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The Physical Basis for Anomalous Diffusion in Bed Load Transport

Abstract
Recent studies have observed deviation from normal (Fickian) diffusion in sediment tracer dispersion that
violates the assumption of statistical convergence to a Gaussian. Nikora et al. (2002) hypothesized that
particle motion at short time scales is superdiffusive because of inertia, while long-time subdiffusion results
from heavy-tailed rest durations between particle motions. Here we test this hypothesis with laboratory
experiments that trace the motion of individual gravels under near-threshold intermittent bed load transport
(0.027 < τ* < 0.087). Particle behavior consists of two independent states: a mobile phase, in which indeed we
find superdiffusive behavior, and an immobile phase, in which gravels distrained from the fluid remain
stationary for long durations. Correlated grain motion can account for some but not all of the superdiffusive
behavior for the mobile phase; invoking heterogeneity of grain size provides a plausible explanation for the
rest. Grains that become immobile appear to stay at rest until the bed scours down to an elevation that exposes
them to the flow. The return time distribution for bed scour is similar to the distribution of rest durations, and
both have power law tails. Results provide a physical basis for scaling regimes of anomalous dispersion and the
time scales that separate these regimes.
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The physical basis for anomalous diffusion in bed load transport

Raleigh L. Martin,1 Douglas J. Jerolmack,1 and Rina Schumer2

Received 2 May 2011; revised 1 January 2012; accepted 5 January 2012; published 23 February 2012.

[1] Recent studies have observed deviation from normal (Fickian) diffusion in sediment
tracer dispersion that violates the assumption of statistical convergence to a Gaussian.
Nikora et al. (2002) hypothesized that particle motion at short time scales is superdiffusive
because of inertia, while long-time subdiffusion results from heavy-tailed rest durations
between particle motions. Here we test this hypothesis with laboratory experiments
that trace the motion of individual gravels under near-threshold intermittent bed load
transport (0.027 < t* < 0.087). Particle behavior consists of two independent states:
a mobile phase, in which indeed we find superdiffusive behavior, and an immobile
phase, in which gravels distrained from the fluid remain stationary for long durations.
Correlated grain motion can account for some but not all of the superdiffusive behavior
for the mobile phase; invoking heterogeneity of grain size provides a plausible
explanation for the rest. Grains that become immobile appear to stay at rest until the
bed scours down to an elevation that exposes them to the flow. The return time
distribution for bed scour is similar to the distribution of rest durations, and both have
power law tails. Results provide a physical basis for scaling regimes of anomalous
dispersion and the time scales that separate these regimes.

Citation: Martin, R. L., D. J. Jerolmack, and R. Schumer (2012), The physical basis for anomalous diffusion in bed load
transport, J. Geophys. Res., 117, F01018, doi:10.1029/2011JF002075.

1. Introduction

[2] One way to quantify sediment flux is by studying the
behavior of tracer particles [e.g., Sayre and Hubbell, 1965;
Granger et al., 1996; Habersack, 2001;Willenbring and von
Blanckenburg, 2010]. Tracer techniques are especially
attractive for gravel and coarser sediments, which, because
of their size, can be individually tagged and tracked
[Schmidt and Ergenzinger, 1992; Chacho et al., 1994;
Habersack, 2001; McNamara and Borden, 2004; Lamarre
et al., 2005; Wong et al., 2007; Lamarre and Roy, 2008].
The statistical behavior of sedimentary tracers is often
described [e.g., Bouchaud and Georges, 1990] through the
scaling diffusion exponent, g, which relates the growth of
variance of particle displacement, sx

2, with time interval, dt:

s2
x ¼

D
dx� dx
� �2E∝ dtð Þ2g ; ð1Þ

where dx is the displacement of an individual particle over
dt, dx is the mean particle displacement for all particles over
an interval dt, and the 〈〉 symbols refer to the ensemble
average over all particles. By definition, g = 0.5 for normal
(Fickian) diffusion, where variance grows linearly with time.

[3] When g ≠ 0.5, particle diffusion is “anomalous”.
Specifically, g > 0.5 for superdiffusion, and g < 0.5 for
subdiffusion. Here we adopt a strictly statistical definition of
“diffusion” as measured by the spreading of particles, and
use the term without reference to the operative physical
processes at all scales. Anomalous sediment tracer diffusion
has been observed with sand [Bradley et al., 2010] and
gravel [Nikora et al., 2002] tracers. When diffusion is
anomalous, statistical moments do not necessarily converge
to finite values, thus violating Central Limit Theorem (CLT)
assumptions of many sediment transport models. This sta-
tistical nonconvergence in turn complicates our ability to
infer sediment flux from finite sampling [Nikora et al., 2002;
Ganti et al., 2009; Singh et al., 2009; Bradley et al., 2010].
Some anomalous sediment diffusion produces landscape
evolution patterns described by fractional advection diffu-
sion equations (FADEs) that require a more generalized
version of the CLT, often via flux laws that are nonlocal in
space or time [Stark et al., 2009; Foufoula-Georgiou et al.,
2010; Tucker and Bradley, 2010; Voller and Paola, 2010].
[4] Anomalous diffusion may arise from heavy tails in

the distributions of particle steps or waits due to rare
extreme events, and can be modeled by FADEs [Schumer
et al., 2009]. Alternatively, correlations in particle motion
(fractional Brownian motion) may also produce anomalous
diffusion, generating a time-varying diffusion exponent
[Mandelbrot and Ness, 1968]. For example, when particle
motions are perfectly correlated, motion is described as
“ballistic”, and g = 1 in equation (1) [Bouchaud and
Georges, 1990; Metzler and Klafter, 2000]. Transition
from correlated to uncorrelated particle motion over
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increasing time scales is thus identified as a transition from
ballistic to superdiffusion to normal diffusion [Bouchaud and
Georges, 1990; Carreras et al., 1999; Metzler and Klafter,
2000; Nikora et al., 2002; Marchesoni and Taloni, 2006;
Kumar et al., 2010]. Distinguishing between sources of
anomalous diffusion can be a challenge [Magdziarz et al.,
2009]. In the case of heavy tails, a direct translation may be
made between the tails of the microscale particle step/wait
distributions and a fractional advection diffusion equation
describing the bulk transport [Weeks et al., 1996; Schumer
et al., 2009].
[5] Nikora et al. [2002] suggested that the character of

anomalous sediment diffusion may change with time scale.
In their conceptual model, superdiffusion at short time scales
(“local regime”) resulted from correlated particle motions
arising from particle inertia, and subdiffusion at long time
scales (“global regime”) resulted from periods of particle
immobility (wait times) with a heavy tail. Over medium time
scales (“intermediate regime”), Nikora et al. [2002] sug-
gested that the character of diffusion may depend on system
properties. Bradley et al. [2010] observed subdiffusion at
this intermediate time scale, while Nikora et al. [2002]
observed superdiffusion.
[6] While Nikora et al. [2002] provided a useful con-

ceptual framework for understanding different scaling
regimes in bed load particle diffusion, this framework does
not provide specific physical evidence for the sources of
anomalous diffusion. The transition between diffusion
regimes observed by Nikora et al. [2002] is based on an
empirical fit between two disparate data sets rather than any
kind of physical argument related to durations of particle
mobility or immobility.
[7] There are few studies that have directly quantified the

physical sources of anomalous sediment transport behavior,
i.e., those producing heavy-tailed statistics or correlated
motions. A recent experiment by Hill et al. [2010] found a
heavy-tailed distribution of particle flight lengths. They
proposed that this was due simply to grain size hetero-
geneity, in which individual size classes had exponential
flight length distributions, but the superposition of these
distributions gave rise to a power law. Other experiments of
bed load transport with mixed grain sizes have found only
exponential or gamma flight length distributions [Hassan
et al., 1991; Schmidt and Ergenzinger, 1992; Habersack,
2001; Lamarre and Roy, 2008; Lajeunesse et al., 2010]
or even grain size independence in transport lengths
[Wilcock, 1997]. Otherwise, physical explanations for
anomalous diffusion are still lacking. This lack of physical
understanding underlying observed anomalous diffusion in
sediment transport has been identified as an important
research question in geomorphology [Foufoula-Georgiou
and Stark, 2010].
[8] Consideration of the mechanics of coarse particle bed

load transport may help us to understand the physical basis
for anomalous diffusion. Rivers tend to transport gravel and
coarser material by bed load transport with bed shear stresses
only slightly above the threshold of motion [Dade and
Friend, 1998], with perhaps a slight increase in transport
Shields stress for coarser particles [Mueller and Pitlick,
2005]. Parker [1978] and Parker et al. [2007] showed how
river morphology is organized to maintain these threshold
conditions during channel-forming floods. In near-threshold

