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Fractal Patterns in Riverbed Morphology Produce Fractal Scaling of Water
Storage Times

Abstract
River topography is famously fractal, and the fractality of the sediment bed surface can produce scaling in
solute residence time distributions. Empirical evidence showing the relationship between fractal bed
topography and scaling of hyporheic travel times is still lacking. We performed experiments to make high-
resolution observations of streambed topography and solute transport over naturally formed sand bedforms in
a large laboratory flume. We analyzed the results using both numerical and theoretical models. We found that
fractal properties of the bed topography do indeed affect solute residence time distributions. Overall, our
experimental, numerical, and theoretical results provide evidence for a coupling between the sand-bed
topography and the anomalous transport scaling in rivers. Larger bedforms induced greater hyporheic
exchange and faster pore water turnover relative to smaller bedforms, suggesting that the structure of legacy
morphology may be more important to solute and contaminant transport in streams and rivers than
previously recognized.
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Fractal patterns in riverbed morphology produce fractal
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Abstract River topography is famously fractal, and the fractality of the sediment bed surface can produce
scaling in solute residence time distributions. Empirical evidence showing the relationship between fractal
bed topography and scaling of hyporheic travel times is still lacking. We performed experiments to make
high-resolution observations of streambed topography and solute transport over naturally formed sand
bedforms in a large laboratory flume. We analyzed the results using both numerical and theoretical models.
We found that fractal properties of the bed topography do indeed affect solute residence time distributions.
Overall, our experimental, numerical, and theoretical results provide evidence for a coupling between the
sand-bed topography and the anomalous transport scaling in rivers. Larger bedforms induced greater
hyporheic exchange and faster pore water turnover relative to smaller bedforms, suggesting that the
structure of legacy morphology may be more important to solute and contaminant transport in streams and
rivers than previously recognized.

1. Introduction

Transit time distributions in rivers control the opportunity for biological uptake and transformation of a variety
of critical constituents, including nitrogen, phosphorus, carbon, and toxic contaminants [Alexander et al., 2000;
Battin et al., 2003, 2008; Raymond et al., 2013; Marzadri et al., 2014]. Travel times in rivers and watersheds are
very broadly distributed [Kirchner et al., 2000; Haggerty et al., 2002; Stonedahl et al., 2012; Aubeneau et al., 2014],
but the mechanisms that produce travel time distributions over many orders of magnitude are not known
precisely [Boano et al., 2014]. The exchange of water between surface and subsurface flows, generally termed
hyporheic exchange, plays a critical role in structuring fluvial ecosystems [Boulton et al., 1998; Aubeneau
et al., 2015]. Several studies have shown that fractal topography can produce scaling in hyporheic residence
time distributions [Stonedahl et al., 2012, 2013; Gomez-Velez and Harvey, 2014]. Worman et al. [2006, 2007]
used numerical experiments to demonstrate the link between fractal topography and water storage times.
However, empirical evidence of this relationship is still lacking as prior studies have not resolved both
channel morphology and solute transport directly over a sufficiently wide range of scales. Here we obtained
high-resolution observations of streambed topography and long-term measurements of solute washout in
a large laboratory flume. We found that fractal bed topography produced fractal scaling in both hyporheic
residence time distributions and whole system transit time distributions. This work firmly establishes the link
between fractal geometry and fractal storage time distributions in rivers.

Large-scale river topography generally forms during floods and persists under low flow (base flow). Rework-
ing of sediment deposits over long periods of time produces a broad mosaic of morphological features that
exhibit fractality over scales ranging from the size of clusters of individual sediment grains to entire river
valleys and networks [Nikora et al., 1997; Turcotte, 1997; Rodriguez-Iturbe and Rinaldo, 2001; Jerolmack and
Mohrig, 2005]. These features create elevation gradients that induce subsurface flows [Toth, 1963]. In the
present work, larger bedforms induced faster pore water turnover (greater fractional-in-time scaling expo-
nents), indicating that legacy morphological structures produced during periods of high flow could influence
storage time scales during low flow. Large-scale legacy morphology may therefore be more important to
nutrient, carbon, and contaminant dynamics in rivers than previously recognized.
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Since rivers have fractal topography and interactions between river flow and boundary topography drive
hyporheic exchange [Harvey and Bencala, 1993; Stonedahl et al., 2010; Tonina and Buffington, 2011; Kiel and
Cardenas, 2014; Gomez-Velez and Harvey, 2014], the ubiquitous fractal properties of rivers should produce
fractal patterns in hyporheic flow paths and fractal scaling in the associated residence time distributions
[Worman et al., 2007; Stonedahl et al., 2012]. Other mechanisms that can produce broad travel time distribu-
tions include subsurface heterogeneity and nested flow paths in homogeneous systems [Kirchner et al., 2001;
Scher et al., 2002; Cardenas, 2007]. Therefore, fractal topography may not be a necessary condition for anoma-
lous hyporheic transport. However, no studies to date have conclusively demonstrated the link between
fractal topography and subsurface residence time scaling because no available data sets include sufficient
multiscale observations of both river morphology and travel times.

