
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-2011

Runtime Verification of Traces Under Recording
Uncertainty
Shaohui Wang
University of Pennsylvania, shaohui@seas.upenn.edu

Anaheed Ayoub
University of Pennsylvania, anaheed@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Second International Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011.
Conference site: http://rv2011.eecs.berkeley.edu/Home.html

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/742
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky, and Insup Lee, "Runtime Verification of Traces Under Recording Uncertainty",
Lecture Notes in Computer Science: Runtime Verification 7186, 442-456. September 2011. http://dx.doi.org/10.1007/
978-3-642-29860-8_35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://rv2011.eecs.berkeley.edu/Home.html
http://repository.upenn.edu/cis_papers/742
mailto:libraryrepository@pobox.upenn.edu

Runtime Verification of Traces Under Recording Uncertainty

Abstract
We present an on-line algorithm for the runtime checking of temporal properties, expressed as past-time
Linear Temporal Logic (LTL) over the traces of observations recorded by a "black box"-like device. The
recorder captures the observed values but not the precise time of their occurrences, and precise truth
evaluation of a temporal logic formula cannot always be obtained. In order to handle this uncertainty, the
checking algorithm is based on a three-valued semantics for pasttime LTL defined in this paper. In addition to
the algorithm, the paper presents results of an evaluation that aimed to study the effects of the recording
uncertainty on different kinds of temporal logic properties.

Comments
Second International Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011.
Conference site: http://rv2011.eecs.berkeley.edu/Home.html

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/742

http://rv2011.eecs.berkeley.edu/Home.html
http://repository.upenn.edu/cis_papers/742?utm_source=repository.upenn.edu%2Fcis_papers%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages

Runtime Verification of Traces under Recording
Uncertainty?

Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky, and Insup Lee

Department of Computer and Information Science
University of Pennsylvania

{shaohui,anaheed}@seas.upenn.edu,{sokolsky,lee}@cis.upenn.edu

Abstract. We present an on-line algorithm for the runtime checking
of temporal properties, expressed as past-time Linear Temporal Logic
(LTL) over the traces of observations recorded by a “black box”-like
device. The recorder captures the observed values but not the precise
time of their occurrences, and precise truth evaluation of a temporal logic
formula cannot always be obtained. In order to handle this uncertainty,
the checking algorithm is based on a three-valued semantics for past-
time LTL defined in this paper. In addition to the algorithm, the paper
presents results of an evaluation that aimed to study the effects of the
recording uncertainty on different kinds of temporal logic properties.

1 Introduction

Data recorders are very important in the design of safety-critical systems. They
allow system manufacturers and government regulators to collect data that help
to diagnose the problem in case of a system failure. The best known example
of a data recorder is the flight data recorder (FDR), also known as the “black
box,” that most aircraft are equipped with.

There is much interest in incorporating similar technology into medical de-
vices. Adverse events—that is, cases where the patient was harmed during the
application of the device—have to be reported to regulators. However, without
data recording capability, analysis of adverse events becomes very difficult or
even impossible. Thus, we are seeing the same kinds of adverse events repeated
over and over again.

A preliminary design of a data recorder, called life data recorder (LDR)
for medical devices has been proposed by Bill Spees, safety researcher at the
U.S. Food and Drug Administration [18]. The LDR would collect updates of
device state variables and relevant event occurrences and periodically transfer
recorded snapshots to non-volatile storage. In doing so, the information about
exact ordering of events within the recording period is lost. We can thus view a
recorded trace as an abstraction of a concrete execution trace, so that the same
abstract trace may arise from a number of concrete traces.

? Research is supported in part by the National Science Foundation grants CNS-
0834524, CNS-0930647, and CNS-1035715.

In this paper, we are concerned with checking past-time LTL properties of
system executions, that is, concrete traces. We assume, however, that all obser-
vations become available only after a snapshot is recorded. Thus we have only
the abstract trace of the execution to work with. We therefore reinterpret LTL
formulas in a way that reflects uncertainty in abstract traces. We introduce a
three-valued semantics, under which a formula evaluates to true on an abstract
trace Tr only if the same formula would evaluate to true on every concrete trace
that is consistent with Tr. Dually, a formula is false on an abstract trace only if it
is false on every consistent concrete trace. Otherwise, the outcome is uncertain.

We extend the algorithm of [10] to handle our three-valued semantics. The
interesting aspect of the extension is that the algorithm operates on abstract
traces; however, the formulas express properties of concrete traces, and there may
be multiple concrete states between two abstract state. Thus, in each abstract
state we need to reason about the segments of possible concrete traces since
the previous abstract state, as well as refer to the truth values of subformulas
calculated in the previous abstract state.

The paper is organized as follows. Section 2 defines abstract and concrete
traces and describes the LDR recording scheme. Section 3 defines the three-
valued semantics of past-time LTL over abstract traces and presents our runtime
checking algorithm according to the semantics. Section 4 presents the evaluation
of our checking algorithm on randomly generated traces. We conclude with an
overview of related work in Section 5 and a discussion on possible future work
in Section 6.

2 The Trace Model

In temporal logic based runtime verification, the primary task is to check a
temporal logic formula on a given trace. A trace is usually regarded as a sequence
of states, while the contents of states vary in different settings or domains. In
this section, we describe the recording scheme of the LDR[18], and define two
notions of traces, namely concrete traces and abstract traces.

