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A Metamaterial Path Towards Optical Integrated Nanocircuits

Abstract
Metamaterials are known to demonstrate exotic electromagnetic and optical properties. The extra control over
manipulation of waves and fields afforded by metamaterials can be exploited towards exploring various
platforms, e.g., optical integrated circuits. Nanophotonic integrated circuits have been the topic of past and
ongoing research in multiple fields including, but not limited to, electrical engineering, optics and materials
science. In the present work, we theoretically study and analyze metamaterial properties that can be
potentially utilized in the future design of optical integrated circuits. On this path, we seek inspiration from
electronics to tackle multiple issues in developing such layered nanocircuitry. We identify modularity,
directionality/isolation and tunability as three useful features of electronics and we theoretically explore
mimicking them in nanoscale optics. Using epsilon-near-zero (ENZ) and mu-near-zero (MNZ) properties we
propose concepts to transplant some aspects of modular design of electronic passive circuits and filters into
nanophotonics. We also exploit ENZ materials to develop “transformer-like” functionality in optical
nanocircuits. To bring directional selectivity and isolation to this domain we develop concepts for both spatial
filtering of light using ENZ layered structures as well as identifying new regimes of nonreciprocal one-way
surface wave propagation on the surface of magneto-optical materials. In order to have tunability in some of
the proposed concepts in this work, we numerically study a wire-medium metamaterial whose permittivity
can be tuned at will. All the proposed structures have simple geometries and layered structures wherever
possible, which are more convenient for analysis, design and future implementation.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Electrical & Systems Engineering

First Advisor
Nader Engheta

Keywords
Epsilon-near-zero, Metamaterials, Nanophotonic

Subject Categories
Electrical and Electronics | Electromagnetics and Photonics | Optics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1570

http://repository.upenn.edu/edissertations/1570?utm_source=repository.upenn.edu%2Fedissertations%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages


A METAMATERIAL PATH TOWARDS OPTICAL INTEGRATED

NANOCIRCUITS

Fereshteh Abbasi

A DISSERTATION

in

Department of Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Nader Engheta, H. Nedwill Ramsey Professor of Electrical and Systems Engineering

Graduate Group Chairperson

Alejandro Ribeiro, Rosenbluth Associate Professor of Electrical and Systems Engineering

Dissertation Committee

Dwight Jaggard, Professor of Electrical and Systems Engineering

Cherie Kagan, Stephen J. Angello Professor of Electrical and Systems Engineering

Jan Van der Spiegel, Professor of Electrical and Systems Engineering



A METAMATERIAL PATH TOWARDS OPTICAL INTEGRATED

NANOCIRCUITS

© COPYRIGHT

2015

Fereshteh Abbasi

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/



ACKNOWLEDGEMENTS

I would like to thank my doctoral advisor, Professor Nader Engheta, whom I know

as a great scientist, an inspiring teacher, a caring advisor, an exceptional person, and

a true friend whose advisory role for me went far beyond science and the work ahead

of you.

I also would like to thank my doctoral committee members, Professor Cherie Kagan,

Professor Jan Van der Spiegel and Professor Dwight Jaggard for their comments,

questions and remarks that helped improve this work.

I was very luck to work with many talented scientists in our group. I learned a lot

from each and every group member. I am thankful to all of them for not only helping

me grow as a scientist, but also as a person.

I would like to express my gratitude to my friends in the USA and in Iran without

whom completing the process of PhD would have been much harder.

My sincere gratitude goes to my parents, Azam and Mohsen, and my sisters, Hoorieeh

and Setayesh, without whom I would have not been able to come this far. They

cheered for me in every achievement, and gave me hope when I was frightened,

daunted, and sad, and showed me the meaning of unconditional support.

Finally, I would like to thank my boyfriend, Christopher, who was patient with me

in times of stress and irritation, and whose presence brings out the best in me.

iii



ABSTRACT

A METAMATERIAL PATH TOWARDS OPTICAL INTEGRATED

NANOCIRCUITS

Fereshteh Abbasi

Nader Engheta

Metamaterials are known to demonstrate exotic electromagnetic and optical proper-

ties. The extra control over manipulation of waves and fields afforded by metama-

terials can be exploited towards exploring various platforms, e.g., optical integrated

circuits. Nanophotonic integrated circuits have been the topic of past and ongo-

ing research in multiple fields including, but not limited to, electrical engineering,

optics and materials science. In the present work, we theoretically study and an-

alyze metamaterial properties that can be potentially utilized in the future design

of optical integrated circuits. On this path, we seek inspiration from electronics to

tackle multiple issues in developing such layered nanocircuitry. We identify mod-

ularity, directionality/isolation and tunability as three useful features of electronics

and we theoretically explore mimicking them in nanoscale optics. Using epsilon-near-

zero (ENZ) and mu-near-zero (MNZ) properties we propose concepts to transplant

some aspects of modular design of electronic passive circuits and filters into nanopho-

tonics. We also exploit ENZ materials to develop transformer-like functionality in

optical nanocircuits. To bring directional selectivity and isolation to this domain we

develop concepts for both spatial filtering of light using ENZ layered structures as

well as identifying new regimes of nonreciprocal one-way surface wave propagation on

the surface of magneto-optical materials. In order to have tunability in some of the
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proposed concepts in this work, we numerically study a wire-medium metamaterial

whose permittivity can be tuned at will. All the proposed structures have simple

geometries and layered structures wherever possible, which are more convenient for

analysis, design and future implementation.
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CHAPTER 1 : Introduction

1.1. Introduction to Metamaterials

Metamaterials, in the most general sense, are two-dimensional (metasurfaces) or

three-dimensional arrays of subwavelength inclusions, such as rods or patches or

more complicated structures, that yield exotic optical and electromagnetic phenomena

which are not achievable in their constitutive materials or other materials available

in nature [1]. The first paper on metamaterials was published in 1898 [2], when Bose

used a twisted structure to rotate the plane of polarization of light, even though he did

not call the structure a metamaterial and in fact the term metamaterial was not sug-

gested until many years later. The next spark was in 1904, when Lamb and Schuster

mathematically noted the possibility of anti-parallel group velocity and phase veloc-

ity in an electromagnetic wave, however, they concluded that this phenomenon is

not practically achievable [3]. In 1945, Mandelstam studied crystal lattice structures

that actually could demonstrate negative phase velocity [4]. In 1968, Veselago pub-

lished a theoretical work on this topic, talking about negative refractive index and

coining the term “left-handed materials” [5]. He suggested that in order to achieve

left-handed materials, relative permittivity and permeability need to be simultane-

ously negative, a property that we now refer to as double-negative materials. Still,

this was not something one could find in nature. While metals normally have negative

permittivity, their permeability is essentially always positive. In 1990s, Pendry and

colleagues studied two structures. The first one was a periodic array of thin wires.

This structure was initially shown to have refractive index smaller than one by Brown

in 1953 [6, 7], and later it was shown to posses negative effective permittivity [8, 9].

The second one was an array of conducting rings, originally suggested in 1952 in [10]

1



for a different purpose, which was shown to have negative effective permeability [11].

(Even though the omega media, that were introduced and studied theoretically in the

1990s, have a region of frequencies over which the relative material parameters attain

negative values simultaneously as seen in Fig. 7 of [12], this issue was not noticed

at that time.) Combining the two structures of wire and split-ring resonators led to

the first experimental verification of Veselago’s prediction about the double negative

materials [13, 14].

Since a long time ago, artificial media, that we now know as metamaterials, have been

designed for exotic applications. For example, in 1914, Lindman studied artificial me-

dia consisting of wire helices for their chirality [15]. In 1945, Winston Kock suggested

making lenses with small metallic spheres [16]. Another example is perfect lensing

which is a direct consequence of negative refraction index [17, 18]. However, applica-

tions of metamaterials now go far beyond the initial motives. Perfect absorption [19],

enhanced nonlinearity [20], one-way flow of light [21] and magnetic response [22, 23]

were the next class of properties to be shown in metamaterials. Cloaking devices,

metamaterials that could make small objects “invisible”, also marked an important

milestone in the progress of metamaterials [24, 25, 26]. Recently even more compli-

cated applications such as performing math were envisioned using metamaterials [27].

Reconfigurable metamaterials, metamaterials that their geometry and consequently

optical properties can be tuned, were also introduced for applications such as tunable

resonance, spatial modulation and memory metamaterials [28, 29, 30, 31].

1.2. Metamaterial-inspired Nanocircuits

Just like their applications, the methods of designing metamaterials to achieve an ar-

bitrary optical response have been evolving as well [32]. Intuition and basic concepts

2



of electromagnetics as well as transformation optics are methods that laid the founda-

tions for design of metamaterials [33]. For more complicated structures, a number of

approaches were inspired by the methods used in electronics and microwave, including

but not limited to principles of transmission lines [34, 35], physics of resonators [13],

and very recently “digital” approach to design of metamaterials [36]. Another design

tool for metamaterials in microwave frequencies is the equivalent circuit approach. As

the name suggests, in this approach equivalent circuit elements are assigned to certain

parts of the structures and are then used to analyze it using circuit theory [1, 37]. This

approach has been used tremendously in design of microwave devices and left-handed

structures, i.e. structures with negative phase velocity [38, 39, 40]. The significance

of this approach, and in fact the significance of electronics, lies in the fact that a com-

plicated structure can be broken into modules. The simplest of these modules are

individual circuit elements, such as capacitors and inductors. The response of each

individual module is often much simpler to predict and analyze compared to that

of the entire structure. The overall response of the system, can then be calculated

by combining the responses of individual modules. For example, the response of a

multi-element passive circuit can be found by combining the response of individual

circuit elements in the appropriate way. One should note that defining individual

modules is made possible only by the ability to “isolate” signals and “confine” the

current arbitrarily by using conductors and insulators. That being said, the equiv-

alent circuit approach in its traditional form is not applicable in optical frequencies

due to fundamentally different properties of conductors (i.e. metals and semiconduc-

tors) in optical frequencies compared to microwave band. In optical frequencies the

conductivity of the materials decreases significantly, allowing very small conduction

current in them which makes approximations that were used to define traditional

passive circuit elements invalid. On the other hand, the displacement current that is

3



proportional to frequency increases as we go to higher frequencies, hence one can no

longer neglect it, as opposed to electronics.

In 2005, Engheta suggested a novel notion of circuitry suited for optical frequencies,

dubbed as metatronics [41]. In short, metatronics relies on displacement current being

the main flow in the structure, as opposed to electronics which relies on conduction

current as the main flow in the circuit [42]1. This notion allowed for dielectrics and

metals to be expressed in equivalent circuit notation and opened a new direction

for design of metamaterials at optical frequencies. Similar to equivalent circuit ap-

proach in microwave, metatronics could be used to describe structures in terms of

nanoelements (e.g. nanocapacitors and nanoinductors) and simplify their analysis

using circuit theory. This approach was used to design and describe core-shell struc-

tures [41], tune the response of antennas [43], design optical circuit board [44] and

nanorod metamaterials [45, 46].

So far the structures designed using this approach lean towards simple functional-

ities. However, when one thinks of electronics, the complexity of the circuits and

their function, is much more advanced compared to what is achieved in metamate-

rials. In particular, integrated circuits have brought a unique flexibility to design,

fabrication and functionality of electronic circuits [47, 48]. Proposed in 1964, inven-

tion of integrated circuits was based upon exactly the same principle that enabled

modular design in electronics: isolation [48]. Multiple isolated sections of system,

e.g. antenna, filter, and processing units, can be mounted on the same substrate

and essentially deliver any deliberate function. This simple yet smart concept rev-

olutionized the world of electronics. We believe bringing the same tool to the field

of metamaterials may help further expand their applications. In my dissertation I

1It should be noted that in general, both conduction and displacement currents are present in all
frequencies due to relative permittivity being a complex number.
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worked towards achieving the requirements for developing a metatronic integrated

circuit, focusing majorly on creating modularity, isolation and tunability. I suggest

multiple methods to broaden the functionality of the metatronics approach towards

design of multi-functional metamaterials, or “optical integrated nanocircuits”.

1.3. Contributions

The main contribution of my dissertation is to utilize analogy between electronic

circuits and metatronics as a design approach for metamaterials as well as develop-

ing concepts and geometries to make this design approach possible. My effort has

been to cover a collection of functionalities that would be needed in potential optical

integrated nanocircuits, all of which can be categorized in either of modularity, di-

rectionality and isolation or tunability. In more detail, these contributions follow as

below:

� Expanding the equivalent circuit approach for designing metamaterials by intro-

ducing parallel and series optical metatronic nanoelements in transmission-like

optical networks using epsilon-near-zero and mu-near-zero materials.

� Introducing a new regime of directional surface waves in nonreciprocal struc-

tures using magnetooptical materials.

� Introducing a structure for mimicking topological surface states in uniform plas-

monic materials.

� Designing a reconfigurable wire-medium metamaterial to achieve epsilon-near-

zero property and metal-insulator-transition in the frequency of interest.

� Exploiting epsilon-near-zero (ENZ) layered structures for the purpose of spatial

filtering.
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� Mimicking transformer-like functionality in an epsilon-near-zero structure for

use in optical metatronics.

1.4. Thesis Structure

In chapter two of this dissertation, we briefly touch upon the concept of metatronics

as well as some microelectronic and microwave analysis tools used in this work. We

then explain our approach on one-to-one analogy between electronics and metatronics

for arbitrarily tailoring the frequency response of metamaterials. In chapter three we

touch upon the topic of isolation in the frame of nonreciprocal devices. We propose

a novel physics for directional flow of surface waves. In chapter four, a new regime of

scattering-immune surface waves in plasmonic structures is proposed as an essential

part of any integrated signal handling system. In chapter five we briefly introduce re-

configurable metamaterials, suggest a metamaterial that goes through metal-insulator

transition and explain how their tunability is useful for our applications of interest.

In chapter six, we generalize selectivity to spatial domain. We use the Fabry-Perot

filtering approach to design spatial filters. In chapter seven, again inspired by circuit

theory, we design a flat transformer-like structure using epsilon-near-zero materials

and explain features of it that are analogous to an electronic transformer. Finally, in

chapter eight we have conclusion and closing remarks.
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CHAPTER 2 : Optical Metatronic Circuits

2.1. Introduction

1 The birth of electronic and electrical engineering revolutionized the way we treat

electromagnetic waves in radio frequency. In radio frequency, noble metals have a

large conductivity and hence they allow the flow of very large electric current (al-

ternatively called “conduction” current). This conduction current is “confined” to

the conductors (and in the case of very large values of conductivity to the surface of

conductors), where free electrons exist. Hence in order to “isolate” several sections

of an electronic circuit from one another one can simply use dielectrics to block the

current flow. As a result, individual electrical elements, such as inductors, capacitors

or active elements, can be made. Each of these elements can be described with a

few numbers, calculated based on the relation between the applied voltage and the

current that flows through them, which we know as the notion of impedance. Us-

ing the notion of impedance, a collection of electrical elements can be described by

simply combining the impedance values in the appropriate way. So a very complex

electromagnetic system can be solved by calculating a handful of numbers as opposed

to solving the Maxwell equations. Modular design as we described is one of the major

reasons why electronics is so flexible when it comes to design and analysis of complex

systems. However, as a result of the dependence of electronics on conduction current,

fundamentally it cannot be used in optical frequencies. Looking at the Maxwell equa-

tion ∇×H = ∂(εE)
∂t

+σE, where ε = ε0εr is the permittivity and σ is the conductivity

of the material, we see that in microwave frequencies the dominant term on the right

1Parts of this chapter have appeared in one of our papers [49]: F. Abbasi and N. Engheta,
“Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit
networks,” Optics express 22.21 (2014): 25109-25119.
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side is σE, the conduction current, while in optical frequencies the dominant term is

∂ (εE)
∂t

, the displacement current. In 2005, it was suggested that a different notion of

circuitry, “metatronics”, can be applied in optical frequencies in which displacement

current can be considered as the main flow in the circuit [41, 42]. Therefore, one

can define each “element” or the unit modules of the optical “nanocircuits” based on

the relation between the electric field and the displacement current. Similar to elec-

tronics these modules are much smaller than the wavelength, and consequently have

dimensions in the nanoscale. A direct consequence of this approach is that instead of

tailoring conductivity to form desired “nanoelements”, one should now tailor relative

permittivity to achieve the desired metatronic circuit elements. Also, epsilon-near-

zero(ENZ) materials, materials with very small relative permittivity, were suggested

as metatronic insulators, as they allow only very small flow of displacement current.

