
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

12-2015

Platform-Specific Code Generation from Platform-
Independent Timed Models
BaekGyu Kim
University of Pennsylvania, baekgyu@seas.upenn.edu

Lu Feng
University of Pennsylvania, lufeng@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

IEEE Real-Time Systems Symposium (RTSS 2015). San Antonio, Texas, U.S.A., Dec 2015.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/795
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
BaekGyu Kim, Lu Feng, Oleg Sokolsky, and Insup Lee, "Platform-Specific Code Generation from Platform-Independent Timed
Models", IEEE Real-Time Systems Symposium (RTSS 2015) . December 2015.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://2015.rtss.org/
http://repository.upenn.edu/cis_papers/795
mailto:libraryrepository@pobox.upenn.edu

Platform-Specific Code Generation from Platform-Independent Timed
Models

Abstract
Many safety-critical real-time embedded systems need to meet stringent timing constraints such as preserving
delay bounds between input and output events. In model-based development, a system is often implemented
by using a code generator to automatically generate source code from system models, and integrating the
generated source code with a platform. It is challenging to guarantee that the implemented systems preserve
required timing constraints, because the timed behavior of the source code and the platform is closely
intertwined. In this paper, we address this challenge by proposing a model transformation approach for the
code generation. Our approach compensates the platform-processing delays by adjusting the timing
parameters in system models, based on an Integer Linear Programming problem formulation. We demonstrate
the usefulness of our approach via a case study of infusion pump systems. Experimental results show that the
code generated using our approach can better preserve the timing constraints.

Disciplines
Computer Engineering | Computer Sciences

Comments
IEEE Real-Time Systems Symposium (RTSS 2015). San Antonio, Texas, U.S.A., Dec 2015.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/795

http://2015.rtss.org/
http://repository.upenn.edu/cis_papers/795?utm_source=repository.upenn.edu%2Fcis_papers%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages

Platform-Specific Code Generation from
Platform-Independent Timed Models

BaekGyu Kim1,2 Lu Feng1 Oleg Sokolsky1 Insup Lee1

1University of Pennsylvania
2Toyota InfoTechnology Center, U.S.A.

Abstract—Many safety-critical real-time embedded systems
need to meet stringent timing constraints such as preserving
delay bounds between input and output events. In model-based
development, a system is often implemented by using a code gen-
erator to automatically generate source code from system models,
and integrating the generated source code with a platform. It is
challenging to guarantee that the implemented systems preserve
required timing constraints, because the timed behavior of the
source code and the platform is closely intertwined. In this paper,
we address this challenge by proposing a model transformation
approach for the code generation. Our approach compensates the
platform-processing delays by adjusting the timing parameters in
system models, based on an Integer Linear Programming problem
formulation. We demonstrate the usefulness of our approach via
a case study of infusion pump systems. Experimental results show
that the code generated using our approach can better preserve
the timing constraints.

I. INTRODUCTION

Many safety-critical real-time embedded systems need to
meet stringent timing constraints, of which a common type
is the bounded delay between input and output events. For
example, a car should stop (output event) within three sec-
onds when a driver hits a brake (input event); a pacemaker
should generate electrical signals (output event) within eight
milliseconds when an abnormal heart rhythm is detected (input
event). The violation of such timing constraints may lead to
catastrophic consequences. Thus, it is important to guarantee
that the developed real-time embedded systems satisfy the
timing constraints. One promising approach is via model-
based development. First, a system model is built to capture
abstractions of the system’s timed behavior. Then, if the
model is verified to satisfy the timing constraints, source
code is automatically generated from the model using a code
generator. Finally, the generated code is implemented on a
platform. By platform, we refer to a collection of hardware
(e.g., sensors/actuators) and software (e.g., real-time operating
systems and I/O device drivers) that are required for the code
to read input from or write output to the environment.

System models are typically constructed independently of a
specific platform for a few benefits: (1) the generated source
code can be implemented on many different platforms, and
(2) the modeling process can be initiated without knowledge of
specific platform in the early system development stage. State-
of-the-art code generators, such as Real-Time Workshop [13]
and TIMES [4], produce source code using timing parameters
specified in a system model directly, with the assumption that
the input/output (I/O) communication between the code and
the environment can be processed infinitely fast by a platform.

*This research was supported in part by NSF CNS-1035715 and the DGIST
Research and Development Program of the Ministry of Science, ICT and
Future Planning of Korea (CPS Global Center).

*This work has been performed while the first author was at the University
of Pennsylvania.

However, it is difficult, if not impossible, for any platform
to meet this assumption in practice, due to processing delays
caused by, e.g., I/O device drivers or communication jitter.

In our previous work, we proposed to overcome this obstacle
by modeling architectural aspects of platforms [12] [10] and
generating test cases [11]. However, one limitation is that,
the code generated from models that incorporate platform-
processing delays, when being implemented on a specific
platform, may yield a system that does not respect timing
constraints verified at the modeling level. Because platform-
processing delays are added to the code-level delays. It is
challenging to guarantee that the implemented systems pre-
serve required timing constraints, because timing aspects of
the system model, the code and the platform are closely
intertwined.

In this paper, we aim to address this challenge by proposing
a model transformation approach for the code generation. We
argue that system models are not appropriate representations
of the code-level timed behavior. We transform a system model
into a software model by explicitly characterizing (non-zero)
platform-processing delays and appropriately compensating
those delays. The software model is then used to generate code,
which would be implemented on the platform whose process-
ing delays are compensated during the model transformation
process. The resulting system implementation is guaranteed
to meet the timing constraints that have been verified in the
system model. We restrict our attention to timing constraints
in the type of bounded delay between I/O events.

Our model transformation approach involves two steps.
First, check whether it is feasible to compensate the pro-
cessing delays of a given platform while preserving bounds
on delays between observable events in the system model
and implementation. Second, adjust timing parameters in the
system model to obtain a software model that compensates
the platform-processing delays. We formulate and solve the
problem using Integer Linear Programming (ILP). We define
the objective function of ILP based on the goal of obtaining
a software model with the least timed behavior perturbation
from the system model. The linear constraints of ILP are given
to quantify the delay-bound differences between the system
model and implementation, taking into account the model’s
I/O delays accumulated over paths (between pairs of I/O
transitions) and the platform-processing delays. By solving the
ILP problem, we obtain a set of timing parameter assignments
that can be used to transform the system model into a software
model.

We demonstrate the usefulness of our approach via a case
study of infusion pump systems. Experimental results show
that systems implemented with the code generated from our
transformed software models have (significantly) better perfor-
mance in terms of timing constraints preservation.

The rest of this paper is organized as follows. Section II

a1? a2! a3?

1 [,]l u

1 1t t
2 3

1 1
2 10a ax x

2 2
7 10a ax x

[,]l u

2 2t t [,]l u

3 3t t

1L 2L 3L 4L

Fig. 1. Model 1 with variable assignment (Sequential Pattern)

introduces a motivating example, the problem statement and
an overview of our approach. Section III describes how to
compute the minimum and maximum delays of I/O events in
the system model and implementation. Section IV develops
the ILP problem formulation for the model transformation.
Section V presents a case study of infusion pump systems.
Finally, Section VI discusses related work and Section VII
summarizes our findings.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

A. Motivating Example
We first explain, through the following example, why we

need to transform system models for representing the code-
level timed behavior. Consider a system model represented
as an event-clock automaton [3] (cf. Definition 2) shown in
Figure 1. Each transition in the model is labelled with either
an input (a1? and a3?) or an output (a2!) event. Each event
is associated with a clock, which is automatically reset to
zero whenever a transition associated with the corresponding
event is taken. For example, the clock xa1

is reset to zero
when the transition labelled with the input event a1? is taken.
Transitions are also annotated with clock guard conditions. For
example, the guard condition xa1

≥ 2 ∧ xa1
≤ 10 means that

the transition can be taken anytime non-deterministically in
between 2 and 10 time-unit after the previous transition. It is
straightforward to verify that the example model satisfies the
following timing constraint (REQ0): “a system shall produce
the output a2! within 2 and 10 time-unit since the input a1?
event occurs from the environment”.

The timing parameters in the clock guard conditions do not
distinguish code-level delays and platform-processing delays.
Suppose the platform-processing delay is 2 time units. Then a
system implemented using the code generated from the model
shown in Figure 1 would not preserve REQ0, because the
delay of output a2! is now bounded by 4 and 12 time units.
This implies that the system model shown in Figure 1 is not
an appropriate representation for the code generation. Thus,
there is a need for model transformation. In practice, the given
platform-processing delays are often in a range (i.e., minimum
and maximum bounds) rather than a single constant, which
makes the model transformation challenging. Because we
need to consider the intermix of min/max platform-processing
delays and code-level delays, while the latter may also be
affected by the model structure (e.g., loops). Once we know
what the ranges of platform delays are, timing guards in the
model can be adjusted so that the generated code, running on
the platform, would exhibit correct system-level behavior.
B. Problem Statement

Figure 2 shows an overview of relations between system
model, software model, code, platform and implementation.
We adopt Parnas’ four-variable model [14] to define the
boundaries of an implemented system (shown in the right side
of the figure). In the four-variable model, monitored (m) and
controlled (c) variables characterize changes of physical envi-
ronmental quantities; on the other hand, input (i) and output

(o) variables characterize software behavior that interact with
the physical environment through input/output devices (i.e.,
platforms in our work). Based on this variable mapping, we
define the boundaries of an implemented system to formalize
the problem: io-boundary that separates a platform and the
code, and mc-boundary that separates an environment and a
platform. Suppose that, for a given platform, the minimum
and maximum delays of processing each input/output event is
known (cf. Definition 3). The goal is to transform a system
model (Ms) into a software model (Mc) by compensating the
platform-processing delays (P), in order to preserve the timing
constraints in the system implementation.

