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Regression Modeling of Longitudinal Outcomes With Outcome-
Dependent Observation Times

Abstract
Conventional longitudinal data analysis methods typically assume that outcomes are independent of the data-
collection schedule. However, the independence assumption may be violated when an event triggers outcome
assessment in between prescheduled follow-up visits. For example, patients initiating warfarin therapy who
experience poor anticoagulation control may have extra physician visits to monitor the impact of necessary
dose changes. Observation times may therefore be associated with outcome values, which may introduce bias
when estimating the effect of covariates on outcomes using standard longitudinal regression methods. We
consider a joint model approach with two components: a semi-parametric regression model for longitudinal
outcomes and a recurrent event model for observation times. The semi-parametric model includes a
parametric specification for covariate effects, but allows the effect of time to be unspecified. We formulate a
framework of outcome-observation dependence mechanisms to describe conditional independence between
the outcome and observation-time processes given observed covariates or shared latent variables.

We generalize existing methods for continuous outcomes by accommodating any combination of mechanisms
through the use of observation-level weights and/or patient-level latent variables. We develop new methods
for binary outcomes, while retaining the flexibility of a semi-parametric approach. We extend these methods
to account for discontinuous risk intervals in which patients enter and leave the at-risk set multiple times
during the study. Our methods are based on counting process approaches, rather than relying on possibly
intractable likelihood-based or pseudo-likelihood-based approaches, and provide marginal, population-level
inference. In simulations, we evaluate the statistical properties of our proposed methods. Comparisons are
made to `naive' approaches that do not account for outcome-dependent observation times. We illustrate the
utility of our proposed methods using data from a randomized trial of interventions designed to improve
adherence to warfarin therapy and a randomized trial of malaria vaccines among children in Mali.
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ABSTRACT

REGRESSION MODELING OF LONGITUDINAL OUTCOMES WITH OUTCOME-DEPENDENT

OBSERVATION TIMES

Kay See Tan

Andrea B. Troxel

Benjamin French

Conventional longitudinal data analysis methods typically assume that outcomes are independent

of the data-collection schedule. However, the independence assumption may be violated when an

event triggers outcome assessment in between prescheduled follow-up visits. For example, pa-

tients initiating warfarin therapy who experience poor anticoagulation control may have extra phy-

sician visits to monitor the impact of necessary dose changes. Observation times may therefore

be associated with outcome values, which may introduce bias when estimating the effect of co-

variates on outcomes using standard longitudinal regression methods. We consider a joint model

approach with two components: a semi-parametric regression model for longitudinal outcomes and

a recurrent event model for observation times. The semi-parametric model includes a parametric

specification for covariate effects, but allows the effect of time to be unspecified. We formulate

a framework of outcome-observation dependence mechanisms to describe conditional indepen-

dence between the outcome and observation-time processes given observed covariates or shared

latent variables.

We generalize existing methods for continuous outcomes by accommodating any combination of

mechanisms through the use of observation-level weights and/or patient-level latent variables. We

develop new methods for binary outcomes, while retaining the flexibility of a semi-parametric ap-

proach. We extend these methods to account for discontinuous risk intervals in which patients enter

and leave the at-risk set multiple times during the study. Our methods are based on counting pro-

cess approaches, rather than relying on possibly intractable likelihood-based or pseudo-likelihood-

based approaches, and provide marginal, population-level inference. In simulations, we evaluate

the statistical properties of our proposed methods. Comparisons are made to ‘naı̈ve’ approaches

that do not account for outcome-dependent observation times. We illustrate the utility of our pro-
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posed methods using data from a randomized trial of interventions designed to improve adherence

to warfarin therapy and a randomized trial of malaria vaccines among children in Mali.
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CHAPTER 1

INTRODUCTION

1.1. Background

1.1.1. Introduction

Conventional longitudinal data analysis methods assume that outcomes are independent of the

data-collection schedule. However, the independence assumption may be violated, for example,

when a specific treatment necessitates a different follow-up schedule than the control arm, or when

adverse events trigger additional physician visits in between prescheduled follow-ups. If the prob-

ability of having a follow-up visit depends upon previous outcomes and measured or unmeasured

covariates, then the outcome and observation-time processes are dependent and conventional lon-

gitudinal data analysis methods such as generalized estimating equations (GEE, Liang and Zeger,

1986) that ignore the observation-time process may provide biased estimates of covariate-outcome

associations (French and Heagerty, 2009; Sun et al., 2005). We designate the longitudinal out-

comes as the outcome process and the occurrence of visits over time as the observation-time

process.

There has been considerable interest in the topic of addressing potential dependence between

the outcome and observation-time processes. Lipsitz, Fitzmaurice, and Ibrahim (2002) developed

a likelihood-based procedure for continuous outcomes, and Fitzmaurice et al. (2006) proposed a

pseudo-likelihood estimation procedure for binary outcomes. Several other authors have adopted

an estimating equations approach with observation-level inverse weights derived from explicit spec-

ification of the observation-time models (Bůžková and Lumley, 2007; Lin, Scharfstein, and Rosen-

heck, 2004). Others focused on estimation procedures based on joint likelihood approaches: Ryu

et al. (2007) developed a Bayesian fully parametric regression model; Liu, Huang, and O’Quigley

(2008) considered a joint mixed-effects model in which the outcomes, observation times, and cen-

soring times were correlated through latent variables.

We consider a joint modeling approach with two components: (i) a semi-parametric regression

model for longitudinal outcomes and (ii) a recurrent events model for observation times. The semi-
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parametric approach is flexible as it assumes a non-parametric structure for the mean trajectory of

the longitudinal outcomes (Bůžková and Lumley, 2009; Liang, Lu, and Ying, 2009; Lin and Ying,

2001; Sun, Song, and Zhou, 2011). In addition, our methods are based on counting process ap-

proaches, rather than relying on possibly intractable likelihood-based or pseudo-likelihood-based

approaches, and provide marginal, population-level inference. We describe the two main compo-

nents of the joint model below.

1.1.2. Semi-parametric regression model for outcome process

Our primary scientific interest lies in a semi-parametric regression model for the longitudinal out-

comes Yi(t):

E[Yi(t) | Xi(t)] = g{µ(t) + β′Xi(t)}, (1.1)

in which the function g(·) links the expected outcome to the linear predictors, µ(t) is an arbitrary

function of time, β is a p×1 vector of regression parameters of interest, and Xi(t) is a p-dimensional

covariate process for subject i. The semi-parametric outcome model assumes a parametric struc-

ture for the effect of Xi(t) and a non-parametric structure for µ(t) (Lin and Carroll, 2001; Sun et al.,

2005). Model (1.1) describes the marginal mean of Yi(·) without specifying its correlation structure

and distributional form; hence, it is appealing if the effects of Xi(t) are of interest, but the effect of

time is considered a nuisance. The primary target of inference is the marginal association between

a set of covariates at t and an outcome of interest among a population of individuals, represented

by the parameter β in Model (1.1). Model (1.1) does not condition on the entire covariate process

or on past outcomes. Instead, it includes covariate information available at t, such as baseline co-

variates, covariates measured at or before t, and summaries of the covariate history; that is, Model

(1.1) is a partly conditional mean regression model (Pepe and Couper, 1997).

1.1.3. Recurrent events model for observation-time process

The observation-time process describes the timing and intensity of follow-up visits and is charac-

terized by a standard recurrent events model. We introduce a non-negative latent variable ηi with

mean 1 and unknown variance σ2. Given observation-time model covariates Zi(t) and ηi, the recur-

rent event process Ni(·) is a non-homogeneous Poisson process with intensity function (Lin et al.,

2



2000; Pepe and Cai, 1993):

λi(t) = ηiλ0(t) exp{γ′Zi(t)}, t ∈ [0, τ ] (1.2)

in which γ is a vector of unknown parameters and λ0(t) is an arbitrary baseline intensity function.

Model (1.2) implies that the occurrence of observations follows a proportional intensity model, in

which ηi inflates or deflates the visit intensity. We assume the censoring time, Ci is independent

of the observation-time process. The indicator dNi(t) equals 1 if a follow-up visit occurs at t and

equals 0 otherwise. The parameter γ provides information regarding the observation-time model,

but is considered a nuisance because our interest is in estimating the association parameter β from

the outcome model. However, incorporating the observation-time process into estimation of β in a

joint model facilitates reliable estimation under outcome-observation dependence, which we detail

below.

1.1.4. Framework of outcome-observation mechanisms

Even though there has been great interest in the topic of longitudinal data with dependent obser-

vation times, there does not appear to be a unified framework to describe the various relationships

that exist between the outcome and observation-time processes. We propose the following frame-

work of outcome-observation dependence mechanism that we will refer to in the following chapters.

Based on the two main components described in the previous section, we describe three sources

of dependence between the outcome and observation-time processes, either through observed co-

variates or shared latent variables:

(M1) Conditional independence given past outcome-model covariates;

(M2) Conditional independence given past observation-time model covariates;

(M3) Conditional independence given shared latent variables.

In the remaining chapters, conditional independence given covariates implies conditional indepen-

dence given past observed covariates.

(M1) Conditional independence given outcome-model covariates

The first mechanism assumes that the outcome process is conditionally independent of the obser-

3



(a) M1 (b) M2 (c) M3

Figure 1.1: Framework of outcome-observation mechanisms: (M1), (M2) and (M3)

vation-time process given outcome-model covariates Xi(t), or a subset of Xi(t):

E[dNi(t) | Xi(t), Yi(t), Ci ≥ t] = E[dNi(t) | Xi(t)].

The probability of observation at time t depends onXi(t), Yi(t), and Ci only through outcome-model

covariates Xi(t), hence is plausible if the occurrence of a follow-up visit is due to the features of the

study design, rather than subject-specific behaviors (Figure 1.1a).

(M2) Conditional independence given observation-time model covariates

The second mechanism assumes that the occurrence of a follow-up visit depends on observation-

time model covariates Zi(t):

E[dNi(t) | Xi(t), Zi(t), Yi(t), Ci ≥ t] = E[dNi(t) | Zi(t)].

The probability of observation at time t depends on Xi(t), Zi(t), Yi(t), and Ci only through observa-

tion-time model covariates Zi(t) (Figure 1.1b). The set of covariates Zi(t) includes the full or partial

subset of the outcome-model covariates and any additional measured covariates at or before time

t, as well as previous outcomes. Note that (M1) ⊂ (M2) because Xi(t) ⊂ Zi(t).

(M3) Conditional independence given shared latent variables

The third mechanism assumes that the outcome process is conditionally independent of the obser-

vation-time process given outcome-model covariatesXi(t), and an unmeasured mean-one subject-

specific latent variable ηi:

E[dNi(t) | Xi(t), Yi(t), ηi, Ci ≥ t] = E[dNi(t) | Xi(t), ηi].

4



The parameter ηi conveys information regarding subject-specific unmeasured confounders and

propensity for physician visits (Figure 1.1c).

Our typology of outcome-observation dependence mechanisms provides a framework for reliable

estimation of covariate-outcome associations. Mechanisms (M2) and (M3) allow the probability of

an observation to depend on unmeasured patient characteristics in addition to measured obser-

vation-time model covariates, and hence place fewer restrictions than (M1) on the probability of

having a visit; these are reasonable assumptions in most observational studies. However, (M2) and

(M3) may require more advanced analytic methods to provide valid inference; we introduce these

in subsequent chapters.

1.2. Motivating examples

We present several examples of longitudinal studies with outcome-dependent observation times

and provide graphical and numerical descriptions to illustrate unique features of the data. The

examples presented here will be investigated further in subsequent chapters.

1.2.1. Bladder tumor recurrence study

Andrews and Herzberg (1985) presented data from a bladder cancer study conducted by the Vet-

erans Administration Cooperative Urological Research Group. Eighty-five patients with superficial

bladder tumors were randomly assigned to control (n = 47) or thiotepa treatment (n = 38) and fol-

lowed up to 53 months. Patients in the control group had a physician visit once every three months,

while patients in the treatment group had a visit almost once a month due to the invasive nature of

the treatment, which had to be directly distilled into the bladder.

At each follow-up visit, new tumors were counted before being removed transurethrally. There was

notable heterogeneity in visit patterns across patients. The median (25th, 75th percentile) number

of visits in the placebo group and treatment group was 9 (5, 12) and 9 (4, 23), respectively. The

average time between visits for the placebo group was 3.7 months, compared to 2.3 months for the

treatment group. These differences suggested that the patients in the treatment group visited the

clinic more often (Figure 1.2). Hence the observation-time process must be considered in order to

properly estimate the effect of treatment on tumor recurrence. We revisit this example in Section

2, where we apply various methods developed for continuous outcomes with outcome-dependent
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Figure 1.2: Observation times for four selected patients in the bladder tumor recurrence study and
the corresponding observed outcomes: no new tumors or one or more new tumors found.

observation-times.

1.2.2. Warfarin adherence study

Thromboembolism is the formation of a clot that obstructs blood flow in a vein or artery and can

lead to deep vein thrombosis and even stroke if untreated. Patients at risk of thromboembolism

are commonly administered warfarin, an oral anticoagulant. Though highly efficacious, warfarin

has a narrow therapeutic range: over-anticoagulation can lead to increased risk of bleeding com-

plications, while under-anticoagulation can lead to thromboembolic events. A patient’s international

normalized ratio (INR) gives a measure of blood coagulation. The INR of a healthy individual is

usually between 0.8 and 1.2, and the target range for patients on warfarin is between 2 and 3.

Due to the drug’s narrow therapeutic range, a patient on warfarin requires frequent monitoring. A

clinician usually focuses on whether the patient is in or out of therapeutic range; an out-of-range

INR typically triggers a dose change (Brigden et al., 1998).

We consider data from a randomized controlled trial among patients on warfarin therapy. The
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main objective of the trial was to determine the effectiveness of interventions designed to increase

adherence to therapy, and thus improve anticoagulation control (Kimmel et al., 2007). The study

randomized 362 subjects into four treatment arms. The study protocol specified monthly follow-

up visits, during which the INRs were measured. Physicians also scheduled as-needed visits in

between protocol-required visits based on the patient’s INR response (Figure 1.3).

Below range  Within range  Above range  

Months since enrollment

0 1 2 3 4 5 6

4

3

2

1

P
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Figure 1.3: Observation times for four selected patients on warfarin and the corresponding observed
outcomes: INR below, within, or above the therapeutic range.

The primary interest lies in estimating the effect of observed covariates on the probability of be-

ing out of therapeutic range, based on the binary outcome defined as either “in-range” or “out-of-

range”. At the analysis stage, a naı̈ve approach considers only the outcomes from monthly protocol-

scheduled visits at the expense of discarding data that can be potentially informative. Conversely,

the analyst can also apply conventional longitudinal methods to the full data. However, doing so

can over-represent certain types of patients and hence bias the estimates. One can also apply a

‘cluster-weighted GEE’ model to the full data, in which participant-level weights are equal to the in-

verse of the number of INRs (Williamson, Datta, and Satten, 2003). However, the cluster-weighted

GEE approach does not account for the timing of the physician visits. We revisit this example in

Chapter 3, in which we extend methods for continuous outcomes to binary outcomes.
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1.2.3. Malaria vaccine study

We consider data from a randomized malaria vaccine trial involving 289 children between two and

five years old living in rural regions of Mali. The main aim of this double blind phase II clinical

trial was to compare the efficacy and safety of a candidate vaccine and an active control, namely

AMA1-C1 (n = 139) and Hiberix (n = 140), in the odds of developing malaria symptoms. The

primary outcome was whether the parasite that leads to clinical malaria (P. falciparum parasitemia)

exceeds a given threshold (3000/µL). Other outcomes were clinical malaria (parasite > 3000/µL

with fever) and the continuous measures of hemoglobin and anemia.

Monthly visits were scheduled according to the protocol. However, there were many visits that oc-

curred between two prescheduled visits. Approximately 65% of these as-needed visits were due to

symptoms of clinical malaria or side-effects from the vaccine. There may be a relationship between

the outcome and observation-time processes because physicians tend to schedule closely-spaced

visits for patients who were more susceptible to a malaria episode.

Figure 1.4: Observation times for four selected patients in the malaria vaccine study and the cor-
responding observed outcomes. A red dot indicates that parasite level > 3000/µL recorded at that
visit, and the 28-day observation gaps are indicated by dashed blue lines.

A noteworthy point is that when a child was diagnosed with clinical malaria, the child received
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malaria treatment and was not considered at risk for a new malaria episode (and another physician

visit) until 28-days after the first day of treatment. Figure 1.4 shows the time in study for each sub-

ject, in which the at-risk process is interrupted by the observation gaps, leading to discontinuous

risk intervals. These observation gaps started on the day the malaria treatment was administered

and lasted for 28 days. The issue of discontinuous risk intervals is easily addressed by careful

consideration of when individuals are at risk of a physician visit. Methods accommodating discon-

tinuous risk intervals are discussed in Chapter 4.

1.3. Outline of the dissertation

Chapter 2 compares and contrasts four recently developed semi-parametric methods for contin-

uous outcomes that accommodate one of three outcome-observation dependence mechanisms.

To allow greater flexibility, we propose a comprehensive method to accommodate any combina-

tion of mechanisms through the use of observation-level weights and patient-level latent variables.

In simulation studies, we show how incorrectly specifying the outcome-observation dependence

may yield biased estimates of covariate-outcome associations and how our proposed extensions

can accommodate a greater number of dependence mechanisms. We illustrate the implications of

different modeling strategies in an application to bladder cancer data.

In Chapter 3, we develop a new method for the analysis of binary outcomes with outcome-depen-

dent observation times, while retaining the flexibility of a semi-parametric approach. Our methods

are based on counting process approaches, rather than relying on possibly intractable likelihood-

based or pseudo-likelihood-based approaches, and provide marginal, population-level inference.

In simulations, we evaluate the statistical properties of our proposed methods. Comparisons are

made to ‘naı̈ve’ GEE approaches that either do not account for outcome-dependent observation

times or incorporate weights based on the observation-time process. We illustrate the utility of

our proposed methods using data from a randomized controlled trial of interventions designed to

improve adherence to warfarin therapy.

Chapter 4 extends the comprehensive method from Chapter 3 to data with discontinuous risk inter-

vals in which patients may enter and leave the at-risk set multiple times during the study. We show

that discontinuous risk intervals can be addressed by careful specification of the at-risk indicator.

The methodology is applied to a randomized trial of malaria vaccines among children in Mali.
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We conclude with Chapter 5, which provides a summary of the work and presents several directions

for future research.
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CHAPTER 2

SEMI-PARAMETRIC METHODS FOR CONTINUOUS OUTCOMES

2.1. Introduction

Longitudinal studies commonly assume that the data-collection schedule is independent of a sub-

ject’s outcomes and measured or unmeasured characteristics. However, this independence as-

sumption may be violated if observed covariate or outcome values influence the occurrence or

timing of subsequent visits. For example, in a study following patients with diabetes, routine vis-

its are scheduled every six months. However, spikes in blood sugar levels, exacerbation of other

symptoms, or underlying patient characteristics may trigger additional closely-spaced physician

visits until the blood sugar level has stabilized. The intensity of events such as physician visits is

dependent on previous outcomes and measured or unmeasured covariates. Less healthy patients

may be over-represented in the analysis due to more frequent data collection. In the presence of

the resultant selection bias, conventional methods such as generalized estimating equations (GEE,

Liang and Zeger, 1986) may yield biased estimates of covariate-outcome associations (Huang,

Wang, and Zhang, 2006; Sun et al., 2005). Proper estimation must account for such selection

bias. We focus on a marginal mean regression model to evaluate the association between ob-

served covariates and a continuous outcome of interest. We denote the longitudinal outcomes as

the outcome process and the occurrence of visits over time as the observation-time process.

Several authors have proposed parametric models to account for the potential dependence be-

tween the outcome and observation-time processes. Lipsitz, Fitzmaurice, and Ibrahim (2002) de-

veloped a likelihood-based procedure for continuous outcomes, Fitzmaurice et al. (2006) proposed

a pseudo-likelihood estimation procedure for binary outcomes, and Lin, Scharfstein, and Rosen-

heck (2004) and Bůžková and Lumley (2007) utilized inverse intensity weighted estimators with

observation-level inverse weights. Others focused on estimation procedures based on joint like-

lihood approaches: Ryu et al. (2007) developed a Bayesian fully parametric regression model;

Liu, Huang, and O’Quigley (2008) considered a joint mixed-effects model in which the outcomes,

observation times, and censoring times were correlated through latent variables. The study of

outcome-dependent observation times shares features of research regarding incomplete (Albert,
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2000; Troxel et al., 2010) and recurrent marked point process data (French and Heagerty, 2009),

but differs in that subjects do not share a common set of visit times, and outcomes (e.g., blood

sugar level) exist even if an event (e.g., a physician visit) does not occur.

We introduce a framework of three outcome-observation dependence mechanisms. The first mech-

anism applies when the outcome and the observation-time processes are conditionally independent

given outcome-model covariates. The second mechanism applies when the processes are condi-

tionally independent given observation-time model covariates, which may include outcome-model

covariates. The third applies when the processes are conditionally independent given shared, un-

observed, latent variables. We consider four semi-parametric marginal regression methods that

do not require estimation of the mean effect of time on the outcomes: the Lin method (Lin and

Ying, 2001) accommodates the first mechanism, the Bůžková method (Bůžková and Lumley, 2009)

accommodates the second mechanism, and the Liang (Liang, Lu, and Ying, 2009) and Sun (Sun,

Song, and Zhou, 2011) methods accommodate the third mechanism. We extend both the Liang

and the Sun methods to accommodate a combination of the three mechanisms, thereby increasing

the flexibility of the models.

In this chapter, we compare currently available and newly extended methods that accommodate

outcome-dependent observation times. Our goal is to provide much-needed clarification of the

strengths and limitations of each estimation method under alternative outcome-observation de-

pendence mechanisms. In Section 2.2, we elaborate on our framework of outcome-observation

dependence mechanisms. We review existing methods under each of these mechanisms (Section

2.2.2) and detail our extensions to both the Liang and Sun methods to accommodate conditional

independence through observation-time model covariates, and our extension to the Liang method

to accommodate time-dependent covariates in the observation-time model (Section 2.2.3). We

present simulation studies to evaluate the performance of the reviewed methods under alternative

outcome-observation dependence mechanisms in Section 2.3, and illustrate their application to a

bladder cancer study in Section 2.4. Section 2.5 provides guidance on the selection of estimation

methods.
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2.2. Estimation methods

Let Yi(t) denote a continuous outcome of interest at time t and Xi(t) denote a p×1 vector of possi-

bly time-dependent covariates for subject i = 1, . . . , n,. We only consider external covariates, such

that any time-dependent covariate process at time t is conditionally independent of all previous

outcomes given the history of the covariate process (Kalbfleisch and Prentice, 2002). The outcome

Yi(·) is measured at mi observation times 0 ≤ Ti1 < Ti2 < · · · < Timi
≤ τ , for which mi denotes the

number of follow-up measurements on the ith individual, and τ denotes the maximum study dura-

tion. Using counting process notation, let Ni(t) =
∑
s≤t dNi(s) denote the number of observations

on the ith subject by t ≤ Ci. The censoring time Ci ≤ τ is the time of last visit or an administrative

end-of-study time. The indicator variable dNi(t) is 1 if a follow-up visit occurred at t and 0 otherwise.

We assume non-informative censoring, such that E[Yi(t) | Xi(t), Ci ≥ t] = E[Yi(t) | Xi(t)]. That is,

the covariate-outcome associations are the same in subjects who are censored at Ci as those who

are still in the study.

2.2.1. Models and assumptions

Semi-parametric outcome model

We assume that primary scientific interest lies in a semi-parametric regression model for the longi-

tudinal continuous outcomes (Lin and Ying, 2001):

Yi(t) = µ(t) + β′Xi(t) + εi(t), (2.1)

for which µ(t) is an arbitrary function of time, β is a p×1 vector of regression parameters of interest,

and εi(t) is a zero-mean process independent of Xi(t). Model (2.1) specifies a parametric structure

for the effect of Xi(t) and a non-parametric structure for µ(t) (Brumback and Rice, 1998; Lin and

Carroll, 2001; Sun et al., 2005).

Observation-time model

We use a standard recurrent events model to describe the observation-time process. Given obser-

vation-time model covariates Zi(t) and a non-negative latent variable ηi with mean 1 and unknown
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variance σ2, Ni is a non-homogeneous Poisson process with intensity function (Lin et al., 2000):

λi(t) = ηi exp{γ′Zi(t)}λ0(t), (2.2)

in which γ is a vector of unknown parameters, λ0(t) is an unspecified baseline intensity function with

λ0(t) =
∫ t

0
λ(u)du, andXi(t) ⊆ Zi(t). Unless otherwise specified, we assume that ηi is independent

of Zi(t).

A framework of outcome-observation dependence mechanisms

We distinguish three mechanisms that describe the dependence between the outcome and obser-

vation-time processes:

(M1) Conditional independence given past outcome-model covariates;

(M2) Conditional independence given past observation-time model covariates;

(M3) Conditional independence given shared latent variables.

Recall that Xi(t) incorporates covariate information available at t, which may include baseline co-

variates, covariates measured at or before t, and summaries of the covariate history. Details of the

framework of outcome-observation dependence mechanisms can be found in Section 1.1.4.

Our framework for outcome-observation dependence in the analysis of longitudinal data provides

guidance for the selection of reliable methods. (M2) and (M3) place fewer restrictions on the prob-

ability of having a visit than (M1) and are reasonable assumptions in most observational studies.