Thus, we ask, does fractality in bed surface morphology directly produce fractality in river transit time
distributions? And do greater variations in bed surface elevations produce broader hyporheic residence time
distributions? To answer these questions, we obtained high-resolution observations of streambed topogra-
phy and solute transport with naturally formed fractal bedform morphology in a large laboratory flume. We
simulated hyporheic exchange and transit times through the system based on velocity fields estimated from
the observed topography and streamflow conditions. We synthesized the experimental and numerical results
by linking observed tracer washout curves to hyporheic residence time distributions and whole-stream tran-
sit time distributions using stochastic mobile-immobile theory [Schumer et al., 2003], and relating scaling in
the travel time distributions to the distribution of vertical velocities at the sediment-water interface.

2. Methods
2.1. Bed Morphology and Tracer Washout Experiment
We conducted a series of experiments in a 15 m long, 0.9 m wide and 0.65 m deep flume. It was filled with
0.37 mm sand (D50 measured with a Retsch Camsizer) to a depth of 20 cm and adjusted to zero slope. Water
discharge was controlled by a hydraulic valve, and sediments were recirculated to maintain constant vol-
ume in the flume. Sediment depth was maintained by a porous wall at the downstream end of the flume.
Constant water depth was maintained by a tailgate. To avoid boundary effects, we restricted data collection
from 5 to 13 m from the inlet (see Martin and Jerolmack [2013] for more details of experimental setup).

We carried out two tracer washout experiments, one with smaller bedforms and one with larger bedforms.
Bed topography was generated by a steady water discharge. In the first case, a discharge of 40 L s−1 (veloc-
ity ∼0.2 m s−1) generated bedforms 6 cm high on average (with amplitudes up to 10 cm) and 66 cm long;
in the second case, a discharge of 80 L s−1 (velocity ∼0.4 m s−1) produced bedforms 10 cm high on aver-
age (with amplitudes up to 20 cm) and 90 cm long (see Figure 1). After sonar scans (JSR Ultrasonic DPR300
Pulser/Receiver) indicated bed topography had reached a statistical steady state, we stopped flow and drained
the flume slowly to gather high-resolution (4 mm2 pixels) bed topography data with a laser scanner (Keyence
LKG502) [see Martin and Jerolmack, 2013]. Once the laser scans were completed, we restarted flow, filling the
flume with water containing rhodamine dye at a concentration of 100 mg L−1. When the flume was com-
pletely filled and the flume bed saturated with dye, we switched back to clean water. We observed the tracer
release from the bed into the water column by monitoring fluorescence 13 m downstream of the inlet for over
15 h at a 2 s sampling rate using a Turner Designs 10 AU fluorometer. We refer to the obtained breakthrough
curves as “washout curves” to emphasize the unusual initial condition where the bed sediment is loaded with
tracer, which greatly improves resolution of tracer concentrations compared to traditional in-stream injec-
tions. A steady discharge of 20 L s−1 (velocity<0.1 m s−1) was maintained during the washout experiment. This
was below the threshold for sediment transport, and we verified this by laser scanning the entire bed surface
topography before and after each experiment, and by monitoring longitudinal elevation transects during the
injections with sonar.

2.2. Data Analysis and Modeling
To numerically model washout curves, we conducted a series of particle tracking simulations. First, we used
surface elevation data to compute the subsurface flow field following the methods of Worman et al. [2006].
This spectral model performs a Fourier fit to the topography and calculates the boundary head at the bed
surface from rescaled and shifted Fourier coefficients. We then solved Laplace’s equation to obtain the head
distribution in the subsurface, and Darcy’s law to generate the pore water flow field. For the surface flow, we
imposed a logarithmic vertical velocity profile and Poiseuille flow in the x-y plane (x being the streamwise
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Figure 1. Washout breakthrough curves measured under two contrasting streambed topographies. Larger bedforms drove
faster washout from the sand bed. (right) Both topographies produced long-term (∼15 h) power law tailing. (left) The
washout curves obtained from the particle tracking model agree well with the observations.

direction), although the predicted washout curves were found to be insensitive to the specific structure of
the surface flow, indicating that the late-time solute behavior was entirely controlled by subsurface transport.
We then performed particle tracking simulations using these flow fields with initial conditions reflecting the
experimental setup: homogeneous and uniform tracer concentration throughout the subsurface and zero
tracer in the surface water. Washout curves were generated by recording the number of virtual tracer particles
crossing the downstream sampling location at any time.

