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Robust Model Predictive Control for Non-Linear Systems with Input and
State Constraints Via Feedback Linearization

Yash Vardhan Pant, Houssam Abbas, Rahul Mangharam

Abstract— Robust predictive control of non-linear systems
under state estimation errors and input and state constraints
is a challenging problem, and solutions to it have generally
involved solving computationally hard non-linear optimizations.
Feedback linearization has reduced the computational burden,
but has not yet been solved for robust model predictive control
under estimation errors and constraints. In this paper, we solve
this problem of robust control of a non-linear system under
bounded state estimation errors and input and state constraints
using feedback linearization. We do so by developing robust
constraints on the feedback linearized system such that the
non-linear system respects its constraints. These constraints
are computed at run-time using online reachability, and are
linear in the optimization variables, resulting in a Quadratic
Program with linear constraints. We also provide robust feasi-
bility, recursive feasibility and stability results for our control
algorithm. We evaluate our approach on two systems to show
its applicability and performance.

I. INTRODUCTION

In this paper we are concerned with the problem of
controlling nonlinear dynamical systems S of the form ẋ =
f(x) +G(x)u under state and input constraints, and subject
to errors in the state estimate. This problem is formulated as

min
x,u

l(x,u) (1)

s.t. ẋ = f(x) +G(x)u

x ∈ X,u ∈ U

where l(x,u) is a cost function whose minimization over the
state and input trajectories x and u ensures stability of the
system. Sets X ⊂ Rnx and U ⊂ Rnu encode constraints on
the state (e.g., safety) and the input. The input u = u(x̂) is
a function of a state estimate that in general differs from the
true state of the system.

The application of Model Predictive Control (MPC) to
nonlinear systems involves the repeated solution of gener-
ally non-quadratic, non-convex optimizations. Various ap-
proaches for solving (or approximately solving) the opti-
mizations and their trade-offs are reviewed in [1]. Another
approach is to first feedback linearize the system S [2]:
namely, the applied control u = u(x, v) is designed in such
a way that the resulting closed-loop dynamics Sfl are now
linear: Sfl : ż = Az + Bv. The input v to the linearized
dynamics can now be computed so as to optimize system
performance and ensure stability. The state z of the linearized
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system Sfl is related to the state x of the nonlinear system
S via a (system-specific) function T : z = T (x).

Previous work on nonlinear MPC with feedback lin-
earization assumed the state x(t) is perfectly known to the
controller at any moment in time [3]. However in many cases,
only a state estimate x̂(t) is available, and x̂(t) 6= x(t),
and we handle such cases. Robust MPC (RMPC) has been
investigated as a way of handling state estimation errors
for linear [4] and nonlinear systems [5], [6], but not via
feedback linearization. In particular, for non-linear systems,
[5] develops a non-linear MPC with tube-like constraints
for robust feasibility, but involves solving two (non-convex)
optimal control problems. In [6], the authors solve a non-
linear Robust MPC through a bi-level optimization that in-
volves solving a non-linear, non-smooth optimization which
is challenging. [6] also guarantees a weaker form of recursive
feasibility than [4] and what we guarantee in this work.
In [7] the authors approximate the non-linear dynamics
of a quadrotor by linearizing it around hover and apply
the RMPC of [4] to the linearized dynamics. This differs
significantly from our approach, where we formulate the
RMPC on the feedback linearized dynamics directly, and
not on the dynamics obtained via Jacobian linearization of
the non-linear system. Existing work on MPC via feedback
linearization and input/state constraints has also assumed that
either T is the identity [3], or, in the case of uncertainties
in the parameters, that there are no state constraints [8]. A
non-identity T is problematic when the state is not perfectly
known, since the state estimation error e = x̂ − x maps to
the linearized dynamics via T in non-trivial ways, greatly
complicating the analysis. In particular, the error bounds for
the state estimate in z-space now depend on the current
nonlinear state x. One of the complications introduced by
feedback linearization is that the bounds on the input (u ∈ U )
may become a non-convex state-dependent constraint on
the input v to Sfl: V = {v(x, U) ≤ v ≤ v(x, U)}. In
[3] forward reachability is used to provide inner convex
approximations to the input set V . A non-identity T increases
the computational burden since the non-linear reach set must
be computed (with an identity T , the feedback linearized
reach set is sufficient).

