
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

12-2014

MC-Fluid: Fluid Model-Based Mixed-Criticality
Scheduling on Multiprocessors
Jaewoo Lee
University of Pennsylvania, jaewoo@cis.upenn.edu

Kieu-My Phan

Xiaozhe Gu

Jiyeon Lee

Arvind Easwaran

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

IEEE Real-Time Systems Symposium (RTSS 2014), Rome, Italy, December 2-4, 2014.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/811
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin, and Insup Lee, "MC-Fluid: Fluid Model-Based
Mixed-Criticality Scheduling on Multiprocessors", IEEE Real-Time Systems Symposium (RTSS 2014) , 41-52. December 2014.
http://dx.doi.org/10.1109/RTSS.2014.32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/RTSS.2014.32
http://2014.rtss.org/
http://repository.upenn.edu/cis_papers/811
mailto:repository@pobox.upenn.edu

MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on
Multiprocessors

Abstract
A mixed-criticality system consists of multiple components with different criticalities. While mixed-criticality
scheduling has been extensively studied for the uniprocessor case, the problem of efficient scheduling for the
multiprocessor case has largely remained open. We design a fluid model-based multiprocessor mixed-
criticality scheduling algorithm, called MC-Fluid in which each task is executed in proportion to its criticality-
dependent rate. We propose an exact schedulability condition for MC-Fluid and an optimal assignment
algorithm for criticality-dependent execution rates with polynomial-time complexity. Since MC-Fluid cannot
be implemented directly on real hardware platforms, we propose another scheduling algorithm, called MC-
DP-Fair, which can be implemented while preserving the same schedulability properties as MC-Fluid. We
show that MC-Fluid has a speedup factor of (1 + √ 5) /2 (~ 1.618), which is best known in multiprocessor
MC scheduling, and simulation results show that MC-DP-Fair outperforms all existing algorithms.

Disciplines
Computer Engineering | Computer Sciences

Comments
IEEE Real-Time Systems Symposium (RTSS 2014), Rome, Italy, December 2-4, 2014.

Author(s)
Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin, and Insup Lee

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/811

http://2014.rtss.org/
http://repository.upenn.edu/cis_papers/811?utm_source=repository.upenn.edu%2Fcis_papers%2F811&utm_medium=PDF&utm_campaign=PDFCoverPages

MC-Fluid: Fluid Model-based Mixed-Criticality
Scheduling on Multiprocessors

Jaewoo Lee∗† Kieu-My Phan†‡ Xiaozhe Gu§ Jiyeon Lee‡ Arvind Easwaran§ Insik Shin‡ Insup Lee†

Dept. of Computer and Information Science, University of Pennsylvania, USA†

Dept. of Computer Science, KAIST, South Korea‡

School of Computer Engineering, Nanyang Technological University, Singapore§

E-mail: jaewoo@cis.upenn.edu, insik.shin@cs.kaist.ac.kr, lee@cis.upenn.edu

Abstract—A mixed-criticality system consists of multiple
components with different criticalities. While mixed-criticality
scheduling has been extensively studied for the uniprocessor
case, the problem of efficient scheduling for the multiprocessor
case has largely remained open. We design a fluid model-based
multiprocessor mixed-criticality scheduling algorithm, called MC-
Fluid, in which each task is executed in proportion to its
criticality-dependent rate. We propose an exact schedulability
condition for MC-Fluid and an optimal assignment algorithm for
criticality-dependent execution rates with polynomial complexity.
Since MC-Fluid cannot construct a schedule on real hardware
platforms due to the fluid assumption, we propose MC-DP-Fair
algorithm, which can generate a non-fluid schedule while pre-
serving the same schedulability properties as MC-Fluid. We show
that MC-Fluid has a speedup factor of (1 +

√
5)/2 (≈ 1.618),

which is best known in multiprocessor MC scheduling, and
simulation results show that MC-DP-Fair outperforms all existing
algorithms.

I. INTRODUCTION

Safety-critical real-time systems such as avionics and au-
tomotive are becoming increasingly complex. Recently, there
has been a growing attention towards Mixed-Criticality (MC)
systems in the real-time community. These systems integrate
multiple components with different criticalities onto a single
shared platform. Integrated Modular Avionics (IMA) [21]
and AUTOSAR [2] are good examples of such systems in
industry. These systems consist of low-critical and high-critical
components.

A different degree of criticality requires a different level
of assurance. The correctness of the high-critical components
should be demonstrated under extremely rigorous and pes-
simistic assumptions. This generally causes large worst-case
execution time (WCET) estimates for high-critical compo-
nents, and such large WCETs could lead to inefficient system
designs. While certification authorities (CAs) are concerned
with the temporal correctness of only high-critical compo-
nents, the system designer needs to consider the timing re-
quirement of the entire system under less conservative assump-
tions. A challenge in MC scheduling is then to simultaneously
(1) guarantee the temporal correctness of high-critical compo-
nents under very pessimistic assumptions, and (2) support the
timing requirements of all components, including low-critical
ones, under less pessimistic assumptions.

While MC scheduling has been extensively studied for the
uniprocessor case, the multiprocessor case has received little
attention. In non-MC multiprocessor scheduling, many optimal
scheduling algorithms [6], [12], [16] are based on the fluid
scheduling model [17], where each task executes in proportion
∗The author was a visiting student at KAIST during the course of this

work.

to a static rate (i.e., task utilization). While its proportional
progress is still applicable on MC systems, a single static rate
is inefficient because characteristics of MC systems change
over time. If we apply the worst-case reservation approach,
in which tasks are assigned execution rates based on their
given criticality-levels, a resulting rate assignment is inefficient
because it does not consider dynamics of the MC systems.
Using criticality-dependent execution rates, we can find an
efficient fluid scheduling algorithm for MC systems.

In this paper, we propose a fluid scheduling algorithm which
can compute execution rate of each task depending on a system
criticality-level. As the system criticality-level changes at run
time, each task will be executed with its criticality-dependent
execution rate. A central challenge that we address in this
paper is how to determine criticality-dependent execution rates
of all the tasks, given that the time instance when the system
criticality-level changes is unknown. Even though we have no
clairvoyance on the change of the system criticality-level, we
can optimally allocate criticality-dependent execution rates to
each task within the problem domain.
Contribution. Our contributions are summarized as follows:

• We present a fluid model-based multiprocessor MC
scheduling algorithm, called MC-Fluid, with criticality-
dependent execution rates for each task (Sec. III) and
analyze its exact schedulability (Sec. IV). To our best
knowledge, this is the first work to apply the fluid
scheduling model into MC domain.

• We present an optimal assignment algorithm of execution
rates with polynomial complexity (Sec. V).

• We derive the speedup factor of MC-Fluid, (1 +
√

5)/2,
best known in multiprocessor MC scheduling (Sec. VI).

• We propose MC-DP-Fair scheduling algorithm, which
can generate a schedule for non-fluid platforms with the
same schedulability properties as MC-Fluid (Sec. VII).

• Simulation results show that MC-DP-Fair significantly
outperforms the existing approaches (Sec. VIII).

Related Work. Since Vestal [23] introduced a mixed-
criticality scheduling algorithm for fixed-priority assignment,
the mixed-criticality scheduling problem has received growing
attention, in particular, on uniprocessor [3], [4], [7], [8], [14],
[15], [23]. For finite jobs, Baruah et al. [7] introduced a priority
assignment algorithm, called OCBP (Own Criticality-Based
Priority), on dual-criticality systems (low- and high-criticality).
It is further extended with sporadic task systems by Baruah et
al. [4]. For dynamic-priority assignment, EDF-VD [8] is intro-
duced as an EDF-based scheduling algorithm by which high-
criticality tasks are assigned Virtual Deadlines (VDs) with a

single system-wide parameter. Baruah et al. [3] improved the
VD assignment scheme and derived its speedup factor, 4/3,
which is optimal in uniprocessor MC scheduling. Ekberg and
Yi [15] presented a VD assignment scheme with task-level
parameters and Easwaran [14] improved schedulability with
another VD assignment scheme with task-level parameters.
With the use of VD, the schedulability result of low-criticality
mode can be incorporated into the schedulability analysis of
high-criticality mode through the notion of carry-over jobs
(a job of a task that is executed across different criticality
mode) [3], [14], [15].

Unlike the uniprocessor case, the multiprocessor case has
not been much studied [1], [5], [19], [20]. Anderson et al. [1]
first considered multiprocessor MC scheduling with a two-
level hierarchical scheduler. Pathan [20] proposed a global
fixed priority multiprocessor scheduling algorithm for MC task
systems. Li et al. [19] introduced a global scheduling algorithm
with a speedup factor of

√
5 + 1. Baruah et al. [5] presented a

partitioned scheduling algorithm with a speedup factor of 8/3.

II. PRELIMINARIES

We study the Mixed-Criticality (MC) scheduling problem on
a hard real-time system with m identical processors. In this
paper, we consider dual-criticality systems with two distinct
criticality levels: HI (high) and LO (low).
Tasks. Each MC task is either a LO-criticality task (LO-
task) or a HI-criticality task (HI-task). Each MC task τi
is characterized by (Ti, C

L
i , C

H
i , χi), where Ti ∈ R+ is

minimum inter-job separation time, CLi ∈ R+ is LO-criticality
WCET (LO-WCET), CHi ∈ R+ is HI-criticality WCET (HI-
WCET), and χi ∈ {HI,LO} is task criticality level. Since
HI-WCETs are based on conservative assumptions, we assume
that 0 < CLi ≤ CHi ≤ Ti. A task τi has a relative deadline
equal to Ti. Any task can be executed on at most one processor
at any time instant.
Task Sets. We consider a MC sporadic task set τ = {τi},
where a task τi represents a potentially infinite job release
sequence. LO-task set (τL) and HI-task set (τH) are defined
as τL

def
= {τi ∈ τ |χi = LO} and τH

def
= {τi ∈ τ |χi = HI}.

