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Abstract 

A wavelet decomposition for multiscale edge detection is used to separate border 
edges from texture in an image, toward the goal of a complete segmentation by Active 
Perception for robotic exploration of a scene. The physical limitations of the image 
acquisition system and the robotic system provide the limitations on the range of 
scales which we consider. We link edges through scale space, using the characteristics 
of these wavelets for guidance. The linked zero crossings are used to remove texture 
and preserve borders, then the scene can be reconstructed without texture. 



1 Introduction 

Scene segmentation on digitized images is an ill defined and difficult task. This is a data 
reduction process, which consists of requantizing the sensory measurements into regions 
which are determined to be uniform by some measurement criteria. Then some level of 
sensory resolution, less than the original resolution, is substituted. We use a multiscale 
approach to find borders for use in segmentation and to remove texture within the regions. 
We limit the number of scales to consider by using a wavelet decomposition, then combine 
edge information at different scales to obtain information on the nature of edges for use in 
segment ation. 

In this work, we limit ourselves to visual, non-contact measurements obtained from a 
CCD camera. In general, we would not have a priori reasons to choose a particular scale, 
but we are always limited by the format of the image itself to a particular minimum and 
maximum resolution which we consider [I]. Therefore, perceptual limitations can guide our 
range of scales. Also, the camera noise level guides the selection of the minimum amplitude 
of a signal which we consider. Using Active Perception, we assume that the camera can and 
should be moved or the lenses adjusted to best sense the scene [2]. In addition, there are 
physical limits for a two robot system, where one robot has an end effector and the other has 
a camera. The distance from the camera to the boundary of the workspace can be calculated 
using kinematics [3]. The minimum size object that can be handled by the end effector is 
also known. In this way, physical and perceptual limitations guide our choice of scales. 

To visualize a coarse to fine representation, consider the appearance of the outside of a 
building. First you see the the outline of the building; you notice its borders and differentiate 
the building from the rest of the scene. After a small amount of inspection, you see windows 
and entrances. These "features" are object borders, but they are subregions of the original. 
As you approach the building, you notice the bricks on the face of the building and the 
shingles on the roof. More specifically, you observe the texture inside each of the regions in 
the scene. You started at a coarse resolution and worked your way towards the fine resolution. 
When you were far from the building, the pattern of windows was the texture, but as you got 
closer, the windows became the features while individual bricks became the texture. Closer 
still, the bricks become features and the patterns of imperfections and coloring of the bricks 
become the texture. In other words, what constitutes texture is dependent on scale, both 
for the maximum size and the minimum size object available within the resolution limits 
of the imaging system. Similarly, the size of an object in the scene which is big enough to  
be considered for further analysis (a "feature") depends on resolution. The use of multiple 
scales for edge detection was discussed in [4], [5] ,[6], [7] and others. 

As a first step toward segmentation, our goal is to separate borders, shading, and texture 
in an image. Both the largest and the smallest resolvable object sizes are determined by 
the optics of the camera lens, the size of the CCD and the distance between objects and 
the camera. Since segmentation, by its very nature, is a data reduction process, we assume 
that the number of regions is much smaller than the number of pixels in the original picture. 



For example, an original image of 512 by 512 pixels might be reduced into approximately 
25 regions, a reduction of 4 orders of magnitude. A reduction of more than 5 orders of 
magnitude or less than 2 is not likely to be a "good" segmentation, since the segmentation 
would not optimally be using the resolution of the camera. In other words, if the size of a 
particular object in the image is only a few pixels, then analysis of the shape of the object 
would be difficult. Similarly, if the object is larger than the whole image, the outer shape of 
the object cannot be determined. In order to do shape analysis, the camera would have to 
zoom in or out, or physically be moved to appropriately sense the scene. In a robotic vision 
domain, we assume that this can and should be done. 

Within the resolution of the image, the information present only at  high spatial frequency 
can be considered texture, while the information present at all resolutions is likely to be 
object borders, or edges. Finally, the information present only at low spatial frequencies can 
be considered shading. 

We decompose an image into localized information at different spatial frequencies using 
wavelets as a set of basis functions. Wavelets are families of basis functions that can be 
represented by f (x) = C bjkW(2& - k )  [13]. They are used for the purpose of localization 
of signals in both space and spatial frequency, as far as possible, simultaneously. 

First, we discuss the one dimensional case. We work with one dimensional images which 
are also referred to as signals. Using wavelets in a fine to coarse manner, we decompose 
the signal onto four levels varying in resolution by a power of two. Then we create the zero 
crossing representation. Using the zero crossing representation, we identify the texture in 
the image and show the effect of texture deletion. 

Finally, we extend our results into two dimensions. We show scenes where both horizontal 
and vertical texture are deleted. 

2 Dyadic Wavelet Decomposition 

A dyadic wavelet transform is a nonlinear multiscale transform which translates when the 
signal translates. It can be viewed as a discretization along the scale axis of a continuous 
wavelet transform and was first investigated by [8]. We choose wavelets as our basis functions 
for several reasons. First, we can represent a signal with only a few wavelets without losing 
too much information. This allows us to select a small number of scales which effectively 
represent the edge information [9]. Second, wavelets are highly localized in both real and 
frequency space. The wavelets we choose are the second derivative of a smoothing function, 
thus the zero crossings of the dyadic wavelet decomposition provide the locations of edges 
in the signal. 

