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Nurse Work Environment and Hospital Outcomes

Abstract
The research question is as follows: To what extent do nurse work environments affect a hospital’s
performance? The purpose of this paper is to identify potential relationships between a popular measure of
nurse work environments called the Practice Environment Scale of the Nursing Work Index (PES-NWI) and
patient outcomes, specifically 30 day mortality. While previous research on the same topic have largely
utilized traditional regression approaches to study the relationship, this paper will use a pre-processing
technique called matching to reduce the imbalance between observations in the treated and control groups.
Matching enables us to reduce biases frequently present in many social science studies and strengthen the
validity of the conclusions drawn. The resulting comparison of patient outcome showed no statistically
significant difference between high and low PES-NWI hospitals.
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ABSTRACT 

The research question is as follows: To what extent do nurse work environments 

affect a hospital’s performance? The purpose of this paper is to identify potential 

relationships between a popular measure of nurse work environments called the 

Practice Environment Scale of the Nursing Work Index (PES-NWI) and patient 

outcomes, specifically 30 day mortality. While previous research on the same topic 

have largely utilized traditional regression approaches to study the relationship, this 

paper will use a pre-processing technique called matching to reduce the imbalance 

between observations in the treated and control groups. Matching enables us to reduce 

biases frequently present in many social science studies and strengthen the validity of 

the conclusions drawn. The resulting comparison of patient outcome showed no 

statistically significant difference between high and low PES-NWI hospitals. 

 

Key words: Nursing work environment, Hospital outcomes, Patient Environment 

Scale-Nurse Work Index, Statistical Matching 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Background 

With the expansion of pay for performance and value-based purchasing programs in 

the healthcare industry, many hospitals across the United States are increasingly 

challenged to improve outcomes under tighter budget constraints. Unlike past 

payment systems that generally paid hospitals on a fee-for-service basis, current 

payment models put greater emphasis on performance and treatment quality 

(Tanenbaum 2009). As a result, an increasing number of hospital administrators are 

seeking ways to refine their strategic allocation of resources to boost performance, 

while keeping costs down. 

Research has repeatedly shown that investments in nursing resources can significantly 

improve patient outcomes, as measured by patient satisfaction scores, readmission 

rates and frequency of hospital acquired infections (Aiken et al. 2002, 2010, 2014; 

Cimiotti, Aiken, Sloane and Wu 2012; McHugh and Ma 2013; McHugh, Berez and 

Small 2013; Needleman et al. 2011; Kutney-Lee et al. 2009). But from a business 

perspective, whether an investment in nursing generates positive returns still remains 

uncertain (Needleman, Buerhaus, Stewart, Zelevinsky and Mattke 2006). Considering 

that nursing labor costs account for as much as 40% of a hospital’s inpatient expenses, 

increasing nurse staffing without matching increases in revenues often incurs 

significant costs. Another business strategy is to focus on improving the work 

environments of nurses. A large body of evidence demonstrates that patient outcomes 

are significantly better in hospitals where nurses have managerial support, greater 

autonomy, healthy relationships with physicians and adequate resources (Kutney-Lee 

et al. 2009; McHugh et al. 2013; Kutney-Lee, Wu, Sloane and Aiken 2013; Kelly, 

Kutney-Lee, Lake, Aiken 2013; Aiken et al. 2011a, 2011b; Aiken, Clarke, Sloane, 



Lake and Cheney 2008; Friese, Lake, Aiken, Silber and Sochalski 2008; Lake 2007). 

The Institute of Medicine’s report Keeping Patients Safe highlighted that a 

satisfactory work environment consequently encourages nurses to better fulfill the 

critical tasks that are assigned to them, including bedside care, accident prevention, 

care coordination and patient education (IOM 2003).  

Research Question 

This project will attempt to corroborate the relationship between nurse work 

environment and patient outcomes. The research question is as follows: To what 

extent do nurse work environments affect a hospital’s performance? To answer this 

question, the paper will use a sophisticated pre-processing method to create a 

comparable set of observations. 

