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Doubly Robust Causal Inference With Complex Parameters

Abstract
Semiparametric doubly robust methods for causal inference help protect against bias due to model
misspecification, while also reducing sensitivity to the curse of dimensionality (e.g., when high-dimensional
covariate adjustment is necessary). However, doubly robust methods have not yet been developed in
numerous important settings. In particular, standard semiparametric theory mostly only considers
independent and identically distributed samples and smooth parameters that can be estimated at classical
root-n rates. In this dissertation we extend this theory and develop novel methodology for three settings
outside these bounds: (1) matched cohort studies, (2) nonparametric dose-response estimation, and (3)
complex high-dimensional effects with continuous instrumental variables. After giving an introduction in
Chapter 1, we show in Chapter 2 that, for matched cohort studies, efficient and doubly robust estimators of
effects on the treated are computationally equivalent to standard estimators that ignore the non-standard
sampling. We also show that matched cohort studies are often more efficient than random sampling for
estimating effects on the treated, and derive the optimal number of matches for given matching variables. We
apply our methods in a study of the effect of hysterectomy on the risk of cardiovascular disease. In Chapter 3
we develop a novel approach for causal dose-response curve estimation that is doubly robust without
requiring any parametric assumptions, and which naturally incorporates general off-the-shelf machine
learning. We derive asymptotic properties for a kernel-based version of our approach and propose a data-
driven method for bandwidth selection. The methods are used to study the effect of hospital nurse staffing on
excess readmissions penalties. In Chapter 4 we develop novel estimators of the local instrumental variable
curve, which represents the treatment effect among compliers who would take treatment when the instrument
passes some threshold. Our methods do not require parametric assumptions, allow for flexible data-adaptive
estimation of effect modification, and are doubly robust. We derive asymptotic properties under weak
conditions, and use the methods to study infant mortality effects of neonatal intensive care units with high
versus low technical capacity, using travel time as an instrument.
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ABSTRACT

DOUBLY ROBUST CAUSAL INFERENCE WITH COMPLEX PARAMETERS

Edward H. Kennedy

Dylan S. Small

Semiparametric doubly robust methods for causal inference help protect against bias due

to model misspecification, while also reducing sensitivity to the curse of dimensionality

(e.g., when high-dimensional covariate adjustment is necessary). However, doubly robust

methods have not yet been developed in numerous important settings. In particular, stan-

dard semiparametric theory mostly only considers independent and identically distributed

samples and smooth parameters that can be estimated at classical root-n rates. In this

dissertation we extend this theory and develop novel methodology for three settings outside

these bounds: (1) matched cohort studies, (2) nonparametric dose-response estimation, and

(3) complex high-dimensional effects with continuous instrumental variables. After giving

an introduction in Chapter 1, we show in Chapter 2 that, for matched cohort studies, effi-

cient and doubly robust estimators of effects on the treated are computationally equivalent

to standard estimators that ignore the non-standard sampling. We also show that matched

cohort studies are often more efficient than random sampling for estimating effects on the

treated, and derive the optimal number of matches for given matching variables. We apply

our methods in a study of the effect of hysterectomy on the risk of cardiovascular dis-

ease. In Chapter 3 we develop a novel approach for causal dose-response curve estimation

that is doubly robust without requiring any parametric assumptions, and which naturally

incorporates general off-the-shelf machine learning. We derive asymptotic properties for

a kernel-based version of our approach and propose a data-driven method for bandwidth

selection. The methods are used to study the effect of hospital nurse staffing on excess

readmissions penalties. In Chapter 4 we develop novel estimators of the local instrumen-

tal variable curve, which represents the treatment effect among compliers who would take
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treatment when the instrument passes some threshold. Our methods do not require para-

metric assumptions, allow for flexible data-adaptive estimation of effect modification, and

are doubly robust. We derive asymptotic properties under weak conditions, and use the

methods to study infant mortality effects of neonatal intensive care units with high versus

low technical capacity, using travel time as an instrument.
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CHAPTER 1 : INTRODUCTION

Many important problems in causal inference, missing data, and other settings lead to pa-

rameters that can be estimated doubly robustly. A full characterization of what it means

to be doubly robust and when exactly double robustness is possible is an open problem.

However, the following illustration covers many useful examples. Consider a target pa-

rameter ψ (e.g., an average treatment effect) and a corresponding estimator ψ̂, which is

constructed based on a sample of observed data (Z1, ..., Zn). Suppose further that ψ̂ is a

regular asymptotically linear estimator with influence function ϕ, so that it has the repre-

sentation ψ̂ = ψ0 + Pn{ϕ(Z)} + op(1/
√
n), where Pn denotes the empirical measure with

Pn(f) = n−1
∑

i f(Zi), and Xn = op(rn) means Xn/rn converges in probability to zero.

Then the estimator ψ̂ is doubly robust if the influence function ϕ(·) = ϕ(·; η) = ϕ(·;π, µ)

depends on two nuisance functions η = (π, µ) (e.g., a propensity score and outcome re-

gression function) and satisfies E{ϕ(Z;π0, µ)} = E{ϕ(Z;π, µ0)} = E{ϕ(Z;π0, µ0)} = 0 for

arbitrary η = (π, µ). Thus the influence function has mean zero (and thus is an unbiased

estimating function) as long as one of the two nuisance functions is evaluated at the truth.

Doubly robust estimators have several crucial advantages. First, they give analysts two

independent chances at arriving at the truth in large samples, since they are consistent

as long as only one of two nuisance functions is consistently estimated (i.e., even if one is

misspecified). This helps protect against bias from model misspecification, which is partic-

ularly important in complex high-dimensional data settings where simple parametric model

assumptions are unrealistic. Second, doubly robust estimators are also less sensitive to the

curse of dimensionality than more standard estimators. This follows from the fact that they

can attain faster rates of convergence than the nuisance estimators they depend on (when

both are consistently estimated); this is not the case for standard plug-in estimators, which

rely on a single nuisance estimator. Thus, even after model selection and machine learning-

based covariate adjustment, doubly robust estimators can yield fast rates of convergence

and uniformly valid inference (e.g., confidence intervals).
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However, despite their many advantages and increasing popularity, doubly robust methods

have not yet been developed in numerous important settings. In particular, they have

mostly only been established for independent and identically distributed samples, and for

relatively straightforward target parameters that can be estimated at classical root-n rates

of convergence. In this dissertation we extend double robustness theory and develop novel

methodology for settings outside these bounds.

In Chapter 2 we consider semiparametric doubly robust estimation and inference in matched

cohort studies, which are a popular but non-standard sampling design. We show that effi-

cient doubly robust estimators of effects on the treated in such designs are computationally

equivalent to standard estimators that ignore the sampling, and explore various issues re-

lated to efficiency and study design. We apply our methods in a matched cohort study of

the effect of hysterectomy on the risk of cardiovascular disease. In Chapter 3 we develop

a novel nonparametric doubly robust approach for causal dose-response curve estimation,

which is an interesting but common example where double robustness is possible even

though standard root-n rates are not achievable. Our approach naturally incorporates gen-

eral off-the-shelf machine learning tools, and we explore its asymptotic properties under

weak conditions. We use our estimator to study the effect of hospital nurse staffing on ex-

cess readmissions penalties. Finally in Chapter 4 we develop novel semiparametric doubly

robust estimators of the local instrumental variable curve, which is a complex parameter

representing the treatment effect among compliers who would take treatment when the

instrument passes some threshold. We also develop an approach for doubly robust model

selection, and apply our methods to study the effects on infant mortality of delivery at high-

versus low-level neonatal intensive care units (using travel time as an instrument).

2



CHAPTER 2 : SEMIPARAMETRIC CAUSAL INFERENCE

IN MATCHED COHORT STUDIES

2.1. Abstract

Odds ratios can be estimated in case-control studies using standard logistic regression,

ignoring the outcome-dependent sampling. In this paper we discuss an analogous result

for treatment effects on the treated in matched cohort studies. Specifically, in studies

where a sample of treated subjects is observed along with a separate sample of possibly

matched controls, we show that efficient and doubly robust estimators of effects on the

treated are computationally equivalent to standard estimators, which ignore the matching

and exposure-based sampling. This is not the case for general average effects. We also show

that matched cohort studies are often more efficient than random sampling for estimating

effects on the treated, and derive the optimal number of matches for a given set of matching

variables. We illustrate our results via simulation and in a matched cohort study of the

effect of hysterectomy on the risk of cardiovascular disease.

2.2. Introduction

In this paper we consider matched cohort studies in which a sample of treated subjects

is observed along with a separate sample of possibly matched controls. Such studies are

particularly useful in settings where the treatment is relatively uncommon and it is expensive

to collect either the outcome data or the full set of covariates. These designs are also widely

used; according to PubMed the number of articles including both terms “matched” and

“cohort” has increased every year since 2000, and totals 19,581 as of 8 January 2015.

For example, Ingelsson et al. (2011) used a matched cohort design to estimate the effect

of hysterectomy on the risk of cardiovascular disease. They first identified all Swedish

women who underwent hysterectomies between 1973 and 2003 using the Swedish Inpatient

Register, and then for each of these women matched three additional women who did not

have a hysterectomy but who were the same age and lived in the same county. In this study

3



it was difficult to collect outcome data about cardiovascular events, as well as additional

covariate information such as socioeconomic status, because linkage to numerous additional

national health registers was required. More examples and general discussion of matched

cohort studies can be found in Jewell (2003) and Rothman et al. (2008).

Matched cohort studies are most often used for estimating treatment effects on the treated.

These effects can be of more interest than average effects, especially when treatment is

relatively rare and some subjects are very unlikely to receive it. A primary contribution of

this paper is to show that effects on the treated can be estimated in matched cohort studies

using standard methods, ignoring the study design; this is a cohort study analog of the

famous odds ratio result for case-control studies (Anderson, 1972; Prentice and Pyke, 1979).

To the best of our knowledge, this fact has never before been mentioned in the literature. It

means that, for example, even though propensity scores are not identified in matched cohort

designs, usual semiparametric, e.g., propensity score-based, doubly robust, estimators of the

effect on the treated can be applied without modification, and without requiring external

information about treatment prevalence or matched covariate distributions. Thus much of

the important literature on semiparametric estimation of effects on the treated (Heckman

et al., 1997; Hahn, 1998; Heckman et al., 1998; Hirano et al., 2003; Imbens, 2004; Abadie

and Imbens, 2006; Kline, 2011) is also relevant for matched cohort studies, even though this

work has mostly focused on simple random sampling.

A number of authors have considered causal inference in matched cohort study settings,

but none seem to have mentioned the above result. Heckman and Todd (2009) gave some

justification for using the propensity score in exposure-stratified studies without matching,

but did not discuss semiparametric theory or double robustness. Tchetgen Tchetgen and

Rotnitzky (2011) developed semiparametric theory and doubly robust estimators for the

conditional odds ratio but did not consider general marginal effects or efficiency across

study designs. Sjölander et al. (2012) and Sjölander and Greenland (2013) discussed using

likelihood-based regression methods, but did not consider using propensity scores. van der
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Laan et al. (2013) examined cohort studies for community-based interventions, but required

external information beyond the sample.

2.3. Setup

We consider the following study setup. Covariates L and outcome Y are observed for n1

treated subjects along with n0 controls, where n0 = kn1 is fixed so that k controls are

selected for each treated subject. In addition the controls can be matched to the treated on

a subset of discrete covariates W ⊆ L. We use W = L \W to denote the set of covariates

not used in matching, so that L = (W,W ). The observed data are (Z1, ..., Zn) with Z =

(L,A, Y ) and A an indicator of treatment, where by design we have that
∑

iAi = n1,∑
i(1 − Ai) = n0 = kn1, and Wi = Wj if subjects i and j are matched. If there is no

matching so that W = ∅ and W = L then we simply observe two separate random samples

of treated and control subjects.

The main statistical issue in a matched cohort study is the fact that the observations are

not independent and identically distributed from the population of interest. Specifically,

the proportion treated in the sample is fixed due to the exposure-stratified sampling, and

the distribution of the matched covariates is forced to be the same for the treated and

control subjects due to the matching. Although the implications for causal inference are

different, this setup is conceptually similiar to that of a case-control study, where sampling

is stratified by outcome (Breslow et al., 2000). As in case-control studies, although the

observations in a matched cohort study are not an independent and identically distributed

sample from the population distribution of interest, they can be viewed as an independent

and identically distributed sample from a particular modified distribution. This is called the

biased sampling model framework (Jewell, 1985; Bickel et al., 1993). In a matched cohort

study the observations (Z1, ..., Zn) arise from a biased distribution Q with density

q(z) = p(y | l, a)p(w | w, a)p(w | a = 1)q(a), (2.1)

5



Population: W = 0 W = 1

A = 1

W = 0 W = 1

A = 0

Sample: W = 0 W = 1 W = 0 W = 1
(Note: arrows denote random

samples of size n1/2)

Population: W = 0 W = 1

A = 1

W = 0 W = 1

A = 0

Sample: W = 0 W = 1 W = 0 W = 1

3

Figure 1: Schematic of matched cohort study design for 1:1 matching on a binary variable
W . Arrows denote random samples of size n1/2.

where P denotes the distribution of Z in a larger population of interest, with density given

by p(z) = p(y | l, a)p(l | a)p(a) with respect to some dominating measure, and q(a) is the

proportion of subjects in the sample receiving treatment level a. In general we write the

density under distribution F of variable X evaluated at value c as f(x = c), except when

the density we are referring to is unambiguous, e.g., f(x) denotes the density of X under F .

The likelihood can be written as
∏
i p(yi | li, ai)p(wi | wi, ai)q(ai)

∏
j p(wj | a = 1), where i

references units and j references matched strata. For illustration Figure 1 gives a schematic

of a matched cohort study in the simple case of 1:1 matching on a binary variable.

In subsequent sections we characterize causal treatment effects using potential outcome

notation (Rubin, 1974), and so let Y a denote the potential outcome that would have been

observed had treatment level a been applied. We further make use of some simplifying

notation. Specifically we use π(l) to denote the propensity score under P given by p(a = 1 |

l), and we use ξ(l) to denote the analog of the propensity score in the biased distribution

Q given by q(a = 1 | l). We also use µ(l, a) to denote the conditional mean of the outcome

given covariates and treatment E(Y | L = l, A = a), which is the same under both P and Q

whenever it exists. All expectations are taken under the distribution P of interest, unless

otherwise noted with a subscript, as in EQ.
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2.4. Identification and Estimation

Throughout we consider the following identifying assumptions, the third of which is com-

monly called no unmeasured confounding.

Assumption 2.1 (Consistency) If A = a then Y = Y a with probability one.

Assumption 2.2 (Positivity) For all l such that p(l) > 0, we have 0 < π(l) < 1.

Assumption 2.3 (Ignorability) For a ∈ {0, 1}, E(Y a | L,A = 1) = E(Y a | L,A = 0).

These assumptions are all typically satisfied by design in randomized trials, but in observa-

tional studies they may be violated and are generally untestable. Consistency ensures that

one potential outcome is observed for every subject, namely that potential outcome under

the treatment that was actually received; it can fail to hold if different versions of treatment

have different effects, or if there is interference, for example. Positivity says that treatment

is not assigned deterministically, in the sense that every subject has some positive probabil-

ity of receiving both treatment and control, regardless of covariates. Ignorability says that

the mean potential outcomes are the same for both treatment groups once we condition on

the covariates, and requires sufficiently many relevant covariates to be collected.

It is well-known and straightforward to show that E(Y a) =
∫
µ(l, a)p(l)dν(l) under As-

sumptions 2.1–2.3, where ν is a dominating measure for the distribution of L. Importantly,

his expression is identified under P , but not under Q since we observe q(l) 6= p(l) under Q.

Note that

p(l) = q(w | w, a = 0)p(w | a = 0)p(a = 0) + q(w | w, a = 1)q(w | a = 1)p(a = 1)

since q(w | w, a) = p(w | w, a) and q(w | a = 1) = p(w | a = 1), but at least p(a)

is not identified under Q. Without matching, the covariate distributions given treatment

p(l | a) would be identified, but matching further removes identification of the covariate
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distribution among the controls since it forces q(w | a = 0) = p(w | a = 1). Thus,

identification of average effects E(Y a) cannot be achieved under matched cohort sampling

without external knowledge of the treatment proportions p(a) and the matched covariate

density p(w | a = 0).

If p(a) and p(w | a = 0) are known from external data, however, one can construct estimators

of E(Y a), or any other parameter defined on P , based on appropriately weighted estimating

functions, as in van der Laan et al. (2013). Weighting is necessary since estimating functions

based on P will in general be biased, e.g., not have mean zero, under Q. For use in

matched cohort studies, estimating functions under P should be weighted by b(W,A) =

{p(A)/q(A)}{p(W | A)/p(W | a = 1)} since p(z) = q(z)b(w, a).

In many cases such external information is not available, especially when W is high-

dimensional. But this is not problematic for estimation of the effect on the treated, which

is given by ψ = E(Y 1 − Y 0 | A = 1). Under Assumptions 2.1–2.3 we have

ψ =

∫
y p(y | a = 1) dη(y)−

∫
µ(l, 0) p(l | a = 1) dν(l),

where η is a dominating measure for the outcome distribution; this follows from the same

logic as in Hahn (1998) and elsewhere. Thus ψ is identified under Assumptions 2.1–2.3

in any study design that identifies p(y | l, a) and p(l | a = 1). Since these densities are

components of the density of distribution Q given in (2.1), it follows that ψ is identified

under matched cohort sampling.

As discussed by Breslow et al. (2000) in the context of case-control studies, this fact alone

also implies that influence functions for ψ under sampling from Q are equivalent to those

under sampling from P , but with densities under distribution Q replacing those under

P . For the sake of completeness, we follow Breslow et al. (2000) and prove this result

explicitly in the Appendix. To do so we use the same approach as Hahn (1998), with theory

developed by Robins and Rotnitzky (1995) and Robins et al. (1995) and discussed in more
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detail elsewhere (Bickel et al., 1993; van der Laan and Robins, 2003; Tsiatis, 2006). The

result can also be derived by weighting the efficient influence function under P by the term

b(W,A) as discussed above.

Theorem 2.1 The efficient influence function for the effect on the treated ψ under a non-

parametric model with distribution Q is

ϕ(µ, ξ;ψ) =
A

q(a = 1)

{
Y − µ(L, 0)− ψ

}
− 1−A
q(a = 1)

{
ξ(L)

1− ξ(L)

}{
Y − µ(L, 0)

}
.

A simple estimator based on the efficient influence function can be formulated by using the

efficient influence function ϕ as an estimating function, after plugging in estimates µ̂ and ξ̂

of the nuisance functions, i.e., solving Qn{ϕ(µ̂, ξ̂;ψ)} = 0 where Qn is the empirical measure

under Q. For example, µ̂(l, 0) could be predicted values from a regression of the outcome

on covariates using only control subjects, and ξ̂(l) could be predicted values from a logistic

regression of treatment on covariates. We show that this estimator is doubly robust and

derive its asymptotic properties in the Appendix.

Computationally, such estimators are exactly equivalent to those that would be used in a

simple study with standard random sampling. Thus, just as in case-control studies where

one can ignore the outcome-dependent sampling and regress outcome on exposure using

logistic regression to obtain valid odds ratio estimates, the above result justifies using stan-

dard estimators of effects on the treated in cohort studies with exposure-dependent sampling

and matching. In particular, one can use propensity score-based estimators as usual even

though the propensity score π(l) is not identified under matched cohort sampling. In the

Appendix we discuss estimation of effect modification among the treated.

2.5. Efficiency and Design

The semiparametric efficiency bound under sampling from Q is the variance of the efficient

influence function from Theorem 2.1. Letting σ2(l, a) = var(Y | L = l, A = a), it is shown
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in the Appendix that this efficiency bound can be expressed as

BQ =
Ω + Σ1

q(a = 1)
+
p(a = 0)

p(a = 1)

Σ∗0
q(a = 0)

, (2.2)

where Ω = var{µ(L, 1) − µ(L, 0) | A = 1}, Σ1 = E{σ2(L, 1) | A = 1}, and Σ∗0 =

E{ς(W ) | A = 0} with ς(w) = E[σ2(L, 0)π(L)/{1 − π(L)} | W = w,A = 1]. Letting

Σ0 = E[σ2(L, 0)π(L)/{1 − π(L)} | A = 1] = E{ς(W ) | A = 1}, the efficiency bound under

P can be similarly expressed as BP = (Ω + Σ1 + Σ0)/p(a = 1).

The expressions for the bounds BQ and BP can simplify in certain cases; we will consider

three such settings here. The simplest is one in which there are no covariates, i.e., L = ∅.

Then π(l) = p(a = 1) so that Σ∗0 = Σ0 = var(Y | A = 0)p(a = 1)/p(a = 0), and it also

follows that Ω = 0. Another setting of interest is when there are no matching variables, i.e.,

W = ∅. Then we again have Σ∗0 = Σ0, but without further simplification. Lastly we also

consider full matching, i.e., W = L. Then we have Σ∗0 = Σr
0, where Σr

0 = E{σ2(L, 0)p(a =

1)/p(a = 0) | A = 1} is the value of Σ0 we would see in a study had all subjects been

randomized to treatment with probability p(a = 1) regardless of covariates.

Using the above expressions for BQ and BP , it follows that BQ < BP if and only if

Σ∗0 <
q(a = 0)

p(a = 0)

{
Σ0 −

p(a = 1)− q(a = 1)

q(a = 1)

(
Ω + Σ1

)}
.

Clearly, there always exists a cohort study that can match the efficiency bound under

random sampling, since random sampling is equivalent to a cohort study with no matching

and with q(a = 1) = p(a = 1). In the next theorem we show the more interesting result

that there almost always exists a cohort study that is strictly more efficient than random

sampling.

Theorem 2.2 Suppose p(a = 1) 6= (Ω + Σ1)/(Ω + Σ1 + Σ0). Then there exists a cohort

study that is more efficient than random sampling for estimation of ψ. For example, an
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efficiency bound strictly smaller than BP can be attained via an unmatched cohort study

with

min

{
p(a = 1),

Ω + Σ1

Ω + Σ1 + Σ0

}
< q(a = 1) < max

{
p(a = 1),

Ω + Σ1

Ω + Σ1 + Σ0

}
.

A proof of the above result is given in the Appendix. To illustrate, consider a simple cohort

study with no covariates and let σ2a = var(Y | A = a). Then any cohort study with

p(a = 1) < q(a = 1) <
p(a = 0)σ21

p(a = 0)σ21 + p(a = 1)σ20
,

or the inequalities reversed, yields a smaller efficiency bound than random sampling. If

treatment is very rare or very common then nearly any cohort study will be more efficient

than random sampling, since then the condition approximates 0 < q(a = 1) < 1.

Matching can provide even more opportunities for efficiency gains. Consider two cohort

studies, one without matching, i.e., W = ∅, yielding efficiency bound Bu
Q and the other

fully matched, i.e., W = L, yielding efficiency bound Bm
Q . The difference between efficiency

bounds then equals

Bu
Q −Bm

Q =
1

q(a = 0)

p(a = 0)

p(a = 1)
E
[
σ2(L, 0)

{
π(L)

1− π(L)
− p(a = 1)

p(a = 0)

} ∣∣∣ A = 1

]
.

If there is no confounding so that π(l) = p(a = 1), then the bounds are clearly equal

and matching does not provide any efficiency gains. However, when there is confounding

the above will often be positive since π(l) will generally be larger than p(a = 1) among

the treated. For example, if σ2(l, 0) is constant then Bu
Q ≥ Bm

q by Jensen’s inequality.

This suggests that matched cohort studies will in general provide better efficiency than

unmatched cohort studies.

In principle one could design a fully efficient matched cohort study by minimizing the

expression for BQ given in (2.2) over choices of q(a = 1) = 1/(k + 1) and different sets of
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matching variables W . Optimizing over different matching variables would be difficult in

practice, but results for optimizing over q(a = 1) are given in the following theorem.

Theorem 2.3 Consider a cohort study with a fixed set of (possibly empty) matching vari-

ables and given sample size. The optimal number of matches that maximizes efficiency for

estimation of ψ is kopt = [{p(a = 0)/p(a = 1)}{Σ∗0/(Ω + Σ1)}]1/2.

In the simplest matched cohort study with no covariates, this expression simplifies to kopt =

σ0/σ1. Thus for such studies the optimal matching ratio does not depend on the treatment

prevalence, and in particular 1:1 matching is optimal if the variance of the outcome is

constant across treatment groups. As intuition would suggest, if the variance of the outcome

is greater among controls then more matched controls should be used, and if the variance

is greater among the treated then fewer matched controls should be used.

2.6. Simulations and Illustration

2.6.1. Simulation Study

To explore finite-sample properties we adapt the simulation setup from Kang and Schafer

(2007). Specifically we simulated Lj ∼ N(0, 1) for j = 1, ..., 4, π(l) = expit(−1.7 − l1 +

0.5l2−0.25l3−0.1l4) so that p(a = 1) = 0.20, and Y = µ(L,A)+ε for µ(l, a) = 200+13.7l1+

13.7
∑

j lj + 10a, and ε ∼ N(0, 1) so that ψ = 10. We generated matched cohort studies

with q(a = 1) = 0.5 and W = I(L1 > 0), which ensures that q(a = 1 | l) follows a logistic

model with covariates w and l. For each simulated dataset we applied inverse-probability-

weighted, regression, and doubly robust estimators, with confidence intervals computed via

sandwich standard errors. To misspecify models we transformed L as in Kang and Schafer

(2007).

As shown in Table 1, the inverse-probability-weighted and regression estimators were biased

when relying on misspecified models, while the doubly robust estimator performed well as

long as at least one model was correct. The doubly robust and regression estimators had
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Table 1: Bias, variance, and coverage based on 500 simulated 1:1 matched cohort studies

Correct model
Neither Treatment Outcome Both

n Est. Bias (SE) Cov Bias (SE) Cov Bias (SE) Cov Bias (SE) Cov

100 IPW −20 (129) 98 6 (172) 97 −20 (129) 98 6 (172) 97
Reg −54 (29) 68 −54 (29) 68 0 (2.3) 95 0 (2.3) 95
DR −41 (36) 76 −7 (35) 94 0 (2.5) 94 0 (2.7) 92

1000 IPW −27 (83) 84 −1 (95) 96 −27 (83) 84 −1 (95) 96
Reg −55 (30) 0 −55 (30) 0 0 (2.2) 95 0 (2.2) 95
DR −41 (33) 4 −1 (30) 94 0 (2.4) 95 0 (2.5) 96

IPW, inverse probability weighted; Reg, regression; DR, doubly robust; n, sample size; SE,
empirical standard error multiplied by n1/2; Cov, coverage (%).

similar efficiency when the outcome model was correct; when only the treatment model was

correct the doubly robust estimator was more efficient than the inverse-probability-weighted

estimator. Coverage was near 95% except under misspecification. In the Appendix we give

further results comparing with random sampling and different matching ratios.

