
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

3-2015

Platform-Specific Timing Verification Framework
in Model-Based Implementation
BaekGyu Kim
University of Pennsylvania, baekgyu@cis.upenn.edu

Lu Feng
University of Pennsylvania, lufeng@cis.upenn.edu

Linh T. X. Phan
University of Pennsylvania, linhphan@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, Software Engineering Commons, and the Theory
and Algorithms Commons

Design, Automation & Test in Europe (DATE 2015) , Grenoble, France, March 9 - 13, 2015

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/784
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
BaekGyu Kim, Lu Feng, Linh T. X. Phan, Oleg Sokolsky, and Insup Lee, "Platform-Specific Timing Verification Framework in Model-
Based Implementation", Proceedings of Design, Automation & Test in Europe (DATE 2015) , 235-240. March 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.date-conference.com/date15/
http://repository.upenn.edu/cis_papers/784
mailto:libraryrepository@pobox.upenn.edu

Platform-Specific Timing Verification Framework in Model-Based
Implementation

Abstract
In the model-based implementation methodology, the timed behavior of the software is typically modeled
independently of the platform-specific timing semantics such as the delay due to scheduling or I/O handling.
Although this approach helps to reduce the complexity of the model, it leads to timing gaps between the
model and its implementation. This paper proposes a platform-specific timing verification framework that can
be used to formally verify the timed behavior of an implementation that has been developed from a platform-
independent model. We first describe a way to categorize the interactions among the software, a platform, and
the environment in the form of implementation schemes. We then present an algorithm that systematically
transforms a platform-independent model into a platform-specific model under a given implementation
scheme. This transformation algorithm ensures that the timed behavior of the platform-specific model is close
to that of the corresponding implementation. Our case study of an infusion pump system shows that the
measured timing delay of the system is bounded by the formally verified bound of its platform-specific model.

Keywords
formal specification, program verification, scheduling, software metrics, timing, I/O handling, formal
verification, infusion pump system, model complexity, model-based implementation methodology, platform-
independent model, platform-specific model, platform-specific timing semantics, platform-specific timing
verification framework, scheduling, timing delay, Automata, Computational modeling, Delays, Semantics,
Software, Synchronization

Disciplines
Computer Engineering | Computer Sciences | Software Engineering | Theory and Algorithms

Comments
Design, Automation & Test in Europe (DATE 2015) , Grenoble, France, March 9 - 13, 2015

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/784

http://www.date-conference.com/date15/
http://repository.upenn.edu/cis_papers/784?utm_source=repository.upenn.edu%2Fcis_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages

Platform-Specific Timing Verification Framework in
Model-Based Implementation

BaekGyu Kim Lu Feng Linh T.X. Phan Oleg Sokolsky Insup Lee
University of Pennsylvania

Email: {baekgyu,lufeng,linhphan,sokolsky,lee}@cis.upenn.edu

Abstract—In the model-based implementation methodology, the
timed behavior of the software is typically modeled independently
of the platform-specific timing semantics such as the delay due
to scheduling or I/O handling. Although this approach helps
to reduce the complexity of the model, it leads to timing gaps
between the model and its implementation. This paper proposes
a platform-specific timing verification framework that can be
used to formally verify the timed behavior of an implementation
that has been developed from a platform-independent model.
We first describe a way to categorize the interactions among
the software, a platform, and the environment in the form of
implementation schemes. We then present an algorithm that
systematically transforms a platform-independent model into a
platform-specific model under a given implementation scheme.
This transformation algorithm ensures that the timed behavior
of the platform-specific model is close to that of the corresponding
implementation. Our case study of an infusion pump system
shows that the measured timing delay of the system is bounded
by the formally verified bound of its platform-specific model.

I. INTRODUCTION

Model-based implementation is an effective approach to sys-
tematically develop real-time embedded software. In this ap-
proach, the timed behavior of the software is modeled us-
ing modeling languages (e.g., UPPAAL), and the model’s
conformance to the timing requirements is formally verified
using verification techniques (e.g., model checking). The code
generation process then automatically generates source code
from the verified model, so that the final implemented system
(which executes the generated code on an embedded platform)
also conforms to the timing requirements.

The timed behavior of the software is closely connected
with the behavior of its platform; for instance, the response
time of an input event from the environment depends on the
task scheduling and I/O handling mechanisms of the platform.
Hence, to ensure that the implemented system meets the
timing requirements, the modeling and verification stage must
consider the timing interactions between the software and the
platform. This is non-trivial, as not only is the platform-specific
timing information usually not available in this stage, but
capturing all details of the platform would also make the model
too complex to verify efficiently.

A common solution is to model the software and the
platform separately, while considering their interactions when
composing the generated code with the platform. However,
this separation of concerns can lead to timing gaps between
the platform-independent model and its implemented system.
For example, depending on the specific platform support, the
code may read environmental inputs through either a polling
or an interrupt-based mechanism, each of which will add a
different delay to the code’s outputs; as a result, even if the
the timing requirements between the code’s inputs and outputs
are verified to satisfy in the platform-independent model, they
may no longer hold in the implemented system.