bed load transport for gravel [Drake et al., 1988] and coarser
[Ergenzinger et al., 1989; Schmidt and Ergenzinger, 1992;
Chacho et al., 1994; Habersack, 2001] material, particles
alternate between mobility and immobility, and always
remain close to the bed, either by saltation hops or by
rolling/sliding directly along the bed surface [Drake et al.,
1988], producing unpredictability in bed particle motion
[Gomez and Phillips, 1999; Phillips, 2006; Ancey et al.,
2008; Singh et al., 2009; Ganti et al., 2009; Ancey, 2010].
As a result, many predictions of bed load transport are based
on a statistical description of sediment motion [Einstein,
1950, 1972; Fernandez Luque and Van Beek, 1976;
Nakagawa and Tsujimoto, 1980; Sekine and Kikkawa, 1992;
Hu and Hui, 1996a; Lisle et al., 1998; Ancey et al., 2003,
2008; Ancey, 2010; Lajeunesse et al., 2010].
[9] Many of the statistical bed load models referenced

above consider particle velocities, the durations of flights
(continuous periods of motion) and waits (continuous peri-
ods of rest), and rates of entrainment (initiation of particle
motion) and distrainment (cessation of particle motion).
Statistics of particle motion can in turn be related physically
to particle and fluid properties, such as grain size and shear
stress [Bagnold, 1966, 1973; van Rijn, 1984; Seminara
et al., 2002; Francis, 1973; Fernandez Luque and Van
Beek, 1976; Abbott and Francis, 1977; Wiberg and Smith,
1989; Lee and Hsu, 1994; Nino et al., 1994; Lajeunesse
et al., 2010].
[10] In this paper, we apply physical understanding of

particle motion statistics to explain and expand on the con-
ceptual framework for anomalous diffusion of bed load laid
out by Nikora et al. [2002]. We performed flume experi-
ments to relate the grain-scale physics of gravel bed load to
observed anomalous sediment diffusion. In the first set of
experiments, we followed continuously moving tracers at
short times (<5 s) across a fixed, rough bed, in order to
isolate the dynamics of mobile phase particles. In the second
set, we followed intermittently moving tracers along a
movable bed at long times (up to 30 min) to observe tran-
sitions between mobile and immobile phases. We then relate
observed transport statistics (particle velocities, flight times,
wait times) to scaling and time scales of anomalous diffusion
regimes.

2. Methods

[11] We conducted experiments to trace gravel trajectories
in a small laboratory flume in the Sediment Dynamics
Laboratory at the University of Pennsylvania. The test sec-
tion length was 200 cm, and the width was 15 cm. In each
experiment, water flowed with constant discharge from an
upstream inlet; the first 50 cm of the flume were reserved to
allow flow to achieve a steady, uniform condition. While we
varied water discharge as an experimental variable, all
experiments were conducted with Shields stress near critical;
i.e., the regime of intermittent motion, as shown in Table 1.
The sediments used in all experiments were moderately well
sorted natural gravel with D50 = 7.09 mm, D10 = 5.30 mm,
and D90 = 9.13 mm, where D50, D10, and D90 are the 50th,
10th, and 90th percentiles of grain diameter, respectively.
Particle density, rs = 2650 kg/m3, was that of silica.
[12] Considering the time scale difference between con-

tinuous motion (at short time scales) and intermittent motion
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(at long time scales), two sets of experiments were carried
out. For continuous motion, we ran eight tracer experiments,
henceforth labeled “F1, F2,…F8.” In these experiments, the
bed was fixed by gluing random close-packed gravel parti-
cles (with the same size characteristics as mobile gravel) to
the bottom of the flume, thus preserving the roughness
characteristics of a natural movable gravel bed. A fixed bed
was used to isolate the dynamics of continuously moving
tracer particles while ignoring the exchange of particles
between motion and rest. In these experiments, excess shear
stress was generally too high for particle rests ever to occur,
except for a few distrainments in experiment F8. Thus, the
observations provide a representative sampling of the mobile
tracer particle population. The fixed-bed cross section had a
trapezoidal profile, with a 12 cm width flat central part of the
bed, and 1.5 cm width walls sloped at a 45° angle. In all
fixed-bed experiments, the longitudinal slope of the bed was
set at 10%. The fixed bed was painted white as the back-
ground, while tracer grains, fed one at a time in motion from
upstream, were red (Figure 1a). A fixed bed has been shown
to alter the takeoff angles of saltating particles along the bed
and extract less momentum from bed particle collisions
[Abbott and Francis, 1977], but using a fixed bed offered the
advantage of greatly simplifying the particle tracking
process.
[13] Four video cameras were mounted along the length of

the flume, and captured video of the bed at 30 frames per
second and with 0.86 mm spatial resolution. The video
covered a bed area of 199 by 15 cm. Using ImageJ, an open
source image analysis software developed by the National
Institutes of Health, we extracted the trajectories of tracer
grains through the flume. The entire trajectories of grains
were tracked from their entry into the channel until they
stopped moving or exited the channel. An example of
tracked trajectories can be seen in Figure 2.
[14] Flow depth was calculated from images of the side of

the flume, and mean water velocity, ū, from the known
hydraulic geometry. The Reynolds number, calculated as
ūh/n, where h is mean water flow depth, and kinematic
viscosity, n = 10�6 m2/s, for all experiments, indicates
fully turbulent conditions and therefore the expectation of
critical Shields similitude for all experiments (Table 1).
[15] We note here the steep bed slope (10%) and extre-

mely shallow flow depths on the order of a particle diameter
for the fixed-bed experiments. Bed load transport at such
low relative submergence (ratio of flow depth to particle

size) occurs only at the extreme of steep, boulder-bedded
streams, such as the cascade morphology identified by
Montgomery and Buffington [1997]. Step pool channel
reaches may also exhibit the steep slopes [Grant et al., 1990;
Lenzi, 2001; Zimmermann and Church, 2001; Chin, 2002;
Chin and Wohl, 2005; Church and Zimmermann, 2007],
supercritical flows [Whittaker and Jaeggi, 1982;Grant et al.,
1990; Lenzi, 2001; Comiti et al., 2009], and near unity rela-
tive submergences [Grant et al., 1990; Zimmermann and
Church, 2001] produced in our experiments.
[16] While most closely representing tracer studies in steep,

boulder-bedded streams [e.g., Schmidt and Ergenzinger,
1992; Lamarre and Roy, 2008], our experiments were not
intended to directly reproduce transport conditions in any
particular stream morphology. Rather, they were performed to
consider the generic process of bed load particle dispersion.
As we will show later, dispersion of continuously moving
particles is primarily driven by the statistics of particle velo-
city, which are in turn determined by shear velocity. Needless
to say, relative submergence strongly affects the turbulent

Figure 1. The experimental flume, looking upstream.
(a) Shown with fixed (white) bed, with a few (red) tracers
at rest on the bed. (b) Shown with movable bed. Red tracers
are also present here but are more difficult to see, because
they are mixed in among the white grains.

Table 1. Parameters for Experiments Described in This Papera

Experiment Q (L/m) h (m) Re ū (m/s) t* u* (m/s) Bed State Qs

F1 57 0.0080 6234 0.78 0.068 0.0884 fixed, 10% slope One at a time
F2 45 0.0063 4921 0.79 0.053 0.0783 fixed, 10% slope One at a time
F3 38 0.0060 4156 0.69 0.051 0.0768 fixed, 10% slope One at a time
F4 30 0.0046 3281 0.71 0.040 0.0675 fixed, 10% slope One at a time
F5 26 0.0040 2843 0.71 0.034 0.0627 fixed, 10% slope One at a time
F6 23 0.0038 2515 0.66 0.032 0.0611 fixed, 10% slope One at a time
F7 21 0.0034 2297 0.68 0.029 0.0577 fixed, 10% slope One at a time
F8 19 0.0032 2078 0.65 0.027 0.0561 fixed, 10% slope One at a time
M1 120 0.0215 13124 0.61 0.087 0.0997 movable, ≈ 4.7% slope 1.3 kg/min
M2 120 0.0215 13124 0.61 0.087 0.0997 movable, ≈ 4.7% slope 1.3 kg/min

aQ is water discharge, h is mean flow depth, Re is Reynolds number, ū is mean water velocity, t* is Shields stress, u* is shear velocity, Qs is sediment
discharge.
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stresses and form drag of open channel flows [Nikora and
Goring, 2001]. For completeness, future experiments could
consider particle dispersion under deeper flows.
[17] For intermittent motion at longer time scales, we