2.1 LDR Recording Scheme

An LDR collects updates to a set of variables generated by a medical device and
periodically records snapshots of their values in permanent memory. Three types
of variables are recorded by the LDR: (a) process variables, (b) synchronized
events, and (c) asynchronized events. The latter two together are called fast
changers. At the time-out of every period, called a frame, a vector of 32-bit
words is recorded to some non-volatile external storage. Recorded values are put
to the vector slots according to a scheme specified by a dictionary, described as
follows.

Process variables represent essential state information for the medical device,
and are assumed not to change more than once during every frame. Each process
variable is assigned one slot in the snapshot vector. It may be either empty, if the

value did not change during the frame, or contain the new value for the process
variable.

Synchronized events are fast changers that may occur multiple times within
a frame. They are recorded according to the time of their occurrences relative
to the beginning of the current frame. One frame is divided into a fixed number
(S, throughout the paper) of subframes of equal intervals, for all synchronized
events. We have F = S × I, where F is the snapshot period (frame interval
length), and I is the subframe interval length. Each synchronized event consumes
S consecutive slots in the snapshot vector, starting from a designated base slot
b. Assuming the beginning of the current frame is at time t, then an occurrence
of a synchronized event at time t′ (t′ < t+ F) is recorded to the slot numbered
b+ b(t′ − t)/Ic . Similar to process variables, we assume that there are no more
than one occurrence per subframe for each synchronized event.

Asynchronized events are fast changers which exhibit bursty behavior: oc-
casionally, they may change more than once per subframe, but the number of
changes within a frame is bounded. Similar to synchronized events, a fixed num-
ber (A, throughout the paper) of consecutive slots are assigned to each asyn-
chronized event. In one frame, at most A occurrences of an asynchronized event
may happen. They are sequentially recorded one slot per occurrence, starting
from the designated base slot b. No timing constraints with regards to subframes
are imposed on asynchronized events. Only that they arrived in the order they
are recorded in a frame is known.

Additional specifications of the LDR recording scheme in [18], such as en-
cryption of data, external storages, etc., are tangential to our focus and omitted.

An example LDR recording. Fig. 1(a) shows an example segment of an LDR
recording for a process variable x and a synchronized event y with at most four
occurrences per frame (S = 4). The shaded cells in Column 0 represent the
initial values for x and y. Each of the following columns is a snapshot vector for
one frame in the recording session from the LDR. Frame 1 (shaded) is depicted
in Fig. 1(b). The variable x (marked ‘x’) changes from 2 to 3, and y (marked
‘o’) changes from 4 to 3, to 2, and to 4, in the first, second, and third subframes,
respectively. A dash entry in the snapshot vector means no events recorded.

0 1 2 3

x 2 3 2 1

y1 3 2 –

y2 2 1 3

y3 4 3 –

y4 4 – 2 4

(a) A sample
recording

(b) Depicting
Frame 1 in (a)

(c) One event
interleaving

(d) Another event
interleaving

Fig. 1. Sample segment of an LDR recording.

Recorded traces may exhibit uncertainties in capturing system executions.
Fig. 1(c) shows one possible system event interleaving which produces the shaded
recording in Fig. 1(a). The smaller dots represent the actual events which alter
the values of the relative variables. In this case, the change of x occurs in between
the first and the second changes of y. Fig. 1(d) shows another, where the change
of x occurs in between the second and the third changes of y. It can be seen
that in this example there are four possible different system event interleavings
which produce the shaded recording in Column 1 in Fig. 1(a).

2.2 Concrete Traces and Abstract Traces

In this paper, we differentiate two notions of traces, the concrete and the ab-
stract. Informally, a concrete trace is a sequence of concrete states, where each
of them is a mapping of variables to their values. An abstract trace is a sequence
of abstract states, where each of them is, in our setting, an LDR recorded vector.
We assume that concrete and abstract traces are finite.

Definition 1 (Concrete State and Concrete Trace). Assuming a set V
of variables and a domain D for their values, a concrete state is a mapping
f : V → D of variables to their values. A concrete trace p = p0 . . . pm of length
m is a sequence of concrete states p0, . . . , pm.

Definition 2 (Abstract State and Abstract Trace). An abstract trace Tr
is the sequence of snapshot vectors recorded by an LDR. Each snapshot vector is
an abstract state.

Concrete traces are not observed directly, but are captured by recordings from
the LDR component, i.e., abstract traces. For example in Fig. 1, the snapshot
vector for Frame 1 represents four concrete traces for (x, y) below, with the
second and third depicted in Fig. 1(c) and Fig. 1(d), respectively:

(2, 4)
x−→ (3, 4)

y−→ (3, 3)
y−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

x−→ (3, 3)
y−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

y−→ (2, 2)
x−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

y−→ (2, 2)
y−→ (2, 4)

x−→ (3, 4).
We particularly note that an abstract state in our setting is essentially an

acyclic transition system and captures a set of concrete traces. We say that any
concrete trace that an abstract state captures is consistent with the abstract
state.

As can be seen from the above example, the end states for each concrete
trace in a frame are the same. This is due to the fact that at the end of each
frame, all of the variables have been changed to their respective last values.

