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Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA
Sensors

Abstract
Multiple innate defense pathways exist to recognize and defend against foreign nucleic acids. Unlike innate
immune receptors that recognize structures specific for pathogens that are not shared by mammalian hosts —
for example, toll-like receptor (TLR)4-lipopolysaccharide, TLR5-flagellin, NOD1 and 2-peptidoglycan — all
nucleic acids are made from four components that are identical from bacteria to man. Nucleoside
modifications are prevalent in nature but vary greatly in their distribution and frequency, and therefore could
serve as patterns for recognition of pathogenic nucleic acids. The presence of modified nucleosides in RNA
reduces the activation of RNA-sensing TLRs and retinoic acid inducible gene I (RIG-I), which initiate
signaling cascades following activation and result in transcription of pro-inflammatory genes. Unexpectedly,
translation of in vitro transcribed mRNA is enhanced by incorporation of modified nucleosides, but the
mechanism responsible for this enhanced translation has not been identified. To identify the pathways
responsible for enhanced translation of modified nucleoside-containing mRNA, we studied two cytoplasmic
RNA-sensing innate defense mechanisms known to influence translation, the RNA-dependent protein kinase
(PKR) pathway and the 2-5A system (oligoadenylate synthetase [OAS] and RNase L). Using purified protein
in vitro, cell culture, and in vivo mouse studies, we show that unmodified in vitro transcribed mRNA activates
PKR and OAS and is rapidly cleaved by RNase L. However, we show that incorporation of modified
nucleosides into in vitro transcribed mRNA reduces each of these pathways. Furthermore, we demonstrate
that these pathways are necessary for enhanced translation of mRNA containing modified nucleosides.
Additionally, we demonstrate that the presence of pseudouridine in in vitro transcripts increases mRNA half-
life following delivery. From these data, we conclude that unmodified in vitro transcribed mRNA is
stimulatory to the cytoplasmic RNA sensors PKR and OAS. This stimulation is reduced by the presence of
modified nucleosides. The enhanced translation of mRNA containing modified nucleosides results from
reduced PKR and OAS activation. These data support a larger interpretation that the absence or reduction in
frequency of modified nucleosides in RNA is a common pattern for recognition of pathogenic RNA by
numerous innate defense systems.
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ABSTRACT  

 

 

NUCLEOSIDE MODIFICATIONS SUPPRESS RNA ACTIVATION OF  

CYTOPLASMIC RNA SENSORS 

 

Bart R. Anderson 

Dissertation Supervisor: Drew Weissman, M.D., Ph.D. 

 

Multiple innate defense pathways exist to recognize and defend against foreign nucleic 

acids. Unlike innate immune receptors that recognize structures specific for pathogens 

that are not shared by mammalian hosts — for example, toll-like receptor (TLR)4-

lipopolysaccharide, TLR5-flagellin, NOD1 and 2-peptidoglycan — all nucleic acids are 

made from four components that are identical from bacteria to man. Nucleoside 

modifications are prevalent in nature but vary greatly in their distribution and frequency, 

and therefore could serve as patterns for recognition of pathogenic nucleic acids. The 

presence of modified nucleosides in RNA reduces the activation of RNA-sensing TLRs 

and retinoic acid inducible gene I (RIG-I), which initiate signaling cascades following 

activation and result in transcription of pro-inflammatory genes. Unexpectedly, 

translation of in vitro transcribed mRNA is enhanced by incorporation of modified 

nucleosides, but the mechanism responsible for this enhanced translation has not been 

identified. To identify the pathways responsible for enhanced translation of modified 

nucleoside-containing mRNA, we studied two cytoplasmic RNA-sensing innate defense 
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mechanisms known to influence translation, the RNA-dependent protein kinase (PKR) 

pathway and the 2-5A system (oligoadenylate synthetase [OAS] and RNase L). Using 

purified protein in vitro, cell culture, and in vivo mouse studies, we show that unmodified 

in vitro transcribed mRNA activates PKR and OAS and is rapidly cleaved by RNase L. 

However, we show that incorporation of modified nucleosides into in vitro transcribed 

mRNA reduces each of these pathways. Furthermore, we demonstrate that these 

pathways are necessary for enhanced translation of mRNA containing modified 

nucleosides. Additionally, we demonstrate that the presence of pseudouridine in in vitro 

transcripts increases mRNA half-life following delivery. From these data, we conclude 

that unmodified in vitro transcribed mRNA is stimulatory to the cytoplasmic RNA 

sensors PKR and OAS. This stimulation is reduced by the presence of modified 

nucleosides. The enhanced translation of mRNA containing modified nucleosides results 

from reduced PKR and OAS activation. These data support a larger interpretation that the 

absence or reduction in frequency of modified nucleosides in RNA is a common pattern 

for recognition of pathogenic RNA by numerous innate defense systems.  
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CHAPTER 1 

 

Introduction  

 

1.1 Innate nucleic acid sensing 

 Human cells contain extensive systems to recognize the presence of pathogens 

and cell damage as signs of danger to the cell or tissue and to limit their spread. Innate 

recognition of these dangers relies on pattern recognition of danger-associated molecular 

patterns (DAMPs) by host defense proteins known as pattern-recognition receptors (PRR).  

All pathogens contain nucleic acids encoding their genome and nucleic acids are released 

during necrotic cell death 52, therefore exogenous nucleic acids are associated with 

pathogenicity and can serve as DAMPs.  

Numerous nucleic acid-sensing PRR exist, and the presence of additional 

receptors, which have not yet been characterized, is indicated by nucleic-acid signaling 

that occurs independently of known pathways 240. All of these receptors must perform the 

task of identifying nucleic acids associated with danger, which must be distinguished 

from normal cellular DNA and RNA. As has been proposed, protein-coating of cellular 

nucleic acids and compartmentalization of PRR away from cellular nucleic acid ligands 

likely contribute to differential recognition of danger-associated nucleic acids 53, but do 

not fully account for nucleic-acid DAMP identification. Molecular features of the nucleic 

acids themselves are also important determinants. For example, long, perfectly double-

stranded (ds)RNA is produced during replication of some viruses, but is not otherwise 

present in substantial amounts in cells and activates several PRR 30. Other examples for 
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molecular determinants of nucleic acid recognition include the presence of 5’-

triphosphate on cytoplasmic RNA 115 and unmethylated cytidine in CpG motifs of DNA 

112. Other distinguishing features of danger-associated nucleic acids remain unidentified. 

The immunogenicity of RNA is well established, having been demonstrated using 

multiple approaches 13, 129, 140, 184, 207. One surrogate measure of RNA immunogenicity is 

cytokine release by dendritic cells (DC) following exogenous delivery of RNA. This 

approach has been used to compare the immunogenicity of RNA from various sources. It 

was demonstrated that bacterial RNA is immunostimulatory, but less so if only the tRNA 

fraction is delivered. Mammalian RNA is much less immunostimulatory, and again with 

variable potency depending on the RNA fraction tested. Mitochondrial RNA, which is 

very similar to bacterial RNA, was responsible for the majority of immunostimulation by 

mammalian RNA. In contrast to mammalian mRNA, in vitro transcribed mRNA is highly 

immunostimulatory 130. There is an inverse relationship between the immunogenicity of 

these RNA fractions and the frequency of nucleoside modifications they contain, which 

suggests nucleoside modification as a determinant of RNA immunogenicity 132. 

 

1.2 RNA modification  

Although fundamentally consisting of four nucleosides – adenosine (A), cytidine 

(C), guanosine (G), and uridine (U) – RNA in nature is rife with variations. In addition to 

damage-induced modifications, there are over 100 different nucleoside modifications that 

are formed in RNA during normal maturation 212. These modifications are found in all 

domains of life, although the number and types of modification vary greatly between 
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species 173. In general, both the types of modifications found and the number of modified 

nucleosides present increase when moving up the evolutionary ladder 42.  

The most common modification, both in terms of frequency and species 

distribution, is pseudouridine (Ψ; also known as 5-ribosyluridine), which has been found 

in nearly all species studied to date. Pseudouridine is formed by isomerization of uridine. 

The N1−C1’ glycosyl linkage between uracil and ribose is broken, uracil is rotated 180º 

around its N3−C6 axis, and is then reattached with a C5−C1’ uracil-ribose linkage (Figure 

1-1). This confirmation leaves the imino nitrogen on pseudouridine free to form an 

additional hydrogen bond that is not present in uridine, which contributes to its unique 

properties. The presence of pseudouridine in RNA facilitates base-stacking interactions, 

increases rigidity in both single-stranded (ss) and double-stranded (ds)RNA, and 

stabilizes RNA secondary structures. Importantly, base-pairing between pseudouridine 

and adenosine remains intact 43. 
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Figure 1-1. Structures of uridine and pseudouridine and base-pairing to adenosine  
In pseudouridine, uracil is linked to ribose via C5 instead of the N1 linkage found in 
uridine (C5 and N1 are indicated in bold type). Hydrogen bonds between adenosine and 
uridine or pseudouridine are indicated by dotted lines. Additional hydrogen bonding 
potential of pseudouridine is indicated by dashed arrow. 

 

Another common modification is the addition of a methyl group, including 2’-O-

methylation of ribose (Nm) and base methylation, such as N 6-methyladenosine (m6A), 5-

methylcytidine (m5C), and 5-methyluridine (m5U; also known as ribothymidine). Other 

modifications include addition of thiol groups, such as 2-thiouridine (s2U), hydroxyl 

groups, amino acids derivatives, and others, as well as combinations of modifications on 

the same nucleoside 212.  

Maturation-associated RNA modifications are formed post-transcriptionally in a 

site-specific manner, either through the use of specific enzymes or by enzymes directed 
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by guide RNAs 273. In eukaryotic organisms, RNA modification occurs primarily in the 

nucleus, and therefore mitochondrial RNA (mtRNA) contains the fewest modified 

nucleosides of any mammalian RNA fraction 157. By far, the most heavily modified 

fraction of cellular RNA is tRNA, where in mammals up to 25% of the nucleosides 

contain modification 157. Modifications are also common in rRNA, which accounts for 

~80% of RNA in cells, with approximately 250 RNA modification sites occurring in 

human rRNA 145. Multiple methylation variants occur for a uniquely 5’−5’ triphosphate-

linked N 7-methylguanosine (m7G) cap that is found on RNAs transcribed by RNA 

polymerase II, including mRNA, snRNA, and pri-miRNA 27. Internal modification of 

mRNA is primarily m6A, averaging 3–5 m6A per mRNA, although m6A is absent in some 

mRNAs. Additionally, there have been limited reports of m5C in mRNA 27, 179. RNA 

modifications are also found in most other fractions of cellular RNA including snRNA, 

snoRNA, and miRNA. 

The function of modified nucleosides in RNA is poorly understood. In many 

cases blocking RNA modifications produces no obvious impact in vitro, leaving the 

question of their biological roles unresolved 145. However, the importance of RNA 

modification is demonstrated by the evolutionary conservation of both RNA modification 

in general as well as specific modification sites. Furthermore, genes encoding RNA-

modifying enzymes are essential, as demonstrated in yeast 145. RNA modification is best 

studied in tRNA, where RNA modifications have been shown to have roles in stabilizing 

critical tRNA structures and in fine-tuning decoding in translation 97. Highly 

thermophillic organisms have increased tRNA modifications, adding support for their 

role in stabilizing RNA structures. Modified nucleosides in rRNA have also been closely 
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examined, where a limited number of specific modifications are required for maximal 

translation 145, 255. In the absence of data showing specific roles for other modification 

sites, it has been suggested that their role is to stabilize rRNA structure 145. The m7G cap 

found on mRNA facilitates nuclear export, protects the RNA from exonuclease attack, 

and has a well-established role in enhancing the translation of mRNA through cap-

binding proteins 27. The major naturally-occurring internal nucleoside modification in 

mRNA is m6A. Inhibition of m6A methylation does not change RNA stability 35, and 

instead is thought to play a role in pre-mRNA splicing and transport 27, although this is 

disputed by a recent study of m6A in unspliced yeast mRNA 26. 

In addition to the naturally-occurring nucleoside modifications discussed above, a 

plethora of chemically synthesized modifications and nucleoside analogs have been 

developed. Nucleoside analogs are used as investigational and FDA-approved antiviral 

and chemotherapeutic agents 79. Chemically-synthesized modified nucleosides have been 

incorporated into nucleic acids, often with the intent to increase nuclease resistance 45. 

While beneficial in proper circumstances, these modified nucleosides also present the 

dangers of re-entering the cellular NTP pool where they may interfere with RNA or DNA 

synthesis 146, 148. In contrast, it has been demonstrated that naturally-occurring modified 

nucleosides do not re-enter the NTP pool, and cellular pathways exist for their controlled 

removal 24. A goal of the laboratory is to develop modified RNA for therapeutic use, 

including transient gene therapy and vaccination. For this reason, only nucleoside 

modifications that occur naturally during RNA maturation will be examined and 

discussed in this dissertation. 
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1.3 Influence of modified nucleosides on RNA immunogenicity  

 Following the observation that high levels of nucleoside modification correlate 

with low RNA immunostimulation, the affect that the presence of modified nucleosides 

have on RNA immunogenicity was tested by measuring immunostimulation of DC by in 

vitro transcribed RNA. The immunogenicity of in vitro transcribed mRNA is evidenced 

by cytokine release from DC following mRNA transfection. To generate in vitro 

transcribed RNA, one or more NTPs were replaced with a corresponding modified NTP 

in phage polymerase transcription reactions. This led to the complete replacement of one 

nucleoside with a modified nucleoside (Figure 1-2). mRNA containing modified 

nucleosides stimulated less cytokine production by DC. In monocyte-derived DC 

(MDDC), this impact was observed for RNA containing m5C, m6A, Ψ, and s2U. In 

primary DC, only U modifications — Ψ, s2U, and m5U — reduced RNA immunogenicity, 

whereas m6A and m5C did not (Figure 1-3). Similarly, modified nucleosides reduced the 

RNA-induced activation of MDDC, as measured by upregulation of maturation marker 

CD83 on the cell surface (Figure 1-4) 130.  
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Figure 1-2. Incorporation of modified nucleosides into mRNA during in vitro 
transcription 
Aliquots (1 µg) of in vitro-transcribed RNA-1571 without (none) or with m5C, m6A, Ψ, 
m5U, or s2U nucleoside modifications were analyzed on denaturing agarose gel followed 
by ethidium bromide-staining and UV illumination. Reprinted with adaptations from 
Immunity, 23(2), Katalin Karikó, Michael Buckstein, Houping Ni, and Drew Weissman, 
Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside 
Modification and the Evolutionary Origin of RNA, 165–175, Copyright 2005, with 
permission from Elsevier. 
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Figure 1-3. Cytokine production by RNA transfected DCs 
MDDC (A and C), IFN-α MDDCs (B), and primary DC1 and DC2 (D) were treated for 
8–16 hr with lipofectin alone or complexed with R-848 (1 µg/ml) or the indicated RNA 
(5 µg/ml). Modified nucleosides present in RNA-1571 are noted. TNF-α, IL-12(p70), 
and IFN-α were measured in the supernatant by ELISA. Mean values ± SEM are shown. 
The results are representative of ten (A and C), four (B), and six (D) independent 
experiments. N.D., not determined. Reprinted with adaptations from Immunity, 23(2), 
Katalin Karikó, Michael Buckstein, Houping Ni, and Drew Weissman, Suppression of 
RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and 
the Evolutionary Origin of RNA, 165–175, Copyright 2005, with permission from 
Elsevier. 
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Figure 1-4. Activation of DCs by RNA 
MDDCs were treated for 20 hr with lipofectin alone or complexed with R-848 (1 µg/ml) 
or the indicated RNA (5 µg/ml). Modified nucleosides present in RNA-1571 are 
indicated. (A) CD83 and HLA-DR staining is shown. (B) TNF-α was measured in the 
supernatants by ELISA (the asterisk represents cells that were cultured in 30-fold larger 
than usual volume of medium for flow cytometry). Mean fluorescence of CD80 and 
CD86 was determined by flow cytometry. Data are representative of four independent 
experiments. Reprinted with adaptations from Immunity, 23(2), Katalin Karikó, Michael 
Buckstein, Houping Ni, and Drew Weissman, Suppression of RNA Recognition by Toll-
like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of 
RNA, 165–175, Copyright 2005, with permission from Elsevier. 
 

Studies in other systems also observed reduced immunostimulation by RNA 

containing modified nucleosides. The reduced immunogenicity of RNA containing m5C 

was confirmed in peripheral blood mononuclear cells (PBMC) 236. The dsRNA 

polyinosinic:polycytidylic acid (poly(I:C)) is a well established immunostimulatory RNA. 

However, the presence of 2’-O-methylated inosine (I) or C in poly(I:C) reduces the 

stimulation of type I interferon (IFN) production by primary human fibroblasts 95. 

Subsequently, multiple studies found that 2’-O-methylation (Nm) reduces RNA 

immunostimulation of human PBMC, which has become a popular strategy for reducing 

the immunogenicity of siRNAs 123, 171, 231. 

 

1.4 Influence of modified nucleosides in RNA on pro-inflammatory RNA receptors  

 The observation that incorporation of modified nucleosides reduced RNA 

immunogenicity promoted interest in understanding how modified nucleosides influence 

activation of RNA receptors that initiate pro-inflammatory signaling pathways. The toll-

like receptor (TLR) family of receptors contains 10 members in humans, which respond 

to diverse stimuli 135. Three endosomally-located TLRs respond to RNA: TLR3, 7, and 8. 
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TLR3 is activated by dsRNA 1. Both TLR7 and TLR8 are activated by ssRNA in humans 

66, 111, 130, although the agonists of TLR8 are less well characterized, in part because its 

functional relevance in mice is debated 124, 156. It has been reported that poly-U RNA 

activates TLR7 66, 67, 111, but this has not been replicated in all studies 130. Activation of 

TLRs initiates nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) signaling 

pathways, resulting in production of pro-inflammatory cytokines 195. Additionally, 

closely related TLR9 is stimulated by unmethylated DNA, but not by DNA containing 5-

methyl-deoxycytidine in CpG motifs 112, establishing a precedent that nucleoside 

modification can alter TLR activation. Activation of individual TLRs by in vitro 

transcribed RNA was tested in stably transformed 293T cell lines, each transfected with a 

single RNA-responsive TLR. Unmodified in vitro transcribed RNA was stimulatory to all 

three RNA-responsive TLRs. However, RNA containing modified nucleosides m5C, Ψ, 

m6A, m5U, or s2U did not stimulate TLR7 and TLR8. In cells expressing TLR3, m5U-

containing RNA was as stimulatory as unmodified RNA, and the presence of Ψ or m5C 

only modestly decreased stimulation. In contrast, incorporation of m6A or s2U into RNA 

eliminated stimulation of TLR3-transformed cells 130. In another report, Am also reduced 

TLR7-mediated IFN production in plasmacytoid DC 219. 

 The cytoplasmic RIG-I-like receptor (RLR) family was discovered more recently, 

consisting of retinoic acid inducible gene-I (RIG-I), melanoma differentiation-associated 

gene 5 (MDA5), and laboratory of genetics and physiology-2 (LPG-2). The archetype of 

the family, RIG-I, is best studied and is thought to be activated by RNA containing 5’-

triphosphates (5’ppp) 115, although ongoing debate continues 253. It has also been 

suggested that the uridine content of RNA plays an important role in RIG-I activation 215. 
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MDA5 is thought to be activated by longer dsRNA or branched RNA molecules 196, 270. 

The role of LPG-2 is much less clear, but because it lacks a key protein-interacting 

domain, it has been proposed to serve in regulatory roles 210, 218, 256, 270. In human 

monocytes and plasmacytoid DC, 5’ppp-bearing RNA stimulated IFN-α production, but 

not if the RNA contained Ψ, s2U, or Um, suggesting that RIG-I is not activated by RNA 

containing modified U 115. For Ψ, this was later confirmed through comparison of IFN 

induction in wild-type (WT) and RIG-I−/− murine embryonic fibroblast (MEF) cell lines 

131. Subsequently, it was demonstrated that RIG-I binds RNA containing Ψ but is not 

activated, and therefore Ψ-modified RNA functions as a competitive inhibitor of RIG-I 

activation 253. Additionally, the modified nucleoside inosine (I) can be formed by the 

deamination of adenosine, and cytoplasmic dsRNA containing I:U base pairs inhibits 

IRF3 activation, suggesting that IU-dsRNA inhibits RLR activation 258. No studies 

directly examining the influence of modified nucleosides on MDA5 or LPG-2 have been 

reported. 

 Activation of RNA signaling receptors promotes increases in both innate and 

adaptive immune responses 29. The combined data examining TLR and RLR indicate a 

trend toward reduced activation of RNA signaling receptors by RNA that contains 

modified nucleosides. Furthermore, there are indications that modification of uridine may 

be especially significant and, therefore, additional studies of U-modifications are 

warranted. 
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1.5 Influence of modified nucleosides on RNA sensors PKR and OAS 

 In addition to RNA receptors that initiate signaling cascades leading to new 

transcription of pro-inflammatory proteins, there exist RNA sensing pathways that result 

in more immediate effector functions without requiring new transcription. The best 

characterized of these effector-type RNA sensors are RNA-activated protein kinase 

(PKR) and oligoadenylate synthetase (OAS). 