Contributions: We develop a feedback linearization so-
lution to the above control problem, with state estimation
errors, input and state constraints, and non-identity T . To the
best of our knowledge, this is the first feedback linearization
solution to this problem. The resulting control problem is
solved by RMPC with time-varying linear constraint sets.

The paper is organized as follows: in the next section we
formulate the feedback linearized control problem. In Sec.



III, we describe the RMPC algorithm we use to solve it, and
prove that it stabilizes the nonlinear system. Sec. IV shows
how to compute the various constraint sets involved in the
RMPC formulation, and Sec. V applies our approach to an
example. Sec. VI concludes the paper. An online technical
report [9] contains proofs and more examples.

II. PROBLEM FORMULATION

A common method for control of nonlinear systems is
Feedback linearization [2]. Briefly, in feedback linearization,
one applies the feedback law u(x, v) = R(x)−1(−b(x) + v)
to (1), so that the resulting dynamics, expressed in terms of
the transformed state z = T (x), are linear time-invariant:

Sfl : ż = Acz +Bcv (2)

By using the remaining control authority in v to control Sfl,
we can effectively control the non-linear system for, say,
stability or reference tracking. T is a diffeomorphism [2] over
a domain D ⊂ X . The original and transformed states, x and
z, have the same dimension, as do u and v, i.e. nx = nz and
nu = nv . Because we are controlling the feedback linearized
system, we must find constraint sets Z and V for the state
z and input v, respectively, such that (z, v) ∈ Z × V =⇒
(T−1(z), u(T−1(z), v)) ∈ X×U . We assume that the system
(1) has no zero dynamics [2] and all states are controllable. In
case there are zero dynamics, then our approach is applicable
to the controllable subset of the states as long as the span of
the rows of G(x) is involutive [2].

For feedback linearizing and controlling (1), only a pe-
riodic state estimate x̂ of x is available. This estimate is
available periodically every τ time units, so we may write
x̂k := x̂(kτ) = xk + ek, where xk and ek are sampled state
and error respectively. We assume that ek is in a bounded set
E for all k. This implies that the feedback linearized system
can be represented in discrete-time: zk+1 = Azk +Bzk.

The corresponding z-space estimate ẑk is ẑk = T (x̂k). In
general the z-space error ẽk := T (x̂k) − T (xk) is bounded
for every k but does not necessarily lie in E. Let Ẽk be the
set containing ẽk: in Sec. IV-C we show how to compute it.
Because the linearizing control operates on the state estimate
and not xk, we add a process noise term to the linearized,
discrete-time dynamics. Our system model is therefore

zk+1 = Azk +Bvk + wk (3)

where the noise term wk lies in the bounded set W for all
k. An estimate of W can be obtained using the techniques
of this paper. The problem (1) is therefore replaced by:

min
z,v

q(z,v) =

∞∑
k=0

zTk Qzk + vTk Rvk (4)

s.t. zk+1 = Azk +Bvk + wk

zk ∈ Z, vk ∈ V,wk ∈W

In general, the cost function l(x,u) 6= q(z,v). The objective
function in (4) is a choice the control designer makes. For
more details and when the quadratic form of q(z,v) is
justified, see [3]. In Thm. 2, we show that minimizing this
cost function, q(z,v), implies stability of the system.

It is easy to derive the dynamics of the state estimate ẑk:

ẑk+1 = zk+1 + ẽk+1 (5)
= Azk +Bvk + wk + ẽk+1

= Aẑk +Bvk + (wk + ẽk+1 −Aẽk)

= Aẑk +Bvk + ŵk+1

where ŵk+1 = wk+ ẽk+1−Aẽk, and lies in the set Ŵk+1 :=
W ⊕ Ẽk+1 ⊕ (−AẼk).