Utilization. LO- and HI-task utilization of a task τi are
defined as uLi

def
= CLi /Ti and uHi

def
= CHi /Ti, respectively.

System-level utilizations of a task set τ are defined as ULL
def
=∑

τi∈τL u
L
i , ULH

def
=
∑
τi∈τH u

L
i , and UHH

def
=
∑
τi∈τH u

H
i .

System Modes. The system mode is a system-wide variable
representing the system criticality level (LO or HI). In LO-
mode (the system mode is LO), we assume that no job executes
for more than its LO-WCET. In HI-mode, we assume that no
job executes for more than its HI-WCET.
MC-schedulability. MC-schedulability indicates both LO-
and HI-schedulability: LO-schedulability implies that jobs
of all LO- and HI-tasks can complete to execute for their
LO-WCETs before their deadlines in LO-mode; and HI-
schedulability implies that jobs of all HI-tasks can complete
to execute for their HI-WCETs before their deadlines in HI-
mode.
The MC System Scenario. We assume the following scenario:
• The system starts in LO-mode. In LO-mode, jobs of all

LO- and HI-tasks are released.
• If a job of any HI-task τi ∈ τH executes for more than its

LO-WCET (CLi), the system switches the system mode

from LO to HI (called mode-switch). At mode-switch, the
system immediately discards all the jobs of LO-tasks.

• After mode-switch, only the jobs of HI-tasks are released.
If a job of any LO-task τi ∈ τL (likewise HI-task τi ∈ τH)
executes for more than CLi in LO-mode (likewise CHi in HI-
mode), we regard that the system has a fault and do not
consider the case. Therefore, we assume that CLi = CHi for
each LO-task τi ∈ τL without loss of generality.

The problem to determine the time instant of switch-back
from HI-mode to LO-mode is beyond the scope of this paper
because it is irrelevant to schedulability of MC systems. We
can apply the switch-back procedure in Baruah et al. [3].

III. MC-FLUID SCHEDULING FRAMEWORK

A. The Fluid Scheduling Platform
Consider a platform where each processing core can be

allocated to one or more jobs simultaneously. Each job can
be regraded as executing on a dedicated fractional processor
with a speed smaller than or equal to one. This scheduling
platform is referred to fluid scheduling platform [17].

Definition 1 (Fluid scheduling platform [17]). The fluid
scheduling platform is a scheduling platform where a job of a
task is executed on a fractional processor at all time instants.

Definition 2 (Execution rate). A task τi is said to be executed
with execution rate θi(t1, t2) ∈ R+, s.t. 0 < θi(t1, t2) ≤ 1,
if every job of the task is executed on a fractional processor
with a speed of θi(t1, t2) over a time interval [t1, t2], where
t1 and t2 are time instants s.t. t1 ≤ t21.

Schedulability of a fluid platform requires two conditions;
(i) task-schedulability (each task has an execution rate that
ensures to meet its deadline) and (ii) rate-feasibility (active
jobs2 of all tasks can be executed with their execution rates).

In non-MC multiprocessor systems, many optimal schedul-
ing algorithms [6], [12], [16] have been proposed based on the
fluid platform. These algorithms employ a single static rate
for each job of a task τi ∈ τ from its release to its deadline:
∀k, θi(rki , dki) = θi where rki and dki are the release time and
deadline of a job Jki (the k-th job of task τi), respectively. They
satisfy task-schedulability by assigning Ci/Ti to θi, which is
the task utilization of a non-MC task τi = (Ti, Ci) where Ci
is its WCET. They satisfy rate-feasibility if

∑
τi∈τ θi ≤ m.

Lemma 1 presents rate-feasibility condition for fluid model,
which can be reused for MC systems. Task-schedulability for
MC systems is discussed in Sec. IV.

Lemma 1 (Rate-feasibility, from [6]). Given a task set τ , all
tasks can be executed with execution rates iff

∑
τi∈τ θi ≤ m.

B. MC-Fluid Scheduling Algorithm
The fluid scheduling algorithm with a single static execution

rate per task is inefficient in MC systems3. If we assign
θi := uHi for each HI task τi ∈ τH and θi := uLi for each LO
task τi ∈ τL by the worst-case reservation approach, the result
of rate assignment can become overly pessimistic because

1Since the task cannot be executed on more than one processor, θi ≤ 1.
2An active job of a task is a job of the task that is released but not finished.
3In non-MC multiprocessor systems with an adaptive task model, Block et

al. [10] identified inefficiency of a single static rate. To improve soft real-
time performance, they adjust the execution rate of a task to exploit spare
processing cycles.

task characteristic of MC system can change substantially
at mode-switch. According to typical dual-criticality system
behaviors, the system changes task characteristic at mode-
switch, from executing all LO- and HI-tasks to executing
only HI-tasks. Thus, if a scheduling algorithm is allowed to
adjust the execution rate of tasks at mode-switch, it can reduce
the pessimism of the single rate assignment, considering the
dynamics of MC systems. We propose a fluid scheduling
algorithm, called MC-Fluid, that executes a task with two static
execution rates, one for LO-mode and the other for HI-mode.

Definition 3 (MC-Fluid scheduling algorithm). MC-Fluid is
defined with LO- and HI-execution rate (θLi and θHi) for each
task τi ∈ τ . For a job Jki of a task τi, MC-Fluid assigns θLi
to θi(rki ,min(tM , d

k
i)) and θHi to θi(max(tM , r

k
i), dki) where

rki is its release time, dki is its deadline, and tM is the time
instant of mode-switch. Since all LO-tasks are dropped at
mode-switch, θHi is not specified for all LO-tasks ∀τi ∈ τL.

Informally, MC-Fluid executes each task τi ∈ τ with θLi in
LO-mode and with θHi in HI-mode. Based on Def. 3, processor
resources consuming by a job within a time interval is defined
as execution amount.

Definition 4. Execution amounts of a job of a task τi ∈ τ in
a time interval of length t in LO- and HI-mode, denoted by
ELi (t) and EHi (t), are the total amount of processor resources
that the job has consumed during this time interval in LO- and
HI-mode, respectively: ELi (t)

def
= θLi · t and EHi (t)

def
= θHi · t.

IV. SCHEDULABILITY ANALYSIS

In this section, we analyze schedulability of MC-Fluid.
MC-schedulability (Theorem 1) consists of LO- and HI-
schedulability, which are task-schedulability in LO- and HI-
mode (Eqs. (1) and (2)) and rate-feasibility in LO- and HI-
mode (Eqs. (3) and (4)).

Theorem 1 (MC-schedulability). A task set τ , where each
task τi ∈ τ has LO- and HI-execution rates (θLi and θHi), is
MC-schedulable under MC-Fluid iff

∀τi ∈ τ, θLi ≥ uLi , (1)

∀τi ∈ τH ,
uLi
θLi

+
uHi − uLi
θHi

≤ 1, (2)∑
τi∈τ

θLi ≤ m, (3)∑
τi∈τH

θHi ≤ m. (4)

To prove Theorem 1, we need to derive task-schedulability
condition in LO- and HI-mode because we already know rate-
feasibility condition (Lemma 1).
Task-schedulability in LO-mode. Task-schedulability in LO-
mode depends only on LO-task utilization.

Lemma 2 (Task-schedulability in LO-mode). A task τi ∈ τ
can meet its deadline in LO-mode iff θLi ≥ uLi .

Proof: (⇐) Consider a job of the task which is finished
in LO-mode. We need to show that the execution amount of
the job from its release time (time 0) to its deadline (time Ti)
is greater than or equal to LO-WCET (CLi). From θLi ≥ uLi ,

θLi · Ti ≥ uLi · Ti ⇒ ELi (Ti) ≥ CLi . (by Def. 4)

Mode-switch𝑤𝑤𝑖𝑖

Θ 𝑖𝑖
𝐿𝐿 � 𝑤𝑤𝑖𝑖

C 𝑖𝑖
𝐿𝐿

C 𝑖𝑖
𝐻𝐻

𝑇𝑇𝑖𝑖0
Time

Th
e

ex
ec

ut
io

n
am

ou
nt

Fig. 1. The model of a carry-over job of a task τi ∈ τH where mode-switch
happens at wi and the job is executed with θLi and θHi in LO- and HI-mode,
respectively (the execution amount of the job until its deadline (Ti) should
be CHi to meet its deadline).

(⇒) We will prove the contrapositive: if θLi < uLi , then the
task cannot meet its deadline in LO-mode. It is true because
ELi (Ti) = θLi · Ti < uLi · Ti = CLi .
Task-schedulability in HI-mode. In HI-mode, we do not
need to consider task-schedulability of a LO-task because it is
dropped at mode-switch. In addition, although a job of a HI-
task can be finished in either LO- or HI-mode, we do not need
to consider the job finished in LO-mode for task-schedulability
in HI-mode.

Consider a job of a HI task τi that is finished in HI-mode.
The job is released in either LO- or HI-mode. The job in the
first case is called carry-over job, where the job is released
in LO-mode and finished in HI-mode as shown in Fig. 1. Let
wi ∈ R+ be the length of a time interval from the release
time of the job to mode-switch (or an executed time of the
job in LO-mode). We do not need to consider the second case
because it is a special situation of the first case when wi = 0,
which means that the job is released at mode-switch.

