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Universal Memory Architectures for Autonomous Machines

Abstract
We propose a self-organizing memory architecture (UMA) for perceptual experience provably capable of
supporting autonomous learning and goal-directed problem solving in the absence of any prior information
about the agent’s environment. The architecture is simple enough to ensure (1) a quadratic bound (in the
number of available sensors) on space requirements, and (2) a quadratic bound on the time-complexity of the
update-execute cycle. At the same time, it is sufficiently complex to provide the agent with an internal
representation which is (3) minimal among all representations which account for every sensory equivalence
class consistent with the agent’s belief state; (4) capable, in principle, of recovering a topological model of the
problem space; and (5) learnable with arbitrary precision through a random application of the available
actions. These provable properties — both the trainability and the operational efficacy of an effectively trained
memory structure — exploit a duality between weak poc sets — a symbolic (discrete) representation of
subset nesting relations — and non-positively curved cubical complexes, whose rich convexity theory
underlies the planning cycle of the proposed architecture.
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Universal Memory Architectures for Autonomous Machines

Dan P. Guralnik, Daniel E. Koditschek

Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of
Pennsylvania, 200 South 33rd Street, Moore bldg. #203, Philadelphia, PA 19104, United States

Abstract

We propose a self-organizing memory architecture (UMA) for perceptual experience prov-
ably capable of supporting autonomous learning and goal-directed problem solving in the
absence of any prior information about the agent’s environment. The architecture is sim-
ple enough to ensure (1) a quadratic bound (in the number of available sensors) on space
requirements, and (2) a quadratic bound on the time-complexity of the update-execute
cycle. At the same time, it is sufficiently complex to provide the agent with an internal
representation which is (3) minimal among all representations which account for every
sensory equivalence class consistent with the agent’s belief state; (4) capable, in principle,
of recovering a topological model of the problem space; and (5) learnable with arbitrary
precision through a random application of the available actions. These provable proper-
ties — both the trainability and the operational efficacy of an effectively trained memory
structure — exploit a duality between weak poc sets — a symbolic (discrete) represen-
tation of subset nesting relations — and non-positively curved cubical complexes, whose
rich convexity theory underlies the planning cycle of the proposed architecture.

Keywords: general agent, self-organizing memory, universal representation, belief
update, belief revision, non-positively curved cubical complex, weak poc set.

1. Introduction1

1.1. Motivation2

A major obstacle to autonomous systems synthesis is the absence of a capacious but3

efficient memory architecture. In humans, memory influences behaviour over a wide4

range of time scales, leading to the emergence of what seems to be a functional hierarchy5

of sub-systems [80]: from non-declarative vs. declarative through the split of declarative6

memory into semantic and episodic [93]; and on to theories of attention and recall [3].7

This variety of scales is mirrored in the collection of problems addressed by the synthetic8

sciences: from learning dependable actions/motion primitives [57, 86]; through learning9

objects and their affordances [42, 38] to demonstration-driven task execution [84, 13];10

through exploring and mapping an unknown environment (SLAM) [47, 43, 88, 55] and11
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motion planning [75, 69, 24]; and on to general problem solving [61] using artificial general12

intelligence architectures [46, 27, 63].13

One idea stands out as common to all these approaches, beginning with the formal14

notion of a problem space introduced by Newell and Simon [61, 59]: the purpose of15

a memory architecture is to learn the transition structure (however deep) of the state16

space X of the system comprised of the agent and its environment E while processing17

the history of observations into a very general model M which facilitates future control18

even in the face of fairly radical changes in the environment. It is often argued (e.g.19

[14, 81, 53]) that memory architectures for general agents should enjoy a high degree of20

domain- and task-independence. However, clear definitions of notions such as ‘domain’21

and ‘task’ are not readily forthcoming across the vast breadth of literatures discussing22

memory, agents and autonomy. Notions of ‘universal learners’ have been proposed [73]23

based on optimizing gain in estimators of predictive entropy (‘curiosity surfing’), but24

there is also evidence to suggest that the resulting generality may still be insufficient for25

learning and retaining commonly considered highly repetitive tasks such as locomotion26

[51].27

Absent broadly recognized formal foundations, we return to the most literal repre-28

sentation of information to study how perceptual bits might give rise to self-organizing29

internal representations capable of facilitating efficient control.30

We introduce and characterize a very general class of representations supported by31

an architecture provably satisfying intuitive universality properties, including, most cen-32

trally: (1) interactions with the environment are encoded in the most generic, yet min-33

imal, manner possible, while requiring no prior semantic information; and (2) learning34

obtains from direct binary sensory input, automatically developing appropriate contex-35

tual links between sensations of arbitrary modality. A key improvement over state of the36

art architectures is that an UMA provably encodes observation history in a geometry, or37

model space, whose convexity theory allows the agent’s problem solving to take the form38

of reactive motion planning realized through following nearest point projection paths to39

the designated target.40

1.2. Contributions and Challenges41

We consider a generic discrete binary agent (DBA): a machine sensing and interacting42

with its environment in discrete time, equipped with a finite collection Σ of Boolean-43

valued sensors, some of which serve as triggers for actions/behaviors (switched on and44

off at will). Our formalism for a DBA may be viewed as a PSR [48] stripped of all45

probabilistic data. In that, it most resembles a discrete-time, non-deterministic version46

of a diversity automaton [70] allowing for an infinite/continuous environment. However,47

the internal representation developed by the agent differs significantly.48

Given an instance of a DBA interacting with an environment E, it is natural to view49

the set Ξ of perceptual classes of the associated dynamical system X as a subset of50

the power set {0, 1}Σ. It has been proposed [22, 91] that a memory architecture must51

be capable of supporting an internal representation M rich enough to account for the52

diversity [70] of X: Exact problem solving, when construed as abstract motion planning,53

requires an internal representation capable, eventually, of accounting for all the classes in54

Ξ and the transitions between them. Unfortunately, as expressed forcefully in [70] and as55

we review below, the task of obtaining an exact description of Ξ becomes intractable in56

the absence of strong simplifying assumptions about X, as the number of sensors grows.57
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To circumvent this obstacle, rather than imposing any specific structure on X, we58

propose to relax the requirement for precise reconstruction by introducing an approxi-59

mation whose discrepancy from Ξ we characterize exactly and show to be the smallest60

possible given the information recorded by the agent.61

The new memory and control architecture we propose here consists of two layers:62

• A data structure S – called a snapshot – keeping track of the current state and63

summarizing observations in terms of a collection of real-valued registers, of size64

quadratic in the number of sensors, summarizing the history of observations made65

by the agents.66

• A reactive planner, built on a weak poc set structure P ([31, 71] and defn. 3.3) con-67

stituting a record of pairwise implications among the atomic sensations as observed68

by the agent; P is computed from S in each control cycle.69

A crucial property of our architecture is that P and M are formally reconstructible from70

each other. The model space M takes the form of a CAT(0) cubical complex, or cubing1,71

whose 0-skeleton is contained in {0, 1}Σ. As the snapshot S is updated by incoming72

observations, the space M, as encoded by P, is transformed along with it. We can state73

our main contributions – albeit, necessarily, informally at this point – in terms of provable74

properties of the architecture and its model spaces:75

(i) Universality of Representation. M is the minimal model guaranteed to76

represent all the perceptual classes of any sensorium Σ satisfying the record P77

(Section 3.3, Theorem 3.15). In particular, given only the information encoded in78

P, it is impossible to distinguish the 0-skeleton of M from the set of perceptual79

classes, Ξ.80

(ii) Topological Approximation. As a topological space, M is always contractible2.81

Provided a sufficiently rich sensorium, the sub-complex M× ⊂ M of faces all of82

whose vertices lie in Ξ inherits from M the topology3 of the observed space X83

(Section 3.4, Theorem 3.19).84

(iii) Low-complexity, Effective Learning. The proposed architecture requires85

quadratic space (in the number of sensors) for storage, and no more than quadratic86

time for updating. Furthermore, an agent picking actions at random learns an87

approximation of the resulting walk’s limiting distribution on X (see 4.4.1).88

(iv) Efficiency of Planning. Planning the next action given a target sensation takes89

quadratic time in the number of sensors, while eliminating the need for searching90

in the model space. With sufficient parallel processing power, this bound may be91

reduced to a constant multiple of the height — the maximum length of a chain of92

implications — of the record P (see 5.2).93

1For a good introduction CAT(0) cubical complexes, see [96]. For a tutorial on cell complexes see
[33], chapter 0 and appendix.

2The formal notion of being ‘hole-free’ — see [33], chapter 0.
3Up to homotopy equivalence — see definition in [33], chapter 0.
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We note that implementing UMA on a truly parallel neural architecture featuring an94

appropriately modified Drescher “neural crossbar” [23], will reduce maintenance costs95

to O(1) and planning costs to sub-linear in the number of sensors. To the best of our96

knowledge, this combination of provable properties has not previously appeared in the97

literature.98

Caveats. It is crucial to remark here that, at this early stage, the reasoning capa-99

bilities of UMAs are limited by the following factors:100

(a) The computational advantages of UMAs come at a significant cost, driven largely101

by the topological complexity introduced into the problem by the set of essential102

obstacles4, M r M×. The points of this set serve as obstructions to an UMA’s103

reactive planning mechanism which capitalizes mainly on the contractibility of the104

model space (see examples in Section 5.3).105

(b) More generally, the lack of a principled mechanism for formulating strategically106

parsimonious new queries out of the available ones (e.g., through the formation of107

Boolean and LTL predicates) prevents agents from improving the resolution of the108

constructed model.109

Consequently, at present, we only consider a narrow class of ‘toy’ examples in which the110

essential obstacles do not act as obstructions to the agent’s planning mechanism in the111

context of a particular task. Of course, this contradicts the advocated goal of achieving112

generality in a synthetic agent. We discuss directions in our ongoing research meant to113

address this problem in Section 7.114

1.3. Relation to Past Literature115

1.3.1. Learning and Problem Solving as Abstracted Mapping and Navigation116

Our point of departure is a general reduction of any discrete time problem (in the117

sense of Newell and Simon [61]) to a navigation and mapping problem of a point agent118

moving through a homotopically trivial ambient space, the model space M, while avoiding119

a collection of obstacle regions corresponding to forbidden states, M r M×, as stated120

in (i) and (ii) above. Problems of this kind are fundamental to motion planning [75,121

69] and mapping [47, 88, 66]. The ubiquity of obstacles in these settings introduces122

topological considerations whose primacy is well established in the algorithmic literature123

[66, 90, 44, 65, 92, 19], governing the complexity of not only motion planning [25] but124

even set membership [97]. The topological point of view has been shown to be well125

warranted in the discrete setting as well [64, 29, 40], and compatible with current ideas126

regarding localization based on estimating the nerve5 of a system of place fields [17, 55,127

53, 54]. Moreover, the idea of leveraging containment relations among sensor fields —128

the information used for encoding the model M — to represent causal and contextual129

information is a well-recognized tool across literatures, e.g. [66, 81, 57, 56], UMAs simply130

being the first to apply it uniformly and systematically to the agent’s entire sensorium,131

regardless of modality, again see (i) above.132

4As in the classical setting of navigation and planning problems [75, 69], computational complexity
is driven by homotopy invariants of the problem domain [25].

5See nerve of a covering in [33], section 3.3.
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1.3.2. Reinforcement Learning (RL) and Predictive State Representations (PSRs)133

Similarly to the classical mapping and planning settings, the necessity to maintain and134

explore high-dimensional representations of the dynamics of X poses a major challenge for135

all current approaches (e.g. POMDP, SMDP) to RL [6, 7]. Modern ideas on constructing136

more compact representations — e.g. “object-focused” [14] and limited temporal horizon137

[56] — can be traced back to Rivest and Schapire [70], who proposed to replace the138

orthodox approach based on direct exploration of X with an approach based on learning139

the dynamics (e.g. “diversity automaton” structure) induced by the agent’s actions on140

Ξ, as sensed by the agent through a collection of binary ‘tests’.141

This line of thought also germinated the notion of a predictive state representation,142

or PSR [48]. A far-reaching generalization of POMDPs [79], a PSR is a high-order prob-143

abilistic model of the dynamics in Ξ (as opposed to an automaton), and much effort was144

invested in learning linear approximations of PSRs. For example, [8] demonstrates an145

impressive level of generality, with the agent reasoning about motion in a continuous,146

topologically non-trivial environment (an annulus), based only on simulated visual snap-147

shots of the environment, without feature extraction. Still, the savings in representation148

costs obtained in this way, though significant, do not alter the very nature of the represen-149

tation, which, in the general case, still requires a high-dimensional database instantiated150

in memory (which is not the case for UMAs — see contribution iii), with each individual151

task requiring a search (value optimization) through the space of action sequences. This152

is where such representations differ sharply from UMA representations, the latter inte-153

grating planning information directly into the geometry of the model space — see (iv)154

above.155

1.3.3. Cognitive Architectures (CAs)156

On the cognitive AI front, the curse of dimensionality led to a state of affairs where,157

typically, representations with guaranteed tractable performance come at the expense158

of generality, whereas the truly general architectures we know of eschew rigorous per-159

formance guarantees [34, 82], relying instead on functional modeling of problem-solving160

processes in the human brain [1] from a “systems perspective”, as proposed by Newell [58].161

The approaches range from “constructionist” hierarchical [30] architectures (GPS [60],162

SOAR [45], ACT-R [2], LIDA [27]), to “constructivist” architectures6 such as Drescher’s163

“Schema Mechanism” (SM) [23] or Rieger’s [68] frames, aiming to achieve some of the164

functions of a problem-solving CA as emergent properties of a self-organizing network of165

simple, low-level computational components.166

Of the above, Drescher’s architecture SM is closest in spirit and structure to UMAs,167

but stops short of presenting a mathematical toolkit enabling a rigorous discussion of168

the architecture’s capabilities. While currently somewhat ahead of UMAs in terms of its169

capacity for principled introduction of new computational elements (see our caveat (b)170

in Section 1.2 above), SM lacks an efficient navigation mechanism, as its model of the171

agent’s interactions with the environment is, essentially, agglomerative. The fundamental172

building blocks of the two architectures being closely related (UMA is based on estimation173

of reliable implications, while SM is based on estimation of reliable causal descriptions174

6Here we make use of terms Thorisson used in his criticism [87] of the approach to cognitive archi-
tectures prevalent at the time.
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of actions7), it is one of our goals to seek the development of a “common refinement” of175

the two (see discussion in Section 7).176

1.3.4. Belief Update and Revision, Situation Calculus177

An UMA agent may be thought of as reasoning over a set of literals, one for each178

Boolean query from the agent’s sensorium Σ (which is assumed closed under Boolean179

complementation), while continually updating its belief state, represented by (1) a col-180

lection of formulae — the weak poc-set structure P — of the form a→ b, a, b ∈ Σ, and181

by (2) a term over Σ describing the current state of the world. The restricted nature182

of this representation precludes applying the generally accepted updating/revision oper-183

ators [39, 9, 35, 50, 89] to P, motivating our use of snapshots: the latter keep track of184

observation statistics and maintain a flexible Boolean network that encodes a belief state185

of the required form, facilitating internal deliberation based on the encoded belief.186

Thus, the rigidity of belief state representation in UMAs is offset by the computa-187

tional efficiency of the updating mechanism and the planning cycle, — see (iii) and (iv)188

above — exposing a rigorous mathematical connection between low-level connectionist189

computation and high-level symbolic problem solving.190

1.4. Organization of the Paper191

Section 2 formalizes the notion of a DBA, which may be seen as an non-deterministic192

abstraction of a PSR. Section 3 reviews weak poc set structures and the model spaces193

they encode, anticipating some of their basic uses by an UMA agent, including its formal194

properties expressed in contributions (i) and (ii) above. Additional technical details195

regarding weak poc sets are relegated to Appendix 8 for the sake of completeness of196

the exposition. Section 4 addresses contribution (iii), characterizing the properties of197

a family of snapshots sufficient for learning. Section 5 is dedicated to planning and198

control (iv), interpreting their algorithmic expression in terms of the geometry of convex199

sets in the model space. Proofs are relegated to Appendix 9 (that also offers a table of200

mathematical notation). Section 6 discusses the results of a variety of simulation studies.201

Finally, in Section 7 we offer a brief conclusion with a summary of forthcoming work now202

in progress.203

2. Discrete Binary Agents204

In this section we review and extend Sageev-Roller duality in parallel with the devel-205

opment of the notion of a discrete binary agent, or DBA. This overview of the preliminary206

meterial is meant to extend the initial discussion provided in [31] as well as to illustrate it207

with examples, intended as bridges to our current application. In keeping with tradition,208

we will develop a running example illustrating the various formal constructions.209

This work hinges on a duality between poc sets and median algebras, going back to210

[36]. This duality was thoroughly studied by Martin Roller in [71], in a very successful211

attempt at constructing a rich and widely applicable theory of actions of discrete groups212

on simply connected non-positively curved cubical complexes — henceforth referred to213

as cubings — which was pioneered by Michah Sageev in [72]. In the end, an extension of214

7Also known as “production rules” [45] and “contingencies”, see [57].
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this duality theory to weak poc sets will be called upon to provide the necessary formal215

guarantees that the proposed memory and control architectures actually do their job.216