Example 1: Consider the 2D system

ẋ1 = sin(x2), ẋ2 = −x21 + u (6)

The safe set for x is given as X = {|x1| ≤ π/2, |x2| ≤ π/3},
and the input set is U = [−2.75, 2.75]. For the measurement
y = h(x) = x1, the system can be feedback linearized on the
domain D = {x| cos(x2) 6= 0}, where it has a relative degree
of ρ = 2. The corresponding linearizing feedback input is
u = − tan(x2)+(cos(x2))v. The feedback linearized system
is ż1 = z2 , ż2 = v, where T is given by z = T ((x1, x2)) =
(x1, sin(x2)). We can analytically compute the safe set in
z-space as Z = T (X) = {|z1| ≤ π/2, |z2| ≤ 0.8660}. �

For a more complicated T , it is not possible to obtain
analytical expressions for Z. The computation of Z in this
more general case is addressed in the online appendix [9].

Notation. Given two subsets A,B of Rn, their Minkowski
sum is A⊕ B := {a+ b | a ∈ A, b ∈ B}. Their Pontryagin
difference is A	B = {c ∈ Rn | c+ b ∈ A ∀b ∈ B}. Given
integers n ≤ m, [n : m] := {n, n+ 1, . . . ,m}.

Assumption. Our approach applies when X,U,E and W
are arbitrary convex polytopes (i.e. bounded intersections of
half-spaces). For the sake of simplicity, in this paper we
assume they are all hyper-rectangles that contain the origin

III. ROBUST MPC FOR THE FEEDBACK LINEARIZED
SYSTEM

Following [4], [10], we formulate a Robust MPC (RMPC)
controller of (4) via constraint restriction. We outline the
idea before providing the technical details. The key idea
is to move the effects of estimation error ẽk and process
noise wk (the ‘disturbances’) to the constraints, and work
with the nominal (i.e., disturbance-free) dynamics: z̄k+1 =
Az̄k + Bvk, z̄0 = ẑ0. Because we would be optimizing
over disturbance-free states, we must account for the noise
in the constraints. Specifically, rather than require the next
(nominal) state z̄k+1 to be in Z, we require it to be in the
shrunk set Z	Ŵk+1|k	Ẽk+1|k: by definition of Pontryagin
difference, this implies that whatever the actual value of the
noise ŵk+1 ∈ Ŵk+1|k and of the estimation error ẽk+1 ∈
Ẽk+1|k, the actual state zk+1 will be in Z. This is repeated
over the entire MPC prediction horizon j = 1, . . . , N , with
further shrinking at every step. For further steps (j > 1), the
process noise ŵk+j|k is propagated through the dynamics,
so the shrinking term Ŵ is shaped by a stabilizing feedback
controller z̄ 7→ Kz̄. At the final step (j = N +1), a terminal
constraint is derived using the worst case estimation error
set Ẽmax and a global inner approximation for the input
constraints, Vinner−global.



Through this successive constraint tightening we ensure
robust safety and feasibility of the feedback linearized system
(and hence of the non-linear system). Since we use just the
nominal dynamics, and show that the tightened constraints
are linear in the state and inputs, we still solve a Quadratic
Program (QP) for the RMPC optimization. The difficulty of
applying RMPC in our setting is that the amounts by which
the various sets are shrunk vary with time because of the
time-varying state estimation error, are state-dependent, and
involve set computations with the non-convexity preserving
mapping T . One of our contributions in this paper is to
establish recursive feasibility of RMPC with time-varying
constraint sets.

