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Abstract
The goal of this project is to examine the far - infrared sources in the South Ecliptic Pole region (SEP)
observed by the Balloon-Borne Large Aperture Submillimeter Telescope (BLAST). A primary science goal is
to understand star formation processes. Most of the sources are assumed to be luminous infrared galaxies
(LIRGs), in which high rates of star formation are believed to be occurring. The BLAST experiment mapped
the 10 SEP at three wavelengths (250, 350 and 500 μm). To aid future studies of the SEP, three lists of
interesting sources were created with an IDL source extraction algorithm. The first list is a catalog of all 5 σ
sources and their counterparts. The second list contains sources which have unambiguous counterparts in the
three wavelengths. The sources of the third list are likely to be high redshift. Spectral Energy Distributions
(SED) were fit to each of the listed sources with an IDL SED fitter. Using the SED, preliminary estimates of
luminosity and star formation rates can be made. The combined and unambiguous catalogs can be used to
select targets for future observations. The third list will be especially useful for selecting high redshift LIRGs
for future observations. Many of the presumed high redshift sources are unrealistically bright. It is possible
that they are high redshift sources which are gravitationally lensed and magnified by clusters. The number of
bright high redshift sources identified was used to test a recent theoretical model of the abundance of clusters.
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Abstract 

 

The goal of this project is to examine the far - infrared sources in the South Ecliptic Pole 

region (SEP) observed by the Balloon-Borne Large Aperture Submillimeter Telescope (BLAST). 

A primary science goal is to understand star formation processes. Most of the sources are 

assumed to be luminous infrared galaxies (LIRGs), in which high rates of star formation are 

believed to be occurring. The BLAST experiment mapped the 10 2deg  SEP at three wavelengths 

(250, 350 and 500 µm). To aid future studies of the SEP, three lists of interesting sources were 

created with an IDL source extraction algorithm. The first list is a catalog of all 5 σ sources and 

their counterparts. The second list contains sources which have unambiguous counterparts in the 

three wavelengths. The sources of the third list are likely to be high redshift. Spectral Energy 

Distributions (SED) were fit to each of the listed sources with an IDL SED fitter. Using the SED, 

preliminary estimates of luminosity and star formation rates can be made. The combined and 

unambiguous catalogs can be used to select targets for future observations. The third list will be 

especially useful for selecting high redshift LIRGs for future observations. Many of the 

presumed high redshift sources are unrealistically bright. It is possible that they are high redshift 

sources which are gravitationally lensed and magnified by clusters. The number of bright high 

redshift sources identified was used to test a recent theoretical model of the abundance of 

clusters. This technique could potentially be applied to other studies to constrain the abundance 

model. 

 

Section 1: Introduction 
 

 

Cosmologists are trying to explain how the stars of the universe have formed. Stars are 

formed when dense clouds of molecular gas collapse into plasma. When a large amount of gas is 
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contained in a small area many stars could be created in so called starbursts. Many starbursts are 

believed to be happening in dusty galaxies. These galaxies are called luminous infrared galaxies, 

as radiation from star formation processes is absorbed by dust and reemitted in the infrared. 

Although stars are still being formed in the universe there was a time of increased star formation 

in the early universe. The cosmic infrared background (CIB) is a trace of that period of star 

formation. Many experiments have been designed to deepen our understanding of star formation 

in the early universe. This project will analyze data from one such experiment, the Balloon-

Borne Large Aperture Submillimeter Telescope (BLAST). BLAST measures the flux at three 

different wavelengths 250, 350 and 500. Flux is the energy of the electromagnetic radiation per 

unit time passing through a unit area.  

This study made one step towards analyzing BLAST observations of the South Ecliptic 

Pole (SEP) region of space by cataloging infrared emitting sources to aid in selecting candidates 

for future observations. Sources were identified and cataloged with the help of IDL (Interactive 

Data Language) routines. The first catalog was a combined list of sources and their counterparts 

across the BLAST wavelengths. Counterparts are source identifications in similar positions in 

different wavelength maps that are believed to be the same source. In addition, catalogs of 

sources were created that can be well identified across the three wavelengths observed by 

BLAST and sources that appear to have a high redshift i.e. are very far away. Estimates of key 

parameters such as star formation rate, luminosity, temperature and redshift of the identified 

sources were added to the lists. The parameters were determined by fitting the flux measured 

across each of the BLAST wavelengths to a greybody distribution. The result is the spectral 

energy distribution (SED), the estimated flux across the whole spectrum of wavelengths. From 

the SED an estimate of temperature, redshift, luminosity and star formation rate can be made. 
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Some of the high redshift sources appeared to be very bright although they are far away. This 

may be explained by gravitational lenses. Gravitational lenses are massive objects that act similar 

to optical lenses in that they can magnify sources.  

