
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-2015

A Hybrid Approach to Causality Analysis
Shaohui Wang
University of Pennsylvania, shaohui@seas.upenn.edu

Yoann Geoffroy

Gregor Gössler

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

6th International Conference on Runtime Verification (RV 2015), Vienna, Austria, September 22 – 25, 2015.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/803
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Shaohui Wang, Yoann Geoffroy, Gregor Gössler, Oleg Sokolsky, and Insup Lee, "A Hybrid Approach to Causality Analysis", , 250-265.
September 2015. http://dx.doi.org/10.1007/978-3-319-23820-3_16

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-319-23820-3_16
http://rv2015.conf.tuwien.ac.at/
http://repository.upenn.edu/cis_papers/803
mailto:libraryrepository@pobox.upenn.edu

A Hybrid Approach to Causality Analysis

Abstract
In component-based safety-critical systems, when a system safety property is violated, it is necessary to
analyze which components are the cause. Given a system execution trace that exhibits component faults
leading to a property violation, our causality analysis formalizes a notion of counterfactual reasoning (\what
would the system behavior be if a component had been correct?") and algorithmically derives such alternative
system behaviors, without re-executing the system itself. In this paper, we show that we can improve precision
of the analysis if 1) we can emulate execution of components instead of relying on their contracts, and 2) take
into consideration input/output dependencies between components to avoid blaming components for faults
induced by other components. We demonstrate the utility of the extended analysis with a case study for a
closed-loop patient-controlled analgesia system.

Disciplines
Computer Engineering | Computer Sciences

Comments
6th International Conference on Runtime Verification (RV 2015), Vienna, Austria, September 22 – 25, 2015.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/803

http://rv2015.conf.tuwien.ac.at/
http://repository.upenn.edu/cis_papers/803?utm_source=repository.upenn.edu%2Fcis_papers%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages

A Hybrid Approach to Causality Analysis???

Shaohui Wang1, Yoann Geoffroy2,
Gregor Gössler2, Oleg Sokolsky1, and Insup Lee1

1 Department of Computer and Information Science
University of Pennsylvania

shaohui@seas.upenn.edu,{sokolsky,lee}@cis.upenn.edu
2 INRIA Grenoble – Rhône-Alpes, France

{yoann.geoffroy,gregor.goessler}@inria.fr

Abstract. In component-based safety-critical systems, when a system
safety property is violated, it is necessary to analyze which components
are the cause. Given a system execution trace that exhibits component
faults leading to a property violation, our causality analysis formalizes
a notion of counterfactual reasoning (“what would the system behavior
be if a component had been correct?”) and algorithmically derives such
alternative system behaviors, without re-executing the system itself. In
this paper, we show that we can improve precision of the analysis if
1) we can emulate execution of components instead of relying on their
contracts, and 2) take into consideration input/output dependencies be-
tween components to avoid blaming components for faults induced by
other components. We demonstrate the utility of the extended analysis
with a case study for a closed-loop patient-controlled analgesia system.

1 Introduction

A key idea in systems engineering is that complex systems are built by assem-
bling components. Component-based systems are desirable because they allow
independent development of system components by different suppliers, as well as
their incremental construction and modification. The down side of component-
based development is that no single entity – neither the integrator, nor com-
ponent suppliers – have a complete understanding of component behaviors and
possible interactions between them. This incomplete knowledge, in turn, requires
us to resort to black-box analysis methods, when only the input-output behavior
of a component is specified.

In this work, we are interested in the forensic analysis of a component-based
system following the discovered violation of system safety properties. Diagnosis
of the root cause is crucial for the subsequent recovery and follow-up prevention

? Research is supported in part by grants NSF CNS-1035715, IIS-1231547, ACI-
1239324, and INRIA associate team Causalysis.

?? This version of the paper corrects a typo in Definition 9 that was introduced in the
original published version.

measures. Such diagnosis requires recording of system executions leading to the
failure, as well as methods for the efficient analysis of the recorded data.

There has been a great amount of research following the seminal work of [5]
and [16] in the study of fault diagnosis. In our previous work in [9,18,8], we took
a step further and considered the problem of causality analysis for component-
based systems. We formalized counterfactual reasoning (“what would the system
execution be should a component have behaved correctly?”) as a basis for the
analysis. Our analysis provided a plausible explanation to how the component
faults had contributed to the system property violation.

Specifically, we proposed a general causality analysis framework in [18,8],
and identified four major steps in causality analysis. First, the set F of all
faulty components with respect to their corresponding component properties are
identified. Second, the set of possible counterfactual behaviors for a suspected
subset S ⊆ F is constructed. Third, based on our formalization of causality,
it is determined whether the suspected subset S is the culprit. Lastly, minimal
culprits are determined based on the results from the third step. The causality
analysis we proposed in [18] assumes that the only information available to
the analysis are the system definition (system property, component properties,
and system topology) and a single system execution trace on which the system
property is violated. It was assumed that we cannot re-run the system with some
of the component faults removed, risking another failure if the true culprit was
not corrected. This assumption limits precision of the analysis, as little additional
information can be obtained from the system itself.

We show in this paper that we can improve the analysis without relaxing
this assumption for the whole system, if some components of the system—which
we refer to as separable components—can be run in isolation from the rest of
the system to assist in counterfactual trace generation. The use of separable
components during analysis phase provides a hybrid way to construct counter-
factual traces that combines component traces generated statically, based on
the system definition and the observed trace, and dynamic traces of separable
components, containing actual outputs of the component on inputs generated
during the analysis.

