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Abstract
The extracellular environment plays a key role in a wide array of cellular functions including migration, tissue
formation, and differentiation. This thesis overviews the design of a molecular sensor to measure cellular
forces and a hydrogel system to engineer angiogenic sprouting. We developed molecular force probes (FPs)
that report traction forces of adherent cells with high spatial resolution, can be linked to virtually any surface,
and do not require monitoring deformations of elastic substrates. FPs consist of DNA hairpins conjugated to
fluorophore-quencher pairs that unfold and fluoresce when subjected to specific amounts of force. In chapter
two we overview the synthetic strategies to produce these FPs from solid-state synthesis. We then
demonstrate the chemical and physical characterization of these FPs. These data show that the FPs can be
designed rationally from existing knowledge of the force-responsiveness of DNA hairpins. Chapter three
summarizes our methods to affix these FPs to solid substrates to measure cellular traction forces. The silane
chemistry to conjugate these FPs to glass coverslips is reported in detail. Then, the results of converting the
fluorescence of these FPs to force values is given along with biological validation. We find using this method
that cellular tractions are exerted at the distal ends of focal adhesions. In chapter four we present a versatile
bioactive PEG hydrogel to study angiogenesis. This material is MMP-degradable and cell-adhesive. We show a
microfabrication strategy to micromold these gels to pattern angiogenic sprouting from ex vivo tissue
explants.
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ABSTRACT 

 

ENGINEERED MATERIALS TO MEASURE AND REGULATE CELL MECHANOTRANSDUCTION 

Brandon L. Blakely 

Christopher S. Chen 

 The extracellular environment plays a key role in a wide array of cellular functions 

including migration, tissue formation, and differentiation. This thesis overviews the design of a 

molecular sensor to measure cellular forces and a hydrogel system to engineer angiogenic 

sprouting. We developed molecular force probes (FPs) that report traction forces of adherent 

cells with high spatial resolution, can be linked to virtually any surface, and do not require 

monitoring deformations of elastic substrates. FPs consist of DNA hairpins conjugated to 

fluorophore-quencher pairs that unfold and fluoresce when subjected to specific amounts of force. 

In chapter two we overview the synthetic strategies to produce these FPs from solid-state 

synthesis. We then demonstrate the chemical and physical characterization of these FPs. These 

data show that the FPs can be designed rationally from existing knowledge of the force-

responsiveness of DNA hairpins. Chapter three summarizes our methods to affix these FPs to 

solid substrates to measure cellular traction forces. The silane chemistry to conjugate these FPs 

to glass coverslips is reported in detail. Then, the results of converting the fluorescence of these 

FPs to force values is given along with biological validation. We find using this method that 

cellular tractions are exerted at the distal ends of focal adhesions. In chapter four we present a 

versatile bioactive PEG hydrogel to study angiogenesis. This material is MMP-degradable and 

cell-adhesive. We show a microfabrication strategy to micromold these gels to pattern angiogenic 

sprouting from ex vivo tissue explants. 
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1. CHAPTER 1                                                                                                       

Introduction 

1.1 The Role of Cellular Mechanics in Cell Behaviors 

 Historically, soluble chemical signals have been investigated for their role in 

affecting cellular biological processes ranging in scales from enzyme regulation to 

cellular phenotypes (Dobrescu, 1998). However, cells attach, spread, and remodel their 

physical environment by generating force, and these forces and the characteristics of the 

ECM itself are important for cell phenotype (Hynes, 2009). Following actin 

polymerization-driven lamellipodia protrusion, myosin II contraction of the actin 

cytoskeleton drives the propulsion of the cell body during migration (Lauffenburger and 

Horwitz, 1996). The interplay between cell forces and gene regulation underpin crucial 

developments during tissue formation and embryogenesis including cell sorting, axis 

formation, tissue folding, and branching (Mammoto and Ingber, 2010). In endothelial 

cells, the degree of traction forces regulates growth and proliferation (Nelson et al., 

2005; Pirone et al., 2006). The magnitude of cellular traction force also acts as a cue for 

differentiation of stem cells (McBeath et al., 2004). ECM properties influence cellular 

signaling (Eliceiri and Cheresh, 2001; Short et al., 1998), and genes expressed during 

tissue formation affect ECM adhesion and degradation (Bell et al., 2001; Su et al., 2008).  

Using integrins, combinations of heterodimeric (18 α and 8 β) surface-bound subunit 

proteins, cells bind to the ECM, stimulating or inhibiting proliferation depending on the 

integrin type (Avraamides et al., 2008; Desgrosellier and Cheresh, 2010; Drake et al., 

1995). ECM binding or internal signals activate integrins to cluster. Other signaling 

molecules are recruited, including focal adhesion kinase (FAK), Src, small GTPases 
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including RhoA, and Ras within structures known as focal adhesions (FAs) (Avraamides 

et al., 2008). FAs allow cells to sense environmental stiffness, ligand density and 

spacing, and dimensionality (Geiger et al., 2009a). In fact, the abnormal expression of 

αVβ3 in tumor endothelium enhances VEGFA signaled sprouting, and this has led to 

novel anti-cancer therapeutics (Desgrosellier and Cheresh, 2010; Friedlander et al., 

1995). 

 Besides integrins modulating biochemical signaling, cell spreading directly 

regulates their behavior. Cells plated on different densities of ECM proteins range in 

shape from rounded, intermediate, and fully spread, corresponding to responses of 

apoptosis, tissue formation, and proliferation respectively (Folkman and Moscona, 1978; 

Ingber, 1990; Ingber and Folkman, 1989a).  Use of microfabrication technology has 

allowed the control of cell-shape on islands of saturating levels of ECM protein, where 

the same trends were observed, establishing cell shape as an important cellular signal 

(Chen et al., 1997; Dike et al., 1999). 

 ECM stiffness also plays a role in phenotype. Similar to adhesion, cells on both 

2D surfaces of fibronectin (FN) or crosslinked collagen or polyacrylamide gels, to control 

for ligand density, display a transition from tissue formation to proliferation when cultured 

on softer (less than 1kPa Young’s modulus) versus stiff substrates (>10kPa) (Klein et al., 

2009; Kuzuya et al., 1998; Pelham and Wang, 1997; Vailhé et al., 1997).  Similar trends 

arise in 3D gels (Deroanne et al., 2001; Levental et al., 2009; Provenzano et al., 2009). 

 Many of the effects of ligand density, cell shape, and substrate stiffness are due 

to the resultant cell-exerted tension.  FAs act as a tension dependent bridge between 

integrins, signaling proteins, and the actin cytoskeleton (CSK) (Berrier and Yamada, 

2007; Zhang et al., 2008).  The structure of FAs is hierarchical, transitioning from an 

adhesive layer to a force transmission layer conveying physical information including 
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tension to cells, suggesting that molecular scale force is an important consideration for 

their formation and function (Kanchanawong et al., 2010b).  The interplay of proliferation 

and VEGFA-mediated angiogenesis with cell spreading has been linked to RhoA and 

FAK activity due to CSK tension (Bhadriraju et al., 2007b; Huang et al., 1998; Ingber et 

al., 1995; Mammoto et al., 2009; Mammoto and Ingber, 2009).   Spreading and substrate 

stiffness also causes cells to increase their contractility both in 2D and 3D contexts, 

providing evidence that CSK tension mediates the substrate rigidity and spreading 

phenotype effects (Fu et al., 2010; Legant et al., 2009; Sieminski et al., 2004; Tan et al., 

2003).  Measuring cellular tension is key to fully understanding a multitude of cell-ECM 

interactions.  

1.2 Physical Basis for Cell Traction Forces 

 Cells attach and migrate through their environment by exerting forces and 

sensing the physical characteristics of the ECM. Integrin binding and FAs are the 

molecular machinery cells used to navigate their surroundings.  Upon binding to their 

target ligands, integrins undergo a conformational change promoting clustering (Burridge 

and Chrzanowska-Wodnicka, 1996). The binding of ligands recruits FA proteins such as 

talin, α-actinin, paxillin, vinculin and actin. The clustering in and of itself promotes the 

recruitment of FA signaling proteins such as FAK and tensin (Miyamoto et al., 1995). 

Studies culturing cells on surfaces dispersed with gold nanoparticles conjugated with 

adhesive ligand, allowing one integrin binding per particle, showed that particle spacing, 

and by extension activated integrin spacing in FAs, of more than 73 nm strongly inhibited 

proper cell spreading and FA formation (Arnold et al., 2004; Cavalcanti-Adam et al., 

2007). Talin binds to the cytoplasmic domain of integrins to both activate integrins and 

recruit other proteins including vinculin (Calderwood et al., 2013). Vinculin acts a key 

intermediary between FAs and the actin cytoskeleton and its conformational change is 
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widely suspected to act as a ‘clutch’ between extracellular tension and actin stress fibers 

(Grashoff et al., 2010; Hu et al., 2007b). Phosphorylation of paxillin, a binding partner of 

vinculin, serves to enhance paxillin’s scaffolding function for other FA proteins including 

FAK (Bellis et al., 1995; Laukaitis et al., 2001; Richardson et al., 1997; Schaller and 

Parsons, 1995). Besides vinculin, actin binds to several FA proteins, either to provide 

molecular recourses or due to the different functional purposes of these proteins. For 

instance α-actinin, in contrast to vinculin’s role in adhesion maturation, helps to recruit 

actin stress fibers to nascent adhesions (Burridge and Chrzanowska-Wodnicka, 1996). 

Talin and kindlin are especially important proteins linking integrins to the actin 

cytoskeleton as they are required for FA formation (Geiger et al., 2009a). In total, these 

various proteins that comprise FAs act as different functional modules such as integrin 

signaling, force-induced signaling changes, and an actin binding layer connecting FAs to 

actin stress fibers (Kanchanawong et al., 2010a). 

 In addition to generating the forces cells need to migrate, FAs themselves and 

the cell cytoskeleton respond to these forces to provide cells sensing capabilities of their 

environment. There is a positive feedback loop between FA formation and the primary 

force-generating machinery of the cell cytoskeleton: actin polymerization and myosin II 

motor proteins generating actin sliding (Burridge and Chrzanowska-Wodnicka, 1996). At 

the leading edge of the cell, the lamellapodia contains the earliest adhesion precursors, 

focal complexes, which recruit nucleators of actin polymerization such as Arp2/3 and 

formins mDia1 and mDia2 (Geiger et al., 2009a). These actin polymerization nucleators 

induce actin branches from preexisting filaments to push the cell membrane outward and 

are regulated by WAVE/Scar and Wasp signaling (Pollard and Borisy, 2003). Upstream 

of WAVE/Scare and Wasp are the GTPases Rac and Cdc42 respectively (Vicente-

Manzanares et al., 2005). The lamellapodial actin is on the ventral side of the cell 
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membrane above a less dynamic lamella actin layer, and focal complexes at the cell 

edge form preceding the application of force by myosin motors in more distal regions of 

the cell (Giannone et al., 2007). Focal complex formation at the cell edge involves α-

actinin templating independent of myosin and suggests that primarily the mechanical 

force of actin polymerization influences the initiation steps of adhesion formation (Choi et 

al., 2008; Hu et al., 2007b). The activity of cytoplasmic myosin II is regulated by 

phosphorylation of myosin light chains (MLC) by MLC kinase (MLCK), and the tails of 

myosin II associate to form coiled-coiled structures (Sellers, 2000). FA signaling 

activates the GTPase RhoA and, through its effecters Rho kinase (ROCK) and MLCK, 

leads to an increase in cellular tension by increasing myosin II activity (Vicente-

Manzanares et al., 2005). The balance between Rho and Rac is achieved by differential 

signaling of integrins in mature adhesions, favoring Rho activity, and nascent adhesions, 

favoring Rac (DeMali et al., 2003). Myosin driven tension helps recruit FAK, which 

phosphorylates paxillin to recruit vinculin leading to adhesion maturation (Pasapera et 

al., 2010). As adhesions mature they become the origin of large bundled actin stress 

fibers crosslinked with myosin and α-actinin. Initially dorsal stress fibers form, anchored 

to one adhesion, before evolving into ventral stress fibers, anchored to two adhesions, 

sometimes reaching nearly the length of the cell and generating large traction forces 

(Burridge and Wittchen, 2013). 

 Besides FAs and actin, other elements of the cytoskeleton underlie cells’ ability 

to alter and sense their mechanical environment. The formation of stress fibers is most 

likely due to isometric tension between their anchors at adhesions evidenced by the 

enhancement of stress fibers upon pharmacologically disrupting microtubules (Burridge 

and Chrzanowska-Wodnicka, 1996). This is because other components of the CSK such 

as microtubules may contribute a resistive compressive force (Ingber, 1997). Integrins 
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and FA adhesion proteins are also connected to these non-actin CSK structures 

including intermediate filaments, permitting forces to propagate through long length-

scales (Janmey et al., 2009). Further, the crosslinking of actin along with the structural 

contributions given by microtubules and intermediate filaments give rise to the effect that 

the CSK is mostly ‘strain stiffening’ or that the elastic modulus increases with increasing 

strain (Gardel et al., 2008). Thus cellular tractions impart global effects on both cellular 

signaling and mechanics. 

1.3 Methods to Measure Cellular Traction Forces 

 The first method to measure cellular traction forces was developed by Albert 

Harris (Harris et al., 1980) whereby cells were cultured on a cross-linked silicon rubber. 

The elastic deformations caused by cellular tractions generated wrinkles on the surface. 

While this study demonstrated that single cells generate pulling forces, quantitation of 

this phenomenon was crude. To allow more precise force measurements, similar 

silicone surfaces where fixed at the perimeter to prevent wrinkling while adding beads as 

fiduciary markers that simultaneously tracked lateral displacements of these silicone 

surfaces (Lee et al., 1994). Using a molded silicone substrate, Balaban et al. were able 

to measure the forces of single adhesions by observing the deflection of micropatterned 

molds (Balaban et al., 2001). Such experimental systems allowed the mapping of 

displacements to calculated traction vector fields, a technique termed traction force 

microscopy (TFM). Polyacrylamide gels, due to superior optical transparency and the 

ease of altering the stiffness to physiologic ranges (10-100 kPa) by choosing the 

crosslinker concentration, supplanted silicone gels (Dembo and Wang, 1999; Stricker et 

al., 2010). Computational advances made in TFM include transforming the discretized 

Green’s function in Fourier space to simplify the calculations (Sabass et al., 2008) and 

confocal bead tracking to relax the assumption that tractions are exclusively in-plane of 
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the gel surface to describe normal cell pulling and compressive forces (Delanoe-Ayari et 

al., 2010; Franck et al., 2011; Legant et al., 2013). While TFM has emerged as the most 

widely adopted method to measure forces, these measurements are indirect and 

necessitate the removal of the cells from the elastic substrate to obtain the unstressed 

state. This rules out real-time force measurements over longer time-points. Additionally, 

the inverse of the Boussinesq equations describing the deformation of a half elastic 

space require computational assumptions to arrive at a unique solution, either that the 

forces are localized only at visualized adhesions (Balaban et al., 2001; Stricker et al., 

2010) or that the solution balances accuracy while minimizing some metric of complexity 

(Dembo and Wang, 1999; Legant et al., 2013). One approach to measure cell forces 

directly utilized micro-machined silicon cantilevers to detect the perpendicular dislocation 

of the levers upon cell binding (Galbraith and Sheetz, 1997). Our lab has established 

elastomeric micropost array substrates (mPADs) to study and manipulate stiffness for 

measurements of single cell forces and a macropost system for large cellular aggregates 

(Fu et al., 2010; Legant et al., 2009; Sniadecki et al., 2007; Sniadecki and Chen, 2007; 

Tan et al., 2003).  This bed of elastic cantilevers provides direct real-time force 

measurements but constrains the size of the adhesions to the area of the posts. 

Additionally, FAs possess a notably detailed molecular architecture, but these 

techniques do not lend an ability to investigate how molecular scale forces impact FA 

form and function due to a lack of resolution. Some of these methods are overviewed in 

Figure 1.1. 
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Figure 1.1. Methods to measure cellular traction forces. 