However, (M2) and (M3) are more restrictive because fewer analysis methods are available to pro-

vide valid inference, which we detail in the following section.

2.2.2. Existing methods

In this section, we describe four existing methods to estimate covariate-outcome associations in

the presence of outcome-observation dependence. All of the methods require estimation of an ob-

servation-time model. If the observation-time process is conditionally independent of the censoring

times, the parameter γ can be consistently estimated by γ̂ from the estimating equation (Lin et al.,

2000):

U(γ) =

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ)}dNi(t) = 0, (2.3)
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for which ξi(t) = I(Ci > t) and

Z̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Zi(t)}Zi(t)∑n

i=1 ξi(t) exp{γ′Zi(t)}
.

Method under (M1)

Lin and Ying (2001) assume that the observation-time process is conditionally independent of the

outcome process given the outcome-model covariates, as in (M1). The Lin method specifies a

marginal semi-parametric outcome model E[Yi(t) | Xi(t)] = µ(t) + β′Xi(t) and a proportional rate

observation-time model E[dNi(t) | Vi(t)] = exp{γ′Vi(t)}dλ0(t), in which Vi(t) is a subset of Xi(t).

We define a zero-mean stochastic process (Lin and Ying, 2001):

Mi(t;A, β, γ) =

∫ t

0

{Yi(s)− β′Xi(s)}dNi(s)−
∫ t

0

exp{γ′Vi(s)}ξi(s)dA(s), (2.4)

in which A(t) =
∫ t

0
µ(s)dΛ(s). Based on (2.4), one set of estimating equations to solve for µ(t) and

β is:

n∑
i=1

Mi(t;β, γ) = 0, 0 < t ≤ τ (2.5)

n∑
i=1

∫ τ

0

W (t)Xi(t)dMi(t;β, γ) = 0. (2.6)

The common weight W (t) can improve efficiency and may be data-dependent, such as the propor-

tion of subjects left in the study, i.e., n−1
∑n
i=1 ξi(t). The closed-form expression of A(t) in (2.5)

yields Ã(t;β) =
∑n
i=1

∫ t
0
{Yi(s)−β′Xi(s)}dNi(s)∑n

j=1 ξj(s) exp{γ̂′Vi(s)} , which replaces A(t) in (2.6) to form the estimating

equation:

n∑
i=1

∫ τ

0

W (t){Xi(t)− X̄(t; γ)}{Yi(t)− β′Xi(t)}dNi(t) = 0. (2.7)

The centering term is defined as:

X̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Vi(t)}Xi(t)∑n

i=1 ξi(t) exp{γ′Vi(t)}
.
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We note that:

E

[ n∑
i=1

∫ τ

0

{Xi(t)− X̄(t; γ)}g(t)dNi(t) | {Xi(t), Ci; i = 1, . . . , n}
]

=

n∑
i=1

∫ τ

0

{Xi(t)− X̄(t; γ)}g(t)dNi(t) = 0

for any function g(·), so we extend the left side of (2.7) to obtain the class of estimating functions

for β:

Ug(β; γ) =

n∑
i=1

∫ τ

0

W (t)[Xi(t)− X̄(t; γ)]{Yi(t)− β′Xi(t)− g(t; γ)}dNi(t).

One optimal choice of g(·) that minimizes the variance of Ug(β, γ) is g(t; γ) = Ȳ ∗(t; γ) − β′X̄(t; γ),

in which:

Ȳ ∗(t; γ) =

∑n
i=1 ξi(t) exp{γ′Vi(t)}Y ∗i (t)∑n

i=1 ξi(t) exp{γ′Vi(t)}
,

and Y ∗i (t) is the measurement of Yi at the observation nearest to t. Hence β can be consistently

estimated from the estimating equation (Lin and Ying, 2001):

U(β; γ) =

n∑
i=1

∫ τ

0

W (t)[Xi(t)− X̄(t; γ)]{Yi(t)− Ȳ ∗(t; γ)− β′[Xi(t)− X̄(t; γ)]}dNi(t) = 0,

in which γ is estimated by (2.3) conditioning on the covariates Vi(t). The inclusion of the centering

term for covariates accounts for the probability of being observed at t and removes the need for es-

timation of µ(t). The centering of the outcome increases the efficiency of the estimation procedure.

Note that Y ∗i (t) is the nearest-neighbor approximation of Yi(t) if the true measurement is not evalu-

able or collected at t. Li and Ryan (2004) documented the potential issue of such mismeasured

covariates. Discussion of other forms of g(·) and Y ∗i (t) can be found in the comments and rejoinder

section of Lin and Ying (2001).

Method under (M1) and (M2)

Bůžková and Lumley (2009) relax the assumption of (M1) by addressing the dependence between

the outcome and observation-time processes through observation-time model covariates. The set

of covariates Zi(t) may include the outcome-model covariates Xi(t) and past outcomes.

The Bůžková method uses inverse intensity rate ratio (IIRR) weighted estimators to estimate β

in the outcome model E[Yi(t) | Xi(t)] = µ(t) + β′Xi(t). The observation-level inverse weights
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standardize the observed data to the time-specific underlying population under the proportional

rate model for observation times E[dNi(t) | Zi(t)] = exp{γ′Zi(t)}dλ0(t). Inverse weighting has also

been shown to reduce bias when cluster size is informative (i.e., the outcomes measured among

clustered units are not independent of cluster size) (Williamson, Datta, and Satten, 2003) and when

missing data are missing at random (i.e., missingness depends only on observed covariates and

outcomes) (Rotnitzky and Robins, 1995; Zhao, Rotnitzky, and Robins, 1995). One particular weight

with variance-stabilizing properties is:

ρi(t; γ, δ) =
exp{γ′Zi(t)}
exp{δ′Xi(t)}

,

for which δ is estimated by δ̂ using (2.3) conditioning on Xi(t) instead of Zi(t). The proposed

estimating equation for β is:

U(β; γ̂, δ) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)
[Xi(t)− X̄(t; δ)]{Yi(t)− Ȳ ∗(t; δ)− β′[Xi(t)− X̄(t; δ)]}dNi(t) = 0,

in which:

X̄(t; δ) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}Xi(t)∑n

i=1 ξi(t) exp{δ′Xi(t)}
,

and

Ȳ ∗(t; δ) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}Y ∗i (t)∑n

i=1 ξi(t) exp{δ′Xi(t)}
.

If Zi(t) = Xi(t) then ρi(t; γ, δ) = 1, and the Bůžková method reduces to the Lin method. The

IIRR-weighted estimates are asymptotically consistent and normal, but the validity of the proposed

IIRR-weighted estimator is contingent upon correct specification of Zi(t) in the observation-time

model (Bůžková and Lumley, 2009).

Methods under (M1) and (M3).

The following two methods accommodate subject-specific observation-time processes with arbi-

trary visit patterns through the use of latent variables.

The Liang method (Liang, Lu, and Ying, 2009) specifies a semi-parametric mixed-effects outcome

model:

E[Yi(t) | Xi(t), Qi(t)] = µ(t) + β′Xi(t) + η′i1Qi(t), (2.8)
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in which ηi1 is a vector of unobserved subject-specific latent variables, and Qi(t) is a subset of

Xi(t). The observation-time process is modeled as λi(t) = ηi2λ0(t) exp{γ′Vi}, and Vi is a subset

of baseline covariates in Xi(t). The Gamma-distributed latent variable ηi2 is independent of Vi,

E[ηi2] = 1, and Var[ηi2] = σ2 is unknown. The relationship between ηi1 and ηi2 is defined by

the conditional expectation E[ηi1 | ηi2] = θ(ηi2 − 1), so θ describes the magnitude and direction

of the association between the outcome and observation-time processes. Note that the marginal

expectation of ηi1 is 0. The linear link between ηi1 and ηi2 can also be extended to other specified

link functions (Liang, Lu, and Ying, 2009). When ηi1 = 0, the Liang method reduces to the Lin

method.

Conditioning on ηi2, the observation-time process is a non-homogeneous process such that mi

has a Poisson distribution with mean ηi2 exp(γ′Vi)Λ(Ci). The cumulative baseline intensity function

λ0(t) can be consistently estimated by the Aalen-Breslow type estimator Λ̂(t) = Λ̂(t, γ̂):

Λ̂(t, γ̂) =

n∑
i=1

∫ t

0

dNi(s)∑n
j=1 ξj(s) exp(γ̂′Vi)

,

for which γ is estimated by (2.3) conditioning on the baseline covariates Vi. Given (Ci,mi, ηi2), the

observation times (Ti1, Ti2, . . . , Timi) are the order statistics of a set of independently and identically

distributed random variables with the density function:

exp{γ′Vi}dλ0(t)∫ Ci

0
exp{γ′Vi}dΛ(s)

=
dλ0(t)

Λ(Ci)
, 0 ≤ t ≤ Ci,

and the conditional likelihood function for all subjects can be derived as (Huang, Qin, and Wang,

2010):
n∏
i=1

p(ti1, ti2, . . . , timi
| Ci,mi, ηi2) =

n∏
i=1

mi!

mi∏
j=1

dΛ(tij)

Λ(Ci)

 ∝
n∏
i=1

mi∏
j=1

dΛ(tij)

Λ(Ci)

Hence E{dNi(t) | Ci,mi, ηi2} = ξi(t)mi
dλ0(t)
Λ(Ci)

. It follows that:

E

[
{Yi(t)− β′Xi(t)}dNi(t) | Ci,mi

]
= E(E[{µ(t) + η′i1Qi(t) + εi(t)}dNi(t) | Ci,mi, ηi2] | Ci,mi)

= µ(t)ξi(t)mi
dλ0(t)

Λ(Ci)
+ θ′Qi(t)E{(ηi2 − 1) | Ci,mi}E{dNi(t) | Ci,mi}. (2.9)
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We define Bi(t) = Qi(t)E[(ηi2− 1) | Ci,mi] as a covariate based on the subject-specific propensity

of visit and A(t) =
∫ t

0
µ(s)dΛ(s). Then (2.9) can be expressed as:

E

[
{Yi(t)− β′Xi(t)− θ′Bi(t)}dNi(t) | Ci,mi

]
= ξ(t)

mi

Λ(Ci)
dA(t).

We can then formulate the zero-mean process:

Mi2(t;A, β, θ, γ) =

∫ t

0

{Yi(s)− β′Xi(s)− θ′Bi(t)}dNi(s)−
∫ t

0

ξi(s)
mi

Λ(Ci)
dA(s), (2.10)

and define the set of estimating equations based on (2.10) to estimate µ(t), β, and θ simultaneously:

n∑
i=1

Mi2(t;β, θ, γ) = 0, 0 < t ≤ τ (2.11)

n∑
i=1

∫ τ

0

Xi(t)

B̂i(t)

 dMi2(t;β, θ, γ) = 0. (2.12)

The closed-form expression forA(t) in (2.11) replacesA(t) in (2.12), so β and θ can be consistently

estimated using the class of estimating equations (Liang, Lu, and Ying, 2009):

U(β, θ; Λ̂, B̂) =

n∑
i=1

∫ τ

0

Xi(t)− X̄(t)

B̂i(t)− ¯̂
B(t)

 {Yi(t)− β′Xi(t)− θ′B̂i(t)}dNi(t) = 0,

for which:

X̄(t) =

∑n
i=1 ξi(t)Xi(t)mi/Λ̂(Ci)∑n

i=1 ξi(t)mi/Λ̂(Ci)
,

and:
¯̂
B(t) =

∑n
i=1 ξi(t)B̂i(t)mi/Λ̂(Ci)∑n

i=1 ξi(t)mi/Λ̂(Ci)
.

To estimate Bi(t), the conditional expectation of ηi2 given (Ci,mi) is required. If we assume that

ηi2 is Gamma distributed with mean 1 and variance σ2, the expectation of ηi2 can be expressed as:

E(ηi2|Ci,mi) =
1 +miσ

2

1 + exp(γ′Vi)Λ(Ci)σ2
.
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The covariate Bi(t) can thus be estimated by:

B̂i(t) =

(
1 +miσ̂

2

1 + exp(γ̂′Vi)Λ̂(Ci)σ̂2
− 1

)
Qi(t),

for which σ̂2 is a consistent estimator of σ2 defined as:

σ̂2 = max

{∑n
i=1{m2

i −mi − exp(2γ̂′Vi)Λ̂
2(Ci)}∑n

i=1 exp(2γ̂′Vi)Λ̂2(Ci)
, 0

}
. (2.13)

Similar to the Liang method, the Sun method (Sun, Song, and Zhou, 2011) accommodates (M3).

In contrast to the Liang method, the distribution of the latent variable is completely unspecified, and

the same latent variable ηi is shared between the outcome and observation-time models. The Sun

method specifies the semi-parametric marginal model:

E[Yi(t) | Xi(t), ηi] = µ(t) + β′Xi(t) + αηi. (2.14)

Similar to θ in the Liang method, α parameterizes the correlation between the outcome and obser-

vation-time processes. If α = 0, then the Sun method reduces to the Lin method.

Conditioning on ηi, Ni(t) is a non-homogeneous Poisson process with intensity function λi(t) =

ηiλ0(t) exp{γ′Xi(t)}. The distribution of ηi under the Sun method may depend on observed time-

independent outcome-model covariates Vi with E[ηi | Vi] = 1. Discussion regarding covariate-

dependent latent variables or frailties can be found in recent literature (Heagerty and Kurland, 2001;

Liu, Kalbfleisch, and Schaubel, 2011; McCulloch and Neuhaus, 2011; Neuhaus and McCulloch,

2006). Let π̂(t;Xi) =
∫ t

0
exp{γ̂′Xi(u)}dΛ̂(u), η̂i = (mi − 1)/π̂(Ci;Xi), and Ω̂i = (mi − 1)(mi −

2)/π̂(Ci;Xi)
2. The class of estimating equations for β and α has the form:

U1(β, α; γ) =

n∑
i=1

∫ τ

0

W (t)[{Xi(t)− X̄(t; γ)}{Yi(t)− β′Xi(t)− αη̂i}]dNi(t) = 0,

and:

U2(β, α; γ) =

n∑
i=1

∫ τ

0

W (t)[{η̂i − η̄(t; γ)}{Yi(t)− β′Xi(t)} − α{Ω̂i − η̂iη̄(t; γ)}]dNi(t) = 0,
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for which:

X̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Xi(t)}Xi(t)mi/π̂(Ci;Xi)∑n

i=1 ξi(t) exp{γ′Xi(t)}mi/π̂(Ci;Xi)
,

and:

η̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Xi(t)}η̂imi/π̂(Ci;Xi)∑n
i=1 ξi(t) exp{γ′Xi(t)}mi/π̂(Ci;Xi)

.

2.2.3. Extensions

Extension to Liang method to accommodate time-dependent covariates.

The estimation procedure of Liang, Lu, and Ying (2009) allows adjustment for time-independent

covariates in the observation-time model. Here, we extend the Liang method to accommodate

time-dependent covariates. Let π̂(t;Vi) =
∫ t

0
exp{γ̂′Vi(u)}dΛ̂(u). The class of estimating equations

for β and θ permitting time-dependent covariates in the observation-time model has the form:

U(β, θ; Λ̂, B̂) =

n∑
i=1

∫ τ

0

Xi(t)− X̄(t)

B̂i(t)− ¯̂
B(t)

 {Yi(t)− β′Xi(t)− θ′B̂i(t)}dNi(t) = 0,

for which:

X̄(t) =

∑n
i=1 ξi(t) exp{γ′Xi(t)}Xi(t)mi/π̂(Ci;Xi)∑n

i=1 ξi(t) exp{γ′Xi(t)}mi/π̂(Ci;Xi)
,

¯̂
B(t) =

∑n
i=1 ξi(t) exp{γ′Xi(t)}B̂i(t)mi/π̂(Ci;Xi)∑n

i=1 ξi(t) exp{γ′Xi(t)}mi/π̂(Ci;Xi)
,

and B̂i(t) can be estimated as before by replacing Λ̂(Ci) with mi/π̂(Ci;Vi). We provide details on

consistency and asymptotic normality of the estimators in Appendix A.

Weighted-Liang and Weighted-Sun methods.

We propose extensions to the Liang and Sun methods to offer additional flexibility when parame-

terizing outcome-observation dependence under both (M2) and (M3). Recall that we denote Xi(t)

as the outcome-model covariates and Zi(t) as the observation-time model covariates. With the

inclusion of observation-level weights ρi(t; γ̂, δ), the set of estimating equation for the Weighted-

Liang method can be expressed as:

U(β, θ; Λ̂, B̂) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)

Xi(t)− X̄(t)

B̂i(t)− ¯̂
B(t)

 {Yi(t)− β′Xi(t)− θ′B̂i(t)}dNi(t) = 0,
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for which:

X̄(t) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}Xi(t)mi/π̂(Ci;Zi)∑n

i=1 ξi(t) exp{δ′Xi(t)}mi/π̂(Ci;Zi)
,

and:
¯̂
B(t) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}B̂i(t)mi/π̂(Ci;Zi)∑n

i=1 ξi(t) exp{δ′Xi(t)}mi/π̂(Ci;Zi)
.

Similarly, the set of estimating functions for the Weighted-Sun method is:

U1(β, α; γ̂) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)
[{Xi(t)− X̄(t)}{Yi(t)− β′Xi(t)− αη̂i}]dNi(t) = 0,

and:

U2(β, α; γ̂) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)
[{η̂i − η̄(t)}{Yi(t)− β′Xi(t)} − α{Ω̂i − η̂iη̄(t)}]dNi(t) = 0,

for which η̂i = mi−1
π̂(Ci;Zi)

,

η̄(t) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}η̂imi/π̂(Ci;Zi)∑n
i=1 ξi(t) exp{δ′Xi(t)}mi/π̂(Ci;Zi)

,

and:

X̄(t) =

∑n
i=1 ξi(t) exp{δ′Xi(t)}Xi(t)mi/π̂(Ci;Zi)∑n

i=1 ξi(t) exp{δ′Xi(t)}mi/π̂(Ci;Zi)
.

We provide details on consistency and asymptotic normality of our extensions in Appendices A and

B.

2.2.4. Summary

In this section, we formulated a semi-parametric linear regression model to evaluate the marginal

association between covariates and a continuous outcome of interest in the presence of outcome-

dependent observation times. We presented a framework of outcome-observation dependence

mechanisms. The Lin method is the most restrictive of the reviewed methods, because it is suitable

only for the stronger assumption of (M1); the Bůžková method accommodates (M2) and reduces

to (M1) when the additional covariates in the observation-time model are not required; the Liang

and Sun methods accommodate (M3), with (M1) as a special case. We proposed two methods, the

Weighted-Liang and Weighted-Sun methods, which offer considerable flexibility in that they can ac-
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commodate all (or any combination) of the three outcome-observation dependence mechanisms.

We note that standard error estimation for all methods is most easily obtained using bootstrap

procedures; in this setting, a cluster bootstrap, in which subjects are sampled with replacement,

is required (Efron and Tibshirani, 1993; Field and Welsh, 2007). The resampling of subjects as-

sumes that the correlation structure within each subject is retained (Cheng, Yu, and Huang, 2013;

Chernick, 2011). R code for the cluster-bootstrap procedure is included in Appendix A.

2.3. Simulation study

We evaluated the statistical properties of the reviewed methods through simulation studies under

two outcome-observation dependence settings: (i) (M2) and (ii) (M2) and (M3). All simulations were

conducted in R 2.13.1 (R Development Core Team, Vienna, Austria).

2.3.1. Setting 1: Simulations under (M2)

Parameters

In this setting, we used covariates to induce correlation between the outcome and observation-

time processes. Following the simulation procedure of Bůžková and Lumley (2009), we generated

continuous outcomes at each of 1000 iterations using the linear mixed-effects model:

Yi(t) = µ(t) + β1Xi1(t) + β2(Xi2 − E[Xi2 | Xi1]) + εi(t), (2.15)

for which µ(t) = t, εi(t) ∼ Normal(0,1), and β1 was the target of inference. The time-dependent co-

variate Xi1(t) = Xi1log(t) was a known function of time, in which Xi1 followed a Uniform[0,1] distri-

bution. The time-independent covariate Xi2 was drawn from a mixture distribution, for which Xi2 ∼

Normal(2,1) if Xi1 ≤ 0.5 and Xi2 ∼ Normal(0,4) if Xi1 > 0.5. Hence Xi2 in model (2.15) influenced

the covariate-outcome association of Xi1(t). To ensure proper marginalization of model (2.15), Xi2

was centered by its conditional mean given Xi1, resulting in the marginal semi-parametric outcome

model:

E[Yi(t) | Xi(t)] = µ(t) + β1Xi1(t). (2.16)

We generated observation times Tik from a non-homogeneous Poisson process with intensity func-
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tion λi(t) = ηiλ0(t) exp{γ1Xi1(t)+γ2Xi2}. Note that Xi2 induced additional correlation between the

outcome and observation-time processes. We set λ0(t) =
√
t

2 and generated the latent variable ηi

from a Gamma distribution with mean 1 and variance σ2
η = 0.5. The independent censoring time Ci

was generated from Uniform[5,10]. We considered various combinations of outcome parameters

(β1 = 1, β2 = {0, 0.3, 1}) and intensity parameters (γ1 = 0.5, γ2 = {0,−0.2, 0.5}). When β2 = 0 and

γ2 = 0, the outcome-observation dependence model satisfied (M1); when γ2 6= 0, the outcome-

observation dependence model satisfied (M2).

Results

Table 2.1 provides the estimated bias, empirical standard error estimates, and mean squared error

estimates for estimation of β1 in model (2.16). Recall that the Lin, Liang, and Sun methods estimate

β1 without accounting for Xi2 in any way, whereas the Bůžková, Weighted-Liang and Weighted-

Sun methods incorporate the effect of Xi2 through observation-level weights. As anticipated, all six

methods yielded approximately unbiased parameter estimates for β1 if (M1) was satisfied (γ2 = 0),

i.e., when the outcome process was conditionally independent of the observation-time process

given outcome-model covariates. The Lin, Bůžková, Weighted-Liang and Weighted-Sun estimates

of β1 were comparable in bias and efficiency to both the Liang and Sun estimators. However, if

(M1) was violated (γ2 6= 0), i.e., the source of additional correlation between the two processes was

induced by an additional covariate Xi2, then only the Bůžková, Weighted-Liang, and Weighted-Sun

methods performed well, with negligible biases in all settings. When β2 = 0 and γ2 6= 0, all methods

performed well because Xi2 was not associated with the outcome. As β2 increased, the biases of

Lin, Liang and Sun estimates for β1 increased. A positive value of γ2 with positive values of Xi2 led

to more observations per subject, which increased efficiency in the estimation of β1 in most cases.

In this setting, we also quantified the price of assuming (M3) when the latent variable was un-

necessary. We calculated the estimated relative efficiency (ERE) of unbiased estimators with the

estimated variance of the Weighted-Liang and Weighted-Sun methods in the numerator, and the

estimated variance of the Bůžková method in the denominator. The ERE indicated that the loss of

efficiency was reasonable and comparable between the Weighted-Liang and Weighted-Sun meth-

ods. As β2 increased (i.e., the dependence between the outcome and observation-time models

increased), the ERE decreased. In addition, we also calculated the ERE of IIRR-weighted versus

unweighted methods to investigate the loss of efficiency due to inclusion of the additional covariate
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Xi2 when none was needed (Appendix A.3). The EREs between the Bůžková and Lin methods

were close to 1 under all scenarios. The loss of efficiency was greater for the Weighted-Liang and

Weighted-Sun methods, but decreased as the number of observations increased (i.e., greater γ2)

and when β2 increased.

2.3.2. Setting 2: Simulation under (M2) and (M3)

Parameters

In the previous setting, we focused on outcome-observation dependence induced through covari-

ates. In this setting, we focus on estimation of β1 under various forms of latent variable structures.

To simulate data under both (M2) and (M3), we generated outcomes at each of 1000 iterations

using the linear mixed-effects model:

Yi(t) = µ(t) + β1Xi1(t) + β2(Xi2 − E[Xi2 | Xi1]) + αηi1Qi(t) + εi(t), (2.17)

in which µ(t), εi(t), Xi1(t) and Xi2 were as defined in Section 2.3.1.

The observation times Tik were generated from a non-homogeneous Poisson process with intensity

function λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2}, for which λ0(t) =
√
t

2 . The independent censoring

time Ci was generated from Uniform[7,10]. The coefficients were set at β1 = 1, β2 = 0.3, γ1 = 0.5,

γ2 = −0.2, and α = 1. Because α 6= 0 in model (2.17), correlation was introduced between the

outcome and the observation-time processes through latent variables. We generated the latent

variable ηi2 under two scenarios:

1. ηi2 from Gamma distribution with mean 1 and variance 0.5; hereby η(1)
i2 .

2. ηi2 from a mixture distribution, following Uniform[0.5,1.5] if Xi1 ≤ 0.5 and Gamma distribution

with mean 1 and variance 0.7 if Xi1 > 0.5; hereby η(2)
i2 .

The latent variable ηi1 was generated under two scenarios:

1. ηi1 = ηi2, hereby η(1)
i1 .