To place the experiment in a better context section 2 will examine the significance of the 

cosmic infrared background (CIB) to understand the history of the star formation, as well as the 

history of infrared observations and where the BLAST experiment fits into the CIB research. In 

addition, cosmological terms such as redshift, SED and clusters will be explained. The IDL 

routines used to extract sources from BLAST maps, to categorize them into lists and to create 

SED fits, will be detailed in section 3. Finally, the properties of the sources in the SEP as well as 

the subsets of unambiguous and high redshift sources will be discussed in section 4. A 

conclusion on the probability of the bright high redshift sources being lensed will be drawn and 

their abundance will be compared to theoretical models.  

 

Section 2: Background 

 

CIB: A tracer of Star formation 

The universe is believed to be about 13.7 billion years old. Figure 1 summarizes the 

current understanding of the evolution of the universe. At the beginning is the Big Bang. The 

universe, originally confined to a point, expands. Inflation marks a period of exponential 

expansion. The Cosmic Microwave Background (CMB) provides evidence for both events. The 

CMB is the afterglow of the hot dense plasma which comprised the universe before expansion it 

was cooled by expansion and the first atoms formed. Atoms could no longer absorb the thermal 

radiation and this radiation has propagated to the local universe from the surface of last 
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scattering. Gravitational forces amplified inhomogeneities in the universe and led to the 

formation of structure. Gravitational forces dominated the evolution of early structures due to the 

dominance of weakly interacting dark matter. Finally a combination of gravitational, 

electromagnetic, and nuclear forces caused the formation of stars and galaxies.  

BLAST and other infrared background experiments are designed to detect a tracer of 

early star formation, the Cosmic Microwave Background (CIB). As stars form, radiation is 

created by gravitational and nuclear processes. Much of this radiation is absorbed by dust 

surrounding star forming regions and reemitted at infrared wavelengths (Lagache et al. 2005). 

This extragalactic radiation of early star formation comprises the CIB. Although the infrared 

radiation originated from these star forming sources on large scales the CIB is isotropic (Hauser 

& Dwek 2001).  

Three types of sources of the CIB are speculated to exist: luminous infrared galaxies 

(LIRGs), ultra luminsous infrared galaxies (ULIRGs) and hyper luminous infrared galaxies 

(HyLIRGs). LIRGs are galaxies with luminosities Lir > 1011 L
o , ULIRGs have 

luminosities Lir > 1012 L
o and HyLIRGs have luminosities 1310

ir
L L>

o
. The infrared sources are 

believed to have been created by mergers of gas rich spirals, which may result in star formation 

and star bursts (Sanders & Mirabel. 1996). Other phenomena such as active galactic nuclei which 

are believed to be accretion processes of large black holes also contribute to the CIB. Their 

contribution is estimated to be ~10% (Kashlinsky 2005) and thus marginal.  

To be identified as CIB, it must be distinguished from other infrared radiation, mainly 

from the infrared foreground of the Milky Way and from the submm component of the cosmic 

microwave background.  
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CIB observation history    

The CIB was first predicted by Partridge and Peebles (1967). It proved to be rather 

difficult to detect the CIB as its infrared signal is weak compared to foregrounds from our 

galaxy. For ground based observations, atmospheric emissions are a major cause of noise for 

CIB measurements. Galactic stars, zodiacal emission from dust in the Milky Way, the galactic 

cirrus and the infrared frequencies of the CMB all contribute to an infrared foreground that must 

be subtracted to improve the accuracy of CIB measurements (Kashlinsky. 2005).  

  Early infrared rocket and satellite studies of the CIB were inconclusive due to poorly 

developed detectors. The Infrared Astronomical Satellite (IRAS) was the first instrument to 

conduct an all sky infrared survey (Neugebauer et al. 1984).  It mapped the sky at wavelengths of 

12, 25, 60, and 100 µm. However, due to limited sensitivity and the inability to determine a zero 

point for brightness measurements, data analysis could at best indicate the evidence for the 

existence of the CIB (Boulanger & Perault. 1988). After subtraction of galactic infrared 

emissions a background was found in the 100 µm data. It was however uncertain if this was due 

to zodiacal light, false zero calibration or the CIB. 

 Two instruments on the Cosmic Background Explorer (COBE) satellite (Fixsen et al. 