A number of efforts have been made to bridge the above
timing gaps, e.g., by adding platform aspects to the high-level
models. Most notably, existing work on the implementability

*This research was supported in part by the DGIST Research and Develop-
ment Program of the Ministry of Science, ICT and Future Planning of Korea
(CPS Global Center), NSF CNS-1035715, NSF CNS-1117185, and James S.
McDonnell Foundation Postdoctoral Fellowship.

of timed automata (TA) incorporates the platform information
by explicitly modeling the execution platform [3], [4], [18] or
by modifying the TA semantics to reflect the implementation
platform semantics (e.g., [13], [14], [19]). Real-time schedul-
ing has also been combined with TA in [2], and a number of
automata- and actor-oriented scheduling interfaces have also
been developed [5], [8], [17]. However, these existing tech-
niques consider rather restrictive platform semantics, such as
assuming only a small subset of possible implementations [4]
or ignoring various sources of timing delays [3], [18], [19].

In the prior work [9], we studied how the timing behavior of
the implementation can be formally verified by measuring the
platform-specific delays, and reflecting the measured delays to
the original model for model checking. In [12], we presented
a timing testing method that enables one to measure more
refined platform-specific delay segments in a systematic way.
However, we didn’t consider explicit platform models in those
previous works. In order to reason about the timing behavior of
the implementation more accurately, we need to build a more
refined platform model that captures the complex interactions
between platform-specific features.

In this paper, we present a platform-specific timing verifica-
tion framework for verifying the timed behavior of an imple-
mented system that is developed from a platform-independent
model. In this framework, we model the timed behavior of
a platform using an implementation scheme, which defines
how the platform interacts with the platform-independent code
and with the environment. Specifically, an implementation
scheme specifies how a platform (i) executes the platform-
independent code (e.g., periodic or aperiodic execution), (ii)
reads sensor inputs from and writes actuator outputs to the
environment (e.g., sampling or interrupt-based mechanism),
and (iii) delivers the processed sensor inputs to and receives
computed outputs from the platform-independent code (e.g.,
buffering or shared variable mechanism). From a platform-
independent model (PIM) and an implementation scheme
for the platform, we then systematically construct the cor-
responding platform-specific model (PSM) that captures the
timed behavior of the corresponding implemented system.
By verifying this PSM , we can now determine whether the
implemented system satisfies the timing requirements.

In summary, we make the following contributions:
• a general category of implementation schemes for the

platform based on Parnas’ four variable formalism [16]
(Section III);

• a modular transformation algorithm for systematically
transforming a PIM into a PSM that is extensible to a
range of implementation schemes (Sections IV+V); and

• an infusion pump system case study, which demonstrates
that the timed behavior of the PSM is sufficiently close
to that of the implemented system (Section VI).

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

A. Motivating Example: Infusion Pump System
An infusion pump is a safety-critical medical device that
injects drugs into a patient’s body in a controlled manner for
medical purposes, such as diabetes treatments or anesthesia.
Its hardware platform is equipped with sensors (e.g., a bolus

request button) and actuators (e.g., a pump motor) to interact
with its physical environment (e.g., a patient). For example, a
patient presses a bolus request button to request an additional
amount of drugs; a pump rotates a pump-motor that generates
physical forces to move a loaded syringe so that drug can flow
from the syringe to the patient. The software operating on the
platform reads sensor inputs (e.g., a patient’s bolus requests)
and writes actuator outputs (e.g., the rotation of a pump motor)
to make infusion administration processes happen.

Consider the following timing requirement from [1]:
• (REQ1) “When a patient requests a bolus, a bolus

infusion should start within 500ms.”1

Fig. 1 shows an UPPAAL [7] model that abstracts the timed
behavior of the infusion pump software and its environment.
This model is a parallel composition of two automata, M
and ENV. M models the software using a clock variable
(x), input synchronizations (m-BolusReq and m-EmptySyringe),
and output synchronizations (c-StartInfusion, c-StopInfusion
and c-Alarm). ENV models the environment using a clock
variable (env-x) and the complementary synchronizations with
that of M. 2

One can easily verify that the model in Fig. 1 satisfies
REQ1 (by describing REQ1 as a logic formula stating that
the maximum delay between two successive synchronizations,
m-BolusReq followed by c-StartInfusion, does not exceed 500
time units, and then verifying it using model checking).

(1) M (2) ENV

Fig. 1. A platform-independent model of the infusion pump software

Using available code generators (e.g., [6] [15]), we can
systematically generate the source code for the software from
the verified model. The generated code repeatedly performs a
series of interactions with a platform: (1) waiting for being
invoked by a platform, (2) reading inputs from a platform, (3)
computing outputs (which involves finding a transition to be
taken using the inputs and the clocks’ values), and (4) writing
the computed outputs to a platform.