2.6.2. Application

Here we analyze the 3:1 matched cohort study by Ingelsson et al. (2011) discussed in Section

2.2. We used the same three estimators as in the simulation study, with logistic regression

models for the treatment, i.e., hysterectomy, and outcome, i.e., cardiovascular disease within

10 years after enrollment. The matching covariates were birthyear and county of residence,

and the unmatched covariates were socioeconomic status and age at enrollment. For simplic-

ity we assumed independent censoring. As shown in Table 2, assuming no unmeasured con-

founding we estimate that hysterectomy yielded a statistically significant 0.55% increased

risk of cardiovascular disease within 10 years, among those who underwent hysterectomy.

We also used the formulas from Section 2.5 to analyze efficiency, by estimating the terms

in the bound BQ. For simplicity we assumed p(w | a) = p(w) and focused on varying

p(a). We estimate that 3:1 matched cohort sampling yields a smaller efficiency bound than

random sampling if p(a = 1) < 23%, and is more than twice as efficient if p(a = 1) < 7%.
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Table 2: Hysterectomy and 10-year cardiovascular risk

Method Estimate (%) SE (%) 95% CI p-value

IP-weighted 0.47 0.093 (0.29, 0.65) < 0.001
Regression 0.55 0.092 (0.37, 0.73) < 0.001
Doubly robust 0.55 0.092 (0.37, 0.73) < 0.001

CI, confidence interval; SE, standard error; IP, inverse-probability.

We also estimate that 3:1 matching is optimal if p(a = 1) = 3%, and that full matching

using socioeconomic status and age is beneficial if p(a = 1) < 23%. More details are in the

Appendix.
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CHAPTER 3 : NONPARAMETRIC METHODS FOR DOUBLY ROBUST

ESTIMATION OF CONTINUOUS TREATMENT EFFECTS

3.1. Abstract

Continuous treatments (e.g., doses) arise often in practice, but many available causal ef-

fect estimators are limited by either requiring parametric models for the effect curve, or

by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing

approach that requires only mild smoothness assumptions on the effect curve, and still al-

lows for misspecification of either the treatment density or outcome regression. We derive

asymptotic properties and give a procedure for data-driven bandwidth selection. The meth-

ods are illustrated via simulation and in a study of the effect of nurse staffing on hospital

readmissions penalties.

3.2. Introduction

Continuous treatments or exposures (such as dose, duration, and frequency) arise very often

in practice, especially in observational studies. Importantly, such treatments lead to effects

that are naturally described by curves (e.g., dose-response curves) rather than scalars, as

might be the case for binary treatments. Two major methodological challenges in continuous

treatment settings are (1) to allow for flexible estimation of the dose-response curve (for

example to discover underlying structure without imposing a priori shape restrictions),

and (2) to properly adjust for high-dimensional confounders (i.e., pre-treatment covariates

related to treatment assignment and outcome).

Consider a recent example involving the Hospital Readmissions Reduction Program, insti-

tuted by the Centers for Medicare & Medicaid Services in 2012, which aimed to reduce pre-

ventable hospital readmissions by penalizing hospitals with excess readmissions. McHugh

et al. (2013) were interested in whether nurse staffing (measured in nurse hours per patient

day) affected hospitals’ risk of excess readmissions penalty. The left panel of Figure 2 shows
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data for 2976 hospitals, with nurse staffing (the ‘treatment’) on the x-axis, whether each

hospital was penalized (the outcome) on the y-axis, and a loess curve fit to the data (with-

out any adjustment). One way to characterize effects is to imagine setting all hospitals’

nurse staffing to the same level, and seeing if changes in this level yield changes in excess

readmissions risk. Such questions cannot be answered by simply comparing hospitals’ risk

of penalty across levels of nurse staffing, since hospitals differ in many important ways that

could be related to both nurse staffing and excess readmissions (e.g., size, location, teach-

ing status, among many other factors). The right panel of Figure 2 displays the extent of

these hospital differences, showing for example that hospitals with more nurse staffing are

also more likely to be high-technology hospitals and see patients with higher socioeconomic

status. To correctly estimate the effect curve, and fairly compare the risk of readmissions

penalty at different nurse staffing levels, one must adjust for hospital characteristics appro-

priately.
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Figure 2: Left panel: Observed treatment and outcome data with unadjusted loess fit. Right
panel: Average covariate value as a function of exposure, after transforming to percentiles
to display on common scale.

In practice, the most common approach for estimating continuous treatment effects is based
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on regression modeling of how the outcome relates to covariates and treatment (e.g., Imbens

(2004), Hill (2011)). However, this approach relies entirely on correct specification of the

outcome model, does not incorporate available information about the treatment mechanism,

and is sensitive to the curse of dimensionality by inheriting the rate of convergence of the

outcome regression estimator. Hirano and Imbens (2004), Imai and van Dyk (2004), and

Galvao and Wang (2015) adapted propensity score-based approaches to the continuous

treatment setting, but these similarly rely on correct specification of at least a model for

treatment (e.g., the conditional treatment density).

In contrast, semiparametric doubly robust estimators (Robins and Rotnitzky, 2001; van der

Laan and Robins, 2003) are based on modeling both the treatment and outcome processes

and, remarkably, give consistent estimates of effects as long as one of these two nuisance

processes is modeled well enough (not necessarily both). Beyond giving two independent

chances at consistent estimation, doubly robust methods can also attain faster rates of

convergence than their nuisance (i.e., outcome and treatment process) estimators when

both models are consistently estimated; this makes them less sensitive to the curse of

dimensionality and can allow for inference even after using flexible machine learning-based

adjustment. However, standard semiparametric doubly robust methods for dose-response

estimation rely on parametric models for the effect curve, either by explicitly assuming

a parametric dose-response curve (Robins, 2000; van der Laan and Robins, 2003), or else

by projecting the true curve onto a parametric working model (Neugebauer and van der

Laan, 2007). Unfortunately, the first approach can lead to substantial bias under model

misspecification, and the second can be of limited practical use if the working model is far

away from the truth.

Recent work has extended semiparametric doubly robust methods to more complicated

nonparametric and high-dimensional settings. In a foundational paper, van der Laan and

Dudoit (2003) proposed a powerful cross-validation framework for estimator selection in

general censored data and causal inference problems. Their empirical risk minimization
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approach allows for global nonparametric modeling in general semiparametric settings in-

volving complex nuisance parameters. For example, Dı́az and van der Laan (2013) con-

sidered global modeling in the dose-response curve setting, and developed a doubly robust

substitution estimator of risk. In nonparameric problems it is also important to consider

non-global learning methods, e.g., via local and penalized modeling (Györfi et al., 2002).

Rubin and van der Laan (2005, 2006a,b) proposed extensions to such paradigms in nu-

merous important problems, but the former considered weighted averages of dose-response

curves and the latter did not consider doubly robust estimation.

In this paper we present a new approach for causal dose-response estimation that is doubly

robust without requiring parametric assumptions, and which can naturally incorporate gen-

eral machine learning methods. The approach is motivated by semiparametric theory for a

particular stochastic intervention effect and a corresponding doubly robust mapping. Our

method has a simple two-stage implementation that is fast and easy to use with standard

software: in the first stage a pseudo-outcome is constructed based on the doubly robust

mapping, and in the second stage the pseudo-outcome is regressed on treatment via off-the-

shelf nonparametric regression and machine learning tools. We provide asymptotic results

for a kernel version of our approach under weak assumptions, which only require mild

smoothness conditions on the effect curve and allow for flexible data-adaptive estimation of

relevant nuisance functions. We also discuss a simple method for bandwidth selection based

on cross-validation. The methods are illustrated via simulation, and in the study discussed

earlier about the effect of hospital nurse staffing on excess readmission penalties.

3.3. Background

3.3.1. Data and notation

Suppose we observe an independent and identically distributed sample (Z1, ...,Zn) where

Z = (L, A, Y ) has support Z = (L × A × Y). Here L denotes a vector of covariates, A a

continuous treatment or exposure, and Y some outcome of interest. We characterize causal
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effects using potential outcome notation (Rubin, 1974), and so let Y a denote the potential

outcome that would have been observed under treatment level a.

We denote the distribution of Z by P , with density p(z) = p(y | l, a)p(a | l)p(l) with

respect to some dominating measure. We let Pn denote the empirical measure so that

empirical averages n−1
∑

i f(Zi) can be written as Pn{f(Z)} =
∫
f(z)dPn(z). To simplify

the presentation we denote the mean outcome given covariates and treatment with µ(l, a) =

E(Y | L = l, A = a), denote the conditional treatment density given covariates with π(a |

l) = ∂
∂aP (A ≤ a | L = l), and denote the marginal treatment density with $(a) =

∂
∂aP (A ≤ a). Finally, we use ||f || = {

∫
f(z)2dP (z)}1/2 to denote the L2(P ) norm, and we

use ||f ||X = supx∈X |f(x)| to denote the uniform norm of a generic function f over x ∈ X .

3.3.2. Identification

In this paper our goal is to estimate the effect curve θ(a) = E(Y a). Since this quantity

is defined in terms of potential outcomes that are not directly observed, we must consider

assumptions under which it can be expressed in terms of observed data. A full treatment of

identification in the presence of continuous random variables was given by Gill and Robins

(2001); we refer the reader there for details. The assumptions most commonly employed

for identification are as follows (the following must hold for any a ∈ A at which θ(a) is to

be identified).

Assumption 3.1 Consistency: A = a implies Y = Y a.

Assumption 3.2 Positivity: π(a | l) ≥ πmin > 0 for all l ∈ L.

Assumption 3.3 Ignorability: E(Y a | L, A) = E(Y a | L).

Assumptions 3.1–3.3 can all be satisfied by design in randomized trials, but in observational

studies they may be violated and are generally untestable. The consistency assumption en-

sures that potential outcomes are defined uniquely by a subject’s own treatment level and

not others’ levels (i.e., no interference), and also not by the way treatment is administered
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(i.e., no different versions of treatment). Positivity says that treatment is not assigned

deterministically, in the sense that every subject has some chance of receiving treatment

level a, regardless of covariates; this can be a particularly strong assumption with contin-

uous treatments. Ignorability says that the mean potential outcome under level a is the

same across treatment levels once we condition on covariates (i.e., treatment assignment is

unrelated to potential outcomes within strata of covariates), and requires sufficiently many

relevant covariates to be collected. Using the same logic as with discrete treatments, it

is straightforward to show that under Assumptions 3.1–3.3 the effect curve θ(a) can be

identified with observed data as

θ(a) = E{µ(L, a)} =

∫
L
µ(l, a) dP (l). (3.1)

Even if we are not willing to rely on Assumptions 3.1 and 3.3, it may often still be of interest

to estimate θ(a) as an adjusted measure of association, defined purely in terms of observed

data.

3.4. Main Results

In this section we develop doubly robust estimators of the effect curve θ(a) without relying

on parametric models. First we describe the logic behind our proposed approach, which is

based on finding a doubly robust mapping whose conditional expectation given treatment

equals the effect curve of interest, as long as one of two nuisance parameters is correctly

specified. To find this mapping, we derive a novel efficient influence function for a stochastic

intervention parameter. Our proposed method is based on regressing this doubly robust

mapping on treatment using off-the-shelf nonparametric regression and machine learning

methods. We derive asymptotic properties for a particular version of this approach based

on local-linear kernel smoothing. Specifically, we give conditions for consistency and asymp-

totic normality, and describe how to use cross-validation to select the bandwidth parameter

in practice.
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3.4.1. Setup and doubly robust mapping

If θ(a) is assumed known up to a finite-dimensional parameter, for example θ(a) = ψ0+ψ1a

for (ψ0, ψ1) ∈ R2, then standard semiparametric theory can be used to derive the efficient

influence function, from which one can obtain the efficiency bound and an efficient estimator

(Bickel et al., 1993; van der Laan and Robins, 2003; Tsiatis, 2006). However, such theory is

not directly available if we only assume, for example, mild smoothness conditions on θ(a)

(e.g., differentiability). This is due to the fact that without parametric assumptions θ(a)

is not pathwise differentiable, and root-n consistent estimators do not exist (Bickel et al.,

1993; Dı́az and van der Laan, 2013). In this case there is no developed efficiency theory.

To derive doubly robust estimators for θ(a) without relying on parametric models, we adapt

semiparametric theory in a novel way similar to the approach of Rubin and van der Laan

(2005, 2006a). Our goal is to find a function ξ(Z;π, µ) of the observed data Z and nuisance

functions (π, µ) such that

E{ξ(Z;π, µ) | A = a} = θ(a)

if either π = π or µ = µ (not necessarily both). Given such a mapping, off-the-shelf

nonparametric regression and machine learning methods could be used to estimate θ(a) by

regressing ξ(Z; π̂, µ̂) on treatment A, based on estimates π̂ and µ̂.

This doubly robust mapping is intimately related to semiparametric theory and especially

the efficient influence function for a particular parameter. Specifically, if E{ξ(Z;π, µ) | A =

a} = θ(a) then it follows that E{ξ(Z;π, µ)} = ψ for

ψ =

∫
A

∫
L
µ(l, a)$(a) dP (l) da. (3.2)

This indicates that a natural candidate for the unknown mapping ξ(Z;π, µ) would be a

component of the efficient influence function for the parameter ψ, since for regular pa-

rameters such as ψ in semi- or non-parametric models, the efficient influence function
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φ(Z;π, µ) will be doubly robust in the sense that E{φ(Z;π, µ)} = 0, if either π = π

or µ = µ (Robins and Rotnitzky, 2001; van der Laan and Robins, 2003). This implies

E{φ(Z;π, µ)} = E{ξ(Z;π, µ) − ψ} = 0 so that E{ξ(Z;π, µ)} = ψ if either π = π or µ = µ.

This kind of logic was first used by Rubin and van der Laan (2005, 2006a) for full data pa-

rameters that are functions of covariates rather than treatment (i.e., censoring) variables.

The parameter ψ is also of interest in its own right. In particular, it represents the average

outcome under an intervention that randomly assigns treatment based on the density $

(i.e., a randomized trial). Thus comparing the value of this parameter to the average

observed outcome provides a test of treatment effect; if the values differ significantly, then

there is evidence that the observational treatment mechanism impacts outcomes for at least

some units. Stochastic interventions were discussed by Dı́az and van der Laan (2012),

for example, but the efficient influence function for ψ has not been given before under a

nonparametric model. Thus in Theorem 3.1 below we give the efficient influence function

for this parameter respecting the fact that the marginal density $ is unknown.

Theorem 3.1 Under a nonparametric model, the efficient influence function for ψ defined

in (3.2) is ξ(Z;π, µ)− ψ +
∫
A{µ(L, a)−

∫
L µ(l, a)dP (l)}$(a)da, where

ξ(Z;π, µ) =
Y − µ(L, A)

π(A | L)

∫
L
π(A | l) dP (l) +

∫
L
µ(l, A) dP (l).

A proof of Theorem 3.1 is given in the Appendix. Importantly, we also prove that the

function ξ(Z;π, µ) satisfies its desired double robustness property, i.e., that E{ξ(Z;π, µ) |

A = a} = θ(a) if either π = π or µ = µ. As mentioned earlier, this motivates estimating

the effect curve θ(a) by estimating the nuisance functions (π, µ), and then regressing the

estimated pseudo-outcome

ξ̂(Z; π̂, µ̂) =
Y − µ̂(L, A)

π̂(A | L)

∫
L
π̂(A | l) dPn(l) +

∫
L
µ̂(l, A) dPn(l)
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on treatment A using off-the-shelf nonparametric regression or machine learning methods.

In the next subsection we describe our proposed approach in more detail, and analyze the

properties of an estimator based on kernel estimation.

3.4.2. Proposed Approach

In the previous subsection we derived a doubly robust mapping ξ(Z;π, µ) for which E{ξ(Z;π, µ) |

A = a} = θ(a) as long as either π = π or µ = µ. This indicates that doubly robust nonpara-

metric estimation of θ(a) can proceed with a simple two-step procedure, where both steps

can be accomplished with flexible machine learning. To summarize, our proposed method

is:

1. Estimate nuisance functions (π, µ) and obtain predicted values.

2. Construct pseudo-outcome ξ̂(Z; π̂, µ̂) and regress on treatment variable A.

We give sample code implementing the above in the Appendix.

In what follows we present results for an estimator that uses kernel smoothing in Step 2.

Such an approach is related to kernel approximation of a full-data parameter in censored

data settings. Robins and Rotnitzky (2001) gave general discussion and considered density

estimation with missing data, while van der Laan and Robins (1998), van der Laan and Yu

(2001), and van der Vaart and van der Laan (2006) used the approach for current status

survival analysis; Wang et al. (2010) used it implicitly for nonparametric regression with

missing outcomes.

As indicated above, however, a wide variety of flexible methods could be used in our Step 2,

including local partitioning or nearest neighbor estimation, global series or spline methods

with complexity penalties, or cross-validation-based combinations of methods, e.g., Super

Learner (van der Laan et al., 2007). In general we expect the results we report in this paper

to hold for many such methods. To see why, let θ̂ denote the proposed estimator described

above (based on some initial nuisance estimators (π̂, µ̂) and a particular regression method
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in Step 2), and let θ denote an estimator based on an oracle version of the pseudo-outcome

ξ(Z;π, µ) where (π, µ) are the unknown limits to which the estimators (π̂, µ̂) converge. Then

||θ̂ − θ|| ≤ ||θ̂ − θ|| + ||θ − θ||, where the second term on the right can be analyzed with

standard theory since θ is a regression of a simple fixed function ξ(Z;π, µ) on A, and the

first term will be small depending on the convergence rates of π̂ and µ̂. A similar point was

discussed by Rubin and van der Laan (2005, 2006a).

The local linear kernel version of our estimator is θ̂h(a) = gha(a)Tβ̂h(a), where gha(t) =

(1, t−ah )T and

β̂h(a) = arg min
β∈R2

Pn
[
Kha(A)

{
ξ̂(Z; π̂, µ̂)− gha(A)Tβ

}2
]

(3.3)

for Kha(t) = h−1K{(t− a)/h} with K a standard kernel function (e.g., a symmetric prob-

ability density) and h a scalar bandwidth parameter. This is a standard local linear kernel

regression of ξ̂(Z; π̂, µ̂) on A. For overviews of kernel smoothing see, e.g., Fan and Gijbels

(1996), Wasserman (2006), and Li and Racine (2007). Under near-violations of positivity,

the above estimator could potentially lie outside the range of possible values for θ(a) (e.g.,

if Y is binary); thus we present a targeted minimum loss-based estimator (TMLE) in the

Appendix, which does not have this problem. Alternatively one could project onto a logistic

model in (3.3).

3.4.3. Consistency of Kernel Estimator

In Theorem 3.2 below we give conditions under which the proposed kernel estimator θ̂h(a)

is consistent for θ(a), and also give the corresponding rate of convergence. In general this

result follows if the bandwidth decreases with sample size slowly enough, and if either of

the nuisance functions π or µ is estimated well enough (not necessarily both). The rate of

convergence is a sum of two rates: one from standard nonparametric regression problems

(depending on the bandwidth h), and another coming from estimation of the nuisance

functions π and µ.
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Theorem 3.2 Let π and µ denote fixed functions to which π̂ and µ̂ converge in the sense

that ||π̂−π||Z = op(1) and ||µ̂−µ||Z = op(1), and let a ∈ A denote a point in the interior of

the compact support A of A. Along with Assumption 3.2 (Positivity), assume the following:

1. Either π = π or µ = µ.

2. The bandwidth h = hn satisfies h→ 0 and nh3 →∞ as n→∞.

3. K is a continuous symmetric probability density with support [−1, 1].

4. θ(a) is twice continuously differentiable, and both $(a) and the conditional density of

ξ(Z;π, µ) given A = a are continuous as functions of a.

5. The estimators (π̂, µ̂) and their limits (π, µ) are contained in uniformly bounded func-

tion classes with finite uniform entropy integrals (as defined in the Appendix), with

1/π̂ and 1/π also uniformly bounded.

Then

|θ̂h(a)− θ(a)| = Op

(
1√
nh

+ h2 + rn(a)sn(a)

)
where

sup
t:|t−a|≤h

||π̂(t | L)− π(t | L)|| = Op

(
r(n)

)
sup

t:|t−a|≤h
||µ̂(L, t)− µ(L, t)|| = Op

(
s(n)

)
are the ‘local’ rates of convergence of π̂ and µ̂ near A = a.

A proof of Theorem 3.2 is given in the Appendix. The required conditions are all quite weak.

Condition (a) is arguably the most important of the conditions, and says that at least one

of the estimators π̂ or µ̂ must be consistent for the true π or µ in terms of the uniform norm.

Since only one of the nuisance estimators is required to be consistent (not both), Theorem

3.2 shows the double robustness of the proposed estimator θ̂h(a). Conditions (b), (c), and

(d) are all common in standard nonparametric regression problems, while condition (e)
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involves the complexity of the estimators π̂ and µ̂ (and their limits), and is a usual minimal

regularity condition for problems involving nuisance functions.

Condition (b) says that the bandwidth parameter h decreases with sample size but not

too quickly (so that nh3 → ∞). This is a standard requirement in local linear kernel

smoothing (Fan and Gijbels, 1996; Wasserman, 2006; Li and Racine, 2007). Note that since

nh = nh3/h2, it is implied that nh → ∞; thus one can view nh as a kind of effective

or local sample size. Roughly speaking, the bandwidth h needs to go to zero in order to

control bias, while the local sample size nh (and nh3) needs to go to infinity in order to

control variance. We postpone more detailed discussion of the bandwidth parameter until

a later subsection, where we detail how it can be chosen in practice using cross-validation.

Condition (c) puts some minimal restrictions on the kernel function. It is clearly satisfied for

most common kernels, including the uniform kernel K(u) = I(|u| ≤ 1)/2, the Epanechnikov

kernel K(u) = (3/4)(1 − u2)I(|u| ≤ 1), and a truncated version of the Gaussian kernel

K(u) = I(|u| ≤ 1)φ(u)/{2Φ(1)−1} with φ and Φ the density and distribution functions for a

standard normal random variable. Condition (d) restricts the smoothness of the effect curve

θ(a), the density of $(a), and the conditional density given A = a of the limiting pseudo-

outcome ξ(Z;π, µ). These are standard smoothness conditions imposed in nonparametric

regression problems. By assuming more smoothness of θ(a), bias-reducing (higher-order)

kernels could achieve faster rates of convergence and even approach the parametric root-n

rate (see for example Fan and Gijbels (1996), Wasserman (2006), and others).

Condition (e) puts a mild restriction on how flexible the nuisance estimators (and their

corresponding limits) can be, although such uniform entropy conditions still allow for a wide

array of data-adaptive estimators and, importantly, do not require the use of parametric

models. Andrews (1994) (Section 4), van der Vaart and Wellner (1996) (Sections 2.6–2.7),

and van der Vaart (2000) (Examples 19.6–19.12) discuss a wide variety of function classes

with finite uniform entropy integrals. Examples include standard parametric classes of

functions indexed by Euclidean parameters (e.g., parametric functions satisfying a Lipschitz
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condition), smooth functions with uniformly bounded partial derivatives, Sobolev classes of

functions, as well as convex combinations or Lipschitz transformations of any such sets of

functions. The uniform entropy restriction in condition (e) is therefore not a very strong

restriction in practice; however, it could be further weakened via sample splitting techniques

(see Chapter 27 of van der Laan and Rose (2011)).

The convergence rate given in the result of Theorem 3.2 is a sum of two components.

The first, 1/
√
nh+ h2, is the rate achieved in standard nonparametric regression problems

without nuisance functions. Note that if h tends to zero slowly, then 1/
√
nh will tend

to zero quickly but h2 will tend to zero more slowly; similarly if h tends to zero quickly,

then h2 will as well, but 1/
√
nh will tend to zero more slowly. Balancing these two terms

requires h ∼ n−1/5 so that 1/
√
nh ∼ h2 ∼ n−2/5. This is the optimal pointwise rate

of convergence for standard nonparametric regression on a single covariate, for a twice

continuously differentiable regression function.

The second component, rn(a)sn(a), is the product of the local rates of convergence (around

A = a) of the nuisance estimators π̂ and µ̂ towards their targets π and µ. Thus if the

nuisance function estimates converge slowly (due to the curse of dimensionality), then the

convergence rate of θ̂h(a) will also be slow. However, since the term is a product, we

have two chances at obtaining fast convergence rates, showing the bias-reducing benefit of

doubly robust estimators. The usual explanation of double robustness is that, even if µ̂ is

misspecified so that sn(a) = O(1), then as long as π̂ is consistent, i.e., rn(a) = o(1), we will

still have consistency since rn(a)sn(a) = o(1). But this idea also extends to settings when

both π̂ and µ̂ are consistent. For example suppose h ∼ n−1/5 so that 1/
√
nh+ h2 ∼ n−2/5,

and suppose π̂ and µ̂ are locally consistent with rates rn(a) = n−2/5 and sn(a) = n−1/10.

Then the product is rn(a)sn(a) = O(n−1/2) = o(n−2/5) and the contribution from the

nuisance functions is asymptotically negligible, in the sense that the proposed estimator

has the same convergence rate as an infeasible estimator with known nuisance functions.

Contrast this with non-doubly-robust plug-in estimators whose convergence rate generally
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matches that of the nuisance function estimator, rather than being faster (van der Vaart,

2014).

In the Appendix we give some discussion of uniform consistency, which, along with weak

convergence, will be pursued in more detail in future work.

3.4.4. Asymptotic Normality of Kernel Estimator

In the next theorem we show that if one or both of the nuisance functions are estimated at

fast enough rates, then the proposed estimator is asymptotically normal after appropriate

scaling.

Theorem 3.3 Consider the same setting as Theorem 3.2. Along with Assumption 3.2

(Positivity) and conditions (a)–(e) from Theorem 3.2, also assume that:

(f) The local convergence rates satisfy rn(a)sn(a) = op(1/
√
nh).

Then
√
nh
{
θ̂h(a)− θ(a) + bh(a)

}
 N

(
0,

σ2(a)
∫
K(u)2 du

$(a)

)
where bh(a) = θ′′(a)(h2/2)

∫
u2K(u) du+ o(h2), and

σ2(a) = E
[

τ2(L, a) + {µ(L, a)− µ(L, a)}2

{π(a | L)/$(a)}2/{π(a | L)/$(a)}

]
−
{
θ(a)−m(a)

}2

for τ2(l, a) = var(Y | L = l, A = a), $(a) = E{π(a | L)}, m(a) = E{µ(L, a)}.

The proof of Theorem 3.3 is given in the Appendix. Conditions (a)–(e) are the same as

in Theorem 3.2 and were discussed earlier. Condition (f) puts a restriction on the local

convergence rates of the nuisance estimators. This will in general require at least some

semiparametric modeling of the nuisance functions. Truly nonparametric estimators of π

and µ will typically converge at slow rates due to the curse of dimensionality, and will

generally not satisfy the rate requirement in the presence of multiple continuous covari-

ates. Condition (f) basically ensures that estimation of the nuisance functions is irrelevant
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asymptotically; depending on the specific nuisance estimators used, it could be possible

to give weaker but more complicated conditions that allow for a non-negligible asymptotic

contribution while still yielding asymptotic normality.