 

DATA 

Variables 

Nurse work environment 

The Practice Environment Scale of the Nursing Work Index (PES-NWI) has been 

studied extensively and is generally considered to be an accurate representation of a 

hospital’s nurse work environment (Lake 2002). It has been endorsed by the National 

Quality Forum as a quality measure (National Quality Forum 2004). The measure 

consists of scores on a 4-point Likert scale for 5 different subscales: Staffing and 

Resource Adequacy, Nurse Participation in Hospital Affairs, Nursing Foundations for 

Quality of Care, Collegial Nurse-Physician Relations and Nurse Manager Ability, 

Leadership and Support of Nurses. Given the reliability of the measure in representing 

the quality of nurse work environments, the PES-NWI is used as the predictor for this 



paper.  These data come from a survey of nurses fielded as part of the Multistate 

Nursing Care and Patient Safety Study (Aiken et al.2011).  

Patient outcomes 

Many different metrics are used to estimate hospital performance. The measure used 

in this paper are 30-day inpatient mortality for surgical patients. This measure is 

appealing for two reasons. First, mortality rates generally have very little room for 

ambiguity, ensuring consistency across hospitals. Second, there are established 

approaches for risk-adjustment in order to account for the differences in patient 

severity of illness and case mix so that these differences do not confound the findings 

(Silber et al. 2007, 2009). Data on patient outcomes will be from hospital discharge 

databases for all adult, non-federal, acute care hospitals from the four states (CA, FL, 

NJ, PA) where the nurse survey was conducted. 

Hospital characteristics 

In order to use matching analysis, data for each hospital’s structural characteristics are 

required. The following lists hospital characteristics that are used in the study: 

hospital size, teaching status, geographic location, patient population characteristics, 

market competition, and profit vs. non-profit status. Data on hospital structural 

characteristics will be from the American Hospital Association Annual Survey and 

hospital Medicare Cost Reports. Dr. McHugh, who supervised the completion of this 

project, has made the data sets available and has extensive experience working with 

these data. 

 

METHODOLOGY 

Traditional Methods 



In research, researchers often want to estimate the causal effect of a treatment. For 

example, one may want to study the effect of a smoking cessation program on quit 

rates among participants. In this case, the treatment is participation in the program and 

the outcome is quit rate. One might also want to estimate the effect of unions on 

wages, the effects of compulsory school attendance on academic performance or the 

effect of attending college on future income. 

In any of these studies, the preferred method to estimate causal effect is a randomized 

experiment. Randomization is an ideal method for research because it guarantees the 

absence of two major biases. The first one is selection bias, which occurs when a 

certain group is selected from a population. The second is omitted variable bias, 

which occurs when those who receive treatment and those who do not are dissimilar 

on average. Unfortunately, in social science research, it is difficult to achieve 

complete randomization. For instance, in the smoking cessation example, there is no 

ethical or legal way to randomly select people from the population and randomly 

assign them to the program (Ho, Imai, King and Stuart 2007).  

Because of such limitations with conducting randomized experiments, social science 

research frequently relies on observational data. These studies analyze pre-existing 

data from events that have happened in the past. However, for any given set of 

observational data, it is unrealistic to expect that observations in the treated group will 

be similar to those in the control group, a condition that is met in randomized 

experiments. Therefore, traditional regression approaches with observational data 

often result in biased conclusions. In order to avoid this problem, researchers use a 

pre-processing method called matching. 

 

Matching 



Matching attempts to “simulate” a randomized experiment for observational data by 

pairing up each member of the treated group with a member from the control group 

that is most similar to it (Austin 2011, 402). This allows us to make an apples to 

apples comparison, since the confounding effects of pretreatment variables are 

controlled for and the imbalance between the treated and control groups is reduced. 