Observe that the platform-specific interactions between the
code and a platform are not specified in the above UPPAAL
model (which is the reason we call this model a platform-
independent model (PIM)). For instance, the model does
not capture how the platform reads a bolus request from
a patient and how the platform processes this input into a
program input to be read by the code. Depending on which
scheme the platform uses, the response time to the patient’s
request can vary, which can make the timed behavior of the
implementation deviate from that of the PIM . Hence, although
REQ1 is satisfied in the PIM , this timing requirement may not
hold in the implemented system due to the timing deviation.
B. Problem Statement
To describe the problem more precisely, we first introduce
some notations. Code(PIM) denotes the platform-independent
code generated from a PIM . This code needs to be composed

1Note that the specific timing parameter (500ms) is added to the original
requirement to explain our work.

2More details about the model semantics can be found in the technical
report [11].

with platform-specific primitives (e.g., read/write API) to re-
alize the platform-specific interactions. IS denotes an imple-
mentation scheme that is used for such a composition. The
implemented system is denoted by Code(PIM)‖impIS , which
indicates that the resulting implementation is the platform-
independent code executed with the support of an implementa-
tion scheme IS . Finally, P(∆mc) denotes a timing requirement
that the delay between an input m and an output c must
be within ∆mc time units (e.g., the delay between the bolus
request and the start infusion must be within 500ms).

As explained in the infusion pump example, the timing
information of a chosen IS is not explicitly modeled in the
PIM and hence, the following claim may not always hold:
PIM |= P(∆mc) implies Code(PIM)‖impIS |= P(∆mc).

To better describe the timed behavior of the implementation,
we need a platform-specific version of the PIM that captures
the timed behavior of the IS , such that if this platform-specific
model (PSM) is verified to meet a timing requirement, then
its implementation also satisfies the requirement. In addition,
as was discussed earlier, the IS may introduce an additional
delay to the response time between an input m and an output
c, which can lead to violation of the timing requirement
P(∆mc) in the implementation. To quantify how close the
implementation is from satisfying P(∆mc), we would like to
compute a new delay bound ∆′mc for which P(∆′mc) holds
in the implementation. In other words, we need to derive a
platform-specific model (PSM) and a bound ∆′mc such that
PSM |= P(∆′mc) implies Code(PIM)‖impIS |= P(∆′mc).
To this end, our goals are (1) to identify the necessary

information to obtain such an PSM , (2) to develop a method
for systematically transforming a PIM into a PSM based on
the identified information, and (3) to compute the bound ∆′mc.
C. Approach overview
We assume that a platform consists of several building blocks
to support the execution of Code(PIM), including the Input-
Device that processes inputs generated from the environ-
ment, the Output-Device that processes outputs generated from
Code(PIM), and the Code-Execution that invokes Code(PIM)
to perform transitions based on the environmental inputs and
the clocks’ values. Fig. 2-(a) shows the block diagram that
illustrates these blocks in an implemented system.

Code(PIM)

Code Execution

Input
Device

Output
Device

m c

i o i o

m c

Real Environment

MIO

EXEIO

IFMI IFOC

ENVMC

(a) Implementation (b) Platform-Specific Model
(PSM)

Fig. 2. The mapping between (a) the implemented system and (b) its platform-
specific model

To model the platform-specific information, we propose a
general category of implementation schemes that lists possible
mechanisms to implement each interaction of the platform
with the environment and with the Code(PIM). A platform
can select a particular combination of mechanisms from the
category as its implementation scheme. Based on a chosen
implementation scheme IS , we can systematically transform
a PIM into a PSM . The transformed PSM is the parallel
composition of the UPPAAL models shown in Fig. 2-(b) (i.e.,
MIO ‖IFMI ‖IFOC ‖EXEIO ‖ENVMC). Here, IFMI and
IFOC model the platform-specific input and output processing
mechanisms for interacting with the environment (modeled

as ENVMC). EXEIO models the platform-specific invocation
mechanism to schedule the platform-independent code so as
to receive (deliver) the code’s inputs (outputs) from (to) a
platform. Finally, MIO models the timed behavior of the
platform-independent code executing with the support of the
implementation scheme IS . Each of these models is matched
to its respective building block shown in Fig. 2-(a).

Our transformation algorithm is modular and preserves the
original structure of the PIM . The algorithm ensures that
the resulting PSM has a similar timed behavior3 to that of
the Code(PIM)‖impIS . Based on the obtained PSM , we can
verify whether the delay between an input m and an output c is
bounded; if so, we derive the delay bound ∆′mc from the total
processing delays of the Input-Device, the Code-Execution,
and the Output-Device. By verifying the PSM against the
timing requirement P(∆′mc), we can formally check whether
the implementation meets this relaxed timing requirement.

III. IMPLEMENTATION SCHEMES

We define implementation schemes using the four-variables
formalism proposed by Parnas [16]. As illustrated in Fig. 2-(a),
the platform’s interactions occur at two system boundaries: (1)
the mc-boundary, which is the boundary between the platform
and the environment, and (2) the io-boundary, which is the
boundary between the platform and the Code(PIM).