1994), the Diffuse Infrared Background Experiment (DIRBE) and the Far Infrared Absolute 

Spectrophotometer (FIRAS) were able to prove the existence of an infrared background. DIRBE 

mapped the sky at 10 wavelength bands ranging from 1.25 to 240 µm (Silverberg at al. 1993). 

There was a detection of an isotropic CIB at the wavelengths of 140 and 240 µm and upper limits 

were determined for all other wavelengths (Hauser et al. 1998). With an improved model of 

zodiacal light the CIB was constrained from 1 to 300 microns (Wright. 2004). FIRAS was 

designed to measure the CMB from 125 µm to millimeter wavelengths.  At 200 µm a residual 
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background in excess of the CMB and foreground noises was found which was believed to be the 

CIB (Puget et al. 1996).  More recent studies have used devices such as the Near Infrared 

Spectrometer (NIRS) on IRTS (Noda et al. 1994), the Infrared Space Observatory (ISO) (Elbaz 

et al. 1999), and Spitzer (Papovich et al. 2004) and have covered more wavebands with higher 

sensitivities. Figure 2 provides a summary of the experiments and measurements. In May 2009, 

the satellite Herschel will be launched. It will conduct the first all sky survey of submm 

wavelengths (Harwitt. 2004). BLAST, as a submm balloon borne telescope has prepared the way 

for Herschel.  

 

BLAST  

The Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital 

experiment, designed to survey broadband spectral windows at wavelengths of 250, 350 and 500 

µm with a resolution of 30’’, 42’’ and 60’’, respectively (Pascale at al. 2008). BLAST (shown in 

Figure 3) will be able to detect infrared sources in a redshift z =1-4 range. BLAST served as a 

test for the SPIRE instrument on the Herschel telescope, as it used detectors and filters similar to 

the ones SPIRE will use. The results from BLAST could also influence the selection of the 

SPIRE observations. The science goals of BLAST are to constrain the redshift distribution and 

star formation rates of luminous infrared galaxies by determining their spectral energy 

distributions with wavelengths measured by BLAST and shorter wavelengths measured by 

IRAS, ISO and Spitzer. In addition, the spatial clustering of the luminous infrared galaxies 

should be determined. One engineering and two science flights were conducted with BLAST. 

The engineering flight was launched from Fort Summer, New Mexico (2003) and lasted 24 

hours. The first science flight was conducted from the Swedish Space Corporation base 
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ESRANGE near Kiruna, Sweden to Victoria Island in northern Canada in 2005. The second 

science flight was launched in 2006 from the Williams Field Long Duration Balloon facility near 

McMurdo Station in Antarctica and collected 250 hours of data. Unfortunately, the BLAST 

telescope was destroyed by being dragged over ground for a distance of 200km by the landing 

parachute which had failed to separate from the instrument. In the 2006 flight over Antarctica, 

BLAST surveyed, among other regions, a 10 2deg  region near the South Ecliptic Pole (SEP). 

This region was analyzed for this project.    

As the goal of this study is to create lists of sources of interest for future studies, some 

supplementary data are needed to facilitate a preliminary evaluation of the sources. Knowledge 

of the approximate redshift, luminosity, temperature and star formation rate will aid researchers 

in selecting sources for further study. Such data can all be determined / estimated from the 

Spectral Energy Distribution (SED) of the source.   

 

Redshift 

Redshifts can be determined by spectroscopy and photometry.  Spectroscopic redshifts 

are the shifts of spectral lines of elements in the sources. This method requires surveys over a 

large range of wavelengths but provides precise redshift values. Measuring such a large amount 

of wavelengths in surveys over large areas would be prohibitive and impossible for faint galaxies 

(Connolly et al. 1995). For wide range observations, as done by BLAST, redshifts are 

determined by photometry. To calculate a redshift the observed intensities of colors of a source 

are compared to a template of colors and known redshifts of other galaxies (Benitez 1998, 

Stabenau 2008). The method of maximum likelihood estimation will be used to identify the most 

probable redshift. This method requires measurements to be taken in a few frequencies only, 
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however, it has a high uncertainty caused by color redshift degeneracy; i.e. red slightly shifted 

and blue highly shifted galaxies can look alike when observed. To reduce uncertainty in the 

redshift detection / determination, the data from other surveys can be included if counterparts of 

the sources are known. As the purpose of this project is directed to provide a preliminary list of 

sources for future observations, redshifts will be determined by a more simple method. An 

estimate can be made by assuming the intrinsic temperature. As the SEP sources are expected to 

have a Gaussian temperature distribution around 30K for a large number of sources, the 

approximation of a 30K intrinsic temperature can be made.  This technique can only give an 

estimate of the redshift distribution over a large population. 