carried out two movable bed experiments, henceforth
labeled “M1” and “M2.” In these experiments, the flume
was filled with a thick carpet of gravel, and we tracked
painted tracers among the overall population of gravel
(Figure 1b). Water flowed steadily from upstream as in
experiments F1–F8, and gravel was also fed steadily from a
hopper (Eriez VFM 15-1-20 Vibratory Feeder) at the
upstream end of the flume. Prior to beginning measurements
for each movable bed experiment, the steady water and
sediment feed was allowed to run for a sufficient length of
time to achieve an equilibrium bed slope (about 4.7%) and
bed load transport rate (about 1.3 kg/min), so that the rate of
sediment entering the flume equaled the rate of sediment
exiting. Comparison of the bed surface before and after
measurements indicated no discernible armoring for the
movable bed experiments, probably because of the narrow
range of particle sizes used in the experiments. As the bed
particles were not fixed, there was a free interchange of
particles between the bed and the bed load layer. Thus, in the
movable bed experiments, we tracked particles across all of
their entrainment (particle mobilization) and distrainment
(particle immobilization) transitions, as well as the duration
of waits and flights between these transitions.
[18] In experiment M1, we tracked tracer particles by

processing images collected by an array of cameras above
the flume, with the same spatial resolution and coverage area
as in the F1–F8 experiments. In M2 we tracked particles

with photos captured at a 1.32 s interval through the
Plexiglas sidewall of the flume, in order to observe the
coevolution of bed topography and entrainment/distrainment
transitions. Spatial resolution of these photos was 0.05 mm,
and photo area was 9.8 mm (horizontal) by 6.5 mm
(vertical). Also, in M2, all particles were painted white, and
the water was dyed black in order to better track the evolu-
tion of bed topography. By differencing between successive
image frames, it was possible to isolate distrainment and
entrainment events during an individual time step and con-
sider particle wait times in light of bed surface fluctuations.

3. Results

3.1. Fixed-Bed Experiments

[19] Through image analysis of videos captured for
experiments F1–F8, we tracked the two-dimensional motion
of tracer particles as they traveled along the bed of the flume.
In describing particle displacement in the flume, x = 0 at the
top of the test section and increases downstream, while y = 0
at the right bank and increases in the transverse direction
(Figure 2). All measurements are described in the reference
frame of the flume.
[20] The particle trajectory time series analyses for the

fixed-bed experiments are based on tracking tracer particles
through the length of the flume. Because of the challenge of
following particles through a turbulent water flow in the
flume, traces of certain trajectories were incomplete. For
consistency, we limit our analyses to those particle trajec-
tories that could be followed through the entire length of the
flume. Also, we limit the duration of the particle trajectory

Figure 2. Demonstration of flume particle tracking in experiment F4. (a) Composite image of a single
particle trajectory tracked through image processing, showing particle positions at successive 1/30 s intervals.
(b) Lines show traces of all trajectories analyzed in experiment. Colored markers show cloud of particle
positions at successive 1 s intervals.

Table 2. Parameters for Fixed-Bed Analysis and Observed Velocity Distributions Measured at Time Interval of Dt = 1/30 sa

Experiment T (s) N t* u* (m/s) �vx (m/s) svx (m/s) �vy (m/s) svy (m/s) Tc (s)

F1 2.47 58 0.068 0.0884 0.7189 0.147 0.004 0.107 0.043
F2 2.53 55 0.053 0.0783 0.6639 0.140 0.003 0.099 0.052
F3 3.10 50 0.051 0.0768 0.5589 0.128 0.002 0.093 0.041
F4 3.63 81 0.040 0.0675 0.4756 0.113 0.001 0.088 0.065
F5 3.80 65 0.034 0.0627 0.4571 0.106 0.000 0.081 0.049
F6 4.37 48 0.032 0.0611 0.3829 0.098 0.003 0.076 0.056
F7 4.50 43 0.029 0.0577 0.3329 0.091 0.002 0.074 0.073
F8 5.50 12 0.027 0.0561 0.3082 0.084 0.000 0.074 0.073

aT is the duration over which trajectories were traced in seconds, N is the number of particles analyzed, t* is the dimensionless Shields stress, u* is shear
velocity, �vx is the particle mean longitudinal velocity, svx is the standard deviation of longitudinal velocity, �vy is the mean transverse velocity, svy is the
standard deviation of transverse velocity, Tc is the correlation time scale.
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time series to the minimum time for a particle to traverse the
entire flume, so that ensemble averages at all time scales will
consider the same number of particles. The numbers of
particles thus traced (N) and the duration of tracing (T) are
provided in Table 2 for each experiment.
3.1.1. Particle Dispersion
[21] As described earlier in equation (1), the particle dis-

persion can be described by the growth in the variance of
particle displacement with time interval. A normalization
useful for comparing successive experiments is to divide by
the variance at the camera frame rate, Dt = 1/30 s:

s2
x∗

dtð Þ ¼ s2
x dtð Þ

s2
x Dtð Þ ; ð2Þ

where sx*
2 (dt) describes the normalized variance of particle

displacement over the interval dt. Note that when we
describe dispersion, we are not directly treating a plume of
tracers beginning from the same location at exactly the same
time. Instead, we consider a “virtual” plume of individually
released tracers by setting t = 0 for each particle at the instant
when it begins its journey at the top of the test section.
sx*
2 for each dt is determined from the ensemble average

over all possible time pairs, N(T � dt/Dt) total. While the
number, N, of particles for each experiment is not so large,
this method of calculating dispersion ensures averaging over
a large number of observations, particularly for small dt.

[22] The longitudinal particle dispersions thus calculated
for experiments F1–F8 are shown in Figure 3. In all
experiments, the variance exhibits power law growth in both
the x and y directions. The power law exponent in the x
direction is roughly constant with increasing time interval,
but in the y direction (not plotted), the variance growth slows
with increasing time interval. This is because of the limita-
tion imposed by the narrow flume width. Because of this
spatial limitation, we will focus only on x dispersion in
further analysis.
[23] When comparing the nonnormalized dispersions, the

variance differs between experiments because of the
increased diffusivity of particles under higher flow condi-
tions. However, when normalized, the dispersion curves
collapse together. All of the curves appear statistically
superdiffusive, with g significantly greater than 0.5. The
dispersion curves show a slight decrease in dispersion
exponent with increasing time interval. Linear regression to
the mean of the normalized particle dispersion curves over
the first 0.2 s gives a dispersion exponent of g = 0.80, while
g = 0.70 for the mean of curves beyond 1 s (Figure 3b). This
observed scaling range is close to the range of g = 0.77 �
0.87 observed by Nikora et al. [2002].
3.1.2. Particle Velocities
[24] Instantaneous longitudinal particle velocities, vx(t),

are determined as the differences between particle displace-
ments, x(t), at successive time steps defined by the camera
observation interval of Dt = 1/30 s:

vx tð Þ ¼ x tð Þ � x t �Dtð Þ
Dt

: ð3Þ

The distributions of longitudinal particle velocities are
shown in Figure 4, with velocity statistics (both vx and vy)
described in Table 2. These distributions describe the col-
lection of all instantaneous velocities of all particles over the
duration of each experiment. While the velocity statistics
vary among experiments under varying water discharge (and
thus shear stress), the distributions of vx and vy are essen-
tially Gaussian for all runs, as can be seen for vx by the
normalized curves in Figure 4b. Note that the observed
velocities are explicitly tied to the choice of observation
interval, Dt. With increasing Dt, we expect velocity varia-
bility to decrease.
[25] Mean particle velocities are compared to experi-

mental shear velocities in Figure 5a, where shear velocity is
defined as u* ¼ ffiffiffiffiffiffiffiffiffiffi

tb=r
p

, and boundary shear stress is deter-
mined as the depth slope product, tb = rghS. Here, r is water
density, g is gravitational acceleration, and S is water surface
slope. Within the range of our experiments, mean particle
velocities, vx, appear to be linearly dependent on shear
velocity, though with a nonzero x intercept, here calculated to
be u*,0 = 0.033 m/s for a least squares regression. The
dependence of particle velocity on shear velocity can be
described by the relation:

vx ¼ a u* � u*;0
� �

: ð4Þ

The best fit to our measurements shown in Figure 5a reveals a
coefficient of a = 13.6.
[26] Many researchers have examined the relationship

between particle velocity and shear velocity for bed load.