We first define three functions: fMs , fSOF, and fIMP, which
quantify the min/max delay-bounds of the occurrence of an
I/O event succeeding another event in the system model, io-
boundary (software model), and mc-boundary, respectively.
Formally, we define fMs(i , j) as the min/max delay-bounds
of simple paths (i.e., those without cycles) starting from the
transition i and ending with the transition j in the system
model Ms. For example, the timing constraint REQ0 can be
formally denoted by fMs(1 , 2)=[2,10], representing that the
output transition 2 shall be taken in between 2 and 10 time-
unit after taking the input transition 1 of Model 1 shown in
Figure 1. Given a simple path p, we can also write fMs(p).
We define fSOF and fIMP in a similar fashion as for fMs . In the
model transformation from Ms to Mc, we only adjust the timing
parameters (i.e., clock guards) and do not change the model
structure. Therefore, there are one-to-one mappings between
transitions i and j for fMs(i , j), fSOF(i , j) and fIMP(i , j).

Definition 1 (Delay-Bound Inclusion Constraint). A system
implementation preserves the delay-bound inclusion constraint
with respect to the corresponding system model iff:
• the minimum delay bound of fIMP for any pair of I/O

events at the mc-boundary is no less than that of fMs ,
• the maximum delay bound of fIMP for any pair of I/O

events at the mc-boundary is no greater than that of fMs .
Formally, we denote the constraint satisfaction by fIMP(i , j) ∈
fMs(i , j) iff f min

IMP(i , j) ≥ f min
Ms

(i , j) and f max
IMP (i , j) ≤ f max

Ms
(i , j)

for any pair of I/O transitions (events) i and j.

Example 1. Model 1 shown in Figure 1 has three pairs of
I/O transitions, where fMs(1 , 2)=[2,10], fMs(2 , 3)=[7,10],
fMs(1 , 3)=[9,20]. The delay-bound inclusion constraint
holds for a system implementation with fIMP(1 , 2)=[4,6],
fIMP(2 , 3)=[8,9], fIMP(1 , 3)=[15,19]}, because f min

IMP ≥ f min
Ms

and f max
IMP ≤ f max

Ms
for all possible pairs of I/O transitions.

The key of model transformation from a system model Ms

into a software model Mc lies in solving the research problem
of finding a suitable function fSOF such that the induced
function fIMP (based on the known platform-processing delay
P) preserves the delay-bound inclusion constraint with respect
to the function fMs (determined by Ms). We also need to
show that any system implementation meeting the delay-
bound inclusion constraint is guaranteed to satisfy the timing
requirements that are verified in the system model Ms.
C. Approach Overview

Finding a suitable function fSOF is a challenging problem.
On the one hand, we need to consider its dependency to the
function fIMP and the platform-processing delay P. On the
other hand, we need to make sure that the derived function
fIMP and the system model function fMs satisfy the delay-bound
inclusion constraint. The simple shrinking or expanding timing
guards of fMs would not give us a satisfying fSOF, because the

System Model
()

Environment

Code

Platform

Real
Environment

Code
Generation

Platform Processing
Delay ()

<Modeling Level> <Implementation Level>

m

i o

c

P

sM

sMf

IMPf

SOFf

Software Model
()cM

Model
Transformation

Fig. 2. Mapping from system models to implementations

change of timing guards in one transition (e.g., with the intent
of decreasing fSOF) may actually increase fSOF for another
transition/path, due to the complex dependency among various
I/O transitions and the mixture of minimum/maximum delays.

Our approach is to formalize those dependencies in terms of
a set of linear constraints to automatically find timing param-
eter assignments for the function fSOF using the integer linear
programming (ILP). First, we propose algorithmic procedures
to compute fMs and fIMP. The computation of fMs is based on
the timing parameters (i.e., clock guard constants) in the sys-
tem model Ms, while the computation of fIMP is based on the
timing parameters of the software model Mc (represented as
variables in fSOF) and the platform-processing delays P. Then,
we formalize the delay-bound inclusion constraint between fMs

and fIMP as a set of linear inequality constraints for ILP. A
satisfying solution of the ILP problem gives us a set of variable
assignments for fSOF, which can be used to parameterize the
timing guards of the software model Mc. Finally, we show
by Theorem 1 that the system implemented using the code
generated from the software model Mc is guaranteed to satisfy
the timing requirements (i.e., bounded delays between a pair
of I/O events).

III. COMPUTING fMs AND fIMP

In this section, we develop algorithmic procedures for
computing fMs and fIMP, which are functions that quantify the
min/max delay-bound of any pair of I/O transitions and events
in the system model and the implementation, respectively. In
this paper, we consider system models that are represented as
event-clock automata [3].

Definition 2 (Event-Clock Automata). An event-clock automa-
ton is a tuple M= (L, L0, Lf , Σ, E), where L is a set
of locations; L0 ∈ L and Lf ∈ L are an initial and a
final location, respectively; Σ = Σin ∪ Σout is an alphabet
with a set of input (resp. output) events Σin (resp. Σout);
E = {(L,L′, a, ϕ)} is a fine set of transitions with each
transition connecting a starting location L and an ending
location L′, labelled with an input/output event a ∈ Σ, and
associated with a clock constraint ϕ over the clocks CΣ.

We refer to [3] for the formal operational semantics of
event-clock automata. An informal semantic description for an
example model could be found in Section II-A. In this paper,
we consider three different model structure patterns, namely,
sequential (e.g., Model 1 shown in Figure 1), alternative (e.g.,
Model 2 in Figure 3), and cyclic (e.g., Model 3 in Figure 4).
A. Computing fMs

The computation of the function fMs , which represents the
minimum and maximum delay-bounds between two I/O tran-

a1?

a2!

a3?

1

2

3

[,]l u

1 1t t

1 1
2 10a ax x

1 1
7 10a ax x

a4!

3 3
4 8a ax x

4

[,]l u

2 2t t

[,]l u

3 3t t

[,]l u

4 4t t

1L 2L

3L

4L

Fig. 3. Model 2 with variable assignment (Alternative Pattern)

a1? a2!

a3?

1 2

3

1 1
2 10a ax x

2 2
7 10a ax x

3
10ax

[,]l u

1 1t t [,]l u

2 2t t

[,]l u

3 3t t

1L 2L 3L

Fig. 4. Model 3 with variable assignment (Cyclic Pattern)

sitions in the system model, is non-trivial. Firstly, there can be
many different paths in between two transition occurrences. In
this case, the path that has the minimum delay can be different
from the one that has the maximum delay. Therefore, we
need to examine all possible paths between the two transitions
in order to compute fMs . Secondly, paths connecting two
transitions may include cycles. Since we assume non-negative
guard conditions, the minimum delay bound is obtained by
considering only a simple path. However, when it comes to
the maximum delay bound, it differs depending on how many
cycles are taken between the two transitions. For example, in
Model 3 (cf. Figure 4), the maximum delay-bound between
transitions 1 and 3 increases as more cycles are taken.

We first show how to compute fMs for a pair of transitions
which are connected by simple paths (i.e., paths that do not
contain any repeating locations) only. To this end, we adapt
the Floyd-Warshall algorithm. The Floyd-Warshall algorithm
computes the minimum and maximum timing intervals be-
tween the entering of locations Li and Lj in a model with
n locations, denoted by Dmin(Li ,Lj ,n) and Dmax(Li ,Lj ,n),
respectively. We cannot use the Floyd-Warshall algorithm to
compute fMs directly, because the function represents the delay-
bound between two transitions rather than locations. Instead,
we define:

f min
Ms

(i , j) = Dmin(Lpost
i ,Lpre

j ,n) + νlj (1a)

f max
Ms

(i , j) = Dmax(Lpost
i ,Lpre

j ,n) + νuj (1b)

where Lpost
i is the ending location of transition i, Lpre

j is the
starting location of transition j, νlj and νuj are the lower and
upper bounds of clock valuations associated with transition
j. For example, Figures 5(a)-(b) show the results of applying
the Floyd-Warshall algorithm to Model 3, while Figures 5(c)-
(d) show the computation results of fMs for Model 3. Note
that the values of the main diagonal entries are undefined in
Figures 5(c)-(d), because the method described above is only
applicable for transitions connected with simple paths.

Now, we generalize the computation of fMs for paths with
cycles (i.e., non-simple paths).

Lemma 1. The min/max delay-bound over a (non-simple) path
p in a system model Ms, denoted by fMs(p), is the summation

0 0 2

9 0 2

7 7 0

1L
2L 3L

1L

2L

3L

minD

0 10 20

20 0 10

10 20 0

- 2 9

7 - 7

0 2 -

1 2 3

1

2

3

s

min

Mf

- 10 20

20 - 10

10 20 -

1L
2L 3L

1L

2L

3L

(a) (b)

(c) (d) 1 2 3

1

2

3

s

max

Mf

maxD

Fig. 5. The results of applying the Floyd-Warshall algorithm and computing
fMs for Model 3

of the min/max delay-bounds of all simple paths that comprise
p.

Proof: See the Appendix.
Note that Lemma 1 is only applicable to event-clock

automata where clocks reset on every transition, which is
sufficient for this paper. The computation for more general
cases (e.g., clocks reset in arbitrary transitions) was studied in
[8] using the reachability graph, but that algorithm may not
terminate in the presence of cycles.

Example 2. Consider a path p in Model 3 that starts with
the transition t1 and ends with t3 after repeating two cy-
cles; that is, p=t1,t2,t3,t1,t2,t3. The path p consists of the
following simple paths: p1=t1,t2,t3; p2=t3,t1,t2; and p3=t2,t3.
From Figures 5(c)-(d), we know that fMs(1 , 3)=[9,20],
fMs(3 , 2)=[2,20], and fMs(2 , 3)=[7,10]. Based on Lemma 1,
we obtain that f min

Ms
(p)=f min

Ms
(1 , 3)+f min

Ms
(3 , 2)+f min

Ms
(2 , 3) and

f max
Ms

(p)=f max
Ms

(1 , 3)+f max
Ms

(3 , 2)+f max
Ms

(2 , 3). Thus, we have
fMs(p)=[18,50].