To derive task-schedulability for a carry-over job of τi, we
need to know the relative time to mode-switch (wi). We first
derive task-schedulability condition with a given wi. Since
mode-switch triggers in the middle of its execution, the job
is executed with θLi before mode-switch and with θHi after
mode-switch. A cumulative execution amount of the job from
its release time to its deadline (Ti) consists of its execution
amount from its release time to mode switch with θLi and its
execution amount from mode switch to its deadline with θHi :

ELi (wi) + EHi (Ti − wi) = θLi · wi + θHi · (Ti − wi)

by Def. 4. Task-schedulability condition with wi is that the
cumulative execution amount of the job is greater than or equal
to its HI-WCET (CHi):

θLi · wi + θHi · (Ti − wi) ≥ CHi . (5)

Although the value of wi is required to derive task-
schedulability, MC system model assumes that time instant
of mode-switch is unknown until runtime scheduling. Thus,
we should consider all possible mode-switch scenarios (any
valid wi). Note that 0 ≤ wi ≤ Ti because mode-switch can
happen any time instant between release time and deadline of
the job. Then, task-schedulability is Eq. (5) for ∀wi in [0, Ti]:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi . (6)

To sum up, task-schedulability in HI-mode is Eq. (6).

For concise presentation, we want to eliminate the term of
wi in task-schedulability condition. Its derivation is different
depending on whether θLi > θHi or θLi ≤ θHi . Lemma 3
considers the first case (θLi > θHi).

Lemma 3. A HI-task τi with θLi > θHi can meet its deadline in
HI-mode iff it meets its deadline in HI-mode when θLi = θHi .

Proof: (⇐) Let θLi
′ be the value of the original θLi where

θLi
′
> θHi . Since the task can meet its deadline in HI-mode

when θLi = θHi , from Eq. (6), we have

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti ≥ CHi . (7)

To show that the task can meet its deadline in HI-mode
when θLi = θLi

′, we need to show that Eq. (6) holds: ∀wi,

θLi
′ · wi + θHi · (Ti − wi) > θHi · wi + θHi · (Ti − wi)

= θHi · Ti,

which is greater than or equal to CHi by Eq. (7).
(⇒) Suppose that the task can meet its deadline in HI-mode.

Then, we claim that θHi ≥ uHi . We prove it by contradiction:
suppose that θHi < uHi . Then, Eq. (6) does not hold when
wi = 0:

θLi · 0 + θHi · (Ti − 0) = θHi · Ti,

which is smaller than CHi because θHi · Ti < uHi · Ti = CHi .
However, since we assume that the task meets its deadline in
HI-mode, Eq. (6) holds, which is a contradiction. Thus, we
proved the claim (θHi ≥ uHi).

Next, we need to show that the task can meet its deadline
in HI-mode when θLi = θHi . Then, it is required to show that
Eq. (6) holds:

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti,

which is greater than or equal to CHi because θHi ≥ uHi .
Using below corollary, we assume that θLi ≤ θHi for any

task τi ∈ τH in the rest of the paper.

Corollary 4. For task-schedulability of a HI-task τi in HI-
mode, we only need to consider the case where θLi ≤ θHi .

Proof: Task-schedulability of the task in HI-mode when
θLi > θHi is equivalent to the one when θLi := θHi by Lemma 3.
Thus, its task-schedulability in HI-mode is equivalent to the
one when θLi ≤ θHi .

Lemma 5 derives task-schedulability in HI-mode by us-
ing the assumption that task-schedulability in LO-mode
holds. It is a valid assumption because we eventually con-
sider task-schedulability in both LO- and HI-mode for MC-
schedulability.

Lemma 5 (Task-schedulability in HI-mode). Given a HI-task
τi satisfying task-schedulability in LO-mode, the task can meet
its deadline in HI-mode iff

uLi /θ
L
i + (uHi − uLi)/θHi ≤ 1.

Proof: Consider a carry-over job of the task. We first
derive the range of a valid wi and derive task-schedulability
in HI-mode by using the range.

Consider the range of wi, which is [0, Ti]. We can further
reduce the range by using task-schedulability in LO-mode. The
execution amount of the job in LO-mode from its release time

Ti CLi CHi χi uLi uHi θLi θHi
τ1 10 3 8 HI 0.3 0.8 6/10 1
τ2 20 8 14 HI 0.4 0.7 6/10 9/10
τ3 30 3 3 HI 0.1 0.1 1/10 1/10
τ4 40 20 20 LO 0.5 0.5 5/10

TABLE I
EXAMPLE TASK SET AND ITS EXECUTION RATE ASSIGNMENT.

to any time instant cannot exceed its LO-WCET (CLi)4. Thus,
its execution amount from its release time to mode-switch also
cannot exceed CLi :

ELi (wi) ≤ CLi ⇒ θLi · wi ≤ CLi . (8)

Combining 0 ≤ wi ≤ Ti and Eq. (8), we have 0 ≤ wi ≤
min(CLi /θ

L
i , Ti). Since task-schedulability in LO-mode holds,

we have θLi ≥ uLi by Lemma 2. Then,

θLi ≥ CLi /Ti ⇒ Ti ≥ CLi /θLi . (multiplying by Ti/θLi)

Thus, the range of valid wi is 0 ≤ wi ≤ CLi /θLi .
We know that task-schedulability in HI-mode is Eq. (6),

which is rewritten to:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi
⇔ ∀wi, θHi · Ti ≥ (θHi − θLi) · wi + CHi
⇔ θHi · Ti ≥ (θHi − θLi) · CLi /θLi + CHi (∵ θHi − θLi ≥ 0)5

⇔ θHi · Ti ≥ CLi · θHi /θLi + CHi − CLi

⇔ 1 ≥ uLi
θLi

+
uHi − uLi
θHi

. (dividing by θHi · Ti)

Thus, the task can meet its deadline in HI-mode iff Eq. (6)
holds iff 1 ≥ uLi /θLi + (uHi − uLi)/θHi .
MC-schedulability. Now, we can prove Theorem 1 by using
Lemmas 2 and 5 (task-schedulability in LO- and HI-mode).

Proof of Theorem 1: (⇐) We need to show that the task
set is both LO- and HI-schedulable.

From Eq. (1), task-schedulability holds in LO-mode by
Lemma 2. From Eq. (3), rate-feasibility holds in LO-mode
by Lemma 1. Then, the task set is LO-schedulable.

Since Eq. (2) and task-schedulability in LO-mode hold,
task-schedulability in HI-mode holds by Lemma 5. From
Eq. (4), rate-feasibility holds in HI-mode by Lemma 1. Then,
the task set is HI-schedulable.

(⇒) We will prove the contrapositive: if any of the condi-
tions does not hold, then the task set is not MC-schedulable.

If Eq. (1) does not hold, task-schedulability in LO-mode
does not hold by Lemma 2. If Eq. (3) does not hold, rate-
feasibility in LO-mode does not hold by Lemma 1.

If Eq. (2) does not hold, task-schedulability in HI-mode does
not hold by Lemma 5. If Eq. (4) does not hold, rate-feasibility
in HI-mode does not hold by Lemma 1.

According to Theorem 1, the worst-case situation is the one
where all jobs of HI-tasks are executed for their CLi at mode-
switch. On fluid platforms, this situation happens because all
tasks are always executed with their execution rates whenever
they are ready.

Example 1. Consider a two-processor system where its task
set τ and its execution rate assignment is given as shown in
Table IV. To show that it is schedulable, we need to show
that Eqs. (1), (2), (3) and (4) hold by Theorem 1. We can

4The job triggers mode-switch if the job execute for more than CLi .
5Note that we already assumed that θLi ≤ θHi by Corollary 4.

easily check that Eq. (1) holds. We show that Eq. (2) holds:
0.3
6/10+ 0.8−0.3

1 ≤ 1 for τ1, 0.4
6/10+ 0.7−0.4

9/10 ≤ 1 for τ2, and 0.1
1/10+

0 ≤ 1 for τ3. We can check that
∑
τi∈τ θ

L
i = 6+6+1+5

10 ≤ 2
for Eq. (3) and

∑
τi∈τH θ

H
i = 10+9+1

10 ≤ 2 for Eq. (4).
We conclude that the task set is MC-schedulable with the

execution rate assignment.

V. THE EXECUTION RATE ASSIGNMENT

We first define the optimality of an execution rate assign-
ment algorithm, in a similar way to Davis et al. [13].

Definition 5. A task set τ is called MC-Fluid-feasible if
there exists an execution rate assignment that the task set is
schedulable under MC-Fluid with. An execution rate assign-
ment algorithm A is called optimal if A can find a schedulable
assignment for all MC-Fluid-feasible task sets. For brevity, we
refer to an execution rate assignment as an “assignment” and
say that a task is feasible when the task is MC-Fluid-feasible.

In this section, we construct an efficient and optimal as-
signment algorithm. A naive optimal algorithm checking all
combinations of execution rates is intractable because possible
real-number execution rates are infinite. Sec. V-A analyzes
conditions of an optimal assignment algorithm and formulates
it as an optimization problem. Sec. V-B presents a polynomial-
complexity algorithm to solve the optimization problem.

A. Conditions for an Optimal Assignment Algorithm
Lemma 6 and Theorem 2 present conditions for an optimal

assignment algorithm of θLi and θHi , respectively.

Lemma 6 (An optimal assignment of θLi). If a task set τ is
feasible, there is a schedulable assignment where (i) θLi := uLi
for a task τi ∈ τL and (ii) θLi :=

uL
i ·θ

H
i

θHi −uH
i +uL

i
for τi ∈ τH .

Proof: Since the task set is feasible, there exists a
schedulable assignment (denoted by A) satisfying Eqs. (1),
(2), (3), and (4) by Theorem 1.

(i) Consider a task τi ∈ τL and its LO-execution rate (θLi) in
A. We will show that τ is still schedulable after reassignment
of θLi . If we reassign θLi , it only affects Eqs. (1) and (3).

Let θL∗i be the value of θLi in A. Since A is schedulable,
Eq. (1) holds with θL∗i , which is θL∗i ≥ uLi . Suppose that we
reassign θLi := uLi . Then, Eq. (1) still holds because θLi ≥ uLi .
Eq. (3) still holds because the decreased θLi (from θL∗i to uLi)
does not increase the sum of execution rates.

(ii) Consider a task τi ∈ τH and its LO-execution rate
(θLi) in A. We will show that τ is still schedulable after
reassignment of θLi . If we reassign θLi , it only affects Eqs. (1),
(2), and (3).