Figure 3. (a) Growth of sx
2(dt), the particle dispersion, ver-

sus dt for fixed-bed experiments. (b) Growth of sx*
2 (dt), the

normalized particle dispersion, versus dt. The slopes of the
curves decrease slightly with increasing time interval. Linear
regression to the mean of the normalized particle dispersion
curves over the first 0.2 s gives a dispersion exponent of g =
0.80, while g = 0.70 for the mean of curves beyond 1 s.
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Published velocity relationships for fixed-bed experiments
are shown for comparison in Table 3. All but two studies
[Meland and Norrman, 1966; Lee and Hsu, 1994] reported
linear relationships between vx and u*. Also, for the linear

relationships, all past studies reported a positive value
of u*,0.
[27] Our observed a = 13.6 falls in the range of reported

values (except for the study by Ancey et al. [2002], which
reported an anomalously large value of a = 35). As noted by
Abbott and Francis [1977] and Lajeunesse et al. [2010],
fixed beds exert less friction resisting particle motion than do
movable beds; thus, the observed values of a for movable
beds (e.g., a = 11.6 [Fernandez Luque and Van Beek, 1976];
a = 8 [Sekine and Kikkawa, 1992]; 6.8–8.5 [Nino et al.,
1994]; 4.4 [Lajeunesse et al., 2010]), are usually smaller
than for fixed beds. Importantly, the similarity between our
particle velocity curves and those of other researchers (both
for movable and for fixed beds), supports the dynamic
similarity of our particle velocities to those observed in a
variety of other systems, particularly those with higher
relative submergence.
[28] In the equation of Bridge and Dominic [1984], listed

in Table 3, u*,0 is equated to u*,c, the threshold shear velocity
for incipient particle motion. Similarly, Lee and Hsu
[1994] equate the zero intercept for Shields stress, t* =
(u*

2)/(RgD), with the critical Shields stress, t*,c, for inci-
pient particle motion. (R = (rs � r)/r is submerged specific
gravity.) In other equations [Fredsøe and Engelund, 1975;
Hu and Hui, 1996b], u*,0 is smaller than u*,c. In the rest of
the studies, no interpretation was offered for u*,0 in terms of
threshold values.
[29] Assuming that u*,0 = u*,c gives a threshold Shields

stress of t*,c = 0.009 for our experiments. This is sig-
nificantly smaller than values typically quoted for turbulent
flows, usually around t*,c = 0.05 for gravel [Buffington and
Montgomery, 1997]. Our unusually low value of t*,c could
simply be a consequence of assuming u*,0 = u*,c. u*,0 is
effectively a distrainment threshold, i.e., the value to which
shear velocity must drop in order to bring an initially moving
grain to rest. In line with many past observations [e.g.,
Francis, 1973; Reid et al., 1985; Drake et al., 1988; Ancey
et al., 2002], we noticed when setting up our experiments
that entrainment of resting grains occurs at a significantly
higher Shields stress than distrainment of moving grains.
Therefore, t*,c would be significantly larger if taken as an
entrainment threshold. Indeed, the relations of Fredsøe and
Engelund [1975] and Hu and Hui [1996b] assume values of

Figure 5. (a) Mean particle velocity, �vx , versus shear velocity, u*, for the eight fixed-bed experiments
described in this paper. Mean particle velocity, �vx , increases linearly with u* according to equation (4),
and the x intercept is u*,0 = 0.033 m/s. (b) Total longitudinal velocity variance, svx

2 , also increases linearly
with u* according to equation (5), with u*,0,s = 0.041 m/s.

Figure 4. (a) Distribution of longitudinal velocities, vx (m/s),
determined from displacements over 1/30 s intervals. (b) Dis-
tribution of normalized longitudinal velocities, vx � �vxð Þ=
svxð Þ. The curves collapse together toward a common Gaus-
sian profile when normalized.
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u*,c based on an entrainment threshold, giving u*,0 < u*,c
(Table 3).
[30] Alternatively, our low value of t*,c could be a con-

sequence of experimental conditions. As demonstrated for
particle velocities, a fixed bed tends to exert less friction on
particles than a movable bed, which could perhaps depress
t*,c. Also, t*,c tends to decrease as grain size increases
relative to bed pocket size, because of greater protrusion and
exposure of coarse grains, and values as low as t*,c = 0.01
have been observed [Fenton and Abbott, 1977; Andrews,
1983; Buffington et al., 1992; Wilcock, 1998]. In our
experiments, the white paint covering the fixed bed may
have filled in some pockets and caused greater protrusion of
resting tracers, thereby decreasing t*,c. In their exhaustive
compilation of incipient motion studies, Buffington and
Montgomery [1997] note that differences in channel rough-
ness, slope, and sorting produce large variations in observed
t*,c.
[31] Finally, concavity of the u* versus vx relationship, as

observed by Meland and Norrman [1966] and Lee and Hsu
[1994], could produce a greater value of u*,0, though
Figure 5a indicates no deviation from a linear relationship
in our experiments. In fact, when we examined the data for
1.36 mm sand in the experiments of Lee and Hsu [1994],
we found a linear relationship with a = 11.85, matching
many of the other quoted experiments.
[32] In addition to vx , we can also relate svx to u*. When

we plot svx
2 versus u* (Figure 5b), we find a linear relation

similar to that for vx versus u*:

s2
vx
¼ as u* � u*;0;s

� �
: ð5Þ

In this case, u*,0,s = 0.041 m/s, slightly larger than u*,0
computed from mean particle velocities, while as = 0.48 m/s.
svx also grows linearly with vx.

3.1.3. Particle Velocity Autocorrelation
[33] Because particles possess momentum, successive

velocities are correlated over short times. This is quantified
by calculating the autocorrelation of grain velocities, Rvx.
The velocity autocorrelation is described as a function of
time lag, t, and can range in value from 1 (perfectly corre-
lated) to �1 (perfectly anticorrelated).
[34] For each of the F experiments, we computed the

Rvx(t) curves for each individual particle trajectory. We
focus here only on the longitudinal (x) component of the
particle motion, as the narrow width of the channel con-
tributes a spurious anticorrelation for y velocities. To extract
the overall particle behavior, we ensemble averaged the
Rvx(t) curves for all of the particles in each experiment. The
resulting ensemble averaged autocorrelation curves, 〈Rvx(t)〉,
are shown in Figure 6.
[35] Despite differences in Shields stress among the eight

experiments, the longitudinal velocity autocorrelations dis-
play a similar rapid exponential decay for all experiments.
We can compute a characteristic e-folding correlation time
scale, Tc, that fits an exponential to the observed auto-
correlation curve, i.e.:

Rfit tð Þ ¼ e�t=Tc : ð6Þ

The correlation time scale was calculated by fitting to the
autocorrelation curves for time lags up to 1/3 s (the
approximate time when all of the autocorrelation curves go
to zero) for each data set. The correlation time scales for the
eight fixed-bed experiments are given in Table 2. There is a
very weak trend of increasing correlation time scale with
decreasing shear velocity of the flow, though this trend may
be statistically insignificant (R2 = 0.60). The mean correla-
tion time scale among the eight fixed-bed experiments is
Tc = 0.056 s. The importance of correlation time scale and
its relation to particle inertia will be discussed later.

Table 3. Particle Velocity Versus Shear Velocity Relationships Computed in Various Experiments With a Fixed Rough Bed

Author Equation Parameters Notes

Meland and Norrman [1966] �vx ¼ 7:05km�1Dn u* � 0:72kD�n
� �

k = roughness length, m and n
depend on u*, D, and k.

Spheres on bed of glass beads experiencing
all modes of bed load.

Francis [1973] �vx ¼ a u* � u*;0
� �

a = 14.0 for solitary particles,
a = 14.8 for particles in a crowd.

Natural particles in saltation only. Equation is
our fit to data from Frances [1973, Table 5].

Fredsøe and Engelund [1975]
(cited by Middleton and
Southard [1977])

�vx ¼ a u* � u*;0
� �

a = 10. u*,0 = 0.7u*,c. Based on data from Francis [1973],
Fernandez Luque [1974], and
Meland and Norrman [1966].

Abbott and Francis [1977] �vx ¼ a u* � u*;0
� �

a = 14.3 for spheres;
a = 13.5 � 13.85
for angular grains.

Natural particles experiencing all modes of
transport (i.e., rolling, saltation,
and suspension).

Bridge and Dominic [1984] �vx ¼ a u* � u*;0
� �

a = 6 � 14. Authors claim
a should increase with
shear stress. u*,0 = u*,c.

Theoretical derivation for all modes of bed load
based on solving equations of motion.

Lee and Hsu [1994] �vx ¼ a t* � t*;c
� �0:174

a = 11.53. Natural particles in saltation only. Our own fit
to authors’ data for 1.36 mm sand
gives �vx ¼ a u* � u*;0

� �
with a = 11.85.

Hu and Hui [1996b] �vx ¼ a u* � u*;0
� �

a = 11.9; u*,0 = 0.44u*,c. Natural particles experiencing all modes of
bed load.