It was shown that nanoparticles with negative permittivity demonstrate inductive

behavior and hence can be described as a “nanoinductor” while those with positive

permittivity show capacitive behavior and can be described as a “nanocapacitor” [41].

Material dispersion was also shown to be a determining factor in defining the elements

of this type of circuitry. The notion of metatronics brings up a two-way connection

to metamaterials. On the one hand, metamaterials can be used to achieve a desired

effective permittivity that could be used in the metatronic circuits, e.g. a desired

frequency dispersion or near-zero value. On the other hand, metatronics can be used

as a method to design certain metamaterials with more complicated responses com-

pared to what is currently achieved. In this chapter, using metatronics we design a

class of metamaterial filters. This is a frequency selective layered structure that fully

mimics passive electronic filters, following electronic filter prototypes. We start by

introducing epsilon-near-zero materials which will serve as a tool in designing these

filters. We introduce series and parallel metatronic circuit elements and by combining
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them in various geometries, we design simple filters to complex multi-element filters

similar to electronics. We also study cases using realistic materials.

2.1.1. Epsilon-near-zero Metamaterials

Epsilon-near-zero property is one of the exotic optical features inspired and achieved

by metamaterials (it should be noted that this property exists in a number of naturally

available materials such as indium tin oxide (ITO) [50] and silicon carbide SiC [51]).

Essentially, as the name suggests, epsilon-near-zero (ENZ) materials are materials

the real part of the relative permittivity of which is very small or ideally zero while

the imaginary part is small. ENZ materials were used for engineering the phase

front [52], supercoupling [53, 54], subwavelength lensing [55], total reflection and

transmission [56] and isolation of optical signals [57]. When εr → 0, the phase

velocity of the electromagnetic wave, c = c0√
µr εr

becomes very large in the material

or alternatively the wavenumber becomes very small. As a result there is no phase

variation in the electromagnetic wave as the wave propagates through this medium.

This is a key point and the basis of our discussion in the rest of this chapter.

2.2. Layered Metamaterial Filters

Metamaterials have been used before for frequency filtering using a variety of ap-

proaches [45, 46, 58, 59, 60, 61, 62, 63, 64, 65]. The majority of the works in this

regard rely on using metallic inclusions and utilizing equivalent circuit approach to

design such filters for microwave frequencies [58, 59, 60, 61]. A number of plas-

monic sturctures were suggested for THz and IR regimes as well, based on plasmonic

resonance of materials [62, 63, 65]. Using the design principles of metatronics, meta-

material filters were designed based on the notion of nanaocapacitors and nanoinduc-

tors [45, 46, 64]. In all of the mentioned approaches, a design approach that fully
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mimics electronic elements with one-to-one analogy with electronics is missing. In

electronics, several filter prototypes exist, following which one can exactly determine

what the response of a filter will be [66]. The requirement for making this possi-

ble in optics is to be able to combine metatronic nanoelements in both series and

parallel configurations as we do in electronics. In all of the works mentioned above,

the nanoelements of the metatronic circuits are combined in parallel with respect to

the incident electric field which limits the number and performance of metamaterial

filters. In this section, we introduce the metatronic series elements and explain that

while in electronics parallel and series are “combination” of elements, in metatronics

they are also “types” of elements. We use transfer matrix approach to analyze these

structures. We then use one-to-one analogy between electronics and metatronics to

combine these series and parallel elements in series and parallel configuration to fully

mimic the filter prototypes of electronics in metatronics. We base our studies on lay-

ered structures as we intend to target integrated structures later, but similar analysis

can be extended to other structures as well, e.g. core-shells.

2.2.1. Unit Elements of Metatronic Circuits

Layered structures are of the most popular structures for metamaterials due to sim-

plicity of design and analysis. In this section we use infinite slabs of finite thickness

as our nanoelements. We note that the infinite dimensions can be simply replaced

by periodic boundary conditions as we explain later. It is well-known that a uniform

slab can be described using ABCD matrix as below:

ABCD =

 cos(β l) −i Z0 sin(β l)

−i 1
Z0
sin(β l) cos(β l)

 , (2.1)
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Figure 1: A plane wave with electric field in y direction is propagating in x direction
and is incident upon a uniform slab which we utilize as a metatronic nanoelement.
The thickness of the slab is assumed to be much smaller than the wavelength.

in which Z0 is the characteristic impedance of the constituting material, l is the

thickness of the slab, and β is the propagation constant of the incident plane wave [37].

This is shown in figure 1. The slab is assumed to be infinite in y and z directions.

If the argument of trigonometric functions in equation 2.1 is small, e.g. the layer is

very thin compared to the wavelength of the incident wave, the ABCD-matrix above

can be approximated with:

ABCD =

 1 −i Z0 β l

−i 1
Z0
β l 1

 , (2.2)

in which trigonometric functions are approximated according to their small argument

limit. Substituting β = ω
√
ε µ, where ε and µ are the permittivity and permeability

of the material respectively, we get:

ABCD =

 1 −i ω µ l

−i ω ε l 1

 . (2.3)
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Writing the ABCD matrix in this form provides interesting insight about how the

relative permittivity and permeability of a uniform slab can be chosen to yield inter-

esting features as we will explain in the following section.

Parallel and Series Passive Metatronic Elements

The first case we study here is that of a mu-near-zero(MNZ) slab as demonstrated in

figure 2(a). According to the Maxwell’s equation ∇ × E = i ω µr µ0H in the limit

µr → 0, the curl of electric field should be zero. As we earlier assumed, since the

slab is infinite in y and z directions and the fields are independent of y and z, the

only possible variation in E field can happen in x direction. Hence in an infinite

MNZ slab of finite thickness we can write dE
dx

= 0. This is schematically shown in

figure 2(a). As the wave propagates through the slab, electric field remains constant

while magnetic field varies. The dual of this phenomenon in electronics is the voltage

to be constant while the current changes across an element, which we refer to as a

“parallel” element, shown in figure 2(b). Examining the ABCD-matrix in the same

limit, i.e. µr → 0, yields similar results. If we choose an MNZ material, equation 2.3

yields the B element will approach zero, while the C element will be nonzero. This is

similar to the ABCD-matrix of a parallel element:

ABCD =

1 0

C 1

 . (2.4)

Hence MNZ materials can be used to represent parallel elements in metatronics.

A slab of epsilon-near-zero(ENZ) material can be analyzed in an analogous manner.

According to Maxwell equation ∇ × H = −i ω εr ε0E, in the limit εr → 0, curl of
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Figure 2: a) A mu-near-zero (MNZ) slab, representing a parallel element in meta-
tronics. b) A Parallel element in an electronic circuit where V1 = V2 but I1 6= I2. c)
An epsilon-near-zero (ENZ) slab, representing a series element in metatronics. d) A
series element in an electronic circuit where I1 = I2 but V1 6= V2.

magnetic field should be zero. With the slab being infinite in z and y directions, and

H field being uniform with respect to y and z, variations in H field occur only along

x direction. Hence in an ENZ material we will have dH
dx

= 0. This is demonstrated

in figure 2(c), in which the magnetic field remains constant as the wave propagates

through the slab but the electric field varies. The dual of this in electronics, is a

series element. In a series element, as the signal flows through the electric current

remains constant while the voltage changes, as shown in figure 2(d). Examining the

ABCD-matrix of the slab yields similar information. For this slab, according to 2.3,

the C element will be zero while the B element is not which is exactly the same format

as the ABCD matrix of a series element:
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ABCD =

1 B

0 1

 . (2.5)

Using ENZ and MNZ materials for series and parallel nanoelements implies that in

the notion of metatronics, series and parallel are actually “types” of elements, in

addition to “combination” of elements which we will explain later in this chapter.

Capacitive and Inductive Response

While we identified that our ENZ and MNZ materials present series and parallel el-

ements respectively, we have not yet specified how to determine the capacitive and

inductive response. The nature of the response of the nanoelements, assuming mo-

mentarily the near-zero parameter does not change with frequency2, will depend on

the frequency dispersion of the other constitutive parameter, i.e. µr for ENZ materi-

als and εr for MNZ materials. In the works mentioned earlier parallel nanocapacitors

and nanoinductors were introduced [41]. We briefly explain that approach here, show

that it is consistent with our distinction between parallel and series elements, and

explain how we further expand it to the domain of series and parallel nanoelements

discussed earlier in this chapter. We start with the parallel elements we introduced,

i.e. MNZ materials. We study the same geometry as before which is a thin infinite

slab. There are two possible options for the relative permittivity of this slab based

on the materials available in the nature. The first is a positive relative permittivity

with negligible changes with frequency, e.g. many regular dielectrics. Looking at the

Maxwell equation for harmonic waves of form e−i ω t ∇×H = −i ω εE , for the thin

slab under study it can be rewritten as E
∆H

= 1
−i ω ε∆x

in which ∆H and ∆x = l

are changes in magnetic field and thickness of the slab along x direction respectively.

2Later in this chapter we will take frequency dispersion of near-zero parameter into consideration.
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Figure 3: Metatronic nanoelements a)parallel nanocapacitor, b)parallel nanoinductor,
c)series nanoinductor, and d)series nanocapacitor.

This way, the input impedance of the slab can be written as:

Z =
1

−i ε ω l
(2.6)

in which l is the thickness of the slab. For εr > 0 being constant, we can rewrite this

as:

Z =
1

−i ωC
=

1

−i ω ε0 εr l
(2.7)

in which l is the thickness of the slab and C is the equivalent capacitor as shown in

figure 3(a) [41].

The second scenario is when εr is described with a first order Drude approximation,
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i.e. εr = 1 − ω2
p

ω(ω+iγ)
in which ωp is the plasma frequency of the Drude material and

γ is the collision frequency. At this point we neglect the effect of losses and assume

that γ is very small. If the frequency of operation is well below the plasma frequency

we can approximate εr ≈ −
ω2
p

ω2 . Hence the input impedance of the slab can be written

as:

Z = −i ω L = −iω 1

ω2
pε0 l

(2.8)

in which we have an equivalent inductance of L as shown in figure 3(b) [41]. Hence by

using regular dielectric and plasmonic slabs, both capacitive and inductive responses

can be achieved in parallel configuration. The electromagnetic dual of this case is that

of series elements, for which εr is near zero and the capacitive or inductive behavior

comes from variations of µr with frequency. This time we consider the Maxwell

equation ∇× E = i ω µH. Rewriting this for a thin slab of infinite dimensions and

finite thickness, we get ∆E
H

= i ω µr µ0 ∆x, yielding the input impedance of such slab:

Z = −i ω µ l. (2.9)

Similar to the case of parallel elements, we study two cases, starting with µr being a

positive constant. In this case we can write:

Z = −i ω L = −i ω µ0 µr l (2.10)

where L is the equivalent series inductance, shown in figure 3(c). Another possible

form for µr is a Drude model, similar to that in some ferrites in a certain range of
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frequencies, i.e. µr = 1 − ω2
p

ω(ω+iγ)
. At frequencies well below the plasma frequency,

the relative permeability can be approximated with µr ≈ −
ω2
p

ω2 . In this case we can

write:

Z =
1

−i ωC
=

1

−i ω 1
µ0 ω2

p l

(2.11)

in which C is the equivalent series capacitance, shown in figure 3(d). This concludes

all the elements needed for passive metatronic networks.

2.2.2. Passive Filter Networks

The power of passive metatronic lumped elements becomes more obvious when they

are used in an ensemble and in large numbers, combined in an appropriate way to lead

to a desired response. As an example of an application for this complex structures,

we show how stacked metatronic lumped element networks can be utilized to mimic

the filter prototypes in electronics. We choose a maximally flat filter prototype for

this purpose, however, any other prototype would still yield the same results [66].

The analytical response of a first order maximally flat bandstop filter, for a design

frequency of f = 10 THz, is shown in figure 4(b), with a green curve. In order to

achieve this response in electronic, we may use any of the two possible basic bandstop

filters, i.e. parallel LC in series or series LC in parallel.

A parallel LC connected in series with respect to the applied voltage is shown in

figure 4(a). For a first-order maximally flat response in this configuration centered

around f = 10THz, we need a capacitance of C = 31.1 aF and inductance of

L = 8.14 pH [66]. The configuration of the elements in the electronic circuit de-

mands the voltage drop across the two elements to be equal, while the corresponding
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Figure 4: a) Bandstop filter using a parallel inductor-capacitor (LC) pair connected in
series configuration with respect to the applied voltage and its equivalent metatronic
arrangement of nanoelements. b) Transmittance of electronic (green curve, analytical)
and metatronic (blue curve, simulation) filter. The structure is periodically extended
in the z and y directions.

current is not necessarily so. In metatronics, this translates to equal electric field

E in the two elements, while allowing for the magnetic field H to vary. The ar-

rangement of the layers in figure 4(a) provides exactly that. Since electric field E

is parallel to the interface of the two media, it will be continuous at the interface

inside both nanoelements. The magnetic field H, is perpendicular to the interface

and is not conditioned to be equal in the two layers (note that the two layers do not

necessarily have equal relative permeability). We choose the thickness of the layers

to be the same (for geometrical consistency) and to be equal to 0.018 λ where λ is

the free-space wavelength at the design frequency. The structure is periodic in z and

y directions. Since we need the series configuration, we employ ENZ material with

εr = 0.1. Equation 2.10 for a series inductor with the aforementioned thickness yields

µr = 12 and equation 2.11 for series capacitor similarly yields ωp = 2π 34.6 THz.
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The corresponding metatronic configuration is shown in figure 4(a). The boundaries

of the metatronic layered structure are set to be periodic in the z and y directions.

Full wave simulations are conducted using COMSOL Multiphysics®. The response of

this structure, assuming momentarily that the relative permittivity is dispersion-free,

is shown with the blue curve in figure 4(b), almost completely matching its electronic

counterpart.

Figure 5: First order bandstop and bandpass filters for optical metatronic networks.
Colors of blocks are consistent with those in figure 3. The structure is periodically
extended in the y and z directions.

