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The role of norepinephrine in spatial reference and spatial working
memory

Abstract
The adrenergic system (utilizing norepinephrine, NE, as a neurotransmitter) is implicated in hippocampus-
based learning and memory, in addition to its well known peripheral actions mediated by the sympathetic
nervous system. We have produced a strain of mice in which the gene coding for the enzyme dopamine beta-
hydroxylase (Dbh), which catalyzes the synthesis of NE from dopamine, has been disrupted. Mice recessive
(Dbh-/-) for the Dbh gene mutation lack endogenous NE and epinephrine, while heterozygous mice
(Dbh+/-) have normal levels of NE and epinephrine and display normal phenotype.

Previous studies have indicated that NE is necessary and sufficient for the retrieval of intermediate-term
contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories
in general (Thomas et al. 1996). We tested whether this relationship would stand for memories that were
appetitive rather than aversive. We tested 20 Dbh-/- and 20 Dbh+/- mice in an eight-arm radial maze. We
found no difference between KOs and controls in ability to recall spatial cues 24 hours after training. This
negative result indicated that NE may not be critical for retrieval of all hippocampus-dependent memories but
specifically those that are aversive.

Using a more standard variation of the above protocol on the radial arm maze, we used this apparatus to test
the role of NE in spatial working memory. We found significant, robust differences between Dbh-/- and
Dbh+/- mice after a training period of approximately 14 days. To test whether this difference was due to a
potential deficit in acquisition or performance, we restored NE in Dbh-/- mice by administering the synthetic
precursor L-DOPS after four days of stable behavioral differences between genotypes. In a separate trial, we
also restored NE signaling with dexmedetomidine, a selective alpha-2 receptor agonist. A gradual
improvement by Dbh-/- mice to levels comparable to Dbh+/- mice indicated that NE is critical for the
acquisition of spatial working memory, and suggested a role for the alpha-2 adrenergic receptor in the
processing of spatial working memory.

Keywords
learning, norepinephrine, working memory, reference memory, radial arm maze, Biological Basis of Behavior,
Steven Thomas, Steven, Thomas

This article is available at ScholarlyCommons: http://repository.upenn.edu/curej/18

http://repository.upenn.edu/curej/18?utm_source=repository.upenn.edu%2Fcurej%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages


1

The role of norepinephrine in 

spatial reference and spatial 

working memory

Gertner, M.J. & Thomas, S.A. (2006)



2

Introduction

For the last year we have been exploring the effects of adrenergic signaling, 

concentrating on the neurotransmitter norepinephrine (NE), and its effects on 

hippocampal-based learning and memory.  Previous rodent studies suggested that

adrenergic signaling had a time-specific effect in consolidation and retrieval of spatial 

memories, but only in paradigms that produced an aversive stimulus.  We sought to 

examine whether this same effect would be produced in a behavioral paradigm that was 

appetitive (involving a reward-based stimulus) but not aversive.  When we found it did 

not reproduce, we used the same paradigm to test acquisition of short-term working 

memory, which may or may not be hippocampus-based.  We found a critical role for 

adrenergic signaling in working memory, confirmed by both behavioral genetic tests as 

well as pharmacological manipulations that isolate the activity of norepinephrine. 

Background

Studies have already shown that the hippocampus is an important region for the 

acquisition and consolidation of explicit forms of declarative memories.  Researchers 

have used animal paradigms that measure contextual learning (Anagnostaras et al., 2001) 

as well as spatial learning (Morris et al., 2003).  In both cases, laboratory animals are 

forced to learn about their surroundings and relate them to a specific stimulus or group of 

stimuli.  In both cases, however, the paradigms presented the animals with stimuli that

evoked particularly emotional responses; Anagnostaras et al., for example, elicited fear 

conditioning responses via pairings of a tone and foot shock.  These particularly 

emotional forms of memory were dependent on hippocampus function.  Other paradigms 

that presented less emotional or aversive stimuli, such as the Morris water maze, were 
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also shown to be dependent on hippocampus functioning in the acquisition of spatial 

memory (Morris et al., 1982).  Yet the Morris water maze can also be considered 

somewhat aversive; laboratory animals are inherently afraid of water and will seek to

escape it to dryer territory.  With these two paradigms in place, researchers began to 

question the neurochemical mechanisms underlying hippocampal function in the

formation of these emotionally-laden memories.

