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Sedimentary Bed Evolution as a Mean-Reverting Random Walk:
Implications for Tracer Statistics

Abstract
Sediment tracers are increasingly employed to estimate bed load transport and landscape evolution rates.
Tracer trajectories are dominated by periods of immobility (“waiting times”) as they are buried and
reexcavated in the stochastically evolving river bed. Here we model bed evolution as a random walk with
mean-reverting tendency (Ornstein-Uhlenbeck process) originating from the restoring effect of erosion and
deposition. The Ornstein-Uhlenbeck model contains two parameters, a and b, related to the particle feed rate
and range of bed elevation fluctuations, respectively. Observations of bed evolution in flume experiments
agree with model predictions; in particular, the model reproduces the asymptotic t−1 tail in the tracer waiting
time exceedance probability distribution. This waiting time distribution is similar to that inferred for tracers in
natural gravel streams and avalanching rice piles, indicating applicability of the Ornstein-Uhlenbeck mean-
reverting model to many disordered transport systems with tracer burial and excavation.
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Sedimentary bed evolution as a mean-reverting random walk:
Implications for tracer statistics
Raleigh L. Martin1, Prashant K. Purohit2, and Douglas J. Jerolmack1

1Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
2Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania, USA

Abstract Sediment tracers are increasingly employed to estimate bed load transport and landscape
evolution rates. Tracer trajectories are dominated by periods of immobility (“waiting times”) as they are
buried and reexcavated in the stochastically evolving river bed. Here we model bed evolution as a random
walk with mean-reverting tendency (Ornstein-Uhlenbeck process) originating from the restoring effect of
erosion and deposition. The Ornstein-Uhlenbeck model contains two parameters, a and b, related to the
particle feed rate and range of bed elevation fluctuations, respectively. Observations of bed evolution in
flume experiments agree with model predictions; in particular, the model reproduces the asymptotic t−1

tail in the tracer waiting time exceedance probability distribution. This waiting time distribution is similar to
that inferred for tracers in natural gravel streams and avalanching rice piles, indicating applicability of the
Ornstein-Uhlenbeck mean-reverting model to many disordered transport systems with tracer burial
and excavation.

1. Introduction

Understanding the evolution of landscapes depends on determining long-term rates of sediment particle
transport. Due to logistical challenges in directly measuring sediment transport rates, tracers are commonly
deployed to estimate sediment flux. Tracer techniques have been applied to a variety of problems, ranging
from determination of contaminant dispersion [Packman et al., 2004; Buffington and Tonina, 2009] to esti-
mation of deposition or dunadation rates [Anderson et al., 1996; Repka et al., 1997]. Tracer particles interact
with sedimentary surfaces that evolve stochastically [e.g., Schumer and Jerolmack, 2009]. If performed prop-
erly, tracer deployments sample over the full range of stochastic surface evolution and therefore perform an
ensemble average that is perhaps more reliable than point sampling of transport rates.

In particular, fluxes of bed load, coarse (sand and larger) particles transported in close proximity to a river
bed, are extremely difficult to measure, so their determination often depends on deployment of tagged
tracers [Hassan et al., 1991; Habersack, 2001; Ferguson et al., 2002; Nikora et al., 2002]. Statistical mechan-
ical treatments [Ancey et al., 2008; Furbish et al., 2012] relate statistics of individual tracer motions to bulk
transport behavior. Recent experimental [Hill et al., 2010; Martin et al., 2012] and field [Nikora et al., 2002;
Bradley et al., 2010; Phillips et al., 2013] observations indicate bed load particle dispersion that deviates
from expectations of simple (Fickian) diffusion underlying many landscape evolution models [e.g., Hanks,
2000]. To address non-Fickian behavior of bed load, “anomalous” diffusion models have been developed
[e.g., Schumer et al., 2009; Ganti et al., 2010; Zhang et al., 2012]. Central to anomalous transport models
are distributions of particle transport times [Hill et al., 2010] and waiting times between transport events
[Martin et al., 2012], which characterize the start-and-stop motion typical of tracers [Einstein, 1937;
Lajeunesse et al., 2010]. Anomalous diffusion arises due to power law tails in particle transport and/or
waiting time distributions [Nikora et al., 2002; Schumer et al., 2009; Ganti et al., 2010].