Following the same procedure for combining elements, other layered structures for

basic bandstop and bandpass filters can be designed as well. Figure 5 shows these

geometries employing ENZ and MNZ materials introduced in figure 3 utilized in first

order bandpass and bandstop metatronic filters.

Using well-known methods in microwave and electronics to analyze metatronic struc-

tures, provides us with the tools to analyze highly complex metatronic structures. It

is in such networks that the importance of having individual nanoelements, as our

first level “modules”, becomes clear. As an example of such networks, a fifth-order

bandpass filter [66] is depicted in figure 6(a). This filter is a sequence of bandpass

filters shown in figure 5(b) and 5(d). Similar to the previous examples for ENZ
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Figure 6: a) The electronic circuit for a fifth-order maximally flat metatronic filter
and its equivalent optical metatronic network. b) Transmittance of the electronic
(green curve, analytical method) and metatronic (blue curve, simulation) circuits.
The structure is periodically extended in the z and y directions.

materials, we use εr = 0.1 . For the relative permeability of these ENZ materials,

for series inductors we choose µr = 7 and for series capacitors we use Drude model

with relative permeability with the plasma frequency ωp = 2π 40 THz. For MNZ

materials, we use µr = 0.1 . The relative permittivity for parallel capacitors is εr = 7

. The relative permittivity of the parallel inductors is described with a Drude dis-

persion with a plasma frequency of ωp = 2π 40 THz. After choosing the relative

permittivity and permeability of the materials, we can use equations 2.7, 2.8, 2.10

and2.11 to determine the thickness of individual layers in order to achieve the re-

quired capacitance and inductance of the elements, depicted on the electronic circuit

in figure 6(a). The transmittance of the filter is plotted in figure 6(b) for both the

electronic and the metatronic networks with green and blue curves, respectively. As

it is evident from this figure, the response of metatronic circuit and electronic circuit

are almost identical.
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Material Dispersion and Losses

So far we have assumed the near zero parameter of ENZ and MNZ materials is ap-

proximately constant over the range of frequencies that we inspect the response of the

structures. In order to orient this study towards more practical cases, it is important

to take the dispersion of epsilon and mu in the near-zero limit into consideration.

Since ENZ and MNZ slabs were initially utilized to guarantee almost constant mag-

netic and electric fields across the slab, i.e. no phase variations, one can predict that

as long as their values are sufficiently small, minor changes in them with frequency

should not affect the response of the metatronic network drastically (alternatively

the thickness of the slab can be chosen small enough not to cause significant phase

variation across the slab). We simulate the metatronic circuit shown in figure 4(a)

again, except for this time instead of εr = 0.1 we assign a Drude dispersion to the

epsilon-near-zero. We choose the plasma frequency of the Drude relation such that

in the frequency band under study, which in this case is the proximity of the center

frequency of the bandstop filter, the value of εr is close to zero. If we choose the

plasma resonance to be at 8 THz, at the center frequency εr will be about 0.36, as

shown in the inset of figure 7. We plot the frequency response of the structure in

figure 7 and observe that despite some minor changes in the response, for the most

part it coincides with the response of its electronic dual and the results shown in

figure 4.

If we limit the utilized materials to those available in nature, first, due to low suscep-

tibility of most materials to magnetic field in THz, IR and optical range, which are

the frequency domains of interest, we need to consider µr = 1 for all the cases. This

limits us to using only parallel nanoelements, as series nanoelements require µr > 1.

Second, we should take into consideration the impact of material losses.
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Figure 7: Repeating the simulation for the circuit in figure 4, talking into consider-
ation the frequency dispersion of the near-zero permittivity of the two layers. The
frequency dispersion curve of the near-zero permittivity is shown in the inset.

As far as the relative permittivity, Drude permittivity is available in some materials

such as metals and transparent conducting oxides. Approximately uniform permittiv-

ity in dielectrics over a wide range of frequencies in optical domain, similar to what

we study here, is realistic for air and materials such as silicon. It is important to

examine the effect of such limitations on the performance of the layered metatronic

filters. As an example, we model the circuit shown in figure 8(a) for the metatronic

structure using only a Drude metal and silicon. Note that while MNZ materials are

needed for modeling parallel configuration, due to lack of such materials in optical

frequencies, this condition is relaxed. Hence, we choose µr = 1. The values of the

elements in the electronic circuit are L1 = 1.56 pH, C1 = 2.68 aF , L2 = 1.04 pH

and C2 = 4.03 aF . For the relative permittivity of L1 and L2, we use the Drude

model of indium tin oxide (ITO) [45], εr = 1 − ω2
p

ω(ω+iγ)
, in which γ is the collision

frequency. For ITO we have ωp = 2π 265 THz and γ = 2π 20 THz for both L1 and
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Figure 8: a) A bandstop filter consisting of two LC circuits and its equivalent meta-
tronic structure using a Drude material and silicon [67]. b) The transmittance of the
electronic (green curve, analytical method) and metatronic (blue curve, simulation)
circuits is plotted. The structure is periodically extended in the x and y directions.

L2 [45]. For C1 and C2, we use silicon with relative permittivity of 11.69 [67]. Using

equations 2.7 and 2.8, the thickness of each layer can be determined. The frequency

response of the metatronic filter networks, alongside with the electronic circuit are

shown in figure 8, demonstrating a qualitatively good agreement between the two

which is also consistent with effective medium theories [68]. As mentioned before, the

MNZ condition was required to assure the electric field remains constant. Since this

condition is removed for this case, some variations in the electric field are unavoidable.

However, one can further decrease the thickness of the layers to minimize the changes

in electric field. It follows that in simple metatronic circuit networks, consisting of

fewer elements in which the overall thickness is small, the response in the absence and

the presence of MNZ condition is very similar. However, in more complex networks

consisting of a large number of layers and with a larger overall thickness, the MNZ

condition is crucial for predicting the response of the structure. This confirms the fact

that ENZ and MNZ conditions are one way to make the modular design of complex

metatronic filters possible.
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CHAPTER 3 : Nonreciprocal Light-line Crossing and One-way Leaky

Surface Waves

3.1. Introduction

1 Modular design in electronics is made possible by isolation of signals in different

sections of a circuit. Directional flow of signals, similar to the function of diodes, is

fundamentally what enables isolation of different stages of a circuit. This is normally

achieved by using nonreciprocal devices. Bringing this concept to optics and plasmon-

ics is essential for future optical integrated circuits and flat optics. In this chapter we

suggest a geometry for a novel directional plasmonic waveguide, i.e. a structure sup-

porting surface plasmon polaritons (SPP). We start by briefly explaining the concept

of nonreciprocity which is the fundamental reason for directionality of our proposed

structure. Next, to lay the foundations for our study, we briefly introduce gyrotropic

materials and explain how they can be used to break the time-reversal symmetry in

the geometry we study. Then we conduct an analytical study to show the direction-

dependence of the surface waves in the plasmonic waveguide under study, and finally

present the numerical results, showing a novel regime for one-way flow of SPP.

3.1.1. Nonreciprocity

One of the main characteristics of Maxwell’s equations is reciprocity. Reciprocity

refers to a certain definition of symmetry between a current source and its radiated

fields. In figure 9(a), in a linear time-invariant structure, an electric current source

with current density J1 is shown with an arrow, placed in location 1, which generates

1Parts of this chapter have appeared in one of our papers [69]: F. Abbasi, A. R. Davoyan, and N.
Engheta, “One-way surface states due to nonreciprocal light-line crossing,” New Journal of Physics
17 no. 6 (2015): 063014.
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the electric field E1 in location 2. The ”dual” scenario to this, is to have a source with

current density J2 in location 2 and probe its electric field E2 in location 1. Lorentz

reciprocity, the specific definition of reciprocity we will refer to in this chapter, can

be described as: ∫
V1

J1 · E2 dv1 =

∫
V2

J2 · E1 dv2 (3.1)

.

in which V1 and V2 are the volume over which the current density is distributed

(Note that Lorentz reciprocity can be generalized to include both electric and mag-

netic current sources) [70]. Following the definition, non-reciprocity happens when

equation 3.1 does not hold.

Figure 9: a) Two sources of electric current and their radiated fields. b) Schematic
figure of a circulator that allows signal transmission from port 1 to 2, 2 to 3 and 3 to
1, (circular rotation) but not the other way.

One of the most famous example of a non-reciprocal device is a circulator, schemati-

cally shown in figure 9(b). The main function of a circulator is to allow the signal flow

from one port to another port, and only that one port, but not the other way around.
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Imagine a radiating element placed in port one. The radiated field can be detected in

port two and not port three. If the radiating element is placed at port two, of course

the circulating property does not allow any fields in port one, however, electric field

can be detected in port three. Obviously in this case the Lorentz reciprocity theorem

does not hold.

Consequently non-reciprocity can be utilized to generate directionality and asymme-

try. Means of breaking reciprocity include but are not limited to using gyrotropic

material [37], nonlinearity [21] and spatio-temporal modulation [71]. In this chapter

we focus on utilizing gyrotropic materials for our structure.

3.1.2. Gyrotropic Materials

Gyrotropic materials are materials in which either of the relative permittivity (gy-

roelectric) or relative permeability (gyromagnetic) has tensorial form, with non-zero

off-diagonal elements [72]. The physical consequence of this is a coupling between

the two components of electric or magnetic field that are connected through the

off-diagonal terms of the tensor. Gyrotropic activity is either an intrinsic charac-

teristic of a certain material or can be generated by applying a magnetic bias to a

plasmonic metal or semiconductor crystal [73, 74]. Gyromagnetic materials include

ferrites which are widely used in microwave applications [37]. The relative permeabil-

ity of these materials can be described as:

µr =


µ‖ iδ 0

−iδ µ‖ 0

0 0 µ⊥

 (3.2)

in which µ‖ is the relative permeability in the coupling plane, µ⊥ is the relative
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permeability perpendicular to coupling plane (parallel to the applied magnetic field),

and δ is the coupling term. Similarly the relative permittivity of the gyroelectric

materials can be described as [70]:

εr =


ε‖ iδ1 0

−iδ1 ε‖ 0

0 0 ε⊥

 (3.3)

.

It should be noted that in gyrotropic materials the relative permittivity and per-

meability tensors are antisymmetric, as a result they can be used for breaking time

reversal symmetry as we explain later. Gyroelectric materials are most famously

known for Faraday rotation. However, they have been researched for far more exten-

sive applications involving tuning the light propagation in plasmonic and metama-

terial structures [75, 76, 77, 78, 79, 80]. To name a few one can mention enhancing

magnetooptical effect and Faraday rotation [75, 76], optical subwavelength circula-

tors [77, 78], nonreciprocal magnetoplasmons [79] and cloaking for SPP [80]. Further-

more, magneto-active materials may break the time reversal symmetry of the Maxwell

equations, which may also imply the nonreciprocal wave propagation, i.e. break of in-

variance with respect to the direction of the wave propagation [81]. The latter effect is

widely employed in ferromagnetic microwave systems, similar to a circulator already

mentioned earlier [82, 83, 84, 85, 86]. Nonreciprocal microstrip lines [84] and nanowire

structures [85] are examples of using this effect in microwave frequencies. More re-

cently, this concept was extended to optical isolation in magneto-photonic structures

as well [87, 88, 89, 90, 91, 92]. In waveguiding systems with a reduced dimensionality,

e.g. metal-dielectric interfaces and surfaces of magneto-photonic crystals, one-way
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regimes of surface wave propagation may be achieved [87, 90, 57], i.e. the surface

wave propagation is possible only in one direction and not in the opposite. In the

rest of this chapter we explore new regimes of such one-way surface waves, com-

pare it to previously known one-way regimes of surface waves, and introduce possible

applications.

3.2. One-way Leaky Surface Waves

3.2.1. Introduction to Surface Plasmon Polaritons

Surface plasmon polaritons are a class of surface waves that in the simplest case are

supported at the interface of a metal and a dielectric. As the definition of surface

wave suggests, the amplitude of the fields is maximum at the surface and decays

exponentially as one gets farther away from the surface. We start a single interface

geometry supporting SPP, i.e. two semi-infinite media, shown in figure 10(a). On

one side, there is a plasmonic metal, with negative relative permittivity, and on

the other side there is a dielectric with positive relative permittivity. It is very

well-known that this structure supports surface plasmon polaritons (SPP) [93]. For

|εmet| > εd, where εmet is the relative permittivity of the metal and εd is the relative

permittivity of the dielectric, transverse magnetic (TM) surface waves are supported

at the interface of the two materials (electric field in x and y directions, magnetic

field in z direction). We describe the magnetic field on the dielectric side as H =

ẑ H0 exp (−i β k0 x) exp (−k0 αd y) in which H0 is a constant, k0 = ω
√
µ0ε0 is the free

space wave number, β is the normalized wavenumber, and αd =
√
β2 − εd is the

normalized decay rate of the SPP in the dielectric. The magnetic field on the metal

side can be written as H = ẑ H0 exp (−i β k0 x) exp (−k0 αmet y) in which αmet =√
β2 − εmet. The dispersion equation of this surface wave can be written as [93]:
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−εmet
αmet

=
εd
αd
. (3.4)

which leads to β =
√

εd εmet

εd+εmet
. The plot of β versus εmet is shown in figure 10(b) with

the dashed curve. In this curve we have chosen εd = 1.18, leading to the plasmonic

resonance at εmet = −1.18.

Figure 10: a) A single interface geometry with a magneto-optical dielectric on one side
and a plasmonic metal on the other side. A magnetic bias is applied to the dielectric
side in z direction. b) The dispersion curve of SPP, i.e. the wavenumber of SPP
normalized to free space wavenumber (horizontal axis), as εmet (vertical axis) varies,
in the absence (dashed curves) and in the presence (solid curves) of the magnetic
field.

29



3.2.2. Surface Waves in Structures with Broken Time-reversal Symmetry

In equation 3.4, β is present in αd and αmet. An important point is that changing

β to −β does not change the dispersion equation, as only even powers of β appear

in the equation. This is an indication of the time-reversal symmetry, meaning that

the surface waves propagating in ±x direction are identical, with the same decay rate

into the bulk media and the same propagation constant. This will not be the case

if the regular dielectric is replaced with a magneto-optical dielectric (described with

equation 3.3) as the structure is no longer time-reversal symmetric. We can write the

dispersion equation of the surface waves:

εmet
αmet

=
−εeff

δ
ε‖
β + αMO

(3.5)

in which εeff =
ε2‖−δ

2

ε‖
, αmet =

√
β2 − εmet, αMO =

√
β2 − εeff and β is propagation

constant of the surface wave normalized to free space wavenumber. The lack of time-

reversal symmetry is clear from this equation. In a time-reversal symmetric case,

changing β to −β does not change the equation which means only even powers of β

exist in the equation. However, in equation 3.5 the first power of β is present, and the

transformation β → −β changes the equation and its solutions. Figure 10(b) shows

β plotted versus εmet. The red and blue curves correspond to the dispersion curve of

SPP in +x and −x directions in the case of using a magneto-optical dielectric clearly

showing the asymmetry of the system. It was shown in [87] that a one-way waveguide

can be formed if εmet is bounded between ε‖ + δ and ε‖ − δ.