B. Computing fIMP

In the following, we describe how to compute the function
fIMP based on the platform-processing delay P and the code-
level delay fSOF.

Definition 3 (Platform-Processing Delay). For any I/O event
ak ∈ Σ, the platform-processing delay P(ak) = [δmin

k , δmax
k],

where δmin
k and δmax

k are the minimum and maximum times
needed for the platform to process the event ak, respectively.

The platform-processing delay characterizes the min/max
delays consumed by a given platform (independently of the
code-level delays) to process each I/O event. In Figure 2,
this delay is considered as the input delay consumed over
the information flow from m to i, and the output delay
consumed over the information flow from o to c. These delays
occurring over the information flows originate from several
delay segments that are necessary for the code to interact with
its environment via a platform, such as the timing overhead
for processing physical input/output signals incurred by device
drivers and scheduling delays. More details of such delay
segments can be found in our previous work [11] [10], and this
paper assumes that the platform-processing delays are bounded
as minimum and maximum parameters.

Example 3. There are three I/O events {a1?, a2!, a3?} in
Model 1 shown in Figure 1. Suppose the platform-processing

delay is given by P={P(a1)=[1,2],P(a2)=[3,4],P(a3)=[2,5]}
That is, it takes the platform at least 1 and at most 2 time-
unit from the moment it reads the input event a1 (mapped
to m variable in Figure 2) from the environment at the mc-
boundary until the moment the code reads the processed input
event (mapped to i variable) at the io-boundary. Similarly, it
takes the platform at least 3 and at most 4 time-unit from
the moment the code writes the output event a2 (mapped to
o variable) at the io-boundary until the moment the platform
writes the processed output event (mapped to c variable) to the
environment at the mc-boundary.

time
[]

[]

(,) 8
sM 1 2

IMP(,) 101 2

(a) System model behavior

(b) Implementation behavior (before delay-adjustment)

sM (,)=[2,10]f 1 2

SOF(,)=[2,10]f 1 2

IMP(,)=[4,14]f 1 2

1t ? 2t !
1 1

(2 10)a ax x True

1 1
(read() 2 read() 10)a ax x True

read()1

ia write()2

oa

reset()
1ax reset()

2ax

m

1a c

2a

[]

P() [1,2]1a P() [1,2]2a

Fig. 6. The timed behavior comparison between the system model (Ms)
and the implementation (P(a1)=[1,2] and P(a2)=[1,2]); the arrows imply
the events of the mc-boundary, while the diamond polls imply the events of
the io-boundary

Now, we explain the relation between the system implemen-
tation delay fIMP, the code-level delay fSOF, and the platform-
processing delay P. For example, Figure 6 illustrates how
the system model and the implementation behave differently
when processing a pair of the input transition 1 (t1) and the
output transition 2 (t2) of Model 1. In the system model,
t2 is taken (lower-direction arrow) in between 2 and 10
time-unit since t1 has been taken (upper-direction arrow);
therefore, fMs(1 , 2)=[2,10]. In the implementation, the delay-
bound fIMP(1 , 2) may differ from fMs(1 , 2) if the same timing
parameters (Ts) of Ms is used to implement the code-level
delay (fSOF). Suppose the code is generated using Ts (i.e.,
2 and 10), and this code is to be integrated with a platform
that has the processing delay: P=[1,2] (assuming that the same
min/max bound is applied to all I/O events). Assume that the
code interacts with the platform through a set of primitives:
read primitive to read the processed input values from the
platform or to read current clock values; reset primitive to
set the clock values to zero; write primitive to write the output
values to the platform. Note that the time instances when these
primitives are called by the code are different from the times
when the corresponding I/O occurs in the environment, due to
the platform delays.

This implemented system behaves as follows: when the
input (denoted as am1) associated with the transition t1 of Ms is
generated from the environment, (1) the platform reads am1 first
at the mc-boundary (red upper arrow); (2) the code reads the
processed input (denoted as ai1) at the io-boundary sometime
after, in between 1 and 2 time-unit (first green diamond poll)
due to P(a1), and reset the associated clock (xa1

); (3) the code

produces the output (denoted as ao2) at the io-boundary (second
diamond poll) in between 2 and 10 time-unit after reading the
previous input (ai1); (4) the platform processes and writes the
output (denoted as ac2) to the environment at the mc-boundary
(red lower arrow) in between 1 and 2 time-unit due to P(a2).
Intuitively, fIMP(1 , 2) will be larger than fMs(1 , 2) (i.e., fIMP 6∈
fMs) in this case; this deviation occurs since the I/O information
flow and P have not been compensated in implementing the
code-level delay (fSOF) (i.e., the code-level delay should have
been shrinked for the compensation in this case).

time
[] []

(Case 1) Delay-Bound of Input-Output

(Case 2) Delay-Bound of Output-Output

[] []

(Case 3) Delay-Bound of Output-Input

[] []

(Case 4) Delay-Bound of Input-Input

[] []

SOF(,)f i j

IMP(,)f i j

m

ia
c

ja

c

ia
c

ja

c

ia
m

ja

m

ia
m

ja

read()i

ia write()j

oa

write()i

oa write()j

oa

write()i

oa read()j

ia

read()i

ia read()j

ia

P()ia P()ja

SOF(,)f i j
IMP(,)f i j

SOF(,)f i j

IMP(,)f i j

SOF(,)f i j

IMP(,)f i j

P()ia P()ja

P()ia P()ja

P()ia P()ja

Fig. 7. The four cases of the delay bound computation at the implementation
level

In general, fIMP can be larger or smaller than fMs depending
on the event type and the amount of the platform-processing
delay and the dependency among different transitions; the four
possible I/O patterns and their implementation behavior are
illustrated in Figure 7. Therefore, it is problematic to generate
the code using the same parameters (Ts) of Ms. Instead, we
want to find a new timing parameter assignment (Tc) that
can be used for the code so that the delay-bound inclusion
constraint holds.

In order to find Tc, we derive the equation of fIMP by
separating two parts: we consider the part that constitutes the
platform-processing delay (P) as known parameters, while we
leave the part that constitutes the code-level delay (fSOF) as
unknown variables; now, fIMP for any pair of I/O events can
be calculated as follows:

Each event (i, j) occurring at the mc-boundary is either
input or output, hence there are four combinations for a pair
of events that can be calculated as follows:
• Case 1: i is an input event and j is an output event:

[f min
SOF(i , j)+(Pmin(aj)+Pmin(ai)), f max

SOF (i , j)+(Pmax(aj)+Pmax(ai))]
• Case 2: i is an output event and j is an output event:

[f min
SOF(i , j)+(Pmin(aj)−Pmax(ai)), f max

SOF (i , j)+(Pmax(aj)−Pmin(ai))]
• Case 3: i is an output event and j is an input event:

[f min
SOF(i , j)− (Pmax(aj)+Pmax(ai)), f max

SOF (i , j)−(Pmin(aj)+Pmin(ai))]
• Case 4: i is an input event and j is an input event:

[f min
SOF(i , j)− (Pmax(aj)−Pmin(ai)), f max

SOF (i , j)−(Pmin(aj)−Pmax(ai))]

These equations are obtained by the straightforward case
analysis illustrated in Figure 7. A detailed derivation in given
in Appendix.

IV. DELAY-BOUND ADJUSTMENT USING INTEGER
LINEAR PROGRAMMING

In this section, we explain how to find the unknown variables
(Tc) that will be used to implement the code-level delay (fSOF)
using the integer linear programming (ILP).

A. Intuition of the Delay-Bound Adjustment
We formalize the ILP problem to find Tc to generate the

code that can be integrated with a platform preserving the
delay-bound inclusion constraint with respect to the system
model (Ms). Before explaining the details, the intuition behind
this formalization is given.

Consider the timed behavior of Ms and the implemented
system in Figure 6. In case the code is generated using Ts,
two orthogonal aspects result in the deviation of the timed
behavior between Ms and the implementation.
(1) the deviation of the uncertainty range: the uncertainty
range of a pair of I/O transition ti and tj of Ms and the
uncertainty range of a pair of the corresponding I/O events
of an implemented system is defined as follows:

∆Ms(i, j) = f max
Ms

(i , j)− f min
Ms

(i , j) (2a)

∆IMP(i, j) = f max
IMP (i , j)− f min

IMP(i , j) (2b)

This range implies that the time interval where the second
transition (tj) is allowed to occur following the first transition
(ti). However, if the code is generated using the original timing
parameter assignment (Ts), the system model uncertainty
(∆Ms) is directly implemented as a code as well. The issue
is that the chosen platform will add another uncertainty that
comes from the platform-processing delay (P). For example, in
Fig. 6-(b), the uncertainty range of the implementation (∆IMP)
becomes 10 that is larger than the system model uncertainty
(∆Ms) by 2; this additional amount comes from P that results
in violation of the delay-bound inclusion constraint. To remedy
this, we introduce the Shrinking operation to adjust either
upper-bound or lower-bound of the guard condition of the
code to compensate P; this will make ∆IMP fit into that of
∆Ms by either increasing the lower-bound or decreasing the
upper-bound (i.e., ∆IMP(i, j) ≤ ∆Ms(i, j)). In Figure 8-(c),
for example, the uncertainty range of the implementation is
reduced by changing the guard condition associated with t2
from [2,10] to [4,10] (i.e., the lower bound of the original
guard condition is increased by 2).