 

Spectral Energy Distribution 

The SED is the flux over a range of wavelengths of a source. Samples of SEDs of 

astrophysical objects are shown in figure 3. The infrared component of the SEDs of CIB sources 

is a grey body distribution and can be fitted to the three fluxes measured at the BLAST 

wavelengths. In some cases, however, BLAST had a source detection only in one or two bands. 

By using upper limits for the undetected bands, rough statements can be made.  The so 

determined SED is not the intrinsic SED of the source but the apparent SED observed by the 

experiment due to the redshift of the source. The redshift must be known to calculate the intrinsic 

values. The redshift calculated in this way is based on the SED and an assumed temperature, so 

any intrinsic values calculated from the apparent ones and the redshift would be highly 

degenerate. 

From the measured fluxes at the three wavelengths a SED can be fitted as a grey body 

distribution:  
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where  ν  is the wavelength, T the Temperature and β the dust emissivity index set to 1.5.  

Luminosity L is the power emitted by a source and is defined as the product of area A and flux F: 

                                                        L F A= �                                                                     (2) 

A is the area of the surface of the sphere with a radius equal to the distance between source and 

observer. 

                                                                24L F dLπ= ⋅ ⋅ ⋅                                                              (3) 

where dL is the luminosity distance.  

The infrared luminosity 
FIR

L  is defined according to Saunders et al. (1990) by integrating the 

flux from 80 to 1000 µm.   

                                                       2

80 1000 m 4FIRL F dLµ π−= ⋅ ⋅ ⋅                                                        (4) 

 

In this context the redshift z is defined as: 

                                                                    1int −=
appT

T
z                                                                 (5) 

Where intT is the intrinsic temperature and appT the apparent temperature derived from the 

observed SED. To obtain a rough estimate of z, intT can be assumed to be the average expected 

temperature of infrared sources: 30K.    

According to Kennicutt et al. (1997) the star formation rate (SFR) of starbursts is strongly 

coupled to the far infrared luminosity. Young stars dominate the radiation and almost all their 

bolometric luminosity is absorbed and reemitted by dust in the infrared. An estimate of the SFR 

is: 
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where 
o

L  is the luminosity of the sun and 
o

M is the mass of the sun. 

However other factors such as gravitational lensing further complicate the determination of 

source properties. 

 

Clusters & Gravitational Lensing 

 Gravitational lensing occurs when light from a distant source is bent around a massive 

object. This bending has an influence on the time it takes for the light to reach an observer and 

can magnify and can distort the apparent image of the source. The following discussion is based 

on Carroll (2004). Figure 4 illustrates the angle relations between an observer and a 

gravitationally lensed image. 

                                                 αθβ ˆ
S

LS

d

d
−=

rr
                                                                  (7) 

where the angles and lengths are shown in Figure 4.  

 

 

Gravitational lenses cause a magnification of the flux of a source: more flux will be observed 

then is emitted by the source. This magnification µ is defined as: 

                                                                         
β
θ

µ r

r

∂

∂
== M                                                       (8) 

where M is the magnification tensor. The magnification tensor can is determined by the distances 

and angles of the lensing map (Figure 4). 



13 

 

                                                    

1
2

1 −−










∂∂
∂

−=








∂
∂

−=
jiijj

i

ijM
θθ

ψ
δ

θ
α

δ                                      (9) 

where the lensing potential ψ  is defined as the integral of the geodesic paths Φ  from the 

observer: 

                                                      ∫Φ= dssd
dd

d
L

SL

LS ),(2)( θθψ
rr

                                                    (10) 

In the context of the BLAST maps gravitational lensing can make distant sources look close and 

cold through magnification. Gravitational lensing also indicates the presence of dark matter.  The 

distribution of lensed sources can indicate the distribution of massive clusters even if these are 

not directly detected.  

 

Section 3: Materials & Methods 

 

The goal of this analysis is to create a combined source list for sources in the SEP and 

their counterparts across the three BLAST wave bands. These lists can be used for follow up 

observations and to estimate the distribution of gravitational lenses. To produce these lists, 

sources are first identified in all three individual wavelength flux maps of the SEP. An IDL 

source extraction algorithm applies a maximum likelihood method to find sources in each flux 

map. Next, a combined catalog of source counterparts in each of the three wavelengths is 

created. This combined catalog is searched for sources which fit criteria of the two proposed 

lists. For every source the SED is fitted and basic source properties, including an estimate of the 

redshift, are determined. Sources that are very bright at high redshifts are likely to be magnified 

by gravitational lenses. The following sections will describe the routines used to identify sources 
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and counterparts, the criteria used to create the unambiguous and high redshift lists as well as the 

SED fitter. 