The RMPC optimization Pk(ẑk) for solving (4) is:

J∗(z̄k) = min
z̄,u

N∑
j=0

{z̄Tk+j|kQz̄k+j|k + vTk+j|kRvk+j|k}

+ z̄Tk+N+1|kQf z̄k+N+1|k (7a)

z̄k|k = ẑk (7b)
z̄k+j+1|k = Az̄k+j|k +Bvk+j|k, j = 0, . . . , N (7c)

z̄k+j|k ∈ Zk+j|k, j = 0, . . . , N (7d)
vk+j|k ∈ Vk+j|k, j = 0, . . . , N − 1 (7e)

pN+1 = [zk+N+1|k, vk+N |k]T ∈ Pf (7f)

Here, z̄ is the state of the nominal feedback linearized
system. The cost and constraints of the optimization are
explained below:
• Eq. (7a) shows a cost quadratic in z̄ and v, where

as usual Q is positive semi-definite and R is positive
definite. In the terminal cost term, Qf is the solution of
the Lyapunov equation Qf−(A+BK)TQf (A+BK) =
Q + KTRK. This choice guarantees that the terminal
cost equals the infinite horizon cost under a linear
feedback control z̄ 7→ Kz̄ [11].

• Eq. (7b) initializes the nominal state with the current
state estimate.

• Eq. (7c) gives the nominal dynamics of the discretized
feedback linearized system.

• Eq. (7d) tightens the admissible set of the nominal state
by a sequence of shrinking sets.

• Eq. (7e) constrains vk+j|k such that the corresponding
u(x, v) is admissible, and the RMPC is recursively
feasible.

• Eq. (7f) constrains the final input and nominal state to
be within a terminal set Pf .

The details of these sets’ definitions and computations are
given in Sec. IV.

A. State and Input Constraints for the Robust MPC

The state and input constraints for the RMPC are defined
as follows:

The state constraints Zk+j|k: The tightened state con-
straints are functions of the error sets Ẽk+j|k and disturbance
sets Ŵk+j|k, and defined ∀ j = 0, . . . , N

Zk+j|k = Z 	j−1
i=0 (LiŴk+(j−i)|k)	 (−Ẽk+j|k) (8)

(Recall Z is a subset of T (X), Ŵk+j|k and Ẽk+j|k bound
the estimation error and noise, resp., and are formally defined
in Sec. IV). The state transition matrix Lj , ∀j = 0, . . . , N
is defined as L0 = I, Lj+1 = (A + BK)Lj . The intuition
behind this construction was given at the start of this section.

The input constraints Vk+j|k: ∀j = 0, ..., N − 1

Vk+j|k = V k+j|k 	
j−1
i=0 KLiŴk+(j−i)|k (9)

where V k+j|k is an inner-approximation of the set of admis-
sible inputs v at prediction step j + k|k, as defined in Sec.
IV-B. The intuition behind this construction is similar to that
of Zk+j|j : given the inner approximation V k|k, it is further
shrunk at each prediction step j by propagating forward the
noise ŵk through the dynamics, and shaped according to the
stabilizing feedback law K, following [4].

The terminal constraint Pf : This constrains the extended
state pk = [z̄k, vk−1]T , and is given by

Pf = Cp 	
[

(A+BK)N

K(A+BK)N−1

]
Ŵmax (10)

where Ŵmax ⊂ Rnz is a bounding set on the worst-case
disturbance (we show how it’s computed in Sec. IV-C),
and Cp ⊂ Rnz × Rnv is an invariant set of the nominal
dynamics subject to the stabilizing controller z̄ 7→ Kz̄,
naturally extended to the extended state p: that is, there exists
a feedback control law p 7→ K̂p, such that ∀p ∈ Cp

Âp+ B̂K̂p+ L̂N [ŵT , 0T ]T ∈ Cp, ∀ŵ ∈ Ŵmax (11)

with Â =

[
A 0n×m

0m×n 0m×m

]
, B̂ =

[
B

Im×m

]
, K̂ =[

K 0m×m
]
, L̂N = (Â + B̂K̂)N . It is important to note

the following:
• The set Pf can be computed offline since it depends on
Ŵmax, Ẽmax and the global inner approximation for
the constraints on v, Vinner−global, all of which can be
computed offline.