With many new studies focus on theories of learning and memory and different 

signaling systems that are activated during memory formation, the role for the adrenergic 

system in learning and memory remains controversial.  Schroeter et al. (2000) showed 

that the hippocampus has one of the densest inputs of adrenergic terminals in the CNS 

through immunolocalization of the I-norepinephrine transporter.  This supports 

hypothesis that norepinephrine and epinephrine (E) play a role in learning and memory.  

Most of the hypotheses have focused around adrenergic enhancement of memories that 

result from emotional events (Izquierdo and Medina, 1997).  This enhancement could 

take place during memory acquisition, consolidation or retrieval, and several tests tried to 

determine which part of memory formation contains an adrenergic-dependent 

mechanism.  

In order to target the adrenergic system as the specific variable for memory-

dependent processes, we used mice that lack the gene coding for the enzyme dopamine 

Beta-hydroxylase (Thomas et al., 1995).  These mice, which are homozygous recessive 

for the Dbh gene (-/-), lack the ability to synthesize norepinephrine from dopamine in 

noradrenergic terminals.  Since epinephrine is endogenously synthesized from 

epinephrine, Dbh deficient mice lack both neurochemicals in all of its structures of 
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localization.  The flow chart on the next page shows the synthesis of norepinephrine from 

dopamine, and illustrates how deletion of the Dbh gene can result in the elimination of all 

adrenergic chemicals from an 

animal.  

Prior studies using 

Dbh knockout mice in an 

inhibitory avoidance 

paradigm suggest that NE 

and E may not be necessary 

for emotional memory

consolidation (Thomas and 

Palmiter, 1997).  Other 

studies using more aversive 

stimuli, however, seem to show that memory consolidation but not acquisition depends 

on adrenergic signaling.  Knockout mice were tested for spatial navigation in a Morris 

water maze and were found to exhibit a deficit in retaining spatial memory two days after 

the last training session.  However, when Dbh KO mice were tested two hours after the 

last training session, they were able to find the hidden platform just as well as controls 

(Thomas and Palmiter, 1997).  These two studies seem to contradict each other, and more 

work needed to be done to identify which mechanisms of memory formation were 

actually dependent on NE/E.

Dbh KO mice were subjected to Pavlovian fear conditioning, which allowed the 

paradigm to study the mechanisms of acquisition, consolidation, and retrieval over time 
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(Murchison et al., 2004).  The authors found that mice lacking NE/E exhibited impaired 

contextual but not cued fear memory one day after training.  These results suggested that 

adrenergic signaling is critical for the retrieval of intermediate-term contextual and 

spatial memories, but not for the retrieval of emotional memories in general (Thomas et 

al., 2004).  By injecting wild-type mice with antagonists to the beta-1 adrenergic 

receptor, we found that the role of norepinephrine in retrieval is mediated by a Beta-1 

receptor-dependent mechanism in the hippocampus (Thomas et al. 2002).  In 1999, 

Przybyslawski et al. found that the Beta-adrenergic antagonist propranolol impaired 

responses in a footshock-reinforced conditioned emotional response task, but only when 

the drug was administered after a reactivation trial. Other studies have found that Beta-

adrenergic receptors can control hippocampal responses during recognition of emotional 

verbal responses in humans (Strange and Dolan, 2004).  Overall, these studies indicated 

that adrenergic signaling was associated with the retrieval of emotion-related memory 

formation.  The results currently provide a base for pharmacotherapies against syndromes 

such as Post Traumatic Stress Disorder.  Beta-receptor antagonists might be promising 

pharmaceutical agents for attenuating debilitating emotional memories at the time of their 

reactivation, or retrieval (Przybylawski, et al., 1999).  However, these adrenergic 

mechanisms might have more general functions with memory retrieval that do not 

necessarily involve emotional memories.  In the case of the fear conditioning and the 

Morris water maze, memory formation occurred due to the presence of aversive stimuli.  