We will mainly rely on [71] as a source of theoretical results, though sometimes it will217

be easier to use results from the elegant exposition in [62].218

2.1. Environment and State219

We place an agent in an environment E. The state space of the system will be denoted220

by X, where we assume there is a map pos : X → E, unknown to the agent, producing221

the location pos(x) of the agent in E, given the state x ∈ X of the system as a whole.222

No further restrictions are placed on E or X. Time T is modeled as the set of integers223

(the subjective time of the agent), with t = 0 corresponding to the initial time.224

Definition 2.1. An element of the (n+1)-fold Cartesian power Xn+1 is an n-transition.225

A map ϕ = (ϕ|t)t∈T from T to X is called a trajectory through X, and gives rise to a226

trajectory dnϕ through Xn+1 via dnϕ|t = ϕ|t−n× · · · ×ϕ|t. 0-transitions are states, and227

to 1-transitions are just transitions. �228

With a mind toward inviting the broadest range of applications, we impose no addi-229

tional requirements on either X or E at this point, much in the spirit of the way situation230

space is introduced in [52].231

2.2. Binary Sensorium232

We seek a language for discussing situated general agents observing their environment233

through binary input streams, or sensors. We start with:234

Definition 2.2. A complemented set is a pair (A, ∗) where A is a non-empty set equipped235

with a self-map a 7→ a∗, satisfying a∗∗ = a and a∗ 6= a, for all a ∈ A. �236

Complemented sets provide the scaffolding for our formal notion of a sensorium, the237

sensory suite provided to an agent.238

Definition 2.3. A binary sensorium (hereafter simply sensorium) is a tuple (Σ, ∗,0, ρ)239

where (Σ, ∗) is a complemented set with a distinguished element 0, and each a ∈ Σ is240

assigned a non-negative integer order na, and a realization ρ(a) ⊆ Xna+1 such that:241

1. n0 = 0 and ρ(0) = ∅;242

2. na∗ = na and ρ(a∗) = ρ(a)c := Xna+1 r ρ(a) for all a ∈ Σ.243

We refer to each a ∈ Σ as a na-sensor. For A ⊆ Σ we also denote A∗ := {a∗ |a ∈ A}244

and, when relevant, ρA :=
⋂
a∈A ρ(a). �245

In other words, sensors are evaluated according to the rule:246

Definition 2.4. Let (Σ, ∗,0, ρ) be a sensorium. For a ∈ Σ, the value 〈a : ϕ〉 ∈ {0, 1} of247

a on a trajectory ϕ at time t ∈ T is defined by 〈a : ϕ〉 |t = 1⇔ dnaϕ|t ∈ ρ(a). �248

Remark 2.5 (Notational conventions for evaluation). To avoid a proliferation of paren-249

theses we will use the bracket notation 〈g : s〉 := g(s) to denote the evaluation of Boolean-250

and scalar-valued functions. We will often abuse notation and write 〈a : x〉 :=
〈
1ρ(a) : x

〉
251

when a ∈ Σ and x ∈ Xna+1. The symbol 1A will denote the indicator function of a set A252

with respect to the appropriate super-set. Also, note how the identity 〈a∗ : x〉 ≡ 1−〈a : x〉253

follows from ρ(a∗) ≡ ρ(a)c; any Boolean function f (on any set) has a “complement” f∗254

defined through 〈f∗ : x〉 = 1− 〈f : x〉.255
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2.3. Binary Observations256

At any time t ≥ 0, a sensorium (Σ, ∗,0, ρ) is assumed to produce an observation:257

Definition 2.6. The unprocessed observation at time t along a trajectory ϕ is the set258

O|t := {a ∈ Σ |〈a : ϕ〉 |t = 1}. �259

More generally, we need the following notions:260

Definition 2.7. Let (Σ, ∗) be a complemented set. A ∗-selection on Σ is a subset O ⊂ Σ261

satisfying O ∩ O∗ = ∅. A ∗-selection O is complete8 if O ∪ O∗ = Σ. In anticipation of262

definition 2.9, the set of all complete ∗-selections on Σ will be denoted S(Σ)0. �263

Clearly, for a sensorium (Σ, ∗,0, ρ), the unprocessed observation O|t is a complete264

∗-selection on Σ. It is time to introduce our running example.265

Example 2.8. Setting E = {0, . . . , L}, L a positive integer, endow an agent with position266

sensors a1, . . . , aL ∈ Σ realized as:267

〈ak : x〉 = 1⇔ pos(x) < k , 〈a∗` : x〉 = 1⇔ pos(x) ≥ ` (1)

Given a trajectory ϕ for the agent with p = pos(ϕ|t) we must then have:268

O|t ∩ {a1, . . . , aL, a∗1, . . . , a∗L} = {ak |k > p} ∪ {a∗k |k ≤ p} (2)

We will keep expanding the sensory endowment of this agent in future examples. �269

It is well-known [62] that the following is a metric (i.e. distance function) on S(Σ)0:270

∆(A,B) = |ArB| = |B rA| = 1
2 |A M B| (3)

Indeed, fixing A0 ∈ S(Σ)0, an explicit isometry of the metric space
(
S(Σ)0,∆

)
onto271

2A0 endowed with the Hamming distance is constructed by sending A ∈ S(Σ)0 to the272

[indicator function of the] set A0 r A. We then see that S(Σ)0 may be thought of as273

the vertex set, or 0-skeleton, of a ( |Σ|2 − 1)-dimensional standard unit cube; the edges of274

this cube, forming its 1-skeleton, are pairs A,B of vertices with ∆(A,B) = 1; the higher275

dimensional faces are given by:276

Definition 2.9. Let S(Σ) denote the cubical complex9 whose vertices are the complete277

∗-selections on Σ and with faces FA defined as follows: for any ∗-selection A on Σ,278

possibly incomplete, FA is the set of all complete ∗-selections which, as subsets of Σ,279

contain A. �280

It is easy to verify that for any 0 ≤ d ≤ |Σ|2 − 1, the d-dimensional faces of S(Σ) are281

in one-to-one correspondence with ∗-selections A ⊂ Σ satisfying 2(|A|+ d) = |Σ|.282

8This is identical to the notion of a term (respectively, a complete term), when Σ is viewed as the
set of literals used to maintain the belief state of the agent, see e.g. [50].

9Please see [41], Chapter 2, for a very quick introduction to polyhedral complexes.
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2.4. Action Model and definition of a DBA283

We model the decisions available to our agents as transition sensors (1-sensors, see284

Def. 2.3). Transitions have outcomes:285

Definition 2.10. Let (Σ, ∗,0, ρ) be a sensorium and let A ⊂ Σ be a set of transition286

sensors. The set of outcomes of A is defined to be outA(x) := {y ∈ X |x× y ∈ ρA } (see287

Def. 2.3). �288

Embedding decisions in the sensorium reflects the viewpoint that (1) an action taken289

at a state x ∈ X may be seen as imposing a time-independent restriction on the set of290

states the system could enter in the following moment, and (2) the agent is capable of291

observing its own decisions as they are being invoked. This leads to the following formal292

and very broad definition of an agent (compare with Sec. 3 of [70]):293

Definition 2.11. A discrete binary agent is a tuple (X,E, pos,Σ, ∗,0, ρ,Σ
act

) such that294

(Σ, ∗,0, ρ) is a sensorium on X and Σact ⊂ Σ satisfies the following requirements:295

(a) Actions are binary. Σ
act
∩Σ∗

act
= ∅, and denote Act := Σ

act
∪Σ∗

act
∪ {0,0∗}.296

Note that Act is itself a sensorium.297

(b) Every action has outcomes. For all x ∈ X and any complete ∗-selection A on298

Act, the set outA(x) is non-empty. �299

In summary, a DBA occupying the state x ∈ X at time t makes an observation O =300

O|t ∈ S(Σ)0, and is then tasked with producing a decision encoded as A|t ∈ S(Act)0.301

The agent’s decision imposes the constraint A|t ⊆ O|t+1 on the next state of the system.302

Remark 2.12. Our model departs from the ubiquitous practice of including possible303

state-dependent restrictions on the executability of actions — see e.g. [24, 83, 35]. Here304

we interpret actions as mere control signals sent by the agent’s ‘mind’ to the agent’s305

‘body’ in an attempt to invoke one or more of a fixed set of available behaviors. The306

signals may be sent — and will therefore appear in the next observation — regardless of307

whether or not they result in producing a meaningful interaction with the environment.10308

The ‘mind’ should be tasked with identifying, over time, whether or not a control signal309

produces meaningful outcomes. �310

Example 2.13. Continuing Example 2.8, provide the agent with the elementary actions
enabling motion from any vertex k ∈ E to the adjacent k + 1 using {fd, bk∗}, and to
k − 1 using {fd∗, bk}; standing still corresponds to {fd∗, bk∗}:

y ∈ fd(x) ⇔ pos(y) = min {L, pos(x) + 1} ∨ (pos(y) = pos(x) ∧ flt(y) = 1)
y ∈ bk(x) ⇔ pos(y) = max {0, pos(x)− 1} ∨ (pos(y) = pos(x) ∧ flt(y) = 1)

where flt(x) ∈ {0, 1} is an auxiliary state variable whose existence is necessitated by the311

requirements of Defn. 2.11(b). In addition to the necessary expansion of X, its function312

10It is easy to imagine more restrictive settings, where engaging in one set of elementary actions might
preclude an agent from engaging in others (in fact, the example we consider is one such natural setting).
While our formalism in this general case will have to be amended, our impression is that at present there
is little to be gained in practice from extending it — see related discussion in Sec. 5.1.
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is to declare a “fault” following any attempt to invoke the action {fd, bk}; note that313

no tangible outcome arises for this action: we did not even provide the agent with a314

sensor reporting the value of flt(x). It is critical to see though, that such synthetic315

augmentations of X are only required in simulated scenarios: for any robotic agent in a316

physical environment, physics mandates (and creates) outcomes in all contexts. �317

3. Overview: Memory Architecture and Model Spaces318

3.1. Perceptual Classes319

Since a sensorium (Σ, ∗,0, ρ) may contain sensors of different orders, we need to320

formalize the notion of a perceptual class with some care. Set N = maxa∈Σ na. Then,321

for any a ∈ Σ consider the set ρ̃(a) :=
{
x× y

∣∣y ∈ ρ(a) , x ∈ XN+1−na
}

. This gives rise322

to a new sensorium (Σ, ∗,0, ρ̃) where (1) all a ∈ Σ have the same order N , and (2) the323

value of a on any trajectory ϕ at any time t coincides with its value as given by the324

original sensorium.325

Definition 3.1. Let (Σ, ∗,0, ρ) be a sensorium and let ρ̃ be as above. The map ρ∗ :326

XN+1 → S(Σ)0 is then defined by x 7→ {a ∈ Σ |x ∈ ρ̃(a)}, and its fibers11 are referred327

to as the perceptual classes of the sensorium (compare with [22]). �328

From the point of view of a DBA, the system is only observable through the map ρ∗,329

and the agent is only able to reason over the perceptual classes in their symbolic form,330

as observations belonging to the image of ρ∗:331

Definition 3.2. Let (Σ, ∗,0, ρ) be a sensorium. We define Ξρ to be the image of ρ∗. �332

3.2. An Approximate Record of Implications: Weak Poc Sets333

Informally, by a “record of implications in Σ” we mean a partial ordering on Σ334

intended to serve as the agent’s belief regarding Boolean implications holding among the335

sensations and their complements. Formally, let us recall a definition from [31]:336

Definition 3.3. A weak poc set is a tuple P = (Σ,≤,0, ∗) where (Σ, ∗) is a comple-337

mented set and (Σ,≤) is a poset with minimum 0 ∈ Σ, with the two structures connected338

by the requirement that a ≤ b⇒ b∗ ≤ a∗ for all a, b ∈ Σ. �339

Remark 3.4 (Notation for Weak Poc Sets). For P as above we will often write a ∈ P340

meaning a ∈ Σ, by abuse of notation. Furthermore, for A ⊆ Σ we will use the notation341

A↑=
⋃
a∈A
{b ∈ Σ |b ≥ a} , A↓=

⋃
a∈A
{b ∈ Σ |b ≤ a} . (4)

Where always A∗ ↑= A↓∗ and A∗ ↓= A↑∗, due to the order-reversal property of ∗.342

We would like our agents to maintain their belief in the form of a weak poc set343

structure P|t over the sensorium (Σ, ∗,0, ρ). As the map ρ is unknown to the agent, we344

intend for the agent to interpret a relation of the form a ≤ b in P|t as 〈a : ϕ〉 |t′ ≤ 〈b : ϕ〉 |t′345

holding for all t′ ∈ T and all trajectories ϕ. Back to our running example:346

11That is, the point-preimages of ρ∗.
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Example 3.5. Continuing example 2.13, it would make sense for our agent to learn the347

relations ak < ak+1 for k ≤ L− 1 (“standing to the left of position k implies standing to348

the left of k+ 1”), as they provide information about the geometric structure of E, seen349

as a discretized interval. The same applies to the relations fd < a∗1 and bk < aL which350

specify the special role of the endpoints 0, L ∈ E with respect to the available actions.�351

Some additional terminology will be useful:352

Definition 3.6. In a weak poc set P, an element a ∈ P is said to be negligible if a ≤ a∗;353

a is proper if neither a nor a∗ are negligible. If 0 is the only negligible element, then P354

is said to be a (true) poc set. �355

Weak poc sets form a category12, with the following notion of map, or morphism:356

Definition 3.7. A function f : P→ Q between two weak poc sets is a poc morphism if357

f(0) = 0 and f(a∗) = f(a)∗, a ≤ b ⇒ f(a) ≤ f(b) are satisfied for all a, b ∈ P. The set358

of all poc morphisms as above will be denoted Hom(P, Q). �359

Example 3.8 (The Minimal Weak Poc Set). The set {0, 1} with the relations 0 < 1 and360

1 = 0∗ is a poc set, and it is denoted by 2. Clearly, there is only one poc morphism of 2361

into any weak poc set P , but then there may be many poc morphisms of a weak poc set362

P onto 2. �363

Example 3.9 (The Orthogonal Poc Set). Any complemented set (Σ, ∗) with distin-364

guished element 0 gives rise to a poc set with minimum 0 and where no two elements in365

Σ r {0,0∗} are comparable. �366

Example 3.10 (σ-Algebras as poc sets). Let B be a σ-algebra on a non-empty (possibly367

infinite) set X. Then (B,⊆, F 7→ X r F ) is a poc set. In particular, the power set of368

X, denoted 2X, obtains the structure of a poc set in this way. It is standard to identify369

2X with the space of functions f : X→ 2: any such f will be identified with the subset370

f−1(1) ∈ 2X. Recalling our notation for the evaluation of functions, the order structure371

on 2X may be written as f ≤ g ⇔ ∀x∈X 〈f : x〉 ≤ 〈g : x〉 ⇔ fg = f . Also, 2X is a true372

poc set, that is: 2X contains no negligible elements save for the zero function 0. �373

Deferring additional examples we briefly turn to an important relationship between374

weak poc sets, true poc sets and the learning goals of DBAs:375

Definition 3.11. Let P be a weak poc set and let X be a non-empty set. A realization376

of P in X is a poc morphism of P into 2X. �377

A realization r : P → 2X provides a consistent way of regarding each a ∈ P as a378

binary query over X, so that the set of all x ∈ X with 〈r(a) : x〉 = 1 is the set of all379

points where the question is answered affirmatively. Thus, given a DBA with sensorium380

(Σ, ∗,0, ρ), one way for the DBA to obtain a useful representation of the unknown sets381

ρ(a), a ∈ Σ, is to make use of the observations O|s, 0 ≤ s ≤ t for evolving a weak382

poc set structure P|t over (Σ, ∗,0) — possibly beginning with P|0 as the orthogonal383

poc set structure13 — such that P|t is as rich as possible and such that the extended384

map ρ̃ of Section 3.1 comes as close as possible to being a realization of P|t in XN+1,385

as t progresses. This is the Learning Objective of an UMA agent, which we further386

substantiate in the next section.387

12See [41], chapter 4, for a quick reference on the elements and basic uses of Category Theory.
13Note that any map of the orthogonal poc set into 2Z is a realization, for any Z
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Figure 1: (left) A simple poc set P over the complemented set Σ = {0,0∗, a, a∗, b, b∗, c, c∗} and the
resulting cube complex Cube(P) (center), obtained by deleting all incoherent vertices from the cube
S(Σ) (right).