We use Tr(0 : n), or simply Tr, to represent the abstract trace of length n,
Tr(i) (a snapshot vector) to represent the ith abstract state of Tr, and Tr(i)e
to denote the concrete state at the end of the ith abstract state (1 ≤ i ≤ n).
Tr(i)e is computed from Tr(i) by simply scanning through the vector Tr(i) and
establishing the mapping from each variable to its last value in the vector Tr(i).

If nothing is recorded in Tr(i) for a variable, its value from Tr(i − 1)e is used.
Tr(0), which gives an initial value to every monitored variable, is a special case:
it is, in effect, a concrete state, and fills exactly one slot in the vector for each
variable.

We use Path(Tr(i)) to represent the set of concrete traces consistent with the
abstract state Tr(i), and the variable pi to range over elements in Path(Tr(i)).
When necessary, a concrete trace pi of length mi is written as pi = pi0 . . . p

i
mi

.
Note that for a given i, all concrete traces in Path(Tr(i)) are of the same length,
which is equal to the number of variable changing events recorded in Frame i,
so a single i is subscripted to m. The superscript i is often omitted when the
context is clear. The following notations refer to the same concrete state for a
given i: Tr(i)e, p

i
mi

, and pi+1
0 .

Without loss of generality, we assume that all concrete traces for a given
frame are not zero-length, since zero-length concrete traces result from abstract
states where no changes to variable values occur, in which case the abstract state
can be removed from our considerations.

For a span of n frames, the concrete traces are constructed by sequentially
concatenating one concrete trace from each of the n frames. The concatenations
at the boundaries of frames are consistent since the end values of variables in
one frame are the same as their initial values in the next. We generalize the
notation Path(Tr(n)) to Path(Tr(0 : n)) to denote the set of concatenated
concrete traces from abstract trace Tr(0 : n). We also generalize the concept of
consistency between a concrete trace and an abstract trace naturally.

3 Syntax and Semantics of Past-time LTL

In real time systems, we often need to specify system properties with past-time
LTL formulas and monitor system variables to check if the formulas are satisfied.
The semantics for past-time LTL formulas on a concrete trace is standard [13,
15]. Also, to facilitate efficient runtime checking, it is convenient to define the
semantics in a recursive fashion so that it is unnecessary to keep the history
trace [10].

Checking past-time LTL properties on abstract traces, however, is different in
that uncertainty arises when events are gathered in batch mode—a snapshot of
a frame capturing a magnitude of events in the system—with their interleavings
only partially known.

It is our main concern in this paper to both continue using the past-time
LTL to describe system properties due to their succinctness and familiarity to
the verification community, and handle the uncertainty in checking properties
on the recorded abstract traces due to the unknown event interleavings.

Our approach is to keep the syntax for past-time LTL but introduce a new
three-valued semantics based on standard semantics for concrete traces. A for-
mula ϕ evaluates to true on an abstract trace Tr only if ϕ evaluates to true on
all concrete traces consistent with Tr; ϕ evaluates to false on Tr only if it is
false on every concrete trace consistent with Tr; otherwise it is undecided.

In this section, we first review the syntax of past-time LTL and its standard
semantics and runtime checking algorithm, and then define the new semantics
and extend the runtime checking algorithm to our three-valued semantics.

3.1 Syntax and Standard Semantics for Past-Time LTL

We assume all predicates on a set V of variables are the atomic formulas. We use
the variable a to range over the set of atomic formulas, and a(pj) to represent
the truth value of predicate a evaluated on concrete state pj . The syntax rules
for building formulas from atomic ones are as follows.

Definition 3 (Syntax for Formulas).
ϕ := true | false | a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | � ϕ | �ϕ | ϕS ϕ

For example, (x = 14)S (x ≥ y) is a well formed formula. Intuitively, �φ
reads “previously φ”, meaning φ was true at the immediately previous state; � φ
reads “once φ”, meaning there was some time in the past when φ was true; �φ
reads “always in the past φ”, meaning that φ was always true in the past; and
φS ψ reads “φ (weakly) since ψ”, meaning that either φ was always true in the
past, or ψ held somewhere in the past and since then φ has always been true.
The formal definition of the semantics is as follows.

Definition 4 (Standard Semantics for Past-Time LTL[10, 13, 15]). A
concrete trace p = p0 . . . pm of length m satisfies a past-time LTL formula ϕ,
written p |= ϕ, is inductively defined on the structure of ϕ as follows.
p |= true is always true
p |= false is always false
p |= a iff a(pm) holds
p |= ¬ψ iff p 6|= ψ
p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= �φ iff m > 0 and p0 . . . pm−1 |= φ, or m = 0 and p0 |= φ
p |= � φ iff p0 . . . pj |= φ for some 0 ≤ j ≤ m
p |= �φ iff p0 . . . pj |= φ for all 0 ≤ j ≤ m
p |= φS ψ iff either p |= �φ, or

(
p0 . . . pj |= ψ for some 0 ≤ j ≤ m

and p0 . . . pk |= φ for all j < k ≤ m
)

The Runtime Checking Algorithm The verification of a formula ϕ on a
concrete trace p is based on the fact that the semantics in Definition 4 can be
stated in a recursive fashion. For example, the semantics for the “since” operator
S can be equivalently stated as
p |= φS ψ iff p |= ψ, or (p |= φ and (m > 0 implies p0 . . . pm−1 |= φS ψ)) . (1)

A runtime formula checker can cache the intermediate result of checking φS ψ
on trace p0 . . . pm−1 to use in the checking of φS ψ on trace p, according to the
recursive semantics. In general, the checker iterates through all concrete states
from p0 through pm. In each concrete state pi, the checker keeps the satisfaction

results of all subformulas of ϕ on the trace p0 . . . pi−1 (which we call the checker
state). The checker updates its state based on the values in pi, as defined in [10].

