
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

1-1-2010 

Generating Litmus Tests for Contrasting Memory Consistency Generating Litmus Tests for Contrasting Memory Consistency 

Models - Extended Version Models - Extended Version 

Sela Mador-Haim 
University of Pennsylvania, selama@seas.upenn.edu 

Rajeev Alur 
University of Pennsylvania, alur@cis.upenn.edu 

Milo M.K. Martin 
University of Pennsylvania, milom@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Sela Mador-Haim, Rajeev Alur, and Milo M.K. Martin, "Generating Litmus Tests for Contrasting Memory 
Consistency Models - Extended Version", . January 2010. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-15. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/934 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/934
mailto:repository@pobox.upenn.edu


Generating Litmus Tests for Contrasting Memory Consistency Models - Extended Generating Litmus Tests for Contrasting Memory Consistency Models - Extended 
Version Version 

Abstract Abstract 
Well-defined memory consistency models are necessary for writing correct parallel software. Developing 
and understanding formal specifications of hardware memory models is a challenge due to the subtle 
differences in allowed reorderings and different specification styles. To facilitate exploration of memory 
model specifications, we have developed a technique for systematically comparing hardware memory 
models specified using both operational and axiomatic styles. Given two specifications, our approach 
generates all possible multi-threaded programs up to a specified bound, and for each such program, 
checks if one of the models can lead to an observable behavior not possible in the other model. When the 
models differs, the tool finds a minimal “litmus test” program that demonstrates the difference. A number 
of optimizations reduce the number of programs that need to be examined. Our prototype implementation 
has successfully compared both axiomatic and operational specifications of six different hardware 
memory models. We describe two case studies: (1) development of a non-store atomic variant of an 
existing memory model, which illustrates the use of the tool while developing a new memory model, and 
(2) identification of a subtle specification mistake in a recently published axiomatic specification of TSO. 

Disciplines Disciplines 
Computer Sciences 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-15. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/934 

https://repository.upenn.edu/cis_reports/934


Generating Litmus Tests for Contrasting
Memory Consistency Models� - Extended

Version��

Sela Mador-Haim, Rajeev Alur, and Milo M.K. Martin

University of Pennsylvania

Abstract. Well-defined memory consistency models are necessary for
writing correct parallel software. Developing and understanding formal
specifications of hardware memory models is a challenge due to the sub-
tle differences in allowed reorderings and different specification styles.
To facilitate exploration of memory model specifications, we have devel-
oped a technique for systematically comparing hardware memory models
specified using both operational and axiomatic styles. Given two spec-
ifications, our approach generates all possible multi-threaded programs
up to a specified bound, and for each such program, checks if one of
the models can lead to an observable behavior not possible in the other
model. When the models differs, the tool finds a minimal “litmus test”
program that demonstrates the difference. A number of optimizations
reduce the number of programs that need to be examined. Our pro-
totype implementation has successfully compared both axiomatic and
operational specifications of six different hardware memory models. We
describe two case studies: (1) development of a non-store atomic vari-
ant of an existing memory model, which illustrates the use of the tool
while developing a new memory model, and (2) identification of a subtle
specification mistake in a recently published axiomatic specification of
TSO.

1 Introduction

Well-defined memory consistency models are necessary for writing correct and
efficient shared memory programs [2]. The emergence of mainstream multi-core
processors as well as recent developments in language-level memory models [4,
19], have stirred new interest in hardware-level memory models. The formal
specification of memory models is challenging due to the many subtle differences
between them. Examples of such differences include different allowed reorder-
ings, store atomicity, types of memory fences, load forwarding, control and data
� The authors acknowledge the support of NSF grants CCF-0905464 and CCF-

0644197, and of the Gigascale Systems Research Center, one of six research cen-
ters funded under the Focus Center Research Program (FCRP), a Semiconductor
Research Corporation entity.

�� This is an extended version of the CAV2010 paper, including detailed section on
operational models and added implementation details



July 13, 2010 CAV 2010 Extended

dependencies, and different specification styles (operational and axiomatic). Ar-
chitecture manuals include litmus tests that can be used to differentiate between
memory models [17, 23], but these litmus tests are not complete, and coming up
with new litmus tests requires identifying the subtle difference between memory
models this test is meant to detect.

Our goal is to aid the process of developing specifications for hardware-level
memory models by providing a technique for systematically comparing memory
model specifications. When there is a difference between the two memory models,
the technique generates a litmus test as a counter-example, including both a
program and an outcome allowed only in one of the models. Such a technique
can be used in several different scenarios. One case is comparing two presumably
equivalent models, for example comparing an axiomatic specification given as a
set of first order logic formulas to an operational specification that describes the
model as a state transition system. Alternatively, we may also want to check
whether one model is strictly weaker (or stronger) than the other.

Our approach is based on systematic generation of all possible programs
up to a specified size bound. For each program, we check if one of the models
can lead to an observable behavior that is not possible in the other model. To
produce the set of observable behaviors for a program under a given memory
model, we use two different search techniques depending on whether the model
specification is operational or axiomatic. When there is an observable behavior
in one memory model that is not allowed by the other model, the approach
outputs the program and the contrasting behavior. Because we explore starting
with the smallest programs, this is a minimal litmus test.

We employ several techniques to make this approach practical. A naive enu-
meration of all test programs up to the specified bound produces too many
programs, so we employ optimizations to reduce the number of programs that
need to be examined. We use symmetry reductions based on value, address
and thread symmetries. Furthermore, we identify and skip redundant programs
that will not expose any new differences by analyzing the conflict graph of the
program. We use partial order reduction techniques to optimize exploration of
operational models and an incremental SAT approach for axiomatic models.

We tested this approach by comparing the axiomatic and operational speci-
fications of six different memory models: Sequential Consistency (SC), SPARC’s
TSO, PSO and RMO [23] and non-store-atomic relaxations of TSO and PSO.
Our technique finds the known differences, but it also uncovered some errors in
two of our specifications, which we corrected. Finding differences takes less than
a second in most cases and only several minutes in the worst cases we encoun-
tered. We tested the scalability of this technique and found that we can explore
all programs up to six read and write operations plus any number of fences in
a few minutes. Our results indicate these bounds are adequate to detect subtle
differences.

We performed two case studies. We developed a specification of a non-store-
atomic variant of PSO, which illustrates that the tool quickly identifies subtle
specification mistakes. In another case study, we contrasted SOBER’s axiomatic

2



July 13, 2010 CAV 2010 Extended

In all tests, initially X=Y=0

Test A1. Write→Read
T1 T2
Y = 1; X = 1;
r1 = X; r2 = Y;

Outcome: r1=r2=0

Test A2. Write→Write
T1 T2
X = 1; r1 = Y;
Y = 1; fence;

r2 = X;

Outcome: r1=1; r2=0

Test A3. Read→Read
T1 T2
X = 1; r1 = X;
fence; r2 = X;
X = 2;

Outcome: r1=2; r2=1

Test A4. Read→Write
T1 T2
r1 = X; r2 = Y;
Y = 1; X = 1;

Outcome: r1=r2=1

Test A5. Store atomicity test
T1 T2 T3 T4
X = 1; Y = 1; r1=X; r3=Y;

fence; fence;
r2=Y; r4=X;

Outcome: r1=r3=1; r2=r4=0

Test A6. Coherence test

T1 T2 T3 T4
X = 1; X = 2; r1=X; r3=X;

fence; fence;
r2=X; r4=X;

Outcome: r1=r4=1; r2=r3=2

Test A7. Independent write
reorders
T1 T2 T3
X = 1; Y = 1; r1=X;
Y = 2 X = 2; fence;

r2=X;
r3=Y;
fence;
r4=Y;

Outcome: r1=r3=2; r2=r4=1

Fig. 1: Litmus tests for local and global reordering of memory accesses

specification of TSO [6] with an operational specification of TSO and showed
our technique detects a recently discovered specification error [8].