(a) Cells cultured on thin silicone films induce wrinkling to give qualitative estimates of 

forces. Image reprinted from (Harris et al., 1980). (b) Microfabricated cantilevers are 

deflected by migrating cells to give a direct force measurement. Image reprinted from 

(Galbraith and Sheetz, 1997). (c) Fluorescent beads dispersed in transparent 

polyacrylamide gels serve as fiduciary markers whose displacements from the relaxed 

state can be inverted to obtain the traction field exerted by the cells. Image reprinted 

from (Beningo and Wang, 2002a). (d) Cells cultured onto elastomeric microposts 

horizontally deflect the posts giving a direct measure of the tangential forces. Image 

reprinted from (Fu et al., 2010). 
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1.4 Molecular Methods to Measure Forces 

 At this smaller molecular scale, many biological molecules including enzymes 

and structural proteins such as elastin, tenascin, and FN respond to cell-force through 

altered activity, mechanics, fibrillogenesis, adhesivity, and revealing of cryptic signaling 

motifs (Bustamante et al., 2004; Craig et al., 2001; Jones and Jones, 2000; Rosenbloom 

et al., 1993; Smith et al., 2007).  Researchers have begun attempting to recreate or 

manipulate these natural molecules’ force-responsiveness to affect these cell responses 

(Grieshaber et al., 2009; Martino et al., 2009; Ng et al., 2007; Zhuang et al., 2009).  

Other advances include membrane bound enzymes or polymer brushes that alter their 

activity or absorbance in response to force (Azzaroni et al., 2006; Bunsow et al., 2010; 

Mertz et al., 2009).  Polymers that change color due to force-induced changes of either 

non-covalent or covalent bonds (mechanophores) are the latest generation of synthetic 

force reporters (Azzaroni et al., 2006; Davis et al., 2009; Kim and Reneker, 1993; Mertz 

et al., 2009; Nallicheri and Rubner, 1991), whose force behaviors can be explicitly 

calculated from the behavior of their monomers (Akbulatov et al., 2012).  While novel 

and interesting, force induced covalent chemistry requires forces several orders of 

magnitude beyond cellular tractions (Ribas-Arino et al., 2009).  

 Recent advances have been made using polymer worm-like chain (WLC) 

systems to measure forces within and outside of cells. Many of these studies employ the 

strategy of using fluorescence resonance energy transfer (FRET) as a distance 

measurement between the two ends of a flexible long polymer, either synthetic or 

peptide, that can freely move end-to-end. Grashoff et al. created a genetic construct of 

the FA protein vinculin with the head and tail domain separated by an elastic WLC 

protein flagelliform from spider silk. The elastic linker was flanked by a FRET pair 

whereby higher FRET efficiency indicated lower tension and vice versa. This study lent 
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credence to the model that vinculin is the ‘clutch’ for adhesion assembly as tension 

across vinculin precedes adhesion stabilization. While highly elucidating regarding the 

tension across vinculin during adhesion formation, this system is difficult to extend to 

other proteins, crucial since vinculin is far from the only protein to experience force within 

the cell, and this study does not address the tension between the cell and its outside 

environment. Alternatively, another study used the polymer polyethylene glycol (PEG) as 

the WLC to separate a FRET pair. This provided a force map during the events of 

endocytosis of a cell membrane receptor upon binding its target ligand (Stabley et al., 

2012). 

1.5 Angiogenesis Regulation by Adhesion 

 As described, cellular forces are important to many biological processes, but 

perhaps most dramatically evident during morphogenetic process such as the bending, 

folding, and extension that occur during body and tissue development.  One specific 

process that our research group studies is angiogenesis, wherein new capillary blood 

vessels are formed. 

 Every tissue is dependent on a functional, multi-scale vasculature to enable 

transport between cells and their environment for metabolic activity (Granger et al., 

1975). To meet these needs, new vessels must grow and coordinate in a guided fashion 

(Goldman, 2008; Jain, 1999). Vessel growth occurs in vivo during both embryonic 

vasculogenesis, the coordinated association of vascular progenitor cells into structures 

prior to large vessel development (Coultas et al., 2005), and angiogenesis, including 

developmental and dynamic sprouting of vessels from the preexisting vasculature 

(Adams and Alitalo, 2007). During development, angiogenesis is a highly structured 

process whereby the locations, sizes, and patterns of developing vessels are under tight 

genetic, environmental, and intercellular control (Blum et al., 2008; Childs et al., 2002).  
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During post-natal angiogenesis, the oxygen requirements of cells dictate the growth and 

sprouting of new capillaries to form capillary beds, which allow nutrient exchange (Fong, 

2008).   

 While angiogenesis is of vital importance to understanding development or 

wound healing, much of the current research has been limited to aberrant or pathological 

angiogenesis. Tumor development and diabetic retinopathy are two primary examples of 

chronic diseases in which inhibition of angiogenesis is being pursued as a means toward 

disease treatment (Madan and Dahut, 2009; Mauriz and Gonzalez-Gallego, 2008; 

Pandya et al., 2006; Tonra and Hicklin, 2007). There is also mounting evidence that 

angiogenic processes play a pivotal role in the onset of atherosclerosis (Moulton, 2006).  

Due to these clinical challenges, much of the research efforts regarding angiogenesis 

are concerned with blocking or abrogating this physiologic process. However, there is a 

growing interest in harnessing pro-angiogenic manipulations for treatment of ischemia or 

cardiac infarction (Ahn et al., 2008; Fortuin et al., 2003; van Weel et al., 2008). More 

recently, there has been a great deal of research effort towards the treatment and 

replacement of failed tissue or organs using pre-defined cell-seeded tissue engineering 

scaffolds, which control and direct tissue morphogenesis (Lutolf and Hubbell, 2005). 

However, since cells must be within about 200 μm of vasculature for nutrient and waste 

transport, developing means to vascularize these scaffolds is critical for the field to 

advance (Goldman, 2008). Whether in the context of treating disease or of designing 

viable large-scale artificial tissue scaffolds, detailed knowledge of the mechanisms of 

angiogenesis is urgently needed. 

 Cellular adhesion to the ECM also directly regulates angiogenesis. Historically, it 

was first observed that endothelial cells (ECs) grown on 2D surfaces coated with ECM 

proteins responded to low, intermediate, and high ECM surface densities independent of 
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growth factors through apoptosis, tubulogenesis, or proliferation respectively (Ingber and 

Folkman, 1989b). While this demonstrated that the degree of adhesion might play a role 

in influencing the various processes of angiogenesis, the potential importance of 

rounded cell morphology on ECM sparse substrates, was not well understood.  Then, 

future worked showed, using microfabrication techniques to spatially define cell 

spreading area, that rounded cells underwent apoptosis and spread cells increased their 

proliferative response even if overall density of ECM was constant (Chen et al., 1997).  

While this work showed that geometric control altered cellular behavior, future work 

showed that analogous principles apply for higher-level angiogenesis structure 

formation.  By patterning human capillary ECs in patterned stripes, Dike and colleagues 

showed that ECs grown on stripes of intermediate densities of adsorbed ECM protein 

underwent apoptosis on very narrow stripes (<10µm), proliferation on wide stripes 

(>2000µm), and differentiated to form tubes at intermediate widths (~1000µm) (Dike et 

al., 1999).  This study was later extended to ECs grown on surfaces of PEG diacrylate 

hydrogels functionalized with the adhesive RGDS peptide sequence.  This work also 

showed that intermediate densities of RGDS (20mM) enabled angiogenesis, but that 

excessively high concentrations of RGDS (>100mM) inhibited tubulogenesis (Moon et 

al., 2009). This thesis will describe the development of a PEG material to study and 

manipulate in vitro angiogenesis through altering adhesiveness and geometry. 

1.5 Overview of Thesis 

 The aforementioned studies have demonstrated the importance of forces exerted 

by cells upon the extracellular matrix pertaining to a variety of crucial functions. The 

knowledge advanced by existing methods to measure cellular tractions including TFM 

and macropost systems have provided invaluable detail into how cells migrate and 

regulate their force generation. However, as the molecular complexity of adhesions 
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becomes appreciated, efforts to find means to investigate forces at finer spatial 

resolution become warranted. While WLC chain molecular systems have been employed 

to measure forces fluorescently, the signal resolution is inherently diminished due to the 

nature of the probes. In this work, our motivations to utilize DNA hairpins as cell force 

reporters will be detailed. DNA hairpins offer a digital signal to measure force 

fluorescently at the molecular level, while in aggregate, they provide analogue measures 

of cell forces in real-time.  

 In Chapter 2 we will demonstrate our strategies to synthesize these DNA force 

probes. The use of solid-state DNA synthesis will be overviewed along with the specific 

design challenges we overcame. Further, we will characterize these force probes both 

chemically and physically. Using dual optical trapping, the response of these force 

probes to actual mechanical force at the molecular level will be demonstrated. 

 In Chapter 3 the strategies to functionalize these force probes onto glass 

surfaces will be overviewed. Then we will show the methods of culturing live mammalian 

cells on surfaces functionalized with force probes to fluorescently report cellular tractions 

in real time. The biological validation of this strategy will be overviewed along with a way 

of calibrating fluorescent signal to force values. Finally, the biological discoveries made 

using these new force probes will be described. 

 In Chapter 4 we will present a novel PEG-based hydrogel to engineer ex vivo 

angiogenesis. The base of these gels will be MMP-sensitive acrylamide PEG gels 

synthesized from step-growth polymerization. Pendant PEG groups with the peptide 

sequence CGRGDS will allow cell attachment. These bioactive PEG gels will be 

micromolded into specific geometries to confine angiogenic sprouting from chick aortic 

arch explants. 
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2. CHAPTER 2                                                                                                    

Development of Molecular Force Probes 

 

2.1 Introduction 

 Chapter one detailed several examples of molecular force sensitivity in both 

natural and engineered molecular systems. As an alternative to peptide and polymer 

WLC approaches, we sought to utilize another class of biomacromolecules whose force-

responsiveness has been extensively characterized: DNA. The force probes used in our 

studies are artificially synthesized DNA hairpins. The first section of this chapter will 

begin with an overview of the molecular studies of DNA molecules’ response to force, 

the standard strategy to synthesize oligonucleotides using solid-state synthesis, and a 

more detailed description of the experimental approach used in our studies to 

characterize the force responsiveness of our force probes.  

2.1.1 Molecular Studies of DNA Force-responsiveness 

 Advances in measuring the molecular force-responsiveness of individual DNA 

molecules make this one of the most rigorously defined force responsive natural 

materials (Bockelmann, 2004).  In 1992 the force response of a single DNA strand was 

studied for the first time, subjected to a constant magnetic force up to 30pN, while later 

methods discovered the new 60pN force-generated S-DNA, perhaps important for the 

function of the RecA enzyme (Cluzel et al., 1996; Smith et al., 1996; Smith et al., 1992).  

Coiling DNA molecules and measuring the effects of force versus extension allowed 

deeper understandings of the mechanisms behind topoisomerase (Smith et al., 1996; 
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Strick et al., 2000).  Unzipping double-stranded (dsDNA) demonstrated that nucleotide 

(nt) sequence determined the forces needed (Essevaz-Roulet et al., 1997). 

 Internal, self-complementary sequences within DNA oligomers generate loop 

structures through hydrogen bonding.  This phenomenon underpins the widely employed 

molecular-biology tool, fluorescent molecular beacons (MBs), to report the presence of a 

complementary sequence (Tyagi and Kramer, 1996).  A fluorophore and quencher pair, 

functionalized to the ends of a DNA hairpin, is in sufficient proximity to quench 

fluorescence when the MB hairpin is folded.  Binding a complementary DNA sequence 

breaks intramolecular hydrogen bonds, enabling fluorescent detection, specific enough 

for PCR or intracellular mRNA and single nucleotide polymorphism (SNP) detection 

(Santangelo, 2010). 

 Critically for this work, hairpins are also inducibly unfolded by force. Single-

molecule manipulation has demonstrated that this is best modeled as a two-state system 

between folded and unfolded, where the ratio of the two states is directly related to force 

as given in a simple Arrhenius model (Li et al., 2006; Liphardt et al., 2001; Mossa et al., 

2009; Rief et al., 1999; Woodside et al., 2006a; Woodside et al., 2006b).  This is 

contrasted with dsDNA or ssDNA, which is best modeled as an elastic polymer with a 

defined stiffness (Conroy and Danilowicz, 2004).  The elastic bending of DNA strands 

has been used to design FRET based probes of DNA bending-forces during annealing 

of DNA loops (Shroff et al., 2005; Shroff et al., 2008). 

 Intriguingly, the forces measured for DNA hairpin state transitions can be varied 

from approximately 5pN to 50pN, depending on stem length, GC content, and the ionic 

strength of solution (Anthony et al., 2012a; Woodside et al., 2006b), while the forces 

required to break the non-covalent bond between integrins and various ECM proteins fall 

within a range of 30pN to 140pN depending on the measurement approach and cell type 
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(Kong et al., 2009; Sun et al., 2005).  Thus, hairpins allow a means to measure force, 

whereby the distribution of hairpins within a given state, folded versus unfolded, provides 

a measure of the local tension in their environment. The scheme shown in Figure 2.1, 

using RGD functionalized fluorescent hairpins is unique and advantageous to other 

FRET based force probes, as it allows measurement of cell-ECM forces in real-time in a 

digital and sequence-tunable manner.  Here we develop a library of molecular 

mechanosensors that will be encoded by matching DNA hairpin intramolecular binding 

energies with specified fluorescent dyes. 

 

Figure 2.1. DNA Force Probes 

(a) Schematic depiction of the FPs. A DNA hairpin is functionalized with a fluorophore-

quencher pair, covalently conjugated by its 3' end to a solid substrate, and conjugated at 

its the 5' end, via a PEG spacer, to the integrin-binding peptide RGD. Upon the 
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application of sufficient force to unfold the hairpin, the fluorophore separates from the 

quencher and fluoresces. (b) We have synthesized a multicolored library of these force 

probes. Altering the sequence permits tuning of the force of unfolding. 

2.1.2 Solid-State Synthesis of DNA 

 The large size of biomolecules, such as peptides and DNA, present great 

challenges towards strategies to synthesize them in the laboratory. For peptide 

synthesis, the development of solid-state synthesis bypassed the need to synthesize, 

purify, and characterize each reactant step in generating a large polypeptide. Just as 

importantly, the approach allows full automation. Similarly, solid-state strategies are 

used to synthesize oligonucleotides. The preeminent standard approach to synthesizing 

DNA and RNA fragments is the cyanoethyl phosphoramidite method (Greco and Tor, 

2007). In this technique, DNA is synthesized in the 3’ to 5’ direction, the opposite of 

natural nucleotide synthesis. The 3’ end of the initial base is attached to the solid resin, 

and the phosphoamidite on the next nucleoside works as an activated phosphate to 

react with the 5’ OH group of the solid-bound precursor to extend the backbone of the 

growing chain. Unreacted 5’ OH groups are capped with acetic anhydride (AA) to 

prevent deletion mutations. The OH groups of the added nucleosides are protected with 

4,4′-dimethoxytrityl (DMT) which is orthogonal to the protection of any amino groups on 

the bases. After cleavage from the resin, the bases are deprotected either in 

concentrated ammonia or more mild conditions described later. The overview of this 

process is shown in Figure 2.2.  
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Figure 2.2. Overview of DNA Solid-State Synthesis. 

Scheme of cyanoethyl phosphoramidite oligonucleotides synthesis. The initial base is on 

a solid resin with the OH group protected by DMT. The additional nucleotides are then 

added with phosphates activated with phosphoramidite. After oxidation of the 

phosphorus, unreacted moieties are blocked with AA. After cleavage from the resin, the 

bases are deprotected in concentrated ammonium hydroxide. Image reprinted from 

(Greco and Tor, 2007). 

 Further chemical modifications were needed to produce DNA-based force 

probes. To allow for cell attachment, the DNA was functionalized with the RGD peptide 

to allow for cell attachment. RGD is an integrin ligand (Ruoslahti and Pierschbacher, 
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1986). At the 5’ end of the force probes, the fluorophore was conjugated followed by a 

thiol group to react with a succinimide-maleimide crosslinker to then conjugate the amine 

of the GGRGDS peptide to allow for cell attachment. At the 3’ end of the DNA, the 

quencher was conjugated followed by a PEG spacer and a thiol group to allow for 

surface conjugation of the final force probe. The details of the synthesis scheme are 

shown in Figure 2.3. 

