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Human μ Opioid Receptor Models with Evaluation of the Accuracy Using
the Crystal Structure of the Murine μ Opioid Receptor

Abstract
Models of the human μ opioid receptor were constructed using available G-protein-coupled receptor (GPCR)
structures using homology (comparative) modeling techniques. The recent publication of a high-resolution
crystal structure of a construct based on the murine μ opioid receptor offers a unique opportunity to evaluate
the reliability of the homology models and test the relevance of introducing more templates (known
structures) to increase the accuracy of the comparative models. In the first model two templates were used:
the β2 adrenergic and bovine rhodopsin receptors. For the second model, four templates were utilized: the
β2adrenergic, bovine rhodopsin, β1 adrenergic, and A2A adenosine receptors. Including additional templates
improved the accuracy of structural motifs and other features of the model when the same sequence
alignment was used. The predicted structures were especially relevant in the case of important receptor
regions such as the DRY motif, which has been associated with receptor activation. Additionally, this study
showed that receptor sequence similarity is crucial in homology modeling, as indicated in the case of the
highly diverse EC2 loop. This study demonstrates the reliability of the homology modeling technique in the
case of the μ opioid receptor, a member of the rhodopsin-like family class of GPCRs. The addition of more
templates improved the accuracy of the model. The findings regarding the modeling has significant
implication to other GPCRs where the crystal structure is still unknown and suggest that homology modeling
techniques can provide high quality structural models for interpreting experimental findings and formulating
structurally based hypotheses regarding the activity of these important receptors.
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Introduction
Opioid receptors are part of the largest family of integral 

transmembrane proteins coded by the human genome, the G-protein-
coupled receptors (GPCRs) [1]. GPCRs mediate most transmembrane 
signal transduction, usually in response to hormones, neurotransmitters 
and environmental stimulants. Each GPCR comprises an extracellular 
N terminus, seven-transmembrane (7TM) helical segments separated 
by alternating intracellular and extracellular loop regions, and an 
intracellular C terminus [1-3]. Opioid receptors are part of the largest 
family of GPCRs, family A or rhodopsin-like GPCRs [4]. Other family 
A members include the receptors for epinephrine, dopamine, serotonin, 
and adenosine [5]. The µ opioid receptor is the primary receptor in 
the brain for endogenous opioid neuropeptides as well as exogenously 
administrated opioid compounds [6-8]. Potent drugs such as morphine, 
heroin, fentanyl and methadone induce their pharmacological effects 
through the activation of this receptor [9]. 

Extensive computational comparative modeling of the µ opioid 
receptor was used to suggest structural details of this important signal 
transduction protein [10-15] before the crystal structure of the murine 
µ opioid receptor was revealed [16]. The µ opioid receptor has been 
heavily modeled using the few receptor structures available at the time 
due to its importance related to addiction and pain control and reward 
pathways [6,7,12,14]. More recently, the addition of several GPCR 
structures in recent years opens the potential opportunity for higher 
quality modeled structures. Within the past few years, our group has 
constructed different versions of homology models of human µ opioid 
receptor (hMOP-R) based on the available structural information at 
that time. The recent publication of a high-resolution crystal structure 
of murine µ opioid receptor solution offers a unique opportunity to 
evaluate the reliability of the modeling of GPCRs of this family using 
other GPCR structures and to test the relevance of introducing more 
templates to increase the accuracy of the comparative models.

Methods
Two different homology models were constructed in our 

group before the crystal structure of murine µ opioid receptor was 
disclosed: (i) The first model, named as 2T-hMOP-R, used the X-ray 
crystallographic structures of human β2 adrenergic receptor at 2.4 Å 
resolution (PDB accession code: 2RH1) [17] and bovine rhodopsin at 
2.2 Å resolution (PDB accession code: 1U19) [18] as templates. (ii) the 
second model, named as 4T-hMOP-R, used the X-ray crystallographic 
structures of turkey β1 adrenergic receptor at 2.7 Å resolution (PDB 
accession code: 2VT4) [19] and human A2A adenosine receptor at 2.6 
Å resolution (PDB accession code: 3EML) [20] in addition to the above 
mentioned 2 templates. 

