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Experimental Evidence for Statistical Scaling and Intermittency in
Sediment Transport Rates

Abstract
Understanding bed load transport fluctuations in rivers is crucial for development of a transport theory and
for choosing a sampling interval for “mean” transport rates. Field-scale studies lack sufficient resolution to
statistically characterize these fluctuations, while laboratory experiments are limited in scale and hence cannot
be directly compared to field cases. Here we use a natural-scale laboratory channel to examine bed load
transport fluctuations in a heterogeneous gravel substrate under normal flow conditions. The novelty of our
approach is the application of a geometrical/statistical formalism (called the multifractal formalism), which
allows characterization of the “roughness” of the series (depicting the average strength of local abrupt
fluctuations in the signal) and the “intermittency” (depicting the temporal heterogeneity of fluctuations of
different strength). We document a rougher and more intermittent behavior in bed load sediment transport
series at low-discharge conditions, transitioning to a smoother and less intermittent behavior at high-discharge
conditions. We derive an expression for the dependence of the probability distribution of bed load sediment
transport rates on sampling interval. Our findings are consistent with field observations demonstrating that
mean bed load sediment transport rate decreases with sampling time at low-transport conditions and
increases with sampling time at high-transport conditions. Simultaneous measurement of bed elevation
suggests that the statistics of sediment transport fluctuations are related to the statistics of bed topography.
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[1] Understanding bed load transport fluctuations in rivers is crucial for development of
a transport theory and for choosing a sampling interval for ‘‘mean’’ transport rates. Field-
scale studies lack sufficient resolution to statistically characterize these fluctuations,
while laboratory experiments are limited in scale and hence cannot be directly compared
to field cases. Here we use a natural-scale laboratory channel to examine bed load
transport fluctuations in a heterogeneous gravel substrate under normal flow conditions.
The novelty of our approach is the application of a geometrical/statistical formalism
(called the multifractal formalism), which allows characterization of the ‘‘roughness’’ of
the series (depicting the average strength of local abrupt fluctuations in the signal) and
the ‘‘intermittency’’ (depicting the temporal heterogeneity of fluctuations of different
strength). We document a rougher and more intermittent behavior in bed load sediment
transport series at low-discharge conditions, transitioning to a smoother and less
intermittent behavior at high-discharge conditions. We derive an expression for the
dependence of the probability distribution of bed load sediment transport rates on
sampling interval. Our findings are consistent with field observations demonstrating that
mean bed load sediment transport rate decreases with sampling time at low-transport
conditions and increases with sampling time at high-transport conditions. Simultaneous
measurement of bed elevation suggests that the statistics of sediment transport
fluctuations are related to the statistics of bed topography.

Citation: Singh, A., K. Fienberg, D. J. Jerolmack, J. Marr, and E. Foufoula-Georgiou (2009), Experimental evidence for statistical

scaling and intermittency in sediment transport rates, J. Geophys. Res., 114, F01025, doi:10.1029/2007JF000963.

1. Introduction

[2] Measurements of bed load transport rates are funda-
mental to estimating material transport in a river, yet even
defining a representative time period over which to sample is
difficult due to the inherent variability and stochastic char-
acter of sediment transport. This variability is present over a
wide range of scales, from the movement of individual
grains [Iseya and Ikeda, 1987; Drake et al., 1988; Nikora
et al., 2002; Schmeeckle and Nelson, 2003; Sumer et al.,
2003; Ancey et al., 2008] up to the propagation of dunes and
bars [Kuhnle and Southard, 1988; Gomez et al., 1989;
Cudden and Hoey, 2003; Jerolmack and Mohrig, 2005],
even under steady flow conditions. Computed statistics of
instantaneous bed load transport rates (flux) have shown that
probability distributions are often skewed toward larger
values [e.g., Gomez et al., 1989], implying a high likelihood
of extreme fluctuations, the prediction of which is essential

for protecting hydraulic structures and assessing the stability
of riverine habitat [Yarnell et al., 2006]. It has also been
observed that the mean sediment flux depends on the time
interval (sampling time) over which the mean is computed,
and previous work has suggested that this time dependence
is the result of large, infrequent transport events [see Bunte
and Abt, 2005, and references therein].
[3] An analogous time dependence that has been more

thoroughly studied is that of the sedimentary record, where
apparent deposition rate (measured from two dated surfaces)
diminishes rapidly with measurement duration in virtually
all depositional environments [Sadler, 1981, 1999]. Models
show that this scale dependence is a direct result of the
statistics of transport fluctuations [e.g., Jerolmack and
Sadler, 2007]. In the case of geologic rates the data have
been assumed to obey simple scaling over a wide range of
time scales; that is, the statistical moments can be fitted as
power law functions of scale, with the exponents linear in
moment order. This power law relationship provides a value
for the Hurst exponent, H, which may be used to compare
rates at one scale to rates at a different scale via a simple
statistical transformation (see also section 5). However,
many geophysical processes exhibit multiscaling (or multi-
fractal behavior), which implies that a range of exponents
(and not a single exponent) is required to describe the
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changes in the probability density function (pdf) with scale.
Examples include rainfall intensities [e.g., Lovejoy and
Schertzer, 1985; Venugopal et al., 2006b], cloud structures
[e.g., Lovejoy et al., 1993; Arneodo et al., 1999a], river
flows [e.g., Gupta and Waymire, 1996], river network
branching topologies [e.g., Rinaldo et al., 1993; Marani et
al., 1994; Lashermes and Foufoula-Georgiou, 2007], braid-
ed river systems [e.g., Foufoula-Georgiou and Sapozhnikov,
1998], and valley morphology [e.g., Gangodagamage et al.,
2007]. This rich multiscale statistical structure includes
extreme but rare fluctuations (‘‘bursts’’) that occur inhomo-
geneously over time, giving rise to the so-called ‘‘intermit-
tency’’ and leading to a nontrivial scaling of the statistical
moments. A prime example of this is the velocity fluctua-
tions in fully developed isotropic turbulence [e.g., Parisi
and Frisch, 1985; Frisch, 1995; Arneodo et al., 1999b].
[4] To the best of our knowledge, bed load sediment

transport series have not been analyzed before from the
perspective of quantifying how the statistical moments of
the series change with scale. In an early study, Gomez et al.
[1989] acknowledged that the probability distribution of
sediment transport rates depends on sampling time (scale)
and extended the Einstein and Hamamori distributions to a
scale-dependent form, without, however, attempting any
scale renormalization. Knowledge of the variability inherent
in bed load transport rates at all scales is essential for
quantifying material flux, for designing appropriate mea-
surement programs, and for comparison among different
data sets and model predictions at different temporal and
spatial scales. Also, quantifying the statistical structure of
these fluctuations across scales may yield insight into the
fundamental physics of sediment transport and provide a set
of diagnostics against which to rigorously test competing
theories and bed load transport models [see also Ancey et
al., 2006, 2008].
[5] One would expect that the statistics of bed load

sediment transport would relate in some way to the statistics
of the fluctuations in bed elevation. Although river bed
elevations have been analyzed much more than sediment
fluxes and have been found to exhibit fluctuations across a
wide range of scales, in both sandy [e.g., Nikora et al.,
1997; Nikora and Hicks, 1997; Jerolmack and Mohrig,
2005] and gravelly [Dinehart, 1992; Nikora and Walsh,
2004; Aberle and Nikora, 2006] systems, the link between
bed topography and sediment flux remains largely unex-
plored due to the difficulty in simultaneous data acquisition.
Establishing a relationship between the statistics of bed
elevations and sediment transport rates is important for
effective modeling of river bed morphodynamics and also
for understanding the physics of sediment transport. More
practically, since bed elevation data are far easier to collect
than sediment flux measurements, an understanding of how
the statistics of the one variable relate to those of the other,
at least over a range of temporal scales, could greatly
facilitate estimating sediment transport rate in the field.
[6] To address these issues we present here an analysis of