3.3. Model Spaces and Universality388

Similarly to the situation in propositional belief updating, we would like a DBA with389

sensorium (Σ, ∗,0, ρ) to reason over the collection S(Σ)0 of all complete ∗-selections on390

Σ. However, instead of a “possible worlds” interpretation, we see S(Σ)0 as enumerating391

the set Ξρ of possible perceptual classes of the system. Clearly, it is to the advantage392

of a DBA with this sensorium to be aware which O ∈ S(Σ)0 are inconsistent (in other393

words, will never be observed). However, distilling an explicit list thereof may require394

prohibitive amounts of storage (exponential in |Σ|), not to mention the computational395

costs. We propose a tractable alternative based on the following construction, due to396

Sageev [72] and Roller [71]:397

Definition 3.12. Let P = (Σ,≤,0, ∗) be a finite poc set. A pair of elements a, b ∈ P398

is said to be incoherent if a ≤ b∗. A subset A of a poc set P is said to be coherent if it399

contains no incoherent pair14. Furthermore:400

(a) The dual15 cubing of P, denoted Cube(P), is the (cubical) sub-complex of S(Σ)401

induced by the set of coherent vertices (see Figure 1);402

(b) The set dual P, denoted P◦, is the vertex set (or 0-skeleton) of Cube(P);403

(c) The dual graph of P , denoted Dual(P), is the union of the vertex and edge sets404

(or 1-skeleton) of Cube(P). �405

Example 3.13. Let us set Σ = {0,0∗, a1, a∗1, . . . , aL, a∗L} with two different poc set406

structures, P and Q, defined by the relations ak < ak+1, 1 ≤ k < L in P and ai < a∗j ,407

1 ≤ i < j ≤ L in Q (and the necessary consequences required by the axioms of a weak408

poc set). These may be regarded as abstractions of two sensoria constructed as follows.409

Let p1 < . . . < pL in [0, 1] be points that are pairwise at least ε apart, ε > 0. Then P may410

be realized by setting 〈ak : x〉 = 1⇔ pos(x) < pk (“threshold sensors”), while Q may be411

realized, for example, by 〈ak : x〉 = 1⇔ dist(pos(x), pk) < ε (“beacon sensors”).412

The vertices of Cube(P) have the form Vk = {0∗} ∪ {a∗j}j>k ∪ {ai}i≥k, 0 ≤ k ≤ L,413

with an edge joining Vk to Vk+1 for all k < L (recall that edges in Cube(P) are edges414

14We have chosen the term coherent subset over Roller’s filter base to better fit the context of our
application.

15Appendix 8.2 discusses the category-theoretical context within which duality should be understood.
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Figure 2: Dual graphs for two arrangements of sensors along the real line (see Example 3.13): ‘threshold’
sensors encoding a path (left), and ‘beacon’ sensors encoding a starfish (right).

of the cube S(P)). The complex Cube(Q) has a different collection of vertices, dictated415

by the fact that all pairs {ai, aj} with i 6= j are incoherent: there is a ‘special’ vertex416

V ′0 = {0∗, a∗1, . . . , a∗L} and a collection of ‘generic’ ones, V ′k = {0∗, ak} ∪ {a∗j}j 6=k; all the417

V ′k, k > 0, are adjacent to V ′0 , and no other pair of vertices are adjacent. Figure 2 shows418

Cube(P) (left), which is an L-path, and Cube(Q) (right), which we will refer to in the419

future as a starfish. Note how, of the two model spaces, Cube(P) seems to provide the420

better discretization of [0, 1]. �421

Definition 3.14. The model space M|t maintained by an UMA agent is derived from422

P|t through M|t := Cube(P|t).423

At any time t, our agents will reach decisions based on the assumption that they are424

navigating in the space M|t. A compelling reason for choosing P|◦t as the vertex set of425

our model is the following simple extension of an observation from [31]:426

Theorem 3.15 (Universality of Representation). Let P be a weak poc set structure on427

the complemented set (Σ, ∗) with minimum element 0. Then P◦ contains Ξρ for any non-428

empty set X and any sensorium (Σ, ∗,0, ρ), provided the map ρ̃ (as defined in Section429

3.1) is a realization of P. Moreover, no proper subset of P◦ has this property.430

The proof is a standard argument from Sageev-Roller duality theory:431

Proof. Pick any point x ∈ XN+1. By definition, ξ = ρ∗(x) lies in P◦ if and only if no432

a, b ∈ ξ satisfy a ≤ b∗ in P. However, if ρ̃ is order-preserving and a ≤ b∗ for a, b ∈ ξ then433

ρ̃(a) ∩ ρ̃(b) = ∅ and x ∈ ρ̃(a) ∩ ρ̃(b) at the same time — contradiction.434

Now, consider the space X = P◦ with ρ : Σ→ 2X given by ρ(a) = {U ∈ P◦ |a ∈ U }.435

It is easily verified that ρ is a poc morphism and that ρ∗ : X → P◦ is the identity map436

(and hence surjective), finishing the proof. �437

Thus, P|◦t is the “least biased” and minimalist choice of structure representing the438

possible perceptual classes given the belief state P|t. The last theorem may also be439

restated as follows: Given P and any realization ρ of P, Cube(P) is the smallest cubical440

sub-complex of S(Σ)0 accounting for all the perceptual classes of the sensorium, no matter441

the particular choice of X or the particular realization ρ. In the case of an embodied442

agent16 this result — in fact, its proof — demonstrates how implications learned in443

16See Ziemke [98] on the role of situatedness and embodiment in the emergence of radical construc-
tivism in AI.
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Figure 3: Model space for a DBA placed in a discrete path and endowed with “GPS” sensors

and a capability for a back and forth stepwise traversal of the path (Example 3.16 with L = 5).

On left: agent does not have fd < bk∗ on record, which gives rise to 3-dimensional cubes. On

right: agent has fd < bk∗ on record.

one environment may serve an UMA agent in another environment satisfying a similar444

collection of rules. To close this section, let us return to our running example:445

Example 3.16. With the sensorium and poc set structure of Example 3.5, what is446

the model space Cube(P)? Since Cube(P) is constructed from S(P) by erasing ver-447

tices, Cube(P) may be obtained by splitting Σ as the union of two subsets, A =448

{0,0∗, fd, fd∗, bk, bk∗} and B = {0,0∗, a1, a∗1, . . . , aL, a∗L}, and executing the following449

steps:450

1. Compute B◦ and A◦ where B and A are viewed as poc sets with respect to the451

ordering inherited from P;452

2. Observe that P◦ ⊆ B◦ ×A◦: any coherent ∗-selection on Σ restricts to a coherent453

∗-selection on either of A,B.454

3. Obtain P◦ by removing the vertices of B◦ × A◦ containing any incoherent pairs455

{p, a} with p ∈ B and a ∈ A.456

From the preceding example we already know that Cube(B) is the L-path, whereas457

Cube(A) is the complete 2-dimensional cube as all the ∗-selections on A are coherent (no458

relations between fd and bk, as these signals may be set arbitrarily). Therefore, Cube(P)459

needs to be “excavated” from a 1 × 1 × L stack of unit cubes. Figure 3(left) shows the460

result.461

Note, however, that a frustrated designer might want to supply the agent with the462

information fd < bk∗ beforehand, since this relation may be regarded less a characteristic463

of the environment and more as one of the “motor suite” provided to the agent. The464

corresponding model space immediately simplifies to the one depicted in Figure 3(right),465

through erasing all the vertices containing the now incoherent pair {fd, bk}. �466

Another illustration of universality is provided by Example 3.18.467

3.4. Model Spaces, Topology and Control468

Given the preceding results, why even consider the rest of the dual structure (the469

vertices and edges of Dual(P) forming the 1-skeleton of Cube(P); the higher-dimensional470

cubical cells of Cube(P))?471
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Figure 4: Realizations (left) in S1 (black, dashed) for the sensors of the two search party members of
Example 3.18. The corresponding punctured models are highlighted in yellow as sub-complexes of the
common model space (right). Note how the subset of S1 realizing the vertex n∗s∗e∗w∗ is empty in one
case and disconnected in the other.

Definition 3.17. Let P be a weak poc set structure on the complemented set (Σ, ∗)472

with minimum element 0 and let (Σ, ∗,0, ρ) be a sensorium. The associated punctured473

model space, denoted Cube×(P, ρ), is the sub-complex of Cube(P) induced by Ξρ, that is:474

a cube C ∈ Cube(P) belongs in Cube×(P, ρ) if and only if all its vertices lie in Ξρ. Faces475

of Cube(P) r Cube(P, ρ) will be referred to as the essential obstacles in this setting. �476

Example 3.18. Consider the poc set P over Σ = {0,0∗, n, n∗, s, s∗, e, e∗, w, w∗} with the477

relations n < s∗ and e < w∗. This may be thought of as representing the “least common478

denominator” among, say, members of a search party, discussing the source direction of a479

radio-locator signal. The state space for their common problem is the unit circle X = S1,480

but their criteria for identifying the four basic directions may differ, for example: suppose481

members A and B in the search party both have ρσ : Σ → 2X, σ ∈ {A,B} specified482

via ρσ(n) = Nσ, ρσ(s) = Sσ etc., as described in Figure 4 (left). Then both ρA and ρB483

are legitimate realizations despite the significant differences between Cube×(P, ρA) and484

Cube×(P, ρB), as shown in Figure 4 (right). We see how Cube(P) provides a model space485

just large enough to accommodate both ‘viewpoints’ (universality), while Cube×(P, ρA)486

is a much better model of a circle (the state space X) than Cube×(P, ρB). �487

Again returning to the notation of Section 3.1 we may apply Theorem 3.1 of [31] to488

our setting verbatim to obtain:489

Theorem 3.19. Let P be a weak poc set structure on the complemented set (Σ, ∗) with490

minimum element 0 and let (Σ, ∗,0, ρ) be a sensorium. Let ∅ 6= Z ⊂ XN+1 be a491

subspace, and let ρ̃Z : Σ → 2Z be defined by ρ̃Z(a) = Z ∩ ρ̃(a). Finally, for each cube492

C ∈ Cube×(P, ρ) let ZC = Z ∩ (ρ∗)−1(C) be the set of points in Z witnessing C.493

Assume now that, for each C ∈ Cube×(P, ρ), ZC has a contractible open neighbour-494

hood NC in Z such that the map from the nerve of the covering {ZC |C ∈ Cube×(P, ρ)}495

to the nerve of the covering {NC |C ∈ Cube×(P, ρ)} induced by ZC 7→ NC is an isomor-496

phism. Then, if ρ̃Z is a realization, Cube×(P, ρ) is homotopy-equivalent to Z. �497

Example 3.18 provides a simple but powerful illustration of this theorem: observe498

how Cube×(P, ρA) replicates the homotopy type of the circle, while Cube×(P, ρB) fails to499

15



do so; at the same time we observe that the set of points witnessing the vertex n∗s∗e∗w∗500

has four connected components and thus fails to be contractible17.501

The implications of the above theorem in our discussion are as follows. Since, in502

general, one cannot expect an agent to be capable of exploring the entirety of XN+1
503

from a given initial condition, pick Z to be the corresponding reachable set; the agent’s504

actions may be seen as providing an approximation to the connectivity structure in Z.505

The theorem then states that, given a sufficiently rich and tame sensorium, if the agent506

manages to learn a correct model P of the implication structure among the sensors then507

knowledge of the essential obstacles allows the recovery of the “topological shape” of Z508

by computing Cube×(P, ρ). Adding to this the fact (see Theorems 3.28,3.29 below) that509

Cube(P) is always contractible, we find that the role of Cube(P) in the agent’s exploration510

of Z is analogous to that of an occupancy grid in SLAM18: a discretized model of the511

state space of the system, where one of the objectives of the robot is to “black out” the512

grid points corresponding to obstacles to identify the space in which it can move freely.513

Obtaining an understanding of the homotopy type of Z is crucial to controlling embodied514

agents, due to tame attractors (one possible representation of a desired task) inheriting515

the homotopy type of their basins of attraction.516

3.5. Interlude: Geometry and Convexity in the Model Spaces517

We will now review the geometry of the dual graphs of weak poc sets. A feature of518

poc set duals — perhaps the feature in our context — is their extremely strong convexity519

theory. This theory was, historically, shown to accommodate only true poc sets. However,520

the authors in [31] have pointed out the need for an extended theory encompassing521

the weaker version of poc sets for the purpose of supporting the learning of poc set522

representations. There, the observation was made that every weak poc set P has a523

canonical quotient map π : a 7→ â onto a true poc set P̂ inducing a canonical isomorphism524

of Cube(P̂) onto Cube(P) (see also Appendix 8.1.2). Thus, all the results of “classical”525

Sageev-Roller duality theory apply equally well to weak poc sets as they do to true poc526

sets, enabling us to state them in the more general context of weak poc sets.527

We briefly recall the graph-theoretic notion of convexity:528

Definition 3.20. Let G = (V,E) be a connected simple graph19 and let u, v ∈ V . The529

hop distance dG(u, v) is defined to be the minimum length of an edge-path in G joining530

u with v. The interval I(u, v) is defined to be the set of all vertices w ∈ V satisfying the531

equality dG(u, v) = dG(u,w) + dG(w, v). �532

Definition 3.21. Let G = (V,E) be a connected simple graph. A set C ⊆ V is said to533

be convex, if I(u, v) ⊆ C holds for all u, v ∈ C. A set H ⊆ V is a half-space of G, if both534

H and Hc = V rH are convex sets in G. Let H(G) denote the poc set whose elements535

are half-spaces of G, ordered by inclusion, and with H∗ = Hc. �536

17Recall that a contractible space is continuously deformable to a point (within itself!), and therefore
must be connected.

18Simultaneous Localization and Mapping
19By a simple graph we mean a graph with no loops and at most one undirected edge joining any pair

of vertices.
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Figure 5: Computing a median in a rectangle G cut out of the integer grid (all vertices of the form
m× n, m,n ∈ Z, with edges joining a vertex m× n to the vertices (m± 1)× n and m× (n± 1)).

We refer the reader to [62], section 4, for the (very elegant and much more general)537

proofs of the following results:538

Lemma 3.22. Let G = Dual(P) for a finite weak poc set P. Then the metric ∆ coincides539

with the hop metric on G. �540

Lemma 3.23. Let P be a weak poc set. Then the half-spaces of Dual(P) are precisely541

the subsets of P◦ of the form20 h(a) := {u ∈ P◦ |a ∈ u}, a ∈ P. In particular, subsets of542

P◦ of the form h(K) := {u ∈ P◦ |K ⊆ u} =
⋂
a∈K h(a) are convex in Dual(P). �543

The above are largely due to Dual(P) being a median graph [12, 94]:544

Definition 3.24. A connected simple graph G = (V,E) is said to be a median graph, if545

the set I(u, v) ∩ I(v, w) ∩ I(u,w) contains exactly one vertex for each u, v, w ∈ V . This546

vertex is the median of the triple (u, v, w) and denoted by med(u, v, w) – see Figure 5.�547

Median graphs are a special subfamily of median algebras, [77, 78, 37, 4]. Some548

modern generalizations and applications may be found in [11].549

A central result in Sageev-Roller duality, specialized here to the finite case, is:550

Theorem 3.25. The dual G = Dual(P ) of a finite poc set P is a finite median graph,551

with the median calculated according to med(u, v, w) = (u∩ v)∪ (u∩w)∪ (v ∩w), for all552

u, v, w ∈ P◦. Conversely, if G is a finite median graph then G is naturally isomorphic553

to Dual(H(G)).554

In fact, much more can be said in general:555

Theorem 3.26 (Properties of median graphs, [71], section 2). Let G = (V,E) be a finite556

median graph. Then:557

1. Every convex set is an intersection of halfspaces;558

2. Any family of pairwise-intersecting convex sets has a common vertex (1-dimensional559

Helly property);560

3. For any convex subset K ⊂ V , the subgraph of G induced by K is a median graph;561

20Note that h(a∗) = P◦ r h(a) for all a ∈ P.
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4. For any convex K ⊂ V and any vertex v /∈ K there exists a unique vertex projKv ∈562

K at minimum hop distance from v.563

5. For any convex K ⊂ V , the closest-point projection projK(•) is a median-preserving,564

distance non-increasing map of G onto the subgraph of G induced by K. �565

To see how all this connects with the higher-dimensional notions of a dual (in partic-566

ular, with our model spaces), we recall a definition from [72]:567

Definition 3.27. A cubing is a simply connected, non-positively curved cubical complex.568

We point the reader to [10] for a detailed account of non-positively curved metric569

spaces. For the purpose of this paper it will suffice to quote a corollary of the well-known570

Cartan-Hadamard theorem ([10], II.4.1):571

Theorem 3.28. Cubings are contractible.572

We owe the following theorem in its full generality (finite and infinite cases) to the573

collective efforts of Michah Sageev [72], Martin Roller [71] and Victor Chepoi [12].574

Theorem 3.29. The following are equivalent for a finite simple graph G:575

1. G is the 1-dimensional skeleton of a cubing;576

2. G is a median graph;577

3. G is isomorphic to Dual(P) for some poc set P;578

4. G is the 1-dimensional skeleton of Cube(P) for some poc set P.579

Summarizing all the above from the point of view of the internal representation of an580

UMA agent we obtain the following: observations O ⊂ Σ (complete or incomplete) that581

are coherent with respect to P|t stand in one-to-one correspondence with convex subsets582

of the model space M|t. This leads us to a clear cut answer to the question of how the583

agent’s belief regarding the current state should be maintained, to be addressed next.584

3.6. Belief Update and Convexity585

It is conceivable that an agent’s belief state approaching time t ∈ T is contradicted586

by the incoming observation O|t. Methods of the Belief Update and Revision literature587

have focused on maintaining the consistency of the belief state while obeying “minimal588

change” constraints, that is: the incoming observation triggers certain transformations589

in the agent’s theory (the collection of formulae kept by the agent as its representation590

of the “possible worlds” it might occupy) so as to obtain a new theory within which this591

observation is possible, but differing as little as possible from the preceding one [9, 50].592