Because only four different scales are used, the wavelet transform produces data compres- 
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Figure 1: The four wavelets used in decomposition. 
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sion; however, the representation has been shown to be experimentally complete, in that a 
signal can be reconstructed from its dyadic decomposition with minimal loss of information. 
For example, a printed image constructed from the 2-dimensional wavelet transformation 
appears the same as the original and the intensities change by < 5% [lo]. However, for this 
application, the selection of the appropriate scales is more important than data compression. 

To decompose a signal, we use two different filters: a smoothing function, and a zero 
crossing function. Using these two filters, we create a series of wavelets whose spatial reso- 
lution increases in width by powers of two. 

The decomposition process consists of a series of convolutions. The original signal is 
convolved with a smoothing filter 3 times, yielding the singly-smoothed signal, the doubly- 
smoothed signal and the triply-smoothed signal. The smoothed signals each have half of the 
resolution of the previous signal. The original and the smoothed signals are each convolved 
with the zero crossing wavelet. This produces zero crossings at  4 different scales, separated 
by powers of 2 in resolution. Four levels of decomposition is usually sufficient, as shown in 
figure 2. This is similar to the pyramidal decomposition in [ll]. 

The points where each decomposition crosses the abscissa are called zero crossings. The 
portion of the function between two adjacent zero crossings is called an arch. The energy 
of an arch is the integral of the square of the function between two adjacent zero crossings. 
See figure 2. 

2.1 Energy Zero Crossing Representation 

To reduce the storage requirements of the data, we convert the dyadic representation to 
a zero crossing representation, which contains only the positions of the zero crossings and 
their associated energies. The result is called the Energy Zero Crossing (EZC) representation. 
The EZC representation consists of two linked lists, one containing the energy (as length and 
square of the dyadic decomposition's amplitude within the arch) and the other containing 
the positions of the zero crossings (see figure 3). The EZC representation is displayed in 
figure 4 on page 8. Using an iterative algorithm, we can reconstruct the original signal from 
this compressed representation with minimal loss of information [9]. An EZC representation 
contains information which came from only one scale/orientation pair. 

2.2 Multiorientation Multiresolution Decomposition 

The above one dimensional analysis has been generalized into two dimensions using mul- 
tiorientation multiresolution wavelets. We decompose an image in different orientations, 
compute the zero crossings for a particular orientation, and reconstruct the image with very 
little loss of information. 
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Figure 2: Second order dyadic decomposition 
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Figure 3: Energy-zero-crossings structure. 



Figure 4: Zero Crossing Representation. 



Figure 5: Edge Detection of the Penn Campus at varying resolutions: 
a: Original, b: Resolution 2j, c: Resolution 2j1', d: Resolution 2j-2, e: Resolution 2j-3 



Using the energy zero crossing representation, we implemented an edge detection algo- 
rithm at  one orientation and at one resolution. The results of this algorithm are shown in 
figure 5 (p. 9). 

3 Zero Crossing Analysis in One Dimension 

In figure 4, zero crossing locations are shown for several different scales. Intensity transitions 
in the image cause zero crossings at different resolutions, some only at coarse resolutions, 
some at fine resolutions and others all resolutions. Our hypothesis is that the edges present at  
fine resolutions only constitute texture, edges present at coarse resolutions only are shading, 
and edges present a t  all resolutions are borders edges. Lu and Jain [12] have shown that an 
isolated edge curve has a corresponding zero crossing curve at every scale using a Laplacian 
of Gaussian edge detector. Thus an isolated edge curve would be a border in our analysis. 
As edges approach other edges, the edges interfere with one another. For example, for the 
wavelet we use, edges must be 10 pixels apart to produce a response at  all 4 resolutions, 5 
pixels apart for the finest 3 resolutions, 2 pixels apart for the finest 2 resolutions, and 1 pixel 
apart for the finest resolution. 

3.1 Matching Zero Crossings through Scale Space 

We begin the analysis of the zero crossings by matching zero crossings through scale space. 
This links zero crossings in different scales which were produced by a single intensity transi- 
tion in the image. We implemented a coarse to fine algorithm which matches zero crossings 
through scale space. The criteria for matching zero crossings are defined by the signal to 
noise characteristics of the image acquisition system and by the widths associated with the 
individual scales. In other words, the signal must be strong enough, and the distance that 
the zero crossings can move is limited by the half-width of the scale. 

We developed a vector representation based on the coarse to fine matching results. The 
vector is an n by 1 vector where n is the number of levels of decomposition, 4 in this case. 
The vectors are then used for analysis on the nature of the edges. 

In figure 6, a signal is superimposed over its dyadic decomposition. Though visual texture 
is difficult to define in 1 dimension, it is clear that small intensity changes in the the signal 
are smoothed, but that high amplitude changes are preserved. 
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Figure 6: Original juxtaposed with its dyadic decomposition. 



Figure 7: Step function and its zero crossing representation. 