 

Figure 2.3. Detailed chemical scheme for synthesis of FPs. 

FPs were synthesized using solid-phase synthesis in two fragments. The 3′ end 

contained a free thiol and the 5′ end of the other fragment was conjugated to the 

GGRGDS peptide. After purification, the fragments were ligated. 

2.1.3 Passive Dual Optical Trap Apparatus 

 The physical characterization of our force probes was done using a dual optical 

trap apparatus.  Polarizable objects, in this case dielectric styrene beads, can be trapped 

in highly focused laser light (Neuman and Block, 2004). Near the focus, any 

displacement of the bead is reacted upon by a nearly linear increase in force (positive 
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spring constant). However, the further away from the focus that the bead travels, the 

lower the spring constant becomes until a force maximum is reached. Beyond this point, 

the spring constant of the trap becomes negative until a distance is reached at which the 

trapping force is zero. Dual trapping utilizes this phenomenon by employing two traps of 

different strengths. In the weaker trap, the bead is moved into the zero stiffness region, 

in which small displacements lead to essentially constant force. The bead in the stronger 

trap is within the linear range, so while the force is clamped (constant force) in the 

weaker trap to record displacement, the force can be read in the stronger trap (Figure 

2.4) 

 

Figure 2.4. Energy Profile of Dual Optical Trap. 

In the geometry of the dual optical trap, the bead in the weaker trap (T1) is moved 

farther from the focus of the trap to a quasi-zero-stiffness region as shown in the F-x 

curve. The other bead in the stronger trap (T2) is nearer to the focus, where small 

deviations from the center leads to an approximately linear increase in force. Image 

reprinted from (Greenleaf et al., 2005). 

(Greenleaf et al., 2005). The higher temporal and spatial resolution of this passive 

clamping technique makes it possible to probe the force responsiveness of very rapidly 
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occurring processes such as hairpin unfolding (Woodside et al., 2008). In this 

arrangement, a DNA hairpin is captured via two single stranded ~1 kb DNA handles. 

One handle is bound to a 600 nm styrene bead via a biotin:avidin linkage and the other 

handle to a 730 nm styrene bead via a digoxigenin:antidigoxigenin linkage. The 600 nm 

bead is held in a weaker laser trap. It is this technique that has provided much 

understanding of DNA and RNA unfolding energetics in response to force. (Anthony et 

al., 2012a; Frieda and Block, 2012; Woodside et al., 2006a; Woodside et al., 2006b; 

Woodside et al., 2008). In the case of DNA hairpins, it’s been found that the hairpins do 

transition from a folded to an unfolded state in a highly sharp energetic two-state manner 

that is highly dependent on the sequence and any structural defects such as 

mismatched base pairs (Woodside et al., 2006a). When constant force is applied to 

hairpin, there is a magnitude of force at which the hairpin spends equal time in the folded 

and unfolded state, which is referred to as the F1/2.  

 In this work, we sought to demonstrate via optical trapping that our force probes 

behave as DNA hairpins molecularly in response to physical forces as has been 

characterized previously (Woodside et al., 2006b). Specifically, we were concerned that 

additional modifications to the hairpins to render them force probes, such as the 

fluorophore-quencher pair would impact the force needed to unfold the hairpins or the 

two-state nature of the transition. Specifically, we found that additional PEG spacers 

between various functional groups were needed for successful cellular experiments (see 

chapter 3), and the fluorophore-quencher pair has been shown to affect hairpin unfolding 

thermodynamics (Tyagi and Kramer, 1996). Finally, while most molecular force 

characterization studies have been performed in standard buffers, the need to culture 

cells in a unique medium was also a possible source of corruption of the hairpin 

unfolding energetics (Anthony et al., 2012b). 
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 At the inception of this work, to select which sequences to utilize for our force 

probes, we chose to utilize sequences that had been previously characterized for the 

response to unfolding from force (Woodside et al., 2006b). However, we chose a new 

nomenclature reflective of the force-responsiveness of the hairpins. For example, the 

sequence 20R25/T4 in Woodside et al. (Woodside et al., 2006b) had a measured F1/2 of 

approximately 10.6 pN. We renamed this molecule for the F1/2 value to become ‘Force 

Probe 11’ or FP11.  To see how our nomenclature differs from Woodside et al. 

(Woodside et al., 2006b) see Table 2.3. We synthesized one force probe with a 

previously uncharacterized sequence with a measured F1/2 value of approximately 8 pN, 

so this molecule was referred to as FP8. 

2.2 Objectives 

 The goal of this stage of our work was to synthesize and characterize our DNA 

force probes. These molecules were then to be used to measure the traction forces of 

living cells in real-time fluorescently. Optimizing the synthesis strategy was recursive 

with surface conjugation discussed in chapter 3. Success or failure during those studies 

was used to inform the molecular design of the force probes. Upon synthesis, the next 

steps were characterization, both chemical and physical. To summarize, the point-by-

point objectives were as follows: 

 1. Synthesize the DNA force probes by solid-state synthesis. 

 2. Chemically characterize the DNA synthesis for purity and functionality. 

 3. Physically characterize the force probes by performing dual optical trapping. 

2.3 Materials and Methods 

2.3.1 Synthesis of Force Probes 

Synthesis of GGRGDS. The GGRGDS peptide was synthesized on a Tribute 

instrument (Protein Technologies) on a 300 µmol scale using standard Fmoc peptide 
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synthesis protocols, Fmoc-L-Ser(tBu)-Wang resin (Chem-Impex) and 1.5 mmol amino 

acid/HBTU cartridges (Protein Technologies). After cleavage from the solid support and 

removal of protective groups from the side chains using trifluoroacetic 

acid/phenol/water/triisopropylsilane (88/5/5/2), the peptide was precipitated with ether 

and purified by high-pressure liquid chromatography (HPLC, Agilent Technologies 1100 

series) on a Kromasil 100-5-C18 column (21.2 x 250 mm) by running a 0.1% 

trifluoroacetic acid solution for 5 min and subsequently increasing the organic phase to 

20% acetonitrile over 30 min. 

Synthesis of force probes for cellular experiments. For each force probe, two DNA 

fragments (A and B) were synthesized on 1 mmol scale on a PerSeptive Biosystems 

Expedite 8909 DNA synthesizer, using commercially available standard base monomers 

and sequence modifiers. The larger fragment A contained a 5′ protected thiol modifier 

(Thiol-Modifier C6 S-S, Glen Research), followed by an amino modifier (Fmoc Amino-

Modifier C6 dT, Glen Research) and either nucleotides 1-34 of the hairpin sequence for 

FP11 and FP19, or nucleotides 1-19 for FP8. Alternatively, fluorescently labeled 

fragments were synthesized using a fluorophore containing phosphoramidite (6-

Fluorescein Serinol Phosphoramidite, Cy3™ Phosphoramidite, TAMRA-dT, Glen 

Research). The smaller fragment B contained the remaining nucleotides of the force 

probe at the 5′ end, followed by a quencher (Epoch Eclipse™Quencher 

Phosphoramidite, Glen Research; BBQ-650®-dT CEP, Berry & Associates; BHQ-1-dT), 

a PEG spacer (Spacer Phosphoramidite 18, Glen Research) and a 3′ protected thiol 

modifier (3′ Thiol Modifier C6 SS CPG, Biosearch Technologies). Fragments under 20 

nucleotides in length were synthesized with cleavage of the final trityl group on resin. 

Following solid phase synthesis, final cleavage from the solid support and the removal of 

protecting groups were carried out by treatment with aqueous ammonium hydroxide and 
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methylamine (1:1) at 65°C for 20 min. For TAMRA-containing DNA sequences, an 

UltraMILD deprotection scheme was deployed, following the manufacturer’s instructions. 

The oligonucleotides were purified by reverse-phase HPLC (Agilent Technologies 1200 

series), using a linear gradient from 100 mM triethyl ammonium acetate to 100% 

acetonitrile at 45 °C on an Eclipse XBD C18 column (5 mm, 9.4 x 250 mm, Agilent), and 

lyophilized. If appropriate, the trityl group was removed by the addition of 3% 

trifluoroacetic acid, followed by precipitation with 10% v/v 3 M NaOAc, pH 5 and 300 % 

v/v ethanol. 

 Where appropriate, fragments A were labeled with fluorophore by incubating 100 

nmol oligonucleotide and 1 mmol fluorophore (5-carboxyfluorescein N-succinimidyl 

ester, Sigma; Alexa Fluor 546 succinimidyl ester; Life Technologies; Alexa Fluor 647 

succinimidyl ester; Life Technologies) for 18 hr at 25 °C in 200 mM aq. NaHCO3, pH 8.3. 

Excess fluorophore was removed by ethanol precipitation of the oligonucleotide-

fluorophore conjugate. The peptide was appended to the 5’ thiol modification as follows: 

100 mM dithiothreitol (DTT) was added to the oligonucleotide in 50 mM Na2HPO4, pH 8 

at 25 ºC for 30 min to cleave the 5′ S-S bond. The reaction was purified by size 

exclusion chromatography using a NAP-5 column (GE Healthcare Life Sciences) and 

ethanol precipitation. 100 nmol of the thiol-containing oligonucleotide was stirred with 2 

mmol SM(PEG)8 (Thermo Scientific), 10 mmol GGRGDS, and 5 mmol tris(2-

carboxyethyl)phosphine (TCEP) in 500 mM KH2PO4, pH 7.1, for 18 hr at 25°C. The 

reaction was purified by ethanol precipitation, followed by a NAP-5 column. Purity was 

analyzed by liquid chromatography-mass spectrometry (LC/MS). If the relative coupling 

yield was below approximately 50%, the peptide conjugation reaction was repeated. 

Fragments B were 5′ phosphorylated by incubating 200 nmol oligonucleotide with 100 U 

T4 PNK (NEB) in 1x T4 DNA ligase buffer (NEB) for 8 hr at 37°C, followed by 
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inactivation of the enzyme for 20 min at 65°C. The completeness of the phosphorylation 

reaction was analyzed by LC/MS. 

 Labeled fragments A and B were ligated by mixing 50 nmol and 70 nmol, 

respectively, in 1x T4 DNA ligase buffer. For the unstructured (US) control sequence, 

another 100 nmol DNA splint was added to anneal and ligate the two fragments 

together. The mixture was heated to 94°C for 5 min followed by incubation at 25°C for 15 

min. After melting and annealing the fragments, 8000 U T4 DNA ligase (NEB) was 

added and then incubated for 16 h at 25°C. Subsequently, the reaction mixture was 

ethanol precipitated, dissolved in 80% formamide, and purified by denaturing gel 

electrophoresis on a 10% TBE/urea gel (Criterion, Bio-Rad) at 65°C. The desired bands 

were cut from the gel and the DNA was extracted twice by addition of 300 mM NaCl, 

followed by filtration to remove gel debris and ethanol precipitation. The purity of the 

product was analyzed by LC/MS. If necessary, gel purification was repeated. Cleavage 

of the 3′ S-S bond was performed with 100 mM DTT in 50 mM Na2HPO4, pH 8 at 25 ºC 

for 30 min, followed by gel filtration using a NAP-5 column (GE Healthcare Life 

Sciences). A different synthesis scheme was deployed for the fluorescein-labeled 

unfolded control construct, US-Fluorescein. It was synthesized on solid support as a 

single piece with an amino modifier at the 5’ end (5'-Amino-Modifier 5, Glen Research), 

followed by fluorescein (6-Fluorescein Phosphoramidite, Glen Research), the 

oligonucleotide sequence, the epoch eclipse quencher, and the 3′-protected thiol 

modifier (3′ Thiol Modifier C6 SS CPG). After cleavage and work-up as described above, 

the peptide was appended by incubation of 50 nmol oligonucleotide with 800 nmol bis-

NHS crosslinker (BS(PEG)9, Thermo Scientific) in 100 mM KH2PO4, pH 7.1 at 25°C for 

30 min, followed by addition of 8 µmol GGRGDS and incubation at 25°C for 18 hr. Work-
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up and thiol deprotection procedures were performed as described above. The purified 

force probes were analyzed by LC/MS, quantified by UV spectroscopy, and lyophilized.  

2.3.2 Chemical Characterization of Force Probes 

Liquid chromatography - mass spectrometry of force probes. Oligonucleotides were 

analyzed by LC/MS using a Waters Aquity UPLC coupled to a Waters Q-TOF Premier 

instrument. 10 pmol sample was run using a linear gradient from 6 mM 

triethylammonium bicarbonate to 100% methanol over 5 min on an Aquity UPLC BEH 

C18 column (1.7 µm, 2.1 mm x 100 mm, Waters) at a constant flow rate of 150 µL/min. 

Electrospray ionization was used with a capillary voltage of 3 kV, a sampling cone 

voltage of 40 V; the detector was operated in negative-ion mode. 

Melting curves of force probes. Force probes were assayed at a 100–500 nM 

concentration in PBS or 0.2x PBS, 6 M urea on a CFX-96 Real-Time System with a 

C1000 Thermal Cycler (Bio-Rad). After an initial refolding step for 2 min at 94°C followed 

by 5 min at 25°C, the probes were gradually heated to 94°C while the fluorescence was 

observed using the predefined settings for FAM (fluorescein labeled force probes), HEX 

(Alexa 546, Cy3, and TAMRA labeled force probes), Cy5 (Alexa 647 labeled force 

probes). The exact buffer conditions for the various force probes was as follows:  

• FP11-Fluorescein: 73 oC in PBS (53 oC in 100 mM Na2HPO4, 7 M urea, pH 7.1) 

• FP11-Alexa546: 73 oC in PBS 

• FP11-Alexa647: 72 oC in PBS 

• FP8-Fluorescein: 66 oC in PBS 

• FP8-Alexa647: 64 oC in PBS (42 oC in 1/5 PBS, 6.4 M urea) 

• FP19-Fluorescein: >100 oC in PBS (85 oC in 100 mM Na2HPO4, 7 M urea, pH 

7.1) 

• FP19-Alexa647: >100 oC in PBS (87 oC in 1/5 PBS, 6.4 M urea) 
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• US-Fluorescein: - 

• US-Alexa546: - 

• US-Alexa647: - 

2.3.3 Physical Characterization of Force Probes 

Synthesis of force probes for optical tweezers experiments. The synthesis of FPs 

used for the determinations of opening force was carried out analogously to the method 

described above. Fragment A contained a 5′ adaptor sequence for annealing with 

complementary sequences, as described previously(Anthony et al., 2012a), followed by 

a PEG spacer (Spacer Phosphoramidite 18), fluorescein (6-Fluorescein 

Phosphoramidite, Glen Research) and either nucleotides 1-34 of the hairpin sequence 

for FP11, or nucleotides 1-19 for FP8. Fragment B contained the remaining nucleotides 

of the force probe at the 5′ end followed by the quencher (Epoch Eclipse™Quencher 

Phosphoramidite), a PEG spacer (Spacer Phosphoramidite 18) and a 3′ adaptor 

sequence. HPLC purification, phosphorylation and ligation were performed as described 

above.  

Characterization of force probes with optical tweezers experiments. Unfolding 

forces, distances, and F1/2 values were measured as described previously (Anthony et 

al., 2012a; Woodside et al., 2006b) using dual-beam single-molecule optical tweezers. 

Briefly, a 5’ overhang (2,018 bp) handle functionalized with digoxigenin was prepared by 

PCR with M13mp18 plasmid acting as a template. The 3’ overhang (1,044 bp) handle 

was similarly prepared with biotin functionalized at the end without an overhang using 

the plasmid pALB3 as the template. After annealing with the hairpins, the handle-hairpin 

constructs were incubated with 600 nm-diameter styrene beads coated with avidin and 

730 nm-diameter styrene beads coated with anti-digoxigenin. The dumbbell mixture was 

then put into a glass chamber and mounted onto the optical trap microscope.  The trap 
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consisted of two infrared trapping beams guided by acousto-optic deflectors. The light 

scattered by the beads was detected by position diodes to provide information to two 

detecting beams. Constant force was applied to allow the hairpin to transition from 

folded to unfolded. This data was then filtered and used to reconstruct the unfolding 

energetics. An iterated deconvolution was performed to remove thermal defects 

(Woodside et al., 2006b). 