2. E[ηi1 | ηi2] = θ(ηi2 − 1), θ = 1, hereby η(2)
i1 .

We let Qi(t) = 1 or Qi(t) = Xi1. When Qi(t) = Xi1, model (2.17) can be considered a random
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coefficient model. The latent variables were dependent on the outcome process either through

Qi(t) = Xi1 or η(2)
i2 . The simulation setup mirrored the setup of Sun, Song, and Zhou (2011)

if ηi1 = ηi2 and Qi(t) = 1 and mirrored the setup of Liang, Lu, and Ying (2009) if α = 1, ηi2 was

Gamma distributed with mean 1, and ηi1 and ηi2 were linearly linked through E[ηi1 | ηi2] = θ(ηi2−1).

Results

Table 2.2 provides the estimated bias, empirical standard error estimates, and mean squared error

estimates for estimation of β1 in (2.17). The inclusion of Xi2 in the observation-time model satisfied

(M2) and induced additional correlation between the outcome and observation-time processes, so

the IIRR-weighted methods (Bůžková, Weighted-Liang, and Weighted-Sun) performed better than

their unweighted counterparts, reflecting the results of Setting 1.

Under the Sun setup (i.e., η(1)
i1 : ηi1 = ηi2 and Qi(t) = 1), all IIRR-weighted methods yielded

approximately unbiased parameter estimates for β1 under η(1)
i2 . Under the Liang setup (i.e., η(2)

i1 :

E[ηi1 | ηi2] = θ(ηi2 − 1) and Qi(t) = 1), all methods yielded approximately unbiased estimates

under η(1)
i2 . Under η(2)

i2 , in which the distribution of the latent variable depended on Xi1, only the

Weighted-Sun method yielded approximately unbiased estimates under Qi(t) = 1, though the bias

under the Weighted-Liang method was smaller in magnitude than the Bůžková method. If the effect

of the latent variable ηi1 on the outcomes was associated with the value of Xi1 (i.e., Qi(t) = Xi1),

then the bias of β1 was small under the Weighted-Liang method but large under all other methods.

2.3.3. Setting 3: Simulations under (M2) and (M3) with additional covariates

Parameters

In Setting 2, we generated data using the same set of covariates in settings with and without latent

variables; this setting is thus unfair to methods that do not explicitly incorporate latent variables,

such as the Bůžková method. In this setting, we generated both outcomes and observation times

according to Setting 2, but fit the observation-time model with additional covariates that were cor-

related with the latent variables: Z3 = I(ηi2 > 1); or Z4 = 2(ηi2 − 1). We fit three observation-time

models:

Model 1: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2}

Model 2: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2 + γ3Zi3}
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ůž
ko

vá
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Model 3: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2 + γ4Zi4}.

The coefficients were set at (β1, β2) = (1, 0.3), (γ1, γ2) = (0.5,−0.2), and α = 1. We considered

combinations of η(1)
i1 , η(2)

i1 , η(1)
i2 , and η(2)

i2 , and let Qi(t) = 1 or Xi1.

Results

Table 2.3 provides the estimated bias, empirical standard error estimates, and mean squared error

estimates for estimation of β1 in (2.17) under the Bůžková method. The results under Model 1 are

reflective of results from Setting 2; the bias was small only when the latent variables were commonly

distributed across all subjects (i.e., η(1)
i2 ) and Qi(t) = 1. When we fit the observation-time model

covariates with additional covariates Z3 or Z4 that were correlated with the latent variable, as in

Models 2 and 3, the bias under the Bůžková method for all cases was reduced. The estimates

were unbiased only when the latent variable was commonly distributed across all subjects. The

estimated observation-level weights under Models 2 and 3 capture information regarding subject-

specific visit intensities, resulting in smaller biases under the Bůžková method compared to Model

1.

Table 2.3: Simulation results for β1 under (M2) and (M3) with additional covariates: Bias, β̂1 − β1, β1 = 1;
ESE, empirical sample error; MSE, mean-squared error

n ηi1
a Qi ηi2

b Bůžková Bůžková Bůžková
Model 1 Model 2 Model 3

Bias ESE MSE Bias ESE MSE Bias ESE MSE

100 η
(1)
i1 1 η

(1)
i2 −0.030 0.426 0.182 0.001 0.358 0.128 0.002 0.310 0.096

η
(2)
i2 0.469 0.417 0.394 0.252 0.340 0.179 0.107 0.303 0.103

η
(2)
i1 1 η

(1)
i2 −0.041 0.484 0.236 −0.018 0.419 0.176 0.002 0.381 0.145

η
(2)
i2 0.490 0.528 0.519 0.272 0.437 0.265 0.123 0.402 0.176

Xi1 η
(1)
i2 0.232 0.411 0.223 0.074 0.361 0.136 0.056 0.336 0.116

η
(2)
i2 0.486 0.485 0.472 0.215 0.392 0.200 0.124 0.368 0.151

a Two possible links: η(1)
i1 : ηi1 = ηi2; η(2)

i1 : E[ηi1 | ηi2] = θ(ηi2 − 1), θ = 1
b Latent variable distributions: η

(1)
i2 : ηi2 ∼ Gamma(mean = 1, σ2 = 0.5); η(2)

i2 : ηi2 ∼ I(Xi1 ≤
0.5)Uniform[0.5, 1.5] + I(Xi1 > 0.5)Gamma(1, 0.7)
We fit three observation-time models:

Model 1: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2}
Model 2: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2 + γ3Zi3}, Zi3 = I(Zi2 > 1).
Model 3: λi(t) = ηi2λ0(t) exp{γ1Xi1(t) + γ2Xi2 + γ4Zi4}, Zi4 = 2 ∗ (Zi2 − 1).

2.3.4. Summary

Our simulation results quantified the potential for bias in estimated covariate-outcome associations

under various outcome-observation dependence mechanisms. The Bůžková, Weighted-Liang, and

Weighted-Sun methods performed better when (M2) is satisfied. In Setting 1, we examined the
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robustness of the methods that included latent variables when they were not needed. We showed

that the potential loss of efficiency was moderate and decreased when the dependence between

the outcome and observation-time models increased. We also examined the relative efficiency

between IIRR-weighted and unweighted methods to examine potential loss of efficiency due to in-

cluding an unnecessary additional covariate in the observation-time model. The results indicated

that the loss of efficiency was moderate and decreased with greater number of observations or in-

creased dependence between the outcome and observation-time processes. The Weighted-Liang

and Weighted-Sun methods were the most flexible in that they could accommodate a combination

of outcome-observation dependence mechanisms. They also provided estimates with negligible

bias depending on the relationship between the latent variable and the outcome model covariates.

In practice, ensuring unbiased estimates through a more complex dependence model may be more

important than a potential loss in efficiency. In Setting 3, we performed simulation studies in which

the observation-time model under the Bůžková approach included additional covariates that were

correlated with the latent variables. Results indicated that adjustment for these covariates reduced

the bias under the Bůžková method. Hence in practice, observed covariates that are correlated

with the unobserved latent variable may be used to capture information regarding subject-specific

visit intensities.

In practice, we rely on exploratory data analysis, model diagnostics, and sensitivity analyses to

investigate the relationship between the outcome and observation-time processes and to ensure

selection of an appropriate analysis method. We illustrate and discuss strategies for model selec-

tion in Sections 2.4 and 2.5.

2.4. Case study

2.4.1. Background

We compared the reviewed methods using a subset of data from a bladder cancer study conducted

by the Veterans Administration Cooperative Urological Research Group (Andrews and Herzberg,

1985). Eighty-five patients with superficial bladder tumors were randomly assigned to placebo

(n = 47) or thiotepa treatment (n = 38). At each follow-up visit, new tumors were counted before

being removed transurethrally. The maximum study duration was 53 months. There was notable

heterogeneity in visit patterns across patients. The median (25th, 75th percentile) number of visits in

30



the placebo group and treatment group was 9 (5, 12) and 9 (4, 23), respectively. The average time

between visits for the placebo group was 3.7 months, compared to 2.3 months for the treatment

group. These differences suggested that the patients in the treatment group visited the clinic more

often. Hence the observation-time process must account for this difference to estimate properly the

effect of treatment on tumor recurrence.

Our analysis focused on the natural logarithm of the cumulative number of new tumors observed up

to t plus 1, to retain a marginal response. We included a treatment indicator (X1) and the natural

logarithm of the initial number of tumors plus 1 (X2) in the outcome model. We considered the

following outcome models:

Lin and Bůžková methods: E[Yi(t) | Xi(t)] = µ(t) + β1Xi1 + β2Xi2;

Liang and Weighted-Liang methods: E[Yi(t) | Xi(t), ηi1] = µ(t) + β1Xi1 + β2Xi2 + ηi1Qi,

Qi = Xi1;

Sun and Weighted-Sun methods: E[Yi(t) | Xi(t), ηi1] = µ(t) + β1Xi1 + β2Xi2 + αηi1.

The consensus of previous analyses was that the tumor recurrence and observation-time processes

were dependent (Hu, Sun, and Wei, 2003; Liang, Lu, and Ying, 2009; Sun and Wei, 2000). We note

that the outcome may be intrinsically dependent upon the measurement process, such that larger

intervals between visits allows for more tumors to grow. The outcome is undoubtedly expected to

increase with longer time between visits. We considered two observation-time models:

Case 1: λi(t) = ηi2 exp{γ1Xi1 + γ2Xi2}λ0(t)

Case 2: λi(t) = ηi2 exp{γ1Xi1 + γ2Xi2 + γ3 log(# new tumors since baseline+1)}λ0(t)

Case 1 specified the same set of covariates in both the outcome and observation-time models.

Case 2 specified an additional covariate based on number of tumors since baseline because it is

common for the physician to schedule a patient’s next visit based on the outcomes so far. Recall

that ηi1 = ηi2 in the Sun and Weighted-Sun methods and E[ηi1 | ηi2] = θ(ηi2 − 1) in the Liang and

Weighted-Liang methods.
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2.4.2. Results

Table 2.4 provides estimates for β and γ under the Lin, Liang, and Sun methods in Case 1. We ob-

tained γ̂1 = 0.444 (SE, 0.093) and γ̂2 = −0.001 (0.115), which suggested that treatment assignment

was significantly associated with the observation-time process. We specified Qi = Xi1 because

Xi1 had a significant effect in the observation-time model, and the results in Table 2.4 mirrored the

conclusion from Liang, Lu, and Ying (2009).

Table 2.4: Parameter estimates and estimated standard errors (SE) under
Case 1

Method β̂1 (SE) β̂2 (SE) θ̂ (SE)∗ α̂ (SE)∗

Lin −0.701 (0.172) 0.657 (0.165)
Liang −0.588 (0.175) 0.682 (0.147) −0.235 (0.243)
Sun −0.751 (0.188) 0.680 (0.159) −0.043 (0.398)

γ̂1 = 0.444 (0.093), γ̂2 = −0.001 (0.115)
∗ The parameters θ and α represent the association between the outcome

and observation-time processes for the Liang and Sun methods respec-
tively.

Next, we examined the importance of the additional covariate in Case 2. Table 2.5 provides esti-

mates for β and γ for IIRR-weighted methods under Case 2. We found that the cumulative number

of tumors since baseline was significantly related to the observation-time process. The Wald test of

γ3 = 0 in the observation-time model provided a p-value < 0.001, implying that the inclusion of the

additional covariate was appropriate. Hence the IIRR-weighted methods were more appropriate

than the unweighted methods, and we focused on the results in Table 2.5. The observation-level

weights applied to the Bůžková, Weighted-Liang, and Weighted-Sun methods ranged from 0.50 to

1.26, with median (25
th

, 75
th

percentile) = 0.93 (0.84, 1.06). With the incorporation of observation-

levels weights, the treatment effect under the Bůžková method was attenuated compared to the

Lin method. The treatment effect estimates under Weighted-Liang and Weighted-Sun methods

were lower than those under the Liang and Sun methods. Because the initial number of tumors

was not significantly related to the observation-time process, the corresponding estimates β̂2 were

comparable under all methods.

32



Table 2.5: Parameter estimates and their estimated standard errors (SE) under Case
2

Method β̂1 (SE) β̂2 (SE) θ̂ (SE)∗ α̂ (SE)∗

Bůžková −0.565 (0.170) 0.572 (0.165)
Weighted-Liang −0.395 (0.166) 0.584 (0.147) −0.266 (0.229)
Weighted-Sun −0.423 (0.182) 0.580 (0.156) −0.247 (0.247)

γ̂1 = 0.536 (0.090), γ̂2 = −0.105 (0.128), γ̂3 = 0.227 (0.076)

Stabilized weights: median (25
th

, 75
th

percentile)=0.93 (0.84, 1.06)
∗ The parameters θ and α represent the association between the outcome and

observation-time processes for the Weighted-Liang and Weighted-Sun methods
respectively.

To determine the necessity of latent variables in the outcome models, we focused on the variance

of the latent variable ηi2 in the observation-time model. Under Case 2, the estimated variance

based on (2.13) was 0.448, indicating that the latent variable approaches were appropriate. Based

on the variance property of the Gamma distribution, we partitioned the variance of ηi2 as the con-

tribution from the placebo group (0.059) and the thiotepa group (0.417). The difference in variance

estimates indicated the possibility of covariate-dependent ηi2, in that the distribution of ηi2 was dif-

ferent between the treatment groups. Next, we used the density curve of η̂i2 to graphically check

if ηi2 was covariate dependent. The density curves were indeed different between the treatment

groups (Figure 2.1).

Given the evidence of (M2) and (M3), we focused on the results under the Weighted-Liang and

Weighted-Sun methods. We note that the same Zi(t) was used for the methods on Table 2.5. As in

the simulation study, correct specification of covariates in Zi(t) may recover the effect of the latent

variable under the Bůžková method. We did not have access to other measured covariates in this

data set; if those were available, it may have been possible to find candidates for Zi(t) such that

the treatment estimate under the Bůžková method were closer to those under the Weighted-Liang

and Weighted-Sun methods.

The choice between Weighted-Liang and Weighted-Sun methods relied on the distribution of ηi2.

The Weighted-Liang method assumes that ηi2 is derived from a Gamma distribution with a common

variance for all subjects, whereas the Weighted-Sun method places no distributional assumption

on ηi2. Considering the evidence of covariate dependence based on the density curves, the re-

sults from the Weighted-Sun method best described the data, although the estimates for β1 were

similar between the Weighted-Liang and Weighted-Sun methods. Overall, the results indicated that

33



0.0

0.2

0.4

0.6

1 2

η̂i2

de
ns

ity

0.0

0.2

0.4

0.6

0.8

1 2

η̂i2

de
ns

ity

Group

Placebo

Treatment

(a) Density plot of estimated ηi2 under Weighted-Liang method
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(b) Density plot of estimated ηi under Weighted-Sun method

Figure 2.1: Bladder data: Density plots of estimated latent variables

treatment and the initial number of tumors had significant effects on tumor recurrence. We also

observed a negative correlation between tumor recurrence and the observation-time processes

(α̂ = −0.247).

Lastly, we evaluated the fit of the outcome model based on the procedure presented in Liang, Lu,

and Ying (2009). We derived residuals ε̂i(t) = Yi(t) − ŷi(t) using parameter estimates from Ta-

ble 2.5. Denote 0 ≤ t1 < t2 < · · · < tM as the M total observation times among all subjects.

The estimate of µ(t) is a step function with jumps at unique observation times: µ̂(tk) = dÂ(tk)

dΛ̂(tk)
=

Â(tk)−Â(tk−)

Λ̂(tk)−Λ̂(tk−)
, 1 ≤ k ≤ M. Based on the residual plots of ε̂i(t) against the observation times (Fig-

ure 2.2), there was some evidence of lack of fit for large outcome values, but it was not systematic
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with respect to time and was similar across all weighted methods.
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Weighted−Sun method

Figure 2.2: Bladder data: Residual plots by observation times

2.5. Discussion

In this chapter, we evaluated the statistical properties of currently available and newly extended

semi-parametric methods for the analysis of longitudinal data with outcome-dependent observation

times. Table 2.6 summarizes the strengths and limitations of each method under various outcome-
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observation dependence mechanisms. The performance of each method hinges on the assumed

mechanism of dependence between the outcome and observation-time processes. For conditional

independence given covariates in the outcome model only (M1), all reviewed methods are appropri-

ate. For conditional independence given observation-time model covariates only (M2), the Bůžková

method is preferred. For conditional independence given unobserved latent variables only (M3),

all methods perform well when the latent variables are independent of outcome-model covariates.

However, if the distribution of the latent variables is covariate dependent, then the Sun method

is preferred; if the effect of the latent variable in the outcome model is modified by any outcome-

model covariates, then the Liang method is preferred. Under both (M2) and (M3), our extensions,

the Weighted-Liang and Weighted-Sun methods, are the most flexible and remove the bias other-

wise associated with the original Liang and Sun methods under (M2). In addition, our extension

of the method by Liang, Lu, and Ying (2009) allows time-dependent covariates in the observation-

time process, which would otherwise not be possible.

In practice, empirical model checking can be useful to decide which method is most appropriate.

First, to decide between (M1) and (M2), one can focus on the observation-time model and perform

a Wald test of the additional q − p covariates (Lin et al., 2000). If the Wald test yields a signifi-

cant result, the data suggest (M2). Next, one can determine the necessity of latent variables in

the outcome model using the variance of the latent variable ηi2. If the estimated variance of the

latent variables is small (i.e., close to 0), latent variables may not be required. One method to

estimate Var[ηi2] is to assume a parametric distribution for the latent variables, such as using equa-

tion (2.13) if we can assume ηi2 is Gamma distributed. The distribution of the latent variable in

the observation-time model is unspecified in the Lin, Bůžková, and Sun methods, but is assumed

to be Gamma distributed in the Liang method. There is a lack of formal techniques to check the

Gamma distribution assumption of the unobserved latent variable. A series of sensitivity analyses

is recommended. Liang, Lu, and Ying (2009) showed that the Liang method provided reason-

able estimates for covariate-outcome association even if the distribution of the latent variable ηi2

was misspecified, especially when the variance of the distribution was small. Robustness of the

Liang and Weighted-Liang methods to misspecification of the distribution of ηi2 can be improved

by replacing the estimate of ηi2 by η̂i2 = mi

/∫ Ci

0
exp{γ̂′Xi(t)}dλ0(t) , removing any distributional

assumption. The choice between the Liang and Sun methods rests upon whether the distribution of

the latent variable is covariate-dependent. An informal check is to partition the estimated variance
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of ηi2 by the covariate values to determine if the partitioned variances are similar across levels of

Xi(t). We can also graphically display the density curves of η̂i2 to check for covariate-dependent

latent variables. Lastly, we can evaluate the overall fit of the models based on residuals. Formal

model selection is an area of future research.

Several features of the methods discussed here deserve comment. First, the semi-parametric out-

come model does not require the estimation of µ(t). However, the potential gain from the flexibility

of the form of µ(t) is countered by the potential loss in efficiency of estimation of the parameters

of interest. Second, we assume that censoring times are independent of the outcome and obser-

vation-time model processes, i.e., non-informative censoring. This assumption may be relaxed to

allow censoring to depend on the outcome and observation-time processes by estimating γ and

Λ using the method proposed by Huang, Qin, and Wang (2010). In addition, the parameters in

the outcome model are time-independent, which may not be appropriate in some cases. We re-

fer readers to the procedure in Sun, Song, and Zhou (2011) to derive time-dependent regression

coefficients. Third, our goal is to generate inference regarding the marginal association between

a set of covariates and the outcome of interest, rather than to conduct formal causal inference. If

we allow intervention on Xi(t), modification of the exposure may influence not only the outcome of

interest, but also occurrence of a visit. Hence the quantification of the causal effect of the exposure

on the outcome of interest requires techniques that establish the temporal association between

exposure and outcome. A g-computation algorithm (Robins, Greenland, and Hu, 1999) or inverse-

probability-of-treatment weighted estimators (Robins, Hernán, and Brumback, 2000) may provide

insight into estimation of causal effects. Lastly, the observation-time process can be modeled on

two time scales: total time scale (i.e., time-to-events model) in which each recurrent event is mea-

sured from a time of origin, and gap time scale (i.e., time-between-events model) in which the

measure of interest is time between successive events (Cook and Lawless, 2007). The methods

in this paper adopt the total time scale, but it may be appropriate to consider the alternative pa-

rameterization. The time-between-events approach is well-studied within the recurrent events field

(Huang and Liu, 2007), but the use of the gap time scale in the regression modeling of longitudinal

data with outcome-dependent observation times warrants future research.

It is of interest to note that in the framework of incomplete data, GEE is able to accommodate

missing completely at random (MCAR) data and the special case of covariate-dependent missing-
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ness (Little, 1995; Rubin, 1976). Similarly, in the current focus on outcome-dependent observation

times, GEE does provide reliable estimates of β under (M1), assuming a correctly specified func-

tion of time in the outcome model. With the inclusion of observation-level inverse intensity weights,

a weighted-GEE model may also provide reasonable estimates of β under (M2) with the ease of

currently available software packages (Bůžková and Lumley, 2007). However, the advantage of the

methods in Section 2.2 is the flexibility provided by the non-parametric specification of the effect of

time.

The methods we described are currently limited to linear models for continuous outcomes. Recent

research has focused on the development of log-linear models for count outcomes (Bůžková and

Lumley, 2008; Sun, Tong, and He, 2007). In the next chapter, we introduce a new semi-parametric

method that can accommodate binary outcomes.
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CHAPTER 3

SEMI-PARAMETRIC METHOD FOR BINARY OUTCOMES

3.1. Introduction

Longitudinal studies typically focus on an explicit outcome of interest collected over time. The data-

collection schedule may constitute an implicit outcome (Rizopoulos, 2012), in that the timing or

frequency of data collection may communicate information regarding features of the study design

or patient-level characteristics. Consider the use of warfarin, a commonly prescribed oral antico-

agulant. A patient on warfarin requires frequent monitoring, based on the international normalized

ratio (INR), due to the drug’s narrow therapeutic range. Anticoagulation levels above or below

the therapeutic range increase the risk of bleeding or thromboembolism, respectively (Hylek et al.,

1996). An out-of-range INR typically triggers a dose change (Brigden et al., 1998); a physician

may request multiple closely spaced follow-up visits to monitor the impact of the dose change on

INR response (Figure 3.1). In such settings, the intensity of events such as follow-up visits may

depend on previous outcomes and measured or unmeasured covariates. If interest lies in estimat-

ing the effect of observed covariates on the probability of being out of therapeutic range, then it is

necessary to incorporate the data-collection schedule in the estimation procedure. We focus on a

marginal mean regression model to estimate the association between observed covariates and a

binary outcome of interest. We refer to the longitudinal outcomes as the outcome process and the

occurrence of data collection over time as the observation-time process.

If the probability of having a follow-up visit depends upon previous outcomes and measured or

unmeasured covariates, then the outcome and observation-time processes are dependent and

conventional longitudinal data analysis methods such as generalized estimating equations (GEE,

Liang and Zeger, 1986) that ignore the observation-time process may provide biased estimates

of covariate-outcome associations (French and Heagerty, 2009; Sun et al., 2005). We have intro-

duced a framework to describe the potential relationship between the outcome and observation-

time processes based on assumptions regarding conditional independence (Section 1.1.4). Specif-

ically, we assume that the outcome and observation-time processes are conditionally independent

given past observed covariates in the outcome model, past observed covariates in the observation-
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Figure 3.1: Observation times for four selected patients on warfarin and the corresponding observed
outcomes: INR below, within, or above the therapeutic range.

time model, and/or shared, unobserved latent variables.

Various methods have been proposed to account for potential dependence between the observa-

tion-time process and longitudinal binary outcomes. Fitzmaurice et al. (2006) proposed a pseudo-

likelihood estimator utilizing a linear approximation of the conditional distribution of the binary out-

comes. The estimator requires strong assumptions about the observation-time process (e.g., that

the conditional distribution of the outcome process at time t is independent of the observation-time

process given the most recent observed value of response prior to t) and does not allow for explicit

specification of the observation-time model. Other authors have adopted an estimating equations

approach, explicitly specifying the observation-time models to be incorporated into the estimation

of the outcome model (Bůžková and Lumley, 2007; Lin, Scharfstein, and Rosenheck, 2004). Al-

though these estimating equations approaches allow weaker assumptions about the observation-

time process, they require a parametric structure for the mean trajectory of the outcomes over time.

Several authors have proposed semi-parametric estimation procedures that assume a non-para-

metric structure for the mean trajectory of the longitudinal outcomes and a parametric structure

for covariate effects (Bůžková and Lumley, 2009; Liang, Lu, and Ying, 2009; Lin and Ying, 2001;

Sun, Song, and Zhou, 2011). These models provide flexibility when the focus is on the effect of
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a particular covariate of interest, while the effect of time is considered a nuisance. Closed-form

solutions for the mean trajectory and the parameters of interest are derived using the properties

of mean-zero processes. These proposed semi-parametric estimation procedures allow for more

flexible modeling of the longitudinal outcomes, but are currently limited to continuous and count

outcomes.

We consider a joint model approach to semi-parametric marginal regression to accommodate

outcome-observation dependence in longitudinal studies with binary outcomes. Through the incor-

poration of observation-level visit-intensity weights and shared latent variables, our proposed joint

model approach provides flexibility to accommodate the assumptions of conditional independence

given observed covariates and/or subject-level latent variables, while not imposing a parametric

assumption on the mean trajectory of the longitudinal binary outcomes.

In Section 3.2, we detail assumptions regarding conditional independence between the outcome

and observation-time processes. In Section 3.3, we introduce a comprehensive estimation proce-

dure for regression modeling of binary outcomes in the presence of outcome-dependent observa-

tion times. We present simulation studies to evaluate the performance of our proposed procedure

under alternative outcome-observation dependence mechanisms in Section 3.4, and illustrate its

application to data from a warfarin study in Section 3.5. Section 3.6 provides discussion and con-

cluding remarks. R code to implement our proposed method is available in Appendix B.