 PKR was classically characterized as an anti-viral protein that is activated by 

binding to long, perfectly double-stranded RNA. Binding to dsRNA allows activation of 

PKR by dimerization and autophosphorylation. The primary substrate of activated PKR is 

the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of 

eIF2α reduces functional translation initiation complexes and, therefore, globally inhibits 

translation in an affected cell 88. In addition to long, perfect dsRNA, subsequent studies 

have demonstrated activation of PKR by numerous RNA ligands, provided that they 

contain some feature with RNA secondary structure 18, 21, 57, 121, 188, 244, 280. Studies using 

poly(I:C) demonstrated that the presence of Im or Cm in dsRNA reduced PKR activation 

247. When PKR was activated by short RNAs containing modified nucleosides, the effects 

were different in ssRNA than in dsRNA. PKR activation by short ssRNA required 5’ppp 

and the presence of nucleoside modifications eliminated PKR activation. In comparison, 

PKR activation by short dsRNA was much higher and was increased if RNA contained 

m5U or m6A, reduced by the incorporation of Ψ, and eliminated by the presence of s2U or 

s4U 177.  

 OAS is not a single protein, but instead represents a small family of 8−10 related 

proteins arising from gene duplication and alternative splicing. Similar to PKR, OAS was 
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originally characterized as an anti-viral protein activated by long dsRNA, but additional 

RNA activators have since been identified 63, 109, 167-169, 225. Upon activation, OAS uses 

ATP to form unique, small 2’−5’ linked oligoadenylate molecules, which are collectively 

called 2-5A. These 2-5A in turn activate a latent cytoplasmic endoribonuclease named 

RNase L. Activated RNase L cleaves ssRNA with limited specificity, including exposed 

loops on rRNA, cellular RNA, and exogenous RNAs, such as pathogenic or transfected 

RNAs 23. Activation of OAS by poly(I:C) is reduced by the presence of Im or Cm 247. 

Effects of other nucleoside modifications on activation of OAS have not been reported. 

 

1.6 Additional RNA sensors for which the influence of modified nucleosides has not 

been tested 

 Multiple additional innate RNA-sensing pathways exist upon which the influence 

of modified nucleosides have not been studied. Only a brief overview of these pathways 

will be presented here. 

 General control non-derepressible-2 (GCN2) is closely related to PKR, and 

similarly functions to inhibit translation through phosphorylation of eIF2α. Activation of 

GCN2 can be induced by a wide variety of cell stresses, including nutrient deprivation 

and certain viral RNAs. Regardless of the initiating stress, GCN2 activation is thought to 

function through sensing of uncharged tRNAs. The mechanism by which GCN2 

recognizes uncharged tRNAs is not well understood 64. Because tRNA contains more 

modified nucleosides than any other RNA fraction, it would be interesting to study how 

modified nucleosides affect activation of GCN2. 
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 In addition to TLR and RLR, a third family of signaling receptors that result in 

pro-inflammatory cytokine production are the nucleotide-binding domain (NBD)– and 

leucine-rich-region (LRR)–containing receptors (NLRs). Among these, it was recently 

demonstrated that in addition to other ligands, viral and ssRNA activate nucleotide-

binding oligomerization domain 2 (Nod2), resulting in IFN production 214. Similarly, 

bacterial RNA was discovered as an activating ligand for NACHT, leucine rich repeat 

and PYD containing 3 (Nalp3) 128. 

 RNA-specific adenosine deaminase (ADAR) converts adenosine to inosine in 

dsRNA. This can be an anti-viral response, permitting RNA cleavage by I-RNase. 

However, RNA editing by ADAR also has important cellular functions 248. Similarly, the 

apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) family are 

RNA editing proteins which deaminate C to U in RNA and DNA in response to various 

cellular and viral stimuli 201. 

 It was recently discovered that leucine-rich repeat flightless-interacting protein 1 

(LRRFIP1) is activated by both dsRNA and dsDNA, resulting in IFN-β production 

through IRF3. This activity allows LRRFIP1 to contribute to IFN-β production by 

macrophages in response to vesicular stomatitis virus (VSV) and the intracellular 

bacterial pathogen Listeria monocytogenes 269. 

 The high-mobility group box (HMGB) proteins have also been demonstrated to 

possess RNA- and DNA-binding characteristics. Rather than directly initiating a 

signaling pathway themselves, it is proposed that they facilitate activation of other RNA 

receptors, including TLR and possibly RLR 268. 
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1.7 Translation of mRNA containing modified nucleosides 

With the exception of 5’-cap methylation, the most commonly found modification 

in mRNA is m6A 27, although there have been limited reports of mRNAs containing m5C 

72, 73, 234 and a unique mRNA that contains Ψ 278. Modified nucleosides can be 

experimentally incorporated into mRNA during in vitro transcription, and this approach 

has been used to study how translation is influenced by modified nucleosides in mRNA. 

In cell culture, no translation of the transfected mRNA occurred if mRNA contained 

complete replacement of U with s2U or of A with m6A, although if mRNA contained 5% 

m6A, which is similar to the naturally-occurring rate, translation was equivalent to 

unmodified mRNA. In contrast, translation was enhanced if mRNA contained Ψ or m5C. 

Enhanced translation of Ψ-containing RNA was also observed following RNA delivery 

to mice. When translation of Ψ-containing mRNA was examined in lysate systems, 

enhanced translation was observed in rabbit reticulocyte lysate, but translation was 

reduced in wheat-germ extract and eliminated in E. coli lysate (Figure 1-5) 131. These data 

suggest that the mechanism for enhanced translation of Ψ-containing mRNA requires 

factors found in higher eukaryotes but absent in plants and prokaryotes.  
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Figure 1-5. In vitro translation of nucleoside-modified mRNAs 
Rabbit reticulocyte lysate, wheat germ extract, and Escherichia coli S30 lysate were 
incubated in the presence of 50 ng/µl mRNA encoding firefly luciferase (TEVlucA50) or 
Renilla luciferase (capRen). The mRNAs contained the indicated nucleoside 
modifications. Fold increase in translation was calculated by normalizing the measured 
relative light units to those obtained with non-modified mRNA. Error bars indicate SEM 
(n = 4), and the dotted line represents the relative value obtained with unmodified mRNA 
in each of the lysates. Adapted by permission from Macmillan Publishers Ltd: Molecular 
Therapy 2008 Nov;16(11):1833-40, copyright 2008. 

 

The direct influence of U-modifications on the translation apparatus has been 

examined by assessing scanning-dependent translation initiation and elongation in rabbit 

reticulocyte lysates. The presence of Ψ reduced the efficiency of both initiation complex 

formation and processive translation elongation. Initiation was reduced by m5U, but 

elongation was unaffected. The presence of s4U, in contrast, substantially increased 

initiation but was not permissive for elongation. Additionally, s4U was permissive for 

leaky scanning and initiation, while Ψ was not 7. 
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 The only RNA modification tested in both studies was Ψ, which despite being 

used less efficiency by the translational apparatus resulted in enhanced net translation of 

the encoded reporter protein. These data therefore suggest that RNA containing Ψ has 

additional effects on translation that do not result from direct impacts on the translational 

apparatus. 

 

1.8 Nuclease resistance of RNA containing modified nucleosides 

 In the human genome, hundreds of genes encode products involved in nuclease 

digestion of RNA. Evolutionary studies suggest that the eight vertebrate-specific RNases 

may have evolved from a host-defense RNase 235. Indeed, numerous RNases have 

primary or secondary defense functions, including I-RNase, RNase L, RNases 1−8, and 

dicer. Together, these facts point to evolutionary pressure to control exogenous RNA as a 

self-defense mechanism. Additionally, multiple pathways exist for degradation of mRNA, 

which is important to control the quality, quantity, and timing of gene expression 16. 

 Altered endonuclease cleavage has been reported for RNA containing nucleoside 

modifications. RNA containing Nm are more stable in serum 15, suggesting that they are 

resistant to cleavage by serum nucleases, which are predominantly A-type RNases 235. 

Although pancreatic diesterase and snake venom phosphodiesterase do cleave Ψ-

containing RNA, there is some indication that they may do so with reduced efficiency 180. 

However, the presence of Ψ has not been shown to prevent cleavage by the nucleases 

RNase A, RNase H 279, RNase T1, RNase T2, or nuclease P1. RNA containing Um is not 

bound or cleaved by RNase L 250. 
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1.9 Aims and organization of dissertation   

 In this dissertation, I seek to identify how nucleoside modifications alter the 

activity of RNA sensors and effectors, specifically PKR, OAS, and RNase L. These 

studies will further our understanding of the specificity of recognition and activity of 

these receptors/enzymes and the mechanisms used by the host to identify pathogenic 

RNA and differentiate it from self RNA. In doing so, these studies will also contribute to 

a deeper understanding of how nucleoside modifications alter the translation and stability 

of exogenously delivered in vitro transcribed mRNA. The primary hypothesis of this 

dissertation is that nucleoside modifications inhibit activation of intracellular RNA 

sensors PKR and OAS and the effector function of RNase L. A secondary 

hypothesis is that modification of RNA can be employed to reduce immune 

activation and increase the translation and stability of exogenously delivered mRNA. 

 The results of experiments testing these hypotheses are presented in three chapters. 

Each experimentation chapter contains the individually relevant background, detailed 

methods, results, and conclusions. Following the results chapters, the final chapter of this 

dissertation will discuss the overall conclusions and implications of this dissertation, as 

well as future directions and applications of this work. 

 The first results chapter, Chapter 2, focuses on PKR. Nucleoside modifications 

have been shown to influence the translation of in vitro transcribed mRNA and also the 

activation of RNA sensors, including TLR and RLR. Therefore, we postulated that 

nucleoside modifications influence translation through PKR, a RNA sensor that inhibits 

translation following activation. We hypothesized that unmodified in vitro transcribed 

mRNA activates PKR, resulting in global inhibition of translation, but that mRNA 
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containing modified nucleosides does not activate PKR, and therefore translation 

continues uninhibited. We tested the in vitro activation of purified PKR by mRNA, as 

well as examining PKR and eIF2α phosphorylation induced in cell culture following 

mRNA transfection. Translation of modified and unmodified mRNA was assessed in the 

absence of PKR activity using PKR inhibitors and PKR−/− MEF cells. In vitro PKR 

activation and immunoprecipitation from cell lysates were used to investigate the 

mechanism by which modified RNA influences PKR activation. The results of these 

experiments have been published 3, and the information contained in Chapter 2 is an 

adaptation of that publication. 

 Chapter 3 presents experiments addressing OAS and RNase L, which comprise 

the protein components of the 2-5A system. Activation of the 2-5A system can influence 

both translation and stability of RNA. Because both OAS and RNase L are RNA 

interacting proteins, nucleoside modifications in RNA could influence the 2-5A system in 

multiple ways. We hypothesized that unmodified in vitro transcribed mRNA activates 

OAS and is cleaved by activated RNase L, but that nucleoside modifications in RNA 

reduce OAS activation and RNase L mediated RNA cleavage. Purified proteins were 

used for in vitro assays to examine OAS activation by mRNA and mRNA cleavage by 

RNase L. Using northern blotting, the half-life of mRNA was assessed following 

incubation in RRL, transfection in cell culture, and injection into mice. Luciferase 

enzyme activity and northern blots were used to assess translation and retention of 

reporter mRNA in RNase L−/− MEF cell culture and RNase L−/− mice. The degradation of 

rRNA following mRNA transfection was evaluated to address the mechanism by which 

the 2-5A system affects translation following exogenous delivery of mRNA. Chapter 3 is 
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based upon a manuscript that has been prepared for publication and will be submitted for 

publication following review by all co-authors. 

 The experiments in Chapter 4 study the impact of nucleofection on translation. 

Although commonly used, lipid-based transfection reagents vary in effectiveness 

depending on cell type and can be toxic to cells. Nucleofection is a popular and effective 

alternative delivery method based on electroporation using cell type-specific buffers and 

electrical parameters. While using nucleofection for mRNA delivery, we observed that 

nucleofection induced phosphorylation of eIF2α. Using western blotting, we examined 

nucleofection-induced eIF2α phosphorylation in cells deficient for individual eIF2α 

kinases PKR, general control non-derepressible 2 (GCN2), and PKR-like endoplasmic 

reticulum kinase (PERK). The impact of other transfection reagents on eIF2α 

phosphorylation is also presented. 

Prior to investigating the influence of modified nucleosides on cytoplasmic RNA 

sensors, I performed studies on a conditionally-replicating RNA vaccine strategy based 

on transduction of dendritic cells with a lentiviral vector. Because these experiments are 

outside of the scope of this dissertation, they will not be discussed further in the body of 

this dissertation. This work was published 263 and is included herein as Appendix A. 
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CHAPTER 2 

 

Incorporation of pseudouridine into mRNA enhances translation by diminishing 

PKR activation 

 

Originally published in Nucleic Acids Research (2010) 38(17): 5884-5892. 

doi:10.1093/nar/gkq347. Reprinted with adaptations by permission of Oxford University 

Press. 
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2.1 Introduction 

In vitro transcribed mRNA has many advantages as a vehicle for gene delivery. 

Transfection of mRNA is very efficient 262 and rapid expression of the encoded protein 

can be achieved. In addition, unlike viral vectors or plasmid DNA, cell-delivered mRNA 

does not introduce the risk of insertional mutagenesis 70, 185. Previous studies have shown 

that mRNA can activate a number of innate immune receptors, including TLR3, TLR7, 

TLR8, and RIG-I. However, activation of these receptors can be avoided by 

incorporating modified nucleosides, e.g., Ψ, s2U, and others into the RNA 115, 130. 

 PKR is a ubiquitous mammalian enzyme with a variety of cellular functions, 

including regulation of translation during conditions of cell stress. During viral infection, 

PKR binds viral dsRNA, autophosphorylates, and subsequently phosphorylates eIF2α, 

thus repressing translation 77, 120. Originally, potent activation of PKR was thought to 

require >30 base pair-long dsRNA 167. It has subsequently been shown that PKR can be 

activated by a variety of RNA structures that include ssRNA containing hairpins 

structures 21, 121, imperfect dsRNA containing mismatches 21, short dsRNA with single-

stranded tails 280, stem-loop structures with 5’-triphosphates 56, 178, and unique elements 

present in interferon gamma and TNF-alpha mRNAs 125. Viral 76, 225 and cellular RNAs 18, 

57, 188, 244 transcribed as single-stranded RNA but containing secondary structure can also 

be potent PKR activators. PKR activation by short dsRNA, such as siRNA, has also been 

demonstrated 5, 93, 203, 222, 232, 277. These reports indicate that a wide variety of RNA 

structures can activate PKR, provided they contain some dsRNA element. Modified 

nucleosides present in homopolymeric RNAs 49, 166, 246, 247  or in short transcripts 177, 202, 

203 can influence activation of PKR. However, it has not been investigated whether 
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modified nucleosides present in long, protein-encoding mRNAs impact activation of 

PKR. 

Previously, we demonstrated that in vitro transcribed mRNAs containing Ψ and 

m5C are translated at significantly higher levels than those containing unmodified 

nucleosides 131. However, the molecular mechanism underlying this enhancement has not 

been identified. Here, we show that one cause of this translational difference is that Ψ 

and m5C-containing mRNA activates PKR less efficiently than uridine-containing mRNA. 

This reduced PKR activation also mitigates general translational inhibition of cellular 

proteins that is induced when unmodified in vitro transcribed mRNAs are delivered to 

cells. 
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2.2 Materials and methods 

Cells and reagents 

Human embryonic kidney (HEK) 293T cells were obtained from the American 

Type Culture Collection and were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 2 mM L-glutamine (Life Technologies), 100 U/mL 

penicillin and 100 µg/mL streptomycin (Invitrogen), and 10% fetal calf serum (HyClone). 

Immortalized wild-type (WT) and PKR knockout (PKR–/–) mouse embryonic fibroblasts 

(MEFs) were generously provided by Robert Silverman (Cleveland Clinic Foundation) 

and were maintained in RPMI medium supplemented with 2 mM L-glutamine, 100 U/mL 

penicillin, 100 µg/mL streptomycin, and 10% fetal calf serum. Polyinosinic:polycytidylic 

acid (poly(I:C)), yeast tRNA, and human poly(A)+ RNA were purchased from Sigma and 

polydeoxycytidylic acid (poly(dC)) was purchased from Midland Certified Reagent Co. 

 

mRNA synthesis 

Reporter  plasmids encoding firefly luciferase (pT7TS-fLuc and pTEVluc) or 

Renilla luciferase (pT7TS-Ren) were linearized with SalI/BamHI to generate templates. 

Transcriptions were performed at 37°C for 3 hours using T7 RNA polymerase and 

nucleotide triphosphates at 7.5 mmol/l final concentration (MEGAscript kit; Ambion). 

Except where otherwise specified, capped mRNA was generated by performing 

transcription in the presence of 6 mmol/L cap analog 3’-O-Me-m7G(5’)ppp(5’)G (New 

England Biolabs) and lowering the concentration of guanosine triphosphate (3.75 

mmol/l). All mRNAs were transcribed to contain 30 or 50 nt-long 3’ poly(A) tails. 

Selected mRNAs were further poly(A)-tailed in a reaction of ~1.5 µg/µl RNA, 5 mmol/l 
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adenosine triphosphate, and 60 U/µl yeast poly(A) polymerase (USB) and incubated at 

30°C for 3 hours according to the manufacturer’s instructions. The length of poly(A) tails 

were estimated to be ~200-nt long and is indicated with An. Triphosphate-derivatives of 

Ψ, s2U, m5C, m6A, and m5U (TriLink) were used in place of their cognate unmodified 

NTP to generate modified nucleoside-containing RNA. Following transcription, the 

template plasmids were digested with Turbo DNase and RNAs were precipitated with 2.5 

M lithium chloride at –20°C for 4 h. RNAs were pelleted by centrifugation, washed with 

75% ethanol and then reconstituted in nuclease-free water. The concentration of RNA 

was determined by measuring the optical density at 260 nm. All RNA samples were 

analyzed by denaturing agarose gel electrophoresis for quality assurance. Each RNA type 

was synthesized in 4–10 independently performed transcription experiments and all 

experiments were performed with at least two different batches of mRNA. Enzymatic 

capping was performed using ScriptCap m7G capping kit (Epicentre) on mRNA 

transcribed with guanosine 5'-[γ-32P]-triphosphate (GE Healthcare). Efficiency of capping 

was verified by monitoring the elimination of γ-32P from the mRNA. Biotinylated mRNA 

was transcribed with the addition of 1:5 biotinylated CTP (Roche Applied Sciences) in 

the transcription reaction. 

 

Detection of reporter proteins in RNA-transfected cells  

Cells were seeded into 96-well plates at a density of 5.0 × 104 cells/well one day 

prior to transfection. RNA was complexed with lipofectin (Invitrogen) according to the 

method of 130, as follows. Potassium phosphate buffer was prepared and supplemented 1 

µg/µl bovine serum albumin (BSA; Sigma). RNA was diluted in cold serum-free DMEM 
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to 0.07 µg/µl. Stock phosphate buffer was added to give final concentrations of 20 mM 

potassium phosphate, pH 6.4, and 100 ng/ml BSA. For 3 wells, lipofectin complexed 

RNA was prepared in the following ratios: 2.4 µl (2.4 µg) was added to 21.3 µl diluted 

phosphate buffer, and then incubated at room temperature for 10 minutes. Then 9.9 µl 

nucleic acid (0.69 µg) was added and the mixture was incubated for 10 additional 

minutes at room temperature. Lastly, 116.4 µl serum-free DMEM was added to bring up 

the final volume to 150 µl. The mixture was vortexed and 48 µl of it (0.25 µg RNA/well) 

was added directly cells plated in 96-well plates. Transfected cells were incubated for 1 h 

at 37ºC in a 5% CO2 incubator. The lipofectin-RNA mixture was removed and replaced 

with 200 µl pre-warmed DMEM containing 10% FCS, and cells were further cultured at 

37ºC until lysis. Cells were lysed in 25 µl firefly, Renilla, or dual-luciferase specific lysis 

reagents (Promega). Aliquots of 2 µl were assayed with the corresponding enzyme 

substrates and a LUMAT LB 950 luminometer (Berthold) at a 10-second measuring time.  

 

Assessment of total protein synthesis 

HEK293T cells were seeded into 96-well plates at a density of 5.0 × 104 cells/well 

with 1000 U/mL interferon-αA/D (Sigma) one day prior to transfection. Cells were 

incubated in methionine/cysteine-free medium (Invitrogen) for 1 hour, then pulsed with 

complete medium supplemented with 35S-methionine/cysteine (140 mCi/mL) 

(PerkinElmer) for 1–3 hours. Cells were lysed in RIPA lysis buffer supplemented with 

protease inhibitor cocktail (Sigma). Lysate was diluted in 0.1% BSA, and 

macromolecules were precipitated by the addition of trichloroacetic acid (TCA) and 30 
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minutes incubation on ice. Precipitates were filtered onto glass microfiber filters 

(Whatman) and washed with 10% TCA and 100% ethanol. Incorporated 35S-

methionine/cysteine was quantified using Ecolite(+) scintillation cocktail (MP 

Biomedicals) and a Beckman LS 6000IC scintillation counter. 