 

Source Extraction Algorithm 

A BLAST map is shown in Figure 5. It is almost impossible to recognize sources except 

for a few very bright ones. A source extraction code is needed. We use an IDL algorithm that 

applies a maximum likelihood method to find sources in the maps. The following discussion of 

using the maximum likelihood function to find the signal to noise map is based on Serjeant et al. 

(2003), Downes et al. (1986), Arp et al. (1981) and a comment on Arp’s statistics (Browne. 

1982).  The point spread function (psf) defines how a point source is displayed in the map. If a 

source is assumed to look like a flux f multiplied by the psf on a BLAST map, then the 

likelihood 2χ of a source is defined as: 
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−

⋅−−
=

2

0

2

02

)(

)()(

xxN
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where y is the value of the map and N the noise. Note that (11) is simplified to one dimension. 

To analyze the map a two dimensional equation must be used. To find the extrema of the 

likelihood, its derivative is set to zero:    
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Solving for the flux and introducing Fourier transforms through the convolution theorem:           
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Propagating for errors the signal to noise ratio (S/N) of the flux is: 
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Fourier transforms can be efficiently calculated in IDL with the fast Fourier transform method.  

Positions of maxima in the S/N map are recorded by the IDL code in a catalog as sources along 

with their S/N as a multiple of the standard deviation. An S/N map is shown in figure 6. 

 

Counterpart Search Algorithm 

 5 σ sources are significant enough to be included in a counterpart search. To find 

counterparts, an IDL algorithm is used to perform a search. For each 5 σ source the source 

catalogs at the other wavelengths are searched for counterparts which are within a search radius 

of the 5 σ sources. For the initial run the search radius of every source was α∆⋅5.2 , where α∆ is 

the 1 - σ uncertainty in the position of the source. In addition, counterparts are required to have a 

signal to noise ratio of at least 3. According to Ivision et al. (2007) the uncertainty in the position 

α∆  of a source is: 

                                
42)/(

1
*91.0

2 +−
⋅=∆

β
α

appNS
FWHM                                               (15) 

where FWHM is the full width at half maximum of the telescope beam and β  is the slope of the 

number counts of this population of galaxies, set to 1.5 in agreement with the BLAST maps. The 

position error has a complex relationship with the signal to noise ratio because there is a 

Malmquist bias in the flux limited telescope data which leads to an overestimation of the signal 

to noise ratio. BLAST can only detect sources down to a minimum flux and there are many more 

faint sources in the universe than bright sources. Uncertainty in the flux can lead to higher or 
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lower measured flux values, however, fluctuations below the BLAST sensitivity go undetected. 

Since there are more faint sources the probability for a detected source to have higher measured 

flux than intrinsic flux is greater than for a source to have a lower measured flux than intrinsic 

flux. This systematic overestimation of flux is the Malmquist bias. It is corrected in S/N: 

                                               )42()/(/ 2 +−= βappNSNS                                                    (16) 

It is possible that two sources at different wavelengths are not physically related but simply are 

very close to each other (Browne & Cohen 1977, Downes et al. 1986). The probability of 

random association depends on the magnitude of the source, as fainter sources (large magnitude) 

will be denser and thus more likely to randomly be present in the search radius than bright 

sources (small magnitude).  To quantify this probability one needs to calculate the expected 

number of randomly associated sources with the probability of random association P: 

                                                                  *PP ≤                                                                        (17) 

 where *P  is the probability of random association with a source that is of the same magnitude as 

the examined source. Assuming the probability of random association is P<<1, P is given by: 

                                                                )(2 mNrP π=                                                               (18)  

where r is the search radius and N the density of sources. BLAST has a lower limit on the flux it 

can detect so there is a maximum probability cP  for the highest magnitude source that can be 

observed. The expected number of randomly associated sources with (18) is then: 

                             for cPP ≥*      CPE =                                                                (19) 
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The Poisson probability can be calculated from the expected value:   

                                                                 E
eP

−=                                                                        (21) 
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The maximum likelihood position of a source is calculated as the weighted average of the 

positions of its counterparts in the individual wavelength catalogs. The entry in the combined 

source catalog will register the position of the source, the S/N and the flux, noise and probability 

of random association of each of the counterparts.  Having identified all counterparts the search 

for the unambiguous and high redshift sources can begin. 