3.2. Model formulation and assumptions

We consider a longitudinal study with n independent subjects in the study interval [0, τ ], for which

τ is the maximum study duration. For subject i, i = 1, . . . , n, let Yi(t) denote a binary outcome of

interest at time t, and Xi(t) denote a p × 1 vector of possibly time-dependent covariates. Unless

otherwise specified, we consider only external covariates, such that any time-dependent covari-

ate process at time t is conditionally independent of all previous outcomes, given the history of

the covariate process (Kalbfleisch and Prentice, 2002). Yi(·) is measured at mi observation times

0 ≤ Ti1 < Ti2 < · · · < Timi ≤ τ , for whichmi denotes the number of follow-up measurements on the

ith individual. Using counting process notation, let Ni(t) =
∑
s≤t dNi(s) denote the number of ob-

servations on the ith subject by time t ≤ Ci, in which Ci is the censoring time. The indicator variable

dNi(t) equals 1 if a follow-up visit occurred on the ith individual at time t and equals 0 otherwise. We
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assume non-informative censoring, such that Pr[Yi(t) = 1 | Xi(t), Ci ≥ t] = Pr[Yi(t) = 1 | Xi(t)].

That is, the covariate-outcome associations are the same in those who are censored at Ci as those

who have survived beyond Ci.

3.2.1. Semi-parametric outcome model

We assume that primary scientific interest lies in a semi-parametric regression model for the lon-

gitudinal binary outcomes. We extend the semi-parametric linear regression model for continuous

outcomes proposed by Lin and Ying (2001) to binary outcomes Yi(t) under independent or depen-

dent observation times:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β′Xi(t)} =
µ(t) + β′Xi(t)

1 + exp{µ(t) + β′Xi(t)}
, (3.1)

for which µ(t) is an arbitrary function of time and β is a p × 1 vector of regression parameters of

interest.

3.2.2. Observation-time model

The observation-time process describes the timing and intensity of follow-up visits and is charac-

terized by a standard recurrent events model. We introduce a non-negative latent variable ηi with

mean 1 and unknown variance σ2. Given observation-time model covariates Zi(t) and ηi, the recur-

rent event process Ni(·) is a non-homogeneous Poisson process with intensity function (Lin et al.,

2000; Pepe and Cai, 1993):

λi(t) = ηiλ0(t) exp{γ′Zi(t)}, t ∈ [0, τ ] (3.2)

for which γ is a vector of unknown parameters and λ0(t) is an arbitrary baseline intensity function

with λ0(t) =
∫ t

0
λ(u)du. If the censoring time is independent of the observation-time process, then

the parameter γ can be consistently estimated by γ̂ from the following estimating function (Lin et al.,

2000):

U(γ) =

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ)}dNi(t), (3.3)
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for which:

Z̄(t; γ) =

∑n
i=1 ξi(t) exp{γ′Zi(t)}Zi(t)∑n

i=1 ξi(t) exp{γ′Zi(t)}
,

and ξi(t) = I(Ci > t).

3.2.3. Assumptions regarding conditional independence

Recall the framework of outcome-observation dependence mechanisms that describes the depen-

dence between the outcome and observation-time processes (Section 1.1.4):

(M1) Conditional independence given past outcome-model covariates;

(M2) Conditional independence given past observation-time model covariates;

(M3) Conditional independence given shared latent variables.

For the remainder of the chapter, conditional independence given covariates implies conditional

independence given past observed covariates.

3.3. Estimation and inference

In this section, we detail a new estimation procedure to estimate covariate-outcome associations

with binary outcomes in a joint modeling approach under any combination of the three outcome-

observation dependence mechanisms described in the previous section.

3.3.1. Estimators

Estimator under M1

Given the semi-parametric outcome model (3.1), and the observation-time model E[ dNi(t) | Xi(t)]

= exp{γ′Xi(t)} dλ0(t), we can define the zero-mean stochastic process for binary outcomes as:

Mi(t;β, γ) =

∫ t

0

[
Yi(s)ξi(s) dNi(s)− expit{µ(s) + β′Xi(s)}ξi(s) exp{γ′Xi(s)} dΛ(s)

]
. (3.4)

Mi(t;β, γ) is appropriate if it is assumed that the occurrence of a follow-up visit is a feature of the

study design or known patient characteristics and not due to previous outcomes or unmeasured

patient characteristics.

Estimator under M2

For continuous outcomes, Bůžková and Lumley (2009) proposed a method that relaxes the as-
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sumption of (M1) and accommodates (M2) by applying observation-level weights to the estimating

equation to account for dependence through covariates in the observation-time model, Zi(t). Recall

that Zi(t) may include the outcome-model covariates Xi(t) and summaries of past outcomes.

Given the marginal semi-parametric regression model (3.1), the observation-level weights stan-

dardize the observed data to the time-specific underlying population under the proportional rate

model for observation times E[dNi(t) | Zi(t)] = exp{γ′Zi(t)}dλ0(t). One particular observation-

level weight with variance-stabilizing properties is:

ρi(t; γ, δ) =
exp{γ′Zi(t)}
exp{δ′Xi(t)}

,

for which δ is estimated by δ̂ using (3.3) conditioning on Xi(t). The zero-mean process Mi(t;β, γ)

from (3.4) can then be extended as:

Mi1(t;β, γ, δ) =

∫ t

0

1

ρi(s, γ, δ)

[
Yi(s)ξi(s) dNi(s)

− expit{µ(s) + β′Xi(s)}ξi(s) exp{γ′Zi(s)} dΛ(s)

]
. (3.5)

Estimator under M2 and M3

To allow outcome-observation dependence through observed covariates and unobserved latent

variables, the outcome model (3.1) can be extended to:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β′Xi(t) + η′i1Qi(t)}, (3.6)

in which Qi(t) is a q × 1 subvector of Xi(t) and ηi1 is a q-dimensional vector of subject-specific

latent variables that represent subject-level propensity for visit (Liang, Lu, and Ying, 2009). The

observation-time model can be expressed as:

E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)} dλ0(t), (3.7)

in which ηi2 is a mean-one, non-negative latent variable. The distribution of ηi2 may depend on

observed time-independent outcome-model covariates Vi with E[ηi2 | Vi] = 1. Discussion regarding

covariate-dependent latent variables or frailties can be found in recent literature (Heagerty and
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Kurland, 2001; Liu, Kalbfleisch, and Schaubel, 2011; McCulloch and Neuhaus, 2011; Neuhaus and

McCulloch, 2006). The latent variables from models (3.6) and (3.7) are assumed to be linearly

linked through E[ηi1 | ηi2] = θ(ηi2 − 1). The parameter θ describes the association between the

outcome and observation-time processes. Thus, to ensure that β retains a marginal interpretation

with the inclusion of the latent variable, we define Bi(t) = E[(ηi2 − 1) | mi, Ci]Qi(t) as a fixed

covariate that incorporates the subject-specific propensity for visit. The outcome model (3.6) can

be re-expressed as:

Pr[Yi(t) = 1 | Xi(t), Bi(t)] = expit{µ(t) + β′Xi(t) + θ′Bi(t)}. (3.8)

Next, we re-express the observation-time model. Let Zi(t) = {Zi(s) : 0 ≤ s < t} denote the

covariate history of Zi up to t. Following the results from Huang, Qin, and Wang (2010), the event

times (ti1 < ti2 < · · · < timi
) of the ith subject conditional on {Ci,mi, ηi2,Z(Ci)} are order statistics

of a set of independent and identically distributed random variables with the density function:

exp{γ′Zi(t)}dλ0(t)∫ Ci

0
exp{γ′Zi(s)}dΛ(s)

, 0 ≤ t ≤ Ci.

Define π(t;Zi) =
∫ t

0
exp{γ′Zi(s)}dΛ(s). The conditional likelihood function for all subjects can be

derived as (Huang, Qin, and Wang, 2010):

n∏
i=1

p(ti1, ti2, . . . , timi | Ci,mi, ηi2,Z(Ci)) =

n∏
i=1

mi!

mi∏
j=1

dπ(t;Zi)

π(Ci;Zi)

 ∝
n∏
i=1

mi∏
j=1

dπ(t;Zi)

π(Ci;Zi)
.

It follows that:

E[dNi(t) | Ci,mi, ηi2,Z(Ci)] = ξi(t)mi
dπ(t;Zi)

π(Ci;Zi)
.

Using both re-expressed outcome and observation-time models, the zero-mean process (3.5) can

then be extended as:

Mi2(t;β, θ, γ, δ) =

∫ t

0

1

ρi(s, γ, δ)

[
Yi(s)ξi(s) dNi(s)

− expit{µ(s) + β′Xi(s) + θ′B̂i(s)}ξi(s)mi
dπ(s, Zi)

π(Ci, Zi)

]
(3.9)
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in the presence of both (M2) and (M3).

To estimate Bi(t), we first estimate ηi2 from the observation-time model. We utilize the property

that given {ηi2, Ci,Z(Ci)}, mi follows a Poisson distribution with mean ηi2π(Ci, Zi) to obtain η̂i2 =

{ mi

π(Ci,Zi)
}, so B̂i(t) = { mi

π(Ci,Zi)
−1}Qi(t). Equation (3.9) is the most general formulation of the joint

model and can accommodate (M1), (M2), and (M3); that is, provide valid estimation of β under any

combination of the three conditional independence mechanisms. Given a specific mechanism of

(M1), (M2) or (M3), Mi2(t;β, θ, γ, δ) can be reduced to (3.4) and (3.5). In subsequent sections, we

proceed with estimation of β via the estimation equation (3.9), which we refer to as the ‘proposed

estimator.’

3.3.2. Estimation procedure

Unlike for continuous or count outcomes, there is no closed-form solution for µ(t) and β for binary

outcomes based on the zero-mean process (3.9), by setting Mi2(t;β, θ, γ, δ) = 0. Computational

issues may arise because µ(t) is infinite dimensional, and iterative procedures may be difficult with

sparse data resulting from few subjects with visits at each unique observation time. To overcome

these computational burdens, we impose a flexible structure on µ(t) using basis approximations.

Generalizing the notation from Huang and Liu (2007), suppose the smooth function µ(·) can be

approximated by a spline function such that µ(t) ≈
∑Kn

k=1 ϕkGk(t) = ϕ′G(t) in which {Gk(·), k =

1, . . . ,Kn} is a basis system of B-splines, ϕ = (τ1, . . . , τKn)′ and G(t) = (G1(t), . . . , GKn(t))′. Let

H̃i(t) = Gi(t) or H̃ij = G(Tij). (3.8) can thus be approximated by Pr[Yi(t) = 1 | Xi(t), Bi(t)] =

expit{ϕH̃i(t) + β′Xi(t) + θ′Bi(t)}. Let s1 < s2 < · · · < sJ denote the J distinct ordered observation

times from all subjects {tik, i = 1, . . . , n; k = 1, . . . ,mi}. We propose to estimate β from (3.9) by the

estimating equation:

n∑
i=1

mi∑
k=1


H̃i(tik)

Xi(tik)

B̂i(tik)

 Yi(tik)

ρi(tik, γ, δ)
ξi(tik) dNi(tik) (3.10)

−
J∑

j=1

n∑
i=1


H̃i(sj)

Xi(sj)

B̂i(sj)

 1

ρi(sj , γ, δ)
expit{ϕ′H̃i(sj) + β′Xi(sj) + θ′B̂i(sj)}ξi(sj)mi

dπ(sj , Zi)

π(Ci, Zi)
= 0.
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γ and λ0(t) can be estimated by γ̂ from (3.3) and Λ̂(t) =
∑n
i=1

∫ t
0
dNi(s)

/∑n
j=1 ξj(s) exp{γ′Zj(s)} .

The number of equations represented by H̃i(·) reflects Kn, the number of knots selected. µ̂(·) =

ϕ̂′G(·) estimates the non-parametric portion of the outcome model and β̂ estimates the parametric

portion of the outcome model, while θ̂ incorporates the effect of the visit process into the outcome

model. Standard error estimation for our proposed estimation procedure can be obtained using a

cluster bootstrap, in which subjects are sampled with replacement (Field and Welsh, 2007). Boot-

strapping ensures that uncertainty from estimating µ and θ are accounted for in standard error

estimate for β̂.

3.3.3. Parameter interpretation

The inclusion of the fixed covariate Bi(t) in (3.8) ensures that β retains a marginal interpretation.

Consider a model with a binary treatment indicator Xi1 and a confounder Xi2:

Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θB̂i}, (3.11)

such that B̂i = (η̂i2 − 1)Qi(t) and β1 is the parameter of interest. We examine four possible

configurations of (3.11):

(i) Pr[Yi(t) = 1 | Xi] = expit{µ(t) + β1Xi1 + β2Xi2};

(ii) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)};

(iii) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)Xi2};

(iv) Pr[Yi(t) = 1 | Xi, B̂i] = expit{µ(t) + β1Xi1 + β2Xi2 + θ(η̂i2 − 1)Xi1};

In (i), corresponding to the outcome models in the (M1)-only or (M1) and (M2)-only case, β1 repre-

sents the difference in log odds of the response between two populations of treated and untreated

individuals, regardless of their visit propensity. In (ii) and (iii), β1 represents the difference in log

odds of the response between two populations of treated and untreated individuals with the same

value of Xi2 and visit propensity. In (iv), the interpretation of β1 is similar to the interpretation of

the main effect in the presence of an interaction. The log odds for each treatment group can be

expressed as:
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logit Pr[Yi(t) = 1 | Xi1 = 1, Xi2] = β0 + β1 + β2Xi2 + θ(η̂i2 − 1);

logit Pr[Yi(t) = 1 | Xi1 = 0, Xi2] = β0 + β2Xi2.

Thus the comparison of the treatment groups results in the coefficient β1 + θ(η̂i2 − 1). Therefore,

β1 represents the difference in log odds of the response between two populations of treated and

untreated individuals with the same value of Xi2 and an average visit propensity (i.e., ηi2 = 0).

3.4. Simulation study

We conducted simulation studies to evaluate the statistical properties of our proposed method un-

der two outcome-observation dependence settings: (i) (M2) and (ii) (M2) and (M3). All simulations

were conducted in R 2.13.1 (R Development Core Team, Vienna, Austria). For all simulations, we

generated 1000 simulated datasets, each with n = 100 or 200 independent subjects. For compari-

son, we fit a GEE with a working independence correlation structure (IEE). The IEE should be used

in the presence of time-dependent covariates unless a key assumption can be verified (French and

Heagerty, 2009; Pepe and Anderson, 1994). The IEE fitted here represents the most basic model

without any covariance assumption while providing valid marginal coefficients. We also fit an IEE

that incorporated observation-level weights ρi(t; γ, δ) and B̂i(t) as a covariate (weighted-IEE). All

outcome models used B-splines with four degrees of freedom to approximate µ(t).

3.4.1. Setting 1: Simulations under (M2)

Parameters

In setting 1, we used covariates to induce correlation between the outcome and observation-time

processes to satisfy (M2). We specified the outcome model as:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β1Xi1(t) + β2Xi2}, (3.12)

for which µ(t) = −1 + 0.5t−1/2, εi(t) ∼ Normal(0,1), and (β1, β2) were the parameters of inter-

est. The time-dependent covariate of interest Xi1(t) took the form Xi1log(t), in which Xi1 ∼ Uni-

form[0,1], and Xi2 ∼ Bernoulli(0.5).

Following the simulation procedure of Bůžková and Lumley (2009) based on a probit link approxi-

mation, we generated binary outcomes based on the following equation:

49



Yi(t) = I

[
f∗(t) + β∗1Xi1(t) + β∗2Xi2 + β3Xi3 + φi + εi(t) > 0

]
, (3.13)

for which f∗(t) = µ(t)M − β3E[Xi3 | Xi1], β∗1 = β1M , β∗2 = β2M , and

M =
√
σ2
ε + σ2

φ + β2
3Var[Xi3 | Xi1]/1.7. We included an additional covariate Xi3 drawn from a

mixture distribution, for which Xi3 ∼ Normal(2,1) if Xi1 ≤ 0.5 and Xi3 ∼ Normal(0,4) if Xi1 > 0.5.

The parameter φi was a subject-specific latent variable that induced an exchangeable correlation

structure on the outcomes from the same subject. We assumed φi was normally distributed with

mean 0 and variance σ2
φ = 0.25.

Model (3.13) describes the case when Xi3 affects the covariate-outcome association by Xi1(t).

Proper marginalization over the additional covariate Xi3, the random effect, and the error term in

(3.13) results in the marginal semi-parametric outcome model (3.12).

We generated observation times Tik from a non-homogeneous Poisson process with intensity func-

tion λi(t) = ηiλ0(t) exp{γ1Xi1(t) + γ2Xi2 + γ3Xi3}, in which λ0(t) =
√
t

2 . Note that Xi3 induced ad-

ditional correlation between the outcome and observation-time processes, and Xi3 was specified

in the observation-time model but not in the marginal outcome model (3.12). The latent variable ηi

was generated from a Gamma distribution with mean 1 and variance σ2
η = 0.5. The independent

censoring time Ci was generated from Uniform[5,10]. To examine the performance of our proposed

estimators under (M2), we considered various combinations of outcome parameters β1 = log(1.5),

β2 = log(1.2), β3 = {0, log(0.5)} and intensity parameters γ1 = 0.3, γ2 = 0.2, γ3 = (0, 0.2, 0.3).

When γ3 = 0, the outcome-observation dependence model satisfied (M1); when β3 6= 0 and γ3 6= 0,

the outcome-observation dependence model satisfied (M2).

Results

Table 3.1 provides the estimated bias, empirical standard error estimates, and mean squared error

estimates for estimation of β1 in model (3.12) by the IEE, weighted-IEE, and our proposed method.

If (M1) was satisfied (γ3 = 0), i.e., the outcome and observation-time processes were conditionally

independent given outcome-model covariates Xi1(t) and Xi2, then all three methods performed

well. Biases in the estimates of β1 were negligible. However, if (M1) was violated (γ3 6= 0 and

β3 6= 0), i.e., the two processes had additional correlation induced by Xi3, then the bias under the

proposed method was smaller than the bias under IEE. IEE estimates β1 without accounting for

50



Table 3.1: Simulation results for β1 = log(1.5): Bias, β̂1 − β1; ESE, empirical sample error; MSE,
mean squared error

β3 n γ3 Weighted- Proposed
IEE IEE method

Bias ESE MSE Bias ESE MSE Bias ESE MSE

0 100 0 −0.02 0.25 0.06 −0.02 0.24 0.06 −0.01 0.26 0.07
0.2 −0.04 0.24 0.06 −0.05 0.23 0.05 −0.04 0.24 0.06
0.3 −0.04 0.24 0.06 −0.05 0.24 0.06 −0.05 0.27 0.08

200 0 −0.02 0.18 0.03 −0.02 0.17 0.03 −0.02 0.18 0.03
0.2 −0.04 0.18 0.03 −0.05 0.17 0.03 −0.05 0.18 0.03
0.3 −0.04 0.17 0.03 −0.05 0.16 0.03 −0.05 0.20 0.04

log(0.5) 100 0 0.01 0.38 0.14 0.01 0.37 0.14 0.02 0.38 0.14
0.2 −0.32 0.38 0.25 −0.06 0.36 0.13 −0.06 0.37 0.14
0.3 −0.42 0.39 0.33 −0.04 0.36 0.13 −0.04 0.39 0.15

200 0 −0.02 0.25 0.06 −0.01 0.25 0.06 −0.01 0.25 0.06
0.2 −0.33 0.26 0.18 −0.07 0.25 0.07 −0.07 0.26 0.07
0.3 −0.45 0.27 0.28 −0.06 0.25 0.07 −0.06 0.28 0.08

∗ All outcome models were fitted with B-splines with 4 degrees of freedom.

the additional covariate Xi3 in any manner, whereas the proposed method incorporates the effect

of Xi3 through observation-level weights. Thus, IEE provided biased estimates. The performance

of the weighted-IEE was comparable to the proposed method; both methods provided comparable

bias and mean squared errors of the covariate effects.

Because Xi2 was independent of Xi3, the biases for β2 were negligible under all three methods for

all scenarios. This indicated that when the additional covariate is independent of an outcome-model

covariate, the performance of IEE is comparable to the weighted-IEE and proposed methods.

3.4.2. Setting 2: Simulation under (M2) and (M3)

Parameters

In setting 1, we focused on (M2). In setting 2, we examined the performance of our proposed

estimator under (M3) when (M2) was satisfied. Following (3.6), the model of interest for binary

outcomes in the presence of a latent variable representing visit propensity was:

P[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β1Xi1(t) + β2Xi2 + ηi1Qi(t)}, (3.14)
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in which µ(t), εi(t), Xi1(t) and Xi2 were as defined in Setting 1, and (β1, β2) were the parameters of

interest. We introduced an additional covariate Xi3, defined as the mixture distribution as in Setting

1, which affected the covariate-outcome association of Xi1(t) through (M2). Extending (3.14), we

generated data under both (M2) and (M3) with the following equation:

Yi(t) = I

[
f∗(t) + β∗1Xi1(t) + β∗2Xi2 + β3Xi3 + η∗i1Qi + εi(t) > 0

]
, (3.15)

for which f∗(t), β∗1 and β∗2 were as defined in Setting 1. With the inclusion of ηi1, we defined

η∗i1 = ηi1M and M =
√
σ2
ε +Q2

iσ
2
φ + β2

2var[Xi2 | Xi1]/1.7.

The observation times Tik were generated from a non-homogeneous Poisson process with intensity

function λi(t) = ηi2λ0(t) exp{γ1Xi1(t)+γ2Xi2+γ3Xi3}, with λ0(t) =
√
t

2 . The independent censoring

time Ci was generated from Uniform[5,10]. The latent variable ηi1 was defined as E[ηi1 | ηi2] =

θ(ηi2 − 1) + φi, for which φi ∼ Normal(0, σ2
φ) and σ2

φ = 1.

We generated the latent variable ηi2 in the observation-time model under two scenarios:

1. ηi2 from Gamma distribution with mean 1 and variance 0.5; hereby η(1)
i2 .

2. ηi2 from a mixture distribution, following Uniform[0.5,1.5] if Xi2 = 1 and Gamma distribution

with mean 1 and variance 0.7 if Xi2 = 0; hereby η(2)
i2 .

η
(2)
i2 would imply a covariate-dependent latent variable.

The coefficients were defined as (β1, β2, β3) = log(1.5, 1.2, 0.5), (γ1, γ2, γ3) = (0.3, 0.2, 0.3), and

θ = 1. θ 6= 0 in model (3.14) introduced correlation between the outcome and the observation-time

processes through latent variables.

We let Qi = 1 or Qi = Xi1. When Qi = 1, the effect of the latent variable ηi1 was not modified

by any covariates in the outcomes process. When Qi = Xi1, the effect of the latent variable ηi1

was modified by the value of Xi1. By varying Qi = (1, Xi1) and ηi2 = (η
(1)
i2 , η

(2)
i2 ), we considered

different ways the latent variables induced a relationship between the outcome and observation-

time processes.

Results

Table 3.2 provides the estimated bias, empirical standard error estimates, and mean squared error
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estimates for the estimation of β1 and β2 in model (3.14). The inclusion of Xi3 in the observation-

time model satisfied (M2) and induced additional correlation and biases the covariate-outcome

association of Xi1(t). The inclusion of ηi1 in the outcome model satisfied (M3).

We focus on the performance of the methods under various combinations of ηi2 (η(1)
i2 or η(2)

i2 ) and Qi

(1 orXi). If ηi1 was unrelated to any of the outcome-model covariates, (i.e., η(1)
i2 andQi = 1), then all

three methods performed well for β2, while IEE provided heavily biased estimates of β1, consistent

with the results from Setting 1. Under η(2)
i2 , in which the distribution of ηi2, and hence value of ηi1,

depended on the status of Xi2, IEE provided biased estimates of β2, while the weighted-IEE and

the proposed method provided unbiased estimates. If the effect of ηi1 was modified by the value

of Xi1 (i.e., Qi = Xi1), then the bias for β1 under the weighted-IEE and proposed method was

smaller than IEE. Under the (M1) or (M2)-only assumption (θ = 0, ηi1 = 0), the proposed method

is expected to be less efficient than IEE because the estimation procedure attempts to estimate θ,

which results in loss of efficiency.

3.4.3. Summary

The preceding simulation results quantified the potential for bias in estimated covariate-outcome

associations under various outcome-observation dependence mechanisms. Under (M1), all three

methods performed well. Under (M2), only the weighted-IEE and our proposed method performed

well. Under (M3) when (M2) was satisfied, both the weighted-IEE and our proposed method per-

formed well in the presence of a latent variable representing visit propensity in the outcome model,

especially when the latent variables were associated with outcome-model covariates either (i) if

the distribution of the latent variables was covariate-dependent, or (ii) the effect of the latent vari-

able was modified by an outcome-model covariate. In all simulations, the weighted-IEE and the

proposed method were the most reliable and provided estimates with negligible biases under any

combination of outcome-observation dependence mechanisms.