At the mc-boundary, the Input-Device reads environmental
inputs stored in the monitored variables (m), processes the
inputs, and writes the processed inputs to the input variables
(i). In addition, the Output-Device reads the code execution’s
outputs from the output variables (o), processes these outputs,
and delivers the processed outputs to the environment by
writing to the controlled variables (c).

At the io-boundary, the Code(PIM) is invoked by the Code-
Execution to read the processed inputs stored in the i-variables.
After performing the execution, the Code(PIM) writes outputs
to the o-variables. The information flows from the environment
to the Code(PIM) and vice versa are illustrated in Fig. 2-(a).

An implementation scheme defines a mechanism for imple-
menting each interaction at the two system boundaries:
Definition 1 (Implementation Scheme). An implementation
scheme is a pair {MC , IO}, where

• MC specifies a reading (writing) mechanism and asso-
ciated parameters for each variable v ∈ m∪o (v′ ∈ i∪c);

• IO specifies a reading (writing) mechanism and associ-
ated parameters for each variable v ∈ i (v′ ∈ o), as well
as an invocation mechanism for the Code(PIM).

The category of reading, writing and invocation mecha-
nisms, as well as the platform-specific parameters required
by the mechanisms, is available in [11]. Example 1 gives a
possible implementation scheme formed by selecting different
mechanisms from this category. The timed behavior of the
implementation with this scheme is illustrated by Fig. 3.

Example 1 (IS1). The implementation scheme 1 is given by
IS 1 = {MC 1, IO1}, where: (1) MC 1(v) = 〈(pulse signal,
interrupt, rising-edge); (delaymin = 1, delaymax = 3)〉 and
MC 1(v′) = 〈(pulse signal); (delaymax = 1, delaymax = 3)〉
for all v ∈ m∪ o, and v′ ∈ i∪ c; and (2) IO1(v) = 〈(Buffers,
Read-all); (buffer-size = 5)〉 for all v ∈ i ∪o, and IO1(invoke)
= 〈(Periodic invocation); (period = 100)〉.

We now explain the implementation schemes in detail.

3We use the term “similar timed behavior” since it requires further as-
sumptions to argue that the implementation shows exactly the “same timed
behavior” with the PSM in a strict sense.

A. The mc-boundary interactions

An implementation scheme for the Input-Device specifies (1)
what types of input signals are generated from the environ-
ment (in the form of m-variables), (2) how the Input-Device
reads these input signals and delivers the processed inputs to
Code(PIM) (in the form of i-variables), and (3) the minimum
and maximum delays – represented by the platform-specific
parameters delaymin and delaymax– that the Input-Device takes
to transform an input signal to a program value that can be
read by the Code(PIM). Similar information can be defined
by an implementation scheme for the Output-Device.

There are three types of input signals generated by the envi-
ronment: pulse signals, signals with a sustained duration, and
signals sustained until being read. The Input-Device can read
signals using either a polling or an interrupt-based mechanism.
We explain below the pulse signal (used by IS1).

A pulse signal generated from the environment does not
have a sustained duration, i.e., its sustained duration is too
short to be captured through a polling-based mechanism.
Therefore, a platform can only read the signal using an
interrupt-based mechanism, in which an interrupt service
routine is automatically called for processing the input signal
whenever a signal change is detected on a sensor. For instance,
an infusion pump needs to detect drug-drops using a drop
sensor to precisely calculate the volume of drugs infused;
since a drug-drop passes the sensor very fast, this detection
is typically done using an interrupt-based mechanism.

Fig. 3 illustrates three pulse signals (m1, m2, m3) that are
read by a platform using an interrupt-based mechanism, as well
as the timing of the three processed inputs (i1, i2, i3). In the
figure, the directional arrows from ENV to Platform indicate
that the input events (mi) trigger their corresponding interrupt
service routines registered in the platform.

B. The io-boundary interactions

An implementation scheme for the interactions at the io-
boundary specifies (1) how the Code(PIM) is invoked for
its execution by a platform, and (2) how the Code(PIM)
receives inputs from the Input-Device and delivers outputs to
the Output-Device.

The Code(PIM) can be invoked by a platform either
periodically or aperiodically; in the former case, the period is
specified by the platform-specific parameter period. Fig. 3 il-
lustrates five consecutive periodic invocations of Code(PIM).

Whenever being invoked (illustrated as five boxes in the
timeline of Code(PIM) of Fig. 3), the Code(PIM) receives
inputs from the Input-Device through either shared variables
or buffers. In the case of using a buffer, the maximum buffer
size is specified by the parameter buffer-size. In addition,
Code(PIM) can either read a single input or all inputs from
the buffer upon every invocation, with each choice requiring
different sets of inputs to make transition decisions. For
example, in Fig. 3, when the Code(PIM) makes a transition
decision at the 4th invocation, it uses a single input value (i2)
if the read-one policy is used; on the contrary, it uses two
input values (i2 and i3) if the read-all policy is used.

The same set of mechanisms as above can be used by the
Code(PIM) to deliver outputs to the Output-Device.