We illustrate the algorithm with an example before we provide an extension
in the next subsection, where we define three-valued semantics for past-time
LTL. To check the truth value of (x = 3)S (x ≥ y) in the trace for (x, y):

p = p0 . . . p4 = (2, 5)→ (3, 5)→ (3, 3)→ (3, 4)→ (3, 6),
we follow the procedure of evaluating the subformulas φ ≡ (x = 3), ψ ≡ (x ≥ y),
and φS ψ.

Step |= φ ≡ (x = 3) ψ ≡ (x ≥ y) φS ψ
0. p0 F F F
1. p0p1 T F F
2. p0p1p2 T T T
3. p0p1p2p3 T F T
4. p0p1p2p3p4 T F T

Each line in the table is the checker state for use in its next line. In deciding that
p0p1p2p3 |= φS ψ is true, for example, the facts that p0p1p2p3 |= φ is true (from
the current state) and that p0p1p2 |= φS ψ is true (from the checker state) are
used against the alternative semantics for the “since” operator S defined in (1).

3.2 Three-Valued Semantics for Past-Time LTL

Inspired by [12], we define a new semantics for the past-time LTL formulas
against abstract traces. A formula ϕ is true on an abstract trace Tr only if ϕ
evaluates to true on all concrete traces consistent with Tr; ϕ evaluates to false
on Tr only if it is false on every concrete trace consistent with Tr; otherwise it
is undecided. We use the semantic notions JTr |= ϕK = >, JTr |= ϕK = ⊥, and
JTr |= ϕK =? to indicate the three cases, respectively, where >, ⊥, and ? are
truth values in three-valued logics to represent true, false, and unknown. The
truth table for a commonly accepted variant of three-valued logics, namely the
Kleene logic[11], is shown in Definition 5.

Definition 5 (Truth Table for Kleene Logic). The following is the truth
table for Kleene logic. (A and B are truth values.)

A > ⊥ ?
B > ⊥ ? > ⊥ ? > ⊥ ?

A ∨3 B > > > > ⊥ ? > ? ?
A ∧3 B > ⊥ ? ⊥ ⊥ ⊥ ? ⊥ ?
¬3A ⊥ > ?

We now consider the three-valued semantics for an abstract trace Tr of length
n and a past-time LTL formula ϕ. We assume Tr and ϕ is fixed in the sequel.

We define the semantics in a recursive fashion, assuming the checking for the
partial trace Tr(0 : i) is finished and the checking result of JTr(0 : i) |= ψK for
any (proper) subformula ψ of ϕ is available. We denote such information with a
so called subformula value mapping SVi : SubFormulas(ϕ) → {>,⊥, ?} which,
for a subformula ψ of ϕ, SVi(ψ) = JTr(0 : i) |= ψK.

To establish the recursive semantic definition from JTr(0 : i) |= ϕK to JTr(0 :
i + 1) |= ϕK, we use an auxiliary semantic function checkOne which takes a
subformula value mapping, a concrete trace, and a formula, and returns a result
from {>,⊥, ?}. The intended use of function checkOne is that, when called with
checkOne(SVi, p, ϕ), where SVi is the subformula value mapping for ϕ on trace
Tr(0 : i), and p is one concrete trace from Path(Tr(i+ 1)), the function returns
whether ϕ is satisfied on all, none, or some (neither all nor none) concrete traces
formed by concatenating any concrete trace in Path(Tr(0 : i)) with p.

Definition 6. Given a subformula value mapping SV , a formula ϕ, and a con-
crete trace p = p0 . . . pm, the function checkOne(SV, p, ϕ) is defined inductively
on the structure of ϕ, as follows.

checkOne(SV, p, true) = >
checkOne(SV, p, false) = ⊥

checkOne(SV, p0, . . . pm, a) =

{
>, if a(pm) holds,

⊥, if a(pm) does not hold,

checkOne(SV, p,¬ψ) = ¬3checkOne(SV, p, ψ)

checkOne(SV, p, φ ∧ ψ) = checkOne(SV, p, φ) ∧3 checkOne(SV, p, ψ)

checkOne(SV, p, φ ∨ ψ) = checkOne(SV, p, φ) ∨3 checkOne(SV, p, ψ)

checkOne(SV, p0 . . . pm,�φ) =

SV (�φ), if m = 0,

SV (φ), if m = 1,

checkOne(SV, p0 . . . pm−1, φ), if m > 1.

checkOne(SV, p0 . . . pm, � φ) =

>, if SV (� φ) = >, or
(
m > 0 and

(checkOne(SV, p0 . . . pm−1, � φ) = >
or checkOne(SV, p0 . . . pm, φ) = >)

)
,

⊥, if SV (� φ) = ⊥, and
(
m > 0 implies

(checkOne(SV, p0 . . . pm−1, � φ) = ⊥
and checkOne(SV, p0 . . . pm, φ) = ⊥)

)
,

?, otherwise.