3.5. Application

3.5.1. Background

In this section, we apply our proposed joint model approach to data from a randomized controlled

trial among patients on warfarin therapy. The goal of the trial was to determine the effectiveness of
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Table 3.2: Simulation results for β1 = log(1.5), β2 = log(1.2), θ = 1: Bias, β̂ − β; ESE, empirical
sample error; MSE, mean squared error

n η2 Qi Weighted- Proposed
IEE IEE method

Bias ESE MSE Bias ESE MSE Bias ESE MSE

100 η
(1)
2 1 β1 −0.40 0.47 0.38 −0.05 0.42 0.18 −0.05 0.44 0.20

β2 −0.01 0.46 0.21 0.03 0.44 0.19 0.03 0.44 0.20

Xi1 β1 −0.11 0.41 0.18 −0.05 0.34 0.12 −0.05 0.39 0.15
β2 0.00 0.38 0.15 0.02 0.34 0.12 0.02 0.35 0.12

η
(2)
2 1 β1 −0.42 0.43 0.36 −0.08 0.39 0.16 −0.08 0.41 0.17

β2 −0.39 0.41 0.32 −0.09 0.38 0.15 −0.09 0.39 0.16

Xi1 β1 −0.24 0.38 0.20 −0.09 0.33 0.12 −0.09 0.36 0.14
β2 −0.19 0.34 0.15 −0.03 0.32 0.10 −0.03 0.33 0.11

200 η
(1)
2 1 β1 −0.42 0.33 0.29 −0.06 0.30 0.09 −0.05 0.30 0.10

β2 −0.02 0.31 0.10 0.02 0.30 0.09 0.02 0.30 0.09

Xi1 β1 −0.12 0.29 0.10 −0.06 0.24 0.06 −0.06 0.26 0.07
β2 0.00 0.27 0.07 0.02 0.24 0.06 0.02 0.24 0.06

η
(2)
2 1 β1 −0.42 0.30 0.27 −0.07 0.27 0.08 −0.07 0.27 0.08

β2 −0.40 0.29 0.25 −0.08 0.26 0.08 −0.08 0.26 0.08

Xi1 β1 −0.24 0.27 0.13 −0.08 0.23 0.06 −0.08 0.24 0.06
β2 −0.20 0.24 0.10 −0.02 0.22 0.05 −0.02 0.22 0.05

∗ All outcome models were fitted with B-splines with 4 degrees of freedom.
a Latent variable distributions: η(1)

i2 : ηi2 ∼ Gamma(mean=1, σ2 = 0.5);
η

(2)
i2 : ηi2 ∼ I[X2 = 1]Uniform[0.5, 1.5] + I[X2 = 0]Gamma(1, 0.5)
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interventions designed to increase adherence to therapy, and thus improve anticoagulation control

(Kimmel et al., 2007). The study randomized 362 subjects into four treatment arms, which we are

unable to reveal in this preliminary analysis. The study protocol specified monthly follow-up visits,

at which INR was measured. Physicians also scheduled as-needed visits in between protocol-

required visits based on the patient’s INR response.

The outcome Yi(t) in the outcome model was binary: 1 if the INR was outside the therapeutic

range (out-of-range) at time t, and 0 otherwise. The primary exposure was treatment assignment.

Descriptive analyses (data not shown) revealed several baseline covariates that were imbalanced

across the four treatment groups (P < 0.2), and were thus adjusted for in the outcome model:

employment status (working, disabled, or retired/unemployed), baseline age, race, Medicare insur-

ance, education, history of diabetes, target INR range, and sub-therapeutic INR at baseline.

We considered two outcome models:

Model 1: Pr[Yi(t) = 1 | Xi, Bi] = expit{µ(t) + β′Xi + θBi}

Model 2: Pr[Yi(t) = 1 | Xi, Bi] = expit{µ(t) + β′Xi + θ1Bi,disabled + θ2Bi,retired/unemployed}.

Recall that Bi includes the latent variable from the observation-time model, and Bi,Qi=(η̂i2 − 1)Qi.

Model 1 assumed that the effect of the latent variable was not modified by any of the outcome-

model covariates. Model 2 assumed that the effect of subject-specific latent variables was different

based on employment status.

The observation-time model was defined as: E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)}dλ0(t), in which

Zi(t) included whether the INR was out-of-range at the previous visit. Thus, the observation-time

model mirrored the clinical management of patients with suboptimal anticoagulation status who

required additional follow-up. Outcome-model covariates were also screened for inclusion in the

observation-time model. Univariable recurrent event models were used to assess unadjusted co-

variate associations with the observation times.

Censoring time Ci was defined as the time of the last follow-up visit at the study site. To estimate

95% confidence intervals (CI), we performed a cluster bootstrap in which subjects were sampled

with replacement. The sampling procedure was repeated 1000 times and the 95% bootstrap CI was

obtained from the 2.5th and 97.5th percentile of the empirical distribution produced from these 1000
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Table 3.3: Parameter estimates and 95% CI of γ from
the observation-time model

γ̂ (95% CI)

Employment Status
Working −
Disabled 0.13 ( 0.04, 0.29)
Retired/Unemployed 0.09 ( 0.00, 0.27)

Out-of-range INR at previous visit 0.40 ( 0.37, 0.49)

estimates of β. The β estimates and 95% CI from the outcome models were exponentiated to obtain

the odds ratios and corresponding 95% CI. Odds ratios less than 1 indicated decreased odds of

out-of-range INR. For comparison, we fit a GEE with a working independence correlation structure

(IEE) and an IEE that incorporated observation-level weights ρi(t; γ̂, δ̂) and B̂i(t) as a covariate

(weighted-IEE). All outcome models used B-splines with 4 degrees of freedom to approximate µ(t).

3.5.2. Results

The estimates of γ from the observation-time model indicated that employment status was sig-

nificantly associated with the observation times (Table 3.3). Patients who were disabled or re-

tired/unemployed were more likely to have a visit compared to patients who were working. The me-

dian number of visits for those in the ‘working’ group was 6 (range, 3–11), while the median number

of visits in the ‘disabled’ and ‘retired/unemployed’ groups were 8 (range, 2–16) and 7 (range, 1–

24), respectively. Employment status may be a proxy for other factors such as access to care and

availability of time for physician visits. Patients were also significantly more likely to have a visit if

the INR was out-of-range at the previous visit [γ̂, 0.40; 95% CI:(0.37, 0.49)]. We found no signifi-

cant interaction between employment status and out-of-range INR. The observation-level weights

applied to the estimation procedures had a median of 1.21 and ranged from 0.88 to 1.71.

The odds ratios (ORs) and 95% CIs from the outcome models are presented in Table 3.4. Under

Model 1, the estimate ofBi was positive, implying that the outcome and observation-time processes

were positively associated, such that patients with greater odds of being out-of-range (i.e., poorer

anticoagulation status) had more frequent visits. With both observation-level weights and a latent

variable, the OR estimates from weighted-IEE and the proposed method shifted toward the null for

those disabled and retired/unemployed. Here, β for each employment status represents the differ-

ence in log odds of an out-of-range INR between populations of ‘disabled’ or ‘retired/unemployed’
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individuals and ‘employed’ individuals with the same visit propensity.

0.0
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1.2

1.6

0 1 2 3

η̂i2
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si
ty

 Disabled Retired/Unemployed Working

Figure 3.2: The empirical distribution of ηi2 by employment status.

Model 2 investigated whether the latent variable was associated with employment status. Based

on the empirical distribution of ηi2 by employment status (Figure 3.2), there was little evidence that

the distribution of ηi2 from the observation-time model differed by employment status. The OR es-

timates for those in the ‘disabled’ group were similar between Model 1 and 2, but the estimates

for those in the ‘retired/unemployed’ group further attenuated, even though the confidence inter-

vals were wide. Both the ‘disabled’ and the ‘retired/unemployed’ groups had more frequent visits

compared to the working group, hence the incorporation of the observation-level weights and ef-

fects of latent variables based on employment status adjusted for potential outcome-observation

dependence. Here, β for each employment status represents the difference in log odds of an out-

of-range INR between populations of ‘disabled’ or ‘retired/unemployed’ individuals and ‘employed’

individuals, all with average visit propensity.

3.6. Discussion

In this chapter, we presented a new approach to analyze longitudinal binary outcomes in the pres-

ence of outcome-dependent observation times. We introduced three mechanisms to describe the
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dependence between the outcome and observation-time processes, and showed that our proposed

method is applicable under any combination of the mechanisms. Our proposed method performed

as well as the weighted-IEE that incorporates observation-level weights and latent variables. Both

methods performed better than the naı̈ve IEE when the dependence between outcomes and ob-

servation times is parameterized using observation-time model covariates and/or latent variables.

The advantage of our proposed method over the weighted-IEE would be apparent in the case of

more complicated data-collection schedules, such as when the censoring times are not indepen-

dent of the outcome and observation-time processes. In addition, our proposed method allows

explicit specification of separate models for the outcome and the observation-time processes. Al-

though not our primary target of inference, the parameters in the observation-time model provide

relevant information to clinicians regarding the timing of care provided to patients. The ability of our

proposed method to explicitly specify the secondary model for the observation-time process can be

extended to accommodate more complex data-collection schedules.

Several key features of our approach are worth noting. First, we applied our proposed method to the

analysis of binary outcomes, but our approach can be extended to other types of outcomes given an

appropriate link function, such as the generalized logit link for a multinomial outcome. Second, we

modeled the effect of time with B-splines instead of assuming a parametric structure. The potential

gain in computational ease from the smooth spline approximation of µ(t) is countered by the poten-

tial loss in efficiency of estimation of the parameters of interest. Third, the validity of the proposed

estimator is contingent upon correct specification of the observation-time model. One could utilize

a Wald test for the importance of the additional covariates in Zi(t) to guide model building. Fourth,

the model is able to accommodate censoring times that are dependent on the outcome and obser-

vation-time processes by estimating γ following the procedure in Huang, Qin, and Wang (2010).

Finally, we note that in our application, patients were nested within physicians who made schedul-

ing decisions based on the patient’s anticoagulation status. Therefore, in addition to unmeasured

patient characteristics, we may need to account for physician-level characteristics. Incorporating

multiple sources of correlation, such as in a multi-level model, warrants future research.
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CHAPTER 4

EXTENSION TO DISCONTINUOUS RISK INTERVALS

4.1. Introduction

In Chapters 2 and 3, subjects were considered at risk for a visit at any time until the time of cen-

soring, i.e., the occurrence of a visit did not preclude the possibility of the next visit immediately

thereafter. However, it is common in medical studies to encounter longitudinal data with observa-

tion gaps, during which subjects are considered not at risk for an event or physician visit; these

gaps result in discontinuous risk intervals. Discontinuous risk intervals are a common feature of

recurrent-event data, or more specifically, recurrent-episode data, such as recurrent infections and

hospitalizations (Guo, Gill, and Allore, 2008; Kim, 2014; Zhao and Sun, 2006).

This chapter is motivated by a randomized trial of malaria vaccines conducted in Mali (Section

1.2.1). In this study, subjects were randomized to one of two vaccine arms, and the goal was to

assess the impact of both vaccines on parasite and hemoglobin levels (Sagara et al., 2009). This

study posed two main analysis issues. First, there was potential dependence between the outcome

and observation-time processes. Subjects were scheduled for monthly follow-up visits according

to the protocol. However, as-needed visits were also common between prescheduled visits, due

to side effects or negative episodes such as clinical symptoms of malaria (Figure 4.1). Possible

dependence between the longitudinal outcome and observation-time processes may require meth-

ods developed in Chapters 2 and 3 when evaluating covariate-outcome associations. The second

analysis issue was the presence of discontinuous risk intervals, which is the main focus of this

chapter. Upon confirmed diagnosis of clinical malaria during any visit, the patient received malaria

treatment and was considered not at risk for a new malaria episode until 28 days after the first day

of treatment. The patient was also not at risk for another physician visit during this 28-day period;

we refer to this as an observation gap.

One possible approach to accommodate discontinuous risk intervals is to dichotomize the longitu-

dinal outcomes and focus only on the outcomes that pass a certain threshold (i.e., episodes) and

proceed with incidence rate analysis or recurrent episode analysis. To incorporate discontinuous

risk intervals into the incidence rate (i.e., the number of events over total person time in study), the
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Figure 4.1: Observation times for four selected patients in the malaria vaccine study and the cor-
responding observed outcomes. A red dot indicates that parasite level > 3000/µL recorded at that
visit, and the 28-day observation gaps are indicated by dashed blue lines.

person’s time off the study (observation gaps) is removed from the total time in study (Guo, Gill,

and Allore, 2008). However, this method does not easily accommodate covariate adjustments and

does not account for the intensity of the episodes. To account for the intensity, several authors

proposed methods within the recurrent episode framework by specifying when the subjects are not

in the observation gaps. Hu et al. (2011) proposed a modified Cox regression model with time-

dependent stratification and an adjusted risk set to accommodate non-negligible episode duration.

Kim (2014) proposed a full likelihood approach to accommodate recurrent-episode data in which

observation gaps are observed incompletely. However, the recurrent episode approach requires

binary outcomes and ignores outcome measurements collected between episodes.

The topic of modeling longitudinal data with informative or outcome-dependent observation times

has gained substantial interest in recent years. Lin, Scharfstein, and Rosenheck (2004) and Sun et

al. (2005) proposed semi-parametric approaches; Lipsitz, Fitzmaurice, and Ibrahim (2002) consid-

ered a full likelihood approach for continuous outcomes while Fitzmaurice et al. (2006) proposed a

pseudolikelihood model for binary outcomes. However, none of these methods can accommodate
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discontinuous risk intervals.

Recently, Zhu et al. (2013) proposed a joint-likelihood approach motivated by the analysis of medi-

cal costs related to hospitalizations. The method addresses both the possible correlation between

the outcome and observation-time process and the hospitalization duration. Their full likelihood

approach can only accommodate continuous outcomes, and in their data example the medical

cost data only exist when the hospitalization occurs, i.e., the data constitute a recurrent marked

point process (French and Heagerty, 2009). In contrast, our malaria data consist of both binary

and continuous outcomes, and the longitudinal outcomes exist regardless of the observation-time

process.

We present an extension of the generalized model from Chapter 3 for the analysis of data with de-

pendence between the outcome and observation-time processes in the presence of discontinuous

risk intervals. In Section 4.2, we introduce the modified at-risk definition and the proposed esti-

mation procedure for regression modeling in the presence of both outcome-dependent observation

times and discontinuous risk intervals. We present simulation studies to evaluate the performance

of our proposed procedure under various scenarios of discontinuous risk intervals in Section 4.3,

and illustrate its application to data from a malaria vaccine trial in Section 4.4. Section 4.5 provides

discussion and concluding remarks.

4.2. Model formulation

We consider a longitudinal study with n independent subjects in the study interval [0, τ ], for which

τ is the maximum study duration. For subject i, i = 1, . . . , n, let Yi(t) denote an outcome of

interest at time t, and Xi(t) denote a p × 1 vector of possibly time-dependent covariates. Unless

otherwise specified, we consider only external covariates, such that any time-dependent covariate

process at time t is conditionally independent of all previous outcomes, given the history of the

covariate process (Kalbfleisch and Prentice, 2002). Yi(·) is measured at mi observation times

0 ≤ Ti1 < Ti2 < · · · < Timi
≤ τ , for which mi denotes the number of follow-up measurements on

the ith individual. Using counting process notation, let Ni(t) =
∑
s≤t dNi(s) denote the number of

observations on the ith subject by time t ≤ Ci, in which Ci is the censoring time. The indicator

variable dNi(t) equals 1 if a follow-up visit occurred on the ith individual at time t and equals 0

otherwise. We assume non-informative censoring, such that E[Yi(t) | Xi(t), Ci ≥ t] = E[Yi(t) |

62



Xi(t)]. That is, the covariate-outcome associations are the same in those who are censored at Ci

as those who are still in the study at Ci.

4.2.1. ‘At risk’ intervals

The complication of discontinuous risk intervals can be addressed by careful consideration of when

individuals are at risk of a follow-up visit. We assume visits and outcomes occur and are recorded

in continuous time over the study interval [0, τ ]. Let I(·) be an indicator function such that I(A) = 1

if A is true and I(A) = 0 otherwise. Without any observation gaps, the patients are always at risk

for a visit prior to the time of censoring, i.e., ξi(t) = I(0 ≤ t ≤ Ci). In the presence of discontinuous

risk intervals, we specify ∆i(t) = 1 if an individual is under observation (i.e., not in an observation

gap) and therefore at risk of a visit at t, and ∆i(t) = 0 otherwise. The ‘at risk’ indicator ∆i(t)

denotes which individuals provide information about visit occurrence at a given time and induces

an adjusted risk set that includes only those not in an observation gap and who have not been

censored at t.

4.2.2. Semi-parametric outcome model

As in previous chapters, we assume that primary scientific interest lies in a semi-parametric regres-

sion model for the longitudinal outcomes. We consider the generalized semi-parametric regression

model for longitudinal outcomes Yi(t) under independent or dependent observation times (Lin and

Ying, 2001):

E[Yi(t) | Xi(t)] = g{µ(t) + β′Xi(t)}, (4.1)

for which µ(t) is an arbitrary function of time and β is a p × 1 vector of regression parameters of

interest. The function g(·) links the expected outcome to the linear predictors; g(·) is the identity

function for continuous outcomes and the expit function for binary outcomes. The parameter β in

model (4.1) remains the primary target of inference: β represents the marginal association between

a set of covariates and an outcome of interest among a population of individuals.
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4.2.3. Observation-time model

The observation-time process describes the timing and intensity of follow-up visits and is charac-

terized by a standard recurrent events model. We introduce a non-negative latent variable ηi with

mean 1 and unknown variance σ2. Given observation-time model covariates Zi(t) and ηi, the recur-

rent event process Ni(·) is a non-homogeneous Poisson process with intensity function (Lin et al.,

2000; Pepe and Cai, 1993):

λi(t) = ∆i(t)ηiλ0(t) exp{γ′Zi(t)}, t ∈ [0, τ ] (4.2)

for which γ is a vector of unknown parameters and λ0(t) is an arbitrary baseline intensity function

with λ0(t) =
∫ t

0
λ(u)du. The inclusion of ∆i(t) accommodates discontinuous risk intervals. The

incorporation of the observation-time process into estimation of β in a joint model facilitates reliable

estimation under outcome-observation dependence, as defined in Section 1.1.4.

4.3. Estimation and inference

In this section, we detail an extension to the general method proposed in Chapter 3 to accommodate

any combination of the three outcome-observation dependence mechanisms in the presence of

discontinuous risk intervals.

4.3.1. Estimators

To allow outcome-observation dependence through observed covariates and unobserved latent

variables, the outcome model (4.1) can be extended to:

E[Yi(t) | Xi(t)] = g{µ(t) + β′Xi(t) + η′i1Qi(t)}, (4.3)

in which Qi(t) is a q × 1 subvector of Xi(t) and ηi1 is a q-dimensional vector of subject-specific

latent variables that represent subject-level propensity for visits (Liang, Lu, and Ying, 2009). The

observation-time model can be expressed as:

E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)} dλ0(t), (4.4)
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in which ηi2 is a mean-one, non-negative latent variable. The distribution of ηi2 may depend on

observed time-independent outcome-model covariates Vi with E[ηi2 | Vi] = 1. The latent variables

from models (4.3) and (4.4) are assumed to be linearly linked through E[ηi1 | ηi2] = θ(ηi2 − 1).

The parameter θ describes the association between the outcome and observation-time processes.

Thus, to ensure that β retains a marginal interpretation with the inclusion of the latent variable, we

define Bi(t) = E[(ηi2 − 1) | mi, Ci]Qi(t) as a fixed covariate that incorporates the subject-specific

propensity for visit. The outcome model (4.3) can be re-expressed as:

E[Yi(t) | Xi(t), Bi(t)] = g{µ(t) + β′Xi(t) + θ′Bi(t)}. (4.5)

Next, we re-express the observation-time model. Let Zi(t) = {Zi(s) : 0 ≤ s < t} denote the covari-

ate history of Zi up to t. Without discontinuous risk intervals, the event times (ti1 < ti2 < · · · < timi
)

of the ith subject conditional on {Ci,mi, ηi2,Z(Ci)} are order statistics of a set of independent and

identically distributed random variables with the density function (Huang, Qin, and Wang, 2010):

exp{γ′Zi(t)}dλ0(t)∫ Ci

0
exp{γ′Zi(s)}dΛ(s)

, 0 ≤ t ≤ Ci.

In the presence of discontinuous risk intervals, we incorporate the at risk indicator ∆i(t) in the

density function:
∆i(t) exp{γ′Zi(t)}dλ0(t)∫ Ci

0
∆i(t) exp{γ′Zi(s)}dΛ(s)

, 0 ≤ t ≤ Ci.

Define π(t;Zi) =
∫ t

0
∆i(s) exp{γ′Zi(s)}dΛ(s). It follows that:

E[dNi(t) | Ci,mi, ηi2,Z(Ci)] = ∆i(t)mi
dπ(t;Zi)

π(Ci;Zi)
.

Using both re-expressed outcome and observation-time models, we can formulate the zero-mean

process as:

Mi(t;β, θ, γ, δ) =

∫ t

0

1

ρi(s, γ, δ)

[
Yi(s)∆i(s) dNi(s)

− g{µ(s) + β′Xi(s) + θ′B̂i(s)}∆i(s)mi
dπ(s, Zi)

π(Ci, Zi)

]
. (4.6)
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The estimator accommodates outcome-observation dependence through observed covariates (M2)

and unobserved latent variables (M3) through observation-level weights ρi(t, γ, δ) and Bi(t). In

addition, the inclusion of ∆i(t) properly accounts for discontinuous risk intervals.

To estimate Bi(t), we first estimate ηi2 from the observation-time model (4.4). We utilize the prop-

erty that given {ηi2, Ci,Z(Ci)}, mi follows a Poisson distribution with mean ηi2π(Ci, Zi) to obtain

η̂i2 = { mi

π(Ci,Zi)
}, so B̂i(t) = { mi

π(Ci,Zi)
− 1}Qi(t). The observation-level weights ρi(t, γ, δ) standard-

ize the observed data to the time-specific underlying population under the observation-time model.

One particular observation-level weight with variance-stabilizing properties is:

ρi(t; γ, δ) =
exp{γ′Zi(t)}
exp{δ′Xi(t)}

,

for which δ is from the observation-time model (4.2) conditioning on Xi(t). (4.6) is the most general

formulation of the joint model and can accommodate (M1), (M2), and (M3); that is, the equation

(4.6) provides valid estimation of β under any combination of the three conditional independence

mechanisms in the presence of discontinuous risk intervals. In subsequent sections, we proceed

with estimation of β via the estimation equation (4.6), which we refer to as the ‘proposed estimator.’

4.3.2. Estimation procedure

If the censoring time is independent of the observation-time process, then the parameter γ from the

observation-time model (4.2) can be consistently estimated by γ̂ with the estimating function (Lin

et al., 2000; Zhao and Sun, 2006):

U(γ) =

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ)}dNi(t), (4.7)

for which:

Z̄(t; γ) =

∑n
i=1 ∆i(t) exp{γ′Zi(t)}Zi(t)∑n

i=1 ∆i(t) exp{γ′Zi(t)}
,

and ∆i(t) is as defined in Section 4.2.3 in the presence of discontinuous risk intervals.

To create the estimating equation for β in Mi(t;β, θ, γ, δ), we impose a flexible structure on µ(t)

using basis approximations. Generalizing the notation from Huang and Liu (2007), suppose the

smooth function µ(·) can be approximated by a spline function such that µ(t) ≈
∑Kn

k=1 ϕkGk(t) =
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ϕ′G(t) in which {Gk(·), k = 1, . . . ,Kn} is a basis system of B-splines, ϕ = (τ1, . . . , τKn)′ and

G(t) = (G1(t), . . . , GKn
(t))′. Let H̃i(t) = Gi(t) or H̃ij = G(Tij). The process (4.5) can thus be

approximated by E[Yi(t) | Xi(t), Bi(t)] = g{ϕH̃i(t) + β′Xi(t) + θ′Bi(t)}. Let s1 < s2 < · · · < sJ

denote the J distinct ordered observation times from all subjects {tik, i = 1, . . . , n; k = 1, . . . ,mi}.

We propose to estimate β, ϕ, and θ from (4.6) by the estimating equation:

n∑
i=1

mi∑
k=1


H̃i(tik)

Xi(tik)

B̂i(tik)

 Yi(tik)

ρi(tik, γ, δ)
∆i(tik) dNi(tik) (4.8)

−
J∑

j=1

n∑
i=1


H̃i(sj)

Xi(sj)

B̂i(sj)

 1

ρi(sj , γ, δ)
g{ϕ′H̃i(sj) + β′Xi(sj) + θ′B̂i(sj)}∆i(sj)mi

dπ(sj , Zi)

π(Ci, Zi)
= 0.

We estimate γ by (4.7) and

Λ̂(t) =

n∑
i=1

∫ t

0

∆i(s)dNi(s)∑n
j=1 ∆j(s) exp{γ′Zj(s)}

.

4.4. Simulation study

We conducted simulation studies to evaluate the statistical properties of our proposed method

when observation gaps occur after Yi(t) = 1. All simulations were conducted in R 2.13.1 (R Devel-

opment Core Team, Vienna, Austria). For all simulations, we generated 1000 simulated datasets,

each with n = 200 independent subjects. For comparison, we fit a GEE with a working indepen-

dence correlation structure (IEE). We also fit two weighted-IEEs that incorporated observation-level

weights ρi(t; γ, δ) and B̂i(t) as a covariate, one in which ρi(t; γ, δ) and B̂i(t) were calculated from

the observation-time model without incorporation of observation gaps (unadjusted risk set), and the

other from the observation-time model with proper at-risk indicators (adjusted risk set). All outcome

models used B-splines with three degrees of freedom to approximate µ(t).