[]

IMP(1,2) 8

[]

(c) Impl. behavior after shrinking the guard

(d) Impl. behavior after shifting the guard

IMP(,) 81 2

IMP(,)=[2,10]f 1 2

SOF(,)=[0,6]f 1 2

time

SOF(,)=[4,10]f 1 2

IMP(,)=[6,14]f 1 2

1 1
(read() 4 read() 10)a ax x True

read()1

ia write()2

oa
m

1a
c

2a

m

1a c

2a

read()1

ia
1 1

(read() 0 read() 6)a ax x True

write()2

oa

Fig. 8. The illustration of the delay adjustment algorithm

(2) I/O information flow directions: In spite of the shrinking
operation in Figure 8-(c), the resulting fIMP(1 , 2) is [6,14]
that is not included in fMs(1 , 2)=[2,10] (i.e. fIMP(1 , 2) 6∈
fMs(1 , 2)). This implies that it is not sufficient to perform
the Shrinking operation only in order to obtain Tc. The main
reason is that the shrinking operation only makes ∆IMP fit
into ∆Ms , but it does not consider the aspects originating from
different combinations of I/O information flows.

Depending on the types of I/O event pairs, the delay-bound
of an implementation is deviated from Ms in four different
ways as illustrated in Figure 7. To remedy this, we introduce
the Shift operation that moves the relative timing of the second
event occurrence back and forth by adjusting both the upper
and lower guard condition of the code (c.f., the shrinking
operation only adjusts either guard condition). In Figure 8-(d),
for example, both the lower and upper guard condition of the
code are decreased by 4; the result of this shift operation is that
the code should now produce the output in between 0 and 6
time-unit; then the implementation preserves the delay-bound
inclusion constraint with respect to Ms (i.e., fIMP(1 , 2)=[2,10]
∈ fMs(1 , 2)=[2,10]).

Applying the shrinking/shift operations for all possible pairs
of I/O transitions is challenging since there are many different
aspects intertwined with each other in a complicated pattern,
such as the platform-processing delay, the I/O information
flows and the dependency among different I/O transitions.
Furthermore, these operations may be impossible under certain
circumstances (e.g., ∆IMP is too small relative to the amount
of the delay that has to be shrinked). We explain how these
conditions are formalized in terms of the ILP so that the two
operations (i.e., shrinking and shifting) can be automatically
performed for all possible I/O transitions to adjust the code-
level delay.

B. Formalization of the ILP Problem for Acyclic Models
We first explain how the problem is formalized for acyclic

models, and then explain how it can be extended to cyclic
models.
Integer Variable Mapping to the Model: To formalize the
ILP problem, we first map integer variables to the system
model (Ms) that express the unknown min/max code-level
delay (fSOF). Here is our mapping: two integer variables, tlk
and tuk , are mapped to each transition of Ms; these variables
represent the lower and upper bounds, respectively, of the
guard condition associated with the transition. In general, this
mapping requires 2n variables if Ms has n transitions. For
example, six variables (tl1,tu1 ,tl2,tu2 ,tl3,tu3) are used to represent
Model 1. This variable mapping enables the min/max code-
level delay (fSOF) for any pair of I/O transitions to be repre-
sented in terms of a linear combination of variables. We will
use this representation to define constraints as follows:
Defining Linear Constraints: For all pairs of I/O transitions
in Ms, we formalize the following constraints using the linear
combination of the integer variables:
• (Type 1) The minimum delay-bound of the implemented

system should be equal or greater than that of Ms (i.e.,
f min
IMP ≥ f min

Ms
);

• (Type 2) The maximum delay-bound of the implemented
system should be equal or less than that of Ms (i.e., f max

IMP
≤ f max

Ms
);

• (Type 3) Each min/max delay-bound of the code should
be non-negative;

• (Type 4) The minimum delay-bound of the code should
be equal or less than the maximum delay bound.

Type 1 and type 2 characterize the delay-bound inclusion
constraints of Definition 1; we need the constraints of type 3
and type 4 to obtain only non-negative guard conditions whose
minimum delay bound is less than the maximum bound.

Example 4 (Linear Constraints for Model 1). Model 1 has
three pairs of I/O transitions: (1,2), (2,3), (1,3), and here are
the linear constraints:
• (C1a) tl2+Pmin(a2)+Pmin(a1)≥2
• (C1b) tu2+Pmax(a2)+Pmax(a1)≤10
• (C2a) tl3−(Pmax(a3)+Pmax(a2))≥7
• (C2b) tu3−(Pmin(a3)+Pmin(a2))≤10
• (C3a) tl2+tl3−(Pmax(a3)−Pmin(a1))≥9
• (C3b) tu2+tu3−(Pmin(a3)−Pmax(a1))≤20
• (C4) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0
• (C5) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3

Suppose a platform is characterized as P=[1,2], and the code
is assumed to be generated from Model 1. In this case, the
linear constraints are obtained by plugging in P as follows:
(C1a) tl2≥0; (C1b) tu2≤6; (C2a) tl3≥11; (C2b) tu3≤12; (C3a)
tl2≥10; (C3b) tu2+tu3≤19; (C4) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0
∧ tl3≥0 ∧ tu3≥0; (C5) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3

The constraints (C1a,b), (C2a,b), (C3a,b) are relevant to the
pairs of transitions (1,2), (2,3), (1,3), respectively. The con-
straints (C1a)-(C3a) and (C1b)-(C3b) are the type 1 and type
2 constraints, respectively; the right hand side of these con-
straints come from the calculated fMs according to Lemma 1,
while the left hand side are obtained based on the calculations
of fIMP in Section III by replacing f min

SOF(i , j) and f max
SOF (i , j)

with the linear combination of (1) the relevant integer variables
that express the unknown code-level delay, and (2) the known
platform-processing delay. On the other hand, the constraint
(C4) and (C5) are the type 3 and type 4 constraints needed
independently of the platform-processing delay (P).

The linear constraints for Model 2 are also similarly defined,
and those constraints and the example are given in Appendix.
Defining Objective Functions for Optimization: Our goal
is to find the parameter assignments (Tc) for the unknown
variables that satisfy these linear constraints. Note that there
can be many possible parameter assignments that satisfy these
linear constraints. For example, in Figure 8, the guard condi-
tion (lower bound: 0 and upper bound: 6) for the pair of I/O
transition allows the code to write an output (ao2) in between 0
and 6 time-unit since it has read the input (ai1) with the result
of fIMP(1 , 2)=[2,10]. Another possible assignment is (lower
bound: 0, upper bound: 1) that results in fIMP(1 , 2)=[2,5],
which still preserves the delay-bound inclusion property with
respect to Model 1.

To this end, we define optimality in choosing Tc by consid-
ering the following aspect: apart from the platform-processing
delay (P), the code also requires some computation time for
its internal processing; for example, the code computes the
output based on the input according to the control law that can
be a complex function. Therefore, a better solution is to find
Tc that maximizes the room for the internal computation of the
code. In the above example, the assignment (lower bound: 0,
upper bound: 6) is a better solution than the other assignment
(lower bound: 0, upper bound: 1) since the code can have more
computation time before producing the second event (i.e, 6
time-unit versus 1 time-unit). Such an optimal assignment can
be obtained by defining the objective function that maximizes
the uncertainty range of the implementation (∆IMP) as close
as to that of the system model (∆Ms); this will allow us to find

the largest room for the code computation while preserving the
linear constraints.

Suppose a system model (Ms) has n pairs of I/O transitions.
Then, we also have n uncertainty ranges for the system model
(∆Ms) and an implemented system (∆IMP) that corresponds to
each pair of I/O transitions. ∆Ms is known since it is calculated
from the known Ts, but ∆IMP is unknown since it is calculated
from the unknown Tc. Let ∆IMP(k) be the uncertainty range
of an implemented system for a particular pair (k) of I/O
transitions. Then, the general form of our objective function is
as follows:

maximize
n∑

i=1

∆IMP(i) (3)

For example, Model 1 has three uncertainty ranges that corre-
spond to the three pairs of I/O transitions.

∆IMP(1, 2) = (tu2 + Pmax(a2) + Pmax(a1))−
(tl2 + Pmin(a2) + Pmin(a1))

∆IMP(2, 3) = (tu3 − (Pmin(a3) + Pmin(a2)))−
(tl3 − (Pmax(a3) + Pmax(a2)))

∆IMP(1, 3) = (tu2 + tu3 − (Pmin(a3)− Pmax(a1)))−
(tl2 + tl3 − (Pmax(a3)− Pmin(a1)))

The following is the objective function for Model 1:

maximize ∆IMP(1, 2) + ∆IMP(2, 3) + ∆IMP(1, 3)

Our solver will find the parameter assignment for the six
variables (tl1,tu1 ,tl2,tu2 ,tl3,tu3) by maximizing the summation of
the uncertainty range of the implementation.

Example 5 (Optimal parameter assignment of Model 1).
Suppose the code is to be generated from Model 1, and
integrated with a platform characterized as P=[1,2]; then the
optimal parameter assignment for the code is (tl1,tu1 ,tl2,tu2 ,tl3,tu3)
= (0, INF, 0, 6, 11, 12), where INF implies the absence of
the upper bound. Consider another P=[1,3]; then there is no
possible parameter assignment for the code generation.

In Example 5, the solver finds no feasible parameter as-
signment for the code in case the platform with P=[1,3]
has to be used. This implies that no code can be generated
from Model 1 for this platform by preserving the delay-
bound inclusion constraint. However, suppose another platform
P=[1,2] is chosen whose maximum I/O processing delay is
1 time-unit faster than the previous platform. In this case,
the solver can find the optimal parameter assignment that
can be used to generate the code running on this platform.
The objective function for Model 2 is also similarly defined,
and it is given in Appendix with the example of the optimal
assignment.