2 Axiomatic specification for memory models

A memory consistency model is a specification of the shared memory semantics
of a parallel system [2]. The simplest memory model is Sequential Consistency
(SC) [18]. An execution of a concurrent program is sequentially consistent if
all reads and writes appear to have occurred in a sequential order that is in
agreement with the individual program orders of each thread. In order to im-
prove system performance and allow common hardware optimization techniques
such as store buffers, many systems implement weaker memory models such as
SPARC’s TSO, PSO and RMO [23], Intel’s x86 [17], Intel’s Itanium [25], ARM
and PowerPC [3].

Consider for example the program in Test A1 (Fig. 1). Executing under SC,
at least one of the writes must occur before any of the reads, and therefore the
outcome r1 = 0; r2 = 0 is not allowed. A processor that has a store buffer, on
the other hand, can defer the writes to the main memory and effectively reorder
the writes after the reads, and thus reading zero for both registers is allowed.
SPARC’s TSO and x86 both allow this relaxation. Other memory models allow
further relaxations such as write after write and read after read (RMO, Itanium,
PowerPC). Some memory models such as SC are store atomic, in the sense that

3



July 13, 2010 CAV 2010 Extended

all threads observe writes in the same order, but other memory models are non-
store-atomic and allow different threads to observe writes from other threads in
a different order (such as PowerPC), as illustrated by Test A5 in Fig. 1.

The purpose of a memory model specification is to express precise constraints
on which values can be associated with reads in a given multi-threaded program.
One method of specifying a memory model is axiomatic style, given by a set
of axioms that define which execution traces are allowed by the model and in
particular which writes can be observed by each read. An execution trace is a
sequence of memory operations (Read, Write, Fence) produced by a program.
Each operation in the trace includes an identifier of the thread that produced
this operation, and the address and value of the operation for reads and writes.

Axiomatic specifications usually refer to the program order, <p. For two
operations x and y, x <p y if both x and y belong to the same thread and x
precedes y in the execution trace. The program order, however, is not necessarily
the order in which memory operations are observed by the main memory. The
memory order, <m, is a total order that indicates the order in which memory
operations affect the main memory. A read observes the latest write to the same
address according to <m.

We define store atomic memory models using two types of axioms: a read-
values axiom and an ordering axiom. The read-values axiom states that each read
observes the latest write to the same location according to the memory order.
To support load forwarding, reads may observe local writes that precede them in
program order, even if such write is ordered after the read in the memory order.
We handle this forwarding in same style as in Burckhardt et al [5], by defining
a function sees(x, y, <), which is true if y is a write and y < x or y <p x. The
read-values axiom for store-atomic memory models is:

Read values Given a read x and a write y to the same address as x, then x
and y have the same value if sees(x, y, <m) and there is no other write z
such that sees(x, z,<m) and y <m z. If for a read x there is no write y such
that sees(x, y, <m) then the read value is 0.

All our store atomic memory model specifications use the same read-values
axiom, but differ in the definition of the ordering axiom, specifying which mem-
ory orders are allowed by the model. For example, TSO allows reordering only
writes after later reads, and therefore the TSO reordering axiom is:

TSO-reordering For every x and y, x <p y implies that x <m y, unless x is a
write and y is a read.

The ordering axiom for PSO relaxes TSO by allowing reordering writes with
other writes to a different location, as shown in Test A2. The ordering axiom for
PSO is:

PSO-reordering For every x and y, if x <p y then x <m y in the following
cases: 1. x is a read. 2. Either x or y is a fence. 3. Both x and y are writes
and they both have the same address.

4



July 13, 2010 CAV 2010 Extended

The ordering axiom for RMO further relaxes PSO by allowing reordering
reads with other reads (as in Test A3) and reads with later writes (as in test A4)
as long as there is no data or control dependency between them. The ordering
axiom for RMO is:

RMO-reordering For every x and y, if x <p y then x <m y in the following
cases: 1. There is a dependency between x and y 2. Either x or y is a fence.
3. Both x and y access the same address and y is not a read.

In non-store-atomic models, threads may observe stores in different orders,
so we can no longer use one global memory order. Instead, we define an order
<t for each thread t, which we call the view of thread t. Each view includes
all operations and not only writes, so that we could, for example, restrict the
position of a write in a thread relative to reads by another thread, which, as we
see later, is helpful to ensure transitive causal order between operations.

As in the store-atomic case, loads see the latest stores to the same address
except in the case of forwarding, but the relevant order for loads in thread t is
view order <t. We modify the read-values and ordering axioms to observe the
latest write in the relevant view:

Non-store-atomic read-values Given a read x in thread t and a write y to
the same address as x, then x and y have the same value if y is the most
recent write according to sees(x, y, <t). If for a read x in thread t there is
no write y such that sees(x, y, <t), the read value is 0.

To define NPSO, the non-store atomic version of PSO maintains the same
order restrictions between operation from the same thread as in the case of PSO:

NPSO ordering For every x and y, if x <p y then for every t x <t y must
hold in the following cases: 1. x is a read. 2. Either x or y is a fence. 3. Both
x and y are writes and they both have the same address.

The non-store-atomic case requires adding another axiom for coherence, stat-
ing that there is a total order between writes to the same address:

NPSO coherence For every two write operations x and y that write to the
same address, and for every two threads, t and t′, if x <t y then x <′t y.

The above axioms represent our first attempt at specifying a model which is
a non-store atomic relaxation of PSO in an axiomatic style, but, as we describe
in Section 5, this specification is too weak. In Section 5.3, we use our technique
to develop the missing axioms for NPSO.

3 Operational specification framework

Another method of specifying a memory model is using an operational style,
which abstracts actual hardware structures such as a store buffer. This section
describes operational specifications for several memory models that we defined
as a part of this work.

5



July 13, 2010 CAV 2010 Extended

3.1 The Component Model

We introduce a component based framework that enables us to specify different
memory models based on a small number of different components. The compo-
nents can be connected in different ways to specify the operational semantics of
different memory models.

Our specification of the operational semantics of weak memory models is
based on a set of components that run as concurrent processes. The components
can communicate with each other by sending and receiving messages. All com-
munication between components are done via rendezvous message passing. We
define the following five components:

– Processor : a component that represents a single thread. Its main function is
to send read, write and fence operations. It also tracks dependencies

– SimpleMem: represents a single memory location
– WriteQueue: used to reorder writes by delaying them
– SetRead : access past values by keeping a history set
– FutureRead : access future values using a prophecy variable

Each of these components is a process that runs concurrently with other
components. Components can initiate actions, send messages to other compo-
nents, and may react to messages from other components. Next, we define the
glue logic that binds these model together and determines which messages go to
which components.