Flume experiments by Martin et al. [2012] displayed an asymptotic t−1 power law tail for the tracer wait-
ing time distribution cumulative density (i.e., t−2 probability density tail), providing a possible explanation
for anomalous diffusion. Voepel et al. [2013] showed that the waiting time distribution can be related to
the “return times” of the evolving sedimentary bed, i.e., times for the bed surface to return to an initial
bed elevation following aggradation. However, as in previous studies [Yang and Sayre, 1971; Nakagawa and
Tsujimoto, 1980], Voepel et al. [2013] derived a return time distribution (and corresponding particle waiting
time distribution) that contains an exponential (not power law) tail [Voepel et al., 2013].
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Because of the stochastic nature of sediment transport, we expect a sedimentary bed to fluctuate unpre-
dictably up and down in elevation. Fluctuations should be bounded; thus, Voepel et al. [2013] modeled bed
evolution as a random walk within reflecting upper and lower surfaces. Here we explore an alternative, more
subtle model for stochastic bed evolution. Noting that topographic highs are preferentially eroded while
lows are preferentially filled [Straub et al., 2009], we treat the evolving bed not as reflecting off hard bound-
aries but as experiencing a softer mean-reverting tendency. A model for mean-reverting random walks is the
Ornstein-Uhlenbeck (O-U) process. A rich theory exists for describing O-U processes [Uhlenbeck and Ornstein,
1930; Gillespie, 1992], which are observed in a variety of physical [Doob, 1942] and financial systems [Vasicek,
1977]. Given the similarity of bed surface evolution to O-U processes and the relationship between bed sur-
face fluctuations and particle waiting times, we hypothesize that the waiting time distribution should be
described by the return times of an O-U process.

Below, we develop O-U theory for sedimentary bed evolution. Then we describe idealized experiments to
track the coupled behavior of tracer trajectories and bed evolution in a water-driven granular bed with bidis-
perse glass spheres. From these experimental results, we demonstrate the applicability of O-U theory for
predicting bed evolution and particle waiting times. Finally, we show how particle waiting times predicted
from O-U theory fit with existing observations of natural sediment tracer dynamics, and we offer broader
implications of our model for describing sedimentary surfaces and granular tracers.

2. Ornstein-Uhlenbeck Theory

Consider a dimensionless random variable, Y(t), with mean 0, describing the evolution of bed elevation
through time, t. Y(t) evolves through random discrete jumps of length 𝜉 related to entrainment and deposi-
tion of particles on the bed. These jumps are separated by random pausing times of duration, 𝜏 , describing
intervals between transport events. Assuming temporal homogeneity (jumps occur independently of t),
𝜉 and 𝜏 may be described by probability densities, which can in turn be approximated as continuous advec-
tion and diffusion terms, A(y) and D(y), respectively, in the Fokker-Planck equation (see the supporting
information for a more detailed explanation) [Gillespie, 1992].

Defining u(y) as the probability, given a current bed elevation, y, that the next jump, 𝜉, will be positive, and
noting the mean-reverting tendency of the bed evolution process, we treat u(y) as varying linearly with y
such that

u(y) = 1
2

(
1 −

y
b

)
, −b ≤ y ≤ b, (1)

where b is a parameter approximating the typical range of y (in fact, y can range outside of ±b, but this
linear approximation greatly simplifies the analytical derivation). We treat pausing times as occurring
independently of y, yielding an exponential pausing time density, p(𝜏):

p(𝜏) = a exp(−a𝜏), (2)

where a is a rate parameter for the distribution. Based on this discrete description for jump directions
and pausing times, the continuous advection term in the Fokker-Planck equation is approximated by
[Gillespie, 1992]

A(y) = au(y) − a(1 − u(y)) = −
ay
b
, (3)

and the diffusion term is approximated by

D(y) = au(y) + a(1 − u(y)) = a. (4)

These forms of A(y) and D(y) are described by the well-known Ornstein-Uhlenbeck process.