This one-way regime of surface waves occurs approximately at the plasmonic reso-

nance. As a result of time-reversal symmetry breaking, the plasmonic resonance for
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surface waves in +x and −x direction splits. Examining equation 3.5 in the plas-

monic resonance limit of waves in −x direction, i.e. β → −∞, we notice that the

resonance condition is εmet = −ε‖− δ. However, for surface waves propagating in +x

direction, the plasmonic resonance occurs in εmet = −ε‖+ δ, leading to the formation

of a one-way regimes of surface waves between these two values of εmet. Normally, it

is at the proximity of such resonances that the effect of symmetry breaking becomes

critical. However, we show that even far from the resonance, symmetry breaking may

lead to unique features in the surface waves. Going back to equation 3.5, another

interesting limit is εmet → −∞ (or alternatively the low frequency limit considering

the dispersion of naturally available materials). In this limit, equation 3.5 can be

approximated with:

−β δ
ε‖

=
√
β2 − εeff (3.6)

.

Obviously, still changing β → −β will modify equation 3.6 which highlights the

nonreciprocal nature of this equation at very large εmet. Another point worthy of

attention about this equation, is the fact that the sign of the right hand side is always

positive, yet the sign of the left hand side can change. Assuming δ > 0 (no loss

of generality as it depends on the direction of biasing magnetic field) and ε‖ > 0

(necessary condition for supporting SPP), the sign of the left hand side depends only

on the sign of β or in other words the direction of propagation. Hence, for β > 0

this equation has no real solutions but only pure imaginary solutions. The physical

interpretation of this is that there will be no oscillatory surface waves in +x direction

confined to the interface. Instead, the modes in this direction will leak into the bulk

medium. Since for smaller values of |εmet| this equation has real solutions, we conclude
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that at some value of metal permittivity, the dispersion curve of the forward surface

waves crosses the light line of the magneto-optical (MO) material. The condition for

the light line crossing can be found from setting β =
√
εeff in equation 3.5 which

yields:

√
εeff (εeff − εmet)

ε2met
=

δ

ε‖
(3.7)

.

In figure 10(b) we have demonstrated this crossing for δ = 0.3, ε‖ = 1.18 which

happens at εmet ≈ −10. In equation 3.7, since δ is normally much smaller than ε‖, we

need to have very large |εmet| for the equation to hold (which for the materials available

in nature, this condition normally holds in THz and microwave bands [94]). As the

right hand side of equation 3.7 increases, i.e. for stronger magnetic field, smaller

values of |εmet| may be sufficient for the crossing to occur. An alternative to stronger

magnetic field could be utilizing engineered materials that enhance magneto-optical

activity [77]. To have a better understanding of how the solutions to the light-line

crossing equation vary in parameter space of εmet, δ and ε‖, we have plotted the

required values of εmet and ε‖ at the crossing point, for three different values of δ

in figure 11(a). It is clear that for higher values of δ, the required value of |εmet| is

smaller, i.e. εmet is less negative, for any given ε‖ as we already explained.

3.2.3. Material Dispersion and Losses

Taking the frequency dispersion of each of the parameters ε‖, δ and εmet into consid-

eration is an essential part of bringing the proposed concept to practical applications.

For a magneto-optical material, the diagonal in-plane component can be described

as:
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ε‖ = εb

(
1−

ω2
p1(ω + iγ1)

ω((ω + iγ1)2 − ω2
g)

)
(3.8)

in which εb is the background permittivity, ωp1 is the plasma frequency, γ1 is the

collision frequency, and ωg = eB
m

is the gyrotropic (cyclotron) frequency. The off-

diagonal element can be described as:

δ =
ω2
p1ωg

ω((ω + iγ1)2 − ω2
g)

(3.9)

.

The metal permittivity is also modeled as a first order approximation of Drude model,

i.e. εmet = 1 − ω2
p2

ω(ω+i γ2)
. We assume a low loss limit (later we will also extend the

discussion to higher losses) in which γ1 = 0.001ωp1 and γ2 = 0.001ωp2. Also we

assume ωg = 0.46ωp1. The frequency dispersion curves of the relative permittivity

values of the materials are plotted in figure 11(b). From substituting the frequency

dispersion relations of relative permittivity values in equation 3.5, we can find the

frequency at which the crossing occurs, marked with ωc ≈ 2.01ωp1.

To actually observe the light line crossing, it is beneficial to plot the light line and the

dispersion curves of surface waves. Figure 12(a) shows the light line with the line in

magneto-optical material, kMO =
√
εeff . The dispersion curves of SPP propagating

in ±x direction as well as SPP in absence of magneto-optical activity (i.e. δ = 0),

all normalized to free space wavenumber, are plotted. Since we are in the regime far

away from the SPP resonance, the mentioned curves are congruent and cannot be

easily distinguished in this manner. We then normalize all the curves in panel a to

kMO to highlight the difference. Obviously, the light line is now a vertical line, i.e.
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Figure 11: (a) Variation of required εmet in terms of ε‖ (for different |δ|) in order to
have light-line crossing. (b) Plot of material dispersion for metal and MO medium.
The dashed line denotes the parameter values at which the light-line crossing occurs.
The values of δ are multiplied by 10 in order to be seen more clearly.

β
kMO

= 1. The dispersion curves of SPP in +x and −x in the presence of magnetic

bias can be now compared with that of SPP in absence of magnetic bias. For −x

direction, as we can see the wave number as frequency decreases.

On the other hand, the wavenumber of the SPP propagating in +x direction reaches

the wavenumber at the bulk MO material (i.e. the vertical line) at ωc and stays there

for any smaller frequency which means the surface wave is not confined to the surface

anymore and has turned into a bulk mode. Hence we observe the expected one-way

regime at ωc and lower frequencies. Panel b shows the decay rate of SPP normalized

to bulk MO wave number, αMO =
√
β2 − εeff , in presence of magnetic bias, for +x

and −x directions and for SPP in absence of magnetic bias. The real part of αMO

for SPP in +x direction becomes zero at any frequency below ωc, denoting that the

SPP is not a decaying mode in the bulk anymore, but an oscillating mode.

A numerical demonstration of the proposed one-way SPP is demonstrated in fig-
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Figure 12: a) The dispersion curves of the SPP in the absence and the presence of
magnetic bias for +x and −x directions as well as the light line are plotted. The
curves are extremely close to one another. Inset: the curves in panel a, normalized
to light line in the presence of magnetic bias, in order to highlight their difference.
b) The real part of the SPP decay rate in magneto-optical material corresponding to
curves in panel a.

ure 13(a). The SPP is excited at the interface using a two-dimensional electric dipole

placed in the proximity of the interface, in the middle of the geometry. Three panels

are shown, with values of ωg changing from zero, to 0.1ωp1 and then to 0.46ωp2, for

γ1 = 0.001ωp1 in all cases. As it is evident at the first panel the surface waves prop-

agating in ±x direction are identical. In the second panel, due to nonzero magnetic

bias the time-reversal symmetry is broken and waves in +x direction have become

less localized as opposed to those is −x direction. In the third panel the symmetry

breaking is strong enough for SPP in +x to completely radiate to bulk materials

and be no longer a ”surface wave”. On the other hand the SPP in −x direction is

more localized with a larger wave number. As we change the gyrotropic frequency

(i.e. the strength of the magnetic bias) it is important to observe how it affects the

propagation distance. Furthermore, the effect of γ1 on propagation distance should
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be examined to as material losses are an important factor when it comes to potential

applications. Figure 13(b) shows the plot of propagation distance (defined as the

point where the power of SPP drops in half) of SPP in −x direction versus γ1 for

different values of ωg. Obviously, for all values of ωg, as γ1 increases the propagation

distance decreases. Also, the propagation distance decreases as the applied magnetic

field increases. This can be explained by looking at the frequency dispersion of the

magneto-optical material which is presented in Appendix A.

Figure 13: a) One-way surface waves for three values of ωg. The symmetry breaking
increases as ωg increases. b)Propagation distance normalized to the wavelength versus
different normalized values of collision frequency.

3.2.4. Tuning the Radiation Pattern of a Dipole Using One-way Leaky Surface Waves

The regime of surface waves described above may be used to break the symmetry

of a dipole antenna. Due to the relatively small confinement of the surface waves, a

small radiating antenna in the vicinity of the interface can easily couple to them. The

asymmetric surface waves will induce a symmetry breaking in the antenna as well.

Figure 14(a) shows the same geometry as figure 9(a), except for a two-dimensional

dipole antenna located at the proximity of the two materials. As we showed before,
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Figure 14: a) A small two-dimensional (2D) electric dipole located at the proximity
of the interface of a magneto-optical dielectric and plasmonic metal. Dipole moment
is in y direction. b) The radiation pattern of the dipole antenna.

surface waves in +x direction leak into the bulk medium while surface waves in −x

direction continue to propagate confined to the surface.

Once the dipole antenna is placed at the interface, it will couple to the surface waves

supported in −x direction. This is demonstrated in figure 14(b) (the metal and

magneto-optical permittivity are chosen to be the same as figure 10). As it is evident

the symmetry of the radiation pattern of the dipole is broken. The left radiation

lobe of the dipole has shrunk as a result of the power flowing into the surface waves.

The lobe on the right side, however, does not couple to any surface waves, as none

is supported in +x direction, and so it is larger than the lobe on the left side. The

amount of the symmetry-breaking depends upon the strength of the applied magnetic

field. For example, if there is no magnetic field applied (B = 0), the radiation

pattern will be symmetric. As the magnetic field increases from zero, the symmetry

breaking becomes stronger. Figure 15(a) shows the radiation pattern of the antenna

for different values of applied magnetic field. For B = 0, surface waves propagate

symmetrically in both directions, leading to the maximum radiation pointed in the 0
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and 180-degree directions. As the applied magnetic field increases, two phenomena

happen. First, the direction of maximum radiation on the right hand side shifts from 0

degree, to 20, 30 and 37 degrees for B = 0.1 T , B = 0.5 T and B = 0.8 T respectively.

This phenomenon can also be used for steering the beam of the antenna, providing a

dynamic tuning of the antenna pattern. Second, the direction of maximum radiation

of the antenna decreases as the applied magnetic bias increases. The reason for this

is that as the magnetic field increases, more and more power is drawn to the surface

waves propagating in −x direction, leading to shrinkage of both radiation lobes. As

we explained before in detail, this structure is not time-reversal symmetric. For an

antenna, this means the transmission and reception patterns will not be the same, but

instead will be the mirror symmetric of one another. This is shown in figure 15(b)

for the applied bias of B = 0.6 T . The red curve shows the transmission pattern

of the dipole antenna and the blue curve shows its reception pattern. The overlap

between the two is very minor. The significance of this phenomenon is enabling

full-duplex communication, as the transmitted and received signals take a different

“path” towards and from the antenna and hence can be processed simultaneously.

In addition to tuning the antenna pattern, the proposed surface waves in this chapter

can also be used in spectroscopy applications.
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Figure 15: a) Transmission pattern of the dipole antenna for different values of applied
magnetic field. b) Transmission and reception pattern of the dipole antenna.
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CHAPTER 4 : Scattering-immune Plasmonic Surface States

4.1. Introduction

The implications of plasmonics in optical integrated circuits and flat optics were

briefly discussed in the previous chapter. Isolation of the signals in different sections

of the circuits was recognized as a key element in making such circuitry possible. We

explored this concept in the frame of directionality. Another dimension to this fact is

the issue of reflection and scattering which may occur due to mismatch of wavenumber

(or impedance) caused by sharp corners, rough edges or at the connection of two

devices. This problem exists in both three-dimensional (3D) and two-dimensional

(2D) (e.g. plasmonic) waveguides. An example of this phenomenon is shown in

figure 16 for the surface waves introduced in chapter three. In panel a, the geometry

is shown. A magneto-optical dielectric is on top, with the diagonal term of its relative

permittivity tensor being εMO = 1.18 and the off-diagonal term δ = 0.3. The metallic

medium is at the bottom with εmet = −1000. A 2D electric dipole is placed at the

interface of the two media to excite the surface waves. A perfectly conducting cylinder

is placed very close to the interface of the two media as a scatterer. According to

the study in chapter three, for the aforementioned set of material parameters, surface

waves propagate only in −x direction. This is shown in panel b, depicting the surface

wave incident upon the scatterer. As a result of the directionality of the allowed

surface modes, surface waves do not backscatter as a surface wave, meaning that

there are no confined surface waves propagating in +x direction (see chapter three

for more information). However, the surface wave does couple to the bulk modes and

scatters into the the magneto-optical medium upon hitting the scatterer.

This phenomenon must be avoided if plasmonics is to be used in a 2D platform and
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Figure 16: a) A structure consisting of two semi-infinite media, a metal and a
magneto-optical dielectric, with a two-dimensional (2D) scatterer placed at the inter-
face. b) One-way surface waves hit the 2D scatterer and scatter to the bulk medium.
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Figure 17: The dashed curves have essentially the same topological profile. A topo-
logical surface wave would propagate identically on all three.

integrated technologies, as surface roughness and other optical obstacles are unavoid-

able at times. In fact, the issue of creating scattering-immune directional surface

waves has been the subject of study in the past few years [87, 95, 96, 97, 98, 99, 100].

In particular a class of surface waves called “topological” surface states were intro-

duced. As the name suggested, these surface waves just rely on the topology of the

structure. So bends, surface roughness and sharp corners do not affect them. This

is conceptually shown in figure 17. All three shapes in this figure have the same

topology.

If the pink and blue regions are assumed to be two media at the interface of which

topological surface waves are supported, these waves would propagate identically in

all three geometries with no scattering to the bulk. Initially topological surface states

were known to stem from non-classical phenomena [101] and were observed in a class

of materials called “topological insulators” (materials that are conductors on their

surface and insulators in bulk) [102, 103]. However, later a class of directional edge

states with topological protection were experimentally demonstrated on the surface

of magnetically biased photonic crystals [96, 97]. Also, a number of works suggested

that topological directional surface states, or chiral edge states, can be realized on the

surface of photonic crystals without an explicit time reversal symmetry-breaking (i.e.

without a biasing magnetic field [100, 98]). An important part of all the aforemen-

tioned works is the presence of a periodic structure, metamaterials or photonic crys-

tals, with a complicated geometry, resulting limitations in the shape of the waveguides
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formed at the surface of the material, as well as challenging fabrication process. Hence

mimicking such directional surfaces states in uniform materials, such as noble metals,

ferrites, regular dielectric and semiconductors, is an attractive ongoing quest. In this

chapter, we propose a single interface geometry, consisting of a gyromagnetic (e.g.

ferrite) and a gyroelectric (magneto-optical) material to demonstrate backscattering-

immune surface waves that also behave similar to topological surface states proposed

in the mentioned studies. This geometry can support nonreciprocal transverse mag-

netic (TM) and transverse electric (TE) surface waves [81]. We show that with a cer-

tain choice of material parameters, several regimes of directional-dependent surface

waves can be realized and that the TM and TE modes dictate different directional

dependence which may be analogous to the spin-momentum locking in topological

surface states [97]. Hence, we achieve directional polarization-dependent scattering-

immune surface waves in the frame of classical electromagnetics. The results of this

work may pave the way for further studies in topological surfaces states in plasmonic

systems.