For any DBA, an obvious choice for representing the perceived current state of the593

system at time t ∈ T is the unprocessed observation O|t. In an UMA agent, this ob-594

servation triggers an updating cycle of the algorithm in charge of learning the weak poc595

set presentation (Section 4), which produces P|t. However, with the agent’s internal596

description of the world given away to P|t (through M|t = Cube(P|t)), the problem may597

arise of O|t turning out incoherent. In other words, the current state literally “falls off598

the map”, as O|t /∈M|t.599

The solution of the problem is to admit a relaxed current state representation, denoted600

by S|t := coh(O|t), where the operation coh(•) yields the “best approximation” of O|t by601

a convex subset of M|t, echoing the principle of minimal change as seen through Dalal’s602

way [18] of quantifying the distance between theories:603
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Proposition 3.30 (Coherent Approximation). Let P = (Σ, ∗,min,≤) be a weak poc set.604

For any A ⊆ Σ define coh(A) := A↑ rA∗ ↓= A↑ rA↑∗. For any A ∈ S(Σ)0, if B ∈ P◦605

minimizes the distance of A to P◦, then B ∈ h(coh(A)).606

Proof. See Appendix 9.1. �607

The mapping A 7→ coh(A) enjoys additional properties standardly viewed as desirable608

in the context of belief update:609

Proposition 3.31 (Coherent Projection). Let P = (Σ, ∗,min,≤) be a weak poc set.610

Then the following hold for all A ⊆ Σ:611

(a) coh(A) is coherent and coh(A)↑= coh(A);612

(b) coh(coh(A)) = coh(A);613

(c) A ⊆ coh(A) whenever A is coherent;614

(d) coh(A) = A if and only if A is coherent and A↑= A.615

We will refer to the map A 7→ coh(A) defined on 2Σ as the coherent projection associated616

with P. �617

Note how (a) and (c) turn coh(•) into a closure operator with respect to inference618

(implication). At the same time, (b) and (d) characterize the set of terms that are closed619

under inference.620

Proof. See Appendix 9.2. �621

Thus, an UMA agent naturally resolves possible contradictions at the price of intro-622

ducing uncertainty/ambiguity into its record of the current state: instead of marking a623

single vertex of M|t as the current state, any vertex of the convex set h(S|t) may turn624

out to be the correct current state. We find that this is an intriguingly natural way of625

maintaining an internal model with a built-in degree of resilience to observations that fail626

to make immediate sense to the agent. We will see in the sequel the learning mechanism627

of a snapshot could be engineered so that repeated observations of this kind trigger a628

revision of the model space after which the same unprocessed observation will no longer629

require relaxation to be coherent.630

The complexity of computing the coherent projection (lemma 5.3) and its role in the631

agent’s reasoning processes, its interplay with the convexity theory of the model space632

M|t and its interpretation as the basis for viewing our architecture as a connectionist633

model (albeit a very limited one) of cognition will all be discussed in section 5.2.2.634

4. Snapshot Structures: From Observation Sequences to a Memory Structure635

In [31] we have introduced the rather loose notion of a snapshot, aiming to outline a636

class of database structures for dynamically maintaining weak poc-set structures from a637

sequence of observations. This section provides a rigorous development of this tool.638
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4.1. Snapshots639

Definition 4.1. Denote by KΣ the undirected graph obtained from the complete graph640

over the vertex set Σ by removing all edges of the form aa∗, a ∈ Σ. Edges of KΣ will641

be referred to as proper pairs in Σ. We will abuse notation and write ab ∈ KΣ for the642

edge {a, b} of KΣ. �643

Definition 4.2. A snapshot S over Σ consists of the following:644

(a) Each vertex a ∈ Σ of KΣ is assigned a binary state #aS ∈ {0, 1}. The set645

#S = {a ∈ Σ |#aS = 1} (5)

is called the state of the snapshot S and is required to be a ∗-selection on Σ.646

(b) Each edge ab ∈ KΣ is assigned a weight wab = wab(S) ∈ R≥0
.647

(c) Each edge ab ∈ KΣ is assigned a learning threshold τab = τab(S) ∈ R≥0
satisfying648

τab = τa∗b = τab∗ = τa∗b∗ ≤ 1
4 (6)

For every ab ∈ KΣ, the restriction of S to the subgraph induced by the vertices a, a∗, b649

and b∗ will be denoted by S|ab and referred to as a square in S. �650

An UMA agent maintains snapshots S|t, t ≥ 0, whose role in the control loop, at651

time t, is as follows:652

Step 1. Apply O|t to S|t−1 to obtain new values for wtab := wab(S|t) and τ tab := τab(S|t);653

Step 2. From the new weights, compute the weak poc set structure P|t;654

Step 3. Complete the update by computing #S|t := coh(O|t) from P|t;655

Step 4. Use P|t to reach a decision A|t ∈ S(Act)0;656

Step 5. Invoke the action A|t to generate the observation O|t+1.657

In this work, we will keep the learning thresholds τ tab fixed throughout the lifetime of658

an agent, setting the problem of controlling them aside for future research.659

4.2. Weak Poc Set Structures from Snapshots660

The original purpose [31] for the edge weights wab in a snapshot was to quantify661

the relevance (e.g. frequency) of the event (a and b), allowing one to obtain a graphical662

representation of P|t from KΣ, first by partially orienting the edges of KΣ according to663

the rule of thumb illustrated in Figure 6(a), and then by removing all the unoriented664

edges. The resulting directed graph will then have the following properties:665

Definition 4.3. A poc graph Γ over Σ is a directed graph with vertex set Σ, and edges666

satisfying:667

- For every proper pair a, b ∈ Σ, there is at most one directed edge ab from a to b,668

and at most one directed edge ba from b to a.669
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Figure 6: determining edge orientations in a snapshot to determine (a) implication, and (b) equivalence.

- For any edge ab ∈ Γ one also has b∗a∗ ∈ Γ;670

- For any edge ab ∈ Γ, the edges a∗b, ba∗, b∗a, ab∗ do not lie in Γ. �671

The properties of Γ in this definition allow precisely for encoding a transitive relation672

on Σ by setting a ≤ b iff Γ contains a directed path from a to b.21 The property that a ≤ b673

implies b∗ ≤ a∗ immediately follows from the second requirement. Of the axioms of a674

weak poc set (Definition 3.3) only one remains that is not automatic: the anti-symmetry675

requirement of a partial ordering.676

Lemma 4.4 (derived poc set). The transitive closure of Γ over Σ is a weak poc set677

structure on Σ if and only if, as a directed graph, Γ is acyclic (that is, contains no678

directed cycles).679

Proof. This follows directly the standard fact that the transitive closure of a directed680

graph is a partial ordering if and only if the graph contains no directed cycles. �681

The implication record constructed from an acyclic poc graph cannot recognize pos-682

sible equivalences among sensations — only irreversible implications. At the same time683

it makes perfect sense to interpret a relation of the form wab∗ = wa∗b = 0 in a snapshot684

S as encoding the logical equivalence a ⇔ b, see figure 6(b). This requires restricting685

attention to classes of snapshots which encode (in this way) poc graphs enjoying the686

following property:687

Definition 4.5. A poc graph Γ is weakly acyclic if every proper pair a, b ∈ Σ sharing a688

strong component22 of Γ also satisfies ab, ba ∈ Γ. �689

It is easy to see that contracting all strong components of a weakly acyclic poc graph690

yields an acyclic poc graph on the appropriate quotient of the sensorium. Appendix 9.4691

proves the validity of this extension in the context of our application and discusses its692

impact on computations and model spaces.693

21This relation is known [95] as the transitive closure of Γ.
22Recall [95] that a pair of vertices in a directed graph Γ are said to lie in the same strong component

if and only if there is a directed cycle containing them. The strong components of Γ form a partition of
the vertex set.
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4.3. A Natural Family of Snapshots694

We now define the class of snapshots whose properties we intend to leverage for the695

purpose of learning in UMA agents.696

4.3.1. Probabilistic Snapshots — Definition and Motivation697

Definition 4.6. We say that a snapshot S is probabilistic, if #S is a coherent ∗-selection698

and the edge weights satisfy the following:699

(a) Consistency constraint. If ab, ac ∈ KΣ then wab + wab∗ = wac + wac∗ . This700

allows us to extend the function w• via waa := wab + wab∗ , as this quantity is701

independent of the choice of b ∈ Σ.702

(b) Normalization constraint. If ab ∈ KΣ then wab + wa∗b + wa∗b∗ + wab∗ = 1.703

(c) Orientation constraint. ω(ab) + ω(bc) = ω(ac) for all a, b, c ∈ Σ, where we704

define ω(ab) := wa∗b − wab∗ .705

(d) Measure constraint. δ(ac) ≤ δ(ab) + δ(bc) for all a, b, c ∈ Σ, where we define706

δ(ab) := wa∗b + wab∗ ≥ 0.707

We denote the set of all probabilistic snapshots over Σ by P
Σ

. �708

Remark 4.7. Note the symmetries of ω(•) and of δ(•): one has ω(ab) = −ω(ba) and709

ω(aa) = 0, as well as δ(ab) = δ(ba) ∈ [0, 1], δ(aa) = 0 and δ(aa∗) = 1, emerging from the710

consistency and normalization constraints.711

In 3.2 we informally stated the learning goal for our agents to be that of identifying712

persistent time-independent implications within the sensorium. The formal restatement713

of this goal is as follows. Assume a probability measure µ is defined on the space of trajec-714

tories Xω :=
∏∞
t=0 X, supported in the set of trajectories achievable by the agent (given715

the initial conditions), representing a collection of desirable behaviors. For simplicity716

let us assume that the character of interactions between the agent and the environment717

does not change with time, implying µ is shift-invariant. Let µA,t, A ⊆ Σ denote the718

probability measure on S(Σ)0 obtained from the joint distribution of the random vari-719

ables fa(s) := 〈a : •〉 |s, a ∈ A, restricted to the time t. The shift-invariance of µ implies720

the µA,t are independent of t, allowing us to suppress the time index. Thus, interpreting721

the weights in S|t as approximations wtab ≈ Pr({a, b} ⊂ O|t) is consistent with setting722

the goal for the agent to learn the pairwise marginals µab of the total joint probability723

µΣ. It must be noted that the requirements of Definition 4.6 were originally distilled for724

the sole purpose of characterizing weak acyclicity in derived poc graphs; we are grate-725

ful to Dr. Stephen Howard (DSTO, Melbourne, AU) for pointing out this probabilistic726

interpretation of our approach.727

In addition to serving as direct motivation of the requirements (a) and (b) of a728

probabilistic snapshot, the notion that the weights wtab should derive from a common729

probability function also serves to motivate (c) and (d). Indeed, if wtab were to coincide730

with the probability Pr({a, b} ⊂ O|t) under µΣ for all a, b ∈ Σ, then:731

δ(ab) = Pr(Ea + Eb)
ω(ab) = Pr(Ea r Eb)− Pr(Eb r Ea)

(7)
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Figure 7: Illustrating the identity (ArB) ∪ (B r C) ∪ (C rA) = (B rA) ∪ (C rB) ∪ (Ar C)
underlying the orientation constraint in Definition 4.6(c), as suggested by Equation (7).

where Ea denotes the event a ∈ O|t and the operator + on sets denotes symmetric dif-732

ference. We conclude that (d) holds by the well-known fact23 that d(A,B) := ν(A+B)733

satisfies the triangle inequality for any measure ν. Finally, the orientation constraint be-734

comes an easy consequence of the elementary set-theoretic identity illustrated in Figure 7,735

upon substituting A = Ea, B = Eb and C = Ec.736

In view of the above, it is reasonable to employ the coincidence indicators along a737

trajectory ϕ as building blocks for probabilistic snapshots:738

ctab := 〈a : ϕ〉 |t · 〈b : ϕ〉 |t (8)

Lemma 4.8. Any convex combination of coincidence indicators (for varying values of739

t) satisfies requirements (a)-(d) of a probabilistic snapshot.740

Proof. For each fixed t, the indicators (ctab)a,b∈Σ satisfy the demands (a)-(d), as ctab741

coincides with the probability of the event Ea∩Eb under the atomic probability measure742

concentrated at the point ϕ|t ∈ X. The affine identities (a)-(d) then carry over to any743

combination of the form wab ≡
∑
i qic

ti
ab with

∑
i qi = 1 and qi ≥ 0. �744

4.3.2. Weak Acyclicity of Probabilistic Snapshots745

A fundamental observation regarding probabilistic snapshots is the following746

Proposition 4.9 (Weak Acyclicity Lemma). Suppose S is a probabilistic snapshot over747

Σ and Γ is a poc graph satisfying the requirements:748

1. δ(ab) = 0⇒ ab ∈ Γ;749

2. ab ∈ Γ , δ(ab) > 0⇒ ω(ab) > 0.750

Then Γ is weakly acyclic.751

Proof. See appendix 9.3. �752

This proposition puts the vague notion from figure 6 on how to derive implications753

and equivalences from a snapshot on a firm footing:754

23See [20], Section 3.2.
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Proposition 4.10. Suppose S is a probabilistic snapshot. Construct a poc graph Dir(S)755

by setting ab ∈ Dir(S) if and only if either δ(ab) = 0 or:756

wab∗ < min { τab , wab , wa∗b , wa∗b∗ } (9)

Then Dir(S) is a weakly acyclic poc graph.757

Proof. The symmetries of τ• and w• immediately imply ab ∈ Dir(S) iff b∗a∗ ∈ Dir(S).758

The strict inequality in (9) implies the second condition of a poc graph holds as well. To759

finish the proof we apply the weak acyclicity lemma. �760

Following lemma 4.4 we may now safely define (see also appendix 9.4):761

Definition 4.11. Let S be a probabilistic snapshot. Denote by Poc(S) the quotient762

weak poc set structure obtained by first identifying any pair a, b ∈ Σ having δ(ab) = 0,763

and then setting a ≤ b iff there exists a directed path in Dir(S) from a to b. �764

The fact that Poc(S) is indeed a weak poc set structure follows from lemma 9.3.765

4.4. Examples of Snapshot Structures766

4.4.1. Empirical Snapshots and Random Walks767

The empirical snapshot structure maintains an empirical approximation of the relative768

frequencies of co-incidental occurrences of pairs a, b ∈ Σ:769

wtab :=

t∑
k=0

ckab = wt−1ab + ctab , (10)

with S|t trivial (that is, #S|t = ∅ and wt• ≡ 0) for t < 0. We refer to the snapshots S|t770

as “empirical snapshots” and to the update rule above as the “empirical update”, where771

ctab are the coincidence indicators from (8). DBAs maintaining empirical snapshots are772

“empirical agents”. An immediate corollary of Prop. 4.10 is:773

Proposition 4.12 (empirical implies acyclic). Let S|t be an empirical snapshot. Then774

the graph Γ|t = Dir(S|t) defined by setting ab ∈ Γ iff δ(ab) = 0 or775

wab∗ < min { t · τab , wab , wa∗b , wa∗b∗ } (11)

is a weakly acyclic poc graph, and Poc(S|t) as defined in Defn. 4.11 is a weak poc set776

structure on Σ.777

Proof. Normalizing the weights of S|t yields a snapshot whose edge weights wab

t coincide778

with the sample mean of the coincidence indicator cab. By lemma 4.8, such a snapshot779

is probabilistic. �780

An empirical agent starting out at time t = 0 with a trivial snapshot S|0, has no781

knowledge of its environment; it may therefore be directed to engage in random explo-782

ration, picking one of K decisions A|t ∈ S(Act)0 uniformly at random (or using some783

other weighting reflecting the designer’s knowledge of the motor capabilities of the agent784

such as in Example 3.16) at each time 0 ≤ t ∈ T until actionable information becomes785

available.786
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Formally, suppose the pairing of the agent with the environment satisfies the require-787

ment that any of the allowed decisions α ∈ S(Act)0 induces the structure of a Markov788

chain on S(Σ)0 with transition probabilities789

pα(u→ v) := Pr
(
O|t+1 = v

∣∣∣O|t = u ,A|t = α
)

(12)

independent of the time t. Note that pα(u→ v) = 0 whenever α * v. Averaging over all790

decisions α we obtain a Markov chain with transition probabilities791

p(u→ v) =
1

K

∑
α

pα(u→ v) , (13)

and the problem of guaranteeing “good learning” by the agent becomes that of guarantee-792

ing proper exposure to the environment: by the ergodic theorem for Markov chains [26]793

we have —794

Proposition 4.13. Suppose (13) defines an a-periodic, irreducible, positive-recurrent795