Another piece of under-utilized information in determining causes is the re-
lation in between component property violations, i.e., horizontal causes [9]. For
instance, when components A and B together are determined to be a cause for
system property violation, by investigating and concluding that component A’s
fault is the cause of that of component B’s, we can exclude B from blame.

To evaluate these extensions, we applied the proposed causality analysis to a
patient controlled analgesia (PCA) infusion pump case study from the medical
device domain. A post-surgery patient can request pain relief medication by
pressing a button on the PCA pump. A pump controller monitors patient state
using readings from a pulse-oximeter. To avoid potential overdose, the controller
issues tickets to the pump that can limit its ability to respond to repeated patient
requests. Errors in computing, delivering, and processing tickets can lead to an
overdose, and the faulty component needs to be determined. Results from the

case study show that our proposed causality analysis can provide a more fine-
grained analysis than our previous approach.

The contribution of this paper is a new algorithm for counterfactual reasoning
that incorporates the two extensions to our existing approach, namely the use of
separable components and horizontal causality. Evaluation of the new approach
shows that the analysis becomes more intuitive and precise. To the best of our
knowledge, the proposed approach is also the first to have incorporated both
static and run-time analysis for causality analysis. On the application side, we
have demonstrated the applicability of the approach to a case study in the safety-
critical systems domain.

2 The PCA Example

Patient controlled analgesia (PCA) infusion pumps are used for post-surgical
pain treatment in an intensive care unit (ICU). A potential hazard for the pa-
tient is overdosing. When continuously in infusion, the patient vital signs, e.g.
blood oxygen saturation level (SpO2), would gradually decrease. It is considered
a critical condition for the patient when SpO2 drops below 70%. To prevent
overdosing, smart PCA pumps are usually equipped with a controller which
reads measurements of patient vital signs and issues to PCA pumps tickets, i.e.,
maximum duration allowed for infusion given the patient vital sign readings. Fig-
ure 1 shows a simplified schematic view of the scenario, adapted from a system
modeled out of a real component-based system in the clinical setting, presented
in [1].

Patient

PCA Pump

Controller

Pulse Oximeter
spo2

pump_enabled_ticket
bolus_request

infusion_rate

spo2

Fig. 1. Schematic View of PCA Case Study

Fig. 2. Ticket vs SpO2

System and Components. The PCA sys-
tem consists of four components: the Patient,
the pulse-oximeter (PO), the controller (Ctrl),
and the PCA pump. The system level safety
property is that Patient SpO2 never drops be-
low 70%.

The Patient component is simulated based
on given patient physiological reactions when
infusion is and is not in progress. The differ-
ential equations describing the dynamics are
given in [1]. For the purpose of this case study,

Snapshot Patient.SpO2 PO.SpO2 Controller.Ticket Patient.BR PCA.IR

0. 71 75 3 true 400
1. 70 72 0 false 400
2. 69

Table 1. Example Faulty Trace for PCA Case Study

it suffices to know that patient SpO2 value
would gradually decrease (resp., increase) while infusion is in progress (resp.,
stopped).

PO measures the Patient SpO2 and transmits the measurements to Ctrl.
Ctrl reads the patient SpO2, computes the ticket, and outputs the calcu-

lated ticket. The ticket-SpO2 relation given in [1] is pre-calculated and shown in
Figure 2 with values for SpO2 in the range 65%–80%.

The PCA component takes patient bolus request and the ticket as input.
When there is a patient bolus request, the PCA delivers (a) no drug if ticket is
0; (b) one time unit of infusion if ticket is 1; and (c) two consecutive time units
of infusion if ticket is greater than 1.
Traces. An execution of the PCA system with manually injected faults is
recorded as a system trace, i.e., a sequence of snapshots of variable values of
components’ input and output. We use a tabular form to represent a trace illus-
trated in Table 1.
Example of Causality Analysis Problem. On the trace in Table 1, in Snap-
shot 0, PO is faulty in measuring the value of the patient SpO2 in that the
measured value (75%) is larger than the actual value (71%). Ctrl takes the
wrong value as input, and makes a faulty computation as well (by outputting
the ticket value 3 instead of the expected 1 as shown in Figure 2). The PCA
receives a patient bolus request and reads the ticket value to be 3, so it initiates
infusion for two time units consecutively until in Snapshot 2 where the patient
SpO2 drops below the critical value 70%—a patient adverse event represented
as a system level property violation occurs.

The causality analysis problem aims to study, in component-based systems
where multiple components have committed faults in a given system execution
so that system level property violation occurs, which subsets of component faults
are the culprits for the system level property violation.

3 Definition of the Causality Analysis Problem

Preliminaries. A type T is a set of values. A typed variable x : T is a variable
with values in T . We only consider finite types in this work. A snapshot sX for
a set X = {x1, . . . , xm} of typed variables x1 : T1, . . . , xm : Tm is an assignment
of each variable xi to its value sX(xi) in Ti, for 1 ≤ i ≤ m. A trace Tr =
s0, s1, . . . for a set X of typed variables is a sequence of snapshots, where every
snapshot si is for X. The snapshot at location i on a trace Tr is denoted Tr[i].
The suffix of Tr starting at location i is denoted Tr[i...]. A segment of Tr

starting from location i and ending at location j (inclusive) is denoted Tr[i..j].
For convenience, we denote by |Tr[i..j]| the length of Tr[i..j], i.e., the number
of snapshots on Tr[i..j]. A set TR of traces is called prefix-closed if ∀Tr ∈
TR.∀l < |Tr|. T r[0..l] ∈ TR. We denote TX the set of all possible traces over
a set X.1 The projection πY (s) of a snapshot s for X on to a subset Y ⊆ X is
a snapshot for domain Y such that ∀y ∈ Y.