Additionally, we calculated topographical power spectra from the bed surface elevation data following
Turcotte [1997] and Rodriguez-Iturbe and Rinaldo [2001]. The elevation spectrum (S) is defined as the squared
Fourier transform Fz(f )of an elevation transect z(x) such that S(f ) = Fz(f )2, where f is the frequency. The power
spectra along all measured downstream transects were averaged to yield the results in Figure 2.

To understand how exchange processes control tailing in the tracer washout curves, we propose a sim-
ple model that relates the late-time scaling to the distribution of vertical velocities at the sediment/water
interface. Because vertical velocities drive advective pumping fluxes in and out of the streambed, we use a
dimensional argument to suggest that the travel time distribution in the bed is inversely proportional to the

Figure 2. Power spectra of streambed topographies. The smaller and larger bedform fields exhibited different scaling
between ∼1 and ∼0.2 wavelength (𝜆). The data are normalized by the wavelength, 𝜆 (x axis), and the power spectrum of
𝜆 (y axis). The thick lines emphasize trends in the scaling regimes.

AUBENEAU ET AL. RIVER BEDS AS FRACTAL FILTERS 5311
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Figure 3. Probability distribution of vertical velocities at the sediment/water interface. The circles indicate results from the
spectral model, while the solid lines indicate the slopes predicted from the theoretical relationship between the
distribution of residence times and the distribution of vertical velocities. The vertical velocity distributions from both
models match very well.

distribution of interfacial vertical velocities: t ∼ 1∕w, where t is the time spent in the subsurface and w is
the vertical component of velocity at the interface. The probability density function (PDF) for travel times can
then be related to the velocity distribution:

pt(t) = pw(1∕t)dw∕dt = pw(1∕t) ⋅ 1∕t2
. (1)

We extracted pw from the velocity fields calculated by the spectral model and compared the resulting
predictions of pt with the observed tailing in the washout curves.

Finally, we use the mobile-immobile transport model [Schumer et al., 2003] with an initial condition in which
the relatively immobile bed sediment is loaded with tracer. The solution, provided in the supporting informa-
tion, indicates that the power law tailing in the washout curve reflects a power law hyporheic residence time
distribution with the same slope.

3. Results

Figure 1 shows the bed bathymetry for the smaller bedforms (top right) and for the larger bedforms (bottom
right). The wavelengths and amplitudes of the bedforms generated under the higher flow were larger than
those generated under the lower flow: 90 and 10 cm, respectively, for the larger bedforms versus 66 and 6 cm
for the smaller bedforms [Martin and Jerolmack, 2013]. The tracer washout curves (Figure 1, left) indicate that
both bed morphologies produced power law tailing that persisted throughout the 15 h of observation of
tracer concentrations. The power law slope of the washout curve was greater for solutes injected in the larger
bedforms (exponent ≈−1) than for solutes injected in the smaller bedforms (exponent ≈−0.8). The washout
curves obtained from particle tracking predicted exactly the scalings observed in the experimental washout
data. Solute and elevation data can be downloaded from aubeneau.com/grl2015.

Figure 2 shows the power spectra of the bed elevation for both topographies. Both spectra show a typical
white noise regime for scales larger than one wavelength (small wave number). For smaller scales, the spec-
tra reveal that the smaller topography spectrum has a smaller slope than the large topography spectrum, as
indicated by their divergence between 1 and∼0.2 wavelengths. The behavior in this spatial scaling regime cor-
responds to the different scaling in time observed in the washout curves and appears to control the residence
time distribution in the bed. For smaller scales, both spectra show similar scaling. The intermediate topo-
graphic scaling for the smaller bedforms is that of a typical self-affine and self-similar Brownian walk described
in many systems [Turcotte, 1997], whereas the larger bedforms exhibit greater longitudinal correlations, i.e., a
smoother profile.

AUBENEAU ET AL. RIVER BEDS AS FRACTAL FILTERS 5312



Geophysical Research Letters 10.1002/2015GL064155

Figure 3 shows the probability distribution of vertical velocities at the sediment/water interface predicted
using the particle tracking model and our simple analytical model. For the larger bedforms, pw(w) ∼ 1∕w,
which means that pt(t) ∼ t ⋅ 1∕t2 ∼ 1∕t, as observed in the tracer washout data (Figure 1). Likewise, for the
smaller bedforms, pw(w) ∼ 1∕w1.2, which means that pt(t) ∼ t1.2 ⋅ 1∕t2 ∼ t−0.8, also as observed. The vertical
velocities are higher for the large topography, indicating a higher hyporheic exchange with the bed. This is
also consistent with the higher concentration of tracer in the washout curves tails for the large topography
(visible from the raw data available online).