data from a unique experimental laboratory setup capable of
mimicking transport conditions in the field (see section 3).
High-resolution, long-duration time series of sediment
transport rates and bed elevation were simultaneously
collected in a suite of experiments with a heterogeneous
gravel bed. We use the multifractal formalism, originally

developed for fluid turbulence [Parisi and Frisch, 1985;
Frisch, 1995; Muzy et al., 1994], to quantify the ‘‘rough-
ness’’ (the average strength of local burstiness in the signal)
and the ‘‘intermittency’’ (the temporal variability or hetero-
geneity of bursts of different strengths) and relate those
geometrical quantities to the statistics of sediment flux and
bed topography over a range of time scales. (Note that
throughout the paper the term ‘‘roughness,’’ as defined
mathematically via the strength of local singularities, refers
to the signal roughness being that sediment transport rates
or bed elevation fluctuations and it is not to be confused
with other uses of the term roughness such as bed roughness
or hydraulic roughness.) We substantiate the findings of
Bunte and Abt [2005] that mean sediment transport rate
diminishes with increasing sampling time at low bed stress
(slightly above critical) but does the opposite for high-
transport conditions, and we relate this reversal in trend to
the influence of large-scale bed forms. Our analysis also
allows characterization of the sampling time dependence of
all of the statistical moments, allowing thus the prediction of
extremes at small scales from the statistics at larger scales.

2. Description of Experiments

2.1. Experimental Setup

[7] The experiments reported here were conducted in the
Main Channel facility at the St. Anthony Falls Laboratory,
University of Minnesota, as part of the StreamLab06 project
undertaken by the National Center of Earth-surface Dynam-
ics (NCED) [Wilcock et al., 2008]. StreamLab06 was an 11
month multidisciplinary laboratory channel study focused
on various aspects of ecogeomorphology in gravel bed
streams. Five separate projects were conducted as part of
StreamLab06 and an extensive data set was collected
including hydraulic conditions (discharge, water slope,
bed slope, depth average velocity, and flow field), morpho-
logical conditions (bed topography, bar locations and
shapes, photo images of the bed), sediment transport char-
acterization (continuous sediment flux, recirculation grain
size information), water chemistry (temperature, dissolved
oxygen, nutrient concentrations) and biological conditions
(heterotrophic respiration, biomass accumulation, nutrient
processing rates). For the work presented here, we focus on
bed topography and sediment flux data collected in the first
of the five StreamLab06 projects, which focused on ground
truth testing of various conventional and surrogate bed load
monitoring technologies.
[8] The Main Channel is 2.74 m wide and has a maxi-

mum depth of 1.8 m. It is a partial-recirculating channel
with the ability to recirculate gravel while the water flows
through the channel without recirculation. Water for the
channel was drawn directly from the Mississippi River, with
a maximum discharge capacity of 8000 L/s. Water discharge
was controlled by a sluice gate situated at the head end of
the facility while flow depth was regulated by a sharp-
crested weir located at the downstream end of the channel.
The channel has a 55-m-long test section and in the experi-
ments reported here a poorly sorted gravel bed extended
over the last 20 m of this test section. Short, 0.4-m-high
bulkhead walls were located upstream and downstream of
the test section and served to contain the gravel bed
material. The gravel used in these experiments had a broad
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particle size distribution characterized by d50 = 11.3 mm,
d16 = 4.3 mm and d84 = 23.1 mm [see also Fienberg et al.,
2008]. The thickness of the gravel bed at the start of run was
approximately 0.45 m.
[9] The Main Channel was equipped with a sediment flux

monitoring system that provided the ability to collect high-
resolution, long-duration data sets of sediment transport
dynamics using field-scale gravel particle sizes and trans-
port rates. The sediment flux and recirculation systems were
colocated in the channel at the downstream end of the 20-m
test section. The flux monitoring system was composed of
five adjacent, identical aluminum weighing pans (positioned
0.54 m apart) that spanned the width of the channel and
independently measured the submerged weight of the gravel
intercepted by the bed load trap (see Figure 1). Each pan
could accommodate up to 76-mm-diameter particles and
hanged from an aluminum frame that extended from its
sides to a load cell connected to the ceiling above the Main
Channel (see Figure 2). The system used load cells manu-
factured by Interface Advanced Force Measurement (SM-
250) that had a capacity of 113 kg and were accurate to ±45
gram force. As a safety margin to avoid exceeding the
capacity of the weighing pan system, the pan rotation that
voided each bin’s contents was triggered at a user-specified
net weight, which in our case was set to 20 kg force (kg f).
[10] Removable stainless steel cover plates with 45-cm by

15-cm slots served to funnel the intercepted bed load
downward into the pans. The pans (also referred as drums)
were constructed of aluminum and had three radial
baffles welded to a common 3.8-cm diameter hub and to
two 81.3-cm-diameter end plates. They were oriented
horizontally and transverse to the channel under the
sediment trap. The three radial baffles formed two adjacent
120� ‘‘V’’-shaped bins, each of which had a capacity of 62 L.
The submerged weight of sediment in a bin at maximum
capacity was 62 kg f. Each pan operated independently using
a tipping bucket arrangement with ‘‘tips’’ consisting of
alternating clockwise and counterclockwise 120� rotations.
When the sediment mass in a pan reached a specified
threshold, an air cylinder either extended or retracted, causing
the pan to rotate 120 degrees. This action resulted in dumping
the contents of one bin and repositioning the adjacent empty
bin under the funnel to continue collecting bed load. In this
manner, all bed load was continuously captured and weighed
in the five independently operating pans.
[11] Bed load material that was transported out of the test

section fell by gravity into the pans and incrementally added

to the weight of the pan which was recorded every 1.1 s.
Material dumped out of the pans was collected in a large
hopper located underneath the pans, which also served as
the material source for the recirculation system. The rate of
gravel removal out of this hopper, and delivery to the
upstream end of the channel via a large pump, was manually
set by adjusting the rotation speed of a large helix, which
served to push gravel laterally out of the hopper and into the
recirculation line. In this way, the collection hopper and
helix served to buffer small fluctuations in sediment flux out
of the test section, providing a more steady ‘‘feed-type’’
delivery of sediment to the upstream end. Because the
physical size of the collection hopper was finite, the auger
speed (and hence upstream input sediment feed rate to the
test section) was manually adjusted periodically to maintain
storage in the hopper. In other words, an auger rate set too
high could potentially remove material faster than the test
section would deliver resulting in emptying of the hopper.
Conversely, an auger rate set too low would result in
overfilling of the hopper. We used periodic visual observa-
tions of the fill level in the collection hopper to inform our
manual adjustments of the auger speed. Slight adjustments
to auger speed were necessary every 30–60 min and very
rarely did the system collection hopper empty or overfill
meaning that the feed rate out of the collection hopper was
in balance with the long-term flux of bed load out of the test
section.
[12] The experimental setup also included five stationary

2.5-cm-diameter, submersible sonar transducers deployed
0.95 m below the water surface and 0.95 m upstream of
each pan. The sonar transducers, mounted to the end of rigid
1.5-cm steel tubes and directed perpendicular to the bed,
were used to collect continuous temporal bed elevation
information upstream of the each pan. Sonar data was
sampled at every 10 sec with a vertical precision of
�1 mm. The acquisition times for the bed elevation and
sediment accumulation data were based on precisely syn-
chronized clocks allowing the two data sets to be analyzed
together. Water temperature was also measured using YSI
thermistor capable of measuring up to ±0.1�C. Water
temperature for the two runs studied in this research
averaged 3.0�C.
[13] Measurements of bed elevation and sediment trans-

port were taken over a range of discharges corresponding to

Figure 1. Weighing pans located at the downstream end of
the experimental Main Channel.