(
πY (s)

)
(y) = s(y). The projection

πY (Tr) of a trace Tr = s0, s1, . . . on to a subset Y ⊆ X is a trace for Y , defined
as πY (Tr) = πY (s0), πY (s1), We write πv(·) for π{v}(·).

3.1 System Definition

Definition 1 (Component signature). A component signature is a tuple C =
〈I,O,PC〉, where I and O are disjoint, and

– I = {i1 : T i
1, . . . , im : T i

m} is a set of typed variables called the input,
– O = {o1 : T o

1 , . . . , on : T o
n} is a set of typed variables called the output, and

– PC ⊆ TI∪O is a prefix-closed set of traces called the component property.

A component signature describes all knowledge of the component available
to causality analysis. The component property can be characterized by formal
languages such as regular expressions, first-order logic, temporal logics, etc. Here
we take a model-theoretic view and identify the property and the set of traces
that satisfy the property. By TrC ⊆ TI∪O we denote the set of traces that a
component may exhibit during its execution. Note that the relationship between
TrC and PC is not known a priori. As we will see below, we have TrC ⊆ PC in
a correct (non-faulty) component.

Definition 2 (Channel and connection). A channel c = (x, y) is a pair of typed
variables (x : Tx, y : Ty) such that Tx ⊆ Ty. A connection θ is a set of channels.

We make the following assumptions on component composition: (a) Fan-in
connections are not allowed, i.e., it is required that ∀(x1, y1), (x2, y2) ∈ θ.y1 =
y2 → x1 = x2. (b) Variable name clashes are resolved by associating them
with the component names, as is common in component-oriented languages.
(c) Channels are reliable. A value passed into a channel will be successfully
received by the connected component.

Definition 3 (Composition of components). Let A = {C1, . . . , CJ} be a set of J
components with disjoint sets of variables, where Cj = 〈Ij , Oj ,Pj〉 for 1 ≤ j ≤ J .
Let θ be a connection where ∀(x, y) ∈ θ.∃j, k ∈ {1, . . . , J}.x ∈ Oj ∧ y ∈ Ik.
The composition of components C1, . . . , CJ , denoted C1‖ . . . ‖CJ , is defined as
a component A = 〈I,O,P〉, where

– I =
(⋃J

j=1Ij
)
\ {y | ∃x.(x, y) ∈ θ} and O =

⋃J
j=1Oj, and

– P =
{
Tr = s0s1 . . . s` ∈ TI∪O | ∀1 ≤ j ≤ J.πj(Tr) ∈ Pj ∧ ∀(x, y) ∈ θ ∀k ∈

[0, `].sk(x) = sk(y)
}

.

1 Throughout the paper we use bold font to represent a set of traces (e.g., TR, TX)
or a property (e.g., P) and calligraphic font to represent a set of components (e.g.,
A in Definition 3).

Definition 4 (System). A system Sys = 〈A, θ,P〉 is a tuple where Sys is com-
posed of components in A = {C1, . . . , CJ} by connection θ, and P is a prefix-
closed superset of PC1‖...‖CJ

called the (safety) property for system Sys.

The system property P may contain more behaviors than PC1‖...‖CJ
. This

means the composition of C1, . . . , CJ is essentially a refinement of the system
property. This is also an equivalent assumption as in [8,18] which stipulates that
when a system property violation occurs, there must be at least one component
property violation among C1, . . . , CJ .

Definition 5 (System trace). A system trace Tr for Sys = 〈A, θ,P〉 composed
of components C = {C1, . . . , CJ} is a trace where each snapshot is for the set of

all components’ input and output,
⋃J

j=1

(
Ij ∪Oj

)
.

We assume in this work that a violation of a property P on a trace Tr can be
detected and that the minimal prefix of Tr that violates P can be determined,
i.e., if Tr /∈ P, then iTr,P = min{i | Tr[0..i] 6∈ P} is well defined. Our formaliza-
tion of component and system property violation naturally aligns respectively
with the definitions of fault and failure: a component property violation is a
manifestation of a fault, whereas a system property violation is a failure.

Definition 6 (Faults and failures). Given a system Sys and a system trace Tr
for Sys, a component fault (system failure, resp.) on Tr is a violation of the
component (system, resp.) property.

3.2 Causality Definitions

We state the causality analysis for component-based faulty tolerant systems as
follows. Given
– a system definition Sys = 〈A, θ,P〉,
– a trace Tr for Sys on which the system property is violated, and
– a causality definition CD,

determine the minimal subsets of faulty components that are causes for the
system property violation, with respect to a given causality definition CD.

Reasoning for causality is based on counterfactuals. For instance, to establish
that event e1 is a necessary cause of event e2, we consider whether the event e2
would happen if event e1 does not occur in any alternative system execution.