The benefits of matching is compounded by the fact that it can be done with a single 

estimated measure called the propensity score. The propensity score is the probability 

that an observation is assigned to treatment conditional on observed covariates 

(Rosenbaum and Rubin 1983). By projecting any number of covariates, variables that 

describe an observation, into a single scalar measure, propensity scores make 

matching easier, since the matching algorithm only has to minimize the sum 

difference of propensity scores between matched pairs rather than take into account 

an entire array of covariates. Research has widely shown that conditional on the 

propensity score, the distribution of covariates is similar between treated and 

untreated subjects (Austin 2011, 402). In addition, because a balance in propensity 

score guarantees a balance in covariates, only the distribution of propensity scores 

between the treated and control groups have to be compared to assess the quality of 

matches. 

Application of Matching 

The application of matching of this paper is a two-step process. First, ‘good’ hospitals 

are matched with ‘bad’ hospitals (a ‘good’ hospital being one with a high PES-NWI) 

using what’s called nonbipartite matching. Second, for each matched pair of hospitals, 

the patients of the two hospitals are matched using mixed integer programming with 

an R package called mipmatch.  

Nonbipartite Matching of Hospitals 



In bipartite matching, the treatment is a binary variable. For example, a study 

involving the effectiveness of smoking cessation programs will use bipartite 

matching, since one either does or does not participate in the program. In this paper, 

however, the treatment is the PES-NWI, a continuous variable. Therefore, 

nonbipartite matching is used to match hospitals. In nonbipartite matching, the 

treatment is first classified into quantiles. Then, an ordinal logit model is used to 

estimate a propensity score for each hospital. Finally, units that belong in different 

quantiles are matched. As diagram 1 illustrates, the PES-NWI is divided into five 

quantiles, each containing 20% of the hospitals and hospitals that belong in different 

quantiles are matched based on their propensity scores. The goal of the matching 

algorithm is to minimize the differences in propensity scores between each matched 

pair and maximize the difference of the PES-NWI. In order to achieve this, the 

following formula is used to create a distance matrix:  

݁ܿ݊ܽݐݏ݅ܦ ൌ
ሺሺ1݌	– 2ሻଶ݌	 ൅ 	0.001ሻ

ሺ݈1	– 	݈2ሻଶ	
 

p1 and p2 are the propensity scores of each hospital and l1 and l2 are their respective 

PES-NWI quantiles. Note that distance decreases (i.e. hospitals are more likely to be 

matched) as difference of propensity scores decreases and as difference of PES-NWI 

increases. Also note that when l1 = l2, the distance is infinite, which prevents any 

hospitals within the same quantile from being matched.  

Mipmatch of Patients 

For each matched pair of hospitals, the hospital with the higher PES-NWI is the 

‘good’ hospital and its matched counterpart is the ‘bad’ hospital.  The next step is to 

match patients in the ‘good’ hospital with those in the ‘bad’ hospital. Note that only 

patients from matched hospitals can be matched. This paper uses an R package called 

mipmatch, which conducts matching using mixed integer programming. Mipmatch 



was chosen because it allows a great degree of flexibility in choosing the 

specifications for matching. For example, instead of only using the propensity score, 

the matching algorithm also takes into account other patient covariates, such as 

comorbidity and surgical groups. Once patients are matched, the difference of 30 day 

mortality between patients in the ‘good’ hospital and those in the ‘bad hospital’ is 

calculated and its statistical significance is assessed. 

 

RESULTS 

The distribution of propensity scores of the nonbipartite matching of hospitals is 

shown in plot 1. As shown, the distribution of propensity scores for the ‘good’ 

hospitals resembles that of the ‘bad’ hospitals. The distribution of propensity scores of 

matched patients is shown in plot 2. When compared to the distributions before 

matching, the post-matching distribution of propensity scores clearly has a better 

balance. In other words, a valid comparison of these two groups of patients can be 

made. A t-test is conducted to test the hypothesis that the true mean of 30 day 

mortality is different for patients in ‘good’ hospitals and those in ‘bad’ hospitals. The 

calculations and results have been attached to the end of this paper. The statistical 

difference of outcomes between patients in “good” hospitals and patients in “bad” 

hospitals, which had a p-value of 0.34, was not significant. 