We believe that one can define more refined notions of
optimality in terms of the internal computation time for the
code. One possible notion is to give more internal compu-
tation time for a particular I/O transition than the other in
case adjusting both ∆IMP equally conforms linear constraints.
Accommodating such refined optimality will result in more
complex objective functions than Equation 3. Exploring all
possible notions of optimality and comparing them to each
other is out of the scope of this work.

C. Handling Cyclic Models
Note that, if a model contains cycles, there can be an infinite

number of paths between a pair of transitions. For example,
Model 3 contains a cycle closed by transition 3. Consider a
pair of transitions (t1, t3); there are an infinite number of
paths, corresponding to the number of times the cycle has been
followed. Yet, we want to preserve the delay-bound inclusion
property for each of these paths. To this end, we show that
it is sufficient to consider only the simple paths through the
model to guarantee that the delay-bound inclusion property for
arbitrary paths, as follows:

Theorem 1. Given a platform processing delay P and a system
model Ms, if fIMP(i , j) ∈ fMs(i , j) for every pair of transitions
ti and tj , then fIMP(p) ∈ fMs(p) for any path p that starts with
ti and ends with tj .

Proof: See the Appendix.

Example 6 (Linear Constraints for Model 3). According to
Theorem 1, we only need to consider a finite number of simple
paths in Model 3, and the corresponding linear constraints are
listed below:
• (C1a) tl2+Pmin(a2)+Pmin(a1)≥2
• (C1b) tu2 +Pmax(a2)+Pmax(a1)≤10
• (C2a) tl2+tl3-(Pmax(a3)-Pmin(a1))≥9
• (C2b) tu2 +tu3 -(Pmin(a3)-Pmax(a1))≤20
• (C3a) tl3+tl1-(Pmax(a2)+Pmax(a1))≥7
• (C3b) tu3 +tu1 -(Pmin(a2)+Pmin(a1))≤20
• (C4a) tl3-(Pmax(a3)+Pmax(a2))≥7
• (C4b) tu3 -(Pmin(a3)+Pmin(a2))≤10
• (C5a) tl3-(Pmax(a1)-Pmin(a3))≥0
• (C5b) tu3 -(Pmin(a1)-Pmin(a3))≤10
• (C6a) tl1+tl2+(Pmin(a3)+Pmin(a2))≥2
• (C6b) tu1 +tu2 +(Pmax(a3)+Pmax(a2))≤20
• (C7) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0
• (C8) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3

Now, the objective function can be similarly defined as
Model 1 and Model 2; the following is the list of uncertainty
ranges that correspond to the pairs of I/O transitions in Model
3:

∆IMP(1, 2) = (tu2 + Pmax(a2) + Pmax(a1))−
(tl2 + Pmin(a2) + Pmin(a1))

∆IMP(1, 3) = (tu2 + tu3 − (Pmin(a3)− Pmax(a1)))−
(tl2 + tl3 − (Pmax(a3)− Pmin(a1)))

∆IMP(2, 1) = (tu3 + tu1 − (Pmin(a2) + Pmin(a1)))−
(tl3 + tl1 − (Pmax(a2) + Pmax(a1)))

∆IMP(2, 3) = (tu3 − (Pmin(a3) + Pmin(a2)))−
(tl3 − (Pmax(a3) + Pmax(a2)))

∆IMP(3, 1) = (tu3 − (Pmin(a1)− Pmax(a3)))−
(tl3 − (Pmax(a1)− Pmin(a3)))

∆IMP(3, 2) = (tu1 + tu2 + (Pmax(a3) + Pmax(a2)))−
(tl1 + tl2 + (Pmin(a3) + Pmin(a2)))

The following is the objective function for Model 3:

maximize ∆IMP(1, 2) + ∆IMP(1, 3) + ∆IMP(2, 1)+

∆IMP(2, 3) + ∆IMP(3, 1) + ∆IMP(3, 2)

Example 7 (Optimal parameter assignment of Model 3).
Suppose the code is to be generated from Model 3, and
integrated with a platform characterized as P=[0,1]; then the
optimal parameter assignment for the code is (tl1,tu1 ,tl2,tu2 ,tl3,tu3)
= (0, 10, 2, 8, 9, 9). Consider another P=[1,2]; then there is
no possible parameter assignment for the code generation.

V. CASE STUDY: INFUSION PUMP SYSTEMS

An infusion pump is a safety-critical medical device that
injects drugs to a patient’s body in a controlled manner for
medical purposes, such as diabetes treatments or anesthesia.
Its hardware platform is equipped with sensors (e.g., a bolus
request button, empty reservoir switch) and actuators (e.g.,
a pump motor, alarm buzzer) to interact with its physical
environment (e.g., patient). For example, a patient presses
a bolus request button to request an additional amount of
drugs; a pump rotates a pump-motor that generates physical
forces to move a loaded syringe so that drug can flow from
the syringe to the patient. In addition, the pump should
detect various alarming conditions using sensor input (e.g.,
empty/low reservoir condition) to generate alarm signals to
caregivers in a timely manner.

In order to show the applicability of the proposed approach,
we generate the code for the Baxter II Syringe PCA infusion
pump platform used for the GPCA reference implementation
project [9], and validated several delay-bound inclusion con-
straints (the equipment setup is shown in Appendix). Here are
the details of the case study:
(1) Modeling and verification for the infusion pump sys-
tems: Model 4 in Figure 9 is the system model (Ms) used for
this case study, and its informal semantics and the implication
in the actual PCA pump implementation are as follows: in
the initial location (L1), the pump waits for the patient’s
bolus request (in the implementation, the input mBolusReq is
generated by pressing a button). However, the pump shall not
accept a bolus request occurring earlier than 5000 ms 1 since
the previous infusion has been either normally finished by
providing the expected amount of drugs or abnormally finished
due to the alarming condition (i.e, those premature bolus
requests should be ignored). Otherwise, the pump shall process
any valid bolus request by taking the transition from L1 to L2.
In L2, the pump shall initiate the bolus infusion in between
150 ms and 470 ms by taking the transition from L2 to L3 (in
the implementation, the output cStartInfusion is produced
by rotating the pump motor at a calculated speed). Any bolus
infusion will finish in between 300 ms and 750 ms by taking
the transition from L3 to L1 (in the implementation, the output
cStopInfusion is produced by stopping the pump motor
rotation), unless it encounters the empty syringe condition.
During the infusion, if the empty syringe is detected (in the
implementation, the input mEmptySyringe is detected from
the switch sensor that is pressed when the syringe hits the
bottom), the pump takes a transition from L3 to L4 to prepare
alarms. In L4, the pump raises an alarm in between 200 ms
and 500 ms by taking the transition from L4 to L1 (in the
implementation, the output cAlarm is produced by providing
signals to a buzzer and alarm LEDs).

Here are three timing constraints considered in this case
study:
• (REQ1) When a patient requests a bolus, the bolus

infusion should start in between 150 ms and 470 ms;

1We assume 1 time unit in the model is mapped to 1 ms in the implemen-
tation

• (REQ2) The bolus infusion should be active at least 300
ms, and at most 750 ms;

• (REQ3) When a patient requests a bolus, the bolus
infusion should finish in between 450 ms and 1220 ms
in the absense of the empty reservoir alarm.

mBolusReq? cStartInfusion!

cStopInfusion!

mEmptySyringe?cAlarm!

5000

5000

cStopInfusion

cAlarm

x

x

 150

470

mBolusReq

mBolusReq

x

x

300 750cStartInfusion cStartInfusionx x

1500cStartInfusionx 200

500

mEmptySyringe

mEmptySyringe

x

x

1 [,]l u

1 1t t 2

3

4 5

[,]l u

2 2t t

[,]l u

3 3t t

[,]l u

4 4t t[,]l u

5 5t t

1L 2L
3L

4L

Fig. 9. Model 4 with variable assignment (Simplified GPCA model)

(2) Obtaining the platform-processing delay (P): We mea-
sured the platform-processing delay (P) of each input and
output of the Baxter PCA pump according to the measurement
method introduced in [11], and here is the brief explanation:

To measure the input processing delay, we obtained the
timestamp (tm) when the input is generated from the envi-
ronment (mc-boundary), and obtained another timestamp (ti)
when the code reads the processed input (io-boundary); the
input processing delay is calculated by subtracting tm from
ti. To measure the output processing delay, we obtained the
timestamp (to) when the output is generated from the code
(io-boundary), and another timestamp (tc) when the platform
actually writes the processed output to the environment (mc-
boundary); the output processing delay is calculated by sub-
tracting to from tc.

We obtained each timestamp using the oscilloscope that
captures the signal changes of the sensors and actuators of the
PCA pump (the example of this oscilloscope measurement is
given in Appendix). The measurement has been performed 20
times to measure each I/O delay (two inputs and three outputs),
and the min/max bound and the average of the measured
platform processing delay are summarized in Table. I.

I/O Event Type (ms) (ms) Avg. (ms)

Input 50 151 105.27

Output 100 303 225.97

Output 98 302 213.64

Input 104 200 142.8

Output 298 303 300.05

minP

maxP

mBolusReq?

cStartInfusion!

cStopInfusion!

mEmptySyringe?

cAlarm!

TABLE I. THE MEASURED PLATFORM PROCESSING DELAY OF THE
BAXTER II SYRINGE PUMP PLATFORM

From this measurement, we characterize the platform-
processing delay of the Baxter PCA pump platform as
P={P(mBolusReq)=[50,151],P(cStartInfusion)=[100,303],
P(cStopInfusion)=[98,302],P(mEmptySyringe)=[104,200],
P(cAlarm)=[298,303]}.
(3) Formalizing the ILP problem: According to the procedure
explained in Section IV, we formalized the ILP problem to find
the optimal parameter assignment to generate the code. Firstly,
two integer variables are mapped to each I/O transition of the

model, which are unknown variables that need to be solved
to implement the code-level delay; a total of 10 integer vari-
ables are mapped to the model (tl1,tu1 ,tl2,tu2 ,tl3,tu3 ,tl4,tu4 ,tl5,tu5).
Secondly, fMs has been calculated for the simple paths between
all pairs of I/O transitions; a total of 20 pairs of fMs are
calculated. Thirdly, based on the calculated fMs , 42 linear
constraints have been formalized that need to be satisfied
for delay-bound inclusion constraint. Finally, the objective
function is defined with the given P, and the solver finds
the optimal parameter assignment as summarized in Table II.
This parameter assignment is used to implement the guard
conditions in generating the code that will be executing on the
given platform.