 

Unambiguous and High Redshift List Criteria 

In regard to the source selection criteria, it is important to precisely define the terms 

‘source’ and ‘counterpart’. A counterpart is a source detection in one of the wavelength maps. A 

source is the collection of all counterparts located within the search radius. The unambiguous 

source list includes sources which have no confusion with their counterpart identification. They 

have no more than one counterpart per band. Sources are included in the unambiguous list if they  

1) have a 5 sigma counterpart in one band and  

2) have at most one 3 sigma counterpart within a 2.5 sigma search radius in each band  

High redshift sources are likely to have an inverted SED as shown in figure 8. The high redshift 

catalog includes sources which  

1) have a 5 sigma 500 µm counterpart,  

2) have  250350500 SSS >> where S stands for the respective flux at each wavelength. 

 

SED fitter 

To make some preliminary estimates of temperature, redshift, luminosity and star formation rate 

of the sources, their spectral energy distributions (SED) must be determined. Before the SED is 

fitted, the flux values must be de-boosted to remove the Malmquist bias. To determine the bias in 
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the signal to noise ratios, it is necessary to create noise free simulated maps based on the source 

count model (Coppin et al. 2004). The distribution of the flux in the simulated maps is N( pS ).  

Assuming the flux mmS σ± has been measured, the probability for true flux at some point of the 

BLAST map to be pS  given that the flux mmS σ± was measured is: 

                                     
)(

)|()(
))(,|(

mm

pmmp

Pmmp
SP

SSPSN
SNSSP

σ

σ
σ

±

±
=±                                 (22)     

Assuming Gaussian noise the probability of the measured flux being mmS σ± given that the true 

flux is pS is: 

                                                
2

2

2
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Pmm eASSP
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−

⋅=±                                                      (23)         

Then, the probability density function of the flux for the source of measured flux mmS σ±  is: 

                                                    )N(Sp

2

)(
2

2

⋅⋅=
−

m

Pm SS

eApdf
σ

                                                       (24)               

As de-boosted flux the peak of the pdf is used i.e. the most likely flux. 

 The SED fitter is an IDL routine. Inputs are the flux and noise measured at each wavelength. If 

no counterpart is found, the flux on the map at the position of the combined source is used. For 

cases where the S/N at that position is above 2 σ, the flux on the map is taken as an upper limit. 

If the S/N is below 2 σ, the upper limit is set to the sum of the flux on the map and three times 

the noise at the position. The relative spectral response of each BLAST band is not exactly one 

wavelength but a range shown in figure 9 (Pascale et al. 2008). To extract the flux at a single 

wavelength, the measured flux is put through a virtual bandpass. The SED is assumed to be a 

greybody, described by (1). 

This distribution is fit to the inputs by minimizing 2χ  (Truch et al. 2008),   
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                                                              TSSCSS )
~

()
~

( 12 −⋅⋅−= −χ                                           (25) 

where S is the measured flux, and S
~

is the flux from the model, and C is the covariance matrix.  

                                                           for  ji =  2

)(

2

)( icinijC ∆+∆=                                          (26) 

                                                      for  ji ≠  ),()()( jicorrC jcicij ⋅∆⋅∆=                                (27) 

 

where i and j are counters for the three wavelengths 250, 350 and 500 µm.   

The diagonal elements are the quadrature sums of the noise n∆  and the calibration error c∆ at the 

respective wavelength. The off-diagonal elements are calculated by taking the square root of the 

product of the calibration errors of two bands and their correlation ),( jicorr .  

To determine the error in the fit, a Monte Carlo simulation is used.  The SED is refit 200 times 

with random noise added to the flux values to determine the uncertainty of the fit.  

With the SED, the values of the apparent luminosity, star formation rate and redshift can be 

calculated using equations (4), (6) and (5). A typical SED fit is shown in Figure 8. A typical 

inverted SED fit from the high redshift catalog is shown in Figure 9. 

 

Section 4: Major findings, results and analysis 

 

 In this section the basic properties of the source catalogs will be examined. These basic 

properties are the apparent temperature, redshift, luminosity and star formation rate distributions. 

The analysis will begin with the combined source catalog as it represents a population which was 

only selected to have a high S/N and should have similar properties to the whole source 

population observed by BLAST. The properties of the unambiguous and high redshift catalog 
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sources will be compared to the combined catalog sources and differences will be explained 

based on the selection effects of each catalog. Finally, uses for the catalogs will be proposed, 

based on the found properties. Source lists were made for 2 σ, 3 σ, and 5 σ sources of the 250, 

350 and 500 BLAST maps.  Combined source lists, high redshift source lists and unambiguous 

source lists were created with the criteria described in section 3. Table 1 shows the number of 

sources found for each list. 