 

DISCUSSION 

The ultimate goal of the two-step matching process is to isolate the effect of nurse 

work environment on patient outcomes. Because matching produces hospitals that are 

different in their PES-NWI, which is indicative of the quality of the hospital’s nurse 

work environment, but are otherwise similar, the risk of comparing patient outcomes 



of two very different hospitals is eliminated. Second, by matching patients with 

similar DRGs, comorbidity and surgical groups, the risk of comparing the outcomes 

of two patients with very different characteristics is avoided. The quality of matches 

was assessed by comparing the distributions of propensity scores before and after 

matching. Plots 1 and 2 illustrate the balanced propensity scores desired. 

After matches had been made, the patient outcomes of matched patients were 

compared in order to assess statistical significance. In this study, the statistical 

difference of 30 day mortality rates between patients in “good” hospitals and those in 

“bad” hospitals had a p-value of 0.34 and therefore, was not significant. There may be 

multiple interpretations of this result. One may conclude that the effect of the nurse 

work environment on this particular patient outcome is not statistically significant. 

The validity of this conclusion is challenged by previous research that has repeatedly 

shown that better nurse work environments is associated with better hospital 

performance on a variety of measures, including patient satisfaction, mortality, failure 

to rescue and numerous patient safety indicators (McHugh, Berez and Small 2013). 

Another interpretation may look towards the limitations of this study. In this paper, 

two of them will be mentioned. 

Limitations 

One limitation is manifested in the data set for patient outcomes. First, there were 

numerous missing entries in the data set from which the 30 day mortality rates were 

obtained. Although they were ignored in the analysis, this may have introduced biases 

in the results and inaccuracies in the calculation. The problem is compounded by the 

fact that the proportion of patients that experienced 30 day mortality was small, less 

than 1%. Therefore, even if a small number of those missing entries turned out to be 

patients that experienced 30 day mortality, it could have a significant influence on the 



proportion of 30 day mortality patients. Also, although failure to rescue rates were 

originally planned to be included in the patient outcome analysis, due to technical 

difficulties, they were not included. Inclusion of this variable in the analysis may have 

changed the resulting conclusions. Another limitation was with computing power. 

The data set of patients contains over 600,000 entries, far more than what can be 

reasonably handled by a personal computer for matching analysis. In order to 

overcome this problem, this paper implements a couple of circumventions that 

reduces computational complexity. For instance, the matching algorithm was 

designed so that only patients with the same DRGs are matched. This reduces 

computing time since it significantly reduces the number of attempts at matching 

patients. However, it may also have introduced biases that could have affected the 

analysis. 

 

CONCLUSION 

Numerous studies have used traditional regression methods to predict hospital 

performance using predictors such as staffing levels, teaching status and work 

environments. This project uses a more sophisticated statistical approach to help 

corroborate or refute conclusions drawn from such studies. The process of matching 

has allowed us to obtain groups of comparable patients. Each pair of matched patients 

received treatment from similar hospitals and are similar to each other in terms of the 

available patient data. The goal was to identify differences in the medical outcomes of 

these patients and if any difference does exist, it would be reasonable to attribute it to 

differences in the PES-NWI of the hospitals. The result showed that this relationship 

was not statistically significant. Considering previous literature on this topic 

corroborating the relationship between nurse work environments and patient 



outcomes, it is possible that limitations in the data sets as well as computational 

power introduced inaccuracies in the results. Further review of the code and 

specifications of the matching algorithm may identify the underlying problem. This 

will also serve as a motivation for further analysis that utilizes better data sets with 

minimal error and to develop optimized matching algorithms that can process the data  

more efficiently. 
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Diagrams and Plots 



Diagram 1. Match hospitals using non-bipartite matching  

 

 