Discussions. Different implementation schemes lead to differ-
ent delays from the instant the environment generates an input
signal until the instant the Code(PIM) reads the processed in-
put. For example, using a polling mechanism for detecting the
environmental input (m-variables) can prolong the reading up
to the next polling time, and using an aperiodic invocation for
the Code(PIM) can reduce the delay by invoking Code(PIM)
immediately whenever the processed input is inserted to the

m1

(m1, t1)

Code(PIM) ENV Platform

m2

i1

i2

1

2

3

(m2, t2)

(m3, t3)

m3

i3

Read: Null

Read: Null

Read: i1

4
Read: i2

<Read One>

5 Read: i3

<Read All>
Read: Null

Read: Null

Read: i1

Read: i2, i3

Read: Null

Invocation
Interval

Time

Read

Read

Read

Fig. 3. The illustration of the mc and io-boundary interactions of IS1

buffer. Due to space constraints, we do not discuss all possible
combinations here.

Note that our platform characterization is motivated by
Altisen and Sifakis’s work [3], [4], [18] (which also studied
how a platform can be abstracted and composed with the
platform-independent model), but we aim at capturing more
detailed timed behavior of different platforms. Specifically, the
techniques in [3], [4], [18] consider a much smaller subset of
possible implementations compared to our technique, and they
also cannot capture scenarios that our framework can describe
and formally verify. For example, they do not consider the
buffer communication scheme, and they cannot capture the
following scenario: Although a platform successfully detects
an input from the environment, the platform-independent code
may not be able to receive it due to a buffer overrun.

IV. MODULAR TRANSFORMATION FROM PIM TO PSM

Our transformation algorithm takes as inputs a PIM and
an implementation scheme (IS), and it returns a PSM that
has a similar timed behavior to that of the implementation
Code(PIM)‖impIS . The algorithm is modular, as it preserves
the structure of the PIM for any implementation scheme
defined in Section III. This modularity makes the platform-
specific timing verification possible for a range of implemen-
tation schemes that an arbitrary target platform may choose to
execute the Code(PIM). Before describing the algorithm, we
first discuss the timed behavior of the PSM that the algorithm
constructs from the PIM and the IS .

Definition 2 (PIM). A PIM is defined as M ‖ ENV , where
M and ENV are the UPPAAL automata modeling the software
and the environment, respectively. Further, M = (L, l0, C, A,
E, I), where: L is a set of locations; l0 is an initial location;
C is a set of clocks; A = Am ∪ Ac, where Am = {m1, ... ,
mk} is a set of input synchronizations and Ac = {c1, ... , cj}
is a set of output synchronizations; E is a set of transitions;
and I is a set of invariants.

Note that the input and output synchronizations in Defi-
nition 2 are expressed using m and c variables only, which
implies that the interactions between M and ENV occur at
the mc-boundary and that the interactions at the io-boundary
are not captured by the PIM .

Definition 3 (PSM). A PSM is defined as the network of
UPPAAL automata MIO ‖ IFMI1 ‖ ... ‖ IFMIk ‖ IFOC1

‖
... ‖ IFOCj

‖ EXEIO ‖ ENVMC .

The definition of each automaton in Definition 3 is explained
in Section II-C. Note that a subscript of each automaton
specifies a system boundary where the interactions occur. For
example, MIO and EXEIO model the interactions at the io-
boundary; IFMIk and IFOCj model the interactions at both
the mc-boundary and io-boundary; and ENVMC models the
interactions at the mc-boundary. Such interactions are modeled
using either channel synchronizations or variables in UPPAAL
semantics.

M

MIO

IFMI

IFOC

ENVMC

EXEIO

mk!

mk? ck!

ck?

enq(ik)
[]

deq(ik), ik!

ik? ok!

enq(ok), ok?

deq(ok) ck!

(a) PIM timed behavior

(b) PSM timed behavior

ENV
ck? mk!

] [

Time

mk?

Fig. 4. Illustration of the timed behaviors of the PIM and PSM .

Fig. 4 illustrates the different timed behaviors of the PIM
and the PSM . As shown in the figure, in the PIM , M is
directly synchronized with ENV at the mc-boundary: when-
ever an input is triggered (mk!), M can immediately accept it
(mk?); similarly, whenever M produces an output (ck!), the
output is immediately visible to the environment (ck?).

However, in the PSM , MIO (which will be constructed
from M) is indirectly synchronized with the environment
ENVMC via a platform whose behavior is abstracted as the
parallel composition of IFMI (input interface), IFOC (output
interface), and EXEIO (code execution) automata. Specifically,
when an input is triggered (mk!), it is first read (mk?),
processed, and enqueued to a buffer by IFMI . The buffered
input is then dequeued by EXEIO , which also performs the
synchronization with MIO (ik!). Subsequently, MIO produces
the corresponding output and enqueues the output to a buffer at
the io-boundary. Finally, IFOC dequeues the output, processes
it, and makes the processed output visible to ENVMC (ck!).