 

PKR activation in vitro 

Recombinant human PKR containing a (His)6 tag 280 was expressed in E. coli 

strain BL21(DE3) grown in LB media. PKR was purified from E. coli lysate by passing 

lysate over a Ni-NTA-agarose FPLC column. Immediately prior to use, purified PKR was 

dephosphorylated by incubating 5.33 µM PKR with 1280 units lambda protein 

phosphatase (New England Biolabs) for 60 minutes at 30ºC, then stopping phosphatase 

activity by the addition of 1 mM sodium orthovanadate (MP Biomedicals). Final 

concentrations of 0.75 µM dephosphorylated PKR, 0.1 mM ATP, and 0.15 µCi/µL 

adenosine 5'-[γ-32P]-triphosphate (γ-32P-ATP) (PerkinElmer) were mixed with the 

indicated concentration of RNA for 10 minutes at 30°C in a buffer consisting of 4 mM 

MgCl2, 100 mM KCl, and 20 mM HEPES, pH 7.5. The reaction was stopped by the 

addition of NuPage LDS sample buffer and reducing agent (Invitrogen) and heating for 

10 minutes at 70°C. Unincorporated γ-32P-ATP was separated from radiolabeled PKR by 

running samples on a 12% SDS-PAGE gel. Phosphorylated PKR was imaged in dried 

gels using a phosphor storage screen (Molecular Dynamics) and detected using Storm or 

Typhoon Phosphorimagers (GE Healthcare). Band densities were quantified using 

ImageQuant software (GE Healthcare). 
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Western blotting 

HEK293T cells were seeded into 96-well plates at a density of 5.0 × 104 cells/well, 

with 1000 U/mL interferon-αA/D one day prior to transfection. At the indicated time 

following RNA transfection, cells were lysed in RIPA lysis buffer supplemented with 

protease inhibitor cocktail and HALT phosphatase inhibitor (Pierce). Equal mass of 

protein (10−30 µg per sample) was loaded onto a 12% SDS-PAGE gel. Proteins were 

subsequently transferred to a Hybond-P PVDF membrane (GE Amersham), blocked with 

2.5% non-fat milk in TBS containing 0.05% Tween 20, and probed with antibodies for 

PKR-pT446 and PKR (Epitomics), eIF2α-pS51 and eIF2α (Cell Signaling Technologies), 

or PABP (Abcam). Membranes were stripped by agitating gently in a buffer of 2% SDS, 

100 mM β-mercaptoethanol, 62.5 mM Tris pH 6.7 for 30 minutes at 50°C, then 

subsequently re-blocked and re-probed. Image was captured using the Fujifilm LAS1000 

digital imaging system. Linear brightness and contrast were adjusted using GIMP 2.6 

software. 

 

Biotinylated RNA pull down 

HEK293T cells were seeded into 96-well plates at a density of 5.0 × 104 cells/well one 

day prior to transfection. Where indicated, cells were incubated in methionine/cysteine-

free medium (Invitrogen) for 30 minutes, then pulsed with complete medium 

supplemented with 35S-methionine/cysteine (140 mCi/mL) (PerkinElmer) for 3.5 hours 

prior to lysis. HEK293T cells were lysed in RIPA lysis buffer supplemented with 

protease inhibitor cocktail and RNase inhibitor (RNasin, Promega). Biotinylated mRNA 
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(0.5−2 µg) was added to 25 µL lysate and incubated on ice for 2 hours. Subsequently, 50 

µL of streptavidin-agarose bead 50% slurry (Invitrogen) was added and incubated on ice 

for 1 hour. Beads with bound RNA and proteins were centrifuged and washed, and 

proteins were released from RNA by heating samples at 70°C for 10 minutes in the 

presence of NuPage LDS sample buffer and reducing agent. Samples were separated by 

10% SDS-PAGE and transferred to PVDF membranes. PKR and poly(A)-binding protein 

(PABP) were detected by western blotting. 

 

Statistical analysis 

All data are reported as mean ± standard error of the mean (SEM). Statistical 

differences between treatment groups were calculated by the Student’s t-test using 

Microsoft Excel. For all statistical testing, a P-value <0.05 was considered significant. 
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2.3 Results 

Conventional in vitro transcribed mRNA induces translational repression  

We previously observed that mRNA transcribed in vitro containing Ψ in place of 

uridine or m5C in place of cytidine is translated more efficiently than mRNA containing 

unmodified nucleosides 131. In order to determine whether the translational enhancement 

exerted by Ψ incorporated into RNA is restricted to the modified transcript or also 

extends to unmodified transcripts, we performed co-transfection experiments delivering 

equal amounts of Renilla and firefly luciferase-encoding mRNAs to cells. As expected, 

the mRNAs were translated much more efficiently when both contained Ψ as compared 

to when both were unmodified (Figure 2-1A). However, when only one of the mRNAs 

contained Ψ modification, the translation level of the Ψ-containing RNA decreased 

(~50%) relative to the level measured when both contained Ψ. One explanation for these 

findings could be that unmodified RNA inhibits the translation of the co-delivered RNA, 

while Ψ-containing RNA has no such inhibitory effect. To explore whether translation of 

endogenous cellular mRNAs are similarly influenced by exogenously delivered in vitro 

transcribed mRNAs, total cellular protein synthesis was monitored in cells transfected 

with mRNA containing Ψ modification or no modification. Both types of mRNA reduced 

cellular protein translation; however, the suppression of protein synthesis was greater 

with unmodified RNA than with Ψ-containing RNA (Figure 2-1B). PKR-activating 

poly(I:C) and non-activating poly(dC) were used as controls. Mock transfected cells were 

treated with the transfection reagent (lipofectin) only, without nucleic acid. 
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Figure 2-1. Translational inhibition by unmodified in vitro transcribed mRNA 
(A) In vitro transcribed mRNAs encoding Renilla luciferase (Ren) and firefly luciferase 
(Luc) were synthesized with and without Ψ modifications then mixed (1:1 mass ratio) as 
indicated. The mixed mRNA was complexed with lipofectin and added to HEK293T 
cells seeded in 96-well plates (0.25 µg RNA/well). Cells were lysed 4 h after transfection 
and dual luciferase measurements were performed in aliquots (1/20th) of the lysates. 
Values presented are normalized to cells transfected with Ren and Luc mRNAs when 
both contained Ψ modifications. Error bars indicate the standard error of n = 3 samples. 
(B) Unmodified or Ψ-containing RNA was complexed with lipofectin and delivered to 
HEK293T cells. Cells were subsequently incubated with 35S-methionine/cysteine 
supplemented medium, lysed, and proteins were TCA precipitated. Data are presented as 
percentage of counts obtained from mock transfected cells. Data shown are mean values 
from three independent experiments ± SEM.  
 

Conventional in vitro transcribed mRNA activates PKR  

To determine whether the inhibition of translation by unmodified mRNA is 

mediated by PKR, in vitro transcribed mRNAs were first analyzed in a cell-free system 
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using purified PKR. Four different mRNAs were tested: unmodified and Ψ-modified 

mRNA, each with either a cap or a triphosphate at their 5’ end (5’ppp). In vitro 

transcribed mRNA with 5’ppp and containing uridines activated PKR to a greater extent 

than those containing Ψ (Figure 2-2A). Neither UTP nor ΨTP alone activated PKR 

(Figure 2-2B). This reduced activation of PKR by Ψ-containing transcripts is consistent 

with the previously observed enhancement of in vitro translation from Ψ-containing RNA 

in rabbit reticulocyte lysates 131. Since the presence of 5’ppp on short RNAs has 

previously been shown to enhance the activation of PKR 56, 178, it was important to 

determine whether the 5’ppp present on long mRNAs also contributed to PKR activation. 

To remove 5’ppp, in vitro transcripts were capped enzymatically (Figure 2-2C), which 

completely removed the 5’ppp, and then tested. As Figure 2-2A demonstrates, the 

presence or absence of 5’ppp on unmodified and Ψ-modified transcripts did not 

significantly alter their ability to activate PKR. It has been shown that a variety of 

nucleoside modifications in RNA can influence the activation of RNA sensors 115, 130, 177; 

therefore, the effect of incorporating the modified nucleosides s2U, m5C, m6A, or m5U 

into mRNA was also analyzed. The mRNA containing s2U, m5C, or m6A activated PKR 

to a lesser extent than unmodified RNA, while RNA with m5U activated PKR to the 

greatest extent (Figure 2-2D and E). For comparison, PKR activation by natural RNAs 

was also tested. Like in vitro transcribed mRNA, natural mRNA activated PKR, and this 

activation was higher than PKR activation induced by Ψ-containing in vitro transcribed 

mRNA. In contrast, natural tRNA did not activate PKR (Figure 2-2F). 
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Figure 2-2. Activation of purified PKR by in vitro transcribed RNA 
Purified PKR was incubated with γ-32P-ATP and in vitro transcribed mRNA for 10 min. 
Reaction products were separated by SDS-PAGE and imaged using phosphor storage 
radiography. (A) Unmodified or Ψ-containing mRNAs encoding firefly luciferase 
contained triphosphates (ppp) or cap at their 5’ ends were analyzed. Complete capping of 
RNA was achieved post-transcriptionally using vaccinia capping enzyme. Concentration 
of mRNA in reactions was 3.1, 6.2, 12.5, and 25 µg/mL. No RNA (−) and 79 bp dsRNA 
were used as negative and positive controls. Quantified phosphorylation is presented as a 
bar graph above each band. Values were normalized to those obtained with 25 µg/mL 
uncapped, unmodified RNA. (B) Purified PKR was mixed with γ-32P-ATP and the 
indicated nucleotide triphosphates at 200, 20, 2, and 0.2 nM concentrations. Reaction 
products were separated by SDS-PAGE and imaged using phosphor storage radiography. 
No RNA and 200bp dsRNA were used as negative and positive controls, respectively. 
(C) RNA transcribed in the presence of γ-32P-GTP was capped enzymatically, separated 
on a denaturing agarose gel, stained with ethidium bromide and UV illuminated. RNA 
was then transferred to a nylon membrane and exposed to film. (D) Purified PKR was 
mixed with γ-32P-ATP and in vitro transcribed firefly luciferase mRNA that contained the 
indicated modified nucleosides. Reaction products were separated by SDS-PAGE and 
imaged using phosphor storage radiography. A representative of three independent 
experiments is shown. (E) Quantification of PKR activation by mRNA containing 
modified nucleosides. Data represented as mean value ± SEM from five independent 
experiments using 5–25 ng/µL RNA, normalized to PKR activation by unmodified RNA. 
Asterisks indicate P-values <0.05 calculated by two-tailed Student’s t-test. (F) Purified 
PKR was activated using 125 µg/mL yeast tRNA, 25 µg/mL Ψ-containing in vitro 
transcribed mRNA, or 25 µg/mL human poly(A)+ RNA. Poly(dC) and 200 bp dsRNA 
(ds) were used as negative and positive controls. Quantified phosphorylation is presented 
as a bar graph above each band. 
 

Pseudouridine-containing mRNA does not activate PKR in cells  

 Next, we investigated the impact of Ψ-containing mRNA on PKR activation in 

the complex cellular environment. Following control studies demonstrating that RNAs 

with or without nucleoside modification can be delivered to cells with the same 

efficiency (data not shown), unmodified or Ψ-containing mRNA was complexed with 

lipofectin and delivered into HEK293T cells. PKR activation was assessed by western 

blot using an antibody specific for PKR phosphorylated on Thr446, a site at which 

phosphorylation is requisite for PKR activation 209. Consistent with the results observed 
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using purified PKR, transfection of unmodified transcript induced PKR phosphorylation, 

which was dramatically reduced if the transfected RNA contained Ψ (Figure 2-3A). 

Similarly, incorporation of s2U or m5C into RNA reduced the level of PKR 

phosphorylation relative to that induced by unmodified RNA, while m5U incorporation 

into RNA enhanced PKR phosphorylation (Figure 2-3B). Incorporation of m6A into RNA 

also enhanced PKR phosphorylation in cells, despite reducing PKR activation in vitro. 

 Phosphorylation of eIF2α, a substrate of PKR, was induced in HEK293T cells by 

transfection with unmodified RNA but not with Ψ-containing RNA (Figure 2-3C). 

Incorporation of modified nucleosides other than Ψ into mRNA altered the 

phosphorylation of eIF2α in direct parallel to their alterations of PKR phosphorylation 

(Figure 2-3D). To exclude the possibility that ΨTP either free or complexed with 

lipofectin induced PKR or eIF2α phosphorylation, cells were treated with UTP or ΨTP 

and western blotted. Neither UTP nor ΨTP induced PKR or eIF2α phosphorylation in 

cells (Figure 2-3E). 
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Figure 2-3. PKR activation in cells by in vitro transcribed mRNA 
In vitro transcribed firefly luciferase mRNA incorporating the indicated modified 
nucleoside (A−D) or UTP and ΨTP (E) were complexed with lipofectin and delivered to 
HEK293T cells. Following cell lysis at 4 hours after transfection, proteins were separated 
by SDS-PAGE, and phosphorylation of PKR (A, B and E) and eIF2α (C, D and E) was 
assessed by western blotting. No RNA (−), poly(dC), and poly(I:C) were used as controls. 
Relative phosphorylation is indicated below each gel lane, calculated as phosphorylated 
band density divided by total band density and then normalized to the phosphorylation 
induced by unmodified RNA. Arrowhead in (D) indicates the eIF2α band below a 
heavier non-specific band and arrowhead in (E) indicates the phospho-eIF2α band above 
a heavier non-specific band. Representative images of at least three independent 
experiments are shown. 
 

Translation of unmodified mRNA is enhanced upon inhibiting or eliminating PKR  

 Viral proteins C8L of swinepox and K3L of vaccinia are inhibitors of PKR and 

have been shown to reverse PKR-mediated inhibition of translation in mammalian cells 
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133. Thus, to confirm the role of PKR in the translational differences observed between 

uridine- and Ψ-containing transcripts, we utilized C8L, K3L, and two K3L mutants: 

hyperactive K3L-H47R and inactive K3L-Y76A 133, 134. Based on the premise that PKR is 

activated by in vitro transcribed mRNAs that contain uridine but not by those with Ψ, 

inhibition of PKR would be expected to increase the translation of unmodified mRNA 

but have no effect on the translation of Ψ-containing RNA. Indeed, in the presence of 

PKR inhibitors, the amount of translation increased from unmodified transcripts but not 

from Ψ-modified transcripts (Figure 2-4A).  

Further evidence confirming the role of PKR in suppressing translation of 

unmodified mRNAs was obtained using mouse embryonic fibroblasts (MEFs) derived 

from PKR-knockout animals. In wild-type MEFs, translation of Ψ-containing transcripts 

was 4−5-fold greater than that of unmodified transcripts (Figure 2-4B). In PKR-deficient 

MEFs, the amount of translation of Ψ-modified mRNA was not different from that of 

unmodified mRNA. Notably, the equivalent translation of unmodified and Ψ-containing 

mRNA was not due to reduced translation of Ψ-modified mRNA. In fact, when 

comparing raw RLU data, the translation of both unmodified and Ψ-containing mRNAs 

increased in PKR−/− cells relative to WT cells; however, the increase in translation of 

unmodified mRNA was disproportionately larger than the increase in translation of Ψ-

modified mRNA (Figure 2-4C). Additionally, RNA transfection does not induce 

phosphorylation of eIF2α in PKR-deficient MEFs, as it does in WT cells (Figure 2-4D). 

These results demonstrate that the activity of PKR is necessary for the decreased 

translation of unmodified transcripts relative to Ψ-containing transcripts. 
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Figure 2-4. Translation of in vitro transcribed mRNA in the absence of PKR activity  
(A) HEK293T cells were transfected with plasmids encoding protein inhibitors of PKR: 
swinepox C8L protein, wt vaccinia K3L, hyperactive K3L-H47R, inactive K3L-Y76A, or 
pG5 empty vector. Twenty-four hours later, unmodified or Ψ-modified in vitro 
transcribed mRNAs encoding firefly luciferase were complexed with lipofectin and 
delivered to cells and luciferase activity was measured 4 hours later. Data were 
normalized to values obtained when cells were first transfected with empty vector then 
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with unmodified RNA. Presented data are mean values from three replicates ± SEM. (B 
and C) MEF cell lines derived from wild-type (WT) or transgenic mice that do not 
express functional PKR (PKR−/−) were transfected with unmodified or Ψ-containing in 
vitro transcribed mRNAs encoding firefly luciferase. Data were normalized to values 
obtained when cells were transfected with unmodified RNA and expressed as fold 
increase in translation of Ψ-containing mRNA over unmodified RNA (B) or displayed 
without normalization (C). Values are from three replicate wells ± SEM and are 
representative of at least three independently performed experiments. (D) WT and PKR–/– 
MEF cells were transfected with unmodified or Ψ-containing in vitro transcribed mRNAs 
encoding firefly luciferase or mock transfected with no RNA (–). Cells were lysed 2 
hours following RNA transfection; proteins were then separated by SDS-PAGE and 
assayed for eIF2α phosphorylation by western blotting. Relative phosphorylation is 
indicated above each gel lane, calculated as phosphorylated band density divided by total 
band density and then normalized to the phosphorylation induced by unmodified RNA in 
wild-type cells. Absence of PKR was also confirmed by western blotting. 
 

Pseudouridine-containing mRNA is not bound by PKR  

To test whether Ψ-modified mRNA is a competitive inhibitor of PKR, a 200 bp 

dsRNA known to activate PKR was mixed with a 5−125-fold mass excess of Ψ-modified 

RNA. All concentrations of Ψ-modified RNA tested failed to inhibit the activation of 

PKR by the 200 bp dsRNA (Figure 2-5A). Similarly, a 125-fold mass excess of mRNA 

containing s2U, m5C, or m6A did not inhibit PKR activation by dsRNA (Figure 2-5B). 

The results were the same using lower mass excess, equal mass, or equal molar mixes 

(data not shown), demonstrating that RNAs containing modified nucleosides are not 

competitive inhibitors of PKR. The lack of PKR inhibition by transcripts containing 

modified nucleosides suggests a lack of binding between PKR and modified RNAs. To 

directly test this, biotinylated transcripts having 30 nt-long poly(A) tails and containing 

either Ψ or uridine were mixed with HEK293T cell lysates and complexes were then 

precipitated using streptavidin-agarose beads. Unmodified mRNA pulled down 

substantially more total protein than Ψ–modified mRNA, including multiple bands that 
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bound to unmodified mRNA but not to Ψ-containing mRNA (Figure 2-6A). Western 

blots of the precipitates indicated that PKR bound to unmodified, but bound poorly to Ψ-

modified RNA (Figure 2-6B), consistent with reduced activation of PKR by Ψ-

containing RNA. By contrast, equal amounts of PABP were pulled down by both RNAs. 

These results indicate that unmodified RNA, but not Ψ-modified RNA, is bound by PKR. 

 

 

 

Figure 2-5. mRNA containing modified nucleosides does not inhibit PKR activation 
An activating 200 bp dsRNA was mixed with a 5–125-fold mass excess of in vitro 
transcribed firefly luciferase mRNA containing Ψ (A) or a 125-fold mass excess of 
mRNA containing the indicated modified nucleoside (B) prior to incubation with purified 
PKR. Reaction products were separated by SDS-PAGE. Relative band densities are 
presented below each gel lane and normalized to dsRNA only. Data shown are 
representative of three independent experiments.  
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Figure 2-6. ΨΨΨΨ-containing mRNA does not pull down PKR 
Biotinylated in vitro transcribed unmodified or Ψ-containing RNAs were incubated with 
HEK293T cell lysates for 2 hours. The RNA and bound proteins were pulled down using 
streptavidin-agarose beads. An aliquot of lysate that was incubated only with beads but 
without RNA (−) was also processed. Aliquots of pull down proteins as well as the 
supernatants were separated by SDS-PAGE. (A) HEK293T cells were pulsed with 35S-
methionine/cysteine for 4 hours prior to lysis. Following pull down and gel separation, 
35S was visualized by radiofluorography. Diamonds indicate bands specifically pulled-
down by unmodified RNA. Star indicates band specifically pulled down by Ψ-modified 
RNA. (B) Pull down of PKR and PABP was detected by western blotting. Relative band 
densities of PKR divided by PABP compared to unmodified RNA are presented below 
each gel lane. 
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2.4 Discussion 

We demonstrate that modified nucleosides in mRNA reduce PKR activation and 

identify a mechanism by which nucleoside modification in mRNA enhances translation 

of the encoded protein. Our data show that conventional in vitro transcribed RNA inhibits 

translation of reporter and cellular mRNAs, in part through the activation of PKR. 