Importantly, the rate of convergence required by condition (g) of Theorem 3.3 is slower than

the root-n rate typically required in standard semiparametric settings where the parameter

of interest is finite-dimensional and Euclidean. For example, in a standard setting where the

support A is finite, a sufficient condition for yielding the requisite asymptotic negligibility

for attaining efficiency is rn(a) = sn(a) = o(n−1/4); however in our setting the weaker con-

dition rn(a) = sn(a) = o(n−1/5) would be sufficient if h ∼ n−1/5. Similarly, if one nuisance

estimator π̂ or µ̂ is computed with a correctly specified generalized additive model, then the

other nuisance estimator would ony need to be consistent (without a rate condition). This

is because, under regularity conditions and with optimal smoothing, a generalized additive

model estimator converges at rate Op(n
−2/5) (Horowitz, 2009), so that if the other nui-

sance estimator is merely consistent we have rn(a)sn(a) = O(n−2/5)o(1) = o(n−2/5), which

satisfies condition (f) as long as h ∼ n−1/5. In standard settings such flexible nuisance esti-

mation would make a non-negligible contribution to the limiting behavior of the estimator,

preventing asymptotic normality and root-n consistency.

Under the assumptions of Theorem 3.3, the proposed estimator is asymptotically normal

after appropriate scaling and centering. However, the scaling is by the square root of the

local sample size
√
nh rather than the usual parametric rate

√
n. This slower convergence

rate is a cost of making fewer assumptions (equivalently, the cost of better efficiency would

be less robustness); thus we have a typical bias-variance trade-off. As in standard non-

parametric regression, the estimator is consistent but not quite centered at θ(a); there is a

bias term of order O(h2), denoted bh(a). In fact the estimator is centered at a smoothed

version of the effect curve θ∗h(a) = gha(a)Tβh(a) = θ(a) + bh(a). This phenomenon is ubiq-

uitous in nonparametric regression, and complicates the process of computing confidence

bands. It is sometimes assumed that the bias term is o(1/
√
nh) and thus asymptotically
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negligible (e.g., by assuming h = o(n−1/5) so that nh5 → 0); this is called undersmoothing

and technically allows for the construction of valid confidence bands around θ(a). However,

there is little guidance about how to actually undersmooth in practice, so it is mostly a

technical device. We follow Wasserman (2006) and others by expressing uncertainty about

the estimator θ̂h(a) using confidence intervals centered at the smoothed data-dependent

parameter θ∗h(a). For example, under the conditions of Theorem 3.3, pointwise Wald 95%

confidence intervals can be constructed with θ̂h(a) ± 1.96σ̂/
√
n, where σ̂2 is the (1, 1) el-

ement of the sandwich variance estimate Pn{ϕ̂ha(Z)⊗2} based on the estimated efficient

influence function for βh(a) given by

ϕ̂ha(Z) = D̂−1ha

[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− gha(A)Tβ̂h(a)

}
+

∫
A

gha(t)Kha(t)
{
µ̂(L, t)− m̂(t)

}
$̂(t) dt

]

for D̂ha = Pn{gha(A)Kha(A)gT
ha}, m̂(t) = Pn{µ̂(L, t)}, $̂(t) = Pn{π̂(t | L)}.

3.4.5. Data-Driven Bandwidth Selection

The choice of smoothing parameter is critical for any nonparametric method; too much

smoothing yields large biases and too little yields excessive variance. In this subsection

we discuss how to use cross-validation to choose the relevant bandwidth parameter h. In

general the method we propose parallels those used in standard nonparametric regression

settings, and can give similar optimality properties.

We can exploit the fact that our method can be cast as a non-standard nonparametric

regression problem, and borrow from the wealth of literature on bandwidth selection there.

Specifically, the logic behind Theorem 3.3 (i.e., that nuisance function estimation can be

asymptotically irrelevant) can be adapted to the bandwidth selection setting, by treating

the pseudo-outcome ξ(Z; π̂, µ̂) as known and using for example the bandwidth selection

framework from Härdle et al. (1988). These authors proposed a unified selection approach

that includes generalized cross-validation, Akaike’s information criterion, and leave-one-out
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cross-validation as special cases, and showed the asymptotic equivalence and optimality of

such approaches. In our setting, leave-one-out cross-validation is attractive because of its

computational ease. The simplest analog of leave-one-out cross-validation for our problem

would be to select the optimal bandwidth from some set H with

ĥopt = arg min
h∈H

n∑
i=1

{
ξ̂(Zi; π̂, µ̂)− θ̂h(Ai)

1− Ŵh(Ai)

}2

,

where Ŵh(ai) = (1, 0)Pn{ghai(A)Khai(A)ghai(A)T}−1(1, 0)Th−1K(0) is the ith diagonal of

the so-called smoothing or hat matrix. The properties of this approach can be derived

using logic similar to that in Theorem 3.3, e.g., by adapting results from Li and Racine

(2004). Alternatively one could split the sample, estimate the nuisance functions in one half,

and then do leave-one-out cross-validation in the other half, treating the pseudo-outcomes

estimated in the other half as known. We expect these approaches to be asymptotically

equivalent to an oracle selector.

An alternative option would be to use the k-fold cross-validation approach of van der Laan

and Dudoit (2003) or Dı́az and van der Laan (2013). This would entail randomly splitting

the data into k parts, estimating the nuisance functions and the effect curve on (k−1) train-

ing folds, using these estimates to compute measures of risk on the kth test fold, and then

repeating across all k folds and averaging the risk estimates. One would then repeat this

process for each bandwidth value h in some set H, and pick that which minimized the esti-

mated cross-validated risk. van der Laan and Dudoit (2003) gave finite-sample and asymp-

totic results showing that the resulting estimator behaves similarly to an oracle estimator

that minimizes the true unknown cross-validated risk. Unfortunately this cross-validation

process can be more computationally intensive than the above leave-one-out method, es-

pecially if the nuisance functions are estimated with flexible computation-heavy methods.

However this approach will be crucial when incorporating general machine learning and

moving beyond linear kernel smoothers.
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3.5. Simulation Study

We used simulation to examine the finite-sample properties of our proposed methods.

Specifically we simulated from a model with normally distributed covariates

L = (L1, ..., L4)
T ∼ N(0, I4),

Beta distributed exposure

(A/20) | L ∼ Beta{λ(L), 1− λ(L)},

logit λ(L) = −0.8 + 0.1L1 + 0.1L2 − 0.1L3 + 0.2L4,

and a binary outcome

Y | L, A ∼ Bernoulli{µ(L, A)},

logit µ(L, A) = 1 + (0.2, 0.2, 0.3,−0.1)L +A(0.1− 0.1L1 + 0.1L3 − 0.132A2).

The above setup roughly matches the data example from the next section. Figure 3 shows

a plot of the effect curve θ(a) = E{µ(L, a)} induced by the simulation setup, along with

treatment versus outcome data for one simulated dataset (with n = 1000).

To analyze the simulated data we used three different estimators: a marginalized regression

(plug-in) estimator m̂(a) = Pn{µ̂(L, a)}, and two different versions of the proposed local

linear kernel estimator. Specifically we used an inverse-probability-weighted approach first

developed by Rubin and van der Laan (2006b), which relies solely on a treatment model

estimator π̂ (equivalent to setting µ̂ = 0), and the standard doubly robust version that used

both estimators π̂ and µ̂. To model the conditional treatment density π we used logistic

regression to estimate the parameters of the mean function λ(l); we separately considered

correctly specifying this mean function, and then also misspecifying the mean function by

transforming the covariates with the same covariate transformations as in Kang and Schafer

(2007). To estimate the outcome model µ we again used logistic regression, considering a
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Figure 3: Plot of effect curve induced by simulation setup, with treatment and outcome
data from one simulated dataset with n = 1000.

correctly specified model and then a misspecified model that used the same transformed

covariates as with π and also left out the cubic term in a (but kept all other interactions).

To select the bandwidth we used the leave-one-out approach proposed in Section 3.4.5,

which treats the pseudo-outcomes as known. For comparison we also considered an oracle

approach that picked the bandwidth by minimizing the oracle risk Pn[{θ(A) − θ̂h(A)}2].

In both cases we found the minimum bandwidth value in the range H = [0.01, 50] using

numerical optimization.

We generated 500 simulated datasets for each of three sample sizes, n = 100, 1000, and

10000. To assess the quality of the estimates across simulations we calculated empirical
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Table 3: Integrated bias and root mean squared error (500 simulations)

Bias (RMSE) when correct model is:
n Method Neither Treatment Outcome Both

100 Reg 2.67 (5.54) 2.67 (5.54) 0.62 (5.25) 0.62 (5.25)
IPW 2.26 (8.49) 1.64 (8.57) 2.26 (8.49) 1.64 (8.57)
IPW* 2.26 (7.36) 1.58 (7.37) 2.26 (7.36) 1.58 (7.37)
DR 2.23 (6.27) 1.01 (6.28) 1.12 (5.92) 1.10 (6.50)
DR* 2.12 (5.48) 1.00 (5.36) 1.03 (5.08) 1.02 (5.65)

1000 Reg 2.62 (3.07) 2.62 (3.07) 0.06 (1.53) 0.06 (1.53)
IPW 2.38 (3.97) 0.86 (2.94) 2.38 (3.97) 0.86 (2.94)
IPW* 2.11 (3.44) 0.70 (2.34) 2.11 (3.44) 0.70 (2.34)
DR 2.03 (3.11) 0.75 (2.39) 0.74 (2.53) 0.68 (2.25)
DR* 1.84 (2.67) 0.64 (1.88) 0.61 (1.78) 0.58 (1.78)

10000 Reg 2.65 (2.70) 2.65 (2.70) 0.02 (0.47) 0.02 (0.47)
IPW 2.36 (3.42) 0.33 (1.09) 2.36 (3.42) 0.33 (1.09)
IPW* 2.24 (3.28) 0.35 (0.85) 2.24 (3.28) 0.35 (0.85)
DR 1.81 (2.35) 0.26 (0.86) 0.20 (1.21) 0.25 (0.78)
DR* 1.76 (2.27) 0.31 (0.68) 0.24 (1.10) 0.29 (0.64)

Notes: Bias / RMSE = integrated mean bias / root mean squared
error; IPW = inverse probability weighted; Reg = regression;
DR = doubly robust; * = uses oracle bandwidth.

bias and root mean squared error at each point, and integrated across the function with

respect to the density of A. Specifically, letting θ̂s(a) denote the estimated curve at point

a in simulation s (s = 1, ..., S with S = 500), we estimated the integrated absolute mean

bias and root mean squared error with

B̂ias =

∫
A∗

∣∣∣ 1
S

S∑
s=1

θ̂s(a)− θ(a)
∣∣∣$(a) da,

R̂MSE =

∫
A∗

[
1

S

S∑
s=1

{θ̂s(a)− θ(a)}2
]1/2

$(a) da.

In the above A∗ denotes a trimmed version of the support of A, excluding 10% of mass

at the boundaries. Note that the above integrands (except for the density) correspond to

the usual definitions of absolute mean bias and root mean squared error for estimation of a

single scalar parameter (e.g., the curve at a single point).
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The simulation results are given in Table 3 (both the integrated bias and root mean squared

error are multiplied by 100 for easier interpretation). Estimators with stars (e.g., IPW*)

denote those with bandwidths selected using the oracle risk. When both π̂ and µ̂ were mis-

specified, all estimators gave substantial integrated bias and mean squared error (although

the doubly robust estimator consistently performed better than the other estimators in this

setting). Similarly, all estimators had relatively large mean squared error in the small sam-

ple size setting (n = 100) due to lack of precision, although differences in bias were similar

to those at moderate and small sample sizes (n = 1000, 10000). Specifically the regression

estimator gave small bias when µ̂ was correct and large bias when µ̂ was misspecified, while

the inverse-probability-weighted estimator gave small bias when π̂ was correct and large

bias when π̂ was misspecified. However, the doubly robust estimator gave small bias as

long as either π̂ or µ̂ was correctly specified, even if one was misspecified.

The inverse-probability-weighted estimator was least precise, although it had smaller mean

squared error than the misspecified regression estimator for moderate and large sample sizes.

The doubly robust estimator was roughly similar to the inverse-probability-weighted esti-

mator when the treatment model was correct, but gave less bias and was more precise, and

was similar to the regression estimator when the outcome model was correct (but slightly

more biased and less precise). In general the estimators based on the oracle-selected band-

width were similar to those using the simple leave-one-out approach, but gave marginally

less bias and mean squared error for small and moderate sample sizes. The benefits of the

oracle bandwidth were relatively diminished with larger sample sizes.

3.6. Application

In this section we apply the proposed methodology to estimate the effect of nurse staffing

on hospital readmissions penalties, as discussed in the Introduction. In the original paper,

McHugh et al. (2013) used a matching approach to control for hospital differences, and

found that hospitals with more nurse staffing were less likely to be penalized; this suggests

increasing nurse staffing to help curb excess readmissions. However, their analysis only
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considered the effect of higher nurse staffing versus lower nurse staffing, and did not explore

the full effect curve; it also relied solely on matching for covariate adjustment, i.e., was not

doubly robust.

In this analysis we use the proposed kernel smoothing approach to estimate the full effect

curve flexibly, while also allowing for doubly robust covariate adjustment. We use the same

data on 2976 acute care hospitals as in McHugh et al. (2013); full details are given in

the original paper. The covariates L include hospital size, teaching intensity, not-for-profit

status, urban versus rural location, patient race proportions, proportion of patients on Med-

icaid, average socioeconomic status, operating margins, a measure of market competition,

and whether open heart or organ transplant surgery is performed. The treatment A is nurse

staffing hours, measured as the ratio of registered nurse hours to adjusted patient days, and

the outcome Y indicates whether the hospital was penalized due to excess readmissions.

Excess readmissions are calculated by the Centers for Medicare & Medicaid Services and

aim to adjust for the fact that different hospitals see different patient populations. With-

out unmeasured confounding, the quantity θ(a) represents the proportion of hospitals that

would have been penalized had all hospitals changed their nurse staffing hours to level a.

Otherwise θ(a) can be viewed as an adjusted measure of the relationship between nurse

staffing and readmissions penalties.

For the conditional density π(a | l) we assumed a model A = λ(L)+γ(L)ε, where ε has mean

zero and unit variance given the covariates, but otherwise has an unspecified density. We

flexibly estimated the conditional mean function λ(l) = E(A | L = l) and variance function

γ(l) = var(A | L = l) by combining linear regression, multivariate adaptive regression

splines, generalized additive models, Lasso, and boosting, using the cross-validation-based

Super Learner algorithm (van der Laan et al., 2007), in order to reduce chances of model

misspecification. A standard kernel approach was used to estimate the density of ε.

For the outcome regression µ(l, a) we again used the Super Learner approach, combining

logistic regression, multivariate adaptive regression splines, generalized additive models,
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Lasso, and boosting. To select the bandwidth parameter h we used the leave-one-out

approach discussed in Section 3.4.5. We considered regression, inverse-probability-weighted,

and doubly robust estimators, as in the simulation study in Section 3.5. The two hospitals

(<0.1%) with smallest inverse-probability weights were removed as outliers. For the doubly

robust estimator we also computed pointwise uncertainty intervals (i.e., confidence intervals

around the smoothed parameter θ∗h(a); see Section 3.4.4) using a Wald approach based on

the empirical variance of the estimating function values.
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Figure 4: Estimated effects of nurse staffing on readmissions penalties.

A plot showing the results from the three estimators (with uncertainty intervals for the

proposed doubly robust estimator) is given in Figure 4. In general the three estimators

were very similar. For less than 5 average nurse staffing hours the adjusted chance of
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penalization was estimated to be roughly constant, around 73%, but at 5 hours chances

of penalization began decreasing, reaching approximately 60% when nurse staffing reached

11 hours. This suggests that adding nurse staffing hours may be particularly beneficial in

the 5-10 hour range, in terms of reducing risk of readmissions penalization; most hospitals

(65%) lie in this range in our data.

3.7. Discussion

In this paper we developed a novel approach for estimating the average effect of a continuous

treatment; importantly the approach allows for flexible doubly robust covariate adjustment

without requiring any parametric assumptions about the form of the effect curve, and can

incorporate general machine learning and nonparametric regression methods. We presented

a novel efficient influence function for a stochastic intervention parameter defined within a

nonparametric model; this influence function motivated the proposed approach, but may

also be useful to estimate on its own. In addition we provided asymptotic results (including

rates of convergence and asymptotic normality) for a particular kernel estimation version of

our method, which only require the effect curve to be twice continuously differentiable, and

allows for flexible data-adaptive estimation of nuisance functions. These results show the

double robustness of the proposed approach, since either a conditional treatment density

or outcome regression model can be misspecified and the proposed estimator will still be

consistent as long as one such nuisance function is correctly specified. We also showed

how double robustness can result in smaller second-order bias even when both nuisance

functions are consistently estimated. Finally, we proposed a simple and fast data-driven

cross-validation approach for bandwidth selection, found favorable finite sample properties

of our proposed approach in a simulation study, and applied the kernel estimator to examine

the effects of hospital nurse staffing on excess readmissions penalty.

This paper integrates semiparametric (doubly robust) causal inference with nonparametric

function estimation and machine learning, helping to bridge the “huge gap between clas-

sical semiparametric models and the model in which nothing is assumed” (van der Vaart,
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2014). In particular our work extends standard nonparametric regression by allowing for

complex covariate adjustment and doubly robust estimation, and extends standard doubly

robust causal inference methods by allowing for nonparametric smoothing. Many interesting

problems arise in this gap between standard nonparametric and semiparametric inference,

leading to many opportunities for important future work, especially for complex non-regular

target parameters that are not pathwise differentiable. In the context of this paper, in future

work it will be useful to study uniform distributional properties of our proposed estimator

(e.g., weak convergence), as well as its role in testing and inference (e.g., for constructing

tests that have power to detect a wide array of deviations from the null hypothesis of no

effect of a continuous treatment).
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CHAPTER 4 : SEMIPARAMETRIC CAUSAL INFERENCE WITH

THE LOCAL INSTRUMENTAL VARIABLE CURVE

4.1. Abstract

Instrumental variables are commonly used to estimate effects of a treatment afflicted by

unmeasured confounding, and in practice instrumental variables are often continuous (e.g.,

measures of distance, or treatment preference). However, available methods for continuous

instrumental variables have important limitations: they either require restrictive paramet-

ric assumptions for identification, or else rely on modeling both the outcome and treatment

process well. In this work we develop robust semiparametric estimators of a “local” effect

curve among compliers, i.e., the effect among those who would take treatment for instru-

ment values above some threshold and not below. The proposed methods do not require

parametric assumptions, incorporate information about the instrument mechanism, allow

for flexible data-adaptive estimation of effect modification, and are robust to misspecifica-

tion of either the instrument or treatment/outcome processes (i.e., are doubly robust). We

discuss asymptotic properties under weak conditions, and use the methods to study infant

mortality effects of neonatal intensive care units with high versus low technical capacity,

using travel time as an instrument.

4.2. Introduction

Instrumental variables are commonly used to estimate effects of treatments that are afflicted

by unmeasured confounding. Instruments are special variables that influence treatment, but

are themselves unconfounded and do not directly affect outcomes, allowing the recovery of

some causal information from data that might otherwise be unusable. In practice, instru-

ments are often continuous (e.g., measures of distance, or treatment preference), but most

available methods only consider instruments that are discrete (and typically binary). Fur-

ther, methods that do allow for continuous instruments have important limitations.
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Classical instrumental variable methods (e.g., standard two-stage least squares), which were

developed in a structural equation model framework, allow for continuous instruments but

require strong parametric assumptions for identification, assume that treatment effects do

not vary across units, and also require correct parametric models for how both the treat-

ment and outcome processes depend on covariates and instruments (Wooldridge, 2010).

Alternatively, Robins and others (Robins, 1989, 1994; Hernán and Robins, 2006; Tan, 2010)

developed approaches in the potential outcomes framework that can also handle continuous

instruments, but which allow heterogeneous treatment effects, and also permit doubly robust

covariate adjustment. Doubly robust instrumental variable methods are consistent as long

as either the instrument mechanism or the treatment/outcome mechanisms are correctly

modeled (not necessarily both), and they can also yield fast root-n convergence rates and

inference even when using flexible nonparametric methods for covariate adjustment. How-

ever, the methods of Robins et al. still require parametric assumptions for identification;

they target treatment effects on the treated, and achieve identification with dimension-

reducing parametric assumptions that restrict how heterogeneous treatment effects can be.

As noted for example by Tchetgen Tchetgen and Vansteelandt (2013), this kind of approach

is problematic because a priori information about the parametric form of underlying causal

structure is rarely available, and misspecification could lead to large biases that cannot be

detected with data.

An alternative approach is to replace dimension-reducing homogeneity assumptions with a

monotonicity assumption (Robins, 1989; Imbens and Angrist, 1994), which rules out the

possibility that any units would respond oppositely to encouragement from the instrument.

In other words, there can be units who are encouraged by the instrument (e.g., by taking

treatment if the instrument is received and taking control if not, in the binary instrument

case), as well as units who do not respond at all to the instrument (e.g., by always taking

treatment or always taking control, regardless of received instrument value), but there

cannot be units who defy encouragement from the instrument (e.g., by taking control if

the instrument is received and taking treatment if not). This assumption is often plausible
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in practice and, importantly, permits nonparametric identification of causal effects among

compliers (i.e., those who do respond to encouragement from the instrument). However,

most work relying on monotonicity assumes binary or discrete instruments (Imbens and

Angrist, 1994; Abadie, 2003; Tan, 2006; Ogburn et al., 2015). An important exception is

a strand of work that has focused on estimating local instrumental variable curves, i.e.,

effects among units who would comply right at a given threshold value of the instrument

(Heckman, 1997; Heckman and Vytlacil, 1999; Glickman and Normand, 2000; Heckman and

Vytlacil, 2005).

This literature on local instrumental variable approaches arose out of a latent index or

selection model framework (Vytlacil, 2002), and is unique in allowing for continuous in-

struments while still permitting nonparametric identification. However there are important

limitations. First, current local instrumental variable estimands are fully conditional on

all measured covariates, even though in many cases effect modification is not of particular

scientific interest, or else it is only of interest for a small subset of covariates. In addition to

having closer ties to the scientific question, marginal effects are also less ambitious parame-

ters that can typically be estimated more robustly than fully conditional parameters. Thus

it is advantageous to specifically target such marginal effects when they are of interest. Also,

as noted by van der Laan and Robins (2003), when we target fully conditional effects, we

are at the whim of whatever confounders happen to arise in our given dataset; in contrast,

targeting marginal parameters allows us to frame our scientific questions a priori. However,

adapting current methods to settings where full effect modification is not of interest (by

marginalizing available conditional estimators) is very difficult if effect modification is of

interest for some covariate subset. Further, even when effect modification is not of interest,

marginalization leads to awkward and uninterpretable models, as discussed in a related

setting by Ogburn et al. (2015).

Second, available approaches for estimating the local instrumental variable curve rely on

modeling how both the treatment and outcome depend on covariates and instrument (Basu
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et al., 2007; Carneiro and Lee, 2009; Carneiro et al., 2010), and typically use restrictive

parametric models. This is problematic since parametric models are often relied upon

based on convenience, rather than real substantive knowledge, and can yield severe bias

if misspecified. Conversely, fully nonparametric approaches are sensitive to the curse of

dimensionality and typically do not yield estimators that attain root-n convergence rates or

valid inference (without impractical undersmoothing). Further, in the instrumental variable

setting there may be some information available about how the instrument depends on

covariates, but this is not incorporated at all in approaches that rely solely on treatment

and outcome models (whether parametric or nonparametric).

In this work we make several new advances. First, we formulate marginal versions of the

local instrumental variable curve within a nonparametric potential outcomes framework,

and consider working models for this curve. This eases interpretability by allowing analysts

to incorporate background knowledge on the actual parameter of interest, without having

to specify models for quantities that are not of direct scientific interest. Second, we de-

velop semiparametric theory for such settings. Third, we propose semiparametric efficient

and doubly robust estimators, which incorporate information about the instrument mecha-

nism, give two chances at consistency, and also can converge at fast root-n rates even after

machine learning-based covariate adjustment. We also derive asymptotic properties under

weak empirical process conditions. Fourth, we develop a doubly robust cross-validation

approach for model selection in high-dimensional settings, which is crucial for learning the

instrumental variable curve from data. To the best of our knowledge, these results are all

novel, and we believe our paper is the first to use cross-validation for model selection in

an instrumental variable setting. We explore finite-sample properties via simulation, and

use our methods in a study of effects of high-level neonatal intensive care units on infant

mortality, using travel time as an instrument.
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4.3. Preliminaries

4.3.1. Data & Notation

Suppose we observe an independent and identically distributed sample (O1, ...,On) with

O = (X, Z,A, Y ), where X is a vector of covariates, Z is a continuous instrument for a binary

treatment A, and Y is some real-valued outcome of interest. The covariates X = (V,W)

are partitioned into potential effect modifiers of interest V and other covariates W = X\V

not of interest but for which adjustment is still necessary. The choice of V is based purely on

the scientific question, so that if effect modification is not of interest one can simply select

V = ∅. We characterize causal effects using potential outcome notation (Rubin, 1974),

and so let Y a (and Y za) denote the potential outcomes that would have been observed

had treatment level A = a (and instrument level Z = z) been received. Similarly we let

Az denote the potential treatment that would have been observed under instrument level

Z = z. A directed acyclic graph showing the data structure is given in Figure 5.

X = (V,W) Z A Y

U

X Z D Y

U

X Z D Y

U

X

Z D Y

U

1

Figure 5: Directed acyclic graph showing covariates X (partitioned into potential effect
modifiers of interest V and other variables W), instrument Z, treatment A, outcome Y ,
and unmeasured variables U . Gray dotted arrows indicate relationships that are assumed
absent by identifying assumptions.

We let P denote the distribution of O, and for simplicity suppose it has a density with

respect to some dominating measure given by p(o) = p(y | x, z, a)p(a | x, z)p(z | x)p(x). In

general we write the density of a variable T under P evaluated at value z as p(T = z), except

when the density we are referring to is unambiguous (e.g., p(t) denotes the density of T at

t), and we denote the support of a variable T as supp(T ). Finally we use some additional
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notation to simplify the presentation. Specifically we use π(z | x) = p(Z = z | X = x)

to denote the density of the instrument given covariates (i.e., the instrument propensity

score), µ(x, z) = E(Y | X = x, Z = z) and λ(x, z) = E(A | X = x, Z = z) to denote

the outcome and treatment regression functions, respectively, and m(v, z) = E{µ(X, z) |

V = v} and `(v, z) = E{λ(X, z) | V = v} to denote the marginalized versions of the

regression functions. We let Pn denote the empirical measure so that empirical averages

can be written as n−1
∑

i f(Oi) =
∫
f(o) dPn(o) = Pn{f(O)}. The notation || · || denotes

the Euclidean norm ||β|| = (βTβ)1/2 when applied to a vector, but denotes the L2(P ) norm

||f || = {
∫
f(o)2 dP (o)}1/2 when applied to a (scalar) function.