Figure 2. Side view schematic of a pan and sediment
recirculation system in the Main Channel.
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different bed shear stresses. Bed shear stress is often
characterized in terms of the dimensionless Shields stress,
t*b. For steady, uniform flow it may be approximated as
t*b = hRS/Rd50, where hR and S are the hydraulic radius and
channel slope, respectively, and R = 1.65 is the relative
submerged density of silica. In the analysis presented here,
we report on two different discharges: a low-discharge case,
with a discharge of 4300 L/s, corresponding to a dimen-
sionless bed stress of about twice the critical value (Shields
stress, t*b = 0.085 using median diameter) and a high
discharge, 5500 L/s, corresponding to a bed stress about
five times the critical value (Shields stress, t*b = 0.196); see
Table 1 for relevant hydraulic parameters. (Note that the
critical Shields stress (also known as Shields number) was
estimated to be 0.047 [Meyer-Peter and Müller, 1948].)
[14] For both bed stress conditions, the channel was

allowed to run prior to data collection such that a dynamic
equilibrium was achieved in transport and slope adjustment
of the water surface and bed. Determination of the dynamic

equilibrium state was evaluated by checking the stability of
the 60 min average total sediment flux at the downstream
end of the test section. Using the pan accumulation data, the
acquisition software computed a 60 min mean of sediment
flux in all five pans. Dynamic equilibrium was reached
when variation in this value became negligible. In other
words, when the average of the previous 60 min of
instantaneous flux values computed from the pan data
stabilized, we determined the channel to be in dynamic
equilibrium and proceeded with formal data collection and
sampling.
[15] The bed load sediment accumulation series and the

corresponding bed elevation series were then recorded over a
span of approximately 20 h for each experiment. Figures 3a
and 3b display the time series of sediment accumulation over
2 min and 10 min intervals, respectively, for pan 4, and
Figure 3c the corresponding bed elevation series (recorded
by the sonar transducer immediately upstream of pan 4) for
the low-discharge conditions over a period of 10 h. Figure 4
shows the same series for the high-discharge conditions.
Considering the bed elevation series, it can be observed that
the low bed stress run (Figure 3c) produced a channel bed
with only limited topographic variation, i.e., without obvious
large-scale structures in the bed (the standard deviation in the
bed is 10.1 mm, compared to a d50 grain size of 11.3 mm).
However, the higher stress run (Figure 4c) generated sub-
stantial bed variability at large scale in the form of dunes,
with intermediate to particle-scale fluctuations superimposed
on these larger-scale features. In this study we focus on

Table 1. Hydraulic Conditions for the Two Studied Dischargesa

Qw (L/s) Depth (m) V (m/s) hR (m) Sw (%) t*b Tmean (�C)

4300
1.3 1.20 0.67 0.23 0.085 3.5

5500 1.3 1.54 0.67 0.53 0.196 2.7
aQw is design water discharge for the run; depth is average depth of flow

in test section; v is velocity of flow; hR is hydraulic radius; Sw is water
surface slope; t*b is dimensionless Shields stress (computed using
hydraulic radius); and Tmean is mean water temperature.

Figure 3. Low-transport conditions (flow rate 4300 L/s). Bed load sediment transport series
accumulated every (a) 2 min and (b) 10 min and (c) the corresponding series of gravel bed elevations.
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comparing these two runs using the multiscale analysis
techniques described in section 3.

2.2. Sources of Error in the Data

[16] One source of error in the accumulated sediment
series was the tipping events of the pans. To account for
this, the raw sediment accumulation data were preprocessed
prior to the analysis presented here. The preprocessing
involved removal of pan dumping events from the data
and translating the data set into a continuous accumulation
of sediment time series for each pan over the duration of the
experiment. A single tipping event required the removal of
no more than eight data points (�8.8 s) from the record. To
get the final time series of accumulated sediment transport,
the time series prior to the tipping event was left unchanged,
the tipping event was removed from the series, and all
subsequent points were shifted backward in time to create a
continuous time series as though the tipping event never
occurred. Overall, the data affected by the pan tipping
constituted less than 0.15% of the total data record and is,
thus, negligible.
[17] There were other sources of error, however. Sedi-

ment accumulation data in the pans should increase mono-
tonically, when corrected for tipping of the scales as
discussed above. At the resolution of our measurements
(approximately 1 s), however, sediment accumulation
showed negative excursions which would imply negative
bed load flux, which is not physically possible given the

experimental setup [see Fienberg et al., 2008, Figure 3].
These errors have been attributed to (1) the fluctuating water
surface over the pan, (2) the natural oscillation of the pans
after being hit by the falling gravel, and (3) to the vibration
caused by the large gravel recirculation pump which was
placed near to the pans. This error makes the raw sediment
data at small time scales (from 1 s up to approximately 1–2
min accumulations) unusable. As a check, we computed
distributions of sediment flux values averaged over different
time scales and found that data averaged over less than 2
min showed negative values, supporting the contention that
scales smaller than 2 min are error prone. Also, although
there were five pans, pans 1 and 5 (Figure 1) were not used
in order to avoid data potentially impacted by wall effects.
[18] Bed elevation data were substantially less error

prone, due to the acoustic (rather than mechanical) nature
of the measurements. Our multiscale analysis showed a
small noise regime which was only a small factor larger
than the sampling interval of 10 s.

3. Roughness, Intermittency, and Statistical
Scaling

3.1. Characterizing Signal Roughness and
Intermittency

[19] Previous authors [e.g., Gomez et al., 1989; Ancey et
al., 2006] have observed and documented high fluctuations
in bed load sediment transport rates or particle counts at

Figure 4. High-transport conditions (flow rate 5500 L/s). Bed load sediment transport series
accumulated every (a) 2 min and (b) 10 min and (c) the corresponding series of gravel bed elevations.
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short time scales and have described these series as ‘‘inter-
mittent.’’ In these and other studies it has also been noted
that as flow rate increased, the sediment transport was seen
to be ‘‘smoother’’ or more continuous, whereas at low flow
rates it was ‘‘rougher’’ or more ‘‘bursty.’’ These terms have
been used in a qualitative way to describe the presence (or
absence) of sudden bursts of sediment or high fluctuations at
short time scales that arise from the stochastic nature of the
transport and the collective behavior of particle dynamics.
[20] In this paper the ‘‘roughness’’ and ‘‘intermittency’’

of the sediment transport series are mathematically defined,
allowing a more precise quantification of the nature of the
fluctuations in bed load sediment at small time scales. A
mathematical characterization of the strength of local fluc-
tuations in a function X(t) is given by the Hölder or
singularity exponent h(t0), defined at any point t0 to be
the largest exponent such that:

X tð Þ � X t0ð Þj j � C t � t0j jh t0ð Þ; as t ! t0 ð1Þ

where C is a constant. This definition holds for 0 � h � 1,
but it can be generalized to h > 1, as discussed in section 3.3
[see also Muzy et al., 1994]. The Hölder exponent gives a
local measure of the smoothness or degree of differentia-
bility of the function X(t): a value of h(t0) � 1 indicates that
the function is smooth at t0, in the sense that it is at least
once differentiable at the point t0, whereas a function with
h(t0) = 0 is so rough that it is discontinuous at that point.
Between these extremes, a value of 0 < h(t0) < 1 means that
the function is continuous but not differentiable at t0, with a
higher h value (closer to 1) implying that the function is
‘‘smoother’’ or more regular, and a lower h value (closer to
zero) implying that the function is ‘‘rougher’’ or more
irregular.
[21] Having established a measure of local (point-wise)

roughness in a signal, it is natural to ask what kind of h(t0)
values are present in an observed time series, and how they
are distributed. If we denote the set of all points in the
function X(t) with a particular value of Hölder exponent h as:

W hð Þ ¼ t0 : h t0ð Þ ¼ hf g ð2Þ

then, in general, for a multifractal function these sets of
points are interwoven fractal sets whose distribution can be
characterized by the so-called singularity spectrum D(h),
defined as