3.2 Sidelobes 

One of the ambiguities of the zero crossing representation is that strong edges produce 
spurious zero crossings on both sides of the primary zero crossing response, and these are 
included in the zero crossing list. These sidelobes are a direct result of the shape of the 
wavelet. They usually exist next to border zero crossings which are zero crossings which line 
up through scale space. It is important to label the sidelobe zero crossings, so we do not 
accidentally remove or modify them, because they are part of the image reconstruction after 
texture removal. Figure 7 points out where sidelobes are in a zero crossing representation. 

We implemented a sidelobe labeling algorithm. Because the sidelobes only occur near 
strong edges, we st art by traversing the zero crossings which are matched through scale space. 
We take the nearest zero crossings to the left and the right of the matched zero crossing. As 
shown in figure 4, adjacent zero crossings share a common energy. The energies to the left 
and right of the traversed zero crossing are large, and they correspond to an edge. The next 
zero crossings, if they are sidelobes, share a large energy with the traversed zero crossing, 
and have a small energy on the opposite side. That small energy is classified as a sidelobe. 
The threshold of sidelobe energy classification is related to the shape of the wavelet itself. 

Rather than finding and labeling sidelobes, another possible approach is to use a different 
filter shape, such as a Laplacian of Gaussian, which only contains two zero crossings. This 
is expected to reduce the accuracy of the reconstruction (using only 4 scales), but is also ex- 
pected to reduce the processing time. We plan further research into the topic of comparative 
analysis of different wavelets and other filters, for this purpose. 



Figure 8: Original signal; 3rd, 4 t h  deleted; 2nd,  3rd and 4th deleted 

Figure 9: Original image; 3rd, 4 t h  deleted; 2nd,  3rd and 4 t h  deleted 

4 Texture and Border Analysis 

4.1 Texture Deletion 

To delete the texture, we remove zero crossings and their energies from the list of zero 
crossings, then reconstruct the image. There are two options: we can delete zero crossings 
which are present only at the finest two resolutions or zero crossings which are present only 
at the finest three resolutions. We have experimented with both of the options. As expected, 
more smoothing occurs when zero crossings present at three resolutions are removed. The 
decision of how much texture to remove can be based on the number of regions that a high 
level segmentation process can handle. 

4.2 Two Dimensional Texture Removal 

To extend the texture removal to two dimensions, we use the one dimensional process along 
all scan lines, rotate the resulting reconstructed image by 90 degrees, and remove texture 
from that. Since edge spacing is an issue in texture removal, we expect that some texture 



with a diagonal orientation will be missed. However, preliminary results indicate that these 
errors are not important enough to add diagonal orientations and double the processing time. 

As stated before, the the level of texture deletion is determined by the number of resolu- 
tions from which zero crossings are removed. Figure 9 shows a comparison of images with the 
2 finest resolutions deleted versus the 3 finest resolutions deleted, with a total representation 
of 4 spatial resolutions.. In figure 10 (p. 15), texture at the lowest 3 levels have been removed 
from a closeup of a real image of the Philadelphia skyline. The figure also shows the texture 
removed in each orientation individually. At this scale, windows constitute texture, and the 
buildings are large enough to be treated as features. Figure 11 (p. 16) shows deleted texture 
at the lowest 3 levels of the real image of the Philadelphia skyline. 



Figure 10: Texture Removal in Finest 3 Scales from Philadelphia Image. 
Original(a), Vertical Texture Deleted (b), Horizontal Texture Deleted ( c ) ,  Both Horizontal 
and Vertical Texture Deleted (d) 



Figure 11: Texture Removal in Finest 3 Scales from Philadelphia Image. 
Original(a), Vertical Texture Deleted (b), Horizontal Texture Deleted (c), Both Horizontal 
and Vertical Texture Deleted (d) 



Figure 12: Detected Borders from Image in figure 5a 

4.3 Border Edge Detection 

To test the hypothesis that edges present at all spatial frequencies are borders, we decompose 
an image whose borders are well defined into the multiscale representation. The borders can 
be defined because the image consists of an architect's scale model of the University of 
Pennsylvania campus, and the borders are actual cardboard structures whose locations can 
be measured in the laboratory. Edge information which is not present at all frequencies are 
expected to be borders, as shown in figure 12, and the borders shown match the physical 
edges of the structures. The edge locations are determined by the finest scale, though the 
edge detection is done at all four scales. An extension of this work will be to connect border 
edge pixels to form closed boundaries, particularly when some of the edges are found on all 
scales and others on fewer scales. 

5 Conclusion and Future Work 

The hypothesis that multiscale edge detection can separate border edges from texture was 
confirmed visually by these experiments. The next step is to continue this work toward a 
complete segmentation by Active Perception, and then use the segmentation to guide robotic 
exploration of a scene. This will provide a physical confirmation that our definition of texture 
is appropriate to robotic exploration of a scene. 

The physical limitations of the image acquisition system and the robots provide the 
limitations on the range of scales which we consider. Then we link edges through scale 



space, using the characteristics of these wavelets for guidance. The linked zero crossings are 
used to remove texture and preserve borders, then the scene can be reconstructed without 
texture. 
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