2.4 Results 

2.4.1 Synthesis of Force Probes 

The successful synthesis of the hairpin force probes was confirmed by mass 

spectrometry. In total, ten FPs, with opening forces ranging from 8.1-19.3 pN, were 

synthesized from different combinations of hairpins and fluorophores ( 

Table 2.1).  

Table 2.1. Synthesized force probes that were used in cellular experiments, and their 

calculated and observed molecular weights (MW). 

Force probe and 
conjugated dye 

MW 
(calc.) 

MW 
(obs.) 

FP11-Fluorescein 16,458 16,462 

FP11-Alexa 546 17,304 17,305 

FP11-Alexa 647 17,202 17,203 

FP8-Fluorescein 10,164 10,165 

FP8-Alexa 647 11,024 11,027 

FP19-Fluorescein 16,482 16,487 

FP19-Alexa 647 17,215 17,220 

US-Fluorescein 17,797 17,805 

US-Alexa 546 19,107 19,111 

US-Alexa 647 19,005 19,011 
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Thermal melting the FPs demonstrated unfolding-induced fluorescence. Several 

candidate fluorophore-quencher pairs were investigated, based on their spectral overlap 

and quenching properties, but only combinations containing fluorescein, Alexa 546, or 

Alexa 647 as the fluorophore and Epoch Eclipse™ Quencher as the quencher produced 

robust, cell-dependent fluorescent signals. Table 2.2 overviews the unsuccessful and 

successful fluorophore-quencher pairs in terms of cellular signal. While many of these 

pairs did not give rise to cellular adhesion signal, they did fluoresce in solution during the 

melting curve acquisition. Figure 2.5 shows as an example the mass spec and melt 

curves of FP11- Alexa 546-Eclipse, FP11- Alexa 546-BBQ, FP11- Alexa 647-Eclipse, 

and FP11- Alexa 647-BBQ. This shows that the failure of the BBQ probes to generate 

cellular signal is not due to a failure of the synthesis but rather some complication during 

the surface conjugation. 

 

Table 2.2. Fluorophore-quencher pairs assayed in cellular experiments. 

Fluorophore Quencher 
Signal in 
cellular 
experiment 

Fluorescein Epoch eclipse + 

Fluorescein BBQ-650 − 

Cy3 BHQ-1 − 

TAMRA BHQ-1 − 

Alexa546 Epoch eclipse + 

Alexa546 BBQ-650 − 

Alexa647 Epoch eclipse + 

Alexa647 BBQ-650 − 
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Figure 2.5. Mass Spec and Melt Curves for FP11 Alexa Probes with Different 

Quenchers. 

The mass spectrum of FP11-Alexa 546-Eclipse, FP11- Alexa 546-BBQ, FP11- Alexa 

647-Eclipse, and FP11- Alexa 647-BBQ in the top three panels demonstrate successful 

synthesis despite only pairs with the Eclipse quencher giving cellular traction signal. The 

melt curves for the FP11 constructs with Alexa-546-Eclipse and Alexa-657-Eclipse 

(bottom left panel) and the melt curves for the FP11 constructs with Alexa-546-BBQ and 

Alexa-657-BBW also confirm the unfolding-dependent fluorescence. 
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 Oligonucleotides lacking self-complementarity were used as unfolded controls; 

by design, these did not produce cell-dependent fluorescence. These sequences had no 

structure and were thus referred to as unstructured (US). The force probes that gave the 

most robust signal were the fluorescein constructs. The mass spec and melting curves 

for the FP8-fluorescein and FP19-fluorescein constructs is shown in Figure 2.6. 

 

Figure 2.6. Mass spec and Melting Curves for Fluorescein Constructs. 

 (a) Mass-spec for fluorescein constructs of FP8 (left panel) and FP19 (right panel). (b) 

Melting-curves for both FP8 and FP19 in PBS (left panel) and 1/5 PBS, 6.4 M urea (right 

panel). 
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Figure 2.7 confirms the successful synthesis of both US and FP8 and FP19 with the far-

red Alexa dyes. 

 

Figure 2.7. Confirmation of synthesis of FP8, FP19, and US with Alexa Red Dyes. 

 (a) LC/MS analysis of FP8 Alexa-647 (top left panel), FP19 Alexa-647 (top right panel), 

US Alexa-647 (bottom left panel), and US Alexa-546 (bottom right panel) demonstrates 

measured MW in agreement with calculated MW  
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Table 2.1). (b) Plot of fluorescence of FPs versus temperature in PBS (top row) and 1/5 

PBS with 6 M urea (bottom row) in both the Cy5 fluorescent channel (left column) and in 

the HEX fluorescent channel (right column). 

2.4.2 Physical Characterization of Force Probes 

Optical Trap Characterization of Force Probes. We sought to determine whether our 

chemical modifications of the hairpins affected the force-unfolding energetics. Using dual 

optical trap apparatus, we measured the force energetics of FP11 and compared our 

modified force probe to the unmodified hairpin measured previously (this hairpin is labled 

20R25/T4 in Woodside et al. (Woodside et al., 2006b)). If the value of F1/2 was 

unchanged, we reasoned that the other sequences we chose to use for a force probe 

(FP19) would also be reasonably expected to behave as previously characterized. In 

addition, we also measured the F1/2 value of our new sequence FP8. These sequences 

are summarized in Table 2.3. The experimental geometry is schematically shown in 

Figure 2.8a. 

Table 2.3. DNA sequences of the force probes used in cellular experiments, and their 

corresponding F1/2 values. Duplex regions of sequences are shown in italics. 

Force probe 
name Sequence F1/2 

(pN) 

FP11 AAGTTAACATCTAGATTCTATTTTTAGAAT
CTAGATGTTAACTT (20R25/T4)b 11.3a 

FP8 CTAGATTCTATTTTTAGAATCTAG 8.1a 

FP19 CGCCGCGGGCCGGCGCGCGGTTTTCCG
CGCGCCGGCCCGCGGCG (20R100/T4)b 19.3b 

US CGGAAGGAATGTAGAATGAGTGAGTGGA
TCGTGATGACTGTACAACTAT 

not 
applicable 

ameasured here 
bdata from (Woodside et al., 2006b)  
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 For FP11 and FP8, the F1/2 values measured in culture medium were 11.3 ± 0.6 

and 8.1 ± 0.7 pN, respectively, and the opening distances were 17.6 ± 0.4 and 8.0 ± 0.2 

nm. Because fluorophore conjugation and buffer substitution were not found to 

significantly affect the folding energetics of FP11 (Figure 2.8b, Table 2.3), the F1/2 value 

for FP19 was taken to be identical to a previously measured value for an unmodified 

hairpin with the identical sequence (19.3 pN) (Woodside et al., 2006b). Unless otherwise 

noted, the uncertainties reported here for measured parameters were computed from the 

statistical standard errors of the means added in quadrature to estimates of the 

systematic errors in the measurements (Anthony et al., 2012a).  

 

Figure 2.8. Force Characterization of Force Probes. 

 (a) Schematic of the experimental geometry used to characterize the mechanics of the 

hairpins. The DNA hairpin is attached at each of it ends to dsDNA handles bound to 

optically trapped beads (not to scale) in a force-clamped arrangement. (b) Measured F1/2 
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(hairpin opening force) values as a function of media and fluorophore-quencher 

conjugation (mean ± s.e.m.). 

2.5 Discussion 

Synthesis of the Force Probes. The synthesis of the force probes was done in two 

fragments. Fragment A was the larger fragment that consisted of the 5’ end of the force 

probe followed by either a phosphoramidite fluorophore (fluorescein) or a modified 

amino base. This was done because the Alexa red dyes (Alexa 546 and Alexa 647) 

were both susceptible to damage from the deprotection of the bases after cleavage from 

the resin. So, the amino modified base was used to conjugate the Alexa dyes after 

cleavage and deprotection, while the fluorescein force probes were synthesized 

completely on the resin. Red dyes that were not synthesized in this manner, after 

cleavage, gave rise to non-functional force probes. Fragment B contained the 3’ end of 

the final force probes at the 5’ end preceded at the 3’ end by the quencher, a PEG 

spacer with 6 EG units, and a protected thiol for surface conjugation.  
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Figure 2.9. Higher Level Schematic Detail.  

More detailed schematic of FP11 to illustrates the specifics of the PEG spacers on the 5’ 

and 3’ of the hairpin flanking the fluorophore and quencher. 

 Initial studies of cell plated on surfaces conjugated with force probes without 

PEG spacers gave high background and no signal. In this study, signal refers to the 

fluorescent reporting of cellular tractions in structures reminiscent of FAs We presumed 

that this was caused by some adsorption of the force probes onto the surface and a loss 

of structure. As a solution, we integrated PEG spacers on either side of the DNA in the 

force probes. This led to usable force probes (this data is shown in the next chapter). A 

more detailed chemical schematic of the hairpin with PEG spacers is given in Figure 2.9. 
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3. CHAPTER 3                                                                                                    

Measurement of Cellular Tractions on 2D Surfaces with DNA 

Force Probes 

 

3.1 Introduction 

 Upon synthesis of our DNA force probes, we aimed to affix the force probes at 

one end to a solid substrate and permit the other end to freely associate with cell integrin 

receptors. The most straightforward means to do this was to conjugate the hairpins to 

glass surfaces via silane chemistry. Once a workable means of conjugating to the 

surface was found, the next step was to culture living mammalian cells onto surfaces 

presenting these force probes to measure cellular tractions. This introduction will give an 

overview of methods to conjugate surfaces with DNA followed by a brief overview of the 

FA proteins we chose to further study during live-cell force measurements. 

3.1.1 Surface Conjugation of DNA  

 DNA microchips allow highly parallel monitoring of gene expression and relies on 

facile conjugation of up to thousands of DNA strands to solid surfaces in a manner that 

does not impede complementary sequences from binding (Sanchez Carbayo et al., 

2000). Interest in this field provided the bulk of historic motivation to find means to attach 

DNA oligomers to solid surfaces. Methods to bind DNA to solid surfaces include 

adsorption, avidin-avidin interactions, and covalent bonds. We initially relied on covalent 

methods to bind DNA to achieve the highest possible strength of bond between our force 

probes and solid substrates. Silanes are reactive to glass and PDMS hydroxyl groups 

and can bear other functional groups to allow further surface modifications. Silanes may 
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react with hydroxyls through one to three reactive groups. Multifunctional silanes are 

more stable to hydrolysis but also form multi-layered structures (Yee et al., 1991). 

However, others have suggested that vapor deposition of these silanes can lead to 

monolayer formation (Ali et al., 2008; Hong et al., 1994; Ling et al., 2003). Our force 

probes were designed with thiol groups to react in order to be coupled to a solid 

substrate. Several groups have explored various ways to conjugate thiol-labeled DNA 

oligomers to surfaces. One approach is to form a disulfide bond between the DNA and a 

thiol-bearing silane (Rogers et al., 1999). This has the added benefit of obviating the 

need for deprotection of the thiol groups (Kumar et al., 2000; Lenigk et al., 2001). 

However, this bond is labile near physiologic buffers, and others have used hetero-

bifunctional crosslinkers with both maleimide and succinimide to react with an amino-

bearing silane (Bhatia et al., 1992; Zimmermann et al., 2010a). 

3.1.2 Canonical FA Proteins  

 As described, FAs are complex, multi-protein complexes involving up to 156 

proteins engaging in 690 interactions (Zaidel-Bar et al., 2007).  Paxillin and vinculin are 

among the most well studied FA proteins.  Paxillin is one of the first FA proteins recruited 

during FA formation and its phosphorylation serves to enhance paxillin’s scaffolding 

function for other FA proteins (Bellis et al., 1995; Laukaitis et al., 2001; Richardson et al., 

1997; Schaller and Parsons, 1995).  As FAs form from initial adhesive clusters and grow 

into focal complexes, the recruitment of vinculin marks the point at which force is 

generated (Galbraith et al., 2002), which, along with other studies, has helped support 

the model of vinculin as a tension-sensitive clutch required to permit adhesion 

maturation (Grashoff et al., 2010; Hu et al., 2007a).  To assess whether FP fluorescent 

signal does correspond to unfolding of hairpins stressed by FA-mediated cell tension, 

cells transfected with fluorescently tagged paxillin and vinculin were plated on FP 



 39 

conjugated surfaces.  It was expected that there would be overlap between fluorescence 

reported by our FPs and these FA proteins.  Additionally, this provided an opportunity to 

investigate how force, as measured by the FPs, interplays with the recruitment of these 

focal adhesion proteins at a molecular level. 

3.2 Objectives 

 At this stage of our study, we aimed to use our synthesized DNA force probes to 

measure forces of living cells in real time using fluorescent spectroscopy. To achieve 

this aim, we needed to find the best chemical coupling scheme to attach our DNA force 

probes to glass as a model substrate. Then we wished to utilize the higher spatial 

resolution that our method provided to make key insights into cellular adhesion biology 

as they relate to the forces generated at the cell ECM interface. Finally, we sought to 

demonstrate that we could extend this method beyond traditional flat two-dimensional 

substrates. To summarize, the point-by-point objectives were as follows: 

 1. Chemically couple our force probes to glass. 

 2. Measure cellular traction forces with the DNA force probes. 

 3. Using the higher resolution of our method, make insights into adhesion biology 

as it relates to force. 

 4. Extend the use of these force probes to a more geometrically challenging 

setting to measure extra-cellular traction forces. 

3.3 Materials and Methods 

3.3.1 Functionalization of Glass-Coverslips with Force Probes 

 FPs were covalently attached to glass surfaces through an aminosilane reagent 

coupled to a succinimide-PEG-maleimide crosslinker that was reacted with the 3′ end of 

the hairpins (Figure 3.1) (Zimmermann et al., 2010b). Initial studies with multifunctional 



 40 

silanes led to high background signals, prompting us to use a monofunctional ethoxy-

silane to conjugate only one layer of hairpins to the surface and avoid intramolecular 

effects or adsorption. Circular coverslips (25 mm dia., #1 thickness) were sonicated in 

methanol for 5 min and dried in an oven. They were then plasma-cleaned for 5 min 

(Plasma Prep II, SPI Supplies). 3-(Ethoxydimethylsilyl) propylamine (Sigma) was 

incubated with the coverslips for functionalization at 3% v/v concentration in 200-proof 

ethanol along with 10% acetic acid aqueous solution as a catalyst at 3% v/v 

concentration (Sigma) for 3 hr. The coverslips were then rinsed thoroughly with 200 

proof ethanol, dried with nitrogen gas and baked at 110ºC for 1 hr. Functionalized 

coverslips were stored under argon. Upon further functionalization, the coverslips were 

submerged in borate buffer (BB, 50 mM sodium borate pH 8.5) for 1 hr to protonate the 

amino group on the silane. A hetero-bifunctional poly(ethylene glycol) (PEG), which has 

an amine reactive N-hydroxysuccinimide ester (NHS) on one end, and a thiol reactive 

maleimide group on the other, was dissolved in anhydrous dimethyl sulfoxide (DMSO) 

under argon at 250 mM concentration and stored at -20ºC, as per manufacturer’s 

instruction (Thermo Scienitfic) (this crosslinker is henceforth referred to as SM(PEG)2). 