D hð Þ ¼ DimH W hð Þð Þ ð3Þ

where DimH is the Hausdorff dimension of the fractal set
[e.g., Schroeder, 1991]. In other words, the singularity
spectrum D(h) describes the relative frequency of occur-
rence of local abrupt fluctuations (singularities) with
strength h. In a one-dimensional function like a time series,
the value of h corresponding to the peak of the singularity
spectrum indicates the most frequently occurring singularity
or fluctuation strength. (Note that if D(h) is symmetric,
which is a good approximation for most signals, then this
value characterizes the ‘‘average roughness’’ of the signal as
it coincides with the arithmetic mean of the local
singularities h.) The range of h over which D(h) � 0, or

the spread of the singularity spectrum, reflects the temporal
heterogeneity of the local singularities; that is, it measures
the degree of clustering in the abrupt local fluctuations of
various strengths. Simply put, a signal with a wide D(h) will
have sparse regions where the strength of the local
fluctuations is much greater than (or much less than) the
mean fluctuation strength, and hence will display infrequent
but exceptionally large ‘‘bursts’’ at small scales embedded
within bursts of lesser strength; that is, the signal will be
very ‘‘intermittent.’’ On the other hand, a D(h) spectrum
which is just a spike, i.e., D(h) = 1 at h = H and zero
elsewhere, indicates a signal which exhibits one strength of
singularity only, H also called the Hurst exponent, which is
homogeneously distributed throughout the signal (in this
case the signal has zero intermittency). It is noted that H,
which is a local measure of variability, provides different
information than the standard deviation of a signal, which is
a global measure of variability; in other words two signals
with the same standard deviation can have considerably
different values of H [e.g., see Turcotte, 1997].

3.2. Multiscale Analysis

[22] While the spectrum of singularities D(h) can be used
to describe the ‘‘roughness’’ and ‘‘intermittency’’ of a
signal, it can be difficult to estimate it directly from the
data. An interesting mathematical result (the so-called
multifractal formalism [Parisi and Frisch, 1985; Muzy et
al., 1994]) establishes that D(h) relates to how the proba-
bility density function (pdf), or equivalently the statistical
moments, of the signal fluctuations changes with scale. Let
the fluctuation S(t0, a), at any time t0 and scale a, be defined
as

S t0; að Þ ¼ X t0 þ að Þ � X t0ð Þ ð4Þ

and the statistical moments of the absolute values of these
fluctuations by

M q; að Þ ¼ S to; að Þj jqh i ð5Þ

where angle brackets denote expectation over time. For a
process that exhibits statistical scale invariance, the
statistical moments of the fluctuations behave as a power
law function of scale:

M q; að Þ � at qð Þ ð6Þ

where t(q) is the so-called spectrum of scaling exponents
and is a function of the moment order q. Thus if the series
exhibits scale invariance, the function t(q) completely
describes the manner in which the statistical moments of the
pdf of fluctuations varies with scale.
[23] It is the scaling function t(q) that can be used to retrieve

the spectrum of singularities D(h). The precise transform
between these two representations is given by the Legendre
transform [Parisi and Frisch, 1985; Muzy et al., 1994]:

D hð Þ ¼ min
q

qh� t qð Þ þ 1½ � ð7Þ

In this way the spectrum of singularities describing the
average roughness and intermittency of the signal can be
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estimated through the scaling properties of the statistical
moments of the signal fluctuations.

3.3. Generalized Fluctuations and the Wavelet
Transform

[24] Although the fluctuations S(t0, a) of a time series can
be computed by directly taking the first-order increments, as
in equation (4), calculating the statistical moments in this
way (which gives rise to the so-called structure function
approach) has some limitations. First, these fluctuations can
be corrupted by small-scale noise (since observations are
used directly without local smoothing); in addition, they do
not remove higher-order nonstationarities (it is easy to show
that the first-order increments remove only constant level
trends); and finally, they cannot estimate singularity
strengths h > 1. To overcome these limitations, the contin-
uous wavelet transform can be used to define generalized
fluctuations in the time series [e.g., see Arneodo et al.,
1995; Jaffard, 1997; Venugopal et al., 2006a; Lashermes
and Foufoula-Georgiou, 2007]. In this framework we
redefine the (generalized) fluctuations S(t0, a) to be

S t0; að Þ ¼
Z1

�1

ya;t0 tð ÞX tð Þdt ð8Þ

where ya,t0
(t) is a ‘‘differencing function,’’ as for example,

the first derivative of a Gaussian function. In particular ya,t0
is a wavelet resulting from shifting and scaling a mother
wavelet y(t), such that,

ya;t0 tð Þ ¼ 1

a
y

t � t0

a

� �
ð9Þ

where t0 is the location and a is the scale parameter. For the
continuous wavelet transform to be invertible, the mother
wavelet must satisfy the invertibility condition

R1
�1 ty(t)dt

= 0 i.e., it must have a zero mean (which makes it a kind of
local differencing function; e.g., see Mallat [1998] or
Kumar and Foufoula-Georgiou [1997]). A commonly used
mother wavelet is the family of Gaussian wavelets defined
as the Nth-order derivatives of a Gaussian function g0(t),
i.e., gN(t) = (dN/dtN) g0(t), modulus a proper multiplicative
factor to ensure correct normalization. Defining the
fluctuations S(t0, a) using the first-order derivative of the
Gaussian function can be seen as computing first-order
increments of the series after the series has been locally
smoothed with a Gaussian kernel or, equivalently, as
computing first-order increments and then performing a
smoothing (weighted averaging). (This can be easily
deduced from the convolution theorem [see also Lashermes
et al., 2007].) Similarly, defining multiresolution coeffi-
cients using gN(t) can be considered as smoothing the series
with a moving Gaussian window, followed by Nth-order
differencing (the standard deviation of the Gaussian
function determines the ‘‘scale’’ at which the smoothing
and thus differencing is done [see Lashermes and Foufoula-
Georgiou, 2007]). The smoothing operation removes the
noise and the higher-order differencing removes nonstatio-
narities from the signal, rendering the wavelet-based

generalized fluctuations appropriate for characterization of
statistical scaling [e.g., see Muzy et al., 1994].
[25] One property that should be considered when choos-

ing an appropriate mother wavelet for defining the mutir-
esolution coefficients is the number of vanishing moments.
Note that the mother wavelet is said to have N vanishing
moments if

Z1

�1

t kyo tð Þdt ¼ 0

for 0 � k < N. The Gaussian wavelet gN(t), defined above as
the Nth derivative of the Gaussian, can be easily shown to
have N vanishing moments. Defining multiresolution
coefficients with a mother wavelet which has N vanishing
moments can be shown to remove from the series an
additive polynomial trend of degree less than N [e.g., see
Kumar and Foufoula-Georgiou, 1997]. Therefore, the
wavelet-based multiscale analysis proposed here renders
the fluctuation series stationary if one chooses a wavelet
with more vanishing moments than the degree of non-
stationarity in the data. In practice, the degree of
nonstationarity of the data series is not known in advance,
so one applies the wavelet transform gN(t) with increasing
values of N until the results of the analysis do not vary with
N: this will imply that the order has been chosen large
enough to remove any nonstationarities. The correct
selection of multiresolution coefficients is important for a
meaningful multifractal analysis as has been recently
demonstrated by Lashermes and Foufoula-Georgiou
[2007]. For example, using standard fluctuations (first-order
differences) to analyze a nonstationary signal will result in a
spurious estimate of H = 1 misleading one to assume that
the signal is smooth and differentiable.
[26] In this study, the fluctuations, S(t0, a), of the bed load

sediment and bed elevation series at various scales were
computed using the wavelet transform (equation (8)) with
the wavelet g3(t), since this was the lowest-order wavelet
able to remove all nonstationarities from the sediment
transport series (a lower-order wavelet g2 proved sufficient
for the bed elevation series but the use of the higher-order
wavelet g3 does not alter the results; this is discussed in more
detail in section 4). The moments M(q, a) were then
estimated using equation (5), and the scaling exponents
t(q) computed from the log-log linear relationships (equa-
tion (6)) over the scaling range. This in turn allowed the
calculation of the singularity spectrum D(h) via equation (7).