Treating our discrete birth-death Markov process for bed evolution as a continuous Ornstein-Uhlenbeck
process based on the equations described above, we may now make useful predictions about our random
variable for bed evolution, Y(t). First, we expect the stationary distribution, Ps(y), of bed elevation to be
normal and depend on b:

Ps(y) =
1√
b𝜋

exp
(
−

y2

b

)
. (5)

We note that the standard deviation of this distribution is 𝜎 =
√

b∕2.
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Figure 1. Sample image of granular bed from side of experimental flume. Flow is from left to right. Thin streak above the
bed is the water surface. The bed surface elevation, z, is the uppermost elevation for bed particles. Inset diagram shows
diameters of small and large particles (d1 and d2, respectively), and minimum displacement, (Δz)min. zp is determined as
the mean of (Δz)min and d2. Plot on the right shows a sample time series, z(t), of detrended bed elevation at the location
indicated by the cross.

Second, we can make predictions about return times, denoted as Tr . Given an initial value of Y = y0 and
subsequent increase in Y from this initial value, how long do we expect Y to evolve until it first decreases
below y0? Based on determination of the mean first exit time for Y outside of the interval (y0 − 𝜖,∞), where
𝜖 is determined from the minimum bed displacement length (see the supporting information for complete
explanation), we can estimate the expected conditional mean return time, ⟨Tr(y0)⟩, as

⟨Tr(y0)⟩ = 𝜖
√

b𝜋
a

exp

(
y2

0

b

)[
1 − erf

(
y0√

b

)]
. (6)

For increasing values of y0, equation (6) indicates a decrease in ⟨Tr(y0)⟩, which is expected since the
downward mean-reverting tendency of the O-U process grows stronger as y0 increases. No analytical
expression exists for the full unconditional distribution of Tr ; we will estimate this later through
Monte Carlo simulations.

3. Experiments

The experimental setup consisted of a narrow (19 mm) downward sloping (6%) channel of length ≈ 2 m
through which bidisperse spherical glass beads (d1 = 12.2 ± 0.4 mm and d2 = 16.3 ± 0.3 mm with 1:1
number ratio) were propelled by a steady water flow of 37.9 L/min (see Martin [2013] for complete descrip-
tion). The narrowness of the channel confined particles to streamwise (x) and vertical (z) motions, though
the d1 particles (necessary to maintain a disordered bed configuration; see Bohm et al. [2004] for explanation
of crystallization effect for monodisperse spheres) did experience slight transverse motions. This quasi-2-D
configuration offered the simplest possible description of bed load transport, and it also allowed for accu-
rate imaging of particle motion by time-lapse photography (using Nikon D5200 camera) of the backlit
channel (Figure 1). Rates of sediment feed, n, for the five experiments were 12, 30, 60, 90, and 120 particles
per minute. Names of experiments indicate respective particle feed rates (e.g., “S60” for 60 particles/min
feed). Corresponding rates of time-lapse imaging for these experiments were 30, 6, 12, 30, and 30 photos
per minute, respectively.

Flume sidewall images were processed through a thresholding technique distinguishing particle and non-
particle areas of the bed. Particle centroid positions were determined (with precision ±1.0 mm) by an image
“watershedding” technique distinguishing outlines of unique individual particles. For a particle centroid in a
given frame, if, in the subsequent frame, no particle centroids were detected within a 0.5d distance (where
d is particle diameter) of the original centroid position, we identified this event as a particle entrainment. A
converse method was employed for particle deposition. Waiting times, Tw , were then defined as durations
between deposition and subsequent entrainment for a particle.

Bed surface (x, z) coordinates were determined (with precision S12: ±0.17 mm, S30: ±0.50 mm, S60:
±0.26 mm, S90: ±0.20, S120: ±0.17 mm) as uppermost elevations of continuously contacting particles
(Figure 1 inset). Time series of bed elevations, z(t), refer to values detrended relative to long-term mean
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Figure 2. (a) Values of a versus feed rates, n, for the experiments. Best fit (determined as mean of a∕n ratio) yields a
value of k = 0.025 in a = kn. Values of a were determined based on fitting to the exponential form of equation (2). (b)
Transition probabilities, u(y), for all experiments. Dashed line indicates values for b = 1.5 in equation (1). (c) Stationary
distribution, Ps(y), for all experiments, compared to prediction from equation (5) with b = 1.5.

bed elevation at each point (Figure 1 inset). Due to discreteness of particle entrainment/deposition pro-
cesses, changes in bed elevation, Δz, primarily occurred in the range (Δz)min < |Δz| < d2, where
(Δz)min = (d1∕2)

√
1 − (d2∕(d1 + d2))2 = 5.0 mm is calculated based on idealized geometry of a small parti-

cle resting on two large particles (Figure 1 inset). We compute a “characteristic” bed displacement, zp, as the
mean value of this range; zp = 10.7 mm for our experiments. For comparison to theory, we take y = z∕zp as
dimensionless bed elevation and 𝜉 = Δz∕zp as dimensionless bed displacement.