checkOne(SV, p0 . . . pm,�φ) =

>, if SV (�φ) = >, and
(
m > 0 implies

(checkOne(SV, p0 . . . pm−1,�φ) = >
and checkOne(SV, p0 . . . pm, φ) = >)

)
,

⊥, if SV (�φ) = ⊥, or
(
m > 0 and

(checkOne(SV, p0 . . . pm−1,�φ) = ⊥
or checkOne(SV, p0 . . . pm, φ) = ⊥)

)
,

?, otherwise.

checkOne(SV, p0 . . . pm, φS ψ) =

SV (φS ψ), if m = 0,

>, if m > 0 and
(
checkOne(SV, p0 . . . pm, ψ) = >

or (checkOne(SV, p0 . . . pm−1, φS ψ) = >
and checkOne(SV, p0 . . . pm, φ) = >)

)
,

⊥, if m > 0, checkOne(SV, p0 . . . pm, ψ) = ⊥
and

(
checkOne(SV, p0 . . . pm−1, φS ψ) = ⊥

or checkOne(SV, p0 . . . pm, φ) = ⊥
)
,

?, otherwise.

It is worthwhile to note that the checkOne function is recursive in terms of the
length of the concrete trace p, and thus can be turned into an efficient algorithm
using the idea from the runtime checking algorithm illustrated in Subsection 3.1.

Definition 7 (Three-Valued Semantics for Past-Time LTL). An abstract
trace Tr of length n satisfying a past-time LTL property ϕ, written JTr |= ϕK,

is inductively defined on the structure of ϕ, as follows.

JTr |= trueK = >
JTr |= falseK = ⊥

[Tr(0 : n) |= a] =

{
>, if a(Tr(n)e) holds,

⊥, if a(Tr(n)e) does not hold,

JTr |= ¬ψK = ¬3JTr |= ψK

JTr |= φ ∧ ψK = JTr |= φK ∧3 JTr |= ψK

JTr |= φ ∨ ψK = JTr |= φK ∨3 JTr |= ψK

if ϕ is �φ, � φ, or �φ,

JTr(0 : n) |= ϕK =

>, if (n = 0 implies Tr(0) |= ϕ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, ϕ) = >
)
,

⊥, if (n = 0 implies Tr(0) 6|= ϕ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, ϕ) = ⊥
)
,

?, otherwise.

JTr(0 : n) |= φS ψK =

>, if (n = 0 implies Tr(0) |= φ ∨ ψ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, φS ψ) = >
)
,

⊥, if (n = 0 implies Tr(0) 6|= φS ψ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, φS ψ) = ⊥
)
,

?, otherwise.

The definition is also recursive in the length n of the abstract trace Tr(0 : n),
since the satisfaction results of subformulas of ϕ on trace Tr(0 : n − 1) are
encapsulated in the subformula value mapping SVn−1. Note that the recursion
stops at n = 0, where Tr(0) is a concrete state and SV0(ψ) for a subformula ψ
of ϕ is defined to be > if ψ(Tr(0)) holds, and ⊥ otherwise.

3.3 An Example

In this section we provide an example illustrating the runtime checking algorithm
which translates the recursive definitions of our three-valued semantics into an
iterative procedure, and in the next section we present the algorithm.

Consider the formula ϕ ≡ ��� � (x = y) on the abstract trace Tr of length
3 shown in Fig. 2, where x and y are both process variables. The iterative steps
are shown in Fig. 2(c), explained below.

Starting from the initial (concrete) state (1, 2), all subformulas of ϕ are
checked and the subformula value mapping SV0 is updated. Then for Frame i
(i = 1, 2, 3), each box labeled #j (j = 1, 2) is checked with a call to the aux-
iliary function checkOne(SVi−1, p

#j , ϕ). Since checkOne is recursively defined
on the length of the concrete trace p#j , inside each box labeled #j, the entries
are computed column by column. For example, the (4, 2) column of box #1 in
Frame 2 is the result of checking the initial segment (4, 3) → (4, 2) of concrete
trace p#1 = (4, 3)→ (4, 2)→ (3, 2), which is an intermediate step in the call to
checkOne(SV1, p

#1, ϕ).
The values are computed according to Definition 6, except that recursive calls

to checkOne(SV, p0 . . . pm−1,) from checkOne(SV, p0 . . . pm,), and the calls to
checkOne(SV, p0 . . . pm, ψ) from checkOne(SV, p0 . . . pm, ϕ), where ψ is a sub-
formula of ϕ, are replaced with table lookups.

0 1 2 3

x 1 4 3 –

y 2 3 2 3

(a) Abstract Trace (b) Depicting the Abstract Trace

Initial State Frame 1 Frame 2 Frame 3

(1, 2) SV0
p#1: →(1,3)→(4,3)

SV1
p#1: →(4,2)→(3,2)

SV2 p#1: →(3,3) SV3
p#2: →(4,2)→(4,3) p#2: →(3,3)→(3,2)

#1 #2 #1 #2 #1
(1,3) (4,3) (4,2) (4,3) (4,2) (3,2) (3,3) (3,2) (3,3)

x = y F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ > >
� (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > ? > >
� � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ? ? ?
� � � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ? ?
� � � � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

(c) Runtime Checking Algorithm Steps

Fig. 2. Example for Runtime Checking Algorithm

After each box #j in Frame i is computed, for any subformula ψ of ϕ,
SVi(ψ) is updated to > if all entries in the last columns of each box #j (shaded
in Fig. 2(c)) and row ψ is >; to ⊥ if they are all ⊥; and to ? otherwise. Checking
for Frame i + 1 begins after the update of SVi. When the algorithm finishes,
SV3(ϕ) is the result of checking ϕ ≡ � � � � (x = y) on the abstract trace Tr.