SM(PEG)2 is very sensitive to hydrolysis, so it was aliquotted and frozen for one-time 

use. The SM(PEG)2 stock was diluted 10-fold in BB immediately prior to use, and the 

silane-functionalized coverslips were dried with nitrogen gas and incubated in SM(PEG)2 

reaction-buffer for 90 min, then rinsed 4X in sterile DI water. FPs were dissolved in a 100 

µM stock concentration in 10 mM Tris-HCl pH 7.85 buffer (TB) (Quality Biologicals) with 

1 mM MgCl2 and (Sigma) 1 mM ethylenediaminetetraacetate (EDTA) disodium dihydrate 

(Gibco) and stored at -20ºC. Prior to conjugation, the FPs were thawed and diluted to 1 

µM in the same buffer and heated at 90ºC for 5 min, then cooled to room temperature for 

10 min to ensure proper folding. TCEP was added to the DNA at a concentration of 10 
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mM and incubated for 30 min to reduce the thiol at the 3′ end. The hairpin solution was 

then transferred to Amicon Filter 0.5 mL Units (Millipore) with a 3 kDa cutoff and spun in 

a centrifuge at 16,000 g for 30 min to remove TCEP and most of the TB. The tubes were 

then filled with a coupling buffer (CB), a pH 7.2, 0.1 M sodium phosphate buffer (144.1 

mM Na2HPO4•7H2O and 7.25 mM NaH2PO4•H2O). The tubes were then centrifuged 

again at 16,000 g for 30 min to replace the TB with CB. The final volume of the tube was 

adjusted to match the desired FP concentration during the coupling. The surface 

concentration was optimized for cell attachment, as both higher and lower surface 

concentrations resulted in diminished attachment: we found 3 µM FP concentration 

during coupling incubation to be optimal. Coverslips conjugated with SM(PEG)2 were 

inserted into Attofluor cell chambers (Invitrogen) for cell seeding and imaging. FPs in CB 

solution were then added to the coverslips to incubate for 2 hr. After the coupling 

reaction, the coverslips were rinsed with 0.05% Tween 20 to rid the surface of non-

covalently attached DNA, then rinsed 4X with phosphate buffered saline (PBS). 

Substrates could be stored overnight at 4ºC in TB. 

 

Figure 3.1. Detailed chemical scheme for surface conjugation. 

 The substrate was functionalized with an amine-presenting silane that was coupled to a 

succinimide-PEG-maleimide crosslinker that was then reacted with the 3′ end of the 

hairpins. The presence of conjugated hairpin was confirmed by the fluorescence of 

surfaces coated with US positive control hairpins. 
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3.3.2 Imaging and Image Processing 

 FP and cell images were acquired by total internal reflection fluorescent (TIRF) 

microscopy, using a Nikon Eclipse Ti base (Nikon Instruments, Inc.), an Evolve EMCCD 

camera (Photometrics) and with either a CFI Apo TIRF 60x oil (1.49NA) objective or a 

CFI Plan Fluor 40x oil (1.30NA) objective (Nikon). Live-cell imaging was performed at 

37°C and 5% CO2. FP-functionalized coverslips were inserted into Attofluor cell 

chambers (Invitrogen). Spontaneously immortalized mouse embryonic fibroblasts 

(MEFs) (Richard Assoian, University of Pennsylvania) or NIH 3T3 cells were trypsinized 

prior to imaging and resuspended in a defined medium that contained 0.5 mg cell-culture 

grade BSA (Inivtrogen), 10 µg/mL insulin (Gibco), 50 ng/mL basic fibroblastic growth 

factor (bFGF) (Invitrogen), 2 µM hydrocortisone (Sigma), 10 µg/mL LPA (Sigma), 1% v/v 

Penicillin Streptomycin, 1% v/v L-Glutamine, and a phenol-red free, low-glucose DMEM 

with no riboflavin (Gibco). Fluorescence images were background subtracted, filtered by 

a Wiener filter to remove shot noise, and band-passed filtered with pass limits reflecting 

typical sizes for adhesions. The wiener algorithm calculates the mean, µ, and variance, 

σ2, around a pixel 

                                                (3.1) 

and 

                                          (3.2) 

where η is the N by M neighborhood around pixel a. The filter is then applied to the pixel 

using the estimate 

                                   (3.3) 
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where ν is the noise variance. In these studies the size of the neighborhood was three 

by three pixels. Using a MATLAB script, the images were thresholded and quantitative 

metrics of adhesions were obtained. The calling sequences for these MATLAB scripts 

begins with the script FA_main.m which then calls FA_info.m. An algorithm for tracking 

the trajectories of geometric centroids of adhesions, track.m written by John Crocker, 

was used to follow adhesions as they formed or disassembled. The outline of the cell 

was obtained either by thresholding images of fluorescence-labeled cells or by manually 

outlining bright-field images. During cytoskeletal tension agonist or antagonist 

experiments, cells were allowed to spread for 2 hr before imaging. At the start of 

imaging, either 10 mM of Y27632 or 10 µg/mL of LPA dissolved in defined medium was 

added to the live-cell imaging chamber. 

3.3.3 Calibration of Pixel Intensity to Force Per Unit Area 

 To calibrate fluorescence intensity with moles of fluorophore at the glass surface, 

we saturated a glass coverslip functionalized with a silane fluoroalkane 

(Trichloro(1H,1H,2H,2H-perfluorooctyl)silane) by adsorbing 50 mg/mL fluorescently 

labeled BSA for 1 hr, which results in predictable levels of protein and fluorophore on the 

surface (Sigal et al., 1998). Imaging conditions identical to those used for FP imaging 

were then used to calibrate pixel intensities to fluorophores per pixel, giving a direct 

estimate of the number of unfolded FPs within a given pixel. The total force within each 

pixel was estimated by multiplying the number of fluorophores by the F1/2 value of the FP 

used. 

3.3.4 Application of Force Probes to Other Settings 

 To test the ability of FPs to report cellular traction forces on substrates other than 

smooth glass, and cell types beyond MEFs, FPs were conjugated to 
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polydimethylsiloxane (PDMS) surfaces with raised, 1 µm-wide ridges, which induce cells 

to align along their principal direction. PDMS templates containing raised 1 µm wide by 1 

µm tall troughs were cast from a photoresist-patterned silicon wafer, as previously 

described (Tan et al., 2003). These templates were used to cast inverse features of 

raised ridges in a thin layer of PDMS on glass coverslips. Substrates were then plasma-

cleaned in a manner similar to the glass (described above) for two min prior to stamping 

with 3-(Ethoxydimethylsilyl)propylamine (Sigma) followed by rinsing sequentially in 200 

proof ethanol, 190 proof ethanol, and PBS. Conjugation of the FPs proceeded in an 

identical fashion as for glass coverslips. Because TIRF was not possible on these 

substrates, imaging was performed using epifluorescence. FPs revealed polarized 

localization of traction forces of 3T3 fibroblasts aligned and elongated along the ridge 

axis, illustrating the potential for assessing forces across multiple types of culture 

substrates. 

3.3.5 Cell Culture and Transfection 

 NIH 3T3 cells (American Type Culture Collection; ATCC) and MEFs (Rick 

Assoian, University of Pennsylvania) were maintained in low-glucose DMEM with 5% 

fetal bovine serum, and 1% v/v penicillin streptomycin (Invitrogen). Vinculin-mRFP or 

paxillin-mRFP were expressed in MEFs via transient transfection with Lipofectamine 

(Invitrogen) or TransIT-LT1 (Mirus) according the manufacturer’s instructions. 

3.4 Results 

3.4.1 Surface Conjugation of DNA  

 Using the unstructured DNA FP (US), the surface conjugation was confirmed via 

the continuous fluorescence after numerous washes of this linear DNA FP. There was 

no appreciable signal contribution from the other components of the surface chemistry 
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including the monofunctional amino silane 3-(Ethoxydimethylsilyl) propylamine (AS) and 

SM(PEG)2 crosslinker. The potential for the force probes to non-specifically adsorb onto 

the surface was tested via incubating the DNA with plasma-cleaned glass or with the 

standard surface but with poisoning of the SM(PEG)2 crosslinker with 2-

mercaptoethanol. In none of these cases was there an increase of signal over 

background Figure 3.2. In contrast to the linear US sequence, hairpin force probes 

displayed no increased fluorescence above background without the presence of cells 

(data not shown). 

 

Figure 3.2. Signal Contribution of Each Surface Chemistry Moiety. 

Fluorescein fluorescence does not increase above background in the case of 

physioadsorbed linear DNA force probe US-fluorescein to glass (top bar) or with both the 

amino silane and PEG crosslinker (AS-SM(PEG)2 (No DNA)). The fluorescence is strong 

in the case of all of the surface chemistry components added with the linear DNA US 
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probe. When the PEG crosslinker maleimide moiety is poisoned with 2-mercaptoethanol, 

there is no appreciable increase in fluorescence even after incubating with US. 

3.4.2 Live-Cell Imaging  

 We plated mouse embryonic fibroblasts (MEFs) on FP-conjugated glass 

substrates and imaged cell-generated force signals via total internal reflectance 

fluorescence (TIRF) microscopy. Fluorescent signals (values 10- to 25-fold over noise) 

were detected that were consistent with the sizes, shapes, and locations of FAs (Figure 

3.3). Time-lapse imaging revealed that FP fluorescence appeared, shifted, disappeared, 

and reappeared dynamically, reminiscent of adhesion assembly-disassembly dynamics. 

 

Figure 3.3. Image of MEF attached on FP-coated substrate. 

Fluorescent signal from FPs beneath a spread cell (yellow outline) were acquired (left 

panel), then converted to traction maps calculated from the fluorescence level (middle). 

The maps show distributions of forces across the cell consistent with the size, shape, 

and location of FAs. Examination of individual adhesion sites (right) shows a 

heterogeneous distribution of stress within each site (scale bars: 20 µm, left two panels; 

3 µm, right panel. 
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 The fluorescence signal reports the number of unfolded FPs per pixel and 

therefore may be used to infer traction stress (force per unit area). The resulting stress 

maps reveal mean traction levels per adhesion on the order of 1 kPa, consistent with 

previous estimates calculated by assuming that cellular forces were evenly distributed 

across the area of adhesions (Balaban et al., 2001).  These maps also reveal that the 

spatial distribution of traction stresses between, and within, each FA is strikingly 

heterogeneous with stresses peaking as high as on the order of 10 kPa (Figure 3.3 right 

panel). 

 For image processing, the background was subtracted before a Wiener filter was 

applied to remove shot noise. Then a band-pass filter was applied to selectively filter 

objects not conforming to size-characteristics of adhesions. Figure 3.4 gives an overview 

of this image processing as well as a cross-section of intensity values to clearly show 

how the images shown were processed before analysis. 
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Figure 3.4. Image Processing. 

Top row shows work-flow for processing raw images sequentially by removing 

background signal, Wiener filtering as explained in 3.3.2, and then band-pass filtering for 

adhesions. Magenta line shows cross-section used to display how signal intensity was 

altered at each step (bottom graph). Background from unfolded hairpin was not 

significantly above bare glass (approximately 4000 on a 16-bit scale), and the signal 

from FA opening of hairpins reached values 10x above background (approximately 

50,000 on a 16-bit scale) for our usual imaging conditions (CFI Apo TIRF 60X oil 

(1.49NA) objective, 500 msec exposures, and a laser intensity of approximately 190 µW 

at 488 nm wavelength). 
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 To confirm that the signal reported by the fluorescence was due to the specific 

binding of cell integrin rectors to the RGD peptide of the force probe, negative control 

force probes were synthesized which contained the same sequence, PEG crosslinkers, 

and the fluorophore-quencher pair but with no RGD. Cells failed to attach on surfaces 

coated purely with these negative control probes. So, an equimolar mixture of these 

negative control force probes and the peptide sequence CGGRGDS was conjugated to 

the surface. Cells fully spread on these surfaces, but there was no adhesion signal given 

by the negative control force probes (Figure 3.5). 

 

Figure 3.5. Specific RGD-integrin interaction is required for traction force induced 

FP fluorescence. 

A negative control FP was synthesized lacking the RGD peptide. Surfaces coated with 

just this FP failed to support cell adhesion. To allow for cell adhesion to substrate in the 

presence of this FP, RGD was coupled to the surface through a PEG crosslinker and 

mixed with equal molar amounts of the negative control FP. Cells spread readily on 

these surfaces, but no cell-induced fluorescence was observed. Together, these results 

confirmed that the only cell adhesive interaction with the FP is through RGD. 

 Diminished surface density of adhesive integrin ligand decreases the degree of 

spreading and the forces that cells exert on their surroundings (Bhadriraju et al., 2007a; 
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Ingber and Folkman, 1989a; Pirone et al., 2006). To confirm that our system replicates 

this effect we varied the surface concentration of force probes with the adhesive RGD 

peptide. To control the RGD density linearly, we varied the ratio of our normal force 

probes to the amount of force probes without the adhesive peptide or fluorophore but 

with the same thiol moiety for surface attachments. Figure 3.6 shows that as the amount 

of force probe on the surface was diluted by one-third and one-twelve (1 µM and 0.25 

µM compared to the standard 3 µM we used for optimal cell spreading) the cells 

displayed dimmer and smaller adhesions. The total cell force as measured by the force 

probes also decreased with the dilution of the RGD peptide. These data give further 

evidence that the cells spread on these surfaces through the specific interaction 

between integrin receptors and the adhesive peptides on the force probes.  
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Figure 3.6. FP reported forces decreases with diminished surface concentrations 

of RGD peptide. 
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Traction forces reported for cells spread on surfaces conjugated with (a) 3 µM, (b) 1 µM, 

and (c) 0.25 µM of force probes with RGD. As the amount of force probes with RGD is 

decreased the (d) total force measured for cells and number of adhesions (e) decreases 

accordingly. (f) The areas of individual adhesions were not significantly different from 

between 3 µM and 1 µM, but both were larger than the areas of adhesions of cells 

cultured on 0.25 µM FP8 surfaces. (g) The force per adhesion was highest for cells 

cultured on 1 µM concentrations of FP8 and lowest for 0.25 µM concentrations.  (h) 

Histogram of pixel frequency versus force for each concentration shows high force shift 

of 1 µM concentration (p-value reported from Wilcoxn rank sum test). Red lines in box 

plot mark the median, and whiskers show the ±2.7σ range. 

3.4.3 Force Probe Signal Response to Altering Cytoskeletal Tension  

 To confirm that the fluorescence signals reflected traction forces, we examined 

the effects of either suppressing or enhancing cell contractility. Within minutes after the 

addition of Y-27632, an inhibitor of Rho kinase (ROCK)-mediated contraction (Uehata et 

al., 1997), traction signals distributed in large adhesions rapidly decayed to dim, smaller 

punctate signals (Figure 3.7a,b). Conversely, treatment of starved cells with 

lysophosphatidic acid (LPA), a strong receptor-mediated stimulant of Rho-mediated 

contraction, led to a rapid enhancement of the fluorescence signal, organized in growing 

foci again reminiscent of FAs (Figure 3.7b,c). Together, these results suggest that the 

observed fluorescence signals reflect bona fide changes in cellular traction forces. 
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Figure 3.7. Response of Force Probe Signal to Alterations of Cytoskeletal Tension. 

(a,c) Fluorescence (left) and traction map (right) reported by FPs of cells spread before 

(top panels) and after (bottom) addition of either the ROCK inhibitor Y27632 (15 min 

after treatment) (panel a) or LPA (1 hr after treatment), an activator of Rho (panel c) 

(scale bars: 20 µm; left; 5 µm, right. (b, d) Plots of mean stress per adhesion site as a 

function of time for individual cells treated with Y27632 (panel b) or LPA (panel d). 

Individual adhesions (grey lines); individual cells (colored squares and lines); mean of all 

cells (black solid line). 
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3.4.4 Imaging Multiple Force Probe Dyes  

 FPs with different fluorophores (fluorescein, Alexa 546, and Alexa 647) and 

different F1/2 values, ranging from 8.1-19.3 pN, all exhibited similar responses to attached 

cells, demonstrating the potential for imaging multiple colors independently to report a 

range of potential forces (Figure 3.8).  

 

Figure 3.8 FPs conjugated to different dyes are equally functional. 

We have developed three FP-dyes. In addition to the fluorescein FPs shown in the main 

text, we have synthesized fully functional FPs labeled with Alexa 546 demonstrated in 

(a) and Alexa 647 demonstrated in (b). 