Table 1: Source Counts 

 Wavelen

gth  

S/N 250 350 500 

combin

ed 

unambiguou

s 

high 

redshift 

2 sigma 6137 4515 3003       

3 sigma 2010 1302 1263 303 228 43 

5 sigma  154  73  125      

 

Note: The S/N does not apply to combined, unambiguous and high redshift catalogs. See 

section 3 for the selection criteria. 

A decrease in the number of sources observed is expected at larger wavelengths due to 

the decreased resolution of the telescope at these wavelengths.  

Table 2 summarizes properties of the sources in the combined list. The average of the 

apparent temperature of the sources, 4.1519 ± K is within the range of the assumed average 

temperature of all sources 30K. A histogram of the apparent temperatures (figure 10) reveals a 

peak in number counts around 10K. This is not surprising as this corresponds to an SED with a 

peak at 250 microns, the wavelength at which BLAST is most sensitive. The average redshift 

69.28.1 ± is within the range most sources detected by BLAST are expected.  With a histogram 

of the redshifts (figure 11) it can be seen that the number counts peak at redshifts close to 0. The 

few extremely high redshifts observed z >>10 are probably non real. Luminosities and the star 
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formation rates vary widely from dim to hyper-luminous galaxies as their standard deviation is 

more than one magnitude larger than their average values. As can be seen in the histogram plots 

(figures 12 & 13) of luminosity and star formation rate, two populations are observed. One 

population has luminosities around 810 L
o
and star formation rates around 1M

�
 and the other 

population has luminosities around 1310 L
o
and star formation rates around 510 M

�
. Although it 

should be noted that for many luminosities and star formation rates the uncertainties are orders of 

magnitude. Keeping this in mind it is difficult to determine if the second population is composed 

of mainly LIRGs, ULIRGs or HyLIRGs. BLAST is designed to detect LIRGs so the detection of 

a large amount of low luminosity sources is surprising. The uncertainties of the low luminosity 

sources are rather high. If the luminosity histogram is redrawn including only sources with an 

uncertainty to luminosity ratio of less than 10 the population of low luminosity sources 

disappears (figure 14). It seems likely that the SED fits and corresponding properties of the 

supposedly low luminosity are ill determined because many of these sources only have one 

detection as can be seen from table 2. 

 Table 3 summarizes properties of unambiguous sources. The average values of the 

combined and unambiguous sources are similar. The average apparent temperature of the 

sources, 9.1621± K and the average redshift 28.28.1 ± are both in the range of the averages of 

the combined source list. The redshift and temperature distributions are also similar as shown in 

figures 15 & 16. There are to be less extremely high redshift sources in the combined source 

catalog. This indicates that the unambiguous source catalog population is very similar to that of 

the combined source catalog population. But the unambiguous source list has less unrealistic 

extreme redshift sources. The luminosities and the star formation rates vary widely from dim to 

hyper-luminous galaxies as their standard deviation is more than one magnitude larger than their 
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average values. Again, the distributions of the luminosities and star formation rates (figures 17 

& 18) are similar to the combined source list.  Two populations are visible of sources with low 

luminosity and LIRGs. The low luminosity sources, however, have uncertainty to luminosity 

ratios greater than 10 as in the combined source list (figure 19).  

  A summary of the properties of the high redshift sources is shown in table 4. The average 

apparent temperature of the sources, 28.22.6 ± K is low compared to the apparent temperature 

distribution of all sources. The temperature distribution (figure 20) has a cut off around 10K, due 

to the selection of inversed SEDs. The average redshift is high 40.39.4 ±  as is expected since 

the sources were selected to have a high redshift. This is also reflected in the redshift distribution 

(figure 21). There is a cut off in the luminosities and star formation rates around 1310 L
o
 and 

410 M
�

(figure 22 & 23). Again, the uncertainties in these values are orders of magnitude. Most 

of the high redshift sources are at least LIRGs if not ULIRGs and HyLIRGs.  

Many of the sources in the high redshift list seem to have surprisingly high luminosities 

for their expected redshifts as shown in table 4. Normally sources at high redshift should be faint 

as their emission should decay over large distances. The high luminosity could have three 

explanations: 

1) The likely high redshift sources are in fact low redshift and relatively cold 

2) The likely high redshift sources are high redshift  HyLIRGs 

3) The likely high redshift sources are high redshift gravitationally lensed sources. 