4. Discussion and Conclusions

Our data show that the transit time distribution in a small sand-bed reach follows a power law at late times.
This behavior is clearly associated with hyporheic exchange, as it matches the scaling predicted by numerical
particle tracking simulations based on flow-topography interaction. Although others have observed tailing in
headwater streams with high relief [Haggerty et al., 2002], measuring late time tailing in fine sediments remains
difficult due to the low tail concentrations resulting from in-stream injection experiments [Drummond et al.,
2012]. Our experimental setup allowed us to measure scaling in tracer washout over orders of magnitude of
concentration and time. Our data confirm predictions of hyporheic exchange models based on streambed
topographic spectra [Worman et al., 2006; Stonedahl et al., 2012] and indicate that the power law time scale
distribution can be directly related to vertical pore water flows, which can be extracted from topography.
Using a mobile-immobile framework, we showed that the mobile zone washout curves resulting from loading
the full streambed with tracer scales like the memory function (see supporting information), meaning that
the breakthrough curves scale as t−𝛼 instead of t−(𝛼+1). The exponents are consistent with previous studies,
although toward the higher end of known values [Elliott and Brooks, 1997; Drummond et al., 2012]. This may be
due to the type and scale of topographic features considered here, as other studies have usually considered
steeper and larger headwater streams with larger bed roughness and friction. Our results suggest that higher
exponents (under otherwise similar hydraulic regimes) are expected from smoother, more spatially correlated
elevation profiles.

The power spectrum analysis indicates that the fractal properties of the topography are related to the transit
time distribution in the system. The differences in fractal dimensions between the two topographies studied
here reflected the differences observed in the breakthrough curves. Linking the time signature of processes
happening on fractal objects to the fractality of the physical template is an old problem [Wheatcraft and Tyler,
1988] that remains a major theoretical challenge [Shlesinger et al., 1993]. Many studies have proposed that
diffusion on a fractal corresponds to fractional diffusion (i.e., power law scaling in time), but to date there is
no rigorous proof. However, increasing evidence from numerical experiments show that motion processes
on fractals yield fractional signatures [Reeves et al., 2008; Harman et al., 2009]. Here we showed directly that
the fractality of streambed topography was related to the late-time scaling in the hyporheic residence time
distribution.

The power spectrum of the elevation profiles gives information about the height of topographic features
found at a given frequency. We observed that larger bedforms induced more hyporheic exchange but shorter
residence times, as evidenced by the steeper slope of the washout curve. This is a key finding that is impor-
tant for streams and rivers where large features are left behind by high flows. Such “frozen,” “relict” features
may therefore contribute disproportionately to the total exchange between surface and subsurface water,
while also shortening the time water spends in the subsurface. This may be due to the higher aspect ratio of
the larger topography (0.11 versus 0.09 for the small topography), which controls head gradient and there-
fore hyporheic exchange characteristics [Worman et al., 2007]. In sand-bed rivers, morphology is fractal below
a maximum bedform size controlled by finite size effects [Nikora et al., 1997; Jerolmack and Mohrig, 2005].
These systems should therefore exhibit heavy-tailed residence time distributions and breakthrough curves.
Moreover, as rivers generally have fractal topography [Turcotte, 1997], and surface-groundwater exchange is
induced by all scales of topography, not just flow-bedform interaction [Harvey and Bencala, 1993], our find-
ings may apply to other types of streams. Characterization of riverbed morphology along with hyporheic
exchange and local vertical velocities and head gradients is therefore expected to enable new and more
general assessment of surface-subsurface exchange processes.

In natural rivers, occasional high flows leave legacy topography behind that smaller flows will experience
for long periods, since topography adjusts much faster to the rising flows than the recessions [Martin and
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Jerolmack, 2013]. Patil et al. [2013] showed that tail slopes of conservative tracer breakthrough curves in a
mountain stream decreased at lower discharge. As the flow rises and intersects larger topographic features,
the slope of the tails becomes steeper. Conversely, streams may experience wider retention distributions after
the topography equilibrates with the smaller flows, as smaller topographies can delay flushing from the bed.
These dynamic processes of flow-morphology interactions are crucial for characterizing solute transport and
retention in river networks but have yet to be incorporated in models and experiments because of the inherent
challenges in observing and simulating time-varying processes in rivers.
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