4.2. Polarization-dependent Scattering-immune One-way Surface Waves

In the previous chapter, we mentioned previous works on directional surface waves and

also proposed a new regime of one-way surface plasmon polaritons. In this section,

we explain how we can achieve topological protection in addition to directionality in

a similar geometry in the frame of plasmonics. First, we start by introducing the

structure and explaining why it leads to our desired features. Next, we map the

regimes of directional surface waves for each of the supported modes in the param-

eter space of material permittivity and permeability. Finally, we present result of

numerical simulations demonstrating the predicted effects. For further clarity in the

explanation of the concept, we assume losses in the materials are negligible. We start
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with the same geometry as before, i.e. two semi-infinite media that support surface

waves at their interface, as shown in figure 18. In order to suppress scattering to

the bulk, one method is to have optically opaque media on both sides. By opaque

media we mean media that do not support propagating waves in their volume due

to their purely imaginary refractive index, i.e. n =
√
µrεr being pure imaginary, or

equivalently µrεr < 0. The only possible scenario to have surface waves propagating

at the interface of two opaque media is shown in figure 18(a). In this figure, the

material on each side has relative permittivity and relative permeability with oppo-

site signs, i.e. µiεi < 0 for i = 1, 2 in which µi and εi are the relative permeability

and permittivity of the materials. Also, we have ε1 ε2 < 0 and µ1 µ2 < 0 in order to

support both transverse magnetic (TM) and transverse electric (TE) surface waves

at the interface [93]. We know that the wave number of a TM surface wave can be

written as [93]:

β = ω

√
µ2

1ε
2
1 − µ2

2ε
2
2

ε21 − ε22
(4.1)

and that of a TE surface wave can be written as:

β = ω

√
µ2

1ε
2
1 − µ2

2ε
2
2

µ2
1 − µ2

2

. (4.2)

Since we are interested in propagating surface modes, β has to be real (considering

the fact that we are conducting the study in the lossless limit). To reduce the degrees

of freedom, i.e. the number of parameters we can change, we assume ε2 = 1.1 and

µ1 = 1. We simply chose these numbers to limit our parameter space and as we

will later explain the actual numbers do not affect on the concept we propose. After
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Figure 18: a)Two semi-infinite media, one with negative relative permittivity and
positive relative permeability and the other one vice versa. This structure can poten-
tially support transverse electric and transverse magnetic surface waves. b)Cut-off of
TE and TM surface modes in the parameter space of (µ1, ε2).

substituting ε2 and µ1 in equations 4.1 and 4.2, we can examine for what values of

µ2 and ε1 propagating TM and TE waves are supported, i.e. β is real. Figure 18(b)

shows the regions that each mode is supported in (µ2, ε1) plane, labeled with the

name of that mode. The subscripts ±, + and − denote the direction of the allowed

mode, corresponding to ±x, +x and −x respectively.

As it is evident from figure 18(b), the cut-off of TM and TE surface waves lie on

the same curve (ε1 µ2 = ε2 µ1 = 1.1) and the regions of their existence are mutually

exclusive. This means, for any given set of parameters, only one or neither of the two

modes is supported. In other words, TM and TE modes do not coexist. As a result

of the time-reversal symmetry of the Maxwell equations, of course in each region that

either TM or TE mode is supported, they are supported in both +x and −x direction.

In order to have directional surface waves, the time-reversal symmetry has to be
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Figure 19: Two semi-infinite media, a gyroelectric and a gyromagnetic medium. Signs
of relative permittivity and permeability similar to that in figure 18.

broken. We consider a geometry similar to that in figure 18, only this time the

materials on both side have gyrotropic properties. This modified geometry is shown

in figure 19(a). Note that the signs of permittivity and permeability are the same

as in figure 18. However, the relative permittivity in material two is described by

equation 3.3 and the relative permeability in material one is described by equation 3.2

from chapter three. Writing the dispersion equations for TM and TE surface waves

we get:

−
√
β2 − µ1εeff + δ1

ε⊥
β√

β2 − µ‖ε2
= −εeff

ε2
(4.3)

−
√
β2 − µeffε2 + δ2

µ⊥
β√

β2 − µ1ε‖
= −µeff

µ1

. (4.4)
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Comparing equations 4.3 and 4.4, one notes that setting aside ε1 and µ2, these equa-

tions depend on two distinct sets of parameters. For TM surface waves the parameter

space will be µ‖, ε⊥ and δ1 and for TE surface waves, the parameter space is µ⊥ and

ε‖ and δ2. Note that all of these parameters are frequency-dependent, however, we

are only interested in studying the relation between the value of the parameters and

the supported surface waves. By replacing the frequency-dependence of the parame-

ters in dispersion equations one can find the regions of existence of each mode versus

frequency.

As a result of different parameter dependence, the regimes of existence of TM and

TE surface waves become independent of one another. So these parameters can be

chosen such that TE and TM modes coexist. We approach this problem in the same

way as the non-gyrotropic case, i.e. keeping the values of ε2 and µ1 as well as δ1 and

δ2 constant, and then changing the two remaining parameters and examining if the

TM or TE modes are supported. The map of regions of existence of TM surface waves

is shown in (µ‖, ε⊥) plan in figure 19(b). This is similar to the case of non-gyrotropic

materials, except for a small region of one-way SPP (shaded in pink) exists, in which

TM surface waves are supported only in +x direction. This one-way regime is pre-

dicted in [87]. We repeat the same procedure for TE surface waves, only this time

in (µ⊥, ε‖) plane. The result is shown in figure 19(b). Similar to the TM surface

waves, a one-way regime of TE surface wave occurs, shaded with orange, in which

only waves in −x direction are allowed. In order to have the two modes coexist, each

of them propagating in both or the desired directions, we need to examine the two

maps individually, choose the parameters for the desired direction of the mode and

then use them in the materials.

As an example, we explore a regime in which TM waves are allowed only in −x
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direction and TE waves are allowed only in +x direction. Looking at figure 19(b), a

set of parameters yielding TM waves in −x direction can be ε⊥ = −1.1 and µ‖ = −1.2.

Similarly, from figure 19(c), if we choose ε‖ = −1 and µ⊥ = −0.9 we may expect to

see TE waves in +x direction only. A combination of materials with the given set

of parameters is given in figure 20(a). In order to excite both TE and TM surface

waves, a 2D electric and a 2D magnetic dipole are placed at the interface of the

two media. The in-plane magnetic and electric fields are plotted with black and

red arrows, respectively. It is evident that indeed the TM modes propagate in −x

direction and TE modes in +x direction. Since both media are opaque, there is

no propagating electromagnetic wave in bulk media. There are other advantages to

having opaque media as well. As it was mentioned earlier, by using opaque media,

reflection in sharp corners can be avoided. Figure 20 is a demonstration of this effect.

In this figure the gyroelectric material is embedded in the gyromagnetic material,

both with the same parameters as the ones in figure 20(a). The out-of-plane electric

field for the TE mode is plotted with the direction of propagation marked with an

arrow (clockwise direction). It is clear that there is no reflection at the sharp corners

and the TE mode is completely preserved.

This scenario resembles the spin-orbit coupling in some topologically protected surface

states proposed before [97] in a sense that a polarization-direction “locking” exists

in the system. In other words, the direction of the surface waves is dictated by its

polarization (TM or TE) for any given set of parameters.

Not only is the concept proposed here of physical significance, but it can also be used

in a variety of directional devices, full-duplexing applications and switches.
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Figure 20: a) In-plane electric and magnetic fields corresponding to TM and TE
surface waves, respectively. The surface waves are excited by means of a 2D electric
and a 2D magnetic dipole located in the proximity of the interface, in the middle.
Direction of propagation of each mode is shown with an arrow. b) A gyroelectric
U-shape inclusion embedded in a gyromagnetic material. The z component of the
electric field is plotted, showing TE surface waves propagating in clockwise direction.
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CHAPTER 5 : Tunable Metamaterials

5.1. Introduction

When it comes to electronic and optical devices and structures, tunability of the

device characteristics is a very desirable feature, since it enables one structure to

work in multiple states, e.g. like a switch, or in multiple frequencies, in addition to

potentially being used as a sensor. Specifically, several tunable and reconfigurable

metamaterials were suggested for applications such as tunable memory devices [28],

tunable positive or negative refractive index [29, 31, 104, 105, 106], electro-optical

switches [107] and frequency reconfigurable antennas [108]. In order to achieve such

tunability, several methods have been suggested such as mechanical reconfiguration

triggered by light [31, 109] and utilizing naturally available tunable materials includ-

ing liquid crystals [110, 111], phase-change materials [29] and graphene [112]. In

the majority of the works discussed, the change in effective refractive index of the

metamaterial is the immediate consequence of tuning, if not the main goal, normally

achieved by tuning the collective or individual resonance frequency of the inclusions

of the material. In the frame of our multi-functional metamaterials tunability in re-

fractive index is a very much desired property in all of the concepts mentioned in

chapters two to four. In chapter two Drude and Lorentz dispersions were used to

design frequency selective metamaterials. Hence having a structure that can switch

between Drude and Lorentz dispersions can potentially make our proposed filters

tunable. It was shown in [113] that the dispersion of a cut-wire medium changes

from Lorentz to Drude as the distance between the cut-wires goes to zero. However,

no method of dynamically changing the distance was suggested. In this chapter, we

introduce a geometry for a tunable metamaterial whose relative permittivity changes
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from a Drude model to a Lorentz model and vice versa. In other words the proposed

tunable metamaterial goes through a metal-insulator transition (MIT). The geometry

is essentially a metallic cut-wire medium metamaterial, consisting of metallic wires

with finite length with “junctions” of a second material inserted in the gap between

the wires. The metamaterial under study has subwavelength inclusions and does not

rely on the resonance of the system as opposed to the majority of proposed work

in tunable metamaterials. We numerically find the effective permittivity of the bulk

medium to show the metal-insulator transition. We also explain how V O2 or other

suitable phase-change materials can be used in the junctions to create a means of

triggering the transition. We show that in addition to metal-insulator-transition, this

metamaterial can also be used for tunable epsilon-near-zero. The metal-insulator

transition as well as other tunable features are shown numerically for frequencies as

high as 60THz for realistic materials.

5.2. Theory and Analysis

We discuss two classes of metamaterials made of metallic wires that while they are

geometrically very similar, from the point of effective permittivity, they demonstrate

completely different properties. The first is an infinite wire medium, shown in fig-

ure 21(a). In the limit where the radius and the spacing of the wires is much smaller

than the wavelength, it was shown that the effective permittivity of this wire medium

can be described as a Drude model, i.e. εeff = ε∞ −
ω2
p

ω(ω+iγ)
[6, 9]. The constants in

the Drude model were shown to depend on the radii of the wires and the periodicity

of the array.

51



Figure 21: a)An infinite wire metamaterial, with the electric field of incident wave
polarized parallel to the axis of wires. b) A cut-wire metamaterial.

The plasma frequency ωp can be described as [9]:

ωp =
2π c2

0

a2 log a
r

(5.1)

in which a is the distance between the wires and r is the radius of the wires. The

collision frequency γ can be described as:

γ =
ε0a

2ω2
p

σπr2
(5.2)

in which σ is the conductivity of the metal. The Drude model is the same model

used to describe noble metals. Therefore, the infinite wire medium is effectively be-

having “metallic”, meaning that for frequencies below plasma frequency, the relative

permittivity is negative. The second wire medium is the cut-wire medium, shown in

figure 21(b). Essentially one can imagine it is the same as the infinite wire medium,

only with cuts periodically inserted on the wires. The effective permittivity of this

wire medium follows a Lorentz dispersion model εeff = 1− ω2
p−ω2

0

ω2−ω2
0+iγω

[114, 115]. The

plasma frequency and collision frequency of the Lorentz model can be described sim-

ilar to infinite wire medium with equations 5.1 and 5.2. The resonance frequency ω0,
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Figure 22: A cut-wire metamaterial with a secondary material inserted as a junction.

is directly related to the length of the wires, described as πc0
l

in which l is the length

of the wires. In a material obeying Lorentz dispersion, the relative permittivity is

positive in frequencies below the resonance and therefore behaves like a dielectric.

Hence, we choose this structure as the dielectric phase of the MIT metamaterial.

The procedure to transition from metallic to dielectric is the part yet to be added.

Adding a junction in the gaps between the wire may provide a transition path, as

shown in in figure 22. In order to realize the nature of this junction, we first look at

the physics of the metallic and the dielectric phase. In the metallic phase, i.e. the

case of infinite wires, electric current (conduction current) freely flows along the wires

at any frequency. In the cut-wire structure, however, the current is discontinuous due

to the finite length of the wires. The lower cut-off frequency of the current is fc = c0
2 l

which is the same as the resonance in the Lorentz model. So essentially the current

flow through the gap is the determining factor of the effective permittivity of the

structure. By inserting a junction the conductivity or permittivity of which can be

tuned, one can change the flowing current through the gaps and therefor tune the

effective permittivity of the structure.

As an initial step we conduct a proof of concept study. We use a metal, in this

case Aluminum, for the metallic wires, which itself can be described with a Drude

model [94]. Next we insert a hypothetical material in the junctions and change its

conductivity. In order to make sure that the real and imaginary parts of the relative
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Figure 23: Real and imaginary parts of the relative permittivity of the Drude material
in the gap for different values of collision frequency γ.

permittivity of this material follow Kramers-Kronig relation, we choose the relative

permittivity of the junction material to follow the Drude dispersion too, with a fixed

plasma frequency but with tunable collision frequency. By changing the collision

frequency we aim to change the conductivity of the material and then numerically

examine how it affects the effective permittivity of the structure. For the material in

the gap we have ε∞ = 1, ωp = 2π 1PHz and γ is set to different values, ranging from

20THz to 200THz. The real and imaginary parts of the relative permittivity of the

gap material are shown in figure 23. It is evident that the absolute values of both the

real and imaginary parts of the permittivity decrease as γ increases.
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So if this hypothetical material is used in the junctions, for larger γ, due to smaller

real and imaginary parts, it would allow smaller flow of both displacement and con-

duction currents. However, for smaller γ, its real and imaginary parts would be larger

by orders of magnitude, allowing more current flow and hence creating a connection

between the cut-wires and make them seem infinite. We test this intuition by numer-

ically calculating the effective permittivity of our metamaterial structure for different

values of γ. For the metallic wires, we use Aluminum (however, any noble metal can

be used). For the Drude model in Aluminum we have ωp = 2π 3.57PHz, ε∞ = 1

and γ = 2π 19.79THz [94]. The radius and the length of the wires are chosen to be

15nm and 150nm respectively. The gap between the metallic wires, i.e. the green

sections in figure 22, are 30nm. The distance between the wires is 100nm. A 2D

array of these wires is created in yz-plane. In order to have a good approximation

for a “medium”, we replicate this structure four times in x direction, spaced 100nm

from one another.