Markov chain with limiting distribution π. Then the empirical snapshot weight wtab con-796

verges to the marginal πab, as defined above in 4.3.1, for all a, b ∈ Σ.797

It follows from the decomposition theorem for Markov chains [26] that the ergodicity798

assumption on (13) in the above proposition does not impose undue restrictions on our799

model, as we only expect an agent to learn implications from recurring observations800

anyway. We also note that the special case when (13) is a (lazy) random walk guarantees801

an exponential rate of convergence to the limiting distribution (see Theorem 5.1 of [49]802

and Theorem 9 of [70]).803

4.4.2. Discounted Snapshots and Decaying Memories804

A notable weakness of empirical agents is their dependence on the entire history of805

the agent’s observations. Faulty decisions regarding the ordering in P|t require an ever806

larger volume of evidence to contradict them as time progresses. Instead, we consider:807

Definition 4.14. (discounted update) Let q ∈ [0, 1] and let S be a probabilistic snapshot808

over Σ. For any complete ∗-selection O on Σ define the q-discounted update of S to be809

the snapshot O ∗q S with weights determined by810

wab(O ∗q S) := qwab(S) + (1− q) 〈1O : a〉 · 〈1O : b〉 (14)

The state of O ∗q S is set to coh(O), the reduction being computed with respect to811

the weak poc set structure derived from the new weights. We refer to q as the decay812

parameter. �813

A significant advantage of the discounted update is its applicability to arbitrary prob-814

abilistic snapshots:815

Lemma 4.15. The q-discounted update of a probabilistic snapshot by a complete ∗-816

selection is probabilistic.817
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Proof. It is clear that the discounted update preserves the property of being probabilistic,818

as a convex combination of probabilistic snapshots is probabilisitic. �819

We consider the length of time (or the amount of evidence) it takes a discounted820

snapshot to acquire an implication, compared to the amount of evidence required for821

giving up an implication already on record, assuming a fixed value of the decay parameter.822

It is easy to see that the shortest time ∆t required for the acquisition of a relation823

a ≤ b corresponds to a sequence of consecutive observations satisfying cab∗ = 0, with824

∆t > logq τab . (15)

Analogously, the shortest period ∆t guaranteeing recovery from a false relation a ≤ b is825

realized by a sequence of ∆t consecutive observations satisfying cab∗ = 1, where, after826

some manipulation one obtains827

∆t ≥ logq(1− τab)− logq(1− wab∗) (16)

Thus, logq(1 − τab) consecutive synchronous observations of a, b∗ will result in recovery828

no matter how long the agent’s record persisted in the error.829

Since τab <
1
4 , the time for recovery from a false relation is significantly shorter than830

the time required for learning it. Pushing the learning threshold below (1 − q) ensures831

recovery by observing a single counter-example!832

As each of the τab may be set independently of the others, one could attempt improv-833

ing the quality/dependability of the model space by altering the flexibility of the learning834

process in a localized manner24. The simulation results in 6.1 emphasize the need for835

this kind of control, showing that a discounted agent is much more susceptible to changes836

in geometry and topology/combinatorics of the sensor fields than an empirical one. We837

conjecture that methods analogous to those of [51] and [14] may apply in this context.838

5. Control with Snapshots839

This section introduces the basic control function of a snapshot. For reasons of840

convenience we will assume all sensors are either of order 0 (state sensors) or of order841

1 (transition sensors)25. Recall that state sensors and transition sensors (our DBA’s842

actions among them, recall Section 2.4) may be viewed as Boolean and situational fluents843

over the situation space X, which is sufficient for setting up a discussion of actions and844

competencies according to [52].845

At the technical level, this section requires a more thorough understanding of the846

convexity theory of cubings. While an overview of the relevant classical results was847

provided in Section 3.5, the new technical results we had to derive in support of our use848

of snapshots for greedy navigation in cubings are covered in appendix 9.5.849

24In fact, one could imagine lowering some thresholds so drastically as to preclude learning in the
corresponding squares, thus providing means for pre-wiring agents, if necessary.

25A reduction to this case is easily achieved by replacing X with the “phase space” X̃ = XN+1 where
N = maxa∈Σ na, in a manner analogous to the standard reformulation of a higher-order ODE in one
dimension as a first order ODE in multiple dimensions.
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5.1. Actions and the Model Spaces850

Recall from definition 2.11 and the discussion preceding it that a DBA’s decision at851

any time t ≥ 0 is a complete ∗-selection A|t on Act = Σact ∪Σ∗
act
∪{0,0∗}, satisfying the852

condition that the actions listed in A|t have common outcomes in X. It is conceivable,853

however, that a specific problem setting places restrictions on the set of decisions: a854

motor cannot apply both a negative and a positive torque to its shaft (the torque values855

must be reconciled prior to feeding input to the motor); a chess player is only allowed to856

pick one move at a time.857

The seeming contradiction between our formalism and reality may be resolved in two858

ways. The first solution is to extend X to accommodate for “failure states” and endow859

the DBA with a mechanism to sense failure modes and reason about them. The second is860

to restrict the DBA to decisions from a prescribed subset of S(Act)0. Although, ideally,861

the first solution is preferable, we do not yet have a principled way of endowing a DBA862

with a mechanism for reasoning about failure and we are reluctant to introduce teachers863

into the discussion at this point. We therefore resort in all examples in this paper to864

the second solution, where some elements of S(Act)0 may have no outcomes, but the865

controller is restricted to producing only decisions with outcomes.866

5.2. Reactive Planning867

5.2.1. Statement of the planning problem868

In this section we consider a DBA at time t > 0, equipped with a snapshot S|t with869

a derived poc graph Γ|t = Dir(S|t) and associated weak poc set P|t. The agent’s tasks870

at hand are:871

(T1) Predict the immediate outcome of any available action A ∈ Cube(Act|t);872

(T2) Given a set T ⊂ Σ of target sensations to be achieved jointly, decide on an action873

A|t ∈ S(Act|t)0 for the agent to invoke in the next transition.874

It is crucial to interpret tasks (T1-2) in terms of the model space M|t = Cube(P|t):875

recalling that the sets h(B) := {V ∈ P|◦t |B ⊆ V } are precisely the convex subsets of the876

1-skeleton of M|t (Theorem 3.26), we observe that (T2) addresses the agent with the877

problem of reaching h(T ) from a (possibly unknown) position in the convex set h(S|t).878

5.2.2. Signal Propagation over a Snapshot879

To use Γ|t in calculations, we “load” it with information about the current state.880

Formally:881

Definition 5.1. Let B ⊂ Σ. Denote by [Γ|t, B] the weighted graph obtained from Γ|t882

by attaching the Boolean weight 〈1B : v〉 to each vertex v ∈ Σ, and refer to it as Γ|t883

being loaded with B. �884

Definition 5.2. A propagation algorithm along Γ|t is any algorithm which, for any885

coherent load B ⊂ Σ and any T ⊆ Σ accepts [Γ|t, B] and T as input and produces as886

its output the loaded graph [Γ|t, R] where a ∈ R if and only if:887

1. there is a directed path in Γ|t from B ∪ T to a, or –888

2. there is no directed path in Γ|t from a into T ∗.889
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Algorithm 1 Snapshot updating procedure, given O|t.
procedure update snapshot(O|t)

Update weights wt−1• to wt• using O|t
Compute the derived graph Γ|t from wt•
S|t ←propagate(Γ|t,∅, O|t)

end procedure

The set R ⊂ Σ is said to be the result of propagating the signal T along [Γ|t, B]. �890

Lemma 5.3 (Implementing the State Update). For any propagation algorithm, propa-891

gating the signal O|t along [Γ|t,∅] produces S|t = coh(O|t), see Algorithm 1. �892

The following result is the key tool for turning a propagation algorithm into a reactive893

planner:894

Lemma 5.4 (Reasoning in Snapshots). Let T ⊂ Σ be any set. For any propagation895

algorithm, propagating the signal T along [Γ|t, S|t] produces the projection in M|t of the896

current state h(S|t) to the reduced target h(coh(T )) ⊂M|t. �897

Both lemmas are corollaries of the geometric interpretation of the planning tasks898

(T1-2) above and of the following new technical result:899

Proposition 5.5. Let S, T ⊂ Σ and suppose S is coherent in P|t. Let L = h(S) and900

K = h(coh(T )). Then:901

projKL = (S ↑ ∪T ↑) r T ↑∗= (S ↑ rT ↑∗) ∪ coh(T ) (17)

where projK(•) denotes the closest point projection to K in the model space M|t and ↑902

denotes forward closure in Γ|t — see eqn. (34).903

Proof. Corollary 9.17 proves this result for weak poc sets. Proposition 9.6 interprets it904

in terms of propagation on weakly acyclic poc graphs. �905

In practice, one can implement propagation using a variant of depth-first search (DFS)906

on Γ|t, while maintaining an expanding record of vertices visited [15] — see Algorithm 2.907

This algorithm clearly has time complexity that is at most quadratic in the number of908

sensors, and we conclude:909

Corollary 5.6 (Quadratic Snapshot Maintenance). Both the time and space complexity910

of updating the snapshot S|t−1 with an observation O|t to form S|t are at most quadratic911

in |Σ|. �912

Implementation on a truly parallel machine, realizing each vertex of Γ|t as an actor913

which responds to propagated signals as they arrive, will bring the complexity of propa-914

gation down to sub-linear in |Σ|, namely to “big O” of the height of P|t. The challenge915

is, of course, implementing in hardware the extreme plasticity of Γ|t, observed as the916

snapshot structure adjusts itself to the observed reality of the agent.917
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Algorithm 2 Propagating a signal T over a loaded poc graph [Γ, B] using depth-first
search.

function propagate(Γ, B, T )
visited← ∅
U ←closure(Γ, T )
return (B ∪ U) r U∗

end function
function closure(Γ, T ) . Forward closure of T in Γ

for all a ∈ T do
explore(Γ, a)

end for
return visited

end function
procedure explore(Γ, v) . Recursive step

visited← visited ∪ {v}
for all w ∈children(Γ, v)rvisited do

explore(Γ, w)
end for

end procedure
function children(Γ, v) . Children of v in Γ

return {w ∈ Σ |vw ∈ Γ}
end function

5.2.3. Evaluating a Decision918

Planning of any kind requires an ability to sense the context of an action. We impart919

this ability to the agent by introducing sensors of the form920

〈α ∧ s : ϕ〉 |t = 〈α : ϕ〉 |t ·#sS|t−1 (18)

where α is an action and s ∈ Σ is any sensor.921

The construction of a judicious process enriching the sensorium with a minimal and922

effective collection of introspective sensors of this kind is set aside for future research26.923

In this paper we have, instead, committed to a sensorium containing an over-abundance924

of such sensors, finally clarifying to some degree the distinction we make between the925

state space X and the environment E.926

• “Position” Sensors. We assume E is given as the union of a collection U927

satisfying (1) U ⊂ E for all U ∈ U , and (2) E r U ∈ U for all U ∈ U , with928

the agent having a state sensor loc[U ] for each U ∈ U defined by 〈loc[U ] : x〉 =929

〈1U : pos(x)〉.930

• Actions. A collection of actions (in the form of 1-sensors) is provided.931

• Contextualized actions. For each U ∈ U and α ∈ Act the agent is given the932

sensors α ∧ loc[U ] and α∗ ∧ loc[U ].933

26Though note that a self-enrichment mechanism similar to the one proposed by Drescher [23] may be
used in the context of empirical snapshots.
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Algorithm 3 Evaluation of an action A by a snapshot-driven DBA.

function halucinate(A)
Signal← ∅
for all α ∈ A do

Signal← Signal ∪ {α ∧ loc[U ] |loc[U ] ∈ S|t }
end for
return propagate(Γ|t, S|t, Signal)

end function

Algorithm 4 Greedy Reactive Planning (GRP) for a snapshot-driven DBA.

function grp(T )
Route←propagate(Γ|t, S|t, T )
Best← arg min

A∈Act|t

∣∣Routerhalucinate(A)
∣∣

return a random element from Best

end function

Under these assumptions, the following result yields a mechanism allowing the agent to934

‘hallucinate’ the broadest consequences of an action for its position in the environment935

within the context of its current model space M|t:936

Corollary 5.7 (Computing the Consequences of an Action). For any decision A|t ∈937

Act|t, the result of applying A|t in the transition from time t to time (t+ 1) is computed938

by Algorithm 3. �939

Thus, propagation provides a provably correct and computationally efficient mecha-940

nism for predicting the immediate outcomes of an action, provided a sensorium of the941

above form and a snapshot faithfully recording the nesting relations among the sensors.942

5.2.4. Algorithm: Greedy Reactive Planning (GRP)943

The ability to compute the immediate consequences of any available action and the944

convexity theory of M|t underlie the greedy algorithm, Algorithm 4, used to decide on945

an action to be taken for the purpose of achieving a long-term goal.946

By lemma 5.4, Algorithm 4 is directly analogous to motion planning in the Euclidean947

plane in the absence of obstacles: the agent selects an action which, to the best of its948

knowledge, best approximates the greedy path towards the closest point of the indicated949

target. The next section will consider difficulties arising in the presence of obstacles in950

the model space. Let us return to our running example one last time:951

Example 5.8. To illustrate the above, we continue example 3.16. Recalling E =
{0, . . . , L} we see that the sensors ak defined in (1) may be rewritten as:

ak = loc[Uk] , Uk = {i ∈ E |0 ≤ i < k } (19)

Thus, for example, adjoining the two sensors fd∧a∗2 and bk∧a4 to Σ implies the relations

fd ∧ a∗2 < a∗3 , bk ∧ a4 < a3 (20)
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whose effect on Cube(P), once they are learned by the agent, is shown in Figure 8 (left).952

Further expanding Σ to include all the sensors

fd ∧ a∗k , k = 1, . . . , L− 1
bk ∧ ak , k = 2, . . . , L

(21)

turns Cube(P) into the complex illustrated in figure 8 (right). The order structure on953

P encodes both large-scale geometry (the agent may use propagation to conclude ”in954

order to reach h(a∗5), I need to to reach h(a∗2)”), and the actions required to negotiate955

this geometry (”I know that fd ∧ a∗1 implies a∗2, and I am currently in h(a∗1)”). �956

Figure 8: Left: model space for an agent on a discrete path, enriched with two contextualized

action sensors of the form (21). Right: the model space arising with almost a full complement of

contextualized action sensors (the full complement would be too cluttered if visualized), is now

sufficiently rich to illustrate the geometry underlying planning by propagation in Example 5.8.

For example, reaching a∗5 from the current state (yellow dot), it is necessary to cross over into

h(a∗2); this can be done by deciding on {fd, bk∗}.

5.3. Some Obstructions to Greedy Reactive Planning.957

The constraints of a particular setting prevent a DBA from ever experiencing the ver-958

tices of S(Σ)0 not corresponding to perceptual classes. Given the internal representation959

of a DBA with sensorium (Σ, ∗,0, ρ) at time t is P|t, the relevant space to consider is960

the punctured model space961

M×|t := Cube×(P|t, ρ) (22)

(see Definition 3.17). In addition to the risk of false implications in P|t influencing the962

agent’s reasoning, it is also possible for M|t to contain obstacles to GRP in the form963

of vertices in M|t r M×|t 6= ∅. In fact, we recall that the presence of such obstacles964

is guaranteed by Theorem 3.19 — at least when the covering U of E by location fields965

satisfies the richness requirements placed on it by that theorem, and E fails to have the966

homotopy type of a point. Let us consider two of examples of this kind.967
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5.3.1. Example: A Punctured Grid968

We compare empirical agents in the square grid GN = {0, . . . , N} × {0, . . . , N},969

as described in Section 6 setting (c) — also see Figure 9 — with agents living in the970

punctured grid G×N , obtained from GN by removing an interior vertex v0. An agent in971

G×N attempting an action which would have resulted in it occupying v0 had it lived in972

GN is assumed to retain its original position. For N sufficiently large, a random-walking973

empirical agent is then guaranteed to learn the same weak poc set structure for either974

environment. This results in the sensory equivalence class of v0 obstructing GRP in975

E = G×N whenever v0 belongs to a shortest path in GN joining the current position to976

the prescribed target.977

5.3.2. Example: Agent on a Circular Rail978

Consider setting (b) of Sec. 6. We specify a target T = {Up} where p ∈ E is979

sufficiently removed from the current position q ∈ E of the agent to accommodate a pair980

Ui, Uj with the property that Ui ∪ Uj separates the set Up from the set Uq. Both the981

current state and the target region then satisfy the constraints loc[Ui]
∗ and loc[Uj ]

∗,982

which implies that any geodesic in the model space joining the current model state with983

the target set passes through h(loc[Ui]
∗, loc[Uj ]

∗), yet it is impossible to guarantee these984

constraints by any of the available actions.985

5.4. Closing the Loop with Excitation-Driven Navigation986

The examples of section 5.3 demonstrate the necessity of sensory enrichment for987

overcoming the obstructions to GRP. In particular, these examples seem to favor the988

introduction of an internal state variable evaluating success (and failure) of invoking a989

planned action. The need for closed-loop control suggests implementing local control990

mechanisms based on internally-defined navigation functions [69].991

In the absence of tools for reactive replanning [67] (our current situation), we have992

chosen to study a simplified notion of target, allowing us to close the control loop with993

a motion command generated with the aim to guarantee an immediate decrease in the994

value of an internal excitation signal.995

The simplest instance of such a controller, applied to the navigation setting, seems996

to be the following. In addition to a sensorium of the form described above in 5.2.3, we997

endow the DBA with a pair of sensors better and worse, responding to the decrease and998

increase, respectively, in a fixed measure of distance to a target point in the environment999