Let θL∗i and θH∗i be the value of θLi and θHi in A,
respectively. Since Eq. (2) holds for θL∗i and θH∗i , we have

uHi − uLi
θH∗i

≤ 1− uLi
θL∗i

⇒ uHi − uLi
θH∗i

< 1, (9)

since uLi /θ
L∗
i > 0. Eq. (2) with θL∗i and θH∗i is rewritten to:

uLi
θL∗i
≤ θH∗i − uHi + uLi

θH∗i
⇔ uLi · θH∗i ≤ θL∗i (θH∗i − uHi + uLi) (multiplying by θH∗

i · θL∗
i)

⇔ uLi · θH∗i
θH∗i − uHi + uLi

≤ θL∗i . (∵ θH∗
i > uHi − uLi by Eq. (9))

Since A is schedulable, Eqs. (1), (2), and (3) hold with θL∗i .
Suppose that we reassign θLi :=

uL
i ·θ

H∗
i

θH∗
i −uH

i +uL
i

. Then, Eq. (1)
still holds because θLi ≥ uLi . Eq. (2) still holds because the
value of the reassigned θLi is the minimum value satisfying
Eq. (2). Eq. (3) still holds because the decreased θLi does not
increase the sum of execution rates.

Theorem 2 (Conditions for an optimal assignment of θHi). A
task set τ is feasible iff there exists an assignment of θHi for
∀τi ∈ τH satisfying

uHi ≤ θHi , (10)

ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi)

θHi − uHi + uLi
≤ m, (11)∑

τi∈τH

θHi ≤ m. (12)

Proof: (⇐) To show that the task set is feasible, we need
to show that there exists a schedulable assignment.

Consider an assignment where θLi := uLi for each task τi ∈
τL, θLi :=

uL
i ·θ

H
i

θHi −uH
i +uL

i
for each task τi ∈ τH , and θHi for each

task τi ∈ τH satisfies Eqs. (10), (11), and (12). To show that
this assignment is schedulable by Theorem 1, we need to show
that it satisfies Eqs. (1), (2), (3), and (4).

We know that θLi for ∀τi ∈ τ satisfies Eq. (1) and θLi for
∀τi ∈ τH satisfies Eq. (2). We can rewrite Eq. (3) to:∑
τi∈τ

θLi ≤ m⇔
∑
τi∈τL

θLi +
∑
τi∈τH

θLi ≤ m

⇔
∑
τi∈τL

uLi +
∑
τi∈τH

uLi · θHi
θHi − uHi + uLi

≤ m

⇔ ULL +
∑
τi∈τH

(
uLi +

uLi (uHi − uLi)

θHi − uHi + uLi

)
≤ m,

which is Eq. (11). Then, Eq. (3) holds from Eq. (11). We know
that Eq. (12) is Eq. (4). Thus, we showed that the assignment
satisfies Eqs. (1), (2), (3), and (4).

(⇒) Since the task set is feasible, there is a schedulable

assignment where θLi = uLi for ∀τi ∈ τL and θLi =
uL
i ·θ

H
i

θHi −uH
i +uL

i

by Lemma 6. We need to show that θHi for ∀τi ∈ τH in the
assignment satisfies Eqs. (10), (11), and (12).

Consider θHi of a task τi ∈ τH . Since we already assumed
that θLi ≤ θHi by Corollary 4, we can rewrite θLi ≤ θHi to:

uLi · θHi
θHi − uHi + uLi

≤ θHi ⇒ uLi ≤ θHi − uHi + uLi ,

which is Eq. (10).
Since the assignment is schedulable, Eqs. (3) and (4) hold

by Theorem 1. We already proved that Eq. (3) is Eq. (11) in
Case ⇐ and knew that Eq. (4) is Eq. (12).

Thus, we showed that Eqs. (10), (11), and (12) holds.
An optimal assignment algorithm can determine θLi by

Lemma 6. Although we have Theorem 2, an assignment
algorithm cannot easily determine θHi satisfying the conditions
in Theorem 2. So, we present Def. 6, which formulates an
optimization problem based on Theorem 2. Lemma 7 shows
that an assignment algorithm of θHi by Def. 6 is optimal
according to Def. 5.

Definition 6 (Assignment Problem). Given a task set τ , we
define a non-negative real number Xi for each task τi ∈ τH
such that θHi := uHi + Xi and Xi is the solution to the
following optimization problem,

minimize
∑
τi∈τH

uLi (uHi − uLi)

Xi + uLi

subject to
∑
τi∈τH

Xi −m+ UHH ≤ 0, (CON1)

∀τi ∈ τH , −Xi ≤ 0, (CON2)

∀τi ∈ τH , Xi − 1 + uHi ≤ 0. (CON3)

Lemma 7. An assignment algorithm based on Def. 6 is
optimal according to Def. 5.

Proof: We claim that if the assignment by Def. 6 cannot
satisfy Eqs. (10), (11), and (12), no assignment can satisfy
those equations. Then, τ is not feasible by Theorem 2.

Suppose that we know a solution to the optimization prob-
lem in Def. 6. For each task τi ∈ τH , let X∗i be the value of Xi

in the solution. Let OBJ∗ be the value of the objective function
with X∗i for ∀τi ∈ τH . By Def. 6, we have an assignment
where θHi := uHi +X∗i to for ∀τi ∈ τH . Then, Eq. (10) holds
from CON2 and CON3 and Eq. (12) holds from CON1.

Suppose that Eq. (11) does not hold with the assignment,
meaning OBJ∗ > m−ULL −ULH . For any set of Xi satisfying
CON1, CON2, and CON3, we have

∑
τi∈τH

uL
i (uH

i −u
L
i)

Xi+uL
i

≥
OBJ∗ by the definition of the optimization problem and thus
Eq. (11) does not hold,

∑
τi∈τH

uLi (uHi − uLi)

Xi + uLi
≥ OBJ∗ > m− ULL − ULH .

Thus, no assignment can satisfy Eqs. (10), (11), and (12).

B. Convex Optimization for the Assignment Problem

In Sec. V-A, we formulated the optimization problem to
construct an optimal assignment algorithm. In this section, we
will solve the optimization problem using convex optimization.

Any optimization problem can be rewritten in its dual form
using Lagrange multiplier (Chapter 5, Boyd et al. [11]), a
technique to find a solution for a constrained optimization
problem. Using Lagrangian multipliers, we can transform any
optimization problem with constraints into its dual problem
without constraints. In particular, when its objective function
and constraints are differentiable and convex, we can apply
Karush-Kuhn-Tucker (KKT) conditions (Chapter 5.5.3, [11]),
which is a set of optimality conditions for an optimization
problem with constraints.
Lemma 8 (KKT conditions [11]). Let x is a vector of xi
for i = 1, · · · , n where n = |x| and x∗i be the value of xi.
Consider an optimization problem:

minimize f(x) subject to gj(x) ≤ 0 for j = 1, · · · , N

where N is the number of gj(x) and all of f(x) and gj(x)
for ∀j are differentiable and convex. Then, x∗ minimizes f(x)

iff there exists λ∗ s.t.

∀j, gj(x∗) ≤ 0, (13)
∀j, λ∗j · gj(x∗) = 0, (14)

∀i, ∂f(x∗)

∂xi
+
∑
j

(λ∗j
∂gj(x∗)

∂xi
) = 0, (15)

∀j, λ∗j ≥ 0, (16)

where λj is a Lagrange multiplier, λ∗j is the value of λj , and
λ is a vector of λj .

Lemma 9 applies KKT conditions (Lemma 8) to the op-
timization problem in Def. 6 because the objective function
and all the constraints are differentiable and convex. Then, we
only need to find the value of Lagrange multipliers satisfying
KKT condition for the optimal solution.

For brevity of this section, we abbreviate ∀τi ∈ τH as ∀τi
because only HI-tasks are considered in Def. 6. We use ψ, λi,
and νi as Lagrange multipliers for CON1, CON2, and CON3,
respectively. We denote a vector of Xi, λi, and νi by X , λ,
and ν, and denote the value of Xi, λi, and νi by X∗i , λ∗i , and
ν∗i , respectively. We define, for each task τi,

Costi(x)
def
=
uLi (uHi − uLi)

(x+ uLi)2
where x ∈ R+.

Lemma 9. Consider the optimization problem in Def. 6. X∗
minimizes f(X) iff there exist ψ∗, λ∗, and ν∗ s.t.∑

τi

X∗i −m+ UHH ≤ 0, (17)

∀τi, −X∗i ≤ 0, X∗i − 1 + uHi ≤ 0, (18)

ψ∗(
∑
τi

X∗i −m+ UHH) = 0, (19)

∀τi, λ∗i (−X∗i) = 0, ν∗i (X∗i − 1 + uHi) = 0, (20)
∀τi, − Costi(X

∗
i) + ψ∗ − λ∗i + ν∗i = 0, (21)

ψ∗ ≥ 0 ∧ ∀τi(λ∗i ≥ 0 ∧ ν∗i ≥ 0), (22)

where f(X) =
∑
τi

uL
i (uH

i −u
L
i)

Xi+uL
i

.

Proof: We will derive KKT conditions for the optimiza-
tion problem in Def. 6: f(X) =

∑
τi

uL
i (uH

i −u
L
i)

Xi+uL
i

and g1(X) =∑
τi
Xi − m + UHH for CON1; for ∀τi, g2,i(X) = −Xi for

CON2 and g3,i(X) = Xi − 1 + uHi for CON3.
We know that f(X) and all constraints are differentiable. To

show that they are convex, we need to show that their second
derivatives are no smaller than zero:

∀τi, ∀Xi ,
∂2f(X)

∂(Xi)2
=

2 · uLi (uHi − uLi)

(Xi + uLi)3
≥ 0 and

∀τi, ∀τj , ∀Xi,
∂2g1(X)

∂(Xi)2
=
∂2g2,j(X)

∂(Xi)2
=
∂2g3,j(X)

∂(Xi)2
= 0.