However, this inhibitory activity is not induced by Ψ or m5C-containing mRNA. Using 

multiple lines of investigation, our studies demonstrate that unmodified in vitro 

transcribed mRNA activates PKR, resulting in phosphorylation of eIF2α and inhibition 

of translation. Replacement of 5’ppp with 5’cap structure on the mRNA does not 

substantially alter this PKR activation. Examining translation in the context of PKR 

inhibitors and in PKR-deficient cells confirmed that enhanced translation of Ψ-containing 

mRNA is a consequence of diminished PKR activation. Mechanistically, modified 

nucleoside incorporation reduces RNA recognition by PKR. This is supported by data 

demonstrating that RNAs containing modified nucleosides do not inhibit PKR activation 

by dsRNA and that PKR binds poorly to Ψ-containing RNA.  

PKR activation by unmodified RNA has a more pronounced impact on translation 

of the transfected reporter mRNA than on total cellular translation (Figure 2-1). A similar 

local translation effect has been observed with PKR activation by IFN-γ mRNA 18, 48. The 

pronounced local inhibition is likely due to the kinetics of phosphorylation and 

dephosphorylation of PKR. Activated PKR most dramatically inhibits local translation 

because rapid dephosphorylation of PKR limits the impact on more distant translation. 

Therefore, translation of a PKR-activating mRNA is more severely impacted than total 

cellular translation. Furthermore, the observation that Ψ-containing RNA also causes 
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some reduction in total protein synthesis suggests that there are additional effects on 

cellular translation, which are not mediated by PKR.  

Ψ-containing RNA activates PKR more effectively in vitro as compared to in vivo 

(Figs. 2-2 and 2-3). One possible reason for this difference is that PKR activation in vivo 

occurs in the presence of competing factors such as phosphatases, components of the 

translational system and other proteins affecting the structure and accessibility of the 

RNA to PKR. In contrast, in vitro assays lack such competing factors that would limit or 

reverse PKR phosphorylation. 

Although mRNA is normally transcribed without a complementary antisense 

transcript or long stretches of self-complementarity, it contains many short double-

stranded regions and other intramolecular secondary structures (Figure 2-7). In addition 

to long perfectly double-stranded RNA, PKR is activated by RNA that contains either 

hairpins 121, bulges, mismatched base-pairing 21, short internal dsRNA regions 280, or 

unique structures naturally present in selected cellular mRNAs 18, 57, 188, 244. As previously 

demonstrated for TLR3 132, it is likely that the activation of PKR by in vitro transcribed 

mRNA is due to the formation of intra- and intermolecular secondary structures. PKR is 

then activated upon binding to these structures, similar to the classical dsRNA-mediated 

mechanism of PKR activation. Nucleoside modifications influence base pairing and 

secondary structure formation 43, 136, 144, 155, 176, 239, 282, 283, which likely contribute to their 

effects on PKR activation. Alterations to the shape of the helix formed and interruptions 

to the minor groove, which is presumed to be the principal location of PKR interaction 

with RNA 20, 177, 213, are also likely to play significant roles in determining how each 

modified nucleoside will impact RNA-mediated PKR activation. 
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Figure 2-7. Double-stranded characteristics of mRNA  
mFold web server prediction of firefly and Renilla luciferase mRNA secondary structures. 

 

Unlike short ssRNAs 178, PKR activation by long in vitro transcribed mRNA is 

not dependent on the presence of a 5’-triphosphate, as mRNA containing complete 

replacement of 5’ppp with cap structure also activates PKR (Figure 2-2A and C). The 

difference between these findings might reflect the amount of 5’ppp in the RNAs being 

compared. Forty-seven nt-long ssRNA induced 100-fold more PKR activation when the 

5’-end contained triphosphates 178, while our data did not show any significant effect of 

removing the 5’ppp from 1976 nt-long mRNA, which contains ∼40-fold less 5’ppp. Our 

finding is more consistent with the result reported for 47 bp-long dsRNA, wherein PKR 

activation did not depend on 5’ppp 178. 

Previous reports indicate that PKR activation is altered by the presence of 

modified nucleosides in homopolymeric RNA 166, 246, 247 and short ssRNA and dsRNA 177. 

Our data extends these findings by demonstrating that incorporation of modified 

nucleosides into long in vitro transcribed mRNA also alters activation of PKR and 

subsequent translation of the RNA. We observe substantial PKR activation by in vitro 
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transcribed mRNA, which is reduced by incorporation of Ψ. Additionally, our studies 

show reduced PKR activation by mRNA that contains m5C, enhanced PKR activation by 

mRNA containing m5U, and elimination of PKR activation by s2U-containing mRNAs. 

These results vary from those obtained when testing PKR activation by short 47 nt 

ssRNA: a low level of PKR activation by unmodified RNA, which was dependent on the 

presence of a 5’-triphosphate, and near complete elimination of PKR activation by 

incorporation of modified nucleosides 177. However, when testing short 47 bp dsRNA, the 

effects observed were similar to those reported here: PKR activation by unmodified RNA, 

which is reduced by Ψ incorporation, increased by m5U incorporation, and eliminated by 

s2U incorporation. This similarity to short dsRNA, and dissimilarity to ssRNA, supports 

our model that PKR activation by long in vitro transcribed mRNA, where 5’ppp is 

limited, is due to regions of secondary structure formed within the RNA. 

Unlike the other nucleoside modifications tested, the presence of m6A in mRNA 

impacted PKR activation differently in vivo compared to in vitro. In vitro, mRNA 

containing m6A activated PKR only moderately (Figure 2-2D and E) whereas in vivo, 

m6A-containing mRNA activated PKR more potently than unmodified RNA (Figure 2-

3B). Although the significance of this observation is not fully understood, the 

discrepancy may be explained by the presence of additional factors in cells that facilitate 

increased double-stranded formation in m6A-containing mRNA in vivo.  

Nucleic acids containing modified nucleosides can act as antagonists of nucleic 

acid-sensing TLRs 103, 208, 260, 272. Therefore, we asked whether mRNAs containing 

modified nucleosides inhibit activation of PKR by its cognate ligand, dsRNA. PKR is 

still activated by dsRNA in the presence of a 125-fold excess of mRNA containing Ψ or 
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other modified nucleosides (s2U, m5C, or m6A), indicating that mRNAs containing 

modified nucleosides are not inhibitors of PKR (Figure 2-5). This extends previous data 

demonstrating that short ssRNAs containing modified nucleosides do not inhibit PKR 177. 

Furthermore, in cell lysates, RNA containing Ψ pulls down less PKR than RNA 

containing uridine (Figure 2-6B). This reduction in PKR binding is consistent with prior 

in vitro data demonstrating small reductions in PKR binding to short dsRNA and ssRNA 

that contain modified nucleosides 177. From these data, we conclude that the mechanism 

of reduced PKR activation is reduced recognition and binding to RNA containing 

modified nucleosides. 

It is possible that mRNAs with different nucleoside modifications have different 

optimal concentration for activating PKR. Figures 2-2 and 2-3 indicate that none of the 

modified nucleosides tested, with the exception of s2U, completely eliminate PKR 

activation. Rather, each modified nucleoside might alter the ability of RNA to bind and 

activate PKR (Figure 2-6B).  

PKR plays an integral part in the cellular response to viral RNA. However, 

mechanisms to avoid PKR activation by cellular RNAs are required, as constitutive PKR 

activation and translational inhibition would obstruct normal cellular function. Here, our 

data show that PKR activation is reduced when RNAs contain nucleoside modifications 

that are naturally present in many cellular RNAs, including piRNA 138, snRNA, tRNA, 

mRNA, and rRNA 212. Activation of TLRs 130 and RIG-I 115 is also influenced by 

modified nucleosides in RNA and most commonly RNA modifications decrease the 

immunogenicity of RNA. Together, these data support a general interpretation that 

modified nucleosides supply a pattern for differential recognition by RNA binding 
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proteins. One purpose of common natural modifications may be avoiding activation of 

PKR and other RNA sensors by self RNA.  

Using mRNA for gene delivery has the benefits of efficient transfection and rapid 

protein expression without the risk of insertional mutagenesis. The potential of mRNA as 

a delivery vehicle is enhanced further by incorporating modified nucleosides that reduce 

host defense responses initiated by PKR, TLRs, and RIG-I 115, 130, 177. We observed the 

additional benefit of increased translation from Ψ and m5C-containing mRNA 131. In vitro 

transcribed mRNA is regularly delivered to cells in a research setting and has entered 

clinical trials as a cancer vaccine. As the interest in non-coding RNA continues, the 

delivery of RNA is likely to continue expanding. In most cases, activating PKR is an 

unwanted side-effect. High translation and low immunogenicity make mRNA containing 

Ψ or m5C applicable to express therapeutic proteins, whereas s2U-modified RNA is best 

suited for applications where avoiding non-specific immunogenicity is desirable but 

where translation is unnecessary 131, such as delivering antisense RNA 200 or stimulating 

RNA interference.  
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CHAPTER 3 

 

Nucleoside modifications in RNA reduce OAS activation  

and ability to be cleaved by RNase L 
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3.1 Introduction 

The antiviral 2-5A system is initiated when double-stranded (ds)RNA is bound by 

2'-5'-oligoadenylate synthetases (OAS), of which 8−10 isoforms exist due to gene 

duplication and alternative splicing. These isoforms have divergent cellular localization 44, 

are differentially induced by IFNs 117, produce different size 2-5A molecules 117, and each 

possess unique activation parameters and catalytic profiles 160. However, the specific 

roles for each OAS variant are not well understood. In addition to 2-5A production, the 

alternatively spliced 9-2 isozyme of OAS1 can act as a pro-apoptotic mediator 

independent of 2-5A production 90. Recently extracellular OAS1 was demonstrated to 

have antiviral activity independent of 2-5A production 142. OAS2 binds to NOD2, which 

enhances its antiviral effects and suggests an involvement with antibacterial defenses as 

well 74. 

OAS proteins lack any homology to known RNA-binding motifs and instead rely 

on a positively charged groove for RNA binding 108. In addition to dsRNA, OAS can be 

activated by specific viral RNAs 63, 169, 225, 226, ssRNA aptamers 109, and even certain 

cellular mRNAs 168. A recent report indicated that interaction with the minor groove of 

the consensus sequence NNWWNNNNNNNNNWGN is required for OAS1 activation 

by short dsRNA 139. 

Activated OAS links ATP into unique, short 2’−5’-linked oligomers called 2-5A 

[px5'A(2'p5'A)n;  x = 1–3; n ≥ 2]. The primary function of 2-5A is activation of the latent 

endoribonuclease RNase L. Binding of RNase L monomers by 2-5A allows RNase L 

dimerization and exposes the nuclease domain. Activated RNase L cleaves ssRNA 

preferentially following UU or UA dinucleotides (reviewed in 229). 
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Certain OAS proteins produce distinct profiles of 2-5A sizes. For instance, OAS3 

predominantly produces 2-5A dimers, which do not activate RNase L 206. Therefore, it 

has been proposed that 2-5A might also have other cellular functions. Consistent with this 

proposal, a recent report indicated that in addition to RNase L activation, 2-5A4 also 

serves as a TLR4 ligand 68. 

The 2-5A system is a conserved host defense pathway, with evidence of the 2-5A 

system found down to marine sponges, the lowest metazoa 223. In response, pathogens 

have evolved strategies to circumvent the 2-5A system, such as inhibition of OAS 

activation by HSV1 Us11 protein 216 and inhibition of RNase L activity by a conserved 

structure in poliovirus RNA 104. 

Here, we report that the presence of modified nucleosides in RNA has multiple 

effects on the 2-5A pathway. Unmodified in vitro transcribed mRNA activates OAS, 

resulting in rRNA cleavage and reduced translation. Additionally, unmodified mRNA is 

more rapidly cleaved by activated RNase L. In contrast, all of these effects are reduced 

when RNA contains modified nucleosides. Unmodified RNA is therefore identified as a 

distinguishing pattern for 2-5A system activity.  
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3.2 Materials and methods  

Cells and reagents 

Immortalized wild-type (WT) and RNase L−/− mouse embryonic fibroblasts 

(MEFs) were maintained in RPMI medium supplemented with 2 mM L-glutamine, 100 

U/ml penicillin, 100 µg/ml streptomycin, and 10% fetal calf serum. RNA oligos C11U2C7 

and C11Ψ2C7 were custom synthesized (Dharmacon) and were 5’end-labeled using 

adenosine 5'-[γ-32P]-triphosphate (γ-32P-ATP) (PerkinElmer) and T4 polynucleotide 

kinase (New England Biolabs).  

 

Immunoprecipitation  

HEK293T cells were seeded into 96-well plates at a density of 5.0 × 104 cells/well 

one day prior to transfection. Cells were exposed to 50 µl DMEM containing lipofectin-

complexed RNA (0.25 µg) for 1 hour, which was then replaced with complete medium 

and further cultured. Cells were incubated in methionine/cysteine-free medium 

(Invitrogen) for 1 hour, then pulsed with complete medium supplemented with 35S-

methionine/cysteine (140 mCi/mL) (PerkinElmer) for 3−5 hours prior to lysis in 50 µl 

RIPA buffer supplemented with protease inhibitor cocktail (Sigma). Renilla luciferase 

was immunoprecipitated from lysates using an anti-Renilla luciferase antibody (MBL) 

and protein G-coated dynabeads (Invitrogen) and separated by 15% polyacrylamide gel 

electrophoresis. Gels containing the labeled samples were treated with 1 M sodium 

salicylate, dried, and a fluorogram was generated by exposure to BioMax MS film 

(Kodak). 
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RNA stability in rabbit reticulocyte lysate 

Equal mass (25 ng/µl) or equal molar (40 µM) firefly and Renilla mRNAs were 

incubated in 15 µl rabbit reticulocyte lysate (RRL, Promega) at 30°C. At the indicated 

time a 2 µl aliquot was removed and the RNA was recovered using Trizol (Invitrogen) 

for subsequent detection by northern blotting. 

 

RNA stability in cell culture 

HEK293T, WT MEF, or RNase L−/− MEF cells were nucleofected with 5 µg 

mRNA using nucleofector program T-020 and nucleofector V kit (Lonza). After 15 

minutes recovery in RPMI, cells were plated in complete media and incubated at 37°C. 

At the indicated time, RNA was recovered from cells using Trizol (Invitrogen) for 

subsequent detection by northern blotting. 

 

Northern blotting 

RNA was isolated from RRL or cells using Trizol (Invitrogen). To enhance the 

RNA yield, 70 µg of glycogen (Roche Diagnostics) was added as carrier, and the 

precipitation was performed in siliconized tubes at −20°C overnight. RNA samples were 

denatured then separated in denaturing, 1.4% agarose, 0.22 M formaldehyde gel 

submerged into MESA buffer (Sigma) supplemented with 0.22 M formaldehyde. RNA 

was transferred to NYTRAN Nylon(+) membrane (Schleicher & Schuell) and UV cross-

linked. The membranes were prehybridized at 68°C for 1 h in MiracleHyb (Stratagene). 

To probe the northern blots, 50 ng of DNA was labeled using [α-32P]dCTP (Amersham 

Biosciences) with a random prime labeling kit (Roche Applied  Science). Probes were 
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derived from plasmids and were specific for the coding region of firefly or Renilla 

luciferase, or for a β-globin 5' UTR and 3' UTR sequence present in both mRNAs. The 

membranes were hybridized at 68°C for 20 hours with MiracleHyb containing the labeled 

and denatured probe. The membranes were washed and exposed to Kodak MS film using 

an MS intensifier screen at −70°C for 2–72 hours or exposed to a phosphor-storage 

screen and imaged using a Typhoon phosphorimager (GE Healthcare). 

 

In vitro OAS activation 

Recombinant human OAS1 p42 108, recombinant human RNase L 243, and 

p3[2’p5’A] 2A (2-5A3) 
242 were prepared as described previously. Dual-labeled fluorescent 

probe 6-FAM-UUA UCA AAU UCU UAU UUG CCC CAU UUU UUU GGU UUA-

BHQ-1 was custom synthesized by Integrated DNA technologies. In vitro OAS1 

activation was performed as previously described 243. Briefly, 20 µg/ml OAS1 was 

activated with 2 µg/ml RNA for the indicated time in buffer consisting of 20 mM HEPES 

pH 7.5, 20 mM MgOAc, 20 mM KCl, 1 mM EDTA, and 10 mM ATP. Reactions were 

stopped by heating to 95°C for 3 minutes. Microcon YM-3 centrifugal filters (Millipore) 

were used to separate 2-5A, and the 2-5A produced was then measured by mixing with 8 

µg/ml RNase L and 0.1 µM fluorescent probe in RNase L cleavage buffer (consisting of 

25 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 50 mM ATP, and 7 mM β-

mercaptoethanol) and compared to the linear range of a standard curve generated using 0, 

0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5 and 10 nM of purified 2-5A3. Fluorescent intensity is 

proportional to 2-5A concentration. 
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In vitro RNA cleavage by RNase L 

Recombinant human RNase L 243, and p3[2’p5’A] 2A (2-5A3) 
242 were prepared as 

described previously. For RNA oligos, 12.5 nM RNase L was activated on ice with 100 

nM 2-5A3 for 30 minutes in RNase L cleavage buffer (consisting of 25 mM Tris-HCl pH 

7.4, 100 mM KCl, 10 mM MgCl2, 50 mM ATP, and 7 mM β-mercaptoethanol). Then 

100 nM 5’ end-labeled RNA oligo [32P]-C11U2C7 or [32P]-C11Ψ2C7 (Dharmacon) was 

added and reactions were incubated at 30°C. At the indicated time, reactions were 

stopped by the addition of urea-TBE loading buffer (BioRad) and heating to 95°C for 3 

minutes. Aliquots were separated by 15% polyacrylamide gel electrophoresis, gels were 

dried, and samples were imaged using a phosphor storage screen and detected using a 

Typhoon phosphorimager. Cleavage of mRNA was performed similarly, using 10 nM 

RNase L, 10 nM 2-5A3, and 100 nM mRNA. Reactions were stopped by heating to 95°C 

for 5 minutes. The mRNA was recovered by phenol:chloroform extraction and detected 

by northern blotting. 

 

Translation of mRNA in mice 

All mice were cared for according to institutional guidelines at the University of 

Pennsylvania under a protocol approved by the Institutional Animal Care and Use 

Committee. Wild-type C57Bl/6 (NCI) and C57Bl/6 backcrossed RNase L−/− mice at 9−16 

weeks of age received tail-vein injections of 1 µg RNA complexed with lipofectin 

(Invitrogen) in 60 µl DMEM. At the indicated time, mice were sacrificed and spleens 

were isolated. Each spleen was bisected and spleen fragments were homogenized in 200 

µl cell culture lysis reagent (Promega). Luciferase activity was detected in a 40 µl aliquot 
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of cell culture lysis reagent using 200 µl luciferase assay substrate (Promega) and a 

LUMAT LB 950 luminometer (Berthold) at a 10-second measuring time. 

 

rRNA cleavage 

One day prior to transfection, WT or  RNase L−/− MEF cells were seeded into 96-

well plates at a density of 5.0 × 104 cells/well and treated with 1000 U/ml interferon-

αA/D (Sigma). Poly(I:C) or mRNAs were complexed with lipofectin (Invitrogen) as 

described previously 130. Cells were exposed to 50 µl DMEM containing lipofectin-

complexed RNA (2.5 µg) for 1 hour, which was then replaced with complete medium 

and further cultured. At 3 hours post-transfection, total RNA was recovered from cells 

using Trizol (Invitrogen). RNA was separated by agarose gel electrophoresis, stained 

with SybrGold reagent (Invitrogen), and detected using UV fluorescence and a GelDoc 

2000 imager (BioRad). 
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3.3 Results 

mRNA containing nucleoside modifications activates OAS less than unmodified 

mRNA 

 We first compared the activation of purified human OAS1 by unmodified or 

modified nucleoside-containing mRNA with identical sequence. Activation of OAS1 was 

assessed by recovering the 2-5A produced, which was then quantified using a 

fluorescence quenching assay. Unmodified mRNA activated OAS1, which was 

significantly (p<0.05) reduced when the mRNA contained pseudouridine (Figure 3-1A). 