E, over a single transition (think of this as a radically simplified sense of smell). This1000

measure plays the role of a navigation function.1001

Starting out as a ‘lazy’ random-walking agent (the agent may choose not to act at1002

all), the agent applies Algorithm 3 at each step to obtain an action resulting with better1003

as its first priority. In the case of failure to produce such an action, the agent attempts to1004

guarantee worse∗, periodically invoking a random action so as not to get stuck in place1005

(upon having figured out that worse∗ may be brought about by not moving). Section1006

6.2 presents simulation results for agents of this form.1007

6. Simulation Results1008

Proposition 4.13 provides strong performance guarantees for learning done by empir-1009

ical agents. In this section we examine, through numerical simulation, the effect of the1010
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Figure 9: DBAs and environments considered in our simulations (a-d) in Section 6. Agents are

colored yellow, with the available actions indicated by red arrows. Sensor fields are marked blue

and red.

geometry and topology of the environment on (1) the performance of snapshot learning1011

algorithms (empirical and discounted) applied to random walking DBAs, and (2) the1012

performance of the simple excitation-driven agents from section 5.4.1013

Our simulated agents are equipped with a sensorium of the form described in 5.2.3,1014

sometimes with additional sensors. We conduct comparisons between four settings with1015

an equal number (4N) of location sensors:1016

(a) Discrete Path. Here E = {0, . . . , 2N} and U is the collection of sub-intervals1017

of the form Ui = {p ∈ E |p < i}, i = 1, . . . , 2N , and their complements.1018

(b) Discretized Circle. E = {0, . . . , 2N − 1}, with an array of 4N location sensors1019

with activation fields Ui = {i− 1, i, i+ 1} (operations modulo 2N).1020

(c) Square Grid. E = {0, . . . , N}×{0, . . . , N}, with U containing all sets of the form1021

Vi = {p× q |p < i}, Hj = {p× q |q < j }, 1 ≤ i, j ≤ N , and their complements.1022

(d) Discrete Path with Random Sensors. E = {0, . . . , 2N}, with 2N randomly1023

selected location sensors (and their 2N complements).1024

The set of location sensors in Σ will be denoted Λ. The available elementary actions in1025

(a) and (d) are those of advancing (fd) or retreating (bk) a single step along the path,1026

when possible (example 2.13). Analogously in (b), but with a wrap-around modulo 2N ,1027

and in (c) where we provide the agent with the elementary actions up, dn, lt and rt as1028

in section 5.3.1.1029

All the plots in this section are generated for environments with N = 10 (that is,1030

40 location sensors each), and depict averages over 50 distinct runs for each choice of1031
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Figure 10: Logarithmic plots of the mean number of incorrect edges in the derived poc graph of

a random-walking UMA agent in the settings of Section 6 (a-d) with N = 20 (40 sensors each),

see Figure 9, averaged over 50 runs of random walks each. Left: empirical agent with learning

thresholds varying linearly between 1
4

(cyan/light) and 1
203

(blue/dark). Right: discounted agent

for varying values of the decay parameter, q = 1− 1
2k+2 , k from 0 (red/dark) to 9 (yellow/light).

parameters (learning thresholds, decay coefficients, etc.). The agent is provided with an1032

”empty” snapshot27 and occupies a random position in E at the start of each run.1033

6.1. Learning Implications from a Random Walk1034

6.1.1. Learning in Empirical Agents1035

Figure 10 (left) plots the number of incorrect recorded implications among the loca-1036

tion sensors for a random-walking empirical agent as a function of time. More formally,1037

we plot the mean, taken over a number of runs, of the function Err(t) defined as follows:1038

Err(t) :=
∥∥Dir∞ − Dirt

∥∥
1

(23)

where Dirtab ∈ {0, 1} for t ∈ T ∪ {∞} and a, b ∈ Λ are defined as28:1039

Dirtab = 1 ⇔ ab ∈ Γ|t
Dir∞ = 1 ⇔ ρ(a) ⊆ ρ(b)

(24)

We use a logarithmic plot due to the expected exponential convergence of the snapshot1040

weights to the marginals of the limiting distribution — see remarks following Prop. 4.13.1041

The figures seem to suggest a dependency of the upper bound on ”effective” learning1042

thresholds on the geometry/topology of the environment29.1043

27Assuming wt
ab ≡ 0 for an empirical agent and wt

ab ≡
1
4

for a discounted agent, for all t < 0.
28Recall that Dir(S) introduced in Prop. 4.10 is a directed graph. This new notation is intended to

connote a matrix representation of such a graph.
29We refer the reader to the technical report [32] for a more developed discussion of these results.
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Figure 11: Mean deviation from target for empirical (blue) and a discounted (red) agents (40

sensors each), as a function of time in four different settings, averaging over 50 runs.

6.1.2. Learning in Discounted Agents1044

Figure 10 (right) compares the mean error, see(24), for a discounted snapshot learning1045

from a random walk, for a learning threshold of τ = 1
203 and decay parameter q given1046

by q = 1 − 1
2k+2 , 0 ≤ k ≤ 9. Note the dependence of the learning process on q is not1047

monotone: k = 5 seems to work best in terms of minimizing the eventual error; a choice1048

of k = 4 is more reasonable given the observed waiting time until meaningful learning1049

occurs in the structured environments (a)-(c).1050

6.2. Excitation-Driven Agents1051

Figure 11 shows the average distance of an excitation-driven agent (section 5.4) to1052

a randomly chosen target as a function of time. It is important to stress that, by the1053

results of section 5, the guarantee of the agents in figure 11(a)-(c) finding their targets1054

provided sufficient exposure is absolute. To see this, it suffices to verify for the true1055

poc set structure on Σ that any position other than the target has associated with it a1056

location sensor a = loc[U ] and an action α such that every state x with 〈a : x〉 = 1 has1057

α(x) closer to the target than x is.1058

7. Conclusion1059

In this paper we introduce a new efficient architecture intended to endow a generic1060

discrete binary agent with the capacity to build over time an actionable model, M|t,1061

of its operations within a completely unknown and possibly dynamic environment, E.1062

The proposed architecture has a dual nature. On one hand, the agent maintains an1063
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evolving data structure, — the snapshot S|t — of size quadratic in the number of sensors,1064

encoding a planning mechanism based on propagation of excitation and inhibition signals1065

through the highly plastic directed network Dir(S|t), and is, thus, in a very crude sense,1066

a connectionist learning and control architecture. On the other hand, the rather specific1067

ordering properties of networks arising in this way (the weak poc set structure P|t derived1068

from S|t) also characterize any such network as encoding a system of “half-spaces” in1069

a geometric internal model M|t that is just rich enough to account for all perceptual1070

classes derivable from the agent’s sensorium Σ.1071

Recall that the entropy H(P) of a partition P of a probability space equals the1072

greatest lower bound on the expected number of arbitrary binary queries required for1073

determining which block of P contains a random point of the space [76]. Historically,1074

this gave rise to the paradigm of efficient coding: given a partition of a probability1075

space, one should attempt to characterize it by a collection of binary queries yielding1076

performance near the entropy bound. A general agent — a DBA in particular — may1077

be thought of as being faced, among other tasks, with the inverse problem: given a1078

fixed collection of repeatable binary queries (which may or may not include means for1079

active exploration), produce a decent approximation of the true probability distribution1080

over the partition of the observed space into perceptual classes. If the set of available1081

queries — the agent’s sensorium Σ — forms an efficient coding of this partition, then the1082

agent cannot avoid maintaining a database of exponential size in |Σ|, incurring super-1083

exponential computational costs in belief update, reasoning and planning. On the other1084

hand, if the agent’s queries happen to provide a highly redundant coding of the set of1085

perceptual classes, the agent might be able to leverage the redundancies to obtain savings1086

in representational and computational costs.1087

UMAs are nothing but a formalization of this principle, where the meaning of the1088

word ‘reasoning’ was limited by design to only the application of known implications1089

and the negation operator. We find it surprising that despite these severe restrictions,1090

snapshots are capable of encoding a high-level representation of the problem space.1091

Our simulation studies suggest that an UMA agent with sufficient sensing and actu-1092

ation is capable of learning a useful approximation of the gradient field of a navigation1093

function [69] despite the lack of prior semantic information. A sensorium reflective of the1094

topology of the environment (in the sense of theorem 3.19) is beneficial for learning such1095

fields. At the same time, it appears that — see Fig. 11d — a random sensorium may be1096

almost just as useful. Granted a principled mechanism for self-enrichment (see below),1097

this motivates asking whether an initial “well-behaved” sensorium is at all necessary for1098

the eventual proper functioning of an UMA agent.1099

UMAs allow easy integration of motivational systems (such as, for example [16])1100

through introspective sensing of motivational signals. We have only considered very1101

simple excitation mechanisms causing the agent to choose actions maximizing immediate1102

excitation gain (to the extent measurable by the sensorium) but these mechanisms can1103

be readily extended to a suite of sensors encoding tasks ranging from (a) maintaining1104

internally available resources (e.g. battery charge); through (b) attraction/repulsion1105

(either in the sense of navigation functions [69] or in the broader sense of RL [6]); and all1106

the way to (d) dynamic replanning (frustration [67]) and curiousity-driven exploration [5,1107

74].1108

We expect such complex motivational mechanisms — especially ones including curios-1109
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ity and frustration — to facilitate the control of structural parameters of the agent’s snap-1110

shot architecture. A ‘frustration’ signal could be used to control learning thresholds and1111

to facilitate chunking by driving the creation of new introspective sensors detecting essen-1112

tial obstacles in the model space, while curiosity could drive the learning of useful com-1113

plex actions (as has already been proposed for many other architectures [73, 57, 14, 51]),1114

improving the connectivity of the punctured model space.1115

In contrast to some AGI architectures such as Drescher’s “Schema Mechanism” (SM),1116

The current snapshot architectures (Section 4) still lack a mechanism for enriching the set1117

of available queries with, for example, general Boolean predicates (or, even better, some1118

limited LTL predicates) composed of the original atomic sensations, including actions.1119

Such “compound” sensors are required for facilitating chunking and the learning of useful1120

motor primitives. In fact, the task of characterizing the essential obstacles in M may be1121

seen as an application of a chunking mechanism; finding a snapshot-based mechanism1122

facilitating this function of the memory architecture is therefore a high priority for further1123

research on UMAs.1124

Another required feature is a capacity for symbolic abstraction, that is: relating1125

problem spaces via symbolic substitution. While the duality theory of weak poc sets and1126

their model spaces (appendix 8.2) enables a rigorous discussion of symbolic abstraction,1127

it is not yet clear how to engineer an enlarged snapshot-like architecture realizing such1128

meta-extensions.1129

Of course, the problem lies not in proposing intuitively attractive approaches (there1130

are many) but rather doing so in a principled, economical way that maintains the present1131

combination of analytical and computational tractability. For example, the closely re-1132

lated SM architecture of Drescher [23] uses an empirical estimate of the dependability1133

of schema outcomes to determine the need for enriching the system with more special-1134

ized/detailed schemata; however Drescher readily admits that the approach is lacking in1135

rigor, and concedes that garbage collection is one of the major challenges for his archi-1136

tecture. A similar problem occurs with the more recent QLAP architecture by Mugan1137

and Kuipers [57], also based on a mechanism for the distillation of schema-like entities,1138

where arbitrary choices have to be made to prune an otherwise unmanageable population1139

of computational units.1140

In contrast, the added power of understanding the relationship between the geom-1141

etry of the model spaces and snapshot plasticity in UMAs provide a novel direction of1142

inquiry into the problem of judicious self-enrichment by introspective queries. For exam-1143

ple, enriching an agent with sensors characterizing newly discovered failure modes of the1144

navigation algorithm (GRP, Section 5.2.4) should be possible; this will require the intro-1145

duction of intrinsic motivation mechanisms as discussed above, to steer the agent away1146

from obstacle states in M and towards desirable behaviors (that is, not necessarily states1147

of X, but reference dynamical systems over subsets of X). It seems plausible that a com-1148

promise can be reached between the simplicity of representation and learning in UMAs1149

and the versatility of state-of-the-art knowledge representations (e.g. [50, 28, 85, 89]) —1150

especially those using prime forms, — which would allow for navigation and problem1151

solving in the presence of broad classes of essential obstacles.1152
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8. Appendix: Poc Sets and Sageev-Roller Duality1360

The duality between poc sets and median algebras, going back to Isbell’s work [36],1361

was thoroughly studied by Martin Roller in [71] as part of a very successful program to1362

push the envelope on a theory of actions of discrete groups on simply connected non-1363

positively curved cubical complexes – henceforth reffered to as cubings – pioneered by1364

Michah Sageev in [72] and by Victor Chepoi [12], who characterized such complexes in1365

terms of the convexity theory of their 1-dimensional skeleta.1366

This appendix provides additional details of this theory required to support the mem-1367

ory architecture proposed in this paper. This overview of the preliminary meterial is1368

meant to extend the initial discussion provided in [31] and in Section 2, to provide ad-1369

ditional examples and to prepare the necessary technical background for the proofs of1370

the results of this paper. We will mainly rely on [71] as a source of theoretical results,1371

though sometimes it will be easier to use results from the elegant exposition in [62].1372
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8.1. More on Poc Sets1373

We start out with a compact way of constructing and representing poc sets using1374

“generators and relations”. The reader might want to skip the details at first reading.1375

8.1.1. Generators and Relations1376

A weak poc set P = 〈S |R 〉 may be specified using a set S of generators and a set of1377

relations R of the form a < b or a∗ < b or a < b∗ for a, b ∈ S. One may also use weak1378

inequalities (≤) to specify relations in R.1379

Formally, P is constructed as follows. Assume that the symbol 0 is not contained in1380

S. First, set S± := ({0} t S)× {+,−} and define (s,+)∗ = (s,−) and (s,−)∗ = (s,+).1381

Thus, S± obtains the structure of a complemented set. For simplicity, for each s ∈ {0}∪S1382

we identify (s,+) with s. The relation set R is required to be a subset of S± × S±. We1383

then define an extension R
poc

of R to be the intersection of all relations W ⊆ S± × S±1384

that are reflexive, transitive and, in addition, satisfy (1) (0, a) ∈W holds for all a ∈ S±;1385

and (2) For all a, b ∈ S±, if (a, b) ∈ W then (b∗, a∗) ∈ W . We set P to be the quotient1386

of S± modulo x ∼ y ⇔ (x, y) ∈ R
poc
∧ (y, x) ∈ R

poc
, with the induced partial ordering1387

[x] ≤ [y]⇔ (x, y) ∈ Rpoc .1388

For example, the notation 〈a, b, c |a < c, b < c 〉 stands for the poc set with elements1389

0, 0∗, a, b, c, a∗, b∗ and c∗ having the order relations 0 < a < c < 0∗, 0 < c∗ < a∗ < 0∗,1390

0 < b < c < 0∗ and 0 < c∗ < b∗ < 0∗, as well as the ones derived from these by1391

transitivity. Thus, generators and relations provide a compact way of representing a1392

(weak) poc set explicitly.1393

As another example, consider the poc sets P = 〈a, b |a < b 〉, Q = 〈a, b |a∗ < b 〉. The1394

partial assignment f : P → Q satisfying f(a) = a∗, f(b) = b has one and only one1395

extension to a poc morphism of P into Q.1396

Another, more general, example is provided by seeing the weak poc set P = Poc(Γ)1397

derived from a weakly acyclic poc graph Γ over a complemented set Σ (Definition 9.4)1398

as P = 〈Σ |a ≤ b iff ab ∈ Γ 〉.1399

8.1.2. The Canonical Quotient of a Weak Poc Set1400

We have already mentioned in Section 3.5 that every weak poc set P has a canonical1401

true poc set quotient, P̂. It is obtained as the quotient of P by the equivalence relation1402

a ∼ b⇔ a = b or a, b ∈ N or a, b ∈ N∗ , (25)

where N is the set of negligible elements in P.1403

Definition 8.1. Let P be a weak poc set and let P̂ denote its canonical poc quotient.1404

For every a ∈ P, we denote the equivalence class of a in P̂ with â. The map a 7→ â will1405

be denoted by π.1406

It follows that P̂ inherits from P the structure of a complemented set (where 0 = N1407

and â∗ = â∗). Moreover, observing that N ↓= N , one easily deduces that P̂ has an1408

induced partial ordering given by â ≤ b̂ iff there exist a′ ∼ a and b′ ∼ b such that1409

a′ ≤ b′ in P. Together these structure define a true poc set structure on P̂. The main1410

characteristic of P̂ is the following elementary lemma:1411
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Lemma 8.2. Let P be a weak poc set. Then any poc morphism f : P → Q of P into1412

a true poc set Q factors through π, that is: there exists one and only one poc morphism1413

f̂ : P̂→ Q satisfying f = f̂ ◦ π.1414

Proof. Since Q is a true poc set, f(n) = 0 ∈ Q for all negligible n in P. In other words,1415

f(N) = {0} and f(N∗) = 0∗, which makes the assignment f̂(â) := f(a) a well-defined1416

poc morphism from P̂ into Q. It is evident that this is the only possible assignment for1417

the job. �1418

8.1.3. Nesting and Transversality1419

Sections 3.2–3.5 provide a bird’s eye view of the geometry of Dual(P) and Cube(P),1420

but the proofs of our new results require a slightly more detailed account. For this, we1421

must consider the possible relations (if any) among elements a, b in a weak poc set P:1422

a ≤ b , a∗ ≤ b , a∗ ≤ b∗ , a ≤ b∗ (26)