4.3.2. Monotonicity

Before defining the causal estimand of interest and considering identifying assumptions,

it will be helpful to discuss the concept of monotonicity, which was introduced in various

forms by Robins (1989) and Imbens and Angrist (1994), among others. In a classical binary

instrument setting (where supp(Z) = {0, 1}), monotonicity can be stated succinctly as

A1 ≥ A0 with probability one.

Monotonicity rules out the possibility that there are troublesome units in the population

with A0 = 1 but A1 = 0. Such units are called ‘defiers’ since they take treatment A = 1 when

not encouraged by the instrument (i.e., when Z = 0), but take control A = 0 when they

are in fact encouraged (i.e., when Z = 1). Thus monotonicity ensures that the population

only comprises never-takers (A0 = A1 = 0), always-takers (A0 = A1 = 1), and compliers

(A0 = 0, A1 = 1). Monotonicity can often be a reasonable assumption in practice, but

not always; it has been discussed extensively in previous work, particularly for binary

instruments (see Imbens (2014) and discussion for a nice overview).

A natural way to extend monotonicity to the continuous instrument setting is as follows.
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Assumption 4.1 (Monotonicity) If z′ > z then Az
′ ≥ Az with probability one.

Under Assumption 4.1, no unit would ever change from treatment to control with an in-

crease in the instrument value; increasing the instrument can either encourage treatment

over control or have no effect at all, but it cannot discourage treatment relative to lesser

instrument values. Thus the population still comprises never-takers, always-takers, and

compliers, but with continuous instruments the compliers can be further partitioned into

compliers at given instrument values. In particular, a complier at Z = z would be a unit for

which Az = 1 but Az−δ = 0 for any δ > 0. The above continuous version of monotonicity

has been employed and discussed by Glickman and Normand (2000) and Vytlacil (2002), for

example. Importantly, these authors showed that (when coupled with standard identifying

assumptions to be discussed shortly) the above monotonicity assumption is equivalent to

the following latent threshold model.

Assumption 1′ (Latent Threshold) Az = 1(z ≥ T ) for an unobserved random thresh-

old T .

Under the latent threshold model, each complier has some instrument value at which they

are encouraged to take treatment, while for any lesser value they would take control. Larger

values of the threshold T indicate units that are less willing to take treatment, i.e., less

susceptible to encouragement by the instrument. We can thus define the latent threshold

T as

T =


−∞ if Az = 1 for all z (always-takers)

inf{z : Az = 1} if Az
′
> Az for some z′ > z (compliers)

∞ if Az = 0 for all z (never-takers).

See Vytlacil (2002) for further discussion and detail.
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4.3.3. Estimand & Identification

In this paper our main goal is estimation and inference for the local instrumental variable

curve, which we define as

γ(t,v) = E(Y 1 − Y 0 | T = t,V = v). (4.1)

This is the average treatment effect among those with latent threshold T = t (and baseline

covariates V = v), i.e., the effect among those units with V = v who would be encouraged

to take treatment right when the instrument passes Z = t but not for lesser values. A fully

conditional version of the local instrumental variable curve with V = X was proposed in

the latent index or selection model framework by Heckman (1997), and discussed in detail

by Heckman and Vytlacil (1999), Heckman and Vytlacil (2005), and Heckman and Vytlacil

(2007), among others. In this framework, the parameter in (4.1) with V = X was termed

the “marginal treatment effect”, and its observed data counterpart the “local instrumental

variable” estimand (after employing identifying assumptions). We follow the latter usage

in both cases to avoid confusion, since “marginal” often means “averaged”.

Throughout we consider standard instrumental variable identifying assumptions, which have

been employed for example by Angrist et al. (1996), Tan (2006), Ogburn et al. (2015), and

many others; useful overviews and discussions are given for example by Hernán and Robins

(2006), Imbens (2014) (with discussion), and Baiocchi et al. (2014).

Assumption 4.2 (Consistency) A = AZ and Y = Y A with probability one.

Assumption 4.3 (Positivity) (z,x) ∈ supp(Z,X) if x ∈ supp(X).

Assumption 4.4 (Unconfoundedness of Z) (Y z, Az) ⊥⊥ Z | X.

Assumption 4.5 (Exclusion Restriction) Y za = Y a with probability one.

Consistency means potential treatments Az and outcomes Y a are uniquely defined by a
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unit’s own instrument and treatment levels, respectively, and not by others’ levels (i.e.,

no interference), and also not by the way the instrument or treatment are administered

(i.e., no different versions). Positivity says that the instrument is not deterministic, in the

sense that every unit has some chance of receiving each level of the instrument, regardless

of covariates. Unconfoundedness says that the instrument is essentially randomized once

we condition on covariates, i.e., that it is unrelated to potential outcomes and treatments

under different instrument values. The exclusion restriction says that the instrument only

affects outcomes through treatment. Assumptions 4.2–4.5 can hold by design in trials where

the instrument is externally randomized by investigators, but in observational studies these

assumptions are typically untestable and require justification based on subject matter.

Finally we also employ the following regularity conditions on the latent threshold distribu-

tion and local instrumental variable curve.

Assumption 4.6 (Instrumentation) inft p(t | v) > 0.

Assumption 4.7 (Continuity) T is continuously distributed and γ(t,v) is continuous in

t.

Instrumentation means there are some units who would be encouraged to take treatment

when the instrument passes Z = t (for now we leave the set over which the infimum is taken

ambiguous). The following theorem indicates that the local instrumental variable curve can

be identified with observed data, under the above assumptions.

Theorem 4.1 Suppose Assumption 1′ holds. Let T ⊂ supp(Z) denote a compact set on

which we wish to identify γ(t,v). If Assumptions 4.2–4.5 hold for all z ∈ T and Assumptions

4.6–4.7 hold for all t ∈ T , then the local instrumental variable curve is identified for any

t ∈ T by

γ(t,v) =
∂
∂zE{E(Y | X, Z = z) | V = v}
∂
∂zE{E(A | X, Z = z) | V = v}

∣∣∣∣
z=t

. (4.2)
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A proof of Theorem 4.1 is given in the Supplementary Materials; the logic follows as in

more standard settings where Z is discrete and V = X. Importantly, the local instrumental

variable curve can only be identified on subsets of supp(Z); thus as in the binary instrument

setting, we cannot identify effects for never-takers or always-takers with T = ±∞.

From this point forward, when we write γ(t,v) we mean the observed data expression

in (4.2), which represents the causal effect given in (4.1) under Assumptions 4.2–4.7 as

described in Theorem 4.1. Of course, if the conditions of Theorem 4.1 do not hold then the

observed data expression in (4.2) may represent something other than the aforementioned

causal effect. For example, if only Assumptions 2–4 hold, then we can only think of the

instrument as an unconfounded continuous exposure (or dose), and γ(t,v) would represent

the ratio of derivatives of the dose-response curves E(Y z | V = v) and E(Az | V = v).

4.4. Main Results

In this section we develop semiparametric theory for models of the local instrumental vari-

able curve defined in (4.2), use this theory to develop novel doubly robust estimators,

describe their asymptotic properties, and finally present cross-validation methods for model

selection in high-dimensional settings.

4.4.1. Semiparametric Theory

Suppose we have a parametric model for the local instrumental variable curve, which we

write as γ(t,v;ψ) for some finite-dimensional ψ ∈ Rq. Importantly, we do not assume

this model is necessarily correct, and instead follow Neugebauer and van der Laan (2007),

Rosenblum and van der Laan (2010), and others in using a working model approach, by

formulating our target estimand as the projection of the true curve γ(t,v) onto the posed

working model. Specifically, we use the weighted least squares projection given by

ψ0 = arg min
ψ∈Rq

E
[
w(T,V){γ(T,V)− γ(T,V;ψ)}2

]
, (4.3)
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where w(t,v) is some user-specified weight function. Whether to use γ(t,v;ψ) only for

projections or to assume it is the true model is a bias-variance trade-off. If the model

happens to be correct, then the projection approach will result in appropriate but generally

not fully efficient estimators. However, if the posited model is not correct, then the pro-

jection approach is still validly defined as a best-fitting wrong model, while a model-based

approach would technically no longer be applicable and can be more difficult to interpret.

The projection approach thus formalizes how models are often viewed as approximations in

practice.

Note that the above projection depends on the distribution of the latent threshold T .

Although the threshold is not observed directly, its distribution is identified in the observed

data (under Assumptions 4.1–4.7) by

p(t | v) =


E{E(A | X, Z = zmin) | V = v} for t = −∞

∂
∂zE{E(A | X, Z = z) | V = v}|z=t for t ∈ supp(Z)

E[E{(1−A) | X, Z = zmax} | V = v] for t =∞

. (4.4)

Importantly, the expression for p(t | v) in the t ∈ supp(Z) case equals the denominator of

γ(t,v) given in Theorem 4.1.

After characterizing the parameter of interest in terms of observed data as in (4.3), based

on the expression in (4.2), it is possible to estimate it using any number of approaches, such

as parametric or nonparametric maximum likelihood, or Bayesian methods. In our setting,

however, semiparametric approaches have a number of important advantages. First, they

can incorporate information about the instrument mechanism, which may be better under-

stood or easier to model than the outcome and treatment mechanisms (which is what a

likelihood-based approach would rely on modeling). Second, they allow for double robust-

ness, which means consistent estimation of ψ is possible as long as either the instrument

mechanism or the treatment/outcome mechanisms are correctly modeled (not necessarily all
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three, so either the instrument or the treatment and outcome models can be misspecified).

And third, semiparametric doubly robust approaches allow for fast root-n rates of conver-

gence for the parameter of interest ψ even when nuisance functions are estimated at slower

rates, e.g., using flexible data-adaptive or machine learning methods. This phenomenon is

referred to as orthogonality (or adaptivity) by Chernozhukov et al. (2015), and makes such

estimators less sensitive to the curse of dimensionality.

A crucial aspect of developing semiparametric theory and corresponding estimators for

a given problem involves characterizing the possible influence functions, and in particular

finding the efficient influence function. Many details on semiparametric theory are available

elsewhere (Bickel et al., 1993; van der Laan and Robins, 2003; Tsiatis, 2006; Kennedy, in

press), so we give only a brief review here. Any regular asymptotically linear estimator

minus its target parameter can be expressed as the empirical average of its so-called influence

function plus an op(1/
√
n) error term. Viewed as elements of a Hilbert space of mean-zero

finite-variance functions equipped with covariance norm, the influence functions under a

given model lie in the orthogonal complement of the nuisance tangent space. The efficient

influence function can then be defined as the influence function with smallest variance, the

projection of any influence function onto the tangent space of scores, or as a particular

pathwise derivative. The efficient influence function is especially important in practice

because its variance is the semiparametric efficiency bound (thus providing a benchmark

for efficient estimation), and because it can be used to construct estimators that are doubly

robust and potentially semiparametric efficient.

The major challenge in deriving semiparametric theory for the projection parameter in (4.3)

is its complexity; namely, it is a weighted projection of a ratio of derivatives of regression

functions that are partially marginalized. The next theorem gives the efficient influence

function for this parameter.

Theorem 4.2 Suppose the weight function w(t,v) is continuously differentiable in t and

satisfies w(t,v) = 0 for t /∈ int(T ), with the set T ⊂ supp(Z) defined as in Theorem 4.1.
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Also assume that partial derivatives (with respect to ψ and t) of the working model γ(t,v;ψ)

exist and are continuous. Then, under a nonparametric model, the efficient influence func-

tion for ψ defined in (4.2) and (4.3) is proportional to

ϕ(O;ψ,η) = g1(Z,V;ψ)

{
A− E(A | X, Z)

p(Z | X)

}
− g2(Z,V;ψ)

{
Y − E(Y | X, Z)

p(Z | X)

}
(4.5)

+

∫
T

{
g1(t,V;ψ)E(A | X, Z = t)− g2(t,V;ψ)E(Y | X, Z = t)

}
dt,

where η = (π, λ, µ) denotes the nuisance functions defined in Section 4.3.1, and g1 and g2

are the (q × 1) vectors

g1(z,v;ψ) =
∂

∂t

{
∂

∂ψ∗
γ(t,v;ψ∗)

∣∣∣
ψ∗=ψ

w(t,v)γ(t,v;ψ)

} ∣∣∣
t=z

g2(z,v;ψ) =
∂

∂t

{
∂

∂ψ∗
γ(t,v;ψ∗)

∣∣∣
ψ∗=ψ

w(t,v)

} ∣∣∣
t=z

.

A proof of Theorem 4.2 is given in the Appendix, and proceeds by showing that the function

ϕ is the canonical gradient of the pathwise derivative of ψ. Importantly, our derivation of

the efficient influence function uses integration by parts to transfer derivatives of the par-

tially marginalized treatment/outcome regression functions to the known model γ(t,v;ψ)

and weight function w(t,v). This means the efficient influence function can be evaluated

without analytical differentiation of the regression functions, which, as discussed in detail

in the next subsection, makes it much more practical for constructing and implementing

estimators. The condition on the user-specified weight function, i.e., that it vanishes outside

the interior of the set T ⊂ supp(Z), is required since the local instrumental variable curve

γ(t,v) is not identified outside of T as discussed in Theorem 4.1. Roughly speaking, the

efficient influence function ϕ can be viewed as consisting of inverse-probability-weighted

terms (the added term in the first line in (4.5)) plus an augmentation term (the second

line and subtracted terms in the first line in (4.5)). This follows the general structure of

influence functions in more common causal inference and missing data problems, although

the form of the functions g1 and g2 makes the expression less standard.
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4.4.2. Proposed Method

Once we have derived the efficient influence function, we can use it to construct estimators

that have numerous advantageous properties. A standard approach is to solve an estimating

equation based on an estimated version of the efficient influence function; specifically we can

use ϕ as an estimating function, with unknown nuisance functions replaced with estimates.

Thus our proposed estimator for a given working model γ(t,v;ψ) is given by ψ̂, defined as

the solution in ψ to the estimating equation

Pn{ϕ(O;ψ, η̂)} = 0, (4.6)

where η̂ = (π̂, λ̂, µ̂) are estimated versions of the three nuisance functions. Another option

for constructing estimators based on influence functions is targeted minimum loss-based

methodology (van der Laan and Rubin, 2006; van der Laan and Rose, 2011), which has

advantages since it yields estimators that respect the bounds of the parameter space. How-

ever, our proposed estimating equation approach will also respect any such bounds, as long

as the chosen working model does; it is also relatively straightforward to implement.

First consider the simple case where V = ∅ (i.e., effect modification is not of interest), and

the local instrumental variable curve γ(t) is projected onto a constant γ(t;ψ) = ψ. In this

case the target estimand ψ is a simple weighted average of γ(t), of the form

ψ =

∫
T
w∗(t)γ(t) dt

with weight w∗(t) = w(t)p(t)/
∫
T w(t)p(t) dt. The quantity ψ can also be viewed as the

mean treatment effect (among compliers) in a population where the density of the latent

threshold T among compliers equals w∗(t). Let η = (π, λ, µ) denote the nuisance functions

as introduced in Section 4.3.1, with corresponding estimators η̂ = (π̂, λ̂, µ̂). Then solving
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(4.6) leads to the ratio estimator

ψ̂ =

∫
T w

′(t)m̂(t) dt+ Pn
{
w′(Z)Y−µ̂(X,Z)π̂(Z|X)

}
∫
T w

′(t)ˆ̀(t) dt+ Pn
{
w′(Z)A−λ̂(X,Z)π̂(Z|X)

} (4.7)

where m̂(t) = Pn{µ̂(X, t)} and ˆ̀(t) = Pn{λ̂(X, t)} are the marginalized regression functions

as in Section 4.3.1. Thus ψ̂ is an adjusted version of the regression-based plug-in estimator∫
T w

′(t)m̂(t) dt/
∫
T w

′(t)ˆ̀(t) dt, where adding inverse-probability-weighted terms to the

numerator and denominator is the adjustment required to obtain double robustness.

More standard instrumental variable estimators are often computed with a two-stage least

squares approach, where in the first stage the treatment variable is regressed on the instru-

ment (and covariates) and then in the second stage the outcome is regressed on the predicted

values from the first stage (and covariates). In fact, the weighted average estimator in (4.7)

can also be constructed with a modified version of such a two-stage least squares approach;

this may make it more amenable to practical use. Specifically, the following modified two-

stage least squares procedure can be used to compute the weighted average estimator (using

pseudo- instrument, treatment, and outcome w′(Z), A∗, and Y ∗ respectively):

1. Regress A∗ = A−λ̂(X,Z)
π(Z|X) + 1{w′(Z)6=0}

w′(Z)

∫
T w

′(t)λ̂(X, t) dt on w′(Z) without an intercept,

and obtain predicted values Â∗.

2. Regress Y ∗ = Y−µ̂(X,Z)
π(Z|X) + 1{w′(Z) 6=0}

w′(Z)

∫
T w

′(t)µ̂(X, t) dt on Â∗, without an intercept.

Then the coefficient in front of Â∗ in the second stage equals ψ̂ from (4.7).

Closed-form estimators are also available even when effect modification is of interest, as

long as we project onto linear models of the form γ(t,v;ψ) = h(t,v)Tψ, where h : T ×

supp(V) → Rq is a known mapping. Specifically, in such cases the estimator ψ̂ defined as
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the solution to (4.6) is given by

ψ̂ = Pn

[
g∗1(Z,V)

{
A− λ̂(X, Z)

π̂(Z | X)

}
+

∫
T

g∗1(t,V)λ̂(X, Z) dt

]−1
× Pn

[
g2(Z,V)

{
Y − µ̂(X, Z)

π̂(Z | X)

}
+

∫
T

g2(t,V)µ̂(X, Z) dt

]

where g∗1(z,v) = ∂
∂t{h(t,v)w(t,v)h(t,v)T}|t=z, and g2(z,v) = ∂

∂t{h(t,v)w(t,v)}|t=z is

as defined in Theorem 4.2. Closed-form expressions will typically not be available for

estimators in general non-linear models; however, since such estimators are still defined

as estimating equation-based Z-estimators, they can be computed with standard software

(for example, one could use the optim function in R). Variance estimation and confidence

interval construction will be discussed in the next section.

4.4.3. Asymptotic Theory

In this section we discuss the asymptotic properties of our proposed estimation approach.

In particular we show that under very weak conditions our estimator is doubly robust and

consistent, and that if the nuisance functions are estimated well enough it is asymptotically

normal and efficient. Further, asymptotic normality and efficiency are possible even after

machine learning-based covariate adjustment. (Our results equally apply to estimators that

only solve the efficient influnce function estimating equation asymptotically, up to order

op(1/
√
n), such as targeted minimum loss-based estimators.)

Theorem 4.3 Assume that:

1. (ψ̂, η̂)
p→ (ψ0,η), where η = (π, λ, µ) with either π = π0 or (λ, µ) = (λ0, µ0).

2. The sequence of functions ϕ̂n = ϕ(·; ψ̂, η̂) and its limit ϕ0 = ϕ(·;ψ0,η) are contained

in a Donsker class with ||ϕ̂n −ϕ0|| = op(1).

3. The map ψ → E{ϕ(O;ψ,η)} is differentiable at ψ0 uniformly in η (around η), with

invertible derivative matrix D(ψ0,η)→ D(ψ0,η) ≡ D0.
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Then the proposed estimator is consistent with rate of convergence

||ψ̂ −ψ0|| = Op

{
1/
√
n+ ||π̂ − π0||

(
||λ̂− λ0||+ ||µ̂− µ0||

)}
.

Suppose further that:

4. ||π̂ − π0||(||λ̂− λ0||+ ||µ̂− µ0||) = op(1/
√
n).

Then the proposed estimator is asymptotically normal with

√
n(ψ̂ −ψ0) N

(
0,E[{D−10 ϕ(O;ψ0,η0)}⊗2]

)
,

and thus semiparametric efficient.

A proof of Theorem 4.3 is given in the Appendix; it follows from standard Z-estimator theory

and empirical process results (van der Vaart and Wellner, 1996; van der Vaart, 2002). The

first condition indicates the double robustness of our approach, since some of the nuisance

estimators η̂ = (π̂, λ̂, µ̂) can be misspecified. Specifically, as long as either π̂ or (λ̂, µ̂) is

consistent, then the proposed estimator ψ̂ will be as well. This gives analysts two chances

at consistency, and is particularly important in the instrumental variable setting since it

can be easier to model the single instrument density π rather than the two treatment and

outcome regression functions (λ, µ), as required in previous approaches.

Conditions 2–3 of Theorem 4.3 are standard regularity conditions for M- and Z-estimators

(van der Vaart and Wellner, 1996; van der Vaart, 2000, 2002). Condition 2 puts a mild

restriction on the flexibility of the nuisance estimators (and their limits), but Donsker classes

cover many complex functions and thus allow η̂ to be constructed with potentially very

flexible estimators. For example, parametric Lipschitz functions are Donsker, but so also

are many more complicated function types such as infinite-dimensional smooth functions

with bounded partial derivatives, VC classes, Sobolev classes, and functions with bounded

uniform sectional variation, as well as convex combinations and Lipschitz transformations
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of any these classes. More discussion and examples can be found in Sections 2.6–2.7 of

van der Vaart and Wellner (1996) and Examples 19.6–19.12 of van der Vaart (2000), as

well as in Kennedy (in press). Condition 2 is important because it means we do not have

to rely on restrictive parametric models to estimate the potentially complicated and high-

dimensional nuisance functions (π, λ, µ), and can instead use more flexible machine learning

and data-adaptive methods. Condition 2 can also be weakened in various ways; for example,

the Donsker condition really only needs to hold in a shrinking neighborhood of (ψ0,η), or

with high probability as n → ∞. Alternatively we could formulate Condition 2 in terms

of weaker entropy or bracketing conditions, or even use sample-splitting to do away with

complexity conditions entirely, in the same spirit as Zheng and van der Laan (2010). The

differentiability in Condition 3 is standard and required to use a delta method-type result

(note that this condition does not require the influence function to be differentiable itself,

only its expectation).

Under Conditions 1–3 of Theorem 4.3, the proposed estimator is consistent with rate of

convergence given by 1/
√
n+ ||π̂− π0||(||λ̂− λ0||+ ||µ̂−µ0||). Again the double robustness

is apparent since we will have consistency, i.e., ||ψ̂ − ψ0|| = op(1), as long as either the

instrument density is consistently estimated, ||π̂ − π0|| = op(1), or the treatment/outcome

regressions are, (||λ̂ − λ0|| + ||µ̂ − µ0||) = op(1). Note that this result is agnostic about

how well the nuisance functions are estimated, since slow rates on the nuisance estimators

η̂ will yield slow rates for the parameter of interest ψ̂. Importantly, this result also shows

how double robustness is useful even apart from giving two chances at consistency; in

particular, if we estimate the regression functions (λ, µ) at slow rates, double robustness

gives us a chance to obtain faster rates for ψ̂ by consistently estimating π, and vice versa.

For example, if Condition 4 holds so that ||π̂− π0||(||λ̂− λ0||+ ||µ̂− µ0||) = op(1/
√
n), and

therefore the nuisance estimation is asymptotically negligible, then the parameter of interest

ψ̂ is root-n consistent, asymptotically normal, and semiparametric efficient. Importantly,

Condition 4 can hold even if the nuisance functions are estimated at slower than parametric
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root-n rates, so that efficient estimation and valid inference is possible for ψ even if we

use machine learning-based covariate adjustment, via flexible estimation of the nuisance

functions (π, λ, µ). For example, if the nuisance functions (π, λ, µ) are all estimated at

faster than n1/4 rates, so that ||π̂−π0|| = ||λ̂−λ0|| = ||µ̂−µ0|| = op(n
−1/4), then Condition

4 holds since op(n
−1/4)op(n

−1/4) = op(1/
√
n). Such rates are possible in various flexible

models; for instance, under some conditions (Horowitz, 2009) generalized additive model

estimators can obtain rates of the form Op(n
−2/5), which is op(n

−1/4) since Rn = Op(n
−2/5)

implies n1/4Rn = n−3/20n2/5Rn = Op(n
−3/20) = op(1). Another way Condition 4 can hold

is if one of π or (λ, µ) is estimated with a correctly specified parametric model and the

other is merely estimated consistently. However, outside of the randomized trial setting, it

is typically uncommon to know detailed parametric structure.

If Condition 4 holds, asymptotic confidence intervals can be constructed with the bootstrap,

or using a direct estimate of the asymptotic variance given in Theorem 4.3, such as

Pn[{D̂−1ϕ(O; ψ̂, η̂)}⊗2]

where D̂ = Pn{∂ϕ(O;ψ, η̂)/∂ψT}|ψ=ψ̂ is an estimate of the derivative matrix from Con-

dition 3 of Theorem 4.3. If Condition 4 fails to hold but parametric models are used to

estimate all three nuisance functions, then the bootstrap is still valid since in this case the

contribution from nuisance estimation will be asymptotically linear (an analytic expression

could also be derived, using the fact that ψ̂ together with the estimated nuisance parameters

solve a large system of estimating equations). Inference is more complicated in a truly dou-

bly robust but nonparametric setting, where one nuisance estimator can be misspecified but

methods more flexible than parametric models are used to construct the estimates (π̂, λ̂, µ̂);

an approach similar to van der Laan (2014) could potentially be developed to address this

issue in our setting, but we leave this to future work.
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4.4.4. Model Selection

To this point we have presumed that we have an a priori model γ(t,v;ψ) in hand, which we

either believe represents the truth, or which we just want to use for projections to construct

low-dimensional summaries of the truth. However, in practice such a priori models are not

available; instead we often aim to learn the true form of the function γ(t,v) from data. Thus

in this section we propose a doubly robust cross-validation approach for model selection.

Model selection is an important issue in causal inference in general, but this is especially

the case for the local instrumental variable curve, since the latent threshold T is continuous;

thus saturated parametric models are not possible, even when effect modification is not of

interest (i.e., V = ∅). Specifically, in this section we derive the efficient influence function for

the risk of a given candidate estimator, and show how it can be used as a doubly robust loss

function in the cross-validation framework developed by van der Laan and Dudoit (2003).

If we knew the true local instrumental variable curve, and the true distribution of the data,

a natural way to evaluate the performance of a given candidate estimator γ̂k would be to

compute the risk as mean squared error

R∗(γ̂k) =

∫
V

∫
T
w(t,v)

{
γ(t,v)− γ̂k(t,v)

}2
dP (t,v).

On the other hand, if our only goal was to compare or rank a set of candidate estimators

{γ̂k : k ∈ K}, we could equivalently use the pseudo-risk

R(γ̂k) =

∫
V

∫
T
w(t,v)

{
γ̂k(t,v)2 − 2γ(t,v)γ̂k(t,v)

}
dP (t,v), (4.8)

since R(γ̂k) = R∗(γ̂k)−E{w(T,V)γ(T,V)2} is simply a shifted version of the mean squared

error R∗(γ̂k), where the shift does not depend on the candidate estimator γ̂k, and so is

irrelevant in evaluating its performance. This is the same phenomenon that has been

discussed before in, for example, standard nonparametric regression settings (Wasserman,

2006). However, in these more standard settings it is possible to estimate risk unbiasedly
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without worrying about nuisance function estimation; in contrast, in our setting the risk

parameter R(γ̂k) depends on complex nuisance functions through its dependence on the

curve γ(t,v) and the distribution of the latent threshold T . Thus estimation of the risk

R(γ̂k) will itself require nuisance estimation, and in fact we can treat R(γ̂k) as a parameter

in its own right, for which we can develop semiparametric theory and estimation procedures.