Similar results were obtained when OAS activation was tested using a panel of mRNAs 

containing the modified nucleosides m6A, m5C, or s2U (Figure 3-1B). Subsequent 

experiments focused on the comparison of unmodified RNA to Ψ-containing mRNA with 

identical sequence. 
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Figure 3-1. OAS activation by mRNA containing modified nucleosides 
Purified human OAS1 p42 was activated by mixing with (A) unmodified (U) or Ψ-
containing mRNA or (B) a panel of mRNAs containing the indicated nucleoside 
modifications. Reactions were stopped at indicated times by heating at 95°C. Spin 
columns were used to isolate the 2-5A produced in each reaction, and 2-5A levels were 
assessed from an aliquot of each reaction using a fluorescence quenching assay. Asterisks 
indicate P-value <0.05 compared to U-mRNA. Data shown are mean ±SEM of three 
replicates in one experiment and are representative of three independent experiments. In 
(B) SEM error bars were omitted for clarity. 
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Pseudouridine-containing mRNA induces less rRNA cleavage than unmodified 

mRNA 

 OAS activation by pathogenic RNA leads to activation of RNase L, which 

mediates the effector function of the 2-5A system by cleaving ssRNA. RNase L-mediated 

cleavage at exposed loops of rRNAs in intact ribosomes results in well-defined cleavage 

patterns in rRNA 264. Therefore, the integrity of rRNA following mRNA transfection was 

examined. Lipofectin-complexed mRNA was transfected to WT and RNase L−/− MEF 

cells, and total RNA was subsequently recovered and examined by agarose gel 

electrophoresis and UV imaging. No RNA and the dsRNA analog poly(I:C) were 

included as negative and positive controls, respectively. In WT cells, delivery of 

unmodified in vitro transcribed mRNA induced cleavage of rRNA but rRNA cleavage 

was reduced if the mRNA contained Ψ. In contrast, this rRNA degradation was not 

observed in cells lacking RNase L (Figure 3-2). 
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Figure 3-2. Induction of rRNA cleavage by in vitro transcribed mRNA 
Unmodified (U) or Ψ-containing mRNA encoding firefly luciferase was complexed to 
lipofectin and delivered to WT or RNase L−/− MEF cells, as were no RNA (−) and 
poly(I:C) (+) controls. Three hours following transfection, total RNA was recovered from 
cells. RNA aliquots were separated in an agarose gel and visualized by UV fluorescence. 
Arrowheads indicate rRNA cleavage products. Representative data from one of three 
independent experiments is shown. 
 

RNase L cleaves uridine-containing RNA more readily than ΨΨΨΨ-containing RNA 

 Activated RNase L cleaves preferentially following UpNp in ssRNA. Therefore, 

we next compared the ability of RNase L to cleave Ψ-containing RNA. Purified 

recombinant human RNase L was activated with 2-5A3 and mixed with a 5’-[32P] end-

labeled RNA oligo containing a single RNase L cleavage site (C11U2C7 or C11Ψ2C7). 

Reaction products were gel separated to visualize RNA cleavage. The RNA oligo 

containing unmodified uridine was rapidly cleaved, but there was no significant cleavage 

of RNA oligo containing Ψ (Figure 3-3A and B). Full-length mRNA was then analyzed 

for cleavage by RNase L. Both unmodified and Ψ-mRNA could be cleaved by RNase L. 

However, consistent with the results obtained with RNA oligos, Ψ-containing mRNA 

was cleaved at a slow rate by RNase L (Figure 3-3C). 
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Figure 3-3. Cleavage of ΨΨΨΨ-containing RNA by RNase L 
Purified RNase L was activated on ice by 2-5A3 prior to mixing with RNA substrates. (A) 
Cleavage of RNA oligos [32P]-C11U2C7 (UU) or [32P]-C11Ψ2C7 (ΨΨ) by RNase L. 
Reactions were stopped at the indicated time by addition of loading buffer, and reactions 
were separated by PAGE and visualized by phosphor storage radiography. Representative 
data from one of three independent experiments is shown. (B) Quantification of phosphor 
storage intensities. Values were normalized to the values obtained in 30 minutes reactions 
not containing RNase L. Data represents average ±SEM of n=3 experiments. Asterisks 
indicate P-values <0.05 comparing UU to ΨΨ.  (C) Cleavage of unmodified (U) or Ψ-
containing mRNAs with identical sequence by RNase L. Reactions were stopped at 
indicated times by heating to 95°C. Following phenol:chloroform extraction and 
precipitation, aliquots from each reaction were assessed by northern blotting. 
Representative data from one of three independent experiments is shown. 
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RNase L facilitates enhanced translation of ΨΨΨΨ-containing mRNA in cells and after in 

vivo administration 

 Because Ψ-modification of mRNA reduced activation of OAS1, rRNA 

degradation, and mRNA cleavage by RNase L, we asked how the absence of RNase L 

influences translation of unmodified and Ψ-containing mRNA. To do so, mRNAs 

encoding luciferase were transfected into wild-type (WT) or RNase L−/− MEF cell lines 

and translation was assessed by measuring luciferase activity. In WT cells, Ψ-containing 

mRNA is translated to a greater level than unmodified RNA. However, in RNase L−/− 

cells, the translational advantage of Ψ-mRNA over unmodified mRNA is dramatically 

reduced (Figure 3-4A). 

 Similar patterns of translation occur in the spleens of mice following injection of 

mRNA. Either WT C57Bl/6 or RNase L−/− mice were given lipofectin-complexed 

luciferase mRNA by tail-vein injection. At sacrifice, luciferase activity was assessed in 

spleen lysate. In WT mice, Ψ-containing mRNA is translated to higher levels than 

unmodified RNA. In RNase L−/− mice, translation of Ψ-containing mRNA reached the 

same level as observed in WT mice, but translation of unmodified mRNA is increased 

relative to WT (p<0.05), (Figure 3-4B). 
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Figure 3-4. Translation of unmodified and ΨΨΨΨ-containing mRNA in wild-type and 
RNase L−/−−/−−/−−/− cells and mice 
Unmodified (U) or Ψ-containing in vitro transcribed mRNA encoding firefly luciferase 
was complexed to lipofectin and delivered to wild-type (WT) and RNase L−/− (RL−/−) 
MEF cells or mice. Luciferase activity was assessed in aliquots of cell lysate. (A) MEF 
cells lysed at 5 hrs following transfection. Luciferase relative light unit (RLU) values 
were normalized to the RLU obtained with unmodified mRNA (indicated by dashed line) 
and expressed as fold increase. Error bars indicate SEM of quadruplicate wells from one 
representative of at least six independent experiments. (B) Lipofectin-complexed mRNA 
was delivered by tail-vein injection into mice. At 4 hours following delivery, mice were 
sacrificed and spleens were lysed. Values presented are luciferase relative light units 
(RLU) in 1/5 of the total 200 µl lysate. Error bars represent SEM of n = 3 mice. 
 

Pseudouridine-containing mRNA is actively translated longer than unmodified 

mRNA 

 We next compared translation over time, to determine how modified nucleosides 

influence the duration of translation. RNA was complexed to lipofectin and delivered to 

cells, which were then pulsed with 35S-methionine/cysteine at different times after 

transfection, and translation of the mRNA was assessed by immunoprecipitation of the 

encoded Renilla luciferase protein. As previously observed, there was a higher level of 

translation of Ψ-containing mRNA at each time point (Figure 3-5A). In addition, the 
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translation of Ψ-containing mRNA continued after measurable translation of unmodified 

mRNA ceased, persisting at 48 hours (Figure 3-5B).  

 

 

 

Figure 3-5. Translation of ΨΨΨΨ-containing mRNA in cell culture 
Unmodified (U) or Ψ-containing mRNA was complexed to lipofectin and delivered to 
HEK293T cells. Cells were subsequently pulsed with 35S-methionine/cysteine prior to 
lysis. (A) Renilla luciferase activity was assessed in aliquots of cell lysate. Data displayed 
is mean ± SEM from four replicates, each performed in duplicate. (B) Renilla luciferase 
protein was immunoprecipitated from cell lysates and PAGE separated prior to radio-
fluorography. Data shown is one of four replicates and is representative of three 
independent experiments. 
 

Nucleoside-modified mRNA has an increased half-life  

 The extended translation of Ψ-modified RNA demonstrated that the RNA 

persisted in a functional state for an extended period of time. Accordingly, we examined 
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the stability of unmodified and Ψ-containing mRNA by northern blot analysis. Both 

unmodified and Ψ-mRNA were equally stable at room temperature through experimental 

time-courses and indefinitely in storage at −20°C (data not shown). Unmodified and Ψ-

mRNAs were added to rabbit reticulocyte lysate (RRL) or transfected to HEK293T cells. 

When transfecting cells using cationic lipids, a portion of RNA complexed with 

transfection reagents persists as an extracellular, nuclease-protected fraction. Therefore, 

for these experiments, we used nucleofection to deliver naked mRNA and confirmed the 

rapid degradation of extracellular RNA by serum nucleases in the culture media (data not 

shown). Total RNA was subsequently re-isolated, and aliquots were examined by 

northern blot to compare degradation rates of the reporter mRNAs. Two reporter mRNAs 

were studied simultaneously, to ensure that stability differences were not a result of 

differences in coding sequence. As shown in figure 3-6, Ψ-modified mRNAs had longer 

half-lives than unmodified mRNAs both in RRL (Figure 3-6A) and in HEK293T cells 

(Figure 3-6B).  

 Subsequently, the influence of RNase L on the stability of unmodified and Ψ-

containing mRNA was also compared using RNase L−/− MEF cells. As in HEK293T cells, 

the mRNA was delivered by nucleofection. Total RNA was recovered from cell culture 

and firefly and Renilla luciferase mRNA were assessed by northern blot. In both WT and 

RNase L−/− MEF cells, Ψ-modified mRNA had an increased half-life compared to 

unmodified RNA (Figure 3-6C).  
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Figure 3-6. Half-life of ΨΨΨΨ-containing mRNA 
(A and B) Unmodified (U) or Ψ-containing mRNAs encoding firefly or Renilla luciferase 
proteins were mixed 1:1 and either added to RRL (A) or nucleofected to HEK293T cells 
(B). At the indicated time points, RNA was recovered using Trizol reagent. RNA was 
subsequently detected in aliquots of the recovered RNA by northern blotting. Data shown 
is representative of at least five independent experiments. (C) Unmodified (U) or Ψ-
containing in vitro transcribed mRNA encoding firefly luciferase was delivered to wild-
type (WT) or RNase L−/− MEF cells by nucleofection. Cell were lysed at 0.2, 1, 3, 6, or 
24 hrs following transfection, total RNA was recovered, and luciferase mRNA was 
assessed by northern blotting. Representative data is shown from one of three 
independent experiments. 
 

 



 

  68 

3.4 Discussion 

 Here, we identify novel impacts of nucleoside modifications in RNA on the 2-5A 

pathway. Our data show that conventional in vitro transcribed mRNA activates OAS1, 

but this activation is reduced when mRNA contains modified nucleosides. OAS 

activation by unmodified RNA leads to RNase L-mediated rRNA cleavage in cells, 

which is not induced by Ψ-mRNA. Furthermore, we demonstrate reduced RNase L 

cleavage of Ψ-containing RNA. Experiments using RNase L−/− MEF cell culture and 

following injection in RNase L−/− mice demonstrate that translation of unmodified mRNA 

is decreased in the presence of the intact 2-5 system, but the translation level of Ψ-

mRNA is largely independent of the 2-5A system. In addition, we demonstrate that 

incorporation of Ψ increases the half-life of in vitro transcribed mRNA in cells and 

lysates.  Finally, Ψ-containing mRNA is translated for a longer duration than unmodified 

in vitro transcribed mRNA. 

RNA sensing in the 2-5A pathway is performed by the OAS family of proteins. 

OAS was originally characterized as requiring >8 base-pairs (bp) of uninterrupted helix 

in >30 bp-long dsRNA 167, but activation has also been demonstrated by a variety of 

ssRNAs, including aptamers 109, viral RNAs 63, 169, 226, 247, and some cellular RNAs 168, 187. 

RNAs containing 2’-O-methylation 166, 217 or 5-methyluridine 9 do not activate OAS. Here, 

we report that unmodified in vitro transcribed RNA activated OAS1 to produce 2-5A, but 

this was substantially reduced when RNA contained Ψ, m6A, m5C, or s2U. Recently, the 

consensus sequence nnWWnnnnnnnnnWGn (W = U or A) was demonstrated to be 

important for OAS1 activation by dsRNA, and this interaction is dependent on the minor 

groove and free OH groups on the critical base pairs 139. The requirement that three out of 
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the four critical base-pairs in this sequence be U:A highlights the importance of uridine 

for OAS1 activation. However, pseudouridine does not disrupt base-pairing to adenosine 

and the imino group of Ψ is oriented toward the major groove 101, so how Ψ disrupts 

OAS1 activation remains unclear. The presence of Ψ stabilizes secondary structure and 

adds rigidity to both ss and dsRNA (reviewed in 43). In this capacity, Ψ could affect OAS 

activation by altering the equilibrium structure of the RNA, rather than directly affecting 

OAS binding. 

Production of 2-5A by activated OAS results in activation of the latent 

endoribonuclease RNase L, which is the effector protein of the 2-5A pathway. Activated 

RNase L cleaves various ssRNA including accessible sites in rRNA, resulting in specific 

cleavage products visible by gel electrophoresis 264. Therefore, we examined the rRNA 

cleavage induced in cells by transfection of in vitro transcribed mRNA. In WT MEF, 

unmodified mRNA induced rRNA cleavage, which was reduced if mRNA contained Ψ. 

However, no RNA caused rRNA cleavage in RNase L−/− cells, confirming that the 2-5A 

system is required for RNA-induced rRNA cleavage. High levels of 2-5A result in global 

rRNA cleavage by RNase L 149, and when sustained, ultimately lead to apoptosis 40, 281. In 

comparison, the level of rRNA cleavage induced here by transfection of in vitro 

transcribed mRNA is relatively small, and may not be expected to induce high levels of 

apoptosis. On the other hand, this level of rRNA cleavage is sufficient to have a profound 

impact on translation of the reporter mRNA. We propose that unmodified RNA induces 

local OAS and RNase L activation, as demonstrated with viral RNAs and ssRNA 

covalently linked to dsRNA 8, 186. Accordingly, locally-activated RNase L cleavage likely 
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reduces translation of unmodified RNA through local cleavage of rRNA without inducing 

global rRNA cleavage and apoptosis.  

The presence of Ψ has been shown to enhance the stability of RNA secondary 

structures, but has not previously been demonstrated to cause resistance to nucleases. The 

presence of Ψ did not inhibit cleavage by the nucleases RNase A, RNase H 279, RNase T1, 

RNase T2, nuclease P1, and snake venom phosphodiesterase, although there is some 

indication that pancreatic diesterase and snake venom phosphodiesterase may cleave with 

reduced efficiency180. A previous report based on cleavage of a C11N2C7 RNA oligo 

showed that RNA containing 2’-deoxy-2’-α-fluorouridine was bound by RNase L but 

cleaved slowly, whereas RNA containing 2’-O-methyluridine was not bound by RNase L 

250. Here, we used a similar approach and demonstrated that purified RNase L readily 

cleaved the ssRNA oligo C11U2C7 but not when the cleavage site contained Ψ. We also 

extended those findings to the examination of long in vitro transcribed mRNA and 

showed that unmodified mRNA was cleaved by purified RNase L, but cleavage of Ψ-

mRNA proceeded more slowly. The slow cleavage of Ψ-mRNA despite inactivity toward 

C11Ψ2C7 is not surprising given RNase L's loose sequence specificity. Although RNase L 

cleaves preferentially following UpNp, with highest activity following UU and UA, it is 

also capable of cleaving following AU, AA, AC, and CA but not CC 38, 84, 265. 

As seen in previous reports 3, 131, in wild-type cells there was dramatically higher 

translation of Ψ-mRNA than unmodified mRNA. By contrast, in RNase L−/− MEF cells, 

the enhanced translation of Ψ-mRNA was modest. Similarly, the translational advantage 

of Ψ-mRNA was reduced in RNase L−/− mice. Notably, however, the absolute translation 
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level of Ψ-mRNA remained equal in WT and RNase L−/− mice, while the translation of 

unmodified mRNA increased in RNase L−/− mice. This indicates that neither the presence 

of RNase L nor Ψ-mRNA alone significantly affects translation, but rather that 

unmodified RNA causes translational inhibition through RNase L activation. Moreover, 

these results are consistent with the in vitro activation of OAS1 by unmodified RNA that 

we observed. 

We also examined the effect of Ψ-modification on the stability of in vitro 

transcribed mRNA. In RRL and in cell culture, Ψ-mRNA was degraded more slowly than 

unmodified mRNA. Previous experiments also suggested that Ψ-mRNA is retained 

longer following injection in mice 131. Despite the rapid cleavage of unmodified RNA by 

RNase L in vitro, the half-life of unmodified RNA did not increase to the level of Ψ-

mRNA in RNase L−/− cells. This suggests that in addition to RNase L, other intracellular 

nucleases also cleave unmodified RNA more efficiently than Ψ-containing RNA. 

The RNase L gene is genetically linked to prostate cancer and individuals 

homozygous for the R462Q mutant of RNase L, which exhibits reduced catalytic activity, 

are at increased risk for developing prostate cancer 39. The established role of RNase L as 

an antiviral effector lead to speculation regarding a viral etiology in prostate cancer. 

Subsequently, a novel gammaretrovirus, xenotropic murine leukemia virus-related virus 

(XMRV), was discovered in prostate tumors from RNase L-R462Q homozygous patients 

252. RNase L dysfunction has also been reported in association with chronic fatigue 

syndrome (CFS) 237, and CFS has also recently been linked to XMRV 150. IFN-β inhibits 

XMRV replication, and this action is mediated in part by RNase L activity 69. Nucleoside 
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modifications are found in viral mRNAs, including reports of hyper-modification 179. 

However, the presence of modified nucleosides in XMRV viral RNA (vRNA) has not 

been investigated. Because RNA modifications reduce 2-5A system activity, nucleoside 

modifications in XMRV vRNA could contribute to the development or progression of 

prostate cancer and CFS. 

Nucleases play a central role in host defense through destruction of pathogenic 

nucleic acids. The 2-5A system functions to detect and degrade danger-associated 

intracellular RNAs. Activation of RNase L also leads to reduced translation due to rRNA 

cleavage and when sustained, results in apoptosis, providing further limitations to 

pathogen replication. Here, we identify unmodified RNA as a molecular pattern 

recognized by OAS and RNase L. However, 2-5A system activity is decreased when 

RNA contains nucleoside modifications, which reduce both OAS activation and cleavage 

by RNase L. We propose that modified nucleosides are a general pattern, which facilitate 

recognition of danger-associated RNA as distinct from endogenous cellular RNA, as part 

of the extensive system of innate host defense against pathogenic RNA. 

 



 

  73 

CHAPTER 4 

 

Nucleofection induces eIF2αααα phosphorylation mediated by GCN2 and PERK 
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4.1 Introduction 

 Nucleofection is an advanced electroporation technique which varies electrical 

parameters and buffers to optimize delivery for specific cell types with high efficiency 

and reproducibility 96. A major advantage of nucleofection is its versatility in transfecting 

a wide variety of primary and non-dividing cell types 96, 102, 107. Nucleofection can be used 

to deliver a variety of nucleic acids including mRNA 51, 254, siRNA 96, 220, miRNA 199, 259, 

cDNA 25, and DNA plasmids 102, 211.  

An increasingly common use of nucleofection is delivery of mRNA. Gene 

transfer based on mRNA is safe, because unlike DNA-based and viral vector approaches 

100, mRNA-based gene transfer does not bear the risks of chromosomal integration. 

Protein expression is fast, beginning immediately upon mRNA reaching the cytoplasm. 

High transfection efficiency can be obtained, in part because there is no requirement for 

mRNA to reach the nucleus. Unlike other gene delivery strategies, no additional 

transcripts are made following transfection, so translation rates following delivery are a 

key consideration for mRNA-based gene delivery applications.  

We recently reported enhanced translation of in vitro transcribed mRNA 

containing Ψ 131, which results in part from reduced phosphorylation of eukaryotic 

initiation factor 2-alpha (eIF2α) 3. Phosphorylation of eIF2α reduces functional 

translation initiation complexes, resulting in a general decrease in translation initiation 

events and therefore a global decrease in translation (see 114 for review). There are four 

known eIF2α kinases in mammalian cells, each responding to different forms of cellular 

stress: RNA-dependent protein kinase (PKR), PKR-like ER kinase (PERK), general 

control non-derepressible-2 (GCN2), and heme-regulated inhibitor (HRI). Activation of 
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PKR occurs upon binding to double-stranded (ds)RNA and in this capacity is primarily 

characterized as an anti-viral sensor, although it also plays additional roles 3, 88. HRI is 

active primarily in erythroid cells during heme deprivation. PERK is activated under 

conditions of ER stress as part of the unfolded protein response. GCN2 is stimulated by a 

variety of stresses, including amino acid starvation, proteosome inhibition, and UV 

irradiation 64. 

 Here, we show that nucleofection alone induces phosphorylation of eIF2α. We 

identify GCN2 as an eIF2α kinase contributing to this phosphorylation. Preliminary data 

also suggests that the involvement of PERK in this nucleofection-induced 

phosphorylation. Further studies are ongoing to confirm the involvement of PERK, and to 

measure translational repression following nucleofection. Developing approaches to 

overcome nucleofection-induced eIF2α phosphorylation will enhance the continued 

progression of mRNA-based therapies. 
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4.2 Materials and methods 

Cells and reagents 

Immortalized mouse embryonic fibroblasts (MEFs) were generously provided by 

David Ron (WT, GCN2−/−, and PERK−/−), Robert Silverman (PKR−/−), and Alan Diehl 

[with permission from Douglas Cavener] (PERK/GCN2−/−). MEFs were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 2 mM L-glutamine 

(Life Technologies), 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen), and 

10% fetal calf serum (HyClone), MEM non-essential amino acids (Invitrogen), and 55 

µM β-mercaptoethanol (BioRad).  