The components are presented here using Promela [16], the specification
language of the Spin model checker. Each component is defined as a Promela
process (The Promela code for all components is found in the appendix). Each
component have one input channel and one output channel. Both are rendezvous
channels (channels with a queue of size 0). Messages record types, corresponding
to actions as defined in section 1, with the following fields:

– m.type is the message type, which is one of {Write,Read, Fence, Reply,
Complete, Forward}.

– m.addr is the memory location
– m.val is a read/write value
– m.proc is the thread/processor identifier
– m.ins identifies the instruction in the program that generated the message

The glue logic consists of redirection statements that transfer messages from
one component to another component, based on the value of the message. For
example, the code connecting processors with memory elements in Promela,
sending each message m to the relevant memory location according to m.addr is:

:: pout[pr]?[m] -> pout[pr]?m; min[m.addr]!m;

6



July 13, 2010 CAV 2010 Extended

3.2 Sequential Consistency

SC (Sequential Consistency [18]) is the simplest memory consistency model. In
this model, all memory operations are observed in program order by all threads.
The specification for SC consists of two components: Processor and SimpleMem.

The Processor component’s main job is to send messages corresponding to
the operations of a single threads. It contains a sequence of operators, and every
time it is activated it sends a message corresponding to the next operation in the
sequence (read request, write or fence). It also keeps track of read values that
are returned from the main memory. It receives two types of messages. First,
messages of type Reply, which are sent back from the memory as a response
to read request and contain a value. The processor keeps track of this value by
storing it in a queue of returned values. This queue of returned values can be
used to compare read values between executions. The second type of incoming
message is Complete, announcing that a read request is completed. Usually, a
Reply message is followed immediately by a Complete message. However, as we
explained in Section 3.6, there are cases where the component guesses a future
value, and the read is complete only when the guess is confirmed with an actual
write. In this case, the processor keeps track of incomplete requests, and blocks
writes until all reads to the same address are complete.

The second component, SimpleMem, represents the main memory. This is a
simple component containing one variable that keeps track of the current value of
a single memory location. It does not initiate any actions on its own. It receives
and responds to two types of incoming messages: in case of a Read request, it
sends back a Reply message with its current value, immediately followed by a
Complete message. In case of an incoming Write message, it updates its internal
value and send a Forward message to other components with the same informa-
tion as in the received Write message. The forwarding feature is not used for SC,
but we use it later.

We model SC for n processors and m memory locations using components
Pr[0], ...P r[n− 1], which are instances of Processor (Pr[i] is Processor instanti-
ated with a processor ID i) and components M [0], ...M [m−1], which are instances
of SimpleMem. The binding logic is shown in Fig. 2. The solid lines represent the
flow of request messages, which are Read, Write, and Fence. The dashed lines
represent response messages, which are Reply and Complete. As seen in the di-
agram, Processors in this specification for SC communicate directly with the
main memory, and this way all memory operations are seen in program order.

3.3 Total Store Order

In TSO (Total Store Order [23]), writes can be reordered after newer reads, but
writes are observed in their program order as well as any other pair of operations
(it relaxes Test A1, but no others). Writes can be effectively reordered after reads
by postponing the writes, and sending them to main memory at a later time.
Using a FIFO buffer, delayed writes are guaranteed to be sent to the main
memory in order.

7



July 13, 2010 CAV 2010 Extended

M[Y] M[X]Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

Request Response

Fig. 2: Component diagram of SC

The WriteQueue component implements such a queue that stores incoming
writes and delay the time they are sent to memory. When WriteQueue receives
an incoming write message, it stores this message in the queue. An incoming
fence message drains the queue, and thus prevents any local write to be delayed
after the fence. In case of an incoming read message, WriteQueue looks for writes
that match the address of the incoming read, and send a reply message with the
value of the latest matching write. This is done in order to support forwarding
of local write.

In addition, WriteQueue may perform a dequeue and send outgoing write
messages. Because WriteQueue runs as a concurrent process, it can be interleaved
in any possible way with the other processes, and as a result sending writes from
the queue is performed non-deterministically.

Using WriteQueue combined with the two previous components, we can
specify TSO: For n processors and m memory locations, the components are
Pr[0], ...P r[n− 1] Processor instances, M [0], ...M [m− 1] SimpleMem instances,
and WQ[0], ...WQ[n− 1] WriteQueue instances. The connections between these
component for TSO is shown in Fig. 3 (left).

All write requests by the same processor to all memory locations go through
the same WriteQueue component. Due to the FIFO queue, the order between
writes from the same processor cannot change. In case of a read request, Write-
Queue either responds with the latest value in the queue or forwards them to
main memory, and thus reads are observed in-order. Writes, however, can be
observed after reads when the FIFO queue sends a write request to the main
memory only at a later time.

3.4 Partial Store Order

PSO (Partial Store Order [23]), relaxes TSO by allowing to reorder writes after
writes (but not writes to the same address) in addition to the reordering of
writes after reads, relaxing tests A and B. For the implementation of PSO, we
do not need any new component. We can rewire the WriteQueue components in
a different way in order to allow reordering writes with other writes. We need
a FIFO queue to preserve the order for writes to the same address, and hence

8



July 13, 2010 CAV 2010 Extended

M[Y] M[X]Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

WQ
[1]

WQ
[2]

WQ
[3]

Request Response

M[Y] M[X]Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

WQ
[1,Y]

WQ
[1,X]

WQ
[2,Y]

WQ
[2,X]

WQ
[3,Y]

WQ
[3,X]

Request Response

Fig. 3: Component diagram of TSO (left) and PSO (right)

for each processor we use a different instance of WriteQueue for each memory
location. The glue logic in this case sends the outgoing reads and writes from
the processor to the corresponding queue handling the write to this address.
Different queues can be activated and send out writes at different times, non-
deterministically. For example, suppose we write to X and then write to Y. The
queue that holds writes to Y may become active and send the write it holds
before the queue that holds the write to �X, and thus effectively reorder writes.

In this case we have n×m instances of WriteQueue, denoted WQ[i, j] for all
i = 0, ...n and j = 0, ...m. The connections between the components are shown
in Fig. 3 (right).

3.5 Partial Store/Load Order

We consider another model we call PSLO (Partial Store/Load Order), where
reads can be reordered in addition to writes (but we cannot reorder reads with
later writes). In PSLO, writes are reordered in the same way as in PSO: we
can reorder writes with later reads and reorder writes with writes to different
locations. The only aspect of the model which is changed with respect to PSO
is the order of reads.

The SetRead component reorders reads by keeping track of past values. A
value that was written in the past to a certain location is feasible unless there was
a fence operation after this write or a local write to the same location. In both
of those cases, SetRead empties everything from the set of values except for the
latest written value. SetRead makes use of the ability of the memory component
to forward writes. Each time there is a write to the memory, the memory forwards
the write to SetRead, and this value is added to the set. In response to a read

9



July 13, 2010 CAV 2010 Extended

M[Y] M[X]Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

WQ
[1,Y]

WQ
[1,X]

WQ
[2,Y]

WQ
[2,X]

WQ
[3,Y]

WQ
[3,X]

SR[1,X]

SR[2,X]

SR[3,X]

SR[1,Y]

SR[2,Y]

SR[3,Y]

Request Response Forward

Fig. 4: Component diagram of PSLO

T1

Read X → r1
Write X ← 1
Read Y → r2
Write Y ← 1

Fig. 5: RMO reordering

request, SetRead selects non-deterministically one of the values in the set and
returns a reply message containing this value.