Here, an alternative system execution when certain system events are changed
is called a counterfactual trace, whereas the observed system execution is called
the actual trace. The key to reasoning about causality is to construct the set of
all possible counterfactual traces.

In an abstract level, the set of counterfactual traces can be viewed as a
function on Tr, Sys, and S. We use the notation σ(Tr, Sys,S) to represent the
reconstructed sets of traces. Note that on those traces, the property violations
for components in S are corrected. For simplicity we only consider necessary
causality in this paper, but we note that the formalism can be used to express
other notions of causality, such as sufficient causality.

In addition, we can distinguish vertical and horizontal causality. Vertical
causality refers to the causal relationship between component faults and system

failures, whereas horizontal causality refers to the causal relationship between
component faults.

Definition 7 (Necessary vertical cause). Given a system definition Sys and a
trace Tr for Sys, let F = {C ∈ Sys | πC(Tr) 6∈ PC} be the set of faulty compo-
nents on trace Tr and S ⊆ F be a non-empty suspected subset of faulty compo-
nents. The component property violation in S is a necessary vertical cause for
system property violation on trace Tr if and only if ∀Tr′ ∈ σ(Tr, Sys,S).T r′ ∈
P.

Definition 8 (Necessary horizontal cause). Let F and S be as in Definition 7,
and let C ∈ F\S be another faulty component. The component property violation
in S is a necessary horizontal cause for the property violation of component C
on trace Tr if and only if ∀Tr′ ∈ σ(Tr, Sys,S).πC(Tr′) ∈ PC .

4 Approach

In this work, we propose two extensions to our existing causality analysis frame-
work in [18,19], illustrated in Figure 3, one using separable components and the
other using horizontal causality. The four steps involved in a causality analysis
are briefly discussed below, whereas using separable components and horizontal
causality intervene in Step 2 (Trace Reconstruction) and Step 4 (Culprit Mini-
mization), respectively.

Step 1. Offline Analysis & Powerset Construction. We first determine the set F
as in Definition 7, and construct the powerset 2F of F .

Step 2. Trace Reconstruction. For each subset S ∈ 2F \ ∅, called a suspect, we
construct σ(Tr, Sys,S).

Step 3. Causality Analysis & Collecting Causes. Based on σ(Tr, Sys,S) we check
whether S is a cause according to the causality definition CD. If yes,

Causality Analysis Framework Overview

Loop for each
non-empty

element in 2F

Minimal
Culprits

Powerset 2F of
Faulty Components

Reconstructed
Set of Traces

Set of
Culprits

1. Offline Analysis & Powerset
Construction

2. Trace Reconstruction

3. Causality Analysis
 & Collecting Causes

4. Culprit
Minimization

Trace with
System Failure

System
Property

System
Definition

Causality
Definition

Fig. 3. Causality Analysis Framework Overview

S is a culprit and is collected for the subsequent culprit minimization;
otherwise S is not a cause for the violation of system property P.

Step 4. Culprit Minimization. The last step of causality analysis is to check the
minimality of each collected culprit. Non-minimal culprits are exempted
from blame.

4.1 Separable Components

Determining component behavior, i.e., the set σ(Tr, Sys,S) in Step 2 of the
causality analysis framework, poses a challenge in previous approaches when a
component is faulty but not suspected. Unlike suspected components, which have
their outputs corrected according to their contracts, unsuspected components are
not supposed to be corrected. When an input of an unsuspected component has
changed as a result of correcting outputs of a suspected component, we need to
determine, which outputs, possibly faulty, we should use in trace reconstruction.
In [18,19], we assumed that this output was the same as observed on the given
system trace. This assumption was due to the unavailable information of how
a faulty should behave in such a scenario, where the component’s behavior has
to be assumed to obtain the output. This assumption may lead to an imprecise
analysis if the actual component follows a different behavior model when it is
faulty.

A more realistic treatment is to re-execute the components that are available
to the analyzer so that the actual output of a component given a changed input
can be produced by the component itself whether it being faulty or not. We call
such components separable since they can be separated from the original system
and re-executed in a controlled experiment setting.
Example 1. For the running example, in the trace reconstruction for the case of
{PO}, when PO outputs a correct value 71 corresponding to the input 71 from
Patient, Ctrl has a changed input 71 other than 75 on the observed trace. With
Ctrl being a separable component, it is possible to experimentally feed the new
input to Ctrl so as to observe its output. Note that Ctrl is also a faulty component
(that we are not suspecting when analyzing {PO}), it may or may not produce
the expected value in Figure 2. If the output ticket value from Ctrl is 0 (resp.,
1), then the patient gets no infusion (resp., infusion for 1 time unit). In either
case, the patient SpO2 correspondingly does not drop below the 70 threshold,
therefore there is no system property violation, so {PO} is a necessary cause. On
the other hand, if the output ticket value from Ctrl is 2 or above, then the PCA
would continue the infusion for 2 time units, so there is still system property
violation. In this case {PO} is not a necessary cause. �

Being able to re-execute separable components increases analysis precision.
The output obtained by assuming the faulty, unsuspected components to always
produce the same output as on the observed trace in [18] is essentially one case
included in the analysis with separable components. For the example, in the
analysis in [18] Ctrl would produce a ticket output 3 as observed, which is on of
the cases when the Ctrl output is 2 or above in the analysis in Example 1. With
separable components, a more detailed causality analysis result is obtained.