We sought to examine whether the same deficits in memory retrieval in Dbh -/- mice 

would be exhibited in paradigms that were appetitive rather than aversive. 
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We selected the radial arm maze as an appetitive behavioral task that would 

measure memory retrieval in Dbh -/- mice.  Previous studies indicated that the radial arm 

maze can be used to assess two types of spatial memory: spatial working memory, 

measured by reentries into unbaited arms, and spatial reference memory, measured by 

first entries into unbaited arms (Olton and Honig, 1978). Formation of these memories 

may involve the hippocampus, but also involve different neuronal mechanisms 

(Bannerman et al., 2003).  An agonist to the NMDA receptor, which functions in the 

formation of LTP and LTD in the hippocampus, decreases working memory errors but 

not reference memory errors (Pussinen and Sirvio, 1999).  A more recent study showed 

that lesions to the dorsal hippocampus can disrupt both reference and working spatial 

memory, but lesions to the ventral side do not (Feldon, et al., 2004).  These results 

confirmed that the radial arm maze induces activation of memory-formation processes 

involved in the hippocampus, the structure we wanted to target.

Before initiating our experiment, we checked to see if any prior studies had linked 

adrenergic signaling in the hippocampus with rodent models of spatial working or 

reference memory.  Results proved to be inconclusive.  We found that propranolol 

increased the amount of working memory errors in a three-panel runway task, but only 

when combined with the muscarinic antagonist scopolamine (Kobayashi et al., 1995).  

Mice lacking the alpha-2c adrenergic receptor made more working memory errors in a 

radial arm maze task, but only immediately after the baited arm was switched.  This 

deficit in spatial working memory was alleviated by administration of an alpha-2c agonist 

(Bjorklund et al., 2001).  Neither study was able to induce spatial reference memory 

errors.  
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Last year, we ran a pilot experiment that determined a 4-minute trial period was 

enough time for wild-type Dbh +/- mice to learn the radial arm maze paradigm and 

correctly recall 24 hours later.  The pilot experiment also demonstrated that mice should 

not be forced or “ushered” into the correct arm during training if they did not find it 

within 4 minutes.  The pilot experiment found no significant differences in acquisition 

rate between those mice that were ushered and those that were not.  Finally, the pilot 

concluded no sex differences in acquisition or retrieval within groups of Dbh +/- and Dbh 

-/- mice. 

Methods

We assessed spatial reference memory and working memory in Dbh knockout 

mice by measuring their performance in an eight-arm radial arm maze (Olton and Honig, 

1978).  The maze was created out of plexiglass with wells drilled at the ends of eight 

arms 22.7 cm in length attached to a center platform with a diameter of 17.7 cm.  

Attached to the sides of each arm were clear plexiglass walls measuring 10.5 cm high and

about a quarter of an inch thick. A smaller wall also 10.5 cm high but measuring 6.4 cm 

length was placed at the end of each arm to prevent the mice from getting out.  No roof 

component was added.  The wells were drilled about 2.5 cm from the edge of each arm, 

and were drilled completely through the arm so that the bottom platform could be 

observed.  The maze rested on this bottom platform to facilitate its maneuverability.  

The deep wells allowed food deposits (in the form of Coco Krispies) to be placed

in each well, which signified a baited arm.  In addition, the walls at the end of each arm 

contained a small hole about 1/3 cm in diameter.  Taped across the hole was an additional 

food deposit, which was used to eliminate olfactory cues between arms.  Elimination of 
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olfactory cues provides one less variable to account for performance in a radial arm maze 

(Olton & Honig, 1978).

We instituted a 5-day habituation procedure during which mice were subjected to 

the novel food reward in their home environment, the radial arm maze without food, and 

the radial arm maze with food distributed evenly but sparsely.  All mice were kept 

without food for the 23.5 hours before each experiment day.  In order to ensure that mice 

retained 80% of their original body weight, mice were allowed to eat freely for 30 

minutes after handling. 

Reference Memory test: Training and acquisition occurred on the sixth day.  Food-

deprived mice were run in a series of four blocks of four trials each.  During the trials, 

one of the arms was baited (females, arm #2, males, arm #6) with the food reward inside 

the well.  20 Dbh +/- and 20 Dbh -/- mice were placed at the end of one of the unbaited 

arms facing toward the center one at a time, and were allowed to explore to find the food 

reward.  The pattern of arm placement was pseudorandomized, as the same start pattern 

was used for each mouse.  Passage throughout the maze was recorded each time a mouse 

encountered a food well; the number of the well (1-8) and the time was recorded.  Partial 

entries into arms that did not involve the mouse encountering the food well were not 

recorded.  Trials were stopped when a mouse found the correctly baited arm and 

consumed reward or when 4 minutes passed.  The same well remained baited throughout 

all of the trials.  The maze was thoroughly cleaned between each trial to eliminate 

olfactory cues from other mice.  