5000 INF 150 470 300 750 0 1500 200 500

5454 INF 0 16 505 548 503 1704 0 202

l

1t

sM
T

cM
T

u

1t 2

lt u

2t
l

3t
u

3t
l

4t
u

4t
l

5t
u

5t

TABLE II. THE PARAMETER ASSIGNMENT (Ts) OF Ms AND THE
PARAMETER ASSIGNMENT (Tc) OF Mc

(4) Validating the optimal solution: The goal of the validation
is to compare how well the two different codes generated from
the system model (Ms) and the software model (Mc) preserve
the delay-bound inclusion constraint. We generated the two
different codes from each model using the TIMES tool [4]. In
order to obtain the implemented system, the generated codes
are interfaced with the same platform-specific I/O processing
routines whose min/max processing delay-bound is measured
as shown in Table I.

In order to validate the delay-bound inclusion constraint, we
measured the delay between a pair of I/O events associated
with each timing constraint at the mc-boundary. For exam-
ple, in order to validate REQ1, we obtained the timestamp
(tmBolusReq) for the signal change occurring at the bolus
request button (its signal changes from 5 volts to 0 volts if
the button is pressed by the patient); and we obtained another
timestamp (tcStartInfusion) for the signal change occurring
at the pump motor (its signal changes from 0 volts to 5
volts if the motor starts rotating); the delay between the two
signal changes are measured by subtracting tmBolusReq from
tcStartInfusion.

For each code, the delay measurement has been performed
20 times for each timing constraint; the trends of the delay-
bound for each constraint throughout the testing are shown in
Figure 10 11 12; their min/max/average delays are summarized
in the two separate fIMP columns of Table III; at the same time,
fMs is also shown in Table III as well for comparison.

REQ
Min (ms) Max(ms) Min(ms) Max(ms) Avg.(ms) Min(ms) Max(ms) Avg.(ms)

REQ1 150 470 603 843 695.8 155 459 283.4

REQ2 300 750 603 907 845 595 619 606.6

REQ3 450 1220 1400 1710 1537 747 1070 887.55

sM
f (,)sMIMPf T P (,)cMIMPf T P

TABLE III. THE VALIDATION RESULT OF THE DELAY-BOUND
INCLUSION CONSTRAINT OF THE GPCA REFERENCE IMPLEMENTATION

Analysis: Meeting the delay-bound inclusion constraint means
that all the measured implementation delays of each timing
constraint should be within the time interval allowed by the
system model (Ms) (i.e., f min

IMP ≥ f min
Ms

and f max
IMP ≤ f max

Ms
). If at

least one delay measurement is out of the interval allowed by
Ms, the implementation does not conform to the delay-bound
inclusion constraint.

Figure 10, 11, 12 show the validation result of REQ1, REQ2,
REQ3, respectively. The purple line and and green line rep-
resent f min

Ms
and f max

Ms
, respectively. Hence, the implementation

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original Adjusted Min Bound (Model) Max Bound (Model)

Delay Bound of REQ1(ms)

(test num)

Max bound

Min bound

Fig. 10. Validation Result for REQ1

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original Adjusted Min Bound (Model) Max Bound (Model)

Delay Bound of REQ2(ms)

(test num)

Max bound

Min bound

Fig. 11. Validation Result for REQ2

delay (fIMP) is expected to stay within these min/max bounds.
The blue line represents the actual delay of the implemented
system that executes the code generated from the system model
(Ms) without any delay adjustment; on the other hand, the red
line represents the actual delay of the implemented system that
executes the code generated from the software model (Mc) that
has been constructed according to the proposed approach.

According to our testing results, all measured implemen-
tation delays of the system running the code generated from
Mc are within the delay-bound allowed by Ms for the three
timing constraints (i.e., the delay-bound inclusion constraint
holds under this testing set). On the other hand, most measured
implementation delays of the system running the code gener-
ated from Ms are out of the interval allowed by Ms for all three
timing constraints (i.e., the delay-bound inclusion constraint
does not hold under this testing set). This result shows that a
system model (Ms) is not an appropriate model to generate the
code for the timing constraint conformance; instead, a software
model (Mc) has to be used to generate the code toward the
timing constraint conformance.

VI. RELATED WORK

There have been a number of works to incorporate the
platform processing delay in high level models in several
different ways. [16] proposed a parametric semantics that
allows the reaction time of a platform to be modeled, and
an analytic method to check if a platform has sufficient
processing power for property preservation. On the other hand,
[2] proposed a way to explicitly model software and platforms
together to abstract the timed behavior of an implementation.
Their approach includes platform modeling such as, digital
clock, program execution and I/O interfaces, so that the

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original Adjusted Min Bound (Model) Max Bound (Model)

Delay Bound of REQ3(ms)

(test num)

Max bound

Min bound

Fig. 12. Validation Result for REQ3

collection of these models can be checked for the property
preservation of an implementation. [1] [15] also studied how
platform-specific timing delays can be incorporated with the
platform-independent model. Their approach is to transform
the platform-independent model into a physical model by
decomposing each action transition in two separate transitions
to express the platform-overhead required for processing events
of the platform-independent model. Even though these plat-
form models proposed in each work [16] [2] [1] [15] are useful
in analyzing the property preservation of an implementation,
these works lack of consideration as to how software part
can be generated and integrated with a platform in a way
the implementation still holds the property. Furthermore, their
platform models are rather too abstract by ignoring some
aspects that result in the timed behavior deviation between a
model and an implementation. For example, these works lack
of consideration as to how I/O dependency and information
flow that affect to the timed behavior of an implementation
w.r.t. its model.

In comparison to the above works and our work that con-
sidered the timed automata semantics in characterizing timing
aspects of platforms, there are other works that express the
timing aspects in different ways. AADL [6] introduced several
components that can express platform’s timing aspects such as
threads, port connections, and bus components; TrueTime [7]
introduced kernel and network blocks that can be connected to
the ordinary Simulink blocks so that the temporal behavior of
a system that executes control algorithms on a particular plat-
form can be simulated. Even though these modeling strategies
do not discuss about the code generation, we believe that the
way these works abstract the timing aspects of platforms can
complement our work in refining the definition of the platform
processing delays.

Regarding to the delay-bound computation, [5] defined three
quantitative refinement metrics -(a) maximum time differ-
ence, (b) eventual maximum time difference, (c) average time
difference.- that quantify the timing mismatches between a
model and its implemented systems. Even though this work
does not consider how to obtain code from the timed models,
we believe that these are more refined metrics to reason about
the relationship between a model and its implementations
compared to our delay-bound inclusion constraint. We leave
applying these metrics to extend our code generation frame-
work as a future work.

VII. CONCLUSION AND FUTURE WORK

We proposed a way to transform a system model (Ms) into
a software model (Mc) in order to compensate the platform-
processing delays (P) for code generation purpose. Our model

transformation is performed by formalizing it using integer
linear programming in order to preserve the delay-bound
inclusion constraint at the implementation level. This approach
provides two types of automation in the code generation
process: (1) given a platform, it automatically checks whether
there exists a code generation strategy that preserves the delay-
bound inclusion constraint; (2) (if it is feasible), the software
model (Mc) is automatically obtained from the system model
(Ms), which guarantees to generate optimal code that can
utilize the maximum computation time in between processing
any pairs of I/O events. Our case study using the infusion pump
system shows the code generated from Mc better preserves
the delay-bound inclusion constraints compared to the code
generated from Ms.

As a future work, we plan to study a broader scope of
modeling patterns that can be applicable for computation of fMs

and fIMP. We also plan to extend a notion of platforms to the
distributed setting. That is, a system model abstracts timed
behavior of distributed systems; and several different code
should be generated running on each platform that are con-
nected through network. This requires more refined definition
of the platform-processing delays (e.g., incorporating network
delays) and a new model transformation strategy for code
generation.

REFERENCES

[1] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based
implementation of real-time applications. In EMSOFT. ACM, 2010.

[2] K. Altisen and S. Tripakis. Implementation of timed automata : an issue
of semantics or modeling. FORMATS, 2005.

[3] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock
automata: a determinizable class of timed automata. Theoretical
Computer Science, 211(12):253 – 273, 1999.

[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:
a tool for schedulability analysis and code generation of real-time
systems. In FORMATS, 2003.

[5] Krishnendu Chatterjee and Vinayak S. Prabhu. Quantitative timed
simulation functions and refinement metrics for real-time systems.
HSCC ’13, pages 273–282, New York, NY, USA, 2013. ACM.

[6] Peter H Feiler, David P Gluch, and John J Hudak. The architecture
analysis & design language (aadl): An introduction. Technical report,
DTIC Document, 2006.

[7] Dan Henriksson, Anton Cervin, and Karl erik rzn. Truetime: Real-time
control system simulation with matlab/simulink. In Proc. of the Nordic
MATLAB Conference, 2003.

[8] Inhye Kang and Insup Lee. An efficient state space generation for
analysis of real-time systems. SIGSOFT Softw. Eng. Notes, 21(3):4–13,
May 1996.

[9] Baek Gyu Kim, A. Ayoub, O. Sokolsky, Insup Lee, P. Jones, Yi Zhang,
and R. Jetley. Safety-assured development of the gpca infusion pump
software. In EMSOFT ’11, pages 155–164, Oct 2011.