It is easy to see that a pair of distinct proper elements will never satisfy two of the above1423

conditions at the same time, as Cube(P) provides us with a realization of P inside 2P◦
1424

– after all, a ≤ b if and only if h(a) ⊆ h(b).1425

Definition 8.3. Suppose a, b are proper elements of a weak poc set P. We say that they1426

cross (a t b), if none of (26) hold. Otherwise, we say they are nested (a‖b). A subset1427

A of P is said to be nested if all its elements are pairwise nested, and transverse if its1428

elements cross pairwise.1429

Thus, the half-spaces of Dual(P) are nothing more than the restriction to P◦ of the1430

half-spaces of S(P)1, with two of them nesting if and only if the corresponding elements1431

of P are nested, that is, if and only if exactly one of the following holds:1432

h(a) ∩ h(b) = ∅ , h(a∗) ∩ h(b) = ∅ ,
h(a∗) ∩ h(b∗) = ∅ , h(a) ∩ h(b∗) = ∅ (27)

We conclude that the more relations are on record in the order structure of P the fewer1433

transverse sets there are to be found there. In other words, nesting relations are an1434

obstruction to high-dimesional cubes in Cube(P): each additional relation in P implies1435

fewer faces of the original cube S(P) survive the culling of incoherent vertices used1436

for obtaining Cube(P). At one extreme one finds Cube(P) = S(P) when P itself (up1437

to removing improper elements) is transverse (the orthogonal poc set). At the other1438

extreme, Cube(P ) forms a tree if and only if P is nested — a well-known result going1439

back to Dunwoody’s work on the almost-stability theorem, see [21] — which explains1440

why both examples in Example 3.13 yield trees.1441

8.1.4. Example: direct sums of poc sets1442

The easiest way to join two poc sets together is to form their direct sum:1443

Definition 8.4. Let P and Q be poc sets. Their direct sum P ∨ Q is defined to be1444

the quotient of their external disjoint union P t Q by the identification 0P = 0Q and1445

0∗P = 0∗Q, endowed with the following:1446
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Figure 12: Cubical models for example 8.1.5 with poc relations ai < a∗i+x where x ∈ {2, 3, 4} and

addition is modulo 6 (left), compared to the case when only the relations ai < a∗i+3 are present

(right). Black vertices are those coherent in for both poc set structures. Vertices painted white

are coherent vertices for agent #2 that are incoherent for agent #1. The vertex v corresponds

to the shared coherent ∗-selection {a∗0, . . . , a∗5}.

• a < b in P ∨Q iff a, b ∈ P and a < b or a, b ∈ Q and a < b;1447

• b = a∗ iff both a, b ∈ P and b = a∗ or a, b ∈ Q and b = a∗. �1448

We abuse notation by identifying each element of P ∪Q with the equivalence class1449

in P ∨Q of its natural representative in P tQ. It is easy to verify, then, that1450

Cube(P ∨Q) ≡ Cube(P)× Cube(Q) (28)

where the isomorphism is that of cubical complexes. Intuitively, any proper elements1451

a ∈ P and b ∈ Q satisfy a t b, resulting in every cube in Cube(P) and every cube in1452

Cube(Q) to form a product cube in Cube(P ∨ Q). For example, the grid in Figure 51453

may be thought of as the product of an N -path with an M -path (for the appropriate1454

values of M and N) – hence the dual of the direct sum of two poc sets of the first type1455

discussed in Example 3.13. This is also the principle formally underlying the computation1456

in Example 3.16 of the cubings depicted in Figure 3.1457

8.1.5. Example: a cycle of length 61458

Imagine an agent – call it #1 – living on the unit circle E = S1. We mark six vertices,1459

spread uniformly along the circle, with the digits {0, . . . , 5}. Suppose that agent #1 is1460

capable, for each position it occupies on E, of asking any of the binary questions1461

• Aj : Am I positioned at arc length< π
3 from position j along E?1462

Agent #2 asks a slightly different set of questions:1463
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• Bj : Am I positioned at arc length< π
2 from position j along E?1464

The questions available to either agent have sufficient resolution to pinpoint the agent’s1465

position wherever it is, but we claim that the collection {Aj}5j=0 is, in a sense, more1466

efficient than {Bj}5j=0 (this should be reminiscent of Example 3.18, and is a good illus-1467

tration of Theorem 3.19). Let Σ = {0,0∗} ∪ {ai, a∗i }5i=0, where the ai are symbols to1468

represent the sensations corresponding to Ai for agent #1 and to Bi for agent #2. We1469

compare the resulting embeddings ρi : Σ ↪→ 2E defined by1470

ρ1(aj) = Aj , ρ1(a∗j ) = E rAj ,

ρ2(aj) = Bj , ρ2(a∗j ) = E rBj ,

and with ρi(0) = ∅ and ρi(0
∗) = E, of course. We observe that both representations1471

of P in 2E form injective poc morphisms of P into 2E if P is a poc set structure on Σ1472

with relations of the form ai < a∗i+3 (addition modulo 6). However, only agent #1 can1473

afford to also add the relations ai < a∗i+2 and ai < a∗i+4 to the record without losing1474

the property of ρ1 being a poc morphism. The difference between the duals (of the two1475

different versions of P) is significant – see figure 12 – clearly showing the advantage of1476

the compact and simple world map that agent #1 could deduce over the cumbersome1477

monstrosity agent #2 must deal with. Note how the complex (a) in the figure may be1478

obtained from (b) through deleting the vertices painted white – those are precisely the1479

vertices of (b) forming incoherent families for the poc set structure represented in (a).1480

8.2. Cubings and the Duality Theory of Weak Poc Sets1481

8.2.1. Sageev-Roller Duality from the Categorical Viewpoint1482

In the finite case, the duality theory of poc sets has a very clean formulation in1483

category-theoretical terms. For a quick review of the basic notions of Category Theory1484

we refer the reader to Chapter 4 of [41], while here we will stick to the specific categories1485

of interest:1486

• Pocf , the category of finite true poc sets30, where each P,Q ∈ Pocf have assigned1487

to them the set Hom(P, Q) of poc morphisms from P to Q;1488

• Medf , the category of finite median graphs, where each G,H ∈Medf are assigned1489

the set Hom(G, H) of median-preserving maps from the vertex set ofG to the vertex1490

set of H (such maps are called median morphisms).1491

What connects the two categories is the assignment of the graph Dual(P) to every poc1492

set P. The important bit here is that this assignment is not confined to the level of1493

objects, but, rather, extends over the level of maps as well, and in a natural way:1494

Definition 8.5. Let f : P → Q be a morphism of weak poc sets. The dual map1495

f◦ : Q◦ → P◦ is defined to be the pullback map f◦(A) = f−1(A).1496

30One could work with the full category Poc of all poc sets (rather than just the finite ones) but this
introduces major complications that seem unnecessary given the current application. Similarly for the
case of median graphs/algebras.
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It is easy to verify that f◦ : Q◦ → P◦ is a median-preserving map, that is:1497

f◦ (med(u, v, w)) = med(f◦(u), f◦(v), f◦(w)) (29)

where the medians are computed in the appropriate duals. Thus, a map f ∈ Hom(P, Q)1498

yields a map f◦ ∈ Hom(Dual(Q) , Dual(P)). Moreover, one easily checks that this is1499

done in a way that respects composition, that is:1500

(g ◦ f)◦ = f◦ ◦ g◦ (30)

whenever the composition of the poc morphisms f, g is well-defined. This notion of map1501

between categories is called a functor. The above constructions (of the dual graph and1502

the dual map), together, are known as the Sageev-Roller duality.1503

Applying Theorem 3.25 we conclude that the above assignments form a complete1504

duality, or co-equivalence of categories, between Pocf and Medf . That is, there are:1505

• A correspondence between Pocf and Medf at the level of objects: P 7→1506

Dual(P) is a one-to-one correspondence between the collection of finite poc sets1507

and the collection of median graphs;1508

• A correspondence between Pocf and Medf at the level of maps: f 7→ f◦1509

is a composition-reversing one-to-one correspondence between poc morphisms and1510

median morphisms.1511

Thus, Sageev-Roller duality is a dictionary, translating order-theoretic statements about1512

finite poc sets into graph-theoretic statements about finite median graphs and vice-versa.1513

Loosely speaking, the aspects of Boolean Algebra covered by poc sets may be conveniently1514

interpreted in terms of the convex geometry of median graphs, reasoned about within this1515

framework, and the conclusions may then be translated back into the Boolean Algebra1516

setting for the purpose of dealing with applications.1517

8.2.2. Extending Sageev-Roller Duality to Weak Poc Sets1518

It is time to clarify the precise way in which Sageev-Roller duality extends to weak1519

poc sets.1520

Lemma 8.2 is instrumental in this. A particularly interesting case of this lemma is1521

that of Q = 2. It is easy to verify that f : P→ 2 is a poc morphism if and only if f−1(1)1522

is a complete coherent ∗-selection. Thus, the set-dual P◦ is in one-to-one correspondence1523

with the set of all poc morphisms from P to 2 (which is what earns it the name of a1524

‘dual’). But then the lemma states that this latter set is in one-to-one correspondence1525

with the set of all poc morphisms P̂→ 2, which is the dual of the canonical quotient P̂.1526

Carefully tracing through the definitions one obtains:1527

Corollary 8.6. Let P be a weak poc set and let π : P → P̂ denote the canonical1528

projection. Then p◦ : P̂◦ → P◦ is a median isomorphism. In particular, Cube(P) and1529

Cube(P̂) are naturally isomorphic cubical complexes. �1530

Thus, weak poc sets are indistinguishable from poc sets, as far as dual graphs are1531

concerned. Applying Sageev-Roller duality (specifically, Theorems 3.25,3.29) one now1532

obtains:1533

46



Figure 13: The dual of a poc morphism is not necessarily a graph morphism (details in 8.2.3).

Figure 14: The dual of a degeneration is an embedding of median graphs (details in 8.2.4).

Corollary 8.7. For any weak poc set P, P̂ is naturally isomorphic to H(Dual(P)). �1534

At the same time, weak poc sets form a more flexible class of objects. In particular,1535

weak poc set structures are easier to represent and to evolve dynamically using snapshots.1536

8.2.3. Example: Higher-Dimensional Cubes and Duality1537

It is not true in general that the dual of a poc morphism f : P → Q extends to a1538

morphism of graphs. For example, consider the situation1539

P = 〈a, b, c |a < b, b < c 〉 , Q = 〈x, y |x < y 〉 (31)

and f : P→ Q is defined by f(a) = f(b) = x and f(c) = y. The duals and dual map are1540

illustrated in figure 13.1541

The absence of a canonical choice of extension for f◦ to a graph morphism of Dual(Q)1542

into Dual(P) hints at a solution directly involving cubings: if one were to extend the1543

range of f◦ to include the 2-dimensional cube shown in the figure, it would have been1544

possible to extend f◦ to a cellular map taking the edge of Dual(Q) crossed by x to an1545

appropriately chosen diagonal of that cube. More generally, it is possible to extend f◦ to1546

a continuous embedding of Cube(Q) into Cube(P) for any poc morphism f : P → Q by1547

applying convexity properties of the canonical piecewise-Euclidean metrics on Cube(P)1548

and Cube(Q) ([10], II.2.7). Thus, although median graphs are sufficient for describing the1549

dual graphs of poc sets, describing the dual morphisms requires the higher dimensional1550

geometry of cubings.1551
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8.2.4. Example: The Effect of Learning an Implication1552

Snapshots maintain weak poc set structures on a sensorium Σ dynamically, updating1553

the ordering on Σ in real time. The duality theory of poc sets provided the hint as to how1554

such maintenance should be done. The learning methods of section 4 are motivated by an1555

analogy between the following observations and the ideas underlying Hebbian learning,1556

which we try to explain in the following example.1557

The kind of update we expect to see in a simplest instance of learning is captured in
the following pair of poc sets:

P1 = 〈a, b, c |a < c, b < c 〉 , P2 = 〈a, b, c |a < b < c 〉 ,

where the two poc set structures share their underlying set (denote it by Σ), and the1558

identity map f = idΣ : P1 → P2 is a morphism, while the inverse map g = idΣ : P2 →1559

P1 is not (we say that f is a degeneration). Thinking of P1 as representing an agent1560

yet undecided regarding the nature of nesting (if any) of the pair {a, b} and therefore1561

maintaining a t b in P1, we see poc set P2 as representing an observer with an identical1562

set of beliefs except for the additional relation a < b. Figure 14 visualizes the dual1563

map f◦. In general, if P1 and P2 are poc sets with the same underlying set Σ and1564

f = idΣ : P1 → P2 is a poc morphism, then the dual f◦ has the following properties1565

(see e.g. [71]):1566

Proposition 8.8. Suppose f : P1 → P2 is a bijective poc morphism. Then:1567

1. f◦ is injective ([71], proposition 7.8);1568

2. f◦ extends to an injective cellular embedding of Cube(P2) in Cube(P1);1569

3. The image of Cube(P2) under this embedding is a strong deformation retract of1570

Cube(P1).1571

9. Appendix: Proofs of Technical Results1572

9.1. Proof of Proposition 3.301573

Let B ∈ P◦ be given such that coh(A) is not contained in B. We will find B′ ∈ P◦1574

such that ∆(A,B′) < ∆(A,B). Now find a ∈ coh(A) r B. Then a∗ ∈ B and there is1575

an element b ∈ min(B) with b ≤ a∗. If b ∈ A then a ∈ A ↑∗, contradicting a ∈ coh(A);1576

hence, b ∈ A∗, which implies that B′ = (B r {b})∪ {b∗} satisfies ∆(A,B′) = |B′ rA| =1577

|B rA| − 1 = ∆(A,B), as desired. �1578

9.2. Proof of Proposition 3.311579

Proof. Recall that A ⊆ A ↑, A ↑↑= A ↑ and A∗ ↓= A ↑∗ for all A ⊆ Σ. We check1580

that coh(A) is coherent for all A: for suppose that b, c ∈ coh(A) satisfy b ≤ c∗;1581

find a ∈ A with a ≤ b to observe that c∗ ∈ A ↑; equivalently, c ∈ A ↑∗, but that is1582

impossible since c ∈ coh(A). Now we claim that coh(A) is upwards closed: to show1583

that coh(A) ↑= coh(A) it suffices to verify coh(A) ↑⊆ coh(A); since coh(A) ⊆ A ↑ by1584

definition, we have coh(A)↑⊆ A↑ and it suffices to show no b ∈ coh(A)↑ belongs to A↑∗;1585

were there such a b, there would have been a ∈ coh(A), c ∈ A with a ≤ b and c ≤ b∗,1586

implying a ≤ c∗ — a contradiction to a /∈ A∗ ↓= A↑∗. This proves (a).1587

Now let us calculate: coh(coh(A)) = coh(A) ↑ rcoh(A) ↑∗= coh(A) r coh(A)∗ =1588

coh(A), the last equality due to coh(A) being coherent. At the same time, if A itself1589
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is coherent then coh(A) = A ↑⊇ A. Moreover, this shows coh(A) = A whenever A ∈1590

coh(P). Finally, if A = coh(A) then A is coherent and upwards closed because coh(A)1591

is. This proves properties (b-d) for the map F . �1592

9.3. Proof of proposition 4.91593

Suppose S is a probabilistic snapshot, and let Γ = Dir(S). To prove Γ is weakly1594

acyclic, we consider a proper pair of sensors a, b ∈ Σ lying in the same strong component1595

of Γ, and we are required to show that δ(ab) = 0 holds, demonstrating that ab, ba ∈ Γ.1596

For any directed vertex path p = (a0, . . . , am) in Γ from a to b, we apply the orien-1597

tation constraint repeatedly to obtain:1598

ω(ab) = ω(a0a1) + . . .+ ω(am−1am) , (32)

where we know that all the summands on the right-hand side are non-negative, and we1599

conclude that ω(ab) is non-negative. Since Γ also contains a directed path from b to a,1600

we must conclude ω(ab) = 0, implying that ω(ai−1ai) = 0 for all i. Now we apply the1601

measure constraint repeatedly to obtain:1602

δ(ab) ≤ δ(a0a1) + . . .+ δ(am−1am) , (33)

For all i, since ai−1ai ∈ Γ with ω(ai−1ai) = 0, we must also have δ(ai−1ai) = 0 and we1603

have δ(ab) = 0, as desired.1604

9.4. Equivalences in probabilistic Snapshots1605

Throughout this section, let Γ denote a weakly acyclic poc graph on Σ (defn. 4.5).1606

By assumption, each strong component of Γ is a strong clique. Let Σ̄ denote the partition1607

of Σ into strong components of Γ, and let eq : Σ→ Σ̄ denote the quotient map sending1608

each a ∈ Σ to its strong component in Γ.1609

Recall the notion of forward closure in a directed graph (and, in particular, in a1610

partially ordered set): for any set A of vertices in a directed graph G = (V,E),1611