Unlike writes, many memory models do allow reordering reads to the same
address. In case we reorder reads, the first read can observe the current value
of X and then the next read can observe a past value of X, which is already
overwritten. Therefore, we can reorder reads by looking at past values.

In order to specify PSLO, we use the same components as in PSO, with the
addition of the components SR[i, j] for i = 0, ...n and j = 0, ...m which are
instances of SetRead, the components are connected as shown in Fig. 4.

3.6 Relaxed Memory Order

SPARC’s RMO (Relaxed Memory Order [23]) is a store atomic memory model
that relaxes all the local orders except for the reordering of reads and writes with
writes to the same address and dependent instructions. The difference between

10



July 13, 2010 CAV 2010 Extended

PSLO and RMO is that in RMO reads can be reordered with later writes in the
program order.

Reordering writes before reads means we need to either read from the future
or effectively write to the past. Both are not straightforward to implement,
but the former option is easier. A standard way to “read the future” is using
prophecy variables [1]. In a response to a read request, we can guess a future
value speculatively and then later ensure this speculative guess is justified.

Additionally, we need to make sure that postponed reads are not reordered
with future writes to the same address. Because RMO may reorder both reads
and writes. Consider, for example, the program in Fig. 5. RMO may not reorder
Read X→ r1 after the write to X. However, RMO may reorder the write to X
after the two later operations and thus the read can be performed after both
reading and writing to Y . To perform this, we need to queue reads together with
the writes in the same queue. We therefore need a component that: 1. predict
a value for the read and returns it to the processor. 2. Sends a read request to
the queue, with a special flag that tells WriteQueue to queue the read together
with the writes instead of responding to it immedietely. And finally: 3. Upon
receiving a reply to the read, compare it to the guessed value.

The FutureRead component implements this idea. In response to a read re-
quest it either returns the current value or guesses a future value speculatively,
keep track of the guessed value and then sends a ”probe” read. Whenever there
is a reply to a read, it is compared to the guessed value and in case they are
different, the program cannot proceed. All guessed values have to be satisfied by
the end of the program.

Using the FutureRead component, we can model SPARC’s RMO. The imple-
mentation of this model is similar to that of PSLO, with the addition of FR[i, j]
instances of FutureRead between the process and each write queue. We keep
SetRead at the end of the queue so that reads to the same address would be
reordered. The diagram for RMO is shown in Fig. 6.

3.7 Non-Store-Atomic RMO

The NRMO model is a variation of PowerPC and ARM memory models. In
this non-store atomic version of RMO, there is no global memory order. Each
thread may observe stores from different threads in a different order, and there-
fore the NRMO specification does not use one main memory as in the previous
models. Instead, each thread has its own local memory. We do need to preserve
coherence and ensure all writes to the same address would be observed in a to-
tal order. For n processes and m memory locations, we can achieve this using
n×m instances of WriteQueue we call Coherence Queues. Each coherence queue
CQ[i, j] is responsible for updating the private memory for location j in thread
i. When a thread writes a value to address j, the same write is sent to all CQ’s
CQ[0, j]...CQ[n− 1, j] simultaneously, and therefore all of the coherence queues
for the same location contains writes in the same order, but each of them may
dispatch writes to the private memory at different time. As a result, writes to

11



July 13, 2010 CAV 2010 Extended

M[Y] M[X]Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

WQ
[1,Y]

WQ
[1,X]

WQ
[2,Y]

WQ
[2,X]

WQ
[3,Y]

WQ
[3,X]

SR[1,X]

SR[2,X]

SR[3,X]

SR[1,Y]

SR[2,Y]

SR[3,Y]

Request Response Forward

FR
[1,Y]

FR
[1,X]

FR
[2,Y]

FR
[2,X]

FR
[3,Y]

FR
[3,X]

Fig. 6: Component diagram of RMO

different addresses can be seen by different processors in different orders, but
writes to the same address are observed in the same total order.

We need to be careful when we connect the Coherence Queues to the Pro-
cessors. Connecting the queues to the processors directly would give us a model
which is too strong. Any model that allows reordering writes, such as PSO (and
also in NRMO, which subsumes it), should allow ordering the writes from dif-
ferent threads independently. However, using only coherence queues, writes to
different addresses cannot be ordred independently. In order to avoid this is-
sue, we need another layer of queues between each Processor and the Coherence
Queues, so that different writes could be ordered in each processor indepen-
dently of other processors. This is done by maintaining the n × n instances of
WriteQueue, denoted WQ[i, j], as in PSO and RMO.

Another subtle issue is forwarding of local writes. The invariant we need to
preserve is that as long as there are pending writes from Pr[i] on the way to the
local memory of the same processor, we should not be able to observe any value
other than the latest such write. In order to support this, we need to forward
from CQ[i, j] the value of any write from thread i. Finally, we enable reordering
reads after later reads and writes by adding a FutureRead components FR[i, j]
and SetRead components SR[i, j] just as in RMO. The connection between com-
ponents is shown in Fig. 7.

12



July 13, 2010 CAV 2010 Extended

M[2,Y]

M[1,X]

Pr[2]

Pr[1]

Pr[3]

X

X

X

Y

Y

Y

WQ
[1,Y]

WQ
[1,X]

WQ
[2,Y]

WQ
[2,X]

WQ
[3,Y]

WQ
[3,X]

M[2,X]

M[3,X]

CQ
[1,X]

CQ
[2,X]

CQ
[3,X]

M[1,Y]

M[3,Y]

CQ
[1,Y]

CQ
[2,Y]

CQ
[3,Y]

FR
[1,Y]

Request Response Forward

SR[1,Y]

FR
[2,Y]

FR
[3,Y]

SR[2,Y]

SR[3,Y]

FR
[1,X]

FR
[2,X]

FR
[3,X]

SR[1,X]

SR[2,X]

SR[3,X]

Fig. 7: Component diagram of NRMO

3.8 Non-Store-Atomic TSO

In NTSO, the non-store-atomic version of TSO, every two threads may observe
writes from other different threads to different addresses in a different order, but
program order is always preserved. This model is similar to the original x86 mem-
ory model. Surprisingly, although TSO is one of the simplest memory modes, its
non-store-atomic version is our most complicated modular specification.

The source of complication is the need to preserve both program order be-
tween writes from the same thread (not necessarily to the same address), as well
as a total coherence order between write to the same address (not necessarily
from the same thread). In this model, Test A5 should pass and Test A2 must
fail. This is done by maintaining two different set of queues: one keeps writes
from a single thread in program order, and the other keeps writes to the same
address from all threads in a total order. Finally, we need to combine both by
allowing writes only when they are available from both sets simultaneously. This
requires a kind of guarded glue logic that can be implemented in Promela in the
the following way:

:: wqout[i].ch[k]?m1 & cqout[i].ch[j]?m2 ->

m1.val==m2.val; min[k].ch[j];

We need n×n WQ queues, where WQ[i, k] receives writes from thread i and
write to the local memory of thread k. This way the model can send writes from
the same threads at different times to different models. The connections in this
model are presented in Fig. 8.