Given the importance of sequence alignments in the comparative 
modeling procedure [21-23], several different programs and 
substitution matrices were considered. The sequences of hMOP-R, 
human β2 adrenergic receptor, bovine rhodopsin, turkey β1 adrenergic 
receptor and human A2A adenosine receptor were obtained from the 
UniProt Knowledgebase UniProtKB server with the accession numbers 
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P35372, P07550, P02699, P07700, and P29274, respectively [24]. 
BLASTp [25], SIM [26], ClustalW [27], and Phyre [28] were used to 
align the sequences of hMOP-R and human β2 adrenergic receptor. In 
the case of BLASTp, three members of the “Blosum” substitution matrix 
family [29] (Blosum62, Blosum45 and Blosum80) and one member of 
the “PAM” substitution matrix family [30] (PAM70) were used. For the 
case of the alignment tool SIM, Blosum62 and Blosum30 were used. 
For ClustalW just the Blosum30 matrix was used. The protein structure 
prediction server Phyre, was also utilized. Standard penalty gaps were 
applied in all the cases [25-27]. A similar procedure was carried out in 
the case of hMOP-R and bovine rhodopsin, hMOP-R and β1 adrenergic 
receptor, and hMOP-R and A2A adenosine receptor.

A final sequence alignment was obtained for each pair of proteins 
and modifications were performed to maintain highly conserved 
fingerprint residues of the rhodopsin-like GPCR family [31]. Among 
these are: the disulfide bond between TM3 and the second extracellular 
loop (EC2), the “DRY” motif in TM3, the XBBXXB motif in the third 
intracellular loop (IC3) (where B represents a basic amino acid and X 
represents a non-basic residue, LRRITR in the case of hMOP-R), the 
FXXXWXPX[F] motif in TM6 (FIVCWTPIH in the case of hMOP-R), 
the NPXXY motif in TM7 (NPVLY in hMOP-R), and the C-terminal 
cys palmitoylation site [31]. The final multiple sequence alignment is 
presented in figure 1.

Using the sequence alignments and the two- and four-template 
structure sets described above, one hundred models of the human 
µ opioid receptor models (from residue 65 to 353) in each case were 

generated using Modeller 9v2 with the refinement optimization level 
adjusted to slow [32,33]. The side chains from the resulting models of 
the four-template and two-template ensembles, were minimized using 
NAMD2 [34] and the CHARMM22 force field [35]. Hydrogen atoms 
were added and minimization was performed by the conjugate-gradient 
method until the total energy remains constant (change in energy less 
than 1.0 kcal/mol). Models with the lowest energy were selected and 
characterized using Molprobity [36] to confirm that no steric clashes or 
unusual conformations of the backbone and side chains were present. 
Herein, the selected structures from the four- and two-template sets 
are denominated 4T-hMOP-R and 2T-hMOP-R, respectively. The 
secondary structures of the models were assigned with STRIDE 
[37], and the locations and lengths of the TM helices were the same 
for both 4T-hMOP-R and 2T-hMOP-R. The X-ray crystallographic 
structure murine µ opioid receptor (PDB accession code: 4DKL) was 
used to evaluate these models. Renderings of molecular structures for 
comparison were generated using PyMOL (http://www.pymol.org/, 
Version 1.3, Schrödinger, LLC).

Results and Discussion
Comparison between models 4T-hMOP-R and 2T-hMOP-R

Two different views of the model of hMOP-R are depicted in 
Figure 2a. In general, 4T-hMOP-R and 2T-hMOP-R are similar with 
a backbone rmsd of 1.30 Å. One of the most significant differences 
between the models is a helical segment in IC2 that is specific to the 
β1 adrenergic receptor and A2A adenosine receptor; it is absent in 
2T-hMOP-R (see inset of Figure 2a). This loop connects helices TM3 
and TM4 and is close to the important and highly conserved DRY 

Figure 1: Sequence alignment used in the creation of the models of the human μ opioid receptor, hMOP-R. The templates are: human β2 adrenergic 
receptor (ADRβ2), bovine rhodopsin (bRHO), turkey β1 adrenergic receptor (ADRβ1) and human A2A adenosine receptor (AA2AR). The residues of the 
N- and C- terminus are excluded (residue 1 to 65 and residues 354 to 400, respectively). Also, the residues excluded from the comparative model-
ing are colored in gray. The most conserved residues at each of the transmembrane helices are depicted in blue. The secondary structure of the β2 
adrenergic receptor based on STRIDE [32], is shown below the sequences. Residue numbering of hMOP-R is shown. Highly conserved motifs in the 
rhodopsin-like GPCR family are highlighted in yellow.
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motif. In general, both structures could be used to interpret different 
experimental studies associated with ligand binding properties of the µ 
opioid receptor (see Figure 2b). 