4. Results

To test applicability of the O-U theory, we derived values of a and b based on observation of bed sur-
face evolution. First, we determined distributions of pausing times, 𝜏 , for each experiment. Values of 𝜏
were calculated as time increments between successive bed displacements for which |𝜉| ≥ 𝜉min, where
𝜉min = (Δz)min∕zp. The resulting distribution of 𝜏 , determined from ensemble statistics of z(t) at all loca-
tions, x, along the bed, is roughly exponential, and this exponential distribution is independent of initial y.
For each experiment, values of a were then determined by fit to the exponential portion of the pausing time
distribution described by equation (2). a appears to increase linearly with n, the particle feed rate, for the
five experiments (Figure 2a).

Upon completion of a pausing time, probability of a positive 𝜉 step depends on current bed state, y.
Figure 2b shows that observed u(y) declines monotonically with increasing y; the curve is roughly sigmoidal,
with a linear section for −1.5 < y < 1.5. A similar trend is apparent for all experiments, with b = 1.5 (esti-
mated by eye) providing the best fit for equation (1). Although the modeled linear function for u(y) fails to
capture the observed tails, it provides reasonable first-order description of the data that allows for adoption
of the O-U model using equation (1).

Based on values of a and b derived from local, short-time dynamics of the evolving granular bed, we com-
pare O-U theoretical predictions to direct observations of long-time bed dynamics. First, we find that the
observed stationary distributions of bed elevations, Ps(y), closely match the O-U prediction (equation (5))
for all experiments (Figure 2c). Second, we compare predicted mean return times (equation (6)) to those
observed in Experiment S12, which had the largest data set (other experiments yielded similar results).
Choosing 𝜖 = 𝜉min∕2 as the minimum discrete displacement for a return time, we find close correspondence
between predictions and observations of conditional mean return times, ⟨Tr(y0)⟩ (Figure 3a). Third, mean
conditional observed waiting times, ⟨Tw(y0)⟩, determined for the d2 (large) particles, are similar to observed
and predicted ⟨Tr(y0)⟩ (Figure 3a), indicating correspondence between particle waiting and bed surface
return times.

In addition to mean behavior, we are interested in distributions of return and waiting times for their effects
on sediment tracer dispersion. To our knowledge, existing theory does not provide predictions for the full
(unconditional) return time distribution for the O-U process. Instead, we resort to Monte Carlo methods to
simulate y(t) evolution by the advection and diffusion equations (equations (3) and (4)) over 107 s (see the

MARTIN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6155
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Figure 3. (a) Comparison of observed mean waiting times (⟨Tw⟩) and mean bed surface return times (⟨Tr⟩) for Exper-
iment S12 conditioned on y0, compared to ⟨Tr⟩ predictions from equation (6) and computed from Monte Carlo
simulation. (b) Experiment S12 particle return time and waiting time exceedance probabilities (P(Tw > t) and P(Tr > t),
respectively) versus Tr distribution predicted by Monte Carlo simulation run for 107 time steps of duration Δt = 1 s.
In addition, return times computed from 10 subsets of the Monte Carlo simulation (each of duration 106 s) are plotted
alongside the main Tr results. t−1 line is shown for comparison.

supporting information for further explanation). From synthetic y(t) time series, we then compute Tr based
on first passage times as described above. As first confirmation of the validity of the Monte Carlo simulation,
we note similarity between analytical (equation (6)) and simulation predictions for ⟨Tr(y0)⟩ (Figure 3a). Slight
differences between simulations and predictions likely arise due to arbitrary choice of 𝜖 = 𝜉min∕2.