After the training/acquisition stage, mice were returned to home cage and food-

deprived for 24 hours.  Testing trials for extinction took place on day seven.  Mice were 
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placed individually in a different pseudorandomized arm and allowed to explore.  This 

time, none of the arms were baited, and time limitation for each trial was not necessary.  

The amount of time it took for the mouse to revisit the food well that was previously 

baited the day before was measured.  Reference memory errors were marked as entries 

into incorrect arms preceding the correct arm. The extinction trials stopped when the 

mouse visited the previously baited food well.  Each mouse ran six extinction trials.  

Once again, the maze was extensively cleaned between trials.

Working Memory test: After five days of habituation, mice were introduced to maze 

with four out of eight arms baited.  Trials began with mice placed in the center platform.  

Trials ended when mice successfully retrieved all of the baits.  Working memory errors 

were scored when a mouse entered an arm that it previously visited.  No time limit was 

instituted during the trials.

One group of mice n=16 received one working memory trial per day, while another group 

(n=16) received 2 working memory trials per day, spaced 5 hours apart.  Both groups 

contained an equal number of KO and wild type.  Proximal and distal spatial cues were 

kept constant throughout all trials.  Working memory errors were measured in both 

groups for 30 consecutive days.  

L-DOPS recovery: This test was run after the working memory experiment and involved 

20 Dbh +/- and 20 Dbh -/- mice.  Mice were involved in the same procedure as working 

memory trials above.  By day 20, acquisition rates were stabilized at significantly 

different levels between KOs and wild-type mice.  At day 22, all mice received 

subcutaneous injections of 1mg/g L-DOPS, mixed with a peripheral decarboxylase 

inhibitor benserazide.  Injections were given 5 hours before trials.  At day 31, all mice 
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received injections of vehicle solution (saline).  At day 40, all mice were restored with L-

DOPS. Because of the observed 24-hour delay before L-DOPS recovery, we gave the 

mice no testing at day 46, followed by vehicle injection and testing on day 47 and L-

DOPS injection and testing at day 48.  The period of no testing was so the mice would 

not shift maze strategies depending on whether their working memory was intact under 

L-DOPS or deficient under vehicle.  Alternating vehicle and L-DOPS injections 

examines whether acute changes in adrenergic signaling will affect working memory 

errors in Dbh -/- mice.

Dexmedetomidine recovery: At day 49, all mice were injected with L-DOPS and tested. 

On day 50, all mice involved in the previous L-DOPS experiment were given a day of no 

testing.  This delay was to eliminate all L-DOPS that was injected 24 hours earlier.  On 

day 51, all mice were given a vehicle solution five hours before testing.  On day 52, the 

selective alpha-2 agonist, dexmedetomidine, was administered subcutaneously to all mice 

30 minutes prior to testing.  We used a 5 ug/kg dose that was consistent with previous 

studies that observed dexmedetomidine-induced changes in working memory without any 

of its sedative effects (Tanila, et al. 1999; Thomas et al. unpublished).  On day 53, we 

administered vehicle solution to all mice 30 minutes prior to testing. 

Results

No significant differences in spatial reference memory errors were observed 

between Dbh +/- and Dbh -/- mice. 

We measured the number of reference memory errors the mice made during 

acquisition and extinction by marking each visit into an incorrect arm   
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Figure 6 shows the mean number of errors made during the acquisition stage for 

both KOs and controls.  Mean errors 

for KO (32.6667 +/- 6.8605) were 

only slightly above mean errors for 

controls (29.8333 +/- 8.7730).  

Therefore the difference was not 

statistically significant (p>.05). .  

These results suggest no difference 

in learning behavior between KO 

and controls.  Instead, they show that 

the two groups made the same 

amount of mistakes before they 

learned the correct arm.