Diagram 2. Match patients for each matched pair of hospitals using mipmatch 

 

 

Plot 1. Distribution of propensity scores after nonbipartite matching of hospitals 

PES‐NWI	Quantiles



Plot 2. Distribution of propensity scores after mipmatch matching of patients 

After Matching 

 

Before Matching 

 

 

 

 

 

 



Calculations and R Code 

t-test for 30 Day Mortality 

1݌ ൌ ݕݐ݈݅ܽݐݎ݋݉	ݕܽ݀	30	݄ݐ݅ݓ	ݏݐ݊݁݅ݐܽ݌	݈ܽݐ݅݌ݏ݋ᇱ݄݀݋݋ᇱ݂݃݋	݊݋݅ݐݎ݋݌݋ݎ݌

ൌ 0.009597469	 

2݌ ൌ ݕݐ݈݅ܽݐݎ݋݉	ݕܽ݀	30	݄ݐ݅ݓ	ݏݐ݊݁݅ݐܽ݌	݈ܽݐ݅݌ݏ݋ᇱܾܽ݀ᇱ݄݂݋	݊݋݅ݐݎ݋݌݋ݎ݌

ൌ 0.01023027	 

݊1 ൌ ݏݐ݊݁݅ݐܽ݌	݈ܽݐ݅݌ݏ݋ᇱ݄݀݋݋ᇱ݂݃݋	ݎܾ݁݉ݑ݊ ൌ 113780 

݊1 ൌ ݏݐ݊݁݅ݐܽ݌	݈ܽݐ݅݌ݏ݋ᇱ݄ܾ݀ܽ′	݂݋	ݎܾ݁݉ݑ݊ ൌ 113780 

	݌ ൌ ݊݋݅ݐݎ݋݌݋ݎ݌	݈݁݌݉ܽݏ	݈݀݁݋݋݌ ൌ
ሺ1݌	 ∗ 	݊1	 ൅ 	2݌	 ∗ 	݊2ሻ

ሺ݊1	 ൅ 	݊2ሻ

ൌ
ሺ0.0096		 ∗ 	113780	 ൅ 	0.01	 ∗ 	113780ሻ

ሺ113780	 ൅ 	113780ሻ
ൌ 0.0098 

	ܧܵ ൌ 	ඨ݌	 ∗ 	ሺ	1	 െ ሻ	݌	 	∗ ሺ	
1
݊1
	൅	

1
݊2
ሻ

ൌ ඨ0.0098	 ∗ 	ሺ	1	 െ 	0.0098	ሻ 	∗ ሺ	
1

113780
	൅	

1
113780

ሻ ൌ 0.0004 

	1ܲ	:ݏ݅ݏ݄݁ݐ݋݌ݕܪ	݈݈ݑܰ െ 	ܲ2	 ൌ 	0 

	1ܲ	:ݏ݅ݏ݄݁ݐ݋݌ݕܪ	݁ݒ݅ݐܽ݊ݎ݁ݐ݈ܣ െ 	ܲ2	 ് 	0 

 

	ݐ ൌ
ሺ1݌	– 2ሻ݌	

ܧܵ
ൌ
ሺ0.0096		– 	0.01	ሻ

0.0004
ൌ െ0.9685 

݌ െ ݁ݑ݈ܽݒ ൌ 0.34 

 

Code for matching hospitals using Bo Lu’s optimal nonbipartite matching R 

package (nbpMatching)  

library(nbpMatching) 
library(dplyr) 



library(gridExtra) 
 
# set wd 
setwd('/Users/jaehyukhan/Desktop/CS/R/wd/HospitalMatching/nbp_matches') 
 
# Use JMP for ordinal logistic regression 
hosps <- 
read.csv("/Users/jaehyukhan/Desktop/CS/R/wd/HospitalMatching/nbp_matches/hosp
s_data_ordlgt.csv") 
 