We now provide a formal definition of separable components, of the re-execute
function, and a property on them. A separable component is simply a trace
generator that takes a sequence of input and produces a corresponding output
sequence. We require that the behavior of the separable component is determin-
istic with respect to the sequence of input and the internal states, even when
faulty.

Definition 9 (Separable component). Let C = 〈I,O,PC〉 be a component. C
is separable if ∀Tr, Tr′ ∈ TC .(πI(Tr) = πI(Tr′) =⇒ Tr = Tr′.

This definition ensures that the outputs of the component are deterministic
and only depend on the inputs fed to it.

Definition 10 (Re-execute function, re-execute(C, Tr)). Let C = 〈I,O,PC〉
be a component and Tr be a trace. re-execute(C, Tr) is the trace given by C if
πI(Tr) is fed to C as input.

Property 1. Let C = 〈I,O,PC〉 be a separable component and Tr and Tr′ be
two traces, then πI(Tr) = πI(Tr′) =⇒ re-execute(C, Tr) = re-execute(C, Tr′).

This property is a direct consequence of the two previous definitions. It means
that if we execute the separable component with the same input, it will always
produce the same trace as output.
Trace Reconstruction with Separable Components. We use the construc-
tion of cone of influence, adapted from [8], to over-approximate the impact of
the faulty components on the rest of the system. Informally, when a value has
changed in a snapshot on a system trace, then the ones in the cone of influence
must be updated accordingly to reflect the impact of this change. A trace Tr′ is
deemed as a counterfactual for a trace Tr if they share the same prefix outside
of the cone of influence.

Definition 11 (Cone of influence with separable components, K(Tr,S,R)).
Given a system Sys = 〈A, θ,P〉, with A = {C1, ..., CJ} and Cj = 〈Ij , Oj ,Pj〉 for
1 ≤ j ≤ J , a system trace Tr, a set S ⊆ {1, ..., J} of suspected component indices,
and a set R ⊆ {1, ..., J} of separable component indices. Let A = 〈I,O,P〉 be the
composition of the components in A. The cone of influence K = K(Tr,S,R) =
(`v)v∈I∪O is a vector of maximal indexes which satisfies the following properties:
∀v ∈

(⋃
i∈{1,...,J} Ii

)
∪O: `v 6 |Tr| and

(1) (v ∈ O ∧ C(v) ∈ S) =⇒ lv 6 fvC(v)(Tr)
(2) ∃v′ ∈ O.(v′, v) ∈ θ =⇒ lv = lv′

(3)

(
v ∈ O ∧

(
C(v) ∈ R ∨ fd(v, Tr) 6 fvC(v)(Tr)

))
=⇒ `v 6 min(fvC(v)(Tr), fd(v, Tr))

with C(v) = i such that v ∈ Ii ∪ Oi, fvi(Tr) = min({` ∈ {0, ..., |Tr| − 1 |
πi(Tr[0..`]) /∈ PC(v)} ∪ {|Tr|}), lmin(i) = min{`v | v ∈ Ii}, and

fd(v, Tr) = min({` ∈ {lmin(v)− 1, ..., |Tr|} | ∃Tr′ ∈ PC(v).∀v′ ∈ IC(v).
πv′(Tr[0..`v′ − 1]) = πv′(Tr′[0..`v′ − 1]) ∧
πv(Tr[0..lmin(v)− 1]) = πv(Tr′[0..lmin(v)− 1]) ∧
πv(Tr[`+ 1]) 6= πv(Tr′[`+ 1])})

C(v) is the component to which variable v belongs. fvi(Tr) is the index
of the first violation of Pi in Tr. lmin(i) is the minimal lv for the inputs v

of component Ci. The first constraint means that an output variable from a
suspected component must be in the cone if the component is faulty. The second
constraint propagates the entry of outputs in the cone to the inputs on which
they are linked. The third constraint means that an output v of a non-faulty,
or separable, component i receiving inputs from a component in the cone must
enter the cone at the latest when component i becomes faulty or at fd(v, Tr).
fd(v, Tr) is the first index on which v can differ from its observed value when
the component producing v is fed its observed input up to the cone, followed by
arbitrary values.

Definition 12 (Counterfactuals). Let Sys be a system definition, Tr be a system
trace, R ⊆ {1, . . . , J} be the set of separable components indices, and K =
K(Tr,S,R) be the cone of influence. Let A = 〈I,O,P〉 be the composition of the
components in A. We define the counterfactuals of trace Tr given cone K and
separable components R to be

σ(Tr,K,R) =
{
Tr′ ∈ T | ∀v ∈ I ∪O.πv(Tr′)[0..`v − 1] = πv(Tr[0..`v − 1]) ∧

∀i ∈ {1, ..., J}.
[
(i ∈ S ∨ i /∈ R) ∧ πi(Tr′) ∈ Pi ∨ (i /∈ S ∧ i ∈ R) ∧ πi(Tr′) ∈

RX(i)
]}

,

where RX(Ci) = {Tr ∈ TIi∪Oi | ∃Tr′ ∈ TIi .T r = re-execute(Ci, T r
′)}.

The notion of counterfactuals represents the reconstructed set of possible sys-
tem traces when the faulty suffixes of the suspected components’ observed traces
are replaced with correct ones, and the effects of such faults are reconstructed by
the separable components. The first condition in the definition of σ(Tr,K,R)
states that the counterfactual must begin with the observed unaffected prefixes
πv(Tr[0..`v−1]) before the cone is entered. The second condition states that if a
component is not separable, it will be prolonged using its property; for separable
components, we re-execute them to build the new trace.