A↑:= {v ∈ V |G contains a directed path from A to v } (34)

It is customary to write a↑:= {a}↑. Thus,1612

eq(a) = eq(b)⇔ a ∈ b↑ and b ∈ a↑ . (35)

We will consider and compare two ways in which Γ gives rise to a weak poc set structure.1613

The first is as follows:1614

Lemma 9.1 (Deleted weakly acyclic is acyclic). Let Γ× denote the poc graph obtained1615

from Γ by deleting all edges joining vertices of the same strong component of Γ. Then1616

Γ× is an acyclic poc graph.1617

Proof. By definition, Γ× contains no edge-loops since Γ does not. Suppose Γ× contained1618

a directed cycle γ. But then the vertices of γ all lie in the same strong component of Γ,1619

implying no edge of γ may lie in Γ× — a contradiction. �1620

Another way Γ gives rise to an acyclic poc graph is by contracting its strong compo-1621

nents. We verify:1622
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Lemma 9.2. For all a ∈ Σ one has (1) eq(a∗) = eq(a)∗, and (2) eq(a∗) 6= eq(a).1623

Proof. For (1), b ∈ eq(a∗) iff a∗b, ba∗ ∈ Γ, iff b∗a, ab∗ ∈ Γ (as Γ is a poc graph), iff1624

b∗ ∈ eq(a), iff b ∈ eq(a)∗.1625

For (2), were it that eq(a) = eq(a∗), then a∗ would have belonged in eq(a). This is1626

impossible, since aa∗ /∈ Γ. �1627

We conclude that the operation eq(a) 7→ eq(a∗) = eq(a)∗ satisfies the requirements a1628

complemented set, as applied to Σ̄. Now we are able to state:1629

Lemma 9.3. Let Γ̄ denote the directed graph with vertex set Σ̄ with eq(a)eq(b) ∈ Γ̄ if1630

and only if eq(a) 6= eq(b) and there is an edge a′b′ ∈ Γ with a′ ∈ eq(a) and b′ ∈ eq(b).1631

Then Γ̄ is an acyclic poc graph on Σ̄.1632

Proof. A directed cycle in Γ̄ implies a directed cycle in Γ which is not contained in a1633

strong component — contradiction. The other properties of a poc graph (over Σ̄) follow1634

immediately by construction. �1635

Recall that an acyclic poc graph yields a derived poc set (lemma 4.4). Consequently1636

we may define:1637

Definition 9.4. Let the weak poc set derived from the acyclic poc graph Γ̄ be denoted1638

by Poc(Γ). �1639

Remark 9.5. Note that the weak poc set derived from Γ× coincides with Poc(Γ×), as1640

the strong components of Γ× are all degenerate (singletons).1641

The following proposition list some important obvious corollaries of this construction.1642

Proposition 9.6. Let Γ be a weakly acyclic poc graph over Σ. Then:1643

(a) The map eq : Σ→ Σ̄ is a poc morphism from Poc(Γ×) onto Poc(Γ).1644

(b) The fibers {eq(a)}a∈Σ of the map eq are transverse subsets of Poc(Γ).1645

(c) For any subset A ⊂ Σ one has A↑= eq−1 (eq(A)↑).1646

Statements (a),(b) of the proposition establish the precise relationship between the1647

poc set — here denoted Poc(Γ×) — originally proposed in [31] and the “reduced” weak1648

poc set Poc(Γ) we have chosen to work with, obtained through the introduction of equiv-1649

alences according to figure 6(b).1650

Statement (c) becomes important in the context of propagation, section 5.2.2, estab-1651

lishing the equivalence of propagation over Γ|t = Dir(S|t) with closest point projection1652

in the model space M|t = Cube(P|t) where P|t = Poc(Γ) (cor 9.17).1653
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9.5. Local Structure of Duals and Greedy Navigation1654

In [31] we suggested exploring the link between the convexity theory of duals of1655

weak poc sets and planning in DBAs, yet the formal results contained therein proved1656

insufficient for supporting the planning algorithms proposed in this paper. This section1657

fills in this gap.1658

Throughout this section we fix a finite weak poc set P and the median graph Γ =1659

Dual(P ) (which is to say, Γ is an arbitrary finite median graph). We study the problem1660

of computing the image of a non-empty convex subset h(S) of Γ under the closest point1661

projection of Γ to the convex subset h(T ).1662

9.5.1. Gates1663

We recall the following definitions and results from [71]:1664

Definition 9.7. Let K,L ⊆ P ◦ be sets. The set1665

sep(K,L) = {a ∈ P |K ⊆ h(a)) , L ⊆ h(a∗)} (36)

is called the separator of K and L. �1666

The inequality ∆(u, v) ≥ |sep(K,L)| follows immediately for all u ∈ K and v ∈ L.1667

This motivates:1668

Definition 9.8. Let K,L ⊆ P ◦. A gate for K,L is a pair of points u ∈ K, v ∈ L such1669

that ∆(u, v) = |sep(K,L)|. �1670

The following result is well known in our setting:1671

Proposition 9.9. Let K,L be non-empty convex subsets of Γ and let u ∈ K and v ∈ L.1672

Then u, v form a gate for K,L if and only if projKv = u and projLu = v. Moreover,1673

any pair of non-empty convex subsets of Γ has a gate.1674

We will apply this proposition without proof. An important consequence for us is the1675

following:1676

Lemma 9.10. Suppose K = h(S) and S ⊂ P is coherent. Then, for any a ∈ P , if1677

K ⊆ h(a) then there exists s ∈ S such that s ≤ a.1678

Proof. Let u ∈ K and v ∈ L := h(a∗) form a gate. Since v /∈ A, there exists s ∈ S such1679

that v ∈ h(s∗).1680

Suppose there were a w ∈ B with w ∈ h(s), and consider m = med(u, v, w). Then1681

a ∈ v, w implies a ∈ m, but the inequality1682

∆(u, v) = ∆(u,m) + ∆(m, v) ≥∆(u,m) (37)

implies m = v, since v = projLu. On the other hand, s ∈ u,w implies s ∈ m – a1683

contradiction.1684

Thus, we have shown that L = h(a∗) is contained in h(s∗). Equivalently, a∗ ≤ s∗,1685

which is the same as s ≤ a. �1686

The same kind of reasoning yields:1687
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Lemma 9.11. Suppose K,L are non-empty convex subsets of Dual(P ). If K ∩ L 6= ∅,1688

then projKL = projLK = K ∩ L.1689

Proof. Clearly, if v ∈ K ∩ L then projL(v) = v, so K ∩ L ⊂ projLK. For the reverse
inclusion, suppose v ∈ projLK and write v = projLu, u ∈ K. Pick any point w ∈ K∩L.
Setting m = med(w, v, u) we note that m ∈ L (because w, v ∈ L) and

∆(u, v) = ∆(u,m) + ∆(m, v) ≥∆(u,m) .

The uniqueness of projection forces v = projLu to coincide with m. However, since1690

w, u ∈ K we also have m ∈ K, showing v ∈ K ∩ L. �1691

9.5.2. Computing the Projection Maps1692

For a vertex u ∈ P ◦ and any subset A ⊂ u, one defines:1693

[u]
A

:= (urA) ∪A∗ (38)

Clearly, [u]
A

is a ∗-selection. It is easily verified that [u]
A

is coherent if and only if there1694

exists no pair a ∈ A and b ∈ ur A satisfying b < a. This observation was first made in1695

[72], leading to the following results in our setting:1696

Lemma 9.12. Let P be a finite weak poc set and let u ∈ P ◦ be any vertex. Then the1697

set N(u) of vertices adjacent to u in Γ = Dual(P ) coincides with the set of all [u]
a
, a1698

ranging over the minset of u:1699

min(u) := {a ∈ u |b < a⇒ b /∈ u} (39)

More generally, the cubes in Cube(P ) are characterized as follows:1700

Lemma 9.13. Let P be a finite weak poc set and u ∈ P ◦ be a vertex. Then the cubes1701

of Cube(P ) incident to u are in one-to-one correspondence with the transverse subsets of1702

min(u).1703

A particular application of these observations is an explicit construction of a geodesic1704

path in Γ emanating from a given vertex u and terminating at its unique closest point1705

projection projh(T )u:1706

Proposition 9.14. Let P be a finite weak poc set and suppose u ∈ P ◦ is a vertex. Let1707

T be a coherent subset of P . Then the following algorithm constructs a shortest path in1708

Γ from u to K = h(T ):1709

1. Find an element b ∈ T r u; if no such element, stop and output u.1710

2. Find an element c ≤ b∗ with c ∈ min(u);1711

3. Replace u by [u]
c

and go to the first step.1712

Proof. We have u ∈ K iff T ⊂ u, which provides the stopping condition for the algorithm.1713

Now, if u /∈ K and b ∈ T r u then for all v ∈ K one has v ∈ h(b) and u ∈ h(b∗). Since1714

c ≤ b∗, we have u ∈ h(c) ⊆ h(b∗), implying v ∈ h(c∗) and c ∈ ur v. As a result:1715

∆
(
v, [u]

c

)
= ∆(v, u)− 1 (40)

Having reduced ∆(u, v) by a unit for all v ∈ K, we have reduced ∆(u,K) by a unit as1716

well. �1717
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Corollary 9.15 (Projection of a Point). Let P and T be as above. Then the closest1718

point projection to K = h(T ) is given by the formula:1719

projKu = (ur T ∗ ↓) ∪ T ↑= (u ∪ T ↑) r T ∗ ↓ (41)

Proof. The second equality follows from the DeMorgan rules and the fact that T ↑ ∩T ∗ ↓=1720

∅ (since T is coherent).1721

Set K = h(T ) and proceed by induction on ∆(u,K). If ∆(u,K) = 0, then u ∈ K
and therefore T ⊂ u. In addition, u is coherent and we conclude T ∗ ↓ ∩u = ∅, leaving
us with

ur T ∗ ↓ ∪T = u ∪ T = u ,

as desired. Now suppose n := ∆(u,K) > 0. By the preceding proposition, there is
a ∈ T ∗ ↓ ∩u such that v := [u]

a
∈ P ◦, ∆(v,K) = n − 1, and projKu = projKv. We

thus have:
projKu = projKv = (v r T ∗ ↓) ∪ T ↑= (ur T ∗ ↓) ∪ T ↑ ,

the last equality being due to a ∈ T ∗ and a∗ ∈ T . Thus, the first identity has been1722

proved. �1723

9.5.3. Projecting a Convex Set to a Convex Set1724

Proposition 9.16. Let K,L be non-empty convex subsets with L = h(S) and K = h(T ).1725

Then1726

projKL = h((S ↑ ∪T ↑) r T ∗ ↓)
= h(T ) ∩ h(S ↑ rT ↑∗) (42)

Proof. Since T is coherent, T ↑ and T ∗ ↓= T ↑∗ are disjoint. This allows us to write:1727

h((S ↑ ∪T ↑) r T ↑∗) = h(T ↑ ∪(S ↑ rT ↑∗))
= h(T ↑) ∩ h(S ↑ rT ↑∗)

and the second equality in (42) follows from the identity h(T ) = h(T ↑). Denote R = S ↑1728

rT ↑∗ and N = h(R).1729

For every u ∈ L = h(S) we have S ↑⊂ u, implying projKu contains T ↑ ∪R, by1730

corollary 9.15. Thus, projKL ⊂ K ∩N , as required.1731

For the converse, observe that the case K ∩ L 6= ∅ was already dealt with in lemma
9.11: if K ∩ L 6= ∅, then

projKL = K ∩ L = h(S ↑) ∩ h(T ↑) = h(S ↑ ∪T ↑)

In particular, S ↑ ∪T ↑ is coherent, and hence does not intersect T ∗ ↑, and the formula1732

(42) holds.1733

Thus we may henceforth assume K ∩L = ∅. Equivalently, S ↑ ∩T ∗ ↓6= ∅. In fact, by1734

lemma 9.10 we have S ↑ ∩T ∗ ↓= sep(A,B).1735

Starting with v ∈ K ∩N we must show v ∈ projKL. Set u = projLv, w = projKu,
and m = med(u, v, w). Then m ∈ K since v, w ∈ K. Since K ∩ L = ∅, we have
∆(u, v) > 0 and ∆(u,w) > 0. Consider the point m: we have m ∈ I(u,w) and m ∈ K; by
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the choice of w, m must equal w and therefore w ∈ I(u, v). Thus, w = projKu ∈ I(u, v)
and u = projLw. By proposition 9.9, the pair u,w is a gate for K,L and we have

ur w = sep(L,K) = S ↑ ∩T ∗ ↓ .

Consider an element a ∈ v r u. If h(a) ∩ L 6= ∅, pick u′ ∈ h(a) ∩ L. Then m =
med(u, v, u′) will satisfy m ∈ h(a) ∩ L as well as

∆(v, L) = ∆(v, u) = ∆(v,m) + ∆(m,u) .

Now, ∆(u,m) > 0 since u ∈ h(a∗) and a contradiction to uprojLv is obtained. Thus,1736

h(a) ∩ L must be empty, which means L ⊆ h(a∗). Applying lemma 9.10 we obtain1737

a∗ ∈ S ↑.1738

Overall, we have shown that v r u ⊆ S ↑∗. We will now verify that v r w = ∅,1739

finishing the proof. Indeed, were it not so, there would have been h ∈ v r w. On one1740

hand, w ∈ I(u, v) implies v r w ⊂ v r u, and hence h∗ ∈ S ↑. On the other hand, h /∈ w1741

means h∗ ∈ w and therefore h∗ /∈ sep(L,K) = S ↑ ∩T ↑∗, which forces h∗ ∈ R. Since1742

R ⊂ v (by choice of v), we have h∗ ∈ v, contradicting our choice of h. �1743

We will need the following technical corollary for the purposes of propagation:1744

Corollary 9.17. Let S, T ⊂ P be subsets and suppose S is coherent. Let L = h(S) and1745

K = h(coh(T )). Then:1746

projKL = (S ↑ ∪T ↑) r T ↑∗= (S ↑ rT ↑∗) ∪ coh(T ) (43)

Proof. Recall that coh(T ) = T ↑ rT ↑∗, and set J = T ↑ ∩T ↑∗, so that T ↑= coh(T ) + J1747

and T ↑∗= coh(T )∗ + J . Then,1748

(S ↑ ∪T ↑) r T ↑∗ = ((S ↑ ∪coh(T ) ∪ J) r coh(T )∗) r J

= (S ↑ ∪coh(T )) r coh(T )∗

Since coh(T ) ↑= coh(T ), the last expression equals projKL, by the preceding proposi-1749

tion. The proof of the second equality is similar. �1750
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Table 1: Table of Mathematical Symbols

Topic/Notation Ref.

General Notation

〈f : x〉 Evaluation of f ∈ 2X on x ∈ X Remark 2.5

S ↑ Forward closure of a set S in a poset or in a directed graph Eqn. (34)

DBA Model (general)

E,X,T Environment, State and Time Sec.2.1

pos The position map X→ E Sec.2.1

|t Reads as: ”at time t” Def.2.1

DBA model (sensing)

Σ Binary sensorium Def.2.3

S(Σ)0 The set of ∗-selections on Σ Def.2.7

ρ Realization map of the sensorium Σ Def.2.3

〈a : x〉 Evaluation, e.g. of a ∈ Σ on x ∈ X Remark 2.5

DBA computational model (at time t)

S|t Agent’s snapshot Sec. 5.2.1

Γ|t The derived poc graph, Dir(S|t) Sec. 5.2.1

P|t Derived (weak) poc set structure on Σ, Poc(S|t) Sec. 3.2

M|t The model space Cube(P|t) Sec. 3.3

M×|t The punctured model space Cube×(P|t, ρ) Def. 22

O|t Unprocessed observation Def. 2.6

S|t Recorded observation Sec. 3.6

A|t Decision (action) following the observation Sec. 2.4

Contents/parameters of a snapshot S

KΣ The complete graph on Σ with all aa∗ edges removed Def.4.1

#S State of the snapshot Def.4.2(a)

wab Weight on the edge ab Def.4.2(b)

τab Learning threshold for the pair a, b ∈ Σ Def.4.2(c)

ω(ab) Orientation cocycle of S Prop.4.9

δ(ab) Dissimilarity measure of S App.9.4

Objects derived from a snapshot S

Dir(S) Derived poc graph Prop.4.10

Poc(S) Derived weak poc set structure Def.4.11

Weak poc sets and their duals

P,Q, . . . Poc sets (with and without indices) Def.3.3

S(Σ) The cubical complex of ∗-selections on Σ Def.2.9

P◦ The set dual of P, the 0-skeleton of Cube(P) Def. 3.12(b)

Dual(P) Dual graph of P, the 1-skeleton of Cube(P) Def. 3.12(c)

Cube(P) Dual cubing of the poc set P Def. 3.12(a)

Cube×(P, ρ) The punctured dual with respect to a realization ρ of Σ Def. 3.17

f◦ The dual map f◦ : Q◦ → P◦ of a poc morphism f : P → Q Defs. 3.7, 8.5
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