 We have designed a series of FPs with a range of F1/2 values. We sought to 

investigate whether altering the F1/2 values changed the signal intensity accordingly. We 
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prepared surfaces with ratios of different force probes both in terms of sequences and 

dyes. One type of surface prepared was conjugated with FP11 with both fluorescein and 

Alexa 647.  Another type of surface was conjugated with FP11-Alexa 647 and FP19-

fluorescein. We predicted that the ratio of the fluorescein signal intensity to the Alexa 

647 signal intensity would be lower in the case of FP11-Alexa 647 paired with FP19-

fluorescein than the case with FP11-Alexa 647 paired with FP11-fluorescein. We found 

this to be the case as shown in Figure 3.9. When considering the ratio of the F1/2 values, 

an increased factor of 1.72 (19 pN/11 pN) would be expected between the brightness 

intensity of red versus green pixels with FP11-Alexa 647 paired with FP11-fluorescein 

compared with the brightness intensity of green versus red pixels with FP11-Alexa 647 

paired with FP19-fluorescein. In our case, the ratios of the fitted linear slopes between 

the red and green signal on FP11-Alexa 647 paired with FP11-fluorescein surfaces 

versus the FP11-Alexa 647 paired with FP19-fluorescein surfaces was 1.91 (0.39719 in 

panel Figure 3.9c divided by 0.20785 in Figure 3.9d). 
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Figure 3.9. Measurement of traction forces using two sequences demonstrates 

that signal intensity is higher for sequences with lower F1/2 values. 



 57 

(a) Schematic (left) and image (right) of surfaces were conjugated with equal amounts of 

two FPs: one sequence with an F1/2 value of ~11 pN (FP11) labeled with Alexa 647 and 

another with ~19 pN (FP19) labeled with fluorescein. Images show co-localized 

adhesion-like traction stress signals in two separate fluorescent channels. The two 

channels reported different intensity values that result in part from differences in 

fluorophore and wavelength-dependent optics. (b) To control for these differences, 

signals were obtained for substrates conjugated with FP11-fluorescein and FP11-Alexa 

647 in equal molar amounts. This setup also yielded adhesion-like traction stress signals 

in two separate fluorescent channels. (c-d) Plot of the intensity of the two colors for each 

pixel for FP11 Alexa 647 versus FP11 fluorescein (c) and FP11 Alexa 647 versus FP19 

fluorescein (d). These pixel values changed linearly with the unfolding strengths of FPs 

(fits from Theil-Senn Estimator, which plot linear models based on the median slope to 

minimize the effects of outliers). 

3.4.5 Localization of Force Probe Signal in Relation to FA Proteins  

Because FPs are single fluorescent molecules, the resolution of traction force 

measurements is dictated by photon capture efficiency and microscope optics, which 

can be diffraction-limited. FPs therefore offer a significant improvement in spatial 

resolution compared to traditional traction force methods, which typically report forces on 

a scale of several µm (Sabass et al., 2008). In contrast, the system described here 

computes traction forces from the average fluorescence signal per pixel at a spatial 

resolution governed by the magnification and the camera (in this work, 200 x 200 nm 

image pixels).  
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We transfected MEFs with an expression vector encoding recombinant vinculin, 

a scaffolding protein that localizes to FAs, fused to red fluorescent protein. We then 

compared the vinculin distribution to the distribution of traction foci. The locations and 

geometries of the punctate traction foci correlated strongly with those of FAs (Figure 

3.10). Upon closer examination, however, these two signals were not coincident, as the 

FP foci were consistently slightly more distal from the cell center than those of vinculin. 

Measuring the centroids of the two signals confirmed that the centers of adhesion, as 

reported by force, were located ~200 nm closer to the cell edge than the centers of the 

corresponding adhesions reported by vinculin localization. This localization of force to 

the distal ends of FAs was confirmed using fluorescent paxillin markers as well as 

different FP variants (Figure 3.11). Interestingly, whereas all foci of force were 

associated with adhesions, some FAs did not produce an associated force signal. To 

explore this phenomenon, we followed the evolution of traction forces and FAs, and 

observed three distinct classes of adhesions. 

 

Figure 3.10. Localizations of traction forces with respect to FA proteins.  

Fluorescence image of FP-coated substrate (cyan) and overlying cell (yellow outline) 

expressing mRFP-vinculin (magenta). High-magnification inset (middle) illustrates the 

high degree of co-localization of FA relative to FP-measured tractions, with tractions 

slightly more distal from the cell center than vinculin. The right panel plots the difference 
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in distance (in µm) of the geometric centroid from the cell edge of the two signals for 

selected adhesions. The skew in the distribution reflects a distal bias for tractions 

relative to adhesions (p-value reported from Wilcoxon signed-rank test of difference 

between distances of centroids of adhesions from the cell edge as reported by FPs and 

mRFP-vinculin). Scale bar is 20 µm (left) and 5 µm (center). 

 

Figure 3.11. Localization of FP-reported stress with different focal adhesion 

proteins. 

Fluorescence of both FPs and transfected cells expressing (a) mRFP-vinculin or (b) 

mApple-paxillin. Images show the localization of FP-measured tractions to focal 

adhesions in both cases. The use of different sequences with different F1/2 values did not 

change this localization. The right panel plots the difference in distance (in µm) of the 

geometric centroid from the cell edge of the two signals for selected adhesions. The 
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skew in the distribution reflects a distal bias for tractions relative to adhesions (p-value 

reported from Wilcoxon signed-rank test of difference between distances of centroids of 

adhesions from the cell edge as reported by FPs and mRFP-vinculin or mApple-paxillin). 

Scale bar is 20 µm (left) and 5 µm (center). 

In one class of adhesions, traction force and vinculin location correlated to a high 

degree throughout the lifetime of the adhesion zone. For these adhesions, force 

increased during adhesion assembly and subsided during its disassembly (Figure 3.12 

a,b). In a second class, force and vinculin co-localized at the initiation of the adhesion, 

but as the adhesion continued to grow and extend towards the center of the cell, force 

remained localized to the distal tip of the elongating adhesion (Figure 3.12 c,d). Finally, 

in a third class of adhesions, no local variation in force was observed, despite vinculin 

clustering (Figure 3.12 e,f). Time-lapse studies highlighted the heterogeneity of stress 

experienced within any given adhesion: some exhibited a single concentrated peak of 

stress, some showed multiple peaks that appeared, disappeared, merged, or split, and 

some showed a plateau in stress, with no concentrated peaks. All together, these 

findings reveal a complex orchestration of cellular forces within FAs. 



 61 

 

Figure 3.12. Temporal Correlation of traction forces with respect to FA proteins. 

(a-f) Representative examples of the three classes of adhesions. Images show a 

sequence over time of the vinculin fluorescence (gray scale) overlaid with the FP-

reported stress map (a, c, e). The edge of the cell is illustrated with a black line. Scale 
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bars are 5 µm. The magenta line indicates the position used for kymographs (b, d, f) 

showing the evolution of the FP (left) and vinculin (right) signals over time. Vertical scale 

bar is 20 min; horizontal bar is 5 µm. 

 Since our DNA force probes offer real-time force measurements, we sought to 

determine whether the dynamics of adhesion assembly as reported by both the force 

probes and canonical adhesion proteins would differ. Grashoff et al. reported that 

diminishing force across vinculin precedes adhesion disassembly (Grashoff et al., 2010). 

We investigated whether force across cellular integrin receptors onto the extra-cellular 

environment as reported by our force probes would be temporally correlated with 

adhesion assembly or disassembly as a time-lag. High-temporal resolution time-course 

images (imaged every ten seconds) were taken with cells transfected with fluorescently 

labeled adhesion proteins including vinculin and paxillin. For each adhesion, the ‘focal 

adhesion size index’ as defined by Grashoff et al. (mean-intensity multiplied by the area 

of the adhesion) was measured in both fluorescent channels, the force probe and the 

fluorescent protein. The time-course was then normalized to the maximum value for 

each channel and plotted after local regression smoothing using weighted linear least 

squares and a first-degree polynomial model. The cross-correlation was then calculated. 

In our studies, these cross-correlation values were found to peak at zero, suggesting 

correlated signals and no systemic lag-times between force and protein deposition for 

either assembling or disassembling adhesions and both vinculin and paxillin (Figure 

3.13). 
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Figure 3.13. Cross-Correlation of Force and Vinculin Dynamics. 
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Examples of focal adhesion size index for (a) assembling and (b) disassembling 

adhesion. (c) Cross-correlation coefficient of adhesions peaks at zero indicating no 

systemic time lag. 

3.4.6 Application of Force Probes to Other Settings 

 PDMS substrates with raised ridges were fabricated and conjugated with FPs in 

a similar manner as with glass with one variation: the silane was stamped onto the 

PDMS ridges directly as opposed to reacting in solution. Reacting the silane with the 

PDMS substrates in solution lead to poor FP functionalization. 3T3 fibroblasts platted on 

the functionalized PDMS substrates aligned along the ridges with a corresponding 

alignment of their adhesions as reported by the force probes. This suggests the utility in 

using these force probes for measuring tractions in physically geometrically complex 

substrates previously unaccommodating to measuring cell forces using other TFM 

methods. 
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Figure 3.14. Application of FPs on substrates with complex topography.  

DIC (a) and thresholded fluorescence (b) images of a polarized fibroblast on substrates 

composed of raised 2 um wide PDMS ridges stamped with FP8. Cell is outlined in yellow 

and ridges are false-colored magenta. Scale bar is 10 µm. (c) Angular histogram of the 

distribution of force-bearing adhesions as reported by FPs with respect to the axis of 

polarization. The mean angle of n=52 adhesions analyzed was 25º (red dashed line). 
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3.5 Discussion 

Surface Conjugation of DNA. Prior to using a monofunctional amino silane, we sought 

functionalize the force probes to glass using (3-mercaptopropyl)trimethoxysilane (MTS). 

MTS is a trifunctional silane which increases reaction time and requires less stringent 

preparation of the glass (Bhushan et al., 2006). Deprotection of the thiol groups on the 

force probes requires a reducing agent, and while TCEP does not risk consuming thiol-

reactive groups or dimerization such as is the case with dithiothreitol (DTT), it can lead 

to reductions of pH of a given buffer (O'Donnell et al., 1997). So, we initially sought to 

avoid deprotection and the need for extensive cleaning of our glass surfaces by vapor 

depositing MTS and reacting the thiol groups of the force probes directly with the MTS 

via a thiol exchange buffer similar to the scheme shown in Figure 3.15 (Rogers et al., 

1999). 

 

Figure 3.15. Thiol Exchange Conjugation of DNA.  

By vapor depositing MTS onto glass and then reacting in a thiol exchange buffer, the 

use of a reducing agent for deprotection of the force probe thiols is obviated, but at the 

cost of a less stable bond. Image reprinted from (Rogers et al., 1999). 
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 These surfaces when imaged displayed high background. Cells plated onto glass 

conjugated using this surface chemistry suffered poor attachment. This was attributable 

to one of two potential limitations of this method. The first was the potentially liable 

disulfide bond between the force probes and the surface. Another problem suspected in 

the early phases of our work was the potential complication of polymerization of the tri-

functional silane MTS. While more reactive, these silanes may generate up to 35 Å thick 

polymerized layers on the surface (Figure 3.16) (E. McGovern and Thompson, 1998). 

Further, these polymerized layers can bury the functional groups and interfere with the 

conformation of molecules bound to the surface (Yee et al., 1991). We speculated that 

the higher background and diminished cellular attachment to these surfaces was due to 

the loss of DNA structure upon adsorption onto these layers. 

 

Figure 3.16. Polymerized Layers of Multifunctional Silane.  

Trifunctional silanes form multi-layered polymerized films. Image reprinted from (E. 

McGovern and Thompson, 1998). 

Force Measurements of Living Cells. Cell-generated traction forces not only transmit 

through adhesions to the surrounding extracellular matrix, but also regulate the 

assembly and signaling of those adhesions (Geiger et al., 2009b; Parsons et al., 2010). 
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While some studies have demonstrated a correlation between the magnitude of the force 

and the size of the FA (Balaban et al., 2001; Fu et al., 2010), others have suggested that 

only smaller adhesions experience high stresses (Beningo and Wang, 2002b). Here, we 

observe the association of forces with FAs, but in distinct ways.  Stricker et al. have 

shown recently a high correlation between size and force only for growing FAs (Stricker 

et al., 2011). The improved co-imaging of force and adhesions presented here confirms 

that relationship, but we find that forces remain tightly associated only with the distal tips 

of extending adhesions. The distinct spatiotemporal fluctuations of forces within 

adhesions revealed here may provide new insights into the internal organization and 

dynamics of these adhesions. For example, such heterogeneities in stress could 

generate highly localized pockets of force-induced integrin activation (Friedland et al., 

2009) or unfolding of focal adhesion proteins (Grashoff et al., 2010), and may play a 

central role in locally modulating adhesion structure and signaling. 

 Diminished surface density of adhesive integrin ligand decreases the degree of 

spreading and the forces that cells exert on their surroundings (Bhadriraju et al., 2007a; 

Ingber and Folkman, 1989a; Pirone et al., 2006). To confirm that our system replicates 

this effect we varied the surface concentration of force probes with the adhesive RGD 

peptide. To control the RGD density linearly, we varied the ratio of our normal force 

probes to the amount of force probes without the adhesive peptide or fluorophore but 

with the same thiol moiety for surface attachments. Figure 3.6 shows that as the amount 

of force probe on the surface was diluted by one-third and one-twelve (1 µM and 0.25 

µM compared to the standard 3 µM we used for optimal cell spreading) the cells 

displayed dimmer and smaller adhesions. The total cell force as measured by the force 

probes also decreased with the dilution of the RGD peptide (Figure 3.6d). These data 

give further evidence that the cells spread on these surfaces through the specific 
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interaction between integrin receptors and the adhesive peptides on the force probes. 

While the global cell response to the diminished adhesive ligand followed expected 

trends, we sought to parse the response of traction forces within individual adhesions to 

further understand the effects of ligand density on cellular adhesion. Cells cultured on 3 

µM, 1 µM, and 0.25 µM concentrations of FP8 formed successively less numbers of 

adhesions at each dilution (covering an approximately fourfold decrease from 3 µM to 

0.25 µM), but the areas of these adhesions were diminished only at the lowest 

concentration (Figure 3.6e,f). Surprisingly, while the adhesions formed by cells on 

surfaces of 0.25 µM concentration FP8 exerted the lowest tensions, the adhesions 

formed by cells on 1 µM concentration FP8 surfaces displayed higher total tension per 

adhesion than the adhesions of cells cultured on 3 µM concentration FP8 surfaces 

(Figure 3.6g,h).  

 As a result of the larger number of adhesions formed in cells cultured on 3 µM 

concentrations of adhesive ligand, the total cell force reached the highest levels between 

the three concentrations. The intermediate decrease in adhesive peptide to 1 µM 

lowered the total cell force and number of adhesions modestly relative to a much more 

completely diminished adhesion formation at 0.25 µM resulting in cells with much less 

numbers of adhesions with less force recorded per adhesion. However, at the 

intermediate concentration of 1 µM of adhesive peptide, while cells did form less 

adhesions and less total cell force, the force per adhesion was actually higher than the 

forces of adhesions formed by cells on 3 µM concentrations of adhesive peptide. 

Perhaps the highest concentration of adhesive peptide is more conducive for mature FA 

formation allowing the total number of adhesions to reach higher quantities, while a 

moderate adhesive ligand density permits fewer adhesions to cross from the nascent to 

mature FA threshold. The greater forces of adhesions in this moderate adhesive ligand 
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density may reach higher levels as the presumably the concentration of available 

actomyosin filament precursor is then dispersed to fewer mature adhesions, thus 

increasing their forces. 

 This study establishes DNA hairpins as versatile molecular reporters to study 

cellular forces. While other methods to measure traction forces using elastic substrates 

have been instrumental in establishing the importance of forces, the higher resolution 

offered by FPs and the ability to attach FPs to arbitrary substrates will further expand our 

understanding of the contribution of cellular forces to cell adhesion and function.  
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4. CHAPTER 4                                                                                                    

Micromolded Synthetic Bioactive Poly(ethylene glycol) 

Scaffolds to Engineer Angiogenesis 

 

4.1 Introduction 

 In this chapter, we overview the design of a micromolded PEG hydrogel system 

to engineer angiogenesis. By incorporating bioactive peptides into these gels, cells were 

able to spread, degrade, and migrate in 3D environments. Using microfabrication 

techniques, we fabricated 3D patterns to control vessel sprouting from chick aortic arch 

explants. We sought to investigate whether altering the diameter of bioactive gel 

channels affected angiogenic sprouting velocity. 