################ nbpmatching ################# 
# create distance matrix 
rn <- nrow(hosps) 
dist_mat <- matrix(nrow=rn, ncol=rn) 
for(row in seq(rn)) { 
  for(row2 in row:rn) { 
    p1 <- hosps$Linear[row] 
    l1 <- hosps$pes_quant[row] 
    p2 <- hosps$Linear[row2] 
    l2 <- hosps$pes_quant[row2] 
    dist <- as.numeric(((p1 - p2)^2 + 0.001) / (l1 - l2)^2) 
    if(!is.finite(dist)) { 
      dist <- 10^8 
    } else { 
      dist <- floor(dist * 10^6) 
    } 
    dist_mat[row, row2] <- dist 
    dist_mat[row2, row] <- dist 
  } 
} 
 
# Add phantoms 
num_phantoms <- 6 
dist_mat <- make.phantoms(dist_mat, num_phantoms) 
 
cov <- hosps %>% select(magnet, final_beds, final_tech, ownership,  
                        hhi, permedicare, permedicaid, teach, cbsadum, stdum) 
ignored <- NULL 
weights <- NULL 
prevent <- NULL 
mates <- NULL 
rankcols <- NULL 
missing.weight <- NULL 
ndiscard <- 0 
df.dist <- list(dist=dist_mat, cov=cov, ignored=ignored, weights=weights, 
prevent=prevent, 
                mates=mates, rankcols=rankcols, missing.weight=missing.weight, 
ndiscard=ndiscard) 
 
# create distancematrix object 



df.mdm <- distancematrix(df.dist) 
# create matches 
df.match <- nonbimatch(df.mdm) 
# review quality of matches 
df.qom <- qom(df.dist$cov, df.match$matches) 
 
n_mat <- nrow(df.match$halves) 
m.combined_matches <- cbind(rbind(hosps[df.match$halves$Group1.Row,], 
hosps[df.match$halves$Group2.Row,]), subclass=rep(seq(1, n_mat)), good=1) 
rows_with_phantoms <- c() 
 
for(row_num in seq(1, n_mat)) { 
  p1 <- m.combined_matches[row_num,]$pes_quant 
  p2 <- m.combined_matches[row_num+n_mat,]$pes_quant 
  if(is.na(p1) | is.na(p2)) { 
    m.combined_matches[row_num,]$good <- NA 
    m.combined_matches[row_num+n_mat,]$good <- NA 
    rows_with_phantoms <- c(rows_with_phantoms, row_num, row_num+n_mat) 
    next 
  } 
  if(p1 > p2) { 
    m.combined_matches[row_num+n_mat,]$good <- 0 
  } else{ 
    m.combined_matches[row_num,]$good <- 0 
  } 
} 
 
# remove rows with phantoms 
m.combined_matches <- m.combined_matches[-rows_with_phantoms,] 
m.combined_matches <- m.combined_matches[order(m.combined_matches$good, 
decreasing = TRUE) , ] 
 
# m.combined matches contains the following columns: 
# [1] "Column.1"              "hospid"                "location"              
# [4] "magnet"                "final_beds"            "final_tech"            
# [7] "ownership"             "hhi"                   "permedicare"           
# [10] "permedicaid"           "teach"                 "cbsadum"               
# [13] "stdum"                 "pes"                   "pes_quant"             
# [16] "Linear"                "Cum.1."                "Cum.2."                
# [19] "Cum.3."                "Cum.4."                "Prob.1."               
# [22] "Prob.2."               "Prob.3."               "Prob.4."               
# [25] "Prob.5."               "Most.Likely.pes_quant" "Ord.Expected"          
# [28] "subclass"              "good"  
 
 

 



Code for matching patients using José R. Zubizarreta’s mixed integer 

programming R package (mipmatch) 

library(mipmatch) 
 