3.4. Scale Dependence of the pdf of the Fluctuations

[27] The scaling exponents t(q) are not only of interest
for calculating the singularity spectrum D(h), but also for
describing how the pdf of the fluctuations depends on scale.
As discussed in section 3.2, the statistical moments M(q, a)
in equation (5) describe how the fluctuations of a process
change with scale and, for a scale-invariant process, this
change is captured in the t(q) curve. In the case of simple
scaling, the scaling exponent function is linear in moment
order, i.e., t(q) = qH for some constant H (called the Hurst
exponent), which can be shown to imply that the pdf of the
fluctuations at scale a, Pa(S) � P(S(t, a)), is related to the
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pdf at another scale a by [e.g., see Arneodo et al., 1997;
Venugopal et al., 2006a]

Pa0 Sð Þ ¼ a

a0

� ��H

Pa

a

a0

� ��H

S

� �
ð10Þ

Note that the normalizing factor (a/a0)�H is a deterministic
kernel that depends on H and the ratio of scales (not each
scale individually). As this type of statistical scaling
behavior is controlled by a single parameter only, it is
referred to as monoscaling. Note that equation (7) implies
that in the monoscaling case D(h) = d(h � H), i.e., the only
Hölder exponent with dimension greater than zero is h = H,
and the function is completely uniform in its roughness, i.e.,
not intermittent, at small scales.
[28] In the more general case of multiscaling, the scale

invariance relation (equation (6)) still holds, but t(q) is not
linear but a concave function of the moment order q. In this
case, the pdf of the fluctuations does not maintain its shape
between two different scales but changes continuously via
convolution with a kernel that depends on the ratio of scales
[Arneodo et al., 1999b; Venugopal et al., 2006a]. The
generalization of equation (10) for multifractals is obtained
[Castaing et al., 1990] by considering that H is not a
constant but has a probability density function r(h). In this
case, expression (10) becomes

Pa0 Sð Þ ¼
Z1

�1

r hð Þ a

a0

� ��h

Pa

a

a0

� ��h

S

� �
dh for a0 < a ð11Þ

In general, the pdf of the fluctuations is expected to widen
and have fatter tails as the scale decreases. In turbulence, for
example, the above transformation renormalizes the almost
Gaussian pdf of turbulent velocity fluctuations at very large
scales to a thick-tailed pdf at small scales. It is noted that the
probability density involved in the renormalization of the
pdf’s is related to the spectrum of singularities D(h), r(h) /
a�D(h), and reflects the presence of Hölder exponents of
various strengths which are inhomogeneously distributed
throughout the signal (see Frisch [1995] and also Venugopal
et al. [2006a] for a discussion of the equivalency of the
geometrical and statistical interpretations). The pdf rescal-
ing of (11) can be expressed in a convolution form as

Pa0 Sð Þ ¼
Z1

�1

Gaa0 uð Þe�uPa e�uSð Þ du for a0 < a ð12Þ

where u = h ln(a/a0) and Gaa0(u) = r[u/ln(a/a0]/ln(a/a0). This
implies that the pdf at scale a0 can be expressed as a
weighted sum of dilated pdf’s at larger scales a > a0. The
kernel Gaa0(u) is called the propagator and can be estimated
from the data (see Castaing et al. [1990] for the theory and
Venugopal et al. [2006a] for an application to high-
resolution temporal rainfall series). Once the propagator is
known, a known pdf at any scale can be used to derive the
pdf at any smaller scale via equation (12).
[29] To gain better insight into how the t(q) (or D(h))

curve controls the pdf change over scales, let us consider the
coefficient of variation, Cv, which is the ratio of the standard

deviation to the mean, Cv = s/m. For a monoscaling process,
this ratio would be constant with scale, as both the mean
and standard deviation are rescaled equally, as shown by
equation (6). In a multiscaling situation, however, the
increasing width of the pdf leads to Cv increasing with
decreasing scale. The precise behavior of Cv with scale can
be seen by noting that Cv

2 + 1 = M(2, a)/M(1, a)2, so that for
a multiscaling process, equation (6) implies (Cv

2 + 1) �
at(2)�2t(1). In other words, t(2) � 2t(1) characterizes the
(second order) relative stretching of pdf’s across scales, and
its magnitude is also a measure of deviation from mono-
scaling. Similar relationships can be worked out for higher-
moment ratios. As we will see for the sediment transport
series, Cv significantly depends on scale, attesting to the
presence of multiscaling.

3.5. Parameterizing the Scaling Properties and
Singularity Spectrum

[30] While knowing the t(q) (or D(h)) curve completely
characterizes the scale dependence of the pdf’s of fluctua-
tions, for practical purposes it is often desirable to param-
eterize these curves concisely. Assuming an analytic form of
the t(q) curve, the simplest parameterization for multiscal-
ing is to extend the linear model of t(q) used for mono-
scaling to a quadratic model, that is,

t qð Þ ¼ c0 þ c1q�
c2

2
q2 ð13Þ

In this parameterization, the constant c0 = t(0) is the scaling
exponent of the zeroth-order moment, which will be equal
to zero if the support of the field under analysis fills the
space, as we see for both sediment flux and bed elevation.
This leaves two parameters to describe the (multi)scaling:
the parameters c1 and c2 control the scaling of all the
moments and the change in shape of the pdf with changing
scale. The two parameters c1 and c2 in (13) can be estimated
by fitting a quadratic function to the empirical t(q) curve, or
via a more robust methodology called the cumulant analysis
(see Delour et al. [2001] and Venugopal et al. [2006a] for an
application to rainfall series).
[31] For such a quadratic t(q), it can be shown from

equation (7) [e.g., Venugopal et al., 2006a] that the spec-
trum of singularities is also quadratic, with

D hð Þ ¼ 1� 1

2c2
h� c1ð Þ2 ð14Þ

This shows that the most frequently occurring value of the
Hölder exponent (peak of the D(h) curve), and hence the
mean roughness/smoothness of the function, is given by the
parameter c1 (note that D(h) = 1 and D(h) in (14) is
symmetric around c1). Alternatively, c2 provides a measure
of the spread of the D(h) curve and hence prescribes the
degree of intermittency. For this reason, c2 is referred to as
the ‘‘intermittency coefficient.’’ The limiting case of c2 = 0,
that is the case of a monofractal, leads to a delta function
D(h) = d(h � c1), and hence gives a single Hölder exponent
H = c1 (the same exponent H as in equation (10)). This
means there is no intermittency: the function will have the
same degree of local roughness (irregularity) everywhere.
For a multifractal (c2 > 0), however, a range of local
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fluctuation strengths will be inhomogeneously distributed
throughout the signal, with the minimum and maximum
Hölder exponents given by hmin/max = c1 �

ffiffiffiffiffiffiffi
2c2

p
(where the

D(h) curve crosses below 0). So with increasing c2 there is a
wider range of local fluctuation strengths present in the
signal, and hence a greater degree of intermittency.