Thus in the next theorem we give the efficient influence function for the risk R(γk) for a

given fixed candidate γk, and go on to show how to use this efficient influence function as

a doubly robust loss function for cross-validation-based model selection.

Theorem 4.4 Consider the same setting and assumptions as in Theorem 4.2. Under a

nonparametric model, the efficient influence function for the risk R(γk) defined in (4.8) for

a fixed candidate γk is given by

L(O; γk,η) = f1(Z,V; γk)

{
Y − E(Y | X, Z)

p(Z | X)

}
− f2(Z,V; γk)

{
A− E(A | X, Z)

p(Z | X)

}
(4.9)

+

∫
T

{
f1(t,V; γk)E(Y | X, Z = t)− f2(t,V; γk)E(A | X, Z = t)

}
dt

where η = (π, λ, µ) are the nuisance functions from before, and f1 and f2 are defined as

f1(z,v;ψ) = 2
∂

∂t

{
w(t,v)γk(t,v)

}∣∣∣
t=z

, f2(z,v;ψ) =
∂

∂t

{
w(t,v)γk(t,v)2

}∣∣∣
t=z

.

A proof of Theorem 4.4 is given in the Appendix, and follows similar logic as in the proof

of Theorem 4.2. We also show that the efficient influence function L(O; γk,η) is a doubly

robust loss function for the risk R(γk) in the sense that E{L(O; γk,η)} = R(γk) for nuisance

function η = (π, λ, µ) as long as either π = π0 or (λ, µ) = (λ0, µ0), and not necessarily both.

Thus we can use L(O; γk,η) as a doubly robust estimating function, similar to how we used

ϕ(O;ψ,η) in previous sections. However, an additional complication is that we typically

do not have an independent sample from which we can generate candidate estimators γ̂k,

and so need to generate them from the same sample in which we estimate risk. Thus we

can use sample-splitting via cross-validation to prevent over-fitting.
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In particular, we propose using the loss function in (4.9) for doubly robust model selec-

tion following the general approach of van der Laan and Dudoit (2003). First we need to

introduce some new notation. Let S = (S1, ..., Sn) denote a random variable independent

of the sample that splits the data into training (Si = 0) and test (Si = 1) sets. Vari-

ous cross-validation schemes are covered by different choices of the distribution of S. For

example standard v-fold cross-validation arises by allowing the split variable S to take v

different values {S1, ...,Sv}, each with equal probability 1/v, where
∑

i Siv = n/v for all v

and
∑

v Siv = 1 for all i, so that test sets are all of size n/v and each unit is only used in

one test set. Now that we have notation for splitting the data into training and test sets,

we can define P0
s and P1

s as the sub-empirical distributions for the training data {i : Si = 0}

and test data {i : Si = 1}, respectively, for a given split S = s. Therefore, for example,

η̂(P0
s) denotes the nuisance function estimates based only on the training set data, and

γ̂k(P0
s) denotes the local instrumental variable curve estimate based only on the training set

data (which also depends on the nuisance function estimates constructed from the training

data).

The cross-validation selection approach of van der Laan and Dudoit (2003) is very similar to

standard cross-validation, but incorporates extra steps for nuisance function estimation; it

proceeds as follows. For a given split s and a given candidate estimator γ̂k, we first estimate

the nuisance functions with the training data to obtain η̂(P0
s), and then estimate the local

instrumental variable curve with the training data to obtain γ̂k(P0
s). At this point we can

evaluate the loss function L for any observation Oi based on these training estimates, and

thus we do so on the test data P1
s and compute the average, given by

R̂s(γ̂k) =

∫
L
{

o; γ̂k(P0
s), η̂(P0

s)
}
dP1

s(o),

which we call the estimated risk for candidate k at the current split s. We repeat the above

process for each split, average the split-specific risk estimates to get an overall risk estimate

for candidate k, defined as R̂(γ̂k) = ES{R̂S(γ̂k)}, and finally we repeat for each candidate
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k ∈ K and pick the one k̂ that yields the smallest overall risk estimate k̂ = arg mink∈K R̂(γ̂k).

Thus the cross-validation selector can be written as

k̂ = arg min
k∈K

ES

∫
L
{

o; γ̂k(P0
S), η̂(P0

S)
}
dP1

S(o). (4.10)

van der Laan and Dudoit (2003) gave conditions under which the risk R̂(γ̂k̂) of the above

cross-validation selector is asymptotically equivalent to that of an oracle selector

k̃ = arg min
k∈K

ES

∫
L
{

o; γ̂k(P0
S),η

}
dP (o),

and also derived corresponding finite-sample bounds. We refer to van der Laan and Dudoit

(2003) for further details, including a precise statement of conditions and results, along with

proofs.

4.5. Illustration

In this section we apply the proposed methodology to estimate the effects on infant mortality

of delivery at hospitals with high- versus low-level neonatal intensive care units. Following

Lorch et al. (2012) and others, we define high-level units as those that are designated as

level III by the American Academy of Pediatrics, and that deliver at least 50 low birth-

weight infants on average per year. Level III units have high technical capacity, providing

for example subspecialist teams, advanced imaging, and the ability for sustained mechan-

ical assisted ventilation. On the other hand, level I-II units are only designed to provide

basic care to lower-risk infants. The question of whether and how care at high-level units

might impact infant mortality is important for numerous reasons, from both patient and

policy perspectives. From the policy perspective, for example, if high-level units can reduce

infant mortality compared to low-level units, particularly among high-risk infants, then re-

gionalization policies that send high-risk infants to high-level units might be worthwhile to

pursue.
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To help discern the potential benefits of delivery at hospitals with high-level units, Lorch

et al. (2012) collected data on all 192,078 premature births in Pennsylvania between 1995

and 2006. Available covariate information included data about the infant, such as birth-

weight and gestational age, as well as about the delivering mother, such as age, race, and

measures of socioeconomic status and comorbidities. More detailed information about the

data can be found elsewhere in Baiocchi et al. (2010) and Lorch et al. (2012). Importantly,

however, the data are missing some covariate information that might be useful in explain-

ing the process by which a mother delivers at a hospital with a high- versus low-level unit.

Specifically, detailed clinical confounders such as comorbidity severity and laboratory re-

sults are not available, thus making analyses relying on ‘no unmeasured confounding’-type

assumptions suspect. Luckily, though, Baiocchi et al. (2010) and Lorch et al. (2012) identi-

fied a potential instrumental variable, defined as the excess travel time (in minutes) it takes

a mother to get to the nearest high- versus low-level intensive care unit. This is a plausible

instrument since it affects where mothers deliver (larger values mean mothers have to travel

longer to get to high-level units), it plausibly does not independently affect infant mortality,

and it likely is not associated with unmeasured confounders that also affect mortality (at

least conditional on measured factors like socioeconomic status). Again more details about

the instrument can be found in Baiocchi et al. (2010) and Lorch et al. (2012). Figure 6

shows loess fits of the unadjusted relationship between the instrument and treatment (which

is strong), and between the instrument and outcome (which is less strong); the points also

give some indication of the marginal distribution of the instrument.

We conducted two sets of analyses based on the methodology proposed in previous sections.

First we estimated the local instrumental variable curve only conditional on the threshold

value (so that V = ∅), and used the proposed cross-validation approach to select among

spline models. Second we estimated how effects vary with birthweight and gestational age,

which are two important potential effect modifiers.

In both analyses it is first necessary to estimate the nuisance functions, which we did
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Figure 6: Relationship between instrument Z (excess travel time) and treatment A (delivery
at low-level unit), and instrument and outcome Y (infant mortality).

using generalized additive models. To estimate the instrument density π, we used a model

previously used by Kennedy et al. (in press), in which the density only depends on covariates

through the mean and variance functions but is otherwise flexible. Specifically this model

assumes Z = π1(X) + π2(X)ε, where ε satisfies E(ε | X) = 0 and E(ε2 | X) = 1, the

density fε of ε is unspecified but smooth, and (π1, π2) follow generalized additive models

with identity and log links, respectively. Thus under this model the conditional density of

the instrument is given by π(z | x) = fε[{z − π1(x)}/π2(x)]. We chose to use generalized

additive models for πj(x) because of their computational speed, but other general regression

methods including Super Learner (van der Laan et al., 2007) could be used instead.

In our first analysis we estimated the local instrumental variable curve γ(t) using a density-

weighted projection based on the marginal density of the instrument, so that w(t) = p̂(z = t)

for p̂ a usual kernel density estimator. We used natural cubic splines for γk(t;ψk) with
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degrees of freedom k selected via cross-validation with two folds. Table 4 gives the doubly

robust pseudo-risk estimate R̂(γ̂k) for degrees of freedom k = 1, 2, 3, after scaling by 106 for

easier comparison.

Table 4: Cross-validated model selection results.

Estimated

df k risk R̂(γ̂k)

1 -12.6
2 -13.7
3 -7.3
4 1454.4

The linear model with k = 2 gave the smallest risk, although the risk was similar to that

of the constant effect model with k = 1, and both models yield very similar estimates. For

example, for the linear model the effect estimates range from 9.0 to 8.9 deaths per 1000

births for excess travel times ranging from 0 to 100, and at level 0.05 we cannot reject the

hypothesis that the slope parameter equals zero (p = 0.98). Table 5 gives estimates and 95%

confidence intervals (based on the bootstrap) for three estimators based on the constant

effect model γ(t;ψ) = ψ; specifically the inverse-probability-weighted estimator only relies

on estimating the conditional instrument density π (i.e., it plugs in sample averages of A

and Y for λ̂ and µ̂), the regression-based estimator only relies on estimating the treatment

and outcome regressions (λ, µ) (i.e., it plugs in ∞ for π̂), and the doubly robust estimator

is the proposed approach detailed in Section 4.4.2.

Table 5: Effect estimates and 95% confidence intervals.

Method Est (95% CI)

Inverse-probability-weighted -4.8 (-17.2, 7.6)
Regression-based 9.2 (6.3, 12.1)
Doubly robust 8.9 (5.4, 12.5)

Based on the proposed doubly robust estimator, the constant effect model indicates a mor-

tality benefit (risk difference) of 8.9 fewer deaths per 1000 births due to high-level unit care

(95% CI: 5.4, 12.5), among compliers who could be encouraged by travel time to go to a

low-level unit. For comparison, this estimate contrasts with the unadjusted risk difference
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of -18.6 (-20.0, -17.2), which makes high-level units appear to be harming infants, and a

doubly robust no-unmeasured-confounding-based estimate of -0.6 (-2.8, 1.6) for the average

treatment effect, which does not give any evidence of benefit. The regression-based estima-

tor was similar to the doubly robust estimator. There may be evidence that the model for

the conditional density is misspecified (although this estimator is also imprecise), since the

inverse-probability-weighted estimator differed from both the regression-based and doubly

robust estimators.

In our second analysis (exploring effect modification by birthweight and gestational age), we

projected onto a model in which effects do not vary with the latent threshold (based on the

results of our first analysis) but can vary with normal versus low birthweight (2500+ grams

versus <2500 grams) and early versus very early gestational age (36–37 weeks versus ≤35

weeks). Therefore in this analysis we set γ(t, v;ψ) =
∑

j ψj1(v = j) where j ∈ {1, 2, 3, 4}

indexes the four groups. Results are given in Table 6.

Table 6: Effect estimates (95% confidence intervals) by birthweight and gestational age.

Gestational age
Birthweight ≤ 35 wks 36–37 wks

Low (<2500 g) 32.1 (27.7, 36.5) 1.5 (-2.3, 5.4)
Normal (2500+ g) 4.0 (0.5, 7.6) 1.9 (-1.0, 4.7)

The largest effect of high-level care was for the highest-risk infants with low birthweight

and very early gestational age; in particular, for this group, care at high-level units was

estimated to yield 32.1 fewer deaths per 1000 births (95% CI: 27.7, 36.5). Effects in the

other three groups were relatively similar to each other, ranging from 1.5 to 4.0 fewer deaths

per 1000 births. Regardless of birthweight, both groups with very early gestational age

had effect estimates that were statistically significantly different from zero (at level 0.05),

while estimated effects for both groups with early gestational age were not statistically

significantly different from zero.

As shown in Table 7, results were similar but more pronounced when we used more extreme

cutoffs for birthweight (2000+ grams versus <2000 grams) and gestational age (35–37 weeks
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versus ≤34 weeks).

Table 7: Effect estimates (95% confidence intervals) by birthweight and gestational age.

Gestational age
Birthweight ≤ 34 wks 35–37 wks

<2000 g 58.5 (52.7, 64.3) 6.1 (2.2, 10.0)
2000+ g 10.1 (2.7, 17.4) 2.4 (-0.8, 5.6)

4.6. Discussion

In this paper we developed novel semiparametric theory and estimation procedures for a

marginal version of the local instrumental variable curve, which represents the effect among

local compliers who would be encouraged to take treatment at a given threshold value of

the instrument but not below. Importantly, in contrast to available methods for estimating

the fully conditional local instrumental variable curve, our methods have the following ad-

vantages: they do not require parametric assumptions (but can still yield parametric root-n

rates of convergence), incorporate information about the instrument mechanism, are doubly

robust (i.e., still yield consistent estimates under misspecification of either the instrument or

treatment/outcome processes), and allow for estimating effect modification. We described

the asymptotic properties of our methods under weak empirical process conditions, and

also proposed a doubly robust cross-validation approach for model selection. Finally we

used the proposed methods to study the effects of care at high-level neonatal intensive care

units on infant mortality, including how such effects are modified by infants’ birthweight

and gestational age.

There are a number of opportunities for future work based on this research. First, it would

be of interest to determine the efficient choice of the weight function w(t,v) for the case

where the working model γ(t,v;ψ) is believed to be the true model. Second, it will be very

useful to develop computationally efficient software for implementing the proposed methods

for general non-linear working models. The methods are computationally demanding due to

the need to calculate multiple derivatives and integrals, especially in cases involving complex
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effect modification. A third area of future work is in the application studying the effects

of high-level neonatal intensive care, where it would be useful to implement more flexible

covariate adjustment (e.g., via Super Learner) and explore more complex effect modification

models.
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APPENDIX TO CHAPTER 2

A.1. Brief Literature Review

There are many important papers on semiparametric estimation of the effect on the treated

in a simple random sampling setting. Here we give a brief description of this literature.

Rubin (1977) and Heckman and Robb (1985) were two of the earlier papers to discuss ef-

fects on the treated in some detail. Later, Heckman et al. (1997) and Heckman et al. (1998)

considered kernel-based matching approaches for estimation, including using an estimated

propensity score. Hahn (1998) derived the efficient influence function for the effect on the

treated (under a nonparametric model and a model in which the propensity score is known),

and developed semiparametric efficient estimators that rely on nonparametric estimation

of the propensity score and outcome regression functions. Dehejia and Wahba (1999) used

stratification and matching on the propensity score with the data from LaLonde (1986), and

found that the estimates were more similar to a randomized trial benchmark than those

based on regression. Hirano and Imbens (2001) considered doubly robust estimation based

on the efficient influence function, and used the approach to estimate effects of right heart

catheterization. Hirano et al. (2003) discussed a potentially efficient estimator that only

relies on estimation of the propensity score. Imbens (2004) gave a broad overview of semi-

parametric methods for estimating treatment effects. Abadie and Imbens (2006) derived

asymptotic theory for matching estimators that use a fixed number of matches, and showed

in Abadie and Imbens (2008) that the standard bootstrap is generally not valid for such

estimators. More recently, Chen et al. (2008) generalized much of the above work to settings

involving non-linear, possibly non-smooth, over-identified moment conditions, and consid-

ered a general context in which results can be applied to missing data and measurement

error problems as well as causal inference. Kline (2011) showed that an early estimator of

the effect on the treated, proposed by Oaxaca (1973) and Blinder (1973), actually fits in the

doubly robust framework proposed by Robins et al. (1994) and further developed elsewhere,

and gave a re-analysis of the LaLonde (1986) data. Zhang et al. (2012) considered quantile
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effects on the treated.

A.2. Effect Modification

In many studies interest centers not just on marginal treatment effects, but also on how

effects can change with covariates. The average effect on the treated conditional on putative

effect modifiers V ⊆ L is given by γ(v) = E(Y 1 − Y 0 | V = v,A = 1), and is identified

under Assumptions 1-3 in the main text by the expression

γ(v) =

∫
y p(y | v, a = 1) dη(y)−

∫
µ(l, 0)p(v | v, a = 1) dν(l).

Thus the conditional effect γ(v) is identified in any study design that identifies p(y | l, a)

and p(v | v, a = 1), including matched cohort studies.

In the next section we derive the efficient influence function for γ(v) under a nonparametric

model with distribution Q. However, in practice V might include variables with many lev-

els or continuous components, so that specifying a saturated model is impossible. In such

cases we might want to assume a parsimonious model γ(v;ψ) for γ(v), which is indexed by

finite-dimensional parameter ψ ∈ Rp. One approach in this setting is to develop estimators

under the assumption that this model is exactly correctly specified. See Lei (2011) for nice

work in this setting, which can yield important efficiency advantages when the effect modifi-

cation can be modeled well. An alternative approach is to only assume γ(v;ψ) is a possibly

misspecified working model and define the target parameter of interest as a projection of

γ(v) onto the working model (Neugebauer and van der Laan, 2007). We take the latter

approach, defining ψ as the minimizer of the distance
∫
{γ(v)− γ(v;ψ)}2p(v | a = 1) dν(v).

If the working model is incorrect, this parameter is still validly defined as a projection.

Further, if the working model happens to be correct, the efficient influence function for ψ

derived under the working model assumption will still be valid under the assumption that

the model is correct, just not necessarily efficient.
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Theorem A.1 Let γ(v;ψ) be a working model for γ(v) with ψ ∈ Rp, so that ψ is de-

fined as the projection arg minψ∗∈Rp

∫
{γ(v) − γ(v;ψ∗)}2p(v | a = 1) dν(v). The effi-

cient influence function for ψ under a nonparametric model with distribution Q is then

−E[{∂γ(µ, ξ;ψ)/∂ψ}⊗2 | A = 1]−1ϕ∗(µ, ξ;ψ), where ϕ∗(µ, ξ;ψ) is defined as

∂γ(V ;ψ)

∂ψ

[
A

q(a = 1)

{
Y − µ(L, 0)− γ(V ;ψ)

}
− 1−A
q(a = 1)

{
ξ(L)

1− ξ(L)

}{
Y − µ(L, 0)

}]
.

A.3. Proofs of identification and semiparametric theory

Here we prove results for γ(v), since results for E(Y 1−Y 0 | A = 1) follow by taking V = ∅.

We write expectations of g under F as either EF (g) or Fg =
∫
g dF , but use EP = E.

Proof A.1 (Identification) It follows that E(Y 1 | V = v,A = 1) =
∫
y p(y | v, a =

1) dη(y) from the consistency assumption alone. Then

E(Y 0 | V = v,A = 1) =

∫
E(Y 0 | L = l, A = 1) p(v | v, a = 1) dν(v)

=

∫
E(Y 0 | L = l, A = 0) p(v | v, a = 1) dν(v) =

∫
µ(l, 0) p(v | v, a = 1) dν(v)

where the first equality follows by iterated expectation, the second by ignorability, and the

third by consistency. Positivity is required so as to prevent conditioning on null sets.

Proof A.2 (Theorems 2.1 and A.1) Let q(z; ε) be a parametric submodel with parame-

ter ε ∈ R and q(z; 0) = q(z). Recalling the identifying expression of γ(v), we write

γ(v; ε) =

∫ ∫
y
{
p(y | l, a = 1; ε)− p(y | l, a = 0; ε)

}
p(v | v, a = 1; ε) dη(y)dν(v).

By definition the efficient influence function under Q is the unique function ϕ(Z) that

satisfies ∂γ(v; ε)/∂ε|ε=0 = EQ{ϕ(Z)Sε(Z)}, where Sε(Z) is defined as ∂ log q(z; ε)/∂ε|ε=0
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with

∂ log q(z; ε)

∂ε

∣∣∣
ε=0

=
∂

∂ε

{
log p(y | l, a; ε) + log p(v | v, a; ε) + log p(v | a = 1; ε) + log q(a; ε)

}∣∣∣
ε=0

.

We denote the four terms on the right as Sy(y, l, a), Sv(v, v, a), Sv(v), and Sa(a). Then it

is straightforward to show that ∂γ(v; ε)/∂ε|ε=0 equals

E
(
Y
{
Sy(Y,L, 1)+Sv(V , V, 1)

}
−E
[
Y
{
Sy(Y,L, 0)+Sv(V , V, 1)

} ∣∣∣ L,A = 0
] ∣∣∣ V = v,A = 1

)
.

Denote the putative efficient influence function as

ϕ(Z) =
I(V = v)

p(v | a = 1)

[
A

q(a = 1)

{
Y − µ(L, 0)− γ(v)

}
− 1−A
q(a = 1)

{
ξ(L)

1− ξ(L)

}{
Y − µ(L, 0)

}]
.

Then one can also verify that EQ{ϕ(Z)Sε(Z)} = ∂γ(v; ε)/∂ε|ε=0 − h(v) where h(v) equals

E
[
q(a = 0)

q(a = 1)

{
ξ(L)

1− ξ(L)

}{
Y − µ(L, 0)

}{
Sv(V , V, 0) + Sv(V ) + Sa(0)

} ∣∣∣ V = v,A = 0

]
+ E

[{
µ(L, 0) + γ(v)

}
Sy(Y,L, 1)

∣∣∣ V = v,A = 1
]

+ E
{
γ(v)Sv(V , V, 1)

∣∣∣ V = v,A = 1
}

− E
[
q(a = 0)

q(a = 1)

{
ξ(L)

1− ξ(L)

}
µ(L, 0)Sy(Y,L, 0)

∣∣∣ V = v,A = 0

]
− E

[{
Y − µ(L, 0)− γ(v)

}{
Sv(V ) + Sa(1)

} ∣∣∣ V = v,A = 1
]
.

However, the first line above is zero by iterated expectations since E(Y | L,A = 0)−µ(L, 0) =

0. The second and third lines are zero by iterated expectations and standard properties

of conditional score functions, in particular that E{Sy(Y,L,A) | L,A} = E{Sv(V , V,A) |

V,A} = 0. Similarly the fourth line is zero by the definition of γ(v). Therefore EQ{ϕ(Z)Sε(Z)} =

∂γ(v; ε)/∂ε|ε=0 and it follows that ϕ(Z) is the efficient influence function.
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A.4. Proofs of double robustness and asymptotics

Proof A.3 (Double robustness) Here we show that EQ{ϕ∗(µ, ξ;ψ0)} = 0 if µ̃ = µ or

ξ̃ = ξ (not necessarily both). Note that we can write this expectation as

EQ
(
∂γ(V ;ψ)

∂ψ

[
A

q(a = 1)

{
Y − µ̃(L, 0)− γ(V ;ψ)

}
− 1−A
q(a = 1)

{
ξ̃(L)

1− ξ̃(L)

}{
Y − µ̃(L, 0)

}])
= EQ

(
∂γ(V ;ψ)

∂ψ

[
ξ(L)

q(a = 1)
{µ(L, 1)− µ̃(L, 0)− γ(V ;ψ)}

− 1− ξ(L)

q(a = 1)

{
ξ̃(L)

1− ξ̃(L)

}
{µ(L, 0)− µ̃(L, 0)}

])
=

1

q(a = 1)
EQ
(
∂γ(V ;ψ)

∂ψ

[
ξ(L)

{
µ(L, 1)− µ(L, 0)− γ(V ;ψ)

}
−

{
ξ(L)− ξ̃(L)

1− ξ̃(L)

}{
µ(L, 0)− µ̃(L, 0)

}])
=

∫
∂γ(v;ψ)

∂ψ

{
µ(l, 1)− µ(l, 0)− γ(v;ψ)

}
p(l | a = 1) dν(l)

− 1

q(a = 1)
EQ
[
∂γ(V ;ψ)

∂ψ

{
ξ(L)− ξ̃(L)

1− ξ̃(L)

}{
µ(L, 0)− µ̃(L, 0)

}]
=

∫
∂γ(v;ψ)

∂ψ

{
γ(v)− γ(v;ψ)

}
p(v | a = 1) dν(v)

− 1

q(a = 1)
EQ
[
∂γ(V ;ψ)

∂ψ

{
ξ(L)− ξ̃(L)

1− ξ̃(L)

}{
µ(L, 0)− µ̃(L, 0)

}]

=
1

q(a = 1)
EQ

[
∂γ(V ;ψ)

∂ψ

{
µ(L, 0)− µ̃(L, 0)

}{ξ(L)− ξ̃(L)

1− ξ̃(L)

}]
.

The first equality follows by definition, the second by iterated expectation, the third by adding

and subtracting µ(L, 0) and rearranging, the fourth since

∫
ξ(l)

q(a = 1)
g(l)q(l) dν(l) =

∫
g(l)

q(a = 1 | l)q(l)
q(a = 1)

dν(l) =

∫
g(l)q(l | a = 1) dν(l)

and q(l | a = 1) = p(l | a = 1), the fifth by iterated expectation, and the last by the

fact that
∫
∂γ(v;ψ)/∂ψ{γ(v) − γ(v;ψ)}p(v | a = 1) dν(v) = 0 by definition when ψ =

arg minψ∗∈Rp

∫
{γ(v)− γ(v;ψ∗)}2p(v | a = 1) dν(v).
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Now the result follows since the term after the last equality reduces to zero whenever either

µ̃ = µ or ξ̃ = ξ.

Proof A.4 (Asymptotic normality) Define ψ̂ as the solution to Qnϕ(ψ, η̂) = 0 where

η = (µ, ξ), let ||f ||2 =
∫
f2dQ denote the squared L2(Q) norm, and assume

1. ψ̂ − ψ0 = op(1), ||µ̂− µ̃|| = op(1), and ||ξ̂ − ξ̃|| = op(1) with either µ̃ = µ0 or ξ̃ = ξ0.

2. ϕ(ψ, η̂) lies in a Donsker class with probability one as n→∞.

3. The map ψ → Qϕ(ψ, η) is differentiable at ψ0 uniformly in η, with derivative Dψ,η.

4. ϕ(ψ, η) is continuous in L2(Q) at (ψ0, η̃).

We will show that if η̃ = η0 and ||µ̂−µ0|| · ||ξ̂− ξ0|| = op(n
−1/2) then ψ̂ is root-n consistent,

asymptotically normal, and efficient. If η ∈ Rd, the map η → Qϕ(ψ, η) is differentiable with

nonsingular derivative ∆ψ,η, and η̂ has influence function φ(η) so that η̂ − η̃ = Qnφ(η̃) +

op(n
−1/2), then ψ̂ is root-n consistent and asymptotically normal, even if η̃ 6= η0 (i.e., even

if one of µ̃ 6= µ0 or ξ̃ 6= ξ0).