# read in data 
pts <- 
read.csv("/Users/jaehyukhan/Desktop/CS/R/wd/HospitalMatching/pts4match.csv") 
pts_copy <- pts 
 
# create drg variable 
pts['drg'] <- factor(apply(pts %>% dplyr::select(drg110:drg537), 1,  
                             function(x) which(x == 1)),  
                       labels = colnames(pts %>% dplyr::select(drg110:drg537))) 
 
# excluded sets 
excluded = list(r3=c(113), r6=c(218, 263), r19=c(113, 493), r23=c(150), r32=c(209), 
                r42=c(148), r78=c(209), r86=c(110), r101=c(209), r126=c(292), 
                r128=c(216), r149=c(209), r152=c(503)) 
 
# create empty vectors of record_ids 
treated_ids = c() 
control_ids = c() 
 
# Cut patient data by matched hospitals 
for(row in seq(1, nrow(m.combined_matches) / 2)) { 
  # Get patient list for matched pair of hospitals 
  hosp1 <- m.combined_matches[row,] 
  hosp_id1 <- hosp1$hospid 
  subclass1 <- hosp1$subclass 
  pts1 <- pts[pts$hospid == hosp_id1,] 
 
  hosp2 <- m.combined_matches[m.combined_matches$subclass == subclass1,][2,] 
  hosp_id2 <- hosp2$hospid 
  subclass2 <- hosp2$subclass 
  pts2 <- pts[pts$hospid == hosp_id2,] 
   
  # Combine 'treated' and 'control' patients and add 'good' 
  combined_pts <- cbind(rbind(pts1, pts2), good=c(rep(hosp1$good, nrow(pts1)), 
rep(hosp2$good, nrow(pts2)))) 
   
  # add 'prop_score' and select necessary variables 
  combined_pts_for_reg <- combined_pts %>% dplyr::select(age:htn_c, drg, good) 
  glm.out <- glm(good ~ ., na.action=na.exclude, family=binomial(logit), 
data=combined_pts_for_reg) 
  combined_pts$prop_score <- predict(glm.out) 
  combined_pts <- combined_pts %>% dplyr::select(record_id:htn_c, 
d30hosp:prop_score) 
   



  # identify drg common to pts1 and pts2 
  common_drgs <- Reduce(intersect, list(pts1$drg,pts2$drg)) 
   
  # find number of rows for each drg 
  drg_rows <- data.frame(drg_id=c(0), num_row=c(0)) 
  for(drg in common_drgs) {  
    drg_rows <- rbind(drg_rows, c(drg, sum(pts1$drg == drg, pts2$drg == drg))) 
  } 
  drg_rows <- drg_rows[2:nrow(drg_rows),] 
  
  for(drg in common_drgs) { 
    # if in excluded list, skip 
    if(as.numeric(gsub("drg", "", drg)) %in% excluded[[paste('r', row, sep="")]]) { 
      next 
    } 
 
    num_row <- as.numeric(drg_rows[drg_rows[,1]==drg, 2]) 
     
    # select pts with this drg 
    reduced_pts <- combined_pts[combined_pts$drg == drg,] %>% dplyr::select(-drg) 
     
    # if number of treated > number of control, switch the two 
    switched <- FALSE 
    if(sum(reduced_pts$good) > sum(reduced_pts$good == 0)) { 
      reduced_pts$good <- reduced_pts$good * -1 + 1 
      switched <- TRUE 
      # print("Switched 'good'") 
    } 
     
    # if too little treated, too many treated compared to total or too small of a pool, skip 
matching 
    if(sum(reduced_pts$good) < 2 || sum(reduced_pts$good) / num_row < 0.05 || 
sum(reduced_pts$good) / num_row > 0.45 || num_row < 10) { 
      # print(paste("Skipped bc too little treated", drg)) 
      next 
    } 
     
    # if all prop_score is neg, skip matching 
    # Error: Error in (c_index + n_t)[(1:length(out$xopt[-aux])) * out$xopt[-aux]] : 
only 0's may be mixed with negative subscripts 
    if(sum(reduced_pts$prop_score >= 0, na.rm=TRUE) < 1) { 
      # print(paste("Skipped bc of neg prop scores", drg)) 
      next 
    } 
     