4.1.1 Synthetic Hydrogels to Study 3D Systems  

 Many of the model systems to study cellular physiology to date entail 

investigating cells cultured on flat substrates.  However, cells naturally experience 3D in 

vivo environments, and their behavior and morphology is radically different in 3D, limiting 

the conclusions of 2D techniques (Cukierman et al., 2001).  Tissue morphogenesis is an 

inherently physical process as cells degrade and migrate through matrix before 

assembling into multi-cellular structures both in development (Farge, 2003; Martin et al., 

2009; Rauzi et al., 2008) and during angiogenesis (Kniazeva and Putnam, 2009). 

Synthetic materials offer greater flexibility for designing scaffolds with controlled growth 

factor delivery, as well as cellular environments (Lutolf and Hubbell, 2005). Hydrogels 

based on the FDA approved material PEG, a bio-inert hydrogel with hydration properties 

similar to native tissue, are especially common in the tissue-engineering field.  
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Incorporating the fibronectin fragment RGD peptide or collagenase-sensitive peptide 

linkers can render PEG adhesive and degradable (Elbert and Hubbell, 2001; Hern and 

Hubbell, 1998; West and Hubbell, 1999). Degradable and adhesive PEG based 

materials with and without bound growth factors have been explored for tissue 

regeneration (Gobin and West, 2002; Lutolf and Hubbell, 2003; Lutolf et al., 2003; Mann 

et al., 2001a; Mann et al., 2001c). 

4.1.2 3D Patterning of Hydrogel Scaffolds  

Over the past twenty years, the use of microfabrication technology has allowed 

the study of 2D geometries and their effects on cell function (Weibel et al., 2007).  Now, 

researchers in both basic biology and tissue engineering are exploring techniques to 

pattern in three-dimensions (Lutolf, 2009).  In the context of angiogenesis, microfluidic-

generated layers of collagen gels seeded with endothelial cells, smooth muscle cells, 

and fibroblasts were produced in an effort to mimic the intima, media, and adventitia of a 

vessel wall respectively (Tan and Desai, 2003).  Others have even used 3D printing 

technology in an effort to produce scaffold vasculature prior to implantation (Mironov et 

al., 2003). 

Synthetic, photopolymerizable hydrogels, such as poly(ethylene glycol) diacrylate 

(PEGDA), are an especially useful platform to explore patterning cellular environments. 

One approach is to generate gradients of some bioactive molecule in a gel precursor 

solution prior to polymerizing to align or direct cell migration on the surface (Burdick et 

al., 2004; DeLong et al., 2005; Jeon et al., 2002).  Elastomeric stamps can generate 3D 

topographical structures, known as capillary force lithography, by molding the gel 

precursor prior to polymerization (Khademhosseini et al., 2004).  Finally, other groups 

have used photo-activated chemistries and highly focused lasers to generate patterns in 

synthetic hydrogels (Kloxin et al., 2009). 
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By placing a mask with opaque regions between the light source and the gel 

precursor solution, polymerization can be restricted only to regions of the gel exposed to 

light.  This approach was first used to make defined 3D architectures of PEGDA gels as 

small as 5µm to encapsulate cells or to prevent adsorption of cells and proteins (Liu and 

Bhatia, 2002; Revzin et al., 2001; Suh et al., 2004).  By polymerizing layers of gels in 

defined patterns, cell-sized wells to control cell placement and differentiation have been 

developed (Mapili et al., 2005).  Commercially available liquid crystal display (LCD) 

screens offer an alternative to photomasks with dynamic computer-aided control (Itoga 

et al., 2004a, b). Sequential layering of 2D patterned gels has produced complex liver 

tissue structure analogs (Tsang et al., 2007). Others have utilized 2D photomask 

patterns with variations in light intensity to generate either surface modifications or to 

extend down through the three-dimensional bulk of the gel (Hahn et al., 2005; Hahn et 

al., 2006b). Using this method, groups have patterned specific regions of cell attachment 

sites. First, a bio-inert PEG gel is polymerized, then, an RGD peptide-conjugated PEG-

acrylate moiety is allowed to soak the surface or perfuse into the bulk gel. Upon light-

induced polymerization with the chosen photomask, and subsequent washing of 

unbound molecules, the adhesive peptide is then immobilized in only regions of the gel 

exposed to light. 

 While 2D lithography patterns can be extended through the entire thickness of 

3D constructs, two-photon lithography offers true 3D patterning technology of any 

arbitrary design at cellular scales. By using very high intensity focused beams of light, 

two photons of longer wavelength that arrive virtually at once can excite a fluorophore to 

an energy state normally reached when excited by photons of shorter wavelength. As 

this quantum event is proportional to the square of the laser intensity, only extremely 

focused light is sufficient, giving unparalleled spatial fidelity in fluorescence or light 



 74 

mediated chemistry. Due to the high intensities of laser light needed, excitation events 

are pulsed 10-13 seconds every 10-8 second long interval (Zipfel et al., 2003).  While 

originally used for microscopy, this technique has been expanded to generate 3D 

structures of photopolymerized polymers (Cumpston et al., 1999; Denk et al., 1990).  

West and colleagues have also extended this approach to PEG hydrogels, as well as 

Anseth et al. in conjunction with bio-compatible ‘click’ chemistries (DeForest et al., 2009; 

Hahn et al., 2006a; Lee et al., 2008).   Similar to the generation of patterns using 2D 

lithography, in the two-photon laser scanning lithography method, an inert PEG gel is 

polymerized and then infused with some bioactive moiety. 

4.2 Objectives 

 We desired to synthesize a PEG hydrogel to manipulate and study angiogenesis. 

Specifically we sought to determine how micromolded gel geometries affected 

angiogenic sprouting. As a base material we synthesized PEGDA and PEG 

Diacrylamide (PEGDAAm). We used a Michael-Type addition scheme to react bis-

cysteine MMP-sensitive peptides with PEGDAAm and generate large molecular weight 

step-growth polymers. In a second photopolymerization step, these gel precursors were 

crosslinked with Acrylate-PEG-CGRGDS to generate cell adhesive and MMP-

degradable gels. Using microfabrication approach, we patterned angiogenic sprouting 

from chick aortic arch tissue explants into different width channels. To summarize our 

objectives in this study were: 

 1. Synthesize PEGDAAm and PEGDA peptide conjugated precursors. 

 2. Generate microfabricated 3D patterns to pattern sprouting from aortic arch 

tissue explants. 
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4.3 Materials and Methods 

4.3.1 Synthesis of poly(ethylene glycol) diacrylate (PEGDA) 

 Triethylamine (TEA; 2 molar excess to PEG) and acryloyl chloride (4 molar 

excess to PEG) were reacted with dry poly(ethylene glycol) (PEG; molecular weight 

(MW) 3400 or 6000) in anhydrous dichloromethane (DCM) under argon as described 

previously (Mann et al., 2001b). The scheme is given in Figure 4.1. 

 

Figure 4.1. Detailed synthesis scheme of PEGDA and Acrylate-PEG-CGRGDS.  

PEG (MW 3400) was acrylated and then reacted with CGRGDS via Michael-type 

addition to synthesize the desired adhesive gel precursor. 

4.3.2 Synthesis of poly(ethylene glycol) diacrylamide (PEGDAAm) 

 The reaction scheme for the synthesis of Polyethylene glycol diacrylamide 

(PEGDAAm; MW, 3400) from polyethylene glycol (PEG) was adapted from Elbert et al. 

(Elbert and Hubbell, 2001). Anhydrous triethylamine (TEA, 6 molar excess to PEG, 34.4 

mL, 0.2471 mol) was added to a solution of dry PEG (MW 3400, 140 g, 0.0412 mol) and 

4-dimethylaminopyridine (DMAP, 0.1 molar equivalent to mesyl chloride, .0247 moles, 
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3.0183 g) in anhydrous dichloromethane (DCM, 150 mL) under argon. After mixing for 

10 min, a concentrated solution of mesyl chloride (MsCl, 6 molar excess to PEG, 19.1 

mL, 0.2471 mol) in DCM was added dropwise with rapid stirring. The reaction proceeded 

overnight under argon. PEG dimesylate was purified by filtering the solution through filter 

paper under vacuum, followed by precipitation in diethyl ether (1 L). The product was 

again filtered and dried under vacuum to yield PEG dimesylate. To synthesize PEG 

diamine from PEG dimesylate, the entire PEG dimesylate product was added to 800 mL 

25% aqueous ammonia solution within 2 days of completing the previous reaction. The 

container was closed and sealed tightly with Parafilm, and the reaction proceeded for 4 

days with vigorous stirring at room temperature. The container was then opened to 

atmosphere to allow the ammonia to evaporate over 3 days. To remove remaining 

ammonia, NaOH was used to raise the pH of the solution to 13, and the solution was 

extracted with DCM (1:5 DCM volume to ammonia solution) 3 times. The DCM washes 

were pooled and concentrated under rotary evaporation. The product was then 

precipitated in diethyl ether, filtered, and dried under vacuum. Yields were typically 

~80%, and percent amination was 99% as verified by 1H NMR for the characteristic peak 

(3.1 ppm) of the PEG methylene protons adjacent to the amine end group. To 

synthesize PEG diacrylamide from PEG diamine, anhydrous DCM (75 mL) was added to 

PEG diamine (70 g, .0206 mol) and stirred until the solution became clear. The mixture 

was cooled to 4 ºC on ice. To this cooled solution was added Diisopropylethylamine 

(DIPEA, 2 molar excess to PEG diamine, 5.7 mL, .0412 mol), followed by acryloyl 

chloride (4 molar excess to PEG diamine, 6.5 mL, 0.083 mol) dropwise with rapid 

stirring. The reaction proceeded overnight under argon protected from light and allowed 

to warm to room temperature. Aqueous reaction byproducts were removed by using 

aqueous 2M K2CO3 (2 molar excess to acryloyl chloride, 82.4 mL, 0.164 mol) to phase 
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separate the solution overnight. The lower organic phase was dried over MgSO4 to 

remove residual aqueous solution, filtered, precipitated in diethyl ether and dried under 

vacuum to yield PEG diacrylamide. Yields were typically ~70%, and percent amidation 

was >90% as verified by 1H NMR for the characteristic peaks (5.6, 6.1, and 6.3 ppm) of 

the vinyl protons on the acrylamide end groups. This scheme is given in Figure 4.2a. 

4.3.3 Synthesis of MMP-sensitive PEGDAAm-peptide hydrogels 

 To make degradable photoactive hydrogel precursors, PEGDAAm was reacted in 

1.6 molar excess with the collagenase-sensitive peptide CGPQGIWGQGCR (Aapptec, 

Louisville, KY; 95% pure by HPLC) by dissolution in sodium borate (100 mM, pH 9.0). 

The reaction was sterile filtered (0.22 µm PVDF membrane, Millipore, Billerica, MA), 

protected from light, and incubated at 37 ºC to yield macromers of the type acrylamide–

PEG–(peptide–PEG)n–acrylamide. Reaction products were dialyzed, frozen and 

lyophilized, and stored at −80 °C until use. This scheme and a schematic of the hydrogel 

mesh is shown in Figure 4.2b,c. MMP-sensitive PEGDAAm-based hydrogels were 

created by photopolymerization of aqueous solutions of PEGDAAm (10 wt%) and 

Acrylate-PEG-CGRGDS (10 mM) with 0.1% (w/v) Irgacure 2959 photoinitiator (I-2959, 

Ciba) at 100 mW/cm2 (320 – 520 nm, 60 sec, EXFO).  
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Figure 4.2. Synthesis scheme of MMP-degradable PEGDAAm gel precursor and 

gel architecture.  

Detailed synthesis scheme of PEGDAAm (a) and the MMP-degradable gel precursor (b). 

(c) Schematic of hydrogel mesh network resulting from photopolymerization of MMP-

sensitive PEGDAAm from (b) with cell-adhesive peptides conjugated to PEGDA and 

tethered as pendant chains. Image reprinted from (Miller et al., 2010). 
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4.3.4 Isolation of aortic arch tissue explants 

 Chick aortas were isolated from 12-day-old chick embryos (Charles River Labs, 

Preston, CT). Aortic arches were cleaned of excess fibroadipose tissue, sectioned into 

approximately 0.5 mm sized rings, and submerged inside a droplet of hydrogel 

prepolymer solution captured in the micropatterned molds as described in 4.3.5.  

Polymerization was performed for 60 seconds as described above, and culture media 

(EGM-2; 0.75 mL per hydrogel) was changed on day 1 and every 3 days thereafter. 

Hydrogels were photographed daily with oblique lighting phase contrast microscopy to 

optically exclude 2D cell migration on the surface of hydrogels and instead visualize only 

those cells which migrated in 3D within the hydrogels. The length of sprouts was 

measured manually using ImageJ. 

4.3.5 Generation of micropatterned gels to guide aortic arch sprouts 

 PDMS molds were prepared as previously described (Yang et al., 2011). Briefly, 

SU-8 photoresist was spun onto silicon wafers in two layers to generate 100 µm tall 

channels and 800 µm tall central wells. Liquid 1:10 PDMS (ratio reflects curing agent to 

base) precursor was poured over the masters and cured. PDMS molds were sterilized in 

ethanol and UV prior to tissue encapsulation.  

 Prior to tissue encapsulation, the PDMS molds were placed over silane-acrylated 

glass coverslips. A drop gel precursor (MMP-degradable PEGDAAm and Acrylate-PEG-

CGRGDS as decribed in 4.3.3) was placed over the central well in the PDMS mold. The 

PDMS mold with the PEG gel precursor over the central channel was then placed under 

vacuum. After the vacuum was released, the PEG precursor was then pulled into the 

channels. The arch explants were placed over the central channel prior to exposing the 

gel to UV for polymerization (as described in 4.3.3). The mold was then removed leaving 
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the patterned PEG gels with the arch on the coverslip. The gel-encapsulated arches 

were cultured in complete Endothelial Growth Medium-2 (EGM-2, Lonza). 

4.4 Results 

4.4.1 Synthesis of PEGDA and PEGDAAm Precursors 

 PEGDA yields were typically in the range 80-90% (~120 g), and percent 

acrylation was 99% as verified by 1H NMR for the characteristic peak (4.32 ppm) of the 

PEG methylene protons adjacent to the acrylate (Mann et al., 2001b). Yields of PEG-

diamine, a precursor to PEGDAAm, were typically ~80%, and percent amination was 

99% as verified by 1H NMR for the characteristic peak (3.1 ppm) of the PEG methylene 

protons adjacent to the amine end group. PEGDAAm yields were typically ~70%, and 

percent amidation was >90% as verified by 1H NMR for the characteristic peaks (5.6, 

6.1, and 6.3 ppm) of the vinyl protons on the acrylamide end groups (Figure 4.3). 

Protein conjugated gel precursors was confirmed and the MW characterized by gel 

permeation chromatography (GPC) (Miller et al., 2010). 
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Figure 4.3. 1H NMR Spectra of PEGDAAm.  

Characteristic peaks of vinyl protons of acrylamide moiety confirm synthesis of 

PEGDAAm. 

4.4.2 Generation of micropatterned gels to guide aortic arch sprouts 

 Bioactive PEG gels were successfully micromolded in various geometries to 

control angiogenic sprouting from aortic arch explants. Using microfabrication, PDMS 
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molds were bound to silanized coverslips in which the liquid gel precursor was aspirated 

into to form channels of defined widths. We sought to investigate whether channel 

geometries of these bioactive hydrogels determined sprouting velocity. Images of the 

micromolded gels are given in Figure 4.4. Arches were encapsulated at the base of 

defined PEGDAAm channels of various widths. During culture, the gels were imaged to 

measure sprouting lengths. 
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Figure 4.4. Micromolded bioactive PEG gels to pattern angiogenic sprouting. 

 (Left column) Fluorescently labeled bioactive PEGDAAm gels (green) micromolded in 

radiating channels of 200 µm (a) 100 µm (b) and a range of channel diameters form 250 

to 25 µM. (Right column) Aortic arch tissue explants encapsulated in bioactive gels. 

Scale bars 400 µm. 
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 Arches embedded in these gels began sprouting when cultured in EGM-2. 