[10] BaekGyu Kim, Lu Feng, Linh T. X. Phan, Oleg Sokolsky, and Insup
Lee. Platform-specific timing verification framework in model-based
implementation. DATE ’15, pages 235–240, 2015.

[11] BaekGyu Kim, Hyeon I Hwang, Taejoon Park, Sang H. Son, and
Insup Lee. A layered approach for testing timing in the model-based
implementation. In DATE ’14, pages 1–4, March 2014.

[12] BaekGyu Kim, Linh T. X. Phan, Oleg Sokolsky, and Insup Lee.
Platform-dependent code generation for embedded real-time software.
In CASES ’13. IEEE Press, 2013.

[13] MathWorks. Simulink coder - generate c and c++ code from simulink
and stateflow models.

[14] David Lorge Parnas and Jan Madey. Functional documents for computer
systems. Science of Computer Programming, 25:41–61, 1995.

[15] Ahlem Triki, Jacques Combaz, Saddek Bensalem, and Joseph Sifakis.
Model-based implementation of parallel real-time systems. In FASE
’13. 2013.

[16] Martin Wulf, Laurent Doyen, and Jean-Franois Raskin. Almost asap
semantics: From timed models to timed implementations. In HSCC.
2004.

APPENDIX

A. Notations
Table IV list the notations used in the paper.

Notations Definitions

The system model

The software model

The timing parameter assignments to the system model and the software model

The lower/upper bound of clock values associated with a transition k of the software model

The lower/upper bound of clock values associated with a transition k in the system model

The min/max platform processing delay of the event ak;
By adding min and max superscript, each indicates minimum delay bound and maximum delay
bound separately.

The min/max delay bound of a transition j succeeding a transition i in the system model;
By adding min and max superscript, each indicates minimum delay bound and maximum delay
bound separately

The min/max delay bound of a path p in the system model;
By adding min and max superscript, each indicates minimum delay bound and maximum delay
bound separately

The min/max delay bound of an event j (corresponding to transition j in the system model)
succeeding an event i (corresponding to transition i in the system model) at the mc-boundary; By
adding min and max superscript, each indicates minimum delay bound and maximum delay bound
separately

The min/max delay bound of a final event (corresponding to the final transition of p in the system
model) succeeding a start event (corresponding to the start transition of p in the system model) at
the mc-boundary; By adding min and max superscript, each indicates minimum delay bound and
maximum delay bound separately

The min/max delay bound of an event j (corresponding to transition j in the system model)
succeeding an event i (corresponding to transition i in the system model) at the io-boundary;
By adding min and max superscript, each indicates minimum delay bound and maximum delay
bound separately

The system model-level input/output event (identifier: k)

The implementation-level input event: the input (m) generated from the environment at the mc-
boundary; the input (i) processed by the platform at the io-boundary (identifier: k)

The implementation-level output event: the output (o) generated by the code at the io-boundary;
the output (c) generated by the platform at the mc-boundary (identifier: k)

The event clock associated with the event ak

The uncertainty range of the event j occurrence following the event i occurrence in the system
model

The uncertainty range of the event j occurrence following the event i occurrence in the implemented
system

sM

cM

,s cT T

,l u

k kt t

sM (,)f i j

,k ka ? a !

kax

IMP(,)f i j

SOF(,)f i j

,l u

k k

sM (,)i j

IMP(,)i j

,m i

k ka a

,o c

k ka a

s s

min max

M M[(,), (,)]f i j f i j

min max

IMP IMP[(,), (,)]f i j f i j

min max

SOF SOF[(,), (,)]f i j f i j

P()ka
min max[P (),P ()]k ka a

sM ()f p

IMP()f p

s s

min max

M , M[(), ()]f p f p

min max

IMP IMP[(), ()]f p f p

TABLE IV. NOTATIONS USED IN THE PAPER

B. Computation of fIMP(i , j)

Computation of fIMP(i , j) follows the case analysis for the
four cases illustrated in Figure 7. We only show Case 1 since
the rest of the equations are similarly derived.

(Case 1: input ti and output tj) Refer to the information
flow of Case 1 in Figure 7. Suppose the code reads the input
i at τi and the code writes the output j at τj at the io-
boundary. The possible range of the input occurrence at the
mc-boundary is [τi−Pmax(ai), τi−Pmin(ai)] because the input
at the mc-boundary has to occur before reading the input at
the io-boundary. The possible range of the output occurrence
at the mc-boundary is [τj+Pmin(aj), τj+Pmax(aj)] because
the output at the mc-boundary has to occur after writing the
output at the io-boundary. Then, the minimum interval of these
two events is (τj+Pmin(aj))−(τi−Pmin(ai)); the maximum
interval of these two events is (τj+Pmax(aj))−(τi−Pmax(ai)).
By rewriting, the min/max interval of the two event
is [τj−τi+Pmin(aj)+Pmin(ai), τj−τi+Pmax(aj)+Pmax(ai)].
Note that, the term τj−τi is the code-level delay-bound that
is unknown; the minimum interval of the two events can be
obtained by having the minimum interval of the code-level
delay; hence, the term τj−τi of the minimum interval is
rewritten as f min

SOF(i , j) that indicates the unknown minimum
interval of the code-level delay. The maximum interval of the
two events can be obtained by having the maximum interval of
the code-level delay; hence, the term τj−τi of the maximum
interval is rewritten as f max

SOF (i , j) that indicates the unknown
maximum interval of the code-level delay. As a result, we
obtain the final equation of fIMP(i , j) for Case 1 as follows:

[f min
SOF(i , j)+(Pmin(aj)+Pmin(ai)), f max

SOF (i , j)+(Pmax(aj)+Pmax(ai))]
C. Proofs of Lemma and Theorem

Lemma 1 The min/max delay-bound over an (non-simple)
path p in a system model Ms, denoted by fMs(p), is the
summation of the min/max delay-bounds of all simple paths
that comprise p.

Proof: Suppose p consists of a series of transitions
ti. . . tj , where ti is the starting transition of p, and tj is
the ending transition of p. Let tp1. . . tpk be the ending (and
starting) transitions in between ti and tj that comprises all
simple paths ∈ p; that is, p = ti. . . tp1. . . tp2. . . tpk. . . tj with a set
of simple paths ti. . . tp1, and tp1. . . tp2,. . . , and tpk−1. . . tpk, and
tpk. . . tj . In an event-clock automaton, the min/max interval
of a particular simple path can be calculated independently
of the min/max interval of its adjacent simple paths (i.e., the
min/max interval of a prior simple path immediately followed
by this simple path, and the post simple path immediately
following this simple path) using an event-recording clock
that is reset to zero upon taking a starting transition of a
simple path. Therefore, the minimum interval of fMs(p) is
calculated as follows: f min

Ms
(p) = f min

Ms
(ti , t

p
1) + f min

Ms
(tp1 , t

p
2) +

. . . + f min
Ms

(tpk−1 , t
p
k) + f min

Ms
(tpk , tj); and the maximum interval

of fMs(p) is also similarly calculated.
Theorem 1 Given a platform processing delay P and a

system model Ms, if fIMP(i , j) ∈ fMs(i , j) for all possible pair
of transitions ti and tj , then fIMP(p) ∈ fMs(p) for all paths p
that starts with ti and ends with tj .

Proof: (Proof by contradiction) Suppose ∃ p such that
fIMP(p) 6∈ fMs(p), where p = ti . . . tp1 . . . tp2 . . . tpk . . . tj with a
set of simple paths ti . . . tp1, and tp1 . . . tp2, . . . , and tpk−1 . . . tpk,
and tpk . . . tj . By Lemma 1, fMs(p) is calculated as follows:
f min
Ms

(p)=f min
Ms

(ti , t
p
1)+f min

Ms
(tp1 , t

p
2)+. . . +f min

Ms
(tpk−1 , t

p
k)+f min

Ms
(tpk , tj)

f max
Ms

(p)=f max
Ms

(ti , t
p
1)+f max

Ms
(tp1 , t

p
2)+. . . +f max

Ms
(tpk−1 , t

p
k)+f max

Ms
(tpk , tj)

Since fIMP(p) 6∈ fMs(p), either of the following cases must
be satisfied:

(Case 1) f min
IMP(p) < f min

Ms
(p)

(Case 2) f max
IMP (p) > f max

Ms
(p)

Suppose (Case 1) holds; then,
f min
IMP(ti , t

p
1)+f min

IMP(tp1 , t
p
2)+. . . +f min

IMP(tpk−1 , t
p
k)+f min

IMP(tpk , tj) <
f min
Ms

(ti , t
p
1)+f min

Ms
(tp1 , t

p
2)+. . . +f min

Ms
(tpk−1 , t

p
k)+f min

Ms
(tpk , tj).

However, this is not possible due to the assumption that
f min
IMP(ti , tj) ≥ f min

Ms
(ti , tj) for ∀ ti, tj .

Suppose (Case 2) holds; then,
f max
IMP (ti , t

p
1)+f max

IMP (tp1 , t
p
2)+. . . +f max

IMP (tpk−1 , t
p
k)+f max

IMP (tpk , tj) >
f max
Ms

(ti , t
p
1)+f max

Ms
(tp1 , t

p
2)+. . . +f max

Ms
(tpk−1 , t

p
k)+f max

Ms
(tpk , tj).

However, this is not possible due to the assumption that
f max
IMP (ti , tj) ≤ f max

Ms
(ti , tj) for ∀ ti, tj .