 

Nucleofection 

MEF cells were nucleofected using program T-020 and nucleofector V kit 

(Lonza). After 15 minutes recovery in RPMI, cells were plated in complete media and 

incubated at 37° C. At the indicated time following nucleofection, cells were lysed in 

RIPA lysis buffer supplemented with protease inhibitor cocktail (Sigma) for western 

blotting. 

 

Lipid and polymer transfections 

Cells were seeded into 48-well plates at a density of 1.0 × 105 cells/well one day 

prior to transfection. Cells were exposed to 50 µl DMEM containing lipid-based 

lipofectin (Invitrogen), 50 µl DMEM medium alone, or 200 µl complete DMEM medium 

containing polymer/lipid-based TransIT-mRNA (Mirus) for 1 hour, which was then 

replaced with complete medium and further cultured. At the indicated time following 
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RNA transfection, cells were lysed in RIPA lysis buffer supplemented with protease 

inhibitor cocktail (Sigma) for western blotting. 
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4.3 Results 

Nucleofection induces eIF2αααα phosphorylation in WT MEF cells 

The impact of nucleofection on translation was first studied in a MEF cell line 

derived from wild-type (WT) C57Bl/6 mice. Nucleofection conditions were optimized 

according to manufacturer guidelines, and it was determined that program T-020 

provided the best cell survival with high transfection efficiency (data not shown). WT 

MEF were then nucleofected without including any nucleic acid in the transfection mix. 

As a negative control, cells were mock treated by subjecting them to the same 

manipulation and buffers but without electric shock. Following nucleofection, eIF2α 

phosphorylation was assessed by western blotting using an antibody specific for eIF2α 

phosphorylated at serine 51. As shown in Figure 4-1, nucleofection induced 

phosphorylation of eIF2α four-fold over the baseline level present in mock-treated cells. 
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Figure 4-1. Phosphorylation of eIF2αααα in wild-type cells following nucleofection 
Wild-type MEF cells were nucleofected or mock-treated, then lysed at the indicated times. 
(A) Phosphorylation of eIF2α was assessed in aliquots of lysate by western blotting with 
antibody specific for phosphorylated eIF2α (eIF2α−(P)) and then re-probed for total 
eIF2α. Representative data from one of three independent experiments is shown. (B) 
Quantification of western blot band densities. Values were calculated as the ratio of 
phosphorylated to total eIF2α and normalized to the values obtained in mock-treated 
cells at 0.1 hours post-shock. Data displayed is mean ± SEM of n = 3 experiments. 
 

Lipid and polymer transfection reagents do not induce eIF2αααα phosphorylation in 

WT MEF cells 

To determine if eIF2α phosphorylation is a common feature of transfection, 

eIF2α phosphorylation was measured following treatment with lipid and polymer 

transfection reagents. Reagents were prepared and delivered according to manufacturer 

instructions, but without including nucleic acid in the transfection mixes. Neither lipid-
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based nor polymer-based transfection protocols induced phosphorylation of eIF2α 

(Figure 4-2). 

 

 

 

Figure 4-2. Phosphorylation of eIF2αααα in wild-type cells following transfection 
Wild-type MEF cells were transfected with the indicated transfection reagent or mock-
treated and lysed at the indicated time points. (A) Phosphorylation of eIF2α was assessed 
in aliquots of lysate by western blotting. Representative data from one of two 
independent experiments is shown. (B) Quantification of western blot band densities. 
Values were calculated as the ratio of phosphorylated to total eIF2α and normalized to 
the values obtained in mock-treated cells at 0.1 hours post-shock. Data displayed is mean 
± SEM of n = 2 experiments. 
 

GCN2−/−−/−−/−−/− delays and reduces nucleofection-induced eIF2αααα phosphorylation 

Of the four mammalian eIF2α kinases, three — PKR, PERK, and GCN2 — are 

widely distributed, whereas HRI is reported to function primarily in erythroid cells 151. 

Therefore, to identify the eIF2α kinase responsible for the nucleofection-induced eIF2α 

phosphorylation, we took advantage of MEF cell lines created from mice deficient in 
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PKR, PERK, and GCN2. As was done with WT MEF, cells were nucleofected and eIF2α 

phosphorylation was assessed by western blotting. Nucleofection of PKR−/− MEF cells 

resulted in eIF2α phosphorylation comparable to that induced in WT MEF cells (Figure 

4-3A), as did nucleofection of PERK−/− MEF cells (Figure 4-3B). Nucleofection also 

induced eIF2α phosphorylation in GCN2−/− MEF cells, but the peak level of 

phosphorylation was reduced and occurred later than in other cell lines (Figure 4-3C). 

Mock treatment did not induce eIF2α phosphorylation in any cell line (Figure 4-3). 
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Figure 4-3. Phosphorylation of eIF2αααα in kinase-deficient cells following 
nucleofection 
MEF cells deficient in eIF2α kinases, PKR−/− (A), PERK−/− (B), or GCN2−/− (C) were 
nucleofected or mock-treated, then lysed at the indicated time points. Phosphorylation of 
eIF2α was assessed in aliquots of lysate by western blotting. Representative data of 2–4 
independent experiments is shown.  
 

GCN2 and PERK are responsible for nucleofection-induced eIF2αααα phosphorylation 

The removal of single eIF2α kinases did not completely prevent nucleofection-

induced eIF2α phosphorylation, suggesting the possibility that multiple kinases are 

involved. Therefore, we assessed phosphorylation of eIF2α following nucleofection of 

MEF cells derived from a dual-knockout GCN2−/−/PERK−/− mouse. No eIF2α 

phosphorylation was visible in dual-knockout GCN2−/−/PERK−/− MEF cells (Figure 4-

4A). Of interest, a dramatically reduced baseline level of eIF2α phosphorylation was 
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observed in these cells. The dual knockout cells responded to poly(I:C) demonstrating 

functional PKR and the ability of their eIF2α to be phosphorylated (Figure 4-4B). These 

data demonstrate that both GCN2 and PERK are responsible for nucleofection-induced 

phosphorylation of eIF2α. 
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Figure 4-4. Phosphorylation of eIF2αααα in dual-knockout cells following nucleofection 
(A) GCN2−/−/PERK−/− MEF cells were nucleofected or mock-treated, then lysed at 
indicated time. Phosphorylation of eIF2α was assessed in aliquots of lysate by western 
blotting. (B) GCN2−/−/PERK−/− MEF cells were treated with poly(I:C) or mock treated 
and then lysed four hours following transfection. Phosphorylation of eIF2α was assessed 
in aliquots of lysate by western blotting and quantified. Band intensities are represented 
as the ratio of phosphorylated to total eIF2α, expressed as fold increase over eIF2α 
phosphorylation in mock treated cells (indicated by the dashed line). 
 



 

  85 

4.4 Discussion 

 We demonstrate that nucleofection induces phosphorylation of eIF2α. In studies 

using knockout cell lines, we identify GCN2 and PERK as the kinases responsible for the 

remaining nucleofection-induced phosphorylation of eIF2α. The experiments in dual-

knockout cells will be repeated to confirm this finding. We identify that the electrical 

shock component of nucleofection leads to the activation of GCN2 and PERK and 

subsequent phosphorylation of eIF2α. This is demonstrated by the lack of induced eIF2α 

phosphorylation in mock-treated cells, which were subjected to the same handling and 

buffers as nucleofected cells. This effect of electrical shock has not been previously 

reported and could be a common feature of electroporation or may be a specific effect of 

nucleofection. Underhill et al. 251 examined eIF2α phosphorylation following 

electroporation, but did not observe an increase unless DNA was also included in the 

electroporation. Similarly, data reported by Tesfay et al. did not find substantial 

phosphorylation of eIF2α following electroporation 241. However, it is likely that the 

timing and level of eIF2α phosphorylation induced by electrical shock will vary with the 

electrical parameters. 

 In single-knockout cell lines, the absence of GCN2 had a pronounced effect on 

nucleofection-induced eIF2α phosphorylation, while no effect was observed with the 

absence of PERK alone. Additionally, the kinetics of eIF2α phosphorylation were unique 

in GCN2−/− cells, where there was little initial phosphorylation of eIF2α, which then 

increased to peak at 2 hours following nucleofection. In PERK−/− cells, on the other hand, 

the pattern of eIF2α phosphorylation was similar to that observed in WT cells. 
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Elimination of nucleofection-induced eIF2α phosphorylation required the absence of 

both GCN2 and PERK. Together these data suggest that the initial phosphorylation of 

eIF2α is mediated through GCN2, which is subsequently supplemented by increasing 

PERK activity. 

 GCN2 is activated by a range of stresses, including nutrient limitation, 

proteosome inhibition, oxidizing conditions, high salinity, and UV irradiation. In all cases, 

it is thought that GCN2 activation requires the binding of uncharged tRNA to GCN2 (see 

64). In contrast to WT cells, in GCN2−/− cells, we observed only low level eIF2α 

phosphorylation at the earliest time point following nucleofection, suggesting that 

nucleofection has an immediate impact on the availability of charged tRNAs. 

PERK is an ER-associated transmembrane protein that normally exists inactive as 

a heterodimer with the chaperone BiP. ER stresses, such as excess misfolded protein, 

cause dissociation of BiP from PERK, allowing PERK homodimerization and activation 

19. The absence of nucleofection-induced eIF2α phosphorylation in GCN2−/−/PERK−/− 

cells suggests that the phosphorylation of eIF2α seen in GCN2−/− cells results from 

PERK activation and occurs later than GCN2 activation following nucleofection. 

Nucleofection may directly cause ER stress leading to PERK activation. Alternatively, 

nucleofection-induced PERK activation may occur only in the absence of GCN2. In this 

scenario, GCN2 activation following nucleofection results in translational repression. 

However, in the absence of GCN2, unrepressed translation leads to ER stress and PERK 

activation. Examining GCN2 and PERK phosphorylation in WT cells and comparing 

PERK phosphorylation in WT and GCN2−/− cells would clarify if PERK activation is a 

primary consequence of nucleofection or a secondary consequence of GCN2-knockout.  
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In MEF cells, the level of nucleofection-induced eIF2α phosphorylation typically 

returned to baseline levels by four hours following nucleofection, although in some cases 

extended through 24 hours (data not shown). Given this timeframe, transgene expression 

following delivery of mRNA is likely to be affected most dramatically, although early 

expression following plasmid transfection would be impacted as well. Numerous 

therapeutic approaches using mRNA delivery are under exploration, including 

transfection of dendritic cells (DCs) with mRNA encoding tumor antigens 92, delivery of 

mRNA encoding vaccine antigens 192, cancer immunotherapy through transfection of T 

cells with mRNA encoding chimeric antigen receptors (CAR) 22, stem cell research 198, 

and induced pluripotent stem (iPS) cell generation 4, 126, 238, 261, 266. Notably, nucleofection 

delivery has now translated into ongoing clinical trials. 

 In addition to reducing translation of a transfected gene, eIF2α phosphorylation 

has a general impact by repressing global translation in cells. This is of particular concern 

for nucleofection of primary cells, which are often more fragile, and where minimal 

disturbance is requisite. Therefore, my ongoing studies are examining nucleofection-

induced eIF2α phosphorylation in human PBMC, DC, and CD4+ T cells. Multiple current 

trials employ nucleofection of patient’s cells for re-administration and minimizing 

cellular stress to maximize cell survival is important to these approaches.  

 To achieve maximum benefit from nucleofection, it will be valuable to design 

methods to obviate nucleofection-induced eIF2α phosphorylation. When serine 51 of 

eIF2α is mutated to alanine (eIF2α-S51A), eIF2α cannot be phosphorylated, and 

therefore is unaffected by eIF2α kinase activity, allowing ongoing translation despite 

eIF2α kinase activation 221, 276. Co-delivery of mRNA encoding eIF2α-S51A with an 
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mRNA transgene of interest would generate an increasing pool of non-phosphorylated 

eIF2α which could offset nucleofection-induced eIF2α phosphorylation. A similar 

approach was seen to enhance translation following delivery of plasmid DNA 251. Due to 

the long half-life of eIF2α, estimated as 10 days 75, this approach would be expected to 

have a long-lasting impact in transfected cells. Similarly, mRNA encoding inhibitors of 

eIF2α kinases, such as the vaccinia K3L protein 134, could be co-transfected with an 

mRNA of interest to limit eIF2α phosphorylation. Alternatively, mRNA transcripts could 

be designed to take advantage of eIF2α phosphorylation rather than attempting to prevent 

it. In contrast to the majority of transcripts, translation of select cellular mRNAs is 

upregulated following eIF2α phosphorylation, including GCN4 174 and ATF4 106, and this 

property is dependent on the 5’ UTR of these transcripts. Producing in vitro transcribed 

mRNAs containing the GCN4 5’UTR might therefore allow selective translation through 

the duration of eIF2α phosphorylation following nucleofection.  

In summary, we demonstrate that nucleofection of cells stimulates transient 

phosphorylation of the translation initiation factor eIF2α, mediated by GCN2 and PERK. 

Phosphorylation of eIF2α, in general, results in inhibition of translation, limiting 

translation of transfected mRNA and causing cell stress. These consequences have 

important implications in the design and delivery of nucleic acid-based therapies. 
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CHAPTER 5 

 

Conclusions, implications, and future directions 

 

5.1 Summary of results 

Cells possess multiple pathways to detect and defend themselves from the danger 

of exogenous RNA. Here, we establish that exogenously delivered in vitro transcribed 

mRNA activates two of these systems, PKR and the 2-5A system. We further 

demonstrate that the presence of modified nucleosides in RNA reduces the activation of 

these RNA sensors, as well as the ability of RNase L to cleave modified RNA. The 

activation of these systems results in an inhibition of translation of the unmodified in 

vitro transcribed mRNA. In contrast, translation of mRNA containing modified 

nucleosides remains high as a consequence of reduced PKR and OAS activation. In 

addition, incorporation of modified nucleosides increases the in vivo half-life of mRNA. 

Prompted by studies of mRNA transfection methods, we also show that nucleofection 

induces phosphorylation of eIF2α. This effect is independent of mRNA delivery and is 

mediated through activation of GCN2 and PERK. 

 

5.2 RNA danger recognition 

The presence of modified nucleosides in RNA reduces the activity of PKR, OAS, 

and RNase L compared to unmodified RNA. Previous reports have indicated similar 

results for other RNA sensors, TLR3, TLR7, TLR8 and RIG-I. Together, these data 

support an interpretation that the absence of modified nucleosides in RNA is a common 
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pattern recognized by RNA-responsive host defense sensors. Furthermore, this is 

consistent with the precedent set by the identification of non-methylated CpG DNA as 

the ligand for activation of TLR9. A conceptually similar but mechanistically distinct 

approach is also used by some bacteria, which methylate portions of their own genome. 

This protects their DNA, whereas external, unmethylated DNA is recognized and 

degraded by restriction enzymes.  

The frequency and types of nucleoside modifications found in RNA increase in 

parallel with evolutionary complexity. Accordingly, mammalian RNA contains many 

more modified nucleosides than bacterial RNA. Consequently, the paucity of modified 

nucleosides in bacterial RNA serves as a molecular pattern for recognition by mammalian 

RNA sensors 130. Similar to bacterial RNA, mtRNA contains few modified nucleosides. 

During apoptosis mtRNA is degraded, but is not degraded in necrotic cell death. RNA 

from necrotic cells activates DC more than RNA from apoptotic cells. Again, in this 

scenario the presence of unmodified RNA may function as a danger signal recognized by 

innate RNA sensors. 

Uridine has been reported to be especially important for immunostimulation by 

RNA 231 and has been identified as an important contributor to activation of TLR7 and 

RIG-I 66, 67, 111, 116, 253, and immunostimulation is reduced by modification of uridine 115, 

130, 131, 219, 231. Consistent with these reports, we saw that the uridine modification Ψ had 

the largest impact on mRNA translation, and that RNA containing the uridine 

modification s2U was the least activating to PKR and OAS. 

The functions of nucleoside modifications in RNA are not well understood. 

Although some modification sites play important structural roles in tRNA and rRNA, no 
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specific function has been identified for most sites of nucleoside modification.  A 

contributing factor in the evolutionary development and maintenance of nucleoside 

modifications in RNA may be the ability to mark self-RNA and distinguish it from 

pathogenic RNA. Consistent with this proposal, previous work in our lab demonstrated 

that mammalian tRNA, which is highly modified, does not induce tumor necrosis factor 

(TNF)α secretion by DC. Here, we additionally demonstrate that mammalian tRNA does 

not activate PKR. In contrast, mammalian poly(A) purified mRNA induced little TNFα 

secretion by DC but did activate PKR in vitro. Mammalian mRNA contains relatively 

few modified nucleosides and, therefore, other mechanisms may be needed to prevent its 

recognition by PKR and other RNA sensors. From this standpoint, nucleoside 

modification is likely to function in concert with RNA capping, protein-coating of RNA, 

compartmentalization of RNA sensors, and RNase-mediated control. 

 

5.3 Roles of modified nucleosides in pathophysiology  

Hyper-modification of viral RNAs has been reported, with viral RNAs containing 

1−15 m6A compared to 3−5 in mammalian mRNAs 27, 179. Adenosine m6A modification 

has been reported for adenovirus, avian sarcoma virus, reovirus, herpes simplex virus 

(HSV)1, influenza, Rous sarcoma virus, and simian virus 40 36, 127, 143, 172, 234; and m5C 

was reported in the mRNA from Sindbis virus and adenovirus 72, 234. Uniquely, turnip 

yellow mosaic virus RNA contains Ψ and m5U 14. Methylation of viral RNA occurs 

during the nuclear phase of the viral life cycle, and thus has not been reported for viruses 

that replicate exclusively in the cytoplasm. Increased nucleoside modification would 

benefit viruses by preventing immune activation by viral RNAs, and, therefore, may 
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represent an immune evasion strategy. In contrast to viruses, the level of nucleoside 

modification in bacterial RNA is vastly reduced as compared to mammalian RNA. In the 

studies leading up to this dissertation, it was shown that the presence of Ψ in mRNA 

prevented translation in E. coli lysate 131. Therefore, bacteria may be unable to use the 

strategy of increased nucleoside modification due to other functional limitations, such as 

intolerance of nucleoside modifications by the bacterial translation apparatus. To address 

this possibility, it would be valuable to perform studies examining bacterial translation of 

mRNA containing m6A and m5C, which are naturally-occurring components of 

eukaryotic mRNA. However, bacteria have taken advantage of nucleoside modifications 

to develop resistance to antibiotics. Bacteria introduce additional sites of nucleoside 

modification, primarily methylation, into functionally relevant rRNA sites. These 

modifications sterically block drug binding and thereby prevent drug activity 71. 

RNA modification and RNA-modifying enzymes also contribute to genetic and 

autoimmune diseases. Dyskeratosis congenita, mitochondrial myopathy, and sideroblastic 

anemia each result from mutations in pseudouridine synthases 34, 271. The expression level 

of TLR7 is linked to the development of systemic lupus erythematosus (SLE) 197, 228. 

Fibrallarin, a 2’-O-methylating enzyme, is an autoantigen in autoimmune rheumatoid 

arthritis, SLE, and systemic sclerosis (reviewed in 132), although the role of RNA 

methylation has not been explored. With these conditions as precedents, RNA sensors 

and RNA-modifying enzymes may be involved in other autoimmune conditions as well. 

In light of the role that nucleoside modifications play in limiting RNA sensor activation, 

defects in RNA-modifying enzymes should be investigated as risk factors or disease 

modulators in the development and progression of autoimmune diseases. 
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5.4 Implications for therapeutic RNA delivery 

Gene therapy approaches based on mRNA delivery have advantages over plasmid 

and viral-vector based delivery 28, 192, 204, 267. The safety profile for mRNA delivery is 

excellent, as there is no danger of replication or recombination. RNA cannot integrate 

into the host genome, which is an inherent risk for plasmid and viral vectors. Having no 

protein component, mRNA-based delivery avoids the problems of adaptive immunity that 

limit viral-based delivery. Manufacturing of mRNA is simple and easily scalable. 

Because mRNA does not need to reach the nucleus, unlike plasmids and some viral 

vectors, the transfection efficiency of mRNA is high even in primary and non-dividing 

cells. Protein expression from mRNA is very rapid, beginning within minutes of 

transfection. Translation from mRNA is directly proportional to the amount of mRNA 

delivered, allowing dose-dependent control of transgene expression. Gene size 

restrictions are prohibitive for some vector strategies, but are not an issue for mRNA. The 

transient nature of mRNA – typical intracellular mRNA half-lives are only hours to days 

– can be beneficial as well, allowing temporal control of gene expression and cessation of 

treatment in the event of an adverse reaction. This would be especially beneficial for 

applications such as iPS cell generation, where temporary expression is required but 

long-term expression and retention of the vector are undesirable 4, 261, 266.  