Parameters

We simulated data according to the structure of the malaria trial, in which an observation gap with
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fixed duration occurred after every malaria episode, i.e., after every occurrence of Yi(t) = 1. We

examined the performance of our proposed method in the presence of discontinuous risk intervals

when both (M2) and (M3) were satisfied. Following (4.3), the model of interest for binary outcomes

in the presence of a latent variable representing visit propensity was:

Pr[Yi(t) = 1 | Xi(t)] = expit{µ(t) + β1Xi1 + ηi1}, (4.9)

for which µ(t) = −0.5 − 0.1t−1/2, εi(t) ∼ Normal(0,1), and β1 was the parameter of interest. The

time-independent exposure variable Xi1 ∼ Bernoulli(0.5).

Following the simulation procedure of Bůžková and Lumley (2009) based on a probit link approxi-

mation, we generated binary outcomes under both (M2) and (M3) with the following equation:

Yi(t) = I

[
f∗(t) + β∗1Xi1(t) + β2Xi2 + η∗i1 + φi + εi(t) > 0

]
, (4.10)

for which f∗(t) = µ(t)M−β2E[Xi2 | Xi1], β∗1 = β1M . We included an additional covariateXi2 drawn

from a mixture distribution, for which Xi2 ∼ Normal(0.5,1) if Xi1 = 1 and Xi2 ∼ Normal(1,0.5) if

Xi1 = 0. We defined η∗i1 = ηi1M and M =
√
σ2
ε + σ2

φ + β2
2var[Xi2 | Xi1]/1.7. The parameter φi

was a subject-specific latent variable that induced an exchangeable correlation structure on the

outcomes from the same subject. We assumed φi was normally distributed with mean 0 and

variance σ2
φ = 0.25.

Model (4.10) described the case when Xi2 affects the covariate-outcome association between Xi1

and Yi(t). Proper marginalization over the additional covariate Xi2, the random effect, and the error

term in (4.10) resulted in the marginal semi-parametric outcome model (4.9).

We generated observation times Tij from a non-homogeneous Poisson process with intensity func-

tion:

λi(t) = ηi2λ0(t) exp{γ1Xi1 + γ2Xi2}, (4.11)

in which λ0(t) =
√
t

40 . Note that Xi2 induced additional correlation between the outcome and obser-

vation-time processes, and Xi2 was specified in the observation-time model but not in the marginal

outcome model (4.9).
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We generated the covariate-dependent latent variable ηi2 in the observation-time model from a

mixture distribution, following Uniform[0.5,1.5] if Xi1 = 1 and Gamma distribution with mean 1 and

variance 0.7 if Xi1 = 0. The covariate-dependent latent variable induces (M3). The latent variable

ηi1 was defined as E[ηi1 | ηi2] = θ(ηi2 − 1). The independent censoring time Ci was τ = 113 as

was the end of study time in the malaria example.

For subject i, given the (j − 1)th observation-gap end-time Li,j−1 with Vi,0 = 0, we generated

observation times and corresponding binary outcomes in the presence of observation gaps as

follows:

Step 1. Given Xi1, Xi2 and ηi2, generate the subject’s time to jth observation time since

Vi,j−1, denoted by Tij , according to the intensity function (4.11).

Step 2. Generate the outcome at Tij , denoted by Yij , using the outcome model (4.10).

Step 3. If Yij = 1, set Uij as the observation gap duration, otherwise set Uij = 0.

Step 4. Define the jth observation-gap end-time as Lij = Tij + Uij .

The coefficients were defined as (β1, β2, θ) = log(2, 0.75, 0.5), (γ1, γ2) = (0.2, 0.4). In Step 3 of the

procedure above we consider both a fixed duration {U = (0, 7, 14, 21, 28)} or a variable duration

U ∼ Uniform[7,28].

Results

Table 4.1 provides the estimated bias, empirical standard error estimates, and mean squared error

estimates for the estimation of β1 in model (4.9). When there were no discontinuous risk intervals,

i.e., U = 0, then the weighted-IEE (with and without adjusted risk set) and the proposed method

(with and without adjusted risk set) performed well. Biases in the estimate of β1 were negligible.

The bias under the IEE was larger because it was not able to address (M2) and (M3). With non-zero

observation gap durations, we observed that the bias under the proposed method with adjusted risk

set, i.e., proper use of ∆i(t) instead of ξi(t), was smaller than the proposed method with unadjusted

risk set. The bias was much smaller under all cases in which U > 0. The performance of the

weighted-IEE was comparable to the proposed method, in that the weighted-IEE with adjusted risk

set yielded smaller bias than the weighted-IEE with unadjusted risk set; both methods provided

comparable bias and mean squared error of the covariate effect.
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We observed similar conclusions when the duration of the observation gaps varied according to

Uniform[7,28]. The proposed method with adjusted risk set yielded smaller bias than the proposed

method with unadjusted risk set.

Table 4.1: Simulation results for β1 = log(2) when fixed observation gaps occur only after Yi(t) = 1: Bias,
β̂1 − β1; ESE, empirical sample error; MSE, mean squared error

Weighted-IEE Proposed method
N U † IEE Unadjusted RS ∗ Adjusted RS ∗∗ Unadjusted RS ∗ Adjusted RS ∗∗

200 0 Bias 0.374 −0.001 −0.001 −0.001 −0.001
ESE 0.173 0.157 0.157 0.157 0.157
MSE 0.170 0.025 0.025 0.025 0.025

7 Bias 0.371 −0.039 −0.016 −0.041 −0.017
ESE 0.194 0.184 0.171 0.185 0.171
MSE 0.175 0.035 0.029 0.036 0.029

14 Bias 0.384 0.021 −0.003 0.014 −0.004
ESE 0.199 0.194 0.178 0.196 0.178
MSE 0.187 0.038 0.032 0.038 0.032

21 Bias 0.380 0.052 −0.001 0.043 −0.002
ESE 0.208 0.212 0.186 0.215 0.186
MSE 0.188 0.048 0.034 0.048 0.034

28 Bias 0.402 0.092 0.026 0.083 0.025
ESE 0.217 0.219 0.198 0.223 0.198
MSE 0.209 0.056 0.040 0.057 0.040

[7, 28] Bias 0.383 0.043 −0.021 0.035 −0.023
ESE 0.195 0.201 0.180 0.206 0.180
MSE 0.184 0.042 0.033 0.044 0.033

All outcome models were fitted with B-splines with 3 degrees of freedom.
∗ With unadjusted risk set, i.e., does not account for observation gaps
∗∗With adjusted risk set via ∆i(t)
† Duration of observation gaps, either fixed (Uij = 0, 7, 14, 21, 28) or variable (Uij ∼ Uniform[7,28]).

4.5. Application

4.5.1. Background

In this section, we apply our proposed model to data from a randomized controlled phase-II trial

among healthy children 2–3 years old living in or near the village of Bancoumana, Mali. The study

was designed to assess the safety, immunogenicity, and biologic impact of a malaria vaccine can-

didate AMA1-C1 (Sagara et al., 2009). The study randomized 289 subjects into two arms: the

vaccine candidate AMA1-C1 (n = 139) and the active control (n = 140). Both vaccines were ad-

ministered on Days 0 and 28. Parasitologic follow up began 14 days after the second vaccination

on Study Day 42 and censoring time Ci was defined as the end of the parasitologic follow-up period
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(Day 154).

The study protocol specified monthly follow-up visits, during which blood samples were obtained

for malaria smears and hemoglobin count. Physicians also scheduled as-needed visits in between

protocol-required visits based on the patient’s clinical presentation. If the patient was determined

to have a malaria episode during the visit, the patient would be given malaria treatment. Malaria

vaccines that target the blood stage of infection, such as those used in the trial, are not intended to

prevent infection by parasites such as P. falciparum. Instead, they are expected to reduce parasite

density, thereby reducing morbidity and mortality due to severe malaria. The P. falciparum parasite

density was calculated using individual white blood cell counts from blood smears. The primary

outcome Y 1
i (t) was binary: 1 if P. falciparum parasite > 3000/µL at t, and 0 otherwise. We consid-

ered the primary outcome model: Pr[Y 1
i (t) = 1 | Xi, Bi] = expit{µ(t) + β′Xi + θBi}. The primary

exposure was vaccine arm. Because children were enrolled in two cohorts (May-June 2006 and

July-August 2006), we included the cohort indicator as a covariate in the outcome model. Recall

that Bi included the latent variable from the observation-time model and represented the subject-

level propensity for visit. The outcome model assumed that the effect of the latent variable was not

modified by any of the outcome-model covariates.

We also considered the impact of vaccination on hemoglobin (Hb) level. The secondary outcome

Y 2
i (t) is the continuous measurement of hemoglobin. Hemoglobin < 8.5 g/dL often suggests ane-

mia. We considered the outcome model: E[Y 2
i (t) | Xi, Bi] = {µ(t) + β′Xi + θBi}.

The observation-time model was defined as: E[dΛi(t) | Zi(t)] = ηi2 exp{γ′Zi(t)}dλ0(t) for both

the primary and secondary outcomes. The set of covariates Zi(t) included whether the parasite

count was > 3000/µL at the previous visit. Thus, the observation-time model mirrored the clinical

management of patients with history of malaria symptoms or episodes and required additional

follow-up. Other baseline characteristics were also screened for inclusion in the observation-time

model. Univariable recurrent event models were used to assess unadjusted covariate associations

with the observation times. The time at risk was the period of histologic follow-up (Day 42–154)

minus 28 days after each treatment for malaria, constituting discontinuous risk intervals. Hence,

the at-risk indicator ∆i(t) was 1 only when the subject was not in the 28-day observation gap and

was not censored at t.
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Table 4.2: Parameter estimates and 95% CI of γ from the observation-time model

Unadjusted RS∗ Adjusted RS∗∗

γ̂ (95% CI) γ̂ (95% CI)

Vaccine Arm
Active control − −
Vaccine candidate −0.02 (−0.08, 0.03) 0.01 (−0.05, 0.06)

Cohort
A − −
B −0.06 (−0.12, 0.00) −0.03 (−0.10, 0.05)

Parasite > 3000/µL at previous visit 0.19 ( 0.12, 0.26) 0.13 ( 0.05, 0.22)

∗ With unadjusted risk set, i.e., does not account for observation gaps
∗∗With adjusted risk set via ∆i(t)

To estimate 95% confidence intervals (CI), we performed a cluster bootstrap in which subjects were

sampled with replacement. The sampling procedure was repeated 1000 times and the 95% boot-

strap CI was obtained from the 2.5th and 97.5th percentile of the empirical distribution produced from

these 1000 estimates of β. For the primary outcome of parasite > 3000/µL, the β estimates and

95% CI from the outcome models were exponentiated to obtain the odds ratios and corresponding

95% CI. Odds ratios less than 1 indicated decreased odds of P. falciparum > 3000/µL. For compar-

ison, we fit a GEE with a working independence correlation structure (IEE) and two weighted-IEEs

that incorporated observation-level weights ρi(t; γ̂, δ̂) and B̂i(t) as a covariate calculated from an

observation-time model either with or without proper specification of the at risk intervals. All out-

come models used B-splines with 4 degrees of freedom to approximate µ(t).

4.5.2. Results

The estimates of γ from the observation-time model indicated that neither the vaccine arm or co-

hort was significantly associated with the observation times (Table 4.2). However, patients were

significantly more likely to have a visit if the parasite level was > 3000/µL at the previous visit: the

estimate of γ under the observation-time model with unadjusted risk set was higher than the esti-

mate with adjusted risk set [γ̂, 0.19; 95% CI:(0.12, 0.26) versus γ̂, 0.13; 95% CI:(0.05, 0.22)]. The

observation-level weights calculated from the observation-time model with adjusted risk set had a

median of 1.00 and ranged from 0.87 to 1.00.

Based on the empirical distribution of ηi2 by vaccine arm and cohort (Figure 4.2), there was little

evidence that the distribution of ηi2 from the observation-time model differed by vaccine arm or co-

hort. We retained θBi in the outcome model to investigate the relationship between the propensity
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Figure 4.2: The empirical distribution of ηi2 by arm and cohort.

of visit and the outcome.

The odds ratios (ORs) and 95% CIs from the outcome models for the primary outcome of parasite

> 3000/µL are presented in Table 4.3. We first focus on the results under naı̈ve IEE and the

proposed method with unadjusted risk sets. The estimate of the difference between the log odds

of parasite level > 3000/µL in the two arms was smaller under IEE than the proposed method that

incorporated both observation-level weights and a latent variable representing patient-level visit

propensity. Under the proposed method, the β for each covariate represents the difference in log

odds of the parasite level > 3000/µL between populations of individuals given ‘vaccine candidate’

and individuals given ‘active control’ with the same visit propensity.

Next, we compare the results under the proposed method with unadjusted and adjusted risk sets.

In the proposed method with adjusted risk set, the accommodation of the 28-day observation gaps

through the modified at-risk indicators drew the estimates further away from the null, even though

the confidence intervals were wide [OR, 0.93; 95% CI: (0.73, 1.20)]. The estimate of θ was positive,

implying that the outcome and observation-time processes were positively associated, such that

patients with greater odds of parasite > 3000/µL had more frequent visits. By addressing the

discontinuous risk intervals, we prevented underestimation of the effect of the vaccine candidate.

In the original analysis, Sagara et al. (2009) compared the incidence rates between the two vaccine

arms. The incidence rate was defined as the rate of parasite > 3000/µL/day at risk, in which time

at risk was the period of parasitologic follow up minus 28 days after each treatment for malaria.

73



They found that the median rate of parasite > 3000/µL/day at risk was 0.016 in the vaccine can-

didate group and 0.014 in the active control group (Hodges-Lehmann rate ratio (vaccine arm in

the denominator)=1.02, p=0.67). Our results agreed with the conclusion of the original analysis in

that there were no significant differences between the vaccine arms, the direction of the effect was

reversed in our analysis.

The β estimates and 95% CIs for the secondary outcome of continuous hemoglobin levels are

presented in Table 4.4. The results under the proposed method with adjusted risk set indicated

that the population of individuals on the vaccine candidate had lower hemoglobin levels than the

population on the active control, although this difference was not significant. As was the case for

the primary outcome, the effect size for the vaccine arm for the secondary outcome under IEE was

slightly greater than the proposed method with adjusted risk set. The observation-level weights

applied to both the primary and secondary outcomes were close to 1 and there was little evidence

of covariate-dependent propensity of visit; therefore there were only minor differences between IEE

and the weighted-IEE or proposed methods.

4.6. Discussion

In this chapter, we presented an extension of the comprehensive model from Chapter 3 to analyze

longitudinal outcomes in the presence of both outcome-dependent observation times and discon-

tinuous risk intervals. There is a tradeoff between longer blackout periods and total time at risk.

Naı̈ve IEE analysis methods may miscategorize a patient who experienced multiple lengthy obser-

vation gaps with low risk or odds of a negative outcome if they do not account for the blackout

period. We introduced our proposed method with a modified at-risk indicator to address observa-

tion gaps during the study when patients are not at risk for a visit or measured on any outcomes.

We showed that our proposed method is applicable under any combination of outcome-observation

dependence mechanisms in the presence of discontinuous risk intervals. In simulations, our pro-

posed method performed as well as the weighted-IEE that incorporated observation-level weights

and latent variables calculated using an observation-time model with adjusted risk sets. Both meth-

ods performed better than the naı̈ve IEE and weighted-IEE or proposed method with unadjusted

risk sets that assumed all subjects were at risk at all times before time of censoring.

Several key features of our approach are worth noting. First, we assume that the duration of obser-
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vation gaps is predetermined. However, one can envision cases when the duration of observation

gaps may be dependent on covariate values or subject-level characteristics, e.g., certain treatment

cycles may take longer to complete or two subjects may respond differently to the same treatment.

In addition, the censoring may also be related to the longitudinal outcomes, such as a terminal

event of death. Joint model approaches to accommodate informative or incomplete observation

gaps and informative censoring warrant future research. We can also consider modifications to the

proposed method to jointly model multiple outcomes such as the parasite and hemoglobin levels in

the malaria vaccine example.

Next, we recognize that there may be situations in which an observation gap follows after every

visit, such as the hospitalization cost data introduced earlier (Zhu et al., 2013). The duration of the

observation gap may also depend on the covariate values or the outcomes. We can consider alter-

native specification of the observation-level weights, such as ρi(t) = exp{γXi(t)}ηi2. Consideration

of more general form of non-standard data-collection schedules and the target of inference on the

population warrants future research.

Lastly, the observation-time process can be modeled on two time scales: total time scale (i.e., time-

to-events model) and gap time scale (i.e., time-between-events model). The proposed method in

this paper adopts the total time scale, but it may be of interest to consider alternative parameter-

izations. Gap time analysis, sometimes referred to as renewal process, is commonly adopted for

recurrent episodic illness in which treatment is related to the duration of observation gaps or time

between events. The gap time scale is attractive as the individual is considered renewed after

each event. However, the gap time analysis approach may suffer from dependent censoring be-

cause longer gaps are more likely to be censored (Yan and Fine, 2008). Nevertheless, it may be of

interest to investigate the utility of the gap time scale in the context of joint models.
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CHAPTER 5

DISCUSSION

5.1. Summary

This dissertation examined statistical models for the analysis of longitudinal outcomes in the pres-

ence of outcome-dependent observation times. This topic has gained great interest in recent years,

but there is a lack of a clear framework of the relationships between the outcome and observation-

time processes. We proposed a framework of three potential outcome-observation dependence

mechanisms and provided various model-checking procedures to guide the selection of appropri-

ate analysis. We proposed a set of semi-parametric joint models based on estimating equations for

continuous outcomes that can accommodate any combination of the outcome-observation depen-

dence mechanisms.

For binary outcomes, we proposed a new semi-parametric method to estimate covariate-outcome

associations under any outcome-observation dependence mechanism. In simulations, we showed

that our method performs better than the naı̈ve marginal longitudinal data analysis approach. We

provided additional clarification of the interpretation of the estimated parameters from the outcome

model. The comprehensive semi-parametric estimator can be applied to other types of longitudinal

outcomes with the appropriate link functions.

Lastly, we extended the general semi-parametric estimator to accommodate the presence of dis-

continuous risk intervals. We showed that with an adjusted risk set, our method can properly

account for observation gaps and other non-standard data-collection schedules, thereby greatly

maximizing the utility of our proposed method.

5.2. Future directions

5.2.1. Prediction modeling

Beyond the standard analysis of longitudinal outcomes to derive outcome-covariate associations,

the adoption of longitudinal data for predicting subsequent outcomes is regularly the focus of di-

agnostic studies. There is great value in developing dynamic models to be repeatedly applied to
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a subject’s longitudinal outcomes and visit profile to predict a subsequent outcome. Albert (2012)

recently considered a linear mixed model for predicting a poor pregnancy outcome based on a se-

ries of ultrasound measurements collected over time. In our case, the outcomes are available at all

times instead of at the end of the study period (i.e., not a marked point process). As future research,

it would be useful to exploit the joint models in the previous chapters to estimate prediction rules

for future outcomes and visit times. From the patient’s perspective, a dynamic prediction model

can provide insight into the risk of future poor outcomes and inform time to next follow-up visit. A

dynamic model could be an asset at the institutional level to optimize resources, infrastructure and

staffing.

5.2.2. Multi-level model

In the previous chapters, we assumed that patients were independent. However, patients may be

nested within physicians if the visit schedules are determined by the physician. Different physicians

have different attitudes and practices toward the frequency and intensity of follow-up visits. In such

cases, we need to recognize the physician-level variability in the propensity of scheduling a visit for a

particular patient. Furthermore, visit schedules may depend on hospital resources. In a multi-center

study, we may need to consider hospital-level variability in the observation-time process. Therefore,

in addition to unmeasured patient characteristics, we may need to account for physician-level and

hospital-level characteristics. Incorporating multiple sources of correlation, such as in a multi-level

model, warrants future research.

Therefore, in addition to unmeasured patient characteristics, we may need to account for physician-

level characteristics. Incorporating multiple sources of correlation, such as in a multi-level model,

warrants future research.

5.2.3. Software

Implementation and broader application of the methods introduced in the previous chapters are

likely hampered by the lack of available general-purpose statistical software. The computation of

the proposed estimators has been implemented using R and are provided in the appendices. We

hope to create an R package to analyze longitudinal data with outcome-dependent observation

times, along with help files and additional model-checking procedures.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

In this supplement, we provide theoretical results for the Weighted-Liang and Weighted-Sun meth-

ods. We include R code to reproduce estimates and standard errors from Chapter 2 Case Study Ta-

ble 4 using publicly available data. The standard errors are calculated from 1000 cluster-bootstrap

samples in which the subjects are the sampling units.

A.1. Theoretical results for extensions to the Liang method: Weighted-Liang

In this section, we provide the theoretical results for our extension to the Liang method to allow

for time-dependent covariates in the observation-time model as well as to accommodate M2. We

assume that the latent variable ηi2 follows a Gamma distribution with mean 1, variance σ2 and

E(ηi1 | ηi2) = θ(ηi2 − 1). Following the notation from Liang, Lu, and Ying (2009), we first define:

S
(k)
Z (t, γ) = n−1

n∑
i=1

ξi(t)Z
k
i (t) exp{γ′Zi(t)}

P
(k)
X (t, δ,Λ) = n−1

n∑
i=1

ξi(t) exp{δ′Xi(t)}Xk
i

mi

π(Ci;Zi)

P
(1)
B (t, δ,Λ) = n−1

n∑
i=1

ξi(t) exp{δ′Xi(t)}Bi
mi

π(Ci;Zi)
,

in which k = 0, 1, and k = 1 indexes the presence of the covariate Xi(t) or Zi(t). We let s(k)
Z (t),

p
(k)
X (t), p(1)

B (t), µZ(t), µ̃X(t), and µ̃B(t) be the asymptotic limit of S(k)
Z (t, γ), P (k)

X (t,Λ0), P (1)
B (t,Λ),

S
(1)
Z (t,γ)

S
(0)
Z (t,γ)

, P
(1)
X (t,Λ)

P
(0)
X (t,Λ)

, and P
(1)
B (t,Λ)

P
(0)
X (t,Λ)

. Let φ = (β′, α′)′.

Furthermore, define the mean-zero processes as:

Mi(t) = Mi(t, β, θ,A,Λ, Bi) =

∫ t

0

1

ρi(s; γ, δ)

[
{Yi(s)− β′Xi(s)− θ′Bi(s)}dNi(s)− ξi(s)mi

dA(s)

Λ(Ci)

]
,

and:

M∗i (t) = Ni(t)−
∫ t

0

ξi(u) exp{γ′Xi(t)}dΛ(u)
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and the positive definite matrix:

A = E

[ ∫ τ

0

{Zi − µZ(t)}⊗2ξi(t) exp{γ′Zi(t)}dΛ(t)

]

A.1.1. Asymptotic results for γ̂

Lin et al. (2000) showed the consistency of γ̂, which can be written as:

√
n(γ̂ − γ) = A−1 1√

n

n∑
i=1

∫ τ

0

{Zi(t)− µZ(t)}dM∗i (t) + op(1). (A.1)

A.1.2. Asymptotic results for Λ̂(t)

Additionally,
√
n(Λ̂(t)− Λ(t)) is asymptotically equivalent to

√
n{Λ̂(t)− Λ(t)} =

1√
n

n∑
i=1

∫ t

0

dM∗i (u)

S
(0)
Z (u)

(A.2)

−
∫ t

0

µ′Z(u)dΛ(u)A−1 1√
n

n∑
i=1

∫ τ

0

{Zi(t)− µZ(t)}dM∗i (t) + op(1).

A.1.3. Asymptotic results for σ̂2

According to Liang, Lu, and Ying (2009),

√
n(σ̂2 − σ2) =

1√
n

1

T

n∑
i=1

{m2
i −mi − T (σ2 + 1)}+ op(1),

in which T = limn→∞(1/n )
∑n
i=1 exp{γ′Zi(t)}Λ(Ci).

A.1.4. Asymptotic properties of (1/
√
n )U1(φ, Λ̂, B̂)

Let

U11(φ, Λ̂, B̂) =

n∑
i=1

∫ τ

0

1

ρi(t; γ̂, δ)
{Xi(t)− X̄(t)}{Yi(t)− β′Xi(t)− θ′B̂i(t)}dNi(t),

U12(φ, Λ̂, B̂) =

n∑
i=1

∫ τ

0

1

ρi(t; γ̂, δ)
{B̂i(t)− ¯̂

B(t)}{Yi(t)− β′Xi(t)− θ′B̂i(t)}dNi(t),
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in which X̄(t) and ¯̂
B(t) are as previously defined. Expressions to derive the asymptotic properties

of (1/
√
n )U1(φ, Λ̂, B̂) largely follows that outlined in Liang, Lu, and Ying (2009), with the inclusion of

the observation-level inverse weights 1
ρi(t;γ,δ)

, changing Vi to Zi(t), and replacing the sub-functions

(i.e., S(k)
Z (t, γ), Mi(t, β, θ,A,Λ, Bi)) as we have described above.

A.2. Theoretical results for extensions to the Sun method: Weighted-Sun

In this section, we provide the theoretical results for our extension to the Sun method to accom-

modate M2 under the assumption that the observation-time process is conditionally independent of

the censoring times, following the notation from Sun, Song, and Zhou (2011).