Figure 3b compares the Monte Carlo simulated return time exceedance probability distribution, P(Tr > t),
to observed distributions of Tr and Tw for Experiment S12. The O-U predicted Tr distribution not only
agrees with observations of Tr but also predicts the distribution of Tw with reasonable accuracy. Differences
between observed Tr and Tw are apparent and may result from arbitrary choice of displacement lengths
for identifying return and waiting time events. However, these differences appear primarily in the timing of
transition to asymptotic tail behavior rather than the slope of this tail. Other experiments displayed similar
correspondence between return and waiting time distributions but are not shown here for brevity.

All experiments show a similar waiting time distribution as Experiment S12 (Figure 4a). The major differ-
ence is the time scale at which Tw curves approach limiting power law tail behavior. Multiplying t by a to
normalize the Tw distributions for the five experiments, Figure 4b indicates reasonable data collapse for
all experiments. For at > 1, all experiments appear to converge to a power law tail with t−𝛼 , where 𝛼 ≈1
or slightly greater than 1. While all experiments display similar asymptotic behavior, slight differences in
the distributions remain following normalization by a, possibly resulting from the arbitrary choice of 𝜖 for
determining waiting times or from other artifacts of the imaging methods.

Figure 4. (a) Waiting time exceedance probability distributions (P(Tw > t)) for the five experiments versus t. (b) Normal-
izing time by bed activity parameter, a, produces a reasonably good collapse of the data. Limiting power law scaling is
slightly steeper than the t−1 line shown for comparison.

MARTIN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6156
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5. Discussion

Treatment of sedimentary bed evolution as an Ornstein-Uhlenbeck process, or mean-reverting random
walk, predicts a bed return time distribution with asymptotic power law tail, i.e., P(Tr > t) ∼ t−𝛼 , with tail
parameter 𝛼 ≈ 1 for at > 1. 𝛼 = 1 is the minimum value for which the distribution has convergent mean.
When at < 1, local slope of the P(Tr > t) distribution indicates values of 𝛼 < 1; i.e., the mean is noncon-
vergent. This nonconvergent behavior is expected for random walks unconstrained by boundary effects
[i.e., Voepel et al., 2013]; therefore, the parameter t = 1∕a represents the time scale over which bound-
ary effects become significant and limit bed evolution. However, whereas Voepel et al. [2013] modeled this
boundary effect as an exponential truncation to the return time distribution, our Ornstein-Uhlenbeck model
yields an asymptotic power law distribution. This difference likely results from the fact that Voepel et al.
[2013] treated bounding bed elevations as hard reflecting surfaces (i.e., “first passage on a bounded inter-
val” [Redner, 2007]), whereas the Ornstein-Uhlenbeck model exerts a “softer” boundary encoded in an ever
increasing restoring force away from the mean. Interestingly, the Tr distribution determined from the Monte
Carlo simulation (duration 107 s) shows apparent truncation for t > 106; however, when Tr distributions are
computed from 106 s subsamples of the full simulation, these appear truncated when t > 105 (Figure 3b).
In other words, truncation effects appear to result from finite sampling rather than dynamics of the bed
evolution process.

Our model and observations yield bed surface return times and tracer waiting times with asymptotic tail
parameter, 𝛼≈1, matching flume experiments in a three-dimensional channel with natural angular sedi-
ments [Martin et al., 2012]. For such power law distributions of waiting times accompanied by thin-tailed
hop lengths [e.g., Hassan et al., 1991; Lajeunesse et al., 2010; Martin et al., 2012] that are asymmetric (i.e., par-
ticles can move only one direction, as in the longitudinal profile of a river), Weeks et al. [1996] predict that
particle displacement variance, 𝜎2

x , will grow with time, t, as 𝜎2
x ∼ t𝛾 , where 𝛾 , the dispersion scaling expo-

nent, is given by 𝛾=3 − 𝛼. Our case of 𝛼 ≈ 1 yields a value of 𝛾=2. For comparison, Phillips et al. [2013] found
𝛾=1.9 for tracers in a natural stream, in general agreement with our direct experimental observation. Our
model of bed evolution as a stochastic mean-reverting process therefore provides a plausible explanation
for tracer dispersion in natural streams.