Use of mRNA containing modified nucleosides retains these valuable features of 

mRNA-based therapy and also benefits from additional advantages. Delivery of mRNA 

containing modified nucleosides would permit a reduced dose, due to enhanced protein 

expression from each transcript. Modified mRNA persists and is translated longer, due to 
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enhanced stability, which would decrease the frequency of administration needed for 

long-term replacement. Activation of RNA sensors is reduced by nucleoside 

modifications, and therefore modified RNA avoids unwanted side effects including 

inhibition of cellular translation, rRNA cleavage, and pro-inflammatory signaling. 

Additionally, decreased activation of RNA sensors also reduces the risk of developing 

adaptive immune responses against the encoded protein(s). 

When mRNA is used to deliver a vaccine antigen, it has been proposed that 

immunostimulation by the RNA could contribute to developing the desired adoptive 

immune response. Because nucleoside modifications reduce RNA immunogenicity, if 

modified mRNA were used for vaccine delivery this potential benefit might be 

compromised. This drawback might be mitigated through careful selection of the 

nucleoside modification used. For example, incorporation of m5C in mRNA enhances 

translation but m5C-containing mRNA still activates primary DC. Alternatively, a 

vaccine based on modified mRNA may need to be supplemented with an adjuvant. This 

would enhance immunostimulation, while still retaining the other advantageous 

properties of nucleoside-modified mRNA. In addition, the lack of PKR and OAS 

activation in the DC would allow greater production of important cytokines and 

costimulatory molecules needed in the generation of an effective adaptive immune 

response. 

For ex vivo delivery of mRNA, nucleofection is an efficient delivery approach but, 

as we demonstrate, also induces phosphorylation of eIF2α. Phosphorylation of eIF2α 

concurrent with mRNA delivery will limit translation during the critical window when 
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the concentration of transfected mRNA is at its peak. Strategies to circumvent this caveat 

are needed to maximize the utility of this transfection method. 

Translation of both unmodified and Ψ-containing mRNA was increased in PKR−/− 

MEF cells compared to WT cells. This result is intriguing, but extrapolation of data 

obtained through direct comparison must be taken with caution given the clonal nature of 

the cells used in this study. However, if this result is repeatable in primary cells from 

PKR−/− mice, it suggests that further translational enhancement of modified RNA can be 

obtained in the absence of PKR activity. Co-delivery of PKR inhibitors or siRNA with 

therapeutic mRNA could permit additional translational enhancement. 

Importantly, the modifications tested herein all occur naturally in cells and do not 

run the potential risks associated with chemically synthesized modified nucleosides that 

do not occur naturally in RNA. Of the modifications tested, U-modifications most 

consistently reduced RNA sensor activation and Ψ-modification produced the largest 

increase in translation. Therefore, we propose that of the tested modifications, Ψ-

containing mRNA has the largest potential therapeutic benefit. Studies of additional U 

modifications may yet identify additional modified mRNAs with even better properties 

offering still greater therapeutic benefits. 

 

5.5 Future directions and applications 

Although RNase L cleaves unmodified RNA more efficiently than Ψ-containing 

mRNA in vitro, the half-life of Ψ-modified mRNA is longer than that of unmodified 

mRNA in both WT and RNase L−/− MEF. Therefore, the factor(s) responsible for the 
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enhanced retention of Ψ-mRNA remain unknown at this time. The enhanced persistence 

of Ψ-mRNA may result from reduced nuclease cleavage at Ψ residues. Nucleases that 

could be responsible for the enhanced stability of Ψ-mRNA include Xrn1 or the exosome, 

which comprise the predominant RNA degradation pathways 16, or ISG20, an IFN-

inducible ssRNA-specific ribonuclease 183. A related possibility is that the presence of Ψ 

alters RNA binding by non-RNase proteins which facilitate RNase activity, such as zinc-

finger antiviral protein (ZAP) or exosome components 98. Alternatively, the presence of 

Ψ has also been shown to increase the thermal stability of RNA duplexes, and in this way 

could reduce RNA accessibility to ssRNA-specific nucleases. 

Additional experiments are needed to expand our understanding of nucleofection-

induced eIF2α phosphorylation. In GCN2−/− MEF the timing of eIF2α phosphorylation 

was delayed and the extent was reduced. This indicates that GCN2 contributes to 

nucleofection-induced phosphorylation but may not be solely responsible. An initial 

study in GCN2−/−/PERK−/− double-knockout cells suggested that nucleofection does not 

induce eIF2α phosphorylation if both PERK and GCN2 are absent. Examining GCN2 

and PERK phosphorylation in WT and GCN2−/− cells will verify GCN2 and PERK 

activation following nucleofection. In addition, although inhibition of translation is the 

expected result of eIF2α phosphorylation, this should be experimentally confirmed and 

its effect on translation of transfected mRNA should be demonstrated. Finally, the extent 

and duration of nucleofection-induced eIF2α phosphorylation should be examined in 

clinically relevant cells such as human T-cells. 
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The effect of modified nucleosides on other RNA sensors needs to be investigated, 

including NLRs, ADAR, and HMGBs. We propose that nucleoside modifications will 

reduce activation of these sensors. In addition to PKR, other unidentified proteins were 

pulled down from cell lysates by unmodified mRNA by not by Ψ-mRNA, and we 

hypothesize that some of these proteins may yet be identified as other RNA sensors. It 

will also be of interest to identify the protein that was pulled down specifically by Ψ-

mRNA. 

The conceptual value of modified mRNA must also be tested in translational 

therapeutic models. Delivery of mRNA containing modified nucleosides could readily be 

tested for treatment of conditions that are currently treated by injection of purified 

proteins, such as erythropoietin for treatment of anemia, clotting factors VIII and IV for 

hemophilia, and IFN for cancer and anti-viral therapies. Abundant clinical and pre-

clinical trials are investigating the mRNA transfection of DCs for anti-tumor 

immunotherapy, and these as well as other vaccination strategies could benefit from the 

use of modified mRNA. The ability to generate iPS cells through transfection of a limited 

number of transcription factors holds great promise for the development of cell therapies. 

However, the clinical application of iPS cells may be limited by the risks associated with 

integration of the retroviral vectors used for transduction. Therefore, delivery of 

transcription factors encoded on modified mRNA may provide a safer alternative method 

for iPS cell generation. 
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A.1 Abstract 

The development of an HIV vaccine that induces broad and potent immunity is 

critically needed. Viruses, including lentiviruses, have been used as vectors for ex vivo 

transduction of antigens into dendritic cells (DC). We hypothesized that DC transduced 

with a vector that allows selective infection of DC could induce potent immunity by 

continually priming DC. A lentiviral vector encoding HIV gag-pol without env would 

form viral cores in transduced DC, but would release non-infectious particles by budding 

into endosomes and releasing apoptotic bodies or exosomes containing viral cores. DC 

function by endocytosing DC-derived apoptotic bodies, and they are specialized in their 

ability to move endocytic contents into the cytoplasm. We postulated that endocytosis of 

vector cores could lead to transduction of a second round of DC. In this report, we 

demonstrate accumulation of viral cores inside transduced DC and show second-round 

transduction of immature DC that endocytose transduced DC in vitro. The effectiveness 

of immunization of mice with transduced DC to induce specific lymphocyte activation 

was assessed. Mice developed antigen-specific T cell responses and specific antibodies 

after immunization.  Transduction of DC with a replication-competent but conditionally 

infectious lentivirus could be a novel vaccine strategy for HIV. 
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A.2 Introduction 

A safe and effective vaccine for HIV is critically needed to combat the worldwide 

scourge of AIDS. While the correlates of immune protection have yet to be clearly 

defined, either for protective or therapeutic vaccines, it is widely believed that both CD4+ 

and CD8+ T cell as well as humoral immunity are important. How sufficiently broad, 

potent, and sustained responses can be elicited has yet to be determined, and this 

represents a critical gap in our understanding of how to generate an effective vaccine 

such that protective or therapeutic immunity can be achieved. 

Selection and activation of lymphocytes is a function of antigen presentation by 

dendritic cells (DC), making DC a logical vehicle for immunotherapy 11. Early studies 

showed that DC loaded with tumor extracts 6, 182 or antigenic peptides 6, 41, 164, 182 induced 

anti-tumor immunity in both laboratory mice 6, 41, 164 and human melanoma patients 182. 

More recently, viruses have been used as gene transfer vectors for the ex vivo 

transduction of DC with selected antigens. Lentiviral vectors have a number of 

advantages over adenoviruses, adeno-associated viruses, poxviruses, and alphaviruses. 

Transduction is stable due to chromosomal integration and non-dividing cells are 

efficiently transduced 153. Lentivirally transduced DC have been studied for their ability 

to induce anti-tumor immunity. Breckpot et al. 31 demonstrated that murine DC 

transduced with a lentivirus encoding a truncated variant of ovalbumin (OVA) protected 

against tumor challenge with OVA-expressing cells. He et al. 110 recently described the 

transduction of murine DC with a lentiviral vector encoding OVA, and showed, by direct 

comparison, superiority to peptide/protein-pulsed DC for the stimulation of T cell 

responses. B cell responses to lentiviral vector-transduced DC are typically absent. 
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Optimal antigen presentation depends on the form in which the antigen is 

delivered as well as DC activation (reviewed in 12), which is induced in vivo by the 

interaction of pathogen-associated molecular patterns with Toll-like receptors (TLR) on 

DC, as well as other inflammatory mediators and receptors. Most DC vaccination 

strategies employ ex vivo maturation through one of several agents, such as TLR4-

recognized lipopolysaccharide 31, 275 or tumor necrosis factor-α (TNF-α) 165. Mature DC, 

after activating T cells, undergo apoptosis 58. Therefore, regardless of the stability of DC 

transduction, optimal antigen presentation is limited to the time during which the 

transduced DC are mature but non-apoptotic. The added complication to induction of 

immunity against transformed cells and possibly also chronic viral infections is that in the 

absence of a continued danger signal, the immune response may diminish. This has led to 

the hypothesis that repeated immunization with cancer vaccines are required 32. The weak 

immunogenicity of many important antigens led us to consider whether we could 

overcome the apoptosis limitation and develop an approach that continues to prime until 

a strong antigen-specific effector response is achieved. 

Lentiviruses have three main genes: gag, pol, and env. The gag and pol genes 

encode proteins required to replicate nucleic acid and assemble and process the virus, but 

env is required for infectivity. It has been demonstrated that a vector containing gag and 

pol but not env makes and releases viral cores 83, 94, but these cores are not infectious. In 

lymphoid organs, mature DC apoptose after presenting their antigens to T and B cells. 

The resulting apoptotic bodies are taken up by neighboring DC leading to a process of 

antigen sharing 2. DC are highly specialized in moving endocytic contents into their 

cytoplasm 61, 86, 158, 163, 190, 227, and we hypothesized that uptake of free viral cores or 
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apoptotic bodies or exosomes containing viral cores could lead to transduction of the 

engulfing DC. As this would lead to continued priming through multiple cycles of 

engulfment, vaccination with DC transduced with such a vector would induce strong, 

specific T and B cell responses against vector constituents. 
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A.3 Materials and methods 

Mice 

Female BALB/c mice aged 6 weeks were purchased from Charles River 

Laboratories (Wilmington, MA) and cared for according to institutional guidelines at the 

University of Pennsylvania under a protocol approved by the Institutional Animal Care 

and Use Committee. 

 

DC generation 

Murine DC were generated as previously described 122, 154 in RPMI 1640 

(Invitrogen, Carlsbad, CA) containing 10% heat-inactivated fetal bovine serum (FBS; 

HyClone Laboratories, Logan, UT), 2 mM L-glutamine, 10 mM HEPES buffer solution 

(RPMI/10% FBS; Invitrogen) and 20 ng/mL recombinant mouse GM-CSF (R&D 

Systems, Minneapolis, MN). Media with GM-CSF were replaced every 2–3 days and DC 

were harvested on day 7. 

 

Lentiviral vector production and determination of copy number 

Vectors were created by VIRxSYS Corporation. Their genomic structure and 

production has been previously described 152. Briefly, a two-plasmid system packages 

vector genome, as well as reverse transcriptase and integrase. Viruses were pseudo-typed 

with vesicular stomatitis virus-G envelope, and copy number was determined by TaqMan 

quantitative PCR. Vector VRX418 encodes full-length, functional gag-pol, while the 

otherwise identical control vector, VRX494, does not. Both vectors express eGFP. 
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Transduction of DC with lentiviral vector 

Concentrated vector solution (~109 transducing units/mL) was added to DC at a 

MOI of 50 and incubated overnight. Cells were extensively washed, TNF-α (16 ng/mL; 

R&D Systems) was added, and cells were incubated overnight. Negative control DC were 

treated identically except for vector addition. In certain experiments, spinoculation was 

used (2 hours at 1200 × g), where a non-significant increase in transduction efficiency 

was noted 189. 

Second-round transduction was performed by freeze-thawing 1–2 × 105 

transduced, with either VRX418 or VRX494 (range of transduction efficiencies from 25 

to 55%), DC three times using dry ice and a 37º C water bath and adding them to tenfold 

more (based on the number of transduced cells) autologous DC. The second set of DC 

were prepared 1 week after the first set. One and 4 days after addition of freeze-thawed 

DC to new DC, cells were analyzed by flow cytometry. 

 

Real-time PCR 

Cells (2.5 × 103) were lysed (100 mM KCl, 0.1% Nonidet P-40, 20 mM Tris pH 

8.0, 500 µg/mL proteinase K (Sigma-Aldrich, St. Louis, MO) at 60º C overnight, then at 

90º C for 25 minutes. Real-time PCR was performed in an Applied Biosystems Prism 

7700 Sequence Detector (Foster City, CA) using AmpliTaq Gold enzyme with buffer II 

per manufacturer's instructions (Applied Biosystems), including 50 mM MgCl2 and 2.5 

mM of each dNTP (Promega, Madison, WI). Gag DNA was detected using the following 

primers and probe: 5’-CAGAATGGGATAGATTGCATCCA-3’, 5’-

ATCCTATTTGTTCCTGAAGGGTACTAGTA-3’, and 5’-[FAM]-
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CTATTGCACCAGGCCAGATGAGAGAACC-[TAMRA]-3’ (Sigma-Genosys, The 

Woodlands, TX). Copy number was quantified against a dilution series from lysed ACH-

2 cells (NIH AIDS Research and Reference Reagent Program; original source Dr. T. 

Folks 47, 85). Quantification of the abortive forms, 2-LTR circles 33, used the following 

primers and probe: 5’-GCTAACTAGGGAACCCACTGCTTA-3’, 5’-

TCAGGGAAGTAGCCTTGTGT- 

3’, and 5’-[FAM]-GTCACACAACAGACGGGCACACACTACT-[TAMRA]-3’. 

 

p24 ELISA on DC culture supernatants 

Transduced DC supernatants were analyzed for p24 gag protein content by 

ELISA (Beckman Coulter, Fullerton, CA). 

 

Electron microscopy with anti-p55 staining 

DC were analyzed according to standard EM protocols by the University of 

Pennsylvania Biomedical Imaging Core and stained using a monoclonal antibody to HIV-

1 p55 (ARP313; Centralized Facility for AIDS Reagents, Herts, UK; original source Drs. 

R. B. Ferns and R. S. Tedder 80, 81 . ARP313 was visualized using anti-mouse IgG labeled 

with electron-dense gold particles 181. 

 

Vaccination and serum collection 

Mature DC were resuspended in PBS at 5 × 106 cells/mL. Mice were injected 

with 1 × 105 VRX418-transduced DC in a hind footpad. Control mice were injected with 

1 × 105 untransduced, matured DC. Immunizations were separated by 2 weeks for two to 
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three injections. Animals were sacrificed 7–12 days after the final injection, with all 

animals in a given group analyzed simultaneously. Prior to injections, serum was 

collected from each mouse using a Goldenrod Animal Lancet (MEDIpoint, Mineola, NY). 

 

Flow cytometry 

Transduced DC expressing eGFP were analyzed with the addition of propidium 

iodide (PI) to exclude dead cells. For intracellular p24 analyses, DC were fixed in 2% 

paraformaldehyde (Sigma-Aldrich), which quenches eGFP, and permeabilized in 

PBS/1% FBS/0.1% saponin (Sigma-Aldrich). Samples were stained with anti-p24-FITC 

antibody (KC57) (Beckman Coulter) for 30 minutes at room temperature, washed, and 

analyzed. Samples for the above experiments were acquired on FACScan and 

FACSCalibur flow cytometers (BD Biosciences, San Jose, CA), and data were analyzed 

using FlowJo software (Tree Star, Ashland, OR).  

For Tetramer analyses, splenocytes were incubated with Fc block (anti-mouse 

CD16/CD32; BD Pharmingen), and then stained with MHC class I tetramer H-

2Kd/AMQMLKETI-streptavidin-PE (NIAID MHC Tetramer Facility, Atlanta, GA; 

peptide from New England Peptide, Gardner, MA) 161. Samples were then stained with 

anti-mouse antibodies CD3e-FITC, CD11b-PerCPCy5.5, and CD8a-PE-Cy7; or CD62L-

FITC, CD8a-PerCP, and CD11b-allophycocyanin (BD Pharmingen). For certain samples, 

prior to running, TO-PRO-3 (Invitrogen) was added.  

For intracellular cytokine analyses, splenocytes (5 × 106 cells/mL) were 

stimulated with a gag peptide pool (15-mer peptides spanning the protein with 11 amino 

acid overlaps, each peptide at 0.25 µg/mL; NIH AIDS Research and Reference Reagent 
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Program, No. 8117), or a pool of irrelevant peptides (equally concentrated env clade C 

15-mer peptides; NIH AIDS Research and Reference Reagent Program, No. 9499). As a 

positive control, splenocytes were treated with 50 ng/mL phorbol 12-myristate 13-acetate 

and 500 ng/mL ionomycin calcium salt (Sigma-Aldrich). Human recombinant IL-2 (50 

U/µL) was added to enhance IFN-γ production 194. After 1 h, 10 µg/mL brefeldin A 

(Sigma-Aldrich) was added. After four more hours, cells were treated with PBS/0.5 mM 

EDTA for 10 minutes and then stained with the anti-mouse antibodies CD44-FITC, CD4-

PerCP, CD8a-PE-Cy7, and CD3eallophycoyanin-Cy7 (BD Pharmingen), fixed in 2% 

paraformaldehyde, permeabilized with 0.1% saponin, and stained for IFN-γ-PE and IL-4-

allophycocyanin (BD Pharmingen). For tetramer and intracellular cytokine studies, 1 × 

106 events were acquired on a FACSCanto (BD Biosciences) and analyzed using FlowJo 

software. 

 

p24 antibody ELISA of serum samples  

Serum samples were added in triplicate at 1:50 and 1:500 dilutions to 96-well 

plates coated with HIV gag p24 protein (Immunodiagnostics, Woburn, MA). A standard 

curve was constructed using a purified anti-HIV-1 p24 monoclonal antibody (183-H12–

5C; NIH AIDS Research and Reference Reagent Program; original source Dr. Bruce 

Chesebro and Kathy Wehrly 46, 245). Detection antibody (anti-mouse IgG-peroxidase 

antibody; Sigma-Aldrich) was added followed by a 50/50 solution of 3,3’,5,5’-

tetramethylbenzidine and H2O2 (KPL, Gaithersburg, MD), and absorbance was measured 

at 450 nm on a Dynex Technologies MRX microplate reader. 
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Statistics 

Statistics were performed using Microsoft Excel. Standard errors of the mean 

were calculated from triplicate measurements of a sample. Standard deviation and 

Students t-test (two-tailed) were used for comparing populations. 

 

 



 

  109 

A.4 Results 

Lentiviral transduction of murine DC 

We first determined the efficiency of transduction of the HIV vector containing 

functional gag-pol, VRX418, and the otherwise similar vector VRX494, which lacks a 

functional gag-pol (Fig. A-1). During preliminary experiments, we established a protocol 

in which bone marrow-derived murine DC were transduced on day 7 at an MOI of 50. 

Enhanced GFP (eGFP) expression gave a typical transduction of 20–35% clearly positive 

cells after 1 day, which was still present 8 days later (Fig. A-2A and B). These data show 

that VRX418 and VRX494 efficiently transduced cultured bone marrow-derived murine 

DC. DC were also tested for intracellular p24 content. Fig. A-2C and D show that over 

50% of VRX418-transduced cells stained positive after 1 day, which could be argued to 

be input virus except that high-level p24 staining remained through 8 days of culture, 

while VRX494-transduced DC had baseline p24 staining. The difference in transduction 

efficiencies as measured by eGFP and p24 could be explained by the pattern of eGFP 

staining where a single shift in expression is observed, but not all cells express enough 

eGFP to move beyond the brightest of the unstained population. 
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Figure A-1. Map of the VRX418 and VRX494 lentiviral vector genomes 
VRX418 and VRX494 are derived from the NL4-3 molecular clone of HIV-1. VRX418 
contains 5’- and 3’-LTR, full-length and functional gag and pol, splice donor (SD) and 
splice acceptor (SA) sites, an anti-sense envelope payload, the Rev response element 
(RRE), and eGFP. VRX494 differs from VRX418 in that the gag-pol gene is replaced 
with the genome packaging site (psi) and the central polypurine tract (cPPT). 
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Figure A-2. eGFP and p24 gag protein expression in transduced DC  
Bone marrow-derived DC were transduced with VRX418 or VRX494 at an MOI of 50. 
Flow cytometric analysis was carried out to determine eGFP or intracellular p24 gag 
expression. (A) Day-1 plot of eGFP expression in live cells in VRX418- (empty) versus 
untransduced (shaded) DC. (B) Continued eGFP expression in VRX418- and VRX494-
transduced DC through day 8. (C) Day-1 plot of intracellular p24 gag staining in 
VRX418-transduced DC (empty) versus untransduced (shaded) DC. (D) Intracellular p24 
gag content remained elevated through day 8 post-transduction. Error bars are standard 
error of the mean for triplicate measurements. Data are representative of three 
experiments. 
 