Comparison of the constructed models with the crystal 
structure of mouse µ opioid receptor

The human (uniprot accession number P35372) and mouse 
(uniprot accession number P42866) µ opioid receptors has a sequence 
identity of 94% if the entire receptor sequences are considered and 
a sequence identity of 99% for the structure solved in the crystal 
structure. The sequence identity between human and mouse µ opioid 
receptor suggests that both proteins likely share a very similar structure.

The representative models from the comparative modeling 
procedure were compared with the crystal structure of murine µ opioid 
receptor (PDB accession code: 4DKL). The root-mean-square deviation 
(rmsd) of the Cα atoms located in the TM helices (Figure 3A) between 
the crystal structure and 4T-hMOP-R and 2T-hMOP-R is 2.67 Å and 

2.60 Å, respectively. Superposition of the structures is shown in figure 3. 
As seen from the rmsd values, both modeled structures are, in general, 
very similar to the crystal structure. Interestingly, one of the main 
differences comes from the extracellular portion of TM1. In the crystal 
structure, this segment of TM1 presents a position that is closer (~ 10 Å) 
to the rest of the helical bundle (Figure 3B and 3C). This relative position 
is not seen in any of the templates and thus, not present in the models. 
Interestingly and despite the sequence identity, the recent structure of 
a closely related receptor, the human κ opioid receptor [16] presents 
the same segment of TM1 with an outward displacement similar to the 
templates (and the models) presented here. This displacement has been 
suggested to reflect difference in crystallization conditions or crystal 
packing [19-38].

Figure 2: Alignment and comparison of representative models of hMOP-R. 
(A) the representative models from the four-template ensemble (4T-hMOP-
R) and two-template ensemble (2T-hMOP-R) are color in green and white, 
respectively. The most conserved residues at each of the transmembrane 
helices are depicted as blue sticks. The highly conserved motifs in the rho-
dopsin-like GPCR family are depicted as orange sticks; disulfide bond be-
tween TM3 and EC2, DRY in TM3, XBBXXB in IC3 (where B represents a 
basic amino acid and X represents a non-basic residue), FXXXWXPX[F] in 
TM6, the NPXXY in TM7 and the C-terminal cys palmitoylation site. The inset 
at the bottom shows one of the most significant differences between the two 
models. The IC2 loop that connects helices TM3 and TM4 in the 4T-hMOP-
R model, forms a helical motif inherit from the β1 adrenergic receptor and 
the A2A adenosine receptor templates. (B) Top views of the binding site for 
the 4T-hMOP-R and 2T-hMOP-R models with a set of the relevant residues 
involved in ligand interaction based on mutagenesis studies. Side chain resi-
dues are colored in magenta in both cases. This view of the hMOP-R from the 
extracellular side of the membrane shows the counterclockwise arrangement 
of the TM helices.

Figure 3: Comparison of the structure of mouse µ opioid receptor with the 
models of the human µ opioid receptor 4T-hMOP-R and 2T-hMOP-R. (A) 
Sequence alignment that displays the length of the TM helices in the crystal 
structure (top sequence) and the 4T-hMOP-R and 2T-hMOP-R models (bot-
tom sequence). The helical segments are depicted as yellow boxes for the 
crystal structure and as green and gray lines for 4T-hMOP-R and 2T-hMOP-
R, respectively. (B) Crystal structure (yellow) and the 4T-hMOP-R model 
(green) are superimposed. (C) Crystal structure (yellow) and the 2T-hMOP-R 
model (gray) are superimposed. The red arrow indicates the different position 
of the extracellular half of the TM1 helix.
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The extracellular loop (EC2)

An interesting case is the structure adopted by the second 
extracellular loop (EC2) that, when compared with TM region, presents 
a larger sequence diversity among the µ receptor and the template 
proteins. In the models the structure of EC2 was modeled mainly using 
the information from the β2 adrenergic receptor in 2T-hMOP-R and β2 
and β1 adrenergic receptors in 4T-hMOP-R. In both cases, EC2 forms 
a short helix, partially inherited from the adrenergic receptors. In the 

crystal structure of murine µ opioid receptor the EC2 loop forms a 
β-sheet structure. Interestingly, the positions of the cysteine residues 
that form the highly conserved disulfide bond were predicted correctly 
in both models figure 4A and 4B.