Ancey et al. [2002] �vx ¼ a u* � u*;0
� �

a = 35. Spheres on bed of glass beads experiencing all
modes of bed load.

This paper �vx ¼ a u* � u*;0
� �

a = 13.6. Natural particles experiencing all modes of
bed load.
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3.2. Movable Bed Experiments

3.2.1. Particle Flights
[36] We measured the duration and length of particle

flights, from the moment of entrainment to the moment of
distrainment, for 102 particles in experiment M1. Oper-
ationally, a resting particle was considered entrained when it
moved a complete particle diameter, while a mobile particle
was considered distrained when it failed to move more than
one grain diameter within a second. Of the 102 particles
tracked, only 2 particles traveled the entire length of the
flume without becoming distrained; thus, the results can be
considered robust for describing the distributions of flight
durations and lengths. These distributions are shown in
Figure 7. The mean flight time, Tf, is 1.52 s, the mean flight
length, Lf, is 0.148 m, and both distributions are thin tailed.
Furthermore, the flight times appear to closely follow an
exponential distribution. The distribution of flight lengths is
more uncertain, possibly but not convincingly of exponential
character.
3.2.2. Particle Wait Times
[37] Particle wait time is the duration of time between

distrainment of a grain and reentrainment of that grain. We
tracked particle wait times by two methods. In experiment
M1, we tracked a total of 243 red tracers from overhead
images of the flume. Of these, we measured wait times of
less than 30 min for 236 particles, while the other 7 particles
were never reentrained after 30 min of waiting. The wait

times were sorted to provide the exceedance probability of
wait times, P(tw > t), where tw is the particle wait time.
[38] The observed wait time distribution for experiment

M1 displays a power law tail (Figure 8). The power law tail
has the form:

P tw > tð Þ � t�a; t > Tt: ð7Þ

Presumably, because of the finite size of the flume, there
should be an upper limit truncation of the wait time dis-
tribution; however, the duration of our experiments was
insufficient to achieve this supposed wait time truncation. To
determine the tail parameter, we used the method of Nuyts
[2010] for truncated data sets. Taking Tt = 37 s as the

Figure 7. (a) Exceedance probability of flight durations
and (b) lengths for 102 particles tracked in experiment M1.
The observed distributions strongly suggest an exponential
distribution of flight durations and more weakly suggest
exponential flight lengths. Mean flight time, Tf, is 1.52 s,
and mean flight length, Lf, is 0.148 m.

Figure 8. Exceedance probability of particle wait times
observed in experiment M1. The tail parameter, a = 0.85,
where P(tw > t) � t�a, was determined by the method of
Nuyts [2010]. The chosen cutoff time, Tt = 37 s, maximizes
the fit to the observed data.

Figure 6. Ensemble-averaged longitudinal velocity auto-
correlation curves, 〈Rvx(t)〉. The autocorrelations are similar
for all experimental runs, despite differences in Shields
stress. An exponential of form Rfit(t) = e�t/Tc (equation (6))
was fit to the means of the 〈Rvx(t)〉 curves for the eight
experiments. The characteristic correlation time, Tc, describes
the rate of decay of the exponential. Tc varies slightly among
experiments (Table 2). The mean for all experiments is
Tc = 0.056 s.
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cutoff time maximizing the fit to the observed tail, this
method produces a tail parameter of a = 0.85 for the wait
time distribution (equation (7)).

4. Discussion

4.1. Inertial Particle Dynamics and Short-Time
Superdiffusion

4.1.1. Correlation Time Scale
[39] The longitudinal velocity autocorrelation curves

described above show that particles retain an exponentially
decaying memory of their recent motion, with Tc roughly
demarcating a transition between correlated and uncorrelated
motion. Past studies have demonstrated three primary sour-
ces of positively autocorrelated particle velocities in turbu-
lent fluids: (1) hydrodynamic source, due to coordinated
fluid motion in turbulent eddies; (2) boundary source, due to
confinement of a particle by bounding surfaces or a harmo-
nic potential field; and (3) particle inertial source, due to
ballistic motion of particles [Snyder and Lumley, 1971;
Clercx and Schram, 1992; Elghobashi and Truesdell, 1992;
Li et al., 2010; Huang et al., 2011].
[40] Turbulent velocity fluctuations have been observed to

affect bed load gravel transport on time scales of order 0.5 s
[Nelson et al., 1995; Buffin-Belanger and Roy, 1998]. This is
longer than the observed correlation time scale in our
experiments, but still of a reasonable enough duration
to potentially cause coordinated particle motion in our
experiments.
[41] We observed slightly anticorrelated transverse parti-

cle velocities, vy, in our experiments, likely due to the con-
fining presence of channel boundaries. However, no such
anticorrelation was observed for longitudinal particle velo-
cities, vx (Figure 6). Furthermore, the distributions of vx
displayed no differences along the transverse (y) bed direc-
tion, suggesting a negligible effect of channel boundaries on
autocorrelation of vx.
[42] The time scale of particle velocity correlations due to

particle inertia is related to the time for a particle to respond
to fluctuations in fluid drag. Through a simple momentum
balance for spherical particles, Elghobashi and Truesdell
[1992] found this time, Ti, to be:

Ti ¼ 4

3

rs
r

D

Cd

1

u� vx

� �
; ð8Þ

where u � vx is the slip velocity (the difference between
fluid and particle velocities) and Cd is the drag coefficient.
For our experiments, rs = 2650 kg/m3, r = 1000 kg/m3, and
D = D50 = 7.09 mm. Assuming a value of Cd = 1 for angular
particles [Ferguson and Church, 2004], and taking u = 〈ū〉 =
0.71 m/s and vx = 〈vx〉 = 0.49 m/s as the average of mean
water and grain velocities, respectively, across all experi-
ments, we calculate Ti = 0.11 s.
[43] This calculated Ti is double the value of Tc = 0.056 s

estimated from the autocorrelation curves. Some of this
discrepancy may be explained by uncertainty in the drag
coefficient, and some by the variability in particle and fluid
velocities away from the mean value. Future experiments
with various particle sizes/densities and bed configurations
would provide better evidence for an inertial time scale
(or other sources of particle velocity correlation).

4.1.2. Inertia and Superdiffusion
[44] The presence of inertially driven velocity correlations

at short time scales suggests a cause for observed super-
diffusion. To explore this idea, we treat particle velocity as
an autoregressive process, wherein the velocity at each time
step combines a contribution of past velocity with a sto-
chastic contribution, as follows:

vt ¼ rvt�1 þ xt: ð9Þ

vt is the longitudinal particle velocity at time t, and vt�1 is the
velocity at the previous time step with duration Dt. The r
term describes the lag-Dt autocorrelation and is determined
from the correlation time scale, Tc, as: r = e�Dt/Tc. xt is an
independent and identically distributed random noise term
related to stochastic fluctuations in fluid, bed, and inter-
particle interaction effects on particle velocity.
[45] We define the displacement of a particle within a

single time step as a “step”:

st ¼ vtDt: ð10Þ

[46] The cumulative particle displacement is just the sum
of individual steps:

xt ¼
Xt
i¼1

si; ð11Þ

and x0 = 0 for all particles.
[47] As described earlier, particle longitudinal velocities

measured over Dt = 1/30 s are normally distributed with
mean, vx, and standard deviation, svx (Table 2). Since velo-
cities are normally distributed, the distribution for the noise
term, xt, is also normal:

fx ¼ N mx;sx
� �

: ð12Þ

To ensure constant velocity statistics through time, we com-
pute the noise mean and standard deviation as the uncorrelated
portion of a step:

mx ¼ vxDt 1� rð Þ; ð13Þ

sx ¼ svxDt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
: ð14Þ

[48] Substituting equations (10) and (12) into equation (9),
we describe the autoregressive model in terms of step
displacements:

st ¼ rst�1 þN mx;sx
� �

; ð15Þ

with initial step size, s1 = N (vxDt, svxDt).
[49] We are interested in determining the growth of long-

itudinal displacement variance, sx,t
2 , with time. Based on

equation (15) and utilizing the properties of expected values
and covariance, we derive sx,t

2 in Appendix A:

s2
x;t ¼ s2

sx
t þ 2

Xt�1

i¼1

ri t � ið Þ
 !

; ð16Þ

where ssx is the step standard deviation, ssx = Dtsvx.
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[50] Notice in equation (16), the second term on the right
hand side describes the expected departure from linear var-
iance growth, and thus the degree of diffusion anomaly.
With an increasing value of t, the size of the anomaly gra-
dually decreases relative to the linear variance growth con-
tribution. Thus, at large times, the dispersion gradually
converges to normal diffusion, with the rate of convergence
dependent on Tc (since r = e�Dt/Tc).
[51] Using grain motion parameters from Table 2, the

autoregressive theory of equation (16) is compared to the
observed dispersions in Figure 9. At short times, the theory
closely reproduces the observed dispersion in all the runs. In
fact, even at times significantly longer than Tc, the effect of
inertia still seems to be significant in generating super-
diffusion. However, at longer times, the theoretical rate of
dispersion gradually declines as the inertial effect wears off.
In contrast, the observed dispersion continues to grow at a
near constant rate for long times.