We derive KKT conditions for the problem by Lemma 8:
• We denote Lagrange multipliers for g1(X), g2,i(X) and
g3,i(X) by ψ, λi and νi, respectively.

• Eq. (13) for g1(X) is Eq. (17). Eq. (13) for g2,i(X) and
g3,i(X) is Eq. (18).

• Eq. (14) for g1(X) is Eq. (19). Eq. (14) for g2,i(X) and
g3,i(X) is Eq. (20).

• Eq. (15) is ∀τi, ∂f(X)/∂Xi + ψ − λi + νi = 0, which
is Eq. (21).

• Eq. (16) for g1(X), g2,i(X) and g3,i(X) is Eq. (22).
By Lemma 8, X∗ minimizes f(X) iff there exist ψ∗, λ∗, and
ν∗ satisfying Eqs. (17), (18), (19), (20), (21), and (22).

Example 2. Consider the system in Example 1. We need to
solve the optimization problem in Def. 6. Suppose that we have
X∗ satisfying KKT conditions in Lemma 9 for the system:
X∗1 = 0.2, X∗2 = 0.2, and X∗3 = 0. Eq. (17) holds: 0.2 +
0.2 − 2 + 1.6 = 0. We can easily check that Eqs. (18) and
(19) hold. To satisfy Eq. (20), we have λ∗1 = λ∗2 = ν∗2 =
ν∗3 = 0. By Eq. (21), we have − 0.15

(0.2+0.3)2 + ψ∗ + ν∗1 = 0,
− 0.12

(0.2+0.4)2 + ψ∗ = 0, and ψ∗ − λ∗3 = 0. Then, we have
ψ∗ = 1/3, ν∗1 = 4/15, and λ∗3 = 1/3. Eq. (22) holds with ψ∗,
λ∗, and ν∗. Thus, X∗ is the solution to the problem in Def. 6
by Lemma 9.

By Def. 6, we have θH1 := 1, θH2 := 0.9, and θH3 := 0.1. We
can assign θLi for ∀τi ∈ τ by Lemma 6. Since this calculated
assignment is the same as the assignment in Example 1, we
conclude that the assignment in Example 1 is optimal.
The OERA algorithm. General KKT conditions are not
easily solvable because we cannot find the feasible values
of the Lagrange multipliers for the conditions. We propose
the Optimal Execution Rate Assignment (OERA) algorithm to
solve our KKT conditions. In our KKT conditions (Lemma 9),
we note that λ∗i and ν∗i for each task τi depend only on X∗i .
Since only ψ∗ depends on X∗, if we know ψ∗ satisfying our
KKT conditions, we can independently analyze λ∗i , ν∗i , and
X∗i for each task τi. Based on this observation, we develop a
simple greedy algorithm.

Before presenting the OERA algorithm, Lemma 10 shows
that this observation is correct.
Lemma 10. Given a task τi and ψ (≥ 0), if we assign Xi :=

Cal Xi(ψ)
def
=


0 if ψ ≥ Costi(0),

1− uHi if ψ < Costi(1−uHi),√
uL
i (uH

i −uL
i)

ψ − uLi otherwise,

then Eqs. (18), (20), and (21) hold with some λi (≥ 0) and
νi (≥ 0).

Proof: To satisfy Eq. (18), we assume that 0 ≤ Xi ≤
1 − uHi . Then, to prove this lemma, we only need to show
that Eqs. (20) and (21) hold in each case of Cal Xi(ψ).

Case (ψ ≥ Costi(0)). For some νi ≥ 0, Eq. (21) is
simplified to:

ψ ≤ Costi(Xi) + λi, (23)

by removing νi. Note that Cost(Xi) ≤ Cost(0) where 0 ≤
Xi ≤ 1− uHi . To satisfy Eq. (23), λi should satisfy that λi ≥
ψ−Costi(Xi) ≥ ψ−Costi(0), which is greater than or equal to
0 from the assumption. To satisfy Eq. (20), we assign νi := 0
and Xi := 0. Thus, Eqs. (20) and (21) hold.

Case (ψ<Costi(1−uHi)). For some λi ≥ 0, Eq. (21) is
simplified to:

ψ + νi ≥ Costi(Xi), (24)

by removing λi. Note that Cost(1 − uHi) ≤ Cost(Xi) where
0 ≤ Xi ≤ 1− uHi . To satisfy Eq. (24), νi should satisfy that

νi ≥ Costi(Xi) − ψ ≥ Costi(1 − uHi) − ψ, which is greater
than 0 from the assumption. To satisfy Eq. (20), we assign
λi := 0 and Xi := 1− uHi . Thus, Eqs. (20) and (21) hold.

Case (Costi(1−uHi) ≤ ψ < Costi(0)). To satisfy Eq. (20),
we assign λi := 0 and νi := 0. Then, to satisfy Eq. (21),
we need to satisfy ψ = Costi(Xi), from which, Xi can be
computed:

ψ =
uLi (uHi − uLi)

(Xi + uLi)2
⇔ Xi =

√
uLi (uHi − uLi)

ψ
− uLi .

Combining three cases, we showed that Eqs. (18), (20), and
(21) hold with some positive λi and νi.

To find ψ satisfying our KKT condition, we divide the range
of ψ. According to Lemma 10, if ψ is greater than or equal
to Costi(0) or smaller than Costi(1 − uHi), Cal Xi(ψ) is a
constant; otherwise, Cal Xi(ψ) is a linear function of 1/

√
ψ.

To divide the range of ψ, we define an ordered set G def
= {x ∈

R+|x = Costi(0) or x = Costi(1 − uHi) for ∀τi}, sorted in
increasing order. We denote the j-th element of G as Gj . In
OERA, we utilize the property that Cal Xi(ψ) for some task τi
changes a constant to a linear function of 1/

√
ψ or vice-versa

at ψ = Gj .
We present the OERA algorithm (Algorithm 1). Suppose

that ψ∗ satisfying our KKT conditions is greater than zero. We
assign Xi := Cal Xi(ψ

∗) for ∀τi, which satisfies Eqs. (18),
(20), (21), and (22) by Lemma 10. To satisfy the remaining
conditions, Eqs. (17) and (19), we require the condition that∑
τi
Xi−m+UHH = 0, which is

∑
τi
Cal Xi(ψ

∗) = m−UHH .
The LHS of the required condition is a piecewise linear

function of 1/
√
ψ. To handle the piecewise function, we note

that it only changes at Gj ∈ G. By examining the value of the
LHS of the condition in each Gj , we can find the range of ψ∗
where some ψ∗ satisfies the condition (Line 2). If the range is
found, the LHS of the condition is just a linear function within
the range. Then, we can find ψ∗ by solving the condition (Line
3) and OERA returns X∗ where X∗i = Cal Xi(ψ

∗) (Line 4).
However, it is possible that there does not exist positive

ψ∗ satisfying our KKT conditions, which means that ψ∗
satisfying our KKT conditions is zero because it is non-
negative. OERA returns X∗ where X∗i = Cal Xi(0) for ∀τi
(Line 7). Theorem 3 proves the correctness of OERA.

Algorithm 1 The OERA algorithm
Input: τH , G, and m
Output: X∗ satisfying KKT conditions in Lemma 9

1: for j := 1 to |G| − 1 do
2: if

∑
τi
Cal Xi(Gj+1) ≤ m − UHH <

∑
τi
Cal Xi(Gj)

then
3: find ψ∗ by solving

∑
τi
Cal Xi(ψ

∗) = m− UHH
4: return X∗ where Xi = Cal Xi(ψ

∗)
5: end if
6: end for
7: return X∗ where Xi = Cal Xi(0)

Example 3. Consider KKT conditions in Example 2. We
have G = {0.245, 0.6, 0.75, 1.667}. We apply Algorithm 1.
In Fig. 2, X-axis represents 1/

√
ψ. Blue (solid) line is∑

τi
Cal Xi(ψ), which is a piecewise linear function where

its slope is changed at each 1/
√
Gj where Gj ∈ G. Red

(dashed) line is a constant function of m − UHH . When

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2

1/ 𝝍𝝍

�
𝒊𝒊

Cal_Xi(𝝍𝝍)

𝒎𝒎−𝑼𝑼𝑯𝑯
𝑯𝑯

1/ 𝑮𝑮𝟏𝟏1/ 𝑮𝑮𝟐𝟐 𝟑𝟑1/ 𝑮𝑮𝟑𝟑1/ 𝑮𝑮𝟒𝟒

Fig. 2. The plot of
∑
τi

Cal Xi(ψ) in respect to 1/
√
ψ on Example 3, which

is a piecewise linear function (note that there is ψ∗ s.t.
∑
τi

Cal Xi(ψ
∗) =

0.4 where G1 ≤ ψ∗ < G2).

G1(= 0.245) ≤ ψ∗ < G2(= 0.6), the condition in Line 2
holds:

∑
τi
Cal Xi(G2) ≤ m−UHH <

∑
τi
Cal Xi(G1), which

is 0.5 ≤ 0.4 < 0.247. In other words, a crossing point between
blue line and red line is located in (1/

√
G2, 1/

√
G1]. Then, we

can find ψ∗ by solving
∑
τi
Cal Xi(ψ

∗) = m−UHH , where blue
line meets red line at 1/

√
ψ∗. Since 0.2 +

√
0.12/ψ∗− 0.4 =

0.4, we have 1/
√
ψ∗ =

√
3. Finally, ψ∗ = 1/3, X∗1 = 0.2,

X∗2 =
√

0.12
1/3 − 0.4 = 0.2, and X∗3 = 0.

We conclude that OERA can find X∗ satisfying the KKT
condition in Lemma 9 for Example 2.
Theorem 3. Algorithm 1 (OERA) can find X∗ satisfying KKT
conditions in Lemma 9.