13



July 13, 2010 CAV 2010 Extended

M
[2,Y]

M
[1,X]

Pr[2]

Pr[1]

Pr[3]

Y

ORD
[1,1]

ORD
[1,3]

ORD
[2,2]

ORD
[2,3]

ORD
[3,3]

ORD
[3,1]

M
[2,X]

M
[3,X]

M
[1,Y]

M
[3,Y]

ORD
[1,2]

ORD
[2,1]

ORD
[3,2]

CQ
[1,X]

CQ
[2,X]

CQ
[3,X]

CQ
[1,Y]

CQ
[2,Y]

CQ
[3,Y]

Request Response Intersection

WQ
[1]

WQ
[2]

WQ
[3]

Fig. 8: Component diagram of NTSO

4 Comparing memory models

This section presents a technique for comparing memory models. Our goal is
to check the difference between two models, and when the two models are not
equivalent, to generate a litmus test that shows the difference between the two.
Two memory models M and M ′ are not equivalent if any program displays
different behaviors under M and M ′.

Based on a review of published litmus tests in the literature and our own ex-
perience, tests that detect differences between memory models tend to be small,
and hence an exhaustive search of test programs up to a given bound is a plau-
sible approach for debugging memory model specifications. Given upper bounds
for the total number of instructions in a program, the number of operations per
thread, the number of threads as well as the number of memory locations, the
technique exhaustively explores all programs within these bounds.

We start by defining the test program space for contrasting memory models.
We present reduction techniques for trimming down the number of programs to
a manageable size. Finally, we discuss techniques to efficiently compare the set

14



July 13, 2010 CAV 2010 Extended

Test B1
T1 T2
Write Y ← 1 Read X → r1
Read Y → r2 Fence
Write X ← 2 Read Y → r3

Test B2
T1 T2
Write X ← 1 Read Y → r1
Read X → r2 Fence
Write Y ← 2 Read X → r3

Test B3
T1 T2
Read Y → r1 Write X ← 1
Fence Read X → r2
Read X → r3 Write Y ← 2

Fig. 9: Address symmetry (B1 and B2); Thread symmetry (B2 and B3)

of possible outcomes for a given program both for operational and axiomatic
specification styles.

4.1 Test programs

A test program is a concurrent program consisting of n threads, t1, ...tn, where
each thread is a sequence of memory operations. A memory operation can be
one of:

– Read Addr → reg - a read from a constant address to a register
– Write Addr ← V al - a write of a constant value to a constant address
– Fence - a full memory ordering barrier (fence)

The above three instructions suffice to contrast the models we have considered
in this paper. Our methodology as well as the tool can be extended to include
other instructions and data dependencies.

4.2 Program enumeration

Even when considering small bounds on test size, the program space can be too
big to be explored in a reasonable time. Thus, we reduce the number of tested
programs to a smaller number of representatives that are still sufficient for finding
differences. First, because all writes are constants, registers in the program are
used only for defining the final outcome. Therefore, we assign a unique register
to each read. Likewise, the actual values read or written are inconsequential. We
are interested only in which stores each load instruction can read. So instead
of exploring all different combinations of write values, we assign a unique value
for each write. We also restrict the places where we add fences: fences at the
beginning or end of a thread have no effect, nor does a fence followed by another
fence, so we eliminate all fences that are not between two other instructions.

Next, we use the symmetry properties of the memory model to reduce the
number of programs. We use two symmetries: address symmetry and thread
symmetry. In Fig. 9, the two programs display address symmetry: we obtain
Test B2 from Test B1 by switching the Xs with the Y s. These two programs
display the same behaviors and therefore it is sufficient to test only one of them.
Similarly, Test B3 is the same as Test B2 with thread T1 switched with T2. By
transitivity, any combination of thread and address permutation are equivalent.
Hence, Test B1 and Test B3 are also symmetric.

15



July 13, 2010 CAV 2010 Extended

We generate only one representative for each symmetry class by assigning
an order between elements in a permutation and sorting them, and then we
generate programs with sorted elements only. We sort the addresses according
to the order of their appearance in the program, starting from T1 and continuing
to the next thread after the end of each thread: the first memory access in T1
is always to location 0, the next memory access could either be to 0 again or
to 1 and so on. When the highest address accessed so far is i, the next memory
operation involves any address between 0 to i + 1. Similarly, we perform thread
symmetry reduction by sorting threads according to some lexicographical order
between instructions. The order we use is Write < Read < Fence, where two
writes (or reads) are sorted according to their address. By generating programs so
that the threads are sorted according to this lexicographical order and addresses
by the order of their appearance, the enumeration algorithm avoids generating
symmetric tests.

The function Enumerate, shown in Algorithm 1, performs program enumer-
tion with symmetry reduction. It works recursively by adding a new instruction
(Read, Write or Fence) at each iteration, until remain is 0 (reached the instruc-
tion limit). Instructions are added to a thread until the thread length bound
is reached, and then the algorithm generates the next thread. The function en-
sures address symmetry by restricing the address value to a number between 0
to nextaddr, so that the first address is always 0, the second address is 0 or 1
and so on. The function uses the variables sym and symi to maintain thread
symmetry: as long as all instructions in thread t are identical to the correspond-
ing instructions in t − 1, any new instruction added to t have to be greater or
equal to the corresponding instruction in t−1 (according to a predefined order).
In case we add to t an instruction which is different that the instruction in the
same possition in t− 1, it breaks the symmetry, and any subsequent instruction
added to the current thread is unrestricted.

4.3 Redundant test elimination

Some test programs are redundant in the sense that these tests are either not
going to detect any difference between memory models or are subsumed by
smaller programs that detect the same difference. First, we conclude that some
programs are redundant simply by looking at the program structure. Consider,
for example, Test D in Fig. 10. In this case, there are no shared variables between
the two threads, and any execution under any memory model would give the
same outcome. Similarly, in Test E both variables are shared, but even SC (the
strongest model we typically consider) allows all possible outcomes. In both tests,
there is no possible conflict in SC and therefore no cases that could be relaxed
under a weaker memory model. Furthermore, consider Test F in Fig 10. This
test can be decomposed into two separate tests: Test F1 includes T1 and the
first two instructions in T2, and test F2 includes the last two instructions in T2
and T3. Test F is not going to exhibit any behaviors that can not be detected
by F1 and F2, because the only relation between the two is the program order
relation between instruction 2 and 3 in T2.