[52] What could account for this discrepancy? We think it
may be related to grain heterogeneity. While the grain
population is well sorted, slight differences among grains
mean that some move a bit faster than others over the long
term. We can treat this by partitioning fluctuations in particle
velocities between those of origin external to an individual
grain (i.e., due to turbulence and bed roughness) and those
associated with grain heterogeneity:

s2
vx
¼ s2

ve
þ s2

vg
; ð17Þ

where svx
2 is the total longitudinal velocity variance, sve

2 is the
variance associated with external fluctuations, and svg

2 is the
variance associated with grain heterogeneity.
[53] Reframing the model described in equation (15) to

include this partitioning of velocity variance, we develop a
more refined model of particle dispersion, which is descri-
bed in Appendix B. Adopting a value of svg

2
�
svx
2 = 0.015, i.

e., 1.5% of the velocity variability due to grain

Figure 9. Comparison of particle dispersions for observed tracers, particle inertia autoregressive model
(equation (16)), and autoregressive model incorporating mixed grains (equation (B17)) with svg

2
�
svx
2 =

0.015 (i.e., 1.5% of velocity variance explained by particle heterogeneity). Plots correspond to individual
fixed-bed experiments (F1–F8).
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heterogeneity, we obtain the modified result shown in
Figure 9. At short times, the grain velocity heterogeneity is
negligible compared to grain inertia, so the inertial effect
predominates. However, at longer times, the magnitude of
differences among grains increases in importance, causing
the autoregressive model with grain heterogeneity to diverge
from the autoregressive model without heterogeneity.
Indeed, this model closely reproduces the observed particle
dispersion for all runs except for F8, for which the sample
size was very small.
[54] While offering a potential explanation for the devia-

tion of observed dispersion from our simple autoregressive
model, our autoregressive model with grain heterogeneity is
not based on any direct observation of differing particle
characteristics. Indeed, our model parameter of svg

2
�
svx
2 =

0.015 is simply tuned to match observed dispersion. To
obtain a confirmation that the autoregressive model with
grain heterogeneity is valid, we would need to measure
mean velocities of individual particles over distances much
longer than our flume to ensure statistical convergence, then
compare the distribution of observed velocities to that for a
completely uniform mixture of particles.
[55] The scaling of particle velocity statistics does, how-

ever, offer strong evidence for the insufficiency of the sim-
ple autoregressive model. The variances in particle
velocities, shown for example in Figure 4, are explicitly tied
to the averaging interval, here Dt = 1/30 s. We expect the
variance of longitudinal particle velocities, svx

2 , to decrease
with increasingly large calculation time interval. However,
the exact scaling of svx

2 with time interval depends on cor-
relations among successive velocities. For example, if suc-
cessive velocities were completely uncorrelated, by the
Central Limit Theorem (CLT) we would expect velocity
variance to decline with the inverse of number of time steps
sampled. Because successive velocities are correlated, we
expect velocity variance to decline more slowly than this.
[56] In Appendix C, we predict how velocity variance, svx

2 ,
should scale with sampling interval for completely uncor-
related motion (equation (C1)), for inertially correlated
motion (equation (C2)), and for inertially correlated motion
with grain heterogeneity (equation (C3)). In Figure 10, we
show the observed scaling of svx

2 versus measurement time
interval for the eight fixed-bed experiments, and compare
this to the predicted svx

2 scaling for these three cases.
Including inertia slightly slows the decline of svx

2 compared
to for uncorrelated motion, but the effect is insufficient to
explain the observed svx

2 scaling. Once grain heterogeneity is
included, however, the svx

2 scaling agrees much better with
observations.
[57] Despite the lack of directly applicable data, the

agreement of the observed particle dispersion and velocity
variance scaling with predictions strongly supports the dis-
persion model combining grain inertia and heterogeneity. In
summary, the inertially driven autocorrelation in velocity
determines the correlation time scale, explaining part of the
growth in displacement variance. Invoking grain hetero-
geneity explains the convergence of velocity variance to a
nonzero value over long averaging times, and also further
helps to explain anomalous displacement variance growth
well beyond the correlation time scale.

4.2. Flight Length and Time Distributions

[58] We observed an exponential distribution of flight
times, suggesting that distrainment of moving particles along
a bed of loose gravel is a memoryless process with prob-
ability of distrainment over a time interval related to duration
of the time interval only. Flight lengths are also suggestive
of an exponential distribution. Our observations are sup-
ported by documented exponential- or gamma-distributed
particle flight lengths in past studies [Hassan et al., 1991;
Schmidt and Ergenzinger, 1992; Habersack, 2001; Hill
et al., 2010; Lamarre and Roy, 2008; Lajeunesse et al.,
2010]. Lajeunesse et al. [2010] tracked the length and
duration of particle flights under a variety of hydraulic
conditions. Using a poorly sorted lognormal distribution of
particles, Hill et al. [2010] observed a power law distribution
of flight lengths, but ascribed this not to the transport
dynamics (individual grain size populations showed expo-
nential flight length distributions), but rather to the presence
of a lognormal distribution of grain sizes. Observations by
Schmidt and Ergenzinger [1992] and Lajeunesse et al.
[2010] support the notion that flight length depends on
particle shape and diameter. In particular, Lajeunesse et al.
[2010] found that the mean flight times scale with a char-
acteristic particle settling time, which determines the fre-
quency of bed contacts and potential distrainments.
[59] The flight time sets an important constraint on

anomalous diffusion regimes. When observing bed particle
dispersion over intervals shorter than the characteristic flight
time, Tf, one will observe grains mostly in continuous
motion. In this case, the dispersion theory described above,
combining particle inertia and grain heterogeneity, will
produce superdiffusion. However, at times longer than Tf,
the rest intervals between successive particle hops should
strongly influence particle dispersion.
[60] Nikora et al. [2002] predicted from the intersection of

two empirical data sets that transition from superdiffusion at
short times to subdiffusion at long times should commence
when tu*/D ≈ 15. Taking the mean flight time, Tf, as the
predicted transition time to superdiffusion, we get Tf u*/D =
21.3, close to the empirical prediction of Nikora et al.
[2002]. Because of the limited length of our flume, we
could not test this prediction directly in our experiments.

4.3. Physical Meaning of Wait Times

[61] We have noted the presence of a power law tail in
wait times, but where does it come from? For a resting grain
to become reentrained, two conditions must be satisfied:
(1) sufficient shear stress must be applied to mobilize grains
in the section of bed where a particle is residing, and (2) the
particle must be exposed on the surface of the bed. Soon
after a particle has been distrained (i.e., for short wait
times), it is likely to remain exposed to the flow, so only
condition 1 limits reentrainment. Thus, we would expect the
wait time distribution at short times to be dominated by
surface transport patterns. Drake et al. [1988] followed
collective particle motion on the bed of a gravel stream, and
found that these motions tend to aggregate in “sweep-
transport events,” randomly distributed localized transport
events driven by turbulent velocity fluctuations. However,
at long times, reentrainment dynamics will be dominated by
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the burial and reemergence of grains by scour as particles
interact with neighboring grains.
[62] In experiment M2, we tracked 398 particles on the

sidewall of the flume, of which we were able to measure
wait times of less than 60 min for 392 particles. The dis-
tribution of M2 wait times is shown in Figure 11. By
tracking from the sidewall, we could also look at changes in
bed topography corresponding to entrainment and distrain-
ment of individual grains. Within the images captured for the
experiment, areas occupied by grains appeared as white,
while water appeared as black. This strong contrast made it
possible to determine the bed surface in each frame, as
shown in Figure 12. Bed profiles were captured every 1.32 s
for a total of about 90 min.

Figure 10. Scaling of velocity variance, svx
2 , with measurement interval, dt. Observed scaling of svx

2 with
dt is compared to predictions for uncorrelated motion (CLT; see also equation (C1)), particle inertia auto-
regressive model (inertia; see also equation (C2)), and autoregressive model incorporating grain heteroge-
neity (inertia and mixed grains; see also equation (C3)). Including inertia slightly slows the decline of svx

2

compared to uncorrelated motion, but the effect is insufficient to explain the observed svx
2 scaling. Once

grain heterogeneity is included, however, the svx
2 scaling agrees much better with observations. Plots

correspond to individual fixed-bed experiments (F1–F8).