We next explain the basic idea for constructing a PSM
with the above timed behavior; a detailed construction
algorithm and examples can be found in [11]. We focus
on a transformation algorithm that is compatible with the
implementation scheme IS1 in Example 1; algorithms
compatible for other schemes can be designed similarly.
(1) Construction of MIO and ENVMC : MIO remains
syntactically the same as M , except that its synchronizations
are renamed from m to i, and from c to o. For example, the
input synchronization m-BolusReq in Fig. 1-(1) is renamed
to i-BolusReq, and the output synchronization c-StartInfusion
is renamed to o-StartInfusion. In contrast, the environment
model ENVMC remains exactly the same under the current
implementation scheme. The desynchronization between
MIO and ENVMC described earlier results in some missing
information in connecting the input and output data flows
across the two system boundaries. We introduce the input and
output interface automata that fill such information below.
(2) Construction of IFMI and IFOC : IFMI (IFOC) is
an input (output) interface automaton that models the data
flow from m to i (from o to c), which is performed by
the Input-Device (Output-Device). This automaton models (1)
the platform-specific delays introduced when converting an
environmental input to a program input (a program output to an
environmental output), and (2) the communication mechanism
used to deliver a program input to the Code(PIM) (a program
output to the platform). We explain the construction of IFMI

below; IFOC can be constructed in the same manner.
Fig. 5-(1) shows the automaton IFMIBolusReq

constructed
from M in Fig. 1 and IS1 . At the location Idle , the Input-
Device is ready to read an input mj from ENVMC . At the
location Processing , the Input-Device is currently processing
the input mj that has been read from ENVMC . Once the

(1) IFMI_BolusReq

(2) IFOC_StartInfusion

Fig. 5. The input and output interface automata for PSM

input mj is read (when a transition from Idle to Processing
is taken), a processed input is ready within delaymin and
delaymax time units, as specified by IS1 . A processed input
is delivered to the Code(PIM) through a finite buffer whose
size is defined in the parameter buffer-size. Therefore, there
are two cases when the processed input needs to be inserted
into the buffer: (1) the buffer has an empty slot, and (2)
the buffer is full. These two cases are modeled as the two
respective transitions from Processing to Idle . Fig. 5-(2)
shows the automaton IFOCStartInfusion

, which models the output
data flow from the Code(PIM) to the platform. (More details
can be found in [11].)
(3) Construction of EXEIO : Observe that the buffer com-
munication scheme prevents MIO from directly synchronizing
with IFMI and IFOC ; for instance, the automaton IFMIBolusReq

in Fig. 5-(1) is synchronized with ENVMC through the
m-BolusReq channel, but there is no synchronization with
MIO over the i-BolusReq channel. In other words, once an
input (output) is written to a buffer by the Input-Device
(Code(PIM)), the Code(PIM) (Output-Device) does not need
to read the input (output) immediately. These situations are
illustrated in Fig. 4 as the two timing gaps: (1) the time
passage between enq(ik) and deq(ik), and (2) the time pas-
sage between enq(ok) and deq(ok). The timing for these
buffer read/write operations is closely tied to the invocation
mechanism of Code(PIM), since these operations can only
occur while Code(PIM) is being invoked by a platform. Our
algorithm constructs an automaton EXEIO that models the
resulting timed behavior under the periodic invocation and the
synchronizations with MIO .

Fig. 6 shows the EXEIO automaton, which is constructed
as follows. We first create six locations that correspond to
the execution stages of the Code(PIM): Waiting indicates
that the Code(PIM) is waiting for an invocation; Active
indicates that the Code(PIM) has been invoked and is ready
for execution; the remaining four locations indicate that the
respective computations -read input, compute transitions, write
output- are being performed. Then, necessary input and output
transitions are added to the constructed locations in a way the
following semantics are realized: For each transition associated
with either an input or an output synchronization in MIO , we
add a complementary transition in EXEIO and associate it
with the conjunction of three guard conditions: (1) MIO is in
a location that can read the input (or write the output), and (2)
the original guard condition of the transition in MIO , and (3)
the input is in the buffer (or the output buffer is not full).

V. PROPERTY OF THE TRANSFORMED PSM

Given PIM |= P(∆mc), our goal is to find a relaxed timing
constraint ∆′mc from the original constraint ∆mc such that

PSM |= P(∆′mc) and ∆′mc ≥ ∆mc.
We first highlight the platform-specific delays that any pair

(j) of input and output experiences due to the platform-specific

Fig. 6. The code execution model for PSM

parts of the PSM (i.e., ENVMC , IFMI , IFOC , EXEIO):
1) M-C Delay ∆mc: specifies the maximum time passage

from the instant the environment triggers an input (mj , tmj
)

until the instant the environment observes an output (cj , tcj) at
the mc-boundary, i.e., ∆mc = tcj - tmj

; this delay is illustrated
in Fig. 4 as the time passage between the two synchronizations
(mk! and ck?) of ENVMC .