16



July 13, 2010 CAV 2010 Extended

Algorithm 1 Enumerate(Program p, int remain, bool sym, int nextval, nex-
taddr, int len)
Require: p: the program. Initially empty

remain: number of remaining instructions. Initially max instructions
sym: true if the thread is the same as previous thread. Initially false
nextval: the next available value. Initially 1
nextaddr: next available address. Initially 0
len: the maximal length of a thread
if remain = 0 then

Test(p)
else

if last thread in p=len then
if remain < len then

len← remain
sym← False

else
sym← True

end if
Add new thread to p

end if
th← the last thread in p
if th is empty and len > 1 then

Enumerate(p, remain, False, nextval, nextaddr, len− 1)
end if
symi← the instruction in the previous thread in the same location as the next in
struction in the current thread
if not sym or symi type is Write then

for i = the address of symi to nextaddr do
Add Write i← nextV al to th
newsym← True if added instruction is the same as symi
Enumerate(p, remain− 1, newsym, nextval + 1, (i = nextaddr)?nextaddr +
1 : nextaddr, len)

end for
end if
if not sym or symi type is not Fence then

for i = the address of symi to nextaddr do
Add Read i to th
newsym← True if added instruction is the same as symi
Enumerate(p, remain− 1, newsym, nextval + 1, (i = nextaddr)?nextaddr +
1 : nextaddr, len)

end for
end if
if not first instruction in thread and previous instruction is not Fence then

and Fence to th
newsym← True if this is the same as symi
Enumerate(p, remain− 1, newsym, nextval, nextaddr, len)

end if
end if

17



July 13, 2010 CAV 2010 Extended

1: Write X 1 1: Read Y r1

T1

2: Write Y 1 2: Read X r2

T2

3: Write Z 1

1: Read W r1

2: Write Z 1

4: Write W r2

T3

1: Write X 1 1: Read X r1

T1

2: Write Y 1 2: Read Y r2

T2

1: Write X 1

2: Read X r1

T1

1: Write Y 1

2: Read Y r2

T2

Test D Test E

Test F

Fig. 10: Redundant tests

We eliminate such redundant test programs by generating a conflict graph for
the test program. A conflict graph G is a directed graph where each operation
is a node and the edges represent potential conflicts between the operations. For
every two operations, X and Y, there is an edge in G from X to Y if either: (1)
X <p Y , or (2) either of X or Y are write operations and both access the same
address. A test is redundant if the conflict graph G for this test is not strongly
connected, i.e., there are operations X and Y in the graph such that there is no
path from X to Y . For example, in Test C, there is no path from instruction 3
to instruction 2 in T2, and therefore this test is redundant.

Given a program P whose conflict graph in not strongly connected, we parti-
tion the instructions in P into two partitions, P1 and P2, such that no variables
are shared between P1 and P2, and if x is an instruction in P1 and y is an
instruction in P2 and both x and y are in the same thread, then x <p y. We
expect that for such a program, no instruction in P1 would interfere with the
execution of P2 and vice versa, and hence the cross product of the outcomes of
the program in partition P1 and the outcomes of the program in partition P2 is
the set of outcomes of P. Therefore, if P detects a difference between two models,
either P1 or P2 should detect a difference as well.

4.4 Computing all outcomes of a test program

For each of the test programs we determine if the set of outcomes of P running
under a memory model M is the same as for P running on M ′. The approach
we take is to find all possible outcomes under both models independently and
then compare them.

18



July 13, 2010 CAV 2010 Extended

Finding all outcomes for an operational memory model is done in a manner
similar to Park and Dill [22]. We use a model checker to find the reachable state
space of the model. We extract the outcomes from the set of reachable final states
found by the model checker. Our initial experiences in translating the operational
models into Promela and running Spin [15] resulted in an inefficient exploration
tool. Consequently, we implemented a custom explicit state enumeration model-
checker in C++.

We implemented all the components described in Section 3.1 as C++ classes.
We can instantiate those classes and connect them by defining the glue logic, as
described in Section 3.1. The naive algorithm simply explores all possible execu-
tion paths, including all non-deterministic choices. Each execution is terminated
when all of the components get to their final states.

In order to explore a smaller number of paths, we use the idea of Sleep Sets,
introduced by Godefroid [13]. Intuitively, Sleep Sets is a partial order reduction
that avoids trying out redundant partial orders between independent concurrent
transitions. Two transitions t1 and t2 are independent if by executing t1 and
then t2 we get to the same state as the state we reach by executing t2 and then
t1. This reduction is dynamic in the sense that we decide if pairs of transitions
are independent dynamically during the execution of the program, unlike static
partial order reductions, such as those implemented in SPIN [15], where all the
information used of order reduction is extracted from the syntactic description
of the model before its execution.

In order to adapt Sleep Sets to our framework, we had to define when two
transitions are considered as independent. One simple way to test for the in-
dependence of two transitions, x and y, finding the set of components that are
involved in each transition. In each transition, one of the components makes a
step and send a message to another component. The receiving component can
be a different component at different times when the sending component is being
executed. If non of the components that are involved in x are also involved in y,
those transitions are independent.

In some cases, however, two transitions are independent even when they
involve common components. Suppose, for example, that in transition x, com-
ponent C1 sends a message m to C3, and in y, component C2 sends the same
message m to C3. In this case, even though both transitions involve C3, we can
switch the order in which they execute and we will still get to the same state
because both send the same message. Another optimization, which is specific
to one of the component classes in our framework concerns the FIFO buffer in
WriteBuf. In a FIFO buffer, we can switch the order between queue and dequeue
operations and get to the same states, unless buffer is initially empty. Therefore
if in transition x some other component sends a write message to WriteBuf,
and in transition y the same WriteBuf component writes from the buffer, those
two transitions are also independent. Both optimizations are implemented in our
system.

We also implemented state caching, containing states that were already vis-
ited. When the model checker visits a state which is already in the cache, it skips

19



July 13, 2010 CAV 2010 Extended

Operational SC TSO PSO RMO NTSO NPSO
Axiomatic

SC - 1s/4/2 1s/4/2 1s/4/2 8s/4/2 1s/4/2
TSO 1s/4/2 - 1s/4/2 1s/4/2 130s/5/3 1s/4/2
PSO 1s/4/2 1s/4/2 - 1s/4/2 8s/4/2 16s/5/3

RMO 1s/4/2 1s/4/2 1s/4/2 - 8s/4/2 16s/5/3
NTSO 2s/4/2 39s/5/3 2s/4/2 2s/4/2 - 2s/4/2
NPSO 2s/4/2 2s/4/2 40s/5/3 2s/4/2 9s/4/2 -

Table 1: Contrasting axiomatic and operational models: time/instructions/threads

exploring any transitions from this state, since they where already explored. Un-
like full state hashing, however, not every visited state have to be in the cache,
and the same cache line can be overwritten by newer states.

For memory models specified axiomatically, the model is translated into a
propositional formula. The model is specified as a set of first order formulas.
In the context of finite programs all the variables have finite domains, so we
convert the specification into predicate calculus by unfolding the quantifiers. A
satisfying assignment is obtained by a SAT solver, which is one possible outcome
of the program. To find all possible outcomes, we add the clause representing
the negation of the outcome to the model and run the SAT solver again. As
long as there are additional possible outcomes, the SAT solver returns another
satisfying assignment. We repeat this process iteratively until the model becomes
unsatisfiable. As we only add constraints to the model, the SAT solver uses
conflict clauses from previous runs to make subsequent iterations faster. For the
prototype, we used minisat [12] as the SAT solver.

5 Experiments

This section describes the experiments we performed to demonstrate the fea-
sibility and usefulness of our approach, including: (1) measuring the execution
time for contrasting the operational and axiomatic specifications of six mem-
ory models, (2) showing the effectiveness of the reductions targeted at reducing
the number of test programs considered, and (3) performing two case studies in
which the tool is used to debug memory model specifications.

5.1 Comparing different memory models

We tested our technique by comparing the operational and axiomatic specifica-
tions for various memory models: SC, the three SPARC memory models, and
the non-store-atomic extensions of TSO and PSO. As seen in Table 1, a counter
example is found for most cases within less than a second. The slowest times
occur when comparing models to their non-store-atomic extension, which takes
over two minutes for TSO versus NTSO. The litmus tests produced by the tool
as counter examples were mostly the litmus tests we expected. However, the
tool found subtle errors in our initial operational specification for RMO and for
NTSO, which we fixed.