• If Pf is non-empty, then all intermediate sets that appear
in (7) are also non-empty, since Pf shrinks the state
and input sets by the maximum disturbances Ŵmax and
Ẽmax. Thus we can tell, before running the system,
whether RMPC might be faced with empty constraint
sets (and thus infeasible optimizations).

• Note that all constraints are linear.

B. The Control Algorithm

We can now describe the algorithm used for solving (7)
by robust receding horizon control.

C. Robust Feasibility and Stability

We are now ready to state the main result of this paper:
namely, that the RMPC of the feedback linearized system
(7) is feasible at all time steps if it starts out feasible, and
that it stabilizes the nonlinear system, for all possible values
of the state estimation error and feedback linearization error.

Theorem 1 (Robust Feasibility): If at some time step
k0 ≥ 0, the RMPC optimization Pk0(ẑk0) is feasible, then
all subsequent optimizations Pk(ẑk)k > k0 are also feasible.



Algorithm 1 RMPC via feedback linearization
Require: System model, X , U , E, W

Offline, compute:
Initial safe sets X0 and Z
Ẽmax, Ŵmax . Sec. IV-C
Cp, Pf . Sec. III-A

Online:
if Pf = ∅ then

Quit
else

for k = 1, 2, . . . do
Get estimate x̂k, compute ẑk = T (x̂k)

Compute V k+j|k, Ẽk+j|k, Ŵk+j|k . Sec. IV-B
Compute Zk+j|k, Vk+j|k . Sec. III-A
(v∗k|k, . . . , v

∗
k+N |k) = Solution of Pk(ẑk)

vk = v∗k|k
Apply uk = R(x̂k)−1[b(x̂k) + vk] to plant

end for
end if

Moreover, the nonlinear system (1) controlled by algorithm
1 and subject to the disturbances (E, W ) satisfies its state
and input constraints at all times k ≥ k0.

Theorem 2 (Stability): Given an equilibrium point xe ∈
X0 ⊂ T−1(Z) of the nonlinear dynamics (1), Algorithm 1
stabilizes the nonlinear system to an invariant set around xe.
The proofs are in the online report [9].

IV. SET DEFINITIONS FOR THE RMPC
Algorithm 1 and the problem Pk(ẑk) (7) use a number of

constraint sets to ensure recursive feasibility of the successive
RMPC optimizations, namely: inner approximations of the
admissible input sets V k+j|k, bounding sets for the (T -
mapped) estimation error Ẽk+j|k, bounding sets for the
process noise Ŵk+j|k, and the largest error and noise sets
Ẽmax and Ŵmax. In this section we show how these sets are
defined and computed. Note, our approach is an extension
to [3] as: 1) we compute the feasible set for the states of the
feedback linearized system under a non-trivial diffeomorpism
T , 2) we compute the bounding sets for disturbances while
considering estimation error and process noise, neither of
which are considered in [3]. In addition, due to the presence
of state-estimation error, we compute these sets using an
over-approximation of the reach set, as seen in the following
subsection.

Since we control the system in z-space, we need to
compute a set Z ⊂ Rnz s.t. z ∈ Z =⇒ x = T−1(z) ∈
X . Moreover, to check feasibility at time 0 of the MPC
optimization, we need a subset X0 ⊂ X s.t. x ∈ X0 =⇒
z = T (x) ∈ Z. Mapping sets between z and x spaces via
the arbitrary diffeomorphism T has to be done numerically,
and we show how in the online report [9].

A. Approximating the reach set of the nonlinear system
First we show how to compute an outer-approximation of

the j-step reach set of the nonlinear system, starting at time
k, Xk+j|k. This is needed for computing V k+j|k and Ẽk+j|k.