4. Results

4.1. Sediment Transport Scaling

[32] Bed load sediment transport fluctuations were ana-
lyzed using the multifractal formalism. Fluctuations were
computed by applying a differencing filter on the accumu-
lated sediment series Sc(t), i.e., equation (8) with the generic
function X(t) replaced now by Sc(t) and using as differenc-
ing filters wavelets of increasing order gN(t), where N = 2, 3,
and 4. It is noted that by using the third derivative of the
Gaussian, g3(t), on the accumulated sediment series gives
fluctuations that represent second-order increments of the
bed load transport rates; that is, they capture the local rate of
change in the sediment transport rates. This filtering guar-
antees removal of linear trends in the rate of sediment
transport series, which, if present, can influence the results.
Indeed such rate changes were found present during the 20 h
duration of our data collection [see Fienberg et al., 2008,
Figure 3] and thus the g3(t) was adopted for our analysis.
However, it is noted that the use of lower-order wavelets
does not significantly change the estimates of the param-
eters as can be seen from the detailed Table 2. Having
defined the fluctuations, the statistical moments M(q, a)
were then computed (equation (5)), and are shown as a
function of scale in Figure 5, for pan 3 (see Figure 1).
Similar results were obtained for the other pans, except for
pans 1 and 5 which suffered from wall effects and showed
no good scaling range. Three different regimes can be
distinguished for both the low and high discharge: a
small-scale regime (scales below 1 min) which is judged
to be noise dominated (see section 2.1); a log-log linear

scaling regime in the temporal range of approximately 1 to
10 min; and then a short transitional regime before a
leveling off of the moments is reached. Here we focus on
the longer scaling regime between 1 min and 10 min
marked by the dashed lines in Figure 5. The scaling
exponents of the various moment orders, t(q), were esti-
mated using linear regression within this scaling range and
are shown for both discharges in Figure 5 (bottom). It can
be seen that both curves deviate from linear behavior and
hence depart from simple scaling and instead demonstrate
multiscaling. The parameters c1 and c2 found by fitting the
quadratic model (equation (13)) to these curves are pre-
sented in Table 3, along with a summary of the scaling
range and parameters for the other pans for which uninter-
rupted data were available. It is noted that the quadratic fit is
very good and the fitted curves are indistinguishable from
the measured points.
[33] This scaling of the moments reflects the scaling of

the pdf of sediment fluctuations. Figure 6 shows the pdf’s of
the sediment transport rates (defined as accumulations over
an interval divided by the length of that interval) for 2-min
and 10-min intervals for both high and low discharge. It can
be seen that for both flow conditions, the very skewed and
fat-tailed pdf at 2 min changes to a much more symmetrical
pdf at 10 min, although in the case of the low flow, there is
still some skewness present even at the larger sampling
time. It is recalled that the parameters c1 and c2 control this
pdf change over scales through the rescaling kernel (equa-
tion (12)). An easy way to observe the relative narrowing of
the pdf with increasing scale is via the coefficient of
variation Cv computed from the data, which is plotted in
Figure 7 as a function of scale. The decreasing values of Cv

with increasing scale show that the width (spread) of the pdf
changes with scale in a different manner compared to the
mean (it reduces more quickly), in agreement with earlier
observations by Kuhnle and Southard [1988], and hence
reinforces the conclusion that sediment transport fluctua-
tions exhibit multiscaling. A monoscaling function would
have constant Cv as mean and standard deviation would
rescale similarly (see equation (6)).
[34] Concentrating on the first-order (q = 1) statistical

moment, which is the mean sediment accumulation in an
interval Dt (scale a in the previous notation), we note that it
scales as Dtt(1) where t(1) = c1 � c2/2 from equation (13).
Using the values of c1 and c2 (Table 3) for low flows, it
implies that within the scaling range of 1 and 10 min the
mean amount of accumulated sediment (hS(t, Dt)i)
increases as approximately

ffiffiffiffiffiffi
Dt

p
. If one doubles the sam-

pling interval, for example, the amount of sediment accu-
mulated does not double but increases only by a factor of
about 1.41. When considering the mean sediment transport
rate, (hS(t, Dt)/Dti), the above results imply that it scales as
(Dt)�0.5 or that the bed load transport rate decreases with
increasing sampling interval Dt. In other words, doubling
the sampling interval results in a transport rate that is
approximately 0.7 (= 1/

ffiffiffi
2

p
) times smaller.

[35] For high flow rates, the estimated value of t(1) is
approximately 1.1 (using the values of c1 and c2 from Table
3 in equation (13)) implying that within the scaling range of
1 and 10 min, the mean amount of accumulated sediment
increases as approximately (Dt)1.1. In this case, doubling
the sampling interval increases accumulated sediment by a

Table 2. Multifractal Parameters Estimated for Low and High

Flows Using Different Gaussian Waveletsa

Shields Stress Pan Scaling Range (min) Wavelet c1 c2

Q = 4300 L/s
0.085 2 1.2–10 g2 0.57 0.12

2 1.2–10 g3 0.56 0.14
2 1.2–10 g4 0.54 0.12
3 1.2–10 g2 0.52 0.11
3 1.2–10 g3 0.49 0.13
3 1.2–10 g4 0.48 0.13
4 1–8 g2 0.49 0.10
4 1–8 g3 0.47 0.10
4 1–8 g4 0.45 0.10

Q = 5500 L/s
0.196 2 1–10 g2 1.04 0.09

2 1–10 g3 1.07 0.09
2 1–10 g4 1.09 0.10
3 1–10 g2 1.04 0.11
3 1–10 g3 1.07 0.10
3 1–10 g4 1.09 0.11
4 1–10 g2 1.09 0.11
4 1–10 g3 1.12 0.11
4 1–10 g4 1.14 0.11

aSee text for definitions.
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factor of about 2.1. Considering the mean sediment trans-
port rate, one sees that in the high-flow conditions the rate
does not remain constant with sampling interval (within the
range of sampling interval of 1 to 10 min) but rather slightly
increases by a factor of approximately 1.1 (= 20.10).
[36] The above scaling applies only to the mean and is

controlled by the value of (c1 � c2/2). As discussed in
sections 3.2 and 3.4, our analysis allows one to quantify
how higher-order statistical moments change with sampling
interval in a similar way, for example the second moment
about the origin changes as a power law on scale with an
exponent 2(c1 � c2), etc., as dictated by equations (6) and
(13).
[37] Turning to the singularity spectrum D(h) which

characterizes more directly the abrupt fluctuations of the
sediment transport series, we recall that it can be computed
from the scaling exponents t(q) via the Legendre transform
(equation (7) or directly from equation (14) using the fitted
parameters c1 and c2). Figure 8a shows the D(h) spectrum
for the sediment transport in pan 3, calculated from the
quadratic model fit using the parameters in Table 3. It can
be seen that at the low discharge, the sediment transport
series is both rougher on the average and more intermittent

(lower c1 and higher c2, respectively). Conversely, the high-
discharge case results in a much smoother and less inter-
mittent sediment transport series (higher c1 and lower c2,
respectively). As it can be seen from Figure 8a, for low flow
rates, hmin is approximately zero, and hmax is slightly larger
than 1. This implies that there are clustered regions in the
sediment transport rate series where very high fluctuations
are expected over very small intervals (a value of h = 0
corresponds to a discontinuous signal) while there are also

Figure 5. (top) Statistical moments of the fluctuations of the sediment transport series as a function of
scale and (bottom) the scaling exponents t(q) estimated from the log-log linear regressions within the
scaling regions. Notice the deviation of t(q) from the linear line establishing the presence of multifractality.
(left) For low-transport conditions and (right) for high-transport conditions.

Table 3. Summary of Statistical Scaling Analysis Results for the

Bed Load Sediment Seriesa

Pan Scaling Range (min) Shields Stress t(2) � 2t(1) c1 c2

Q = 4300 L/s
2 1.2–10 �0.20 0.56 0.14
3 1.2–10 0.085 �0.19 0.49 0.13
4 1–8 �0.15 0.47 0.10

Q = 5500 L/s
2 1–10 �0.13 1.07 0.09
3 1–10 0.196 �0.16 1.07 0.10
4 1–10 �0.15 1.12 0.11
aSee text for definition of variables.
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regions that are very smooth (a value of h = 1 corresponds
to a signal with continuous first derivative). For high flow
rates the values of hmin and hmax are approximately 0.8 and
1.5, implying that the sediment transport series is very
smooth overall but there are limited clustered regions where
some abrupt fluctuations at small scales are encountered
(signal slightly nondifferentiable as h < 1) while the
majority of the series is very smooth. One would expect
that these bursts in the sediment transport series are
connected to high fluctuations in the bed elevation series
which would allow to a lesser or larger degree a collective
mobilization of gravel particles. In section 4.2 a multifractal
analysis to characterize the roughness and intermittency of
bed elevation fluctuations is presented.