Proof: (i) [Line 1-6] Suppose that there exists ψ∗(> 0)
satisfying our KKT conditions. Consider some ψ∗ > 0. We
assign Xi := Cal Xi(ψ

∗) for ∀τi. By Lemma 10, Eqs. (18),
(20), (21), and (22) hold. To satisfy Eqs. (17) and (19), we
require the condition

∑
τi
Xi − m + UHH = 0, which is∑

τi
Cal Xi(ψ

∗) = m− UHH .
We need to find ψ∗ satisfying the required condition. Since

the LHS of the condition is a piecewise-linear increasing func-
tion of 1/

√
ψ, we can find a unique ψ∗ ≥ 0 satisfying the con-

dition if
∑
τi
Cal Xi(ψ

′) ≤ m−UHH where ψ′ is the maximum
value of ψ∗ and

∑
τi
Cal Xi(ψ

′′) > m−UHH where ψ′′ is the
minimum value of ψ∗. We know that

∑
τi
Cal Xi(maxj Gj) =

0, which is smaller than or equal to m − UHH . However, we
do not know whether

∑
τi
Cal Xi(minj Gj) > m − UHH or

not. If it holds, the algorithm can find a unique solution of
ψ∗ satisfying the required condition and return X∗ where
X∗i = Cal Xi(ψ

∗) satisfying the KKT conditions. If it does not
hold (

∑
τi
Cal Xi(minj Gj) ≤ m− UHH), there is no solution

when ψ∗ > 0.
(ii) [Line 7] Suppose that there does not exist ψ∗(>0)

satisfying the KKT conditions. Then, Line 1-6 cannot find
a solution, which means

∑
τi
Cal Xi(minj Gj) ≤ m − UHH .

Then, we assign ψ∗ := 0 because ψ∗ is non-negative from
Eq. (22). We assign Xi := Cal Xi(0) for ∀τi. By Lemma 10,
Eqs. (18), (20), (21), and (22) hold. To satisfy Eqs. (17) and
(19), we require the condition

∑
τi
Cal Xi(0) ≤ m− UHH .

For a task τi, we claim that Cal Xi(0) = Cal Xi(minj Gj).
If minj Gj = 0, we have Cal Xi(0) = Cal Xi(minj Gj).
Otherwise, we have minj Gj > 0. When minj Gj 6= Costi(1−
uHi), by the second case of Lemma 10, we know that
Cal Xi(0) = Cal Xi(minj Gj). When minj Gj = Costi(1 −
uHi), we need to apply the third case of Lemma 10. Since
Cal Xi(ψ) calculates Xi s.t. ψ = Cost(Xi) in the third case
of Lemma 10, we have Cal Xi(Costi(1 − uHi)) = 1 − uHi ,
from which we have Cal Xi(minj Gj) = 1 − uHi by using

Costi(1−uHi) = minj Gj . Since Cal Xi(0) = 1−uHi , we have
Cal Xi(0) = Cal Xi(minj Gj). Thus, we proved the claim.

By the claim above, we have
∑
τi
Cal Xi(0) =∑

τi
Cal Xi(minj Gj), which is no greater than m−UHH from

the assumption. Thus, the required condition holds.
Since the KKT conditions hold with ψ∗ = 0, the algorithm

returns X∗ where X∗i = Cal Xi(ψ
∗) satisfying the KKT

conditions
Algorithm Complexity. Let n be |τ |. Algorithm 1 (OERA)
can find a solution at most O(n) iteration because |G| ≤
2|τH | ≤ 2n. Since each iteration takes O(n) time to solve
the equation in Line 3, OERA has polynomial complexity.

VI. THE SPEEDUP FACTOR

In this section, we quantify the effectiveness of MC-Fluid
via the metric of processor speedup factor [18]. In general,
the speedup factor of an algorithm A is defined as a real
number α (≥ 1) such that any task set schedulable by an
optimal clairvoyant algorithm6 on m speed-1 processors is also
schedulable by A on m speed-α processors. In other words,
a task set that is clairvoyantly schedulable on m speed-(1/α)
processors is also schedulable by A on m speed-1 processors.
We consider this special task set (clairvoyantly schedulable on
m speed-(1/α)) for speedup factor derivation.

Lemma 11 shows α ≥ 4/3 for non-clairvoyant algorithms.

Lemma 11. No non-clairvoyant algorithm for scheduling
dual-criticality task set on multiprocessors can have a speedup
factor better than 4/3.

Proof: It follows from Theorem 5 of Baruah et al. [3]
since MC scheduling on uniprocessor is a special case of MC
scheduling on m processors.

For the special task set for speedup derivation, we present
a sufficient schedulability condition with MC-Fluid.

Lemma 12. Given a task set τ that is clairvoyantly schedu-
lable on m speed-(1/α) processors, the task set is schedulable
on m speed-1 processors by MC-Fluid if there is x ∈ R+ s.t.

0 ≤ x ≤ 1, (25)

ULL + ULH +
UHH − ULH

(α− 1)x+ 1
≤ m, (26)

UHH + (α− 1)ULH · x ≤ m. (27)

Proof: To show that τ is feasible by MC-Fluid, we need
to show that there exists an assignment satisfying Eqs. (10),
(11), and (12) by Theorem 2.

Since τ is clairvoyantly schedulable on m speed-(1/α)
processors, we assume that ULL+ULH ≤ m/α and UHH ≤ m/α.
Since the task is assumed to be executable on a speed-(1/α)
processor, we assume that uLi ≤ uHi ≤ 1/α for τi ∈ τ .

Let A be an assignment where θHi := uHi + (α − 1)uLi · x
for ∀τi ∈ τH satisfying Eq. (25), (26), and (27). We show that
the assigned θHi by x is no greater than 1 from the definition
of the execution rate (Def. 2), for ∀τi ∈ τH ,

θHi = uHi + (α− 1)uLi · x
≤ uHi + (α− 1)uLi (from Eq. (25))

≤ uHi + (α− 1)uHi (∵ uLi ≤ uHi)

≤ 1. (from uHi ≤ 1/α)

6In MC systems, a clairvoyant (fluid or non-fluid) scheduling algorithm is
the one that knows the time instant of mode-switch before runtime scheduling.

(i) We show that A satisfies Eq. (10): from Eq. (25), for
∀τi ∈ τH ,

0 ≤ (α− 1)uLi · x ⇒ uHi ≤ uHi + (α− 1)uLi · x
⇒ uHi ≤ θHi ,

which is Eq. (10).
(ii) We show that A satisfies Eq. (11): from Eq. (26),

ULL + ULH +
UHH − ULH

(α− 1) · x+ 1
≤ m

⇒ ULL + ULH +
∑
τi∈τH

uHi − uLi
(α− 1) · x+ 1

≤ m

⇒ ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi)

θHi − uHi + uLi
≤ m,

(∵ (α− 1)uLi · x+ uLi = θHi − uHi + uLi)

which is Eq. (11).
(iii) We show that A satisfies Eq. (12): from Eq. (27),

UHH + (α− 1)ULH · x≤ m⇒
∑
τi∈τH

(
uHi + (α− 1)uLi · x

)
≤ m

⇒
∑
τi∈τH

θHi ≤ m,

which is Eq. (12).
Now, we consider the range of feasible x satisfying

Eqs. (25), (26) and (27). We will find the lower bound of
the feasible x. Eq. (26) can be rewritten to:

ULL + ULH +
UHH − ULH

(α− 1) · x+ 1
≤ m

⇔ UHH − ULH
(α− 1) · x+ 1

≤ m− ULL − ULH

⇔ UHH − ULH
m− ULL − ULH

≤ (α− 1) · x+ 1

(∵ m− ULL − U
L
H > m/α− ULL − U

L
H ≥ 0)

⇔ UHH + ULL −m
m− ULL − ULH

≤ (α− 1) · x

⇔ UHH + ULL −m
(α− 1)(m− ULL − ULH)

≤ x. (∵ α− 1 > 0) (28)

Since LHS of Eq. (28) is non-negative, the lower bound of x
is UH

H +UL
L−m

(α−1)(m−UL
L−UL

H)
by Eqs. (25) and (28).

We will find the upper bound of the feasible x. Eq. (27)
can be rewritten to x ≤ m−UH

H

(α−1)UL
H

. Since (α− 1)ULH + UHH ≤
(α− 1)UHH + UHH ≤ m, we have

(α− 1)ULH + UHH ≤ m⇒ 1 ≤ m− UHH
(α− 1)ULH

.

Thus, the upper bound of x is 1 by Eqs. (25) and (27).
From the range of the feasible x, we can derive the condition

for the existence of x satisfying Eqs. (25), (26), and (27):

UHH + ULL −m
(α− 1)(m− ULL − ULH)

≤ 1. (29)

If Eq. (29) holds, MC-Fluid can schedule the special task set
for speedup factor derivation by Lemma 12.

We derive the speedup factor of MC-Fluid using Eq. (29).

Theorem 4. The speedup factor of MC-Fluid is (1 +
√

5)/2.

Proof: Consider a task set schedulable by any clairvoyant
algorithm on m speed-(1/α) processors. To prove this theo-
rem, we need to show that the task set can be scheduled by
MC-Fluid on m speed-1 processors and α = (1+

√
5)/2. Since

Eq. (29) is a sufficient schedulability condition of MC-Fluid
for the task set, we can derive Eq. (30) as another sufficient
schedulability condition of MC-Fluid:

UHH + ULL −m ≤ (α− 1)(m− ULL − ULH)

⇐ UHH + (α− 1)ULH + α · ULL ≤ α ·m
⇐ m/α+ (α− 1)(m/α− ULL) + α · ULL ≤ α ·m

(∵ ULL + ULH ≤ m/α and UHH ≤ m/α)

⇐ m+ ULL ≤ α ·m
⇐ m+m/α ≤ α ·m. (∵ ULL ≤ U

L
L + ULH ≤ m/α) (30)

Eq. (30) holds when α ≥ (1 +
√

5)/2 because Eq. (30) is
α2 − α− 1 ≥ 0 and α is a positive value.