𝑥 𝑘 

𝑋𝑘|𝑘 = *𝑥𝑘 +⨁(−𝐸) 

… 
𝑥 𝑘+1 𝑅𝑇=𝑇(𝑋𝑘|𝑘, U)  

𝑅𝑇=𝑇(𝑋𝑘|𝑘 , U)⨁𝐸 

𝑿𝒌+𝟏|𝒌 = 𝑅𝑇=𝑇 𝑋𝑘|𝑘 , U ⨁ −𝐸 + 𝐸 

𝑋𝑘+1|𝑘+1 = *𝑥 𝑘+1+⨁(−𝐸) 

𝑅𝑇=𝑇(𝑿𝒌+𝟏|𝒌, U) 

𝑿𝒌+𝟐|𝒌 = 𝑅𝑇=𝑇(𝑿𝒌+𝟏|𝒌, U)⨁(−𝐸)⨁𝐸 

𝑅𝑇=𝑇(𝑋𝑘+1|𝑘+1, U) 

𝑿𝒌+𝟐|𝒌+𝟏 = 𝑅𝑇=𝑇(𝑋𝑘+1|𝑘+1, U)⨁(−𝐸)⨁𝐸 

Fig. 1. The outer-approximated reach sets for xk+j , computed at time
steps k, k + 1, used to compute Ẽk+j|k , V k+j|k .

In all but the simplest systems, forward reachable sets
cannot be computed exactly. To approximate them we may
use a reachability tool for nonlinear systems like RTreach
[12]. A reachability tool computes an outer-approximation of
the reachable set of a system starting from some set X ⊂ X ,
subject to inputs from a set U , for a duration T ≥ 0. Denote
this approximation by RTT (X , U), so x(T ) ∈ RTT (X , U)
for all T , x(0) ∈ X and u : [0, T ]→ U .

At time k, the state estimate x̂k is known. Therefore xk =
x̂k−ek ∈ x̂k⊕(−E) := Xk|k. Propagating Xk|k forward one
step through the continuous-time nonlinear dynamics yields
Xk+1|k, which is outer-approximated by RTT (Xk|k, U). The
state estimate that the system will receive at time k + 1 is
therefore bound to be in the set RTT (Xk|k, U) ⊕ E. Since
0 ∈ E, we maintain Xk+1|k ⊂ RTT (Xk|k, U) ⊕ E. For
1 ≤ j ≤ N , we define the j-step over-approximate reach set
computed at time k to be

Xk|k := x̂k ⊕ (−E)

Xk+j|k := RTT (Xk+j−1|k, U)⊕ E ⊕ (−E) (12)

(The reason for adding the extra −E term will be apparent
in the proof to Thm. 1). Fig. 1 shows a visualization of this
approach. The following holds by construction:

Lemma 3: For any time k and step j ≥ 1, Xk+j|k ⊂
Xk+j|k.

This construction of Xk+j|k permits us to prove recursive
feasibility of the RMPC controller, because it causes the
constraints of the RMPC problem setup at time k + 1 to
be consistent with the constraints of the problem setup at
time k.

B. Approximating the bounding sets for the input
Given x ∈ X , define the set V (x) := {v ∈ Rnv | u(x) =

R−1(x)[b(x) + v] ∈ U}. We assume that there exist
functions vi,vi : X → R s.t. for any x, V (x) =
{[v1, . . . , vnv

]T | vi(x;U) ≤ vi ≤ vi(x;U)}. Because in
general V (x) is not a rectangle, we work with inner and
outer rectangular approximations of V (x). Specifically, let
X be a subset of X . Define the inner and outer bounding
rectangles, respectively

V (X ) := {[v1, . . . , vnv ]
T | max

x∈X
vi(x;U) ≤ vi ≤ min

x∈X
vi(x;U)}

V(X ) := {[v1, . . . , vnv ]
T | min

x∈X
vi(x;U) ≤ vi ≤ max

x∈X
vi(x;U)}

By construction, we have for any subset X ⊂ X

V (X ) ⊆ ∩x∈XV (x) ⊂ V(X ) (13)



Fig. 2. Local and global inner approximations of input constraints for
running example, with Xk+j|k = [−π/4, 0] × [−0.9666,−0.6283] for
some k, j and U = [−2.75, 2.75]. Color in online version.