We first define:

S(k)
z (t; γ) = n−1

n∑
i=1

ξi(t) exp{γ′Zi(t)}Zki (t)

S(0)(t; δ) = n−1
n∑
i=1

ξi(t) exp{δ′Xi(t)} mi/π(Ci;Zi)

S(k)
x (t; δ) = n−1

n∑
i=1

ξi(t) exp{δ′Xi(t)}Xk
i (t) mi/π(Ci;Zi)

S(1)
η (t; δ) = n−1

n∑
i=1

ξi(t) exp{δ′Xi(t)}η̂i(t) mi/π(Ci;Zi)

S(2)
ηx (t; δ) = n−1

n∑
i=1

ξi(t) exp{δ′Xi(t)}η̂iXi(t) mi/π(Ci;Zi)

Let s(0)
z (t), s(1)

z (t), s(0)(t), s(1)
x (t), s(2)

x (t), s(1)
η (t), s(2)

ηx (t) and µZ(t) denote the limiting values of

S
(0)
z (t; γ0), S(1)

z (t; γ0), S(0)(t; δ), S(1)
x (t; δ), S(2)

x (t; δ), S(1)
η (t; δ), S(2)

ηx (t; δ) and s
(1)
z (t)/s

(0)
z (t). Fur-

thermore, let x̄(t) = s
(1)
x (t)/s(0)(t) and η̄(t) = s

(1)
η (t)/s(0)(t). Let A be as defined in the previous

section.

If the observation-time process is conditionally independent of the censoring times, the asymptotic

results of γ and Λ follows (A.1) and (A.2).
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Let

U1(β, α; γ̂) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)
[{Xi(t)− X̄(t)}{Yi(t)− β′Xi(t)− αη̂i}]dNi(t)

U2(β, α; γ̂) =

n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂, δ)
[{η̂i − η̄(t)}{Yi(t)− β′Xi(t)} − α{Ω̂i − η̂iη̄(t)}]dNi(t),

Define U(β, α; γ̂) = (U1(β, α; γ̂)′, U1(β, α; γ̂)′). The asymptotic properties of (1/
√
n)U(β, α; γ̂) fol-

lows from the expressions of Sun, Song, and Zhou (2011), except with the assumption of non-

informative censoring, the inclusion of the observation-level inverse weights 1
ρi(t;γ,δ)

, and replacing

the sub-functions (i.e., S(k)
z (t; γ)) as we have described above.

We develop the asymptotic results for A.1 and A.2 under the assumption that δ is a fixed value. In

practice, δ is estimated by δ̂ using the data. Following Liang and Zeger (1986), the variability from

estimating δ does not affect the asymptotic behavior of β̂ using stabilized weights.

A.3. Relative efficiency

We examine the relative efficiency of weighted versus unweighted methods under the simulation

Setting 1 in Chapter 2 to determine the potential loss of efficiency when methods include an addi-

tional covariate when it is not necessary.

A.4. R code

We provide R code to reproduce Table 4 from the case study in Chapter 2 and implement model-

checking procedures.

##############################################
## Case Study Table 4: Bladder Data
## Additional Covariate:
## cumulative # of tumors since baseline
##############################################

## Load extension packages
library(Hmisc)
library(plyr)
library(zoo)
library(nleqslv)

## Load dataset
## The data is available from the delisted r package spef,
## available at http://cran.r-project.org/src/contrib/Archive/spef/
## The dataset: blaTum
library(spef); data(blaTum);
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m <- NULL # m = number of observations per subject
for (ii in unique(blaTum$id)){

m[blaTum$id==ii] <- nrow(blaTum[blaTum$id==ii,])
}

#######################################################################
## X3 <- additional covariate in observation-time model: # of new tumors since baseline
prev_cumtumors <- ave(blaTum$count, blaTum$id, FUN = function(x) Lag(cumsum(x), shift=1))
prev_cumtumors[is.na(prev_cumtumors)]<-0

## outcome Y = cumulative number of new tumors since baseline
Ycumtumors <- ave(blaTum$count, blaTum$id, FUN = cumsum)
#######################################################################

########################################################################
# Analysis dataset
# Q=Q(t) from Liang approach: Q(t) may be an outcome model covariate
# Here: Q=blaTum$treatment
########################################################################
sim.data <- data.frame(ID=blaTum$id, t=blaTum$time, m=m, Y = log(Ycumtumors+1), X1=blaTum$treatment,

X2=log(blaTum$num+1), X3=log(prev_cumtumors+1), Q=blaTum$treatment, C=53) # Q=1

#/****** Select first record of each patient **/
baseData <- ddply(sim.data, .(ID), function(x) x[1, ])
meannumvisits <- mean(baseData$m)
udt <- unique(sort(sim.data$t[sim.data$t>0]))
N <- length(baseData$ID)

## Start function
DepObsTimes <- function(sim.data, baseData, udt){

##############################################################################
#### expand time-varying covariates to full set of t=53 rows ####
#### Analyst may consider other methods such as imputation or closest neighbor
##############################################################################
testdata <- data.frame(ID=sim.data$ID, t=sim.data$t, X3=sim.data$X3)
testdata2 <- reshape(testdata, timevar="t", idvar="ID", direction="wide", v.names="X3")
testdata3 <- reshape(testdata2, idvar="ID",direction="long")
testdata3 <- testdata3[order(testdata3$ID,testdata3$t),]
testdata4 <- NULL
for (i in unique(testdata3$ID)){testdata4 <- rbind(testdata4, na.locf(testdata3[testdata3$ID==i,]))}
testdata4[is.na(testdata4)] <- 0

###################################################################
# GAMMA.HAT (observation-time model covariates)
###################################################################
f <- function(gamma){

exp_gamma <- function(tt){
exp(gamma[1]*baseData$X1+gamma[2]*baseData$X2+gamma[3]*testdata4$X3[testdata4$t==tt])}

numer1 <- sapply(sim.data$t, function(u){
sum( (baseData$X1*exp_gamma(u))[u<=baseData$C], na.rm=T) } )

numer2 <- sapply(sim.data$t, function(u){
sum( (baseData$X2*exp_gamma(u))[u<=baseData$C], na.rm=T) } )

numer3 <- sapply(sim.data$t, function(u){
sum( (testdata4$X3[testdata4$t==u]*exp_gamma(u))[u<=baseData$C], na.rm=T) } )

denom <- sapply(sim.data$t, function(u){
sum( (exp_gamma(u))[u<=baseData$C], na.rm=T) } )

Vbar <- cbind(numer1/denom, numer2/denom, numer3/denom)

bigV <-cbind(sim.data$X1, sim.data$X2, sim.data$X3)
temp <- colSums((bigV-Vbar)/N, na.rm=T)
temp

}
gamma <- c(0.5, 0.5, 0.5)
gamma.hat <- nleqslv(gamma, f)$x

###################################################################
# DELTA.HAT (outcome model covariates)
###################################################################
f <- function(gamma){

exp_delta <- exp(gamma[1]*baseData$X1+gamma[2]*baseData$X2)
numer1 <- sapply(sim.data$t, function(u){sum( (baseData$X1*exp_delta)[u<=baseData$C], na.rm=T) } )
numer2 <- sapply(sim.data$t, function(u){sum( (baseData$X2*exp_delta)[u<=baseData$C], na.rm=T) } )
denom <- sapply(sim.data$t, function(u){sum( (exp_delta)[u<=baseData$C], na.rm=T) } )
Vbar <- cbind(numer1/denom, numer2/denom)
Vbar.long <- t(sapply(sim.data$t, function(tt) Vbar[tt,]))

bigV <-cbind(sim.data$X1, sim.data$X2)
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temp <- colSums((bigV-Vbar.long)/N, na.rm=T)
temp

}
gamma <- c(0, 0)
delta.hat <- nleqslv(gamma, f)$x

###################################################################
# Set-Up
###################################################################
exp_gamma <- function(u){exp(gamma.hat[1]*baseData$X1+

gamma.hat[2]*baseData$X2+gamma.hat[3]*testdata4$X3[testdata4$t==u])}
denom_gamma <- sapply(udt, function(u){sum( (exp_gamma(u))[u<=baseData$C], na.rm=T) } )
exp_delta <- exp(delta.hat[1]*baseData$X1+delta.hat[2]*baseData$X2)
denom_delta <- sapply(udt, function(u){sum( (exp_delta)[u<=baseData$C], na.rm=T) } )

#/**** : estimated dLam(t) under X1+X2 in observation-time model ****/
estlam.t.delta <- sapply(1:length(udt), function(u) sum( ((sim.data$t==udt[u])/denom_delta[u])) )

#/**** : estimated dLam(t) under X1+X2+X3 in observation-time model ****/
estlam.t.gamma <- sapply(1:length(udt), function(u) sum( ((sim.data$t==udt[u])/denom_gamma[u])) )

#/**** : estimated Ybar_star (closest neighbor): Only used in LY and Buzkova ****/
Y_star <- function(t){

sapply(baseData$ID, function(n){
tail(sim.data$Y[sim.data$ID==n]
[(abs(sim.data$t[sim.data$ID==n]-t)==min(abs(sim.data$t[sim.data$ID==n]-t)))],1) })

}

numer <- sapply(udt, function(u) sum((Y_star(u)*exp_delta)[ baseData$C >= u ]) )
Ybar_star <- (numer/denom_delta)
Ybar_starX <- (sapply(sim.data$t, function(tt) Ybar_star[tt]))

###########################################
#######################################
# LIN & YING METHOD
#######################################
###########################################
#/**** : estimated Xbar1 & Xbar2 ****/
denom <- sapply(sim.data$t, function(u) sum(exp_delta[ baseData$C >= u ]) )
numer1 <- sapply(sim.data$t, function(u) sum((baseData$X1*exp_delta)[ baseData$C >= u ]) )
numer2 <- sapply(sim.data$t, function(u) sum((baseData$X2*exp_delta)[ baseData$C >= u ]) )
Xbar <- cbind(numer1/denom, numer2/denom)
bigX <- as.matrix(cbind(sim.data$X1, sim.data$X2))

f <- function(beta){
temp <- rep(0,length=ncol(bigX))
temp[1] <- sum(((bigX[,1]-Xbar[,1])*(sim.data$Y-Ybar_starX-beta[1]*(bigX[,1]-Xbar[,1])

-beta[2]*(bigX[,2]-Xbar[,2]) )), na.rm=T)
temp[2] <- sum(((bigX[,2]-Xbar[,2])*(sim.data$Y-Ybar_starX-beta[1]*(bigX[,1]-Xbar[,1])

-beta[2]*(bigX[,2]-Xbar[,2]) )), na.rm=T)
temp

}
beta <- c(0,0)
LY.beta <- nleqslv(beta, f)$x

###########################################
#######################################
# BUZKOVA METHOD
#######################################
###########################################
##################/**** calculate weights (iirr2 = rho) ****/#############
Z <- cbind(sim.data$X1, sim.data$X2, sim.data$X3)
X <- cbind(sim.data$X1, sim.data$X2)
iirr2 <- exp(Z %*% as.matrix(gamma.hat))/exp(X %*% as.matrix(delta.hat))

bigX <- as.matrix(cbind(sim.data$X1, sim.data$X2))
f <- function(beta){

temp <- rep(0,length=ncol(bigX))
temp[1] <- sum( 1/iirr2*((bigX[,1]-Xbar[,1])*(sim.data$Y-Ybar_starX-beta[1]*

(bigX[,1]-Xbar[,1])-beta[2]*(bigX[,2]-Xbar[,2]) )), na.rm=T)
temp[2] <- sum( 1/iirr2*((bigX[,2]-Xbar[,2])*(sim.data$Y-Ybar_starX-beta[1]*

(bigX[,1]-Xbar[,1])-beta[2]*(bigX[,2]-Xbar[,2]) )), na.rm=T)
temp

}
beta <- c(0,0)
Buzkova.stable.beta <- nleqslv(beta, f)$x
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###########################################
#######################################
# LIANG METHOD
#######################################
###########################################
gammaV_b <- sapply(baseData$ID, function(nn){sum((exp(delta.hat[1]*baseData$X1[baseData$ID==nn]+

delta.hat[2]*baseData$X2[baseData$ID==nn])*estlam.t.delta)[udt<=baseData$C[baseData$ID==nn]])})

#/*** estsigma ***/
estsigma2 <- max(sum((baseData$m^2-baseData$m-(gammaV_b)^2)/sum((gammaV_b)^2)),0)

#/**** Bhat ****/
Bhat_i <- ( (1+baseData$m*estsigma2)/(1+gammaV_b*estsigma2)-1)
Bhat_long <- sapply(sim.data$ID, function(i) Bhat_i[baseData$ID==i])
Bhat <- sim.data$Q*Bhat_long

#/**** vector of "observed": ****/
bigX <- as.matrix(cbind(sim.data$X1, sim.data$X2, Bhat))
bigX_base <- as.matrix(cbind(baseData$X1, baseData$X2, Bhat_i*baseData$Q))

#/**** : estimated Xbar1 & Xbar2 & Bhat****/
denom <- sapply(sim.data$t, function(u){

sum((exp_delta*(baseData$m/gammaV_b))[ baseData$C >= u ])} )
numer1 <- sapply(sim.data$t, function(u){

sum((bigX_base[,1]*exp_delta*(baseData$m/gammaV_b))[ baseData$C >= u ])} )
numer2 <- sapply(sim.data$t, function(u){

sum((bigX_base[,2]*exp_delta*(baseData$m/gammaV_b))[ baseData$C >= u ])} )
numer3 <- sapply(sim.data$t, function(u){

sum((bigX_base[,3]*exp_delta*(baseData$m/gammaV_b))[ baseData$C >= u ])} )

if (estsigma2 != 0 ){
Xbar <- cbind(numer1/denom,numer2/denom,numer3/denom)
f <- function(beta){

temp <- rep(0,length=ncol(bigX))
temp[1] <- sum(( (bigX[,1]-Xbar[,1])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp[2] <- sum(( (bigX[,2]-Xbar[,2])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp[3] <- sum(( (bigX[,3]-Xbar[,3])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp

}
beta <- c(0,0,0)
Liang.beta <- nleqslv(beta, f)$x

}

if (estsigma2 == 0 ){
Xbar <- cbind(numer1/denom,numer2/denom)
f <- function(beta){

temp <- rep(0,length=ncol(Xbar))
temp[1] <- sum(( (bigX[,1]-Xbar[,1])*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])), na.rm=T)
temp[2] <- sum(( (bigX[,2]-Xbar[,2])*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])), na.rm=T)
temp

}
beta <- c(0,0)
Liang.beta <- c(nleqslv(beta, f)$x, NA)

}

###########################################
#######################################
# WEIGHTED-LIANG METHOD
#######################################
###########################################
gammaV_b <- sapply(baseData$ID, function(nn){

sum((exp(gamma.hat[1]*baseData$X1[baseData$ID==nn]+gamma.hat[2]*baseData$X2[baseData$ID==nn]+
gamma.hat[3]*testdata4$X3[testdata4$ID==nn])*estlam.t.gamma)[udt<=baseData$C[baseData$ID==nn]])})

#/*** estsigma ***/
estsigma2 <- max(sum((baseData$m^2-baseData$m-(gammaV_b)^2)/sum((gammaV_b)^2)),0)

#/**** Bhat ****/
Bhat_i <- ( (1+baseData$m*estsigma2)/(1+gammaV_b*estsigma2)-1)
Bhat_long <- sapply(sim.data$ID, function(i) Bhat_i[baseData$ID==i])
Bhat <- sim.data$Q*Bhat_long

#/**** vector of "observed": ****/
bigX <- as.matrix(cbind(sim.data$X1, sim.data$X2, Bhat))
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bigX_base <- as.matrix(cbind(baseData$X1, baseData$X2, Bhat_i*baseData$Q))

#/**** : estimated Xbar1 & Xbar2 & Bhat****/
denom <- sapply(sim.data$t, function(u) sum((exp_delta*(baseData$m/gammaV_b))[ baseData$C >= u ]) )
numer1 <- sapply(sim.data$t, function(u) sum((bigX_base[,1]*exp_delta*(baseData$m/gammaV_b))[baseData$C>=u]))
numer2 <- sapply(sim.data$t, function(u) sum((bigX_base[,2]*exp_delta*(baseData$m/gammaV_b))[baseData$C>=u]))
numer3 <- sapply(sim.data$t, function(u) sum((bigX_base[,3]*exp_delta*(baseData$m/gammaV_b))[baseData$C>=u]))

if (estsigma2 != 0 ){
Xbar <- cbind(numer1/denom,numer2/denom,numer3/denom)
f <- function(beta){

temp <- rep(0,length=ncol(bigX))
temp[1] <- sum(1/iirr2*((bigX[,1]-Xbar[,1])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp[2] <- sum(1/iirr2*((bigX[,2]-Xbar[,2])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp[3] <- sum(1/iirr2*((bigX[,3]-Xbar[,3])*

(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]-beta[3]*bigX[,3])), na.rm=T)
temp

}
beta <- c(0,0,0)
Weighted.Liang.beta <- nleqslv(beta, f)$x

}

if (estsigma2 == 0 ){
Xbar <- cbind(numer1/denom,numer2/denom)
f <- function(beta){

temp <- rep(0,length=ncol(Xbar))
temp[1] <- sum(1/iirr2*((bigX[,1]-Xbar[,1])*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])), na.rm=T)
temp[2] <- sum(1/iirr2*((bigX[,2]-Xbar[,2])*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])), na.rm=T)
temp

}
beta <- c(0,0)
Weighted.Liang.beta <- c(nleqslv(beta, f)$x, NA)

}

###########################################
#######################################
# SUN METHOD
#######################################
###########################################
piCi <- sapply(baseData$ID, function(n, t){sum( (exp(delta.hat[1]*baseData$X1[baseData$ID==n]+

delta.hat[2]*baseData$X2[baseData$ID==n])*estlam.t.delta)
[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )

### Zhat & Ohat ###
Zhat <- (baseData$m-1)/piCi
Ohat <- (baseData$m-1)*(baseData$m-2)/piCi^2

### Xbar ###
S0 <- sapply(sim.data$t, function(u){sum((exp_delta*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sx1 <- sapply(sim.data$t, function(u){sum((exp_delta*baseData$X1*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sx2 <- sapply(sim.data$t, function(u){sum((exp_delta*baseData$X2*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sz <- sapply(sim.data$t, function(u){sum((exp_delta*Zhat*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})

Xbar1 <- Sx1/S0
Xbar2 <- Sx2/S0
Zbar <- Sz/S0

bigX <- cbind(sim.data$X1, sim.data$X2)
Zhat.long <- sapply(sim.data$ID, function(i) Zhat[baseData$ID==i])
Ohat.long <- sapply(sim.data$ID, function(i) Ohat[baseData$ID==i])

f <- function(beta){
temp <- rep(0,length=ncol(bigX)+1)
temp[1] <- sum(((bigX[,1]-Xbar1)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]

-beta[3]*Zhat.long )), na.rm=T)
temp[2] <- sum(((bigX[,2]-Xbar2)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]

-beta[3]*Zhat.long )), na.rm=T)
temp[3] <- sum(((Zhat.long - Zbar)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])

-beta[3]*(Ohat.long - Zhat.long*Zbar) ), na.rm=T)
temp

}
beta <- c(1,-1,0)
Sun.beta <- nleqslv(beta, f)$x

###########################################
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#######################################
# WEIGHTED-SUN METHOD
#######################################
###########################################
piCi <- sapply(baseData$ID, function(n, t){sum( (exp(

gamma.hat[1]*baseData$X1[baseData$ID==n]+
gamma.hat[2]*baseData$X2[baseData$ID==n]+
gamma.hat[3]*testdata4$X3[testdata4$t==t & testdata4$ID==n])*
estlam.t.gamma)[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )

### Zhat & Ohat ###
Zhat <- (baseData$m-1)/piCi
Ohat <- (baseData$m-1)*(baseData$m-2)/piCi^2

### Xbar ###
S0 <- sapply(sim.data$t, function(u){sum((exp_delta*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sx1 <- sapply(sim.data$t, function(u){sum((exp_delta*baseData$X1*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sx2 <- sapply(sim.data$t, function(u){sum((exp_delta*baseData$X2*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})
Sz <- sapply(sim.data$t, function(u){sum((exp_delta*Zhat*(baseData$m/piCi))[u<=baseData$C], na.rm=T)})

Xbar1 <- Sx1/S0
Xbar2 <- Sx2/S0
Zbar <- Sz/S0

bigX <- cbind(sim.data$X1, sim.data$X2)
Zhat.long <- sapply(sim.data$ID, function(i) Zhat[baseData$ID==i])
Ohat.long <- sapply(sim.data$ID, function(i) Ohat[baseData$ID==i])

f <- function(beta){
temp <- rep(0,length=ncol(bigX)+1)
temp[1] <- sum( ( (1/iirr2)*(bigX[,1]-Xbar1)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]

-beta[3]*Zhat.long )), na.rm=T)
temp[2] <- sum( ( (1/iirr2)*(bigX[,2]-Xbar2)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2]

-beta[3]*Zhat.long )), na.rm=T)
temp[3] <- sum( ( (1/iirr2)*(Zhat.long - Zbar)*(sim.data$Y-beta[1]*bigX[,1]-beta[2]*bigX[,2])

-beta[3]*(Ohat.long - Zhat.long*Zbar) ), na.rm=T)
temp

}
beta <- c(1,-1,1)
Weighted.Sun.beta <- nleqslv(beta, f)$x

## Obtain estimates
est_out <- data.frame(t(gamma.hat),t(delta.hat), t(LY.beta), t(Buzkova.stable.beta),

t(Liang.beta),t(Weighted.Liang.beta), t(Sun.beta), t(Weighted.Sun.beta))
est_out

}

###### Run function and save original estimates
sim.data.orig <- sim.data
Orig_Est <- round(DepObsTimes(sim.data=sim.data, baseData=baseData, udt=udt),3)

#########################################################
###### CLUSTER-BOOTSTRAP for SD of current dataset ######
######## Subjects are sampled with replacement ##########
simout.sd <- NULL
Bcluster <- 1000
for (bbc in 1:Bcluster){

if (bbc %% 2 ==0) cat("inner=", bbc, "\n")

set.seed(bbc)
#########################################################

sim.data.sd <- NULL
for(i in 1:N){

select <- sample(sim.data.orig$ID,1)
m <- nrow(sim.data.orig[sim.data.orig$ID==select,])
sim.data.sd <- rbind(sim.data.sd, data.frame(ID=rep(i, nrow=m), sim.data.orig[sim.data.orig$ID==select,]))
i <- i+1

}
baseData.sd <- ddply(sim.data.sd, .(ID), function(x) x[1, ])
udt.sd <- unique(sort(sim.data.sd$t[sim.data.sd$t>0]))

#### Run function
Est_SD <- DepObsTimes(sim.data=sim.data.sd, baseData=baseData.sd, udt=udt.sd)

#### Cluster-ootstrap coefficients
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simout.sd <- rbind(simout.sd, Est_SD)
bbc <- bbc+1

}

sd <- round(apply(simout.sd,2, sd, na.rm=T),3)

cat("\n\n ================================================\n\n",
"\n Bladder Cancer Case Study: Table 4\n",
"\n (SE: Cluster-bootstrap based on", Bcluster, "repetitions)\n",
"\n\n Estimation of gamma’s (Observation-time model):",
"\n gamma ",paste("g1=",Orig_Est[1],"(",sd[1],"),

g2=",Orig_Est[2],"(",sd[2],"),g3=",Orig_Est[3],"(",sd[3],")"),
"\n\n Estimation of betas using different methods:",
"\n LY ",paste("b1=",Orig_Est[6], "(",sd[6],"), b2=",Orig_Est[7],"(", sd[7], ")"),
"\n Buzkova",paste("b1=",Orig_Est[8], "(",sd[8],"), b2=",Orig_Est[9],"(", sd[9], ")"),
"\n Liang ",paste("b1=",Orig_Est[10],"(",sd[10],"),

b2=",Orig_Est[11],"(",sd[11],"), theta=",Orig_Est[12],"(",sd[12],")"),
"\n W-Liang",paste("b1=",Orig_Est[13],"(",sd[13],"),

b2=",Orig_Est[14],"(",sd[14],"), theta=",Orig_Est[15],"(",sd[15],")"),
"\n Sun ",paste("b1=",Orig_Est[16],"(",sd[16],"),

b2=",Orig_Est[17],"(",sd[17],"), alpha=",Orig_Est[18],"(",sd[18],")"),
"\n W-Sun ",paste("b1=",Orig_Est[19],"(",sd[19],"),

b2=",Orig_Est[20],"(",sd[20],"), alpha=",Orig_Est[21],"(",sd[21],")"),
"\n\n ================================================\n\n" )

######################################################
######################################################
# CHECK if latent variables are covariate-dependent
# Using density curves of estimated latent variables
######################################################
######################################################
#install.packages("ggplot2")
library(ggplot2)
library(grid)
require(gridExtra)

## First run original sim.data (from blaTum) within DepObsTimes() function to obtain individual estimates.

#/******** Density Curve of \eta_i under WEIGHTED-SUN METHOD: Gamma distributed eta-i2
gammaV_b <- sapply(baseData$ID, function(nn){sum((exp(gamma.hat[1]*baseData$X1[baseData$ID==nn]+

gamma.hat[2]*baseData$X2[baseData$ID==nn]+gamma.hat[3]*testdata4$X3[testdata4$ID==nn])*
estlam.t.gamma)[udt<=baseData$C[baseData$ID==nn]])})