Figure 7 shows that the difference in mean number of errors was even less 

significant during the retrieval stage.  KOs made slightly more errors (7 +/- 1.0954) than

controls (6.6667 +/- 3.0768).  The consistency between acquisition and retrieval remains 

apparent through measurements of mean number of errors, as it did for the measurement 

of mean latency.  However, the 

almost similar amount of errors 

made by the KOs and the controls 

during the retrieval stage provides 

evidence against the theory that 

Dbh knockouts experience deficits 

Fig 6: Mean # of errors during training
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in memory retention in this task.  

We also analyzed mouse performance over time by measuring acquisition rate on 

day 6 and extinction rate on day 

7.  On day 6, both Dbh +/- and 

Dbh -/- mice improved in 

performance across four blocks 

of four trials (Figure 8).  By the 

fourth block, both KOs and 

wild-type were making 

significantly less reference memory errors than the first block.  However, at none of the 

four blocks were the differences in reference memory errors between Dbh +/- and Dbh -/- 

statistically significant (P>.05).  

On day 7, controls and KO displayed 

a strong preference for the arm that 

had been baited the previous day.  

This preference remained strong for 

the first 3 trials, after which robust 

extinction occurred.  As the mice 

realized that the previously baited arm wasn’t baited anymore, they began to search other 

arms.  Yet the differences in performance between Dbh +/- and Dbh -/- mice were not 

significant (2-way ANOVA, p>.05).  For example, 83% of Dbh +/- mice visited the 

correct arm on the first extinction trials, while 75% of Dbh -/- did so.  None of the other 

extinction trials exhibited differences.  By the sixth extinction trial less than 10 percent of 

Fig 9. Reference Memory extinction
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both KOs and wild-type were visiting the previously baited arm first.  The results 

demonstrated that both mice were able to use spatial cues with relatively the same 

efficiency to learn the task and then retrieve and extinguish memory for this experience 

the following day.  This suggested that norepinephrine does not play a role in the 

acquisition or 24-hour retention of an appetitively motivated spatial reference memory.

Dbh +/- mice and Dbh -/- mice did show significant differences in acquisition of 

spatial working memory.

Dbh +/- mice made significantly 

fewer working memory errors than Dbh -/- 

mice after 14 days, regardless whether the 

mice were given one (Figure 10) or two 

(Figure 11) acquisition trials per day.  

Both controls and wild-type improved 

over time. Data was combined for 

the 1trial/day mice so that each bin 

was the average number of errors 

over every 2 trials (Figure 10).  

Data was smoothed for the 

2trial/day mice so that each bin 

was the average errors over 4 trials 

(Figure 11).  The 2 trial/day mice 

were given 60 trials overall while 

the 1trial/day mice were given 30 trials overall. Differences were not apparent until 14 

Fig. 10 Working  Memory acquisition
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days of acquisition (28 trials for the 2 trial per day mice).  These results indicate that the 

2 trial per day mice did not learn any faster than the 1 trial per day mice.  It may be that 

the time between trials is in the critical variable for acquisition. 

Performance improved for Dbh +/- and 

Dbh -/- mice over time, but clearly 

demonstrated a greater improvement for wild-

type mice.  For Dbh +/- mice given one trial per 

day, working memory errors declined from an 

average of 5.5 across four early bins to just over 

2.5 across the last four bins (bins consisted of 2 

trials).  Dbh -/- improved from an average of 6 

WM errors to just under 5 WM errors across the 

same time interval (Figure 12).  The difference in WM errors at the end of the 30 trials 

was significant at the .05 level. 

For the mice given 2 trials per day, wild-type mice made improved from an 

average just over 6.0 WM errors per trial to an 

average just over 3.0 WM errors per trial.  

Knockout mice started at almost exactly the 

same performance but only improved to an 

average of approximately 5.25 WM errors per 

trial.  These averages were across three early 

bins (trials 5-16) and three later bins (trials 37-

48).  The difference in final stabilized 

Fig. 12 Mice given 1 trial/day
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performance between Dbh +/- and Dbh -/- mice after 60 total trials (30 days, 2 trials per

day) was significant at the .05 level.

The differences in working memory acquisition between Dbh -/- and Dbh +/- mice 

were eliminated with injection of L-DOPS 5 hours before testing.