In order to find the effective permittivity of the structure, we shine a plane wave

propagating in x direction and measure S11 and S21 in the frequency range of in-

terest, e.g. microwaves. A method was suggested in [116] to derive the effective

permittivity and permeability from S-parameters. Using this method we derive the

effective permittivity for the structure, demonstrated in figure 24. For lower values of

γ, where as shown in figure 23 the real and imaginary part are both large, the effective

permittivity is negative, meaning that we are operating in the metallic phase. This is

consistent with our intuition of wires seeming infinite. On the other hand for larger

values of γ, the permittivity becomes positive, yielding a dielectric phase. In addition

to the metal-dielectric transition, this structure also provides a tunable epsilon-near-

zero (ENZ) feature, i.e. to change the zero-crossing frequency of the permittivity.
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Figure 24: The effective permittivity of the proposed structure for different values of
γ.
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In figure 24, the zero of effective permittivity moves from 55THz to 20THz as we

change γ from 2π 20THz to 2π 200THz.

5.2.1. Using Natural Phase-Changing Materials

The next step after showing the concept is to use actual materials in the junctions and

suggest a method to trigger the transition. A possible candidate would be naturally

available MIT materials, e.g. Vanadium Dioxide or V O2. V O2 goes through a metal-

insulator transition at the temperature 58° C [117]. In its metallic phase its relative

permittivity has negative real part and large imaginary part while in its dielectric

phase, it has positive real part and smaller imaginary part. Hence it can be used

in our structure as the junction material. The frequency dispersion of the relative

permittivity and permeability of V O2 are demonstrated in figure 25 [118]. In its

metallic phase, where permittivity is negative and conductivity is higher, V O2 can

be used in the junctions to yield the effective metallic medium. In its dielectric

phase, with positive permittivity and lower conductivity, it yields the effective overall

dielectric phase. We demonstrate this through numerical simulations.

We use the same method as before to find the effective permittivity of the structure

using the S-parameters. We find the effective permittivity for two cases: first, when

the junction V O2 is dielectric phase and when it is in metallic phase. The results

are shown in figure 26. Clearly when V O2 is metallic the structure is effectively

metallic, showing negative permittivity and when V O2 is dielectric, the structure is

effectively dielectric. One might question what is the advantage of using the suggested

metamaterial as opposed to using V O2 itself, if in any case we need to use a natural

phase-change material anyway.

As discussed earlier in this chapter, the first advantage is the scalability, i.e. being
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Figure 25: Real and imaginary parts of the relative permittivity of V O2 in dielectric
and metallic phases [118].
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Figure 26: Effective permittivity of the suggested material with V O2 junctions, for
both dielectric and metallic phase of V O2.
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able to engineer the metamaterial for the frequency of interest. It should be noted

that the necessary change in temperature of V O2 to trigger the transition, from 25°C

to 58°C, can be induced in multiple ways, such as direct heating or optical absorption

where the latter is a popular method [119]. Since the optical absorption of V O2 is

strongest in IR regime, a switch signal in IR band can be used to trigger the transition

in V O2 junctions while the entire structure can be designed and used in the frequency

of interest, e.g. microwaves. The second advantage is in the required power to trigger

the transition. If V O2 is used only in the small junctions, the required power to

heat up the V O2 sections is much smaller compared to heating up a V O2 film, simply

because of the lower mass of V O2 in the structure. Also, it is likely that the transition

of V O2 will be faster for smaller mass of it, but this yet needs to be studied. The third

advantage is in the overall losses of the structure. The imaginary part of the relative

permittivity of most naturally available MIT materials including V O2 is relatively

high, both in its dielectric and metallic phase while in the suggested structure, due

to smaller volume/mass of V O2 the imaginary part of effective permittivity is much

smaller compared to V O2 itself, which results in smaller losses. It should be noted

that structure proposed here is just one sample of many possible ones. The number

of degrees of freedom, both in the geometry and selected materials, is many, and

depending on the specific requirement of effective permittivity one may use them to

accommodate that.
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CHAPTER 6 : Metatronic Transformer

6.1. Introduction

In a power transfer system or a telecommunication circuit, different stages of the

circuit may operate at different voltages and signal levels. The element bridging

these stages in all of the aforementioned stages is a transformer, the size of which can

range from enormous heavy transformers in power transfer applications to ones less

than a cubic centimeter for RF applications. While the most common application

of a transformer is for impedance matching, it may as well be used as a coupler for

consecutive stages of an amplifier, or as a balun [120]. The fundamental concept

behind operation of a transformer is magnetic induction.

The most common form of a transformer is shown in figure 27. It consists of a

primary and a secondary winding (solenoid) of a conducting wire, not connected

directly, but coupled through a magnetic core. As is well-known, once a voltage

is applied between the two ends of the primary solenoid, an electric current flows

through it and a magnetic flux is produced inside the primary winding. Through

the magnetic core, this flux flows through the secondary winding as well, inducing a

current in the secondary solenoid. Depending on the geometry of the coils the induced

current and induced voltage at the two ends of the secondary may vary. In general,

if all other characteristics of the two coils, material of the wires and the magnetic

core as well as the area of the solenoid, are the same, and there is no leakage of

magnetic flux, the magnetic flux in the two solenoids is equal, φp = φs. The relation

between the voltage and the magnetic flux in a solenoid can be written as V = N dφ
dt

in

which N is the number of turns in the solenoid. For the primary and the secondary,

having equal magnetic flux means the ratio of the secondary (output) voltage to
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Figure 27: A transformer with primary and secondary winding with a common mag-
netic core (URL: http://en.wikipedia.org/wiki/Transformer , Image is free under
GNU Free Documentation License).

primary (input) voltage is essentially the ratio of the number of turns in each of them,

Ns

Np
[120]. All varieties of transformers lie on the fundamental concept of magnetic

induction and have at least one solenoid. In low frequency the solenoids can be very

large and have thousands of turns. However, in radio frequency, most transformers

consist only of a few number of turns, and very low ratio of output to input voltage,

for example 2:1, 4:1 or 9:1. In fact transformers are among the most challenging

circuit elements to build and maintain in high voltage application and to integrate

in low voltage designs and integrated circuits. In microwave frequencies a number

of works have addressed the issue of integration of transformers [121]. In optical

frequencies, there is an additional problem which is the fact that the conductivity

of metals, which are essential for making the windings, becomes small and makes

them of little to no practical use for this application. In this chapter we propose

a concept for mimicking the function of transformers in optical frequencies using

only ENZ materials and regular dielectrics. A preliminary effort on this topic, albeit

with a different geometry, was explored in [122]. We use the concepts of metatronics

and analogy to electronics in order to design the “metatronic” transformer, and show
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that while following different mathematical relations, qualitatively the function of our

suggested geometry is similar to a transformer. While we study a two-dimensional

geometry, the results can be extended to a flat geometry. The biggest dimension of the

structure is smaller than or about one wavelength. We conceptually and numerically

study the structure and demonstrate the basic functions of a transformer for it.

6.2. Split-ring Geometry Using ENZ Materials

As we mentioned earlier in chapter one and two, ENZ materials in optics can be used

as “isolating layers”, i.e. essentially blocking the flow of displacement current [42, 44].

Any other material with nonzero permittivity allows for the flow of displacement cur-

rent and can be considered a “metatronic conductor”. For designing the metatronic

transformer, we move along this line to mimic the conductors of the primary and

secondary and their surrounding insulation. An electronic transformer is based on

the electric current inducing magnetic flux and vice versa. In optical frequency, same

relation should exist, only with displacement current instead. A structure that has

commonly been used in microwave frequencies to create magnetic moment is a split-

ring resonator (SRR) [11], shown in figure 28. An SRR consists of two conducting

rings, embedded in a dielectric substrate, with each of them have a cut inserted on

them, on the opposite sides.

If a voltage is applied in the gap of the outer ring, i.e. between the two ends of

the ring, an electric current flows through the ring, leading to a magnetic flux inside

the ring, which in turn induces an electric current in the inner ring. We utilize

this geometry as the basis for our metatronic transformer. Instead of conductors

for the rings, we use dielectrics and instead of the dielectric substrate, we use ENZ

materials. This way we expect the displacement current to remain confined to the
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Figure 28: The schematic of a split-ring resonator.

dielectric rings [44]. This effect can be verified in a simple geometry as shown in

figure 29. In this figure the background material is ENZ, with εr0 = 0.02 (we note

that this material is hypothetical, but later in this chapter we will show the same

effect for real ENZ materials).

A 2D circular loop of air, i.e. with εr1 = 1, is then embedded in ENZ, with a

cut inserted in it on the left. A voltage of one volt is applied in the cut as shown in

figure 291. The frequency of operation is f0 = 1THz. The dimensions of the structure

are presented on the figure, with the biggest dimension, diameter of the biggest circle,

roughly about three quarters of the wavelength. The magnitude of the D field, which

at a fixed frequency is proportional to displacement current, is plotted. As it is

evident, it is smaller in the ENZ medium by four orders of magnitude compared to

that in the groove. So essentially having grooves in an ENZ material filled with a

dielectric will confine the displacement current in the dielectric parts. The next step is

to have a secondary “ring” analogous to a secondary winding and similar to an SRR.

A key point in an electronic transformer is the common magnetic flux flowing through

the coils which can be fulfilled by having an SRR as the second ring lies inside the

1The built-in AC voltage source in COMSOL Multiphysics® is used for this purpose. PEC
boundary condition is applied to each side of the cut.
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Figure 29: A 2D dielectric groove in a bed of ENZ material. The magnitude of D
field is plotted.

first ring. This is demonstrated in figure 30(a). The primary loop is identical to that

in figure 29, however, a secondary loop of air has been added inside it, with denoted

dimensions. As it is demonstrated in figure 30(b), the magnetic field is constant all

across both primary and secondary loops. Furthermore, the magnetic field is the

same inside the secondary and primary. However, the magnetic flux will not be the

same between the two due to unequal areas. This can be interpreted as what we call

a “flux leakage” in an electronic transformer. Similar to electronics, we may expect

the difference in the magnetic flux to affect the ratio of output to input electric field.

The next step is to mimic the number of turns in each coil in the optical domain. The

effect of the number of turns per unit length becomes evident when one examines the

relation for magnetic flux in a solenoid. Magnetic flux can essentially be written as

φ =
∫∫

S
B.dS where S is the area of the solenoid and B is the magnetic field inside
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Figure 30: a) Two 2D loops of vacuum (or air) carved into an ENZ substrate. b) The
magnitude of the magnetic field intensity, H plotted.

the solenoid. The magnetic field can be found from the relation B = µrµ0
N I
l

where

µr is the relative permeability of the magnetic core, I is the current flowing through

the wires, N is the total number of turns and l is the length of the solenoid. The

larger N/l is, the bigger the magnetic field inside the solenoid. The question is how

can we bring this to our metatronic transformer. Referring to figure 29, intuitively

we may expect that if we increase the width of the loop, the displacement current

flowing through it increases, however not necessarily in a linear manner. The reason

for this is that the impedance of the loop decreases as the width of it increases. We

numerically show this in figure 31(a). The electric flux density, D field, is measured in

two points (shown in figure 30) inside the dielectric groove to confirm the uniformity

of D field inside the groove as we pointed before and also show that it increases as

the dielectric loop becomes wider.

Note that the increase in the displacement current and magnetic flux with respect to

increase in the width of the primary loop is not linear as opposed to an ideal electronic

transformer. At this point in this study we are not looking for the mathematical

relation describing the metatronic transformer.
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Figure 31: a)The plot of magnitude of electric flux density D field versus the thickness
of the primary loop. The thickness of the primary loop is changed while the area is
being kept constant. b) Magnitude of magnetic field H probed at the center of the
structure, plotted versus thickness of the primary.

Regardless of the mathematical relation between displacement current and thickness,

a direct consequence of increase in displacement current is the increase of the magnetic

field inside the loop which in turn means an increase in the magnetic flux. The

magnetic field in the center of the loop is plotted in figure 31(b), showing a similar

trend to the displacement current. From the discussion so far, we can conclude that

we may expect a transformer-like behavior from it, i.e. stepping up or down the

voltage, however with different mathematical relations. The final remaining point is

to demonstrate the stepping of the voltage numerically.

6.3. Mimicking the Function of a Transformer

Due to conservation of energy, in a lossless electronic transformer, the power at the

input and output has to be equal, i.e. VsIs = VpIp. This means a reduced current in

secondary, leads to an increase in its voltage. We follow an analogous trend here. We

already showed that by increasing the width of the loop, the displacement current

flowing in it increases. So in order to increase the voltage in secondary output which
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Figure 32: y component of electric field. The electric field in the terminals of sec-
ondary is 1.5 times larger than that in primary.

is expected to be accompanied by a decrease in its displacement current, we need to

choose the thickness of the secondary much smaller than primary. We simulate the

geometry shown in figure 32. The thickness of primary is chosen to be much more

than the secondary in order to decrease the displacement current in secondary and

enhance the output voltage. In figure 32, the y-component of the electric field is

plotted. An enhancement of about 1.5 times is observed when comparing the electric

field in the gap in secondary with that in primary. Note that since the height of the

gap is chosen to be the same in both loops, we can measure either of the electric field

or voltage in the gaps and they lead to the same result.

In order to see the effect of the thickness of the outer loop on the transformer ratio, we

simulate this structure with varying thickness of primary while keeping the thickness

of secondary constant. The transformer ratio, i.e. the ratio of the electric field (or

voltage) in the secondary to that in the primary, is plotted versus the ratio of their

thickness in figure 33.
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Figure 33: The ratio of the electric field in the two gaps plotted versus the ratio of
the thickness of primary to secondary, with the latter being kept constant.

The thicker the primary gets, the higher the ratio of the transformer becomes which

is what we predicted earlier.

One last parameter to study, is the relative permittivity of the dielectric grooves.

From numerical simulations, we found out that by keeping the relative permittivity

of the primary constant, equal to one, and increasing the relative permittivity of the

secondary, one can decrease the induced displacement current in the secondary and

instead increase the voltage at its output, leading to higher transformer ratio. The

plot of the voltage ratio versus relative permittivity of the secondary is shown in

figure 34.

6.3.1. Realistic Materials

A number of naturally available materials demonstrate ENZ behavior in certain fre-

quencies. For example at about 29.13THz, the relative permittivity of the silicon
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Figure 34: Ratio of the fields in the two gaps versus the relative permittivity of the
secondary.

carbide (SiC) is 0.1 i which is considered ENZ [51]. In figure 35 the transformer is

scaled down by a factor of 29.13 to operate in 29.13THz. We use SiC as the ENZ

substrate and plot the transformer ratio versus the permittivity of the secondary. The

increasing pattern is still present, similar to figure 34. However, the ratio of output

electric field to input electric field is lower compared to using hypothetical materials.

The reason for this can be the material losses in SiC, which means the signal reaching

the secondary loop will be smaller.