2) Input-Delay ∆mi: specifies the maximum time passage
from the instant the environment triggers an input (mj , tmj)
at the mc-boundary until the instant the Code(PIM) reads the
input (ij , tij) at the io-boundary, i.e., ∆mi = tij - tmj ; this
delay is illustrated in Fig. 4 as the guarded section of IFMI .

3) Output-Delay ∆oc: specifies the maximum time passage
from the instant Code(PIM) produces an output (oj , toj) at
the io-boundary until the instant the environment observes the
output (cj , tcj) at the mc-boundary, i.e., ∆oc = tcj - toj ; this
delay is illustrated in Fig. 4 as the guarded section of IFOC .

The relaxed constraint ∆′mc is computed in terms of the
Input-Delay and the Output-Delay described above.
Remark 1. In general, we cannot determine the bound of ∆′mc,
because some combinations of platform-specific parameters
make ∆′mc unbounded. However, we can derive the timing con-
straints on implementation schemes that make ∆′mc bounded.
If these constraints are satisfied, then we can find such a bound.

We now show the four constraints that make ∆′mc bounded:
(Constraint 1) Detection of all input signals: Given an

input pattern generated from ENVMC , (1) IFMI can detect
all input signals, and (2) the maximum input processing delay
of IFMI is shorter than the minimum inter-arrival time.

(Constraint 2) No overflow of the input buffer: The invo-
cation interval of EXEIO should be small enough w.r.t. the
input processing speed of IFMI so that each input can be read
by EXEIO before the input buffer overflows.

(Constraint 3) No overflow of the output buffer: Given an
output pattern generated by MIO , (1) IFOC has sufficient
processing speed to process all outputs before the output
buffer overflows, and make them visible to ENVMC , and (2)
ENVMC can read the produced outputs by IFOC fast enough.

(Constraint 4) No internal transition occurrences: Since
ENVMC generates an input, MIO does not take internal
transitions until the input is processed by IFMI and read by
MIO .

Lemma 1. If the system constraints are verified in PSM , then
(1) the Input-Delay is bounded by the function of all maximum
platform-specific parameters that are used for ENVMC , IFMI ,
EXEIO , (2) the Output-Delay is bounded by the function of
all maximum platform-specific parameters that are used for
ENVMC , IFOC , EXEIO ,

Proof: Refer to [11].

Recall that ∆mi and ∆oc are the upper bounds of Input-
Delay and Output-Delay as ∆mi and ∆oc. Let ∆io−internal

be the maximum internal delay of the PIM for processing the
input and output pair (i, o). The following lemma holds.
Lemma 2. If the system constraints are verified in PSM , then
a possible value of ∆′mc for which PSM |= P(∆′mc) is given
by ∆′mc = ∆mi + ∆oc + ∆io−internal .

Proof: The rest of delays that contribute to ∆′mc is the
internal delay of PIM for processing the input i and the output
o. Therefore, the maximum possible M-C delay is bounded by
the summation of these three types of delays.
Theorem 1. Suppose PSM verifies the system constraints and
a platform is correctly described using the implementation
scheme IS. Then,

PSM |= P(∆′mc) implies Code(PIM)‖impIS |= P(∆′mc).
The assumption “if a platform is correctly described using

the implementation scheme” can be validated by testing.
VI. CASE STUDY

We present a case study of infusion pump system (c.f. Sec-
tion II-A) to demonstrate the utility of the proposed framework.
Setting: We created the UPPAAL model PIM of the software,
which is verified to meet REQ1 (infusion always starts within
∆mc = 500ms from the instant a patient requests a bolus), i.e.,
PIM |= P(∆mc). We used the TIMES tool [6] to automatically
generate the Code(PIM) from the PIM . The Code(PIM)
was then integrated with an infusion pump platform4 that
follows the implementation scheme IS1 , except that the polling
scheme is used to read the bolus request input. (A summary
of relevant platform-specific parameters is available in [11].)
Finally, we constructed the PSM from the PIM and IS1 using
the algorithm in Section IV.

In this setting, we performed 60 times of the bolus request
scenarios with the implementation and measured the timing
delays using an oscilloscope. Some of these parameters (e.g.,
input processing delay, WCET) were obtained from testing,
and the rest (e.g., polling interval, invocation period) was
set manually. Throughout the testing, the M-C delay, the
Input-Delay and the Output-Delay are measured together; their
average, maximum, and minimum delays are summarized in
the Measured Delay-(IMP) rows in Table I.
Verification of PSM against P(∆mc): REQ1 is not satisfied
by the PSM (i.e., PSM 6|= P(∆mc)). In other words, when
the PIM is composed with the implementation scheme
IS1 , there are scenarios where the infusion starts after
more than 500ms since a bolus is requested. This prolonged
delay is caused by the additional delays originated from the
platform-specific parts in the composition of PIM and IS1 .
Out of 60 test scenarios, we observed 53 scenarios in which
the timing requirement REQ1 is violated. Hence, we can
conclude that the implementation introduces a case where
the actual delay is greater than the delay (∆mc) that has
been verified in the PIM , i.e., Code(PIM)‖impIS 6|= P(∆mc).