Since Eq. (30) holds with α = (1 +
√

5)/2, MC-Fluid can
schedule any task set that is clairvoyantly schedulable on m
speed-(1/α) processors. Thus, the speedup factor of MC-Fluid
is (1 +

√
5)/2.

Baruah et al. [3] showed that any non-clairvoyant unipro-
cessor algorithm for a dual-criticality task set cannot have
a speedup factor better than 4/3. While this result is also
applicable for multiprocessors, we do not know an exact
lower bound on a speedup factor for any non-clairvoyant
multiprocessor algorithm yet. In this work, we show that a
sufficient lower bound for multiprocessors is (1 +

√
5)/2.

VII. MC-DP-FAIR SCHEDULING ALGORITHM

Many fluid-based scheduling algorithms, including MC-
Fluid, rely on the fractional (fluid) processor assumption,
and this assumption makes them infeasible to construct a
schedule on real (non-fluid) hardware platforms. Overcoming
the limitation of fluid-based algorithms, several approaches
(e.g., [6], [12], [16]) have been introduced to construct a non-
fluid schedule for real hardware platforms, while holding an
equivalent schedulability to that of a fluid-based schedule.
Such approaches differ in the unit of a time interval over
which they enforce the equivalence of fluid-based and non-
fluid schedules. Quantum-based approaches (e.g., [6]) identify
the minimal scheduling unit (i.e., a time quantum) in hardware
platforms: every time quantum, they enforce the execution
of every task to satisfy that the difference of the execution
amount between the actual schedule and the fluid schedule
is no greater than 1. Deadline partitioning approaches (e.g.,
[12], [16]) enforce every task to meet the fluid scheduling
requirement only every distinct deadline of the system, which
suffices with respect to schedulability.
DP-Fair. We choose DP-Fair [16] due to its simplicity. DP-
Fair enforces the fluid requirement every time slice, defined as
a time interval between two consecutive Deadline Partitions
(DPs), where a DP is defined as a distinct release time or
deadline from all jobs in the system. For a time slice, DP-Fair
ensures that every task gets executed for its required execution
amount until the end of the time slice, which satisfies the fluid
requirement within the time slice.

The required execution amount for a job of a non-MC task
τi within a time slice of interval length l is calculated as l · δi

where δi is density of the task (δi = Ci/Ti where Ti is its
period and Ci is its WCET).

We recapitulate the schedulability properties of DP-Fair in
the following lemmas.

Lemma 13 (from [16]). Given a non-MC task set τ and a
time slice, if the task set is scheduled within the time slice
under DP-Fair and

∑
i∈τ δi ≤ m, then the required execution

amount of each task within the time slice can be executed until
the end of the time slice.

Lemma 14 (from [16]). A non-MC task set τ is schedulable
under DP-Fair iff

∑
τi∈τ δi ≤ m.

MC-DP-Fair. Building upon DP-Fair, we propose MC-DP-
Fair scheduling algorithm, which constructs a non-fluid sched-
ule based on MC-Fluid. In MC-DP-Fair, DP-Fair should
be extended considering the characteristics of MC-Fluid: 1)
LO- and HI-density should be modified to satisfy the fluid
execution requirement of MC-Fluid in the end of a time slice;
and 2) the worst-case scenarios of MC-Fluid and MC-DP-Fair
should be the same.

Definition 7 (MC-DP-Fair scheduling algorithm). MC-DP-
Fair is defined with a per-task virtual deadline and a special
DP. For each task τi ∈ τ , we define a virtual deadline Vi ∈ R+

s.t. 0 < Vi ≤ Ti. Let Γ denote the earliest DP after time instant
of mode-switch. According to DP-Fair, MC-DP-Fair executes
each task τi ∈ τ with Vi before Γ and with Ti after Γ as its
deadline.

According to Def. 7, the DP Γ is one of virtual deadlines
of jobs because deadline partitioning is performed based on
virtual deadlines of jobs in the system and Γ is the earliest
DP after mode-switch. Note that scheduling policy of MC-
DP-Fair is changed not at mode-switch but at Γ, which is
the earliest DP after mode-switch. By this delayed scheduling
policy switch, MC-DP-Fair has the same worst-case situation
as MC-Fluid does.

In LO-mode, MC-DP-Fair considers, for a task τi ∈ τ ,
δLi

def
= CLi /Vi, where Vi is the virtual deadline of τi. Then,

the amount of execution required for a task τi and time slice
length l is l · δLi and any job of the task can be executed for
CLi until its virtual deadline in LO-mode.

In HI-mode, we can derive the density of task depending on
whether the time instant of mode-switch is a DP or not. We
claim that we only need to consider the first case. Consider that
mode-switch happens in the middle of a time slice. Note that
Γ indicates the end of this time slice. MC-DP-Fair executes
HI-tasks for the amount of their required remaining execution
(calculated based on CLi) until Γ. Then, the second case is
equivalent to the case where mode-switch happens at Γ, which
is a DP.

Now, consider the case where mode-switch happens at a DP.
The density of the job depends on the remaining execution
amount to CHi and the remaining time to deadline (Ti) at the
DP. We first calculate the remaining time to deadline of the
job: Ti −wi where wi is time interval length from its release
time to the DP. Next, we calculate the amount of remaining
execution up to CHi by using Lemma 13. If we assume that∑
τi∈τ δ

L
i ≤ m, we can compute the execution amount of the

job from its release time to the DP: ELi (wi) = δLi · wi. We

can compute δHi after the DP:

δHi
def
=
CHi − ELi (wi)

Ti − wi
=
CHi − δLi · wi
Ti − wi

. (31)

Then, the amount of execution required for the job and time
slice length l in HI-mode is l · δHi and the job is finished its
execution in its deadline in HI-mode.
Virtual Deadline Assignment. In this section, we denote the
values of θLi and θHi in the optimal assignment of MC-Fluid
(by θL∗i and θH∗i), respectively. Intuitively, to utilize MC-
Fluid analysis, the required LO-density for a HI-task is no
greater than θL∗i and the required LO-density for a LO-task is
no greater than its task utilization. Def. 8 proposes a virtual
deadline assignment according to the optimal assignment of
MC-Fluid. Lemma 15 validates the correctness of Def. 8.

Definition 8 (Virtual deadline assignment for MC-DP-Fair).
We assign Vi := Ti for a LO-task τi ∈ τL and Vi := CLi /θ

L∗
i

for a HI-task τi ∈ τH where θL∗i is the value of θLi in the
optimal assignment for MC-Fluid.

Lemma 15. Given a feasible MC task set τ , if the task
set is scheduled by MC-DP-Fair with the virtual deadline
assignment by Def. 8, then (i) δLi ≤ θL∗i for each task τi ∈ τ
and (ii) δHi ≤ θH∗i for each task τi ∈ τH .

Proof: (i) We show that δLi ≤ θL∗i for τi ∈ τ : we have
δLi = CLi /Ti = uLi = θL∗i for τi ∈ τL by Lemma 6 and
δLi = CLi /Vi = θL∗i for τi ∈ τH .

(ii) We will show that δHi ≤ θH∗i for τi ∈τH . Since δHi
varies on wi in Eq. (31), we will derive the maximum δHi and
show that the value is no greater than θH∗i . Since we assume∑
τi∈τ δ

L
i ≤ m in derivation of Eq. (31), we need to check

that the assumption holds: it holds because δLi ≤ θL∗i from
Case (i) and

∑
τi∈τ θ

L∗
i ≤ m from the feasible task set.

To find the maximum δHi , consider derivative of Eq. (31):

d δHi
d wi

=
−δLi (Ti − wi) + (CHi − δLi · wi)

(Ti − wi)2
=
CHi − δLi · Ti
(Ti − wi)2

,

which is greater than or equal to 0 if uHi ≥ δLi .
To show that the derivative is non-negative, we show that

uHi ≥ δLi . Since θL∗i ≥ δLi from Case (i), we only need to
show uHi ≥ θL∗i : since θL∗i =

uL
i ·θ

H∗
i

θH∗
i −uH

i +uL
i

by Lemma 6,

uHi ≥
uLi · θH∗i

θH∗i − uHi + uLi
⇔ uHi (θH∗i − uHi + uLi) ≥ uLi · θH∗i

⇔ θH∗i (uHi − uLi) ≥ uHi (uHi − uLi),

which is true because θH∗i satisfies Eq. (10), which is θH∗i ≥
uHi , by Theorem 2.

From the derivative of δHi , we can find the maximum δHi :
the maximum δHi can be found at the maximum wi because
d δHi
d wi

≥ 0 and thus δHi is an increasing function of wi. Since
the task use virtual deadline in LO-mode, we have wi ≤ Vi.
Then, we can calculate δHi when wi = Vi:

δHi =
CHi − δLi · Vi
Ti − Vi

=
CHi − CLi /Vi · Vi
Ti − CLi /θL∗i

=
uHi − uLi

1− uLi /θL∗i
,

which is θH∗i by Lemma 6. Thus, we conclude δHi ≤ θH∗i .

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair

PART

GLO

FP

(a) m=2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

(b) m=4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

(c) m=8

Fig. 3. The acceptance ratio with varying the normalized utilization bound (Ub/m) and the number of processors (m).

Schedulability Analysis. Since MC tasks are subject to
different execution time requirements (and thereby different
densities), we extend Lemma 14 for MC systems as follows.

Lemma 16. Given δLi and δHi for each task τi ∈ τ , a MC
task set τ is MC-schedulable iff∑

τi∈τ
δLi ≤ m, (32)∑

τi∈τH

δHi ≤ m. (33)

Proof: Eq. (32) is LO-schedulability by Lemma 14 with
LO-mode. Eq. (33) is HI-schedulability by Lemma 14 with
HI-mode. Since MC-schedulability implies both LO- and HI-
schedulability, Eqs. (32) and (33) are MC-schedulability.