#/*estimated variance and \eta_{i2}
estsigma2 <- max(sum((baseData$m^2-baseData$m-(gammaV_b)^2)/sum((gammaV_b)^2)),0)
eta_i2 <- (1+baseData$m*estsigma2)/(1+gammaV_b*estsigma2)

## combined
plot1 <- ggplot(baseData)+geom_density(alpha=.6, aes(x=eta_i2))+

theme_bw()+theme(axis.line = element_line(color = ’black’))+
scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+
theme( plot.background = element_blank()

,panel.grid.major = element_blank()
,panel.grid.minor = element_blank()
,panel.border = element_blank()
,panel.background = element_blank()) +xlab(expression(hat(eta)[i2]))

## by treatment group
plot2 <- ggplot(baseData)+geom_density(alpha=.6, aes(x=eta_i2, fill=as.factor(baseData$X1)))+

theme_bw()+scale_fill_manual(values=c("grey20", "grey60"), name="Group", breaks=c("0", "1"),
labels=c("Placebo", "Treatment"))+theme(axis.line = element_line(color = ’black’))+

scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+
theme( plot.background = element_blank()

,panel.grid.major = element_blank()
,panel.grid.minor = element_blank()
,panel.border = element_blank()
,panel.background = element_blank()) + theme(legend.position = c(.8, .7))+xlab(expression(hat(eta)[i2]))

grid.arrange(plot1, plot2, ncol=2)

#/******** Density Curve of \eta_i under WEIGHTED-SUN METHOD
piCi <- sapply(baseData$ID, function(n, t){sum( (exp(gamma.hat[1]*baseData$X1[baseData$ID==n]+

gamma.hat[2]*baseData$X2[baseData$ID==n]+gamma.hat[3]*testdata4$X3[testdata4$t==t & testdata4$ID==n])*
estlam.t.gamma)[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )
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piCi <- sapply(baseData$ID, function(n, t){sum( (exp(delta.hat[1]*baseData$X1[baseData$ID==n]+
delta.hat[2]*baseData$X2[baseData$ID==n])*
estlam.t.delta)[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )

#/*estimated \eta_i
Zhat <- (baseData$m-1)/piCi

## combined
plot3 <- ggplot(baseData)+geom_density(alpha=.6, aes(x=Zhat))+

theme_bw()+theme(axis.line = element_line(color = ’black’))+
scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+
theme( plot.background = element_blank()

,panel.grid.major = element_blank()
,panel.grid.minor = element_blank()
,panel.border = element_blank()
,panel.background = element_blank()) +xlab(expression(hat(eta)[i]))

## by treatment group
plot4 <- ggplot(baseData)+geom_density(alpha=.6, aes(x=Zhat, fill=as.factor(baseData$X1)))+

theme_bw()+scale_fill_manual(values=c("grey20", "grey60"), name="Group", breaks=c("0", "1"),
labels=c("Placebo", "Treatment"))+theme(axis.line = element_line(color = ’black’))+

scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+
theme( plot.background = element_blank()

,panel.grid.major = element_blank()
,panel.grid.minor = element_blank()
,panel.border = element_blank()
,panel.background = element_blank()) + theme(legend.position = c(.8, .7))+xlab(expression(hat(eta)[i]))

grid.arrange(plot3, plot4, ncol=2)

#############################################
#############################################
# Check overall model-fit using residuals
# Only focus on models with weights (case 2)
#############################################
#############################################
##/* setup */
exp_delta <- exp(delta.hat[1]*baseData$X1+delta.hat[2]*baseData$X2)
denom_delta <- sapply(udt, function(u){sum( (exp_delta)[u<=baseData$C], na.rm=T) } )
estlam.t.delta <- sapply(1:length(udt), function(u) sum( ((sim.data$t==udt[u])/denom_delta[u])) )

exp_gamma <- function(u){exp(gamma.hat[1]*baseData$X1+
gamma.hat[2]*baseData$X2+gamma.hat[3]*testdata4$X3[testdata4$t==u])}

denom_gamma <- sapply(udt, function(u){sum( (exp_gamma(u))[u<=baseData$C], na.rm=T) } )
estlam.t.gamma <- sapply(1:length(udt), function(u) sum( ((sim.data$t==udt[u])/denom_gamma[u])) )

plot_resid <- function(est_resid, addtitle){
plot(est_resid[sim.data$X1==0]~sim.data$t[sim.data$X1==0], pch=1, ylim=c(-3, 3), xlim=c(0,54),

xlab="Observation times", ylab="Residuals", las=1, cex=.7)
par(new=T)
plot(est_resid[sim.data$X1==1]~sim.data$t[sim.data$X1==1], pch=2, ylim=c(-2, 3), xlim=c(0,54),

xlab=" ", ylab=" ", xaxt="n", yaxt=’n’, cex=.5)
abline(h=0)
lines(smooth.spline(est_resid~sim.data$t, df = 10), lty = 2, col = "red", lwd=2)
mtext(addtitle, 3, line=-1.2, cex=.7)

}

##/************** Buzkova method **************/##
#/*** d\mathcal{A}(t) by id ***/
numer <- (1/iirr2)*(sim.data$Y-Buzkova.stable.beta[1]*sim.data$X1-Buzkova.stable.beta[2]*sim.data$X2)
mathcal_A.delta <- sapply(1:length(udt), function(uu) sum(numer[sim.data$t==udt[uu]]/denom_delta[uu], na.rm=T) )

alpha_hat_step <- mathcal_A.delta/estlam.t.gamma
alpha_hat_sim <- sapply(sim.data$t, function(uu) alpha_hat_step[udt==uu] )

#/*** residuals ***/#
pred_Y_Buzkova <- Buzkova.stable.beta[1]*sim.data$X1+Buzkova.stable.beta[2]*sim.data$X2
est_resid_Buzkova <- sim.data$Y - alpha_hat_sim -

Buzkova.stable.beta[1]*sim.data$X1-Buzkova.stable.beta[2]*sim.data$X2
plot_resid(est_resid_Buzkova, "Buzkova method")

##/************** Weighted-Liang method: Q=X1 **************/##
#/*** Bhat ****/
Bhat2_i <- ( (1+baseData$m*estsigma2)/(1+gammaV_b*estsigma2)-1)
Bhat_long <- sapply(sim.data$ID, function(i) Bhat2_i[baseData$ID==i])*sim.data$Q
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#/*** d\mathcal{A}(t) by id ***/
numer <- (1/iirr2)*(sim.data$Y-Weighted.Liang.beta[1]*sim.data$X1-Weighted.Liang.beta[2]*sim.data$X2-

Weighted.Liang.beta[3]*Bhat_long)
mathcal_A.delta <- sapply(1:length(udt), function(uu) sum(numer[sim.data$t==udt[uu]]/denom_delta[uu], na.rm=T) )

alpha_hat_step <- mathcal_A.delta/estlam.t.gamma
alpha_hat_sim <- sapply(sim.data$t, function(uu) alpha_hat_step[udt==uu] )

#/*** residuals ***/#
pred_Y_WLiang_X1 <- Weighted.Liang.beta[1]*sim.data$X1+

Weighted.Liang.beta[2]*sim.data$X2+Weighted.Liang.beta[3]*Bhat_long
est_resid_WLiang_X1 <- sim.data$Y - alpha_hat_sim - Weighted.Liang.beta[1]*sim.data$X1-

Weighted.Liang.beta[2]*sim.data$X2-Weighted.Liang.beta[3]*Bhat_long
plot_resid(est_resid_WLiang_X1, "Weighted-Liang method")

##/************** Weighted-Sun method **************/##

#/**** function for observation-level weights ****/
Z <- function(uu){cbind(baseData$X1, baseData$X2, testdata4$X3[testdata4$t==udt[uu]])}
X <- function(uu){cbind(baseData$X1, baseData$X2)}
iirr2b <- function(uu){exp(Z(uu) %*% as.matrix(gamma.hat))/exp(X(uu) %*% as.matrix(delta.hat))}

#/****/
piCi <- sapply(baseData$ID, function(n, t){sum( (exp(gamma.hat[1]*baseData$X1[baseData$ID==n]+

gamma.hat[2]*baseData$X2[baseData$ID==n]+gamma.hat[3]*testdata4$X3[testdata4$t==t & testdata4$ID==n])*
estlam.t.gamma)[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )

### Zhat & Ohat ###
Zhat <- (baseData$m-1)/piCi
Zhat.long <- sapply(sim.data$ID, function(i) Zhat[baseData$ID==i])
numer <- (1/iirr2)*(sim.data$Y-Weighted.Sun.beta[1]*sim.data$X1-

Weighted.Sun.beta[2]*sim.data$X2-Weighted.Sun.beta[3]*Zhat.long)
mathcal_A.delta <- sapply(1:length(udt), function(uu) sum(numer[sim.data$t==udt[uu]]/denom_delta[uu], na.rm=T) )

alpha_hat_step <- mathcal_A.delta/estlam.t.gamma
alpha_hat_sim <- sapply(sim.data$t, function(uu) alpha_hat_step[udt==uu] )

#/*** residuals ***/#
pred_Y_WSun <- alpha_hat_sim + Weighted.Sun.beta[1]*sim.data$X1+

Weighted.Sun.beta[2]*sim.data$X2+Weighted.Sun.beta[3]*Zhat.long
est_resid_WSun <- sim.data$Y - alpha_hat_sim - Weighted.Sun.beta[1]*sim.data$X1-

Weighted.Sun.beta[2]*sim.data$X2-Weighted.Sun.beta[3]*Zhat.long
plot_resid(est_resid_WSun, "Weighted-Sun method")
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3

We provide R code to reproduce estimated bias, empirical standard error estimates and mean

squared error estimates from one set of parameters presented in Chapter 3 simulation. We consider

Setting 2, in which:

• (β1, β2, β3) = {log(1.5), log(1.2), log(0.5)},

• (γ1, γ2, γ3) = (0.3, 0.2, 0.3),

• Qi = 1 and

• η(2)
i2 : ηi2 ∼ I(Xi1 ≤ 0.5)Uniform[0.5, 1.5] + I(Xi1 > 0.5)Gamma(1, 0.7)

## Load extension packages
library("splines")
library("plyr")
library("nleqslv")
library("survival")

###############################################################
# Functions to create observation-times
Lam <- function(t, z, x, b, v, c, w, g){
1/2* z * t^( x*b + 3/2 )/( x*b + 3/2 ) *exp(g*w + c*v) }
invLam <- function(t, z, x, b, v, c, w, g){
( t * 2 * ( x*b + 3/2 ) * exp(- g*w - c*v) /z)^(1/(x*b+3/2))}
###############################################################

set.seed(234)
simout<- NULL
for (bb in c(1:1000)){

if (bb %%2 ==0) print(bb)
set.seed(1)
### Set initial values
Ntot=200 ## number of subjects
tau=10 ## max study time
sigma_err <- 1
sigma_phi <- 1
b_01 <- log(1.5)
b_02 <- log(1.2)
b_03 <- log(.5) ## variable X3 only in observation-time model

gamma01 <- 0.3
gamma02 <- 0.2
gamma03 <- 0.3

miu_z_1 <- 2
miu_z_2 <- 0
sigma_z_1 <- 1
sigma_z_2 <- 2

theta0 <- 1
### create a full set of outcomes for each subject
sim.data <- NULL
for (i in 1:Ntot){
### grid of 100 per time unit (t=0.00 is baseline)
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X1 <- X2 <- Z <- phi_i <- err_i <- M <- C <-NULL
C <- runif(1, min=5, max=tau)
X1 <- runif(1,0,1)
X_ind <- as.numeric(X1>0.5)
X3 <- (1-X_ind)*rnorm(n=1, mean=miu_z_1, sd=sigma_z_1) +
(X_ind)*rnorm(n=1, mean=miu_z_2, sd=sigma_z_2)
X2 <- rbinom(1,1,0.5)
expect_X3_X1 <- (1-X_ind)*miu_z_1 + (X_ind)*miu_z_2
var_X3_X1 <- (1-X_ind)^2*(sigma_z_1)^2 + (X_ind)^2*(sigma_z_2)^2
W <- 1 # Q = 1; otherwise X1
sigma_eta2 <- 0.5

##### eta_i(1)
# Z <- eta_2 <- rgamma(1,shape=2,scale=sigma_eta2)
##### eta_i(2)

Z <- eta_2 <- if(X2==1){runif(n=1, min=0.5, max=1.5)} else {rgamma(1,shape=2,scale=sigma_eta2)}
M <- sqrt(sigma_err^2 + (W*sigma_phi)^2 + b_03^2 * var_X3_X1)/1.7
f_0_star <- function(t){(-1+0.5*t^(-1/2))*M - b_03 * expect_X3_X1}
b_01_star <- b_01*M
b_02_star <- b_02*M
phi_i <- rnorm(n=1, mean=0, sd=sigma_phi)
eta_1 <- (theta0*(eta_2-1))*M + phi_i

###########################################
# Generate observations times and outcomes
###########################################
len <- 0; tmpt <- NULL
while ( len < Lam(C, Z, X1, gamma01, X2, gamma02, X3, gamma03) ){
tmpt <- c(tmpt, rexp(1,1) )
len <- sum(tmpt)
}

m <- length(tmpt) - 1
if( m > 0 ){
tt <- invLam( cumsum(tmpt[1:m ]), Z, X1, gamma01, X2, gamma02, X3, gamma03)
} else tt <- 0

Y =as.numeric(f_0_star(tt) + b_01_star * X1 * log(tt) + b_02_star * X2 + b_03 * X3 +
eta_1 * W + rnorm(n=length(tt), mean=0, sd=sigma_err) > 0 )
tmp <- data.frame(ID=i,t=tt[order(tt)],Y=Y, Z=z, m=m, X1=X1, X2=X2, X3=X3, C=C, W=W)
sim.data <- rbind( sim.data, tmp )

i <- i+1
}

#######################
# Set-up
#######################
sim.data <- sim.data[sim.data$t>0,]
baseData <- ddply(sim.data, .(ID), function(x) x[1, ])
udt <- sort(unique(sim.data$t[sim.data$t>0]))
N<- length(baseData$ID)

###############################
## Bsplines (duration)
###############################
test <- bs(sim.data$t, df = 4, intercept=T)[1:length(unique(sim.data$t)), 1:4]
test.long <- t(sapply(sim.data$t, function(tt) test[unique(sim.data$t)==tt,]))
sim.data$B1 <- test.long[,1]
sim.data$B2 <- test.long[,2]
sim.data$B3 <- test.long[,3]
sim.data$B4 <- test.long[,4]
###############################

#/**** FOR DELTA.HAT (covariates in outcome model) ****/
f <- function(gamma){

#/**** vector of baseline V: ****/
bigV <-cbind(baseData$X1, baseData$X2)
gamma_test <- function(g,u){exp(g[1]*bigV[,1]*log(u)+g[2]*bigV[,2])}

#/**** Vbar ****/
denom <- sapply(udt, function(u) sum(gamma_test(gamma,u)[ baseData$C >= u ]) )
numer1 <- sapply(udt, function(u) sum((bigV[,1]*log(u)*gamma_test(gamma, u))[ baseData$C >= u ]) )
numer2 <- sapply(udt, function(u) sum((bigV[,2]*gamma_test(gamma, u))[ baseData$C >= u ]) )
Vbar <- cbind(numer1/denom, numer2/denom)
Vbar.long <- t(sapply(sim.data$t, function(tt) Vbar[udt==tt,]))
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#/***** estimating eq for deltas *****/
bigV <-cbind(sim.data$X1*log(sim.data$t), sim.data$X2)
temp <- colSums((bigV-Vbar.long)/N, na.rm=T)
temp

}
gamma <- c(gamma01, gamma02)
gamma.hat.setup <- nleqslv(gamma, f)
delta.hat <- c(gamma.hat.setup$x)

#/**** FOR GAMMA.HAT (covariates from observation-time model) ****/
f <- function(gamma){

bigV <-cbind(baseData$X1, baseData$X2, baseData$X3)
gamma_test <- function(g,u){exp(g[1]*bigV[,1]*log(u)+g[2]*bigV[,2]+g[3]*bigV[,3])}

#/**** Vbar ****/
denom <- sapply(udt, function(u) sum(gamma_test(gamma, u)[ baseData$C >= u ]) )
numer1 <- sapply(udt, function(u) sum((bigV[,1]*log(u)*gamma_test(gamma, u))[ baseData$C >= u ]) )
numer2 <- sapply(udt, function(u) sum((bigV[,2]*gamma_test(gamma, u))[ baseData$C >= u ]) )
numer3 <- sapply(udt, function(u) sum((bigV[,3]*gamma_test(gamma, u))[ baseData$C >= u ]) )
Vbar <- cbind(numer1/denom, numer2/denom, numer3/denom)
Vbar.long <- t(sapply(sim.data$t, function(tt) Vbar[udt==tt,]))

#/***** estimating eq for gammas *****/
bigV <-cbind(sim.data$X1*log(sim.data$t), sim.data$X2, sim.data$X3)
temp <- colSums((bigV-Vbar.long)/N, na.rm=T)
temp

}
gamma <- c(gamma01, gamma02, gamma03)
gamma.hat.setup <- nleqslv(gamma, f)
gamma.hat <- c(gamma.hat.setup$x)

#/**** : estimated Lam(t) ****/
denom <- sapply(udt, function(u) sum(exp(gamma.hat[1]*baseData$X1*log(u)

+gamma.hat[2]*baseData$X2+gamma.hat[3]*baseData$X3)[ baseData$C >= u ]) )
estlam.t <- sapply(1:length(udt), function(u) sum( ((sim.data$t==udt[u])/denom[u])) )

#/**** calculate observation-level weights ****/
Z <- cbind(sim.data$X1*log(sim.data$t), sim.data$X2, sim.data$X3)
X <- cbind(sim.data$X1*log(sim.data$t), sim.data$X2)
iirr2 <- exp(Z %*% as.matrix(gamma.hat))/exp(X %*% as.matrix(delta.hat))

#/**** function for observation-level weights ****/
Z <- function(uu){cbind(baseData$X1*log(udt[uu]), baseData$X2, baseData$X3)}
X <- function(uu){cbind(baseData$X1*log(udt[uu]), baseData$X2)}
iirr2b <- function(uu){exp(Z(uu) %*% as.matrix(gamma.hat))/exp(X(uu) %*% as.matrix(delta.hat))}

###################################################
piCi <- sapply(baseData$ID, function(n, t){

sum( (exp(gamma.hat[1]*baseData$X1[baseData$ID==n]*log(t)+
gamma.hat[2]*baseData$X2[baseData$ID==n]+
gamma.hat[3]*baseData$X3[baseData$ID==n])*estlam.t)
[t<=baseData$C[baseData$ID==n]], na.rm=T) }, t=udt )

estsigma2 <- max(sum((baseData$m^2-baseData$m-(piCi)^2)/sum((piCi)^2)),0)

##/**** Bhat ****/##
baseData_Zhat <- baseData$m/piCi
Zhat_long <- sapply( sim.data$ID, function(i) (baseData_Zhat[baseData$ID==i]))
baseData_Bhat <- baseData$W*(baseData_Zhat-1)
Bhat_long <- sapply( sim.data$ID, function(i) (baseData_Bhat[baseData$ID==i]))

####################################################
## I. IEE
## (GEE with independence correlation structure)
####################################################
X1t <- sim.data$X1*(log(sim.data$t))
iee <-(glm(Y~X1t+X2+B1+B2+B3+B4-1, data=sim.data, family=binomial(link="logit")))$coef

########################################################################
## II. Weighted-GEE
## (IEE with observation-level weights and latent variable effects)
########################################################################
weighted.iee <-(glm(Y~X1t+X2+Bhat_long+B1+B2+B3+B4-1, data=sim.data,
family=quasibinomial (link="logit"), weight=(1/iirr2)))$coef
estsigma2 <- max(sum((baseData$m^2-baseData$m-(piCi)^2)/sum((piCi)^2)),0)
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###########################
## III. Proposed method
###########################
bulk_long <- sapply(1:length(udt), function(uu){

((1/iirr2b(uu))*(baseData$m/piCi)
*exp(gamma.hat[1]*baseData$X1*log(udt[uu])+

gamma.hat[2]*baseData$X2+gamma.hat[3]*baseData$X3)*estlam.t[uu])
})

expitin <- function(b1,b2, theta,t1,t2,t3,t4, uu){1/(1+exp(-b1*baseData$X1*log(udt[uu])
-b2*baseData$X2 -theta*baseData_Bhat
-t1*sim.data$B1[sim.data$t==udt[uu]][1]
-t2*sim.data$B2[sim.data$t==udt[uu]][1]
-t3*sim.data$B3[sim.data$t==udt[uu]][1]
-t4*sim.data$B4[sim.data$t==udt[uu]][1])) }

Ybar1 <- function(b1,b2, theta,t1,t2,t3,t4, inX){sapply(1:length(udt), function(uu) {
sum((inX*expitin(b1,b2,theta,t1,t2,t3,t4, uu)
*bulk_long[,uu])[ baseData$C >= udt[uu] ]) })}

Ybar1b <- function(b1,b2, theta,t1,t2,t3,t4, inX){sapply(1:length(udt), function(uu) {
sum((inX*log(udt[uu])*expitin(b1,b2, theta,t1,t2,t3,t4, uu)
*bulk_long[,uu])[ baseData$C >= udt[uu] ]) })}

Ybar3 <- function(b1,b2, theta, t1,t2,t3,t4, inX){sapply(1:length(udt), function(uu) {
sum((inX[sim.data$t==udt[uu]][1]*expitin(b1,b2, theta, t1,t2,t3,t4, uu)
*bulk_long[,uu])[ baseData$C >= udt[uu] ]) })}

f <- function(beta){

#/***** Equation 7: estimating eq for betas *****/
temp <- rep(0,7)
temp[1] <- sum((1/iirr2)*sim.data$X1*log(sim.data$t)*sim.data$Y, na.rm=T)-

sum(Ybar1b(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],baseData$X1), na.rm=T)
temp[2] <- sum((1/iirr2)*sim.data$X2*sim.data$Y, na.rm=T)-

sum(Ybar1(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],baseData$X2), na.rm=T)
temp[3] <- sum((1/iirr2)*Bhat_long*sim.data$Y, na.rm=T)-

sum(Ybar1(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],baseData_Bhat), na.rm=T)
## 4df Bsplines
temp[4] <- sum((1/iirr2)*sim.data$B1*sim.data$Y, na.rm=T)-

sum(Ybar3(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],sim.data$B1), na.rm=T)
temp[5] <- sum((1/iirr2)*sim.data$B2*sim.data$Y, na.rm=T)-

sum(Ybar3(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],sim.data$B2), na.rm=T)
temp[6] <- sum((1/iirr2)*sim.data$B3*sim.data$Y, na.rm=T)-

sum(Ybar3(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],sim.data$B3), na.rm=T)
temp[7] <- sum((1/iirr2)*sim.data$B4*sim.data$Y, na.rm=T)-

sum(Ybar3(beta[1],beta[2],beta[3],beta[4],beta[5],beta[6],beta[7],sim.data$B4), na.rm=T)
temp
}

beta <- c(1,1,1,.5,.5,.5,.5)
beta <- nleqslv(beta, f)
proposed.method <- c(beta$termcd, round(beta$x,7))

#####################
# Coefs of each dataset
#####################
meannumvisits <- mean(baseData$m)
simout <- rbind(simout, data.frame(cbind(t(delta.hat), t(gamma.hat),
t(iee), t(weighted.iee), t(proposed.method), meannumvisits)))
bb <- bb+1
save(simout, file="../AppendixCheck.rda")
}

##### Simulation results for beta1
beta01 <- log(1.5)
tableb1 <- simout[, c(6, 12, 20)]
beta_result <- matrix(0,ncol=3,nrow=3)
for(z in c(1:3)){

beta_result[1,z] <- round(apply(as.matrix(tableb1[,z]), 2, mean, na.rm = T),3) -beta01
beta_result[2,z] <- round(apply(as.matrix(tableb1[,z]), 2, sd, na.rm = T),3)
beta_result[3,z] <- round((apply(as.matrix(tableb1[,z]), 2, mean, na.rm = T)-beta01 )^2
+ apply(as.matrix(tableb1[,z]), 2, var, na.rm = T),3)

}
rownames(beta_result) <- c("Bias", "ESE", "MSE")
colnames(beta_result) <- c( "IEE", "Weighted-IEE", "Proposed")
round(beta_result, 2)

##### Simulation results for beta2
beta02 <- log(1.2)
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tableb1 <- simout[, c(7, 13, 21)]
beta_result <- matrix(0,ncol=3,nrow=3)
for(z in c(1:3)){

beta_result[1,z] <- round(apply(as.matrix(tableb1[,z]), 2, mean, na.rm = T),3) -beta02
beta_result[2,z] <- round(apply(as.matrix(tableb1[,z]), 2, sd, na.rm = T),3)
beta_result[3,z] <- round((apply(as.matrix(tableb1[,z]), 2, mean, na.rm = T)-beta01 )^2

+ apply(as.matrix(tableb1[,z]), 2, var, na.rm = T),3)
}
rownames(beta_result) <- c("Bias", "ESE", "MSE")
colnames(beta_result) <- c( "IEE", "Weighted-IEE", "Proposed")
round(beta_result, 2)
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