The high level of intracellular p24 by day 1 shows that gag is produced quickly in 

transduced cells, but this does not clarify whether similar levels of continued production 

occur. We quantified the amount of p24 in transduced cell culture supernatants over days 
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1 through 8. To rule out the possibility that input gag from the vector contributed 

significantly to the measured values, we employed the control vector VRX494, which 

included a similar amount of input gag, as measured by p24 gag content of viral stocks, 

but does not encode functional gag protein. On day 1 post-transduction, cells were 

washed three times to remove input virus, and supernatants were collected after 4.5 hours 

and then on following days. As shown in Fig. A-3, p24 levels were high (>30 ng/mL) and 

remained high over all days of analysis in the VRX418 sample but were baseline in the 

VRX494 culture.  
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Figure A-3. Extracellular p24 gag production by transduced DC  
Bone marrow-derived DC were transduced with VRX418 or VRX494 at an MOI of 50. 
Transduced cells were washed three times the following day to remove input virus, and 
supernatants were collected on the indicated days. Supernatants were analyzed for p24 
gag content by ELISA. The day-6 level of gag protein is likely artificially low as fresh 
medium was added to the cells prior to the removal of supernatant for analysis. Error bars 
are standard error of the mean for triplicate measurements. Data are representative of 
three experiments. 
 

Having proven strong and continued transgene expression, we next sought to 

investigate the formation and integration of vector DNA in transduced cells with real-

time PCR. The number of gag DNA copies exceeded the number of cells in culture (data 

not shown), suggesting either that each cell underwent multiple integrations or that 

abortive, non-integrating DNA forms were present. We assayed for 2-LTR circles (and 1-

LTR circles by implication) 33, and we were able to show their presence, demonstrating 

that abortive integrations accounted for a portion of the vector DNA in DC. 
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Formation of viral cores in transduced cells 

The inclusion of full-length gag-pol within the coding region of the vector would 

lead to viral core formation in transduced cells. These would not be expected to form 

infectious particles, however, since there is no envelope present, but they could still bud 

83, 94 into endosomal compartments and be released (reviewed in 141) or be released within 

exosomes (reviewed in 60) or apoptotic bodies. To investigate this phenomenon, 

transduced DC were analyzed by electron microscopy (EM) with and without staining for 

HIV-1 p55. Illustrative photomicrographs from triplicate sample preparations are shown 

(Fig. A-4). 

In unstained samples of transduced DC (Fig. A-4A), small round cores (arrows) 

demonstrated the formation of vector cores. p55 staining confirmed consistent, significant 

p55 presence and clumping within transduced cells (Fig. A-4B) with absence of staining 

in untransduced samples (Fig. A-4C). Close grouping of p55 molecules in transduced 

samples confirmed viral core formation. The p55 monoclonal antibody specifically stains 

immature gag. As an additional control, viral stocks were stained for p55 and fewer than 

1% of the viruses had measurable staining. This demonstrated that the viral stock 

contained mature virions that did not stain. The identification of stained viral cores within 

DC demonstrated that these were newly formed virions and not trapped input virus. One 

day after pulsing, a time when exogenously delivered virus is cleared from endosomes 249, 

viral cores were observed that had budded into endosomal-like compartments (Fig. A-

4D). In fact, one of the two virions in the endosome in Fig. A-4D has the morphology of 

a matured virion with a well-defined core region. These results correspond closely with  
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the antibody staining shown previously 181, and the photomicrographs displayed here 

show particles similar to the HIV-1 cores seen in the EM studies of other groups 170, 233. 
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Figure A-4. EM of bone marrow-derived DC transduced with VRX418  
Cells were transduced at an MOI of 50 and placed in culture for 24 hours. Certain 
samples were stained with a monoclonal antibody to HIV-1 p55; the antibody was 
visualized using a secondary antibody with attached electron-dense gold particles. (A) 
High-power view showing viral cores (arrows) accumulating in the cytoplasm of 
transduced DC. (B, C) Gag p55 antibody-stained transduced (B) and untransduced (C) 
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DC. Transduced sample (B) shows a clumping distribution of p55 overlying viral cores. 
(D) High-power view showing two viral particles in an endosome-like compartment. One 
and possibly both of these particles demonstrate the classic appearance of mature 
particles with a central core. Scale bars are 100 or 500 nm. Data are representative of 
three preparations of transduced DC. 
 

“Second-round” transduction of DC 

We next tested whether immature DC could be transduced by uptake of viral 

cores from previously transduced cells. This ability would demonstrate that multiple 

rounds of transduction are possible, as each generation of DC is transduced by uptake of 

viral cores from the previous generation. DC were transduced with either VRX418 or its 

non-replicating counterpart, VRX494, and washed extensively to remove unbound virus. 

After a 24-hour incubation, cells were washed again, analyzed for eGFP expression, and 

equal numbers of transduced DC (5 × 104), set to 1 (Fig. A-5), were freeze-thawed three 

times to ensure complete cell death. New, immature DC were then added to each sample 

at a 10:1 ratio (5 × 105) to the transduced DC. 

eGFP analysis completed 1 and 4 days later showed that added cells in the 

VRX418 sample had been transduced as noted by an increase in the number of 

transduced cells to 4.5-fold greater than the input number of killed transduced DC, i.e. an 

increase from 5 × 104 transduced killed cells to 2.26 × 105 newly transduced added cells 

(Fig. A-5). VRX494-transduced cells that were pulsed with equal numbers of infectious 

units of vector demonstrated no transduction of second-round DC, indicating that initially 

added, trapped vector was not responsible for the second-round transduction. 
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Figure A-5. Second-round transduction  
Bone marrow-derived DC were transduced with either VRX418 or VRX494. After 
overnight incubation and extensive washing, flow cytometric analysis was performed, 
and the number of transduced cells in each sample was normalized to allow the addition 
of equal numbers of cells that were transduced (set to 1) to tenfold more untransduced 
immature DC. The first-round DC were freeze-thawed three times to ensure complete cell 
death, and immature second-round DC were then added. After 1 and 4 days, flow 
cytometric analysis was performed, which showed increasing transduction in the second-
round DC in the VRX418 sample but not in the non-replicating control (VRX494). Data 
are representative of three experiments. 
 

T and B cell responses to vaccination 

We next sought to test the immunogenicity of vector-transduced DC in a small 

animal model. Lentiviral vectors, especially ones based on HIV, that are used in mice 

have mammalian promoters to produced tumor-associated antigens 110, 165, 191, 274, 275. The 

commonly used Balb/c mouse model should be deficient in the ability of our vector, 

which uses HIV's promoter system, to replicate and undergo second-round transduction, 

as a post-integration block to HIV replication in mice has been described (reviewed in 50), 

although the above data showing p24 gag protein and viral cores suggests that murine DC 
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are capable of some level of protein production and virion formation. 

 Initial experiments looking for subsequent rounds of DC transduction in vivo in 

mice found a rapid extinction of vector-derived PCR signal in lymphoid tissue, 

suggesting that in the mouse, this vector could not efficiently undergo multiple rounds of 

transduction. Thus, repeated immunizations of vector-transduced DC were given to 

Balb/c mice. We delivered DC by subcutaneous injection, a route proven to lead to DC 

trafficking to draining lymph nodes 205 and induction of immune responses (reviewed in 

91, 92). DC were transduced on day 7 of culture, TNF-α was added on day 8, and 1 × 105 

cells, either transduced with VRX418 or untransduced controls, were injected on day 9, 

with two or three injections of freshly transduced DC separated by 2 weeks. Following 

the final immunization, mice were sacrificed after 7–12 days. 

MHC class I tetramer H-2Kd/AMQMLKETI staining demonstrated significant 

(p=0.0004) expansion of gag-specific CD8+ T cells. Data for a single experiment (Fig. A-

6A) and cumulative data for all immunized mice are shown (Fig. A-6B). Splenocyte 

populations were assayed for the intracellular production of IFN-γ and IL-4 in response to 

stimulation by either a gag peptide pool or a pool of irrelevant peptides. Mice developed 

significant CD8 responses as measured by IFN-γ expression (data not shown). CD4 

responses were also monitored, and VRX418 DC-immunized mice developed significant 

(p=0.00012) CD4+ T cell IFN-γ responses. Data for a single experiment (Fig. A-6C) and 

cumulative data for all immunized mice are shown (Fig. A-6D). No mouse developed a 

population of IL-4+ CD4+ T cells, arguing that a Th1 response was induced. 
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Figure A-6. T cell responses to vaccination with VRX418-transduced DC 
Bone marrow-derived DC were transduced with VRX418 at an MOI of 50. (A) TNF-α-
treated, transduced (VRX418) or untransduced (control) DC (1 × 105) were injected into 
the footpads of mice. Mice were sacrificed 7 days after a boost injection. Splenocytes 
were analyzed for tetramer (MHC class I tetramer H-2Kd/AMQMLKETI) expression on 
CD8+ T cells. One vector mouse did not receive the second immunization and was 
removed from this analysis. (B) Cumulative data for all immunized mice (14 VRX418 
and 15 control mice) are shown. Averaged tetramer staining level for each mouse is 
shown with standard deviations. (C) Transduced (VRX418) or untransduced (control) 
DC were injected into the footpads of mice every 2-weeks for three immunizations. Mice 
were sacrificed 11 days after the final injection. Splenocytes were analyzed for antigen-
specific IFN-γ production by CD4+ T cells. Data shown are the percentages of CD4+ T 
cells that expressed high levels of intracellular IFN-γ. (D) Cumulative data for all 
immunized mice are shown. The percent CD4+ T cells expressing IFN-γ were corrected 
by subtracting the level of staining from the irrelevant peptide pool averaged. Three 
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separate experiments with groups of five mice (represented by individual numbers) were 
immunized and analyzed, and representative (A, C) and all (B, D) data are shown. 
 

Serum was collected from each of the animals before each injection (days 0, 14, 

and 28) and at sacrifice (days 35–40). A p24-binding antibody ELISA was performed and 

the results are shown in Fig. A-7. A purified gag p24-specific monoclonal antibody was 

used to generate a standard curve in order to quantify the amount of gag-specific 

antibodies in serum. By the third immunization, every mouse immunized with VRX418-

transduced DC developed high antibody levels (10–120 µg/mL). 
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Figure A-7. Antibody responses to VRX418-transduced DC vaccination 
TNF-α treated, VRX418-transduced (squares) or untransduced (triangles) DC (1 × 105) 
were injected into the footpads of mice. Two boost injections were performed at 2-week 
intervals. Serum was collected before each injection (days 0, 14, and 28) and at sacrifice 
(day 39). Serum samples were analyzed in a direct binding ELISA against a standard 
curve constructed with an HIV-1 p24 monoclonal antibody. Data are representative of 
three experiments. Mean (horizontal bar) and standard deviation (error bars) are shown. 
p-values compare VRX418-transduced DC to control DC-immunized mice. 
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A.5 Discussion 

The purpose of this study was to investigate whether a conditionally infecting 

lentivirus could infect a second round of DC by the release of viral cores, either free or as 

part of apoptotic bodies or exosomes that are taken up by new DC leading to infection 

through the endosomal route. We observed second-round transduction of DC exposed to 

killed transduced DC, in vitro. Upon vaccination with these transduced DC, we observed 

potent anti-gag T and B cell activation. Unlike most studies that have induced T cell 

responses against diverse antigens through a variety of lentiviral approaches 78, 110, 165, 191, 

274, the potent B cell response is novel. 

While we were able to demonstrate second-round infection of DC in vitro, we 

could not demonstrate this in vivo and needed to reimmunize mice to obtain potent 

responses. This is likely due to the post-integration block to HIV replication in mice 50 

that makes second-round transduction an inefficient process. The likely mechanism for 

the potent CD4, CD8, and B cell response observed with VRX418 was the continuous 

production of gag-pol protein that was released as free protein or viral-like particles. The 

role of second-round infection/transduction in immune response development, in vivo, 

could not be measured, but remains the focus of future studies. 

VRX418 efficiently transduced bone marrow-derived murine DC, as evidenced 

by eGFP expression (Fig. A-2A and B), intracellular and extracellular p24 gag protein 

(Fig. A-2C, D and A-3), and the presence of gag DNA in transduced cells (data not 

shown). EM studies demonstrated approximately 100-nm viral cores in the cytoplasm and 

endosomes and a clumping distribution of anti-p55 antibody in association with cores 

within the cytoplasm of transduced cells (Fig. A-4). We hypothesized that these viral 
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cores would become accessible to immature DC for uptake by phagocytosis of apoptotic 

vesicles or exosomes. In addition, we observed mature virions in endocytic vesicles (Fig. 

A-4D) that could be released from transduced DC. Uptake by immature DC would then 

make possible a “second round” of transduction if vector cores could escape from the 

endosome to transduce the engulfing cell. This has been demonstrated to be a pathway 

for HIV infection in multiple cell types 54, 82, 105, 113, 193, 257. 

Figure A-8 illustrates this hypothesis in the context of our experiments. We 

designed in vitro investigations where we killed transduced cells that contained no 

original infectious vector and then added fresh, immature DC. When we analyzed these 

added DC by flow cytometry 1 and 4 days later, we found an increasing level of eGFP 

expression (Fig. A-5), indicating that these newly added, immature cells had been 

transduced by the viral cores present in the apoptotic DC. To exclude the possibility that 

the new DC were actually infected by free infectious virions from the initial transduction, 

we (i) waited a length of time shown in other studies to degrade endocytosed virus in DC 

and (ii) used DC infected with the same MOI of VRX494, a vector incapable of 

replication, and observed no increase in eGFP expression in exposed DC (Fig. A-5). This 

demonstrates that our “second-round” hypothesis occurs in vitro. 
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Figure A-8. Illustration of mechanism for second-round transduction 
Viral cores formed in the cytoplasm of DC transduced with the self-replicating, 
conditionally infectious lentivirus VRX418 are released by budding into endocytic 
vesicles followed by fusing of the vesicles with the plasma membrane, release of 
apoptotic bodies containing viral cores (pictured), and release of exosomes with viral 
cores. The viral cores are accessible to immature DC by endocytosis. Viral cores gain 
entrance to the DC cytoplasm and begin a second round of transduction. The cycle 
continues, with each round of transduced DC presenting antigen to T and B cells and 
activating specific immunity against the vector-derived antigens. The continued 
presentation would only end when cell-mediated immunity was able to eliminate 
transduced DC. Thus priming continues until a potent response develops. 
 

When mice were immunized with transduced DC, we observed no significant 

evidence of second-round transduction in limited experimentation, and we had to 

reimmunize mice to generate a potent response. It is understood that virions need to bud 

before efficient maturation occurs, and this would be required for second-round 

transduction. We believe that apoptotic blebbing of viral cores, or endocytic release of 
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viral cores as was observed by EM, led to virion maturation, but second-round 

transduction was a relatively inefficient process in vitro and likely a more inefficient 

process in vivo in the mouse model system where a post-integration block to viral 

replication has been observed 50. Our in vitro studies demonstrate that vector/viral 

replication in murine cells is not completely blocked. This is supported by other studies 

(reviewed in 65). It has been observed that by simply codon optimizing viral sequences, 

the production of infectious virions from murine cell lines could occur 65. Further studies 

are needed to optimize second-round transduction in vivo in models where HIV- or SIV-

based vectors replicate efficiently. 

Although antigen transfer in lymph nodes has been studied 17, 37, the mechanism 

in our system differs from the native activity of circulating and resident DC in that 

replication-competent viral cores are the antigen transfer vehicle. Studies of cross-

presentation have demonstrated that breakdown of endosomes and release of their 

contents occurs 61, 86, 158, 163, 190, 227, especially after certain types of DC activation 

including those induced by TLR3 and TLR9 ligands 55, 224. Proteins made within a cell 

are processed and presented via the MHC class I pathway, whereas exogenous proteins 

are presented by MHC class II. Although DC cross-presentation of exogenously obtained 

peptides by MHC class I is often discussed 59, 89, MHC class II presentation of 

endogenous antigens is a more novel concept. Typically, antigens produced within a DC 

to which a CD4 response is desired are linked to an endosomal protein such as lysosome-

associated membrane protein 1 175. A likely explanation for the strong CD4 response in 

our study is that DC secreted and then endocytosed gag protein or whole viral cores, thus 

enabling processing via the MHC class II pathway. Our laboratory has previously 
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demonstrated this phenomenon after gag mRNA transfection of PBMC-derived human 

DC 262. The potent antibody response directed against gag was likely induced by a similar 

mechanism of release of gag protein or whole virions and activation of B cells. 

Our work may be initially applicable as an HIV vaccine strategy, although future 

uses could include immunization against a variety of transgene-encoded antigens. The 

antibody responses to gag are not useful against HIV and do not constitute a viable 

vaccine strategy. However, given the strong and broad immune responses that the mice 

developed, a reasonable strategy could be modifying the vector to encode a defective env 

that induces neutralizing antibodies, or even to use a membrane-based protein that 

contains neutralizing antibody-inducing epitopes 62, 87, 119, 137, 284. Such a strategy could 

generate potent T cell immunity against gag-pol and potentially env as well as a 

neutralizing antibody response to envelope. 

We observed potent CD4+ and CD8+ T cell and antibody responses. In a direct 

comparison of vaccines, a Listeria monocytogenes recombinant vaccine expressing HIV-

gag 162 arm was included in our studies. We observed that there was a similar gag-

specific tetramer and CD4+, IFN-γ+ response comparing Listeria to our lentiviral 

approach (data not shown). No antibody response was observed with the Listeria-gag 

vaccine. The response induced by a vaccine is dependent on its mode of delivery of 

antigen to the APC. Adjuvanted protein typically induces CD4+ T cell and antibody 

responses but is deficient in CD8+ T cell responses because no cytosolic protein 

production occurs (reviewed in 147). Attenuated viruses with limited ability to replicate in 

cells induce CD4+ and CD8+ T cell and antibody responses are typically used as boosters 

to other priming vaccines (protein and DNA). The amount of gag-specific antibody in our 
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study appears typical of the level observed in these studies (reviewed in 147). 

An interesting facet of this work is the efficiency with which the transduced DC 

produced gag protein (Fig. A-2C, D and A-3) in the absence of Rev and Tat. The vector 

is designed such that a 5’-splice donor site exists between the 5’-LTR and the gag 

sequence, and a 3’-splice acceptor site is present downstream of the Rev response 

element and 5’ to eGFP. The presence of Rev and Tat enable production of full-length 

genomes, a fact that is employed during production of the vector for clinical use 152. In 

the absence of Rev and Tat, however, minimal promoter activity and splicing of any 

transcripts produced should occur, yielding predominantly eGFP mRNA. Our results, 

however, indicate that murine DC are able to bypass these mechanisms and express large 

quantities of gag in a Rev- and Tat-independent manner, although an explanation for this 

phenomenon is not readily apparent. It is possible that transcription occurs due to the 

high levels of NF-κB members in DC (reviewed in 10), which are augmented by TNF-α 

activation. Nonetheless, the extremely high level of gag production in the absence of Rev 

remains surprising. 

Our lentiviral construct contains the necessary components to form viral cores but 

cannot produce infectious virus since no envelope is present. Insertional mutagenesis is a 

chief concern with any lentiviral approach, as recent adverse events from retroviral 

therapy have made clear 99. This concern is lessened, however, when lentiviruses are used 

to transduce only terminally differentiated cells, as in this ex vivo DC system. The 

specific vector employed, VRX418, has been constructed by VIRxSYS Corporation 

(Gaithersburg, MD) in a manner analogous to the first lentiviral vector approved for use 

in a clinical trial, VRX496 118, 152, 159. Production safety mechanisms are therefore already 
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in place to allow promising vectors to enter clinical trials expeditiously, and issues 

pertaining to scaled manufacturing have been addressed 152. Additional safety and 

production issues for lentiviral vector work have been recently reviewed 230. 

Antigen-specific immune responses form the basis of host defense against most 

infectious and neoplastic processes. The development of an effective vaccine against HIV 

that either alters the course of infection or induces sterilizing immunity is critically 

needed. We have demonstrated strong and broad immune responses in mice vaccinated 

with DC transduced with the replicating conditionally infectious lentiviral vector 

VRX418. This study identifies two future directions: (i) to study in a more appropriate 

model and improve the in vivo second-round transduction that will allow a single 

injection of transduced DC to induce a potent and broad immune response, and (ii) to 

understand and develop the current vector to induce antibodies with neutralizing activity 

against HIV. 
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