By Theorem 5.31 from van der Vaart (2000) (also see van der Vaart (2002)), under As-

sumptions 1-4 above we have

ψ̂ − ψ0 = −D−1ψ0,η̃
Qϕ(ψ0, η̂)−D−1ψ0,η̃

Qnϕ(ψ0, η̃) + op

(
n−1/2 + ||Qϕ(ψ0, η̂)||

)
.

Further from the double robustness result on the previous page we have

Qϕ(ψ0, η̂) =
1

q(a = 1)
Q

[
∂γ(V ;ψ0)

∂ψ

{
µ0(L, 0)− µ̂(L, 0)

}{ξ0(L)− ξ̂(L)

1− ξ̂(L)

}]
.

First assume η̃ = η0 and ||µ̂− µ0|| · ||ξ̂ − ξ0|| = op(n
−1/2). Since Q(fg) ≤ ||f || · ||g|| by the
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Cauchy-Schwarz inequality, for some constant C it follows that

Qϕ(ψ0, η̂) ≤ C||µ̂− µ0|| · ||ξ̂ − ξ0||,

and the right-hand side is op(n
−1/2) by assumption. Therefore

ψ̂ − ψ0 = −D−1ψ0,η0
Qnϕ(ψ0, η0) + op(n

−1/2)

so that ψ̂ is root-n consistent, asymptotically normal, and efficient.

Now assume η ∈ Rd, the map η → Qϕ(ψ, η) is differentiable, and η̂ has influence function

φ(η). Then by the Delta method we have

Qϕ(ψ0, η̂) = Qϕ(ψ0, η̂)−Qϕ(ψ0, η̃) = ∆ψ0,η̃ Qnφ(η̃) + op(n
−1/2).

Therefore ψ̂−ψ0 = −D−1ψ0,η̃
∆ψ0,η̃ Qnφ(η̃)−D−1ψ0,η̃

Qnϕ(ψ0, η̃) + op(n
−1/2 +Op(n

−1/2)), and

this implies that

ψ̂ − ψ0 = −D−1ψ0,η̃
Qn

{
∆ψ0,η̃ φ(η̃) + ϕ(ψ0, η̃)

}
+ op(n

−1/2),

so that ψ̂ is root-n consistent and asymptotically normal.

A.5. Proofs for Section 2.5

Proof A.5 (Efficiency bound) Using notation from the main text, we have

varQ

[
A

q(a = 1)

{
Y − µ(L, 0)− ψ

}
− 1−A
q(a = 1)

{
ξ(L)

1− ξ(L)

}{
Y − µ(L, 0)

}]
=

1

q(a = 1)2
EQ
[
ξ(L)σ2(L, 1) + {µ(L, 1)− µ(L, 0)− ψ}2ξ(L) +

ξ(L)2

1− ξ(L)
σ2(L, 0)

]
=

1

q(a = 1)
E
[
σ2(L, 1) + {µ(L, 1)− µ(L, 0)− ψ}2 +

ξ(L)

1− ξ(L)
σ2(L, 0)

∣∣∣ A = 1
]

=
Ω + Σ1

q(a = 1)
+

1

q(a = 1)
E
[

π(L)

1− π(L)

q(a = 1)

q(a = 0)

p(a = 0)

p(a = 1)

p(W | a = 0)

p(W | a = 1)
σ2(L, 0)

∣∣∣∣A = 1

]
,
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and the result follows since Σ∗0 = E
[

π(L)
1−π(L)

p(W |a=0)
p(W |a=1)σ

2(L, 0) | A = 1
]
.

Proof A.6 (Condition for BQ < BP ) Using the expressions for BQ and BP , we have

BQ < BP ⇐⇒
Ω + Σ1

q(a = 1)
+
p(a = 0)

p(a = 1)

Σ∗0
q(a = 0)

<
Ω + Σ1 + Σ0

p(a = 1)

⇐⇒ Σ∗0 <
q(a = 0)

p(a = 0)
p(a = 1)

{
Ω + Σ1 + Σ0

p(a = 1)
− Ω + Σ1

q(a = 1)

}
⇐⇒ Σ∗0 <

q(a = 0)

p(a = 0)

{
Σ0 −

p(a = 1)− q(a = 1)

q(a = 1)

(
Ω + Σ1

)}
.

This gives the desired result.

Proof A.7 (Theorem 2.2) If there is no matching then Σ∗0 = Σ0, and therefore

BQ < BP ⇐⇒ Σ0 <
q(a = 0)

p(a = 0)

{
Σ0 −

p(a = 1)− q(a = 1)

q(a = 1)

(
Ω + Σ1

)}
⇐⇒

{
p(a = 1)− q(a = 1)

}q(a = 0)

q(a = 1)
<
{
p(a = 1)− q(a = 1)

} Σ0

Ω + Σ1
.

If p(a = 1) > q(a = 1) then the above is equivalent to q(a = 1) > (Ω + Σ1)/(Ω + Σ1 + Σ0),

while if p(a = 1) < q(a = 1) then it is equivalent to q(a = 1) < (Ω + Σ1)/(Ω + Σ1 + Σ0).

Proof A.8 (Theorem 2.3) Since q(a = 1) = 1/(k + 1) we can write the efficiency bound

as

BQ = (k + 1)(Ω + Σ1) +

(
k + 1

k

)
p(a = 0)

p(a = 1)
Σ∗0 = kc1 +

c2
k

+ (c1 + c2),

where c1 = Ω + Σ1 and c2 = {p(a = 0)/p(a = 1)}Σ∗0. We want to find the value of k that

minimizes this expression. The derivative with respect to k is c1 − (c2/k
2), which when

solved for k yields k∗ = (c2/c1)
1/2. This is guaranteed to be a minimum since the second

derivative at this value is 2c2/(k
∗)3, and both c1 and c2 (and thus also k∗) are necessarily

positive. Therefore kopt = (c2/c1)
1/2.
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A.6. Additional Simulation Results

In Table 3 we give additional simulation results comparing matched cohort sampling (with

1:1 and 3:1 matching) versus random sampling, using the same simulation model as de-

scribed in the main text. For this simulation setting we have p(a = 1) ≈ 0.203 and

Ω = 0, Σ1 = 1, and Σ∗0 ≈ 0.495,

so that the optimal number of matched controls is approximately 1.4. Therefore 1:1 match-

ing should be more efficient than 3:1 matching and random sampling, at least for the doubly

robust estimator under correct model specification; in fact this is exactly what we see.

For our simulations, in general, the estimators applied in 1:1 matched cohort samples were

more efficient than in 3:1 matched cohort samples, which were more efficient than in ran-

dom samples of the same size. However this relation did not always hold when models

were misspecified, or for inverse-probability-weighted estimators even under correct model

specification. This is to be expected based on theory, since under model misspecification

and with inefficient estimators there are generally no theoretical efficiency guarantees.

A.7. Additional Illustration Details

In the efficiency analysis given in the main text (but not the main analysis estimating the

effect of hysterectomy), we assumed for simplicity that the distribution of the matching

covariates was the same for the treated and controls, i.e., p(w | a) = p(w). This simplifying

assumption allowed us to focus the discussion on how the efficiency bounds compare when

varying the marginal proportion treated p(a = 1). However, since most studies match on

variables that are thought to be strong confounders, typically we would expect p(w | a = 0)

to be far from equal to p(w | a = 1). Therefore in practice it would often be preferable to

specify different values of p(w | a = 0), as was done for p(a = 1) in the main text, and see

how the bounds under Q and P change relative to each other. Also note that although the
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Table 8: Percent bias, scaled empirical standard errors, and confidence interval coverage
based on 500 simulated datasets

Correct model
Sampling Neither Treatment Outcome Both

n Estimator Bias (SE) Cov Bias (SE) Cov Bias (SE) Cov Bias (SE) Cov

102 MCS (1:1)
IPW -20 (129) 98 6 (172) 97 -20 (129) 98 6 (172) 97
Reg -54 (29) 68 -54 (29) 68 0 (2.3) 95 0 (2.3) 95
DR -41 (36) 76 -7 (35) 94 0 (2.5) 94 0 (2.7) 92

MCS (3:1)
IPW -25 (139) 99 13 (109) 99 -25 (139) 99 13 (109) 99
Reg -53 (37) 68 -53 (37) 68 0 (2.5) 94 0 (2.5) 94
DR -37 (41) 81 -5 (30) 97 0 (2.7) 95 0 (2.7) 94

SRS
IPW -20 (197) 99 13 (171) 98 -20 (197) 99 13 (171) 98
Reg -97 (53) 58 -97 (53) 58 0 (2.7) 95 0 (2.7) 95
DR -44 (81) 81 -10 (59) 96 0 (3.2) 93 0 (3.4) 93

103 MCS (1:1)
IPW -27 (83) 84 -1 (95) 96 -27 (83) 84 -1 (95) 96
Reg -55 (30) 0 -55 (30) 0 0 (2.2) 95 0 (2.2) 95
DR -41 (33) 4 -1 (30) 94 0 (2.4) 95 0 (2.5) 96

MCS (3:1)
IPW -30 (58) 63 1 (62) 98 -30 (58) 63 1 (62) 98
Reg -56 (37) 0 -56 (37) 0 0 (2.4) 95 0 (2.4) 95
DR -38 (38) 8 -1 (26) 96 0 (2.5) 95 0 (2.6) 95

SRS
IPW -21 (81) 89 1 (92) 96 -21 (81) 89 1 (92) 96
Reg -101 (55) 0 -101 (55) 0 0 (2.7) 95 0 (2.7) 95
DR -43 (48) 19 -1 (49) 95 0 (2.9) 94 0 (3.0) 94

104 MCS (1:1)
IPW -25 (75) 9 0 (88) 96 -25 (75) 9 0 (88) 96
Reg -56 (31) 0 -56 (31) 0 0 (2.1) 96 0 (2.1) 96
DR -41 (34) 0 0 (30) 96 0 (2.3) 95 0 (2.3) 96

MCS (3:1)
IPW -30 (58) 0 0 (61) 95 -30 (58) 0 0 (61) 95
Reg -56 (36) 0 -56 (36) 0 0 (2.5) 95 0 (2.5) 95
DR -38 (37) 0 0 (25) 94 0 (2.6) 94 0 (2.6) 95

SRS
IPW -20 (75) 23 0 (89) 94 -20 (75) 23 0 (89) 94
Reg -102 (58) 0 -102 (58) 0 0 (2.6) 96 0 (2.6) 96
DR -43 (49) 0 0 (50) 95 0 (2.7) 97 0 (2.8) 97

SE, standard error multiplied by n1/2; IPW, inverse-probability-weighted; Reg, regression;
DR, doubly robust. MCS (k:1) denotes a matched cohort sampling with k:1 matching on
W ∈ {0, 1}, and SRS denotes simple random sampling.
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bound under P is not identifiable under a matched sampling scheme, the bound under Q is

identifiable. In particular, assuming correctly specified treatment and outcome models, it

can be estimated with an estimate of the variance (under Q) of the doubly robust estimator.

A.8. R Code

require(sandwich)

#---INPUT---

#Y: string; name of outcome in data

#Yformula: glm formula for outcome,

#note: this model is fitted to the unexposed

#(i.e. those with A=0), so the formula should not contain A

#Yfamily: glm family for outcome (only used for link function)

#A: string; name of exposure (coded as 0/1) in data

#Aformula: logistic formula for exposure

#method: string; estimation method ("ML", "IPW", "DR", or "DRwt").

#"DRwt" gives DR estimation with weighted LS outcome regression

#cluster: name of cluster id variable

#data: dataset containing all variables

#---OUTPUT---

#psi: estimate of psi

#se: standard error for the estimate of psi

matched <- function(Y,Yformula,Yfamily,A,Aformula,method,cluster,data){

#preparation

unexposed <- which(data[,A]==0)

data0 <- data[unexposed,]; data0star <- data; data0star[,A] <- 0

A <- data[,A]; Y <- data[,Y]; n <- nrow(data)

if(missing(cluster)){ ncluster <- n } else {
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ncluster <- length(unique(data[,cluster])) }

#fit models

if(method=="IPW" | method=="DR" | method=="DRwt"){

Afit <- glm(formula=Aformula,family="binomial",data=data)

w <- exp(predict(object=Afit,newdata=data,type="link"))

#w = omega/(1-omega)

data0$w <- w[unexposed]; nApar <- length(Afit$coef)

LA <- model.matrix(object=Aformula,data=data) }

if(method=="ML" | method=="DR" | method=="DRwt"){

if(method=="DRwt")

Yfit <- glm(formula=Yformula,family=Yfamily,data=data0,weights=w)

else

Yfit <- glm(formula=Yformula,family=Yfamily,data=data0)

mu0 <- predict(object=Yfit,newdata=data0star,type="respons")

eta0 <- predict(object=Yfit,newdata=data0star,type="link")

nYpar <- length(Yfit$coef)

LY <- model.matrix(object=Yformula,data=data) }

#calculate estimate

if(method=="ML") psi <- sum((Y-mu0)*A)/sum(A)

if(method=="IPW") psi <- sum(Y*(A-(1-A)*w))/sum(A)

if(method=="DR" | method=="DRwt") psi <- sum((Y-mu0)*(A-(1-A)*w))/sum(A)

#calculate standard error

if(method=="ML" | method=="DR" | method=="DRwt"){

Yres <- matrix(0,nrow=n,ncol=nYpar)

#must include those with A==1 as well here

Yres[A==0,] <- estfun(Yfit); g <- family(Yfit)$mu.eta

dmu.deta <- g(eta0); deta.dbeta <- LY

dmu.dbeta <- dmu.deta*deta.dbeta

}

80



if(method=="IPW" | method=="DR" | method=="DRwt"){

Ares <- estfun(Afit)

}

if(method=="ML"){

psires <- A*(Y-mu0-psi); res <- cbind(psires,Yres)

psiI <- c(sum(-A),colSums(-A*dmu.dbeta))/ncluster

YI <- cbind(matrix(rep(0,nYpar),nrow=nYpar,ncol=1),

-solve(vcov(object=Yfit))/ncluster)

I <- rbind(psiI,YI)

}

if(method=="IPW"){

psires <- A*(Y-psi)-(1-A)*w*Y; res <- cbind(psires,Ares)

psiI <- c(sum(-A),colSums(-(1-A)*Y*w*LA))/ncluster

AI <- cbind(matrix(rep(0,nApar),nrow=nApar,ncol=1),

-solve(vcov(object=Afit))/ncluster)

I <- rbind(psiI,AI)

}

if(method=="DR" | method=="DRwt"){

psires <- A*(Y-mu0-psi)-(1-A)*w*(Y-mu0)

res <- cbind(psires,Yres,Ares)

psiI <- c(sum(-A),

colSums(((1-A)*w-A)*dmu.dbeta),

colSums(-(1-A)*(Y-mu0)*LA*w))/ncluster

if(method=="DR")

YI <- cbind(matrix(rep(0,nYpar),nrow=nYpar,ncol=1),

-solve(vcov(object=Yfit))/ncluster,

matrix(rep(0,nYpar*nApar),nrow=nYpar,ncol=nApar))

if(method=="DRwt")

YI <- cbind(matrix(rep(0,nYpar),nrow=nYpar,ncol=1),

-solve(vcov(object=Yfit))/ncluster,

t(Yres)%*%LA/ncluster)

AI <- cbind(matrix(rep(0,nApar),nrow=nApar,ncol=1),
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matrix(rep(0,nApar*nYpar),nrow=nApar,ncol=nYpar),

-solve(vcov(object=Afit))/ncluster)

I <- rbind(psiI,YI,AI)

}

if(!missing(cluster))

res <- aggregate(x=res,by=list(data[,cluster]),FUN=sum)[,-1]

J <- var(res)

se <- sqrt((solve(I)%*%J%*%t(solve(I))/ncluster)[1,1])

#output

out <- list(psi=psi,se=se); return(out)

}
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APPENDIX TO CHAPTER 3

B.1. Guide to notation

Z = (L, A, Y ) = observed data arising from distribution P with density p(z) = p(y |

l, a)p(a | l)p(l) and support supp(Z) = Z = L ×A× Y.

Pn = 1
n

∑
i δZi = empirical measure so that Pn(f) = Pn{f(Z)} = 1

n

∑
i f(zi).

P(f) = P{f(Z)} =
∫
Z f(z) dP (z) = expectation for new Z treating f as fixed (so P(f̂) is

random if f̂ depends on sample, in which case P(f̂) 6= E(f̂)).

π(a | l) = p(a | l) = ∂
∂aP (A ≤ a | l) = conditional density of treatment A.

π̂(a | l) = user-specified estimator of π(a | l), which converges to limit π(a | l) that may not

equal true π.

$(a) = p(a) = ∂
∂aP (A ≤ a) = E{π(a | L)} =

∫
L π(a | l) dP (l) = density of A.

$̂(a) = Pn{π̂(a | L)} =
∫
L π̂(a | l) dPn(l) = 1

n

∑
i π̂(a | li) = estimator of $, which

converges to limit $(a) that may not equal true $.

µ(l, a) = E(Y | L = l, A = a) =
∫
Y y dP (y | l, a) = conditional mean outcome.

µ̂(l, a) = user-specified estimator of µ(l, a), which converges to limit µ(l, a) that may not

equal true µ.

m̂(a) = Pn{µ̂(L, a)} =
∫
L µ̂(l, a) dPn(l) = 1

n

∑
i µ̂(li, a) = regression-based plug-in estimator

of θ(a), which converges to limit m(a) that may not equal true θ.
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B.2. Proof of Theorem 3.1

Let p(z; ε) be a parametric submodel with parameter ε ∈ R and p(z; 0) = p(z), for example

p(z; ε) = {1 + εb(z)}p(z) where E{b(Z)} = 0 with |b(Z)| < B and |ε| ≤ (1/B) to ensure that

p(z; ε) ≥ 0. For notational simplicity we denote {∂f(t; ε)/∂ε}|ε=0 by f ′ε(t; 0) for any general

function f of ε and other arguments t.

By definition the efficient influence function for ψ is the unique function φ(Z) that satisfies

ψ′ε(0) = E{φ(Z)`′ε(Z; 0)}, where ψ(ε) represents the parameter of interest as a functional on

the parametric submodel and `(w | w; ε) = log p(w | w; ε) for any partition (W,W) ⊆ Z.

Therefore

`′ε(z; ε) = `′ε(y | l, a; ε) + `′ε(a | l; ε) + `′ε(l; ε).

We give two important properties of such score functions `′ε(w | w; ε) that will be used

throughout this proof. First note that since `(w | w; ε) is a log transformation of p(w | w; ε),

it follows that `′ε(w | w; ε) = p′ε(w | w; ε)/p(w | w; ε) because for general functions f we

have ∂ log f(ε)/∂ε = {∂f(ε)/∂ε}/f(ε). Similarly, as with any score function, note that

E{`′ε(W |W; 0) |W} = 0 since

∫
W
`′ε(w | w; 0) dP (w | w) =

∫
W
dP ′ε(w | w) =

∂

∂ε

∫
W
dP (w | w) = 0.

Our goal in this proof is to show that ψ′ε(0) = E{φ(Z)`′ε(Z; 0)} for the proposed influence

function φ(Z) = ξ(Z;π, µ) − ψ +
∫
A{µ(L, a) −

∫
L µ(l, a)dP (l)}$(a)da given in the main

text. First we will give an expression for ψ′ε(0). By definition ψ(ε) =
∫
A θ(a; ε)$(a; ε) da,

so

ψ′ε(0) =

∫
A
{θ′ε(a; 0)$(a) + θ(a)$′ε(a; 0)} da = E{θ′ε(A; 0) + θ(A)`′ε(A; 0)}.
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Also since θ(a; ε) =
∫
L
∫
Y y p(y | l, a; ε)p(l; ε) dη(y) dν(l), we have

θ′ε(a; 0) =

∫
L

∫
Y
y
{
p′ε(y | l, a; 0)p(l) + p(y | l, a)p′ε(l; 0)

}
dη(y) dν(l)

=

∫
L

∫
Y
y
{
`′ε(y | l, a; 0)p(y | l, a)p(l) + p(y | l, a)`′ε(l; 0)p(l)

}
dη(y) dν(l)

= E
[
E{Y `′ε(Y | L, A; 0) | L, A = a}

]
+ E

{
µ(L, a)`′ε(L; 0)

}
.

Therefore

ψ′ε(0) =

∫
A

(
E
[
E{Y `′ε(Y | L, A; 0) | L, A = a}

]
+ E

{
µ(L, a)`′ε(L; 0)

}
+ θ(a)`′ε(a; 0)

)
$(a) da.

Now we will consider the covariance

E{φ(Z)`′ε(Z; 0)} = E
[
φ(Z)

{
`′ε(Y | L, A; 0) + `′ε(A,L; 0)

}]
,

which we need to show equals the earlier expression for ψ′ε(0).

Recall the proposed efficient influence function given in the main text is

Y − µ(L, A)

π(A | L)
$(A) +m(A)− ψ +

∫
A

{
µ(L, a)−m(a)

}
$(a) da

where we define

m(a) =

∫
L
µ(l, a) dP (l)

as the marginalized version of the regression function µ, so that m(a) = θ(a) if µ is the true

regression function.

Thus E{φ(Z)`′ε(Y | L, A; 0)} equals

E
([

Y − µ(L, A)

π(A | L)/$(A)
+

∫
A

{
µ(L, a)− θ(a)

}
$(a) da+ θ(A)− ψ

]
`′ε(Y | L, A; 0)

)
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= E
{
Y `′ε(Y | L, A; 0)

π(A | L)/$(A)

}
= E

[
E{Y `′ε(Y | L, A; 0) | L, A}

π(A | L)/$(A)

]
=

∫
A
E
[
E{Y `′ε(Y | L, A; 0) | L, A = a}

]
$(a) da

where the first equality follows since E{`′ε(Y | L, A; 0) | L, A} = 0, the second by iterated

expectation conditioning on L and A, and the third by iterated expectation conditioning

on L. Now note that E{φ(Z)`′ε(A,L; 0)} equals

E
[{

Y − µ(L, A)

π(A | L)/$(A)

}
`′ε(A,L; 0) + {θ(A)− ψ}

{
`′ε(L | A; 0) + `′ε(A; 0)

}
+

∫
A

{
µ(L, a)− θ(a)

}
$(a) da

{
`′ε(A | L; 0) + `′ε(L; 0)

}]
= E

[
θ(A)`′ε(A; 0) +

∫
A
µ(L, a)`′ε(L; 0)$(a) da

]

since by definition `′ε(A,L; 0) = `′ε(A | L; 0) + `′ε(L; 0) = `′ε(L | A; 0) + `′ε(A; 0), and the

equality used iterated expectation conditioning on L and A for the first term in the first

line, A for the second term in the first line, and L for the second line. Adding the expressions

E{φ(Z)`′ε(Y | L, A; 0)} and E{φ(Z)`′ε(A,L; 0)} gives

∫
A

(
E
[
E{Y `′ε(Y | L, A; 0) | L, A = a}+ µ(L, a)`′ε(L; 0)

]
+ θ(a)`′ε(a; 0)

)
$(a) da,

which equals ψ′ε(0). Thus φ is the efficient influence function.

B.3. Double robustness of efficient influence function & mapping

Here we will show that E{φ(Z;π, µ, ψ)} = 0 if either π = π or µ = µ, where φ(Z;π, µ, ψ) is

the influence function defined as in the main text as

ξ(Z;π, µ)− ψ +

∫
A

{
µ(L, a)−

∫
L
µ(l, a) dP (l)

}∫
L
π(a | l) dP (l) da,

where

ξ(Z;π, µ) =
Y − µ(L, A)

π(A | L)

∫
L
π(A | l) dP (l) +

∫
L
µ(l, A) dP (l).
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First note that, letting $(a) = E{π(a | L)} and m(a) = E{µ(L, a)}, we have

E{ξ(Z;π, µ) | A = a} = E
{

Y − µ(L, A)

π(A | L)/$(A)
+m(A)

∣∣∣ A = a

}
=

∫
L

µ(l, a)− µ(l, a)

π(a | l)/$(a)
dP (l | a) +m(a)

=

∫
L

{
µ(l, a)− µ(l, a)

}π(a | l)/$(a)

π(a | l)/$(a)
dP (l) +m(a)

= θ(a) +

∫
L

{
µ(l, a)− µ(l, a)

}{π(a | l)/$(a)

π(a | l)/$(a)
− 1

}
dP (l)

where the first equality follows by iterated expectation, the second follows since p(l | a) =

p(a | l)p(l)/p(a), and the third by rearranging. The last line shows that E{ξ(Z;π, µ) | A =

a} = θ(a) as long as either π = π or µ = µ, since in either case the remainder is zero.

Therefore if π = π or µ = µ we have

∫
A
E{ξ(Z;π, µ) | A = a}$(a) da− ψ =

∫
A
θ(a)$(a) da− ψ = 0

so that

E{φ(Z;π, µ, ψ)} = E
[∫
A

{
µ(L, a)−m(a)

}
$(a) da

]
.

But

E
∫
A

{
µ(L, a)−m(a)

}
$(a) da =

∫
A

{
m(a)−m(a)

}
$(a) da = 0

by definition.

Therefore E{φ(Z;π, µ, ψ)} = 0 if either π = π or µ = µ.
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B.4. TMLE version of estimator

As we note in the main text, the proposed estimator

θ̂h(a) = gha(a)TPn{gha(A)Kha(A)gha(A)T}−1Pn{ghaKha(A)ξ̂(Z; π̂, µ̂)}

is not guaranteed to respect bounds on Y , e.g., if Y ∈ [0, 1] is binary. If some observations

have very small values of the denominator quantity π̂(A | L)/$̂(A) then the estimator could

be unstable and may take values outside the range of Y . Targeted maximum likelihood or

minimum loss-based estimators (TMLEs), developed by van der Laan and Rubin (2006),

help combat this problem (see discussion for example in van der Laan and Rose (2011)

and elsewhere). In this section we present a TMLE that should give better finite-sample

performance, for example, when there are near-violations of the positivity assumption.

Our proposed TMLE can be fit as follows. First estimate the nuisance functions π̂ and µ̂, for

example with flexible machine learning (e.g., Super Learner). Then fit a logistic regression

model regressing Y on ‘clever covariate’ vector

ĉha(L, A) =
gha(A)Kha(A)

π̂(A | L)/$̂(A)

with logit{µ̂(L, A)} included as an offset (and no intercept term). This ensures

Pn
{

gha(A)Kha(A)

π̂(A | L)/$̂(A)

(
Y − expit

[
logit{µ̂(L, A)}+ ε̂Tĉha(L, A)

])}
= 0

where ε = (ε1, ε2) are the parameters in the logistic regression fit. Now define

µ̂∗ha(L, A) = expit
[
logit{µ̂(L, A)}+ ε̂Tĉha(L, A)

]
.

Then the proposed method proceeds as before, simply replacing predicted values µ̂(L, A)
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with µ̂∗ha(L, A). Specifically we estimate θ(a) with

θ̂∗h(a) = gha(a)TPn{gha(A)Kha(A)gha(A)T}−1Pn{ghaKha(A)m̂∗ha(A)},

m̂∗ha(t) = Pn{µ̂∗ha(L, t)} = Pn
(

expit
[
logit{µ̂(L, t)}+ ε̂Tĉha(L, t)

])
.