TABLE I. THE EXPERIMENT RESULT

M-C
delay

Input
Delay

Output
Delay

Buffer
Overflow

Verified
Upper Bound (PSM)

1430ms 490ms 440ms
Not

occurring

Measured
Delay
(IMP)

Avg. 610ms 97ms 215ms
Not

occurring
Max 748ms 152ms 304ms

Min 456ms 48ms 100ms

Verification of PSM against P(∆′mc): We verified that
PSM does satisfy the four conditions for bounded delay (c.f.
Section V). Hence, ∆′mc can be determined from the platform-
specific parameters, Input-Delay (490ms) and Output-Delay
(440ms), using Lemmas 1 and 2 as follows: ∆′mc = 490 +
440 + 500 = 1430ms. Using verification, we verified that the
PSM satisfies the relaxed timing requirement P(∆′mc).

4This platform has been used for the Generic Patient-Controlled-Analgesia
(GPCA) infusion pump reference implementation [10]

Thus, assuming that the platform-specific parameters
obtained through testing are correct, we can conclude
Code(PIM)‖impIS |= P(∆′mc). Note that this verified result is
also consistent with the testing result, i.e., all measured delays
are bounded by the verified bound (1430ms).

VII. CONCLUSION

We have presented a framework for formally verifying
the timed behaviors of implementations that are developed
from a platform-independent model (PIM). We presented a
general category of implementation schemes that a platform
can choose from to execute the platform-independent code,
as well as a modular algorithm for systematically generating
a platform-specific model (PSM) from a PIM and an im-
plementation scheme. In order to explain the framework, we
chose one particular implementation scheme from the general
category to show how the corresponding PSM is constructed
according to the transformation algorithm, and presented a case
study to show that the timed behavior of the generated PSM is
similar to that of the implementation. Our framework can be
used to add formal timing assurance to implementations and to
formally verify subtle timing errors through a model checking
technique, which cannot be achieved using testing [12]. Even
though we only presented the verification framework using
a particular combination of the implementation scheme, we
believe that the transformation can be applied for other im-
plementation schemes in a similar way, and leave the research
about the applicability of this framework for general cases as
a future work. REFERENCES

[1] Safety requirements for the generic patient controlled analgesia pump.
http://rtg.cis.upenn.edu/gip.php3.

[2] Y. Abdeddaı̈m, E. Asarin, and O. Maler. Scheduling with timed
automata. Theoretical Computer Science, 354(2):272–300, 2006.

[3] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation
of real-time applications. In EMSOFT. ACM, 2010.

[4] K. Altisen and S. Tripakis. Implementation of timed automata : an issue
of semantics or modeling. FORMATS, 2005.

[5] R. Alur and G. Weiss. Rtcomposer: a framework for real-time
components with scheduling interfaces. In EMSOFT, 2008.

[6] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:
a tool for schedulability analysis and code generation of real-time
systems. In FORMATS, 2003.

[7] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAALa
tool suite for automatic verification of real-time systems. Springer, 1996.

[8] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the better: a theory
of timed actor interfaces. In HSCC, 2011.

[9] E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and I. Lee. A safety-
assured development approach for real-time software. In RTCSA, 2010.

[10] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley.
Safety-assured development of the gpca infusion pump software. In
EMSOFT, 2011.

[11] B. Kim, L. Feng, L. T. Phan, O. Sokolsky, and I. Lee. Platform-
specific timing verification framework in model-based implementation.
In University of Pennsylvania Department of Computer and Information
Science Technical Report No. MS-CIS-14-11, 2014.

[12] B. Kim, H. Hwang, T. Park, S. Son, and I. Lee. A layered approach
for testing timing in the model-based implementation. In DATE, 2014.

[13] P. Krčál, L. Mokrushin, P. Thiagarajan, and W. Yi. Timed vs. time-
triggered automata. In CONCUR, 2004.

[14] P. Krčál and R. Pelánek. On sampled semantics of timed systems. In
FSTTCS, 2005.

[15] MathWorks. Simulink coder - generate c and c++ code from simulink
and stateflow models.

[16] D. L. Parnas and J. Madey. Functional documents for computer systems.
Science of Computer Programming, 25:41–61, 1995.

[17] I. Stierand, P. Reinkemeier, T. Gezgin, and P. Bhaduri. Real-time
scheduling interfaces and contracts for the design of distributed em-
bedded systems. In SIES, 2013.

[18] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis. Model-based
implementation of parallel real-time systems. In FASE, Lecture Notes
in Computer Science. 2013.

[19] M. Wulf, L. Doyen, and J.-F. Raskin. Almost asap semantics: From
timed models to timed implementations. In HSCC. 2004.

	University of Pennsylvania
	ScholarlyCommons
	3-2015

	Platform-Specific Timing Verification Framework in Model-Based Implementation
	BaekGyu Kim
	Lu Feng
	Linh T. X. Phan
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Platform-Specific Timing Verification Framework in Model-Based Implementation
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1434156159.pdf.QrHE2