   Trentham (1995) and Broadhurst & Lehar (1995) referred to gravitational lensing to 

explain the brightness of a high redshift source in the IRAS survey. They estimated the 

likelihood of the source being lensed to be 0.25-0.3. In contrast to this study, they had the 

advantage of knowing the spectroscopic redshift of the source. 
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 Lima et al. (2009) have done some recent work on estimating the abundance of 

gravitational lens clusters. However, the calculation did not confirm the number counts of likely 

lensed sources found in this study. Chapin et al. (2009) analyzed IRAS (low redshift due to 

limited sensitivity) sources and found no significant source population with temperatures below 

23K. However, low temperatures are conditions for bright infrared sources. This indicates that 

low redshift galaxies are unlikely to be as bright as the sources in table 4. It seems likely that 

bright sources in the high redshift list are indeed high redshifts. An unknown portion of the 

sources could be intrinsically bright and the other portion could be magnified by gravitational 

lensing. If we could differentiate the two cases it would be interesting to compare the amount of 

lensed sources to theoretical models.  

 The combined and unambiguous source list can be used for future observations as 

catalogs of high S/N sources and their counterparts. The unambiguous source list may be more 

useful as it seems to include less unrealistic sources such as extremely high redshift sources. The 

high redshift source catalog may be used to select candidates for future high redshift 

observations. Also, it may constrain gravitational lensing models. 

 

Section 5: Summary 

 

For this study, maps from the Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) 

experiment were analyzed. Combined, unambiguous and high redshift source lists with basic 

source properties were created to aid researchers in further studies of infrared objects in the SEP. 

The unambiguous source list may be especially useful as its sources have unique counterpart 

identifications and include fewer unrealistic extreme redshift sources. The high redshift catalog 
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will be useful for identifying high redshift LIRGs in the SEP for future observations. Many 

sources in the high redshift list were found to be very bright. It was concluded that they are either 

gravitationally lensed or hyper-luminous. If it can be determined which sources are lensed, it 

may be possible to test lens structure abundance models by comparing expected and measured 

lensed number counts. 
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Figures 

 

 

Figure 1: History of universe. 
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Figure 2: The extragalactic background over three decades in frequency from the near UV to 

millimeter wavelengths. Only strongly constraining measurements have been reported. (Lagache et al. 2005) 
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Figure 3: CAD image of the BLAST Gondola (Pascale et al. 2008) 



31 

 

 

 Figure 4: Spectral energy distributions of galaxies from the UV to the millimeter. The ULIRG is observed at redshift z 

= 0.66 and is represented here in the rest frame (from Galliano 2004) (Lagache et al. 2005) 
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Figure 5: BLAST flux map. This is a ds9 screenshot. The red crosses mark positions of sources. 

It is impossible to recognize sources from this image.  
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Figure 6: Signal to Noise map of the same region shown in Figure 3. Sources are maximas (red 

crosses) of the map and can almost be recognized with bare eye. 
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Figure 7: Relative Spectral response of the three BLAST bands. (Pascale et al. 2008) 
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Figure 8: Typical SED fit. There are detections in all three wavebands. 
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Figure 9: inverted SED fit. The 250 µm flux is an upper limit.  
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Figure 10: Apparent temperature histogram of the combined source list. Bin size is 0.2.   
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Figure 11: Redshift histogram of the combined source list. Bin size is 0.2.   
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Figure 12: Luminosity histogram of the combined source list. Bin size is 0.2.   
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Figure 13: Star formation rate histogram of the combined source list. Bin size is 0.2.   
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Figure 14: Luminosity of combined source list.  Only source with a ratio of luminosity 

uncertainty over luminosity of less than 10 were counted. The population of low luminosity 

sources ‘disappears’. Note: x axis is in logarithm of luminosity.   
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Figure 15: Apparent temperature histogram of the unambiguous source list. Bin size is 0.2.   
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Figure 16: Redshift histogram of the unambiguous source list. Bin size is 0.5.   
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Figure 17: Luminosity histogram of the unambiguous source list. Bin size is 0.2.   
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Figure 18: Star formation rate histogram of the unambiguous source list. Bin size is 0.2.   
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Figure 19: Luminosity of unambiguous source list.  Only source with a ratio of luminosity 

uncertainty over luminosity of less than 10 were counted. The population of low luminosity 

sources ‘disappears’. Note: x axis is in logarithm of luminosity.   
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Figure 20: Apparent temperature histogram of the high redshift source list. Bin size is 1.   
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Figure 21: Redshift histogram of the high redshift source list. Bin size is 0.5.   
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Figure 22: Luminosity histogram of the high redshift source list. Bin size is 0.2.   
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Figure 23: Star formation rate histogram of the high redshift source list. Bin size is 0.2.   
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