Based on Lemmas 15 and 16, Theorem 5 presents that MC-
DP-Fair has the same schedulability as MC-Fluid.

Theorem 5. A MC task set τ is schedulable by MC-DP-Fair
with the virtual deadline assignment by Def. 8 iff τ is MC-
Fluid-feasible.

Proof: (⇒) To show that τ is feasible, we need to show
that there exists an assignment satisfying Eq. (10), (11), and
(12) by Theorem 2. Since θH∗i for ∀τi ∈ τH can only violate
Eq. (11) according to Def. 6, we need to show that Eq. (11)
holds.

Since the task set is schedulable by MC-DP-Fair with
Def. 8, we know that Eq. (32) holds by Lemma 16. Eq. (32)
is rewritten to:∑
τi∈τ

δLi ≤ m⇔
∑
τi∈τL

CLi /Ti +
∑
τi∈τH

CLi /Vi ≤ m

⇔ ULL +
∑
τi∈τH

uLi · θH∗i
θH∗i − uHi + uLi

≤ m

⇔ ULL +
∑
τi∈τH

(
uLi +

uLi (uHi − uLi)

θH∗i − uHi + uLi

)
≤ m

⇔ ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi)

θH∗i − uHi + uLi
≤ m,

which is Eq. (11).
(⇐) To show that the task set is schedulable, we need to

show that Eqs. (32) and (33) hold by Lemma 16.
Since the task set is feasible, Eq. (11) with θH∗i holds by

Theorem 2. We already showed that Eq. (11) is Eq. (32) in
Case ⇒.

Since the feasible task set is scheduled by MC-DP-Fair
with Def. 8, we have δHi ≤ θH∗i for each task τi ∈ τH by
Lemma 15. We show that Eq. (33) holds:∑

τi∈τH

δHi ≤
∑
τi∈τH

θH∗i ≤ m,

which is true because the optimal assignment satisfies CON1
in Def. 6 with θH∗i = Xi + uHi .

VIII. SIMULATION

In this section, we will evaluate the performance of the
MC-Fluid framework. We compare the schedulability of MC-
DP-Fair (a non-fluid algorithm with the same schedulabil-
ity as MC-Fluid) with previously published MC-scheduling
approaches on multiprocessors: the global fpEDF algorithm
(GLO) [19], the partitioned EDF algorithm (PART) [5], and
the global fixed-priority algorithm (FP) [20]. The speedup
factors of MC-DP-Fair, GLO, and PART are (1 +

√
5)/2 (≈

1.618), 1 +
√

5 (≈ 3.236), and 8/3 (≈ 2.667), respectively.
Task Set Generation. We generate random task sets according
to the workload-generation algorithm [19]. Let U b be the upper
bound of system utilization in both LO- and HI-mode. Input
parameters are U b, m (the number of processors), Zb (the
upper bound of task utilization), and P c (the probability of
task criticality). Initially, m = 2, Zb = 0.7, and P c = 0.5.
We will also evaluate varying different input parameters. A
random task is generated as follows (all task parameters are
randomly drawn in uniform distribution):
• uLi is a real number drawn from the range [0.02, Zb].
• Ti is an integer drawn from the range [20, 300].
• Ri (the ratio of uHi /u

L
i) is a real number drawn from the

range [1, 4].
• Pi (the probability that the task is a HI-task) is a real

number from the range [0,1]. If Pi < P c, set χi := LO
and CLi := buLi · Tic. Otherwise, set χi := HI , CLi :=
buLi · Tic, and CHi := buLi ·Ri · Tic.

Repeat to generate a task in the task set until max(ULH +
ULL , U

H
H) is larger than U b. Then, discard the task added last.

Simulation Results. Fig. 3 shows the acceptance ratio (ratio
of schedulable task sets) over varying m ∈ {2, 4, 8} and
normalized utilization bound U b/m from 0.3 to 1.0 in step
of 0.05. Each data point is based on 10,000 task sets. The
result shows that MC-DP-Fair outperforms previously known
approaches.

Fig. 4 and 5 show the effect of varying different parameters
(P c or Zb). We use the weighted acceptance ratio [9] to reduce

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max. Task Utilization

0.2

0.4

0.6

0.8

1.0
W

e
ig

h
te

d
 A

cc
e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair
PART

GLO

FP

Fig. 4. The weighted acceptance ratio with varying the upper bound of task
utilization (Zb).

0.0 0.2 0.4 0.6 0.8 1.0
The Probability of Task Criticality

0.2

0.4

0.6

0.8

1.0

W
e
ig

h
te

d
 A

cc
e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair
PART

GLO

FP

Fig. 5. The weighted acceptance ratio with varying the probability of task
criticality (P c).

the number of dimensions in the plots. Let U bm be U b/m
and A(U bm) be the acceptance ratio for U bm. The weighted
acceptance ratio W (S) is calculated to:

W (S)
def
=

∑
Ub

m∈S
(
U bm ·A(U bm)

)∑
Ub

m∈S
U bm

,

where S is the set of U b/m. The set S is the same as the one
for Fig. 3 (S = {0.3, 0.35, · · · , 1.0}). In Figs. 4 and 5, each
data point is based on 15,000 task sets where 1,000 task sets
are experimented for each U b/m in S.

Fig. 4 shows the weighted acceptance ratio varying the
upper bound of task utilization (Zb). MC-DP-Fair and GLO
are insensitive to Zb while the performance of PART decreases
as Zb increases due to difficulty of scheduling large utilization
tasks. On the other hand, the performance of FP increases
as Zb increases because interference-based analysis favors a
smaller number of tasks7.

Fig. 5 shows the weighted acceptance ratio varying the
probability of task criticality (P c). MC-DP-Fair can schedule
all task sets when only LO-tasks or only HI-tasks are generated
(i.e., P c = 0 or P c = 1) since MC-DP-Fair generalizing DP-
Fair is also optimal for the non-MC task model.

IX. CONCLUSION

We presented a multiprocessor mixed-criticality scheduling
algorithm, called MC-Fluid, based on the fluid scheduling
platform. Given LO- and HI-execution rates per task, we
derived an exact schedulability analysis of MC-Fluid on the
dual-criticality systems. We also presented an optimal rate as-
signment algorithm with polynomial complexity. For standard
(non-fluid) platforms, we presented MC-DP-Fair scheduling

7While FP uses interference-based analysis, all others use utilization-based
analysis.

algorithm, which has the same scheduling properties as MC-
Fluid. We showed that MC-Fluid has a speedup factor of
(1+
√

5)/2 (≈ 1.618), which is best known in multiprocessor
MC scheduling, and MC-DP-Fair outperforms all existing
algorithms in simulation results.

As future work, we plan to derive a tighter speedup factor
and apply another schedule generation algorithm for non-MC
platforms (e.g., RUN, which is based on a weak notion of the
fluid scheduling model [22]) to reduce preemption overheads,
under the MC-Fluid framework. We also plan to improve
the MC-Fluid framework itself by considering more than two
execution rates for better schedulability.

ACKNOWLEDGEMENT

This work was supported in part by BSRP (NRF-
2010-0006650, NRF-2012R1A1A1014930), NCRC (2012-
0000980), IITP (2011-10041313, 14-824-09-013) and
KIAT (M002300089) funded by the Korea Government
(MEST/MSIP/MOTIE). In addition, it was supported in part
by ARO W911NF-11-1-0403, ONR N000141310802, and
MoE Tier-2 grant number MOE2013-T2-2-029.

REFERENCES

[1] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg. Multicore
operating-system support for mixed criticality. In Workshop on Mixed
Criticality, 2009.

[2] AUTOSAR. AUTomotive Open System ARchitecture. www.autosar.org.
[3] S. Baruah, V. Bonifaci, G. D”Angelo, H. Li, A. Marchetti-Spaccamela,

S. Van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In ECRTS,
2012.

[4] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In RTSS, 2011.

[5] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 2013.

[6] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate
progress: a notion of fairness in resource allocation. In Symposium on
the Theory of Computing (STOC), 1993.

[7] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In RTAS, 2010.

[8] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In European Symposium on Algorithms (ESA), 2011.

[9] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact
on schedulability. In OSPERT workshop, 2010.

[10] A. Block, J. Anderson, and G. Bishop. Fine-grained task reweighting
on multiprocessors. In RTCSA, 2005.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling
algorithm for multiprocessors. In RTSS, 2006.

[13] R. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 2011.

[14] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In RTSS, 2013.

[15] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In ECRTS, 2012.

[16] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt. DP-Fair: a
unifying theory for optimal hard real-time multiprocessor scheduling.
Real-Time Systems, 2011.

[17] P. Holman and J. H. Anderson. Adapting pfair scheduling for symmetric
multiprocessors. J. Embedded Comput., 2005.

[18] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM, 2000.

[19] H. Li and S. Baruah. Global mixed-criticality scheduling on multipro-
cessors. In ECRTS, 2012.

[20] R. Pathan. Schedulability analysis of mixed-criticality systems on
multiprocessors. In ECRTS, 2012.

[21] P. Prisaznuk. Integrated modular avionics. In Aerospace and Electronics
Conference, 1992.

[22] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. RUN: Optimal
Multiprocessor Real-Time Scheduling via Reduction to Uniprocessor.
In RTSS, 2011.

[23] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, 2007.

	University of Pennsylvania
	ScholarlyCommons
	12-2014

	MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Multiprocessors
	Jaewoo Lee
	Kieu-My Phan
	Xiaozhe Gu
	Jiyeon Lee
	Arvind Easwaran
	See next page for additional authors
	Recommended Citation

	MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Multiprocessors
	Abstract
	Disciplines
	Comments
	Author(s)

	tmp.1456534445.pdf.XzTNz