    ################ mipmatch ################# 
    # IMPORTANT: allmatch needs the data to be sorted in decreasing order by the 
treatment indicator 
    reduced_pts <- reduced_pts[order(reduced_pts$good, decreasing = TRUE) , ] 
     



    # Treatment indicator 
    t_ind <- reduced_pts$good 
     
    # Matrix of covariates 
    X_mat <- reduced_pts %>% dplyr::select(age:htn_c) 
    calip_cov <- reduced_pts$prop_score 
    calip_size <- 0.2*sd(calip_cov) 
    calip_penalty <- 2 
    # near_exact_covs <- cbind(final_tech, ownership, teach, cbsadum, stdum) 
    # near_exact_penalties <- c(2,1.5,1.5) 
    digits <- 6 
     
    # Distance matrix 
    dist_mat <- distmat(t_ind, X_mat, calip_cov, calip_size, calip_penalty, digits=6) 
     
    # Number of matches 
    n_matches = 1 
     
    # Moment covariates:  
    mom_covs = NULL 
    # Weights for the moment covariates 
    mom_weights = NULL 
    # Tolerances for the moment covariates 
    mom_tols = NULL 
     
    # Kolmogorov-Smirnov covariates 
    ks_covs = reduced_pts %>% dplyr::select(age) 
    # Number of grid points for the Kolmogorov-Smirnov statistic 
    ks_n_grid = 10 
    # Weights for the Kolmogorov-Smirnov covariates 
    ks_weights = c(1) 
    # Tolerances for the Kolmogorov-Smirnov covariates 
    ks_tols = NULL 
     
    # Covariates for near-exact matching, fine and near-fine balance 
    exact_covs = NULL 
    near_exact_covs = NULL 
    near_exact_devs = NULL 
    fine_covs = NULL 
    near_fine_covs = NULL 
    near_fine_devs = NULL 
     
    # Whether specific controls need to be used 
    use_controls_mat = NULL 
    use_controls_totals = NULL  
    use_controls_signs = NULL 
     
    # Enforce all the constraints 
    enforce_constraints = FALSE 
     



    # Find matches 
    out = allmatch(dist_mat, t_ind, n_matches, 
                   mom_covs, mom_weights, mom_tols, 
                   ks_covs, ks_n_grid, ks_weights, ks_tols, 
                   exact_covs, 
                   near_exact_covs, near_exact_devs,  
                   fine_covs,  
                   near_fine_covs, near_fine_devs, 
                   use_controls_mat, use_controls_totals, use_controls_signs, 
                   enforce_constraints) 
     
    # Indices of the treated units and matched controls 
    t_id = which(t_ind==1)  
    c_id = out$c_id  
     
    if(switched) { 
      treated_ids <- c(treated_ids,reduced_pts[c_id,"record_id"]) 
      control_ids <- c(control_ids,reduced_pts[t_id,"record_id"]) 
    } else { 
      treated_ids <- c(treated_ids,reduced_pts[t_id,"record_id"]) 
      control_ids <- c(control_ids,reduced_pts[c_id,"record_id"]) 
    } 
     
    print(paste("length of treated=", length(treated_ids), " control=", 
length(control_ids))) 
#     # export summary to csv file 
#     write.table(meantab(X_mat, t_ind, t_id, c_id, digits = 2), file = paste(drg, 
"_summary.csv", sep=''), sep = ",", 
#                 qmethod = "double", col.names=NA) 
#      
    #   # use following code to import 
    #   # read.table("foo.csv", header = TRUE, sep = ",", row.names = 1) 
  } 
} 
 
# create combined matches data set 
m.combined_matches_pts <- 
rbind(cbind(pts[treated_ids,],subclass=seq(length(treated_ids)), good=1), 
                            cbind(pts[control_ids,],subclass=seq(length(treated_ids)), good=0)) 
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