By following our intuition and drawing analogy between electronic and metatronic

transformers we managed to design a metatronic transformer, suited for optical fre-

quency, that analogously does the same function as an electronic transformer. The

dimensions of this structure are comparable to or smaller than the wavelength. In

addition, the suggested geometry can be potentially realized in a flat structure which

becomes suitable for fabrication for integrated circuits applications. It should be

noted that this structure is much more complicated compared to an ideal electronic
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Figure 35: The ratio of the electric field in the two gaps plotted versus relative
permittivity of the secondary, when SiC is used as the ENZ material.

transformer. There are many reasons for this of which the most important two are

as follows. First, the electric fields in the two transformers can still couple to each

other directly, even through the ENZ substrate, as opposed to an ideal transformer in

which the two solenoids are far apart and the only coupling between them is through

the magnetic core. Second, The area of the two loops cannot be the same in the

2D geometry proposed here, as opposed to an ideal transformer in which the areas

can be equal. This deviation from ideal transformer leads to unequal magnetic flux

in the two loops (smaller flux in the secondary) and consequently lower output to

input ratio of electric field. Finding mathematical relations that take these effects

into consideration can be the topic of future work. The one remaining step is per-

haps to increase the transformer ratio to much larger values. One cannot infinitely

increase the radius of the primary ring to increase the ratio, since at some point the

structure will hit a resonance similar to SRRs [11]. Also, increasing the permittivity

of the secondary only works up to an extent in which the transformer ratio saturates
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at about a factor of 4. In the final chapter we briefly touch upon the methods that

can potentially be used to improve the transformer ratio.
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CHAPTER 7 : Angular Selectivity

7.1. Introduction

So far in this dissertation we tackled selectivity in frequency and polarization of light

in chapters two and four, respectively. A third characteristic of propagating light is

its direction of propagation. In other words, we work towards filtering light by its

angle of incidence upon our structure, and we refer to it as “spatial filtering”. The

ability to filter light at certain angles of incidence has multiple applications among

which perhaps the most familiar is the privacy protection screen for displays [123].

In this technology only the person sitting exactly in front of the display can see it.

Other applications include increasing the efficiency of solar cells by limiting emission

losses [124, 125] as well as narrowing down the laser beam in sensitive applications. A

number of methods have been suggested to address this problem in the past. The first

class of these works is those involving metallic structures. Extraordinary transmission

in metallic systems at a desired angle of incidence has already been suggested as a

means of angular selectivity [126]. One-to-one analogy to certain frequency-selective

surfaces is a plausible scenario as well, since frequency and angle of incidence are

related to one another through wavenumber [127]. Active hyperbolic materials were

also shown to posses tunable angular response [128]. Extreme anisotropy in meta-

materials with metallic inclusions also leads to angular sensitivity [129]. However,

in general metallic structures are challenging to use in optical frequencies; a prob-

lem that we mentioned multiple times in the previous chapters. The second class

of works in this regard is through photonic crystals and non-metallic metamaterials.

Manipulating the permittivity of materials in a periodic way, e.g. by using chirped

photonic crystals [130], is one way to achieve spatial filtering in optical frequencies,
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however, chirped photonic crystals are challenging to fabricate. Stacking of photonic

crystals [131] was suggested to achieve broadband spatial filtering. In this approach,

basically each PC block, reflects back a certain angle over a broad band of frequency

and by stacking several PCs, as many angles as desired can be blocked. In this chap-

ter we suggest a method that essentially does the opposite of each photonic crystal

stage of the mentioned work, i.e. our structure allows only one angle to go through.

The structure is essentially two thin uniform slabs of ENZ, sandwiching a uniform

dielectric slab, which means the structure is essentially two-dimensional. We explain

how oblique incidence of wave on this structure can be analyzed using Fabry-Perot

resonator approach, generalized to angular domain. We then compare the theoretical

and numerical results to verify this feature. It should be noted that this chapter is an

initial step in using ENZ structures in spatial filtering. The future work will involve

expansion into completely arbitrary angular response.

7.2. Background

7.2.1. Fabry-Perot Approach Towards Layered Structures

Figure 36 shows a uniform slab, which can be part of a multilayer structure. The

waves to the left side of the slab are described by Ei± and the ones on the right of

it are described by Ei+1± in which ± refers to ±x direction of propagation. It was

shown in [132] that the relation between Ei and Ei+1 fields is:

Ei+
Ei−

 =
1

Ti−1,i

 e−ikidi Γi−1,ie
ikidi

Γi−1,ie
−ikidi eikidi


Ei+1+

Ei+1−

 (7.1)

in which Γi−1,i = ηi−ηi−1

ηi+ηi−1
and Ti−1,i = 2ηi

ηi+ηi−1
. Obviously for a system consisting of M
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Figure 36: A slab of thickness di made from material with refractive index ni.

slabs, one needs to multiply M matrices of this form to find the relation between the

E0± and EM+1+ (assuming mediumM+1 is extended to infinity, leading to EM+1− =

0). This method is normally referred to as “Fabry-Perot” resonator method [132].

As shown in figure 36, the incident wave is assumed to be incident upon the slab

in normal angle. In order to generalize this analysis to oblique incidence we use the

transformations mentioned in section 7.1.1 on Γi−1,i, Ti−1,i and di. This method is fre-

quently used to analyze Fabry-Perot interferometers. Just like the normal incidence

case, arbitrary number of slabs can be analyzed using this method for oblique inci-

dence. We note that the mentioned transformations hold true for p-polarized waves

and one should modify them to analyze s-polarized waves [133].

7.3. ENZ Waveguide as a Spatial Filter

While Fabry-Perot resonators aim towards frequency selectivity, the wavenumber and

phase-variations in x direction are essentially the determining factors about which

frequencies go through and which do not. We can use this towards our goals since

wavenumber in a certain direction depends not only on frequency, but also in the angle

of incidence. For example in figure 37, the wavenumber in x-direction is k0 cos(θ) in
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which k0 is the wavenumber in free space and θ is the angle between direction of

propagation and x axis. Hence a Fabry-Perot like structure can be used to allow

certain angles to go through and block the rest of the angles of incidence based on

the same principle as frequency selectivity. Our idea for implementing this approach is

schematically shown in figure 37. It consists of two ENZ slabs lying in (y, z) plane with

subwavelength thickness along x-direction separated by an air gap. The incident wave

is propagating in (x, y) plane. The ENZ-air-ENZ structure, is essentially a waveguide,

supporting guided modes propagating in y direction. At a given frequency, if we

choose the width of the waveguide appropriately, the wavenumber of one or multiple

modes, i.e. TM1 or higher order modes, will be smaller than the wavenumber of a

freely propagating plane wave in air [44]. Referring to figure 37, this means that if

the wave is incident at an angle that k0cos(θ) is equal to the wavenumber of a mode

of the ENZ waveguide, it couples to that guided mode through the first ENZ wall.

Based on reciprocity, the guided mode also couples to bulk modes through the second

ENZ wall, leading to transmission of the plane wave from one side of the waveguide to

the other. The thickness of the ENZ walls needs to be small, otherwise the first ENZ

wall would block the incident wave at all angles of incidence. The distance between

the two ENZ walls is chosen depending upon the desired angle of transmission.

We test this idea, by numerically simulating our geometry. The frequency of operation

is 1THz. We choose the thickness of the ENZ walls to be 0.1λ0. As an initial step

in the design of the structure and in order to choose the distance between the ENZ

walls for a desired angle to be transmitted, one can use the waveguide principles as

an approximation. For example if the desired transmitted angle is 52◦, the transverse

wavenumber of the guided mode should be k0 cos(52◦), which means the width of

the waveguide should be approximately 0.5λ0 cos(52◦). While this can be used as an
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Figure 37: An angle-selective structure consisting of two ENZ walls separated by an
air gap. A p-polarized (electric field in (x, y) plane and magnetic field along z axis)
plane wave is incident upon the structure obliquely and couples to the guided mode
only at specific angles of incidence.

initial design step, exact analysis of structure can be done by solving for the waveguide

modes or by using Fabry-Perot method. Figure 38(a) shows the magnetic field Hz

of the incident wave in 52.4◦ (0.914 rad) angle in free space. Figure 38(b) shows

the same field, however this time incident on the ENZ waveguide. As it is evident

the magnetic field has coupled to the guided mode which in turn has coupled to the

free space modes on the other side of the waveguide leading to large transmission

coefficient.

Next, the fields are plotted at a slightly different angle, for example 54◦ or 0.917

rad, in figure 39. At this angle we observe that transmission coefficient is very small,

almost zero, and no field is observed on the other side of the waveguide.

There are two approaches to analytically predict the response of this structure. One,

is to solve for the waveguide modes and find the exact wavenumber of the guided wave

and from that find the transmitted angle (we used an approximation of this method

in the example we showed here). This is especially convenient if we want to stay with
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Figure 38: The simulation results for the magnetic field of the incident wave in the
a) absence and b) presence of the ENZ angle-selective structure. Large transmission
is observed.

Figure 39: The simulation results for the magnetic field when incident wave is entirely
reflected.
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Figure 40: Analytical(red curve) and numerical(blue curve) values of S21 for the
proposed angle-selective structure.

the single waveguide structure and know exactly what angle we want to transmit.

However, it is more challenging to extract information about nontransmitted angles.

Alternatively, one may use the Fabry-Perot approach explained earlier in this chapter

in order to analyze this. We use this method to analyze the example we showed here

(see the MATLAB code in Appendix B). The results are shown in figure 40.

As it is evident the two curves match perfectly, exactly predicting the angle that

will be transmitted. Except for the very small angles of incidence, which are in the

proximity of the Brewster’s angle of air-ENZ interface (θB = atan(nENZ

nair
)), the rest of

undesired angles of incident are reflected.

To justify our intuition about the guided modes dictating the transmitted angles we

can simulate wider waveguides. If we increase the width (air gap) in the ENZ-air-ENZ

waveguide, the number of modes that the bulk mode can couple to increases. As a

result, we will have more than one transmitted angle.
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Figure 41: The transmission coefficient of the proposed structure. The horizontal
axis has the angle of incidence on it while the vertical axis shows the width of the
angle-selective structure. As the width increases, the number of guided modes that
a plane wave can couple to increases and consequently the number of transmitted
angles increases too.

This is clearly shown in figure 41. This surface plot shows transmission coefficient at

different angles, for several waveguides with different width. Except for the proximity

of the Brewster’s angle, the transmission is only near 1 at the angles that excite

guided modes in the waveguide. The smallest angle corresponds to the highest order

mode that can be excited while the biggest transmitted angle (the rightmost angle)

corresponds to the excitation of the fundamental mode of waveguide.

This approach is a simple yet powerful way of bringing angular selectivity to optical

metatronics. It may also be used as a building block for structures with potentially

completely arbitrary angular response. Also, the angular response at the transmitted

angle has a very sharp resonance. A comparably sharp response can be achieved in

photonic crystals only if the crystal is much larger than the wavelength. For that

reason achieving this fine response in a subwavelength structure is desirable.
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CHAPTER 8 : Conclusion

8.1. Summary

Aiming towards expanding the functionality of metamaterials for developing further

the concept of metatronic integrated circuits, we explored a variety of methods mostly

in the frame of analogy to electronics and microwave. Creating isolation and modular-

ity is the backbone of this dissertation, which we demonstrated theoretically in a num-

ber of ways including multi-element systems, directionality, polarization-dependence,

scattering-immune guided modes with topological protection, and angular selectivity.

We also touched upon tunability in metamaterials as well. Another consideration on

all of the proposed work is preference for compatibility for integration. The suggested

structures are flat geometries, which makes them suitable for future fabrication.

Each chapter in this work builds up a part of the concept for potential integrated op-

tical metatronic circuits. In chapter two, we pictured an analogy between electronic

circuit elements and optical nanoelements. While in all the works previously proposed

only parallel nanoelements (with respect to the applied voltage or electric field) were

identified, we conceptually introduced the metatronic series elements. We numerically

showed that in metatronics series or parallel is not just a combination of two nanoele-

ments, but also a ”type” of nanoelement, directly depending on the material that

the nanoelement is made from. We numerically demonstrated how epsilon-near-zero

and mu-near-zero materials can be used as series and parallel nanoelements. Next,

we studied that depending on the dispersion of the material inductive or capacitive

behavior can be expected. We discussed how we can, under certain conditions, follow

some filter prototypes in electronics to design metatronic filters as their electronic

counterpart. In chapter three, we expanded our vision of modularity to directional
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devices. We utilized magnetically biased materials (magneto-optical materials) as the

basis for our nonreciprocal plasmonic waveguides. We proposed a new regime of one-

way surface waves in a two-dimensional waveguide. This regime occurs as a result of

an asymmetric crossing of the light-line by the dispersion curve of SPP. In one direc-

tion surface waves flow confined to the interface while in the other they leak to the

bulk magneto-optical medium. We studied the effect of losses and applied magnetic

field on this regime. We showed that this type of one-way surface wave can be used

to tune the radiation pattern of a dipole antenna. By breaking the reciprocity of

antenna, we separated the transmission and reception patterns, potentially suited for

applications such as full-duplexing possible. In chapter four, we took yet another step

towards added modularity and that was to eliminate scattering from our directional

waveguide. We studied a similar geometry to that in chapter three, only this time we

used gyromagnetic materials in addition to gyroelectric materials. As a result, the

structure supports both TM and TE surface modes. Furthermore, the directionality

of these modes is locked to their polarization which adds another level of isolation.

Our main goal which was to eliminate scattering is achieved by using opaque media

on both sides. As a result of this in the presence of surface roughness or a scatterer

the modes only convert to other guided surface modes and propagates confined to the

interface, but does not scatter to bulk medium. In chapter five we discussed a tunable

structure that goes through metal-insulator transition (MIT), bringing tunability to

our metatronic integrated circuits. In chapter six, we discussed a 2D transformer-like

structure as a means of facilitating the connection between different stages of an opti-

cal integrated circuit operating at different signal levels. The geometry is very similar

to that of a split-ring resonator, two split rings made of a dielectric embedded in an

ENZ substrate. The dimensions of our suggested geometry are smaller or comparable

to wavelength. Finally, in chapter seven, we discussed yet another layered structure,
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but this time for angular selectivity. This structure which essentially consists of a

dielectric waveguide with ENZ walls, blocks all angles of incidence except for one

or a few. We analytically and numerically studied this structure using Fabry-Perot

resonator methods. All in all, each of these chapters suggested a possible method to

address the issues of modular design in metamaterials and getting one step closer to

fully mimicking electronic circuit functions in optical frequencies.

8.2. Future Directions

The road to optical integrated nanocircuits is long and there are various directions

that one can pursue. Each of the concepts and geometries mentioned here can be

expanded in functionality and practicality some of which we mention in the rest of

this chapter.

8.2.1. Fully Arbitrary Spatial Filters

We briefly touched upon the issue of spatial filtering and introduced a geometry to

transmit light only at one angle of incidence. The next step is to develop a method to

tailor the angular response arbitrarily. This might be achieved by applying a similar

approach as the one discussed in this work, by expanding it to three dimensional

structures. Also using magnetic materials might offer additional flexibility.

8.3. Epsilon-near-zero Inductors and Transformers

The concept of the transformer proposed in chapter six is appealing and a possible

advancement for this structure is to increase the transformer ratio from about a few

times that we have achieved so far, to a few tens of times. This might be achievable

by using resonance structures (analog of resonant transformers) or three-dimensional

structures. Also, the suggested ENZ loops might serve as optical inductors, in which
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higher values of inductance might be achieved using spiral or three-dimensional struc-

tures.
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APPENDIX A Frequency dispersion of Magnetooptical Materials

In chapter three we briefly discussed the frequency dispersion of magneto-optical(MO)

materials and showed how they affect the proposed one-way regime of surface waves.