After robust differences in working memory acquisition developed between Dbh 

+/- and Dbh -/- mice, L-DOPS injected at day 22 attenuated the deficits in Dbh -/- mice 

over a period of about six days.  After WM acquisition levels stabilized for a few days, 

mice were taken off L-DOPS and injected with vehicle solution 5 hours before training 

starting on day 31.  By day 35, deficits in WM acquisition were restored in Dbh -/- mice.  

At day 40, L-DOPS was once again injected into both control and KO mice.  This time, a 

sharp improvement was observed in Dbh -/- performance, as significant deficits were 

eliminated by day 42 (Total experiment shown in Figure 14). 

These results 

showed that L-

DOPS injection at 

day 22 produced a 

gradual attenuation 

of deficits in spatial 

working memory 

in Dbh -/- mice, to 

levels comparable 

to Dbh +/- mice. These deficits were restored relatively quickly when mice were taken 

Fig. 14 L-DOPS recovery of Working Memory acquisition
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off L-DOPS and injected with vehicle.  When L-DOPS was restored after 9 days of 

vehicle treatment, the deficits were attenuated again, but a delay period of 24 hours was 

observed before the deficits in Dbh -/- was eliminated.  This delay suggests that the Dbh -

/- mice were shifting maze strategies when they were under L-DOPS and when they were 

under vehicle.  There was also no observed improvement in the control mice after L-

DOPS injection, indicating that the Dbh +/- mice acquired the task at their maximal level 

of performance.  

In an attempt to eliminate the shifting of strategies, we subjected the mice to a day 

of no testing (day 46) followed by alternating days of vehicle and L-DOPS.  We found 

that the delays between injections and observed effects were eliminated when the mice 

were given a day of no testing.  Dbh -/- mice were severely impaired after injection of 

vehicle on day 47, but were restored to normal WM levels after L-DOPS injection on day 

48.  This suggests that the mice were operating under an L-DOPS-induced strategy, since 

they had received L-DOPS prior to the day of no testing.  

Dexmedetomidine, a selective alpha-2 agonist, attenuates deficits in spatial working 

memory in Dbh -/- mice after a 5ug/kg dose was injected 30 minutes before testing.

A subcutaneous injection of 

5ug/kg dose of a selective alpha-2 

agonist, dexmedetomidine, attenuated 

the WM deficits in Dbh -/- mice

(Figure 15).  Injection of vehicle on 

day 51 after a period of no testing (day 

52) produced an increase in WM errors 

Fig. 15 Dexmedetomidine Recovery
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in Dbh -/- mice to a level comparable to previous performance.  The day of no testing 

showed that the mice did not shift maze strategies from when they were under L-DOPS 

to when they were under vehicle treatment.  On day 52, dexmedetomidine brought back 

WM performance in Dbh -/- mice to levels similar to Dbh +/- mice when injected 30 

minutes before testing.  On day 53, all mice were administered vehicle, this time 30 

minutes before testing instead of five hours before testing.  Deficits in WM were once 

again observed in Dbh -/- mice on day 53.

Conclusions 

Reference Memory

The lack of differences between Dbh +/- and Dbh -/- mice in the appetitive spatial 

reference memory paradigm suggests a more specific role for norepinephrine in the 

retrieval of aversive spatial reference memory.  Previous deficits in the retrieval of 

contextual and spatial memories involved aversive paradigms such as Morris water maze 

and fear conditioning.  The radial arm maze involves learning that is appetitive and 

minimally aversive.  Therefore, our results are negative but interesting, that 

norepinephrine’s role in retrieval of spatial and contextual memories may be limited to 

memories that are aversively motivated.  

The role of norepinephrine in the “fight or flight response” of the sympathetic 

nervous system would support the idea that norepinephrine is linked to retrieval of 

aversive spatial and contextual memories.  We also know that this role for norepinephrine 

is even more defined, since it is critical for the retrieval of contextual but not cued fear 

conditioning (Murchison et al. 2004).  Therefore, our results suggest that norepinephrine 

plays a role in the retrieval of spatial or contextual memories that are aversively 
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motivated, but does not play a role in the retrieval of emotional memories in general.  The 

peripheral actions of norepinephrine, which involve the adrenal gland and stress 

response, seem to corroborate this idea.  Norepinephrine and its receptor family are 

necessary and sufficient for the immediate-term retrieval of aversive stimuli, but are not 

needed for the learning and retrieval of other reward-based stimuli.  The findings suggest 

that another mechanism in the hippocampus modulates the retrieval of appetitively 

motivated contextual and spatial memories.  Alternatively, appetitive and aversive 

memories utilize the same mechanisms for retrieval, except that aversive hippocampus-

dependent memory retrieval additionally requires adrenergic signaling.