In practice, Tr′ is constructed incrementally, without explicitly computing
RX(Ci), provided that all components have a finite specification. In that case,
the cone and the counterfactuals are computed by the algorithm in Figure 4. The
trace reconstruction depends on the causality definition being used, where we
illustrate necessary vertical cause here. In the general case, the algorithm takes
the causality definition as an input, based on which different trace reconstruction
procedures are selected.

The use of separable components is a hybrid approach in trace reconstruc-
tion. For the system behavior that comes before the violations of the suspected
components or that is generated by non-faulty components, we want to keep the
reconstructed trace as similar as the observed trace, so static information (ob-
served trace Tr and system definition Sys) that is already available at the time
of the analysis is used. For the alternative system behavior that depends on dy-
namic component output, separable components are used to generate run-time
output to be used in trace reconstruction.

Input:
– observed trace Tr,
– set F of faulty components,
– set S ⊆ F of suspected components,
– set R of separable components, and
– system definition Sys = 〈A, θ,P〉.

Output:
– a prefix Tr′ of a system trace on which either Tr′ |= P or Tr′ 6|= P.

Algorithm for Trace Reconstruction:
(1) Compute the cone of influence K = K(Tr,S,R).
(2) Feed maximal unaffected prefixes prv = πv(Tr[0..`v − 1]) (Definition 12) of

input variables to components. Keep pri on output trace Tr′.
(3) Starting from Snapshot 0 on Tr′, for each missing value in Snapshot k,

(a) identify component Ci responsible for producing the value, (b) read in-
put values for Ci in Snapshot k, (c) obtain component Ci’s output, depending
on conditions in Definition 12, and (d) add the output to Snapshot k of Tr′.

(4) Repeat the above step until either Tr′ 6|= P, or an application-specific length
of trace is reached. Return Tr′ as the reconstructed trace.

Fig. 4. Trace Reconstruction Algorithm

4.2 Culprit Minimization with Horizontal Causality

A second extension to our existing approach is to replace the use of set contain-
ment checking in [18] with the use of horizontal causality, in order to exclude
non-minimal subsets of causes from blame. The approach in [18] starts from a
viewpoint that always aims to blame the minimal number of components and
removes a culprit from blame if one of its proper subsets is also a culprit. While
this treatment may have provided one approach to reduce the number of com-
ponents in a culprit, it is counter-intuitive. Dependency in between component
interactions is completely overlooked with this treatment.

With the use of horizontal causality, relationships in between components
can be utilized to improve the precision of causality analysis. In details, if the
analysis determines that a non-singleton subset S of faulty components is a cul-
prit, then the horizontal causalities between the component property violations
are investigated. Let I = {iTrC ,PC

| C ∈ S} be the set of indices for component
violations in S on trace Tr. Then for each i, j ∈ I such that i < j, the horizontal
causality between the subset Si = {Cl ∈ S | l = i} and each component Cr

in Sj = {Cl ∈ C | l = j} is investigated. If the property violations in Si is a
horizontal cause for the property violation in Cr, then Cr is removed from S.

Example 2. For the running example, when the analysis determined that the
set {PO,Ctrl} is a culprit, the analysis in [18] used simple set minimization to
exclude {PO,Ctrl} from blame, since the singleton set {Ctrl} is a cause as well.
With horizontal causality: In the case of {PO,Ctrl} being a cause and the fault in
PO occurs before the fault in Ctrl, we remove the blame on Ctrl only if the fault
in PO causes the fault in Ctrl. In this example, should PO output a correct value
71, the expected output from Ctrl should be 0 time unit. In the approach in [18],

Analysis in [18, 19] Analysis in [18, 19] with
Horizontal Causality

Analysis in [18, 19] with
Separable Components

Analysis in [18, 19] with both Horizontal
Causality and Separable Components

— {Ctrl} and {PO, Ctrl} are necessary causes
— No horizontal causality of property violations between
 {PO} and {Ctrl}
— Blame {Ctrl} and {PO, Ctrl}

— {Ctrl} and {PO, Ctrl} are necessary causes
— Blame only {Ctrl}
— No blame on {PO, Ctrl} due to set minimization

— {Ctrl} and {PO, Ctrl} are necessary causes
— {PO} is a necessary cause when Ctrl outputs 0 or 1
 (given input 71) during trace reconstruction
— Blame {Ctrl} and {PO} when Ctrl output is 0 or 1;
 otherwise blame {Ctrl} only
— In neither case is {PO, Ctrl} blamed due to set
 minimization

— {Ctrl} and {PO, Ctrl} are necessary causes
— {PO} is a necessary cause when Ctrl outputs 0 or 1
 (given input 71) during trace reconstruction
— {Ctrl} is blamed
— {PO, Ctrl} is blamed only when Ctrl output ≥ 2
— {PO} is blamed if Ctrl output is 0 or 1. When Ctrl output
 is 1, {PO} is the vertical cause and blamed. When Ctrl
 output is 0, there may be two explanations: (a) {PO} is
 the vertical cause, or (b) {PO, Ctrl} is a vertical cause,
 and {PO} is the horizontal cause for Ctrl, so {PO} is
 blamed, not {PO, Ctrl}

Table 2. Comparison of Causality Analysis Results with Extensions

Ctrl outputs 3 as on the observed trace, i.e., the property violation in Ctrl does
not disappear, so the fault in PO is not a horizontal cause for the fault in Ctrl.
Therefore, it is not proper to simply remove {PO,Ctrl} from blame. Both {Ctrl}
and {PO,Ctrl} should be taken as blame, as they represent different scenarios
that the system property violation can be prevented. �

We note that the two extensions we introduced in this work are orthogonal,
and can be applied to our existing approach individually. However, the analysis
results, as summarized in Table 2, do not achieve the same precision as when
both extensions are incorporated, as shown in Example 3 below.