This example shows the “hybrid” nature of the checkOne calculation: some
subformulas of ϕ are evaluated on the concrete states of p, while others are
looked up in the checker state of the preceding abstract state.

3.4 Checking Past-time LTL Formulas Against Abstract Traces

In this subsection, we present the algorithm, shown in Algorithm 1, for checking
the truth value of a given past-time LTL formula ϕ and a given abstract trace Tr
of length n, based on our recursive semantics in Definition 7. It is an extended
version of the runtime checking algorithm based on the recursive definition for
past-time LTL formulas on concrete traces [10].

We use the notation SubFormulas(ϕ) for the list of subformulas of ϕ, and
assume the enumeration invariant in the algorithm: for any formula ψ at position
j in SubFormulas(ϕ), all subformulas of ψ are at positions smaller than j.

4 Experiments

We implemented, in Python, a prototype of the past-time LTL checker described
in the preceding sections. To evaluate our implementation and gain insights into
the utility of the three-valued semantics, we also built a test environment that
generates random abstract traces for a given LDR configuration file, and random
past-time LTL formulas from a set of formula templates. Having generated sets
of abstract traces and formulas, we evaluated each formula on every trace. This
section summarizes the obtained results.

Algorithm 1: Runtime Checking for Past-time LTL on Abstract Traces
input : abstract trace Tr(0 : n), past-time LTL formula ϕ
output: checking result for JTr |= ϕK
initialization: sf←−SubFormulas(ϕ); Pre←− {} (empty mapping); Now←− {};
for j = 1 to length(sf) do

if sf[j] is true then Pre[true]←− >;
if sf[j] is false then Pre[false]←− ⊥;
if sf[j] is atomic formula a then

if a(Tr(0)) holds then Pre[a]←− > else Pre[a]←− ⊥;
if sf[j] is ¬ψ then Pre[¬ψ]←− ¬3Pre[ψ];
if sf[j] is φ ∨ ψ then Pre[φ ∨ ψ]←−Pre[φ]∨3Pre[φ];
if sf[j] is φ ∧ ψ then Pre[φ ∧ ψ]←−Pre[φ]∧3Pre[φ];
if sf[j] is �φ, � φ, or �φ then Pre[sf[j]]←−Pre[φ];
if sf[j] is φS ψ then Pre[φS ψ]←−Pre[ψ]∨3Pre[φ];

for i = 1 to n do
for j = 1 to length(sf) do

if sf[j] is true then Now[true]←− >;
if sf[j] is false then Now[false]←− ⊥;
if sf[j] is atomic formula a then

if a(Tr(i)e) holds then Now[a]←− > else Now[a]←− ⊥;
if sf[j] is ¬ψ then Now[¬ψ]←− ¬3Now[ψ];
if sf[j] is φ ∨ ψ then Now[φ ∨ ψ]←−Now[φ]∨3Now[φ];
if sf[j] is φ ∧ ψ then Now[φ ∧ ψ]←−Now[φ]∧3Now[φ];
if sf[j] is �φ, � φ, �φ, or φS ψ then

forall p ∈ Path(Tr(i)) do
check[p] ← checkOne(Pre, p, ϕ);
result[p] ← check[p](sf[j]);

if each element of result is > then Now[sf[j]]←− >;
else if each element of result is ⊥ then Now[sf[j]]←− ⊥;
else Now[sf[j]]←−?;

Pre←−Now;
return Now[ϕ];

The formula templates were taken from common LTL specifications from the
Spec Patterns project at Kansas State University [17]. For each of our five
chosen categories, five temporal templates are specified: globally, before, after,
between/and, and after/until. We altered the formulas for the twenty-five chosen
templates from future-time to past-time, by replacing the future-time operators
2 (globally), 3 (eventually), # (next state), andW (weak until) with their past-
time counterparts � , � , � , and S, respectively. The strong until operator U
was replaced with the strong since operator Ss , and then transformed according
to the equivalence P SsQ ≡ (P S Q) ∧ �Q.

Table 1 lists all the specification templates used in our experiments. Note
that the natural language description for each category has also been changed
accordingly. For instance, the category “S precedes P” in future-time logic refers
to traces where P cannot be true until an S happens ((¬P)W S). Its past-time
counterpart ((¬P)S S) states that “S concluded P”, i.e., if a P was observed,
there must have later been an observation of S after which P was always false.