20



July 13, 2010 CAV 2010 Extended

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

3 4 5 6 7 

T
e

s
ts

 

Total instructions 

The effect of reductions on number of tests 

No reduction 

Symmetry 

Symmetry+elimination 

Fig. 11: The effect of reductions on the number of tests.

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

3 4 5 6 7 8 9 

S
e

c
o

n
d

s
 

Total Instructions 

Average time per test 

Axiom-PSO 

Axiom-NPSO 

Oper-PSO 

Oper-NPSO 

Fig. 12: Average run time per test

5.2 Test reductions and scalability

The graph in Fig. 11 shows the number of tests generated with up to three mem-
ory locations, up to three instructions per thread, and a varying number of total
instructions. Fences are not counted towards the total number of instructions.
Symmetry reductions provide approximately a 10x reduction in the number of
tests, and redundant program elimination provides an additional 10x reduction,
resulting in an overall reduction by a factor of 100x in the number of generated
tests. The graph in Fig. 12 shows the average time per test for both operational
and axiomatic memory models. As seen in this graph, the average time per test
is no more than several seconds for programs with up to nine instructions, which
means a bound of six or seven instructions can be explored in a reasonable time.

21



July 13, 2010 CAV 2010 Extended

Test G
T1 T2

Read X → r1 Read Y → r2
Write Y ← 1 Write X ← 2
Outcome: r1 = 2; r2 = 1
time to find: 2s

Test H
T1 T2 T3

Read X → r1 Read Y → r2 Read Z → r3
Write Y ← 1 Write Z ← 2 Write X ← 3
Outcome: r1 = 3; r2 = 1; r3 = 2
time to find: 824s

Test I
T1 T2

Write X ← 1 Write Y ← 2
Fence Fence
Read Y → r1 Read X → r2
Outcome: r1 = 0; r2 = 0
time to find: 22s

Test J
T1 T2 T3

Write X ← 1 Read Y → r2 Write Y ← 2
Fence Read X → r3
Write Y ← 2
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 411s

Fig. 13: Litmus tests generated for buggy NPSO specifications

5.3 Debugging our axiomatic specification for NPSO

As a case study for using our technique for debugging a new memory model spec-
ification, we developed an axiomatic specification for NPSO, a non-store-atomic
relaxation of PSO. We used an existing operational specification for NPSO as a
reference model. We started with the axiomatic specification defined in Section
2, which is an extension of PSO that allows each thread to observe memory
operations in a different order with the addition of a coherence axiom. We then
ran the prototype with a bound of six instructions.

The prototype reported that Test G in Fig. 13 is allowed in the axiomatic
but not in the operational specification. This is a well-known litmus test, which
usually illustrates reorderings of reads after later writes. In this specification,
however, we explicitly disallow reordering reads after writes. This outcome oc-
curred because threads are not required to agree on the order of writes to different
addresses. To correct the specification, we must rule out this kind of behavior
and enforce some notion of causal transitivity. Our first attempt to fix it required
that if a read sees a write to the same address in some thread, it can be ordered
only after this read in the local thread that issued the write. Running the tool
again after this modification generated Test H in Fig. 13. The proposed axiom
was sufficient to rule out cycles involving two threads, but not cycles involving
three threads and three addresses. We fixed this by using an alternative axiom,
stating that if a read precedes a write to any address according to the local
thread of this write, it will precede this write in any other thread.

After fixing the issue of causal transitivity, we ran the prototype again and
received Test I in Fig. 13. This outcome is allowed when fences affect only local
order and there is no total order among fences. We fixed it by adding an axiom
that requires a total order between fences. In the final iteration, we received
Test J in Fig. 13. In this case, the operational model drains both the local
and the global queues after a fence, which rules out the outcome listed under
Test J. A total order between fences is not sufficient to rule out this outcome.

22



July 13, 2010 CAV 2010 Extended

Test K
T1 T2

Write X ← 1 Write Y ← 3
Write Y ← 2 Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 3; r2 = 3; r3 = 0
time to find: 111s

Test L
T1 T2

Write X ← 1 Write Y ← 2
Fence Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 43s

Fig. 14: Litmus tests generated for SOBER

We strengthen the total order axiom by requiring all threads to agree about the
order between fences and any other operations. After fixing this axiom, we found
no new mismatches between the models.

5.4 Debugging the axiomatic specification of TSO used in SOBER

The second case study for our technique was debugging the axiomatic specifica-
tion of TSO used by SOBER [6]. SOBER is a technique for detecting potential
SC violations in software. SOBER uses an axiomatically defined memory model
that is intended to be equivalent to SPARC’s TSO. The authors stated that their
axiomatic definition is equivalent to their operational specification of TSO [7].
However, Burnim et al [8] discovered that SOBER’s axiomatic specification and
TSO are, in fact, not equivalent. We used SOBER’s specification as a case study
to see if our technique could detect the discrepancy between the two models
without any prior knowledge about the nature of this discrepancy.

We compared SOBER’s axiomatic specification with our operational spec-
ification for TSO. Our tool took less than two minutes to generate Test K in
Fig. 14, which is allowed by TSO but not by SOBER’s specification. Such a test
is often used to distinguish TSO from IBM 370 [2], which is essentially TSO
without forwarding. We then contrasted SOBER with IBM 370 and received
Test L in Fig. 14, demonstrating that SOBER allows behaviors that are not
allowed by IBM 370. We implemented a fix suggest by Burckhardt (personal
communication), and we found no new mismatch between the fixed model our
specification of TSO.

6 Related work

Many studies describe tools for testing litmus tests on a formally specified mem-
ory model [11, 21, 22, 24, 25]. Given a parallel program and an expected outcome,
these tools report whether the specified outcome is feasible on a specified mem-
ory model. Most of these tools test for one outcome at a time [11, 21, 24, 25].
Park and Dill [22] presented a tool that enabled exploring all outcomes for a
given parallel program using an operational specification for RMO.

Another approach for debugging a memory model is the “test model-checking”
methodology [20]. In this approach, a memory model is verified against a state

23



July 13, 2010 CAV 2010 Extended

machine that generates a non-deterministic sequence of writes and test for cer-
tain assertions. Each test-generating state machine is designed to detect a certain
architectural rule. This approach provides a stronger verification than testing
specific litmus tests.

A technique for validating that a system correctly implements a memory
model is dynamic testing, which is used by tools such as TSOtool [14] and
LCHECK [10]. These tools generate random tests, execute them on a certain
hardware, and verify that the execution adheres to a given memory model.

Few studies involve a direct comparison between two memory models. Chat-
terjee et al [9] shows the equivalence of an operational specification of the Alpha
memory model to an implementation of the same model. This work finds a refine-
ment map between the two models via model-checking and uses an intermediate
abstraction that exploit structural similarities between the two models to facil-
itate the proof. Other studies [11, 21] use theorem proving to prove equivalence
between an operational and axiomatic specification of the same model.