The above TMLE is somewhat more complicated to fit than the estimator proposed in

the main text. An alternative approach that would also respect bounds on Y would be to

estimate θ(a) with θ̂h(a) = expit{gha(a)Tβ̂h(a)} where

β̂h(a) = arg min
β∈R2

Pn
(
Kha(A)

[
ξ̂(Z; π̂, µ̂)− expit{gha(A)Tβ}

]2)
.

Another simple option would be to use the original estimator from the main text and project

onto the range of possible Y values.

B.5. Stochastic equicontinuity lemmas

In this section we discuss the concept of asymptotic or stochastic equicontinuity, and give

two lemmas that play a central role in subsequent proofs.

Let Gn =
√
n(Pn − P). A sequence of empirical processes {GnVn(f) : f ∈ F} indexed by

elements f ranging over a metric space F (equipped with semimetric ρ) is stochastically

equicontinuous (Pollard, 1984; Andrews, 1994; van der Vaart and Wellner, 1996) if for every

ε > 0 and ζ > 0 there exists a δ > 0 such that

lim sup
n→∞

P

(
sup

ρ(f1,f2)<δ
|GnVn(f1)−GnVn(f2)| > ε

)
< ζ.

An important consequence of stochastic equicontinuity for our purposes is that if {GnVn(·) :

n ≥ 1} is stochastically equicontinuous then ρ(f̂ , f) = op(1) implies that Gn{Vn(f̂) −

Vn(f)} = op(1) (Pollard, 1984; Andrews, 1994).

Before presenting relevant lemmas, we first need to introduce some notation. Let F denote
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an envelope function for the space F , i.e., a function with F (z) ≥ |f(z)| for every f ∈ F

and z ∈ Z. Also let N(ε,F , || · ||) denote the covering number, i.e., the minimal number of

ε-balls (using distance || · ||) needed to cover F , and let

J(δ,F , L2) =

∫ δ

0
sup
Q

√
logN(ε||F ||Q,2,F , L2(Q)) dε,

where L2(Q) denotes the usual L2 semimetric under distribution Q, which for any f is

||f ||Q,2 = (
∫
f2dQ)1/2. We call J(∞,F , L2) the uniform entropy integral.

To show that a sequence of processes {GnVn(·) : n ≥ 1} as defined above is stochastically

equicontinuous, one can use Theorem 2.11.1 from van der Vaart and Wellner (1996). (Note

that in their notation Zn(f) = (1/
√
n)Vn(f).) Specifically, Theorem 2.11.1 states that

stochastic equicontinuity follows from the following two Lindeberg conditions (conditions 1

and 2), with an additional restriction on the complexity of the space F (condition 3):

(1) E{||Vn||2F I(||Vn||F > ε
√
n)} → 0 for every ε > 0.

(2) supρ(f1,f2)<δn E[{Vn(f1)− Vn(f2)}2]→ 0 for every sequence δn → 0.

(3)
∫ δn
0

√
logN(ε,F , L2(Pn)) dε

p→ 0 for every sequence δn → 0.

We will give conditions under which two particular kinds of sequences of empirical processes

are stochastically equicontinuous. Specifically we consider processes {GnVn(·) : n ≥ 1}

where

Vn(f) =
√
h gha(A)Kha(A)f(Z),

Vn(f) =

∫
f(L, t)gha(t)Kha(t) dt,

with gha(t) and Kha(t) defined earlier (note Vn depends on n since h = hn does).
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Lemma B.1 Consider the sequence of processes {GnVn,j(·) : n ≥ 1} with

Vn,j(f) =
√
h

(
A− a
h

)j−1 1

h
K

(
A− a
h

)
f(Z) , j = 1, 2,

where f ∈ F with envelope F (z) = supf∈F |f(z)|. Assume the following:

1. The bandwidth h = hn satisfies h→ 0 and nh3 →∞ as n→∞.

2. The kernel K is a bounded symmetric probability density with support [−1, 1].

3. A has compact support A and continuous density $.

4. The envelope F is uniformly bounded, i.e., ||F ||Z ≤ fmax <∞.

5. F has a finite uniform entropy integral, i.e., J(δ,F , L2) <∞.

Then {GnVn,j(·) : n ≥ 1} is stochastically equicontinuous.

Proof B.1 Recall that to show stochastic equicontinuity we can check conditions (1)–(3) of

Theorem 2.11.1 from van der Vaart and Wellner (1996), as given earlier.

We will show Lindeberg condition (1) using the dominated convergence theorem, which

says if Xn
p→ X and |Xn| ≤ Y with E(Y ) < ∞ then E(Xn) → E(X). First note that

||Vn,j ||2F I(||Vn,j ||F > ε
√
n) = op(1) since for any δ > 0

lim
n→∞

P
{
||Vn,j ||2F I(||Vn,j ||F > ε

√
n) ≥ δ

}
≤ lim

n→∞
P
(
||Vn,j ||F > ε

√
n
)

= lim
n→∞

P
{

(A− a)j−1K

(
A− a
h

)
F (Z) > ε

√
nh2j−1

}
≤ lim

n→∞
P
{

(A− a)j−1||K||[−1,1]fmax > ε
√
nh2j−1

}
.

The last line above used the kernel and envelope conditions (b) and (c). The expression

in the last line tends to zero as n → ∞, since nh → ∞ and nh3 → ∞ by the bandwidth
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condition (a) (note that nh→∞ is implied by the fact that h→ 0 and nh3 →∞), and since

A has compact support by condition (c). We also have ||Vn,j ||2FI(||Vn,j ||F > ε
√
n) ≤ ||Vn,j ||2F

since I(·) is the indicator function, and E{||Vn,j ||2F} <∞ since

E{||Vn,j ||2F} = E
[(A− a

h

)2(j−1) 1

h
K

(
A− a
h

)2

F (Z)2
]

≤ f2max||$||A
∫ (

t− a
h

)2(j−1) 1

h
K

(
A− a
h

)2

dt

= f2max||$||A
∫
u2(j−1)K(u)2 dt <∞.

The second line above follows by the distribution condition (c) and the envelope condition

(d), and the last line is finite by the kernel properties assumed in condition (b). Therefore

since ||Vn,j ||2F I(||Vn,j ||F > ε
√
n) = op(1) and ||Vn,j ||2F I(||Vn,j ||F > ε

√
n) ≤ ||Vn,j ||2F with

E{||Vn,j ||2F} <∞, the dominated convergence theorem implies that E{||Vn,j ||2F I(||Vn,j ||F >

ε
√
n)} → 0 as n→∞ and thus Lindeberg condition (1) holds.

Lindeberg condition (2) holds when ρ(·) is the uniform norm since

sup
ρ(f1,f2)<δn

E[{Vn,j(f1)− Vn,j(f2)}2]

= sup
||f1−f2||Z<δn

E

[(
A− a
h

)2(j−1) 1

h
K

(
A− a
h

)2 {
f1(Z)− f2(Z)

}2
]

≤ δ2n
∫ (

t− a
h

)2(j−1) 1

h
K

(
t− a
h

)2

$(t) dt

≤ δ2n ||$||A
∫
u2(j−1)K(u)2 dt → 0 , for any δn → 0.

The first equality above follows by definition, the second inequality by the fact that ||f1 −

f2||Z < δn, and the third by condition (c) and a change of variables. The last line tends to

zero as δn → 0 by the kernel properties in condition (b).

Now we consider the complexity condition (3). As described in Section 2.11.1.1 (page 209)

of van der Vaart and Wellner (1996), a process (1/
√
n)Vn(f) is measure-like if for some
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(random) measure νni we have

1

n

{
Vn(f1)− Vn(f2)

}2
≤
∫

(f1 − f2)2 dνni , for every f1, f2 ∈ F .

van der Vaart and Wellner (1996) show in their Lemma 2.11.6 that if F has a finite uniform

entropy integral, then measure-like processes indexed by F satisfy the complexity condition

(3) of Theorem 2.11.1.

Note that for our process Vn,j(f) of interest, we have

1

n

{
Vn,j(f1)− Vn,j(f2)

}2
=
{
f1(Z)− f2(Z)

}2√
h

(
A− a
h

)j−1 1

h
K

(
A− a
h

)
.

Therefore the processes Vn,j(f) are measure-like for the random measure νni =
√
hghaKhaδZi,

where δZi denotes the Dirac measure. Hence, by Lemma 2.11.6 of van der Vaart and Well-

ner (1996), the fact that F has a finite uniform entropy integral (assumed in condition (e))

implies that complexity condition (3) is satisfied.

Therefore the sequence {GnVn,j(·) : n ≥ 1} is stochastically equicontinuous.

As mentioned earlier, Lemma B.1 implies that if ||f̂ − f ||Z = op(1) then

√
nh(Pn − P)

[(
A− a
h

)j−1 1

h
K

(
A− a
h

){
f̂(Z)− f(Z)

}]
= op(1).

Lemma B.2 Consider the sequence of processes {GnVn,j(·) : n ≥ 1} with

Vn,j(f) =

∫
f(L, t)

( t− a
h

)j−1 1

h
K
( t− a

h

)
dt , j = 1, 2,

where f ∈ F with envelope F as in Lemma B.1. Assume conditions (b), (d), and (e) of

Lemma B.1 hold. Then {GnVn,j(·) : n ≥ 1} is stochastically equicontinuous.

Proof B.2 The proof of Lemma B.2 is very similar to that of Lemma B.1. We again show

Lindeberg condition (1) using the dominated convergence theorem. First note ||Vn,j ||2F I(||Vn,j ||F >

93



ε
√
n) = op(1) since for any δ > 0

lim
n→∞

P
{
||Vn,j ||2F I(||Vn,j ||F > ε

√
n) ≥ δ

}
≤ lim

n→∞
P
(
||Vn,j ||F > ε

√
n
)

= lim
n→∞

P
{∫

F (L, t){(t− a)/h}j−1K{(t− a)/h}/h dt > ε
√
n
}

≤ lim
n→∞

I
{
fmax

∫
|u|j−1K(u) dt > ε

√
n
}

= 0.

The last line above used the kernel and envelope conditions (b) and (d). We also have

||Vn,j ||2FI(||Vn,j ||F > ε
√
n) ≤ ||Vn,j ||2F and E{||Vn,j ||2F} equals

{∫
F (L, t)

(
t− a
h

)j−1 1

h
K

(
t− a
h

)
dt

}2

≤ f2max
{∫

|u|j−1K(u) du

}2

,

which is finite again using conditions (b) and (d). Therefore Lindeberg condition (1) holds

since E{||Vn,j ||2FI(||Vn,j ||F > ε
√
n)} → 0 by dominated convergence.

Lindeberg condition (2) holds with the uniform norm since, by definition and using the

kernel condition (b), supρ(f1,f2)<δn E[{Vn(f1)− Vn(f2)}2] equals

sup
||f1−f2||Z<δn

E
([∫ {

f1(L, t)− f2(L, t)
}( t− a

h

)j−1 1

h
K

(
t− a
h

)
dt

]2)
≤ δ2n

{∫
|u|j−1K(u) du

}2

→ 0 , for any δn → 0.

As in Lemma B.1, we use that Vn,j is measure-like to check condition (3). Here

1

n
{Vn,j(f1)− Vn,j(f2)}2 =

1

n

[ ∫
{f1(L, t)− f2(L, t)}

( t− a
h

)j−1 1

h
K
( t− a

h

)
dt

]2
≤ 1

n

∫ {
f1(L, t)− f2(L, t)

}2
∣∣∣∣ t− ah

∣∣∣∣2(j−1) 1

h
K

(
t− a
h

)
dt

by Jensen’s inequality. Therefore the processes Vn,j(f) are measure-like, and the fact that

F has a finite uniform entropy integral (assumed in condition (e)) implies that complexity

condition (3) is satisfied. This concludes the proof.
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B.6. Proof of Theorem 3.2

Here we let θ̃h(a) = gha(a)TD̂−1haPn{gha(A)Kha(A)ξ(Z;π, µ)} denote the infeasible estimator

one would use if the nuisance functions were known, with D̂ha = Pn{gha(A)Kha(A)gha(A)T}

as in the main text. Our proposed estimator is θ̂h(a) = gha(a)TD̂−1haPn{gha(A)Kha(A)ξ̂(Z; π̂, µ̂)}.

We use the decomposition

θ̂h(a)− θ(a) =
{
θ̃h(a)− θ(a)

}
+
{
θ̂h(a)− θ̃h(a)

}
=
{
θ̃h(a)− θ(a)

}
+ (Rn,1 +Rn,2)

where

Rn,1 = gha(a)TD̂−1ha (Pn − P)
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
Rn,2 = gha(a)TD̂−1haP

[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
.

Our proof is divided into three parts, one for the analysis of each of the terms above.

B.6.1. Convergence rate of θ̃h(a)− θ(a)

Since the infeasible estimator θ̃h(a) is a standard local linear kernel estimator with out-

come ξ(Z;π, µ) and regressor A, it can be analyzed with results from the local polynomial

kernel regression literature. In particular, since our Assumption 3.2 (Positivity) along with

conditions (b), (c), (d) of our Theorem 3.2 imply the bandwidth condition and condi-

tions 1(i)-1(iv) in Fan (1993), by their Theorem 1 we have E[θ̃h(a) − E{ξ(Z;π, µ) | A =

a}]2 = O(1/nh+ h4). Further, condition (a) of our Theorem 3.2 implies E{ξ(Z;π, µ) | A =

a} = θ(a) by the results in Section B.3 of this Appendix. Therefore E{θ̃h(a) − θ(a)}2 =

O(1/nh+ h4).

Now letXn = θ̃h(a)−θ(a). The above implies that, for someM∗ > 0, lim supn→∞ E{X2
n/(1/nh+

h4)} ≤M∗. Therefore for any ε > 0, if M ≥M∗/ε,

lim
n→∞

P

(
X2
n

1/nh+ h4
≥M

)
≤ lim sup

n→∞

1

M
E
(

X2
n

1/nh+ h4

)
≤M∗/M ≤ ε
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where the first equality follows by Markov’s inequality, the second by the fact that E(X2
n) =

O(1/nh + h4), and the third by definition of M . Since ε > 0 was arbitrary this implies

{θ̃h(a)− θ(a)}2 = Op(1/nh+ h4).

Now let bn = 1/
√
nh+ h2 and cn = 1/nh+ h4, and note that

P

(∣∣∣∣Xn

bn

∣∣∣∣ ≥ √M) = P

(∣∣∣∣∣ X2
n

cn + 2h
√
h/n

∣∣∣∣∣ ≥M
)
≤ P

(∣∣∣∣X2
n

cn

∣∣∣∣ ≥M) .
Taking limits as n→∞ implies that

∣∣∣θ̃h(a)− θ(a)
∣∣∣ = Op

(
1√
nh

+ h2
)
.

B.6.2. Asymptotic negligibility of Rn,1

Now we will show that

Rn,1 = gha(a)TD̂−1ha (Pn − P)
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]

is asymptotically negligible up to order
√
nh, i.e., |Rn,1| = op(1/

√
nh).

First we will show that gha(a)TD̂−1ha = Op(1). Consider the elements of the matrix D̂ha.

Using the continuity of $ from condition (d) of Theorem 3.2 in the main text, along with

properties of the kernel function from condition (c), it is straightforward to show that

E
(

[Pn{Kha(A)} −$(a)]2
)

= O(h) +O(1/nh).

Hence E([Pn{Kha(A)} − $(a)]2) = o(1), since h → 0 and nh → ∞ by condition (b), and

therefore Pn{Kha(A)} p→ $(a) by Markov’s inequality. This is a standard result in classical
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kernel estimation problems. By the same logic we similarly have

Pn{Kha(A)(A− a)/h} p→ 0,

Pn[Kha(A){(A− a)/h}2] p→ $(a)

∫
u2K(u) du.

Therefore gha(a)TD̂−1ha
p→
(

1 0

)
diag{$(a), $(a)ν2}−1 =

(
$(a)−1 0

)
, where diag(c1, c2)

is a (2×2) diagonal matrix with elements c1 and c2 on the diagonal, ν2 =
∫
u2K(u) du, and

$(a) 6= 0 because of Assumption 3.2 (Positivity). Thus we have shown that gha(a)TD̂−1ha =(
$(a)−1 0

)
+ op(1) = Op(1).

Now we will analyze the term

(Pn − P)
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
,

which we will show is op(1/
√
nh). This is equivalent to showing

Gn

[√
h gha(A)Kha(A)ξ̂(Z)

]
= Gn

[√
h gha(A)Kha(A)ξ(Z)

}]
+ op(1),

where we define ξ̂(Z) = ξ̂(Z; π̂, µ̂) and ξ(Z) = ξ(Z;π, µ). Note that, as discussed in the

previous section on stochastic equicontinuity, if ||ξ̂ − ξ||Z = op(1) then the above result

follows if the sequence of empirical processes {GnVn(·) : n ≥ 1} is stochastically equicon-

tinuous, where we define Vn(ξ) =
√
hgha(A)Kha(A)ξ(Z) with ξ ∈ Ξ for some metric space

Ξ. Thus first we will show that ||ξ̂ − ξ||Z = supz∈Z |ξ̂(z; π̂, µ̂) − ξ(z;π, µ)| = op(1). Then

we will check the conditions given in Lemma B.1 of the previous section, which ensure that

{GnVn(·) : n ≥ 1} defined above is stochastically equicontinuous.

First note that after some rearranging we can write

ξ̂(z)− ξ(z) =
y − µ̂(l, a)

π̂(a | l)
$̂(a) + m̂(a)− y − µ(l, a)

π(a | l)
$(a)−m(a)

=
y − µ(l, a)

π(a | l)
$̂(a)

π̂(a | l)

{
π(a | l)− π̂(a | l)

}
+

$̂(a)

π̂(a | l)

{
µ(l, a)− µ̂(l, a)

}
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+
y − µ(l, a)

π(a | l)

{
$̂(a)−$(a)

}
+
{
m̂(a)−m(a)

}
.

Therefore, letting ξ̂(z) = ξ(z; π̂, µ̂) and similarly ξ(z) = ξ(z;π, µ), by the uniform bounded-

ness assumed in condition (e) and the triangle inequality we have

||ξ̂ − ξ||Z = Op

(
||π̂ − π||Z + ||µ̂− µ||Z + ||$̂ −$||A + ||m̂−m||A

)
.

Therefore since ||π̂−π||Z = op(1) and ||µ̂−µ||Z = op(1) by definition, and since Op(op(1)) =

op(1), the above implies

||ξ̂ − ξ||Z = Op

(
||$̂ −$||A + ||m̂−m||A

)
+ op(1).

Now, since by definition $̂(a) = Pn{π̂(a | L)} and $(a) = E{π(a | L)}, we have that

||$̂ −$||A = sup
a∈A
|$̂(a)−$(a)| = sup

a∈A

∣∣∣Pnπ̂(a | L)− Pπ(a | L)
∣∣∣

= sup
a∈A

∣∣∣Pn{π̂(a | L)− π(a | L)}+ (Pn − P)π(a | L)
∣∣∣

≤ sup
a∈A

∣∣∣Pn{π̂(a | L)− π(a | L)}
∣∣∣+ sup

a∈A

∣∣∣(Pn − P)π(a | L)
∣∣∣

≤ ||π̂ − π||Z + sup
a∈A

∣∣∣(Pn − P)π(a | L)
∣∣∣,

where the last two lines used the triangle inequality. By definition the first term on the

right hand side of the last line is op(1), and by the uniform entropy assumption in condition

(e) the second term is also op(1) since it implies that π is Glivenko-Cantelli (van der Vaart,

2000; van der Vaart and Wellner, 1996). Therefore we have ||$̂−$||Z = op(1). By exactly

the same logic, using definitions and condition (e) we similarly have

||m̂−m||A ≤ sup
a∈A

∣∣∣Pn{µ̂(L, a)− µ(L, a)}
∣∣∣+ sup

a∈A

∣∣∣(Pn − P)µ(L, a)
∣∣∣

≤ ||µ̂− µ||Z + sup
a∈A

∣∣∣(Pn − P)µ(L, a)
∣∣∣ = op(1).
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Therefore ||ξ̂ − ξ||Z = supz∈Z |ξ̂(z; π̂, µ̂)− ξ(z;π, µ)| = op(1).

Now we will show that the conditions given in Lemma B.1 hold, indicating that the sequence

{GnVn(·) : n ≥ 1} defined above is stochastically equicontinuous. Conditions (a)–(c) of

Lemma B.1 are given exactly in the statement of Theorem 3.2 and so hold immediately.

For conditions (d) and (e) of Lemma B.1 we need to consider the space Ξ containing elements

ξ(z). The space Ξ can be constructed as a transformation of the spaces (Fπ,Fµ,F$,Fm)

containing the functions (π, µ,$,m), along with the single identity function that takes Z

as input and outputs Y . Specifically, we have

Ξ = (Y ⊕Fµ)F−1π F$ ⊕Fm

where Y is shorthand for the single function that outputs Y from Z, and we define F1⊕F2 =

{f1 + f2 : fj ∈ Fj}, F−1 = {1/f : f ∈ F}, and similarly F1F2 = {f1f2 : fj ∈ Fj}, for

arbitrary function classes F and Fj containing functions f and fj respectively. For more

discussion of such constructions of higher-level function spaces based on lower-level building

blocks, we refer the reader to Pollard (1990) (Section 5), Andrews (1994) (Section 4.1), van

der Vaart and Wellner (1996) (Section 2.10), and van der Vaart (2000) (Examples 19.18–

19.20); for use in a related example and more discussion see van der Vaart and van der Laan

(2006) (Section 5).

By condition (e) of Theorem 3.2, the classes (Fπ,Fµ,F$,Fm) are uniformly bounded (i.e.,

their minimal envelopes are bounded above by some constant). Similarly the class F−1π is

also uniformly bounded by the second part of condition (e). Therefore the constructed class

Ξ is bounded as well, so that condition (d) of Lemma B.1 holds.

Condition (e) of Lemma B.1 can be verified by using permanence or stability properties

of the uniform entropy integral (Andrews, 1994; van der Vaart and Wellner, 1996; van der

Vaart and van der Laan, 2006). Specifically, by condition (e) of Theorem 3.2, the classes

(Fπ,Fµ,F$,Fm) all have a finite uniform entropy integral (as does the single function Y ,
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or any finite set of functions). Therefore by Theorem 3 of Andrews (1994), since F−1π is

appropriately bounded with finite envelope, it follows that the class Ξ also has a finite

uniform entropy integral. Thus condition (e) of Lemma B.1 holds. For results similar

to Theorem 3 of Andrews (1994), also see Theorem 2.10.20 of van der Vaart and Wellner

(1996), and Lemma 5.1 and subsequent examples of van der Vaart and van der Laan (2006).

Thus since the conditions of Lemma B.1 hold, the sequence {GnVn(·) : n ≥ 1} with

Vn(ξ) =
√
hgha(A)Kha(A)ξ(Z) is stochastically equicontinuous, and since ||ξ̂ − ξ||Z =

supz∈Z |ξ̂(z; π̂, µ̂)− ξ(z;π, µ)| = op(1), it therefore follows that

(Pn − P)
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
= op(1/

√
nh).

Combined with the fact that gha(a)TD̂−1ha = Op(1), this implies that Rn,1 = op(1/
√
nh) and

so is asymptotically negligible.

B.6.3. Convergence rate of Rn,2

In this section we will derive the convergence rate of

Rn,2 = gha(a)TD̂−1haP
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
,

which will depend on how well the nuisance functions π and µ are estimated.

In the previous subsection we showed that gha(a)TD̂−1ha = Op(1) using conditions (b), (c),

and (d) of Theorem 3.2, along with Assumption 3.2 (Positivity). Therefore we will consider

the term P[gha(A)Kha(A){ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)}], which is a vector with jth element (j =

1, 2) equal to

∫
A
gha,j(t)Kha(t) P

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ) | A = t

}
$(t) dt,
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where gha,j(t) = {(t− a)/h}j−1 as before. Note that

P{ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ) | A = t} = P
{

Y − µ̂(L, A)

π̂(A | L)/$̂(A)

∣∣∣ A = t

}
+ m̂(t)− θ(t)

= P
[{
µ(L, t)− µ̂(L, t)

}{π(t | L)/$(t)

π̂(t | L)/$̂(t)

}]
+ m̂(t)− θ(t)

=
$̂(t)

$(t)
P
[{
µ(L, t)− µ̂(L, t)

}{π(t | L)− π̂(t | L)

π̂(t | L)

}]
+

1

$(t)
P
{
π̂(t | L)− π(t | L)

}
P
{
µ(L, t)− µ̂(L, t)

}
+

P{µ(L, t)− µ̂(L, t)}
$(t)

(Pn − P){π̂(t | L)}+ (Pn − P){µ̂(L, t)}.

The first equality above follows since E{ξ(Z;π, µ) | A = t} = θ(t) because either π = π

or µ = µ (as shown in Section B.3), the second by iterated expectation and the fact that

p(l | a) = {π(a | l)/$(a)}p(l), and the third by rearranging terms and the definitions

$̂(t) = Pn{π̂(t | L)} and m̂(t) = Pn{µ̂(L, t)}.

Therefore using the Cauchy-Schwarz inequality (P(fg) ≤ ||f || ||g||), the triangle inequality,

Assumption 3.2 (Positivity), and the uniform boundedness assumed in condition (e), we

have

∣∣∣P[gha,j(A)Kha(A)
{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]∣∣∣
= Op

( ∣∣∣∣∫
A
gha,j(t)Kha(t) ||π̂(t | L)− π(t | L)|| ||µ̂(L, t)− µ(L, t)|| dt

∣∣∣∣
+

∣∣∣∣(Pn − P)

∫
A
gha,j(t)Kha(t) π̂(t | L) dt

∣∣∣∣
+

∣∣∣∣(Pn − P)

∫
A
gha,j(t)Kha(t) µ̂(L, t) dt

∣∣∣∣ ).
The last two terms above can be controlled by Lemma B.2 in this Appendix. Specifically,

this lemma can be applied since its condition (b) corresponds exactly to condition (b) of

Theorem 3.2, and since its conditions (d) and (e) are implied by condition (e) of Theorem

3.2. Therefore since ||π̂ − π||Z = op(1) and ||µ̂ − µ||Z = op(1) by definition, the stochastic
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equicontinuity result of Lemma B.2 implies that

(Pn − P)

∫
A
gha,j(t)Kha(t)

{
π̂(t | L)− π(t | L)

}
dt = op(1/

√
n),

and similarly replacing π with µ. Therefore by the central limit theorem we have

(Pn − P)

∫
A
gha,j(t)Kha(t) π̂(t | L) dt = Op(1/

√
n),

and similarly replacing π with µ. Thus the last two terms in the inequality on the previous

page are asymptotically negligible up to order
√
nh since

Xn = Op(1/
√
n) =⇒

√
nXn = Op(1) =⇒

√
nhXn = Op(1)op(1) = op(1).

Therefore since Op(op(1/
√
nh)) = op(1/

√
nh), we have

∣∣∣P[gha,j(A)Kha(A)
{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]∣∣∣
= Op

( ∣∣∣∣∫
A
gha,j(t)Kha(t) φπ(t) φµ(t) dt

∣∣∣∣ )+ op(1/
√
nh)

where φπ(t) = ||π̂(t | L)− π(t | L)|| and φµ(t) = ||µ̂(L, t)− µ(L, t)||.