Figure 11. Comparison of wait time (tw) and scour time (ts)
distributions for experiment M2.
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[63] To understand the coevolution of bed topography
with particle wait times, we considered the distribution of
scour times of the bed surface. Looking at a single long-
itudinal position, x, along the bed, the elevation, z, at this
position will fluctuate up and down as particles become
entrained and distrained. Fluctuations in bed topography are
highly irregular, occurring at a range of time scales, from
short bursts of intense activity to long periods of quiescence.
[64] Considering this range of bed fluctuations, the bed

scour time, ts(x, t0), at position x from starting time t0 is
defined as:

ts x; t0ð Þ ¼ min t > t0 : z x; tð Þ < z x; t0ð Þð Þ: ð18Þ

The scour time describes the time until the bed gets reeroded
to a certain initial starting position. Because grains are only
entrained from the surface of the bed, the bed must scour to
at least the top of the grain in order for it to become reen-
trained (though sufficient shear stress is still required to
actually mobilize the particle).
[65] We picked 10000 random positions and times on the

bed, and measured the scour times to estimate the distribu-
tion of scour times in experiment M2. This distribution is
shown in Figure 11, along with the distribution of wait times
measured in experiment M2. The scour time distribution
mostly describes the observed wait time distribution. Note
that the scour time distribution does not converge to zero in
the tail, because there are a significant number of bed posi-
tions for which the bed never scoured back to the initial
position. Presumably, given the limited system size, there
must be a maximum time truncation on the power law tail of
the wait time distribution, but we did not reach this time in
our experiments.
[66] We note here that, because the sidewall interacts with

particles to affect their motion, the wait time distribution is
somewhat different here than the overall distribution of wait
times documented in experiment M1. In particular, the
shorter wait times from the sidewall perspective indicate that
perhaps the sidewall somewhat decreases the stability of
deposited particles. Nonetheless, the presence of a power
law tail (here a = 0.68 for the power law tail starting at tw =
13.2 s), indicates the rough equivalence of the wait time
distributions in experiments M1 and M2.

4.4. Long-Time Anomalous Diffusion

[67] We could not directly measure particle dispersion
beyond a few seconds, but our data suggest the potential for
anomalous diffusion over long times. The fact that particle
flights are thin tailed while particle waits are heavy tailed
suggests that the dynamics of wait times should dominate
the particle dispersion behavior. Transport processes with
thin-tailed flights and heavy-tailed waits may be described
by a time-subordinated fractional advection diffusion equa-
tion (tFADE) and should experience subdiffusion for a < 1
[Schumer et al., 2009]. On the other hand, Weeks et al.
[1996] described how the net advection of particles may
cause superdiffusive particle spreading, despite heavy-tailed
wait times.
[68] Taking particle flight times as thin tailed and waits as

heavy tailed with decay exponent a = 0.85 from the M1
experiments, the expected long-time diffusion scaling
exponent for symmetric random walks is g = a/2 = 0.43
(slightly subdiffusive), whereas for the asymmetric random
walks described by Weeks et al. [1996] it is g = a = 0.85
(strongly superdiffusive). Since there is net downstream
advection of particles in a river, particle motion is best
described by an asymmetric random walk, thus predicting
long-time superdiffusion. However, Weeks et al. [1996]
noted that convergence to the limiting diffusive regime can
take a very long time; in the interim, when heavy-tailed
waits dominate over particle advection, subdiffusion could
be possible (thus supporting the observations of Nikora et al.
[2002] who found g = 0.33 for long-time longitudinal par-
ticle diffusion for the bed load data of Drake et al. [1988]).
Perhaps the time truncation of heavy-tailed waiting times
may occur before convergence to superdiffusion.
[69] Future observational work is warranted to more defi-

nitely describe the type of anomalous diffusion at long times
in bed load gravel transport.

5. Conclusion

[70] Our objective in this study was to understand the
physical meaning of the anomalous bed particle diffusion
observed by Nikora et al. [2002] and to relate the time scales
of diffusion regimes to the physics of bed load transport. We
ran flume experiments to track the dispersion of gravel in
bed load transport. At time scales (1/30 to 5 s) corresponding
to continuous particle motion, we directly tracked dispersion
of continuously moving particles over a fixed rough bed, and
related observed superdiffusive transport statistics to particle
inertia. Interestingly, recent work probing the limits of
classical Brownian motion at the molecular level [Huang
et al., 2011] has shown a similar gradual transition from
fully correlated (ballistic) motion to random (Brownian)
motion, providing a strong analogy for our experiments.
From moveable bed experiments, we found an exponential
distribution of particle flight times. At time scales (1 to
1000 s) equal to or longer than individual particle flights,
we observed heavy-tailed wait times, which suggest that
long wait times should be the source of the long-time sub-
diffusion observed by Nikora et al. [2002].
[71] Time scales of anomalous diffusion can be related

directly to observable physical quantities. The correlation
time scale driving short-time superdiffusion appears to be
related to a balance between particle inertia and fluid drag,

Figure 12. Image of gravel bed from side of flume. Flow is
from left to right, and image has been rotated by an angle of
tan�1(4.7%), corresponding to the mean bed slope. The bed
profile marked in red was determined by thresholding in
image analysis. Dark spaces appear between particles
because their sphericity prevents them from touching at the
sidewall where the image is captured.
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though hydrodynamic and boundary effects could also be at
work. The mean flight time defines the expected transition
from short-time superdiffusion (for continuously moving
particles) to long-time subdiffusion (for intermittently mov-
ing particles). Finally, the heavy-tailed wait time distribution
is related to the distribution of bed scour times. The tail of
the wait time distribution in turn should set the scaling of
long-time subdiffusion.
[72] Our experiments were designed to replicate disper-

sion of coarse-grained tracers moving intermittently near the
threshold of motion in natural systems. We argue, based on
the dynamic similarity of particle velocity distributions to
experiments with deeper flows, that the observed dispersion
should translate to many other turbulent systems. However,
we expect the time scales to be different, especially for dif-
ferent shear stresses and grain sizes. In our experiments, the
time scale of particle flights is short enough that expected
long-time subdiffusive dynamics are likely to overlap with
short-time superdiffusive dynamics driven by correlated
particle motions. Finally, as our autoregressive model with
grain heterogeneity shows, it is possible for differently sized
particles with different mean velocities to produce super-
diffusion at time scales significantly beyond the observed
correlation time scale. This effect may be further exag-
gerated for systems with a wider range of grain sizes.
[73] In this paper, we have offered a physically based

framework for describing anomalous sediment diffusion.
More direct experimental observations are needed to confirm
the ideas in this paper, such as the relation between inertial
time scale and hydraulic parameters, the dependence of
superdiffusion on grain heterogeneity, and the driving phy-
sical mechanism behind scour time and wait time variability.
Most urgently, experiments tracking particle dispersion from
short to long time scales could directly determine transitions
among diffusion regimes. We hope that our analyses in this
paper can help to set the framework for such experiments.

Appendix A: Derivation of Dispersion
Scaling—Inertia Only

[74] Taking the mean and variance of step displacement as
ms ¼ vxDt and ssx

2 = svx
2Dt, respectively, we define the

detrended step random variable as:

~st ¼ st � ms: ðA1Þ

Similarly, the detrended cumulative displacement is:
~xt ¼ xt � mst: ðA2Þ

[75] We are interested in determining the growth of long-
itudinal displacement variance, sx,t

2 . Utilizing the properties
of variance, we find:

s2
x;t ¼ Var xtð Þ ¼ Var ~xt � mstð Þ ¼ Var ~xtð Þ: ðA3Þ

Considering that ~xt ¼ ~xt�1 þ ~st, we can compute Var ~xtð Þ:
Var ~xtð Þ ¼ Var ~xt�1 þ ~stð Þ ¼ Var ~xt�1ð Þ þ Var ~stð Þ þ 2Cov ~xt�1;~stð Þ:

ðA4Þ

We determine the covariance (Cov) by considering the
expected value (E) of successive steps:

Cov ~xt�1; stð Þ ¼ E ~xt�1~st½ �
¼ E ~xt�2 þ ~st�1ð Þ~st½ �
¼ E ~xt�2~st½ � þ E ~st�1~st½ �
¼ E ~xt�3~st½ � þ E ~st�2~st½ � þ E ~st�1~st½ �
…

¼
Xt�1

i¼1

E ~st�i~st½ �:

ðA5Þ

We can get the expected step products from the auto-
correlation function, described in equation (6):

E ~st�i~st½ � ¼ s2
sx
e�i=Tc ¼ s2

sx
ri: ðA6Þ

[76] Following out the recursive sum in equation (A4),
recognizing that Var ~stð Þ ¼ s2

sx
, and substituting the results of

equations (A5) and (A6), we get the displacement variance
in terms of t, ssx

2, and r:

s2
x;t ¼ s2

sx
t þ 2

Xt�1

i¼1

ri t � ið Þ
 !