Twenty-five instances for each of the twenty-five formula templates were gen-
erated, with atomic symbols (P , Q, R, etc.) in the templates replaced with ran-
domly generated atomic formulas, in our case predicates involving LDR recorded
variables, e.g., a + 42 ≤ b. Forty abstract traces all of length 20 were also ran-

1. globally 2. after R 3. before Q

A.
absence

�¬P � R → (¬P Ss R) � (Q → �¬P)
(P was false)

B.
existence

� P (¬R)S (P ∧ ¬R) � (¬Q) ∨ � (Q ∧ � P)
(P became true)

C.
universality

� P � R → (P Ss R) � (Q → � P)
(P was true)

D.
conclusion

(¬P)S S � R → ((¬P)Ss (S ∨ R)) � (¬Q) ∨ (Q ∧ ((¬P)S S))
(S concluded P)

E.
cause

� (P → � S) � R → ((P → ((¬R)Ss (S ∧ ¬R)))Ss R) � (Q → � (P → � S))
(S weakly caused P)

4. between R and Q 5. before Q since R

A.
absence

� ((Q ∧ ¬R ∧ � R) → ((¬P)Ss R)) � ((Q ∧ ¬R) → ((¬P)S R))
(P was false)

B.
existence

� ((Q ∧ R) → ((¬R)S (P ∧ ¬R))) � ((Q ∧ R) → ((¬R)Ss (P ∧ ¬R)))
(P became true)

C.
universality

� ((Q ∧ ¬R ∧ � R) → (P Ss R)) � ((Q ∧ ¬R) → (P S R))
(P was true)

D.
conclusion

� ((Q ∧ ¬R ∧ � R) → ((¬P)Ss (S ∨ R))) � ((Q ∧ ¬R) → ((¬P)S (S ∨ R)))
(S concluded P)

E.
cause � ((Q ∧ ¬R ∧ � R) → � ((Q ∧ ¬R) →

(S weakly causesd P) ((P → ((¬R)Ss (S ∧ ¬R)))Ss R)) ((P → ((¬R)Ss (S ∧ ¬R)))S R))

Table 1. Past-time LTL Formula Templates

domly generated, according to the dictionary for a process variable a and two
synchronous events b and c, with at most four recordings per frame (S = 4).

Therefore in our experiments, a total of 40(# traces) × 25(# templates) ×
25(# instances / template) = 25, 000 trace-formula combinations were tested.
For each given abstract trace Tr and given formula instance ϕ, we collected the
results for JTr(0) |= ϕK, JTr(0 : 1) |= ϕK, . . . , JTr(0 : 20) |= ϕK as a sequence
of 21 values from {>,⊥, ?}, which we call a result sequence for Tr and ϕ. So a
total of 25, 000× 21(length of a result sequence) = 525, 000 values of >, ⊥, or ?
were collected.

The experiments were run on a Windows XP desktop with 2.8GHz Intel Core
Duo CPU and 2Gb memory and finished within 7 hours. Profiling shows that
97.7% of the running time was spent on executing the checkOne function, due
to the exponential number of concrete traces corresponding to an abstract state.
A few of our observations are discussed below.
Frequency of uncertain outcomes. We first evaluated how often the uncer-
tain result (?) happens. Table 2 lists our two measurements: (a) how many of
the trace-formula combinations give uncertain checking results (the number of
result sequences whose the last value is ?), and (b) how many of all the 525,000
results are uncertain (the total number of ? in all result sequences).

We see from Table 2 that, the uncertain results do not occur as often as
one may expect. To explain this observation, we note that most of the temporal
operators are insensitive to the uncertainty, and also the scope of uncertainty is
bounded within one abstract state.
Propagation of uncertainties. We then consider that, given a trace Tr and a
formula ϕ, if an observation of an uncertain result happened at abstract state i,
i.e., JTr(0 : i) |= ϕK =?, whether it will be the case that all following outcomes
in the result sequence are uncertain, i.e, JTr(0 : j) |= ϕK =?, for all i ≤ j ≤ n.

We identified 7,129 out of all the 25,000 result sequences where ? occurred at
least once somewhere in the sequence, 3,660 of which (51.34%) exhibit outcomes

Measurement Uncertain Results Total Cases Percentage

(a) 3903 25,000 15.61%

(b) 63359 525,000 12.07%

Table 2. Chance of Uncertainty in Three-Valued Logic

Fig. 3. Uncertainty Propagation

with trailing uncertain values (?) up to the end of the respective sequence. Above,
we saw that uncertain values do not occur often. However, once occurred, they
tend to persist. This is consistent with the intuition that an uncertain result in
one abstract state pollutes the checker state and affects all subsequent states.

Fig. 3 plots which formula templates these 3,660 result sequences belong to.
It is observed that templates in the “between/and” group are more likely to
propagate uncertainty. This is partly due to the complex formula templates in
the “between/and” group, which make the checker less likely to exit the uncertain
state, compared to simpler templates in the “globally” group.
Impact of formula patterns. Another observation from the collected results
is that, certain groups of formula templates exhibit patterned checking results.

The first group of formula templates includes {A.1, B.1, C.1} in Table 1. The
formula templates share the form that either � or � quantifies over an atomic
formula or its negation. The common patterns are either (a) all ⊥ or all >, or
(b) a consecutive number of > (or ⊥, respectively), followed by a consecutive
number of ?, and then all ⊥ (or >, respectively).

This observation shows that, once a property with the � operator has been
falsified, it continues to be false; before this, it underwent being (probably triv-
ially) true on all concrete traces, some concrete traces, and finally none. A dual
result can be stated for the � operator.

A second group of templates involve the formulas where S is the main op-
erator ({B.2, D.1}). The respective result sequences for formulas in this group
show no obvious pattern, where the values >, ⊥, and ? almost randomly appear.
This shows that randomly generated formulas with S as the main operator are
more often determined locally in one abstract state.