If two subsets of X satisfy X1 ⊂ X2, then it holds that

V (X2) ⊂ V (X1), V(X1) ⊂ V(X2) (14)

We can compute:

V k+j|k = V (Xk+j|k), V inner−global = V (X) (15)

In practice we use interval arithmetic to compute these sets
since Xk+j|k and U are hyper-intervals. Fig. 2 shows these
sets for the running example.

C. Approximating the bounding sets for the disturbances
We will also need to define containing sets for the state

estimation error in z space: recall that ẑk = T (x̂k) = T (xk+
ek). We use a Taylor expansion (and the remainder theorem)

ẑk = T (xk) +
dT

dx
(xk)︸ ︷︷ ︸

M(xk)

ek +
1

2
eTk
d2T

dx2
(c)ek︸ ︷︷ ︸

rk(c)

, c ∈ xk + E

= T (xk) +M(xk)ek + rk(c), c ∈ xk + E

= T (xk) + hk + rk(c), c ∈ xk + E

The remainder term rk(c) is bounded in the set
∪c∈{xk}⊕E

1
2e
T d2T
dx2 (c)e. Thus when setting up Pk(ẑk), at

the jth step, rk+j|k ∈ Dk+j|k := ∪c∈Xk+j|k⊕E
1
2e
T d2T
dx2 (c)e,

where Xk+j|k is the reach set computed in (12).
The error hk lives in ∪x∈Xk,e∈EM(x)e. Thus when set-

ting up Pk(ẑk), the error hk+j|k lives in ∪x∈Xk+j|kM(x)E.
Finally the rectangular over-approximation of this set is

Hk+j|k = {h |
nx∑
`=1

min
x∈Xk+j|k,e∈E

Mi`(x)e(`) ≤ h(i)

≤
nx∑
`=1

max
x∈Xk+j|k,e∈E

Mi`(x)e(`)} (16)

where Mi` is the (i, `)th element of matrix M and h(`) is
the `th element of h.

Therefore the state estimation error hk+j|k + rk+j|k is
bounded in the set Hk+j|k ⊕Dk+j|k. In the experiments we
ignore the remainder term Dk+j|k based on the observation
that ek is small relative to the state xk. Thus we use:

Ẽk+j|k = Hj+k|j (17)

Example 2: For the running example (6), we have M =
[1, 0; 0, cos(x2)]. If the estimation error e (in radians) is
bounded in E = {e|||e||∞ ≤ 0.0227}, then the relative
linearization error, averaged over several realizations of the
error, is less than 2 · 10−3. �

We also need to calculate containing sets for the process
noise ŵ. Recall that for all k, j, ẑk+j+1 = Aẑk+j + Bvk +
ŵk+j+1. Therefore

ŵk+j+1 ∈ Ŵk+j+1|k := W⊕Ẽk+j+1|k⊕(−AẼk+j|k) (18)

We also define the set Ẽmax, which is necessary for the
terminal constraints of Eq. (10). Ẽmax represents the worst
case bound on the estimation error ẽk, and is computed
similar to Eq. (16), but over the entire set X .
Ŵmax is then defined as:

Ŵmax = W ⊕ Ẽmax ⊕ (−AẼmax) (19)

V. EXPERIMENTS

We evaluate our approach on a 4D flexible joint manip-
ulator and a simple 2-state example (in the online technical
report [9]). We implemented the RMPC controller of Alg.
1 in MATLAB The set computations were done using the
MPT Toolbox [13], and the invariant set computations using
the Matlab Invariant Set Toolbox [14]. The reachability com-
putations for Xk+j|k were performed on the linear dynamics
and mapped back to x-space. The RMPC optimizations were
formulated in CVX [15] and solved by Gurobi [16].