The conserved DRY motif

Another important feature is the set of interactions around the 
conserved DRY motif (Figure 4C and 4D). In bovine rhodopsin, the 
highly conserved residue R1353.50 is forming a salt-bridge with E2476.30. 
This interaction, sometimes denominated “ionic lock”, is not present 
in the crystal structure of the µ opioid receptor (also this interaction 
is not seen in the other three templates utilized in this study). In the 
case of the crystal structure of the µ opioid receptor, the equivalent 
position, R1653.50, is interacting with the side chain of T2796.34. This 
polar interaction is correctly predicted in both, 4T-hMOP-R and 
2T-hMOP-R structures, (Figures 4C and 4D). In general terms, most 
of the residues around the DRY motif, as well as the interactions, are 
properly predicted in both representative models. The exception is 
the conformation of the long side chain of residue R179 located in 
the IC2 loop. The helical structure of this loop in 4T-hMOP-R is in 
good agreement with the structure seeing in the crystal structure, 
figure 4C. Because neither bovine rhodopsin nor the β2 adrenergic 
receptor presents helical content in this loop, the structure of IC2 in 
2T-hMOP-R does not reproduce correctly the topology seen in the 
crystal structure. Despite the correct prediction of the helical content 
of IC2 in 4T-hMOP-R, the conformation of the long side chain of R179 
is not properly modeled, even though the interaction of R179 with 
D1643.49 is correctly predicted in both 4T-hMOP-R 2T-hMOP-R and 
(Figure 4D). 

The binding pocket

The analysis of the binding pocket in the crystal structure of the 
µ opioid receptor shows important features that are conserved in the 
model structures. Both, 4T-hMOP-R and 2T-hMOP-R correctly orient 
the side chain of K2335.39 toward the binding pocket where it could 
covalently bind β-FNA, as observed in the crystal structure. The nine 
positions that directly interact with β-FNA in the crystal structure 
(D1473.32, Y1483.33, M1513.36, K2335.39, W2936.48, I2966.51, H2976.52, V3006.55, 
and Y3267.43) are displayed in figure 5A. These residues from the crystal 
structure are compared with the equivalent residues in 4T-hMOP-R 
and 2T-hMOP-R (Figures 5B and C). In general, the orientation of the 
side chains of these nine residues was correctly modeled with rmsd 
values with the side chains atom of the crystal structure of 1.4 Å and 1.6 
Å for the 4T-hMOP-R and 2T-hMOP-R, respectively, even though no 
ligand was present in creating the models. 

In conclusion, using the newly available crystal structure the 
murine µ opioid receptor, we demonstrated the relative accuracy of 

Figure 4: Structure of the EC2 and IC2. (A) and (B) Superposition of the EC2 
for the crystal structure (yellow) and the 4T-hMOP-R (green) and 2T-hMOP-R 
(gray) models, respectively. The conserved disulfide bond between C140 in 
TM3 and C217 in EC2 is displayed. The numbers below correspond to the 
residue number for the equivalent residues in the human μ opioid receptor 
(C219 and C142). (C) and (D) display views from the intracellular milieu, par-
ticularly interactions around the DRY motif. In (C) a comparison of the crystal 
structure (yellow) with 4T-hMOP-R (green) is shown. In (D) comparison of 
the crystal structure (yellow) with 2T-hMOP-R (gray) is shown. Relevant side 
chains are depicted.

Figure 5: Binding pocket comparison. (A) The binding pocket of the crystal 
structure of mouse μ opioid receptor with the structure of β-FNA (magenta) is 
displayed. The nine residues that directly interact with β-FNA are indicated. (B) 
and (C) Comparison of the nine residues in the binding pocket of the crystal 
structure (yellow) and the 4T-hMOP-R (green) and 2T-hMOP-R (gray) models, 
respectively.
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the homology modeling for µ opioid receptor. The addition of more 
templates improved the accuracy of the model. This was especially 
relevant in the case of important receptor regions such as the DRY 
motif, which has been related with receptor activation, and the ligand 
binding pocket. Additionally, this study shows that some degree of 
receptor sequence similarity is useful in homology modeling: in the 
case of the loop EC2 where little consensus in about the alignment was 
observed, a β-sheet rather than α-helical structure was observed in 
the crystal structure. The findings have significant implication for the 
construction of model structures of GPCRs, particularly those of the 
same family, where crystal structures are still unavailable. Such models 
can guide the interpretation of experimental findings, the creation of 
structure-based models for receptor activation, and the formulation of 
hypotheses regarding these important receptors.
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