Here, we plot the dispersion curve and study it to fully appreciate the results presented

in figure 13. We repeat the frequency dispersion relations of the MO materials here:

ε‖ = εb

(
1−

ω2
p1(ω + iγ1)

ω((ω + iγ1)2 − ω2
g)

)
(A.1)

δ =
ω2
p1ωg

ω((ω + iγ1)2 − ω2
g)

(A.2)

where ε‖ is the diagonal term of the relative permittivity tensor and δ is the off-

diagonal term. εb is a constant, ωp1 is the plasma frequency, γ1 is the collision

frequency, and ωg = eB
m

, with B being the applied magnetic field, e the charge of

electron and m the effective mass of electron.

In this appendix we use Indium Arsenide, InAs, as an example and observe the

variations of ε‖ and δ as ωg changes. As a first step we neglect the collision frequency

of InAs (i.e. assume it to be smaller than the actual number by a factor of 1000).

For InAs we have εb = 16.3, m = 0.026me, γ = 2π 0.75THz, ωp = 2π 1.8THz (for

a carrier density of N = 2.1 × 1016 cm−3 [134]. The values of ωg, for a fixed carrier

density, depends upon the applied magnetic field, normally falling in the sub terahertz

region.

Figure 42 shows the real and imaginary parts of ε‖ and δ versus frequency for three
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Figure 42: Real and imaginary parts of ε‖ and δ, i.e. diagonal and off-diagonal
components of the relative permittivity tensor, versus frequency for different values
of ωg.
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different values of ωg: 0, 2π 0.5THz and 2π 1THz. While for ωg = 0 there is no

resonance on the dispersion curves, for the nonzero values the resonance is clearly

observed in f = ωg

2π
. Obviously the imaginary part of ε‖ reaches very high values at the

cyclotron resonance. As we get further away from resonance, the value of imaginary

part decreases. This is the underlying reason for decreased propagation distance

with larger magnetic field at frequencies above the cyclotron frequency (similar to

the case studied in chapter three). For a fixed frequency of operation f0 >
ωg

2π
, by

increasing ωg the resonance gets closer to the frequency of operation, leading to larger

imaginary part in this frequency and consequently higher losses. Obviously, larger

ωg also results in higher value of δ in higher frequencies and consequently a stronger

symmetry breaking.
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APPENDIX B MATLAB codes

A.1. Fabry-Perot Analysis of Spatial Filters

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

2 % MATLAB code for analysis of a spatial filter based on Fabry-Perot %

3 % approach modified for angular response %

4 % Fereshteh Abbasi %

5 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

6

7 close all

8 clc

9

10 % For the current values of n1 to n5, the sturcture is essentially

11 % air/ENZ/air/ENZ/air . However, either of these layers can be set

12 % to any arbitrary material and the code will produce correct result.

13

14 n1= 1; % Refractive index of air

15 n2 = sqrt(0.0001); % Refractive index of ENZ

16 n3 = n1; % Lines 16-18 make alternating layers

17 n4 = n2;

18 n5 = n1;

19

20 n = 1000;

21

22 T15 = zeros(1,n);

23 thetas = linspace(pi/400,pi/2.5,n);

24 d2 = 1/0.11; % Thickness of the first ENZ layer normalized to wavelength

25 d3 = 1/0.5; % Thickness of the air section normalized to wavelength
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26 d4 = d2; % Thickness of the second ENZ layer normalized to wavelength

27

28 for j = 1:n

29 theta1= thetas(j);

30 theta2 = asin(sin(theta1)*n1/n2);

31 phi1 = 0;

32 r12 = (n1/cos(theta1)-n2/cos(theta2))/(n1/cos(theta1)+n2/cos(theta2));

33 t12 = 1 + r12;

34 phi2 = 2*pi/d2*n2*cos(theta2);

35 r23 = -r12;

36 t23 = 1+r23;

37 phi3 = 2*pi/d3*n3*cos(theta1);

38 r34 = r12;

39 t34 = t12;

40 phi4 = 2*pi/d4*n4*cos(theta2);

41 r45 = r23;

42 t45 = t23;

43 phi5 = 0;

44

45 delta = 1+r12*r23*exp(-2*1i*phi2);

46 delta1 = 1;

47 t13 = t12*t23*exp(-1i*phi2)/(delta);

48 r31 = (r12+r23*exp(-2*1i*phi2))/(delta);

49 r35 = (r34+r45*exp(-2*1i*phi2))/(1+r34*r45*exp(-2*1i*phi2));

50 t35 = t34*t45*exp(-1i*phi2)/(1+r34*r45*exp(-2*1i*phi2));

51

52

53 delta = 1 - r31*r35*exp(-2*1i*phi3);

54

55 t15 = t13*t35*exp(-1i*phi3)/(delta);

56
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57 T15(j) = abs(t15);

58

59 end

60

61 plot(thetas*180/pi,T15) %Transmission of the spatial filter versis angle of

62 %incidence

A.2. Effective Permittivity of the Wire Medium

1 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

2 % MATLAB code for finding the effective permittivity of a structure %

3 % from its S-parameteres %

4 % Fereshteh Abbasi %

5 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

6

7 nc = 5; % Number of layers of wire

8 a1 = 20; % Wavelength/Spacign between the wires

9

10 f0 = 1e12; % A reference frequency

11 % The s-parameter data are extracted imported from numerical simulation

12 temp1 = importdata(['s-params\GRC-alum-vo2-gap\s11re vo2 metal.txt']);

13 temp2 = importdata(['s-params\GRC-alum-vo2-gap\s11im vo2 metal.txt']);

14 temp3 = importdata(['s-params\GRC-alum-vo2-gap\s21re vo2 metal.txt']);

15 temp4 = importdata(['s-params\GRC-alum-vo2-gap\s21im vo2 metal.txt']);

16

17 s11re = temp1.data;

18 s11im = temp2.data;

19 s21re = temp3.data;

20 s21im = temp4.data;

21
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22 fmin = s11re(1,1)*1e9; % min frequency

23 fmax = s11re(end,1)*1e9; % max frequency

24 lambda max = 3e8/fmin; % max wavelength

25 deltaf = (s11re(2,1)-s11re(1,1))*1e9; % frequency resolution

26

27 freq = fmin:deltaf:fmax;

28 omega = 2*pi*freq;

29 k = omega./c0;

30

31 % parameter retrieval from CST

32 ff = s11re(:,1).*1e9;

33 kk = 2*pi*ff./c0;

34 S11p = s11re(:,2) + 1j.*s11im(:,2);

35 S21p = s21re(:,2) + 1j.*s21im(:,2);

36

37 % Phase de-embedding

38 lp = 0.6*lambda max; % The port distance used in the simulation

39 S11 = S11p.*exp(1j.*kk.*2.*lp);

40 S21 = S21p.*exp(1j.*kk.*2.*lp);

41

42 lambda0 = c0/f0;

43 a = lambda0/a1;

44 % PARAMETER RETRIEVAL

45 d = nc*a; % Thickness of the metamaterial

46

47

48 zz = sqrt(((1+S11).ˆ2-S21.ˆ2)./((1-S11).ˆ2-S21.ˆ2));

49 indz = find(real(zz)<0);

50 if ~isempty(indz)

51 zz(indz) = -zz(indz);

52 end
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53

54 % Refractive index

55 m = 0;

56 Q = S21./(1-S11.*(zz-1)./(zz+1));

57 nn = 1./(kk.*d).*((-imag(log(Q)) + 2*m*pi) + 1j.*real(log(Q)));

58

59 phaseU = unwrap(real(nn.*kk.*d));

60 nn1 = phaseU./kk./d + 1j.*imag(nn);

61

62 nn = nn1;

63

64 eps retr = nn./zz;

65 mu retr = nn.*zz;

66

67 % Plotting effective permittivity and permeability

68 figure(1)

69 subplot(2,1,1)

70 hold on

71 plot(s11re(:,1),real(mu retr),'b','LineWidth',LW,'LineSmoothing',LS)

72 xlabel('frequency (THz)')

73 title('\mu'' {eff} ')

74 grid on

75 subplot(2,1,2)

76 hold on

77 plot(s11re(:,1),-imag(mu retr),'r','LineWidth',LW,'LineSmoothing',LS)

78 xlabel('frequency (THz)')

79 title('\mu'''' {eff}')

80 xlim([freq(1) freq(end)]./1e12)

81 grid on

82

83 figure(2)

92



84 subplot(2,1,1)

85 hold on

86 plot(s11re(:,1),real(eps retr),'b','LineWidth',LW,'LineSmoothing',LS)

87 xlabel('frequency (THz)')

88 title(['\epsilon'' {eff}'])

89 grid on

90 subplot(2,1,2)

91 hold on

92 plot(s11re(:,1),-imag(eps retr),'r','LineWidth',LW,'LineSmoothing',LS)

93 xlabel('frequency (THz)')

94 title(['\epsilon'''' {eff} '])

95 grid on
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realization of optical lumped nanocircuits at infrared wavelengths. Nature Ma-
terials, 11(3):208–212, 2012.

[47] Jack S Kilby. Miniaturized electronic circuits, June 23 1964. US Patent
3,138,743.

[48] Robert N Noyce. Semiconductor circuit complex having isolation means,
September 22 1964. US Patent 3,150,299.

97



[49] Fereshteh Abbasi and Nader Engheta. Roles of epsilon-near-zero (enz) and
mu-near-zero (mnz) materials in optical metatronic circuit networks. Optics
Express, 22(21):25109–25119, 2014.

[50] Paul R West, Satoshi Ishii, Gururaj V Naik, Naresh K Emani, Vladimir M
Shalaev, and Alexandra Boltasseva. Searching for better plasmonic materials.
Laser & Photonics Reviews, 4(6):795–808, 2010.

[51] WG Spitzer, D Kleinman, and D Walsh. Infrared properties of hexagonal silicon
carbide. Physical Review, 113(1):127, 1959.
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[64] Andrea Alù, Michael E. Young, and Nader Engheta. Design of nanofilters for
optical nanocircuits. Phys. Rev. B, 77:144107, Apr 2008.

[65] Chiya Saeidi and Daniel van der Weide. Synthesizing frequency selective meta-
surfaces with nanodisks. Applied Physics Letters, 103(18):183101, 2013.

[66] David M Pozar. Microwave and RF design of wireless systems. Wiley New
Jersey, 2001.

[67] Edward D Palik. Handbook of optical constants of solids, volume 3. Academic
press, 1998.

[68] Ari H Sihvola. Electromagnetic mixing formulas and applications. Number 47
in Electromagnetic Waves Series. Institute of Electrical Engineers, 1999.

[69] Fereshteh Abbasi, Arthur R. Davoyan, and Nader Engheta. One-way sur-
face states due to nonreciprocal light-line crossing. New Journal of Physics,
17:063014, 2015.

[70] Lev Davidovich Landau, JS Bell, MJ Kearsley, LP Pitaevskii, EM Lifshitz, and
JB Sykes. Electrodynamics of continuous media, volume 8. Elsevier, 1984.

[71] Zongfu Yu and Shanhui Fan. Complete optical isolation created by indirect
interband photonic transitions. Nature Photonics, 3(2):91–94, 2009.

[72] PS Pershan. Magneto-optical effects. Journal of applied physics, 38(3):1482–
1490, 1967.

99



[73] P Hansen, K Witter, and W Tolksdorf. Magnetic and magneto-optic properties
of lead-and bismuth-substituted yttrium iron garnet films. Physical Review B,
27(11):6608, 1983.

[74] PG Van Engen, KHJ Buschow, R Jongebreur, and M Erman. Ptmnsb, a
material with very high magneto-optical kerr effect. Applied Physics Letters,
42(2):202–204, 1983.

[75] Jessie Yao Chin, Tobias Steinle, Thomas Wehlus, Daniel Dregely, Thomas
Weiss, Vladimir I Belotelov, Bernd Stritzker, and Harald Giessen. Nonrecipro-
cal plasmonics enables giant enhancement of thin-film faraday rotation. Nature
Communications, 4:1599, 2013.

[76] VI Belotelov, IA Akimov, M Pohl, VA Kotov, S Kasture, AS Vengurlekar,
Achanta Venu Gopal, DR Yakovlev, AK Zvezdin, and M Bayer. Enhanced
magneto-optical effects in magnetoplasmonic crystals. Nature Nanotechnology,
6(6):370–376, 2011.

[77] Arthur R Davoyan and Nader Engheta. Nonreciprocal rotating power flow
within plasmonic nanostructures. Physical Review Letters, 111(4):047401, 2013.
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free one-way edge modes in a gyromagnetic photonic crystal. Physical Review
Letters, 100(1):013905, 2008.

[93] Stefan Alexander Maier. Plasmonics: fundamentals and applications: funda-
mentals and applications. Springer Science & Business Media, 2007.

[94] MA Ordal, LL Long, RJ Bell, SE Bell, RR Bell, RW Alexander, and CA Ward.
Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w
in the infrared and far infrared. Applied Optics, 22(7):1099–1119, 1983.

101



[95] S Raghu and FDM Haldane. Analogs of quantum-hall-effect edge states in
photonic crystals. Physical Review A, 78(3):033834, 2008.

[96] Wang Zheng, Yidong Chong, J. D. Joannopoulos, and Marin Soljacic. Ob-
servation of unidirectional backscattering-immune topological electromagnetic
states. Nature, 461:772–775, 2009.

[97] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald,
and G. Shvets. Photonic topological insulators. Nature Materials, 12:233–239,
2013.

[98] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor. Robust optical delay
lines with topological protection. Nature Physics, 7:907–912, 2011.

[99] Wenlong Gao, Mark Lawrence, Biao Yang, Fu Liu, Fengzhou Fang, Benjamin
Béri, Jensen Li, and Shuang Zhang. Topological photonic phase in chiral hy-
perbolic metamaterials. Physical Review Letters, 114(3):037402, 2015.

[100] Mikael C Rechtsman, Julia M Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel
Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and Alexander Sza-
meit. Photonic floquet topological insulators. Nature, 496(7444):196–200, 2013.

[101] Michael V Berry. Quantal phase factors accompanying adiabatic changes. In
Proceedings of the Royal Society of London A: Mathematical, Physical and En-
gineering Sciences, volume 392, pages 45–57. The Royal Society, 1984.

[102] M Zahid Hasan and Charles L Kane. Colloquium: topological insulators. Re-
views of Modern Physics, 82(4):3045, 2010.

[103] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall
effect. Phys. Rev. Lett., 95:146802, Sep 2005.

[104] Jun-Yu Ou, Eric Plum, Jianfa Zhang, and Nikolay I Zheludev. An elec-
tromechanically reconfigurable plasmonic metamaterial operating in the near-
infrared. Nature nanotechnology, 8(4):252–255, 2013.

[105] Matthew J Dicken, Koray Aydin, Imogen M Pryce, Luke A Sweatlock, Eliza-
beth M Boyd, Sameer Walavalkar, James Ma, and Harry A Atwater. Frequency
tunable near-infrared metamaterials based on vo 2 phase transition. Optics Ex-
press, 17(20):18330–18339, 2009.

[106] Ignacio Gil, Jordi Bonache, Joan Garćıa-Garćıa, and Ferran Martin. Tunable
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