Now let ||K||[−1,1] = Kmax. Since K(u) ≤ KmaxI(|u| ≤ 1), we have

∫
A
gha,j(t)Kha(t) φπ(t)φµ(t) dt =

∫
A

(
t− a
h

)j−1 1

h
K

(
t− a
h

)
φπ(t)φµ(t) dt

≤ Kmax

{
sup

t:|t−a|≤h
φπ(t)

}{
sup

t:|t−a|≤h
φµ(t)

}∫ 1

−1
|u|j−1 du.

In the main text we define rn(a) and sn(a) so that supt:|t−a|≤h φπ(t) = Op(rn(a)) and

supt:|t−a|≤h φµ(t) = Op(sn(a)). Therefore

∣∣∣P[gha,j(A)Kha(A)
{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]∣∣∣ = Op

(
rn(a)sn(a)

)
.
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Combining the above with the results from previous subsections yields the desired rate from

the statement of Theorem 3.2,

∣∣∣θ̂h(a)− θ(a)
∣∣∣ = Op

(
1√
nh

+ h2 + rn(a)sn(a)

)
.

B.7. Proof of Theorem 3.3

As in Theorem 3.2, we again use the decomposition

θ̂h(a)− θ(a) =
{
θ̃h(a)− θ(a)

}
+
{
θ̂h(a)− θ̃h(a)

}
=
{
θ̃h(a)− θ(a)

}
+ (Rn,1 +Rn,2)

where θ̃h(a) = gha(a)TD̂−1haPn{gha(A)Kha(A)ξ̂(Z; π̂, µ̂)} is our proposed estimator, θ̃h(a) =

gha(a)TD̂−1haPn{gha(A)Kha(A)ξ(Z;π, µ)} is the infeasible estimator with known nuisance

functions, D̂ha = Pn{gha(A)Kha(A)gha(A)T}, and

Rn,1 = gha(a)TD̂−1ha (Pn − P)
[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
Rn,2 = gha(a)TD̂−1haP

[
gha(A)Kha(A)

{
ξ̂(Z; π̂, µ̂)− ξ(Z;π, µ)

}]
.

We consider each term separately, as in the proof of Theorem 3.2.

B.7.1. Asymptotic normality of θ̃h(a)− θ(a)

After scaling, the first term θ̃h(a) − θ(a) above is asymptotically normal by Theorem 1

from Fan et al. (1994), since θ̃h(a) is a standard local linear kernel estimator with outcome

ξ(Z;π, µ) and regressor A, and since E{ξ(Z;π, µ) | A = a} = θ(a) by condition (a) (i.e.,

either π = π or µ = µ) as shown in Section B.3 of this Appendix. Similar proofs for the

asymptotic normality of local linear kernel estimators can be found elsewhere as well (Fan,

1992; Fan et al., 1995; Masry and Fan, 1997; Li and Racine, 2007). Specifically, under

conditions (b), (c), and (d) of Theorem 3.2 stated in the main text, the proof given by Fan
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et al. (1994) shows that, for bh(a) = θ′′(a)(h2/2)
∫
u2K(u) du, we have

√
nh
{
θ̃h(a)− θ(a)− bh(a)

}
 N

(
0,

σ2(a)
∫
K(u)2 du

$(a)

)

where, using the fact that E{ξ(Z;π, µ) | A = a} = θ(a) and rearranging,

σ2(a) ≡ var{ξ(Z;π, µ) | A = a}

= E
([
ξ(Z;π, µ)− E{ξ(Z;π, µ) | A = a}

]2 ∣∣∣ A = a
)

= E
[{

Y − µ(L, A)

π(A | L)/$(A)
+m(A)− θ(A)

}2 ∣∣∣ A = a

]
= E

[{
Y − µ(L, A)

π(A | L)/$(A)

}2 ∣∣∣ A = a

]
− {θ(a)−m(a)}2

= E
[

τ2(L, a) + {µ(L, a)− µ(L, a)}2

{π(a | L)/$(a)}2/{π(a | L)/$(a)}

]
−
{
θ(a)−m(a)

}2
.

B.7.2. Asymptotic negligibility of Rn,1

We showed Rn,1 = op(1/
√
nh) in the earlier proof of Theorem 3.2.

B.7.3. Asymptotic negligibility of Rn,2

In the proof of Theorem 3.2 in this Appendix, we showed that Rn,2 = Op(rn(a)sn(a)), where

rn(a) and sn(a) are the local rates of convergence for the nuisance estimators π̂ and µ̂, as

defined in the main text. By condition (f) of Theorem 3.3, we have rn(a)sn(a) = op(1/
√
nh)

so that Rn,2 = Op(op(1/
√
nh)) = op(1/

√
nh), and thus Rn,2 is asymptotically negligible up

to order
√
nh.

Therefore the proposed estimator θ̂h(a) is asymptotically equivalent to the infeasible esti-

mator θ̃h(a). This yields the result from Theorem 3.3 in the main text.
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B.8. Uniform consistency

In this section we sketch some conditions under which our estimator is not only consistent

pointwise but also uniformly in the sense that supa∈A |θ̂h(a)−θ(a)| = op(1), and give a rate

of convergence. However we leave a full treatment of this result to future work, in which we

will also explore weak convergence of θ̂h(a) to some Gaussian process. This will be useful

for testing and inference.

We use the same decomposition as in earlier proofs of Theorems 3.2 and 3.3,

θ̂h(a)− θ(a) =
{
θ̃h(a)− θ(a)

}
+Rn,1(a) +Rn,2(a)

with Rn,1(a) = Rn,1 and Rn,2(a) = Rn,2 defined as before. From Masry (1996) and Hansen

(2008) (among others), under standard smoothness/bandwidth conditions we have

sup
a∈A
|θ̃h(a)− θ(a)| = Op

(√
log n

nh
+ h2

)
.

Further, if the empirical process Vn(a) =
√
nh/ log nRn,1(a) is stochastically equicontinu-

ous, then since
√
nh|Rn,1(a)| = op(1) for any a ∈ A we have

sup
a∈A
|Rn,1(a)| = op

(√
log n/nh

)
,

and so is asymptotically negligible. Finally the same logic as in Section B.6.3 yields

sup
a∈A
|Rn,2(a)| = Op

(
sup
a∈A
||π̂(a | L)− π(a | L)|| · ||µ̂(L, a)− µ(L, a)||

)
,

so that for supa∈A ||π̂(a | L)− π(a | L)|| = Op(r
∗
n) and similarly for µ̂ and s∗n we have

sup
a∈A
|θ̂h(a)− θ(a)| = Op

(√
log n

nh
+ h2 + r∗ns

∗
n

)
.
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B.9. Sample R code

### INPUT: l is an n*p matrix, a and y are vectors of length n

### l = matrix of covariates

### a = vector of treatment values

### y = vector of observed outcomes

# set up evaluation points & matrices for predictions

a.min <- min(a); a.max <- max(a)

a.vals <- seq(a.min,a.max,length.out=100)

la.new <- rbind(cbind(l,a), cbind( l[rep(1:n,length(a.vals)),],

a=rep(a.vals,rep(n,length(a.vals))) ))

l.new <- la.new[,-dim(la.new)[2]]

# fit super learner (other methods could be used here instead)

sl.lib <- c("SL.earth","SL.gam","SL.gbm","SL.glm","SL.glmnet")

pimod <- SuperLearner(Y=a, X=l, SL.library=sl.lib, newX=l.new)

pimod.vals <- pimod$SL.predict; sq.res <- (a-pimod.vals)^2

pi2mod <- SuperLearner(Y=sq.res,X=l, SL.library=sl.lib, newX=l.new)

pi2mod.vals <- pi2mod$SL.predict

mumod <- SuperLearner(Y=y, X=cbind(l,a), SL.library=sl.lib,

newX=la.new,family=binomial); muhat.vals <- mumod$SL.predict

# construct estimated pi/varpi and mu/m values

approx.fn <- function(x,y,z){ predict(smooth.spline(x,y),x=x2)$y }

a.std <- (la.new$a-pimod.vals)/sqrt(pi2mod.vals)

pihat.vals <- approx.fn(density(a.std[1:n])$x, density(a.std[1:n])$y,

a.std); pihat <- pihat.vals[1:n]

pihat.mat <- matrix(pihat.vals[-(1:n)], nrow=n,ncol=length(a.vals))

varpihat <- approx.fn(a.vals, apply(pihat.mat,2,mean), a)

varpihat.mat <- matrix(rep(apply(pihat.mat,2,mean),n), byrow=T,nrow=n)

muhat <- muhat.vals[1:n]

muhat.mat <- matrix(muhat.vals[-(1:n)], nrow=n,ncol=length(a.vals))

mhat <- approx.fn(a.vals, apply(muhat.mat,2,mean), a)

mhat.mat <- matrix( rep(apply(muhat.mat,2,mean),n), byrow=T,nrow=n)
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# form adjusted/pseudo outcome xi

pseudo.out <- (y-muhat)/(pihat/varpihat) + mhat

# leave-one-out cross-validation to select bandwidth

library(KernSmooth); kern <- function(x){ dnorm(x) }

w.fn <- function(bw){ w.avals <- NULL; for (a.val in a.vals){

a.std <- (a-a.val)/bw; kern.std <- kern(a.std)/bw

w.avals <- c(w.avals, mean(a.std^2*kern.std)*(kern(0)/bw) /

(mean(kern.std)*mean(a.std^2*kern.std)-mean(a.std*kern.std)^2))

}; return(w.avals/n) }

hatvals <- function(bw){ approx(a.vals,w.fn(bw),xout=a)$y }

cts.eff <- function(out,bw){ approx(locpoly(a,out,bw),xout=a)$y }

# note: choice of bandwidth range depends on specific problem

h.opt <- optimize( function(h){ hats <- hatvals(h);

mean( ((pseudo.out - cts.eff(pseudo.out,bw=h))/(1-hats))^2) },

c(0.01,50), tol=0.01)$minimum

# estimate effect curve with optimal bandwidth

est <- approx(locpoly(a,pseudo.out,bandwidth=h.opt),xout=a.vals)$y

# estimate sandwich-style pointwise confidence band

se <- NULL; for (a.val in a.vals){

a.std <- (a-a.val)/h.opt; kern.std <- (kern(a.std)/h.opt)/h.opt

beta <- coef(lm(pseudo.out ~ a.std, weights=kern.std))

Dh <- matrix( c(mean(kern.std), mean(kern.std*a.std),

mean(kern.std*a.std), mean(kern.std*a.std^2)), nrow=2)

kern.mat <- matrix(rep(kern((a.vals-a.val)/h)/h,n), byrow=T,nrow=n)

g2 <- matrix( rep((a.vals-a.val)/h, n), byrow=T, nrow=n)

intfn1.mat <- kern.mat*(muhat.mat - mhat.mat)*varpihat.mat

intfn2.mat <- g2*kern.mat*(muhat.mat - mhat.mat)*varpihat.mat

int1 <- apply(matrix(rep((a.vals[-1]-a.vals[-length(a.vals)])/2,n),

byrow=T,nrow=n)*intfn1.mat[,-1]+intfn1.mat[,-length(a.vals)],1,sum)

int2 <- apply(matrix(rep((a.vals[-1]-a.vals[-length(a.vals)])/2,n),

byrow=T,nrow=n)*intfn2.mat[,-1]+intfn2.mat[,-length(a.vals)],1,sum)
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sigma <- cov(t(solve(Dh) %*%

rbind( wt*(out-beta[1]-beta[2]*a.std) + int1,

a.std*wt*(out-beta[1]-beta[2]*a.std) + int2 )))

se <- c(se, sqrt(sigma[1,1])) }

ci.ll <- est-1.96*se/sqrt(n); ci.ul <- est+1.96*se/sqrt(n)
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APPENDIX TO CHAPTER 4

C.1. Proof of Theorem 4.1

First note that

E(Y | X, Z = z) = E{AzY 1 + (1−Az)Y 0 | X, Z = z} = E{Az(Y 1 − Y 0) | X}+ E(Y 0 | X)

and similarly

E(A | X, Z = z) = E(Az | X, Z = z) = E(Az | X),

where the first equalities follow by Assumption 4.2 (consistency) and the second by As-

sumptions 4.4 (unconfoundedness of Z) and 4.5 (exclusion restriction) and rearranging.

Assumption 4.3 (positivity) allows us to write conditional expectations given X and Z.

Therefore

E(Y | X, Z = z + δ)− E(Y | X, Z = z) = E{(Az+δ −Az)(Y 1 − Y 0) | X}

and

E(A | X, Z = z + δ)− E(A | X, Z = z) = E(Az+δ −Az | X),

so that

E{E(Y | X, Z = z + δ)− E(Y | X, Z = z) | V} = E{(Az+δ −Az)(Y 1 − Y 0) | V}

= E(Y 1 − Y 0 | V, Az+δ > Az)P (Az+δ > Az | V)

= E(Y 1 − Y 0 | V, z < T ≤ z + δ)P (z < T ≤ z + δ | V)

and

E{E(A | X, Z = z + δ)− E(A | X, Z = z) | V} = E(Az+δ −Az | V}

= P (Az+δ > Az | V) = P (z < T ≤ z + δ | V),
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where the first equalities follow by iterated expectation, the second by Assumption 1′ (mono-

tonicity), which implies Az+δ−Az = 1(Az+δ > Az), and the third by definition of the latent

threshold T .

Therefore, letting γ(v, t) = E(Y 1 − Y 0 | A1 > A0,V = v, T = t) we have

lim
δ→0

δ−1E{E(Y | X, Z = t+ δ)− E(Y | X, Z = t) | V}

= lim
δ→0

δ−1E(Y 1 − Y 0 | V, t ≤ T ≤ t+ δ)P (t ≤ T ≤ t+ δ | V)

= γ(t,V) lim
δ→0

δ−1{P (T ≤ t+ δ | V)− P (T ≤ t | V)}

= γ(t,V) p(T = t | V)

and similarly

lim
δ→0

δ−1E{E(A | X, Z = t+ δ)− E(A | X, Z = t) | V} = lim
δ→0

δ−1P (t ≤ T ≤ t+ δ | V)

= lim
δ→0

δ−1{P (T ≤ t+ δ | V)− P (T ≤ t | V)}

= p(T = t | V),

where the first and third equalities follow by Assumption 4.7, i.e., by the fact that T is

continuously distributed, with ∂
∂tP (T ≤ t | V) = p(T = t | V), and the second follows by

the continuity of γ(v, t) in t.

Therefore

γ(t,v) =
∂
∂zE{E(Y | X, Z = z) | V = v}
∂
∂zE{E(A | X, Z = z) | V = v}

∣∣∣∣
z=t

since the denominator is bounded away from zero by Assumption 4.6 (instrumentation).

C.2. Proof of Theorem 4.2

In this section we use subscripts to index quantities that depend on the distribution P ;

a zero subscript denotes a quantity evaluated at the true distribution P = P0. Thus for
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example EP denotes expectations under P and E0 denotes expectations under the truth

P = P0; similarly ψP denotes the parameter ψ = ψ(P ) as a map ψ : P 7→ Rq and ψ0

denotes its true value evaluated at P0.

Here we will show that ϕ(O;ψP ,ηP ) = ϕP (O) is the efficient influence function by showing

that it is the canonical gradient of the pathwise derivative of ψP , i.e., that ϕP satisfies

∂ψε
∂ε

∣∣∣
ε=0

= E0{ϕ0(O)s0(O)}

where ψε = ψ(Pε) denotes the parameter ψ evaluated at any regular parametric submodel

{Pε : ε} passing through P0 at ε = 0, and sε(o1 | o2) = ∂
∂ε∗ log dP ∗ε (o1 | o2)|ε∗=ε denotes the

parametric submodel score for any partition (O1,O2) ⊆ O.

By definition we have

ψP = arg min
ψ∈Rq

∫
V

∫
T
w(t,v)

{
γP (t,v)− γ(t,v;ψ)

}2
p(T = t | v) dt dP (v)

and thus

∫
V

∫
T

∂γ(t,v;ψ)

∂ψ

∣∣∣
ψ=ψP

w(t,v)
{
γP (t,v)− γ(t,v;ψP )

}
p(T = t | v) dt dP (v) = 0.

Letting mP (z,v) = EP {EP (Y | X, Z = z) | V = v} and m′P (t,v) = ∂
∂zmP (z,v)|z=t, and

similarly `P (z,v) = EP {EP (A | X, Z = z) | V = v} and `′P (t,v) = ∂
∂z `P (z,v)|z=t, then

under the identifying assumptions in the main text we have

γP (t,v) =
m′P (t,v)

`′P (t,v)
and p(t | v) = `′P (t,v).

Therefore the restriction above is equivalent to

0 =

∫
V

∫
T

∂γ(t,v;ψ)

∂ψ

∣∣∣
ψ=ψP

w(t,v)
{
m′P (t,v)− γ(t,v;ψP )`′P (t,v)

}
dt dP (v)
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=

∫
V

∫
T

{
g2(t,v;ψP ) m′P (t,v)− g1(t,v;ψP ) `′P (t,v)

}
dt dP (v)

where g1 and g2 are q-vectors (with known functional form not depending on P ) defined as

g1(t,v;ψ) = g2(t,v;ψ)γ(t,v;ψ) and g2(t,v;ψ) =
∂γ(t,v;ψ∗)

∂ψ∗

∣∣∣
ψ∗=ψ

w(t,v).

And since the weight satisfies w(t,v) = 0 for t /∈ int(T ), integration by parts gives

∫
V

∫
T

{
g′1(t,v;ψP ) `P (t,v)− g′2(t,v;ψP ) mP (t,v)

}
dt dP (v) = 0,

where g′j(t,v;ψ) = ∂gj(z,v;ψ)/∂z|z=t.

Evaluating the above at P = Pε gives

∫
V

∫
T

{
g′1(t,v;ψε)`ε(t,v)− g′2(t,v;ψε)mε(t,v)

}
dt dPε(v) = 0,

and differentiating with respect to ε and evaluating at the truth ε = 0 (using the chain rule)

gives

0 =

∫
V

∫
T

{
∂g′1(t,v;ψ)

∂ψ

∣∣∣
ψ=ψ0

∂ψε
∂ε

∣∣∣
ε=0

`0(t,v) + g′1(t,v;ψ0)
∂`ε(t,v)

∂ε

∣∣∣
ε=0

− ∂g′2(t,v;ψ)

∂ψ

∣∣∣
ψ=ψ0

∂ψε
∂ε

∣∣∣
ε=0

m0(t,v)− g′2(t,v;ψ0)
∂mε(t,v)

∂ε

∣∣∣
ε=0

}
dt dP0(v)

+

∫
V

∫
T

{
g′1(t,v;ψ0)`0(t,v)− g′2(t,v;ψ0)m0(t,v)

}
s0(v) dt dP0(v).

Rearranging, this implies that

∂ψε
∂ε

∣∣∣
ε=0

= C−10

∫
V

∫
T

[
g′1(t,v;ψ0)

{
∂`ε(t,v)

∂ε

∣∣∣
ε=0

+`0(t,v)s0(v)

}
− g′2(t,v;ψ0)

{
∂mε(t,v)

∂ε

∣∣∣
ε=0

+m0(t,v)s0(v)

}]
dt dP0(v)
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with

CP =−
∫
V

∫
T

{
∂g′1(t,v;ψ)

∂ψ

∣∣∣
ψ=ψP

`P (t,v)− ∂g′2(t,v;ψ)

∂ψ

∣∣∣
ψ=ψP

mP (t,v)

}
dt dP (v),

and

∂`ε(z,v)

∂ε

∣∣∣
ε=0

=
∂

∂ε
Eε{Eε(A | X, Z = z) | V = v}|ε=0 =

∂

∂ε

∫
W

∑
a∈{0,1}

a pε(a | x, z) dPε(w | v)
∣∣∣
ε=0

=

∫
W

∑
a∈{0,1}

a
{
s0(a | x, z) + s0(w | v)

}
p0(a | x, z) dP0(w | v)

= E0

(
E0

[
A{s0(A | X, Z) + s0(W | V)}

∣∣∣ X, Z = z
] ∣∣∣ V = v

)
,

and by the same logic

∂mε(z,v)

∂ε

∣∣∣
ε=0

= E0

(
E0

[
Y {s0(Y | X, Z) + s0(W | V)}

∣∣∣ X, Z = z
] ∣∣∣ V = v

)
.

Now we turn to E0{ϕ0(O)s0(O)}. The putative efficient influence function ϕP from the

main text is given by

ϕP (O) = C−1P

[
g′1(Z,V;ψP )

{
A− EP (A | X, Z)

p(Z | X)

}
− g′2(Z,V;ψP )

{
Y − EP (Y | X, Z)

p(Z | X)

}
+

∫
T

{
g′1(t,V;ψP )EP (A | X, Z = t)− g′2(t,V;ψP )EP (Y | X, Z = t)

}
dt

]
,

and s0(O) is the parametric submodel score, which can be decomposed as

s0(O) = s0(Y,A | X, Z) + s0(Z | X) + s0(W | V) + s0(V).

Therefore

C0E0

[
ϕ0(O){s0(Y,A | X, Z) + s0(Z | X) + s0(W | V) + s0(V)}

]
= E0

[
g′1(Z,V;ψ0)

{
As0(A | X, Z)

p0(Z | X)

}
− g′2(Z,V;ψ0)

{
Y s0(Y | X, Z)

p0(Z | X)

}
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+

∫
T

{
g′1(t,V;ψ0)E0(A | X, Z = t)− g′2(t,V;ψ0)E0(Y | X, Z = t)

}
dt

×
{
s0(W | V) + s0(V)

}]
=

∫
V

∫
T

(
g′1(t,v;ψ0)E0

(
E0

[
A{s0(A | X, Z) + s0(W | V)}

∣∣∣ X, Z = t
] ∣∣∣ V = v

)
− g′2(t,v;ψ0)E0

(
E0

[
Y {s0(Y | X, Z) + s0(W | V)}

∣∣∣ X, Z = t
] ∣∣∣ V = v

)
+
{

g′1(t,v;ψ0)E0(A | X, Z = t)− g′2(t,v;ψ0)E0(Y | X, Z = t)
}
s0(v)

)
dt dP0(v)

=

∫
V

∫
T

[
g′1(t,v;ψ0)

{
∂`ε(z,v)

∂ε

∣∣∣
ε=0

+`0(t,v)s0(v)

}
− g′2(t,v;ψ0)

{
∂mε(t,v)

∂ε

∣∣∣
ε=0

+m0(t,v)s0(v)

}]
dt dP0(v) = C0

∂ψε
∂ε

∣∣∣
ε=0

where the first equality follows by iterated expectation and the fact that E0{s0(O1 | O2) |

O2} = 0 for any (O1,O2) ⊆ O, the second follows by iterated expectation, the third follows

by iterated expectation and by definition of `0 and m0 (along with the earlier results for

their derivatives with respect to ε), and the fourth follows by the expression derived earlier

for ∂ψε/∂ε|ε=0.

Therefore, as long as C0 is invertible, we have ∂ψε/∂ε|ε=0 = E0{ϕ0(O)s0(O)} and thus

ϕP (O) is the efficient influence function.

C.3. Double robustness of efficient influence function ϕ

Here we will show that E{ϕ(O;ψ, π, λ, µ)} = 0 as long as either π = π0 or (λ, µ) = (λ0, µ0).

In this section expectations E = E0 and parameters ψ = ψ0 are evaluated under P0, but

we drop the subscript for notational convenience.

First note that

C0E{ϕ(O;ψ, π, λ, µ)} =

[
g′1(Z,V;ψ)

{
A− λ(X, Z)

π(Z | X)

}
− g′2(Z,V;ψ)

{
Y − µ(X, Z)

π(Z | X)

}
+

∫
T

{
g′1(t,V;ψ)λ(X, t)− g′2(t,V;ψ)µ(X, t)

}
dt

]
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= E
[
g′1(Z,V;ψ)

{
λ0(X, Z)− λ(X, Z)

π(Z | X)

}
− g′2(Z,V;ψ)

{
µ0(X, Z)− µ(X, Z)

π(Z | X)

}
+

∫
T

{
g′1(t,V;ψ)λ(X, t)− g′2(t,V;ψ)µ(X, t)

}
dt

]
= E

∫
Z

[
g′1(t,V;ψ)

{
λ0(X, t)− λ(X, t)

}
− g′2(t,V;ψ)

{
µ0(X, t)− µ(X, t)

}]π0(t | X)

π(t | X)
dt

+

∫
T

{
g′1(t,V;ψ)λ(X, t)− g′2(t,V;ψ)µ(X, t)

}
dt

]
= E

∫
T

[
g′1(t,V;ψ)

{
λ0(X, t)− λ(X, t)

}
− g′2(t,V;ψ)

{
µ0(X, t)− µ(X, t)

}]{π0(t | X)

π(t | X)
− 1

}
dt

+

∫
T

{
g′1(t,V;ψ)λ0(X, t)− g′2(t,V;ψ)µ0(X, t)

}
dt

]

where the first equality is true by definition, the second and third holds by iterated expec-

tation given (X, Z) and X, respectively, and the last follows after rearranging and since

g′1 = g′2 = 0 for t /∈ int(T ).

Therefore if π = π0 or (λ, µ) = (λ0, µ0) then C0E{ϕ(O;ψ, π, λ, µ)} equals

∫
T
E
{

g′1(t,V;ψ)λ0(X, t)− g′2(t,V;ψ)µ0(X, t)
}
dt

=

∫
V

∫
T

g′1(t,v;ψ) `0(t),v)− g′2(t,v;ψ) m0(t,v)
}
dt dP (v) = 0

where the first equality follows by iterated expectation given V (and by the definitions

of ` and m from the previous section), and the second follows from the restriction in the

previous section (after using integration by parts).

C.4. Proof of Theorem 4.3

Theorem 4.3 follows from Theorem 5.31 of van der Vaart (2000), together with the fact that

P{ϕ(O;ψ, η̂)} equals

P
∫
T

[
g′1(t,V;ψ)

{
λ0(X, t)− λ̂(X, t)

}
− g′2(t,V;ψ)

{
µ0(X, t)− µ̂(X, t)

}]{π0(t | X)

π̂(t | X)
− 1

}
dt

= P
[{

g′1(λ0 − λ̂)− g′2(µ0 − µ̂)
}

(π0 − π̂)
/
π̂π0

]
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≤ C||g′1(λ0 − λ̂)− g′2(µ0 − µ̂)|| · ||π0 − π̂||

= Op

{(
||λ0 − λ̂||+ ||µ0 − µ̂||

)
||π0 − π̂||

}

where the inequality follows by Cauchy-Schwarz (P(fg) ≤ ||f || ||g||) and boundedness of

1/π̂π0, and the last equality by the triangle inequality and boundedness of g′1 and g′2.

C.5. Proof of Theorem 4.4 and double robustness of efficient influence function L

After replacing gj with fj , these proofs follow the same logic as the proofs given in previous

sections of Theorem 4.2 and of double robustness of the efficient influence function ϕ,

respectively, and so are omitted.
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