4.2. Bed Elevation Scaling

[38] Spatial bed elevation fluctuations have been previ-
ously analyzed in terms of their scaling properties, and
deviation from simple scaling has been reported [Nikora
and Walsh, 2004]. Here the temporal fluctuations of bed
elevation were analyzed with the wavelet-based multiscale
framework, and scaling of the moments was documented
within the range of scales from approximately 1 to 10 min
(see Figure 9), which coincides with the scaling range
observed in the sediment transport series and suggests a
close link between the dynamics of the two series. Above
the characteristic scale of 10 min, the moments leveled off
and the statistical quantities became independent of time
scale. The scaling exponents t(q) for these moments are
shown in Figure 9, for the high- and low-discharge experi-
ments. As other authors have reported [e.g., see Nikora and
Walsh, 2004], a deviation from simple scaling is observed
for both discharge rates indicating the presence of temporal
heterogeneity in the local roughness (what we have called
‘‘intermittency’’) in bed elevation fluctuations. The param-
eters c1 and c2 fitted to the t(q) curves of the bed elevation
fluctuation series are displayed in Table 4, and the
corresponding singularity spectra D(h) are presented in
Figure 8b. Similar to the sediment transport fluctuations,
we observe that bed elevation fluctuations are rougher on an
average in the low-discharge case than in the high-discharge
case (c1 = 0.57 versus c1 = 0.68), although to a lesser extent

than in the sediment series. However, considering the
degree of intermittency in the bed elevation fluctuations,
we see that it is higher at the high-transport case (a wider
D(h) spectrum and a larger c2 value) with a coefficient of
intermittency c2 = 0.13, versus a narrower D(h) and c2 =
0.06 in the case of low transport. This is reverse from what
is observed in the sediment transport fluctuations (see also
Figure 8a) and calls for an explanation based on further
experimentation and mechanistic modeling.

5. Discussion

[39] The simultaneous collection of bed load transport
and bed elevation data in a field-scale channel is the major
strength of the experimental setup used in this work. The
large channel geometry, and high temporal resolution of the
data, allowed robust statistical analysis over a wide range of
temporal scales. Despite the more comprehensive data sets
collected as part of the StreamLab06 experiments our
analysis here is concentrated on two data sets at two
different flow rates, as these are the only data currently

Figure 7. Coefficient of variation of the bed load sediment
transport series.

Figure 6. Probability distribution functions of the sediment transport rate (flux) for sampling intervals
of 2 and 10 min for (left) low- and (right) high-discharge rates. The probability distributions have been
shifted to zero mean for comparison.
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Figure 8. Fitted quadratic singularity spectra D(h) obtained for (a) bed load sediment transport series
and (b) bed elevation fluctuation series for the low- and high-discharge cases, respectively.

Figure 9. (top) Statistical moments of the fluctuations of the bed elevation time series as a function of
scale and (bottom) the scaling exponents t(q) estimated from the log-log linear regressions within the
scaling regions. Notice the deviation of t(q) from the linear line establishing the presence of
multifractality. (left) For low-transport conditions and (right) for high-transport conditions.
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available for analysis. The mixed grain size distribution of
the feed material, while beneficial for mimicking a natural
gravel stream, makes it more difficult to discern the influ-
ences of spatial grain size sorting [Iseya and Ikeda, 1987;
Kuhnle and Southard, 1988; Cudden and Hoey, 2003; Frey
et al., 2003] from those of bed topography and collective
grain motion [Gomez et al., 1989; Jerolmack and Mohrig,
2005; Ancey et al., 2008] on sediment transport fluctuations.
Also, for this experiment we do not have any data regarding
armoring of the streambed over the duration of the experi-
ments, or the grain size distributions of individual sediment
pulses. With these limitations in mind, in this section we
place our experimental results and analysis in the context of
laboratory and field studies of sediment transport fluctua-
tions in uniform and mixed grain size channels.
[40] The multiscaling analysis demonstrates how the

statistical moments of bed load transport rate depend on
the time scale of observation. To illustrate, we first examine
the behavior of the mean transport rate (the first moment).
Estimating mean sediment transport rate is essential for
measuring the material flux through a river, and for model
input and/or calibration. For the low-discharge run (t*b =
0.085), mean transport rate decreased with sampling inter-
val, while at higher discharge (t*b = 0.196), the trend
reversed: mean transport rate slightly increased with sam-
pling interval over a comparable time range. A similar trend
was discovered by Bunte and Abt [2005], who studied the
effect of sampling interval on bed load transport rates
measured using Helley-Smith samplers deployed in a mixed
gravel-cobble stream of a size comparable to our experi-
ments. They found that in moderate to high flows (50%
bankfull to almost bankfull conditions), 2 min sampling led
to an average transport rate 2 to 5 times lower than that
found with 10 min sampling. However, at lower flows
(close to the incipient gravel motion), 2 min sampling
overestimated the transport rates at 10 min sampling by a
factor of almost 3. Although not directly comparable, the
trends observed are qualitatively the same as our experi-
ments (Figure 10). Bunte and Abt [2005] attribute the
higher-discharge trend to the effect of large but infrequent
transport events associated with the crests of bed forms:
small sampling intervals underestimate mean transport be-
cause they are likely to miss these events. They suggest that
the reversal in trend for the low-discharge observations is
the result of sampling and computational difficulties, rather
than a ‘‘real’’ effect. Our high-resolution experiments dem-
onstrate that this trend reversal might in fact be real.
[41] It is stressed that it is difficult to quantitatively

compare the field results to our laboratory experiments,
due to differences in transport and lack of the detailed field

data. Bunte and Abt [2005] do not report Shields stress, but
they report that their low-flow observations correspond to
incipient sediment motion which is supported by our
calculation of their critical Shields stress (t* = 0.047) using
their reported bankfull flow characteristics. Our low-flow
experiment had a Shields stress almost twice the critical
value, making it comparable in terms of stress to their
moderate flow observations. Thus it seems that in both
the study of Bunte and Abt and our study, suggest a reversal
in trend, from decreasing to increasing mean transport rate
with sampling interval, as bed stress increases. The fact that
the reversal appears to occur for different stress values in the

Table 4. Summary of Statistical Scaling Analysis Results for the

Bed Elevation Time Seriesa

Probe Scaling Range (min) Shields Stress t(2) � 2t(1) c1 c2

Q = 4300 L/s
4 1–10 0.085 �0.04 0.57 0.06
5 1–10 �0.06 0.53 0.08

Q = 5500 L/s
2 0.5–8 �0.18 0.65 0.12
3 0.5–8 0.196 �0.19 0.68 0.14
4 0.5–8 �0.20 0.76 0.13
aSee text for definition of variables.

Figure 10. Geometric means at different sampling times
from (a) field experiments (reproduced from Bunte and Abt
[2005]) and (b) theoretical results from this study.
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field and the laboratory may be the result of the multiple
intricacies of sediment transport and grain size sorting of
heterogeneous mixtures in turbulent flows. Clearly, experi-
ments systematically document how the statistics of trans-
port rate change with bed stress over a wide range of values
would be helpful in illuminating this point.
[42] Several field and laboratory experiments have docu-

mented sediment transport fluctuations in mixed grain size
sediments. Iseya and Ikeda [1987] found strong longitudinal
grain size sorting in mixed gravel and sand experiments,
which caused periodic fluctuations in transport rate due to
changing local sediment supply. Such periodic pulses in
gravel-sand mixtures have also been reported by Kuhnle
and Southard [1988] and Frey et al. [2003]. These experi-
ments cannot be directly compared to our results, however,
because they had limited bed topography and/or antidunes,
while our experimental channel allowed for the growth of
large bed forms in subcritical flow. These studies suggest
that the creation and destruction of sediment patches of
different grain sizes [see also Cudden and Hoey, 2003] due
to longitudinal grain size sorting within the channel likely
contributed somewhat to the observed transport fluctuations
in our experiments, but are not capable of explaining all of
this variability.
[43] Sediment transport rates became smoother and less