: ðA7Þ

The dispersion can be normalized by ssx
2:

s2
x*;t

¼ t þ 2
Xt�1

i¼1

ri t � ið Þ:
ðA8Þ

Appendix B: Derivation of Dispersion
Scaling—Inertia and Grain Heterogeneity

[77] Reframing the model described in equation (15) to
include partitioning of velocity variance (equation (17)), we
build a new model to incorporate grain heterogeneity:

st ¼ rst�1 þN mx;sxe

� �þ msg : ðB1Þ

The noise standard deviation from equation (14) has been
modified to account for the velocity partitioning, so that:

sxe ¼ sveDt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
¼ Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
vx
� s2

vg

� 	
1� r2ð Þ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
sx
� s2

sg

� 	
1� r2ð Þ

r
; ðB2Þ

where ssx = Dtsvx and ssg = Dtsvg.
[78] The msg term in equation (B1) is a step contribution

arising from grain heterogeneity (i.e., the mean deviatoric
step of an individual particle due to grain heterogeneity).
This value is constant for each grain, but varies among dif-
ferent grains with a normal distribution:

P msg ¼ x
� 	

¼ N 0; ssg

� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

sg

q ex
2= 2s2

sg

� �
: ðB3Þ
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[79] We can relate the dispersion to the expected value of
the detrended displacement:

s2
x;t ¼ Var ~xtð Þ ¼ E ~x2t


 �� E ~xt½ �2 ¼ E ~x2t

 �

: ðB4Þ

To determine the value of E ~x2t

 �

, we first condition the

expected value on msg as E ~x2t ∣msg

h i
. We find ~xt∣msg by taking

the sum of steps:

~xt∣msg ¼
Xt
i¼1

~si∣msg : ðB5Þ

[80] Step sizes depend on previous steps. Taking ~s1 as a
random variable for the first step and ~x i as the random
(detrended) noise term at the ith time step, the steps follow
the pattern:

~s1∣msg ¼ ~s1;

~s2∣msg ¼ r~s1 þ ~x2 þ msg

� 	
;

~s3∣msg ¼ r2~s1 þ r ~x2 þ msg

� 	
þ ~x3 þ msg

� 	
;

…

~si∣msg ¼ ri�1~s1 þ ri�2 ~x2 þ msg

� 	
þ ri�3 ~x3 þ msg

� 	
þ…

þ r ~x i�1 þ msg

� 	
þ ~x i þ msg

� 	
: ðB6Þ

The sum of the steps is then:

~xt∣msg ¼
Xt�1

i¼0

ri~s1 þ
Xt�2

i¼0

ri ~x2 þ msg

� 	
þ
Xt�3

i¼0

ri ~x3 þ msg

� 	

þ…þ r0 ~x t þ msg

� 	

¼ 1� rt

1� r

� �
~s1 þ 1� rt�1

1� r

� �
~x2 þ msg

� 	

þ 1� rt�2

1� r

� �
~x3 þ msg

� 	
þ…þ ~x t þ msg

� 	

¼ 1

1� r

� �
1� rtð Þ~s1 þ

Xt�1

i¼1

1� ri
� �

~x t�iþ1 þ msg

� 	" #
:

ðB7Þ

Taking the square, we get:

~x2t ∣msg ¼
1

1� r

� �2

1� rtð Þ2~s21 þ
Xt�1

i¼1

1� ri
� �2 ~x t�iþ1 þ msg

� 	2"

þ
Xt�1

i¼1; j¼1
i≠j

1� ri
� �

1� r j
� �

~x t�iþ1 þ msg

� 	
~x t�jþ1 þ msg

� 	

þ 2 1� rtð Þ~s1
Xt�1

i¼1

1� ri
� �

~x t�iþ1 þ msg

� 	 !#
: ðB8Þ

[81] To determine the expected value of ~x2t ∣msg , we take
the expected values of the random variables, noting that ~s1
and all of the ~x i’s are independent:

E ~x2t ∣msg

h i
¼ 1

1� r

� �2

1� rtð Þ2E ~s21

 �þXt�1

i¼1

1� ri
� �2

E ~x
2
t�iþ1

h i�"

þ 2E ~x t�iþ1


 �
msg þ m2

sg

	
þ
Xt�1

i¼1; j¼1
i≠j

1� ri
� �

1� r j
� �

� E ~x t�iþ1
~x t�jþ1


 �þE ~x t�iþ1


 �
msgþE ~x t�jþ1


 �
msgþm2

sg

� 	

þ 2 1� rtð ÞE ~s1½ �
Xt�1

i¼1

1� ri
� �

E ~x t�iþ1


 �þ msg

� 	 !#
:

ðB9Þ

The expected values of the random variables are: E ~s1½ � ¼ 0,

E ~x i

 � ¼ 0 , E ~s21


 � ¼ s2
s , and E ~x

2
i

h i
¼ s2

xe
. Thus, we can

simplify:

E ~x2t ∣msg

h i
¼ 1

1� r

� �2

s2
s 1� rtð Þ2 þ s2

xe
þ m2

sg

� 	Xt�1

i¼1

1� ri
� �2

2
664

þ m2
sg

Xt�1

i¼1; j¼1
i≠j

1� ri
� �

1� r j
� �

3
775

¼ 1

1� r

� �2

s2
s 1� rtð Þ2 þ s2

x

Xt�1

i¼1

1� ri
� �22

4

þ m2
sg

Xt�1

i¼1

1� ri
 !2

3
5: ðB10Þ

Recognizing from equation (B2) that sxe ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
sx
� s2

sg

� 	
1� r2ð Þ

r
,

E ~x2t ∣msg

h i
¼ 1

1� r

� �2

s2
s 1� rtð Þ2 þ s2

s � s2
sg

� 	
1� r2
� �2

4

�
Xt�1

i¼1

1� ri
� �2 þ m2

sg

Xt�1

i¼1

1� ri
 !2

3
5: ðB11Þ

[82] Defining the constants A and B:

A ¼ 1

1� r

� �2

s2
s 1� rtð Þ2 þ s2

s � s2
sg

� 	
1� r2
� �Xt�1

i¼1

1� ri
� �2" #

;

ðB12Þ

B ¼ 1

1� r

� �2 Xt�1

i¼1

1� ri
 !2

: ðB13Þ
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We can rewrite equation (B11):

E ~x2t ∣msg

h i
¼ Aþ Bm2

sg
: ðB14Þ

Now, utilizing the law of total probability,

E ~x2t

 � ¼ Z ∞

�∞
E ~x2t ∣msg

h i
P msg ¼ x
� 	

dx: ðB15Þ

Substituting equations (B3) and (B11) into equation (B15),
we get:

E ~x2t

 � ¼ Z ∞

�∞
Aþ Bx2
� � 1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
sg

q ex
2= 2s2

sg

� �
dx: ðB16Þ

Integrating, we recover the dispersion scaling with time:

s2
x;t ¼ E ~x2t


 � ¼ Aþ Bs2
sg
; ðB17Þ

with A and B from equations (B12) and (B13). The disper-
sion depends on the correlation time, expressed through r,
and the relative contributions of ssg

2 and ss
2 to velocity

variability.

Appendix C: Derivation of Velocity Variance
Scaling

[83] Taking the number of time steps, t = dt/Dt, where dt is
the time interval andDt is the time step of the autoregressive
model, the expected scaling of velocity variance, svx

2 , for
completely uncorrelated motion by the Central Limit Theo-
rem (CLT) is:

s2
vx;CLT

tð Þ ¼ s2
s

t
; ðC1Þ

where ss
2 is the velocity variance for t = 1.

[84] However, since velocities are correlated by inertia, we
expect svx

2 to decrease more slowly than predicted by the
CLT. Here, velocity variance scaling is just the displacement
variance scaling computed in equation (16) divided by time:

s2
vx;inertia

tð Þ ¼ s2
x;t

t
¼ s2

sx
1þ 2

t

Xt�1

i¼1

ri t � ið Þ
 !

: ðC2Þ

[85] When taking into account grain heterogeneity, the
velocity variance should no longer converge to zero, but
instead should converge to svg

2 . Thus, wemodify equation (C2)
to include this fact:

s2
vx;inertia;grain

tð Þ ¼ s2
se

1þ 2

t

Xt�1

i¼1

ri t � ið Þ
 !

þ s2
vg
: ðC3Þ
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