7 Conclusions

We presented a technique for contrasting memory models and implemented a
prototype based on this technique. Our experiments showed that this approach
can detect differences between memory models within seconds or minutes, and
the case studies showed that by contrasting memory models we can detect sub-
tle differences between memory models that might have gone undetected using
a predetermined set of litmus tests. Several key features make this technique a
viable tool for debugging memory model specifications: it provides feedback in
reasonable time, it generates a minimal-length litmus test as a counter exam-
ple, which are easy to analyze and understand, it is fully automatic, and it is
flexible and general in the sense that it can support different memory models,
specification styles, and exploration techniques.

One limitation of our approach is that it does not provide a complete verifi-
cation for the equivalence of two models. We test programs only up to a certain
bound, and we cannot guarantee that there is no longer test that differentiates
between the two specifications. Furthermore, redundant program elimination re-
ductions may not be safe when comparing some models. We plan to extend this
work to equivalence verification by finding sufficient bounds for a rich but re-
stricted domain of memory models and prove that the reductions we use are safe
for this domain of models.

Acknowledgements

We thank Sebastian Burckhardt for suggesting the use of SOBER’s TSO speci-
fication as a case study for this paper.

24



July 13, 2010 CAV 2010 Extended

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2) (1991) 253–284

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29 (1996) 66–76

3. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli,
F.Z.: The semantics of power and ARM multiprocessor machine code. In: DAMP.
(2009)

4. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: PLDI. (2008) 68–78

5. Burckhardt, S., Alur, R., Martin, M.: Checkfence: checking consistency of concur-
rent data types on relaxed memory models. In: PLDI. (2007) 12–21

6. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: CAV. (2008) 107–120

7. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. Technical Report MSR-TR-2008-12, Microsoft Research (2008)

8. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency in relaxed memory models. Technical Report UCB/EECS-2010-31,
EECS Department, University of California, Berkeley (Mar 2010)

9. Chatterjee, P., Sivaraj, H., Gopalakrishnan, G.: Shared memory consistency pro-
tocol verification against weak memory models: Refinement via model-checking.
In: CAV. (2002) 123–136

10. Chen, Y., Lv, Y., Hu, W., Chen, T., Shen, H., Wang, P., Pan, H.: Fast complete
memory consistency verification. In: HPCA. (2009) 381–392

11. Chong, N., Ishtiaq, S.: Reasoning about the ARM weakly consistent memory
model. In: MSPC, ACM (2008) 16–19

12. Een, N., Sorensson, N.: Minisat - a SAT solver with conflict-clause minimization.
In: SAT. (2005)

13. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag Inc. (1996)

14. Hangal, S., Vahia, D., Manovit, C., Lu, J.Y.J.: TSOtool: A program for verifying
memory systems using the memory consistency model. ISCA 32(2) (2004) 114

15. Holzmann, G.J.: The model checker spin. IEEE Transactions on Software Engi-
neering 23 (1997) 279–295

16. Holzmann, G.J.: The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Professional (September 2003)

17. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual.
(March 2010)

18. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess program. IEEE Transactions on Computers 28(9) (1979) 690–691

19. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL. (2005)
378–391

20. Nalumasu, R., Ghughal, R., Mokkedem, A., Gopalakrishnan, G.: The ’test model-
checking’ approach to the verification of formal memory models of multiprocessors.
In: CAV. (1998) 464–476

21. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs. (2009) 391–407

22. Park, S., Dill, D.L.: An executable specification and verifier for relaxed memory
order. IEEE Transactions on Computers 48 (1999)

25



July 13, 2010 CAV 2010 Extended

23. Weaver, D.L., Germond, T.: The SPARC Architecture Manual Version 9. Prentice
Hall PTR (1994)

24. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory
model specification framework with integrated model checking capability. Concurr.
Comput. : Pract. Exper. 17(5-6) (2005) 465–487

25. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Analyzing the intel ita-
nium memory ordering rules using logic programming and SAT. In: CHARME.
(2003) 81–95

A Promela code for components

A.1 The Processor Component

proctype Proc(byte PR; Prog P; chan in,out)

{

byte pc; Set incomp;

chan observe = [PRLEN] of {DATA}; Msg m; Ins i;

pc = 0;

do

:: in?m;m.type==r ->

observe!m.val; remove(incomp,m.ins);

:: in?m;m.type==c ->

remove(incomp,m.val);

:: empty(in) ->

if

:: P.ins?i; i.type==W; nfind(incomp,i.addr) ->

m.type = W;m.addr=i.addr;m.val=i.val;

m.proc=PR;m.ins=pc;out!m;

:: P.ins?i; i.type==R ->

m.type= R;m.addr=i.addr;m.val=i.val;

m.proc=PR;m.ins=pc;out!m;

insert(incomp,pc);

:: P.ins?i; i.type==F; empty(incomp.ch) ->

m.type= F;m.proc=PR;m.ins=pc;out!m

:: empty(P.ins) & empty(incomp.ch) -> break;

fi;

pc = pc+1;

od

}

A.2 The SimpleMem Component

proctype SimpleMem(byte ID; chan in,out)

{

byte value; Msg m;

value = 0;

do

:: in?m; m.type==R ->

m.type = r; m.val=value;

26



July 13, 2010 CAV 2010 Extended

out!m;m.type=c out!m;

:: in?m; m.type==W ->

value = m.val; m.type= f; out!m

od

}

A.3 The WriteQueue Component

proctype WriteQueue(byte P,Addr; chan in,out)

{

chan q = [PRLEN] of {byte,byte,Msg};

Msg m,m1; byte a,p;

do

:: empty(in) -> q?_,_,m; out!m;

:: in?m; m.type == W -> q!m.addr,m.proc,m;

:: in?m; m.type == R -> if

:: q??[eval(m.addr),eval(m.proc),m1] ->

q??<eval(m.addr),eval(m.proc),m1>;m1.type=r;

out!m1;m1.type=c;out!m1;

:: else -> out!m

fi

:: in?m; m.type== F -> do

:: q?a,p,m -> out!m

:: empty(q) -> break

od

od

}

A.4 The SetRead Component

proctype SetRead(byte P,Addr; chan in,out)

{

Set s; byte last; last = 0;

insert(s,0);

Msg m;

do

:: in?m; m.type == W ->

insert(s,m.val); out!m;

:: in?m; m.type == F ->

clear(s);insert(s,last);out!m;

:: in?m; m.type == f ->

last = m.val; insert(s,m.val);

:: in?m; m.type == R ->

choose(s,m.val); m.type=r;out!m;

m.type=c; out!m;

od

}

27



July 13, 2010 CAV 2010 Extended

A.5 The FutureRead Component

proctype FutureRead(byte P,Addr; chan in,out)

{

chan s = [MAXQUEUE] of {byte,byte};

byte last; last = 0;

Msg m; byte i,v;

do

:: in?m; m.type==f -> last=m.val; do

:: s??[eval(m.val),i] ->

s??eval(m.val),i;

m.type= c; m.ins = i;

:: else -> break;

od

:: in?m; m.type==R ->

m.type = r; m.val=last; out!m;

:: in?m; m.type==R ->

random(NVAL,v); s!v,m.ins;

m.type=r; m.val=v; out!m

od

}

28


	Generating Litmus Tests for Contrasting Memory Consistency Models - Extended Version
	Recommended Citation

	Generating Litmus Tests for Contrasting Memory Consistency Models - Extended Version
	Abstract
	Disciplines
	Comments

	MS-CIS-10-15.pdf