Example 3. Continuing the running example where {PO,Ctrl} is determined to
be a necessary vertical cause, if separable component Ctrl is used for causality
analysis, then the Ctrl output, given the changed input 71, is not necessarily 3
as on the observed trace. If the Ctrl output is 1 or greater, then the property
violation in {PO} is not a horizontal cause for the property violation in {Ctrl},
thus the blame on {PO,Ctrl} is not excluded. On the other hand, if Ctrl’s output
is 0, the horizontal causality between property violations in between {PO} and
{Ctrl} is established. The blame on {PO,Ctrl} is reduced to {PO}, even if {PO}
itself is not determined as a necessary vertical cause in the first place. �

5 Implementing Causality Analyzer

In this section, we present some key implementation details for the proposed
causality analysis. We implemented trace recording, reconstruction, and causal-
ity analysis modules based on the publicly available medical device coordination
framework (MDCF) [12]. MDCF is a message exchange platform for medical
devices operating in a cooperative fashion. The framework implements message
publish/subscribe model as specified in the ICE standard [2].

Trace Recording. The PCA example for our case study is component-based.
Each component registers itself as a message publisher to send messages to oth-
ers and as a subscriber to receive messages from others. We also implemented
a network-wide data logger for MDCF. The data logger declares itself as a sub-
scriber to all relevant messages exchanged via message bus. When a message orig-
inates from a medical device, it is time-stamped, serialized, and sent to MDCF.
MDCF will push the message to the data logger (as well as other subscribers
to the message) so that the data logger is able to capture the message together
with its time-stamp of creation. The recorded traces are then normalized to the
formalism presented in Section 3.1 based on the case study’s setting that the
components are are stepped by a timer of 500ms.

Implementing Separable Components. In our case study, a component can
be viewed as a trace generator in that it takes a sequence of input and produces
a sequence of output. A component in MDCF is then naturally separable in
that the component can be incorporated in the trace reconstruction module in
a controlled fashion.

In details, for components with no internal states, the component imple-
mentation is simply executed each time an output is needed. For a separable
component C with internal states, the trace reconstruction starts with the ini-
tial internal states of C and replays the recorded snapshots on the observed
trace Tr back to C, up to the boundary of cone of influence. Afterwards, input
to C may have changed as other faulty suspected components may generate new
output that is fed to C. The separable component C then reads the input and
produces an output. In this way, the internal states of C are implicitly kept
within C’s implementation, without being explicitly monitored.

Causality Analyzer. The implementation of the causality analyzer follows the
functional blocks shown in Figure 3. Notice that for the analysis of horizontal
causality in Step 4 of the causality analysis framework, no additional trace re-
construction is required if we cache the reconstructed traces. For instance, when
having determined {PO,Ctrl} as a culprit, we then need to investigate whether
the property violation in PO is a cause of the property violation in Ctrl. This
requires the reconstruction of the trace when PO alone is suspected. This has
already been done, when investigating {PO} for vertical causality.

Result. We have instructed the causality analyzer to output useful human-
readable information with regard to the analysis process. A sample run of the
analysis outputs (a) set of faulty components, (b) for each suspect, whether it is
a culprit, (c) if a suspect is a non-singleton culprit, whether there are horizontal
causal relations between its components, and (d) a list of the minimal culprits.
The expected analysis result as discussed in Section 4 for the running example
is summarized in the bottom right cell of Table 2. Note that the result does not
invalidate our previous analysis presented in [18,19] as the criteria of determining
minimal culprits are different. Also, with separable components, our proposed
analysis is equipped with a more realistic trace reconstruction technique that
produces more accurate counterfactual traces, thus we obtain culprits that match
our intuition better for this case study.

Scalability. By our problem definition it is inevitable to investigate each non-
empty subset of faulty components and determine if it is a culprit. Thus the
overall complexity of our approach is exponential in the number of faulty com-
ponents. However, we note that in practice, the number of faulty components is
usually small and tractable. Also, as has been shown in [18,19] that state-of-the-
art SAT/SMT solvers (e.g., Z3 [6]) can be used to efficiently solve a causality
analysis problem instance, our approach could benefit from leveraging SAT/SMT
solvers with proper encoding.

6 Related Work

Analysis for causes has long been a human intellectual inquisition. Recent philo-
sophical inquisition on causality based on counterfactuals starts from Hume, and
is extensively studied in [15]. Halpern & Pearl [10] were among the first to pro-
vide a formalism to reason about causality. [10] defines causality for structural
equation models (constraints on variables) and does not study component-based
or real-time systems, which typically exhibit much more complex behaviors.