intermittent with increasing bed stress in our experiments, in
agreement with previous observations. Near the threshold of
motion, grains are in partial transport because local bed
stress fluctuates above and below the threshold value. These
turbulent fluctuations, along with grain-to-grain interactions
at the bed, result in intermittent and collective motion of
grains, leading to nonrandom transport rate fluctuations
with heavy tails [Ancey et al., 2008]. In a mixed grain size
bed, size selective transport often occurs which may en-
hance this effect [Kuhnle and Southard, 1988]. The experi-
ments of Ancey et al. [2008] demonstrate that such
fluctuations can occur even in glass spheres of uniform
size, with little or no bed topography. As bed stress is
increased such that the local stress fluctuations are always
above the critical value, all grains become entrained in the
flow as the intermittent, collective motions of grains gives
way to continuous transport [Iseya and Ikeda, 1987; Kuhnle
and Southard, 1988; Ancey et al., 2008; Strom et al., 2004].
While this effect has been documented qualitatively by
previous authors, our results quantify these changes in the
statistics of sediment fluctuations with bed shear stress.
[44] Bed elevation also became smoother with increasing

transport, meaning that the magnitude of high-frequency
fluctuations at small scales was reduced overall. At low-
flow conditions, topographic fluctuations were of the order
of the grain scale (Figure 3), supporting the idea that grain-
grain interactions (and perhaps longitudinal grain size sort-
ing) dominated transport fluctuations as described above.
With increasing bed stress, and presumably full mobility of
all grains in transport based on Shields stress calculations,
the bed organized into large-scale bed forms (Figure 4).
Data indicate that higher-frequency (smaller-scale) topogra-
phy, likely representing clusters of grains, became less
prevalent at higher flows where bed topography was dom-
inated by dune forms. Interestingly, although the bed
became smoother overall from low to high discharge,
intermittency increased. In other words, high small-scale

frequency fluctuations in bed topography became less
prevalent overall, but also less uniformly distributed. This
may be due to irregular clusters of grains superimposed on
larger scale, more regular dune features. However, obser-
vations of grains on the bed were not made and so these
ideas remain speculative at this stage. Our experiments
highlight the need to simultaneously document bed topog-
raphy, bed load transport rates and individual particle
motions (e.g., as those of Schmeeckle et al. [2001],
Papanicolaou et al. [2002], and Ancey et al. [2006]) in
order to further our understanding of what contributes to
transport fluctuations at the smallest to largest scales.
[45] The scaling ranges of both transport rates and bed

elevation series are similar with a leveling off, or saturation,
at approximately the same time scales, indicating that
fluctuations in transport are intimately related to bed topog-
raphy. While the nature of these dependencies is still
unclear, a practical result may be obtained. The scale-
dependent nature of transport (within 1 and 10 min in this
study) means that measured rates at different time intervals
are not directly comparable. In our experiments, both
transport and bed elevation exhibit no time dependence
when measured over intervals greater than 10 to 15 min. In
other words, if we measure for a period of time that is larger
than the time scale associated with the migration of the
largest topographic feature, we can obtain mean values for
bed topography and transport rate that have no time depen-
dence [Fienberg et al., 2008]. From a practical point of
view, this is the mean transport rate one should try to obtain
in the field. Measurements of bed topography from a river
could be used to determine the upper scaling limit of
fluctuations, which determines the time scale over which
one should deploy a sampler to obtain a representative
‘‘mean’’ bed load transport value. As discussed by Fienberg
et al. [2008], this approach is possible in flumes and small
streams where the time scale is of the order of tens of
minutes. Since the size of bed forms scales with river depth,
however, this approach quickly becomes impractical as river
size increases: deployment of bed load samplers for long
durations can result in overfilling and clogging [e.g., Bunte
and Abt, 2005], or integrating over changing flow condi-
tions. In this case, determining the scale-dependent nature
of transport rate becomes critical.

6. Conclusions

[46] In this paper we introduce a formalism, typically
used in turbulence studies, to quantify two properties in
sediment transport and concurrent bed elevation series: the
‘‘average roughness’’ of the series (depicting the average
strength of local abrupt fluctuations in the signal) and the
‘‘intermittency’’ (depicting the temporal heterogeneity of
fluctuations of different strength). In the bed load sediment
transport rates, we documented the presence of a rougher
and more intermittent behavior at low-transport conditions
(dimensionless bed shear stress of about twice the critical
value) transiting to a smoother and less intermittent behav-
ior at high-transport conditions (dimensionless shear stress
of about five times the critical value).
[47] Apart from simply quantifying roughness and inter-

mittency of the sediment transport rates, the results of our
analysis provide a framework for quantifying how the
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probability distribution of sediment transport rates changes
with sampling interval and thus have important practical
implications. (It is interesting to note that the change of pdf
with scale is parameterized in terms of the roughness and
intermittency parameters which characterize the burstiness
of the series.) Specifically, our analysis demonstrated that
the statistics of bed load sediment transport rates depend
strongly on scale (sampling interval) and this dependence
varies with the discharge conditions. Our results agree with
the field observations reported by Bunte and Abt [2005] for
mean bed load rates and call for a more systematic study to
precisely quantify this scale dependence in terms of grain
size sorting and bed shear stress. It is noted that the
theoretical framework we propose here offers the ability
to go beyond the mean and compare the whole probability
density function, including extreme values or quantiles, at
different scales. This is important for example when the pdf
of sediment transport rates has been estimated from data at
one particular sampling interval and an extreme exceedance
quantile (say, relevant to an ecological smaller-scale func-
tional disturbance) needs to be estimated. Our methodology
can bridge this gap in scales and also provide a framework
with which comparison of sediment rates sampled with
different instruments can be made.
[48] A problem of continuous interest in the literature is

the relation of microscale (particle-scale) dynamics to the
macroscale behavior of sediment transport [e.g.,Drake et al.,
1988; Papanicolaou et al., 2002; Schmeeckle et al., 2001;
Schmeeckle and Nelson, 2003; Ancey et al., 2006, 2008].
Although not precisely quantified in this paper, it is worth
noting that the multiscale statistical behavior of sediment
transport rates (as quantified here via the signal roughness
and intermittency) seems consistent with known particle-
scale dynamics. For example, at low flows, a rougher but
more temporally homogeneous (less intermittent) bed ele-
vation series was documented, indicative of the dominance
of high-frequency localized grain clusters; this bed micro-
topography apparently gave rise to sediment transport rates
that are almost of equal roughness but are more inhomoge-
neous in time (more intermittent) (see Figure 8). This might
be due to the collective motion of grains responding to local
bed stress fluctuating above and below the critical value. It
appears that as bed stress increased, grain patches became
less prevalent and more irregular (roughness in bed eleva-
tions decreased but intermittency increased) as the bed
organized into large-scale dunes, and bed load transport
became smoother and more homogeneous in time as en-
trainment of all grains commenced. This speaks for the
collective or cooperative behavior of particle movement that
has different dynamics at low and high flows and depends on
the presence or absence of self-formed structures on the bed
[e.g., Drake et al., 1988; Ancey et al., 2008].
[49] We see our study as a first step in the direction of

understanding the scale dependency of sediment transport
rates over the continuum of flow discharge conditions and
grain size distributions and relating the statistics of bed
elevations to the statistics of bed load sediment transport.
More controlled experiments have to be performed and
analyzed with different particle sizes (from a single particle
size to a broad particle size distribution and for gravel and
sand beds) and a spectrum of discharge rates, to fully
characterize the intermittency of bed load sediment trans-

port rates and how it relates to that of the bed elevation
fluctuations, and (eventually) to particle size dynamics.
Also, the documented statistical structure of sediment trans-
port rates can be seen as providing an additional model
diagnostic that mechanistic models should be able to
reproduce, and as such, it is interesting to ask as to whether
any known sediment transport model can reproduce the
multiscaling characteristics reported in this study.
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