Working memory 

Our studies found a critical role for norepinephrine in the acquisition of working 

memory using a more standard protocol of the radial arm maze.  This task was not 

considered aversive, yet still produced robust deficits between Dbh +/- and Dbh -/- mice 

after 14 days of training.  The measurement of working memory errors involved a shorter 

time component than the test involving reference memory retrieval, but still measured 

acquisition as a change over time.  Dbh +/- mice were able to perform the task better after 

14 days while Dbh -/- mice were still making the same number of errors, indicating that 

something was not allowing them to fully acquire the task and reduce errors to the same 

level as the Dbh +/- mice.  

An attenuation of the working memory deficits after injection of the NE synthetic 

precursor L-DOPS provided further evidence that NE has a critical role in the acquisition 

of spatial memory.  A gradual improvement by the Dbh -/- mice to levels attained by Dbh 

+/- mice suggested that NE is necessary for the acquisition of the spatial working 
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memory task  Trial-by- trial observations (Figure 14) showed that Dbh -/- mice showed 

roughly the same acquisition curve after L-DOPS injection as Dbh +/- showed after 14 

days but before L-DOPS injection.  This provided further evidence that NE, which is 

restored to the CNS by L-DOPS, is critical for the acquisition of the working memory

version of the radial arm maze paradigm. 

The role of NE in acquisition of working memory tasks was further supported 

when working memory deficits returned in Dbh -/- mice after vehicle injection 5 hours 

before testing.  L-DOPS provides an acute restoration of NE, but its levels wear off after 

24-48 hours.  The vehicle, which consisted of simple saline, did not add any NE and 

therefore increased the number of WM errors by Dbh -/- to levels that were once again 

statistically significant.  Performance in Dbh +/- mice stayed relatively the same 

throughout the whole experiment, indicating that elevating NE beyond control levels does 

not affect acquisition of performance of this task.  

When L-DOPS was reintroduced to the Dbh -/- mice at day 40, we saw a sharp 

attenuation of deficits to levels comparable to Dbh +/- mice.  This less gradual decline 

suggests that NE is critical for working memory performance.  No longer is acquisition 

needed for the Dbh -/- mice; the NE restored by L-DOPS allows them to function just as 

well as wild-types.  However, the 24-hour delay between L-DOPS injection and recovery 

suggests that the Dbh -/- mice may require a day to shift performance-based strategies 

from performance without NE to that whe n NE is present. The reintroduction of L-DOPS 

recovery further that the NE-dependent effects on working memory acquisition are not 

based on performance alone.  NE improves working memory in Dbh -/- mice after they 

have acquired aspects of the paradigm.
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We were able to eliminate the shifting of strategies by giving the mice a day off in 

between testing (day 46), after which we alternated between vehicle and L-DOPS 

injection.  The immediate reduction in performance by Dbh -/- mice after vehicle 

injection suggests that the mice were operating under a strategy induced by L-DOPS, and 

did not shift their strategy in the time after vehicle injection but preceding testing.  When 

L-DOPS was administered at day 48, Dbh -/- performance immediately dropped back to 

normal the same day. This same effect was observed with administration of the alpha-2 

agonist dexmedetomidine at day 52, after days of no testing and vehicle injection.  By 

giving the mice a day without testing, we altered the effects of our pharmacologic 

methods from those of gradual change to an immediate yet robust change.  The acute 

effects of both L-DOPS and dexmedetomidine suggests that the Dbh -/- mice might be 

able to compensate somewhat by assuming a performance-based strategy when they lack 

drugs necessary for proper functioning of WM.  This compensation period could explain 

why our pharmacological methods done at days 22 and 31 resulted in gradual changes in 

performance, as opposed to the acute changes at days 48 and 52.