5 Related Works

There are many runtime verification systems that formalize correctness proper-
ties in LTL, as seen for example in [12, 5, 8]. Different LTL variants have been
defined based on semantics for finite traces [3, 4, 9]. The three-valued logic LTL3

as an LTL logic with a semantics for finite traces has been used in [4]. The
LDR traces in this paper are special cases of Mazurkiewicz traces[14] where the
independence relation is defined by the LDR recording scheme. Alternative se-
mantics of LTL formulas on Mazurkiewicz traces were studied (e.g., [?,7]) but
were not based on a three-valued interpretation.

Compared to [4], this work used three-valued semantics for past-time LTL on
traces with the LDR recording scheme, where the uncertainty in our case comes
from unknown event interleavings; in [4], the uncertainty for LTL3 was due to all
possible unknown future suffixes of a finite trace. Although past-time LTL is not
more expressive than LTL, it is exponentially more succinct and more convenient
for specifying correctness properties for runtime verification over finite traces[9].

The technique of defining recursive semantics for checking temporal logic
properties is standard to model checking [6] and runtime verification. [1, 10], as
well as the algorithm presented in this paper, are based on this technique.

[16, 19] provide different approaches to randomly generating LTL formulas.
We used templates from [17] in our experiments as the formula categorization
helps study the relationship between satisfaction of formulas and their patterns.

6 Conclusion and Future Work

We considered a problem of runtime verification of past-time LTL properties over
recorded traces, in which some information about the order of observations may
be lost. We showed that a three-valued interpretation of the formulas is needed
to reflect this uncertainty. We developed the appropriate semantics for past-
time LTL and implemented the checking algorithm. Finally, we conducted an
evaluation of checking several formula patterns over randomly generated traces
and discussed the effects on uncertainty on checking outcomes.

We intend to extend this work in several directions. Extending the new se-
mantics to the full LTL will require a non-trivial effort, and we also plan to tackle
the effect of uncertainty on real-time properties. In the recorded traces, abstract
states are timestamped when the state is recorded, but the time of actual obser-
vations is lost, resulting in additional uncertainty for the timed operators.

We believe that the implementation of the checker can be substantially im-
proved by treating the set of concrete trace segments symbolically. A naive idea
may be to simply run an LTL model checker on the transition system that repre-
sents the LDR trace model; however, we also need to construct the checker state
in the previous abstract state for the right subformulas. Thus a more elaborate
approach is needed.

Finally, we would like to consider a more precise semantic definition, so that
a formula evaluates to > if and only if it is true on every concrete trace. The

current semantics satisfies just the “only if” condition. Indeed, suppose we are
checking the formula φ ∨ ψ, and φ holds exactly on those traces where ψ does
not hold. Both φ and ψ evaluate to ?, but φ∨ ψ should evaluate to >. One way
to achieve this is to forego the Kleene logic and define the semantics of a formula
directly in terms of the set of concrete paths on which the formula holds. Then,
we can assign the truth value to each formula depending on whether this set is
empty, or is equal to the set of all traces.

Acknowledgement. We would like to thank Klaus Havelund and Grigore Roşu
for their insightful input and making their tools in [10] available. We also thank
the anonymous reviewers for their comments to improve the paper.

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL
in EAGLE. Parallel and Distributed Processing Symposium (2004)

2. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
FSTTCS’06. LNCS, vol. 4337. Springer-Verlag (Dec 2006)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation (JLC) 20, 651–674 (June 2010)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (2011)

5. Bodden, E.: J-LO—A tool for runtime-checking temporal assertions. Diploma the-
sis, RWTH Aachen University (Nov 2005)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Genest, B., Kuske, D., Muscholl, A., Peled, D.: Snapshot verification. In:

TACAS’05. pp. 510–525. No. 3440 in LNCS, Springer-Verlag (2005)
8. Havelund, K., Rosu, G.: Monitoring programs using rewriting. International Con-

ference on Automated Software Engineering (2001)
9. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: TACAS’02.

pp. 342–356. Springer-Verlag (2002)
10. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Int. J. Softw.

Tools Technol. Transf. 6(2), 158–173 (Aug 2004)
11. Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand (1950)
12. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance

based on formal specifications. In: PDPTA’99. pp. 279–287 (1999)
13. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems:

specification, vol. 1. Springer Verlag (1992)
14. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Tech.

rep., DAIMI Rep. PB 78, Aarhus University (1977)
15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-

dations of Computer Science. pp. 46–57. IEEE (1977)
16. Rozier, K., Vardi, M.: LTL satisfiability checking. In: 14th Workshop on Model

Checking Software (SPIN ’07). LNCS, vol. 4595. Springer-Verlag (2007)
17. SAnToS Lab, Kansas State University: Property pattern mappings for LTL,

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
18. Spees, W.S.: Functional Requirement for LDR Component. Center for Devices and

Radiological Health, FDA (2010)
19. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi au-

tomata. STTT 4(1), 57–70 (2002)

	University of Pennsylvania
	ScholarlyCommons
	9-2011

	Runtime Verification of Traces Under Recording Uncertainty
	Shaohui Wang
	Anaheed Ayoub
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Runtime Verification of Traces Under Recording Uncertainty
	Abstract
	Comments

	tmp.1357582317.pdf.C7BBG