Angiogenic sprouts emerged from the explants over the course of several days. Sprouts 

in both 100 µm and 200 µm channels reached approximately a millimeter in length by 

day thirteen. However, by day fifteen, sprouts in the 100 µm channels began to reach 

higher sprouting velocity reaching nearly two millimeters by day nineteen (Figure 4.5). 

 

Figure 4.5. Sprouting lengths in different PEGDAAm width channels.  

Angiogenic sprout length over 19 days in culture in 100 µm and 200 µm channels. 

Sprouts in 100 µm channels reached nearly two millimeters by day nineteen compared 

to 1.5 millimeters in 200 µm channels. *p<0.05, **p<0.001, ***p<1e-4 (using Tukey’s 

Test). 
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4.5 Discussion 

 In this section, we present a flexible hydrogel system to generate bioactive 

scaffolds. PEGDAAm step-wise growth polymers are MMP-degradable allowing 

encapsulated tissues to degrade and remodel these scaffolds and attach to pendant 

acrylate-PEG-RGD moieties. Furthermore, we presented a method to micromold 

patterns to study 3D geometry effects on angiogenic sprouting from aortic arch explants. 

This ex vivo assay in this synthetic matrix offers design considerations for tissue 

engineering scaffolds, which must be designed with vascularization in mind. We have 

shown that confining angiogenic sprouts to 100 µm hydrogel channels leads to more 

rapid sprout growth than 200 µm channels.  
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5. CHAPTER 5                                                                                                    

Conclusions and Future Directions 

 

 In this work, we have proposed and developed a DNA-based force probe to 

measure cellular traction forces in real-time. We utilized the higher spatial resolution of 

this method to reveal that forces are located at the distal edges of focal adhesions. As 

an extension, we’ve shown that this method can be expanded to substrate geometries 

previously not amenable to force measurements. Then, we summarized the 

development of a bioactive PEG scaffold micromolded to pattern angiogenic sprouting. 

 While measurements of cellular forces obtained by bead displacements in gels 

and displacements of elastomeric posts have provided a great deal of insights into 

cellular force generation and their role in cellular functions, the work detailed here will 

provide pixel-resolution measurements of forces in real-time. Previous studies have 

coupled elastic worm-like chains and FRET probes to report forces across vinculin and 

EGFR (Grashoff et al., 2010; Stabley et al., 2012). The FPs developed here, by contrast, 

generate a much higher signal-to-noise ratio increase following unfolding, due to the 

substantial change in fluorescence as a function of fluorophore-quencher distance. 

Another recent study reports the tension required to irreversibly separate non-

fluorescent DNA duplexes and detach cells from a surface, without visualizing the spatial 

distribution of force within adhesions (Wang and Ha, 2013). In relating the two studies, it 

is not clear whether the detachment forces reported in this work reflect the peak forces 

we observe in our adhesions, the mean force across adhesions, or an average force 
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over time experienced at a bound ligand.  Thus, we believe both are distinct and likely 

complementary approaches. 

 Further, the understanding of DNA sequences and their impact on folding 

energetics enables the rational design of FPs for sensing force ranges of interest. While 

the investigation of DNA mechanics to date has largely been used to establish 

fundamental models of polymer physics, using these insights to now engineer DNA-

based probes that report molecular forces may give rise to a new class of measurement 

tools. We envision that other (non-peptide) ligands can be coupled to the hairpin and 

used with the current approach, as long as the molecule does not unfold at a lower force 

than the hairpin. 

 In chapter two, we overviewed the development of our DNA force probes. We 

found that several modifications additional to the dye and quencher pair were needed to 

give viable cell attachment and signal. We found however that these modifications did 

not alter the molecular response of these probes to forces as measured previously 

(Woodside et al., 2006b) giving further credence to our contention that this method could 

lead to deliberate design of probes for a range of forces. There are some potential 

issues that other approaches may overcome. For instance, fluorescent-based probes 

are limited by irreversible photobleaching.  Microscopy techniques and oxygen 

scavengers can minimize this problem, but other techniques are beginning to emerge 

such as plasmon coupling between metal nanoparticles, which is limited by the large 

particles needed but free from concerns of photobleaching (Sonnichsen et al., 2005). We 

found that the yield of the syntheses of these probes was in the 100 µg range. If yield or 

efficiency of peptide attachment to the oligonucleotides is an issue, newer chemical 

approaches, including the thiol-ester mediated Native Chemical Ligation (NCL) reaction 

performed for solid state synthesis, offers an alternative route to functionalize the 
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hairpins with the RGD peptide (Takeda et al., 2004). Finally, we only investigated 

constructing force probes with RGD as the integrin ligand. However, there are a range of 

adhesive peptides whose varied behaviors in regulating integrin activation are little 

understood (Staatz et al., 1991). In fact RGD is a relatively weak activator of integrins 

and future force probes including cyclic RGD would likely better activate cell forces as 

well as allowing a means to measure potential changes into the nature of forces 

generated (Kato and Mrksich, 2004). 

 In chapter three we described the methods found to best conjugate our force 

probes to glass surfaces and measure cellular traction forces. We found that the 

monofunctional silane-coupling scheme was the optimal approach to achieve low 

background signal and higher cell attachment. By stamping silane, we found that PDMS 

substrates could be functionalized with our force probes. We utilized this new setting to 

investigate the possible polarity of forces that cells exert when cultured on aligned µm-

sized grooves in the surface. Pervious studies have demonstrated that cells align along 

such topographical cues, but other methods of traction force measurement are not 

amenable to these settings (Meyle et al., 1991). Coupling the FPs to a traditional TFM 

substrate would be highly beneficial towards validating this new approach by comparing 

the forces measured by the FPs with better-characterized measurements. So, we then 

tried to combine the mPAD and FP measurements. However, we found that these 

PDMS surfaces required plasma cleaning to achieve sufficient functionalization. This 

leads to an irreversible glass transition of the PDMS substrate (Ye et al., 2006). While 

we extended this technique to functionalize the PDMS micropost mPAD substrates to 

simultaneously measure cellular force using the FP fluorescence concurrently with post 

deflection, the posts did not show any measurable deflection despite FP fluorescence 

suggesting that the PDMS elastic modulus had irreversibly been altered (Figure 5.1). 
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Figure 5.1. mPAD substrate functionalized with force probes.  

DIC (left) and FP fluorescence (middle) images of a cell spread on mPAD substrates 

functionalized with FPs. The strain map (right) shows negligible displacement indicating 

that plasma treatment of posts led to glass transition of the posts. 

 As an alternative to stamping silanes, we sought a method to stamp proteins 

onto PDMS surfaces cleaned with an ultraviolet ozone (UVO) cleaner. UVO cleaning 

makes PDMS temporarily hydrophilic allowing proteins to be transferred from an inked 

stampe a standard method to constrain cell spreading to desired regions of a substrate 

(Tan et al., 2004; Tan et al., 2001). To achieve an analogous approach to using amino-

silane, we stamped poly-l-lysine (PLL) into patterns and then reacted with the SM(PEG)2 

crosslinker and force probes as described in chapter two. We plated cells onto 250 µm x 

250 µm square patterns of FP, and did observe pattern fidelity in terms of cell 

attachment and fluorescence (Figure 5.2). However, the background relative to the 

signal was high, and we abandoned this approach to patterning the FP onto PDMS. An 

alternative method to achieve the functionality of PDMS stamping with the force probes 
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would be to stamp an avidin protein and then react the FPs to a maleimide-tagged biotin 

for binding to the avidin surface. 

 

Figure 5.2. FP conjugated to stamped PLL patterns on PDMS.  

DIC (left) and FP fluorescence (right) images of cells cultured on PDMS substrates 

stamped with 250 µm square patterns of PLL then reacted with SM(PEG)2 then reacted 

with FP8 fluorescein. 

 By using the intensity of the fluorescence in each pixel, we estimated the number 

of open hairpins to give an approximation of the force. We measured peak tractions up 

to approximately 30 kPa, which is in line with the literature values on gels ranging from 

0.5-10 kPa (Legant et al., 2013; Sabass et al., 2008). These scaled to 1000-5000 nN per 

cell and 10-150 pN per adhesion, and previous studies have found roughly 200-1200 nN 

per cell and 10-30 pN per adhesion (Fu et al., 2010). The discrepancies may be 

attributable to either the uncertainty in either measurement (whether from FPs, bead 
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displacements in gels, or micropost deflections) or the predicted increase in force that 

the cells would exert in our setting given that they are imaged on glass. 

 During live-cell imaging, any cellular medium containing serum completely rid the 

surface of FP fluorescence. Serum contains DNAse, and this is a major limitation to 

using DNA as a force probe. Adding DNAse to surfaces conjugated with FPs led to rapid 

loss of fluorescence and cell detachment. An alternative would be to use synthetic 

peptide nucleic acids as a foundation of the FPs as these are DNAse insensitive. Also, 

the FPs when unfolded lead to a rapid lengthening of the molecular conformation of the 

DNA and a temporary increase in the conformation length of the connection between the 

integrins and the cell surface. Such molecular details between the ECM and integrins 

has recently been shown to be crucial to mechanotransduction (Trappmann et al., 2012). 

Studying these potential complications further will be critical to fully ascertaining the 

effectiveness of FPs to measure cellular tractions neutrally without them in and of 

themselves affecting cell attachment.  

 To correlate the fluorescence intensity with a value of force in a given pixel, we 

estimated the number of fluorescing hairpins in a pixel by linearly interpolating the 

intensity from fluorescent BSA. The utility of using surface-bound molecular beacons to 

measure traction forces would surely be enhanced with a more mechanistic 

understanding of the relationship between force and intensity within a pixel. The hairpins 

under the duress of force would most likely unfold under mechanical load in a stochastic 

fashion similar to the studies by Woodside et al. Within a given pixel, we estimate that on 

the order of 102 hairpins are unfolded from traction forces in response to cellular force. 

Furthermore, while a given pixel intensity in an image may represent the total value of 

stress in the given pixel area, the forces are actually distributed among the many 

hairpins engaged by integrins. We can then imagine then that for some given total cell 



 92 

traction force in a given pixel, this force is then dispersed stochastically among the 

engaged hairpins. We suggest that this total force within a pixel emerges as a probability 

density function of molecular forces that each hairpin experiences. Thus, for a given 

molecular force experienced by a hairpin, there is a corresponding frequency of hairpins 

experiencing this force as dictated by the probability density function. To illustrate this, a 

hypothetical probability density curve is shown in Figure 5.3. 

 

Figure 5.3. Hypothetical probability distribution of molecular forces on hairpins. 

Potential probability distribution of molecular forces on surface bound hairpins in 

response to cellular traction forces. For a given total cell force in a pixel, the hairpins 

experience a probabilistic distribution of forces at each integrin-bound force probe. The 

red region represents hairpins experiencing forces below the F1/2 and thus below the 

detection limit. The blue region represents hairpins experiencing forces above the F1/2 

value, and only these hairpins would contribute to the fluorescent intensity. 
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 To estimate the total force in the pixel, FTotal, we then must account for the 

number of hairpins experiencing each molecular force value F. To calculate the pixel 

force we would then need to integrate the probability density curve as follows 

                                        (5.1) 

where freq is the number of hairpins at a given molecular force F, and the entire force 

spectrum is considered. It is also reasonable to presume that the total force is 

proportional in some way to the fluorescent intensity 

                                                   (5.2) 

where I is the fluorescent intensity of each pixel. However, as represented as the red 

region of the graph in Figure 5.3 the fluorescence of unfolded hairpins does not occur 

until the molecular force on a particular hairpin reaches F1/2. This means that the lower 

levels of molecular force do not directly result in fluorescence. Thus the intensity of 

fluorescence is most likely of the integral form 

                                              (5.3) 

where the integral range only begins at the F1/2 of the hairpin force probe. 

 While the scope of the present studies did not provide an explicit expression for 

the molecular force probability density distribution on particular hairpins for a given pixel 

force, we can suggest some possibilities and then consider the implications. For 

example, it is possible that the probability density function is some form of a Boltzmann 

distribution. Figure 5.4 shows some potential molecular force probability density curves 

and their alteration due to increases in total pixel force if they follow a Boltzmann 

distribution. The bottom panel shows the change in the integral of these curves to 

provide an estimate of change in fluorescence given a change in total force akin to 

Equation 5.3. Particularly of note is that this type of probability distribution would then 
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lead to a non-linear estimate of total force for a given intensity. However, there is a linear 

region of this relation near the origin also annotated on the graph. Since the relationship 

to force and intensity seems to be linear in our case (see Figure 3.9), it is also possible 

that we are measuring cellular traction forces in this linear region. 
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Figure 5.4. Change in fluorescent intensity if hairpins experience molecular forces 

as a Boltzmann distribution. 

Top graph shows the probability distribution of molecular forces experienced by integrin 

–bound hairpins at given total pixel forces. The different colored curves represent how 

these probability distributions of molecular force would shift as the total pixel force 
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increases. Only hairpins experiencing forces above the F1/2 value would contribute to the 

fluorescence. The bottom graph plots the change in fluorescent intensity, found by 

integrating the curves in the top graph from the F1/2 at the lower bound to infinity. The 

global relationship between total force and fluorescent intensity is non-linear, but there 

exists a linear region near the origin. 

 However, another potential case is that of subsets of hairpins that unfold and 

fluoresce at different molecular forces during adhesion maturation. In this arrangement 

perhaps as the adhesion develops, engaged integrins exert higher and higher levels of 

force on their respective bound hairpin probes. We can then propose that as forces in a 

given pixel increase, there are hairpin subsets that experience increasing thresholds of 

force shown in Figure 5.5.In this arrangement the increase in fluorescence in response 

to total force is linear throughout the domain of forces. Future studies should examine 

these relations in detail and mechanistically describe how the force probes unfold 

stochastically in response to cellular traction forces. 
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Figure 5.5. Change in fluorescent intensity if hairpins experience molecular forces 

as a different subsets. 

Top graph shows the probability distribution of molecular forces experienced by integrin 

–bound hairpins at given total pixel forces. The different colored curves represent how 

these probability distributions of molecular force would shift as the total pixel force 
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increases. Only hairpins experiencing forces above the F1/2 value would contribute to the 

fluorescence. The bottom graph plots the change in fluorescent intensity, found by 

integrating the curves in the top graph from the F1/2 at the lower bound to infinity. The 

global relationship between total force and fluorescent intensity is linear. 

  Finally, by transfecting cells with fluorescently labeled proteins, we demonstrated 

that force is localized to the distal edge of focal adhesions. Another recent study has 

used TFM to show that tractions are located at the distal edge of FAs, and that FAs 

transition between stable and fluctuating states which are key for cellular durotaxis 

(Plotnikov et al., 2012). The report of distal forces in this study validates the observations 

reported by our methods, but it is noted that their ‘high resolution traction force 

microscopy’ method (Sabass et al., 2008) provides at best a 1 µm spatial resolution 

when no regularization is used and forces are highly localized.  But no traction strain 

data gives a stable traction stress solution without some regularization, so the resolution 

actually is worse.  Thus, even with distal forces previously reported, we contend that the 

new method offered here provides much higher spatial resolution and that we observed 

additional insights to focal adhesion structure not reported previously. Of note, is that 

while we measured a typical dislocation of the centroids of adhesion from the geometric 

center of traction forces to be ~200 nm, the authors in the 2012 study found a 

displacement of 1 µm. While these differences may be due to the relative strengths and 

weaknesses of the two force measurement methods, another possibility is due to the 

use of soft gels in the cited study (~10 kPA PA gels) compared to glass in our case. 

 In chapter 4, we presented a versatile hydrogel system to study angiogenesis in 

3D environments. These gels are MMP-degradable as they incorporate PEGDAAm 
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monomers grown step-wise with bis-cysteine degradable peptide sequences. These gels 

also include pendant acrylate-PEG-CGRDS moieties to allow for cell adhesion. We used 

microfabrication technology to micromold these gels into defined channel widths to 

confine angiogenic sprouting from chick aortic arch explants. We found that 100 µm 

diameter hydrogel channels led to faster angiogenic sprouting than 200 µm diameter 

sprouting. This informs tissue-engineering strategies to accelerate the vascularization of 

ex vivo scaffolds. 
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