This constradicts the fact that either (Case 1) or (Case 2)
must be satisfied.
D. ILP Formalization of Model 2
Example 8 (Linear Constraints for Model 2). Model 2 has
four pairs of I/O transitions: (1,2), (1,3), (1,4), (3,4), and here
are the linear constraints:
• (C1a) tl2+Pmin(a2)+Pmin(a1)≥2
• (C1b) tu2+Pmax(a2)+Pmax(a1)≤10
• (C2a) tl3−(Pmax(a3)−Pmin(a1))≥7
• (C2b) tu3−(Pmin(a3)−Pmax(a1))≤10
• (C3a) tl3+tl4+(Pmin(a4)+Pmin(a1))≥11
• (C3b) tu3+tu4+(Pmax(a4)+Pmax(a1))≤18
• (C4a) tl4+(Pmin(a4)+Pmin(a3))≥4
• (C4b) tu4+(Pmax(a4)+Pmax(a3))≤8
• (C5) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0∧

tl4≥0∧ tu4≥0
• (C6) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3 ∧ tl4≤tu4

Suppose a platform is given characterized as P=[2,4]; and
the code is assumed to be generated from Model 2. The
corresponding linear constraints are as follows: (C1a) tl2≥−2;
(C1b) tu2≤2; (C2a) tl3≥9; (C2b) tu3≤8; (C3a) tl3≥7; (C3b)

tu3+tu4≤10; (C4a) tl4≥0; (C4b) tu4≤0; (C5) tl1≥0 ∧ tu1≥0 ∧
tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0∧ tl4≥0∧ tu4≥0; (C6) tl1≤tu1 ∧
tl2≤tu2 ∧ tl3≤tu3 ∧ tl4≤tu4

Model 2 has four uncertainty ranges that correspond to the
four pairs of I/O transitions.

∆IMP(1, 2) = (tu2 + Pmax(a2) + Pmax(a1))−
(tl2 + Pmin(a2) + Pmin(a1))

∆IMP(1, 3) = (tu3 − (Pmin(a3)− Pmax(a1)))−
(tl3 − (Pmax(a3)− Pmin(a1)))

∆IMP(1, 4) = (tu3 + tu4 + (Pmax(a4) + Pmax(a1)))−
(tl3 + tl4 + (Pmin(a4) + Pmin(a1)))

∆IMP(3, 4) = (tu4 + (Pmax(a4) + Pmax(a3)))−
(tl4 + (Pmin(a4) + Pmin(a3)))

The following is the objective function for Model 2:

maximize ∆IMP(1, 2) + ∆IMP(1, 3) + ∆IMP(1, 4) + ∆IMP(3, 4)

This objective function is obtained in a similar way with
Model 1 case. Our solver will find the parameter assignment
for the eight variables (tl1,tu1 ,tl2,tu2 ,tl3,tu3 ,tl4,tu4).

Example 9 (Optimal parameter assignment of Model 2). Sup-
pose the code is to be generated from Model 2, and integrated
with a platform characterized as P=[2,4]; then there is no
possible parameter assignment for the code. Suppose the code
is to be generated from the same model, and integrated with
another platform characterized as P=[2,3]; then the optimal
parameter assignment for the code is (tl1,tu1 ,tl2,tu2 ,tl3,tu3 ,tl4,tu4) =
(0, INF, 0, 4, 8, 9, 0, 2).

In Example 9, the solver finds no fesible parameter assign-
ment for the code in case the platform with P=[2,4] has to
be used. This implies no code can be generated from Model
2 for this platform by preserving the delay-bound inclusion
constraint. However, suppose another platform P=[2,3] is cho-
sen whose maximum I/O processing delay is 1 time-unit faster
than the previous platform. In this case, the solver can find the
optimal paramter assignment that can be used to generate the
code running on this platform.
E. ILP Formalization of Model 4

Model 4 has total 42 linear constraints as follows:
• (C1a) tl2+Pmin(a2)+Pmin(a1)≥ 150
• (C1b) tu2+Pmax(a2)+Pmax(a1)≤ 600
• (C2a) tl2+tl3+Pmin(a3)+Pmin(a1)≥ 900
• (C2b) tu2+tu3+Pmax(a3)+Pmax(a1)≤ 2100
• (C3a) tl2+tl4−(Pmax(a4)−Pmin(a1))≥ 150
• (C3b) tu2+tu4−(Pmin(a4)−Pmax(a1))≤ 2100
• (C4a) tl2+tl4+tl5+Pmin(a5)+Pmin(a1)≥ 350
• (C4b) tu2+tu4+tu5+Pmax(a5)+Pmax(a1)≤ 2600
• (C5a) min[tl3+tl1−(Pmax(a1)+Pmax(a2)),

tl4+tl5+tl1−(Pmax(a1)+Pmax(a2))] ≥ 5200
• (C5b) max[tu3+tu1−(Pmin(a1)+Pmin(a2)),

tu4+tu5+tu1−(Pmin(a1)+Pmin(a2))]≤ INF
• (C6a) tl3+Pmin(a3)−Pmax(a2)≥ 750
• (C6b) tu3+Pmax(a3)−Pmin(a2)≤ 1500
• (C7a) tl4−(Pmax(a4)+Pmax(a2))≥ 0
• (C7b) tu4−(Pmin(a4)+Pmin(a2))≤ 1500
• (C8a) tl4+tl5+(Pmin(a5)−Pmax(a2))≥ 200
• (C8b) tu4+tu5+(Pmax(a5)−Pmin(a2))≤ 2000
• (C9a) tl1−(Pmax(a3)+Pmax(a1))≥ 5000
• (C9b) tu1−(Pmin(a3)+Pmin(a1))≤ INF
• (C10a) tl1+tl2+(Pmin(a3)−Pmax(a2))≥ 5150

• (C10b) tu1+tu2+(Pmax(a3)−Pmin(a2))≤ INF
• (C11a) tl1+tl2+tl4−(Pmax(a4)+Pmax(a3))≥ 5150
• (C11b) tu1+tu2+tu4−(Pmin(a4)+Pmin(a3))≤ INF
• (C12a) tl1+tl2+tl4+tl5+(Pmin(a5)−Pmax(a3))≥ 5350
• (C12b) tu1+tu2+tu4+tu5+(Pmax(a5)−Pmin(a3))≤ INF
• (C13a) tl5+tl1−(Pmax(a1)−Pmin(a4))≥ 5200
• (C13b) tu5+tu1−(Pmin(a1)−Pmax(a4))≤ INF
• (C14a) tl5+tl1+tl2+Pmin(a2)+Pmin(a4)≥ 5350
• (C14b) tu5+tu1+tu2+Pmax(a2)+Pmax(a4)≤ INF
• (C15a) tl5+tl1+tl2+tl3+Pmin(a3)+Pmin(a4)≥ 6100
• (C15b) tu5+tu1+tu2+tu3+Pmax(a3)+Pmax(a4)≤ INF
• (C16a) tl5+Pmin(a5)+Pmin(a4)≥ 200
• (C16b) tu5+Pmax(a5)+Pmax(a4)≤ 500
• (C17a) tl1−(Pmax(a5)+Pmax(a1))≥ 5000
• (C17b) tu1−(Pmin(a5)+Pmin(a1))≤ INF
• (C18a) tl1+tl2+(Pmin(a2)−Pmax(a5))≥ 5150
• (C18b) tu1+tu2+(Pmax(a2)−Pmin(a5))≤ INF
• (C19a) tl1+tl2+tl3+(Pmin(a3)−P 5

max)≥ 5900
• (C19b) tu1+tu2+tu3+(Pmax(a3)−Pmin(a5))≤ INF
• (C20a) tl1+tl2+tl4−(Pmax(a4)−Pmax(a5))≥ 5150
• (C20b) tu1+tu2+tu4−(Pmin(a4)+Pmin(a5))≤ INF
• (C21) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0
∧ tl4≥0 ∧ tu4≥0 ∧ tl5≥0 ∧ tu5≥0

• (C22) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3 ∧ tl4≤tu4 ∧ tl5≤tu5
The uncertainty ranges and the objective function for Model

4 are similary defined with Model 1, 2, 3.
F. Case Study Platform Setup

Figure 13 shows the case study platform setup and the mea-
surement method of the delay-bounds using the oscilloscope.
The infusion pump platform shown in (a) is equipped with
sensors (bolus request button, empty/low reservoir detection
switch, door open detection switch) and actuators (pump-
motor, alarm LED, buzzer) that are necessary to implement the
drug administration process and alarming condition detection.
These sensors/actuators are interfaced with ARM7 micro-
controller that is running FreeRTOS. The generated code from
the software model (Mc) executes as a periodic thread along
with other threads that interact with sensors and actuators.

The two oscilloscope screen-shots compare the signal
changes that are occurring at the sensor (bolus request button)
and the actuator (pump-motor) implemented by the two codes
generated from Ms and Mc, respectively. The delay-bounds
associated with REQ1, REQ2, REQ3 are measured by time-
stamping these signal changes. These measurements are sum-
marized in Figure 10 11 12 in Section V.

(a) Baxter PCA Pump Hardware

(b) Oscilloscope

(c) Microcontroller (SAM7X, FreeRTOS)

(d) Bolus Request Button

(e) Intravenous Tube

(a) the experimental platform setup (b) the delay-bound measurement using
the oscilloscope

(a) BolusRequest

(b) Start Infusion

(b) Start Infusion

(c) Stop Infusion

(c) Stop Infusion

(1) Code without delay adjustment

(2) Code with delay adjustment

(a) BolusRequest

Fig. 13. (a) Case study platform setup (Baxter PCA infusion pump), (b)
Delay measurement using the oscilloscope for validation

	University of Pennsylvania
	ScholarlyCommons
	12-2015

	Platform-Specific Code Generation from Platform-Independent Timed Models
	BaekGyu Kim
	Lu Feng
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Platform-Specific Code Generation from Platform-Independent Timed Models
	Abstract
	Disciplines
	Comments

	tmp.1444934637.pdf.bUY11

