Q2d−1

A � , �E15�

where QA/B are the Chern-Simons form generated by valence
frames uA/B. Restricted to �=0, Eq. �E12� gives uB�k ,r�
= 1

�2
�q�k ,r� ,−1�. Following Eq. �D5�, the first term of Eq.

�E15� equals half of the winding number of q, which is guar-
anteed to be zero by time-reversal and particle-hole symme-
tries. And therefore point defects in DIII are classified by the
Chern-Simons invariant

θ�/2

�/2

0 2d–1T A

B

B

(a) (b)

FIG. 14. �a� Schematic of the suspension �T2d−1. �b� Decompo-
sition into patches A and B.
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�̃ =
1

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2, �E16�

where the Chern-Simons form is generated by a valence
frame that satisfies the time-reversal gauge constraint in Eq.
�E2�.

Note that the integrality of the Chern-Simons integral in
Eq. �E16� is a result of particle-hole symmetry. Forgetting
time reversal symmetry, point defects in class D are classi-
fied by the Chern-Simons invariant �=2�̃ in Eq. �D2� with a
factor of 2. Time-reversal symmetry requires the zero modes
to form Kramers doublets and therefore �=2�̃ must be even.
A gauge transformation in general can alter �̃ by any integer.
Thus, similar to the formula in class AII, the time-reversal
gauge constraint in Eq. �E2� is essential so that Eq. �E16� is
nonvacuous.

Fixed points formula in 1D

We here identify Eq. �E16�, or equivalently Eq. �E13�, to
a fixed point invariant in 1 dimension. In Ref. 82, Qi,
Hughes, and Zhang showed that 1D time reversal invariant
superconductors are Z2 classified by the topological invariant

�− 1��̃ =
Pf�qk=��
Pf�qk=0�

exp�1

2
�

0

�

Tr�qkdqk
†�
 �E17�

under the basis �=�yK and 
=�xK, where qk is the chiral
flipping operator in Eq. �4.1�. Time-reversal and particle-hole
symmetries requires qk=−q−k

T . Hence the Pfaffians are well
defined as qk is antisymmetric at the fixed points k=0,�.

Using the gauge condition in Eq. �E14�, we can expressed
the Pfaffians as Pf��qk=0,��=det�tk=0,��Pf��y�, where tk

BA is
abbreviated to tk.

Pf�qk=��
Pf�qk=0�

= exp�− �
0

�

Tr�tkdtk
†�
 . �E18�

Substitute Eq. �E14� into the Cartan form Tr�qkdqk
†� gives

Tr�qkdqk
†� = Tr�t−kdt−k

† � + Tr�tkdtk
†� . �E19�

Combining these into Eq. �E17�

�− 1��̃ = exp�1

2
�

0

�

Tr�t−kdt−k
† − tkdtk

†�
 , �E20�

=exp�−
1

2
�

−�

�

Tr�tkdtk
†�
 , �E21�

which agrees Eq. �E13�.

APPENDIX F: INVARIANT FOR FERMION
PARITY PUMPS

In the appendix, we will show that a Z2 invariant in Eq.
�5.2� under a particle-hole gauge constraint topologically
classified fermion parity pumps in dimension �=0 and class
D or BDI. �See Sec. V B for the full statement.� We will
show Eq. �5.2� using a construction similar to a reasoning in
Moore and Balents.7 We consider a deformation of the
Hamiltonian along with the base manifold so that the bound-
ary �T1/2 is deformed into a single point �see Fig. 15�. Let
s� �0,1� be the deformation variable, and denote T1/2

+ �s� and
�T1/2�s� be the corresponding deformation slices. Chern in-
variant

n =
1

d!
� i

2�
�d�

T1/2
+ �s=1�

Tr�Fd� �F1�

integrally classifies Hamiltonians on the half-manifold
T1/2

+ �s=1�. Particle-hole symmetry requires opposite Chern
invariant on the other half. A different choice of deformation
could only change the Chern invariant by an even integer.90

Hence the Chern invariant modulo 2 defines a Z2 invariant.
The Chern integral can be further deformed and decom-

posed into

�
T1/2

+ �s=0�
Tr�Fd� + �

0

1

ds�
�T1/2

+ �s�
Tr�Fd�

= �
T1/2

+ �s=0�
Tr�Fd� − �

�T1/2
+ �s=0�

Q2d−1, �F2�

where Stokes’ theorem is used and the negative sign is from
a change in orientation of the boundary. This proves Eq.
�5.2�. The particle-hole gauge constraint is built-in since the
Gk,r,t�s� deforms into a constant at s=1 while respecting
particle-hole symmetry in Eq. �5.4� at all s.
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