In addition to explaining the particle waiting time distribution that gives rise to observed sediment tracer
dispersion behavior, the Ornstein-Uhlenbeck model may potentially explain evolution of a broad variety of
sedimentary and granular surfaces. For example, steadily driven avalanching rice piles experience stochastic
local bed elevation fluctuations around a mean value; as in our experiments, rice pile tracers exhibit a resi-
dence time distribution with t−1 asymptotic tail [Christensen et al., 1996]. Similarly, solutes [e.g., Haggerty et
al., 2002] and fine particles [e.g., Drummond et al., 2014] display power law tailed residence times as they are
stored and released from evolving sedimentary beds. Other examples include river deltas [Ganti et al., 2011],
bed forms [Martin, 2013], and bedrock rivers [Finnegan et al., 2014] or any system where tracers interact with
a fluctuating but bounded surface. Many of these systems (both in the field and laboratory) display a
Gaussian stationary bed elevation distribution [Crickmore and Lean, 1962; Yang and Sayre, 1971; Nakagawa
and Tsujimoto, 1980; Wong et al., 2007; Coleman et al., 2011], which is consistent with the
Ornstein-Uhlenbeck model (Figure 2c).

The parameter a for pausing times is determined by the frequency of changes in bed elevation, z. In the
field, a could be determined directly from repeat bed surveys, which are becoming increasingly accessible
[e.g., Anderson and Pitlick, 2014]. Because particle erosion and deposition generate z fluctuations, we expect
the frequency of bed elevation change to be linearly related to the rate of particle movement, i.e.,

a = kn, (7)

where k is a proportionality constant effectively describing the fraction of passing particles that deposit or
erode at a single point on the bed. Recall that the t−1 power law tail of the Tw distribution occurs for t > 1∕a;
thus, faster rates of sediment input, n, correspondingly decrease the time for the evolving bed to experi-
ence mean-reverting boundary effects that produce convergence toward the power law tail. Based on O-U
theory, a is equivalent to a length-normalized diffusivity, D, by equation (4). In this manner, equation (7)
is reminiscent of particle diffusion in granular flows, for which particle diffusivity, K , is proportional
to the imposed shear rate, �̇� , as K∕d2 = k�̇� [Natarajan et al., 1995; Garzo, 2002; Utter and Behringer, 2004;
Wandersman et al., 2012], where d is particle diameter and k is a proportionality constant (as in equation (7)
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above). Relating our experiments to this granular kinetic theory, n is a scale parameter equivalent to �̇� while
a is equivalent to K∕d2. Following this equivalence, the fitted value for our data, k = 0.025 (Figure 2a), is sim-
ilar in magnitude to values reported for dry granular flows at comparable shear rates [Utter and Behringer,
2004]. While not definitive, this suggests that bed load transport exhibits similar diffusive dynamics to
granular shear flows.

The parameter b in our model (equation (1)) encodes the bounding and mean-reverting effect of the surface
elevation range. u(y) decreases with y because particles with elevations significantly above the mean are
more susceptible to erosion, due to greater flow exposure and higher fluid velocities with increasing height;
conversely, particles at very low elevations are prone to deposition. b here is a strictly empirical value that
depends on the specific configuration of our experiments. The value of b = 1.5 in our system indicates a
relatively narrow range of fluctuations over a few particle diameters, consistent with field observations of
bed load [DeVries, 2002]. In general, b could be determined from the range of bed elevation fluctuations
described by the stationary distribution in equation (5).

6. Conclusion

Particles moving as bed load in a sheared fluid flow experience intermittent transport, leading to disper-
sion of tracers within the particle population. Tracers experience a broad distribution of waiting times in
their trajectories related to return times in stochastic evolution of the bed surface. Modeling bed evolu-
tion as an Ornstein-Uhlenbeck (O-U) process, i.e., a mean-reverting random walk, yields asymptotic t−1

scaling in the return time distribution, which in turn explains the distribution of waiting times in idealized
flume experiments. Our O-U bed evolution model contains two parameters, a and b. a describes frequency
of bed surface changes related to particle flux, while b describes bounds on bed elevation fluctuations.
Both parameters could be estimated in rivers based on repeat topographic surveys, providing the basis for
testing and applying O-U theory to practical field situations. More generically, our O-U model provides a
testable framework for understanding tracer burial and excavation in avalanching rice piles, sheared granu-
lar flows, and any system with a stochastically fluctuating surface. Our findings provide fresh insight into the
notoriously challenging problem of predicting bed load sediment transport and open up new avenues for
cross-disciplinary work relating the dynamics of limited tracer populations to underlying granular processes
in sedimentary systems.
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