Works following Halpern & Pearl’s definitions include [3,13,14], all requir-
ing a cause to be both necessary and sufficient. The work in [3] illustrated how
causality can be used for providing an explanation of system property viola-
tion. The work in [13,14] is based on the assumption that a plethora of system
traces can be obtained for analysis so that is possible to categorize the available
traces by trace characteristics so that each category can be regarded as a failure
mode in the failure mode and effects analysis (FMEA). The work in [3,13,14] all
model traces as a sequence of observed events, and the occurrence or absence
of events are potential causes to the violation of properties, which are modeled
as temporal logic properties. These approaches neglect the underlying system
components that generate the events as well as the interactions between com-
ponents. Similarly, work based on using distance metrics [4,17] to measure the
similarity between actual and counterfactual traces shares the same limitation.

The work in [11] and our previous work in [18] share similar ideas if program
statements are viewed as black-box components. Encoding the program and error
trace into a MAX-SAT problem instance can yield a set of program statements
so that correcting the identified statements can eliminate the program error.
On a larger scale, the delta-debugging technique proposed in [20] can also be
viewed as an application of counterfactual reasoning: debugging is by experi-
mentally correcting statements of a program until a set of statements are found
to eliminate compiler panic should the identified statements are corrected.

Our line of work [9,18,8,19,7] starts with preliminary definitions of causalities
for component-based systems [9,18] and extends to real-time settings for system
definitions with logical constraints [19], synchronous systems [8], and timed au-
tomata [7]. A salient difference of our work from existing ones is that, although
we assume components are black-boxes, we take expected component behaviors
specified in component properties as guidelines for trace reconstruction. This di-
rects us to a set of counterfactual traces that are more relevant to the observed

one. We in this work further employs separable components, which first appeared
in combinational circuits diagnosis [5] where internal states of components are
not considered.

7 Conclusion

We presented an extension of trace reconstruction algorithm for causality anal-
ysis. Using a case study from the medical domain, we show that the extension
improves precision of the analysis and matches our intuition about the anal-
ysis results. The key to the improvement is the ability to re-execute some of
the system components separately from the rest of the system. We further show
that analysis can be improved by considering horizontal causality; that is, taking
input-output dependencies between components into consideration in order to
avoid induced faults. Our future work will concentrate on extending causality
analysis to cover weaker component contracts that may make some of the faults
unobservable.

References

1. D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky.
Toward patient safety in closed-loop medical device systems. In ICCPS’10, pages
139–148, New York, NY, USA, 2010. ACM.

2. ASTM International. F2761-2009. Medical Devices and Medical Systems — Essen-
tial Safety Requirements for Equipment Comprising the Patient-Centric Integrated
Clinical Environment (ICE), Part 1, 2009.

3. I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining counterex-
amples using causality. In CAV’09, pages 94–108. Springer, 2009.

4. S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples.
SIGSOFT Softw. Eng. Notes, 29(6):73–82, Oct. 2004.

5. J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97 – 130, 1987.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS’08. Springer.
7. G. Gössler and L. Aştefănoaei. Blaming in component-based real-time systems. In

Proceedings of the 14th International Conference on Embedded Software, 2014.
8. G. Gössler and D. Le Métayer. A general trace-based framework of logical causality.

In Proceedings of Formal Aspects of Component Software (FACS), 2013.
9. G. Gössler, D. Le Métayer, and J.-B. Raclet. Causality analysis in contract viola-

tion. In Runtime Verification, 2010.
10. J. Y. Halpern and J. Pearl. Causes and Explanations: A Structural-Model Ap-

proach. Part I: Causes. British Jnl. for the Philosophy of Sci., 56(4), 2005.
11. M. Jose and R. Majumdar. Cause clue clauses: Error localization using maximum

satisfiability. SIGPLAN Not., 46(6):437–446, June 2011.
12. A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees, R. P. Jetley,

P. L. Jones, and S. Weininger. An open test bed for medical device integration
and coordination. In ICSE Companion, pages 141–151. IEEE, 2009.

13. M. Kuntz, F. Leitner-Fischer, and S. Leue. From probabilistic counterexamples
via causality to fault trees. In Computer Safety, Reliability, and Security. 2011.

14. F. Leitner-Fischer and S. Leue. On the synergy of probabilistic causality compu-
tation and causality checking. In SPIN, 2013.

15. D. Lewis. Counterfactuals. Wiley-Blackwell, 2nd edition, 2001.
16. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,

32(1):57–95, 1987.
17. M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In

ASE’03, pages 30–39, 2003.
18. S. Wang, A. Ayoub, R. Ivanov, O. Sokolsky, and I. Lee. Contract-based blame

assignment by trace analysis. In HiCoNS’13, pages 117–125, 2013.
19. S. Wang, A. Ayoub, B. Kim, G. Gössler, O. Sokolsky, and I. Lee. A causality

analysis framework for component-based real-time systems. In RV’13, 2013.
20. A. Zeller. Isolating cause-effect chains from computer programs. In ACM Interna-

tional Symposium on Foundations of Software Engineering, pages 1–10, 2002.

	University of Pennsylvania
	ScholarlyCommons
	9-2015

	A Hybrid Approach to Causality Analysis
	Shaohui Wang
	Yoann Geoffroy
	Gregor Gössler
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	A Hybrid Approach to Causality Analysis
	Abstract
	Disciplines
	Comments

	A Hybrid Approach to Causality Analysis
	Shaohui Wang1, Yoann Geoffroy2, Gregor Gössler2, Oleg Sokolsky1, and Insup Lee1