Discussion

This improvement over time begs the question of whether there are two memory-

dependent processes at work here.  It is well known that working memory, as well as 

some short- term memory formation, is modulated by structures in the prefrontal cortical 

area and not necessarily by hippocampus, which has been the central focus of our 

memory studies discussed so far.  However, the acquisition of our working memory 

procedure over time may involve hippocampal-based processes, since both groups of 

mice had to recall information learned from day to day.  Dbh +/- mice displayed an 
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acquisition curve that plateaud at fewer errors, indicative of performance improvement.  

Dbh -/- mice exhibited the same acquisition curve only after L-DOPS injection.  

Performance then worsened in Dbh -/- mice when vehicle was administered.  

Interestingly, the Dbh -/- mice did not display the same gradual acquisition curve after 

reintroduction of L-DOPS.  Instead, the attenuation of deficits was complete by the 

second day.  This suggests that the Dbh -/- mice were recalling information that had been 

learned prior to the reintroduction of L-DOPS at day 40.  Others have suggested that this 

retrieval process could involve the hippocampus as well as prefrontal cortex.  Further 

studies in which one of the two areas are inactivated or ablated are needed to identify the 

role of each structure in spatial working memory in Dbh deficient mice.    

The gradual changes in performance in Dbh -/- mice after introduction or removal 

of L-DOPS could be caused by a shifting of maze strategies between an L-DOPS-induced 

state and a state when no L-DOPS is on board.  It is unclear how exactly this alternation 

of strategies could affect performance; however, we observed that Dbh -/- exhibited more 

immediate changes in performance after a day of no testing.  The day of no testing could 

have affected performance by keeping the mice in an L-DOPS induced state even when 

vehicle was injected.  We then saw a rapid increase in WM errors, followed by rapid 

improvement after L-DOPS was injected 24 hours later.  This same effect, at a slightly 

lesser scale, was observed with the alpha-2 agonist dexmedetomidine.  By alternating 

days of no testing, vehicle, and treatment, we were able to determine that our drugs do 

have acute effects on mice performance that may be compensated by an innate cognitive

mechanism that has yet to be fully investigated. 
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Finally, our reference memory tests provided a negative result that further 

confirmed that Dbh deficient mice exhibit time-specific deficits in memory retrieval only 

in aversive paradigms.  The role of NE and E in the mammalian stress response suggests 

that the two neurotransmitters are critical in modulating emotional types of behavior.  

Our results suggest that NE and E might not be critical in modulating reward-based 

spatial reference memory retrieval.  The role of NE in modulating aversive memory

retrieval could have implications for the treatment of stress-related memory disorders, 

such as Post Traumatic Stress Disorder.  But NE and E do not appear to be required for 

all emotionally laden memories, such as appetitive memories and aversive memories that 

do not depend on the hippocampus.

Future studies

The lack of improvement of Dbh +/- mice after L-DOPS treatment indicated that 

control mice were operating at close to maximum efficiency in learning the maze.  The 

radial arm maze allowed for the test of separate memory pathways through modifications 

of protocol.  Now that hypothesized deficits in working memory have been identified, we 

could test whether these deficits would still be apparent in an aversive paradigm.  In a 

procedure opposite to our reference memory tests, we could analyze the extent of 

working memory deficits in aversive test, such as Morris water maze.  However, studies 

have shown that NE agonists attenuate working memory deficits in other appetitive tasks 

such as spatial delayed alternation tasks or spatial discrimination control tasks (Birnbaum 

et al. 2000).  These studies suggest that NE might have a role in spatial working memory 

regardless of the nature of the behavioral task.
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Further pharmacological tests could involve injections of an alpha-2 receptor 

agonist, which is thought to modulate spatial working memory (Franowicz et al. 2002).   

This test will elucidate the mechanisms of working memory at the receptor level.  Other 

studies specifically point to the alpha-2 receptor as a modulator of working memory in 

the prefrontal area of the cortex (Mao et al. 1999).  While adrenergic input into the 

hippocampus has been well documented, noradrenergic signaling in the prefrontal cortex 

has also been demonstrated (Mao et al. 1999).  Histology or immunocytochemistry 

analysis could be used to isolate the pathway of noradrenergic input from locus coeruleus 

into the prefrontal cortex and whether these pathways share connections with the 

hippocampus (Aston-Jones & Cohen, 2005). One could attempt to isolate specific 

pathways that may be functioning during the acquisition of reference memory and during 

the acquisition of working memory, since they seem to be distinct in our behavioral and 

pharmacological assays.
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