A. Single link flexible joint manipulator
We consider the single link flexible manipulator system S,

also used in [8] and [17] whose dynamics are given by:

S :

ẋ1ẋ2ẋ3
ẋ4

 =


x2

−mglI sin(x1)− σ
I (x1 − x3)

x4
σ
J (x1 − x3)

+


0
0
0
1
J

u
This models a system where a motor, with an angular

moment of inertia J = 1, is coupled to a uniform thin bar of
mass m = 1/g, length l = 1m and moment of inertia I = 1,
through a flexible torsional string with stiffness σ = 1 and
g = 9.8ms−2. States x1 and x2 are the angles of the bar
and motor shaft in radians, respectively, and x3, x4 are their
respective rotational speeds in radians/sec. The safe set is the
box X = [−π/4, π/4] × [−π/4, π/4] × [−π, π] × [−π, π].
The input torque u is bounded in U = [u, u] = [−10, 10]N ·
m. The estimation error e = x̂ − x is bounded in E =
[−π/180, π/180]4 ∈ R4 and W = [−10−3, 10−3]4 ∈ R4.

The diffeomorphism T is given by:

z = T (x) =


x1
x2

−mglI sin(x1)− σ
I (x1 − x3)

mgl
I x2 cos(x1)− σ

I (x2 − x4)


The input to the feedback linearized system is given by

v = βu+α(x) where β = σ
IJ and α(x) = mgl

I x22sin(x1) +
σ2

IJ (x1−x3)− (mglI cos(x1)− σ
I )(mglI sin(x1)+ σ

I (x1−x3))
The feedback linearized system Sfl has the dynamics: ż1 =
z2, ż2 = z3, ż3 = z4, ż4 = v.



Fig. 3. The states and their estimates of the feedback linearized and non-
linear manipulator. Note z1 = x1 and z2 = x2. Color in online version.

A global inner approximation of the v input set is
computed, via interval arithmetic, as Vinner−global =
[maxx∈Xα(x) + βu,minx∈Xα(x) + βu]. Similarly, the
inner approximations V k+j|k are computed online by in-
terval arithmetic as V k+j|k = [maxx∈Xk+j|kα(x) +
βu,minx∈Xk+j|kα(x) + βu]. Using the procedure in the
appendix [9] the set of safe states for Sfl is given by Z =
[−0.5121, 0.5121]2×[−2.5347, 2.5347]×[−2.5603, 2.5603].
Also X0 = [−0.4655, 0.4655]2 × [−2.7598, 2.7598] ×
[−2.793, 2.793]. Comparing it to the set X , it shows that
we can stabilize the system starting from initial states in a
significantly large region in X .

We applied our controller to the above system with a
discretization rate of 10Hz and MPC horizon N = 10. Fig.3
show the states of the feedback linearized system Sfl. They
converge to the origin in the presence of estimation error,
while respecting all constraints. Fig. 3 also shows x3 and x4:
they also converge to zero. Fig. 4 shows the input v to Sfl
along with the global inner approximation Vinner−global and
the x-dependent inner approximations at the instant when
the control is applied, V k|k computed online. Note that
the bounds computed online allow for significantly more
control action compared to the conservative global inner
approximation. Finally, Fig. 4 also shows the input u applied
to the non-linear system (and its bounds), which robustly
respects its constraints u ∈ U .

VI. DISCUSSION

In this paper we develop the first algorithm for robust
control of a non-linear system with estimation errors and
state and input constraints via feedback linearization and
Robust MPC. Experimental results show that the control
algorithm stabilizes the systems while ensuring robust con-
straint satisfaction.While we only evaluated our approach for
single input systems, the formulation and set computations
involved hold as is for multi-input systems as well.

Limitations of the approach mostly have to do with the
numerical limitations involved in computing the constraint
sets, and potential conservatism of the approximations.

Fig. 4. Inputs v and u and their bounds for the manipulator example.
Color in online version.
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